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Abstract

The political districting problem deals with dividing a geographical area into a pre-
determined number of single-member electoral districts. As the results of a new census
become available, the existing districts may need to be revised, so that they still conform
to constitutional criteria. Almost all of the past studies consider a basic set of criteria
only (i.e., population equality, compactness, and contiguity) and most of them are unable
to handle large-scale districting problems. In this dissertation, a Tabu Search algorithm
is developed for solving the political districting problem. Both basic criteria and political
criteria are considered. The problem is recognized as a multi-criteria optimization prob-
lem and consequently the objective function is composed of multiple weighted terms. The
proposed Tabu Search algorithm is also integrated with a meta-heuristic technique known
as Probabilistic Diversification and Intensificiation. The algofithm is tested using enumer-
ation area data for the City of Edmonton and the City of Montreal. The district plans
that are produced with the Tabu Search algorithm dominate the ones that are currently
in use, based on the criteria considered. The algorithm generates district plans that are
more compact than the existing ones, and that also maintain integrity of communities, and

similarity to the existing plan to a reasonable extent.

Keywords: political districting, electoral districting, redistricting, tabu search, GIS.
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Chapter 1

Introduction

In today’s political world, most of the countries governed by parliamentary democracy
and/or those that have an elected national assembly have adopted the notion of electoral
districts in their representation systems and voting procedures. In such countries as Canada,
Britain, and the United States of America, electoral districts are used as the means by
which the residents/citizens of the country delegate their legislative power to a group of
representatives. Specifically, an electoral district is a geographical area whose residents are
represented by the same set of representatives in a legislative assembly. (The term electoral
district is usually used interchangeably with the term constituency, which refers to the group
of citizens on behalf of whom the elected representative acts.) The actual implementation
of this concept appears in many different forms in all levels of governmental hierarchy, from

municipal to federal.

The political districting problem studied in this dissertation is the problem of dividing the
territory of a nation or other political unit into a set of single-member electoral districts.
These districts are to be used in subsequent elections in a manner that best satisfies a
set of criteria regarding the districts’ preferred socio-political composition and territorial
boundaries. The term single-member refers to the case where there is only one representative
associated with and elected from each electoral district. The alternative is multi-member
electoral districts, where the residents of a district are represented by multiple seats in the
legislature. In a single-member district, the “winner-takes-all” rule is in effect. That is,
the candidate who receives the majority of the votes cast in a district gets elected for the
single seat in the parliament for that district. As many political scientists have argued, an
advantage of this system over one using multi-member districts is the increased authority of
the representative within the district. A disadvantage, on the other hand, is the potential

1



lack of “proportionality” when all the districts are considered together. That is, with single-
member electoral districts, the overall fraction of the seats won by a political party may
not be proportional to the overall fraction of the votes the party gets. Clearly, this is an
undesirable outcome, since any political group should have political power proportional to its
share of the popular vote, according to the proportional representation principle. Countries
such as Germany and New Zealand have therefore chosen to employ a mixture of single-
and multi-member electoral districts to reduce the disadvantages of using single-member

districts only.

In this dissertation, the political districting problem will only be studied in the single-
member context. The problem is to divide a geographical area or a territory into a pre-
determined number of single-member electoral districts, based on a set of objectives and
restrictions. Note that this problem definition can also be used to address multi-member dis-
tricting cases where each district is assigned the same number of representatives, therefore
should have roughly equal population. (Having made this definition, the term “single-
member” will be dropped in the rest of this dissertation and the terms “electoral district”
and “political districting problem” should mainly be understood in the single-member con-
text, unless otherwise noted.) Of course, the number of districts is the same as the number
of seats in the parliament allocated to this territory. Note that the process of deciding on
the number of seats in a territory, i.e. the process of “apportionment”, is external to the
political districting problem and is not studied in this dissertation. Its only role (as far
as this dissertation is concerned) is to provide the number of districts a territory will be

divided into.

The political districting problem is critical in its own right to the effectiveness of a country’s
election and representation system in that it provides the guidelines as to how the legislative
power of citizens will be exercised by their representatives. If the districting is done in an
unfair manner, i.e., in a way that is believed to provide an unfair advantage to a political,
social, or ethnic group, basic principles of democracy will be violated to the disadvantage
of some citizens. The term gerrymandering, which originated from the salamander-shaped
district plan prepared by Massachusetts Governor Albright Gerry in 1812, has traditionally
been used to refer to such practices. Many gerrymandering claims have enriched the history
of districting since then, and many district plans have been challenged in court. A separate
discussion on gerrymandering, together with how it is identified, measured and prevented,
is also part of this dissertation. The bottom line is that identifying electoral districts that
do not violate the constitution and laws of a country, and which are also perceived to be
“fair” to all political groups involved, is crucial to the effective representation of the citizens



in the legislature.

The electoral districts may need to be revised and the districting problem may need to
be re-solved after every census, if the demographic data underlying the existing districts
change. Perhaps the most important districting criterion is to have population-wise bal-
anced districts, due to the “one person, one vote” principle common to the constitutions of
most democratic countries. Consequently, when an existing district’s population (according
to the most recent census) goes out of the allowable range, its boundaries have to be altered
so that the resulting population is within the acceptable limits. This could be done either
by modifying the existing district boundaries (which is the common practice) or by creating
new districts from scratch. Sometimes, a territory grows so much in population that a new
district has to be added to the existing ones. In Canada and Britain, the usual practice
is to put together a committee, which reports to the chief electoral officer for the territory
being districted, in order to have a revised set of districts that conform to a set of districting

criteria. In other countries, other administrative arrangements might be in effect.

In most cases, the process of reviewing and re-drawing the boundaries is mostly manual. Use
of computer software that helps display electoral districts and analyze relevant demographic
data has become common practice recently. However, generating alternative district plans is
still generally done manually; we know of no commercial product that utilizes optimization
tools for automated districting. This causes the process of re-drawing the districts to
last for extended periods of time and some desirable alternatives may be overlooked. An
optimization-based decision support system may solve these problems. Ideally, given a set
of criteria, one should be able to design, using the decision support system, a district plan
with boundaries that reflect those criteria and optimally meet the intent underlying their
use for defining district boundaries. If the resulting plans have undesirable components, a
revised set of criteria might be provided to the system and this process is repeated until

satisfactory plans are produced.

This dissertation proposes an algorithmic approach to the districting problem in an effort
to reduce the time needed to revise the existing districts and to provide the decision maker
with many desirable alternatives in a reasonable amount of time. The algorithms developed
and presented in Chapters 5 and 6 detail step by step the process by which the new district
plans are to be produced. The main algorithm is based on the principles of the Tabu Search
problem solving technique described in detail in Chapter 4. This is a heuristic technique
that has been developed and enhanced by many researchers in the last decade and used to
solve many decision problems. The application of this technique to the political districting
problem is unique and it is based on the selection of a suitable set of criteria. The algorithms

3



operate on both “objective” and “political” criteria, unlike most of the research previously
done. These criteria are described in detail in Chapter 2. Some of the criteria might conflict
with one another, and to address this issue, a weighted multi-criteria objective function
approach is adopted. Each criterion is assigned a particular weight to reflect its relative
importance. This approach lets the decision maker analyze several different scenarios by

changing the weights of individual criteria or even the set of criteria considered.

Note that, as in any decision support system, the algorithmic approach proposed in this
dissertation is meant to provide the decision maker with a set of alternative solutions,
given the decision maker’s preferences. Consequently, any district plan that emerges from
the execution of the algorithm is based on the expressed preferences of the decision maker.
Therefore, if the district plans produced are not acceptable in some aspect, it is up to the
decision maker to revise the input parameters and carry out the process in an interactive
manner. This approach also forces the decision maker to be part of a structured process.
That is, the decision maker is forced to be precise as to which criteria are relevant for
the decision, how these criteria should be measured, and what the relative importances
of the criteria are. This is something that perhaps does not fit easily into how politics is
commonly practiced. Clearly, there might be cases where politicians, given their stated set
of districting criteria, may be provided with a collection of district plans, none of which

appeal to them, perhaps because of a missing unstated criterion. Besides, arguably, some
politicians may tend to reject a district plan no matter how objectively it was produced
if there is one component that the politicians dislike, even if there is no conflict among
the criteria. These issues may seem, at first, to work against an effective utilization of the
algorithmic approach presented in this dissertation. To overcome this potential problem,
the proposed approach should be used in an interactive manner to bring all the relevant
criteria into the picture. That is, the decision maker should first be allowed to explain why
(s)he dislikes certain components of a district plan, and re-submit a revised set of criteria
that supports his/her case. The new criteria set would then be used to produce other
district plans, and the process would be repeated until there is no unaddressed criterion
left. The resulting set of district plans should then be acceptable to the decision maker.

As with any algorithmic approach, a computational study is needed for the algorithms
developed in this dissertation in order to test whether the proposed algorithms are capable
of producing good district plans. Chapter 7 provides the details of such a computational
study. The experiments are carried out in two stages. The first stage involves parameter
fine-tuning, in which different settings for various parameters of the algorithm are tested.
The objective of this stage is to find out which settings perform well for a given set of data.



These settings are then used in the second stage to generate district plans under various
scenarios. Specifically, the second stage is where different combinations of districting criteria
are considered and good district plans are identified based on the criteria chosen. This stage
is intended to address the multi-criteria nature of the problem and to analyze the impact

of changing the districting criteria on the district plans produced.

The experiments reported in this dissertation are based on real data. Real data were used
in order to enable comparisons between the best solutions found by the algorithm with the
electoral districts that are in use. For this purpose, enumeration area data for the City of
Edmonton, Alberta have been selected. These data are provided by Statistics Canada in
the form of electronic enumeration area maps. Enumeration areas are used by the algorithm
as building blocks of electoral districts since a district is created by combining a number
of enumeration areas in most cases. The general methodology is to start with a complete
district plan and then exchange enumeration areas between districts to identify new (and
better) district plans. Enumeration areas, on the other hand, might be too fine to use if the
territory being districted is as large as a province/state. In these cases, one can use building
blocks with less detail, such as census tracts or counties. In any case, the concept of using
building blocks in forming electoral districts makes the algorithms sensitive to geographic
and demographic data. A Geographical Information System (GIS) is used to manage data
and display the district plans produced.

The GIS used in this dissertation helps convert the electronic enumeration area maps pro-
vided by Statistics Canada into data usable by the Tabu Search algorithms. A second
function of the GIS is to import the outputs of the algorithms and display the district plans
produced. Finally, the GIS is used to query, summarize and analyze geographical and de-
mographic data. In this process, the algorithm uses data from the GIS interface and sends
the district plans produced back to the interface for display and analysis. These features of
the algorithms and the interface developed in this dissertation constitute a semi-integrated
system, which provides powerful tools for the authorities charged with the task of creating
district plans to use in generating and evaluating plans more quickly and effectively. The
GIS also makes it easier to communicate information about various demographic aspects of

the district plans in a highly effective way.

The organization of this dissertation is as follows. In Chapter 2, the districting criteria are
described along with the methods of measurement. Existing districting models and algo-
rithms are reviewed in Chapter 3 and the basic principles of the Tabu Search technique are
presented in Chapter 4. In Chapter 5, we describe the details of the proposed implemen-
tation of the Tabu Search technique to the political districting problem, and in Chapter 6,

5



we describe specifics of a problem solving approach that complements Tabu Search, along
with the details of its implementation. The results of the computational study using real
data are reported in Chapter 7 and the concluding remarks are given in Chapter 8.



Chapter 2

Districting Criteria

Perhaps the most critical aspect of political districting is the choice of criteria used in the
process of drawing electoral boundaries. Over the last 150 years, countries that have cho-
sen to adopt district-based representation systems have developed an evolving collection of
criteria in attempting to move towards more effective representation of their citizens. Espe-
cially in the last few decades, governments have strived to identify and legislate districting
criteria that would prevent unfair representation of ethnic, cultural, social or political mi-
norities. In this chapter, such districting criteria are reviewed. Note that no two countries
share the same set of criteria. Therefore, the ones that are reviewed in this chapter consti-
tute a selected set of criteria commonly used in a number of countries. The primary focus,

though, is on criteria included in districting legislation in Canada and the United States.

The set of districting criteria used determines how the district boundaries will be drawn,
which in turn can have an impact on the outcome of the next election. For this reason,
districting criteria constitute one of the two important elements of political districting (the
other being the actual method employed to draw the boundaries). The districting process
can also be abused by individuals, political parties or other groups to acquire power in
an unfair way. For example, a party may attempt to redraw the districts in a way that
maximizes the number of seats it gets. This phenomenon is known as gerrymandering and

it is discussed in detail in Section 2.3.

The districting criteria have been reviewed and classified in many different ways in the
literature, as shown in Table 2.1 for three studies. In another study, Lijphart [35] provides
an inventory of 16 criteria as well as a conflict matrix for these 16 criteria. The conflict
matrix is of particular importance to the discussion in this dissertation, since it is directly
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related with the concept of multi-objective decision making. Lijphart’s list of criteria and

conflict matrix are reproduced below, as they originally appear in [35].

1. Representation must be equal for each citizen. This is the basic one-person, one-vote,
one-value principle. For single-member district systems, it means that the districts
must contain equal number of citizens, in line with the Westberry v. Sanders and
Reynolds v. Sims decisions of the U.S. Supreme Court (Tribe, 1978:739-741). For
non-single-member districts, the criterion calls for representation that is equal per
capita. The number of representatives in multimember districts must be proportional
to the population being represented, or the number of votes cast by representatives
elected from districts of unequal sizes must be weighted according to the population

being represented (Grofman and Scarrow, 1981a:2-3).

2. The boundaries dividing the electoral districts must coincide with local political

boundaries as much as possible.
3. Electoral districts must be compact and contiguous in territory.

4. The boundaries of electoral districts should be drawn in such a way as to provide

representation for political minorities (sophisticated gerrymandering).

5. The boundaries of electoral districts should be drawn in such a way as to provide

representation for ethnic and racial minorities (affirmative gerrymandering).

6. The electoral system should not be biased in favour of any political party in awarding
seats for a certain percentage of the total vote. This is the criterion of neutrality, the
first of the four criteria of fair districting suggested by Richard G. Niemi and John
Deegan, Jr. (1978:1304): “A districting plan which treats all parties alike in allocating

seats per given vote totals is said to be neutral.”

7. The electoral system should not be biased in favour of any racial or ethnic group in
awarding seats for a certain percentage of the total vote. This is the Niemi-Deegan

criterion of neutrality, extended to groups other than political parties.

8. The electoral system should have a wide range of responsiveness to changes in the
electorate’s party preferences. Niemi and Deegan (1978: 1304-1305) define the range
of responsiveness as “the percentage range of the total popular vote (for the entire
political unit) over which seats change from one party to the other. Specifically, the
low end of the [range] is the minimum percentage of the total vote required for a party
to win at least one seat ..., while the upper end is the minimum percentage of the

total vote required to win all of the seats.”

9



10.

11.

12.

13.

14.

15.

. The electoral system should have a “constant swing ratio;” that is, the rate at which a

party wins seats per unit gain in the percentage of its vote should be constant (Niemi
and Deegan, 1978:1306). The principle that a party’s share of the seats should be
proportional to its vote share is a special case of this criterion.

There should be proportionality between the share of the seats won by any particular
ethnic or racial group and its vote share. This criterion extends the above propor-

tionality principle to groups other than political parties.

The system should be competitive in the sense that each party should have a chance
of election in each district. Niemi and Deegan (1978:1309-1311) operationally define
this criterion as requiring each party’s vote to be in the 45- to 55-percent range in

each district.

Each citizen should have equal power to affect the outcome of elections by casting the
decisive vote (Grofman and Scarrow, 1981a:3-4). This voting power varies inversely

with the square roots of the sizes of the district populations (Banzhaf, 1996).

Each citizen’s vote should be “used” as much as possible toward the election of a
candidate and the “wasted” vote should be minimized. The used vote is “the number
of votes required by the winning party to attain a plurality and . .. represents the votes
that are actually used to elect its candidate to office.” It can therefore also be defined
as “the size of the vote received by the party polling the second highest vote plus
one.” All other votes—the votes received by the winner that exceed the plurality and
the votes of all losing parties—are wasted (Cohan, McKinlay, and Mughan, 1975:365).
This criterion is similar to criterion 11 (competitiveness) in the case of a two-party

system.

Each legislator’s power in the legislature should be proportionate to the number of cit-
izens he represents. Banzhaf (1966) argues that not only the citizens’s power to affect
election outcomes (criterion 12) but also his influence on legislation varies inversely

with the square roots of the district populations.

There should be equal numbers of representatives working on behalf of equal numbers
of citizens. As Bernard Grofman and Howard A. Scarrow (1981a:18-19) point out,
representatives have many functions in addition to voting on proposed legislation,
such as performing various services for their constituents: “Any system of represen-
tation, such as adoption of the square root principle or weighted voting in any form,
which results in some citizens having a proportionately greater access to these per-

sonal services because it does not apportion equal numbers of representatives to equal
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numbers of citizens, would therefore be unfair.”

16. A majority of citizens should be able to control legislative outcomes through their
representatives (Grofman and Scarrow, 1981a:19-21). In other words, minorities of
citizens should not be able to elect majorities of legislators. This the basic majoritarian

principle.

Table1 Conflicts among Sixteen Criteria of Fair Representation under the Plurality-Majority
Rule and Geographical Districts (Criteria. by number—see text)

6 15 1+ 13 12 11 w0 9 8 7 6 S5 4 3 2 1
- - x - x - - - - - - - - X X -
2 . X - X - %X X X X X x X x X - -
3 . X - X - X X x X xXx X x x - - -
4 - - - - - - - - - - - - - - - -
5 - - - - - . - - - - - - - R - .
6 - - - X - X - - - - - - - - -
7 - - - - - - - - - - - - - - - -
8 - - - X - X - - - - - - - - - -
9 - - - X - x - - - - - - - - - -
o - - - - - - - - - - - - - - - -
noo- - - - - - - - - - - - - - -
2 X X - - - - - - - - - - - . - -
B3 - - - - - - e e - - - -
4 X X - - .. - - - - - e - - - -
15 - - - - .. - - - - - - - - - -
6 - - - - - - - - - - e - - -

Figure 2.1: Lijphart’s conflict matrix for 16 criteria

The conflict matrix given above summarizes the conflicts between the 16 criteria listed.
Lijphart argues that because of these conflicts, it is not possible to reach the most desir-
able levels on all of these criteria. Multi-objective decision support systems are used to
quantify the trade-offs between conflicting criteria, and help decision-makers find an ac-
ceptable compromise solution. However, the criteria considered by a quantitative decision
support system must be quantifiable, and preferably independent from one another. In our
opinion, most of the criteria listed in [35] are hard to quantify. This is because some of
these criteria are no more than re-statements of the relevant constitutional rights or polit-
ical concerns, and it is not clear how they would be measured (e.g. criteria 4, 5, 6, 7 and
10). Furthermore, some of the criteria seem to be very similar in purpose (e.g. 9 and 16),
which suggests that using all of these criteria in a multi-objective optimization model will
amount to over-emphasizing a certain objective relative to others. Because of these reasons,
we select a subset of the districting criteria, and include only those for which well-defined

measures either exist or can be developed relatively easily. This subset contains criteria
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from Lijphart’s list, but it also contains criteria that are not in this list (e.g. similarity to
existing plan, maintaining integrity of communities). These criteria are combined into a
single weighted aggregate objective function, where the user can manipulate the weights
to increase or decrease the importance of a criterion and hence affect the resulting district
plan. With this approach, decision makers can generate compromise solutions that reflect

their preferences (or priorities) for the criteria.

Having briefly mentioned the relevant districting criteria and the conflicts among them,
we now turn to the criteria that are considered in this study. In addition to Lijphart’s
inventory and the three classification schemes provided in Table 2.1, several studies (e.g.
Harris [26], Hess et al. [27], Garfinkel and Nemhauser [15], Morrill [40], Horn [29], Mehrotra
et al. [37]) recognize a distinction between two major groups of districting criteria which

we adopt here. The two groups of criteria are:

e basic criteria, which include population equality, contiguity, and compactness

¢ additional (political) criteria, such as proportionality, safe vs. swing districts.

Almost all of the literature on political districting consider basic criteria only even though
they discuss extensions to handle criteria from the second group as well. Some of the
studies argue that using basic criteria only would produce district plans that would be free
of gerrymandering claims. Note that the criteria required by the legislation of a country’s
electoral system may include a combination of criteria from both groups. In any case, the
above classification will be used in this chapter, so that the following discussion is parallel

to how these criteria have been treated by researchers in the past.

2.1 Basic Criteria

2.1.1 Population equality

Having districts of roughly equal population is by far the most important criterion in the
entire districting process. It is associated with the ‘one-person-one-vote’ principle, which
is common to the constitutions of all countries who exercise some form of districting (e.g.
Canada, Britain, the United States of America, and Australia). The obvious intent behind
this criterion is to maintain that each citizen is represented in the legislature with an
(almost) equal weight. It is interesting to note, however, that this criterion has only gained
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considerable importance in the second half of this century. In 1960, a district plan in
California had a population ratio 449:1 between the most populous and the least populous
districts (Grofman {24]). Since then, many district plans have been rejected in both Canada
and the United States of America on the grounds that this constitutional requirement is

not met (to a sufficient degree).

The equal population criterion is embedded so deeply into the districting process that no re-
districting attempt would be realistic without it. Typically, each district is required to have
a population within a range around the mean population, which is usually referred to as the
district quotient. The district quotient is computed as the ratio of total population residing
in the territory being districted to the number of districts to be created for the territory.
Federal or provincial courts or other districting authorities usually specify the permissible
range around the district quotient in terms of a relative deviation from the district quotient.
The smaller this percentage is, the closer to perfect population equality the district plan
is. However, as this allowable deviation is decreased, it becomes more and more difficult to
produce district plans that have all district populations within the allowable range. On the
other hand, reasonably wide population ranges can also accommodate part of the future

population movements.

As an example, consider the 1995/1996 re-districting of the Province of Alberta, Canada.
The total population of the province in 1995 was 2 554 779, based on the 1991 census,
and the number of districts to be re-drawn was 83. This gives a district quotient of
2 554 779/83 = 30 780. The Electoral Boundaries Commission Act requires that the popu-
lation of each district be within 25% of the district quotient, and in exceptional situations
that are described in the Act, it could be as low as 50% of the quotient. This is a wide
range, but the 1995/1996 Alberta Electoral Boundaries Commission provides the following

justification:

“The Commission has interpreted the maximum twenty-five percent limit in
population deviations as one of the provisions intended to accommodate re-
gional representation reflecting the different communities of interest within

the Province.” (The 1995/1996 Alberta Electoral Boundaries Commission Re-
port [1], section 1.6.2.)

Two other stated justifications are to avoid excessively large rural districts and to limit
the distance from the Legislature Building in Edmonton to the nearest boundary of any
proposed electoral district (same report, section 1.3). Note that the Province of Alberta

possesses strong urban and rural characteristics, and political preferences between urban
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and rural regions are significantly different. This suggests that the 25% and 50% allowable
deviations might as well serve the objective of balancing the distribution of seats between
the parties that win most of the urban and rural districts. The allowable deviations for other
provinces also seem to be consistent with this observation. The Province of Saskatchewan,
for example, is a primarily rural district and the allowable deviation is only 5% (Court-
ney [7]). In the United States, the equal population requirement has been taken to such
an extreme that a 1983 New Jersey district plan with an average deviation of 0.138% from
district quotient was rejected by the Supreme Court of the United States of America (Grof-
man [24]). The allowable deviation seems to have been determined in this country on a

case-by-case basis in the past.

The major problem with having a very narrow allowable range for district populations is
the difficulty of generating district plans that satisfy this requirement. Mathematically, the
districting problem can be defined as the partitioning of a set of base units (BU) that are
used as the building blocks of districts. Consequently, narrowing down the allowable range
would correspond to reducing the size of the feasible solution set, which would in turn make
it difficult to identify feasible district plans. Even if such plans can be found, it would be
at the expense of other criteria, such as compactness or integrity of communities that are
described later in this chapter. This is, in fact, the (stated) reason behind the use of a
+25% allowable deviation in the Province of Alberta.

Researchers have developed several measures to measure population equality. Below is a list
of the ones that are commonly used. Let m denote the number of districts, P; population of
district j, Pmnin population of the smallest district, Ppqor population of the largest district,
P= >j Pj/m the district quotient and S the allowable percentage deviation from P.

e Mean absolute deviation: 3 ; |P; — P|/m.
o Mean squared deviation: 3_;|P; — P|*/m.

Mazimum absolute deviation: max;|[P; — P|.

Eztreme deviation: (Pmaz — Prmin)/P.

Ezxtreme ratio: Pmoz/Pmin.

While some of the methods attempt to minimize one of the above expressions (e.g. Garfinkel
and Nemhauser [15]), most of them seek to maintain the population of each district within
the range [(1 —B8) P, (1+8)P],0 < B < L. In this dissertation, population equality is treated
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as a constraint, i.e., any plan that has district populations within the allowable range is
feasible and acceptable. Of course, the user determines the value of 8 and it is possible to
generate more balanced districts by using smaller values of 5. The details are provided in
Chapter 5.

2.1.2 Contiguity

In addition to population equality, the districts are usually drawn to be contiguous, even
though a province/state may not legally require it. A district is said to be contiguous *“if
every part of the district is reachable from every other part without crossing the district
boundary (i.e., the district is not divided into two or more discrete pieces).” (Grofman [24],
p. 84). Since the districts are usually made up of smaller base units, this suggests that each
BU in a district should be reachable from each other BU by visiting a sequence of adjacent
BUs in that district. In some cases though, contiguity might be open to interpretation.
Consider the two banks of a river, across which BUs are connected with a bridge. In
essence, contiguity is associated with easy transportation from one part of the district to
another. Accordingly, two parts of a district separated by a river but connected with a
bridge should be deemed contiguous. Generally, a district would be considered contiguous
if any two parts of the district are connected by means of a major transportation route
entirely within the district. On the other hand, consider a district divided in two by a
mountain range, which may make transportation from one side to the other impossible
from within the district. In this case, the district might be deemed non-contiguous. To
summarize, geographical adjacency is usually considered sufficient for contiguity purposes.
but exceptional situations (such as the case with natural boundaries) could be relevant.

Contiguity is not required in many states in the United States of America, such as Ari-
zona, Florida, and Kansas. However, it is still considered rational and therefore desirable
to produce contiguous district plans. In Canada, contiguity is required by the Electoral
Boundaries Commission Act. The main reasons behind imposing contiguity of districts as

a requirement include the following:

e A single-member district is represented by a member of parliament, who is responsible
for addressing the needs and concerns of the residents of the district. A non-contiguous
district makes it more difficult for this person to reach all parts of his district effec-

tively.
e A member of parliament elected to represent a group of people is likely to do his job
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better if the people (s)he represents share similar ideas and have common backgrounds,
needs and concerns. This is usually possible if the people live close to each other and
perhaps come together on a regular basis at community houses or places alike. While
it is still possible that people from different parts of a province or state have many

things in common, a contiguous district is more likely to meet the above objectives.

e Contiguity is usually required as a precaution against gerrymandering. After all, why
would anyone put together non-contiguous pieces from different parts of the province,
if it is possible to create a contiguous district? Contiguous districts are more natural,
and easier to defend compared to non-contiguous districts. An exception might be
the case where a community might be living in two non-contiguous areas. But even
in this case, including the two pieces in a district would be in conflict with the second

point above.

Contiguity of a district is easy for humans to verify. However, computer programs that
need to verify contiguity require a precise set of instructions. The one that is developed

and used in this dissertation is provided in Section 5.4.2.

2.1.3 Compactness

Compactness is one of the two basic criteria that are used as safeguards against gerryman-
dering (the other being contiguity). Webster’s Dictionary defines the noun ‘compact’ as
“firmly put together, joined, or integrated; predominantly formed or filled”. In the political
districting context, a compact district is one that is close in shape to a circle or a square.
That is, a compact district should not be “long and skinny”, and it should not be dispersed
haphazardly over a large area. The figures on the next page, taken from Young (63], display
some of the shapes that would be considered non-compact. A compact district plan, on the

other hand, is characterized as a collection of compact districts.

Compactness is perhaps the most fiercely debated criterion in political districting. It is
included among the districting criteria primarily to avoid gerrymandering cases, but there
is no single well-defined and widely-accepted compactness measure. Over the last 40 years,
more than two dozen measures have been proposed in the literature, some of which have been
used by districting authorities. Unfortunately, there is no consensus in the political world
as well as among scholars as to which particular one should be used. Furthermore, many
researchers mistakenly argue that the presence of odd non-compact districts indicates that

gerrymandering has occurred. In reality, what gerrymandering is all about is whether or
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Figure 2.2: Example of non-compact shapes

not a district plan provides an unfair advantage to a particular group. From this viewpoint,
a highly compact plan might have been gerrymandered, too. This suggests that as long
as the constitutional rights of citizens are not violated, compactness should be less of a

concern. Gerrymandering-related issues are discussed more in detail in Section 2.3.

Niemi et al. [46] empirically show that some of the compactness measures might be in con-
flict. These authors provide an extensive list of measures accompanied by computational
testing. They first categorize the compactness measures in four major groups, as summa-
rized in Table 2.2. Then, they compare some of the measures using real districts from
Rhode Island, upstate New York, Indiana, Colorado and California. With the New York
data, they find that two measures may rank a given set of districts in a drastically different

order of compactness. The two specific measures that yielded this result are:

e Disyp: ratio of district area to the area of the circle with diameter equal to district’s

longest axis
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e Pery: ratio of district area to the area of a circle with the same perimeter as the

district

Dispersion measures
- Length versus width
- District area compared with area of compact figure
- Geographical moment-of-inertia
Perimeter measures
- Perimeter only
- Perimeter-area comparisons
Population measures
- District population compared with population of compact figure
- Population moment-of-inertia
Other measures

Table 2.2: Compactness measures

Furthermore, their results indicate that, among all the measures tested, no single measure
appears to be the most effective one in all aspects. As a result, they recommend use of
multiple measures whenever possible, since each type of measure addresses a different spatial
property of a geographical shape. The ones that they prefer over the others are:

e Dis;: ratio of district area to the area of the minimum circumscribing circle
(Roeck [52])

e Disjg: ratio of district area to the area of the circle with diameter equal to district’s
longest axis (Horton [30], Gibbs {19])
e Per;: sum of district perimeters (Wells [61], Eig and Seitzinger {10], Adams [2])

e Pers: ratio of district area to the area of a circle with the same perimeter (Cox [8])

e Pop;: ratio of district population to the population of the minimum convex figure
that completely contains the district (Hofeller and Grofman [28])

e Pops: population moment of inertia (Weaver and Hess [60])

In addition to this detailed study by Niemi et al. [46], Young [63] summarizes eight tests for
compactness. He demonstrates example shapes, for each test, where he perceives the test
to have falsely identified a district as compact or as non-compact. He also points out the
lack of one consistent measure that could safely be used to evaluate compactness of districts

and district plans. Young’s tests are:
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1. Visual: compare multiple districts visually.

2. Roeck Measure: compare area of district to the area of the smallest circumscribing

circle (Roeck [52], measure Dis; above).

3. Schwartzberg Measure: construct the adjusted perimeter of the district by connecting
by straight lines those points on the district boundary where three or more constituent
units from any district meet. Divide the length of the adjusted perimeter by the
perimeter of a circle with area equal to that of the district (Schwartzberg [55]).

4. Length-width Measure: Find a rectangle enclosing the district and touching it on
all four sides, such that the ratio of length to width is a maximum (Harris [26],

Papayanopoulus {49]).

5. Taylor’'s Measure: Construct the adjusted perimeter of the district as in the Schwartz-
berg Test. Subtract the number of ‘reflexive angles’ from the number of ‘non-reflexive

angles’ and divide by the total number of angles (Taylor [56]).

6. Moment of Inertia Measure: Compute the square of the distance between the geo-
graphical center of a base unit and the center of gravity of the district, summed over
all BUs (Weaver and Hess [60]).

7. Boyce-Clark Measure: Compute the distances between the center of gravity of a dis-
trict and those points on the perimeter of the district formed by equally-spaced radial
lines. Compute the average % deviation from the average of all such distances (Boyce
and Clark [3]).

8. Perimeter Measure: Find the sum of the perimeters of all the districts.

To summarize, while there is growing interest in incorporating compactness into the district-
ing processes, there is no single widely-accepted measure of compactness. The districting
authorities usually prefer easy-to-understand measures that do not require massive data,
while researchers propose more complex measures in an effort to capture different spatial
characteristics of geometric shapes. In this dissertation, two compactness measures are in-
corporated into the proposed solution technique. The first is the sum of district perimeters
(Pery) scaled by the perimeter of the entire territory, and the other is the ratio of district
perimeter to the perimeter of the circle that has the same area as the district (the perimeter
version of Pery), averaged over all districts. Unlike contiguity, which is treated as a hard
constraint, compactness is included as an objective function term. This is because contigu-
ity is well-defined and easy to check, and also it is a binary concept (i.e., a district is either
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contiguous or not). Compactness, on the other hand, is measured in many different ways,

and the values come from a range as opposed to being binary.

2.2 Other Criteria

The three criteria described in the previous section are the basic criteria that are usually
considered and implemented in any study on political districting. Some researchers prefer
considering these three criteria only (i.e., ignoring all relevant political criteria), so that the
resulting districts cannot be challenged by gerrymandering claims (e.g. Mehrotra et al. [37]).
Some studies are required to do so, simply because of the instructions from the authority
who commissions the districting task. Others choose to consider political criteria as well, so
that the districting activity gets closer to reality and other issues of effective representation
such as proportionality of percent votes to percent seats can be addressed. This section
contains a brief description of a number of political criteria that are highly relevant to any

districting process.

2.2.1 Following the boundaries of political sub-divisions

One important political criterion in redistricting is to preserve the boundaries of government
units such as counties, townships, or even cities. Both in Canada and the United States,
the legislation requires district authorities to respect the boundaries of such units to the
greatest extent possible. Of course, there may be cases where a county or a city is too
large in population to be completely included in a district. Also, strict population equality
requirements may not leave the districting authority any other alternative but to divide
some of the political units. In such cases, division of a political unit should be done with

attention to community structures within the unit.

One reason behind imposing this criterion on the districting process is that “registration and
elections are organized by such political units, and voters identify with them” (Morrill [42],
p- 25). It is more natural and rational to respect these boundaries, when the voters can
easily get confused and suspicious with arbitrarily drawn districts. Another reason is again
gerrymandering-related. Having to follow the boundaries of sub-divisions clearly reduces
the number of ways a district plan can be drawn. As a result, one has less flexibility in
drawing gerrymandered districts, by putting together pieces that are significantly different
in expected election outcome. One last reason is to achieve more effective representation,
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since the composition within counties, towns, or cities is relatively homogeneous. This

results in better representation of the residents who may have common concerns and views.

For the Province of Alberta, the two major urban centers Edmonton and Calgary are essen-
tially districted on their own. In other words, the municipal boundaries of these two cities
are respected no matter what. Edmonton is divided into 19 districts and Calgary is divided
into 21 districts. The Electoral Boundaries Commission Act requires that other municipal
boundaries also be respected and the presence of understandable and clear boundaries is

crucial.

2.2.2 Equal probability of representation

Another criterion based on the constitutional principles is equal probability of representa-
tion. This criterion maintains that each citizen have no less opportunity than others to
participate in the political process and to elect representatives of his/her choice (United
States Voting Rights Act, section 2(b)). It is mostly intended for ethric minorities in the
United States, who have historically been under-represented at various levels of American
legislatures. To comply with this requirement, several states have created minority districts
in proportion to the minority’s population in the state (e.g. Maryland). Today, it is not
allowed to exclusively and intentionally create minority districts. However, any district plan
that appears to dilute the voting power of ethnic minorities may be subject to challenge in

court.

Of course, the formation of minority districts may be in conflict with other criteria. For
example, it may not be possible to create a compact district if the minority population
is scattered along a river or a highway. Also, the minority population may be too large
to form a single district, but may not be large enough for two districts. In this case, a
minority community will have to be divided in two. These issues suggest that one may have
to compromise other criteria in order to create minority districts. Another issue is that a
50% to 55% majority in the district may not be sufficient for an ethnic minority to elect its
representative in a two-party system, because of historically low levels of voter registration
and a high proportion of children among minorities. At the other extreme, a majority of
70% in a minority district would amount to wasting some of the minority votes that could
be used elsewhere. The question is then what level of population to establish in a minority
district so that the votes are not wasted and minorities can elect their representative. In this
dissertation, no effort has been made to create minority districts or address this criterion

in another way.
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2.2.3 Similarity to the existing plan

In almost all re-districting cases, the courts or commissions attempt to identify a new set
of districts by changing the existing plan slightly, just enough to accommodate the changes
needed to satisfy constitutional requirements. This is in accordance with the objective
of having the new plan as similar to the old plan as possible. The rationale behind this
objective is two-fold. First, the existing plan might be a good plan in that it maintains
population balance, compactness and integrity of communities fairly well. Consequently,
the districting authority as well as the political parties would prefer keeping the existing

plan as much as possible.

The second reason to leave districts in the existing plan intact is from an incumbent’s or
a political party’s perspective. An existing district is the place where the incumbent is
known well, (s)he got in good contact with the residents and had a chance to demonstrate
his/her representation skills. In a completely new district, (s)he will have to familiarize
himself/herself with the social/cultural composition of the district, what people’s problems
are and how they can be solved. This would in turn make it less likely for this incumbent
to prepare for the election and get re-elected. Sometimes, it is simply the fact that an
experienced incumbent has so much to offer to residents of the district where (s)he has been
in service for a while. Furthermore, a whole new set of districts would necessitate a whole
new set of interests and election strategies for each party, and a new power balance with
the other parties. A less important factor is the requirement that incumbents should live
within the boundaries of the district where they get elected. A drastic change in district

boundaries may make it impossible for an incumbent to run in the same district again.

The above reasons are partially valid from the perspective of the residents of the old district
as well. An incumbent whom the residents had known for a long time and with whom they
had good communication would be preferred as opposed to a completely new candidate. In
some cases though, the composition of the districts has to be changed simply because a new
district is added to or removed from the territory (as happened in Edmonton and Calgary
in 1996).

This criterion is one of the political criteria considered in this dissertation. Unfortunately,
no mathematical measure of similarity between two plans has been proposed in the past.
For this reason, a measure is developed in this study, which is detailed in Chapter 5.3.3.
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2.2.4 Integrity of communities of interest

Morrill [42] argues that citizens vote, in part, according to their various interests such as
religious values, occupation, rural and urban orientation, etc. This is parallel with the
general principles of territorial representation in that a group of people who live close to
each other usually share a common set of values, and would like to be represented by a
person with a similar set of values. Today, communities are perhaps becoming less and
less territorial as a result of new communication technologies and ease of transportation.
However, geographic proximity is still the main determinant of community structure. As a
result, the integrity of communities of interest appears as a valid criterion in the districting

process.

There are many ways of defining communities, for example based on ethnic origin, native
language, religion, occupation, education level, income level, family structure, urban vs.
rural orientation, political orientation, and even being associated with a natural feature
such as a lake, valley or oil resource. Of course, some of these are interrelated (e.g. the
relation between occupation, education, and income level). Morrill [43] views communities
to be composed of three components: partisan allegiance, racial or ethnic composition, and
urban versus rural character. The challenge is then to identify a district plan that has as
many of these communities integrated as possible. However, a districting authority may not
(and would not) always consider all types of communities. For example, in the United States
of America, only ethnic origin and language-based communities get considerable attention,

while religious orientation and economic status-based ones do not (Williams [62]).

The more communities are to be considered, the more difficult it is to solve the redistricting
problem. After all, some communities may be in conflict ‘geographically’, i.e., it may be
impossible to include them in a contiguous district. Therefore, a decision maker should
carefully choose the set of communities of interest. Another aspect is to group different
communities in one district. The question is whether such communities should be very
much alike or drastically different. Also, a community may be located in a non-compact
geographical area, such as along the coast of a bay. In this case, it may not be possible
to create a compact district that completely contains the community. As a result, this
criterion would be in conflict with the compactness requirement. In this study, integrity of
communities is one of the criteria considered, but the number of communities is kept small.
This is done so that this criterion does not interfere much with the rest of the criteria, and
also does not impose too many constraints on the problem that will reduce the number of

alternative solutions significantly.

23



2.2.5 Proportionality

The term proportionality is used to describe the relation between the share of seats and
the percentage of votes a party gets. Ideally, each party should get a number of seats
proportional to its percentage of the popular vote, so that it has a legislative ‘power’ no
more and no less than it should. However, since the number of seats is integer, this is
usually impossible to achieve. In fact, the results of many elections in Canada and the
United States of America indicate that the difference between the vote/seat shares can
indeed be substantial. For example, in 1979 provincial election of Alberta, the Progressive
Conservative Party won 94% of the 79 seats with 57% of the popular vote (Report of the
Chief Electoral Officer [11]), and in 1992 in North Carolina, the Democrats won 67% of the
congressional seats with 52% of the state-wide congressional votes (Lewyn [33]). Naturally,

these election outcomes bring up the question whether gerrymandering has taken place.

Whether or not a district plan satisfies proportionality needs to be decided based on some
(expected) election data. One could use the results of the last election or results based
on pre-election polls. With the former, there is always the possibility that the outcome
of the next election may be significantly different from the last one. On the other hand,
using expected election results may not be very accurate or in some cases be biased towards
a party. Therefore, using proportionality as a deciding criterion in districting might be
inappropriate. As far as the measurement of proportionality is concerned, the absolute
difference, for the entire region, between the percent seats and the percent votes received

by a party is the one most commonly used.

Note that finding a least proportional district plan (i.e., the largest difference between %
votes and % seats) would be the opposite of proportionality, and it would be considered
gerrymandering, since it would favor at least one party. This is related to the concept of

safe vs. swing districts, and is discussed in the next section.

2.2.6 Safe vs. swing districts

A district is considered safe for a political party, if the candidate of the party running in
that district is almost guaranteed to be elected. On the other hand a swing district is one
where two or more candidates have roughly equal support, and therefore either of them can

possibly win in this district.
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In general, politicians would like to see district plans with a certain number of safe dis-
tricts, some of which are especially needed for the party leaders. This allows them to have
a reasonable presence in the legislature, even if the election turns out to be a landslide for
another party. The question is how many and which of the districts should be safe. Mor-
rill [42] points out the parties’ tendency to have one-fourth to one-third of all districts as
safe, with the remaining one-third as swing districts (this, of course, assumes two dominant
parties with roughly equal voting support). This is usually what the politicians have in
mind in a bipartisan districting. When one of the parties is significantly dominant though,
the number of safe districts tend to be higher than it should.

A limited number of studies have considered this criterion in their approach for solving the
problem (e.g. Nagel [44], Owen and Grofman [48]). These are reviewed briefly in Section 3.2.
The proposed methodology in this dissertation does not address this criterion directly,
but provides a mechanism for maximizing the number of seats won through minimizing

proportionality. The details are provided in Section 5.3.5.

2.2.7 Miscellaneous criteria

The districting criteria discussed in the previous sections are the ones that are most com-
monly addressed by politicians as well as researchers who attempt to develop solution
techniques for the problem. This, however, is by no means an exhaustive list of criteria.
An interested reader who would like to obtain more information on districting criteria is
referred to the study by Grofman [24] (see Table 2.1 for the highlights). This study reviews

a large set of criteria with supporting information from court cases.

2.3 Gerrymandering

Perhaps the most well-known concept regarding political districting is gerrymandering.
Historically, this word has been used to refer to any districting activity that has taken place
to provide unfair advantage in an election to a political/social/cultural/ethnic group. The
term originates from a 1812 district plan prepared by the Massachusetts Governor Elbridge
Gerry. This plan, which is suggested to have a salamander-like shape as it appeared in the
Boston Gazette on March 26, 1812, is reproduced on the next page.

There are many forms of gerrymandering. Partisan gerrymandering is said to have occurred
when the districting provides an unfair advantage to one political party against the others.
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Figure 2.3: The original gerrymander

It is called bi-partisan gerrymandering when two parties are involved and benefit from the
resulting district plan. Racial gerrymandering occurs when a racial minority is put at
disadvantage by reducing its effective voting power. No matter in what form it appears,
a common belief is that gerrymandering is unfair to the negatively affected groups, and
also that it is unconstitutional. At the other extreme, some argue that “all districting is
gerrymandering” (Dixon [9]) because “every districting method helps someone at least to
the extent of hurting someone else” (Polsby and Popper [51}). Yet, another argument, as
mentioned by Lewyn [33], is that “voters are just as well represented by a gerrymander as

by any other districting plan, because

[slo long as candidates must compete for electoral pluralities or majorities in
a district, simple political expediency dictates that they take into account the
preferences and interests of all constituents whose votes they may need some day,
including at least some of those who might ordinarily be expected to support
their opponents (Schuck [54]).”

In the presence of these drastically different points of view, it is not hard to imagine that
the political science history is filled with a countless number of gerrymandering claims.
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Discussion of these cases is clearly beyond the scope of this dissertation. Therefore the
interested reader is referred to the article by Lewyn [33], which is a good resource for
reviewing some of the cases and which also provides tests and standards for checking the

presence of gerrymandering.

Packing and cracking are two well-known methods of gerrymandering. Packing refers to
concentrating the expected votes of a party in a few districts, so that this party wins those
districts with overwhelming majority, but loses the remaining ones. Cracking is the other
extreme: the voting power of a party or an ethnic group is diluted across many districts in
such a way that this party/group cannot win a proportional number of districts. Figure 2.4a
and 2.4b demonstrate these two techniques on two hypothetical cases (source: Morrill [42]
with minor modifications). In the first one, 160 liberals live in the city, 140 conservatives
live in the country and the area is to be divided into 3 districts. By drawing the boundaries
as shown in thick lines in Figure 2.4a, the urban population is ‘packed’ in an urban district,
and the rest of the liberal votes are ‘wasted’ in the remaining two rural districts. In this
case, the liberals have a clear overall majority, but they get only one of the three seats.
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(a) Packing (b) Cracking

Figure 2.4: Packing and cracking as two gerrymandering techniques

In the second case, the vote distribution of the two parties suggest that each should get one
seat, but conservatives get both of the two seats by diluting the voting power of the liberals
across the two districts. Now suppose the numbers are 51-49 in both districts. While
conservatives are still expected to win both districts, a slight swing in the voter preferences
may result in a completely opposite outcome. By using some of their voting support to
dilute liberals’ votes, the conservatives actually weaken themselves in the rural area (i.e.,

weaken some of their safe seats).

Observe that, in both cases, a perfect population equality is achieved in all districts and
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the districts are highly compact. This brings us to the following question: how can one tell
that a district plan is a gerrymander? The answer of this question is another debate among
scholars. Many argue that the existence of non-compact or odd-shaped districts perhaps
with violation of political boundaries and integrity of communities are strong indicators
of gerrymandering. It is true that a gerrymandered plan may have to put together a
very odd combination of base units in order to provide advantage to a political party or
another group. However, it is still theoretically possible to create gerrymandered yet highly
compact district plans, even though it is usually more difficult to do so. As a result, many
others argue that contiguous and highly compact plans may also contain gerrymanders.
Consequently, it is the resulting representation of the involved parties that should indicate
whether gerrymandering has taken place, not the shapes of the districts. (Recall from
the previous section that a district plan that respects integrity of communities may not

necessarily be compact, depending on how the population of the communities is distributed.)

Proportionality, as a result, is commonly used as an indicator of gerrymandering. However,
if an election results in a drastic difference between the percent votes and percent seats
a party gets, there may be other reasons behind this outcome. For example, the political
preferences might have changed in the meantime, which would invalidate the past election
data used for measuring proportionality. Hence, a district plan which is supposed to ensure
proportionality based on last election’s results may not generate a proportional outcome in
the next election. More importantly, the underlying population distribution may be such
that it may be impossible to achieve an acceptable level of proportionality. For example,
the supporters of a party might be scattered throughout the entire territory, and this would
in turn make it difficult for this party to win a proportional number of seats. (Consider
the case where there are 150 supporters for Party A and 100 supporters for Party B in all
base units. No matter how the districting is done, Party A will win 100% of the seats with
60% of the votes.) The bottom line is that it may be very difficult, if not impossible, to
determine whether a large proportionality gap is due to gerrymandering or due to one (or
both) of the two reasons discussed above. Therefore, this criterion should be used with

caution in determining whether gerrymandering has taken place or not.

Based on the discussion in this chapter and given the highly political nature of the problem,
one could expect computer programs that implement algorithmic approaches to assume an
increasing role in the process by providing an objective framework for creating district
plans. In our opinion, this has not yet occurred to the level that today’s fast computers
can efficiently be made use of. To a great extent, politicians are reluctant to accept district

plans suggested by a ‘machine’. The objective of this dissertation is to overcome this barrier
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to a reasonable extent, by providing a multi-criteria approach to the problem that considers
many of the political criteria involved. The algorithmic approaches developed in this study
should be viewed as part of an interactive decision support system, which is intended to
provide the decision makers as many alternatives as practically possible (even district plans
that are intentionally gerrymandered). The decision makers should normally specify their
criteria and how much importance they associate with each of them, then let the system
identify district plans that meet these criteria. The next step is to review these plans and
check whether they are desirable in all aspects. If not, the decision makers should supply
a revised set of criteria that addresses the undesirable aspects of the plans. The process

should be carried out on an interactive basis until satisfactory plans are produced.

The following chapters of this dissertation include an overview of the models and algorithms
developed for solving the political districting problem, then the basics of a problem solving
technique called ‘Tabu Search’. Following these two chapters, the proposed algorithms are

detailed and a computational study is carried out.
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Chapter 3

Models and Algorithms

The political districting problem has been studied by many researchers in the past including
operations researchers and geographers in addition to political scientists. This chapter
contains an overview of the past research from mathematical and algorithmic perspectives.

A recent survey by Williams [62] also provides a similar review.

Most of the literature review in this chapter recognizes the political districting problem as a
discrete or combinatorial optimization problem. The districts are made up of building blocks
referred to as base units (BU), such as counties, census tracts, and enumeration areas. These
base units are small geographical areas that collectively cover the territory being districted.
The problem is then to determine a partition of n BUs into m subsets, where m is the
number of districts to be formed. The districts in general would need to conform to a
given set of criteria. The problem has similarities to the set-partitioning or generalized-
assignment problems, which are known to be NP-Hard (Garey and Johnson [14]). This
suggests that, even with a single objective, the political districting problem is very difficult
(if not impossible) to solve optimally, if the problem size is sufficiently large. However, there
is no study that specifically proves the NP-hardness of the political districting problem for
any given formulation. Since the problem is difficult due to its combinatorial nature, most
of the proposed algorithmic approaches are heuristic approaches that seek near-optimal
solutions. The next two sections provide an overview of these techniques as well as the

models associated with some of them.
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3.1 Models

Mathematical models developed for the political districting problem appear as early as in
1965 in an article by Hess et al. [27]. In this article, the authors use United States Census
enumeration districts (ED) as the base units and seek the most compact district plan that
also satisfies the population balance constraint. They provide an integer programming (IP)
formulation for the problem, but point out that no exact algorithm known to date can
solve the problem, even for a small state like Delaware with 650 EDs and 17 districts. The

authors consider contiguity as one of their criteria, but neither their IP formulation nor

their proposed heuristic approach guarantees contiguity.

The formulation in this article is based on the assignment of population units (i.e., EDs)
to district “centers”. The authors assume that only population units can serve as district

centers. The binary variable z;;, 2,7 = 1,...,n, where n is the number of EDs, is used to

denote these assignments:

1 if the jth population unit is assigned to :th center
zi; =
Y 0 otherwise

In addition, the authors use dj; to denote the distance between base units 7 and j, P; to
denote the population of ED j, a and b to denote the allowable lower and upper percent
deviation from the district quotient. The formulation in this study is given below:

n n
min Z Z d;?ijxij,
i=1j=1
s.t.
n
Z:L‘ij=1, (j=1,...,n)
i=1
n
Zzii =1m,
=1
n n
> Pjzi; > (a/100)(D_ Pj/m)za, (i=1,...,n)
j=1 =1
n n
> Pjzy; < (b/100)(Q_ Pj/m)zi, (i=1,...,n)
j=1 j=1
zi; € {0,1}

In this formulation, the objective function measures the compactness of a district plan as
the moment of inertia of each district’s population about its population centroid, summed
over all districts. The four constraints of the formulation require that each ED be assigned
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to one and only one center (i.e., district), that there should be exactly m centers, and that
each center have a population within a% and b% of average district population.

Note that there is nothing in the formulation regarding the contiguity of districts. However,
minimizing moment-of-inertia will often result in contiguous districts. A much more impor-
tant shortcoming of this model is that a feasible solution to the model could have z;; = 0
for some %, but z;; = 1 for some j 7# ¢. This situation would arise if the population equality
constraints are not tight enough, and as a result many (i.e., more than m) small-size districts
would form (even though the solution would still satisfy the second constraint). Adding
the constraint z;; < z; Vi,j should eliminate this problem, but having tight population
equality constraints could also help. The details of the algorithm used by the authors are
given in Section 3.2. Nevertheless, this formulation deserves credit as one of the earliest

ones developed for the problem.

A more recent study that provides a mathematical model is by Garfinkel and Nemhauser
[15]. These authors also consider the three basic criteria: population balance, contiguity
and compactness. They first generate, in Phase I, a set S of ‘feasible’ districts, where a

feasible district has the following properties:

its population is within a pre-specified range,

it is contiguous,

the distance between pairs of BUs is less than given individual thresholds, and

it has an ‘area measure’ of compactness smaller than a given threshold value.

Once S is constructed, the second phase is to determine a subset of S of size m, that covers
all the BUs and minimizes the maximum deviation of district population from district
quotient. The binary variable z; indicates whether or not district j is included in the

selected subset. This formulation is also given below:

min maxXjes CjTj

s.t.
Z(Iij.’l:j=1 i=1,...,n
=)
sz=m
Jj€s
$j=0,1 jeSs
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Here, c; is a cost factor measured as the deviation of district j's population from the district
quotient in either direction. The symbol a;; indicates whether BU i is in district j or not.
The two constraints of this model maintains that each BU is covered exactly once, and the

number of districts selected is m.

While the above formulation is based on three criteria only, the authors claim that their
methodology works with other criteria as well. The ones that they mention are to avoid
crossing county boundaries, and to guarantee one or more political parties a minimum
number of districts to win. However, the authors do not implement these other criteria nor
do they mention the computational effort needed to implement them. The two phases of
their methodology are further detailed in Section 3.2.

Note that the two formulations provided above are structurally different in that the former
identifies a complete district plan by partitioning base units, while the latter puts together
a district plan using a collection of previously constructed districts. A third model, which
is somewhat similar to the first one, is given by Morrill [41]. Unlike the first model, where
the district centers are chosen from population units, this model assumes that the locations
of district centers are unknown. Furthermore, the decision variable z;; now represents the

population assigned from base unit ¢ to district j. Below is the fermulation of this model:

n m
min Z z d,-jzz:,-j
i=1j=1

s.t.

m
Zzij=pg i=1...,n
Jj=1

n
Z.’L‘ij=Pj ji=1...,m

=1

z;; >0

In this linear-programming model, d;; is the unknown distance between BU ¢ and center
of district 7, and p; is the population of BU 7. Observe that the model allows BUs to be
split among multiple districts. It is the same as the model for the famous transportation
problem, except for the fact that district centers, and therefore the d;j, are unknown. As
a result, the problem is solved as an iterative (location-allocation) optimization problem.
That is, first an initial (arbitrary) set of locations is supplied and d;; are computed. Next,
the optimal solution is determined and this solution is used to revise the district centers

and shift them to a new set of locations. These steps are repeated until there is no shift in
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the location of district centers. This procedure is in fact proposed earlier by Weaver and
Hess [60] and its details are provided in Section 3.2.

A modified version of the above model appears in Morrill [42], where the following constraint,
which forces districts to have equal populations, is added:

n
P;j=> pi/m i=1...,m (3.1)

=1
This is the same as treating the P; in the original model as equal. One can very easily

modify this constraint to allow deviations from the average as follows:

(2/100) 3" pi/m < Py < (5/100) 3 pi/m (32)
=1

i=1

Two other studies use essentially the same criteria and similar models, but employ different
measures of compactness. Plane [50] criticizes Hess et al. [27] for using moment-of-inertia in
the objective function and proposes another expression. The one he suggests is a quadratic
expression that measures the total spatial interaction (e.g. commuting) between pairs of BUs
that make up a district. Alternatively, he uses another quadratic expression that measures
compactness as the total “interpersonal separation”. This latter concept is represented
by the quantity S;; = M’é—u'i for a pair of BUs 7 and j, where D;; denotes the distance
between population centroids of BU 7 and j. Consequently, the objective function minimizes
the expression (over all possible solutions X)

n n

=3

=17

m
Z zikmij,-j (3.3)
1k=1

where z;; is the binary variable that indicates the assignment of BU 17 to district k.

The second study is by Fleischmann and Paraschis [12] who consider the problem in the
salesman districting context. They require that the districts be compact so that the total
cost of travel within the district is low. Consequently, the expression

3> mi((N; — ni)® + (B — )] (3.4)
jeJ il
is minimized, where z;; denotes the amount of workload assigned from BU 1 to district j
(could be less than the full workload), the variables N; and E; denote the north and
east coordinates of the center of district 7, and finally n; and e; denote the north and east
coordinates of BU <. Since N; and E; are not known initially, an iterative location-aliocation

procedure is also applied to solve this problem.
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Most of the other districting models in the literature share elements similar to those in
the above basic models with the same set of districting criteria (see Marlin [36], George
et al. 18], Horn [29], and Mehrotra et al. [37]). The remaining studies in this area pro-
pose solution techniques without providing a mathematical formulation in the traditional
mathematical programming format (see Vickrey [59], Weaver and Hess [60], Harris [26],
Nagel [44], Thoreson and Liittschwager [57], Gearbart and Liittschwager [16], Nagel [45],
Morrill [40} and Browdy [5]). These solution techniques are covered in the next section.

All of the above models take into account a very limited set of criteria: population balance
and compactness. Contiguity is also considered, but it is usually achieved through the
algorithms instead of the formulations. Many of the studies mentioned above discuss the
extensions of their methodologies to handle political criteria, but the only one that actually
implements some of these extensions is by Nagel [44]. This particular study considers
such political criteria as similarity to the existing plan, proportionality, and safe and swing
districts. The details of this implementation are provided in Section 3.2.

One last study that is considerably different from the previous ones and therefore deserves
a special mention is by Owen and Grofman [48]. These authors look at the districting
problem from the perspective of a political party that has full control over the districting
process. Consequently, they attempt to solve the problem in a way that maximizes this
party’s expected seat share. The other objective of interest in this study is to maximize the
probability of legislative majority. In other words, these authors perform gerrymandering
intentionally and optimally, in order to provide the maximum advantage to the political
party in power. They assume that the outcome of the election is probabilistic and therefore
the expressions in the objective functions are expected quantities. No compactness or any

other criteria are involved.

3.2 Algorithms

In this section, several methodologies for solving the political districting problem are de-
scribed. For easy reference, these studies are listed in Table 3.1. Note that all of these
algorithms except the one by Garfinkel and Nemhauser [15] are beuristic approaches. This
is because most of them were developed at a time when computational resources were not
sufficient to solve a realistic large-scale instance of the problem. Also, depending on the
criteria considered, the problem may have a lot of constraints, some of which may not be

easy to represent mathematically (e.g. contiguity).
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Vickrey, 1961

Weaver and Hess, 1963

Harris, 1964

Hess et al., 1965

Nagel, 1965, 1972

Thoreson and Liittschwager, 1967
Gearhart and Liittschwager, 1969
Garfinkel and Nemhauser, 1970
Morrill, 1973, 1976, 1981

Tobler, 1973

Bourjolly et al., 1978

Marlin, 1981

Plane, 1982

Fleischmann and Paraschis, 1988
Browdy, 1990

Horn, 1995

Mehrotra et al., 1998

Table 3.1: Studies that contain algorithmic approaches

The earliest algorithmic approach that attempts to solve the political districting problem
is by Vickrey [59], who considers population balance, contiguity and compactness as the
districting criteria. He suggests using census tracts as the base units that make up the
districts. A district plan is then constructed as follows: Initially, one of the census tracts
is chosen at random. This tract is used as the reference tract to generate seeds for the
construction of districts. A district seed is chosen from the unassigned tracts as the one that
is currently the furthest from the reference tract. Once a seed is chosen, it becomes the first
member of its district and neighboring unassigned tracts are added on a continuous basis
until the district population reaches a target. The target district population is determined,
before the construction of a district begins, as the total unassigned tract population divided
by the remaining number of districts to be formed. The compactness of a district is achieved
by appending the tracts that are closest to the seed tract. Once the construction of a district
is complete, a new seed is determined and the above steps are repeated. The procedure

stops when all unassigned census tracts are accounted for.

Vickrey’s method may produce enclaves or residual districts, but the probability of this
happening is reduced considerably by selecting seeds that are furthest from the initial
reference tract. To avoid the occasional occurrence of enclaves, Vickrey suggests introducing
a rule to the procedure that would not allow a census tract, whose removal from the set
of unassigned tracts will make this set non-contiguous, to be added to the current district.
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Vickrey further suggests that the above procedure can be modified to respect the boundaries
of political sub-divisions. In this case, an entire political unit, such as a town or county, is

included in the district, with attention to the district’s resulting population.

Two other studies that provide a heuristic approach appear a few years later by Weaver
and Hess [60] and Hess et al. [27], who consider the same three criteria. Both studies
provide the location-allocation type heuristic that was briefly described in Section 3.1,
while the latter provides an IP formulation as well (the formulation on page 31). However,
the authors report that no realistic size problem can be solved at that time using the IP
formulation, and as a result they resort to the location-allocation procedure detailed below.
This procedure is also used later by Mills {38] for districting Bristol County in the United
Kingdom and by Morrill [40, 41, 42] for redistricting Washington in the United States of
America. Plane [50] provides an extension to the procedure by considering two quadratic

functions of compactness (discussed in Section 3.1) instead of the moment of inertia one.

With the location-allocation approach, first an initial set of ‘trial’ district centers (LDs) is
identified, and the distances d;; between population units (EDs) and LDs are computed.
Next, EDs are assigned to LDs by solving a transportation problem. This is done so as to
minimize the sum of the moments of inertia of EDs about the trial district centers. The
resulting solution may have an ED split among several LDs, in order for the algorithm to
maintain equal district populations. Consequently, such split EDs are reunited into one
in a way that an entire ED is assigned to the LD that has the largest share of that ED’s
population. Given these re-assignments, the next step is to calculate the new population
center of gravity and the moment of inertia of each district. If the calculated centers of
gravity are different from the trial ones, the above procedure is repeated with this new set
of calculated district centers. The procedure stops when there is no change from one set
of ED assignments to the next. The sequence of district plans that are so generated are
further checked for contiguity and the ones that are non-contiguous as well as the ones that
are dominated (i.e., the ones that are less compact and have higher population deviations)

are discarded. The entire process is repeated until a desired number of alternative plans

are generated.

Weaver and Hess [60] applied their algorithm to two counties of Delaware. Even though
they were able to produce more compact plans with less violation of population equality
than the plans proposed by the Senate, none of these plans were legislated. Hess et al. [27]
report another application of the same heuristic to Delaware’s counties in a few years later,
after which they received a request from the Federal Courts for districting of Connecticut.
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Another districting effort in the 60s came from Harris [26]. Harris considers the same three
criteria, but measures compactness differently. The compactness measure he uses is the
absolute difference between the length and the width of the bounding rectangle of a district,
summed over all districts. Consequently, the districts are forced to look like squares. Harris
carries out his procedure in two stages. In the first stage, he places a grid over the districting
area and estimates the population in each cell of the grid. Next, using the grid cells, he
forms districts that are as close to squares as possible. The population equality of the
districts is maintained by having each district population within a specified range around
the average. In the second stage, he modifies the districts so that the boundaries follow
geographic, political or community boundaries. He demonstrates his method on 4-district

Colorado data, for which he generates a district plan by hand.

Nagel [44, 45] is the only researcher who, in the same era, considered and implemented
political criteria, such as districting on a partisan or bi-partisan basis. In [44] he even
provides the statements of his program written for an IBM 7090 computer. His method is
based on modifying an existing plan by means of transfers and swaps that do not violate
contiguity and that also improve the objective function. Nagel uses an objective function
which is initially the product of the following factors:

e number of districts whose population is outside the allowable range,
e average variation from population equality, and

e average variation from compactness.

The transfers and swaps are implemented until all district populations are within the al-
lowable range, after which the algorithm starts considering political criteria. Specifically, it
maximizes proportionality (based on the results of the last election) or depending on the
user preference, it maximizes the number of districts won by a party. The algorithm stops
and reports the best plan found when no more improvements can be made on the objective

function.

Nagel [44] applied his method to the districting of a part of Illinois. He used 90 counties
to form 18 districts. The maximum deviation from average population was consequently
reduced from 39% to 17%. He further used his method in [45] for California, Mississippi,
Virginia and Illinois again. His method was also used by Kaiser [32], who excluded political
criteria and modified the original compactness measure. In an Illinois districting problem
of 101 BUs to divide into 12 districts, Kaiser ran the algorithm with 200 random starting

plans and reported successful convergence to local optimality.
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The three studies by Thoreson and Liittschwager [57], Gearhart and Liittschwager [16] and
Liittschwager [34] provide enhancements of the algorithms developed by Vickrey and Harris.
The first one of these suggests the use of multiple random starts for Vickrey’s algorithm.
For Harris’ method, the authors propose a different way of adding BUs to the districts. For
both methods, they propose use of two other measures for population equality and two other
measures for compactness. They test the revised algorithms for a redistricting problem in

Iowa. The district plans they produce outperform the plan proposed by the Senate.

The second study by Gearhart and Liittschwager [16] further enhances Vickrey’s algorithm
by introducing new rules for assignment of BUs to districts. They further improve the
algorithm so that the possibility of enclaves occurring is highly reduced. The last study
is by Liittschwager [34], who adds new modules to Vickrey’s algorithm to avoid enclaves
completely. Two further refinements added by Liittschwager is to enable the user to modify
part of the final district plan and to implement swaps to reach better plans.

Among the algorithms developed in 60s and 70s for solving the districting problem, the
only exact algorithm is by Garfinkel and Nemhauser [15]. These authors provide an IP
formulation (the one on page 32) which is used as the basis for determining the optimal
district plan. They consider the three basic criteria, but also state that political criteria

can successfully be incorporated into their methodology.

Garfinkel and Nemhauser’s approach is a two-phase one. In Phase I, they construct a set
S of eligible districts, which satisfy the four requirements of feasibility listed on page 32.
The authors enumerate all possible feasible districts by a tree search method. Following the
branches of an enumeration tree, BUs are added to districts one by one, with attention to
the four conditions of feasibility. The resulting number of districts is usually too large, and
the authors recommend modifying the feasibility conditions to reduce the size of S. As they
construct districts in Phase I, they also create a BU-district ‘incidence’ matrix and perform

reductions on this matrix (through row and column dominance) which consequently reduces

the size of S.

The second phase is the place where m districts are chosen from set S, such that every
BU appears in one and only one district, and all BUs are accounted for. The factor ¢; in
the objective function (see formulation on page 32) is the amount of absolute deviation of
district j’s population from the district quotient. Consequently, the objective is to minimize
the maximum c; value over all districts. The optimal combination of districts is found by
means of a tree search algorithm. At each node of the tree, this algorithm adds another
district from S to the district plan, by giving priority to the districts with lower population
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deviation. The algorithm is also capable of identifying multiple optimal solutions.

Garfinkel and Nemhauser applied their technique to hypothetical districting problems in the
states of Delaware, Washington and West Virginia. With the first data set, they found that
if S is small in size, no feasible district plan may exist. With the second set, they generated
many more districts and then they were able to find solutions for three of the four runs
they performed. For the third set, the problem was relatively large and the algorithm was
not able identify a district plan in a reasonable amount of time. While the algorithm did
not work effectively for some of these problems, a very recent study by Mehrotra et al. [37],
which improves upon Garfinkel and Nemhauser’s technique, reports a much more successful
implementation. The details of this study are provided later in this section.

A considerably different approach for solving the problem is proposed by Tobler [58]. Tobler
introduces a geographical transformation where the map of BUs is converted into a new
map where each BU is enlarged or shrunk in relation to its population. The adjacency
relationships between BUs are also maintained. Consequently, the problem of forming
equal population districts becomes the problem of creating equal area districts. Tobler also
considers contiguity and to some extent compactness. The only problem with his approach
is that a compact district plan on the new map is not guaranteed to remain compact when

its transformed back to the original map.

The next study in the chronological order is by Bourjolly et al. [4]. These authors also
consider the three basic criteria, but they include integrity of communities in their criteria
set as well. They use distribution of income throughout the City of Montreal as a proxy for
defining communities. The method they propose starts with an initial plan, which could
either be the existing plan or a plan generated by randomly choosing seeds and allocating
each BU to the nearest seed by solving a p-median problem. It then moves iteratively from
one plan to the next by transferring BUs one at a time between adjacent districts. The
objective function employed by the algorithm combines all the criteria (except contiguity)
as a single weighted function. Given a particular set of weights, the algorithm then identifies
and implements in each iteration a BU transfer that improves the objective function the

most.

Another study on districting is by Marlin [36], who considers the problem in a context of
assigning salespeople to districts. With this setting, the objective is to form districts that
are balanced in terms of total ‘workload’ assigned, and that are also compact so that the
total travel cost is low. The resulting model is similar to the model on page 33, but the first
constraint is relaxed as a greater-than-equal constraint, and the second constraint allows
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deviations from average district workload. Marlin [36] recognizes a slight modification of
this model as a transportation linear program and consequently employs the algorithm by
Ford and Fulkerson [13] to solve it as a minimum cost network flow problem. Marlin uses

his approach to solve large-scale instances of the problem in the Milwaukee region.

A study that appeared in late 80s is by Fleischmann and Paraschis [12], who focus on
a 168-district salesman districting problem for a German consumer goods manufacturer.
As described in Section 3.1, these authors use a modified compactness measure which is
a function of the unknown north and east corners of the district centers. As a result,
the authors employ an iterative location-allocation heuristic for solving the problem. As
in Weaver and Hess [60], they also take care of split BUs before moving on to the next
iteration. Specifically, they use a transportation-based heuristic to reduce the number of
splits. However, since they observe that many splits remain unresolved with this approach,
they develop a new heuristic procedure for this step. The results of their implementation on
the 168-district problem are reported to have perfectly satisfied the company management.

A study by Browdy [5] proposes a Simulated Annealing (SA) algorithm for solving the
political districting problem. This is a relatively new technique that is usually considered
in the category of modern heuristic techniques. It has analogies with the physical process
of cooling down a hot metal slowly, so that the molecules can adjust to each level of energy
possessed by the metal. The energy of the metal corresponds to the objective function of the
problem, and the algorithm attempts to reach lower energy levels (i.e., improved values of
the objective function) in an iterative manner. It occasionally allows the energy to increase
from one iteration to the next, but with less and less frequency as the algorithm proceeds.
Eventually, it reaches a stable energy level, where the algorithm is said to have reached a

local optimal solution.

In Browdy’s SA implementation, energy is computed as the sum of compactness, contiguity
and population equality. Compactness is measured as the sum of the population moments
of inertia. of districts; contiguity is measured as the total number of non-contiguous districts;
and population equality is measured as the total absolute deviation from average population.
The last two terms are further multiplied by weights A\; and A2. The algorithm starts with an
arbitrary solution (the author suggests using the existing district plan), and generates new
solutions in an iterative manner by changing random pieces of the districts (e.g. moving BUs
between districts). It always accepts improving solutions, but it occasionally accepts non-
improving ones as well. Unfortunately, the author does not develop a computer program for
his method, nor does he apply it to a real districting problem. Therefore, it is not possible
to comment on the practicality of this algorithm on solving real problems.
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Another recent districting study is by Horn [29], who also considers population equality,
contiguity and compactness, as they are the relevant criteria in Australian legislation. Horn
formulates the problem as one that maximizes compactness subject to contiguity and popu-
lation equality. Compactness is measured as the sum of ‘edge weights’ between pairs of BUs
that comprise a district, summed over all districts, where the edge weight for a particular
pair of BUs is the length of the common boundary between the two BUs.

The algorithm that Horn employs is a ‘transition-based’ one. It starts with an initial plan

and modifies this plan in an iterative manner by means of the following operations:

e transfer a single peripheral BU from its current district to an adjacent district,
e combine two adjacent districts into one,

e detach an arbitrary peripheral BU from a district and make it a district by itself.

Clearly, these operations can make a district plan non-contiguous easily, even if the initial
plan was contiguous. What is unique in this study is that a district plan is never referred
to as non-contiguous, but the number of districts is considered to have changed. For exam-
ple, the second operation reduces the number of districts by one, and the third operation
increases it by the number of resulting contiguous pieces of the from district minus one.
Consequently, the number of districts is variable during the course of the algorithm, but it
is always maintained to be greater than the required quantity. The difference is used to pe-
nalize the objective function. The algorithm also allows population equality to be violated,
but the allowable amount of violation is gradually reduced to zero. Finally, the algorithm
moves from one plan to the next by accepting the plan that improves the objective function

the most. It stops when no more improvements can be achieved.

Horn applies his technique to the districting of seven municipalities in the central North
Shore of Sydney. He experiments with various parameters of his algorithm, as well as with
varying levels of the allowable % deviation from population equality. Unfortunately, he does
not compare the district plans he produce with those that are currently in use or those that
he could produce using the algorithms proposed by other researchers.

The most recent study available in this area is by Mehrotra et al. [37], which is based on
the general framework in Garfinkel and Nemhauser [15]. Different from [15] is that the
proposed technique is an optimization-based heuristic as opposed to an exact method. The
authors consider the three basic criteria only, so as to make the districting process free of

political criteria and therefore free of gerrymandering claims. They use the formulation on
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page 32, but the cost term c; is modified to represent the penalty cost that measures the
‘non-compactness’ of a district. For the purpose of computing c¢;, the authors recognize a
district as a connected graph whose vertices are the BUs that comprise the district, and
the edges represent geographic adjacency. Consequently, a ‘center BU’ is identified as the
node that has the smallest sum of the number of BUs on the path to each other BU in the

district. This sum is then used as the ‘cost’ of the district, c;.

Similar to the Garfinkel and Nemhauser approach, the authors attempt to construct a set
S of feasible districts as input for the IP formulation. Since enumeration of all possible
districts is extremely costly, they “generate them on an ‘as needed’ basis” (Mehrotra et
al. [37], Section 2.2) using a technique known as column generation. They start with an
initial set of districts, which is constructed using the districts in the old plan and/or using a
heuristic similar to the method of Vickrey [59]. Next, they solve a column generation sub-
problem by means of a branch-and-price technique to expand the set S. If S is expanded,
the sub-problem is solved again to see if other districts of higher quality can be identified.
This process is repeated as long as new districts are added to S. The authors state that
solving the sub-problem “is both theoretically and practically hard” (Mehrotra et al. [37],
Section 3.5), therefore they use heuristic approaches while solving the sub-problem (e.g.
while evaluating branches). Furthermore, the way they maintain contiguity during the
construction of S may exclude some of the contiguous districts as a side effect. These

characteristics in turn make their algorithm a heuristic technique.

Mehrotra et al. [37] apply their technique to a South Carolina case study. They produce
district plans that have maximum deviations from the average district population as low as
2%. They report their results for the cases with and without a pre-processing that involves
combining the counties in order to reduce the problem size and/or breaking them in order
to generate more compact plans. They further allow a post-processing stage where districts
are slightly modified to achieve even more balanced district populations. They conclude
that their “optimization methodology provides an effective way of generating high quality
districting plans® (Mehrotra et al. [37], Section 5). Overall, this study appears to propose
the most effective heuristic to date for solving the political districting problem.
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Chapter 4

Basics of Tabu Search

The algorithms presented in Chapter 5 for solving the political districting problem are based
on the principles of a modern problem solving technique known as Tabu Search (TS). In
this chapter, a brief history and motivation as well as the basic features and the mechanism
of this technique will be provided. More extensive information on TS methodology for the
interested reader is available from a book chapter by Glover and Laguna [22], an article by
Glover [21], and a very recent book on Tabu Search by Glover and Laguna [23).

The origins of the Tabu Search technique go back to 1960s and 1970s when some of its
elements appeared in independent studies that involved non-traditional ways of solving
difficult problems. But it was not untii late 1980s that the technique settled into a well-
defined structure. Tabu Search is usually referred to as a ‘modern heuristic technique’
because of the fact that it emerged in the same recent era of non-traditional problem
solving approaches such as Genetic Algorithms and Simulated Annealing. While the latter
algorithms are exclusively based on the principles of biological and physical processes,

The philosophy of tabu search (TS) is to derive and exploit a collection of principles of
intelligent problem solving.” (Glover and Laguna [23], p.1). The TS technique makes use of
effective tools that combine artificial intelligence with optimization, in an effort to improve
upon traditional problem solving methods. The main motivation behind the appearance of
TS and other intelligent problem solving techniques is clearly the need to solve larger and

increasingly more complex real-world problems.

The Tabu Search methodology is primarily based on the principles of neighborhood search.
What makes it different from the traditional methods is its intelligent utilization of memory
and its ability to cross the boundaries of feasibility. These features help a TS algorithm
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search the solution space of a particular problem more thoroughly, reaching solutions that
the traditional algorithms are not usually able to reach. Through ‘diversification’, a TS
algorithm visits radically different parts of the feasible region and through ‘intensification’, it
focuses on ‘elite’ solutions and their ‘neighbors’. These features coupled with the intelligent
use of memory are generally known as ‘adaptive memory’ in TS terminology. The following
sections further detail these features and other elements of the TS technique. But first, the
principles of neighborhood search must be reviewed.

4.1 Neighborhood Search

The first step in understanding the mechanism of a TS algorithm is to understand the basics
of neighborhood search (NS). To begin with, consider a sample combinatorial problem of
choosing p out of n alternatives. A solution X = {z;,...,z,} to this problem is a subset
of the set of alternatives J = {1,...,n} with p < n and |X| = p. A neighborhood of X,
denoted by N(X), is defined to be the set of all solutions obtained from X by changing
one or more components of X. To give an example for the sample problem, N(X) may be
defined as the set of all solutions obtained by replacing an index z; € X with another index
z; € J\ X. That is,

N(X) ={X': X\ X' = {z¢} and X'\ X = {z;}}
We say that a solution X’ € N(X) is reachable from X.

Given the above definition of neighborhood, a NS algorithm starts with an initial solution
Xo, and moves from one solution to the next in an iterative manner. Typically, the solution
to be visited next is selected from the neighborhood of the current solution. That is, the
solution X that will be visited in iteration ¢ (t> 1) is selected from N(X;_;). The algorithm
visits solutions one after another in this way until a stopping criterion is met. A generic

outline of this simple search procedure is given below:

NEIGHBORHOOD_SEARCH

1. Identify a starting solution Xj; set t = 0.
2. Repeat until a stopping criterion is satisfied:

2.1. Set t +—t+1.
2.2. Identify a solution X’ € N(X;-1).
2.3. Set X; « X'.
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The above algorithm is too general to implement in its current form. Several aspects need
further clarification. Perhaps the most important one of these is the selection of X' from
the neighborhood N(X;-1). Typically, a NS algorithm selects an improving solution as the
next solution to visit. For example, in a minimization problem, the first solution X’ that
satisfies f(X') < f(X;—1) might be selected. If there is no such solution in the neighborhood,
then the algorithm terminates in iteration ¢ with X;_; reported as the best solution found
(an alternative termination rule is to run the algorithm for a fixed number of iterations).
With these settings, the algorithm is an example of what is known as a descent algorithm.
Alternatively, one may select the X* € N(X,_;) that improves the current solution the
most. That is, select X* so that f(X*) = minxen(x,_,) f(X). This particular version of
the algorithm is an example of a steepest descent algorithm.

Another component of a NS algorithm is the construction of the starting solution Xg. This
is usually done randomly, i.e., without any particular attention to solution quality. This
provides a quick start to the algorithm, with the hope that higher quality solutions can be

identified in later iterations.

A NS algorithm can be trapped in a local optimum easily. This happens when there is
no solution in the neighborhood to improve the current solution, but there are solutions
elsewhere in the solution space better than the current solution. Using multiple random
starts is usually a remedy to this problem. With each random start, the initial solution
is used as the ‘seed’, hopefully from a different part of the solution space, to reach other

solutions.

The last component of a NS algorithm is the definition of its neighborhood structure. A
neighborhood could be as simple as the one in the above example, or may involve more

complex operations. There are three major criteria to keep mind while defining a neighbor-

hood:

e the neighborhood should contain sufficiently many solutions, i.e., the algorithm should

never stop due to lack of solutions in the neighborhood.

e the neighborhood should not be too large that its exploration is time-intensive. Re-
member that the neighborhood must be constructed in every iteration and objective
function values need to be computed for each solution in the neighborhood (or until

an improving solution is found, in the case of a descent algorithm).

e the neighborhood definition should allow (at least theoretically) each solution to be
reachable from each other solution by executing a finite number of iterations.
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While the first two of the above criteria are easy to check (by measuring the size of the
neighborhood via experimentation), the last one needs a theoretical proof. This may or
may not be possible for a particular neighborhood definition, but usually, the larger the
neighborhood is, the more likely it is that the last requirement will be satisfied.

A Tabu Search algorithm uses essentially all of the above basics of neighborhood search.
What makes TS different and superior to plain neighborhood search is its use of additional
features, mostly through use of adaptive memory for diversification and intensification.
These features are described in the remaining part of this chapter.

4.2 Moves

In Tabu Search terminology, a move is the basic operation by which a solution in N(X)
will be reached from the current solution. For the n-choose-p example from the previous
section, a move would be the exchange of two indices zx € X and z; € J\ X. What makes
moves critical in a TS algorithm, as far as the algorithm mechanics are concerned, is what
is referred to as the attributes of moves. An attribute of a move is a piece of information
that describes the move, either by itself or together with other attributes. For the above
example, it is possible to define two attributes of a move: the index zx € X being removed
from X, and the index z; € J\ X being included in X, as a result of the exchange operation.
The two attributes collectively describe all the information as to how this particular move
will be implemented. The most important feature of the move attributes is that they can be
tabu-active. If a certain attribute (or a combination of attributes) of a move is tabu-active,
the move is not allowed to be implemented. These concepts will be discussed in the next

section in detail.

As for the size of the neighborhoods, consider again the n-choose-p example. Recall that a
move is to exchange two indices zx € X and z; € J \ X. With p choices for zx and n —p
choices for z;, there are p(n—p) solutions in N(X). For a hypothetical problem with n = 300
and p = 10, N(X) would consequently consist of 2900 solutions, which may or may not be
too much depending on how costly it is to compute the objective function value of a solution
in N(X). If the algorithm is reasonably fast in evaluating these 2900 solutions, then it can
be modified to either run for more iterations or incorporate another type of a move. In the
latter case, for example, one may consider the possibility of exchanging two pairs of indices
instead of one. This would require construction and evaluation of 2 - C(p,2) - C(n — p, 2)
solutions to be included in N(X) (C(p,2) denotes the number of p-choose-2 combinations).
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For the n = 300, p = 10 problem, this results in 2 - 45 - 41 905 = 3 771 450 solutions. This
is probably too many in most cases. In this case, one might still be interested in including
a small subset of these solutions in N(X), for the sake of adding diversity to the search
process. However, the availability of computational resources would in general determine
what the appropriate size of N(X) should be.

Parallel to the discussion in the previous section, moves should not be too restrictive that
the resulting neighborhoods are dangerously small in size. This will restrict the choices
used for selecting the next solution to visit. On the other hand, the resulting neighbor-
hoods should not be so large that evaluation of the cost functions is computationally very
expensive. This increases the time required for each iteration, therefore leaves the algorithm
less time to complete a given number of iterations. What may be possible though, is to
evaluate objective function values of the solutions incrementally, i.e., by only looking at
the components that are changed and computing the change in objection function value
accordingly. In other words, one should avoid, as much as possible, evaluating the objective
function from scratch. If this is possible, the need for computation time will be less and the

neighborhoods may be allowed to contain more solutions.

4.3 Tabu Definitions and Use of Memory

Perhaps the best-known aspect of a TS algorithm is the concept of tabu. Webster’s dic-
tionary defines “tabu” (or “taboo”) as “set apart as charged with dangerous supernatural
power and forbidden to profane use or contact...” or “banned on grounds of morality or
taste or as constituting a risk...”. In TS context, a tabu move is simply a forbidden move.
Because the algorithm can accept, in each iteration, non-improving solutions as well, the
tabu concept serves as a mechanism for avoiding cycles and also for diversifying the search

process.

In Tabu Search, tabus are defined through use of move attributes. Typically, an attribute of
a move constitutes the basis of how a move will be “declared tabu”. To further explain this
concept, consider the n-choose-p example again. A move defined by the exchange of two
indices z;x € X and z; € J \ X has two attributes: indez_out, the index zx being removed
from X, and indez_in, the index z; being included in X. Therefore, the representation
(indez_out, indez_in) is used to describe the move that involves exchange of z; and z.
Given this definition, one may choose to define a tabu in a way that forbids moves whose
indez_out (indezr_in) is equal to a particular value. In plain English, this means forbidding
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a particular index to leave (enter) solution X, no matter which other index it is exchanged
with. Another way of defining tabu might simply be forbidding exchange of a particular
pair of indices. This last tabu definition involves specifying values for both indez_out and
indez_in. In all of these cases, the relevant attributes of the corresponding move are labeled
tabu-active and solutions that result from moves with tabu-active attributes are excluded

from the neighborhood (with certain exceptions).

Once a particular move is declared tabu, it keeps its tabu status for a certain number of
iterations, which is referred to as tabu tenure and denoted by 6. Recall that the main
functionality of the tabu feature is to avoid cycling. Therefore, the tabu tenure chosen for
a particular move should be long enough that the algorithm will hopefully have moved to a
significantly different solution by the end of @ iterations. In most cases though, it is difficult
to prove that a particular tabu tenure selection prevents the algorithm from cycling for sure.
For the first tabu definition example above, i.e., indez_out = 7, having a tabu tenure of 8
iterations means that the index zx, once in X, will not be allowed to leave X for the next 8
iterations. For the second example, i.e., indez_in = z;, it means that z;, once removed from
X, will be allowed to enter X only after § iterations have passed. For the last one, zx and
z;, once they are exchanged, will not be allowed for another exchange for @ iterations. These
tabu definitions are intended to avoid reversal of the exact order of exchanges. Selecting
large tabu tenure values is likely to decrease the possibility of cycling, but it also reduces
the number of available moves for choosing the next solution to visit. Therefore, we advise

experimentation on the length of the tabu tenure.

The impact of imposing tabus on moves is to reduce the size of the neighborhood of a solu-
tion in a particular iteration, as mentioned previously. In other words, neighborhoods are
dynamic and their composition depends on the moves implemented in previous iterations.
Normally, the moves that are tabu are excluded from N(X), which means that the next
solution to be visited will be selected from N'(X) = N(X, H), where H is the history of all
previous solutions visited. The only exception is when the solution that results from a tabu
move improves the best known objective function value, i.e., this solution is being visited for
the first time. In this case, cycling cannot occur and therefore the tabu status of the move
is overridden and the move is included in N'(X). To keep track of which moves are tabu
and which are not, a memory structure is employed. This is referred to as recency-based
memory, since it involves storing information on most recent moves, and it is described in

the next section with a numerical example.
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4.3.1 Recency-based Memory

For the n-choose-p combinatorial problem, suppose tabus are defined based on the indez_in
attribute. That is, an index z; that leaves X will not be allowed to return for @ iterations.
To store the information needed to determine whether an index will be allowed to take part
in an exchange in a future iteration, a single-dimensional array A of size n is sufficient.
Typically, A; will contain the iteration count at which z; will be allowed to return to X. At
the beginning, the values in this array are initialized to zero. Consider the following array
for the example with n = 10, p = 5 and the current solution of Xg = {1,5,6,8,9} with
J\ Xs = {2,3,4,7,10} (this means we are at the beginning of iteration 7). Suppose further
that 6 = 3.

There are five non-zero values in the above array that we are interested in: the values that
correspond to indices 2, 3, 4, 7 and 10. The value A, = 7 indicates that index 2 will be
allowed back in the solution at the end of iteration 7, therefore any exchange that brings
index 2 back into the solution is tabu until the end of iteration 7 (A2 = 7 implies that index
2 has left the solution in iteration 4, since § = 3). Similarly, index 10 cannot return until
the end of iteration 9. On the other hand, index 3 can return in the current iteration since
the value A3 = 6 indicates that the tabu status of all moves that involve index 3 has expired

at the end of iteration 6.

Suppose index 3 is chosen to be exchanged with index 9. After this move is implemented,
the corresponding tabu expiry information has to be recorded in A for index 9. That is,
we must set Ag = 7 + 3 = 10, where 7 is the current iteration count and 3 is the tabu
tenure. This means that index 9 will be not be allowed to return until the end of iteration
10. Note that, this way of recording tabu status does not require any other updates of the
array A. If, on the other hand, one chooses to record the number of iterations left until
expiry (i.e., to record the value § = 3 in the iteration the move was implemented), then one
would have to decrease this value for each index in each iteration. Clearly, the former way
of recording tabu information is computationally more efficient, since it requires performing

comparisons only, as opposed to performing comparisons and update with the latter.

In the above example, we assumed a fixed tabu tenure of 3 iterations for all indices. Observe
that this will cause three indices in J\ X;—: to be tabu-active at any given time. This leaves
the algorithm with 2 indices that can be exchanged with 5 others, which amounts to a total
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of 10 non-tabu moves. In other words, because of the way tabus are defined (including
the tabu tenure), 15 of the 25 available moves are eliminated. These numbers (15 and
25) which are based on a small numerical example may not apply to full-scale real-world
problem. However, with any tabu definition, one should keep in mind that tabu definitions
may sometimes be too restrictive and reduce the size of N(X;;) significantly. This would
leave the algorithm with too few alternatives to choose from, and therefore may negatively

affect the diversity of the search process.

An immediate aspect of the tabu concept is the selection of the tabu tenure. In the above
example, the fixed tabu tenure of 3 iterations was arbitrarily selected. This would prevent
an index that is deleted from the solution from returning to the solution for 3 iterations,
but it may be the case that any index that leaves will tend to come back as soon as the 3
iterations pass. This is likely to result in a cycle that repeats itself every 3 iterations, with
the same pairs of indices being exchanged. To avoid this, it is recommended that the tabu
tenure be different for each move implemented. One way of doing this would be to generate
a random tabu tenure from a range [@min,Omaz]. This would help avoid the cycles that may

result from assuming a fixed tabu tenure.

The recency-based memory structures described in this section is an example of what is
known as short-term memory. There are numerous variations and implementations of short-
term memory which are beyond the scope of this section. The examples provided in this
section are intended only to illustrate the concepts. Interested readers are referred to the
book by Glover and Laguna [23] for further details.

Another dimension of using memory in an intelligent search is to use longer-term memory.
A key component of this concept, namely the frequency-based memory, is described in the

next section.

4.3.2 Frequency-based Memory

Frequency-based memory is a major element of the longer-term memory concept that com-
plements short-term memory. Even though TS implementations for some applications have
proved successful without frequency-based memory and other elements of longer-term mem-
ory, these tools provide an additional dimension of diversification and intensification, and
improve the performance of a TS algorithm. In this section, the frequency-based memory

aspect of longer-term memory will be detailed.

Frequency-based memory is one of the TS components that coordinate diversification of
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the algorithm over the search space. Typically, information regarding certain attributes of
moves are recorded over the entire length of 2 TS run, which is continuously used to diversify
the search into unexplored parts of the solution space. Frequency-based memory uses two
general types of measures: transition measures, which use the number of times an attribute
changes from one iteration to the next, and residence measures, which use the number of
times a particular value for an attribute was observed as part of the solutions visited. In
both cases, the quantity is normalized typically by the total number of occurrences (e.g.

total number of iterations).

Let us use the n-choose-p problem again to make these concepts more concrete. A transition
measure for the frequency-based memory might be based on the number of times two indices
were exchanged. In this case, one would need a two-dimensional array to represent pairs of
indices (the lower part of this array is not used since the order of indices is not important).
Each cell of this array would contain the number of times the corresponding pair of indices
were exchanged. This quantity would then be normalized by the number of iterations that
have been performed so far. The 10x10 array I below illustrates the implementation of this
concept without the normalization. (Suppose we are at the beginning of iteration 11.)

1 2 3 4 5 6§ 7 10
1 0(f0j0(0f010
2 0147010
3 0(0j0]0
4 001
010
0

IOl

OlIMM|O|OC|lOo~|O|O]e

ojo|jo)|jcjlo|jlojojo|o

10

Here the value I'ss = 4 indicates the indices 2 and 5 were exchanged 4 times in the past 10
iterations (the total of all non-zero values in the array must equal 10). Consequently the
frequency of this exchange is measured as 40%. The purpose of computing such a quantity
1s to avoid frequent exchanges in later iterations. This is done by penalizing the objective
function value of a solution that results from exchanging indices 2 and 5.

Before explaining how the objective function values are penalized according to frequency-

based memory, consider the following array for a residency measure example.
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The residency measure used in this case is the number of times an index was part of the
solution. A one-dimensional array is sufficient to store this information. The values in the
above array indicate that index 5 was in the solution in 8 of the past 10 iterations (80% of
the time). If a candidate exchange in iteration 11 still leaves index 5 as part of the resulting
solution, the objective function value of this solution is penalized using the 80% frequency.
This is the index that was part of the solution more than any other index, therefore the

measure suggests that other indices should be given more chances to enter X.

The two simple examples above indicate how the frequency-based memory is utilized in order
to diversify the search process, that is to visit solutions that have not been visited before, by
discouraging visitations to solutions that are similar to those encountered previously. Their
impact on the objective function values is to alter them in a way that reflects the history
of iterations. For the first example above, let X;; € N(Xyo) denote the solution that is
reached from Xy by exchanging indices ¢ € X9 and j € J \ X19. The penalized objective
function value of X;; might be computed as f(X;;) - (1 + FT“{-) Since the ratio FTH' is always
between zero and one, f(Xj;) is magnified as a result. In other words, the solution Xj;; is
discouraged by a penalty factor proportional to the number of times the two indices 7 and

j were exchanged.

For the second example, if a candidate exchange of indices 7 and j makes an index k part
of the resulting solution X;; (k not necessarily distinct from i or 5), then f(X;;) is modified
as f(Xi)-(1+ %). That is, any move that results in index k£ to “reside” in X; at the
end of current iteration is penalized proportional to index k’s residency frequency. If the
penalty factor is too disruptive to the process, i.e., it is so high that the quality of solutions
measured by f itself has no significance, then a scaling factor can be used to decrease the
magnitude of the penalty term. It may also be worthwhile to include another scaling factor

which is a function of the problem size, such as n in the above examples.

The above examples illustrate how frequency-based memory can be utilized to diversify the
search for good solutions. Other elements of longer-term memory include such topics as
exclusive intensification and diversification, strategic oscillation and path relinking. These
topics are beyond the scope of this chapter, and the interested reader is again referred to

the book by Glover and Laguna [23] for details.
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4.4 Aspiration Criteria

In a TS algorithm, a tabu move is normally forbidden for the duration of the tabu tenure.
However, there are certain exceptions to this rule. The term aspiration criteria is associated

with these exceptions where the above rule can be violated.

The primary purpose of introducing tabu structures to a neighborhood search algorithm
is to prevent it from cycling, i.e., visiting the same sequence of solutions over and over
again. When an algorithm is considering to visit a solution that was never visited before,
clearly there is no danger of cycling. In this case, this solution can be accepted even though
the corresponding move is tabu. Of course, to check whether each solution in N(X) was
already visited can be time-costly and is probably unnecessary. The algorithm, on the other
band, keeps track of the best solution found at all times. At least this information can be
used to check whether a solution is being visited for the first time or not. This is done by
comparing the objective function value of the best known solution with that of the solution
the algorithm is considering to visit. If the latter has a lower objective function value, it
can be accepted even if it is tabu, since no cycling can occur. To summarize, encountering
solutions that are better than the best known solution is an aspiration criterion that can be
used to override tabu status. This particular criterion is known as Aspiration by Objective
- Global form.

Another case where aspiration takes place is when all available moves are tabu. In this case,
the algorithm chooses a move that is ’least tabu’. This means that the move to be selected
is closest to the expiry of its tabu status. This aspiration criterion is known as Aspiration
by Default.

A third aspiration criterion is referred to as Aspiration by Search Direction and as the
name implies, it is based on the concept of search direction. The search direction of a TS
algorithm in a particular iteration is said to be improving if the last move implemented
has improved the objective function, and non-improving if the last move implemented did
not improve the objective function. Consequently, a tabu move can be accepted under this
aspiration criterion if the search direction does not change as a result of implementing this
move. However, this criterion should be used with more caution than others, since cycling is
of higher possibility. The search direction can be non-improving for ¢ iterations after which

it turns into improving for another ¢ iterations, reversing the moves that were implemented.

The aspiration criteria described above can be used alone or in combination with others
in a TS algorithm. If more than one criterion are used, they should be prioritized. For
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example, Aspiration by Objective is likely to be used first, after which Aspiration by Search
Direction and Aspiration by Default are used in that order.

4.5 Stopping Rules and Other Features

The final element of a TS algorithm is the issue of stopping rules. Since a TS algorithm
accepts non-improving solutions in addition to improving ones, the traditional rule of stop-
ping when no more improvement is possible is no longer appropriate. Instead, a typical TS
algorithm stops based on the following two rules (whichever occurs first):

e when the algorithm cannot improve the best known solution for a pre-determined

number of successive iterations, 7'.

e when the algorithm reaches the maximum limit on the total number of iterations,

tmaz -

Both rules use one parameter: T and tmaz- If T or tmer is too small, the algorithm will
terminate before finding a sufficiently good solution. If they are too large, computational
time will be wasted for iterations that do not improve the best known solution. But the
first rule is superior to the second in that it lets the algorithm run as long as there is
improvement. The second rule, on the other hand, may cause the algorithm to terminate

in the middle of a very promising sequence of improving moves.

One feature of TS methodology that is not mentioned so far is its ability to cross the bound-
aries of feasibility in its search process. That is, the algorithm is allowed to temporarily
visit infeasible solutions with the expectation that switching back to feasible solutions in
later iterations may start a good thread of high quality solutions. While there is nothing
that prevents a traditional NS algorithm from doing the same, it is with the TS technique
that this feature has been introduced and has become popular in heuristic optimization lit-
erature. This feature becomes especially useful towards the end of a TS run, where a small
change in the solution structure would cause an infeasibility, and a traditional algorithm
would not accept this step that violates feasibility. Visiting infeasible solutions temporar-
ily may cause the algorithm to cross a bridge towards a significantly different part of the
feasible region. This clearly adds to the level of diversification in the search process.

Neighborhood Search heuristics (such as TS) have a distinct advantage over mathematical

programming approaches: They are able to handle complex expressions (in the objective or
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in the constraints) which may be difficult (or impossible) to incorporate in a mathematical
programming model. All that matters is computational time, i.e., time needed to evaluate
complex objective function values or to make sure that all constraints are satisfied. For this
reason, a TS algorithm is capable of handling very complex real-world constraints. Also, TS
algorithms do not have the computational overhead that, for example, Genetic Algorithms
have. A Genetic Algorithm has to manage chromosomes in the population, crossovers and
the resulting update of parent chromosomes with child chromosomes, while a TS algorithm
simply has to evaluate and implement moves. A TS algorithm can also be easily parallelized,
in connection with the Probabilistic Diversification and Intensification algorithm described

in Chapter 6.

4.6 A Generic Outline of a TS Algorithm

The following is the outline of a generic TS algorithm based on the principles described in

Sections 4.1-4.5.

GENERIC.TS

1. Construct a starting solution Xjy. Set X* = Xy, the best known solution.
2. Initialize recency- and frequency-based memories. Set t = 1.
3. Repeat until a stopping rule is satisfied:
3.1. (iteration t) Construct the neighborhood N(X;_;). Let f(X) denote the objec-

tive value of a solution X € N(X;_;).

3.2. Penalize f{X) for all X € N(X;-1), using the frequency-based memory infor-
mation specific to the move that converts X;_; into X. Let f'(X) denote the
resulting (penalized) objective function value.

3.3. Sort the solutions X € N(X;—_,) is ascending order of f'(X).

3.4. Traversing solutions from the top of the sorted list, pick the first solution that is
non-tabu, or is tabu but satisfies one or more of the aspiration criteria. Denote

this solution by X'.

3.5. Set X; = X' and update recency- and frequency-based memories using the at-

tributes of the move implemented.
3.6. Set X* = Xi, if X is a better solution than X*, i.e., f(X;) < f(X*).
3.7. Set t +t+ 1.
56



4. Report X* as the best solution found.

4.7 Applications

Since the appearance of the paper by Glover [20] that first defined and used the term
“tabu search”, the technique has been applied on a variety of problems. It became very
popular over the last decade, as a result of many successful applications. In this section, a

representative subset of these applications will be summarized.

One major area that TS has been applied extensively is the class of scheduling problems.
Glover and Laguna [23] report such applications as scheduling in manufacturing systems,
scheduling a flow-line manufacturing cell, audit scheduling as well as areas like forest harvest
scheduling with a variety of constraints. Other application areas in scheduling include just-
in-time scheduling, single-machine scheduling, job shop scheduling and resource scheduling.

Another typical application area for TS is the class of transportation and vehicle routing
nroblems. Tabu Search has been used to solve many different types and versions of these
problems including the fixed charge transportation problem, traveling salesman problem,
vehicle routing problem, vehicle routing problem with time windows, and routing and dis-
tribution problems. The vehicle routing application by Rochat and Taillard [53] that uses
the Probabilistic Diversification and Intensification technique also falls into this category.

Other applications of Tabu Search include: telecommunications applications such as the
design of a telecommunications network; graph-theory applications such as p-median, graph
partitioning, maximum clique; financial applications such as portfolio management and
investment problems. For an extensive list of TS applications that have been developed

over the last ten years, a recent survey by Osman and Laporte [47] is a good source.

87



Chapter 5

The Proposed TS Algorithm

In this chapter, the Tabu Search algorithm that is used to solve the political districting
problem is described. Various components of the algorithm include construction of a start-
ing solution, the evaluation of the objective function, the moves, tabu definitions and the
memory structures used. These features will be described in detail in the following sections.

5.1 Notation

5.1.1 Base Units

n number of base units in the geographical region being districted,

I index set for base units, I = {1,...,n},

i,k subscripts for base units (i, k € I),

ai,Ti, Di area, perimeter and population of base unit 1,

tir length of the common boundary between two adjacent base units z and %.

5.1.2 Districts

m number of districts to be formed,

J index set for districts, J = {1,...,m},

7,1 subscripts for district (3,1 € J),

D; index set of base units contained in district j (D; = {t: ¢ € I, z;; = 1}),

A;,R;,P;  area, perimeter and population of district j,
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A;j partial area of district j formed as a result of overlays.

5.1.3 Entire Territory

R total area and perimeter of the territory being districted,

"

total population residing in the districting area (P = 2 ier Pi)s

ideal average for district population (P = P/m),

allowable % deviation from P,

[Prmin, Pmoz] allowable range for district population (P, = (1 = B)P, Proz = (1 + B)P).

> oty e

5.1.4 Decision Variables, Objective Function

1 if base unit ¢ is assigned to district j
Tiq =
Y 0 otherwise

X = {zi;} a solution to the problem,

N(X) Neighborhood of X,

f(X) multi-criteria objective function,

h(X) penalty term for violation of population balance,

w' weight of h(X),

fi(X) objective function term for criterion 1,

w; weight of criterion 1,

FI(X) objective function modified by frequency-based memory,

Ci(X) compactness of solution X, computed using measure 7 (i=1,2),
C2;(X) compactness of district j of solution X, computed using measure 2.

5.1.5 Algorithm-Related

« penalty coefficient for population balance violations,
U, i parameters for updating «,

k index for political parties,

Q total number of political parties,

Sk percent seats won by party k,

Vi percent vote received by party k,

v (X) percent vote received by party k in district 7,
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JY(X) index set for districts won by party k,

JE(X) index set for districts lost by party k,

Gr(X) proportionality score of party k based on solution X,

t TS iteration count,

T maximum number of successive iterations without improvement,
F objective value of best known feasible solution,

F5 best objective value encountered (feasible or infeasible),

(Z,7,0) representation of a Type I move,

(z,k, 5,0) representation of a Type II move,
M}, M? set of eligible Type I and Type II moves in iteration t,

Xiji solution that results from the implementation of Type I move (¢, 7, 1),
Xikjt solution that results from the implementation of Type II move (i, k, 7,{),
0 tabu tenure,

[@rmin,Omaez] allowable range for generating tabu tenures,

r recency-based memory,

) largest increase in objective value from one iteration to the next,
p scaling factor for frequency-based memory penalty term,

Nit frequency of transferring or exchanging base unit ¢,

Vjt frequency of district 7’s being subject to a transfer or exchange,
n® number of times base unit i was moved or transferred,

;’ number of times district 7 was subject to a transfer or exchange,
T, penalty term associated with the frequency-based memory in iteration ¢,
Ab A4 frequency-based memories for base units and districts,

D collection of high-quality districts (PDI),
s number of solutions associated with D,
gi “quality” of district D; € D,

M number of PDI iterations,

L a collection of base units or districts.

5.2 Solution Representation

A solution to the single-member political districting problem is characterized as a collec-
tion of electoral districts that are mutually exclusive and that also collectively “cover” the
territory being districted. In this study, such a collection will be referred to as a district
plan. Typically, the territory is divided into a certain number of regions (districts), m.
Districts are comprised of smaller geographical units, or base units (BU) for short, that are
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the building blocks of the districts. Depending on the level of districting (i.e., whether it
is at the federal, provincial or municipal level), these building blocks may be chosen from

counties, census tracts, enumeration areas, or even a mixture of some or all of these.

Given the concept of using BUs as building blocks, a solution to the districting problem
is a partition of the set of all BUs into m subsets. Mathematically, let z;; be a binary
variable that indicates whether or not BU 1 is assigned to district j. Furthermore, let n be
the number of ail BUs in the territory. A solution X to the problem is then defined as

X={zy:i€l,jeJ} (5.1)

where I = {1,...,n} is the index set for BUs and J = {1,...,m} is the index set for
districts. In other words, a complete solution to the districting problem specifies which
BUs are contained in which districts. Throughout the remainder of the text, the terms
“solution” and “district plan” will be used interchangeably, and both will be represented
by X. Note that, each BU can be assigned to one and only one district, i.e., >~ c; zij = 1.

As far as the feasibility of X is concerned, various criteria might be relevant depending on
the legislation in effect in the territory. One major criterion, as discussed in Chapter 2, is to
have districts balanced with respect to population. Contiguity is another criterion in some
jurisdictions. In this study, these two criteria will jointly define feasibility. In other words,
a feasible district plan will have to satisfy the two conditions that are described below. If
any one of these two conditions is violated, the district plan is defined to be infeasible.

e Population balance: The population of all districts in a district plan must be within
a pre-determined range [Prin, Pmaz]- Here, Pmin = (1 — B)P and Ppey = (1 + B)P
where P = P/m is the district quotient and 3 is the allowable & % deviation from
P. The notation P = 3 ier p: represents the total population residing in the territory,

where p; is the population of BU .

e Contiguity: A district plan must be contiguous, i.e., each BU within a district must
be reachable from every other BU in the district by visiting a sequence of adjacent
BUs in that district.

From the modeling perspective, these two conditions are nothing but two constraints that
a feasible solution has to satisfy. However, the TS algorithm will treat the first one as a
soft constraint. That is, the algorithm will allow temporary violations of this constraint,
as described in Section 5.3.1. On the other hand, the second one will be treated as a
hard constraint, which means that the TS algorithm will always maintain the contiguity of
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district plans considered. This assumption is made because of the fact that once contiguity
is relaxed, it is computationally expensive to keep track of the number of pieces each district

is comprised of and how these pieces are affected as a result of TS moves.

Even if contiguity is not a legislated requirement, it may still be desirable for the reasons
discussed in Chapter 2. To produce non-contiguous solutions with the algorithm, one could
drop the contiguity requirement. However, the resulting districts will probably have many

non-contiguous pieces, which would not be desirable by the districting authority.

5.3 Objective Function

The political districting problem is a multi-criteria problem. To address this nature of the
problem, the weight method is adopted. That is, the objective function is made up of
multiple terms, each of which is an appropriate measure of a relevant criterion, weighted
with an appropriate non-negative weight. The general form of the objective function looks

like the following;:

f(X) = w'h(X)+wfilX)+wafo(X) + .. (52)

In Chapter 2, a detailed list of relevant districting criteria was provided. The subset of these
criteria that has been incorporated in the TS algorithm is given in the following sections.
Each criterion is further detailed as to how it is measured and included in the objective
function. With all the terms of the objective function, smaller values are preferred to larger
ones, i.e., the aggregate objective function f(X) is to be minimized.

The first term in (5.2) is clearly different from the rest. This is the term associated with
the first condition of feasibility, i.e., the requirement that the districts be balanced with
respect to population. Consequently, this term measures the magnitude of violation of the
population constraint. It is listed and will be discussed in the first order, because it is
perhaps the most emphasized criterion in political districting. Description of the rest of the

terms will follow the discussion of this criterion.

5.3.1 Population Balance

As mentioned above, population balance is one of the two conditions that define feasibility.
It is treated as a soft constraint by the algorithm, which means that the algorithm is
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allowed to temporarily visit solutions that possess districts with population outside the
range {Pnin, Pmaz]- This is done with the expectation that feasible solutions of higher
quality can be found in later iterations of the algorithm. Another objective is to make it
easier for the algorithm to direct its search to unexplored parts of the solution space.

Since infeasibilities of this kind are undesirable, they should be discouraged. With this
purpose, a penalty term to be added to the objective function is introduced. The penalty
term is computed as the total amount of violation (if any) relative to the district quotient
P, multiplied by an adjustable parameter a. Mathematically, it is given by:
2Zjes max{P; — Pruaz, Pmin — P;,0}
P

where Pj = ) ;¢ D; Pi is the population of district 7. This last quantity is computed as the
total population of BUs in district j with D; = {i € I : z;; = 1} being the BU index set for
district j.

h(X) = & (5.3)

The numerator of the ratio in (5.3) is the total (absolute) violation above and below the
limits of the allowable population range. The relative amount of violation is computed
simply by taking its ratio to P. If P; € [Ppin,Pmaz},Vj € J, there is no violation and
therefore the penalty term A(X) is equal to zero.

The coefficient « in (5.3) is used by the algorithm to adjust the frequency of switches between
infeasible and feasible solutions. Initially, « is set equal to 1, and it is continuously reviewed
for adjustment during the course of the algorithm. This parameter is either multiplied or
divided by 2, depending on the history of solutions visited in the past iterations. Specifically,
the following rules are used to determine whether a should be adjusted or not:

e If at least [ of the last u solutions visited were feasible, set o + a/2,
e Else if at least i of the last u solutions visited were infeasible, set a + 2¢,

e Else, leave & unchanged.

The above checks are performed every p iterations. The other parameter i specifies exactly
how many solutions will have to be feasible or infeasible for o to be adjusted. In essence,
what o does is to increase the penalty of violations, if most or all of the solutions visited
recently are infeasible (assuming [ is large enough). Similarly, it decreases the penalty if
most or all of the recent solutions are feasible. Note that Z must be greater than 1/2 so
that the first two conditions are not satisfied simultaneously. This scheme of adjusting «
allows the algorithm to switch between feasible and infeasible solutions on a continuous
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basis. If the algorithm visits too many infeasible solutions in succession, feasible solutions

are encouraged by doubling the penalty term.

Table 5.1 shows a sample calculation of this penalty term with m = 10, P = 800000,
P = 80000, Pez = 100000 and P, = 60000 (i.e., 8 = 0.25), and finally o = 1.

District P; Violation Penalty
1 85000 -
2 73000 -
3 58 000 2000
4 70000 -
5 87000 -
6 105000 5000
7 87000 -
8 104 000 4000
9 56 000 4000
10 75000 -
TOTAL | 800000 | 15000 =1-15000/80000 = 0.1875

Table 5.1: Calculation of the penalty term for violation of population balance

To summarize, the penalty term h(X) is part of the objective function f(X) and it is non-
zero whenever there is a violation of the allowable range [Pnin, Pmaz). The term A(X) is
further multiplied by the weight w', to adjust its balance with respect to the rest of the
terms in f. (Note that an alternative way of doing this would be to change the starting

value of @) As a result, the objective function has the form in (5.2).

5.3.2 Compactness

The second criterion that is part of the objective function is compactness. It is associated
with the term f;(X) and the weight w;. The following two measures are used by the TS

algorithm for the quantification of a solution’s compactness value:

e the total length of ‘interior’ district perimeters.

e comparison of the district perimeter with the perimeter of a circle that has the same

area, as the district.

Recall from Chapter 2 that compactness measures can be in conflict, as shown by Niemi et al.

[46], when it comes to measuring the compactness of an entire district plan or individual
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districts. For this reason, two measures have been selected for implementation instead of
one. They will both be part of the computational study in Chapter 7, where a consistency
check will also be performed. The remainder of this subsection describes in detail how the

compactness of a district plan will be computed using these two measures.

Measure 1: Sum of interior district perimeters

This measure of compactness is a function of the total length of district perimeters. The
objective is to minimize this function so that the algorithm would be forced to make district
boundaries follow straight lines. Specifically, it is computed by taking the total length of
intertor district perimeters and scaling it by R, the perimeter of the entire territory:

}(Z; B = R) 6.0

HX) =C(X) = R

Here, R; denotes the perimeter of district 7 and is given by

Ri=)> ri— > 3 tx (5.5)
i€D; i,ke€Dj itk

where r; is the perimeter of BU ¢ and t; is the length of the common boundary between
BUs ¢ and k. Here, R; is computed by first summing up the perimeters of all BUs in
district j, then subtracting all BU perimeters that are double counted in Yic p,; Ti- The
numerator of the ratio in (5.4) is the total length of interior perimeters, which is one half the
difference between the sum of all district perimeters and R, (% because of double counting).
In computing C)(X), the compactness value of X, R is used as a constant scaling factor.

Figure 5.1: Compactness Measure 1: interior borders scaled by exterior border
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As an illustrative example, consider the district plan in Figure 5.1. This district plan
is composed of four districts that are separated from each other with the dashed lines
shown. These dashed lines correspond to the district perimeters tnterior to the entire plan.
The thick solid lines correspond to the perimeter of the territory and is denoted by R.
Consequently, the compactness of this plan is computed as the ratio of the total length of
dashed lines to R.

Measure 2: District perimeter vs. perimeter of circle with the same area

The second measure used to assess the compactness of a district plan is one that relates
the shape of each district to a circle. Recall that the measure Pery reported in the article
by Niemi et al. [46] (which was first proposed by Horton {30]) is based on this concept. In

this dissertation, a modified version of Pery is used.

The original measure Pery computes the ratio of a district’s perimeter to the perimeter of
the circle that has the same area. Since a measure that takes values between 0 and 1 is
more desirable for scaling purposes, the following modification of Pery is used to compute

compactness of district j:

2y [Aj /7 9 JTA:
Coj(X)=1—- —L 2 -1 - 2MVT5 (5.6)
R; R;
where A; = 3 ;¢ D; @i is the area of district j, a; being the area of basic unit ¢. Here, the
numerator of the ratio is the perimeter of the circle that has area A;, and therefore has
radius /A;/m.

Note that (5.6) gives the compactness of a single district. The question is how to combine
individual district compactness values into an aggregate value. Two immediate approaches
would be to look at the simple average of the individual district compactness values, or
the maximum of them. With the simple average approach, one district may be highly non-
compact, but this might be negated by a number of highly compact districts. With the
minimax approach, one is guaranteed not to have a highly non-compact district, but at the
same time one would lose from the overall average. To avoid highly non-compact districts,
one could also choose, as a third alternative, to minimize the average of the squares of (1
+ district compactness values), which would in turn penalize non-compact districts to a
greater extent (compactness values are increased by 1 so that squaring them magnifies the
relative distance from the maximum value). Among these three alternatives, the simple
average method is chosen for its simplicity. That is, the compactness of a district plan is
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computed by

(1-— L_ VAj/7r) (5.7)

AX) =G(X) = = Cy(X) = =3 o

ieJ jeJ
5.3.3 Changes with respect to Existing District Plan

One of the political criteria that have been included in the TS algorithm is to minimize
changes that are made to the existing district plan. This is accomplished through the use
of a measure developed in this section. This measure is intended to assess the similarity
between any two district plans being compared. Furthermore, it is also in the form of an
index that takes values between 0 and 1, just like the second compactness measure. The
value 0 is measured when two plans are identical (i.e., perfectly similar), and higher values
indicate increased ‘distance’ from perfect similarity. The objective function term associated

with this measure is ws fo(X).

Consider Figures 5.2a and 5.2b for an illustrative description of this index. Figure 5.2a
shows two district plans of a given territory: one with the solid border line, and the other
with the dashed border line. Perfect similarity would have been achieved if the solid lines

coincided with the dashed lines.

(a) (b)

Figure 5.2: Measuring changes with respect to a base plan

Another way to recognize perfect similarity is to look at the content of each district. If all
the BUs in each district of the first plan are also together in a district of the second plan,
then the two plans would be identical.

Figure 5.2b demonstrates how the similarity between the two district plans is evaluated.
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The plan with the solid lines is taken as the base plan. The plan that is compared with the
base plan (i.e., the plan with dashed border lines) is then overlaid and intersected with the
base plan. The next step is to compute, for each district in the base plan, the area of the
largest piece within that district formed as a result of the overlay. These largest pieces are
indicated as the shaded areas in Figure 5.2b. The similarity index is then computed as the
ratio of the total shaded area to the entire territory area. To make the index minimizable,
the ratio is also subtracted from 1. (In this form, the index is rather a dzs-similarity index.)

Mathematically,

fax) =1~ At Am

where J‘Ij corresponds to the area of the largest piece in district j that is formed as a result
of the overlay. For this particular objective function term, the base plan is the district plan
currently in effect. One advantage of this measure is that it allows the number of districts

(5.8)

in the two plans compared to be different.

5.3.4 Integrity of Communities

An important political criterion that is included in the objective function is the integrity
of communities. This criterion is incorporated essentially the same way as the previous
criterion (changes with respect to existing district plan) is. This time, the base plan is a
“community plan”, where the entire territory is divided into regions that represent commu-
nities. The measure again forces the BUs that are part of a community to be assigned to the
same district to a maximum extent. Consequently, this reduces the number of communities

that are split between two or more electoral districts.

The above approach does not require that the number of communities and the number of
districts in a district plan be equal. In most cases, one would not be able to identify as
many communities as the number of electoral districts anyway. In any case, the technique
works equally well in both of the two cases where the number of electoral districts exceeds

or is less than the number of communities.

The computation of the numerical value for this measure is the same as that described
for Figure 5.2b. The only difference is that the number of districts in the base plan and
that in the plan that is compared to the base plan might (and will most probably) be
different. Therefore, in those cases, it will not be possible to achieve a perfect score. If the
number of electoral districts exceeds the number of communities, it is inevitable that some
communities will be split among districts. But the larger the pieces each district has from a
community, the better the score of the district plan will be. In summary, if this criterion is

68



minimized, one should expect that the districts in the resulting district plan should have big
blocks of communities together and overall the communities get split among a few number

of districts.

5.3.5 Proportionality

Proportionality suggests that the portion of the seats a party wins in an election should be
(roughly) equal to the party’s share of the popular vote. While it is difficult, in advance of
an election, to predict the share of votes each party will get, historical data may have certain
indications in certain regions. That is, some parts of the territory might have turned out to
be conservative over the years, and some might have been liberal, etc. This historical data
might be used to compute a proportionality score (PS) of a district plan. Furthermore, this
proportionality score can be optimized on its own to produce a district plan that achieves the
best possible level of proportionality. Clearly, there is no guarantee that the historical voting
patterns will recur in the next election. Moreover, the surveys conducted for estimating the
voting patterns will not be completely reliable, if not obviously in favor of one party. In
addition to these, it may not be possible to achieve an acceptable level of proportionality
due to the population distribution in the territory (as described in Section 2.3). For these
reasons, it may not always be appropriate to incorporate this criterion into the algorithm
for optimization purposes. However, assuming that none of these unfavorable conditions are
present, one may be interested in computing (and optimizing) such a score. The objective
is to see if large disproportionalities are present in a particular district plan, and avoid them

as much as possible.

For the computation of the PS used in this study (for a system with Q parties), let Sk
denote the fraction of seats won by party k, £ € {1,...,Q}, and Vi denote the percent
votes received by this party. Clearly, a party wins a seat in an associated district when
vk;j(X), percent votes received by party k in district j of plan X, is greater than that of the
other parties. Let JI¥ (X) (JE(X)) be the index set for the districts won (lost) by party k,
given a particular district plan X, computed as follows:

JV(X) = {jeJ:u(X)>wv;(X),Vl#k} (5.9)
FX) = JI\F(X) (5.10)
In a district j € JJV(X), let vy; denote the vote share of the party (party s) that has received
the second largest share of votes. In a district 7 € JF(X), let v;; denote the vote share of

the party (party t) that has received the largest share of votes. Given these definitions, the
PS of a district plan is computed under the following three cases:
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Case 1 (Sg < V&): In this case, the party has won fewer seats than it should, according to

the proportionality principle. Consequently, PS is designed to reflect the distance between
Sk and Vg, so that when it is minimized, party k is forced towards achieving Sy = Vi, the
perfect proportionality for party k. The exact formula is given below:

1

G0 =

Y ((X) —vei(X) (5.11)
JE(X)
Observe that the proportionality score G¢(X) is computed using the vote shares of party k

only in districts that were lost.

Case 2 (Vi < Si): In this case, the party has won more seats that it should. The PS is
computed similarly, but this time based on the districts that this party has won:

=Eﬁﬁ.z(%“F%“” (5.12)

jeJ¥(X)

Gr(X)

Case 3 (Vi = Si): This is the (rare) case where party k has won the exact number of districts
it should, therefore proportionality is already achieved for party k. Consequently, G¢(X) =
0 in this case. Note that this is usually a very unlikely situation, since the number of seats

a party can get is always an integer value, which in turn produces a very restrictive set of
values for Sk. Theoretically, it may be impossible to achieve Vi = S for given past election

data.

So far, the PS for only one party, party k, has been computed. The next step is to combine
all individual party scores into a single score that would reflect the PS of the entire district

plan. To address this question, the simple average approach is adopted here as well:

Q
mm=%2@w) (5.13)
k=1

5.4 Features of the Algorithm

Having described the composition of the objective function, the next step is to give an
overview of the algorithm features. This section includes a detailed description of such

features as

e construction of the starting solution

e tabu search moves
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e recency- and frequency-based memory, and

¢ stopping rules

5.4.1 Construction of the Starting Solution

As mentioned earlier, the algorithm first constructs a starting solution, and performs itera-
tions of TS moves in its search for better district plans. The module used for constructing
the initial solution is similar to the heuristic method by Vickrey [59]. Below is the outline
of this module.

INITSOLN
1. Set j=0.

2. Repeat until each BU is assigned to a district

2.1. Set 7 « (F+1).
2.2. Pick a BU randomly as a seed as follow:
2.2.1. Construct the list of BUs that are not yet assigned to a district, and that are
also along the periphery of the region being districted. If this list is empty,
go to Step 2.2.3.
2.2.2. Select a BU randomly from the list constructed in Step 2.2.1. Go to Step 2.3.
2.2.3. Construct the list of all unassigned BUs.
2.2.4. Select a BU randomly from the list constructed in Step 2.2.3.
2.3. Assign seed found in Step 2.2 to district j.
2.4. Create district j clustered around the seed as follows:
2.4.1. Identify a “pivot” BU among the BUs that are already assigned to district
j and are yet unused as pivots. Mark this pivot as “used”. If no such pivot
exists, construction of district j is complete; go to Step 2.1.
2.4.2. Assign neighbors of the pivot BU to district j until the district population
P; reaches or exceeds P for the first time.
2.4.3. If all neighbors of the pivot are assigned and P; < P, repeat steps 2.4.1 and
2.4.2. Else, construction of district j is complete; go to Step 2.1.

3. If j = m, STOP. Else if 7 > m, repeat steps 3.1-3.4 until j is reduced tom. If j <m
split the most-populated district into two districts of roughly equal population, and

repeat the process until j is increased to m.
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3.1. Find the district ¢ with the min. population (break ties arbitrarily).
3.2. Find the district [ # ¢, the least-populated neighbor of district g.
3.3. Combine districts ¢ and [ into one district.

3.4. Set j « (j —1).

As outlined above, this module first selects seeds from BUs and then clusters other BUs
around these seeds to form one district per seed. The assignment of BUs to a district
(seed) is stopped when the total population of the district reaches or exceeds P for the first
time. The process is repeated until no unassigned base units remain. Enclaves (i.e., a set
of BUs or a district completely enclosed by a single BU or a district) and residual areas
might form along the way, and therefore it may not be possible to create exactly m districts
in Step 2. If so, the resulting number of districts is usually larger than m. This case is
treated in Step 3 where the number of districts is reduced to m by combining the minimum
population district with its least-populated neighbor. Contiguity is maintained in all steps
of the above algorithm.

The above module is one way of creating an initial district plan. The district plans so-
produced are always contiguous, but they do not necessarily have low compactness values.
Also, some districts are likely to have populations outside the range [Pmin, Pmaz], and no
political criteria are considered. In fact, the plans produced by INITSOLN are observed
to be poor in quality, but the objective of the module is to produce a starting solution to
the main TS algorithm as quickly as possible. It is left to the TS algorithm to fix any

deficiencies of the starting solution.

5.4.2 Tabu Search Moves and Neighborhoods

Once the starting solution is constructed, the next step is to perform an iterative search
over the solution space, based on the tabu search principles described in Chapter 4. As
far as the TS moves are concerned, the algorithm moves from one solution to the next by

implementing the following two types of moves:

e Type I move: transfer of a single BU 7 from a district j to a neighboring district [,
e Type II move: exchange of two BUs 7 and k between districts j and [.

For practical reasons, these moves will be denoted by (BU.indez, from, to)=(i,j,1) and
(BU_indez_1, BU_indez 2, from_1, to_1)=(i,k,7j,l) respectively. Furthermore, M}(X) =
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{(3,7,1)} will be used to denote the set of all eligible Type I moves in iteration ¢ and X;j
to denote the solution that results from performing move (%, 7,/) on the current solution X.
M2(X) = {(i,k,7,1)} and X;; are defined similarly. Type I and Type II moves are used
to construct the neighborhood of the current solution in each iteration. Specifically, V1 (X)
is the one that contains solutions resulting from all possible Type I moves performed on X,
and N,(X) is the one that results similarly from implementing Type II moves. That is,

M(X) = {Xi:(G,5,0) € MH(X)} (5.14)
No(X) = {Xugji: (k. 5,0) € MF(X)} (5.15)

Figures 5.3 and 5.4 below further illustrate these two types of moves. Figure 5.3 displays
the transfer of a single BU from district A to an adjacent district B, whereas Figure 5.4
displays the exchange of two BUs between two adjacent districts A and B. In both figures,
the solid lines indicate district boundaries and BUs that are being transferred or exchanged

are shown as shaded polygons.

Figure 5.3: Type I move

Observe that if a BU ¢ being transferred or exchanged enclaves other BUs, implementing
the move causes discontiguity, as shown in Figure 5.5. The algorithm is able to handle this
situation by transferring all the enclaved BUs together with BU i. (If this is not allowed,
BU ¢ is bound to remain assigned to the same district for the entire duration of a TS run,
which is likely to affect the reachability of some solutions.) This does not constitute a
problem as far as the composition of districts is concerned, since BU ¢ and all the BUs it
enclaves have to be in the same district in any case. The only exception is when the BUs
that are enclaved have a large enough population to create a district different from the one

BU i is assigned to. In this case, only BU 7 is transferred or exchanged.
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Figure 5.4: Type II move

Figure 5.5: Discontiguity resulting from transfer of base units with enclaves

The algorithm first uses the neighborhood N(X) = N;(X) until it is not possible to improve
the best known solution for T' subsequent iterations. It then switches to N'(X) = Ni(X)U
N>(X) for the rest of the run. We avoid using N’(X) as much as possible because the
extended set N'(X) is computationally much more expensive to process (recall the numerical

example in Section 4.2).

Maintaining contiguity is an important task while implementing the moves. Before explain-
ing how this is actually done, let the term border base unit (BBU) be associated with a
BU that is adjacent to at least one BU from a different district. The shaded polygons
in Figure 5.6 are examples of such BUs. A necessary condition for contiguity is that a
BU being transferred or exchanged must be a BBU. That is, BUs from the “interior” of a
district cannot be transferred or exchanged without violating contiguity. This, however, is
not a sufficient condition, as shown in Figures 5.7. Even if the enclaves are pre-processed
and they are eliminated all together, cases like in Figure 5.7c may also arise. As a result,

74



the necessary condition is used only to narrow down the list of BUs eligible for a transfer
or exchange. Each BU in this list is still subject to a contiguity check. If a BU or a pair
of BUs fail the contiguity check, the resulting solution is excluded from the corresponding
neighborhood. This check is performed, for a Type I move (3, 7,!), as detailed in the module
ISCONTIGUOUS given on the next page.

Figure 5.6: Border base units

@ ®) ©

Figure 5.7: Non-contiguous solutions that may arise as a result of the two types of moves

One additional definition has to be made before the ISCONTIGUOQUS module can be
outlined. Two BUs 7 and k are defined to be point-adjacent if their intersection is a finite set
of points (as opposed to a set of line segments). The BUs marked ‘1’ and ‘2’ in Figure 5.6 are
point-adjacent in this regard. In this case, t;, the length of the common boundary between
BUs ¢ and k, is equal to zero, but the two BUs still “touch” each other. This definition
is necessary as the ISCONTIGUOUS module operates mainly on a subset L of the source
district’s BUs: the set of BUs in the source district j that are adjacent or point-adjacent
to BU ¢, the BU that is being transferred or exchanged. The idea is to check whether L is
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contiguous after BU ¢ is removed from district j. Since BU ¢ is also a BBU, the contiguity
check needs to be done for the source district j only. This is because the target district {

can never be made non-contiguous by gaining the BBU 7 from the source district.

ISCONTIGUOUS(, , 1)

1. Let L ={k: k€ D;,BUs k and ¢ are adjacent or point-adjacent}.

2. Partition L into contiguous subsets Ly, ..., L,.

3. If ¢ = 1, return TRUE, i.e., BU 7 can be transferred from district j to district [
without destroying contiguity of district j.
4. Else, check to see if L;’s can be combined into one contiguous set, using adjacencies

between BUs in L and D; \ (L U {¢}). If they can, return TRUE.

5. Else, return FALSE, i.e., transferring BU 7 from district j to district ! destroys conti-
guity of district j.

For a Type II move, it is sufficient to apply the module twice, once for the source district
and once for the target district, since both districts gain and lose one BU, unless there are
enclaves. The critical point is to execute ISCONTIGUOUS as if the exchange has already
taken place. For a Type II move (3, k, 7,{), this means that ISCONTIGUQUS is to be run
for district j assuming that this district has already gained BU k, i.e., D;j < D; U {k}.
Similarly for district {, ISCONTIGUOUS is to be run as if district [ is composed of BUs in
Dy u {z}. With this implementation, the move (¢, k, j,{) (solution X;;;) will not be allowed
in the set of eligible moves M?(X) (neighborhood N2(X)), if one (or both) of the two
contiguity checks fails. In the case of a transfer/exchange that involves a BU with enclaves,
all the BUs that are enclaved by BU ¢ are excluded from set L. Also in Step 4, L U {i} is
replaced with L U {i} U E, where F is the set of BUs enclaved by BU 1.

Once the neighborhood of a solution is constructed, the next step is to pick a solution
X' € N(X), which the algorithm will visit in the next iteration. As explained in Chapter 4,
the TS algorithm selects the solution with the best objective function value, even though
this solution might be a non-improving one. Of course, the objective values are modified
based on frequency-based memory. Tabu status of moves and applicable aspiration criteria
are also relevant in identifying X’'. Generally speaking, the algorithm will choose the best
non-tabu solution. A tabu solution will be chosen only if it has the lowest objective function
value that is also lower than that of the best known solution.
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Note that both of the neighborhoods N;(X) and N2(X) may contain infeasible solutions,
i.e., solutions that violate the population balance constraint. As a result, one may choose
an infeasible solution from the neighborhood, if that solution is of sufficiently high quality.
In particular, the following set of moves are eligible for selection:

e all non-tabu moves (whether or not they result in feasible solutions).

e all tabu moves that result in infeasible solutions, but that also improve the best known

objective function value (feasible or infeasible).

e all tabu moves that result in feasible solutions, but that also improve the best known

feasible solution.

The memory implementations and the aspiration criteria that further complement these

rules are described in the next two sections.

5.4.3 Basic Tabu Search Memory

Two types of basic memory have been implemented in the algorithm. The first one, the
recency-based type memory, is for storing and handling tabu status of moves. The second
one is the frequency-based memory, which provides a diversification over the solution space.
These are detailed below.

Recency-based Memory

The main function of this memory is to store the tabu status of moves, i.e., whether or not
a move is currently tabu and if tabu, when its tabu status will expire. In the TS algorithm,
a move is declared tabu as soon as it is executed, and it remains tabu for the duration of its

tabu tenure, . The question is how to declare a move tabu and what the value of € should
be.

Recall from Chapter 4 that a move is declared tabu based on one or more of its attributes.
In the proposed algorithm, this is done based on the index of the BU being transferred
and the index of the district from which this BU is transferred. For a Type I move, the
corresponding attributes are BU_indez and from. The move is immediately assigned a tabu
tenure, #. This means that once a BU leaves a district, it will not be able to return to the

same district for @ iterations.
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All the information necessary for handling tabu status and tabu tenures is stored in a two-
dimensional array of size n x m. Let this array be denoted by I'(¢, j) where the row index 7
corresponds to BUs, and the column index j corresponds to districts. Im each cell of T, the
iteration at the end of which the tabu status will expire is stored. If I'(Z, j) is less than the

current iteration count, then the corresponding move is not tabu.

The update of a particular cell I'(z, j) is performed as follows: when BU i is transferred
from district j to another district, I'(, 7) is assigned the value of (current iteration number
+ tabu tenure). Whenever BU ¢ is considered (in later iterations) for returning to district
J, the iteration count at that point is compared with the value stored in cell I'(z, 7). If the
iteration count is less than or equal to I'(i,j), the move is still tabu and therefore cannot

be implemented (unless one or more aspiration criteria make it admissible).

For a Type II move (BU.indez_1, BU_indez 2, from_1, to_1) = (i,k, j,1), two cells are up-
dated when the move is executed. Cells I'(, j) and I'(k, ) are updated similarly by recording
the iteration the tabu status will expire. A Type II move remains tabu until one (but not
both) of the transfers that make up the move becomes admissible.

1 2 3 4
5

7

D AW
(=2}

8 7

Table 5.2: A sample array for storing tabu status

Table 5.2 is a small-scale example of this array, with n = 6 and m = 4. It is merely a
snapshot of the tabu status at a particular iteration. Six moves have been assigned tabu
status, but which of these six are tabu depends on the current iteration count. If we are
in iteration 7, the Type I moves (2,-,1), (5,-,2), (6,-,1) and (6,-,3) are still tabu. That
is, we cannot transfer BU 2 back to district 1, BU 5 back to district 2, and so on. The
move (1,-,3) is not tabu, since its tabu status has expired at the end of iteration 5. This
array needs no update other than storing values in the corresponding cells whenever BUs

are transferred or exchanged.

For a Type II move (1, 5, 2, 3), which exchanges BUs 1 and 5 between districts 2 and 3, the
tabu status would be determired by checking the cells I'(1, 3) and I'(5,2). Since the tabu
status of the first one has already expired, the Type II move (1,5,2,3) is no longer tabu.
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A final note on the selection of tabu tenure. In this study, a random way of assigning tabu
tenures has been adopted, because of the reasons discussed in Chapter 4. That is, whenever
a move is executed, its tabu tenure is generated randomly from the range [0min, maz]- This
increases the number of parameters by one, compared to the deterministic case, but is

expected to produce higher quality solutions.

Frequency-based Memory

This particular type of memory is incorporated into the TS algorithm to facilitate diver-
sification over the solution space and also take the algorithm out of local optima that
may occasionally arise. The method of using multiple random starts is not preferred since
it increases the computational effort and also does not fit in the TS framework. While
recency-based memory can also prevent, by coordinating the acceptance of non-improving
solutions, the algorithm from getting stuck in local optima, frequency-based memory is used

to further help achieve the above goals.

With frequency-based memory, more frequent moves are penalized by adding a penalty
term to the objective function. The purpose of this is to encourage moves/solutions that
are performed/visited less often. The penalty term is the product of the following four

variables and parameters:

e past frequency of a move,
e problem size, as measured by /m,
e J, the largest change in objective function from one iteration to the next,

e p, a constant scaling factor.

The first factor, frequency of implementing a move, is the driving force among the four.
Typically, the more frequently a move has been implemented in previous iterations, the
higher the value of this factor will be. It has two components that keep track of two
different attributes of a move. The first component, denoted by 7;, stores the number of
times BU 7 was transferred or exchanged in the previous (¢ — 1) iterations. Mathematically,

b
n,-
] (5.16)

it =

where n? is the number of times BU i was part of a transfer or exchange in all previous

(t — 1) iterations of the algorithm. For a Type I move, n? is incremented by 1 at the end of
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the iteration the move took place. For a Type II move that involves BUs i and k, both n?

and n} are incremented by 1.

The second component of the frequency factor, vj¢, is associated with the districts that are
subject to transfers or exchanges. In this case, v;; is the frequency of using district j as a
from or to district in a Type I or Type II move in all of the previous (¢ — 1) iterations. It
is given by

nd
t—1
where n¢ is the number of times district j was involved in a Type I or Type II move in

7
all previous (¢ — 1) iterations. For a Type I move (i, 7,1), n¢ and n{ are incremented by 1,

d
3 (5.17)

Vjt =

whereas for a Type II move (i, k&, 7,1), n;' and nf are incremented by 2.

Finally, the frequency factor is computed, using the two components 7;; and vy, as follows.

For a Type I move,

. o+
Teli,5,0) = (L+ma) (L + ) -1 (5.18)

For a Type II move,
Yol k,4,0) = 1+ 1"5%)(1 + ”—"‘%) ~1 (5.19)

The variables nf and n¢ are stored in single dimensional arrays of size n and m, respectively.

These two arrays will be denoted by A? and A4.

The second factor in the penalty term formula, \/m, is related to the problem size. The
reason for incorporating the problem size into the penalty term is to magnify the diversifi-
cation effect as a result of an increase in problem size, to account for the increased size of
the solution space. Including n in addition to m is probably unnecessary, since an increase
in n from one districting territory to another is usually associated with a proportional in-
crease in m. (This assumes that the district quotient remains the same, which is usually
a valid assumption for the cities in the same province/state.) For this reason, m is chosen
arbitrarily to represent the problem size. The square root operator limits the magnifying
effect as a result of an increase in m. Several studies report more successful results with
/M than with m (e.g. Cordeau et al. [6]).

The third factor, 4, is the variable that stores the maximum change in objective function
from one iteration to the next. The reason for using this factor is to scale the magnitude of
the penalty term, so that the entire penalty term is neither too large nor too small relative
to the objective function value.
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The last factor, p, is a constant scaling parameter. The role of this parameter is to provide
an additional scaling effect on the penalty term. When the penalty term is too small that
it has essentially no effect on perturbing the ranking of moves, p should be increased. If the
penalty term is too large that it has a disruptive effect on the search process, p should be
decreased. It provides additional convenience for scaling the penalty term, since its value is
set by the user unlike the other three factors contributing to the magnitude of the penalty.
To have an effective diversification without disrupting the search process, this parameter is

pre-determined and fixed at a constant level for a given problem.

These four factors are multiplied together and added to f(X) to yield the following modified

objective function:
fI(X) = f(X) + Tedpvm (5.20)

5.4.4 Stopping Rules

Two stopping rules have been incorporated into the Tabu Search algorithm. The first rule,
which is the primary one, causes the algorithm to terminate when T = [230,/m] iterations
are executed consecutively without improvement to the best known feasible and infeasible
solutions. This upper bound is designed so that as the problem gets bigger, more iterations
are allowed before the algorithm stops. The constant 230 is selected to allow for a large yet

practical number of attempts to get out of local optima.

The second rule is an upper limit on the total number of iterations. When this limit is
reached, the algorithm stops no matter where it is in its search process. This limit should
be large enough that the algorithm is not interrupted in the middle of a promising search
thread. A limit of 30000 is used in the algorithm.

5.5 The Proposed Algorithm

Based on the definitions of TS moves, memory structures, and the stopping rules, the outline
of the algorithm will be provided in this section. This algorithm will be referred to as the
plain tabu search algorithm, since it starts with a single initial solution and makes one
pass of the iterative procedure. A meta-heuristic algorithm that executes multiple passes

is described in Chapter 6.

Before the plain Tabu Search algorithm is outlined, recall that a district plan might be
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feasible or infeasible. Therefore, it is necessary to keep track of the best known feasible
solution and the best known solution (feasible or infeasible) separately, as they are encoun-
tered during a TS run. The symbols F; and F, are used for this purpose. F; is used to
denote the objective function value of the best known feasible solution, whereas F5 is used
to denote the best known objective function value (feasible or infeasible). F; and F» are
initialized to a large number before the algorithm starts, and they are updated as necessary.

TABU.SEARCH

0. Initialization
0.1. Use module INITSOLN to construct a starting solution Xj. Set Fo = f(Xg). If
Xy is feasible, set F} = f(Xj); else, set F] = oc.
0.2. Set iteration count t =0,pass=1,a=1,4 =0.

0.3. Initialize recency-based memory T, and frequency based memory A%, A4 to 0.
1. Repeat until no improvement is made on F; and F5 for any successive T iterations:

1.1. Set t + ¢t + 1.
1.2. Construct M} (the set of eligible Type I moves), and find the best move in M}:

1.2.1. Set Mtl = ¢.
1.2.2. For each BBU 1 of each district j,
1.2.2.1. Construct set L of all districts neighboring district § to which BU ¢ can

be transferred.
1.2.2.2. For each [ € L, if ISCONTIGOUS(z, j,!) returns TRUE, and the move
(3, 7,1) satisfies one of the following conditions, set M} «— M} U{(3,7,0)}.
- t>T(,1)
- t <I(4,1), Xij is feasible, and f(Xi1) < Fy
- t < I'(3,1}, X;j is infeasible, and f(Xi1) < Fo
1.2.3. For each move (i, 7,l) € M}, compute f'(Xij;) as follows:
1.2.3.1. If f(Xi5) < f(Xe-1), set f'(Xi) = f(Xint)-
1.2.3.2. Else, set f'(Xi1) = f(Xij) + Yedpy/m.
1.2.4. Identify the move (*,j%,1*) € M} as the best Type I move:
1.2.4.1. Sort M} in ascending order of f'(X;i).
1.2.4.2. Take the first non-tabu move or the first tabu move that improves F; or
F5 as (*,7%,1%).

82



1.3. If pass = 2, construct M? (the set of eligible Type II moves), and find the best
move in M?:
1.3.1. Set M?Z = ¢.
1.3.2. For each pair of BBUs ¢ € D; and k € D, for each pair of neighboring
districts § and [,

1.3.2.1. If ISCONTIGUOUS(:, j,I) and ISCONTIGUOUS(k,.,) both return
TRUE, and the move (i, k, j,!) satisfies one of the following conditions,
set MZ «— MZU{(i,k,3,0)}.
-t>T(,1) ORt > T'(k,7)
- £ <T(i,1) AND ¢ < T'(k, 7), Xzt is feasible, and f(Xuz) < Fi
- t <T(1) AND t < T'(k, §), Xz is infeasible, and f(Xi1) < Fy
1.3.3. For each move (4, k, ,{) € M?, compute f'(Xiji) as follows:
1.3.3.1. If f(Xuj1) < f(Xe-1), set f'(Xikji) = f(Xikji)-
1.3.3.2. Else, set f/(Xitje) = f(Xies1) + Lebp/mm.

1.3.4. Identify the move (i*,k*,j*,1*) € M? as the best Type II move, similar to
Step 1.2.4.

1.4. Implement the best move found above:
1.4.1. Set X; ¢ Xjmjors, if
- pass=1OR
- pass = 2 and f(Xi-jo1-) < f(Xiokejorr)-
1.4.2. Else, set X; <= Xjeg=jei=.
1.4.3. Update Pj, P, Aj, A;, Rj and Ry.
1.5. Update recency-based memory I':

1.5.1. Randomly generate a tabu tenure 8 from [fmin; Omaz]-
1.5.2. If a Type I move was implemented, set I'(¢,7) =t + 6.
1.5.3. Else, set I'(2,7) =t + 6, and T'(k,l) =t + 6.
1.6. Update frequency based memory A® and A%:
1.6.1. If a Type I move was implemented, set
Ab(d) « A(4) +1,
AY(G) + AY(H) +1,
A%(l) « A%(l) + 1.
1.6.2. Else, set
Ab(3) « AP(5) +1,
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AS(k) « AS(Kk) +1,

A%(j) « AY(j) +2,

Ad(l) « AS(l) +2.
1.7. Update Fy, F5, o and ¢:

1.7.1. If X; is feasible and f(X;) < F1, set F} = f(X;).
1.7.2. If f(X:) < Fy, set F = f(X).
1.7.3. If £t =0 (mody), update a:
1.7.3.1. If at least [ of the last u solutions were infeasible, set a + 2¢,
1.7.3.2. Else if at least iz of the last u solutions were feasible, set o + /2.
1.7.4. Set 6 « max(6, |f(X:) — f(Xe=1)|)-

2. If pass = 2, STOP. Else, set pass = 2 and go to Step 1.
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Chapter 6

A Meta-Heuristic

The Tabu Search heuristic technique described in the previous chapters is known to be
an effective method for solving combinatorial problems. What adds more power to this
technique is its implementation within a meta-heuristic framework. A meta-heuristic is a
master program that coordinates other heuristic(s), aiming to find better solutions than
what the individual heuristics would be able to find. In this chapter, a meta-heuristic that
employs the proposed Tabu Search algorithm is described. This particular one is known as
Probabilistic Diversification and Intensification (PDI), and has been developed by Rochat
and Taillard (53] originally for the vehicle routing problem. An overview of this technique
is provided in Section 6.1. The details of its implementation with the political districting

problem are given in Section 6.2.

6.1 The Method

The PDI technique is based on the idea that high quality (i.e., near-optimal) solutions
possess high quality components and these components can be used to construct other high
quality solutions. The main assumption is that some of these components are also present
in the optimal solution, and therefore the objective is to find as many of such components as
possible. The algorithm operates on a pool of good components, which it uses to construct

a starting solution for the local search procedure it coordinates.

In the vehicle routing context, the ‘components’ of solutions are vehicle tours. The initial
pool of tours is constructed by running the local search a pre-determined number of times
and adding all generated tours to the pool. The algerithm then constructs a solution that
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uses as many tours from the pool as possible, and supplies it to the local search algorithm
as a starting solution. Next, this solution is improved by the local search algorithm, and
the tours of the best solution found is included in the pool.

The outline of the original PDI algorithm, as it appears in Rochat and Taillard [53], is

reproduced below for reference:

PDI_VRP
1. Initialization
1.1. Generate I different solutions with the local search.
1.2. Label each tour with the value of the solution to which it belongs.
1.3. Remove the tours having only one customer.
1.4. Insert the remaining tours in a set T of tours.

1.5. Sort T by increasing values of labels.
2. Diversification and intensification (to repeat until a stopping criterion is satisfied)

21. Set T :=T,8 := ¢.
2.2. While T' # ¢, repeat

2.2.1. Choose t € T, probabilistically, based on its relative evaluation.

2.2.2. Set §:=SU{t}.

2.2.3. Remove from T” all the tours including one or several customers belonging
to t.

2.3. If some customers are not covered by the tours of S, construct a feasible solution
S’, including them, using the partial solution S.

2.4. Improve with local search the solution S'.

2.5. Label the tours of the improved solution, remove tours with only one customer,

insert the remaining tours in T', sort T as in steps 1.2 to 1.5 of the initialization.

The key part of the above algorithm is to construct a feasible solution using the tours
in set T. This is done by picking the tours probabilistically one after another, based on
their positions in the ranking of all tours in T. Specifically, the ¢-the tour from the top
is assigned a probability of selection equal to ﬁ%&% As a result, tours that belong
to better solutions are more likely to be selected. Once a tour is selected, all tours with
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whom it shares a customer are removed from consideration. The tours are selected in an
iterative manner until there is no other tour left to pick. The selected tours then comprise
the (partial) feasible solution S.

If S is indeed partial, i.e., it does not cover some customers, Step 2.3 is executed in order
to convert it into a complete solution S’. S’ is then improved by local search, and tours
that belong to the improved solution are added to T. At this step, the authors discard the
worst [T'| — L solutions in T', where L is the maximum allowable size for 7. This is done in
order to prevent the set T from continuously expanding. If I and L are large enough, this
may not present a drawback, as the algorithm is likely to have representative solutions from
different parts of the solution space. Consequently, diversification takes place as a result of
the algorithm’s ability to generate considerably different starting solutions for local search
(especially when it uses low-rank tours). The algorithm exercises intensification by selecting

tours from ‘elite’ solutions.

This technique can easily be modified to solve the political districting problem. The local
search procedure that appears in Steps 1.1 and 2.4 is simply replaced with the proposed
Tabu Search algorithm. The tours in the vehicle routing context correspond to districts in
the political districting context. Customers that are part of a tour are equivalent to the
base units that make up a district. The only part of the algorithm that needs a specific
implementation is the construction of the complete solution S’ from the partial solution S.
All the details of the PDI implementation specific to the political districting problem are

given in the next section.

6.2 Implementation

‘The PDI technique described in Section 6.1 is implemented in the political districting con-
text as follows. First, a collection D = {Dq,..., D5} of good districts is generated. This
is done by running the plain TS algorithm s times, each run starting from a different (ran-
dom) solution. The districts that appear in all of the s solutions reported by the plain
TS algorithm are included in D. Furthermore, let g; be associated with each D; € D, and
denote the “quality” of D;, measured as the objective value of the solution to which D;
belongs. The set D is sorted, at all times, in ascending order of g;. However, if some D;
are associated with infeasible solutions, they appear in lower parts of the ranking. That is,
D is sorted first with respect to feasibility (feasible solutions being preferred to infeasible
ones), then with respect to the objective function value.
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Once D is constructed, the next step is to run PDI for a pre-determined number of iterations,
M. As higher quality solutions are identified, the districts that belong to these solutions
are included in D. The rest of the implementation follows the guidelines presented in the
previous section. A few steps of the PDI implementation need further clarification, but first
the outline of the PDI algorithm is provided:

PDI_POLDIS

1. Construct an initial adaptive memory of m - s districts:

1.1. Run plain TS algorithm s times to obtain solutions Xj,...,X;.
1.2. Set D = {Dy,...,Ds.m}, the set of all districts in all X (repetitions allowed).

1.3. Sort D; in ascending order of g;.
2. Repeat M times:

2.1. Set D' =D.
2.2. Construct a complete solution X using D’:

2.2.1. Set L = ¢.
2.2.2. Repeat until D' = ¢ :
2.2.2.1. Set Pr{D;} = rpitrieiyys: Vi = Ly---, D]
(probability of selecting district in the i-th position of the D’ ranking).

2.2.2.2. Randomly select a district D; € D', based on the probabilities Pr{D;}.
Set L LUD,.

2.2.2.3. Remove from D' all districts D;,7 # [, such that D; N D; # ¢.
2.2.3. Use collection L to construct solution X. If X is missing some BUs, go to
Step 2.2.4. Otherwise, go to Step 2.3.
2.2.4. Implement Steps 1 and 2 of the INITSOLN module to construct a set of
districts L’ that cover only the missing BUs from previous step.

2.2.5. If [LU L'| > m, implement Step 3 of the INITSOLN module on L U L' with
j =|LUL'. Let L be the resulting set of districts with |L| = m.

2.2.6. Use L to construct X.
2.3. Improve X using the plain TS algorithm. Let X* be the resulting solution.
2.4. Update D with districts of X*, if X* is eligible:
2.4.1. If X* is feasible and D;.,, belongs to an infeasible solution X OR
X* is feasible, D,., belongs to a feasible solution X, and f(X*) < f(X) OR
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X* is infeasible, D, belongs to an infeasible solution X, and f(X*) < f(X),
replace all districts of X in D with the districts of X*. Label districts of X*
with f(X7*).

2.4.2. Re-sort D in ascending order of g;.

3. Report solution X, the solution which D; € D belongs to, as the best solution found.

One part of PDI_POLDIS that is implemented differently in the political districting context
is the construction of L, a collection of districts that cover all BUs in the territory, using the
districts in L. The INITSOLN module is employed for this task and this module terminates
with a collection of districts L’ that cover only those BUs that are missing from the districts
in L. If the number of districts in LU L' is greater than m, Step 3 of the INITSOLN module

is used to reduce it to m.

Another critical step of PDI.POLDIS is where the collection D is updated (Step 2.4). To
keep the size of D fixed at s-m, the districts of X*, if eligible, replace the worst m districts
in D. Since both X* and X might be infeasible, the conditions listed in Step 2.4.1 are
evaluated. The collection D is updated, if one of these conditions is satisfied.

The last step that is described above is the mechanism for keeping the pool of high quality
solutions up-to-date. It allows better solutions to enter D by replacing inferior ones, which
consequently improves the overall quality of D over time. The improved collection is then
used to generate even better district plans (if possible) and the collection is updated again.
This process is repeated for M iterations and the best solution X encountered in the process
is reported. It is also possible to report multiple solutions to the problem, which is especially
important because of the multi-criteria nature of the districting problem. This would allow
the analyst to compare alternative solutions based on several different criteria. The reported
solutions may also be considerably different since a solution may contains districts from

several different solutions.
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Chapter 7
Computational Study

Like any other algorithm, the Tabu Search and PDI algorithms developed in Chapters 5
and 6 require computational testing so that the performance of the proposed algorithmic
approach in solving real life political districting problems can be assessed. In this chapter,
a computational study is performed with this objective. First, data requirements for the
algorithms as well as a GIS interface are discussed in Section 7.1. Next, the elements of
the experiment are described in Section 7.2. In Section 7.3, we describe the fine-tuning of
several algorithm parameters. Finally, in Section 7.4, the results of the experiments are

provided for various multi-criteria scenarios.

7.1 Data Requirements and Geographical Interfaces

7.1.1 Data Requirements

The algorithms presented in Chapters 5 and 6 require a considerable amount of data. The
basic piece of data needed is the data regarding base units (BU). These data must be
both geographic and demographic. The geographic component includes area and perimeter
of each BU, the adjacency matrix of BUs, and the information on which BUs enclave
which others. The demographic component includes data regarding the population, ethnic

composition, income and education level associated with each BU.

Fortunately, all necessary data are available through Statistics Canada’s databases. In
this study, enumeration areas (EA) are selected as the base units, and Statistics Canada

provides both demographic and geographic data for enumeration areas of any city/province
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in Canada. Demographically, the available data associated with each EA include population,
age distribution, language spoken, ethnic origin, education, income level, religion, immigrant
vs. citizen, family status, and unemployment rate. For the purposes of optimization though,

only population data are used.

One also needs geographical information associated with each EA. This is necessary for
optimization as well as for displaying the district plans produced by the algorithms. The
algorithms need geographical data such as area and perimeters of EAs, their adjacency re-
lationships, etc. For displaying purposes, one needs the electronic map data of the territory
being districted. Most of the effort spent in this study on data preparation is related to
geographical data. Therefore, these issues are discussed in a separate section below.

7.1.2 Geographical Data and Interface

As mentioned above, the algorithms developed in the previous chapters are highly dependent
on geographical data. To make data preparation and output analysis easier, a Geographical
Information Systems (GIS) is used in this study. Broadly speaking, a GIS is an informa-
tion system that lets the user organize, analyze, query and display all sorts of geographical
information. Typically, it displays electronic maps on a computer screen and lets the user
perform spatial analysis using its various tools. There are many GIS software in today’s
market used for many different applications. Some of them have already established stan-
dard file types that are compatible with other applications. ArcView GIS, produced by
Environmental Systems Research Institute, Inc., is currently one of the most powerful and
popular desktop GIS software in the market. This particular GIS is used in this study

primarily for two purposes:

o to extract geographical data from the electronic EA maps provided by Statistics
Canada, and convert them into a format usable by the TS and PDI algorithms,

e to display the district plans produced and allow the user to compare them with the

existing plan visually, once optimization is complete and an output is produced.

ArcView GIS was chosen for this study mainly because of its powerful tools and the script
language Avenue that provides full control over the points, lines and polygons that make

up an electronic map.

As far as the data extraction phase is concerned, the following data are needed by the TS
algorithm:
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e area and perimeter of each EA (ag; and r;).
e area and perimeter of the entire districting area (A and R).

adjacency information, i.e., which EA is adjacent to which other EA(s).

length of the common boundary between two adjacent EAs (£).

enclave information, i.e., which EA enclaves which other EA(s).

Since ArcView does not readily provide any of these data, its script language Avenue is
used in many occasions to generate the necessary data. In other words, several Avenue
scripts have been developed to extract these data from the electronic EA maps provided by

Statistics Canada. These Avenue scripts are outlined below.

The first item in the list is the easiest to extract. ArcView treats each EA as a polygon
object and provides its area and perimeter as two properties of this object. For the second
item, one needs to combine all EAs into a polygon that represents the entire territory. It
is then easy to extract A and R. No Avenue script is needed for these two tasks, but one

needs to know the object-oriented Avenue language to access the properties of an object.

The last three items require further work, since they are associated with pairs or groups of
EAs. For the adjacency matrix, the algorithm below has been implemented with Avenue.
This algorithm assumes that a view is created as part of an ArcView project and it contains
two identical themes that correspond to the EA map of the territory. These themes are
referred to as ‘theme 1’ and ‘theme 2’ in the algorithm.

ADJMATRIX
1. For each EA 7 in theme 1,

1.1. Select EA i in theme 1.

1.2. Select those EAs in theme 2 that intersect with EA 7 of theme 1.

1.3. De-select EA 7 in theme 2.

1.4. Create the index set L of EAs currently selected in theme 2.

1.5. For each pair of EAs 2,k where ¢ is the EA selected in theme 1, and k € L,
1.5.1. Compute R = r; + .

1.5.2. Combine the two EAs into one polygon, and denote its perimeter by 7.

1.5.3. If R > ¢/, report EAs ¢ and k as adjacent. Also report R — 1’ as t;.
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1.5.4. If R = v/, report EAs 7 and k as point-adjacent.

1.5.5. Undo the combine operation performed in Step 1.5.2.
1.6. De-select all EAs from both themes.

There are two by-products of the above algorithm. The first one is t;, the length of the
common boundary between two adjacent EAs ¢ and k. Recall that this information is needed
for computation of district perimeters with equation (5.5). While EA perimeters are easily
available from ArcView, t;z are not, and therefore they are computed with ADJMATRIX.
Note that £;z = 0 for any non-adjacent or point-adjacent pair of EAs. The second by-
product of ADJMATRIX algorithm is the point-adjacency data, which is employed by the
ISCONTIGUOUS module.

The last piece of data that needs to be extracted is regarding the enclaves. Specifically, the
information as to which EA enclaves which other EA(s) is needed. This is obtained using
the following algorithm, which is also implemented with Avenue:

ENCLAVES

1. For each EA ¢ in theme 1,

1.1. Set &; = ¢.

1.2. Select EA ¢ in theme 1.

1.3. Select those EAs in theme 2 that intersect with EA 7 of theme 1.
1.4. De-select EA 7 in theme 2.

1.5. Create the set L of indices of EAs currently selected in theme 2.

1.6. Using the adjacency matrix constructed previously, partition L into Li,...,Lq
so that each L; is a contiguous collection of EAs.

1.7. For each Lj C L, check to see if any of the EAs in L; are adjacent to an EA in
I'\ (LU {z}). If not, set & <« &; U L;.

1.8. Report &; as the set of EAs enclaved by EA 1.

ArcView does not only help extract data for the algorithms, but it also acts as the interface
between the algorithms and the user. In other words, it is used to communicate the results
of the optimization to the analyst or decision maker. Since it is possible to summarize and
analyze information easily and display it using color maps, pie charts, bar charts, graduated
symbols, and other visual tools, ArcView is well-suited for reporting the results.
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Typically, the optimization algorithm (PDI_.POLDIS or TABU_SEARCH) solves the prob-
lem and produces an output of the best district plan found. This output has a tabular
format that can be imported by ArcView. The table contains only two fields: the identifi-
cation number of the EA, and the identification number of the district this EA is assigned to.
The first row of the output table contains the column headings (or field names) separated
by a comma. Following the first row come n rows, one row for each EA.

Once the table is imported by ArcView, it is possible to perform various types of queries
with it, and it is also possible to combine it with another table based on a common field.
ArcView provides the “table join” operation for the latter task. The table produced by
optimization is “joined” with the attribute table of the ArcView theme, where the latter
contains all the geographic and demographic information (such as identification number,
area, perimeter and population) associated with each EA. The two tables are joined using
the “id” field. As a result of this operation, a column (field) titled “District_Index” is
appended to the attribute table and contains the assigned district index for each EA. The
final step is to display the district plan by changing the legend of the theme. This is
performed simply by choosing the “unique value” option for the “legend type” and the
“District_index” option for the “values” field. Consequently, ArcView colors each district
with a unique color. Figure 7.1 below shows a sample ArcView screen with such a district

plan (using grey-scale colors).
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Figure 7.1: ArcView sample screen
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Note that, it is also possible to create a customized application framework using Avenue
scripts, where the optimization algorithms are fully integrated with ArcView and each
iteration of the TS algorithm can simultaneously be displayed on the territory map. In
this case, the user could also be allowed to supply the parameters of the algorithms as well
as the optimization criteria. This would be desirable when creating commercial software.
However, for the purposes of the computational experiments in this study, a semi-integrated
system is sufficient. This involves, as described in this section, generating the input to the
optimization algorithms using ArcView, and then importing the output of the algorithms
back into ArcView for displaying purposes.

7.1.3 Test Data

For the computational experiments, the City of Edmonton, Alberta, is selected as the
testbed. Edmonton was chosen primarily because this research is done at the University of
Alberta in Edmonton, and therefore it is easier to have access to necessary data, relevant
districting criteria and public opinion. The Edmonton data is provided in electronic enu-
meration area (EA) map format by Statistics Canada’s 1996 census database as mentioned
in Section 7.1.1. The data contain 828 EAs and the number of districts to be formed is 19.
Associated with each EA is the population, ethnic composition, education level, and the

income level information.

Another piece of data that is crucial in this study is the existing (provincial) district plan for
Edmonton. This is needed for assessing the quality of the plans produced by the TS and PDI
algorithms. Unfortunately, the plan is available only on paper, unlike the federal district
plans that come with the electronic EA data. Furthermore, in a few cases, the district
boundaries in the plan do not follow the boundaries of EAs. This constitutes a problem
for comparing the plans produced by the algorithm with the one in use, since the plans
will not be composed of the same building blocks. To address this issue, an approximation
is made to the existing district plan, while converting it into electronic format. Wherever
the boundaries of the districts do not follow EA boundaries, they are modified to do so,
without resulting in a major population change in the districts. With this approximation,
the existing district plan is made to be composed of the same building blocks as the plans
produced by the TS and PDI algorithms. The original plan as well as the modified one are
provided in Appendix A, in addition to Edmonton’s EA map.

The incompatibility problem mentioned above also poses a special difficulty for implement-
ing the proportionality criterion and for doing intentional gerrymandering. Not only the
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existing electoral districts do not coincide with EA boundaries, but the provincial election
results are available in a format that is not compatible with the EAs. Specifically, each
existing district is divided into a number of polling stations and the election results are pro-
vided for these stations individually. Unfortunately, the geographical boundaries of polling
stations do not coincide with those of the EAs. Consequently, it is not possible to com-
pute the election outcome for a hypothetical district. For this reason, the computational
study presented in the following sections do not involve any testing with the proportionality

criterion.

Note that this incompatibility problem could have been resolved by using polygon overlays,
a well-known GIS tool, on the two sets of base units involved. This technique allows the user
to intersect the two sets of polygons and to extract demographic information from either
set for all resulting (intersection) polygons. Hence, this technique can be used to translate
demographic data between two different partitionings of the same territory. In this study, we
chose not to implement this method for two reasons. First, the set of polygons corresponding
to the poll stations was not available electronically. Hence, one would have to digitize
the polling station map which contains 1232 polling stations. Second, the polygon overlay
method makes the implicit assumption that the demographic data are uniformly distributed.
This assumption may not hold for certain parts of the city, and some demographic data
may end up being allocated to the wrong polygon. We decided that the additional effort for
digitizing the poll station map was not justified given the inaccuracy associated with the
polygon overlay method, and instead we chose to use the approximation described above.

7.2 Experiment Design

The computational study presented in this chapter is composed of two stages:

Stage 1: Experiments for finding good settings for the algorithm parameters, i.e., fine-
tuning the algorithm parameters.

Stage 2: Experiments for producing good district plans under various scenarios.

The TS algorithm described in the previous chapter has quite a few parameters. Before the
algorithm can be employed to solve problems with the Edmonton data, these parameters
should be assigned suitable values through experimentation. This constitutes the first stage
of the computational study. The parameter settings identified in the first stage are then
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used in the second stage to solve the districting problem under different scenarios, using

different sets of criteria.

7.2.1 Stage 1: Fine-tuning of Algorithm Parameters

In this first stage of the computational study, the objective is to find good settings for the
algorithm parameters. Note that the objective is not to find a generic set of values for the
parameters. The political districting problem is solved every 10 years or so, which makes
it possible to pay exclusive attention to the territory being districted, in developing good
district plans. For this reason, this stage is implemented exclusively for a given data set, to

find parameter settings specific to that data set.

The following is the list of parameters critical to the performance of the TS and PDI
algorithms:

[6min, Omaz) allowable range for generating tabu tenures,

o the starting penalty coefficient for the violation of population balance,
u the frequency of updating « (iteration-wise),

i minimum number of feasible/infeasible solutions needed to update «,
p scaling factor for frequency-based memory,

T number of successive plain TS iterations allowed without improvement,
s size of adaptive memory (number of solutions constructed),

M number of PDI iterations.

The first six parameters are associated with the plain TS algorithm, whereas the remaining
two are associated with the PDI algorithm. The first parameter may further be considered
as two parameters: § = Qminiig-mﬂ-, the mid-point of the tabu tenure range, and ¢’ =
Omaz — Omin, the width of the tabu tenure range. The fine-tuning experiments are divided
into two parts. In Part I, the objective is to find good settings for the listed TS parameters.
In Part II, s and M are fine-tuned using the settings found in Part L

Since it is not computationally practical, in Part I, to test all combinations of all candidate
values for the seven TS parameters (even with two candidate values for each parameter), a
fractional factorial design is implemented first. This step will be referred to as the screening
stage. The objective here is to quickly identify the parameters that are the most influential
on the quality of the best solution found by the algorithm. The parameters so-identified
are further subject to detailed computational tests in Part L.
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Parameters
Test | 6§ 0 a p G p T
1 - - - 4+ 4+ 4+ -
2 |+ — - - — + +
3 |- + - = + - +
4 |+ + - + - = =
5 |- - + + — - +
6 [+ - + - + — -
7 -+ + - - 4+ -
8 |+ + + + + + +

Table 7.1: 27~* Fractional factorial design

The list of the test runs for the fractional factorial design is provided in Table 7.1. Here,
each parameter is allowed to take a ‘low’ and a ‘high’ value (indicated by the — and + signs,
respectively), and only 8 out of the 27 = 128 possible combinations are evaluated. Each
test is performed for 8 = 25% and for 5 different random starting solutions, using the first
compactness measure only, which gives a total of 40 runs. Once these runs are completed
and the objective values reported by the algorithm are recorded, the next step is to find
which parameters have made the most significant impact on solution quality in response
to testing high and low values. For each parameter, the difference between the sum of the
objective values for the tests with minus sign and the sum for the tests with plus sign is
computed. This difference is further divided by 4, the number of pluses (or minuses) in each
column. The resulting value indicates the relative influence of the parameter on the solution
quality with respect to the other parameters. This analysis ignores the inter-dependence of
the parameters (e.g. one parameter setting consistently performing well with a particular
setting of another parameter), but it provides a quick way of identifying the most influential
parameters. For further information on full factorial and fractional factorial designs, see
Moen et al. [39].

The following table displays the low and high values tested for each of the seven parameters.
Note that ' = 0 means that deterministic tabu tenures will be used for tests with low 6’
value (tests 1, 2, 5, and 6). Also, the low and high values for z are expressed in terms of p,
and g > p/2 is always maintained.

Parameters
6 0 a pu I P T
Low (-) |15 0 0.5 15 0.6 0.05 [115/m]
High (+) |95 20 2 150 o 0.2 [230/m]

Table 7.2: Low-high values tested in fractional factorial experiments
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Once the fractional factorial experiments are completed, a subset of the parameters are
identified as the most critical ones and are subject to further detailed testing. In our case,
only two parameters are chosen due to the availability of computational resources. These
two parameters are then assigned several settings and the best objective values reported by
the plain TS algorithm for these settings are recorded in a two-dimensional array, with rows
corresponding to the settings of one parameter and the columns corresponding to those of
the other parameter. This step is repeated for 20 random starting solutions. The parameter
combinations that perform the best and therefore will be used in tests with PDI in Part II

are then identified as follows:

First, the average of the 20 objective function values is computed for each combination.
From the resulting two-dimensional ‘averages’ table, the following four groups of combina-
tions are included in @, the set of combinations that will be tested with PDI:

1. The combination that yields the minimum value in the table of averages.
2. The combination that yields the minimum objective value across all 20 runs.

3. The combination that yields the best of the row minima and the best of column
minima.
4. Compute, for each row (column), the number of times the parameter setting for that

row (column) has yielded the column (row) minimum. Then, include the combination

associated with the row and column having the highest such score.

If there are ties in identifying the combinations for each of these groups, all tied combinations
are included in ®. The resulting set of combinations ® is then tested with PDI.

Before describing the details of the tests for the second part of the parameter fine-tuning
(the part with PDI), note the objective function used in the above test runs. Given the
weighted multi-criteria composition of the objective function, the question is which criteria
should be included in the objective function at this step, and with what weight. For the
fine-tuning tests, only two of the criteria described in Chapter 5 are considered. These are
population balance and compactness, with weights 10 and 1, respectively. As a result, the
fine-tuning runs should produce relatively compact plans that also satisfy the population
balance constraint. The weights are somewhat arbitrary, but assigning 10 times more weight
to population balance should be sufficient to emphasize the importance of this criterion over
the other. Note that the parameters fine-tuned under these conditions may not necessarily
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produce good results for other criteria groups. Nevertheless, the best parameter combina-
tions identified using the two criteria will be employed in tests with other criteria groups,
since population balance and compactness will be common to all criteria groups considered
and tested.

Each of the tests described above is repeated with the two compactness measures and
also for B8 = 25%,10%, and 5%. Recall that for the Province of Alberta, the allowable
deviation from average population is 25%. While lower 3 values are not required by law,
it is worthwhile to see if the algorithm would be able to produce a more balanced district

plan that is also more compact than the existing plan.

The second part of the fine-tuning tests is implemented using the set ® of the best combi-
nations identified in the first part. This time, PDI parameters s and M are fine-tuned. For
each combination in @, the initial memory is constructed using the corresponding solutions
reported by the 20 plain TS algorithm runs. If s < 20 solutions are needed for the initial

memory, the first s of the 20 solutions are considered.

The second PDI parameter that is subject to fine-tuning is M, the number of PDI iterations
to be executed. Of course, the larger values for M should result in solutions of higher (or
no worse) quality. The trade-off in this case is between the ultimate solution quality and

the computation time. The following settings are tested for the two parameters s and M:

Setting
s | 10, 20
M | 5,10, 20

Table 7.3: Parameter settings tested for s and M.

At the end of the fine-tuning tests described above, one can decide which particular set-
ting(s) for s, M and the two parameters from Part I should be used for the runs in Stage 2.
The remaining parameters are assigned settings that are identified in fractional factorial

implementation in Part I.

7.2.2 Stage 2: Experiments under Different Scenarios

In this stage, district plans are produced based on several different scenarios. Each scenario
reflects a combination of both basic and other (political) criteria. As mentioned previously,
the settings used in this stage for the algorithm parameters are determined in the fine-
tuning stage. Table 7.4 is the list of the scenarios that are considered in this stage with the
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corresponding weights of the criteria involved. These scenarios are repeated for 8 = 25%,
10%, and 5%.

Weights
Basic Other
Scenario | Pop. Bal. | Compact. | Sim. to old plan | Communities
1 10 1 - -
2 10 1 1 -
3 10 1 5 -
4 10 1 10 -
5 10 1 - 1
6 10 1 - 5
7 10 1 - 10

Table 7.4: List of scenarios considered in Stage 2

In each scenario, only three criteria at a time are considered, except the first one. This is
because having too many criteria ‘active’ simultaneously would make it more difficult to
trace the impact of each criterion on the district plan produced. Furthermore, presence
of multiple conflicts among the criteria chosen would force the algorithm to move in a
search direction that is hard to anticipate, since it would not be possible for the algorithm
to simultaneously meet all the criteria to the desirable extent. The weight of compactness
relative to population balance is set at 1:10, since this is the ratio that was used in parameter
fine-tuning. The rest of the weights are simply associated with changing the influence of the
remaining criteria on district plans produced. The results of the experiments under each of

these scenarios are provided in Section 7.4.

7.3 Stage 1 Results: Parameter Fine-tuning

As explained in Section 7.2.1, the plain TS parameters are first subject to ‘screening’ tests
and the two most critical parameters are identified. Next, these two parameters, followed
by the PDI parameters s and M, are fine-tuned. The objective function is composed of
the terms for the population balance and compactness criteria. The screening runs are
performed using the first compactness measure and for § = 25%, whereas the remaining
runs are performed for both measures with 8 = 25%, 10%, and 5%. The results will be
reported for each of these runs using the representation (Geography / Test-type / 8 /
Compactness), which indicates the test data and experiment conditions to which a set of
results belong. In this representation, “Geography” takes the value ‘E’ (for Edmonton);
“Test-type” takes the values ‘FT-1’ (for fine-tuning part 1), ‘FT-2’ (for fine-tuning part 2),
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‘§-1°, *§-2’, ... for the various scenarios considered in Stage 2; 3 takes values 25%, 10%,
and 5%; and finally “Compactness” takes values 1 and 2, for measure 1 and measure 2,
respectively. All of the runs in this stage are performed for 828 Edmonton enumeration

areas with 19 districts form.

7.3.1 Screening Results

In the screening part, combinations listed in Table 7.1 of high and low parameter settings
are tested, using the values in Table 7.2. The results of the screening runs are provided in
Table 7.5.

Test ] 4 a u i p T S1 S2 S3 S4 S5 | MIN AVG
1 - - - + + + - 1.681 | 1.689 | 1.661 | 1.744 | 1.637 | 1.637 1.682
2 + - - - - + + 1.564 | 1.505 | 1.598 | 1.478 | 1.518 [ 1.478 1.532
3 - + - - + - + 1.652 | 1.676 | 1.662 | 1.789 | 1.609 { 1.609 1.678
4 + + - + - - - 1.560 | 1.586 | 1.625 ] 1.577 | 1.583 | 1.560 1.586
5 - - + + - - + 1.681 | 1.709 | 1.686 | 1.706 | 1.648 | 1.648 1.686
6 + - + - + - - 1.613 | 1.615 | 1.613 | 1.575 [ 1.563 | 1.563 1.596
7 - + + - - + - 1.692 |1.668 | 1.665 | 1.720 | 1.611 | 1.611 1.871
8 + + + + + + + 1.622 |1.574 | 1.611 | 1.587 | 1.546 | 1.546 1.588

MIN ; -0.089 0.000 0.021 0.032 0.015 -0.027 -0.023
AVG | -0.104 0.007 0.016 0.016 0.017 -0.018 -0.013

Table 7.5: Screening results with Edmonton data

The columns S1 through S5 display the objective values reported by the algorithm for
the five random starting solutions. The columns labeled ‘MIN’ and ‘AVG’ are simply the
row minimum and row average values for each of the eight tests. The last two rows of
the table contain the statistics that measure the relative influence of a parameter’s high
and low settings on the solution quality. Recall that this statistic is computed as one-
fourth the difference between the sum of the objective values corresponding to pluses and
the sum of those corresponding to minuses. It is computed for each parameter based on
the ‘MIN’ and the ‘AVG’ columns. For example, the statistic —0.089 for § is computed
as $(1.478 + 1.560 + 1.563 + 1.546 — 1.637 — 1.609 — 1.648 — 1.611), whereas the value
—0.104 is computed using the corresponding values in the ‘AVG’ column. Positive (negative)
values for the statistic indicate that the low (high) setting for the parameter has produced
lower objective values on the average, and therefore is preferred to the high (low) setting.
The magnitude of the absolute deviation from zero indicates the relative influence of this

parameter on the solution quality.
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The values in the ‘MIN’ and ‘AVG’ rows of Table 7.5 indicate that 8 is the most critical
parameter, and therefore it is the first parameter chosen for additional testing. The second
parameter, however, is not as clear. Four parameters, namely ¢, £, Z and p, have a roughly
equal value of the statistic, based on the values in the ‘AVG’ row, where p is slightly
more critical than the rest. Based on the ‘MIN’ row, however, u is the most critical one.
Combining results from the two rows, pu is selected as the second parameter. Notice that
the statistic for ¢, the width of the tabu tenure range, is almost zero, which suggests that

there is no considerable difference between deterministic and random tabu tenures.

Additional tests that use a different set of high (+) settings for 8’, @ and p indicate that
there is no considerable difference between 8/ = 10 and ¢/ = 20, @ = 1 and a = 2, and
p = 0.1 and p = 0.2. Since the former settings are also the ‘intermediate’ values between
all the settings tested for these parameters, they are selected as the ones that will be used
in the rest of the runs. Also, when these settings are used, there is no significant difference
between i = 0.6u and z = u, and the latter gives slightly lower objective values than the
former. As a result, Z = u is used in the remaining fine-tuning experiments. To summarize,
the settings ¢ = 10, « = 1, & = u, p = 0.1 and T = [230y/m| are carried to Part I and
Part II for the remaining fine-tuning tests, and also to Stage 2. The other two parameters §
(mid-point of the tabu tenure range) and p (frequency of updating ) are subject to further

tests as detailed below.

7.3.2 Part I and Part II Results

In Part I of the fine-tuning experiments, the parameters § and u are subject to detailed
tests. Table 7.6 below is the list of the values that are tested for these two parameters.

Note that 8 is shown as [@min,Omaz] in this table, as combined with ¢ = 10.

Parameter Setting
[em.inu ema:r] [10’20]
{20,30]
[90,100]
u 15, 30, 45, ..., 150

Table 7.6: Parameter settings tested for 8 and u.

Since [fmin,Omaz] takes on 9 settings and p takes on 10 settings, the total number of
combinations tested is 90. Each combination is tested with 20 different random starting
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solutions (generated with INITSOLN using 20 different random number generator seeds),
for both compactness measures and for all three 8 values. This makes a total of 10800 plain
TS runs. The combinations that perform the best are identified as described in Section 7.2.1
and they are used in Part II runs. All of the results are provided below for each § value

separately:

B =25%

Tables 7.7 and 7.8 on page 105 contain the average of the 20 runs for each combination of
([Bmin: Omaz], ) obtained for each compactness measure. With both tables, an immediate
observation is that the average quality of solutions is improved (see row labeled ‘AVG’),
as 0 is increased. This means that the tabus are indeed successful in preventing cycles
and reaching better solutions. With Table 7.7, the best tabu tenure ranges are observed as
(80,90] and [90, 100] (based on the row labeled ‘AVG’). This result is also supported by the
number of times a column value was minimum in its row (see row labeled ‘#’). A similar
yet less apparent observation can also be made for y. As the value of p is increased, row
minima and averages, and the number of times a row value was minimum in its column
slightly deteriorate (with few exceptions; see columns ‘MIN’, ‘AVG’ and '#’). As a result,
we can conclude that higher values of tabu tenure and lower values y perform well together.

The values printed in bold indicate the best combinations to be carried to Part II of the
fine-tuning tests. In Table 7.7, for example, the best column minimum (valued 1.539) and
the best row minimum (valued 1.539) qualify the combination ([70,80],15) for inclusion in
®950;.1. The corresponding cell value 1.539 is therefore highlighted in bold. With the ‘#’
row, there is a tie and two combinations arise as a result: ([80,90},15) and ([90, 100], 15).
This is also the case for the ‘AVG’ row, and the same two combinations qualify for inclusion
in @950, 1. The last combination to enter o501 is ([90, 100}, 105) and it is identified by the
overall best of the 1800 individual objective function values associated with Table 7.7. This
overall best solution has an objective value of 1.385 and it is obtained with random start

#14. To summarize,
@25%,1 = {([70’ 80]7 15)1 ([801 90]’ 15)a ([901 100]1 15)7 ([90~ 100]’ 105)}

is the final set of parameter combinations, associated with Table 7.7, that will be used
for tests with PDI. For Table 7.8, the combinations are again indicated in bold, and the
corresponding set ®q59 o includes ([80, 90], 45), ([90,100], 15) and ([90, 100}, 60). The overall
best solution in this case has objective value of 0.287.
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[emin: emaz]

[10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] | MIN # AVG

15 | 1.675 1644 1622 1.598 1579 1.567 1.539 1.546 1.550 |1.539 7 1.591
30 | 1.680 1.642 1619 1611 1587 1576 1.566 1.555 1.552 | 1.552 1 1.599
45 | 1.689 1.651 1.627 1614 1588 1573 1.572 1.565 1.561 | 1.561 0 1.605
60 | 1.694 1.653 1.625 1.610 1586 1.585 1.563 1563 1.565 | 1.563 0 1.605
75 | 1.695 1.657 1.628 1.611 1597 1579 1.571 1.560 1.563 | 1.560 0 1.607
90 | 1.688 1644 1625 1.601 1.582 1573 1.568 1.570 1.572 | 1.568 0 1.603
105 | 1.690 1.645 1.626 1.598 1589 1.579 1.572 1562 1.563 | 1.562 1 1.603
120 | 1.688 1.643 1627 1.599 1.582 1575 1.581 1.566 1.569 | 1.566 0 1.604
185 | 1.680 1.635 1.623 1.602 1583 1577 1.583 1564 1560 | 1.560 1 1.602
150 | 1.689 1.649 1.633 1.610 1588 1576 1.580 1.565 1.564 | 1.564 0 1.606
MIN | 1.675 1635 1.619 1.598 1579 1.567 1.539 1.546 1550 | 1.539
# 0 0 0 0 0 0 3 4 4
AVG | 1688 1646 1625 1605 1.586 1.576 1.569 1.562 1.562

Table 7.7: Average objective function values for (E/FT-1/25%/1)

[0mim0ma1:]

[10-20] [20-30] [30-40] [40-50] [50-60] [60-70] {70-80] [80-90] [90-100] | MIN # AVG
15 | 0386 0.378 0.368 0.356 0350 0.344 0.340 0335 0.337 | 0.335 6 0.355
30 | 0388 0380 0368 0.359 0352 0.345 0340 0336 0335 | 0.335 0 0.356
45 | 0387 0382 0.370 0.360 0355 0.345 0.345 0.342 0337 | 0.337 0 0.358
60 | 0388 0381 0369 0.360 0.352 0.347 0.345 0.339 0.335 |0.335 1 0.357
75 | 0.387 0.382 0.371 0.362 0.352 0.347 0.339 0341 0340 | 0.339 0 0.358
90 | 0.388 0.380 0.370 0.364 0353 0.351 0.335 0.338 0337 | 0.335 1 0.357
105 | 0.388 0380 0.371 0.361 0.356 0.342 0.342 0.341 0.340 | 0.340 1 0.358
120 | 0.388 0381 0.372 0.362 0.356 0.349 0341 0.340 0.337 | 0.337 0 0.358
135 | 0.389 0381 0.371 0.361 0.355 0.345 0.347 0.343 0.340 | 0.340 0 0.359
150 | 0.389 0.381 0.372 0.364 0.354 0.350 0.346 0.339 0.341 | 0.339 0 0.360
MIN | 0.386 0378 0.368 0.356 0.350 0.342 0.335 0.335 0.335 | 0.335
# 0 0 0 0 0 0 2 2 6
AVG | 0.388 0381 0.370 0361 0.353 0.347 0342 0.339 0.338

Table 7.8: Average objective function values for (E/FT-1/25%/2)

s M ([70,80},15) ([80,80],15) ([90,100],15) ([80,100],105)
20 5 1.392 1437 1.430 1.385
10 1.392 1.437 1.430 1.385
20 1.392 1.401 1.427 1.385
Part-I best 1.454 1.437 1.430 1.385
% -4.28% -2.51% -0.20% 0.00%
10 5 1.440 1.449 1.413 1.458
10 1.439 1.403 1.413 1.403
20 1.403 1.379 1.384 1.396
Part-I best 1.454 1.449 1.430 1.458
% -3.54% -4.85% -8.17% -4.23%

Table 7.9: Objective function values for (E/FT-2/25%/1)
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s M ({80,90},45) ([90,100],15) ([90,100],60)
20 5 0.287 0.301 0.297
10 0.287 0.291 0.291
20 0.269 0.278 0.291
Part-I best 0.287 0.301 0.299
% -6.14% -7.89% -2.72%
10 5 0.307 0.286 0.299
10 0.307 0.286 0.287
20 0.295 0.270 0.277
Part-I best 0.307 0.301 0.299
% -4.09% -10.29% -7.16%

Table 7.10: Objective function values for (E/FT-2/25%/2)

In Part II, the above combinations are used together with the test values for s and M.
Tables 7.9 and 7.10 display the results for the two compactness measures. With the first
table, we observe that the best solution identified by PDI (objective value 1.379) is slightly
better than the best solution of plain TS. In general, even though s = 10 seems to improve
the best solution of Part I much better than s = 20 does (comparing ‘%’ rows), they perform
roughly the same based on the ultimate solution quality (comparing M = 20 rows). Overall,
s = 10 seems to have performed better, since many of the PDI iterations for s = 20 did not
improve the best known solution. Also, all but one of the percent improvements indicate

that PDI can considerably improve the best solution found by the plain TS algorithm.

In the second table, the best solution (objective value 0.269) comes with the ([@min, Omaz], &)
combination of the best solution of Part I and for s = 20 and M = 20. An almost equally
high quality solution is produced by s = 10 and M = 20 (objective value 0.270). Overall,
no clear distinction between the performances of s = 10 and s = 20 can be made based on

one-to-one comparisons of solutions visited at each PDI iteration (i.e., for each value of M).

The four best district plans associated with Part I and Part II of fine-tuning for each
compactness measure are provided in Appendix B (Figures B.1 through B.4) together with
the population of each district and the compactness value of the entire plan. Observe that
with almost all districts in these plans, the boundaries coincide with the EA boundaries
that are straight lines. In a few cases, the district boundaries follow roads through some
neighborhoods. However, since most of these roads are represented by almost straight lines
as well, from the algorithm’s standpoint, they are no different from other straight lines.

Further note that some of the districts have almost perfect square shapes. Others appear
to be collections of square or rectangular ‘blocks’, even though the entire district shape is

neither square nor rectangular. A few districts traverse the periphery of the city, which
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suggests that these are residual districts that the algorithm may occasionally produce.

B =10%

The next two tables contain results for 8 = 10%. The patterns with 8 = 25% are also
observed in Table 7.11, i.e., higher values for tabu tenure and lower values for u perform
well together. For Table 7.12, the values in the ‘MIN’ column seem rather out-of-pattern,
though the ‘#’ and ‘AVG’ columns recommend lower values for ;. Based on the ‘MIN’, ‘#’,
and ‘AVG’ statistics, the combinations to be used in Part II are consequently identified as

®0%::1 = {([80,90],15],([90, 100],15), ([90, 100}, 60)} (7.1)
®0%2 = {([70,80],135), ([90, 100}, 15), ([90, 100}, 90)} (7.2)

for measures 1 and 2, respectively. The overall best objective values are observed as 1.481
for measure 1 (with ([90, 100}, 15) and random start #18) and 0.308 for measure 2 (with
([70,80],135) and random start #2).

The results for Part II using ®;¢5,; and 49 2 are given in Tables 7.13 and 7.14. With
the first measure, the best solution from part I is improved by 3.44% from 1.481 to 1.430,
with s = 10, M = 20, [fmin,Omaz] = [80,90] and p = 15. In this set of runs, s = 10
appears to perform better than s = 20, based on the iteration by iteration comparison of
objective values and percent improvements. With the second measure, the best solution
from Part I is improved by 4.44% from 0.308 to 0.294, with the settings s = 10, M = 20,
[rmin, Omaz] = [90,100] and p = 90. Other comparisons indicate that s = 10 is somewhat

superior to s = 20, but the distinction is not as clear as in Table 7.13.

The district plans that correspond to the four best solutions mentioned above are provided
in Appendix B (Figures B.5 through B.8) with the corresponding compactness scores. With
these plans, an immediate observation is that the district boundaries do not follow major
streets as much as they do in plans for 8 = 25%. This is an expected result since the
problem is more restricted with § = 10% than it is with 8 = 25%. Consequently, the
algorithm searches for new ways of clustering EAs that satisfy the 8 = 10% requirement.
In this process, a district is likely to ‘reach out’ to EAs that will bring the district population
within the +:10% limits. As a result, notice also that these four plans contain districts that
are not as close to squares or circles as the districts in the previous case. Even though the
objective function values deteriorate marginally from 8 = 25% to 8 = 10%, the differences
in district shapes is much more noticeable. Note that the objective values reported are

equal to the compactness scores of the district plans. Since all solutions are feasible to the
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[emin ) ema::]

(10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] | MIN # AVG
15 | 1.760 1692 1.672 1.650 1.624 1.615 1.614 1.590 1.594 [1.590 5 1.646
30 | 1.788 1.727 1.697 1.664 1.657 1.628 1.629 1.618 1.616 1.616 0 1.669
45 | 1.790 1.746 1.679 1.654 1.633 1.629 1613 1.613 1.613 1.613 0 1.663
60 | 1.758 1.710 1.660 1.645 1629 1.630 1.612 1.602 1.602 | 1.602 4 1.650
75 | 1770 1.735 1.687 1.656 1.650 1.648 1.631 1.618 1.615 1.615 O 1.668
90 | 1.782 1.711 1.685 1.658 1.649 1.628 1.620 1.620 1.616 1.616 0 1.663
105 | 1.780 1.726 1.697 1.671 1.637 1.632 1.637 1.620 1.619 1.619 0 1.669
120 | 1774 1.735 1.693 1.667 1650 1.649 1.639 1.634  1.633 1.633 0 1.675
135 | 1.782 1.725 1.680 1.665 1.653 1.651 1.626 1.639  1.623 1.623 0 1.672
150 | 1.777 1.720 1.690 1.675 1.653 1.643 1628 1.640 1.626 1.626 0 1.672
MIN | 1758 1692 1.660 1.645 1.624 1.615 1612 1.580 1.594 1.590
# 0 0 0 0 0 0 0 3 7
AVG| 1.776 1.723 1.684 1661 1644 1635 1625 1.619 1.616

Table 7.11: Average objective function values for (E/FT-1/10%/1)

[ominy ema.x]

[10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80) [80-90] (90-100] | MIN # AVG
15 | 0.404 0.389 0.377 0363 0360 0.354 0351 0.349 0.348 | 0.348 7 0.366
30 | 0411 0393 0376 0373 0364 0.359 0.352 0.353 0.357 0.352 1 0.371
45 | 0413 0395 0.383 0372 0360 0.359 0.359 0.353  0.359 0.353 0 0.372
60 | 0413 0.397 0.382 0.367 0.365 0.354 0.354 0.354 0.355 0.354 0 0.371
75 | 0411 0.394 0.378 0370 0.364 0.355 0.361 0.350 0.352 0.350 0 0.371
90 | 0419 0.401 0.38% 0377 0361 0.359 0.355 0.354 0.845 |0.345 1 0.373
105 | 0.411 0.394 0.384 0.370 0.364 0.364 0.360 0.356 0.354 0.354 0 0.373
120 | 0415 0.402 0.384 0.370 0.361 0.362 0.364 0.357 0.351 0.351 0 0.374
135 | 0.417 0.401 0.380 0371 0.365 0.360 0.855 0.355  0.351 0.351 0 0.373
150 | 0.417 0.398 0.385 0371 0.365 0.360 0.353 0.355  0.354 0.353 0 0.373
MIN | 0404 0.389 0.376 0.363 0.360 0.354 0.351 0.349 0.345 | 0.345
# 0 0 0 0 0 0 3 2 5
AVG| 0413 0.39 0381 0370 0.363 0.359 0.356 0.354 0.353

Table 7.12: Average objective function values for (E/FT-1/10%/2)

s M ({80,90],15) ([90,100},15) ([90,100],60)
20 5 1.502 1.481 1.492
10 1.502 1.448 1.492
20 1.502 1.448 1.461
Part-I best 1.542 1.481 1.492
% -2.62% -2.25% -2.08%
10 5 1.447 1.456 1.507
10 1.447 1.456 1.507
20 1.430 1.448 1.464
Part-I best 1.542 1.528 1.531
% -7.27% -5.28% -4.39%

Table 7.13: Objective function values for (E/FT-2/10%/1)
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s M ([70,80),185) ([90,100],15) ([90,100},90)
20 5 0.308 0.306 0.306
10 0.308 0.300 0.306
20 0.301 0.295 0.298
Part-I best 0.308 0.319 0.309
% -2.20% -7.40% -3.76%
10 5 0.308 0.319 0.302
10 0.308 0.310 0.302
20 0.296 0.310 0.204
Part-I best 0.308 0.319 0.309
% -3.85% -2.67% -4.80%

Table 7.14: Objective function values for (E/FT-2/10%/2)

population constraint, no population penalties are included in the objectives.

B =5%

When the problem is further restricted by allowing only a 5% deviation from average district
population, the districts become much more distorted and the objective function values
deteriorate. Tables 7.15 and 7.16 reflect this observation. As far as the parameter settings

are concerned, the best combinations are

®s,1 = {([70,80],150), ({90, 100], 15), ([90, 100], 120)}
@52 = {([70,80],75), ([80, 90],90), ([90, 100], 60), ([90, 100], 135)}

for measure 1 and measure 2, respectively. However, the numbers in the ‘AVG’ column of
both tables appear to be different from each other by no more than 2% (most of them by no
more than 1%). Furthermore, the numbers do not indicate an obvious pattern (especially
with Table 7.16). This suggests that there is not much performance difference between the
values tested for pz. On the average, u = 120 is the best for the first measure, and z = 60
is the best for the second measure. However, some higher values for yx also perform well.
This is probably due to the fact that 8 = 5% is a much more restrictive constraint, and
consequently the algorithm spends more time visiting infeasible solutions (especially at the
beginning). As a result, the algorithm needs more iterations to identify and switch to a goed
feasible solution, before the violation penalty is doubled. When 4 is small, the algorithm
improves the solution quality by reducing the amount of violation, but before it can switch
to a feasible solution, the amount of penalty is doubled and the process is disrupted. As a
result, relatively large values of u are also likely to have a high performance.

The overall best objective values associated with Tables 7.15 and 7.16 are 1.524 (obtained
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[emin1 gma.z]
[10-20] [20-30] [30-40] [40-50} [50-60] [60-70] [70-80] [80-90] [90-100] | MIN # AVG

15 1.835 1.751 1.711 1.691 1.686 1.636 1.645 1.633 1.610 1.610 3 1.689
30 1.808 1.751 1.708 1.670 1.659 1.658 1.640 1.648 1.641 1.640 2 1.687
45 1.802 1770 1.714 1.684 1.672 1.656 1.652 1.646 1.636 1.636 0 1.692
60 1.815 1.762 1.721 1.698 1.678 1.661 1.662 1.657 1.652 1.652 0 1.701
75 1.823 1.750 1.724 1.6S0 1.683 1.650 1.640 1.653 1.635 1.635 0 1.694
20 1.814 1.725 1.713 1.676 1.663 1.650 1.649 1.645 1.642 1642 1 1.686
105 1.821 1.736 1.706 1.681 1.672 1.657 1.641 1.643 1.637 1.637 0 1.688
120 1.781 1747 1.704 1.678 1.659 1.654 1643 1.65¢ 1.646 1.643 0 1.685
135 1.796 1.731 1.698 1.693 1.657 1.661 1.657 1.647 1.640 1.640 1 1.687
150 1.781 1.765 1.694 1.686 1.661 1.665 1.649 1.646 1.643 1.643 2 1.688

MIN | 1.781 1.725 1.694 1.670 1.657 1.636 1640 1.633 1.610 1.610
# 0 0 0 0 o 0 2 0 8
AVG | 1.808 1.749 1.709 1.685 1.669 1.655 1.648 1.647 1.638

Table 7.15: Average objective function values for (E/FT-1/5%/1)

[omina omaz]
(10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] | MIN # AVG

15 0.426 0401 0.393 0.389 0.372 0.375 0.356 0.363 0.355 0.355 1 0.381
30 0.431 0406 0.395 0.387 0.371 0.374 0.372 0.355 0.361 0.355 0 0.384
45 0.421 0.407 0.388 0.378 0.374 0.369 0.361 0.372 0.363 0.361 0 0.381
60 0.424 0403 0.389 0.380 0.368 0.362 0.356 0.359 0.356 0.356 1 0.377
75 0.420 0.406 0.395 0.380 0.372 0.365 0.372 0.353 0.359 0.353 2 0.380

20 0.425 0404 0.388 0378 0.362 0.363 0363 0.363 0.363 0.362 3 0.379
105 0.431 0.409 0.388 0.380 0.376 0.364 0.362 0.368 0.355 0.355 0 0.382
120 0.429 0404 0.392 0.378 0.376 0.365 0.368 0.359 0.361 0.359 0 0.381
135 0.427 0405 0.391 0383 0.370 0.360 0.357 0.357 0.352 0.352 2 0.378
150 0.430 0.404 0.397 0382 0.373 0.372 0360 0.356 0.368 0.356 0 0.382

MIN | 0.420 0401 0.388 0.378 0.362 0.360 0.356 0.353 0.352 0.352
# 0 0 0 0 1 0 2 4 3
AVG | 0.426 0405 0.392 0.381 0.371 0.367 0.363 0.361 0.359

Table 7.16: Average objective function values for (E/FT-1/5%/2)

s M ([70,80],150) ([90,100],15) ([90,100],120)
20 5 1.524 1.492 1.514
10 1.524 1.492 1.514
20 1.495 1.491 1.514
Part-I best 1.524 1.536 1.540
% -1.89% -2.99% -1.70%
10 5 1.542 1.506 1.562
10 1.497 1.506 1.507
20 1.497 1.498 1.503
Part-I best 1.572 1.536 1.572
% -4.77% -2.49% -4.36%

Table 7.17: Objective function values for (E/FT-2/5%/1)
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s M | ([70,80],75) ([80,90],90) (({90,100],60) ([90,100],135)
20 5 0.320 0.327 0.329 0.322
10 0.320 0.324 0.325 0.322
20 0.316 0.324 0.325 0.317
Part-I best 0.320 0.330 0.329 0.322
% -1.47% -1.77% -1.02% -1.68%
10 5 0.320 0.330 0.326 0.322
10 0.320 0.330 0.326 0.322
20 0.311 0.323 0.323 0.322
Part-I best 0.320 0.330 0.329 0.322
% -2.84% -2.18% -1.88% 0.00%

Table 7.18: Objective function values for (E/FT-2/5%/2)

with ([70, 80], 150) and random start #18) and 0.320 (obtained with ([70,80],75) and ran-
dom start #2), respectively. In Part II, these values are improved by 2.19% to 1.491 for
measure 1 and by 2.88% to 0.311 for measure 2, as shown in Tables 7.17 and 7.18. Com-
paring the objective values iteration by iteration in each table, we observe that there is no
clear distinction between the performances of s = 10 and s = 20. However, in terms of
percent improvement on Part I's best solution, s = 10 is somewhat better than s = 20. One
last observation is that with 8 = 5%, Part II of fine-tuning is not as effective as it was for
B = 25% and B = 10%. This is probably due to the fact that with 8 = 5%, the problem
gets so restricted that even PDI cannot find many solutions of higher quality.

The district plans B.9 through B.12 in Appendix B are associated with the best solutions
of Part I and II for the two compactness measures. We observe that many districts ‘extend
arms’ to reach EAs that have populations suitable for satisfying the 5% deviation require-
ment. The most extreme district is in Figure B.12, which traverses the western border of
the city from north to the south. Such a district would most probably be unacceptable

since it combines communities from completely different parts of the city.

Another major observation with the plans is that most district boundaries no longer follow
straight lines. As a result the districts are much more distorted and their shapes are long
and slim. This is consistent with the algorithm’s search for EA clusters that satisfy a narrow
allowable population range. In spite of the deterioration in district compactness, many of

the districts still look like circles or squares.

The following table summarizes the fine-tuning test results for Edmonton. All twelve best
solutions previously mentioned are listed in this table with their objective values under both
compactness measures. The numbers with the small fonts correspond to the measure that
was NOT used for optimization. Also, the last row of this table provides the two objective
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function values for the existing district plan of Edmonton.

Measure used for optimization
Measure 1 Measure 2
Part I Part II Part I Part II
Compl | Comp2 | Compl | Comp2 | Comp2 | Comp1t | Comp2 | Compl
B =25% 1.385 0.301 1.379 0.298 0.287 1.445 0.269 1.390
B =10% 1.481 0.336 1.430 0.308 0.308 1.469 0.294 1.396
B =5% 1.524 0.335 1.491 0.311 0.320 1.533 0.311 1.546
Edm.-25% 1.638 0.369

Table 7.19: Best solutions found for Edmonton fine-tuning

The most striking result in Table 7.19 is that even when population deviation is required
to be as low as 5%, one can identify a 9% more compact plan than the current one using
compactness measure 1 and a 16% more compact plan than the current one using measure 2.
With 8 = 25%, the best plans produced are 16% and 27% more compact than the existing
plan using the two measures. Of course, it should be noted that the existing district plan
has been drawn to consider other criteria as well (such as integrity of communities), and
therefore the problems solved in this section are relaxations of the actual problem. Also, the
objective values listed in Table 7.19 for Edmonton are computed based on the approzimation

of the original plan, and some compactness may have been lost during the approximation.

Anpother observation from Table 7.19 is the comparison of the compactness measures in terms
of assessing the compactness of a district plan. Notice in Part I (with measure 1 optimized)
that the 10% plan is more compact than the 5% plan according to compactness measure 1
(1.481 vs. 1.524). However, the compactness scores of the same two plans computed using
measure 2 suggest that the 5% plan is more compact (0.335 vs. 0.336). This indicates that
the two compactness measures can indeed be in conflict. This result further supports the
finding by Niemi et al. [46], who showed the existence of conflict for some other measures

as well.

Recall that the objective of Stage 1 was to find good parameter settings that will be used
in Stage 2. Based on the extensive computational tests detailed so far, the parameter
settings in Table 7.20 are chosen to be used for further tests with Edmonton data. With
all B values, s = 10 and M = 20 has been chosen for Stage 2 simply because this selection
requires construction of a smaller memory, which in turn saves computational time for more
PDI iterations. Also, for the cases where s = 20 was superior to s = 10, the objective value
difference was marginal. As to the issue of whether PDI is worth utilizing in spite of its

long run time (see below for average times) and no more than 10% improvement over plain
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TS, we note that the problem is solved every ten years, therefore a lot of computational

time should be available to the analyst.

Measure 1 Measure 2

B [gmina omaz] U s M [emin7 emaz] 7/ s M
25% (80,90] 15 10 20 [90,100] 15 10 20
10% {80,90] 15 10 20 [90,100] 90 10 20
5% [90,100] 15 10 20 [70,80] 75 10 20

Table 7.20: Best parameter settings found in Stage 1

One can further reduce the B values to see how the district plans will be affected. The
smallest test value that yielded a feasible plan was 1%. This plan is provided in Figure B.13.
As expected, the districts are highly non-compact, created in order to satisfy the 8 = 1%
requirement. But at least it shows that almost perfect population equality is possible.

So far, no discussion has taken place on how long it takes the algorithm to run, and how
long it takes to find the best solution it reports. Based on the 1800 runs for 8 = 25% with
compactness measure 1, the average duration of a plain TS run is 217.1 seconds (about 3.5
minutes) and it takes 126.0 seconds on the average the find the best solution it reports.
PDI is essentially a sequence of TS runs, and therefore it takes a lot longer to complete
a PDI run than to complete a plain TS run. Based on the PDI runs for 8 = 25% with
compactness measure 1 (i.e., for a total of 4 PDI runs), it takes on the average 57.8 minutes
to complete 20 PDI iterations, excluding the construction of initial memory. The time
it takes to construct the initial memory is clearly a function of the average plain TS run
length, depending on the size of the initial memory. All run times mentioned above are
recorded on a Pentium 233MMX PC with 64M RAM.

7.4 Stage 2 Results: Experiments under Different Scenarios

In this section, we consider the seven multi-criteria scenarios listed in Table 7.4 and produce
alternative district plans for the City of Edmonton. The results for these scenarios are

provided below.!

! Based on Stage 1 results, observe that a compactness score computed with measure 1 is one order of
magnitude larger than that computed with measure 2. {Measure 2 is always bounded above by 1 whereas
measure 1 can (and does) take on values greater than 1. It is not trivial to find an upper bound on measure 1.)
This suggests that the effective relative weight of compactness relative to the other criteria is higher with
measure 1 than with measure 2. Hence, one would expect more compact plans with measure 1 than with

measure 2.
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Scenario 1:

Recall that this scenario involves only population equality and compactness, and there-
fore was completed as part of the fine-tuning experiments. For easy reference, Table 7.21
summarizes the objective function values with each compactness measure for each 3 value.

B Measure 1 | Measure 2
25% 1.379 0.269
10% 1.430 0.294

5% 1.491 0.311

Table 7.21: Objective values for Scenario 1

The six district plans associated with the objective values in Table 7.21 are provided in
Appendix B (Figures B.3, B.4, B.7, B.8, B.11, and B.12). Under this scenario, because
of a relatively large weight attached to population equality, the algorithm first eliminates
all infeasibilities (i.e., violations of population constraints) as soon as possible. Then it
maximizes compactness subject to population constraints. Note that the solutions that are
provided for this scenario will be used as a base case. By inclusion of additional criteria,
one would then be able to see how compactness will be traded off against other criteria,

i.e., how the plans will compromise compactness to address other criteria.
Scenario 2:

Under this scenario, we consider similarity to the existing plan as the third criterion. That
is, the second term in the objective function is now associated with this criterion. The
individual weights for this scenario are: w' = 10, w; = 1 (compactness), and ws = 1
(similarity to existing plan). Since population equality is treated as a constraint whose
violations are penalized, and also its weight is relatively higher than that of the other two
criteria, one should expect the algorithm to maintain population equality first, then find a

solution that balances the other two criteria.

The objective function values for the six PDI runs performed for this scenario are given in
Table 7.22. The breakdown of each objective value is also given in the table with respect
to the compactness score and the similarity score, respectively. Recall from Table 7.19 that
the existing Edmonton districts have a compactness score of 1.638 and the most compact
plan found in Stage 1 has that of 1.379, both based on measure 1. While searching for plans
that are similar to the existing plan, the algorithm will of course compromise compactness,
and therefore will identify solutions that have compactness scores higher than 1.379. Notice

in Table 7.22 for all six cases that the compactness scores are worse than the corresponding
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values in Table 7.19. In four of these cases (three cases for measure 1 and 8 = 25% case for

measure 2), the plans are still more compact than the existing Edmonton plan.

B Measure 1 Measure 2
25% 1.728 0.428
f1=1437 | f2=0.291 | f; =0.351 | fo =0.077
10% 1.763 0.450
f1=1.501 | fo=0.262 | f; =0.378 | fo =0.072
5% 1.817 0.472
f1=1.518 | fo=0.299 | f1 =0.378 | fo = 0.094

Table 7.22: Objective values for Scenario 2

Another major observation in Table 7.22 is that the second measure consistently produces
plans that are more similar to the existing plan than those produced by measure 1. This is in
fact explained by the difference between the range of values each measure takes. The second
measure consistently takes lower values compared to the first measure, and this reduces the
importance of the compactness criterion relative to the other two criteria. Consequently,

similarity to the old plan gains more weight, and the resulting plans have better score for

this criterion.

The district plans produced under Scenario 2 are given in Appendix C. Comparing these
plans to the existing district plan, we find that the proposed boundaries do not often follow
the boundaries of existing districts. However, we observe that with almost all districts, a
majority of EAs that are in an existing district also appear together in a proposed district.
This is exactly what the similarity index measures, and the district plans visually verify
that the index achieves its intended functionality.

Scenario 3:

This scenario is different from the previous one only in that ws, i.e., the weight of the second
criterion (similarity to the old plan), is increased to 5. This should cause the algorithm to
switch to less compact plans that are more similar to the existing plan than the ones in
Scenario 2. However, for 8 = 25%, the compactness of such plans should be no worse than
that of the existing plan, since otherwise they would be dominated by the existing plan.
The figures in Table 7.23 suggest that this is indeed the case for 8 = 25%, i.e., the two
plans are still slightly more compact than the existing plan, and they are more similar to
the existing plan than the corresponding plans in Scenario 2. With other 8 values, the
compactness scores of the plans are worse than that of the existing plan simply because
the algorithm has to satisfy a more strict population equality constraint. Also notice in
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Table 7.23 that the second measure again produces plans with lower (i.e., better) similarity

scores than the first one.

yé) Measure 1 Measure 2
25% 2.060 0.522
f1=1.622 | f>=0.088 | fi =0.360 | f» =0.034
10% 2.224 0.577
fi =1.753 | f=10.094 | f, =0.403 | f» = 0.035
5% 2.473 0.812
fi=1764 | fo=0.142 | f; = 0432 | fo =0.076

Table 7.23: Objective values for Scenario 3

The district plans associated with these six solutions are given in Appendix D. We can
observe that the districts are less compact compared to Scenarios 1 and 2, and the proposed
boundaries increasingly coincide with the boundaries of existing districts. A few districts
are even exactly the same as they appear in the existing plan. In this case, a decision maker
is simply in a position to choose a slightly more compact plan than the existing plan, or

the existing plan itself.
Scenario 4:

Under this scenario, the weight of the similarity criterion is set equal to the weight of the
population balance criterion (i.e., w' = ws = 10). Consequently, one could expect the
algorithm to create district plans that are the most similar to the existing plan among all
the plans constructed so far. Because of the increased value of wo, the plans may even be
expected to violate population equality in exchange for improved similarity score. This,
however, should not be relevant for § = 25%, since the existing plan itself is balanced in
population. The objective values in Table 7.24 in fact present an interesting case. For
B = 25% with the first measure, the algorithm suggests a plan that is slightly less compact
than the existing plan. Why would the algorithm report a dominated solution as the best
solution it finds? One reason might be the selection of the parameters used. In fact, when
an alternative parameter combination is tried (one of the combinations tested in Stage 1),
the resulting solution turned out to be slightly more compact. For the second measure (with
B = 25%), the algorithm reports the existing solution itself as the best solution it finds. In
this case, wy = 10 turned out to be sufficiently high that the algorithm reached one extreme
of the efficient frontier. With the remaining § values, the algorithm reports less compact
districts again, attributable to the tightened population equality constraint.

The district plans associated with the above solutions are provided in Appendix E. Observe
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B Measure 1 Measure 2
25% 2.203 0.369
f1=1.652] fo=0.055 | 1 =0.369 | fo=0
10% 2.564 0.749
fi=1.804 | f,=0.076 | f; =0.424 | f» =0.033
5% 2.591 1.208
fi=1.792 | fo=0.080 | f1 =0.434 | fo =0.077

Table 7.24: Objective values for Scenario 4

that many of the districts in the existing plan appear mostly intact in the proposed plans,
even for 8 = 5%. Increased compactness scores are of course the result of the effort to reach

out to some EAs in order to satisfy the population constraint.

The last three scenarios implemented in this section consider integrity of communities in-
stead of similarity to the existing plan. In order to use this criterion for optimization, one
needs to have a pre-defined community structure, as described in Section 5.3.4. The one
that is used for scenarios 5-7 is given in Appendix A (Figure A.4). In this ‘community plan’,
we divide Edmonton into 9 regions that mostly correspond to collections of neighborhoods
with similar characteristics. The division is made subjectively in that it is based mostly
on the geographical locations and other characteristics that would distinguish each commu-
nity from the others (example: the Old Strathcona, i.e., community #3, which is a mostly

residential area close to the university containing a lively street with cafes and restaurants).
Scenario 5:

This scenario considers population balance, compactness and integrity of communities with
the following respective weights: w' = 10, w; = 1, and we = 1. In this case, the last
criterion is associated with the term fo(X) in the objective function.

The objective function values of the best solutions found are given in Table 7.25 for each 8
value and compactness measure. The corresponding district plans are in Appendix F. Recall
that the compactness scores (i.e., the f; value) of the current electoral districts of Edmonton
are 1.638 for measure 1 and 0.369 for measure 2. Based on the community plan used, the
fo score of Edmonton is computed as 0.569. A comparison of the existing plan with those
produced under the current scenario shows that for 3 = 25%, the two proposed solutions
both dominate the existing district plan. As g is decreased, measure 1 still generates more
compact solutions than the existing plan and measure 2 generates solutions that maintain
integrity of communities better than the existing plan (again possibly due to the scaling
issue described previously). Even for 8 = 10%, the algorithm is able to identify a solution
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that is superior to the existing plan in both criteria (with measure 1).

B Measure 1 Measure 2
25% 1.998 0.821
fi=1.505| fo=0.493 | f; =0.367 | fo = 0.455
10% 2.088 0.867
f1=1.555| fo=0.533 | /, =0.373 | fo =0.494
5% 2.172 0.886
f1=1.582 | fo=0.590 | f; =0.393 | fo = 0.493

Table 7.25: Objective values for Scenario 5

A visual check on the corresponding maps suggests that especially for 8 = 25%, many
of the districts are composed of one particular community only. The district plans for
B = 10% and 8 = 5% appear less successful in maintaining integrity of communities, simply
because some of the districts may have to extend arms to nearby EAs in order to satisfy
the population constraint. Consequently, this may split the largest part of a community
that still remains intact, or ‘steal’ EAs from it. Recall that the integrity of communities
measure developed in Chapter 5 does not directly adjust the district boundaries to make
them follow community boundaries. Instead, it checks how many pieces a community is
divided into and tries to maximize the area of the largest piece. As a result, a district plan
that is better than another in terms of the objective value may not look so visually. The
key component here is not the community borders, but the largest area within a community

that is maintained in a district.

Scenario 6:

In this case, the weight of the integrity of communities criterion is increased to 5. The
numbers in Table 7.26 suggest that with this setting, the algorithm can no longer produce
solutions that are more compact than the existing plan, due to the increased importance
of the integrity of communities. But as a result, all solutions that it produces are better
than the existing plan with respect to the community criterion. Also, all of the six solutions
in the table are non-dominated solutions compared to the existing plan. This gives the
decision maker the opportunity to decide between more compact solutions and the ones
that maintain communities better, with the added flexibility of choosing a 3 level. The
decision maker should of course be careful about choosing a low 8 value since this would in
turn increase f, values. In fact, this is the (stated) reason behind the 25% deviation allowed
by the Electoral Boundaries Commission Act: to be able to keep communities together to

a larger extent.
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B Measure 1 Measure 2
25% 3.892 2.438
H=1754| f=0428 | fi =0.434 | f> =0.401
10% 4.036 2.709
f1=1.692 [ fo=0.469 | fi =0.430 I Jo = 0.456
5% 4.276 2.883
f1=1.740 | fo=0.507 | fi =0.520 | f2=0.473

Table 7.26: Objective values for Scenario 6

The maps associated with the above solutions are provided in Appendix G. Notice that
since the relative importance of compactness is lower than what it was under Scenario 5, the
resulting districts are highly non-compact. In many cases, residual districts have formed,
as the PDI algorithm has attempted to collect districts with a good level of community
integrity. Even though compactness is compromised, communities are preserved better
under this scenario. A decision maker who weighs integrity of communities considerably

more than compactness may well find these plans appealing.
Scenario 7:

The last scenario considered in this section assigns ws = 10 to integrity of communities,
a weight equal to the weight of population equality and 10 times the weight of compact-
ness. As a result of the further decreased relative importance of compactness, the resulting
plans are highly non-compact compared to the previous ones and the existing plan (see
Figures H.1 through H.6). However, all six solutions satisfy the population constraint and
have improved integrity of communities in comparison to Scenarios 5 and 6, therefore they
are non-dominated solutions. One observation under this scenario is that the algorithm
becomes more sensitive to a change in 8, compared to previous cases, that f; and fo change
rather significantly as 8 is decreased. The solutions found may still be acceptable though,
if the decision maker’s underlying weights favor integrity of communities criteria a lot more

than compactness.

Jéj Measure 1 Measure 2
25% 5.964 4.369
f1=1.866 | f2=0.410 | f; =0.502 | fo =0.367
10% 6.453 4.899
fi=1844 | fo=0461 | f, =0.546 | f» =0.435
5% 6.549 5.112
fi=1773 | f2=0478 | fi =0.489 | fo = 0.462

Table 7.27: Objective values for Scenario 7
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Overall, the experiments performed in Stage 2 show how the weighting method of multi-
criteria decision making can help identify non-dominated solutions. As a summary, consider
Table 7.28, the table of objective function values, for 8 = 25 only, for each objective function

term of each solution found under Scenarios 1-7.

Measure 1 Measure 2

Scenario | Pop. | Comp. | Simil. | Comm. | Pop. | Comp. | Simil. | Comm.

1 0 1.379 - - 0 0.269 - -

2 0 1.437 0.291 - 0 0.351 0.077 -

3 0 1.622 0.088 - 0 0.360 0.034 -

4 0 1.652 0.055 - 0 0.369 0 -

5 0 1.505 - 0.493 0 0.367 - 0.455

6 0 1.754 - 0.428 0 0.434 - 0.401

7 0 1.866 - 0.410 0 0.502 - 0.367
Edm-25% 0 1.638 0 0.569 0 0.369 0 0.569

Table 7.28: Objective values with 8 = 25% for all scenarios

All but one of the solutions in Table 7.28 are non-dominated with respect to Edmonton’s
existing plan. In fact, the two solutions found under Scenario 5 are superior to the existing
plan in all of the criteria considered. The only solution in Table 7.28 that was dominated

by the existing plan was under Scenario 4 with compactness measure 1.

The solutions generated in this section by the multi-criteria approach constitute a very small
subset of all the solutions that can be generated. Typically, one could attach weights to
criteria in numerous different combinations, in order to obtain a larger set of non-dominated
solutions. The multi-criteria framework is helpful to a decision maker especially in this
regard. Since the task of generating a district plan ‘fair’ to everyone is quite challenging,
the more the number of available alternatives is, the better the decision maker can weigh
criteria against each other and come up with a compromise solution. In our view, the
multi-criteria approach presented in this section is one of the most important contributions

of this dissertation.
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Chapter 8

Conclusion

In this dissertation, we have studied the political districting problem. This is a problem
that is usually solved every ten years, to account for population movements in the region
being districted and draw new districts accordingly. What makes it an interesting problem
is its highly political multi-criteria nature. On the one side, there is a districting authority
that is required by law to create a district plan that is fair to everyone. On the other side,
there are political parties and candidates running for the election who wish the districts to
be drawn to their advantage and to their opponents’ disadvantage. As well, some of the
popular criteria of redistricting such as compactness, proportionality and communities of
interest can be in conflict. With all these competing objectives, it is not easy to identify a

solution that satisfies everyone.

The algorithmic approach proposed in this dissertation is intended to provide a structured
framework for solving the political districting problem. Unlike most of the past studies, we
consider political criteria in addition to basic criteria, recognizing that such criteria are real
and are used by districting authorities. Qur approach is a multi-criteria approach, i.e., what
we are trying to optimize is a combination of various interests. Consequently, a district plan
produced would address each dimension to some extent, some more strongly than others.
The criteria that we consider include population equality, contiguity, compactness, integrity
of communities, similarity to the existing plan and proportionality. As a result, this study
is unique in that it brings both basic and political criteria into the overall picture. Past
studies which have excluded political criteria have either argued that the district plans
would then be free of political influence and gerrymandering, or they preferred to work on
a single objective function with a very limited number of constraints.
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The solution methodologies presented in the previous chapters utilize the Tabu Search
modern heuristic technique and a meta-heuristic known as Probabilistic Diversification and
Intensification (PDI). These are problem solving methods that have proved very effective in
solving a variety of problems, and therefore have become very popular in the last decade. A
unique contribution of this dissertation to the literature is the application of these intelligent
problem solving techniques to the political districting problem. While the general idea of
starting with a district plan and changing elements of this plan to reach better solutions
is not new, the use of intelligent memory in the process as well as combining districts
from multiple plans are. The latter feature also fits well into the multi-criteria framework.
The characteristic of the technique that good districts are brought together from multiple
solutions may result in significantly different solutions, which may be highly desirable from
a multi-criteria perspective. The decision maker would then compare each solution and

weigh its score under each criterion to reach a decision.

The Tabu Search technique is also well-suited to problems with constraints that are difficult
to deal with in a mathematical program. The contiguity requirement in the districting prob-
lem is an example of such a constraint. As well, mathematical programs for the districting
problem can only be solved for relatively small instances. In contrast, TS is a heuristic ap-
proach that can handle much larger problem instances. It is possible to solve this problem
with other heuristic approaches. However, TS searches the solution space in an efficient and
effective way, and it has outperformed other heuristic techniques in computational tests on

a wide variety of combinatorial problems (e.g. Gendreau et al. [17]).

The performance of the proposed algorithms is tested using the City of Edmonton enumer-
ation area data, which contain not only the geographic units that make up the districts,
but also various kinds of useful demographic information. To manage the large amount
of data needed by the algorithms, we use the ArcView Geographical Information System.
This GIS is used mainly for extracting geographic data from the enumeration area maps.
A second use of the system is to read the output file of the Tabu Search algorithm and
display the produced district plan as an electronic map. Next, the decision maker can use
the powerful tools of this GIS to summarize and visualize information on the composition
of the districts. This GIS interface between the optimization algorithms and the end-user
is another important component of this dissertation. Currently, we know of no commercial
product in the market that automates the re-districting process. While districting authori-
ties have recently started to use geographical information systems for displaying maps and
computing statistics, no such system that combines optimization and GIS currently exists.

This dissertation provides a prototype for such an integrated system.
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An important part of this dissertation was to assess the algorithm'’s performance by com-
paring the district plans it produces with the existing district plan of Edmonton. Before
the algorithm can be run to produce acceptable district plans, one needs to calibrate its
parameters. Since the proposed Tabu Search algorithm has many parameters, whose ap-
propriate values are not known in advance, the first step is a parameter fine-tuning step.
We implement this step for calibrating four parameters of the algorithm in detail. The best
choices of parameters are then used to run the algorithm to solve various multi-criteria sce-
narios. The computational results at the fine-tuning step indicate that PDI (which executes
a sequence of Tabu Search runs) produces plans that are 9% to 27% more compact than

the existing plan.

In the multi-criteria stage, we consider combinations of basic and political criteria. The
basic criteria include population equality and compactness, which are always in the criteria
set. The combinations of criteria we consider include population equality, compactness and
similarity to the old plan as one group, and population equality, compactness and integrity
of communities as the second group. With both groups of criteria, we change the relative
weights of the criteria to generate alternative district plans. As a result, several district
plans that address different dimensions of the districting process are produced. This is
perhaps the most important aspect of this study in that the more diversity there is among
the alternatives, the more aware the decision maker will be of the impacts of the districting
decision. The alternative plans produced in this study provide a good diversity in this

regard, with respect to the criteria considered.

Note that the methodology developed in this study may also be useful for solving other
types of districting problems. For example, in the salesman districting case, one is usually
interested in creating districts of roughly equal workload or sales revenue. Compactness is
a valid criterion in this context as well, since one would attempt to minimize traveling costs
within a district. Another example is the school districting problem, where the districts
may not have to be balanced, but the student profile of each school might become relevant.
For example, a valid criterion might be assigning residential areas to a school in a way
that the school has a certain diversity of ethnic origin. With both of these problems, the
mechanics of the algorithm would remain the same (i.e., starting with a partition, which
would be modified by swap or exchange of smaller units), but the districting criteria would
change. As a result, one could still use the techniques presented in this dissertation by using

a modified set of criteria.
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Appendix A

Enumeration Area Maps and

Existing Electoral Districts
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130




EDMONTON

PROVINCIAL ELECTORAL DIVISIONS
19586

RIS IV W of OF CUCH. W

REDWATER

EDMONTON-MANNING
' z
1 t ;
&
: 23
SOMONTON- . g 2
CASTLE DOWNS » g
- YA S,
EDMONTON X 4 &
GLENGARRY| = « N C ol
: N EDMONTON-
- SEVERLY-
. 2 - CLAREVIEW
EDMONTON-CALGER EL‘MONT: on- |
~ EDIAGHTON-
o e SGHLANDS
_ [ <% J&’l: 3
K/ 7= £ X
s/  EOMONTON- k3 = Vi
5 GLENORA . ¢
TSRS TG TN ENMONTON SHERATCD CARK
Lol & 2%, GOLT BAR
ECLONTON-MEEDTAARK || COMONTON- Lo Bnton- N4,
el ANERVEW STRATHCONA
aotieal T ¥ e SN Q) _ e~ P
P ; *
§ == EDHONTON-MILL CREEK
Hymm
STONY e
PLAIN
; ECMONTON- EDMONTON-|  EDMONTON- CLCVER BAR-
. MZTLUNG o FORT
i cg 4 MiLL WOOCS SASKATCHENAN
M 2 ne- 3 e
. & ~—
: 5 %
i
H R
§ EDMONTON-WHITEMUD
13
: EDMONTON-ELLERSUE
1
] Ranty (v ACAARNST of OF DECIMES Wt

Figure A.2: Official Electoral Districts for the City of Edmonton

131



-

S
i T

i

T
Gers A
NG,
=, =
Py
<
=]
— o
e 5 5 e 5t e
. =
S
AENT > 3
S N> %
¥ =
2 & -
: —rs
a5t Nl By
T g T~
=~ “\‘I‘-\
; T T2,
N = N
e
ey T
S8 O
=5

Figure A.3: Approximated Electoral Districts for the City of Edmonton
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Figure A.4: A General Community Plan for the City of Edmonton
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Ideal average: 32437

Allowable range: [24327,40546)

District Population % Dev. District Population % Dev.
Ellerslie 32090 -1.1% Stratchona 30226 -6.8%
Mill Woods 30630 -5.6% Riverview 30384 -6.3%
Rutherford 32927 1.5% Glenora 30885 -4.8%
Whitemud 37435 15.4% Calder 31238 -3.7%
McClung 34976 7.8% Glengarry 30398 -6.3%
Meadowlark 31443 -3.1% Castle Downs 33991 4.8%
Mill Creek 37143 14.5% Norwood 28750 -11.4%
Gold Bar 31611 -2.5% Manning 38022 17.2%
Highlands 31770 -2.1% Beverly-Clareview 31850 -1.8%
Centre 30537 -5.9% TOTAL 616306
Compactness 1: 1.385

Compactness 2: 0.301

Table A.1: 1996 District Populations for Edmonton’s Existing Plan
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Appendix B

Best Plans with Fine-Tuning
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Ideal average:
Allowable range:

32437
[24327,40546]

District Population % Dev. District Population % Dev.

1 40455 24.7% 11 24969 -23.0%

2 38797 19.6% 12 25501 -21.4%

3 39833 22.8% 13 25346 -21.9%

4 40402 24.6% 14 36545 12.7%

5 37633 16.0% 15 39307 21.2%

6 30088 -7.2% 16 34097 5.1%

7 24882 -23.3% i7 36626 12.9%

8 39607 22.1% 18 25563 -21.2%

9 24743 -23.7% 19 24982 -23.0%
10 26930 -17.0%
Compactness 1: 1.385
Compactness 2: 0.301

Table B.1: District populations

for (E/FT-1/25%/1)

Ideal average: 32437
Allowable range: [24327,40546]
District Population % Dev. District Population % Dev.
1 32933 1.5% 11 24969 -23.0%
2 36693 13.1% 12 25349 -21.2%
3 27409 -15.5% 13 35187 8.5%
4 27483 -15.3% 14 26242 -19.1%
5 39599 22.1% 15 40420 24.6%
6 24460 -24.6% 16 31223 -3.7%
7 35829 10.5% 17 39915 23.1%
8 35931 10.8% 18 25839 -20.3%
9 40070 23.5% 19 27187 -16.2%
10 39368 21.4%
Compactness 1: 1.445
Compactness 2: 0.287

Table B.2: District populations for (E/FT-1/25%/2)
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Figure B.2:
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District plan for (E/FT-1/25%/2)
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Figure B.3: District plan for (E/FT-2/25%/1)
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Ideal average:

32437

Allowable range: {24327,40546]
District Population % Dev. District Population % Dev.
1 40048 23.5% 11 39488 21.7%
2 33991 4.8% 12 40386 24.5%
3 34942 7.7% 13 25348 -21.9%
4 36370 12.1% 14 35238 8.6%
5 34467 6.3% 15 24642 -24.0%
6 26981 -16.8% 16 27973 -13.8%
7 32242 -0.6% 17 25191 -22.3%
8 31247 -3.7% 18 25626 -21.0%
9 36954 13.9% 19 39640 22.2%
10 25532 -21.3%
Compactness 1: 1.379
Compactness 2: 0.298

Table B.3:

District populations for (E/FT-2/25%/1)

Ideal average: 32437
Allowable range: {24327,40546]
District Population % Dev. District Population % Dev.
1 26865 -17.2% i1 34454 6.2%
2 25069 -22.7% 12 33186 2.3%
3 30633 -5.6% 13 39458 21.6%
4 30468 -6.1% 14 31159  -3.9%
5 39391 21.4% 15 34715 7.0%
6 27483 -15.3% 16 40387 24.5%
7 35919 10.7% 17 39994 23.3%
8 35829 10.5% 18 27672 -14.7%
9 28363 -12.6% 19 28439 -12.3%
10 26820 -17.3%
Compactness 1: 1.390
Compactness 2: 0.269

Table B.4: District populations for (E/FT-2/25%/2)
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Figure B.4: District plan for (E/FT-2/25%/2)
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Figure B.5: District plan for (E/FT-1/10%/1)
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District plan for (E/FT-1/10%/2)

-

Figure B.6
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District plan for (E/FT-2/10%/1)

Figure B.7
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District plan for (E/FT-2/10%/2)
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Figure B.8
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Figure B.9: District plan for (E/FT-1/5%/1)

146

o

Srcgnie S



Figure B.10

District plan for (E/FT-1/5%/2)
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Figure B.11: District plan for (E/FT-2/5%/1)

148



Figure B.12: District plan for (E/FT-2/5%/2)
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Figure B.13
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Ideal average:

32437

Allowable range: [32113,32761]
District Population % Dev. District Population % Dev.
1 32537 0.3% 11 32433 0.0%
2 32695 0.8% 12 32195 -0.7%
3 32267 -0.5% 13 32124 -1.0%
4 32598 0.5% 14 32722 0.9%
S 32725 0.9% 15 32136 -0.9%
6 32366 -0.2% 16 32150 -0.9%
7 32433 0.0% 17 32409 -0.1%
8 32482 0.1% 18 32341 -0.3%
9 32631 0.6% 19 32544 0.3%
10 32518 0.2%
Compactness 1: 2.583
Compactness 2: 0.570

Table B.5: District populations for the 1% plan
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Appendix C

District Plans under Scenario 2
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Figure C.1: District plan for (E/S-2/25%/1)
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District plan for (E/S-2/10%/1)

Figure C.2
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Figure C.3: District plan for (E/S-2/5%/1)
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Figure C.4: District plan for (E/S-2/25%/2)
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Figure C.5: District plan for (E/S-2/10%/2)
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District plan for (E/S-2/5%/2)

Figure C.6
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Appendix D

District Plans under Scenario 3
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Figure D.1: District plan for (E/S-3/25%/1)
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District plan for (E/S-3/10%/1)

-

Figure D.2
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District plan for (£/S-3/5%/1)

Figure D.3
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District plan for (E/S-3/25%/2)

Figure D.4
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District plan for (E/S-3/10%/2)

Figure D.5
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Figure D.6: District plan for (E/S-3/5%/2)
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Appendix E

District Plans under Scenario 4
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District plan for (E/S-4/25%/1)
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Figure E.1



District plan for (E/S-4/10%/1)

Figure E.2
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Figure E.3: District plan for (E/S-4/5%/1)
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Figure E.4: District plan for (E/S-4/25%/2)
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Figure E.5: District plan for (E/S-4/10%/2)
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Figure E.6: District plan for (E/S-4/5%/2)
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Appendix F

District Plans under Scenario 5
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Figure F.1: District plan for (E/S-5/25%/1)
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Figure F.2: District plan for (E/S-5/10%/1)

175



District plan for (E/S-5/5%/1)

-

Figure F.3
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Figure F.4: District plan for (E/S-5/25%/2)
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Figure F.5: District plan for (E/S-5/10%/2)
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Figure F.6: District plan for (E/S-5/5%/2)
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Appendix G

District Plans under Scenario 6
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District plan for (E/S-6/25%/1)

Figure G.1
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Figure G.2: District plan for (E/S-6/10%/1)
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District plan for (E/S-6/5%/1)

Figure G.3
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District plan for (E/S-6/25%/2)

.

Figure G.4
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Figure G.5: District plan for (E/S-6/10%/2)
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Figure G.6: District plan for (E/S-6/5%/2)
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Appendix H

District Plans under Scenario 7
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Figure H.1:
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District plan for (E/S-7/25%/1)



Figure H.2: District plan for (E/S-7/10%/1)
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Figure H.3: District plan for (E/S-7/5%/1)
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ct plan for (E/S-7/25%/2)
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Figure H.4
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Figure H.5: District plan for (E/S-7/10%/2)
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Figure H.6: District plan for (E/S-7/5%/2)
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