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Abstract 

 

This paper introduces and tests a new approach I have designed for computerized 

formative assessment in education. The assessment, called GRAPH-CAT, is 

developed in the programming language of Python and a simulation is performed 

to measure its effectiveness. GRAPH-CAT is a cognitively diagnostic 

computerized adaptive test (CD-CAT) that estimates mastery of an attribute 

hierarchy using a directed acyclic graph and traditional computer adaptive testing 

(CAT). GRAPH-CAT reports ability based on both attribute mastery and 

traditional item response theory (IRT) ability. In this study, a Monte Carlo 

simulation of student responses is performed using a simulated item bank. Previous 

CD-CATs have generally not relied on traditional CAT based on the IRT 

framework. Instead, a single performance measure, such as 𝜃, is usually replaced 

by classification into knowledge state as defined by mastered attributes. GRAPH-

CAT provides an arguably more robust measure of performance as it is based on 

both attribute mastery and IRT ability. The introduction of the item digraph 

realizes the potential held between the connectivity of attributes to create an 



A Graph Theory Approach to Computerized Formative Assessment   

iii 
 

efficient test. A strength of GRAPH-CAT is that it departs from the CD-CAT 

reliance on stochastic item administration. It is found that GRAPH-CAT is able to 

estimate attribute mastery with 92% accuracy in twenty items with a standard error 

of 0.33 and achieves 83% accuracy in ten items with a standard error of 0.38. 

These results demonstrate how ordering items with an item digraph may help 

provide the needed structure for item administration in CD-CAT. 
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I.  Introduction 
 

 

The underlying theory behind any computerized formative assessment tends 

to focus on the estimation of attribute mastery. An attribute is a cognitive skill or 

process required to correctly answer a problem (Yamada, 2008). Traditionally, 

items have been associated with new attributes introduced by a lesson, while 

assuming that the necessary prerequisite attributes have been mastered. 

Computerized formative assessment, on the other hand, tests both newly 

introduced and prerequisite attributes.  

Formative assessment provides a diagnostic measure whereas the traditional 

ability test provides a summative measure. A key difference between diagnostic 

versus ability testing is that considerably more skills and knowledge outcomes are 

measured in diagnostic testing. The magnitude of the difference can be illustrated 

by considering the topic of Percents from Grade 6 Mathematics. In mastery 

testing, items are designed to only test attributes from the outcome of Grade 6 

Percents. In contrast, diagnostic testing requires that every prerequisite outcome 

from Kindergarten to Grade 5 must also be tested. According to Alberta Education 
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(2017), the magnitude of difference between mastery and diagnostic testing for 

Grade 6 Percents is a factor of approximately nineteen.  

This leap in magnitude of tested skills and knowledge is normal for any 

subject and makes a computer adaptive test (CAT) necessary for cognitively 

diagnostic assessment. A CAT personalizes a test to the ability of the student so 

that every item does not have to be administered. A CAT is generally much shorter 

than the full-length test and has traditionally been used for ability—summative— 

testing. 

The instrument most commonly used for computerized formative assessment 

is the cognitively diagnostic computer adaptive test (CD-CAT). CD-CATs 

generally have not been systematic in certain factors that provide intelligibility to 

item sequencing by content or difficulty (Yamada, 2008; Falmagne, Cosyn, 

Doignon, & Thiéry, 2006; Wang, Chang, & Huebner, 2011; McGlohen, & Chang, 

2008; Gierl, Alves, & Majeau, 2010). This is due to item selection rules that rely 

on stochastic item administration for ability measures. Item selection rules for CD-

CAT attempt to maximize information about the location of the examinee in an 

ability space or minimize error in the estimation of ability. The Kullback-Leibler 

function has widely been the approach taken for CD-CAT as it allows for a 

measure of attribute mastery that does not rely on a continuous ability scale. This 

has proved useful for providing a discrete measure of attribute mastery. 
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This paper offers the following salient contributions to previous 

implementations of CD-CAT. To provide structure and sequencing to item 

administration, a graph data structure, referred to as the item digraph, is 

introduced. The paths of the item digraph induce an organization on the attributes 

by common dimensionality. This organization allows for item administration based 

on the maximum likelihood estimation function. A test shortening technique based 

on the item digraph, referred to as cascading mastery estimation, is proposed and 

proved. A theory for the estimation of prior item difficulty based on the item 

digraph is also proposed, however, practical verification is left as a direction for 

future research. A measure of student progress is made available by monitoring the 

rate of expected mastery towards the learning goal. Meanwhile, the longitudinal 

monitoring of the item digraph offers a graph-theory based interpretation for the 

unification of formative and summative assessment. Monitoring of the item 

digraph also suggests an approach for constructing the ideal item digraph based on 

student responses. This is discussed in detail under Directions for Future Research.  

GRAPH-CAT is a novel CD-CAT that uses the item digraph to estimate 

mastery of attributes. Attribute mastery using GRAPH-CAT is dependent on a 

well-structured hierarchical curriculum. A well-structured hierarchical 

curriculum is one that has been reviewed and designed by subject matter experts, 

so that certain properties of the attributes and the attribute hierarchy are 
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standardized. The well-structured curriculum groups the units of latent skills, 

known as attributes, into larger sets referred to here as learning outcomes.  

GRAPH-CAT reports back to the teacher and student about prerequisite 

learning outcomes that have not yet been mastered by the student. Supplementary 

learning materials are provided based on those learning outcomes that are not yet 

mastered. This type of embedded formative assessment acknowledges that many 

students are deficient in certain required knowledge and skills before learning a 

new topic.  

Embedded formative assessment respects and enhances the structure of the 

traditional lesson-cycle (William, 2011). As an embedded assessment GRAPH-

CAT keeps the teacher in-the-loop and provides them with a curriculum-

companion. For students, the test helps locate their ability in an otherwise 

impersonalized curriculum. GRAPH-CAT aims to improve the learning experience 

for both teacher and student by tailoring the curriculum to individual learning 

needs.  

 

I. A Computer Adaptive Testing 

A CAT helps lower or completely reduce the levels of confusion and 

frustration by ensuring the student is constantly receiving items that are neither too 
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easy nor too difficult (Maravic, Cesar et al., 2010). This adapts the test items to the 

examinee to ensure they stay in what Vigotsky called the Zone of Proximal 

Development (ZPD)(Shabani, Mohamad, & Saman, 2010). The ZPD holds the idea 

that individuals learn best when given tasks that are slightly more difficult than 

what they can do, such that they will need to work together with another to finish 

the task (Shabani, Mohamad, & Saman, 2010). Overall, the CAT maximizes both 

accuracy and efficiency, reducing test-fatigue (Čisar, Radosav, Markoski, Pinter, & 

Čisar, 2010). By creating a unique testing experience, CAT increases security and 

decreases the risk of cheating. The advantages to test administrators include a 

reduced testing time and increased reliability (Kantrowitz, Dawson, & Fetzer, 

2011). The advantages to examinees include a shorter test length and a sense of 

interactivity and personalization (McGlohan & Chang, 2008).  

The maximum likelihood estimation (MLE) function is an ability measure 

that is widely used for implementing a CAT (Hsu, Wang, & Chen, 2013). 

According to Hsu, Wang, and Chen (2013) the MLE measures the amount of 

information an observable random variable X carries about an unknown parameter 

θ. MLE has not generally been used in CD-CAT as the conditional distribution of 

X —learner responses—must be continuous with respect to θ. To understand how 

the MLE can be used for CD-CAT, a brief theoretical background of CAT is first 
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introduced. Note that the formulas in this section are intended for interest only and 

are not necessary for understanding the theory.  

The following notation will be adopted from van der Linden and Pashley 

(2000). Items in the item pool, I, are denoted by 𝑖𝑘 ∈ 𝐼 where the index of 

administration order is denoted by k = 1...K, and K is the length of the test. The 

probability of a correct response to item i is given by  

𝑃𝑖(𝜃)= 
(𝑒𝑎∗(𝜃−𝑏))

1+𝑒𝑎∗(𝜃−𝑏) = 
1

1+𝑒−𝑎∗(𝜃−𝑏) 

where 𝑎 is the discrimination, b is the difficulty of the item i, and 𝜃 is the ability of 

the learner (Lord, 1980).  

The formula for 𝑃𝑖(𝜃) is grounded in the item response theory (IRT) 

framework. IRT is a paradigm for using multi-item scales to determine ability of 

hypothetical constructs (Embretson & Reise, 2013). Traditional computer adaptive 

testing is based in IRT and depends on ability, 𝜃, and item difficulty, b, being on 

the same scale. The values of 𝜃 and b are continuous and are usually found in the 

range of -3 to 3, although values beyond this range are also possible (Baker& Kim, 

2004). The alignment of ability and difficulty scales allows a CAT to administer 

items according to ability (Linacre, 2000).  
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According to the assumptions of IRT, the probability of answering item 

𝑖𝑚 correctly is considered independent from the probability of answering item 𝑖𝑛 

correctly for any 𝑚 ≠ 𝑛 , 𝑖𝑚, 𝑖𝑛 ∈ 𝐼  (Lord, 1980). This allows for construction of 

the maximum likelihood function as follows. Given the response pattern, u, to the 

first N items of a test, a likelihood function provides the probability that the 

examinee has a specific ability for the construct being measured. The likelihood 

function L is defined as: 

L (𝑢|𝜃𝑗) =  ∏ 𝑃
𝑘𝑗

𝑢𝑘𝑗𝑄
𝑘𝑗

1−𝑢𝑘𝑗𝑁
𝑘=1   

where 𝑃𝑘𝑗 is the probability that an examinee with ability 𝜃𝑗  has given a correct 

response to item 𝑖𝑘, 𝑢𝑘 is the correctness of the response to item 𝑖𝑘, and 𝑄𝑘𝑗
 = 1 - 

𝑃𝑘𝑗  is the probability that an incorrect response is given to item 𝑖𝑘. Notice that the 

exponent of 𝑃𝑘𝑗 is 1 when the correct answer is given and it is 0 when the incorrect 

answer is given. This multiplicand disappears—equals 1—if the answer is 

incorrect. Similarly, the exponent of 𝑄𝑘𝑗 is 0 when the correct answer is given, in 

which case this multiplicand is 1. 

To visualize what is occurring, let us consider an example as provided by 

Thompson (2009). Let let 𝑖𝑚 and 𝑖𝑛 be two items with the same difficulty and 

discrimination. The item characteristic curve for the item can be seen in Figure 1 

below. This two-parameter logistic (2-PL) item characteristic curve (ICC) gives the 
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probability that a learner with ability theta (𝜃) correctly answers an item with given 

difficulty and discrimination. Figure 2 displays the probability of an examinee with 

ability theta (𝜃) giving an incorrect response to an item with the ICC in Figure 1. 

 

Figure 1.  The probability, P, of a correct response according to the Item 

Characteristic Curve (2-PL) (Thompson, 2009) 

 

 

Figure 2. The probability, Q=1-P, of an incorrect response according to the Item 

Characteristic Curve (2-PL) (Thompson, 2009) 

 

If an examinee has given a correct response to item 𝑖𝑚 and an incorrect response to 

item 𝑖𝑛, then the two curves in Figure 1 and Figure 2 are multiplied to get the 

likelihood function in Figure 3. The task is to find the maximum point on the 
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likelihood curve. In this case the maximum point is located at theta= 0 (Figure 3). 

This theta value represents the most likely ability of the examinee, given their 

response pattern so far.   

 

Figure 3. L= Likelihood Function (Thompson, 2009) 

 

The formula  

     𝐼(𝜃) = ∑ 𝐼𝑖 

is used to calculate the test information where 𝐼𝑖 is the item information function 

such that, 

𝐼𝑖= 
𝑃′(𝜃)

𝑃(𝜃)𝑄(𝜃)
   (Ackerman, 1989) 

The item information tells us the amount of information an item provides about a 

student with ability 𝜃. Similarly, the test information function provides a measure 

of the amount of information a test provides about a student with ability 𝜃.  
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The maximum likelihood function also produces an index of error, called the 

standard error of measurement (SEM) (Thompson, 2009). According to Thompson 

(2009) the SEM is measured by the spread of the curve, where a wider curve 

indicates more error. The SEM is the square root of the inverse of the test 

information function (Lord, 1980).  

𝑆𝐸𝑀 =
1

√𝐼
 

There are three common approaches used to estimate the real ability, 𝜃, of a 

learner. The most commonly used is the maximum likelihood approach described 

above (Figure 3). The likelihood function need not have a maximum, and if it does, 

the maximizer is not necessarily unique (Geyer, 2003). 

 A variant of the MLE is the maximum a posteriori or MAP for short. In this 

case the likelihood function is multiplied by a posteriori curve that represents the 

probability distribution of the response data from a test (Yan & Magis, 2016). The 

MAP, unlike MLE, accommodates for the response patterns that are all correct or 

all incorrect. Such uniform response patterns reveal a weakness of the MLE as they 

cause the function to continually increase or decrease, so that a true maximum does 

not exist. 

A variant of the MAP Bayesian adaptive algorithm is the expectation a 

posterior (EAP) (Yan & Magis, 2016). The EAP further accommodates for 
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asymmetrical likelihood functions. Rather than finding a single maximum point, 

the EAP takes the average likelihood value as weighted by a posterior function.  

 Unlike the EAP, both the MLE and MAP functions require that a maximum 

point be found. Three common approaches are the Bisection Method, the Newton-

Raphson method, and the Brute Force Method. The Bisection Method divides the 

range of the likelihood function into two sections and evaluates the derivative of 

the midpoint of these sections (Thompson, 2009). According to Thompson (2009), 

if the derivative is negative, the next iteration eliminates a section of possible theta 

values. The Newton-Raphson method, on the other hand, uses both the first and 

second derivative (Thompson, 2009). It determines the rate at which the slope is 

increasing or decreasing to find the maximum. The signs of the first and second 

derivate act as indicators as to where 𝜃 is located relative to the maximum.  

The most straightforward approach to finding the maximum is to evaluate 

the MLE for every value of 𝜃 in the given range. This is called the Brute Force 

Method and, traditionally, it has been viewed as undesirable as it is 

computationally expensive. For example, 6000 iterations are required to calculate 

and compare every 𝜃 at 0.001 increments between -3 and 3 (Thompson, 2009). 

Advances in computational speed have overcome this barrier so that the Brute 

Force Method is now a viable option for determining the maximum of the MLE 

and MAP. 



INTRODUCTION          

 

12 
 

I. A. i Evaluating a CAT with Monte Carlo Simulation The quality 

of a computer adaptive test (CAT) depends on quantities of interest such as test 

length, accuracy, and significance. A Monte Carlo simulation (MCS) can be used 

to evaluate the quality of a CAT without having to create test items (van der 

Linden & Pashley, 2010). MCS is a method of generating large amounts of data 

from a given distribution so that the quality of a CAT can be explored using 

methods of statistical inference (Kroese, Brereton, Taimre, & Botev, 2014). MCS 

has traditionally been considered a last resort when other methods are not feasible, 

but it is now widely regarded as a highly useful method of experimentation 

(Kroese, Brereton, Taimre, & Botev, 2014). According to Krose et al. (2014) MCS 

is frequently used in applications of science, finance, and engineering due to its 

wide-ranging applicability and simplicity.  

MCS has its roots in World War II from a group of scientists working at Los 

Alamos Scientific Laboratory (LSASL). It was first used to model neutron 

diffusion in nuclear fission where the path of a neutron was traced as it underwent 

various interactions (Gass & Assad, 2005). According to Gass, Arjun, and Assad 

(2005), the fission researchers were able to determine actual outcomes by sampling 

from known distributions of neutron collision-types.  

MCS allows for the evaluation of CAT-related issues by sampling learner 

responses from a given distribution of ability (van der Linden & Pashley, 2010). 
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According to van der Linden and Pashley (2010) MCS is able to evaluate item 

exposure, size of the item bank, and precision of examinee scores. MCS simulates 

the administration of a CAT under varying conditions for a large number of 

examinees. Using a random number generator, the entire data set of binary values 

representing correct and incorrect responses is generated given a sample of 

simulated ability (θ) values. This approach is highly valuable when real student 

responses are not available.  

 

I. B Cognitively Diagnostic Assessment with the Item Digraph 

The described approach to CAT is generally used for ability testing as it 

produces a continuous measure of ability (θ). For use in diagnostic testing, the 

continuous measure of ability produced by CAT must be reconciled with a discrete 

measure of attribute mastery. An example of attributes with a hierarchical structure 

can be seen in Figure 4 below (Tatsuoka, 2009).  
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Attributes 

• Converting a whole number to a fraction or mixed number 

• Separating a whole-number part from a fraction part 

• Simplifying before getting the common denominator 

• Finding the common denominator 

• Borrowing one from the whole-number part 

• Column borrowing for subtraction of the numerators 

• Reducing answer to the simplest form 

• Subtracting numerators 

 

 

Figure 4. An example of attributes for fraction subtraction problems (Tatsuoka, 

2009, pg 41) 

 

An example of a well-structured curriculum of attributes is offered by the 

achievement indicators from the Grade 6 Specific Learning Outcome of Percents 

outlined by the Alberta Program of Studies in Grade 6 Mathematics (Education, 

2007) (Figure 5). These attributes belong to the same learning outcome hence they 

are not ordered by a hierarchy as none is a prerequisite to the other. 
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Specific Outcome Achievement Indicators 

Demonstrate an understanding of percent 

(limited to whole numbers), concretely, 

pictorially and symbolically. 

• Explain that “percent” means “out of 100.” 

• Explain that percent is a ratio out of 100. 

• Use concrete materials and pictorial 

representations to illustrate a given percent. 

• Record the percent displayed in a given 

concrete or pictorial representation. 

• Express a given percent as a fraction and a 

decimal. 

• Identify and describe percents from real-life 

contexts, and record them symbolically. 

• Solve a given problem involving percents. 

 

 

Figure 5. An example of attributes for the specific outcome of Percents from the 

Grade 6 mathematic program of studies (Education, 2007) 

 

 The cognitive model used by GRAPH-CAT describes attribute mastery 

around a curriculum structure. According to Roussos, DiBello, Stout, Hartz, 

Henson, and Templin (2007), the notion of describing the cognitive model is 

central to all diagnostic tests. The GRAPH-CAT cognitive model combines 

elements of Graph Theory, the Rule Space Method (RSM)(Tatsuoka, 2009), and 

Partially Ordered Set Theory (POSET). The item digraph, introduced and 

described herein, plays a central role as it allows for a discrete measure of attribute 

mastery that is based on a continuous measure of IRT ability (θ).  

As of yet, Shadow Testing is one of the few successful attempts at 

implementing a diagnostic test using both IRT and attribute mastery (McGlohen & 



INTRODUCTION          

 

16 
 

Chang, 2008). McGlohen and Chang (2008) conducted a study on diagnostic 

testing with Shadow Testing where the item parameters were precalibrated on the 

basis of a simple random sample of state examinees who wrote a state-mandated 

large-scale assessment. The item bank contained 396 items for the math portion of 

the test. The estimated parameters of 3000 of the 6000 examinees who wrote the 

test were used in the simulation. They found that this model achieved, on average, 

81.7% accuracy across all attributes. This value is considered ‘good’ as the 

accuracy is high enough to provide useful formative feedback. To understand how 

a graph data structure can be used to estimate ability using both IRT and attribute 

mastery, let us first look into the required theories of the RSM.  

I. B. i Required Background on The Rule Space Method. Tatsuoka 

and Tatsuoka’s (1983) Rule Space Method (RSM) is one of the founding models 

for cognitive diagnosis (Tatsuoka, 2009). The RSM is a probabilistic model 

designed to determine mastery of attributes. The RSM gives the probability of a 

response pattern, expressed by an ordered pair  

(𝜃, 𝜁) 

where 𝜃 represents ability and 𝜁 represents a cautionary index (Tatsuoka, 2009). 

The cautionary index ( 𝜁 ) provides a measure of response unusualness and it can 

act as an indicator of cheating or random responses (Yamada, 2008). In a sense, the 



INTRODUCTION          

 

17 
 

RSM is analogous to classification in machine learning where input is classified 

into output classes based on observable features. An example of this is the 

classification of handwritten numbers into text-based numbers. The issue with 

using attributes as features is that often they are not directly observable. This 

latency is a problem when trying to classify response patterns into states of 

attribute mastery.  

The Q-matrix was introduced to account for precedence relationships—pre-

requisite relationships—that manifest as latent attributes. The Q-matrix describes 

the precedence relationship in detail so that the RSM is able to extract information 

about the student (Tatsuoka, 2009). The Q matrix represents the items and the 

attributes that they measure. If an attribute is needed to solve the item, then the 

item × attribute entry is set to 1. If the attribute is not needed by the item, then the 

entry is set to 0. An example of a Q matrix, taken from Yamada (2008) can be seen 

below: 

Table 1 Example of 2×3 Q Matrix 

 Items 

 

Attributes 

1 2 3 4
1 1 1 0 0
2 0 1 1 0

 

 

 

Note: Yamada, 2008 
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In the matrix configuration above, a 1 in the column of an item indicates that 

the item provides a measure for mastery of the corresponding row attribute. 

Similarly, a 0 indicates that the item does not measure the corresponding row 

attribute. For example, in column 1, the vector [
1
0

] indicates that item 1 measures 

attribute 1 and does not measure attribute 2. Concretely, an example of items and 

attributes that might be represented by the Q-matrix in Table 1 above can be seen 

in Table 2 and Table 3 below. 

Table 2 An Example of Items that Might have the Q-Matrix in Table 1 

# Attributes 

1 Adding Numerators 

2 
Reducing answer to 

simplest form 

 

Table 3 An Example of Items that Might be Represented by the Q-Matrix in Table 1 

# Items 

1 3/4 + 3/4= ? 

2 What is ¾ + ¾ in reduced mixed form? 

3 Convert 6/4 to reduced mixed form 

4 4 × 4= ? 

 

 The mapping from response patterns to attribute mastery takes into account 

ideal responses. The ideal response pattern would occur if no slips have been 
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made. Slips are clerical errors that stem from inattention or carelessness rather than 

deficiencies in understanding or knowledge (Tatsuoka, 2009). They lead to 

incorrect responses and response patterns that are not ideal. 

The ideal response pattern can be inferred from attribute mastery patterns. 

Attribute mastery patterns, also referred to as knowledge states, are the true set of 

attributes that have been mastered by the learner (Tatsuoka, 2009). The mapping 

from attribute mastery pattern to ideal response pattern is determined by the 

Boolean Descriptive Function (BDF)(Tatsuoka, 2009).  

The BDF is used to derive the ideal response patterns from a knowledge 

state. Tatsuoka (2009) states the definition of the BDF as follows. Given an item X 

and the set of attributes A = {𝑎1, 𝑎2, … 𝑎𝐿} required to solve X: 

BDF(𝐴)= {
1 𝑖𝑓 𝑎𝑖  𝑖𝑠 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 ∈ 𝐴
0 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑖 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑖𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑

} 

The proposed graph theory approach to CD-CAT makes a slight adaptation to the 

BDF as follows: 

BDF(𝐴)= {
1 𝑖𝑓𝑓 𝑎𝑖  𝑖𝑠 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 ∈ 𝐴
0 𝑖𝑓𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑖 ∈ 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑖𝑖𝑠 𝑛𝑜𝑡 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑

} 

The iff (if and only if) indicates a two-way implication. Therefore, if all attributes 

of a set A are mastered then BDF(A)= 1 and also if BDF(A)=1 then all attributes 

of A are mastered. Similarly, if there exists at least one attribute of set A that is not 
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mastered, then BDF(A)=0 and also if BDF(A)=0 then there is at least one attribute 

of set A that is not mastered. This updated definition of the BDF is essential for 

understanding assignment of mastery to learning outcomes (see New Definitions 

Central to GRAPH-CAT).  

I. B. ii Required Background on Graph Theory. Several attempts 

have been made to base a CD-CAT on the RSM (Tatsuoka, 2009). A common 

problem in previous attempts is that item selection is random until a general 

estimation can be inferred about the knowledge state of the learner (Yamada, 

2008). In practice, this could potentially cause confusion for the examinee, as the 

difficulty and content of the administered items is unstructured. As demonstrated 

in the following sections, a graph can provide order to item administration. 

Graph theory is a branch of mathematics that employs graphs to facilitate the 

understanding of relationships between objects of interest. A graph is composed of 

nodes, also called vertices or points. In practice, the nodes are associated with the 

object of interest and the edges are associate with a relationship between the 

objects (Tatsuoka, 2009). In modelling a well-structured curriculum with a graph, 

the nodes are associated with a learning outcome and the edges represent a 

prerequisite relationship between the learning outcomes.  

The edges of a graph can be undirected or directed (Figure 6 and Figure 7). 

In an undirected graph, there is no difference between the two vertices connected 
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by an edge (Voloshin, 2009). Conversely, in a directed graph, the edges are 

directed. The nodes and edges of a graph can be represented as sets of unordered or 

ordered pairs. For an undirected graph, the pairs in the set are unordered and are 

represented using curly brackets: 

E(G)= { {1,2}, {1,5}, {2,3}, {2,4}, {2,5}, {3, 1} } 

 For a directed graph, also referred to as a digraph, the pairs in a set are ordered and 

are represented using parentheses: E(G)= { (1,2), (2,3), (3,1) } 

 

Figure 6. An undirected graph with 5 nodes 

 

 

Figure 7. A directed graph (digraph) with 3 nodes 
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The nodes are connected by edges, otherwise called arcs or lines. In an 

undirected graph, two nodes x and y of G are adjacent, or neighbours, if {x, y} is 

an edge of G (Diestel, 2017). In a digraph, two nodes x, y of G are adjacent if      

(x, y) is an edge of G. A vertex v is incident with an edge e if v ∈ e (Diestel, 2017). 

The degree of a node is the number of its neighbors (Diestel, 2017). 

A walk of length 𝑘 in a graph is an alternating sequence of vertices and 

edges which begins and ends with vertices: 

(𝑣0, 𝑒0, 𝑣1, 𝑒1, … 𝑣𝑘−1, 𝑒𝑘−1, 𝑣𝑘) 

The edges and vertices need not be distinct in a walk. If the graph is directed then 

𝑒𝑖 is an edge from 𝑣𝑖 to 𝑣𝑖+1 (Diestel, 2017). A trail is a walk in which all edges 

are distinct. A path is a trail in which all vertices, except possibly the first and last 

vertices, are distinct. A path in a graph is denoted by a sequence of edges that 

connect a sequence of adjacent vertices. In a digraph, movement between any 

vertices in a path is unidirectional (Diestel, 2017). 

A cycle is a directed path beginning and ending at the same vertex which 

passes through at least one other vertex (Figure 7) (Aho, Garey, & Ullman, 1972). 

A loop is an edge of the form (𝑣, 𝑣), meaning it connects a vertex to itself (Aho, 

Garey, & Ullman, 1972). A simple graph contains no loops and an acyclic graph 

contains no cycles (Aho, Garey, & Ullman, 1972).  
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  A structure that will help introduce the item digraph, is the tree (Figure 8). 

In a mathematical context, a tree is an undirected graph in which any two nodes 

are connected by exactly one path (Diestel, 2017).  

 

Figure 8. A tree graph with 5 nodes 

 

A rooted tree is a tree in which a special node is singled out, as can be seen by 

node 1 in Figure 8. As a data structure, the edges of the tree are implicitly directed 

away from the root (Shaffer, 1997). The level of a node in a rooted tree is its 

distance as determined by the number of edges in the path from the root to the 

node (Diestel, 2017). The child of a node is an adjacent node at a higher level. A 

leaf of a rooted tree is a node with no children. A rooted tree data structure where 

each leaf is at the same level is often referred to as being height balanced (Figure 

9) (Shaffer, 1997).  



INTRODUCTION          

 

24 
 

 

Figure 9. A height-balanced tree 

  

A rooted digraph is a directed graph in which a special node is singled out 

as the root (Figure 10)(Harary, 1955). A sink of a rooted digraph is a node with no 

outgoing edges (Figure 10)(Margoliash, 2010). As with the rooted tree, the level of 

a node in a rooted digraph is the number of edges in the path from the root to the 

node.  

 

Figure 10. A rooted digraph with one sink 
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The next section combines these graph theory concepts with the RSM to define the 

item digraph.  

I. B. iii The Item Digraph.  The relation “A is harder than B,” will be 

expressed using a directed edge (Figure 11). 

 

Figure 11 A diagrammatic representation of the prerequisite relationship 

 

The directed edge represents outcome B as being prerequisite to outcome A. To 

gain deeper insight into the intuitive meaning of a precedence relationship, 

consider the following example taken from Tatsuoka (2009): 

Item A: add 
1

2
 and 

2

3
 

Item B: add 
1

3
 and 

2

3
 

Item A is harder than item B because in addition to the attributes required for item 

A, it requires mastery of the cognitive process of getting the common denominator 

of 1/2 and 2/3.  
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Given two items from a Q-matrix, precedence between the items is discussed 

in terms of the relationship between their measured attributes. If item 𝑖𝑚 measures 

a set of attributes 𝐴𝑚 and 𝑖𝑛 measures a set of attributes 𝐴𝑛, where 

𝐴𝑚 ⊆ 𝐴𝑛 

then the cognitive processes required to solve 𝑖𝑚 are prerequisites to those required 

to solve 𝑖𝑛. This relationship forms an order on the items, attributes, and learning 

outcomes.  

Tatsuoka (2009) observes that by looking into the set theoretical 

representations of the prerequisite relationships, it is possible to write chains or 

totally ordered sequences of items. She diagrammatically represents the 

precedence relations using what she calls an item tree (see Figure 12). 
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Figure 12. An item tree for fraction subtraction problems (Tatsuoka, 2009, 

page 130) 

 

To construct the item digraph, let us first root the item tree at a node of 

interest, and restrict interest to those nodes connected to the root. For example, we 

root the item tree in Figure 12 at the node containing item 10 measuring attributes 

{2, 3, 5, 6, 7}. Figure 13 is obtained by rotating the item tree in Figure 12 by 180 

degrees so that the most difficult item (item 10) is at the top.  

Note that the item tree does not satisfy the mathematical definition of a tree 

as it allows for more than one path between two vertices (Figure 12). Therefore,  
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Figure 13. A rooted item digraph depicting the item tree in Figure 12 rotated by 

1800 

 

the rotated item tree in Figure 13 will be referred to as a rooted item digraph or 

item digraph for brevity. The learning outcome for which diagnosis is sought is 

represented as the root such that items closer to the root are more difficult than 

items further from the root. The item digraph is a directed acyclic graph that is 

both simple and rooted where set inclusivity of attributes is represented in as few 

edges as possible (see Required Background on Graph Theory). It is simple as 

learning outcomes are not discussed as being prerequisite to themselves. Further, it 
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is acyclic, as topics learned at the same level are not considered to be prerequisites 

to one another. Thus, edges are always directed from a lower to a higher level.  

 

 

Figure 14. An item digraph derived from The Alberta Mathematics Kindergarten 

to Grade 12 Scope and Sequence Document (Education, 2017) 

 

Each node of the item digraph represents a learning outcome from a 

curriculum of studies. The terms node and learning outcome will often be used 

here interchangeably. Each node contains both a set of items and the attributes 

measured by the items. It follows that each node is, implicitly, associated with a 
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unique Q-matrix. Further, each edge represents set inclusivity between the 

attributes of the nodes. 

A well-structured hierarchy of learning outcomes and their associated 

attributes, allows for the construction of an item digraph. For example, Figure 14 is 

the item digraph extracted from the Percents topic from Alberta Grade 6 

Mathematics Specific Outcome 6 (Education, 2007). The arrow from tail to head 

represents a prerequisite relationship from a more difficult learning outcome in a 

higher grade to an easier learning outcome in a previous grade.  

The levels in the item digraph are representative of hierarchical sets of 

attributes such that for any nodes 𝑣𝑖 and 𝑣𝑗 in a path from root to sink we have 

𝑙𝑒𝑣𝑒𝑙(𝑣𝑖) ≤ 𝑙𝑒𝑣𝑒𝑙 (𝑣𝑗) 𝑖𝑓𝑓 𝐴(𝑣𝑗)  ⊆  𝐴(𝑣𝑖) 

for all 0 ≤ 𝑖 ≤ 𝐿,  0 ≤ 𝑗 ≤ 𝐿 where A(𝑣𝑛) represents the set of attributes belonging 

to node 𝑣𝑛 and L represents the depth of the item digraph. This means that a node 

at a lower level —closer to the root—in a hierarchical path requires additional 

skills to those nodes at higher levels. Let us refer to this property as set inclusivity 

of the item digraph.  
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I. B. iv The Theory of Difficulty to Attribute Alignment. To 

hypothesize a prior difficulty for each item in the item digraph, a theory of 

difficulty to attribute alignment is required. The theory is stated as follows: 

The number of true attributes measured by an item determines the item 

difficulty.  

This theory is central to the GRAPH-CAT test scale and the assignment of mastery 

to the mastery graph. For brevity the theory will be referred to as difficulty to 

attribute alignment. Difficulty to attribute alignment allows for a prior difficulty 

estimate for each item characteristic curve (ICC) distribution in a root to sink path. 

In other words, because the cognitive complexity in a root to sink path decreases 

monotonically, an underlying continuous IRT test scale can be assigned for both 

prior difficulty and ability. The accuracy of prior difficulty of items and estimated 

ability of the learner are based on the accuracy of threshold assignment to each 

grade. A longitudinal approach to providing a posterior measure of item difficulty, 

based on student responses, is proposed as a direction for future research. 

Given a high-quality test such as TIMMS, difficulty to attribute alignment is 

shown to hold (Mullis et al., 2008). Mullis et al. (2008) conducted a study whereby 

8 booklets, with 163 items in mathematics, were administered to grade eight 

students from 42 different countries. An analysis of the correlation between the 
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attributes measured by the item and the item difficulties, indicated that most of the 

variance in the items (76%) could be explained by the attributes identified by the 

Q-matrix (Tatsuoka, 2009, p.279). This means that the Q-matrices came close to 

accurately specifying the set of attributes that were both necessary and sufficient to 

providing a correct response to the items. Further, this indicates the attributes were 

of a similar granularity. The test scale based on difficulty to attribute alignment 

assumes that these two properties of the Q-matrix hold. The remainder of this 

section explores these two assumptions in more detail. 

The first assumption is straightforward and states that the specified set of 

prerequisite attributes measured by an item is sufficient and every attribute in the 

set is necessary. Such a set of prerequisite attributes ensures that the item digraph 

is content-complete. The content-complete item digraph is discussed further under 

Directions for Future Research.   

 The second assumption is that attribute granularity is standardized where 

attribute granularity refers to a predetermined range of acceptable time required to 

master an attribute among a population of students at the same ability level. For 

example, suppose we have two attributes a4 and a5. Attribute a4 states a general 

skill: the student will be able to work with simple fractions. Meanwhile, attribute 

a5 states a more specific skill: the student will be able to add the numerators of 

two fractions with a common denominator. It is clear that the ability to “work with 
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simple fractions” is composed of many subtasks, where “add(ing) the numerators 

of two fractions” might be one of the subtasks. Therefore, to master a5 would, on 

average, require significantly more time to master than a4. By changing a5 to a 

more specific skill we come closer to keeping the attributes at a small and 

consistent granularity. An example of a more specific skill for a5 might be: the 

student will be able to express a fraction in reduced form. 

This assumption may require substantiation as, according to Rupp, Templin, 

and Henson (2010, p.53), unitization of attribute granularity does not make sense 

since cognitive complexity differs depending on ability. Therefore, they argue, we 

have no frame against which to determine the unit of standardization. The example 

they use to illustrate the ineffectiveness of unitizing attributes is that a grade eight 

item will be easier for a grade eight student than for a grade three student.  

Contrary to the position taken by Rupp, Templin, and Henson (2010), 

cognitive complexity of a task must be examined at the ability of the learner as it is 

determined by the number of attributes required by the task. This can be seen by 

exploring the expected distribution of attributes and attribute mastery. According 

to the natural evolution of curriculum development, we expect the number of 

attributes measured by any learning outcome at a given grade to be approximately 

the same. We further expect that any student at a given grade has mastered 

approximately the same number of attributes. In other words, the number of 
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mastered attributes at any grade should correlate highly with the number of 

measured attributes at any grade. To use a parallel example to that provided by 

Rupp, Templin, and Henson (2010), a grade eight item will be equally as easy for a 

grade eight student as a grade three item will be for a grade three student.  

By satisfying the two assumptions of difficulty to attribute alignment, 

cognitive complexity of each learning outcome at a given grade comes closer to 

being standardized. While theoretically the two assumptions of the test scale are 

feasible, they are not expected to hold with current curriculum structures. If the 

two assumptions of the prior test scale do not hold, then the observed number of 

attributes an item measures is not expected to account for such a large portion of 

the variance in IRT item difficulty as that observed by Mullis et al. (2008). 

I. B. v New Definitions Central to GRAPH-CAT. Difficulty to 

attribute alignment allows for a test scale to be constructed without student 

responses. To understand the test scale used by GRAPH-CAT a few new 

definitions must be introduced. To begin, let us examine each path of the item 

digraph.  

A hierarchical path can be defined as follows: Given a root to sink path 𝑃 =

(𝑣0, 𝑒0, 𝑣1, 𝑒1, 𝑣2, 𝑒2 … 𝑣𝐿, 𝑒𝐿) in an item digraph of depth 𝐿, a set of ordered 

pairs, H, is created where 𝐻  =  { (𝑣0, 𝑏0), (𝑣1, 𝑏1), (𝑣2, 𝑏2) … (𝑣𝐿, 𝑏𝐿)}. Each node 



INTRODUCTION          

 

35 
 

(vertex) 𝑣𝑖 of H is assigned a value of 𝑏𝑖 𝜖ℝ only if 𝑏𝑖 < 𝑏𝑗 whenever 𝑖 > 𝑗, for all 

i and j, where  1 ≤ 𝑖 ≤ 𝐿 and 1 ≤ 𝑗 ≤ 𝐿  (see Figure 15). 

 

Figure 15. A conceptual diagram of the hierarchical path 

 

Stated conceptually, higher level nodes—those nodes further from the root— are 

assigned lower values of IRT item difficulty. This allows for the construction of a 

test scale that is a partitioned IRT scale where both ability and difficulty are strictly 

increasing with grade. The administration of CAT to a hierarchical path using such 

a test scale will be referred to as a path-CAT.  

Let 𝑏𝑖 represent the highest difficulty value belonging to the node 𝑣𝑖  for 

grade 𝑖 in a hierarchical path of an item digraph. Given an ability value of 
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𝜃 𝜖 ℝ  on the continuous latent ability scale assigned to a hierarchical path, a 

mastery path is defined by the following assignment of mastery: 

  M(𝑣𝑖) = {    
1   𝑖𝑓𝑓    𝑏𝑖 <  𝜃
0   𝑖𝑓𝑓   𝑏𝑖  ≥  𝜃

    } 

for any grade level i where 1 ≤ 𝑖 ≤ 𝐿. It follows from assignment of mastery, the 

definition of a hierarchical path, and the transitive property of inequality that any 

node labelled with a 0 is always of a lower level than any node labelled 1 (Figure 

16).  

 

Figure 16. An example of a mastery path 

 

The highest mastered outcome (HMO) represents the mastered node closest 

to the root in a mastery path. According to the BDF, the learner has mastered all 

attributes in the HMO in a mastery path. It follows that the node directly above it 
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contains at least one attribute that is not mastered (Figure 17). The HMO in a 

mastery path will also be referred to as the mastery node. The adjacent node closer 

to the root contains the IRT ability (𝜃) and it will be referred to as the ability node. 

By the BDF the mastery node has a value of 1 and the ability node has a value of 0. 

In Figure 17 below, the ability node is at level 1 from the root and the mastery 

node is at level 2 from the root. The ability node is estimated using a path-CAT.  

 

Figure 17. Ability versus mastery in a mastery path 

 

A mastery graph is an item digraph where every node has been assigned a 

mastery value of 0 or 1 (Figure 18). Every student has exactly one true mastery 

graph for any given learning outcome. The mastery graph is the estimated output 

from an administration of GRAPH-CAT and it acts as the cognitive model for the 

student. It is from the mastery graph that the estimated knowledge state is derived. 

ability 

mastery 
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Figure 18. An example of a mastery graph 

 

Using the item digraph for the Specific Outcome for Grade 6 Percents 

(Figure 5), a hierarchical path would resemble the highlighted path in Figure 19. 

The b value in Figure 19 refers to the upper threshold on the continuous IRT scale 

of a node according to the test scale. An alternative way to view the b value, is the 

highest item difficulty belonging to a node, if the item bank provided an item for 

an infinitesimally small granularity of item difficulty. 
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Figure 19 An example of a hierarchical path in the Grade 6: Number-Specific 

Outcome 6 (Percents) item digraph 

 

Suppose that, in the Grade 6-Percents item digraph (Figure 19), a student 

has an ability on the IRT scale of θ= 0 for the highlighted hierarchical path. Then 

according to assignment of mastery, the hierarchical path in Figure 19 becomes the 

mastery path in Figure 20. If we suppose a student learning the Grade 6-Percents 

topic has an ability of 𝜃 = 0 in every hierarchical path in Figure 19, then their 

mastery graph can be seen in Figure 21.  
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Figure 20 A mastery path associated with the hierarchical path in Figure 19 for a 

student with an IRT ability of 0 

 

 

Figure 21. A mastery graph for a student with an IRT ability of 0 in every 

hierarchical path of the Grade 6-Percents item digraph in Figure 19 
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The notion of knowledge state is central to all diagnostic tests. According to 

Tatsuoka (2009), the original purpose of the Boolean-algebra formulated from a Q-

matrix is to determine the universal set of knowledge states. Given a Q-matrix with 

n attributes, she infers that there are 2𝑛 possible attribute mastery patterns 

(Tatsuoka, 2009, p 79). This value represents all possible assignments of 0 and 1 to 

each attribute to represent non-mastery and mastery, respectively. 

 There is an issue with this inference as the number of mastery graphs will 

generally be less than 2𝑛. Observe that the mastery graph is an alternative way to 

visualize the knowledge state (Figure 21). Assignment of mastery will always 

assign 0 to a lower level node than any node assigned 1. This places a restriction 

on the assignment of mastery to nodes so that a restriction is also placed on the 

assignment of mastery to attributes. As a result, the number of possible knowledge 

states is less than 2𝑛 for any set of attributes with at least one precedence 

relationship.  

I. B. i Partially Ordered Set Theory.  Insight can be gained into the 

unobservable properties of the precedence relationship using partially ordered set 

(POSET) theory (Godin, Missaoui, & Alaoui, 1991). To understand a POSET, a set 

and a binary relation must first be defined. Intuitively, a set is a collection of 

objects that satisfy a certain property (Jech, 2013). The binary relation indicates 

that, for certain pairs in the set, one element precedes another. A POSET is a set, 
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A, together with a binary relation on A. For all practical purposes, let A be the set 

of nodes of the item digraph. The binary relation acts on the set of attributes 

belonging to each node.  

The following notation is described to assist with definitions A to E below. 

The notation 𝑎 ∈  𝐴 indicates object a is a member of set A. The subset notation, 

A⊆ 𝐵, indicates that every object belonging to set A is also a member of set B 

(Youri, 2008). The cross-product notation, 𝐴 × 𝐵, denotes the set of all ordered 

pairs (a, b) such that a ∈ A and b ∈ B (Youri, 2008).  

Definition A: Given a set A, a binary relation on A is a subset 𝐵𝑅 ⊆ 𝐴 × 𝐴 

(Levine, 2011) 

Definition B: Given a binary relation, R, on a set A, R is reflexive iff (X, X) ∈ R 

for all X ∈ A (Levine, 2011)  

Definition C: Given a binary relation, R, on a set A, R is transitive iff (X, Y) ∈ R 

and (Y, Z) ∈ R ⇒ (X, Z) ∈ 𝑅 (Levine, 2011) 

Definition D: Given a binary relation, R, on a set A, R is antisymmetric iff 

(𝑋, 𝑌) ∈ 𝑅 and (𝑌, 𝑋) ∈ 𝑅 ⇒  𝑋 = 𝑌 (Levine, 2011) 
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Definition E: A set A with a binary relation 𝑅 ⊆ 𝐴 𝑥 𝐴 is partially ordered if the 

elements of R are reflexive, transitive, and antisymmetric (see Def A, B, C, and D) 

(Levine, 2011) 

The Hasse Diagram can be used to represent a POSET and gain a deeper 

understanding of the data and the knowledge associated with the data (Figure 22) 

(Godin, Missaoui, & Alaoui, 1991). According to Weisstein (2019), a Hasse 

diagram is a graphical representation of a POSET with an implied upward 

orientation. Each node of the Hasse diagram represents an element of the POSET.  

 

Figure 22. A Hasse diagram representation of the Q matrix in Table 1 (Yamada, 

2008) 

 

To understand the two rules of the Hasse diagram provided below, note that 

element z of a POSET (R, ⊆) is said to cover another element x provided that there 
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exists no third element y in the POSET for which x⊆ 𝑦 ⊆ 𝑧 (Weisstein, 2019). 

With this understanding, a line segment is drawn between nodes according to the 

following rules: 

1. For x and z in the POSET, if x⊆ 𝑧 then the node corresponding to x occurs 

lower in the diagram than the node corresponding to z (Weisstein, 2019) 

2. The line segment between the nodes corresponding to any two elements x and y 

is included in the diagram if and only if x covers y or y covers x (Weisstein, 2019) 

A consequence of this definition is that the Hasse diagram represents the transitive 

relationship in as few edges as possible, as is required with set inclusion in the item 

digraph (Aho, Garey, & Ullman, 1972). Viewing the item digraph as a Hasse 

Digram may allow for further understanding of the precedence relationship and its 

associated knowledge. A deeper understanding of the structure of the item digraph 

also helps to introduce a natural test shortening technique, referred to here as 

Cascading Mastery Estimation (CME). 

I. B. ii Cascading Mastery Estimation.  CME helps address the 

problem of content magnitude for diagnostic testing by iteratively reducing the 

number of learning outcomes that must be tested. The general idea is that if the 

specified precedence relationships are accepted as valid then estimation of the 

ability node determines assignment of mastery and ability to all connected nodes. 
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Thus, upon discovering ability in each hierarchical path, test length is shortened by 

inferring mastery and non-mastery in other hierarchical paths.  

Before describing CME in detail, let us put together the processes described 

so far. To begin, a path is selected and the path-CAT is administered. When the 

path-CAT ends, the IRT ability value (𝜃) is mapped to a node in a hierarchical 

path. The grade level of the ability node is used as the estimated grade ability node 

of the learner. The hierarchical path is then converted to a mastery path according 

to assignment of mastery. Finally, subsequent paths are shortened by using CME to 

infer mastery and non-mastery in other paths. 

To validate the CME process, the following two propositions are proved. 

Definitions F and G are introduced to facilitate the proofs. For an intuitive 

understanding of CME, a concrete example from Grade 6 Percents is provided at 

the end of this section. The following proofs are not required to understand CME 

and they may be skipped if desired. 

Definition F: Let 𝑅 be a rooted digraph with root 𝑣0. An upwards subgraph is a 

rooted subgraph of 𝑅, 𝑅′, such that 𝑅′ has exactly one sink, 𝑣𝑘, and every path P in 

𝑅′ starts at 𝑣0 and ends at 𝑣𝑘(Figure 23) . 
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Figure 23. Illustration of an upwards subgraph 

 

Definition G: Let 𝑅 be a rooted digraph. A downwards subgraph is a rooted 

subgraph of 𝑅, 𝑅′, with root at 𝑣0
′ ∈ 𝑅 such that for every path 

P=(𝑣0
′, 𝑒0, 𝑣1, 𝑒1, … 𝑒𝑘−1, 𝑣𝑘) in 𝑅′, 𝑣𝑘 is a sink node of R (Figure 24). 

 

Figure 24. Illustration of a downwards subgraph 
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Proposition 1. If node z in an item digraph is mastered then for every node, v, in 

the downwards subgraph (Def G) with root at z we have BDF(𝐴𝜈)=1 where 𝐴𝑣 is 

the set of attributes belonging to v. 

Proof: Let z be a mastered node in an item digraph R and let R′ be the 

downwards subgraph with root at z. Let P be any path in R'  such that 

for any node 𝑣 in 𝑃 , 𝐴𝑣 represents the set of attributes belonging to 𝑣.   

For all 𝑣𝑖 ∈ 𝑃 we have 𝑙𝑒𝑣𝑒𝑙(𝑧)  ≤ 𝑙𝑒𝑣𝑒𝑙 (𝑣𝑖)  as z is the root of R′.  

Therefore, for any node 𝑣𝑖 ∈ 𝑃 it follows from set inclusivity of the item digraph 

that 𝐴𝑣𝑖
⊆  𝐴𝑧. Since all attributes in 𝐴𝑧 are mastered it follows that all attributes in 

𝐴𝑣𝑖
 are mastered. As 𝑣𝑖  was arbitrariliy selected, it follows from the BDF that 

BDF(𝐴𝑣) = 1 for all 𝑣 ∈ 𝑃. As P was arbitrarily selected, it follows that for every 

path P∈ R′ ,  we have BDF(𝐴𝑣)=1 for every v ∈ 𝑃. Thus, for all nodes, v, in the 

downwards subgraph with root at z we have BDF(𝐴𝑣)=1. ∎ 

Proposition 2. If node z in an item digraph is an ability node then for every 

node, v, in the upwards subgraph (Def F) with sink at z we have BDF(𝐴𝑣)=0 where 

𝐴𝑣 is the set of attributes belonging to v..  

Let z be an ability node in an item digraph R and let R′ be the upwards 

subgraph with sink at z. Let 𝑃 be any path in R′ such that for any node v 
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in P,  𝐴𝑣 represents the set of attributes belonging to v. For any node 𝑣𝑖  ∈ 𝑃 it 

follows from set inclusivity that 𝐴𝑧 ⊆  𝐴𝑣𝑖
 as 𝑙𝑒𝑣𝑒𝑙(𝑣𝑖) ≤  𝑙𝑒𝑣𝑒𝑙 (𝑧). Since z is an 

ability node, it follows from the BDF that there exists an attribute in 𝐴𝑧 that is not 

mastered. By set inclusivity it follows that there exists an attribute in 𝐴𝑣𝑖
 that is not 

mastered. By the BDF we have BDF(𝐴𝑣𝑖
) = 0. As 𝑣𝑖 was arbitrarily selected it 

follows that BDF(𝐴𝑣)= 0 for all 𝑣 ∈ 𝑃. As P was arbitrarily selected, it follows that 

for every P∈ R′ we have  BDF(𝐴𝑣)=0 for every v∈ 𝑃.  Thus, for all nodes 𝑣 in the 

upwards subgraph with sink at z we have BDF (𝐴𝑣) = 0.∎ 

Recall from the Grade 6-Percents example provided in Figure 19, that a 

student with ability 𝜃 = 0 in the first path will have the mastery path displayed in 

Figure 25. It follows by assignment of mastery that they have mastered 2N2 while 

their level of ability is at 3N2 (Figure 25).  
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Figure 25. Ability and mastery of a student with IRT ability of 0 in path 1 of the 

Grade 6-Percents item digraph 

 

As 2N2 is the highest mastered outcome in path 1, it follows from Proposition 1, 

that the student has also mastered 1N5, KN4, and KN5 as these are nodes in the 

downwards subgraph with root at 2N2 (Figure 26). Similarly, as 3N2 is the ability 

node, it follows from Proposition 2 that the student has not mastered 4N2 as this is 

a node in the upwards subgraph with sink at 3N2.  

Notice that the yellow nodes in Figure 25 are the nodes that remain to be 

administered. When Figure 25 and Figure 26 are compared, it is clear that CME 

reduces the number of learning outcomes that must be tested in subsequent paths. 

ability 

mastery 
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Thus, each single estimation of ability can be viewed as having a cascading effect 

on the item digraph, where the estimation of ability in one path spreads to nodes in 

other paths (Figure 26). It also follows that increasing the number of edges 

between a given set of nodes will allow the test to converge faster. 

 

Figure 26. Mastery node labelling according to Cascading Mastery Estimation 

(CME) as determined by the ability and mastery in Figure 25 
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I. C Concluding Remarks on CD-CAT with the Item Digraph  

 

The item digraph allows us to use a continuous measure of ability to 

determine attribute mastery according to the item response theory framework. By 

using the item digraph to locate the ability node of a learner using a traditional 

CAT, we are determining a personalized zone of proximal development (ZPD) 

with an associated standard error of measurement (Shabani et al., 2010). Recall, 

that the ZPD is a learning space where the content is neither too easy nor too 

difficult for the student (Shabani et al., 2010). As the ability node is the most 

remedial non-mastered node, intervening learning resources aligned with the 

ability nodes target what can be seen in Figure 27 as the ZPD.  

 

Figure 27. A diagrammatic representation of the Zone of Proximal Development 

adapted from Kym Buchanan 
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II.  Problem Statement  
 

 

Previous implementations of CD-CAT tend to replace a single ability 

measure, such as IRT 𝜃, with a measure of attribute mastery. These algorithms 

classify examinees into their true knowledge state based on novel statistical 

measures of response classification (Yamada, 2008). Previous CD-CATs proved to 

be strong in accuracy and test length. A major shortcoming of these algorithms, 

however, is in their stochastic item selection criteria (Falmagne, Cosyn, Doignon, 

& Thiéry, 2006; Tatsuoka, 2009; Yamada, 2008). 
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III.  Research Questions 
 

 

In this simulation study of GRAPH-CAT, the following questions are posed: 

(a) what is the efficiency of GRAPH-CAT? (b) what are the item parameters 

required to ensure GRAPH-CAT is both valid and reliable? (c) what are the test 

parameters required to ensure GRAPH-CAT is useable in terms of accuracy and 

test length?
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IV.  Thesis Statement  
 

 

Combining the item digraph with traditional CAT based in IRT allows for a 

more robust measure of attribute mastery that provides an estimation of attribute 

mastery with an associated standard error of measurement. Representation of the 

attribute hierarchy as an item digraph fully realizes the connectivity of the 

attributes to improve test efficiency over previous CD-CAT implementations. The 

item digraph approach further improves on previous CD-CATs by allowing for 

item administration that is both sequential and systematic by content and difficulty. 
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V.  Methods 
 

 

This section reviews how the concepts introduced so far are used in the 

GRAPH-CAT simulation. The topics covered include a description of the 

simulation and measurement accuracy values. Notice that each grade in a 

hierarchical path occurs exactly once and each outcome belonging to a grade in the 

path is assigned a unique set of attributes. This allows for an estimation of 

knowledge state based on the mastery graph.  

The percent matching is calculated between attribute mastery in the so-

called real knowledge state and the estimated knowledge state. Yamada (2008) 

considers the real knowledge state to be the attribute mastery derived from real 

learner responses gathered from a full-length test containing all the items. This 

study considers real knowledge state to be that generated by simulation. Learner 

responses are then generated from the knowledge state using Monte Carlo 

simulation (MCS). 

MCS is conducted in the programming language of Python to provide 

estimated measures on average test length and precision of GRAPH-CAT as 

measured by classification accuracy (Van Rossum & Drake, 2011). A strength of 
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using MCS over other methods is that real responses are not required. This is 

important as real student response data used in the Yamada (2008) study is not 

available. Learner responses are simulated using difficulty and discrimination of 

the item parameters from the Yamada (2008) item bank. The Yamada (2008) study 

compares a CD-CAT based in the RSM (RSM-CAT) to a CD-CAT based in 

POSET (POSET-CAT).  

 

V. A Simulation Variables   

Diagnostic testing places stronger interest in remedying academic 

weaknesses than on estimating ability. For this reason, it is preferable for an 

academic diagnostic test to underestimate rather than overestimate student ability 

(McGlohen & Chang, 2008; Tatsuoka, 2009). In other words, more emphasis is 

placed on estimating non-mastered skills. Under the proposed approach, it is 

possible to shift the estimated ability node to a higher level that is further from the 

root. The 𝑑𝑒𝑙𝑡𝑎 (𝛥) value is used to shift the estimated ability (𝜃) downwards by a 

factor between -1 and 0 of the standard error of measurement, as estimated by a 

path-CAT. This increases the frequency of estimated grades per path that are lower 

than the real grade.  
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In the simulations, n is the number of items per outcome in the item bank. 

The maxlen value is the maximum test length set as the stopping rule for the test 

whereas the len value is the average number of items administered. The grDIFF 

value is the distance from the root at which all attributes are mastered. 

 

V. B Simulating and Estimating the Learner  

 

The ability for each grDIFF is simulated based on a random selection of 

non-mastered attributes from the level above grDIFF (1≤ grDIFF ≤ 4 ) (see 

Table 4). All attributes at the grDIFF level are labelled as mastered. Assignment of 

mastery to outcomes is then performed using the BDF. The following steps are 

used to simulate knowledge state of the learner: 

1. Select a level of learner ability 

2. Set all attributes that occur below the level of ability as mastered 

3. From the set A of attributes that first occur at the ability level, 

randomly select 1 to |A| attributes to be non-mastered 

4. Use the BDF to assign mastery to the nodes of the item digraph 
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The steps for administration of a path- CAT and simulating learner 

responses are based on the Monte Carlo procedure. The steps can be summarized 

as follows: 

1. Select a path in the item digraph  

2. Set the estimated IRT ability of the learner to be at the middle of the 

test scale for the path-CAT 

3. Select an item using the maximum likelihood estimation function 

4. Given ability (𝜃) and item difficulty (b), calculate the probability (P) 

that the learner will answer correctly based on the 2-PL IRT model 

5. Generate a random number between 0 and 1 

6. If the random number is greater than P, then set the response to this 

item to 0 (incorrect). Alternatively, if the number is less than or equal to 

P, then set the response to this item to 1 (correct) 

7. Repeat steps 3 to 6 until the stopping condition for the path is met 

8. Once the estimated ability node is determined, update the state of the 

item digraph to maintain the integrity of a mastery graph structure 

9.  Repeat steps 2 to 8 for every path until the test stopping condition is 

met 
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The MLE function is used as the maximum likelihood estimation function of 

ability for the path CAT. The Brute Force Method is used to discover the 

maximum of the MLE. 

 

V. C Simulating Population Parameters  

 

The Yamada (2008) simulation uses data from a simulation experiment 

performed by Tatsuoka (1984) based on a full-length 40 item test administered to 

536 junior high students. As the response data is unavailable, examinee responses 

are simulated to match as closely as possible to ability distributions used by 

Yamada (2008). The original ability distribution included approximately 38% of 

examinees that scored either very high or very low on the test. More accurately, 

20.71% (111) of examinees scored above or at 36/40= 0.90 and 16.98% (91) 

scored below or at 5/40= 0.13. To simulate these distributions, test scores are 

assumed to reflect attribute mastery.  

Under this assumption, high ability students are to have mastered six or 

seven (0.90 ≤) attributes (see Table 4 below). If the student has mastered all seven 

attributes then they are drawn from grDIFF=1. If the student has mastered six 

attributes then they are drawn from grDIFF=2. Those students at grDIFF=2 are 
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split into two categories. The first category at grDIFF=2 has mastered six 

attributes (see 2A in Table 4). The second category at grDIFF=2 has mastered four 

or five of the attributes (2B in Table 4). 

Similarly, low ability students are to have mastered one or zero attributes 

(≤0.13). Those students at grDIFF=3 are split into two categories where the first 

category has mastered one attribute and the second category has mastered two or 

three attributes. The simulated population sizes for each ability level are shown in 

Table 4 below. To maintain the proportion of high and low ability students, a total 

population size of N=538 is simulated. 

 

Table 4 Population Size of Each Simulated Population (N=538) 

grDIFF Mastery Grade 
Population 

Size 

Number of 

Attributes 

Mastered 

4 1 46 0 

3B 2 46 1 

3A 2 167 2 or 3 

2B 3 167 4 or 5 

2A 3 56 6 

1 4 56 7 

 

Note: Each population is uniformly distributed with a mean of 1≤ 𝑔𝑟𝐷𝐼𝐹𝐹 ≤ 4.  
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Similarly, an item bank that closely resembles that used by Yamada (2008) 

is simulated. Yamada (2008) derived difficulty and discrimination parameters from 

the test results based on student responses. Every discrimination value of every 

item is set to be the average of the items in the Yamada (2008) item bank (a= 

1.78). The IRT difficulty values of the items are based on the test scale derived 

from difficulty to attribute alignment (Table 5). The attributes measured by each 

item in the simulated item bank are the same as the attributes measured by each 

item in the Yamada (2008) item bank, with the exception of the root node.  
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Table 5 Parameters of Simulated Item Bank 

Item# IRTb Attributes Item# IRTb Attributes 

1 -12.00 7 21 -4.89 2, 5, 7 

2 -11.11 7 22 -4.00 2, 5, 7 

3 -10.22 7 23 -3.11 2, 5, 7 

4 -9.33 7 24 -2.22 2, 5, 7 

5 -8.44 4,7 25 -4.89 1, 4, 7 

6 -7.55 4,7 26 -4.00 1, 4, 7 

7 -6.67 4,7 27 -3.11 1, 4, 7 

8 -5.78 4, 7 28 -2.22 1, 4, 7 

9 -8.44 2, 7 29 -4.89 2, 3, 7 

10 -7.55 2, 7 30 -4.00 2, 3, 7 

11 -6.67 2, 7 31 -3.11 2, 3, 7 

12 -5.78 2, 7 32 -2.22 2, 3, 7 

13 -8.44 1, 7 33 -4.89 1, 2, 7 

14 -7.55 1, 7 34 -4.00 1, 2, 7 

15 -6.67 1, 7 35 -3.11 1, 2, 7 

16 -5.78 1, 7 36 -2.22 1, 2, 7 

17 -4.89 4, 6, 7 37 0.44 1, 2, 3, 4, 5, 6, 7 

18 -4.00 4, 6, 7 38 4.88 1, 2, 3, 4, 5, 6, 7 

19 -3.11 4, 6, 7 39 9.33 1, 2, 3, 4, 5, 6, 7 

20 -2.22 4, 6, 7 40 13.77 1, 2, 3, 4, 5, 6, 7 

 

The root node has been added to the item digraph as such a unifying 

outcome was not present in the item bank used by Yamada (2008) (Figure 28). The 

root node represents the learning outcome being assessed by the test. The item 

digraph derived from the parameters of the Yamada (2008) item bank has depth 4 

and degree 5 (Figure 28).   
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Figure 28 The item digraph derived from the Yamada (2008) item bank. The items 

and attributes for each learning outcome are indicated within each node. 

 

Forty items are used in the Yamada (2008) study and the item digraph 

contains ten specific outcomes. The number of items per outcome (n) is set to be 

equal so that n=40/10=4. This produces an item bank having forty items with four 

items per outcome (Table 5).  
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V. D Measuring Accuracy 

 

To measure knowledge state classification using GRAPH-CAT, the number 

of correctly classified attributes in the estimated mastery graph are compared to the 

mastered attributes in the real mastery graph, using the Jaccard Index:  

|𝐸 ∩  𝑅| / |𝐸 ∪  𝑅| 

where E is the set of estimated mastered attributes and R is the set of real mastered 

attributes (Boyce & Ellison, 2005). The Jaccard Index is known to be a reliable 

measure of percent matching between two binary sets (Boyce & Ellison, 2005). In 

this formula, the numerator represents the intersection of the two sets and the 

denominator represents the union.  

Of primary importance in the results are the measures of accuracy and test 

length as these are the key indicators of test usability (Yamada, 2008). Also 

provided are the average attribute mastery and the outcome mastery. Several 

different varieties of these measurements are calculated: attmatch, nonattmach, 

HMOmatch, HMOmatch2, aborbel, ocmatch, nonocmatch, ocbygr, attbygr, and 

nonattbygr.  

The attmatch value provides a measure of the knowledge state accuracy and 

it is equivalent to the knowledge state proportion match provided by Yamada 

(2008). It measures the accuracy of the estimated mastered attributes. At a larger 
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granularity, ocmatch measures accuracy of the estimated mastered learning 

outcomes. This measure of frequency match (fm) is unique to GRAPH-CAT as 

sets of attributes are estimated through the organization of attributes into learning 

outcomes.  

On the other hand, nonattmatch provides a measure of the attributes that the 

learner has not mastered whereas nonocmatch is a measure of learning outcomes 

the learner has not mastered. Neither of these measures are provided by the 

Yamada (2008) study, but they can be seen as a complementary form of 

knowledge state. Rather than creating a model of what the learner knows, a model 

of what the learner does not know is created. The non-attribute match is, arguably, 

more useful than knowledge state, as it directly addresses the goal of determining 

what the learner does not know. 

Notice that proportion matching of outcome mastery and attribute mastery 

are not expected to be the same. As an example, consider a student of the Grade 3 

learning outcome in Figure 29 who has the outcome mastery of {GRADE2A, 

GRADE1A, GRADE1B, GRADE2B, GRADE1C, GRADE1D}. 
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Figure 29. An item digraph with imbalanced attribute assignment 

 

If GRAPH-CAT underestimates ability in two hierarchical paths by one grade, 

then the estimated outcome mastery might be {GRADE2A, GRADE1A, 

GRADE1B, GRADE1C, GRADE1D}. In this example, the outcome match of 

(ocmatch =5/6= 83%) and the attribute match of (attmatch =5/10= 50%) are not 

the same. As this demonstrates, the non-standardized item digraph may lead to 

estimations with high outcome matches and low attribute matches or vice-versa. 

For this reason, a distinction is made between outcome match and attribute match.  

The highest mastered outcome frequency match measures grade level 

mastery accuracy per path (HMOmatch). In the results presented, the estimated 

HMOmatch value is considered to be accurate if the grade of the estimated highest 

mastered outcome (HMO) in a path is at most one grade below the real HMO of 
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the learner. Similarly, HMOmatch2 is considered to be accurate if the grade of the 

estimated HMO in a path is at most two grades below the real HMO of the learner. 

In terms of usability HMOmatch, HMOmatch2, and aborbel provide a measure of 

GRAPH-CAT navigability. Navigability indicates the ease with which a learner 

would be able to find appropriate intervening learning resources given exposure to 

the full database of learning resources and an initial recommendation by the test 

results. 

The by-grade measures provide a measurement of accuracy on average in 

the universe of an individual grade. The outcome by-grade measure (ocbygr) 

indicates the accuracy of estimated outcome mastery on average in the universe of 

each grade. Similarly, attbygr provides a measure of attribute mastery estimation in 

the universe of each grade (Figure 30). See Table 6 for a summary of all measures. 
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Figure 30. Diagrammatic representation of attbygr and ocbygr 
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Table 6 A Description of the Frequency Match Categories 

attmatch 
the fm between the mastered attributes belonging to each 

specific outcome  

nonattmatch 
the fm between the nonmastered attributes belonging to each 

specific outcome 

aborbel 
the fm between the estimated highest grade per path and the real 

grade when the difference is 1, 0, or -1.  

hmomatch 
the frequency match (fm) between the highest mastered grade 

per hierarchical path when the difference is either 0 or -1. 

hmomatch2 
the fm between the highest mastered grade per hierarchical path 

when the difference is either 0, -1, or -2. 

ocmatch 
the overall match between estimated mastered outcomes and 

real mastered outcomes  

nonocmatch 
the overall match between estimated non-mastered outcomes 

and real non-mastered outcomes  

ocbygr the average mastered outcome match per grade  

attbygr the average mastered attribute match per grade 

 

Note: These values are used to provide a measure of GRAPH-CAT efficiency 
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V. E Simulation Conditions  

 

The Maximum Likelihood Estimation function is used with the stopping rule 

for each path-CAT set to a minimum standard error (SE) of 0.20. The path 

shortening effects of CME require that semi-complete paths end before the SE 

error is reached. This will predictably lead to a test that ends with a higher SE.  

Two test stopping rules are tested in these simulations. The first simulation 

ends the test after every outcome has been assigned mastery. The second 

simulation ends the test once a maximum of ten items has been administered. 
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VI.  Results 
 

 

VI. A Simulation 1: Test Stopping Rule of Complete Outcome Mastery 

Assignment  

Using a test stopping rule of complete outcome mastery-assignment, the 

GRAPH-CAT test achieves a weighted average attribute match of 92% 

(𝑎𝑡𝑡𝑚𝑎𝑡𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.92), across the four grade level abilities in twenty items with SE= 

0.33 (see Table 7 below). The estimated theta ability (𝜃) has not been shifted 

downwards ( ∆=0.00 of the SE). The matching attributes on average per grade is 

95% (𝑎𝑡𝑡𝑏𝑦𝑔𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.95). The 𝑎𝑡𝑡𝑏𝑦𝑔𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ measure indicates a high percent matching 

between intervening learning resources and learner ability.  
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Table 7 The Attribute Frequency Matching Values for the Yamada (2008) Item 

Bank Using a Test Stopping Rule of Complete Outcome Mastery Assignment 

grDIFF len attmatch nonattmatch attbygr nonattbygr SE 

1 20 99% 96% 100% 99% 0.35 

2A 20 97% 92% 99% 97% 0.36 

2B 22 94% 89% 95% 96% 0.35 

3A 21 84% 89% 90% 93% 0.34 

3B 20 89% 95% 94% 97% 0.33 

4 11 100% 100% 100% 100% 0.23 

weighted 

AVE 
20 92% 92% 95% 96% 0.33 

 

Note: The path-CAT runs by MLE using a stopping condition of SE=0.20 and the 

test achieves average SE=0.33. The number of items in the item bank is n=4 per 

learning outcome, ∆= 0.00. 
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The average outcome match (ocmatch) is 91% indicating the accuracy of 

overall outcome match. In the case where learning resources are delivered to the 

student in cumulative batches across all grades of outcome deficiency, ocmatch 

indicates the accuracy of learning resource alignment to student ability (Table 8). 

For 92% of learner-paths (HMOmatch=0.92), the estimated grade level in the path 

is less than the real grade per path by at most one grade (Table 8). This is a 

measure of the closeness of average estimated grade level ability to real ability, 

when the test estimation is below the real ability. In 94% of the learner-paths, the 

estimated grade is less than the real average grade per path by at most two grade 

levels (HMOmatch2=0.94). The HMO values indicate that the path-CAT is able to 

closely estimate the grade level mastery of the learner using the MLE function. 
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Table 8 The MLE Outcome Frequency Matching Values for the Simulated Yamada 

(2008) Item Bank Using a Test Stopping Rule of Complete Outcome Mastery 

Assignment 

grDIFF len ocmatch nonocmatch HMOmatch HMOmatch2 

1 20 99% 96% 99% 100% 

2A 20 97% 91% 97% 98% 

2B 22 95% 88% 95% 96% 

3A 21 82% 89% 85% 88% 

3B 20 89% 96% 89% 89% 

4 11 100% 100% 100% 100% 

weighted 

AVE 
20 91% 91% 92% 94% 

 

Note: The path-CAT runs by MLE using a stopping condition of SE=0.20 and the 

test achieves SE=0.33. The number of items in the item bank is n=4 per learning 

outcome, ∆= 0.00. 
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The average aborbel value is 98% meaning that on average per path, the 

estimated grade level is almost always one grade above or one grade below the real 

grade. The aborbel value is high for all ability levels, ranging between 95%-100% 

(Table 9). The aborbel value is the best measure of resource navigability.  

The average diff value provides a measure of the per path difference between 

real and estimated grade level (Table 9). The estimated grade level ability per path 

is, on average, very close to the real grade level ability (diff= 0.00). On average, 

6% of paths are estimated to be at a grade ability higher than the real ability grade 

(above = 0.06). 
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Table 9 The Average Difference Between Estimation Grade and Real Grade for the 

Simulated Yamada (2008) Item Bank Using a Test Stopping Rule of Complete 

Outcome Mastery Assignment 

grDIFF len ocbygr nmocbygr aborbel diff above 

1 20 100% 98% 99% -0.02 0.00 

2A 20 99% 96% 99% -0.03 0.02 

2B 22 97% 96% 99% 0.00 0.04 

3A 21 89% 93% 95% 0.00 0.12 

3B 20 94% 97% 99% 0.10 0.11 

4 11 100% 100% 100% 0.00 0.00 

weighted 

AVE 
20 95% 96% 98% 0.00 0.06 

 

Note: The path-CAT runs by MLE using a stopping condition of SE=0.20. The 

number of items in the item bank is n=4 per learning outcome, ∆= 0.00. 
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Figure 31 Number of paths administered for a test stopping rule of complete 

outcome mastery assignment. Note that grDIFF indicates mastery level where 

grDIFF=1 is high ability and grDIFF=4 is low ability (Table 4).  
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VI. B Simulation 2: Test Stopping Rule of Maximum Ten Items  

When test length is limited to ten items the GRAPH-CAT achieves a 

weighted average attribute match of 83% in an average of ten items with SE= 0.38 

(Table 10). The estimated theta ability (𝜃) is not shifted downwards (∆=0.00). The 

matching attributes on average per grade remain high at 89% (attbygr).  

Table 10 The Attribute Frequency Matching Values for the Yamada (2008) Item 

Bank Using a path-CAT Stopping Rule of Maximum Ten Items 

grDIFF len attmatch nonattmatch attbygr nonattbygr SE 

1 10 77% 36% 88% 80% 0.41 

2A 10 83% 64% 89% 89% 0.39 

2B 10 89% 85% 90% 94% 0.36 

3A 10 73% 84% 85% 91% 0.41 

3B 10 86% 95% 92% 96% 0.42 

4 9 98% 99% 99% 99% 0.26 

weighted 

AVE 
10 83% 80% 89% 92% 0.38 

 

Note: The path-CAT runs by MLE using a stopping condition of SE=0.20 and the 

test achieves average SE=0.38. The number of items in the item bank is n=4 per 

learning outcome, ∆= 0.00. 

 

The average outcome match (ocmatch) is 83% indicating the accuracy of 

learning resources delivered to the student in cumulative batches (Table 11). The 
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average HMOmatch is 92% and HMOmatch2 is 95%. The HMO values indicate 

that the per path estimation of ability is highly accurate to within two grades below 

the real ability. As the path-CAT is ended with lower accuracy by limiting the test 

length to ten (SE=0.38), the estimated outcome matches are understandably lower 

than those with a stopping rule of full outcome mastery estimation (SE=0.33). 

Table 11 The MLE Outcome Frequency Matching Values for the Simulated 

Yamada (2008) Item Bank Using a Test Stopping Condition of Maximum Ten Items 

grDIFF len ocmatch nonocmatch HMOmatch HMOmatch2 

1 10 82% 36% 100% 100% 

2A 10 87% 64% 99% 99% 

2B 10 90% 83% 96% 98% 

3A 10 70% 84% 85% 90% 

3B 10 86% 96% 88% 88% 

4 9 98% 100% 96% 96% 

weighted 

AVE 
10 83% 79% 92% 95% 

 

Note: The path-CAT runs by MLE using a stopping condition of SE=0.20 and the 

test achieves SE=0.38. The number of items in the item bank is n=4 per learning 

outcome, ∆= 0.00. 
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The average difference between estimated grade and real grade remains high 

across all categories of estimated grade (ocbygr=0.91, nmocbygr= 0.91, aborbel= 

0.97) (Table 12). These values can be used as a measure of effectiveness of 

formative feedback when intervening learning resources are provided in batches by 

grade. The outcome by grade match (ocbygr =0.91) and non-mastered outcome by 

grade match (nmocbygr= 0.91) indicate that intervening resources are well-aligned 

with learner ability, notwithstanding a lower overall attribute match than that 

achieved when the test converges using complete outcome mastery assignment. 

Table 12 The Average Difference Between Estimation Grade and Real Grade for 

the Simulated Yamada (2008) Item Bank Using a Test Stopping Condition of 

Maximum Ten Items 

grDIFF len ocbygr nmocbygr aborbel diff above 

1 10 93% 80% 100% -0.26 0.00 

2A 10 94% 89% 100% -0.16 0.01 

2B 10 95% 93% 98% -0.12 0.02 

3A 10 82% 90% 92% -0.19 0.10 

3B 10 92% 96% 100% 0.03 0.12 

4 9 99% 99% 100% 0.04 0.04 

weighted 

AVE 
10 91% 91% 97% -0.13 0.05 
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Figure 32 Number of paths administered for a test stopping rule of maximum ten 

items. Note that grDIFF indicates mastery level where grDIFF=1 is high ability 

and grDIFF=4 is low ability (Table 4) 
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VII.  Discussion 

 

 

The purpose of this simulation study is to test the efficiency of an 

implementation of GRAPH-CAT; a new approach to estimating attribute mastery. 

A simulation is conducted using the programing language of Python to create item 

bank parameters similar to those used by a previous study comparing RSM-CAT 

and POSET-CAT (Yamada, 2008). This simulation uses a maximum likelihood 

estimation (MLE) and the Brute Force Method to estimate ability in each path-

CAT.  

 

VII. A Highlight of Major Findings 

 

Using a path-CAT stopping rule of SE=0.20 and a test stopping rule of 

complete outcome mastery assignment, GRAPH-CAT achieves a proportion 

knowledge state matching (PKSM) of 92% accuracy in an average of twenty items 

with SE=0.33 (see attmatch in Table 7). When the test is stopped in ten items 

GRAPH-CAT achieves PKSM of 83% accuracy in an average of ten items with 

SE=0.38 (see attmatch in Table 10). Using a similar data set, POSET-CAT based 

in partially ordered set theory, achieves a PKSM of 87.50% in ten items with 
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SE=0.20 (Yamada, 2008). In twenty items, RSM-CAT achieves 82.46% PKSM. 

This comparison indicates that using the most straightforward approach to CAT, 

GRAPH-CAT will likely perform somewhere in the range of efficiency between 

POSET-CAT and RSM-CAT.  

Under both test stopping conditions, the average estimated grade closely 

matches the real grade (see aborbel in Tables 9 and 12). This indicates the ease 

with which the learner will be able to locate their ideal learning resources if all 

curriculum learning resources are made available to them. Navigating through 

learning resources is best visualized as the learner moving up or down by at most 

one level in a hierarchical path to find their Zone of Proximal Development 

(Shabani, 2010).  

Both simulations indicate that the number of paths administered decreases as 

level of deficiency increases (see Figure 31 and 32). This is due to the quick 

reduction of testable outcomes, according to CME, once a low difficulty outcome is 

marked as non-mastered. On average, approximately twice as many paths are 

administered using a stopping rule of outcome mastery assignment when compared 

to a stopping rule of ten items. This is likely due to the requirement of at least ten 

items to achieve SE=0.20 in a path-CAT. 
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The efficiency measures are affected by numerous parameter settings, 

introduced by the multiple pathways. A few of these parameter settings are 

explored below. They include standard error of measurement (SE), maximum test 

length, number of items in the bank, and the test scale.  

VII. A. i  Standard Error of Measurement (SE). The SE is the 

measure of inaccuracy of an IRT θ value as measured by a path-CAT. Alongside 

SE, the difference between the previous item SE and the current item SE—

seDIFF—is another value that can be used to stop a CAT. The seDIFF values tend 

to converge must faster than the SE values. As with any other CAT, a stopping 

condition with higher accuracy (SE=0.20) in a path-CAT results in a longer test 

while lower accuracy (SE=0.50) allows for a shorter test. This relationship holds 

true for both the accuracy of estimated theta and the accuracy of estimated attribute 

mastery.  

VII. A. ii  Maximum Test Length. A limit can also be set on the 

maximum number of items administered. If using either test length or SE to end a 

path-CAT, a prevalent problem is that the two values must be balanced to ensure 

that multiple paths are administered. If a balance is not found, then the mastery 

graph will usually be estimated based on ability from the first path alone. This is a 

result of administering the maximum allowable test items in the first path-CAT to 

achieve the desired SE. This effect can be seen by comparing the number of items 
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and paths administered in simulation 1 and simulation 2 (Figure 31 and Figure 32). 

Notice that many outcomes have likely not been tested when the maximum test 

length is limited to ten. 

VII. A. iii Number of Items in the Bank. Increasing assignment of 

items to each node decreases granularity between item difficulties. This increases 

the chance of the confidence interval containing the threshold between two grades. 

This is a problem when toggling between estimated θ ability and estimated grade 

level. An item bank with two to four items per outcome appears to achieve 

desirable results. 

VII. A. iv Test Scale. In summative assessment the IRT scale tends 

to be in the range of around -3 to 3 (Thompson, 2009). The GRAPH-CAT test 

scale is an extended IRT scale that accommodates four grade levels rather than 

one. This places the lowest difficulty item at b=-12.00 and the highest difficulty 

item at b=13.77 (Table 5). These values are assigned according to difficulty to 

attribute alignment. In other words, difficulty is assigned according to the number 

of attributes the item is supposed to measure. It is found that as the range of the 

scale increases from (-3, 3) to (-16, 16), the accuracy of PKSM increases. 
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VII. B Limitations of the Study  

 

A major shortcoming of this study is that the data distributions for student 

responses is simulated. Simulated data is used as original student data from 

previous studies on CD-CAT is unavailable. Student response data, while not 

readily available, would provide a more direct comparison of efficiency.  

Another shortcoming is that the item data is not the same as that used by 

Yamada (2008). The simulated item bank maintains the attributes measured by 

each item as used by Yamada (2008), but the difficulties are generated according 

to difficulty to attribute alignment. This impedes a more direct comparison of 

GRAPH-CAT to POSET-CAT and RSM-CAT.  

As a final note on limitations, recall that the MAP and EAP approaches to 

CAT accommodate for responses that are all correct or all incorrect. The MLE 

function is used in this study as it is the most straightforward approach to 

estimating ability. It is likely that other approaches to CAT, such as the MAP or 

EAP, will further improve efficiency results, but these simulations are left as 

directions for future research. The following section introduces a framework for 

GRAPH-CAT and this lends itself to other possible directions for future research. 
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VII. C Directions for Future Research 

 

As a generative test, GRAPH-CAT faces issues related to item over-exposure 

and, as an embedded assessment, it must satisfy the ethical requirements of 

learning analytics. While this simulation has shown the potential of GRAPH-CAT 

to be useable in terms of efficiency, it remains to demonstrate its practical use. 

This includes how test quality measures such as validity and reliability are to be 

provided. Further, by using a graph to model the learner, new measurements 

relevant to the field of measurement theory must be provided.  

DIFFR is a framework for GRAPH-CAT that attempts to outline both the 

theoretical and practical aspects of these topics. The DIFFR name is selected to 

indicate the encouragement of differences between students while emphasizing an 

accommodation for those differences. A framework is necessary to bridge the gap 

between obtaining results of the diagnostic test and providing effective formative 

feedback. According to Bejar (2002), a framework for any generative test must 

address implementational issues associated with equity, security, and interface 

design.  

VII. C. i DIFFR: Equity. Equity concerns are addressed by ensuring 

content-quality, learning goal alignment, motivation, feedback, and adaptation 

(Leacock and Nesbit, 2007). The item digraph supports these domains of equity, by 
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revealing hidden dimensions of a learning construct and adapting the item digraph 

according to student responses. The goal of providing equity is further developed 

by creating the ideal item digraph. 

The ideal item digraph is an item digraph that is measurably shown to be 

content-complete, fair, and free of bias. For example, a content-complete item 

digraph in mathematics includes attributes belonging to reading comprehension. 

By including reading comprehension as a measured construct for mathematics, bias 

due to reading deficiency is reduced. To ensure the item digraph is content-

complete each attribute must be shown to be necessary and the complete set of 

attributes shown to be sufficient.  

Ensuring prerequisite structures are content-complete may be 

insurmountable without assistance from computers. One possible approach is to 

use a covariance matrix to indicate the cooccurrence of attribute mastery. A high 

frequency of mastery-cooccurrence may indicate membership to a common item 

digraph. This is a variant of an approach already taken by others towards 

modelling the latent attribute space (Rupp, Templin, & Henson, 2008). Adapting 

the existing approach to the item digraph is left as a direction for future research.  

Another possible measure introduced by the item digraph is rate of attribute 

mastery. Recall from the two assumptions of difficulty to attribute alignment that 

we require the attributes to be of a similar, if not the same, granularity. According 
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to Leighton and Gierl (2011) the factors required to determine a valid attribute 

grain size are poorly understood. One interpretation of rate of attribute mastery, is 

the expected time required to master an attribute, as observed from student 

responses in a given population. Deviation from this expectation may indicate an 

attribute granularity that is either too large or too small. 

Similarly, rate of outcome mastery should remain constant across 

populations. A difference in rate of improvement towards a learning objective 

according to external variables, such as gender or race, may indicate the occurrence 

of bias in the inclusion of certain attributes. An example of such bias would be a 

hierarchy that has included the scientific method as a prerequisite to scientific 

thinking. Including such a precedence in the hierarchy may conflict with 

indigenous ways of knowing (Shepherd, 2016). This may cause students from 

indigenous cultures to become hesitant or even non-cooperative in the learning 

experience. If this should occur, a significant difference in rate of outcome mastery 

is expected to be observed between students from indigenous cultures and students 

from non-indigenous cultures. 

Another method of detecting bias is by validating the precedence 

relationships between attributes. A monitoring measure (M) is introduced to 

indicate possible fault in the organization of attributes. Given a bank of well-

constructed items and an item digraph with validated precedence relationships, it 
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will be observed that higher difficulty items belong to learning outcomes closer to 

the root. Note that, in addition to satisfying traditional IRT measures of quality, a 

well-constructed item further provides a precise measure of the indicated attributes. 

To define M formally, suppose we have an item digraph with a bank of well-

constructed items. Let 𝑏𝑖 be the difficulty of any item from node 𝑣𝑖 in any 

hierarchical path from the item digraph. If we let 

M = 
(𝑏𝑖−𝑏𝑗)

(𝑙𝑒𝑣𝑒𝑙(𝑣𝑗)−𝑙𝑒𝑣𝑒𝑙(𝑣𝑖))
 

where 𝑖 ≠ 𝑗, then it will be observed that M ≥ 0. On the other hand, a negative M 

( 𝑀 < 0) indicates a questionable precedence relationship between attributes. 

The introduction of these measurements alludes to a constant tailoring that 

must take place to craft the item digraph into its ideal state. The ideal item digraph 

provides a valid and reliable measure of attribute mastery and therefore, in addition 

to formative assessment, it can be used for summative assessment. Given an ideal 

item digraph, mastery of all items in the root node indicates mastery of all 

attributes in the item digraph. Thus, summative and formative assessment are 

merged into two different mastery-states of the same item digraph. This theoretical 

union of summative and formative assessment is in keeping with what has been 

observed by Redecker and Johannessen (2013) as a natural consequence of 

embedded assessment. 
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  The feasibility of achieving the ideal item digraph requires a system that is 

able to securely collect and store longitudinal student data. A major challenge 

behind implementing such a system is in securing student data. The data collection 

and storage procedures must not only meet industry standards, but should also 

satisfy the requirements of parents, students, teachers, and other stakeholders.  

VII. C. ii DIFFR: Security.  Security must be maintained for both 

the learner and the test. Learner-security ensures that student data is kept secure 

and school authorities are held accountable for the maintenance of security. Test-

security, on the other hand, ensures that the test remains valid by reducing item 

exposure. 

A highly sensitive and pressing issue surrounding data security in 

educational multimedia is the protection of student data. There are two approaches 

to securely providing access to the GRAPH-CAT test interface. Both approaches 

can be described as privacy-by-architecture meaning privacy is built into the 

software or hardware rather than enforced through policy (Spiekermann & Cranor, 

2009). The first approach is to establish an on-line accessibility to the test. In this 

case, the student remains anonymous by being provided with a user ID. The ID is 

supplied to the teacher and given to the student. The second approach makes the 

software available to teachers and students on a closed network provided by the 

school administration.  
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 According to Le Metayer (2008), the presence of digital technology in 

schools requires that privacy issues, such as secure accessibility, be addressed from 

both a technological and a legal standpoint. Particular care must be given to the 

security of digital records as data collection by third party interests has become 

normalized. Pardo and Siemens (2014) recommend including such features as 

limiting data that students can provide, limiting access to authorized individuals, 

and allowing learners to access their own data. In some cases, a data privacy 

officer may be desired, and perhaps necessary, to ensure data security. Spiekerman 

and Cranor (2009) recommended that these issues be addressed in the early stages 

of framework development. 

In addition to securing item responses, the longitudinal use of a testing 

system also requires the maintenance and security of an item bank. Test security 

requires that item exposure is kept to a minimum (McGlohen & Chang, 2008). Yet, 

according to McGlohen and Chang (2008), all items in the bank must be active so 

that the number of learner responses to each item is greater than zero. McGlohen 

and Chang (2008) note that a desirable item exposure is an administration to under 

20% of examinees. One possible approach of meeting this high demand for items, 

is to integrate automatic item generation (AIG) into the generative testing process. 

AIG is the use of computers to generate items based on an item model, also 

known as a blueprint (Gierl & Lai, 2013). AIG has become essential to generative 
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testing, as the switch towards embedded computerized learning demands greater 

measures be taken to reduce item exposure (Redekken & Johannessen, 2013). 

Further, AIG allows for a much greater efficiency in the item development process.  

The item development process involves modelling items and using the 

models to generate new items. Parts of the item model string, called elements, are 

alterable so that by replacing these elements with a selection from a set of values 

we create new items (Gierl & Lai, 2013). Meanwhile, other substrings of the item 

remain constant.  

The prototypes for item models are often taken from pre-existing items 

(Gierl & Lai, 2013). A common practice is to adapt an existing item into an item 

model that fits the attribute hierarchy (Leighton & Gierl, 2011). This type of 

retrofitting is not recommended as it leads to item-attribute misfit. A better 

approach, according to Gierl, Alves, and Majeau (2010), is to design new item 

models that are specifically designed to measure the intended attributes.  

An issue that arises in the AIG process is the expectation that generated 

items and the template item have the same difficulty (Bejar, 2002). In 1977 

Merwin found that the difficulty of generated items was not the same as the item 

template used to create the item model (Bejar, 2002). Bejar (2002) concludes that a 

theoretical analysis is necessary for generative testing so that greater agency is 
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gained over parameters of the generated items. In the context of generative 

diagnostic testing, this theoretical analysis comes in the form of creating cognitive 

models. 

The cognitive model specifies those elements that effect the difficulty level 

of the generated items (Gierl & Lai, 2013). According to Gierl and Lai (2013), a 

cognitive model enhances control over the psychometric properties of the 

generated items. As the items belong to the item digraph, the properties of the 

cognitive model must align with the attributes included in the Q-matrix of each 

learning outcome.  

Expected costs for the development of a high-quality CD-CAT are 

associated with the development of base pools of item models. To form a quality 

base pool requires at least the same amount of time from subject matter experts as 

that to form an item bank. Yet, by switching from the item to the item model as the 

base unit of a test, the efficiency of designing high quality items can be greatly 

enhanced.  

VII. C. iii DIFFR: Interface Design. To further explore issues 

related to security and equity, a user interface must be made available to both 

teachers and students. Interface design has long been recognized as a prominent 

issue in educational software design. A comprehensive example of domains of 

interest when considering the interface design are outlined in the Learning 
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Objective Review Instrument (LORI) developed by Leacock and Nesbit (2007). 

These domains include motivation, presentation design, interaction usability, 

accessibility, and reusability. The LORI instrument is readily available, and helps 

to ensure inclusivity in the learning experience. 

A high-quality interface design is essential for improving both student 

motivation and student cognitive learning outcomes. A next step for future 

research involves the provision of such a user interface to students to measure the 

effectiveness of DIFFR in a classroom setting. According to All, Plovie, Castellar, 

and Van Looy, J. (2017), a pre-post test design is an effective approach for 

measuring improvement in cognitive learning outcomes as it allows for the control 

of prior ability. An important direction for future research includes measures of 

improvement in student cognitive learning outcomes and improvement in student 

motivation. User-satisfaction of both students and teachers should also be 

measured using methods such as direct observation, interviews, and surveys. 
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VIII.  Conclusion  

 

The graph theory approach to attribute mastery offers a paradigm-shift from 

traditional forms of test measurement. The paradigm-shift from classical test 

theory is revealed by the error attribution. As with the IRT framework, the error in 

measurement is absorbed by inaccuracy of the test design and associated test 

parameters (Lord, 1980). The conceptual departure from traditional IRT is that 

multi-dimensionality is allowed by including secondary dimensions as visible 

constructs in the item digraph. These dimensions are each measured separately by 

sub-tests associated with a single path-CAT.  

Diagnostic testing with the item digraph relies on the prerequisite 

relationship for the administration of items. The item digraph continually improves 

through validation and adaptability of the prerequisite relationships. Under the 

assumption that the item digraph is complete, fair, and free of bias, a continuous 

progress of the learner will be observed. Continuous and predictable progress of all 

learners is the hallmark of an ideal item digraph. Similarly, delayed or 

unpredictable progress is an indication that the item digraph is not ideal.  

A non-ideal item digraph could, in part, be due to a low-quality item bank. 

Creating a high-quality item bank requires that items align well with the attributes 
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they are intended to measure. Accuracy in prior difficulty of the items, as assigned 

by the test scale, requires that the items are well-constructed. 

The predictability of item difficulty offered by difficulty to attribute 

alignment overcomes previous issues with implementing MLE for CD-CAT. A 

major strength of introducing the MLE, MAP, or EAP function is that a standard 

error of measurement can be associated with the estimated knowledge state. This 

provides the user with a level of confidence in estimated ability. 

The most salient feature of the item digraph approach, is that it overcomes 

the stochastic item administration depended upon by previous CD-CAT 

implementations. Impenetrable, complicated algorithms and unwieldy test usability 

have inhibited widespread use of computerized formative assessment in the 

classroom (Lim, 2015; Yamada, 2008). The item digraph approach to CD-CAT 

may bring contributions that can address these issues, by offering a user-friendly 

algorithm based in the framework of statistical theory.
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