
Incremental 3D Line Segments Extraction for Surface
Reconstruction from Semi-dense SLAM

by

Shida He

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Shida He, 2018

Abstract

Semi-dense SLAM systems have become popular in the last few years. They

can produce much denser point clouds than sparse SLAM while being com-

putationally efficient (using only CPU). In previous works, the surface of the

viewed scene was reconstructed in real-time by combining sparse SLAM sys-

tem and incremental surface reconstruction method. However, it is challenging

to utilize the large scale point clouds of semi-dense SLAM for real-time sur-

face reconstruction. In this thesis, in order to obtain meaningful surfaces and

reduce the number of points used in surface reconstruction, we propose to

simplify the point clouds generated by semi-dense SLAM using 3D line seg-

ments. Specifically, we present a novel incremental approach for real-time 3D

line segments extraction. This approach reduces a 3D line segment fitting

problem into two 2D line segment fitting problems, which take advantage of

both image edge segments and depth maps. We first detect edge segments

from keyframes. Then we search 3D line segments along the detected edge

pixel chains by minimizing the fitting error on both image plane and depth

plane. By incrementally clustering the detected line segments, the resulting

3D representation for the scene achieves a good balance between compactness

and completeness. Our experimental results show that the 3D line segments

generated by our method are highly accurate compared to other methods.

With the reconstructed surfaces, we demonstrate that using the extracted 3D

line segments greatly improves the quality of 3D surface compared to using

the 3D points directly from SLAM systems.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Martin Jagersand. This work could

not be done without his guidance. His suggestions are always helpful and con-

structive. I would also like to thank Dr. Dana Cobzas for the help. She is

always so nice to students. Many thanks to my lab mates and friends: Xue-

bin, Vincent, Min, Masood, Jun, Menna, Rong, also to those who graduated:

Camilo, Oscar, Xi and Sepehr. The time with you is my priceless treasure

and thank you very much for that. Finally, I would like to thank my parents

and also especially my love, Shuang. Your support and caring would be the

cornerstone of any achievement I can make, in the past or in the future. Your

love and well-being are my only wishes to the stars at night.

iii

Contents

1 Introduction 1

2 Related Works 4
2.1 Monocular SLAM . 4

2.1.1 Sparse monocular SLAM 5
2.1.2 Dense monocular SLAM 9
2.1.3 Semi-dense monocular SLAM 11

2.2 3D Line segment detection . 13
2.2.1 3D line reconstruction from matching 2D lines 15
2.2.2 3D line fitting directly from 3D points 16
2.2.3 3D line extraction aided by 2D cues 17

2.3 Incremental surface reconstruction 18
2.3.1 Explicit surface reconstruction 19
2.3.2 Implicit surface reconstruction 21
2.3.3 Surface reconstruction with lines 23

3 Method 26
3.1 Incremental 3D line segment extraction 26

3.1.1 Keyframes and depth maps generation 26
3.1.2 Edge aided 3D line segment fitting 28
3.1.3 3D line segment clustering and filtering 31

3.2 Surface reconstruction . 33
3.2.1 3D Delaunay Triangulation 34
3.2.2 Counting viewing rays 35
3.2.3 Labeling tetrahedra . 36

4 Experiments 39
4.1 Implementation . 39
4.2 Qualitative Comparison . 39
4.3 Quantitative Comparison . 48

4.3.1 Distance to surface . 48
4.3.2 Compactness . 52
4.3.3 Running Time . 53

4.4 Surface Reconstruction . 54

5 Conclusion 62

References 64

iv

List of Tables

4.1 Average distance of vertices to ground truth surface (ORB-SLAM) 48
4.2 Average distance of vertices to ground truth surface (LSD-SLAM) 48
4.3 Number of vertices in sequences of EuRoC MAV dataset (ORB-

SLAM) . 52
4.4 Number of vertices in sequences of EuRoC MAV dataset (LSD-

SLAM) . 52
4.5 Number of vertices in sequences of TUM RGB-D dataset (ORB-

SLAM) . 53
4.6 Number of vertices in sequences of TUM RGB-D dataset (LSD-

SLAM) . 53
4.7 Running time per keyframe (ORB-SLAM) 54
4.8 Running time per keyframe (LSD-SLAM) 54

v

List of Figures

2.1 Sample image of PTAM system interface [30] 6
2.2 System overview of ORB-SLAM [37] 7
2.3 Sample result of ORB-SLAM [37] 8
2.4 Depth map optimization of DTAM [43] 9
2.5 Sample result of MonoFusion [47] 10
2.6 System overview of LSD-SLAM [14] 11
2.7 Sample result of LSD-SLAM [14] 12
2.8 Overview of the semi-dense reconstruction system in [38] . . . 13
2.9 Sample result of semi-dense mapping in [38] 14
2.10 Sample result of Line3D++ [22] compared with result of PMVS

[17] . 15
2.11 System overview of PLSLAM [48] 16
2.12 Directly fitted 3D line in [53] 17
2.13 Sample of reconstructed 3D line segments in [40] 18
2.14 Sample result of surface reconstruction system in [34] 20
2.15 Sample result of KinectFusion [34] 22
2.16 Sample result of surface reconstructed using points and lines in

[20] . 24
2.17 Overview of surface reconstruction system with points and lines

in [56] . 25

3.1 Workflow of our method . 27
3.2 Line segment fitting coordinates 29
3.3 Clustering by angle and distance 32
3.4 Inserting a point into an existing Delaunay Triangulation struc-

ture . 34
3.5 Processing viewing rays. p1 and p2 are end points of a line

segments seen by camera c. Triangles ti, i ∈ [1, 10], are cells of
the Delaunay Triangulation structure. 36

3.6 Example graph for labeling tetrahedra. s and t represent the
source and sink respectively. v1, v2, v3 and v4 are vertices rep-
resenting tetrahedra. 37

4.1 Results of sequence EuRoC MAV Vicon Room 101 using ORB-
SLAM. As shown in (c), a large number of outlier line segments
are produced by Line3D++ near the wall area. Our method,
on the other hand, produce fewer outliers as shown in (e) and
(f). The noisy semi-dense point cloud shown in (b) is effectively
simplified and filtered by our method to produce a accurate line
segment based model with few outliers. 41

vi

4.2 Results of sequence EuRoC MAV Vicon Room 101 using LSD-
SLAM. Notice the large number of outlier line segments on the
right side of (c) produced by Line3D++. On the contrary, our
method utilizes the semi-dense depth map and produce results
with fewer outliers, as shown in (e) and (f). Although the semi-
dense point cloud produced by LSD-SLAM is much noisier than
the one from semi-dense ORB-SLAM, our method can still effec-
tively reduces the amount of outliers and produce a line segment
based model of the environment. 42

4.3 Results of sequence EuRoC MAV Machine Hall 01 using ORB-
SLAM. Comparing (c) and (e), on the right side of the im-
ages, some curved structural lines are not reconstructed by
Line3D++, while they are clearly visible in result of our method.
Because of the incremental line segment extraction, our method
is capable of capturing finer details of the scene compared to
Line3D++. 43

4.4 Results of sequence EuRoC MAV Machine Hall 01 using LSD-
SLAM. Compared to the result of Line3D++ in (c), our method,
result shown in (e), can fit line segments to the point cloud from
areas where Line3D++ failed to extract line segments due to
the limitation of 2D line segment detector. Comparing (c) and
(f), it is obvious that our method captures much more structural
information than Line3D++. 44

4.5 Results of sequence TUM RGBD fr3-large-cabinet using ORB-
SLAM. Compared to other methods, our method, shown in (e)
and (f), captures more structural information in the scene while
keeping the number of elements small. 45

4.6 Results of sequence TUM RGBD fr2-desk using LSD-SLAM. As
shown in (e) and (f), our method captures more major struc-
tural information compared to (c). Compared to (d), our pro-
posed approach produces much fewer outliers. 46

4.7 Results of sequence TUM RGBD fr1-room using ORB-SLAM. 49
4.8 Results of sequence TUM RGBD fr3-nostructure-texture-near-

withloop using LSD-SLAM. 50
4.9 Comparison of results of sequence fr3-structure-texture-near us-

ing ORB-SLAM. Compared to our method, shown in (b) and
(c), which tries to utilize pixel position and depth simultane-
ously, the decoupled fitting, shown in (a), essentially fits lines
in the image plane and depth plane in two steps. The error from
line fitting in the image plane will be propagated to the error
of 3D line segment position, resulting in noisy and inconsistent
3D line positions from different keyframes. 51

4.10 Reconstructed surface of sequence Vicon Room 101: View 1 . 55
4.11 Reconstructed surface of sequence Vicon Room 101: View 2 . 56
4.12 Reconstructed surface of sequence Vicon Room 101: View 3 . 57
4.13 Reconstructed surface of sequence Vicon Room 101: View 1 . 59
4.14 Reconstructed surface of sequence Vicon Room 101: View 2 . 60
4.15 Reconstructed surface of sequence Vicon Room 101: View 3 . 61

vii

Chapter 1

Introduction

Reconstructing surface from a stream of images is an important yet challenging

topic in computer vision. The 3D surface of the scene is essential for a variety

of applications, such as photogrammetry, robot navigation, augmented reality,

etc. With the development of Structure from Motion (SFM) and Multi-View

Stereo (MVS), one can easily reconstruct a 3D point cloud from a set of images

or a video stream. Alternatively, a 3D point cloud of a scene can also be ob-

tained in real-time using a monocular Simultaneous Localization and Mapping

(SLAM) system.

Given the expanding point cloud from a SLAM system, incremental surface

reconstruction algorithms can be used to reconstruct a 3D surface representing

the scene [23], [34]. With the recent development in SLAM systems, some

monocular SLAM systems can produce dense or semi-dense point cloud which

represents the scene more completely than the sparse point cloud produced by

traditional SLAMs. Although the surface reconstruction algorithms can run

in real-time on sparse point clouds, the statement does not hold true when

the number of points is increased significantly. In this thesis, we propose

to represent the scene using line segments in order to simplify the result of

semi-dense SLAM and achieve real-time performance in the task of surface

reconstruction.

Although point clouds are extensively used in 3D computer vision, there are

several limitations in representing a scene using 3D point clouds. First, points

in a point cloud are usually stored independently and present no structural

1

relationships. Second, point clouds require large storage space and they are

inefficient in terms of representing the geometric structure of a scene. For

example, it only requires two 3D points to define a linear structure but there

are usually hundreds or thousands of 3D points along the structure in a semi-

dense or dense point cloud. These limitations severely reduce the efficiency of

post-processing and analysis.

To overcome these limitations, geometric and semantic primitives can be

used to simplify and obtain better understanding of the scene. There are works

that tries to use geometric primitives (e.g . planes, cuboids, spheres) to help the

reconstruction and completion of objects and environments [28] [9] [62]. In a

relatively predictable and restricted setting like the indoor environment, even

semantics primitives (e.g . walls and ceilings) can be used to further help the

process of reconstruction and enhance our understanding of the reconstructed

surface [26]. Simple primitives like planes can be utilized in real-time to help

with, not only the robustness, but also the density of points produced by

SLAM systems [63] [51].

Line segment can be seen as the simplest geometric primitive. Although it

is not the most efficient primitive, line segments still efficiently preserve much

more structural information of a scene compared to point clouds. Many line

segment based 3D reconstruction algorithms have been proposed [4] [27] [65]

[22] [48] [36] [53] [40] [25]. Most of these methods rely on efficient line segment

detection and inter-frame matching, which can be difficult for complex scenes

without long line segments. However, with the dense or semi-dense point

clouds available, one can estimate 3D line segments without explicit matching

and triangulation.

In this thesis, we present a novel method to incrementally extract 3D line

segments from the result of semi-dense SLAM. Those detected line segments

present structural relations among points and represent the 3D scene efficiently.

A novel edge aided 3D line segment fitting algorithm is proposed. We first

detect edge segments from keyframes using Edge Drawing [59]. Then 3D

line segments are incrementally fitted along edge segments by minimizing the

fitting error on both image and depth related planes. Through experiments, we

2

show that our method produces accurate 3D line segments with few outliers.

Compared with the semi-dense point cloud, our method greatly reduces the

number of elements in the representation while keeping the major structures

in the scene. We apply the 3D line segments extracted by our method to

incremental surface reconstruction and improve the quality of reconstructed

surface compared to using the 3D points directly from SLAM.

The rest of this thesis is organized as follows. In Chapter 2, we review works

related to the methods presented in this thesis. In Chapter 3, we describe our

proposed algorithm in details. We present our experimental results in Chapter

4 and conclude in Chapter 5.

3

Chapter 2

Related Works

In this chapter, we survey the related works to this work in the literature.

The method proposed in this thesis is based on monocular semi-dense SLAM

system. We first introduce the monocular SLAM systems and for completeness

we also discuss sparse and dense SLAM.

In this thesis, we focus on 3D line segment detection from semi-dense SLAM

and recognize the proposed method as the major contribution of this thesis.

Comparable 3D line segment detection methods in the literature will be dis-

cussed after SLAM.

A targeted application of the proposed method is real-time surface recon-

struction. We discuss different approaches for surface reconstruction from

point clouds. Our survey focuses on methods that target fast and light-weight

incremental surface reconstruction.

2.1 Monocular SLAM

Monocular SLAM systems take a stream of images (a video) from a single

moving camera as input and output the camera poses of each image and a

reconstructed map, which is usually represented as a point cloud [8]. Visual

Odometry (VO) systems also compute the camera motion and reconstruct

map. However, the major difference between VO ans SLAM is that VO sys-

tems do not perform global optimization [57]. On the contrary to SLAM

system where the information about somewhere visited long time ago can be

reused, VO systems only consider the current image and several recent images.

4

However, since VO and SLAM have basically the same input and output and

they also have many common components, we do not list VO systems sepa-

rately.

Generally, in the literature [57], SLAM system is often categorized into

direct or indirect based on whether it extracts features out of the images or

not. However, instead of the processing of input images, we focus more on the

output of SLAM systems. Hence here we present another criterion to catego-

rize them. Based on the characteristics of their output map, SLAM systems

can be categorized into three categories: Sparse, Semi-dense and Dense.

2.1.1 Sparse monocular SLAM

Traditionally, most monocular SLAM systems are sparse because they operate

on feature points detected from images. Since the number of reliable detected

feature points is limited and usually at most a few hundreds of the best feature

points are used in each frame due to performance consideration, the resulting

map is often quite sparse in terms of the density of points.

MonoSLAM is considered to be the first real-time capable monocular SLAM

system [11]. Based on Extended Kalman Filter (EKF), it estimates the cam-

era motion and maintains the position and uncertainty of up to 100 points

in the scene. Each point is defined using a small image patch which is be-

ing tracked in the following frames. The uncertainty bound of points is used

to restrict the search area. The uncertainty of tracked points will gradually

decrease as the number of observation increase. As the camera moves, new

points will be detected and added to the map whose positions will be initial-

ized by triangulation. As the first real-time monocular SLAM system, it shows

that it is possible to estimate camera pose and reconstruct sparse points in

the scene in real-time using a single camera. However, because the number of

points is limited due to computational cost of the system, the working space

of MonoSLAM is limited to a small area.

PTAM is another successful feature-based monocular SLAM system [30].

Figure 2.1 is a sample image of PTAM’s interface. By utilizing two threads

running in parallel, it is able to integrate Bundle Adjustment (BA) to real-time

5

Figure 2.1: Sample image of PTAM system interface [30]

SLAM and maintain thousands of points without worrying about its perfor-

mance. In each frame, feature points are detected and matched with points in

the map. The camera motion is then estimated with these feature correspon-

dences. As a keyframe-based SLAM system, PTAM will create a keyframe if

it is far enough to other keyframe in terms of distance and time. Map points

will be created by triangulate feature points detected in keyframes in the back-

ground mapping thread. Also in the background mapping thread, PTAM will

perform local BA to optimize the camera poses and point positions for recent

keyframes. Global BA operating on all keyframes will also be performed but

it is less frequent than the local BA. By incorporating BA and separating

tracking and mapping into two threads, PTAM achieves accurate result while

maintaining real-time performance.

ORB-SLAM is a recent monocular SLAM system which uses ORB [50]

feature descriptor to match feature points [37]. The system overview of ORB-

SLAM is shown in Figure 2.2. Following and extending the idea of PTAM, it

has three threads running in parallel: tracking, local mapping and loop closing.

By detecting loops using a visual bag-of-words based method, ORB-SLAM can

close loops and optimize camera poses using pose graph optimization. Instead

of optimizing on the camera poses with 6 Degrees of Freedom (DoF) for trans-

lation and rotation, optimizing on the pose graph with one additional DoF for

6

Figure 2.2: System overview of ORB-SLAM [37]

scale based on similarity transform helps on correcting the scale drift accu-

mulated in the system. By optimizing on a pruned version of the pose graph

instead of the full graph and running all the heavy optimization in a sepa-

rate thread, ORB-SLAM can close loops without compromising the real-time

performance. In the tracking thread, similar to PTAM, features are detected

and matched against all the potentially visible points to find correspondences.

After estimating the camera pose with these correspondences, a fast motion-

only BA is performed to optimize the camera pose. For mapping, ORB-SLAM

adopts a so-called ”survival of the fittest” strategy for both keyframe and fea-

ture point selection, where it is generous in the creation of keyframes and

feature points, but very restrictive in the culling of them. In this way, only

the best keyframes and points will survive after a period of time. This ap-

proach improves the robustness and accuracy of the system since there are

more keyframes and points available for calculation, while limits the growth of

computation because redundant information is quickly discarded. By exploit-

ing the covisibility between keyframes, the tracking and mapping are focused

on a local covisible area which helps on operating in large environment. To-

gether with automatic initialization and relocalization, robust and accurate

7

Figure 2.3: Sample result of ORB-SLAM [37]

performance makes ORB-SLAM a complete package for monocular SLAM.

Sample result of ORB-SLAM is shown in Figure 2.3.

SVO is a fast semi-direct VO system [16]. It is a semi-direct method

because it does not extract features out of every image frame. Instead, feature

points are only extracted and matched in keyframes to initialize 3D points. A

grid is used to divide the image into small areas, and a fixed number of feature

points are extracted in each grid to make sure the points are spread across

the whole image. Without features detected and matched in every frame, the

small image patches at the location of the features are used to estimate the

camera motion. Given 3D points in the map, by projecting the 3D points

onto the image, the motion can be estimated by minimizing the photometric

error between all the corresponded small image patches. In the next step, they

further optimize the location of each individual patch in the current image by

minimizing the photometric error. Finally, the motion estimation is refined by

a motion-only BA and a structure-only BA on the current frame and recent

keyframes. For the mapping, SVO maintains the uncertainties for the depth

of each point which is updated by each observation of the same point. In this

way, only the points with accurate and certain 3D location will be used in the

motion estimation step. SVO keeps a fixed number of keyframe in its map and

only optimizes point locations and camera poses in a local window, therefore,

it is not a full SLAM system but a VO system.

DSO is a recently proposed fully direct sparse VO system [13]. Without

8

Figure 2.4: Depth map optimization of DTAM [43]

extracting features at all, it tries to reconstruct depth of sparse pixels with

high gradient in the images. By dividing the image into smaller blocks, the

points can be evenly distributed in the image. It performs optimization on

the intensity of all points and the camera poses within a sliding window all

together. The windowed optimization and marginalization for keyframe and

points help DSO achieve a fast speed, since only a relatively consistent number

of parameters are used to estimate the motion for a frame. Furthermore,

DSO considers not only geometric calibration of the camera, but also the

photometric calibration. It shows that the photometric calibration can help

direct methods achieve accurate result because they are trying to minimize the

photometric error between images. Because DSO does not rely on any feature

detector, it has the advantage that it can sample point across any region as

long as there is intensity gradient, which helps the system to estimate the

camera motion more robustly in areas without rich texture.

2.1.2 Dense monocular SLAM

In contrast to only reconstructing feature points in 3D, a dense SLAM system

can calculate the 3D positions for most if not all the pixels in images while

localize the camera at the same time.

Typical example of this kind of dense method is DTAM [43]. By using a

dense and sub-pixel accurate MVS reconstruction method, depth maps can be

created, where the depth of every pixel is computed by stereo matching using

hundreds of images. After the initial estimation, the depth maps are further

optimized globally for smoothness. Shown in Figure 2.4, from left to right, the

depth map is incrementally optimized and regularized. On the right of Figure

9

Figure 2.5: Sample result of MonoFusion [47]

2.4, result of PTAM is shown for comparison. The depth map reconstruction

process is highly parallelisable and is sped up using a GPU. The reconstructed

dense 3D model is used to track the camera location by projecting the entire

model to a virtual camera to synthesize a novel view of the model. Then a

6 DoF direct whole image alignment is performed to refine the estimation of

camera pose and minimize the photometric error between the synthesis and

current frame. This tracking process can be implemented efficiently using a

GPU and runs at frame-rate. One of the advantages of tracking the camera

against a dense model is the capability to predict surface which means that it

is easier to handle occlusion and moving parts in the scene.

Methods like DTAM need to produce a dense map in order to estimate the

camera motion because images are matched against the reconstructed model.

However, other SLAM/VO can also be combined with MVS methods to pro-

duce dense reconstruction of the environment. Essentially, given camera poses

and corresponding images, MVS methods can be used to reconstruct dense

depth maps by considering multiple images at a time. Before DTAM, New-

combe and Davison proposed a real-time dense reconstruction system built

upon PTAM [41]. They compute depth maps of selected frames using the

dense correspondence measurement in a bundle of nearby frames. The depth

maps are then integrated into a global model. In [47], Pradeep et al . present

MonoFusion, a dense reconstruction system based on volumetric fusion, where

the depth map of keyframes are computed by stereo matching. They also use

a method similar to PTAM to track the camera motion. Sample result of

MonoFusion is shown in Figure 2.5.

10

Figure 2.6: System overview of LSD-SLAM [14]

2.1.3 Semi-dense monocular SLAM

Between sparse and dense SLAM systems, semi-dense methods can reconstruct

the depth of part of the image. Typically, semi-dense methods can reconstruct

depth of pixels with high enough intensity gradient.

An example of semi-dense SLAM is LSD-SLAM [14]. The system overview

of LSD-SLAM is shown in Figure 2.6. LSD-SLAM estimates the depth for all

the pixels with non-negligible image gradient. By representing the probability

of the inverse depth of each pixel as a Gaussian distribution, it can be prop-

agated and updated over time through multiple image frames. The estimated

pixel depth is then used to track the camera motion by direct image alignment.

Essentially, the process of direct alignment with depth in consideration is esti-

mating the 6 DoF camera motion by aligning current image to the synthesis of

the reconstructed depth map of a keyframe. By only trying to estimate and use

the depth of pixel with large image gradient, LSD-SLAM achieves real-time

performance with only a CPU. Furthermore, a scale-drift aware formulation

of direct image alignment method for estimating the 7 DoF similarity trans-

form is proposed to construct pose graph and detect loops. Therefore, loop

closure can be performed by pose graph optimization, which gives LSD-SLAM

the ability to perform well on large scale environment. Sample result of LSD-

SLAM is shown in Figure 2.7. In LSD-SLAM, the smoothness of pixel depth

is considered during estimation, which means pixels whose depth is estimated

11

Figure 2.7: Sample result of LSD-SLAM [14]

need to have neighboring pixels to support it. The reconstructed pixels are

mostly connected with some other pixels. Therefore, LSD-SLAM is classified

as semi-dense whereas DSO is classified as sparse although it can have similar

point density with LSD-SLAM.

Similar with dense method, the reconstructed semi-dense map does not

have to be used in tracking. Semi-dense map can also be reconstructed by

MVS methods which focus on high gradient areas on the image. Mur-Artal and

Tardós present a probabilistic semi-dense mapping method for ORB-SLAM

[38]. As shown in Figure 2.8, they build upon ORB-SLAM and developed

a separate module for creating semi-dense point cloud. In this work, they

estimate the depth of high gradient pixels in keyframes. Multiple hypothesis of

the depth are established by searching across the epipolar line in other frames.

These hypothesis are integrated by using a probabilistic formulation. The

depth of pixels have to be supported by both the pixels in the same frame and

the pixels projected to the same location from other frames. After removing

uncertain pixels and pixels that are not supported, accurate semi-dense depth

map can be obtained. Sample results of the reconstructed semi-dense point

cloud is shown in Figure 2.9. Since they only consider pixels with large gradient

12

Figure 2.8: Overview of the semi-dense reconstruction system in [38]

and utilize a fast multi-view depth estimation method, their method can run

in nearly real-time on a multi-core CPU.

2.2 3D Line segment detection

Although 3D points are the most commonly used 3D representation in SLAM

methods, there are several limitations in representing scenes using point clouds.

First, points in a point cloud do not store any structural information which

is essential for applications like surface reconstruction. The lack of structural

information makes point clouds easy to generate, but also makes them hard

to infer any geometric relations among the points. Second, point clouds are

not efficient in representing the geometric structure of a scene. A simple 3D

line segment can be easily described by a line segment, but it needs a large

number of points to represent its continuity.

Line segments representation preserves structural information of the scene

much better than points. In fact, using line segment in computer vision is

not a new idea. There is a long history of using line segments in areas like

image registration and 3D reconstruction [3] [52]. However, most of the work

focusing on 3D reconstruction are based on feature points and their powerful

13

Figure 2.9: Sample result of semi-dense mapping in [38]

point descriptors like SIFT [35] and SURF [5]. Recently, invariant descriptors

for line segments are also proposed and used to match line segments in different

images [60] [66] [64]. Line segments have been used in applications like line

segment based SFM methods [4] [65] [36] and line segment based MVS methods

[27] [22]. Line segment based SFM methods try to estimate both the camera

pose and 3D line segments at the same time, while line segment based MVS

methods try to reconstruct the 3D line segments assuming the camera poses

are known.

In order to use the line segments in images, one has to detect those line

segments first. 2D line segment detection has been studied for a long time.

Many algorithms have been proposed to detect the line segments in an im-

age. Methods like Hough transform [12], LSD [18] and EDLines [1] have been

popular for use in various applications. However, these methods are hard to

extend to 3D space directly. To detect line segments in 3D, typical method

either detect 2D line segments first and match line segments across frames to

reconstruct 3D line segments, or detect 3D line segments from point cloud by

14

Figure 2.10: Sample result of Line3D++ [22] compared with result of PMVS
[17]

3D line fitting.

The methods to detect 3D line segments can be categorized into three

major classes: 3D line reconstruction from matching 2D lines, 3D line fitting

directly from 3D points and 3D line extraction aided by 2D cues.

2.2.1 3D line reconstruction from matching 2D lines

Bartoli and Sturm proposed a line segment based SFM pipeline [4]. In their

work, 3D line segments can be reconstructed efficiently, but the 2D line seg-

ments and their correspondences are manually labeled. Micusik and Wilder

used relaxed endpoint constraints for line matching and developed a SLAM-like

line segment based SFM system [36]. Hofer et al . matched 2D line segments

detected from images of different views by pure geometric constraints [22].

All the candidates of possible 3D line segments are filtered and then clustered

based on mutual support by solving a graph-clustering problem. Their 3D line

segment reconstruction system is called Line3D++. Sample result of this work

15

Figure 2.11: System overview of PLSLAM [48]

is shown in Figure 2.10. In [48], Pumarola et al . proposed PLSLAM, which

detect line segments using LSD [18] and match them based on LBD descriptor

[64]. As shown in Figure 2.11, they utilize the correspondences of both points

and line segments to improve the robustness and accuracy of feature based

SLAM system.

2.2.2 3D line fitting directly from 3D points

Roberts proposed a new representation for a line in [49]. Using this repre-

sentation, Snow and Schaffrin developed an algorithm for solving the Total

Least-Squares problem of 3D line fitting [53]. A directly fitted 3D line result

is shown in Figure 2.12. However, this kind of methods are sensitive to noise

and outliers. Random Sample Consensus (RANSAC) is relatively robust to

small number of outliers [15]. However, RANSAC is time consuming in 3D

space and the optimal line fitting is not guaranteed in the presence of a large

amount of outliers.

16

Figure 2.12: Directly fitted 3D line in [53]

2.2.3 3D line extraction aided by 2D cues

Woo et al . [61] detected 2D line segments from 2D aerial images first, and

then used their corresponding 3D points on buildings’ Digital Elevation Model

(DEM) to fit 3D lines. Given RGB-D sensor, Nakayama et al . [40] transformed

2D points on detected 2D line segments directly to 3D using corresponding

depth image. Then, 3D line segments are fitted by RANSAC in 3D space.

Sample result of their method is shown in Figure 2.13.

Since most of the existing SFM or SLAM systems output point clouds as

their mapping results, we prefer to make full use of these results and extract

3D line segments using both image and point cloud information. Our method

belongs to the third class because we extract line segments from the semi-

dense point cloud with the help of detected 2D edges. Specifically, instead of

detecting 2D line segments and finding their corresponding 3D points for fitting

3D line segments afterwards, we fit the line segment in 3D by iteratively fitting

its projections in two different planes. In other words, we directly detect 3D

line segments by taking both 2D locations and corresponding depth of detected

edge pixels into consideration in the line segment detection procedure.

17

Figure 2.13: Sample of reconstructed 3D line segments in [40]

2.3 Incremental surface reconstruction

Surface reconstruction from point cloud has been studied for decades and is a

very important aspect for computer vision and other fields, especially computer

graphics [6]. The map reconstructed by a SLAM system can be converted to

a point cloud. On one hand, for feature based SLAM system, the points are

the 3D feature points detected and tracked across frames. The points are

usually sparse, and duplicate points, which have the same or very close 3D

location, seldom occur. On the other hand, for direct method, the point cloud

are usually reconstructed by simply projecting the depth map into a single 3D

world coordinate. In this case, the number of points in the point cloud is often

much larger than those from feature based SLAM, and a large portion of the

points can be duplicate points in 3D space. As the SLAM exploring more area

in the environment, the map is expanding and new points are inserted to the

point cloud. To reconstruct a surface that is constantly expanding, the surface

reconstruction method needs to work in an incremental fashion.

Surface reconstruction from point cloud methods can be roughly catego-

rized into two categories [29]: Explicit and Implicit.

18

2.3.1 Explicit surface reconstruction

Explicit surface reconstruction method works directly on the points and trian-

gulate them to construct the mesh of the surface. In this section, we introduce

a line of works that reconstructs the surface by discretizing the space into

tetrahedra. In the context of surface reconstruction from result of incremental

SFM or SLAM, methods like [34] [24] [32] use 3D Delaunay Triangulation to

discretize the space into tetrahedra so that each point in the point cloud is a

vertex for the tetrahedra. A surface in this discretized space then consists of

connected faces of tetrahedra. By classifying all tetrahedra into ”free-space”

or ”occupied”, the surface can be approximately represented by the faces that

divide the ”free-space” tetrahedra and ”occupied” tetrahedra. Naturally, the

triangle faces forms a mesh that explicitly represents the surface.

The Delaunay Triangulation of 3D points is a valid choice for discretizing

the space because the property that it has. As mentioned in [31] [2], under

reasonable assumptions, the Delaunay Triangulation contains a good approx-

imation of the surface if the point cloud is dense enough. By carefully and

correctly selecting a subset of the facets in the triangulation, an approximation

of the surface can be obtained.

Labatut et al . proposed a efficient method for reconstructing surface from

point clouds [31]. They use 3D Delaunay Triangulation to discretize the space.

Photometic consistency, visibility information and surface smoothness are used

to determine whether a certain tetrahedron is ”free-space” or not. They for-

mulated the labeling problem as a graph-cut problem operating on the 3D dual

graph, where each tetrahedron is a node in the graph and each edge represent

a face connecting two tetrahedra. In this way, different regularization criteria

can be considered together by converting them into weights of the edges in the

graph. After solving this graph-cut problem and obtain the minimum cut, the

surface is then represented by the edges that are cut. Although this method is

efficient compared to other MVS methods at the time, it is still not real-time

and can not be applied to incremental systems like SLAM.

Lovi et al . applied the idea of using 3D Delaunay Triangulation in surface

19

Figure 2.14: Sample result of surface reconstruction system in [34]

reconstruction from the point cloud of sparse SLAM system [34]. Some result

of the surface reconstruction system is shown in Figure 2.14. After discretiz-

ing the space by triangulate the 3D points, they carved out all the tetrahedra

intersecting with any viewing ray that connects a 3D point with a camera

position. By using this space carving method that only considers visibility

information, the computational cost for the surface reconstruction is greatly

reduced. They also incrementally handles all the different events that affect

the point cloud in the SLAM system including point addition, point deletion

and point moving. When a point is added or deleted, the structure of triangu-

lation is changed only in a local region. Thus, real-time performance can be

achieved when operating on the point cloud from a sparse SLAM system. They

applied the method to PTAM, where the sparse 3D points are used to recon-

struct the surface. Each viewing ray is constructed by connecting the camera

location of a keyframe and a 3D point. Within the implementation, in order

to correctly handle all the events from PTAM, information of the viewing rays

that intersect with a certain tetrahedron are all kept in the tetrahedron. They

20

proposed a forgetting heuristics that only keeps a single viewing ray for each

tetrahedron. With the help of this forgetting heuristics, the computational

cost is reduced and real-time performance is achieved.

Hoppe et al . proposed an incremental surface reconstruction method for

online SFM methods and SLAM systems [24]. In this work, similar to [31], they

discretize the space into tetrahedra by Delaunay Triangulation and perform

graph-cut on the dual graph. They proposed a new formulation for the weight

of the edges. In contrast to the formulation in [31], they only consider the

visibility information and surface smoothness in assigning the weight. Also,

only local information is used, which makes the method efficient when applied

to large point clouds. By incrementally adding points into the 3D Delaunay

Triangulation structure, their method can run in real-time on the point cloud

from online SFM. However, the deletion and moving of points are not handled

in this work. To obtain the minimum cut in real-time, dynamic graph-cut is

used to efficiently solve the problem with increasing amount of points. They

showed that by using dynamic graph-cut, the computational cost is relatively

consistent and independent to the increasing number of points.

2.3.2 Implicit surface reconstruction

On the contrary to explicitly triangulate the points to obtain the mesh, implicit

methods use intermediate representation to store and process the information

of points and then extract the surface mesh from the implicit representation

as a separate step. Essentially, the difference between implicit and explicit

methods is the way they discretize the space. In the context of real-time

incremental surface reconstruction, the space is usually discretized into voxels,

which are regular cubes in the space, all aligned to certain axes. In this

section, we introduce a line of work that try to integrate the dense depth maps

produced by the SLAM systems into a consistent volumetric representation

using Truncated Signed Distance Function (TSDF).

A TSDF is the truncated version of a signed distance function. The value

of a signed distance function in a voxel represents its distance to the closest

zero crossing, which corresponds to the surface. The value is positive on the

21

Figure 2.15: Sample result of KinectFusion [34]

free-space side of the surface and negative on the non-visible side. Since the

information far away from the surface is not necessary for reconstructing the

surface, the signed distance can be truncated at a certain value to reduce

computation needs. Under assumptions, this truncation does not affect the

final result. Multiple surface measurements can be integrated into a single

global representation using TSDF. To extract a mesh of the surface out of the

voxels, methods like Marching Cubes [33] can be used.

A very influential work that utilized the voxel volumetric representation is

KinectFusion [42]. In this work, Newcombe et al . developed a SLAM system

for Kinect, an inexpensive RGB-D camera that, along with the RGB images

it captures, can produce depth maps in real-time using its infrared sensor.

Given the dense depth maps, they adopted the method proposed by Curless

and Levoy [10], which integrates all the depth measurements into a cumulative

weighted signed distance field. The method is robust to noise and works incre-

mentally, which are essential properties for a method to be used for a RGB-D

SLAM system. By adapting this TSDF based method to run in parralel on a

GPU, Newcombe et al . achieved real-time performance for integrating depth

maps and reconstructing the surface. The camera poses of the depth maps are

key components for correctly integrating the depth maps. They are estimated

by performing a multi-scale ICP alignment between current sensor measure-

ment and the predicted surface raycasted from the global TSDF. Being fully

parallelsible, the camera tracking algorithm can be also implemented for a

GPU. The full system can run in real-time to reconstruct the surface of an

indoor area with the help of a GPU. Sample result of KinectFusion is shown

22

in Figure 2.15. Although they use a RGB-D camera in this work, their surface

reconstruction method can also be used for other methods that generate dense

depth maps. For instance, similar surface reconstruction methods are used

in MonoFusion [47] and MobileFusion [46] to reconstruct the surface using a

monocular RGB camera.

Although the TSDF based surface reconstruction method in KinectFusion

[42] is impressive, it has its drawbacks. First of all, since each voxel needed

to be allocated with a block of memory in the GPU, the reconstructed surface

area is limited by the available GPU memory. In later works, several extensions

are proposed to overcome this limitation. Steinbrücker et al . used a octree-

based voxel grid to extend the working area [54]. Nießner et al . proposed a

method called Voxel Hashing to dynamically allocate memory to the voxels

on demand [44]. Another drawback of the TSDF based surface reconstruction

methods is that they are computationally expensive. Although the voxels

can be processed in parallel, a GPU is usually required to achieve real-time

performance. There are works focusing on speeding up the reconstruction and

run it on a CPU [54] [45]. Although these methods runs in real-time on the

CPU, they focus on using the dense depth maps from RGB-D cameras, and

are not well suited for our semi-dense results from SLAM.

2.3.3 Surface reconstruction with lines

Besides using only the points, some works also use lines in surface recon-

struction. Hofer et al . mentioned using line segment to improve quality of

reconstructed surface as an application for their line segment reconstruction

method in [21] [20]. Sample result of method in [20] is shown in Figure 2.16.

From left to right, sample input image, sparse point cloud, points combined

with lines, surface reconstructed using points and surface reconstructed using

points and lines are shown respectively. Although in these works, they did not

describe the method they use to incorporate the information provided by the

line segments, they showed the quality and completeness of the surface can be

greatly improved by providing line segments in addition to the sparse point

cloud.

23

Figure 2.16: Sample result of surface reconstructed using points and lines in
[20]

Sugiura et al . proposed a method to incorporate line segments in recon-

structing the surface after running SFM on a set of images [56]. An overview

of their system is shown in Figure 2.17. In this work, they adopted a similar

strategy with [31] to reconstruct a surface using the points from SFM. The

difference is that here they only consider the visibility information and surface

smoothness to extract the surface. An initial surface is extracted to help the

reconstruction of 3D line segments. To reconstruct the 3D line segments, they

first detect the 2D line segments in the images using LSD [18] and then match

them in different images. In order to match the 2D line segments, the pixels

on the 2D line segments are matched across frames on the epipolar lines by

comparing their DAISY descriptors [58]. The depth of a pixel on the estimated

initial surface is used as the start point for epipolar search. To match a certain

line segment, a 2D line segment will be fitted to the matched pixels on another

image. If there exists a detected 2D line segment that is close to the fitted

line segment, then it will be taken as the matched line segment. After obtain-

ing the 2D line segment correspondences, 3D line segment are reconstructed

by triangulation. Given the 3D line segments, they updated the Delaunay

Triangulation structure by regularly sampling points on the 3D line segments

and inserting them into the point cloud. To handle the visibility informa-

tion of the line segments, similarly to carving out using rays from camera to

3D points, they carved out tetrahedra that intersect with the triangle formed

by the camera and two end points of the 3D line segment. As a result, the

quality of the surface is greatly improved with all the additional points and

24

Figure 2.17: Overview of surface reconstruction system with points and lines
in [56]

visibility information. Their approach of extracting the 3D line segments is

actually very similar to our method in that it also compute pixel matching be-

fore reconstructing 3D line segments. In our method, we fit 3D line segments

directly to the computed depth of pixels. The difference in this work with our

method is that they only use the depth of the pixels as a criterion to match

line segments in different images.

25

Chapter 3

Method

In this chapter, we present the detail of our method for 3D line segment

extraction and incremental surface reconstruction. The overall workflow of

our system is shown in Figure 3.1.

3.1 Incremental 3D line segment extraction

We introduce our incremental 3D line segment extraction method in this sec-

tion. The input of our method is a video (image sequence) which is captured

by a moving camera with known intrinsic parameters. The output is a line

segment based 3D model of the scene. In order to extract 3D line segments

from semi-dense point cloud, our method performs the following steps on each

new keyframe (shown in Figure 3.1):

1. Compute semi-dense depth map

2. Edge aided 3D line segment fitting

3. 3D line clustering and filtering

3.1.1 Keyframes and depth maps generation

Our method operates on images and semi-dense depth maps of keyframes in

SLAM systems. We implemented our method with two base SLAM systems:

ORB-SLAM [37] and LSD-SLAM [14].

ORB-SLAM [37] is a feature based SLAM system which takes the image

sequence from a moving camera and computes the camera poses in real time.

26

Figure 3.1: Workflow of our method

By applying advanced keyframe management, powerful feature descriptor, lo-

cal and global bundle adjustment and loop closure detection, it can robustly

track the camera pose and map the environment. Mur-Artal and Tardós [38]

present a semi-dense module which is able to compute a semi-dense depth map

for each keyframe. Although ORB-SLAM is originally a feature-based sparse

SLAM system and the computation of depth map does introduce some compu-

tation overhead, the final point cloud is clean and accurate, which enables us

to extract 3D line segments out of the point cloud with few outliers. As a side

effect of using multiple keyframes as references to compute the depth map, the

depth map computation is delayed by a few keyframes, i.e. the depth map is

not constructed as soon as the keyframe is created. The delay can be beneficial

as it allows the local bundle adjustment to optimize the camera pose, but it is

a major limitation for extracting 3D line segments in real time.

LSD-SLAM [14] is a direct semi-dense SLAM system which computes the

camera poses by direct alignment. Compared to ORB-SLAM with semi-dense

27

module, depth maps of LSD-SLAM are denser and noisier [38]. However, it

can generate semi-dense depth maps for all its keyframes without delay, which

enables our line segment extraction method to perform in real-time.

In Section 4, we demonstrate results of our method using the two SLAM

systems mentioned above. In principle, other keyframe based dense or semi-

dense SLAM system could be used to generate the semi-dense depth maps as

well.

3.1.2 Edge aided 3D line segment fitting

Fitting 3D line segments directly from point clouds is difficult and time con-

suming. It is challenging to develop criteria for separating points into different

groups in order to fit line segments. In this thesis, we propose to use 2D im-

age information on keyframes to help 3D line segment fitting from semi-dense

point clouds.

We first extract edge segments from keyframes using Edge Drawing [59].

Edge Drawing is a linear time edge detector which can produce a set of accu-

rate, contiguous and clean edge segments represented by one-pixel-wide pixel

chains. Now the detected edge segments of the a keyframe can be expressed

as ES = {es1, es2, ..., esn} where esi = {p1, p2, ..., pm} is an edge segment for-

mulated as a pixel chain. pi represents a pixel which is a vector of (x, y, Z)

where x and y are the image coordinates and Z is its corresponding depth in

the semi-dense depth map. The number of edge segments in a keyframe and

number of pixels in an edge segment are denoted by n and m respectively. It is

worth noting that image pixels with high intensity gradient are more likely to

be selected for computing depth value in the semi-dense SLAM system. Edge

segments are detected based on pixel intensity gradients as well. Thus, the

detected edge pixels are very likely to have depth values. The pixels which

have no depth values will be considered as outliers in the line fitting process.

3D line segments of a keyframe are extracted from those detected image

edge segments by Algorithm 1. The main idea of this algorithm is to reduce a

3D line fitting problem to two 2D line fitting problems. The coordinate frames

are defined as shown in Figure 3.2. C−XYZ is the camera coordinates. The

28

Figure 3.2: Line segment fitting coordinates

X-axis and Y-axis are parallel to the image coordinates. The Z-axis is the depth

direction. {p1...pn} represent a detected 2D image line segment. Line segment

pixels {p1...pn} and their corresponding real-world points are all located on

the same plane π. The x-axis is defined by vector −−→p1pn while z-axis is parallel

to the Z-axis. For each edge segment, the algorithm initially takes its first L

pixels to fit two 2D lines (lim and ldepth) in the image coordinate frame and

the p1-xz coordinate frame using total least square method. The line lim is

fitted based on the pixels’ (x, y) values while ldepth is fitted based on (D,Z). Z

is the pixel’s depth and D is the distance from p1 to the pixel’s projection on

the x-axis. Total least square 2D line fitting is performed by solving Singular

Value Decomposition (SVD) [19]. It is worth noting that the plane p1-xz is

not always the same with plane π, which is determined by C, p1 and pn. The

plane p1-xz is orthogonal to the image plane where lim is fitted. The two

planes, p1-xz and π, are the same plane only if the image center lies on the

line segment p1pn. Although the 3D points may not be located on the plane

p1-xz, it is much easier to perform line fitting on p1-xz rather than π. Given

the image plane coordinate of the points, actual 3D positions can be easily

recovered using the depth of points in p1-xz plane.

29

Algorithm 1 Edge aided 3D line segment fitting

Input: An edge segment which is a list of pixels: es = {p1, p2, ..., pm}, where
pi denotes the i-th pixel on the edge segment
Output: A set of fitted 3D line segments: LS

1: Initialize two empty set of pixels: pixels, outliers
2: for each pi ∈ es do
3: if pixels = ∅ then
4: Move first L pixels in es to pixels
5: Fit two 2D lines lim and ldepth to pixels
6: end if
7: Compute distance dim from (pi.x, pi.y) to lim
8: Compute distance ddepth from (pi.D, pi.Z) to ldepth
9: if dim < e1 & ddepth < e2 then

10: Move pi to pixels
11: else
12: Move pi to outliers
13: end if
14: if es = ∅ ‖ |outliers| > L then
15: if |pixels| > L then
16: Fit lim and ldepth to pixels
17: Compute the 3D line segment and add to LS
18: end if
19: Empty pixles and outliers
20: end if
21: end for

30

After obtain an initial line segment, we compute the distances of the next

pixel in pixel chain to lim and ldepth in their corresponding coordinate frames.

Note that D and Z have different units. To have the same unit as D, Z is

multiplied by the focal length f before distance computation. If both distances

are smaller than certain thresholds, e1 and e2 respectively, we will add the

pixel to the fitted pixel set to extend the line. Otherwise the pixel will be

considered as an outlier. If L consecutive pixels are outliers, we stop the

current line segment search and start a new line segment search. Another pair

of total least square fittings on the two planes are performed to obtain the

final 3D line for each line segment. The 3D line segments are represented by

their endpoints, which are estimated by projecting the points corresponding

to its first and last pixel on to the final 3D line. After traversing all of the edge

segments of the keyframes, we can aggregate one 3D line segment set LSk for

each keyframe.

3.1.3 3D line segment clustering and filtering

To obtain a consistent reconstruction of the environment, 3D line segments

LSall = {LS1, LS2, ..., LSn} extracted from different keyframes are first regis-

tered to the same world coordinate system. The registered 3D line segments

are denoted as lsall = {ls1, ls2, ..., lsw}. Here w denotes the total number of 3D

line segments from all keyframes. Directly registering all 3D line segments will

produce redundant and slightly misaligned result. We address this problem

by proposing a simple incremental merging method.

The main idea of our merging method is clustering closely located 3D line

segments and fitting those cluster sets with new 3D line segments. As illus-

trated in Figure 3.3, the angle and distance measures are used for clustering.

The angle measure α is defined as:

α = acos(

−−→
p1jp

2
j ·
−−→
p1i p

2
i

|
−−→
p1jp

2
j ||
−−→
p1i p

2
i |

) (3.1)

31

(a) Angle measure (b) Distance measure

Figure 3.3: Clustering by angle and distance

The distance measure d is computed as:

d = min(d1, d2) (3.2)

d1 = |
−−→
p1jp

1
i |+ |

−−→
p1jp

2
i | − |

−−→
p1i p

2
i | (3.3)

d2 = |
−−→
p2jp

1
i |+ |

−−→
p2jp

2
i | − |

−−→
p1i p

2
i | (3.4)

Specifically, we take the first 3D line segment ls1 as the initial cluster C1.

Then, we compute the angle and distance measure between the initial cluster

(single line segment) and the next 3D line segment ls2. If the angle α and

distance d are smaller than certain thresholds (λα and λd respectively), we

add ls2 to the cluster C1. Otherwise, we create a new cluster C2. For each

cluster, if it contains more than one 3D line segments, we will fit a new 3D

line segment to represent the cluster. The direction of the new line segment

is determined by performing SVD on the matrix consisting of all points in

Pep, where Pep denotes the set containing all the endpoints of line segments

in this cluster. A new 3D infinite line is then determined by the direction

together with the centroid of Pep. In order to obtain a 3D line segment from

this infinite line, we project endpoints in Pep onto the generated infinite 3D

line and compute the furthest projections with respect to the centroid in both

directions. The 3D line segment between these two furthest projection points

is taken as the fitted line segment of the cluster. This process is repeated until

all the line segments in ls are clustered. Clusters with small size (|Ci| < λC)

32

are filtered out in the end. In this way, we can merge a large number of line

segments into fewer clusters and generate new 3D line segments with higher

quality.

3.2 Surface reconstruction

Given the extracted 3D line segments, we can apply incremental surface recon-

struction methods [23], [34] to obtain a mesh representing the 3D surface. Our

surface reconstruction operates on the endpoints of extracted line segments,

and is based on the method presented in [34]. Our surface reconstruction

pipeline is different with [34] mainly in how the tetrahedra is labeled. Al-

though the space carving method used in [34] can accurately reconstruct the

surface with correct viewing rays, it does not handle the outliers very well. If

an outlier viewing ray is inserted into the structure, it may carve out tetra-

hedra incorrectly which can have a large impact on quality of the surface. To

solve the problem, we applied a graph cut based approach to categorize the

tetrahedra, which takes surface smoothness into consideration to alleviate the

damage caused by outliers.

Although it is possible to use clustered line segments as the input to our

surface reconstruction method, it would affect the speed of our system signif-

icantly. Reconstructing surface using line segment can involve sampling mul-

tiple points on the line segments [56]. Since a clustered line segment would

update its final position after a new line segment is inserted to this cluster,

we need to update all the points sampled on the line segment, which can be

expensive to perform. In order to obtain real-time performance of the final

system, we use the unclustered line segments for surface reconstruction. We

can observe that the unclustered line segment are generally short line seg-

ments. Because the clustered line segments are computed from these short

line segments, using endpoints of them naturally resembles the sampling pro-

cedure. Through experiments, we observe that using unclustered line segment

can still produce high quality surface while being much more efficient than

using clustered line segments.

33

(a) Original structure (b) Insert a new point

(c) Conflicting cells (d) Remove cells (e) Local triangulation

Figure 3.4: Inserting a point into an existing Delaunay Triangulation structure

Here we present the detail of our surface reconstruction method. The

surface reconstruction method can be divided into the following three steps:

1. Discretize the space into tetrahedra by 3D Delaunay Triangulation

2. Assign weights to tetrahedra according to the viewing rays

3. Divide all tetrahedra into two-categories: free space and occupied space

3.2.1 3D Delaunay Triangulation

Given an initial point cloud, we can apply 3D Delaunay Triangulation to point

cloud to obtain the tetrahedra. As a keyframe is passed to the surface recon-

struction pipeline, all the new points from it are inserted into the structure.

To insert the points, instead of performing 3D Delaunay Triangulation on all

the points all together, we can perform incremental and local update to the

structure. Since the number of points inserted at a time tends to be much

smaller than the total amount of points, incremental insertion can be much

34

more efficient. Inserting a point into the structure of 3D Delaunay Trian-

gulation involves three steps. First, we need to find all the conflicting cells,

i.e., tetrahedra that will lose the Delaunay property if the point is inserted.

Then all these cells and involved conflicting points are deleted. Finally, the

new point and conflicting points are inserted into the structure to perform a

local 3D Delaunay Triangulation. In Figure 3.4, we present the procedure of

inserting a point into an existing Delaunay Triangulation structure. Although

we use 2D triangulation in the figure for illustration, the procedure can easily

generalize to 3D space. During the insertion of a point, only tetrahedra from

a limited local region are involved, which ensures the efficiency of the process.

Deleting and moving points are also possible and can be achieved with

similar procedure as presented in [34]. In our system, points are only inserted

into the structure without deleting and moving, thus we omit the detailed

description related to these procedures.

3.2.2 Counting viewing rays

After inserting all the new points from a keyframe, we process the viewing

rays from the keyframe. We create a viewing ray counter for each tetrahedron,

which records how many viewing rays are intersecting with the tetrahedron.

Each viewing ray connects the camera position of the keyframe and a 3D point

in the 3D Delaunay Triangulation structure. Here we can treat the viewing

ray as a line segment in 3D space. We traverse all the intersecting tetrahedra

along the line segment and increase their viewing ray counter. The viewing

ray counters of tetrahedra are later used to separate free space and occupied

cells.

An illustration of the process is shown in Figure 3.5, where a line segment

p1p2 is visible to camera c. By traversing along the two viewing rays, cp1 and

cp2, we increment the viewing ray counters in t1, t2 and t3. Similar to the

previous section, although we show a 2D example in the figure, the process

can easily generalize to work in 3D space.

35

Figure 3.5: Processing viewing rays. p1 and p2 are end points of a line seg-
ments seen by camera c. Triangles ti, i ∈ [1, 10], are cells of the Delaunay
Triangulation structure.

3.2.3 Labeling tetrahedra

We formulate the problem as a simple minimum cut problem in order to label

all the tetrahedra. We create a graph G in which the vertices represent the

triangulated tetrahedra. There are two extra vertices in G, source s and sink

t, which represent the free space and occupied space labels respectively. Edge

vertex is connected to s and t by two edges es and et. If es is cut then it

means that the tetrahedron represented by the vertex does not belong to free

space and vice versa. Es represents a set consisting of all the es, while Et

consists of all the et. We collect the es and et for all vertices and name the

set of edges Evis since they represent the visibility of tetrahedra. Vertices

representing adjacent tetrahedra are connected by edges Esmooth. Each edge

esmooth ∈ Esmooth represents a triangle shared between the two neighbouring

tetrahedra. An example of G is illustrated in Figure 3.6, which contains four

vertices: v1, v2, v3 and v4. In this example, e1,2, e2,3, e3,4 ∈ Esmooth, while edges

connected to s or t belongs to Evis.

In order to label the tetrahedra, we assign different weights to all the edges

36

Figure 3.6: Example graph for labeling tetrahedra. s and t represent the source
and sink respectively. v1, v2, v3 and v4 are vertices representing tetrahedra.

in G, and solve it by graph cut. We try to minimize the total cut weight Wtotal:

Wtotal =
∑
Evis

wvis + λsmooth ∗
∑

Esmooth

wsmooth (3.5)

In the above equation, wvis represents the weight for visibility, which is

contributed by the visibility rays. In order to take smoothness into account,

we add wsmooth to the formula, through which we aim to reduce the number

of neighbouring tetrahedra separated by the cut. λsmooth is a user-defined

parameter that balances the two weights.

For each evis ∈ Evis, the wvis of it is calculated as:

wvis =


volumev if evis ∈ Es and countv > 0

0 if evis ∈ Es and countv = 0

0 if evis ∈ Et and countv > 0

volumev if evis ∈ Et and countv = 0,

(3.6)

where volumev is the volume of the tetrahedron connected by evis and countc

is the number of intersecting viewing ray of it. Essentially, we assign positive

weight to an edge connecting a tetrahedron with a label vertex (s or t), if the

viewing ray count agrees with the label. In this way, we encourage cutting the

edge that connects to the opposite label. By using the volume of tetrahedra

as weights, we aim to prevent smoothing out large tetrahedra in the labeling

process, which helps to preserve major structures of the reconstructed scene.

37

Each esmooth connects two adjacent tetrahedra and wsmooth in Equation 3.5

is calculated for each esmooth ∈ Esmooth as areasmooth, which is the area of the

shared triangle of the two neighbouring tetrahedra. By using the area of the

triangle as weights, we aim to prevent cutting through large facets. In other

words, we aim to reduce the area of the reconstructed surface, which in effect

smooths the surface.

After solving the graph cut problem, each cut evis represents the label

of a tetrahedron. We can obtain all the cut esmooth, which represents all the

triangles that divided free space and occupied space tetrahedra. By connecting

all the triangles, the mesh of the surface is reconstructed.

38

Chapter 4

Experiments

In this chapter, we present the results of our 3D line segment extraction and

surface reconstruction method on image sequences from the TUM RGB-D

dataset [55] and the EuRoC MAV dataset [7].

4.1 Implementation

The experiments in this chapter are performed on a desktop computer with

a quad-core Intel i7-6700k CPU. We use two semi-dense SLAM as our base

systems: ORB-SLAM [37] and LSD-SLAM [14]. LSD-SLAM is an open source

direct semi-dense SLAM system [14], to which we can apply our method di-

rectly. For ORB-SLAM, we use the open source ORB-SLAM2 [39] package

and implemented the semi-dense module in C++ as described in [38]. Pa-

rameters in Algorithm 1 and incremental line segment clustering are set as

follows in all our experiments: L = 0.02 ∗min(w, h), e1 = 0.002 ∗min(w, h),

e2 = 0.003 ∗ min(w, h), λα = 10, λd = 0.02, λC = 3, where w and h denote

the width and height of images respectively. In our surface reconstruction

pipeline, we set λsmooth = 0.01 for best results.

4.2 Qualitative Comparison

The results of our 3D line segment extraction method running on selected test

sequences using ORB-SLAM are illustrated in Figure 4.1, Figure 4.3, Figure

4.5 and Figure 4.7. In Figure 4.2, Figure 4.4, Figure 4.6 and Figure 4.8, we

39

present the results of our method using LSD-SLAM. The results of our edge-

aided fitting method accurately fit the semi-dense point clouds as shown in

the (a) and (e) sub-figures of the above mentioned figures. They still capture

the major structures of the scene while reducing the number of 3D elements

greatly.

We first compare our results with those from Line3D++ [22]. The results

of Line3D++ on the test sequences is shown in the (c) sub-figures of figures

from Figure 4.1 to Figure 4.8. In our experiments, Line3D++ uses line seg-

ments detected by EDLines together with the keyframe images and camera

poses output by ORB-SLAM to construct 3D line segments. However, since

it relies only on the geometry constraints of line segments, it is fragile in some

cases, such as complex indoor environment or areas without long, straight line

segments. Therefore, Line3D++ tends to produce outliers due to the ambigu-

ity of geometric line matching in such cases. In Figure 4.1c and Figure 4.2c,

a large number of outlier line segments can be seen in area near the wall at

the right side of image. On the contrary, our method utilizes the accurate

semi-dense depth maps. Since the depth maps are checked multiple times

and filtered to produce confident points, the results of our method have fewer

outliers as shown in Figure 4.1e, Figure 4.1f, Figure 4.2e and Figure 4.2f .

In contrast to Line3D++, semi-dense points can cover regions with large

image gradient, such as boundaries and contours, where straight lines may be

absent. Since our method takes both intensity and depth information into

consideration, it is robust to outliers caused by intensity noise so that it can

extract shorter yet still accurate line segments than EDLines. Thus, our results

fit curves better and captures finer details than Line3D++. As shown in Figure

4.3, the long curves on the right side of the image are not well captured by

Line3D++ in Figure 4.3c, but can be clearly seen in the result of our method

in Figure 4.3e and Figure 4.3f. Similarly, in Figure 4.4, we can observe that our

method can fit line segments to the point cloud from areas where Line3D++

failed to extract line segments. Also in Figure 4.5, Figure 4.6, Figure 4.7

and Figure 4.8, it can be seen clearly that our method captures much more

structural information compared to Line3D++.

40

(a) Sample original image

(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.1: Results of sequence EuRoC MAV Vicon Room 101 using ORB-
SLAM. As shown in (c), a large number of outlier line segments are produced
by Line3D++ near the wall area. Our method, on the other hand, produce
fewer outliers as shown in (e) and (f). The noisy semi-dense point cloud shown
in (b) is effectively simplified and filtered by our method to produce a accurate
line segment based model with few outliers.

41

(a) Sample original image (b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.2: Results of sequence EuRoC MAV Vicon Room 101 using LSD-
SLAM. Notice the large number of outlier line segments on the right side of (c)
produced by Line3D++. On the contrary, our method utilizes the semi-dense
depth map and produce results with fewer outliers, as shown in (e) and (f).
Although the semi-dense point cloud produced by LSD-SLAM is much noisier
than the one from semi-dense ORB-SLAM, our method can still effectively
reduces the amount of outliers and produce a line segment based model of the
environment.

42

(a) Sample original image

(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.3: Results of sequence EuRoC MAV Machine Hall 01 using ORB-
SLAM. Comparing (c) and (e), on the right side of the images, some curved
structural lines are not reconstructed by Line3D++, while they are clearly
visible in result of our method. Because of the incremental line segment ex-
traction, our method is capable of capturing finer details of the scene compared
to Line3D++.

43

(a) Sample original image (b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.4: Results of sequence EuRoC MAV Machine Hall 01 using LSD-
SLAM. Compared to the result of Line3D++ in (c), our method, result shown
in (e), can fit line segments to the point cloud from areas where Line3D++
failed to extract line segments due to the limitation of 2D line segment detector.
Comparing (c) and (f), it is obvious that our method captures much more
structural information than Line3D++.

44

(a) Sample original image
(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.5: Results of sequence TUM RGBD fr3-large-cabinet using ORB-
SLAM. Compared to other methods, our method, shown in (e) and (f), cap-
tures more structural information in the scene while keeping the number of
elements small.

45

(a) Sample original image
(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.6: Results of sequence TUM RGBD fr2-desk using LSD-SLAM. As
shown in (e) and (f), our method captures more major structural information
compared to (c). Compared to (d), our proposed approach produces much
fewer outliers.

46

To further demonstrate the capability of our method, we compare it to

a decoupled 3D line segment fitting method using 2D line segment given by

EDLines [1]. Given detected line segments and the depth information on

some of the pixels along the line segments, we can easily estimate the 3D line

segment position by performing a single 2D line fitting on the p1-xz plane.

In this case, there are a fixed number of pixels on the line segment since we

do not need to iteratively search along pixel chains and extend line segments.

Therefore we can efficiently perform RANSAC in 2D to remove outliers before

the line fitting process. With the fitted line, we compute the 3D location of

the endpoints and reconstruct the 3D line segment. Note the result of this

method is equivalent to directly performing a RANSAC in 3D to fit all 3D

points on the line segment. However, fitting a line in 2D is faster because

fewer parameters are required to represent the line and the search space is

much smaller.

The results of decoupled line segment fitting are presented in the (d) sub-

figures of figures from Figure 4.1 to Figure 4.8. We can observe that the results

of decoupled line segment fitting can contain a large amount of erroneous line

segments. Outliers in this case can have large displacements from the ground

truth, which is not ideal for our surface reconstruction method. Compared to

the edge aided 3D line fitting which tries to utilize pixel position and depth

simultaneously, the decoupled fitting essentially fits lines in the image plane

and depth plane in two steps. The error from line fitting in the image plane

will be propagated to the error of 3D line segment position, which result in

an inaccurate reconstruction compared to our method, as shown in Figure

4.9. It is worth mentioning that the decoupled fitting tends to generate longer

segments since only the pixel position is considered in the image plane line

fitting process. Longer segments will make the error propagation even worse

because the total error of line segments in image space might be larger. An-

other source of error is that EDLines may detects a long line segment which

is not a continuous line in 3D space. Trying to fit a single 3D line segment

onto the 2D segment in this case will result in a large error. On the other

hand, in our method, if either of the two errors of line fitting grows higher

47

Table 4.1: Average distance of vertices to ground truth surface (ORB-SLAM)

Representation Vicon Room 101 Vicon Room 201

Semi-dense point cloud 22.03 mm 22.49 mm
Line3D++ 84.10 mm 78.58 mm
Decoupled 3D fitting 21.48 mm 23.43 mm
Edge aided w/o clustering 13.91 mm 17.45 mm
Edge aided w/ clustering 13.93 mm 17.69 mm

Table 4.2: Average distance of vertices to ground truth surface (LSD-SLAM)

Representation Vicon Room 101 Vicon Room 201

Semi-dense point cloud 43.44 mm 45.58 mm
Line3D++ 95.55 mm 270.56 mm
Decoupled 3D fitting 61.44 mm 60.44 mm
Edge aided w/o clustering 30.46 mm 40.76 mm
Edge aided w/ clustering 30.46 mm 39.07 mm

than the threshold, we stop the line fitting and start a new line fitting process.

In this way, the errors accumulated from image plane and depth are bounded,

therefore it prevents the line segments from being far away from the 3D points.

4.3 Quantitative Comparison

In this section, we present some quantitative results comparing our method

with other methods.

4.3.1 Distance to surface

To demonstrate the accuracy of our method, we compute the average distance

of line segment endpoints to the ground truth surface in two EuRoC MAV

sequences, as shown in Table 4.1 and Table 4.2. We take the provided precise

3D scanning of environment as ground truth. Since the output of monocular

SLAM systems have coordinates different from the ground truth surface data,

we estimate the global Euclidean transform and scale change by performing

ICP to align the semi-dense point cloud to the ground truth point cloud. The

48

(a) Sample original image
(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.7: Results of sequence TUM RGBD fr1-room using ORB-SLAM.

49

(a) Sample original image
(b) Semi-dense point cloud

(c) Line3d++ (d) Decoupled fitting using EDLines

(e) Edge-aided fitting without clustering (f) Edge-aided fitting with clustering

Figure 4.8: Results of sequence TUM RGBD fr3-nostructure-texture-near-
withloop using LSD-SLAM.

50

(a) Decoupled fitting using EDLines

(b) Edge-aided fitting without clustering

(c) Edge-aided fitting with clustering

Figure 4.9: Comparison of results of sequence fr3-structure-texture-near using
ORB-SLAM. Compared to our method, shown in (b) and (c), which tries to
utilize pixel position and depth simultaneously, the decoupled fitting, shown
in (a), essentially fits lines in the image plane and depth plane in two steps.
The error from line fitting in the image plane will be propagated to the error of
3D line segment position, resulting in noisy and inconsistent 3D line positions
from different keyframes.

51

Table 4.3: Number of vertices in sequences of EuRoC MAV dataset (ORB-
SLAM)

Representation Vicon Room 101 Machine Hall 01

Semi-dense point cloud 2361598 3252467
Line3D++ 2832 2354
Decoupled 3D fitting 15994 42416
Edge aided w/o clustering 34958 41718
Edge aided w/ clustering 2396 2810

Table 4.4: Number of vertices in sequences of EuRoC MAV dataset (LSD-
SLAM)

Representation Vicon Room 101 Machine Hall 01

Semi-dense point cloud 8520281 11584044
Line3D++ 1262 376
Decoupled 3D fitting 96020 165224
Edge aided w/o clustering 25784 33084
Edge aided w/ clustering 1994 3318

same Euclidean transform and scale change are applied to all the output line

segment data before calculating distances, so that all the distances calculated

are in the coordinates of the ground truth data. It can be seen in Table 4.1 and

Table 4.2 that the result of our method fit to the surface better than other

methods. Compared to the points in semi-dense point cloud, our method

effectively filters out the outliers and reduces the error.

4.3.2 Compactness

For easier handling and manipulation, it is desired to have fewer 3D elements

while they can still represent most of the environment. In the surface recon-

struction pipeline, a smaller number of vertices will also greatly reduce the

running time. As shown in Table 4.3, Table 4.4, Table 4.5 and Table 4.6,

the point clouds are greatly simplified with our edge aided 3D line fitting

algorithm. The results are simplified further to present a clean structure of

the scene using our 3D line segment clustering process. Note that although

52

Table 4.5: Number of vertices in sequences of TUM RGB-D dataset (ORB-
SLAM)

Representation fr3-large-cabinet fr1-room

Semi-dense point cloud 263637 1044752
Line3D++ 124 330
Decoupled 3D fitting 1106 9966
Edge aided w/o clustering 15760 42624
Edge aided w/ clustering 1304 3334

Table 4.6: Number of vertices in sequences of TUM RGB-D dataset (LSD-
SLAM)

Representation fr3-nostructure-texture-near fr2-desk

Semi-dense point cloud 1442942 2187987
Line3D++ 18 30
Decoupled 3D fitting 22738 9966
Edge aided w/o clustering 9354 24306
Edge aided w/ clustering 746 526

Line3D++ produces the fewest number of vertices in the reconstruction, the

completeness of reconstruction is generally worse than our method as shown

in the figures from Figure 4.1 to Figure 4.8.

4.3.3 Running Time

Table 4.7 presents the average running time of 3D line segments fitting using

ORB-SLAM on the sequences shown in Figure 4.1, Figure 4.3, Figure 4.5

and Figure 4.7. Similarly, Table 4.8 presents the average running time using

LSD-SLAM on the sequences shown in Figure 4.2, Figure 4.4, Figure 4.6 and

Figure 4.8. Our line segment fitting method is run-time efficient while utilizing

large amount of depth information. Compared to the running time of edge

aided 3D fitting, decoupled 3D fitting requires additional computation time

for performing RANSAC. Because the segments are usually much longer in

decoupled 3D line segments fitting, RANSAC is necessary in order to obtain

a good fit for the larger pixel set on the line segments. Our 3D line segment

53

Table 4.7: Running time per keyframe (ORB-SLAM)

Method Average Time (ms)

Decoupled 3D fitting 10.42
Edge aided 3D fitting 7.40

Table 4.8: Running time per keyframe (LSD-SLAM)

Method Average Time (ms)

Decoupled 3D fitting 83.58
Edge aided 3D fitting 43.88

fitting algorithm is linear in the number of pixels on detected edges. Since

LSD-SLAM generally produce much more pixels with depth compared to semi-

dense ORB-SLAM, the methods take longer time to process each keyframe for

LSD-SLAM. Although the fitting algorithm is fast enough to be real-time, our

clustering process is relatively slower, which takes about 300 millisecond per

keyframe on a 144 second long sequence. The complexity of clustering a single

line segment isO(C), where C is the number of existing clusters. Therefore, the

complexity of the clustering process in a sequence can be generally considered

to be O(N2), where N denotes the number of line segments.

4.4 Surface Reconstruction

The resulting line segments of our method can be used to improve the quality

of surface reconstruction. In our surface reconstruction method, we use end

points of the line segments extracted from the semi-dense point cloud. The

clustering process is omitted for fast performance.

We first compare the surface reconstructed using the sparse map points of

ORB-SLAM with the surface reconstructed using the line segment end points

from our proposed method using semi-dense ORB-SLAM. The result running

on EuRoC Vicon Room 101 sequence is shown in different views in Figure

4.10, Figure 4.11 and Figure 4.12. Taking advantage of the semi-dense nature

54

(a) Sample original image

(b) Surface reconstructed with map points of ORB-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.10: Reconstructed surface of sequence Vicon Room 101: View 1

55

(a) Sample original image

(b) Surface reconstructed with map points of ORB-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.11: Reconstructed surface of sequence Vicon Room 101: View 2

56

(a) Sample original image

(b) Surface reconstructed with map points of ORB-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.12: Reconstructed surface of sequence Vicon Room 101: View 3

57

of the point cloud, we have more points available, thus our method yields

much smoother surfaces. Although the number of points we used is still larger

than the number of map points, compared to the semi-dense point cloud, our

method reduce the number of points to a level that the surface reconstruction

method can handle. Also thanks to the structural information provided by

the line segments, major structures in the room are much more obvious.

An important benefit our line segment extraction method provides is the

reduced number of outliers, comparing to the map points reconstructed in

ORB-SLAM. The outliers significantly affect the quality of the surface, es-

pecially outliers in visibility rays. Outlier in visibility rays can cause the

surface reconstruction method to falsely carve out large regions of the space.

In ORB-SLAM, in order to obtain robust performance, features are matched

across many different keyframes. It is inevitable to have mismatches of fea-

ture points, resulting in outlier visibility rays which can see 3D points that

they should not be able to see. On the contrary, in our method, each end

point is only associated with a single visibility ray. Thus, the chance of having

an outlier visibility ray is much lower for our method. Thanks to the larger

number of end points compared to map points, there is still enough visibility

information to carve out the tetrahedra in order to reconstruct the surface of

the environment.

We also perform the comparison using LSD-SLAM. Here we compare the

surface reconstructed using the line segment end points from our method and

randomly sampled points from the original semi-dense point cloud. In order

to be fair on the comparison, the number of points randomly sampled from

each keyframe is the same with the number of line segment end points from

the same keyframe. In this way, we use the exact same amount of points in

two approaches. The results are shown in Figure 4.13, Figure 4.14 and Figure

4.15. It is clear to see that the surface reconstructed using our line segment end

points presents more major structures in the scene compared to using random

points. As seen previously, the raw semi-dense point cloud produced by LSD-

SLAM is quite noisy. Since the points from our method contain less outliers

and more structural information, it is easier to observe the major structures.

58

(a) Sample original image

(b) Surface reconstructed with random points of LSD-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.13: Reconstructed surface of sequence Vicon Room 101: View 1

59

(a) Sample original image

(b) Surface reconstructed with random points of LSD-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.14: Reconstructed surface of sequence Vicon Room 101: View 2

60

(a) Sample original image

(b) Surface reconstructed with random points of LSD-SLAM

(c) Surface reconstructed with our line segments endpoints

Figure 4.15: Reconstructed surface of sequence Vicon Room 101: View 3

61

Chapter 5

Conclusion

In this thesis, we present an incremental 3D line segment based method that

uses underlying structural information to simplify the semi-dense point cloud

output by keyframe-base SLAM system. The main contribution lies in the

novel edge aided 3D line segment extraction algorithm which solely relies on

the image and the semi-dense depth map of individual keyframes. Our method

is fully incremental. It tries to minimize the line fitting error on both image

plane and depth plane simultaneously as the line segment grows. By incre-

mentally clustering the line segments detected on each keyframe, we can ob-

tain a compact and complete 3D line segment reconstruction for the scene.

Compared to using the line segments produced by 2D image detectors and

minimizing the line fitting error on the depth plane afterwards, our method

achieves better accuracy in terms of the location of the reconstructed vertices.

We show that the result of our method can be used in incremental surface re-

construction to improve the quality of 3D surfaces. By greatly simplifying the

semi-dense point cloud while keeping major structures, our method enables

real-time surface reconstruction with semi-dense SLAM systems.

The major purpose of our method is reconstructing surface with semi-dense

SLAM. The essential idea behind our method is that when reconstructing sur-

faces using point clouds, the accuracy of the surface has a decreasing increase

as the density of point increase. In other words, a subset of the points in a

point cloud may be sufficient to reconstruct an accurate enough approximation

of the surface. By selecting ”critical points” that contributes to the accuracy

62

of surface the most, it is possible to greatly reduce the computation demand

for reconstructing the surface. In a way, our method is similar to selecting the

points located on line segments out of the point cloud, based on the simple

heuristic that those points are the critical points. We show with experiments

that the surface can be approximately reconstructed using points on line seg-

ment in the scene. However, obviously, the simple heuristic is not perfect.

We plan to explore other heuristics. Data-driven approaches such as machine

learning are also promising directions.

63

References

[1] C. Akinlar and C. Topal, “Edlines: A real-time line segment detector
with a false detection control,” Pattern Recognition Letters, vol. 32,
no. 13, pp. 1633–1642, 2011. 14, 47

[2] N. Amenta and M. W. Bern, “Surface reconstruction by voronoi filter-
ing,” Discrete & Computational Geometry, vol. 22, no. 4, pp. 481–504,
1999. 19

[3] N. Ayache and B. Faverjon, “Efficient registration of stereo images by
matching graph descriptions of edge segments,” International Journal of
Computer Vision, vol. 1, no. 2, pp. 107–131, 1987. 13

[4] A. Bartoli and P. F. Sturm, “Structure-from-motion using lines: Repre-
sentation, triangulation, and bundle adjustment,” Computer Vision and
Image Understanding, vol. 100, no. 3, pp. 416–441, 2005. 2, 14, 15

[5] H. Bay, T. Tuytelaars, and L. J. V. Gool, “SURF: speeded up robust
features,” in Computer Vision - ECCV 2006, 9th European Conference
on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings, Part
I, 2006, pp. 404–417. 14

[6] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva, “A survey of surface reconstruc-
tion from point clouds,” Comput. Graph. Forum, vol. 36, no. 1, pp. 301–
329, 2017. 18

[7] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” I.
J. Robotics Res., vol. 35, no. 10, pp. 1157–1163, 2016. 39

[8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. D. Reid, and J. J. Leonard, “Past, present, and future of simultane-
ous localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robotics, vol. 32, no. 6, pp. 1309–1332, 2016. 4

[9] A. Chauve, P. Labatut, and J. Pons, “Robust piecewise-planar 3d recon-
struction and completion from large-scale unstructured point data,” in
The Twenty-Third IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010,
2010, pp. 1261–1268. 2

64

[10] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
1996, New Orleans, LA, USA, August 4-9, 1996, 1996, pp. 303–312. 22

[11] A. J. Davison, I. D. Reid, N. Molton, and O. Stasse, “Monoslam: Real-
time single camera SLAM,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 6, pp. 1052–1067, 2007. 5

[12] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15,
1972. 14

[13] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” CoRR,
vol. abs/1607.02565, 2016. 8

[14] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: large-scale direct
monocular SLAM,” in Computer Vision - ECCV 2014 - 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part II, 2014, pp. 834–849. 11, 12, 26, 27, 39

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981. 16

[16] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: fast semi-direct monoc-
ular visual odometry,” in 2014 IEEE International Conference on Robotics
and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7,
2014, 2014, pp. 15–22. 8

[17] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards internet-
scale multi-view stereo,” in The Twenty-Third IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2010, San Francisco, CA,
USA, 13-18 June 2010, 2010, pp. 1434–1441. 15

[18] R. G. von Gioi, J. Jakubowicz, J. Morel, and G. Randall, “LSD: A
fast line segment detector with a false detection control,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732, 2010. 14, 16, 24

[19] G. H. Golub and C. F. van Loan, “An analysis of the total least squares
problem,” SIAM Journal on Numerical Analysis, vol. 17, no. 6, pp. 883–
893, 1980. 29

[20] M. Hofer, M. Donoser, and H. Bischof, “Semi-global 3d line modeling for
incremental structure-from-motion,” in British Machine Vision Confer-
ence, BMVC 2014, Nottingham, UK, September 1-5, 2014, 2014. 23, 24

[21] M. Hofer, M. Maurer, and H. Bischof, “Improving sparse 3d models
for man-made environments using line-based 3d reconstruction,” in 2nd
International Conference on 3D Vision, 3DV 2014, Tokyo, Japan, De-
cember 8-11, 2014, Volume 1, 2014, pp. 535–542. 23

65

[22] ——, “Efficient 3d scene abstraction using line segments,” Computer
Vision and Image Understanding, vol. 157, pp. 167–178, 2017. 2, 14, 15, 40

[23] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof, “Incremental
surface extraction from sparse structure-from-motion point clouds,” in
British Machine Vision Conference, BMVC 2013, Bristol, UK, Septem-
ber 9-13, 2013, 2013. 1, 33

[24] ——, “Incremental surface extraction from sparse structure-from-motion
point clouds,” in British Machine Vision Conference, BMVC 2013, Bris-
tol, UK, September 9-13, 2013, 2013. 19, 21

[25] S. Ikehata, I. Boyadzhiev, Q. Shan, and Y. Furukawa, “Panoramic struc-
ture from motion via geometric relationship detection,” CoRR, vol. abs/1612.01256,
2016. 2

[26] S. Ikehata, H. Yang, and Y. Furukawa, “Structured indoor modeling,” in
2015 IEEE International Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, 2015, pp. 1323–1331. 2

[27] A. Jain, C. Kurz, T. Thormählen, and H. Seidel, “Exploiting global con-
nectivity constraints for reconstruction of 3d line segments from images,”
in The Twenty-Third IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010,
2010, pp. 1586–1593. 2, 14

[28] P. Jenke, B. Krückeberg, and W. Straßer, “Surface reconstruction from
fitted shape primitives,” in Proceedings of the Vision, Modeling, and Vi-
sualization Conference 2008, VMV 2008, Konstanz, Germany, October
8-10, 2008, 2008, pp. 31–40. 2

[29] A. Khatamian and H. R. Arabnia, “Survey on 3d surface reconstruction,”
JIPS, vol. 12, no. 3, pp. 338–357, 2016. 18

[30] G. Klein and D. W. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Sixth IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR 2007, 13-16 November 2007, Nara, Japan,
2007, pp. 225–234. 5, 6

[31] P. Labatut, J. Pons, and R. Keriven, “Efficient multi-view reconstruc-
tion of large-scale scenes using interest points, delaunay triangulation
and graph cuts,” in IEEE 11th International Conference on Computer
Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14-20, 2007, 2007,
pp. 1–8. 19, 21, 24

[32] M. Lhuillier and S. Yu, “Manifold surface reconstruction of an environ-
ment from sparse structure-from-motion data,” Computer Vision and
Image Understanding, vol. 117, no. 11, pp. 1628–1644, 2013. 19

66

[33] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
1987, Anaheim, California, USA, July 27-31, 1987, 1987, pp. 163–169. 22

[34] D. I. Lovi, “Incremental free-space carving for real-time 3d reconstruc-
tion,” Master’s thesis, University of Alberta, 2011. 1, 19, 20, 22, 33, 35

[35] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004. 14

[36] B. Micuśık and H. Wildenauer, “Structure from motion with line seg-
ments under relaxed endpoint constraints,” International Journal of Com-
puter Vision, vol. 124, no. 1, pp. 65–79, 2017. 2, 14, 15

[37] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A
versatile and accurate monocular SLAM system,” IEEE Trans. Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015. 6–8, 26, 39

[38] R. Mur-Artal and J. D. Tardós, “Probabilistic semi-dense mapping from
highly accurate feature-based monocular SLAM,” in Robotics: Science
and Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17,
2015, 2015. 12–14, 27, 28, 39

[39] ——, “ORB-SLAM2: an open-source SLAM system for monocular, stereo,
and RGB-D cameras,” IEEE Trans. Robotics, vol. 33, no. 5, pp. 1255–
1262, 2017. 39

[40] Y. Nakayama, H. Saito, M. Shimizu, and N. Yamaguchi, “3d line segment
based model generation by RGB-D camera for camera pose estimation,”
in Computer Vision - ACCV 2014 Workshops - Singapore, Singapore,
November 1-2, 2014, Revised Selected Papers, Part III, 2014, pp. 459–
472. 2, 17, 18

[41] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with
a single moving camera,” in The Twenty-Third IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2010, San Francisco,
CA, USA, 13-18 June 2010, 2010, pp. 1498–1505. 10

[42] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon, “Kinectfu-
sion: Real-time dense surface mapping and tracking,” in 10th IEEE In-
ternational Symposium on Mixed and Augmented Reality, ISMAR 2011,
Basel, Switzerland, October 26-29, 2011, 2011, pp. 127–136. 22, 23

[43] R. A. Newcombe, S. Lovegrove, and A. J. Davison, “DTAM: dense track-
ing and mapping in real-time,” in IEEE International Conference on
Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011,
2011, pp. 2320–2327. 9

67

[44] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3d re-
construction at scale using voxel hashing,” ACM Trans. Graph., vol. 32,
no. 6, 169:1–169:11, 2013. 23

[45] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. I. Nieto, “Voxblox:
Incremental 3d euclidean signed distance fields for on-board MAV plan-
ning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2017, Vancouver, BC, Canada, September 24-28,
2017, 2017, pp. 1366–1373. 23

[46] P. Ondruska, P. Kohli, and S. Izadi, “Mobilefusion: Real-time volumet-
ric surface reconstruction and dense tracking on mobile phones,” IEEE
Trans. Vis. Comput. Graph., vol. 21, no. 11, pp. 1251–1258, 2015. 23

[47] V. Pradeep, C. Rhemann, S. Izadi, C. Zach, M. Bleyer, and S. Bathiche,
“Monofusion: Real-time 3d reconstruction of small scenes with a single
web camera,” in IEEE International Symposium on Mixed and Aug-
mented Reality, ISMAR 2013, Adelaide, Australia, October 1-4, 2013,
2013, pp. 83–88. 10, 23

[48] A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-
Noguer, “PL-SLAM: real-time monocular visual SLAM with points and
lines,” in 2017 IEEE International Conference on Robotics and Automa-
tion, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, 2017,
pp. 4503–4508. 2, 16

[49] K. S. Roberts, “A new representation for a line,” in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR
1988, 5-9 June, 1988, Ann Arbor, Michigan, USA., 1988, pp. 635–640. 16

[50] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, “ORB: an effi-
cient alternative to SIFT or SURF,” in IEEE International Conference
on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13,
2011, 2011, pp. 2564–2571. 6

[51] R. F. Salas-Moreno, B. Glocker, P. H. J. Kelly, and A. J. Davison,
“Dense planar SLAM,” in IEEE International Symposium on Mixed and
Augmented Reality, ISMAR 2014, Munich, Germany, September 10-12,
2014, 2014, pp. 157–164. 2

[52] C. Schmid and A. Zisserman, “Automatic line matching across views,” in
1997 Conference on Computer Vision and Pattern Recognition (CVPR
’97), June 17-19, 1997, San Juan, Puerto Rico, 1997, pp. 666–671. 13

[53] K. Snow and B. Schaffrin, “Line fitting in euclidean 3d space,” Studia
Geophysica et Geodaetica, vol. 60, no. 2, pp. 210–227, 2016. 2, 16, 17

[54] F. Steinbrücker, J. Sturm, and D. Cremers, “Volumetric 3d mapping in
real-time on a CPU,” in 2014 IEEE International Conference on Robotics
and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7,
2014, 2014, pp. 2021–2028. 23

68

[55] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2012,
Vilamoura, Algarve, Portugal, October 7-12, 2012, 2012, pp. 573–580. 39

[56] T. Sugiura, A. Torii, and M. Okutomi, “3d surface reconstruction from
point-and-line cloud,” in 2015 International Conference on 3D Vision,
3DV 2015, Lyon, France, October 19-22, 2015, 2015, pp. 264–272. 24, 25, 33

[57] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: A
survey from 2010 to 2016,” IPSJ Trans. Computer Vision and Applica-
tions, vol. 9, p. 16, 2017. 4, 5

[58] E. Tola, V. Lepetit, and P. Fua, “DAISY: an efficient dense descrip-
tor applied to wide-baseline stereo,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 32, no. 5, pp. 815–830, 2010. 24

[59] C. Topal and C. Akinlar, “Edge drawing: A combined real-time edge and
segment detector,” J. Visual Communication and Image Representation,
vol. 23, no. 6, pp. 862–872, 2012. 2, 28

[60] Z. Wang, F. Wu, and Z. Hu, “MSLD: A robust descriptor for line match-
ing,” Pattern Recognition, vol. 42, no. 5, pp. 941–953, 2009. 14

[61] D. Woo, S. S. Han, Y. Jung, and K. Lee, “Generation of 3d building
model using 3d line detection scheme based on line fitting of elevation
data,” in Advances in Multimedia Information Processing - PCM 2005,
6th Pacific-Rim Conference on Multimedia, Jeju Island, Korea, Novem-
ber 13-16, 2005, Proceedings, Part I, 2005, pp. 559–569. 17

[62] J. Xiao and Y. Furukawa, “Reconstructing the world’s museums,” Inter-
national Journal of Computer Vision, vol. 110, no. 3, pp. 243–258, 2014.

2

[63] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: semantic
monocular plane SLAM for low-texture environments,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2016,
Daejeon, South Korea, October 9-14, 2016, 2016, pp. 1222–1229. 2

[64] L. Zhang and R. Koch, “An efficient and robust line segment match-
ing approach based on LBD descriptor and pairwise geometric consis-
tency,” J. Visual Communication and Image Representation, vol. 24,
no. 7, pp. 794–805, 2013. 14, 16

[65] ——, “Structure and motion from line correspondences: Representation,
projection, initialization and sparse bundle adjustment,” J. Visual Com-
munication and Image Representation, vol. 25, no. 5, pp. 904–915, 2014.

2, 14

69

[66] L. Zhang, C. Xu, K. Lee, and R. Koch, “Robust and efficient pose esti-
mation from line correspondences,” in Computer Vision - ACCV 2012 -
11th Asian Conference on Computer Vision, Daejeon, Korea, November
5-9, 2012, Revised Selected Papers, Part III, 2012, pp. 217–230. 14

70

	Introduction
	Related Works
	Monocular SLAM
	Sparse monocular SLAM
	Dense monocular SLAM
	Semi-dense monocular SLAM

	3D Line segment detection
	3D line reconstruction from matching 2D lines
	3D line fitting directly from 3D points
	3D line extraction aided by 2D cues

	Incremental surface reconstruction
	Explicit surface reconstruction
	Implicit surface reconstruction
	Surface reconstruction with lines

	Method
	Incremental 3D line segment extraction
	Keyframes and depth maps generation
	Edge aided 3D line segment fitting
	3D line segment clustering and filtering

	Surface reconstruction
	3D Delaunay Triangulation
	Counting viewing rays
	Labeling tetrahedra

	Experiments
	Implementation
	Qualitative Comparison
	Quantitative Comparison
	Distance to surface
	Compactness
	Running Time

	Surface Reconstruction

	Conclusion
	References

