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Abstract 

Effective maintenance strategies play a critical role in ensuring the operational integrity of wind 

farms while concurrently reducing costs. Among a variety of maintenance strategies, condition-

based maintenance (CBM) stands out as an effective approach nowadays. This is an approach to 

maintenance that prioritizes actions based on the observed condition of an asset or equipment, 

rather than following fixed schedules or time-based intervals. It relies on continuous monitoring, 

data analysis, and predictive algorithms to identify potential issues or failures before they occur. 

Through optimization of CBM policies, operating and maintenance (O&M) costs can be 

minimized, while enhancing the reliability of wind turbines and components. This in turn brings 

significant benefits for the wind industry, fostering its sustainability and competitiveness. 

In existing studies, simulation methods were commonly used for CBM policy cost evaluations. 

The simulation methods demonstrated flexibility in modeling diverse scenarios and factors. 

However, due to its reliance on sampling, variations occur in the evaluation of CBM costs, leading 

to non-smooth surfaces in the cost function. This sampling characteristic may lead to issues such 

as local minima and convergence, thereby complicating the optimization process. A numerical 

method was originally proposed in a previous study to evaluate the maintenance cost rate of wind 

farm systems, aiming to address limitations identified in the simulation methods mentioned above. 

However, it had issues in obtaining reasonable cost evaluation and optimization results.   

This thesis develops a modified numerical method based on previous studies for more accurate 

wind farm CBM cost evaluation. The CBM policy used in this study is the same as those used in 

the referred studies in the literature. Compared to the existing numerical method, the proposed 

modified numerical method addresses the issues and achieves more accurate results mainly by 
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introducing a new 4-dimensional structure for the component age combination probability matrix, 

and integrating a previously separate age combination probability transition matrix into the main 

cost evaluation loop. With the modified numerical method, we are able to find the optimal CBM 

policy, which were not possible before. The results are verified using multiple examples. The cost 

surface generated by of the numerical method exhibits greater smoothness and cost estimation 

outcomes are stable, which supporting the optimization process. Thus, the optimal CBM policy 

corresponding to the minimum maintenance cost rate can be estimated more accurately compared 

to the simulation method. Sensitivity analysis and comparative studies with the simulation method 

were conducted to emphasize the advantages of the numerical method. This thesis provides basis 

for further advancing numerical methods for wind farm CBM policy evaluation and optimization.  
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Preface 

This thesis is an original work by Yunqiu Zuo under the supervision of Dr. Zhigang Tian. A 

proper CBM policy or maintenance activities can reduce the failure event, improve the reliability 

of the wind turbine and reduce the maintenance cost. This thesis modified a numerical method to 

accurately estimate the maintenance cost rate of wind farm systems. The optimal maintenance 

policy with lowest maintenance cost rate is found by CBM optimization. The evaluation results of 

the numerical method are verified to be more accurate and stable than the simulation method 

through numerical examples, sensitivity analysis and comparative studies.  
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Chapter 1 Introduction 

1.1 Background  

With the rapid development of industrial society, the increasing use of renewable energy has 

become an important global trend. Although traditional energy sources such as coal, natural gas 

and oil are widely used for power generation, heating, steam, and other energy sources required 

for human production and life. However, the extensive use of fossil fuels has brought about many 

environmental problems such as greenhouse gas emissions, acid rain, and limiting ozone depletion. 

Therefore, Renewable Energy Sources (RES) have emerged as a cleaner, greener and more 

sustainable alternative energy source for the future. In 2023, renewable energy sources account for 

over 30% of global electricity generation, with the share of wind and solar power doubling to 13% 

[1]. Hydropower, bioenergy and geothermal energy are also considered major renewable energy 

sources. Renewable energy production is expected to continue to rise as these sources become 

more cost-competitive and demand for sustainable energy solutions continues to grow. 

Wind energy is a sustainable renewable energy that has a much lower environmental impact 

than burning fossil fuels. Wind energy is variable and therefore requires storage or other 

dispatchable generation energy for reliable power supply. Wind turbines are devices that convert 

the kinetic energy of the wind into mechanical or electrical energy. Today, wind power is generated 

almost exclusively by wind turbines, typically consisting of wind farms that are connected to the 

grid. In 2022, wind supplied over 2000 TWh of electricity, which was over 7% of world electricity. 

Wind power has grown by 17% in this year, making it a fast-growing source of electricity [2]. 

Wind turbines are often installed in remote, elevated, or offshore locations which poses 
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considerable operational challenges as they are often exposed to harsh weather conditions and 

climatic extremes, which can weaken their functional capabilities and overall performance 

efficiency, leading to severe downtime and reduced power output [3]. The special location of wind 

turbines, difficulty in accessing high ground for operation and maintenance, and the rental, 

transportation, and operation of large equipment make operation and maintenance (O&M) costs a 

significant portion of turbine expenditures at many wind farms. O&M costs account for up to 30% 

of the total energy production cost [4]  due to remote location, difficulty in accessing maintenance 

in high ground, and the rental, transportation, and operation of large equipment. Therefore, 

maintenance of wind turbines is very important, and ensuring the reliability of wind turbines and 

minimizing maintenance costs has become a critical issue. 

The Maintenance of components ensures that they continually perform their planned functions, 

ensuring the reliability of the components and the system, or the recovery of operations from 

failures in a timely manner. Reasonable and effective maintenance strategies and procedures can 

use the least amount of resources, reduce component or system downtime, improve the reliability 

of the system and thus gain more benefits. Three primary maintenance strategies have been studied 

in the field of wind energy, which are corrective maintenance (CM), time-based preventive 

maintenance (PM), and condition-based maintenance (CBM) [5].  

CM is typically performed when a wind turbine malfunctions, or a component failure is detected. 

The implications of such failures are significant and may lead to loss of production, increased costs, 

and damage to other components. Although CM is straightforward, the consequences can be severe, 

and the associated costs can be high.  
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In contrast, PM is the execution of regularly scheduled maintenance activities ahead to help 

prevent unexpected failures in the future. Time-based maintenance (TBM) is a classical preventive 

maintenance approach and widely applied in engineering practices due to its simplicity in decision-

making and implementations [6]. In TBM, maintenance actions are scheduled at regular time 

intervals to prevent significant failures. However, this reduction in failures comes at the cost of 

completing maintenance tasks more frequently than is necessary and failing to exhaust the full 

lifespan of the various components that have been put into service. The big challenge for TBM is 

to determine the optimal maintenance intervals to reduce maintenance costs and increase 

component life utilization. 

In CBM, components are monitored and inspected to determine their physical condition, detect 

early potential failures and determine required maintenance activities before failure occur. 

Compared to TBM, CBM avoids unnecessary maintenance tasks by taking maintenance actions 

only when there is evidence of abnormal behavior of the physical assets. If a CBM program is 

properly established and effectively implemented, it can reduce the number of unnecessary 

scheduled preventive maintenance operations, thus significantly reducing maintenance costs [7]. 

Francois and Lina presented an approach to optimize CBM strategies for components which 

degradation can be classified according to the severity of the damage [8]. A partially observed 

Markov decision process were used to find optimal condition-based maintenance for wind turbine 

in [9] and its case study demonstrated that the optimal strategy can adapt to the operating 

conditions and select the most cost-effective action. Another finding reached was that a dynamic 

strategy significantly improves reliability and reduced costs compared to a fixed periodic 

maintenance and static strategy.  
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Diagnostics and prognostics are two important maintenance decision support in CBM. 

Diagnostics focus on detection, isolation and identification of faults when they occur. Prognostics 

attempts to predict faults or failure before they occur [10].  

Various approaches have been investigated by researchers in the area of prognostics of wind 

turbine maintenance. Two main categories of methods have been identified: physics-based 

methods and data-driven methods. There are some studies reviewing the physics models in the 

prognostics process and providing related examples in [11-14]. The physical-based method utilizes 

physical and degradation models to describe the deterioration condition of components and 

executes reliability prognostics by using mathematical models that incorporate physical laws [15]. 

One widely used physics model is the crack growth model. Z. Tian used a dynamic model and 

simulation to investigate the crack propagation level [16]. Wu and Ni studied the stochastic fatigue 

crack growth model through analytical and experimental results to modify the model to get 

reliability prediction of tested material [17]. However, developing accurate physical models for 

complicated components or systems is a challenging task. In contrast, data-driven approaches 

attempt to derive models directly from routinely collected condition monitoring data instead of 

building models based on comprehensive system physics and human expertise [18]. It analyzes 

health condition data such as vibration, acoustics, oil, strain, and thermography collected from 

sensors installed on the major components such as the rotor, main bearing, gearbox, and generator 

of the wind turbine to predict their current health condition, reliability, and remaining useful life. 

Artificial neural network (ANN) methods are the most commonly used data-driven models for 

remaining useful life (RUL) prediction, with feed-forward neural networks (FFNNs) being 

particularly popular. [19] developed the ANN method to predict the RUL of equipment in wind 

turbines and then define the optimal maintenance policy for the whole wind farm. Bayesian 
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network methods and proportional hazard models (PHM) are also widely used data-driven 

methods. Dynamic Bayesian networks were used in [20] to obtain RUL in the Markov model for 

wind turbine blades. In [21], a hybrid approach of neural networks and a proportional hazards 

model were jointly employed in order to analyze the overall performance of the wind turbine. 

CBM optimization is a significant part of CBM program. A proper and accurate CBM 

optimization method can reduce O&M costs, improve the reliability of components and wind 

turbines as well as bring significant benefits to the wind industry. For instance, the maintenance 

cost of a power generation system is optimized by considering diverse turbine types and lead times 

in [22]. However, CBM has two major limitations. First, the cost of implementing condition 

monitoring test equipment in the system is too high. In addition, condition-based monitoring does 

not guarantee that accurate information is collected during operation. Therefore, it is a big 

challenge to effectively apply CBM in practical industrial situations. The current trend is that more 

and more researchers intend to exploit new technologies and advanced computational techniques 

for diagnosis and prognosis, such as neural networks and reinforcement learning. 

1.2 Research motivation 

CBM optimization has great potential to improve performance of wind turbine systems and 

reduce economic losses due to system breakdown. The simulation methods were widely used in 

maintenance optimization problems as they can be flexibly applied to different industries and can 

be used in complex scenarios with the required computational power. In the study [23], a wind 

farm CBM policy was proposed using a simulation method with two failure probability thresholds, 

considering multiple wind turbines and components to evaluate the cost. Economic dependencies 

among wind turbines and their components were considered to reduce O&M costs. The simulation 
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methods demonstrated flexibility in modeling a variety of situations and factors, but due to the 

nature of sampling, the evaluated CBM cost values were variable, and the cost function surface 

was not smooth. The possible issues caused by sampling were local minima and convergence, 

which brings difficulty to the optimization process. Therefore, an accurate numerical method is 

required to address above-mentioned issues. A numerical method was originally proposed in [24] 

to evaluate the maintenance cost of wind farm systems, aiming to address limitations identified in 

the simulation methods mentioned above. However, it had issues in obtaining reasonable cost 

evaluation and optimization results. 

 In this thesis, a modified numerical method based on previous studies is developed to 

accurately evaluate the total maintenance cost of the CBM policy. The CBM policy used in this 

study is the same as those used in the referred studies in the literature. Compared to the existing 

numerical method, the proposed modified numerical method addresses the issues and achieves 

more accurate results mainly by introducing a new 4-dimensional structure for the component age 

combination probability matrix and integrating a previously separate age combination probability 

transition matrix into the main cost evaluation loop. With the modified numerical method, we are 

able to find the optimal CBM policy, which were not possible before. The results are verified using 

multiple examples. The cost surface generated by of the numerical method exhibits greater 

smoothness and cost estimation outcomes are stable, which supporting the optimization process. 

Thus, the optimal maintenance policy corresponding to the lowest maintenance cost can be 

estimated more accurately compared to the simulation method.  One challenge of the proposed 

numerical method is long computing time. The algorithm is still required to be modified to improve 

the computing efficiency and deal with more comprehensive problems. 
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Numerical example is a great way to gain insight into complex problems in assumed scenarios. 

It can convert theoretical concepts and functions into specific calculations based on specific 

examples. Numerical examples are conducted for the optimization of CBM for wind farms. By 

using numerical examples, we can see the implication of the numerical method in a specific 

scenario. Through examples with multiple turbines and multiple components, we will show how 

the recommended CBM policy can be used to get the lowest maintenance cost. This will present 

the wind farm developer with a specific maintenance policy that will minimize maintenance costs 

by arranging the optimal maintenance activities at the proper time. 

Sensitivity analysis is used to understand how changes in input variables affect the output of a 

model or system. It involves systematically adjusting the values of input parameters within a 

specified range and observing how these changes impact the results. Sensitivity analysis helps 

assess the robustness of a model by testing its sensitivity to changes in input variables.  

Comparative studies are also important to demonstrate the advantages and disadvantages of the 

proposed methods. Comparative studies among the results from the simulation method and 

numerical method are presented to show the benefits of the numerical method. In previous study, 

the simulation method has proved to be suitable for estimating the maintenance costs of industrial 

components or systems. In the comparative study, the simulation method will be used to solve the 

same problem of case studies. Through comparing the results of two methods to verify the stability 

and accuracy of the numerical method. 
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1.3 Objective and research contributions 

The objective of this thesis is to develop a modified numerical method, evaluate maintenance 

cost accurately using the proposed numerical method and find the optimal maintenance policy for 

wind farm. There are three main contributions of this thesis: 1) Develop a modified numerical 

method to evaluate cost more accurately and find the optimal CBM policy applying proposed 

numerical method. 2) Verify the numerical method results of optimal CBM policy. 3) Compare 

the optimization results of the numerical and simulation method, emphasizing the stability of the 

numerical method. 

In a previous study, the numerical method was originally proposed to evaluate the maintenance 

cost for wind farm, but the cost value was not reasonable and optimal CBM policy was not found. 

To achieve the first contribution, the proposed modified numerical method addresses the issues 

and achieves more accurate results mainly by introducing a new 4-dimensional structure for the 

component age combination probability matrix and integrating a previously separate age 

combination probability transition matrix into the main cost evaluation loop. The procedure of 

calculating age probability matrix and transition matrix is described in detail in chapter 3. This 

study will use the same CBM policy with two level turbine failure probability thresholds 𝑑1and 

𝑑2 in referred studies. The failure probability of wind turbine will be compared with 𝑑1and 𝑑2 to 

determine which turbines and components should be subject to preventive maintenance. 

Maintenance cost can be estimated based on the PM decided by failure thresholds in CBM policy 

and CM of failure. A specific numerical example, considering two turbines and each turbine has 

two components, is proposed to find the optimal CBM policy corresponding to the minimum 

maintenance cost rate. 
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For the second contribution, the simulation method is applied to the same numerical example 

to find the optimal CBM policy with minimum maintenance cost. Two sensitivity analyses are 

conducted to verify the feasibility of the numerical approach. One sensitivity analysis is developed 

considering various fixed preventive maintenance cost and comparing the lowest cost obtained by 

optimal CBM policy by both methods. Another sensitivity analysis is investigating the optimal 

results of both methods within various fixed cost to wind farm. 

In the third contribution, five comparative studies are developed between the numerical and 

simulation method to emphasize stability of the numerical method. For all comparative studies, 

the simulation method and numerical method will be used to identify the lowest maintenance costs 

under the same CBM policies and assumptions as the sensitivity analysis. In comparative study 1, 

we compare optimization process and lowest cost rate value of two methods considering the 

iteration time of the simulation method is small. The iteration time is increased in comparative 

study 2 and it is large in comparative study 3. Comparative study 4 and 5 will compare the stability 

of both methods considering various fixed preventive maintenance cost and fixed cost to wind 

farm. The cost surface of the numerical method is smoother and optimization result is more stable 

than the simulation method through these comparisons. 

1.4 Thesis organization 

This thesis is organized as follows.  

Chapter 1 - Introduction 

This chapter introduces the background, research motivation, objective and the contributions of 

the thesis, and thesis organization. 
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Chapter 2 - Literature review and fundamental knowledge 

This chapter presents a literature review and basic knowledge about wind farm systems, 

maintenance strategies in the wind industry and CBM optimization for wind farms. Literature 

review summarize studies in three popular maintenance strategies: CM, PM, and CBM. The review 

is focusing more on CBM, including diagnostic method and prognostic method used in CBM. 

Background knowledge presents basic knowledge of wind turbine and wind farm.  

Chapter 3 - The proposed numerical method of CBM optimization for wind farm 

This chapter gives detailed description of proposed numerical method and the procedure of 

applying modified numerical method to evaluate maintenance cost rate in five sections. It includes 

component health condition prognostics, failure probability estimation for component and turbine, 

the proposed CBM policy, general assumptions and descriptions of terms, and the CBM 

optimization numerical method model and solution method. 

Chapter 4 - Numerical method verification and comparison 

This chapter presents numerical examples using proposed numerical method. Sensitivity 

analysis and comparative studies are demonstrated between simulation and numerical method in 

CBM optimization. Finally, conclusions will be drawn to illustrate the feasibility and benefits of 

numerical methods. 

Chapter 5 – Conclusion and future work 

This chapter is the summary of this thesis, and it provides the direction of effort in the future 

work. 
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Chapter 2 Literature Review and Fundamental Knowledge 

In this chapter, a comprehensive review of maintenance strategies is conducted for wind 

turbines in Section 2.1. Three popular maintenance strategies, CM, time-based PM, and CBM are 

introduced and analyzed in terms of maintenance principles, current state of development, 

advantages and disadvantages, and future trends. The review focuses more on CBM, which is the 

most promising approach to solve maintenance problems in many industries. Diagnostics and 

prognostics are two important parts in the process of the CBM approach and both are integral to 

its effectiveness. Section 2.2 and 2.3 introduce diagnostic and prognostics methods employed 

within CBM in wind farm systems. In Section 2.4, basic knowledge is presented about wind 

turbine systems and wind farms. This includes an in-depth discussion of the principles of wind 

turbine systems and wind farm operation, the configuration of wind turbines and their key 

components, and analysis of major wind turbine failures. Section 2.5 is the summary of this chapter.  

2.1 Maintenance strategies for wind turbines 

As industry develops, there is a significant increase in the demand for machines with higher 

reliability and safety, along with a desire to reduce risk and improve profitability. As a result, 

several strategies are being investigated to improve machine reliability while reducing 

maintenance costs. Existing maintenance strategies employed in wind turbines can be categorized 

into three groups: CM, time-based PM, and CBM. These three maintenance strategies are 

described in detail in the following sections. 
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2.1.1 CM strategy 

CM is a reactive strategy primarily focused on responding to failures. The replacement or repair 

actions are performed to restore the system to functional state when a failure occurs. It is simple 

to understand and implement as there is no or less plan needed and the maintenance is only done 

when a breakdown has occurred. While PM actions can be carried out in a more planned way, 

corrective actions are more time sensitive as they directly affect the availability of the system. 

Upon the detection and confirmation of a failure, the corresponding maintenance action involving 

repair or replacement can be initiated. This approach can help to identify the specific human and 

equipment resources required to respond to a particular failure and avoid unnecessary resource 

allocation, which can contribute to cost savings. However, it is essential to note that during CM, 

the system is typically in an inoperative state. Estimating maintenance time becomes challenging, 

and the economic losses resulting from breakdowns can be substantial. Consequently, CM is more 

suitable for components where failure downtime would not lead to a significant economic impact 

[25]. It may be not applicable to large and critical machinery and equipment, as their maintenance 

downtime can significantly negatively impact production. Considering the limitations inherent in 

this reactive approach, researchers are actively exploring alternative, more proactive methods of 

maintenance.  

Several studies are attempting to develop new models aimed at promoting informed decision-

making for the implementation of CM. In [26], a mathematical model was proposed to assist wind 

farm stakeholders in making critical resource-related decisions for corrective maintenance at 

offshore wind farms, considering uncertainties in turbine failure information. Gan established a 

two-stage maintenance policy considering shocks and imperfect maintenance, proposed a 
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reliability model with changing dependence between degradation and shocks, and optimized the 

limits of imperfect maintenance activity for two reliability stages [27]. The study [28] proposed a 

cost-effective dynamic Bayesian network modeling scheme to be used in the planning of CM 

actions on systems having hidden components which have stochastic and structural dependencies. 

2.1.2 PM strategy 

PM is strategic maintenance that is proactively performed before a component or system fails, 

aiming to prevent breakdowns. The primary objective of PM is to mitigate the occurrence of CM 

by scheduling regular inspections pre-emptively addressing failure-prone components. Through 

optimization, the best maintenance decisions regarding age thresholds, failure threshold or the 

number of age groups can be determined. This optimization process is designed to minimize 

redundant visits and associated labor costs, effectively reducing overall maintenance expenditures 

[29]. The selection of PM activities depends on the reliability of each component and the associated 

overall cost. Recognizing that maintenance costs vary greatly from component to component 

emphasize the importance of enhancing reliability and mitigating costly maintenance tasks, 

ultimately contributing to the overall goal of minimizing overall maintenance costs. The 

determination of planned inspection intervals over time is a complex process that considers various 

factors, including production capacity, weather-related accessibility, and the standardization of 

production costs across different sites. This multifaceted approach ensures a comprehensive and 

well-informed scheduling of interventions, aligning with the overarching goals of optimizing 

maintenance efficiency and minimizing associated costs [30]. 

The limitation associated with PM is the necessity for regular and stringent inspections of a 

considerable amount of equipment and demanding the expertise of professionally trained 
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personnel, which may heighten the risk of operational costs. The effectiveness of PM depends 

heavily on the accuracy of inspection results. If the inspection results are inaccurate, the 

maintenance resources invested may not have a positive impact on productivity and production 

efficiency. Therefore, ensuring the implementation of scheduled inspections and the accuracy of 

inspection results is an issue when PM is applied to a system.  

In current O&M practices, enforcing PM policies based on time information from wind turbine 

systems is still a popular approach. TBM is a traditional PM technique. The key elements of TBM 

include establishing a maintenance schedule, conducting routine inspections, and performing 

necessary maintenance activities according to the scheduled plan. In [31], an optimal age-based 

group maintenance policy was proposed for a multi-unit series system whose components are 

subject to different gradual degradation phenomena. Their results showed that the use of this 

maintenance strategy has a great potential to reduce the maintenance costs of complex multi-unit 

systems, especially if the setup costs of maintenance tasks are high. [32] proposed opportunistic 

maintenance approaches for wind farms to take advantage of the maintenance opportunities. It 

considered three types of PM actions, including perfect, imperfect and two-level action. 

Comparative study with the widely used CM policy demonstrated the advantage of the proposed 

opportunistic maintenance methods in significantly reducing the maintenance cost. [33] presented 

an approach for implementing PM by using historical failure data to determine the optimal PM 

interval required to maintain desired reliability of atypical module or subassembly. The results 

from the analysis indicated that for an optimal PM interval to exist, the PM task has to be 

economically and technically feasible. In [34], a reliability and maintenance models was developed 

for a single-unit system subject to hard failures under random environment of external shocks. 
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Imperfect preventive repair and preventive replacement are implemented and optimal maintenance 

policy that minimized the expected cost per unit time of the system is obtained. 

2.1.3 CBM strategy 

CBM is an advanced maintenance strategy, as it relies on the analysis of condition monitoring 

data collected from the component. This approach proves effective in providing real-time 

diagnoses of existing failures and prognosis potential failures that may arise in the future. The 

objective of CBM is to proactively take actions before a severe breakdown occurs, undertaking 

necessary maintenance based on the current condition estimation of components. A CBM program 

usually consists of six steps: data acquisition, data processing, feature extraction, fault diagnostics, 

fault prognostics and decision making.  

The beginning stage of CBM is data acquisition, the primary purpose of which is to collect and 

store sensor data from monitored equipment for subsequent health condition analysis. Being able 

to acquire useful condition data from equipment is the foundation of the entire CBM process. Data 

acquisition (DAQ) systems are widely used in this process. DAQ plays a vital role in this process, 

with their primary function being to sample signals, such as voltage and current signals, that 

measure actual physical conditions. These systems convert the obtained samples into digital values 

which are then processed by, for example, a computer [35]. The basic components of a DAQ 

system include sensors and transmitters, field wiring, signal conditioning, DAQ hardware, DAQ 

software, and a personal computer (PC) with an operating system. The role of sensors and 

transmitters is to convert the physical phenomena of the monitoring equipment into electrical 

signals, and then convert the electrical signals into digital data that can be represented on a 

computer, digital system, or memory board. Commonly used transducers are light level, 
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temperature, force or pressure, position, and sound sensors, each with its own input and output 

devices. Various types of sensors, such as position sensors, pressure sensors, temperature sensors, 

vibration sensors, force sensors, and humidity sensors, can be used for different monitoring 

purposes. Although new data collection equipment continues to develop, there are still challenges 

in obtaining high quality machine run-to-failure data. Obstacles to data collection, such as a lack 

of personnel with the necessary skills, the need to replace legacy systems, and budgetary 

constraints, require effective solutions to ensure that the CBM process runs smoothly. 

In the following stage, data processing is a key step in transforming raw data into a usable and 

desirable format. This step involves multiple sub-processes, including data cleaning, analysis and 

interpretation. Two different types of data are typically involved: condition monitoring data and 

event data. Condition monitoring data includes various indicators such as vibration data, acoustic 

data, oil analysis data and measurements related to temperature, pressure or humidity. This type 

of data can be collected automatically by using sensors or other measurement techniques, or it can 

be obtained manually through regular interventions such as daily inspections. Event data is related 

to a product that occurred in a specific situation, or detailed information about maintenance tasks 

performed on the product. Unlike condition monitoring data, event data usually requires manual 

data entry due to its specific and contextual nature. The data processing step helps improve 

condition monitoring and event data to ensure prepared for subsequent analysis and interpretation. 

This transformation helps to extract meaningful insights and valuable information from the 

collected data sets. 

In process feature extraction, feature representation method will be used to define the features. 

Typically, any features can be identified through feature representation. However, not all of these 
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features are necessarily useful and not all of these features contain information relevant to the 

machine condition. Therefore, meaningful features that help analyze the machine condition must 

be identified and selected through feature extraction. In [36], Zhang et al. made  a study on a new 

feature extraction method of ultrasonic signals based on empirical mode decomposition (EMD). 

This method aimed to enhance the extraction of relevant information of ultrasonic signals and 

provide a more effective and refined feature set for machine state analysis. 

Fault diagnostics is one significant process in CBM. A fault is defined as an unpermitted 

deviation of at least one characteristic property or parameter of the system from the acceptable, 

usual, standard condition [37]. These faults are classified into three types: actuator faults, sensor 

faults, and device faults, also known as component faults or parameter faults. Fault diagnosis 

consists of the key components of fault detection, fault isolation and fault identification. During 

fault detection, the main goal is to check for an abnormal or faulty condition and to determine the 

exact time when the fault occurred. Fault isolation focuses on determining the location of the faulty 

component in the system. [38] represented basic concepts on fault detection, fault diagnosis, and 

fault tolerance systems with methods in CBM diagnostics. Section 2.2 describes the CBM 

diagnostics methodology in detail. 

Prognostics is another important part in CBM. It is the ability to predict the RUL of a failing 

component or subsystem accurately and precisely. This involves three main methods: the physical 

model-based method, data-driven method, and knowledge-based method. More detailed of CBM 

prognostics method will be demonstrated in Section 2.3. 

Maintenance decision-making is the final step in CBM and is the basic objective of predicting 

RUL. RUL is the estimated time of the component that is able to perform its intended function. A 
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primary goal of CBM is to maximize profitability with minimal repair costs. The way to achieve 

this based on economic considerations is using cost models. Jia presented the maintenance 

decision-making method based on remaining useful life considering different optimal targets and 

full life experiment of gearbox was given to demonstrate the preferred decision-making with the 

influence of the remaining useful life [39].  

A large number of research and study activities have been made in various aspects of CBM. A 

review written by Jardine et al. described the important steps in CBM and emphasizes diagnosis 

and prognosis implementation CBM with related techniques [10]. In addition, Peng et al. reviewed 

the current status of machine prognosis in CBM and illustrated popular methodologies [7].  

CBM optimization is the process of improving and refining condition-based maintenance 

strategies to achieve maximum efficiency and minimum cost in equipment maintenance practices. 

It is a crucial process for organizations seeking to improve their maintenance practices and enhance 

operational performance. CBM optimization aims to enhance various aspects of CBM 

implementation, including data collection, analysis, decision-making, and resource allocation, to 

ensure that maintenance activities are performed at the right time, with the right resources, and for 

the right reasons. [40] introduced an opportunistic CBM strategy designed to enhance the 

maintenance cost efficiency of Offshore Wind Turbines. Additionally, it investigated the economic 

relationships between various components. They developed an ANN prediction model to 

anticipate the distribution of component failure times, leveraging data from condition monitoring. 

In [41], a CBM optimization approach was proposed for wind turbine systems considering the 

economic dependency of different wind turbine types. [42] proposed a prognostic induced CBM 

optimization method aimed at identifying optimal maintenance decisions that maximize net 
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revenue. A data-driven efficiency modeling method, which was integrated into the net revenue 

optimization framework. This method accounted for the economic losses resulting from system 

degradation when evaluating the maintenance benefits. In [43], a method was devised for modeling 

the reliability of wind power systems and optimizing CBM, taking into account wind uncertainty 

and the condition of wind turbines through health condition prediction. Additionally, they explored 

optimization for minor repair activities to determine the optimal number of joint repairs. 

2.2 CBM diagnostic methods for wind turbines 

Fault diagnosis methods are generally categorized into different classes, including model-based 

methods, signal-based methods, knowledge-based methods, hybrid methods and active fault 

diagnosis methods [44]. Kabir et al. [45] provided a brief overview of recent developments in 

condition monitoring and fault diagnosis techniques for offshore wind turbines. The focus of their 

introduction was on various components of wind turbine including gearboxes, bearings, rotors, 

blades, and generators.  In [46], the structure of the wind turbine and potential failures of critical 

components were reviewed. In addition, the study analyzed various research findings related to the 

diagnosis of wind turbine components. A detailed comparison of the advantages and disadvantages 

of the newly implemented diagnostic methods was presented. 

2.2.1 Model-based fault diagnostic methods 

Model-based fault diagnosis is a method used to detect, isolate, and identify faults in systems by 

comparing the actual behavior of the system with the expected behavior predicted by a 

mathematical model. [47] introduced an innovative intelligent fault diagnosis approach designed 

to autonomously recognize various health conditions of wind turbine gearboxes. Given the 
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multiscale nature of vibration signals inherent in gearboxes, this paper proposed a novel 

architecture Multiscale Convolutional Neural Network (MSCNN). This architecture is designed to 

conduct multiscale feature extraction and classification simultaneously, addressing the diverse 

characteristics of the signals. 

2.2.2 Signal-based fault diagnostic methods 

Signal-based fault diagnosis relied on analyzing signals or data collected from sensors or other 

sources to detect, isolate, and diagnose faults in systems. Signal-based fault diagnosis methods can 

be classified into three types: time-domain approach, frequency-domain approach, and time-

frequency method.  

The time-domain method is based on the time waveform itself. Time domain refers to the 

analysis of mathematical functions, physical signals, or time series of economic or environmental 

data, with respect to time. Li, and Wang [48] applied a conventional neural network to time-domain 

vibration signal six fault diagnosis, taking the bearing as an example, and an intelligent diagnosis 

method of bearing based on convolution neural network is proposed. 

Motor current signature analysis (MCSA) is an effective frequency-domain method to sense 

motor fault. An online induction motor diagnosis system using MCSA with advanced signal-and-

data-processing algorithms was proposed in [49]. Vibration signal analysis is also a commonly 

used method to monitor faults for wind turbine equipment such as gearbox. A review of vibration 

and acoustic measurement methods for the detection of defects in rolling element bearings was 

presented in [50].  
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There are four main approaches in the time-frequency method: short-time Fourier transform 

(STFT), wavelet transforms (WT), Hilbert-Huang transform (HHT), and Wigner-Ville distribution 

(WVD). A review describes various time-frequency analysis that have been proposed and applied 

to machinery fault diagnosis in [51]. Support vector machine (SVM) is a new computational 

learning method used in condition monitoring and fault diagnosis. It is based on Vapnik-

Chervonenkis theory, and the main concept of this theory is revisiting the problem statement 

appropriate for the modern learning method that makes a clear distinction between the problem 

formulation and solution approach used to solve the problem [52]. Nowadays, SVM is becoming 

more popular in machine learning methods due to its excellence of generalization ability than the 

traditional method such as the neural network.  [53] proposed an SSA-optimized SVM wind 

turbine fault diagnosis model with high accuracy rate, strong optimization ability, and fast 

convergence rate and performance. [51] investigated the detection and identification of windmill 

bearing fault by using a one class SVM. Models with varying sensitivity levels were 

simultaneously trained in parallel by adjusting the tuning parameters of the model. 

2.3 CBM prognostic methods for wind turbines 

Prognostics in CBM is a practice of predicting the future behavior or performance of wind 

turbine system or component based on its current condition and historical data. The purpose of 

prognostics is to estimate the RUL of an asset, which is the amount of time an asset is expected to 

continue to operate before reaching a pre-defined threshold or failing. Three primary methods: 

physical model-based method, data-driven method and knowledge-based method, are described in 

the following section. 
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2.3.1 Physical model-based methods 

Physical model-based prognostic method involves the development of models based on an 

understanding of the underlying physics of wind power system and the mechanisms of degradation. 

These models simulate degradation processes and predict future behavior of components. The 

advantages of this method are that it provides a fundamental understanding of the degradation 

process, suitable for systems with well-understood physics and may offer insights into the 

mechanisms leading to failure. One challenge is that it needs in-depth knowledge about the physics 

of degradation for the specific product. In practice, the model-based approach cannot be used for 

all machine condition monitoring. In some machine degradation, it includes historical failure in 

terms of various signals leading up to failure or statistical data sets. The application of this method 

is often restricted by the complexity of some machines.  

2.3.2 Data driven methods 

Current model-based approaches are inadequate in accurately predicting fault processes. For 

this reason, data-driven methods have emerged, which use nonlinear networks to address this 

limitation by applying a robust formal algorithm. In data-driven methods, condition monitoring 

data is analyzed in a complicated way, aiming at detecting abnormal events and subsequently 

transforming these events into useful fault insights. This change to data-driven approaches denotes 

a transition from traditional model-based method and recognizes the inherent complexity and 

nonlinearity of the failure process. By exploiting the power of formal algorithms within a data-

driven framework, these approaches strive to improve the accuracy and effectiveness of fault 

prediction, thereby contributing to a more detailed understanding of system behavior and 

performance. 
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This approach typically uses machine learning techniques to construct accurate models by using 

the collected data to capture the details of the failure. In contrast to model-based approaches, data-

driven methods do not require a great deal of specialized knowledge about the principles or causes 

of machine failures. However, data-driven methods require higher computational power and 

demand strict data quality. The accuracy and quality of the input data directly affect the accuracy 

and applicability of the model. As a result, there have been challenges in the field of data-driven 

methods, especially in obtaining a sufficient amount of data and ensuring data quality. To 

effectively apply data-driven methods in fault detection and machine learning, it is crucial to 

address these challenges. 

Data-driven methods can be divided into two categories: statistical approaches and AI 

approaches. Statistical methods include a wide range of techniques such as multivariate statistical 

methods, which include static and dynamic principal components analysis (PCA), linear and 

quadratic discriminant, partial least square, canonical variety analysis, and learning vector 

quantization (LVQ). State-space models such as Bayesian networks, Hidden Markov models 

(HMM), Hidden semi-Markov models (HSMM), and regressive models. Some commonly used 

methods would be reviewed respectively, including the ANN-based method, Bayesian network-

related method, HMM and HSMM, and gray model. 

An artificial neural network (ANN) is a computational data processing system inspired by the 

complex network of biological neural structures in the animal brain. ANN is based on a collection 

of interconnected units or nodes called artificial neurons. [54] provided a comprehensive 

discussion of the application of artificial neural networks to wind energy systems. It identified the 

most commonly used methods for various applications and showed how artificial neural networks 
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can replace traditional methods in numerous situations. In [55], an ANN-based condition 

monitoring approach was implemented for gearbox bearings using real data collected from onshore 

wind turbines rated at 2 MW, situated in the southern region of Sweden.  

 Bayesian networks are probabilistic graphical models that utilize directed acyclic graphs 

(DAGs) to elucidate the structure of conditional dependencies between random variables. This 

graphical model provides a way to predict the probability associated with each potential cause, 

which helps to identify the specific causes that lead to an event. In cases where the modeling 

involves a sequence of variables, the Bayesian network takes the form of a Dynamic Bayesian 

Network (DBN). The DBN establishes relationships between different variables in sequential time 

steps. At any given timepoint T, the values of the variables can be computed based on the internal 

regressors and the immediately preceding values.  [56] introduced a novel dynamic Bayesian 

network (DBN) framework for fault diagnosis and reliability analysis of offshore wind turbine 

gearbox systems. This framework integrated components' degradation data and a CBM strategy to 

enhance the diagnostic and maintenance procedures. [57] employed Bayesian networks to estimate 

the probability distribution for the time of failure and the conditional probability distribution for 

the time of CBM given the time of failure, considering the CBM strategy. 

Hidden Markov Model (HMM) is a statistical Markov model in which the system being 

modeled is assumed to be a Markov process with hidden states. Applications of HMMs remain 

popular due to their rich mathematical structure, the large number of successful applications in 

practice, and the simplicity of model interpretation. The hidden semi-Markov model (HSMM) has 

the same structure as the hidden Markov model, but the hidden process is semi-Markov rather than 

Markov. In diagnosis, HSMM can be used to categorize machine failures based on a sequence of 



25 

 

observations. In prognosis, HSMM can be used to simulate the life cycle of a component. Dong 

and He described the basic concept and procedure of HMM and HSMM in diagnosis and prognosis 

with a case study in bearing and hydraulic pump health monitoring [58].     

2.3.3 Knowledge-based methods 

In the field of real-world machines, the adoption of accurate physical models is a challenging 

task. The complexity of the actual framework of a machine often exceeds the simplicity assumed 

by such models. As a result, physical models may not be applicable in some cases. In these 

instances, knowledge-based methods come into play, which offer two main approaches: expert 

systems and fuzzy logic. These knowledge-based approaches provide alternative strategies for 

solving intricate real-world machine problems, utilizing specialized knowledge and fuzzy logic 

principles to solve complex problems that may not be amenable to accurate physical modeling. 

An expert system is a computer system emulating the decision-making ability of a human expert 

[59]. The application of this system is thinking like a real professional expert. The basic principle 

of an expert system is the "if-then" rule rather than program code. The first expert systems were 

created in the 1970s and then proliferated in the 1980s [60]. Expert systems were the first truly 

successful artificial intelligences [61]. 

Two main advantages of expert systems are ease of maintenance and rapid development. The 

former is reflected in the elimination of conventional code, the reduction of typical problems, and 

the ease of logical flow calls to the system and reasoning engine. The latter advantage is especially 

evident when using expert system shells, which can be prototyped in days compared to the months 

or years required for complex IT projects. The term fuzzy logic was introduced with the 1965 
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proposal of fuzzy set theory by scientist Lotfi Zadeh [62]. The basic of fuzzy logic is the 

observation that people make decisions based on vague, imprecise, and no-numerical information. 

It is a mathematical model for representing ambiguous and noisy information. These models have 

the capability of recognizing, representing, manipulating, interpreting, and using data and 

information that are vague and lack certainty [63].  

Two main types of fuzzy logic systems are the Mamdani and Takagi-Sugeno-Kang (TSK) 

systems. These systems simplify the processing of mathematical concepts through fuzzy reasoning, 

making them easy to construct and understand. Their flexibility allows modification by adding or 

removing rules.   

2.4 Introduction of wind turbine system and wind farm 

2.4.1 Typical configuration of a wind turbine system and critical components 

The typical configuration of a wind turbine system is shown in Figure 2.1, there are three main 

parts: the tower, the blades, and the nacelle with gearbox and generator. The collective 

functionality of these constituent elements collaboratively enables the transformation of wind 

energy into electrical energy. The synergistic operation of these components helps to convert wind 

energy into electrical energy. In the presence of wind, the blades of the system undergo a rotational 

motion. The kinetic energy generated by the rotation of the blades creates a rotational motion in 

the generator. As a result, this rotational motion generates electrical energy that can be used for 

various purposes, such as lighting light bulbs or generating sound output through a stereo system. 
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Figure 2.1 Configuration of horizontal axis wind turbines [64] 

There are four critical components in a traditional wind turbine system, which are the rotor 

blades, the main bearing, the gearbox and the generator shown in Figure 2.2. At the core of the 

wind turbine, the rotor blades play a pivotal role in capturing the kinetic energy of the wind and 

transforming it into rotational motion. Factors such as the shape, length, and number of blades 

significantly influence the turbine's performance, affecting power output and operational 

characteristics. Bearings are critical components of rotating equipment that carry shaft loads and 

minimize friction, providing shaft position and system flexibility. A variety of bearings for wind 

turbine applications are available to meet specific needs. The wind turbine gearbox is a pivotal 

component within wind energy systems, serving as a crucial interface between the low-speed rotor 

and the high-speed generator. This step-up in rotational speed enables the generator to produce 

electrical power efficiently. The gearbox acts as a mechanical multiplier, allowing for optimal 
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power transfer and maximizing energy conversion from wind to electricity. Situated within the 

nacelle, the generator is a crucial component responsible for converting the mechanical energy 

received from the rotor blades into electrical energy. Various generator types, including 

asynchronous and synchronous generators, are employed in wind turbines, each with its own 

advantages and considerations. The efficiency of the generator directly affects the entire energy 

conversion process and plays a vital role in maximizing the power output of the turbine. 

 

Figure 2.2  Main components of wind turbine system [65] 

2.4.2 Operation principle of wind turbine system and wind farm 

A wind turbine harnesses the potential of wind energy by exploiting aerodynamic principles 

akin to those observed in the functionality of airplane wings or helicopter rotor blades. As the wind 

traverses the turbine's blades, a discrepancy in air pressure between the two sides of the blade 

arises, leading to a concomitant generation of lift and drag forces. Primarily dominated by the force 

of lift, these forces initiate the rotation of the turbine's rotor. The rotor, in turn, establishes a 

connection with the generator, directly in the case of a direct drive turbine or through a 

combination of a shaft and a gearbox for rotational amplification, resulting in the usage of a smaller 
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physical generator. The conversion of aerodynamic force into rotational motion of the generator 

facilitates the production of electricity. 

Wind power plants generate electrical energy through the deployment of an assemblage of wind 

turbines concentrated within a specific area. The positioning of a wind power plant is influenced 

by various factors encompassing wind patterns, the topographical characteristics of the 

surrounding area, availability of electrical transmission infrastructure, and other pertinent sitting 

considerations. Within a utility-scale wind plant, individual turbines autonomously produce 

electrical power, which is subsequently channeled to a substation. From there, the generated 

electricity is seamlessly integrated into the grid, ultimately serving as a reliable source of energy 

for our communities. Wind turbines possess the capacity to rotate along either a horizontal or 

vertical axis, with the former exhibiting a longer historical lineage and widespread prevalence. 

Large three-bladed horizontal-axis wind turbines (HAWT) with the blades upwind of the tower 

produce the overwhelming majority of wind power in the world today and our research is also 

based on this type of wind turbine.  

2.4.3 Failure modes in wind turbines 

Failures in wind turbine can be categorized into two sources: some are caused by long-term 

operation and aging, and others are caused by short-term overload and sudden breakdown [66]. As 

the rotor and drive train undergo rotational motion, failure rates are primarily attributed to wear 

and fatigue during operational cycles. The wind turbine has four critical components, each with 

different failure rates. The failure rates also depend on the location of the wind farm, the type of 

foundation, and the type of transmission system. As technology is less mature, meaning larger 

scale and more complex transmission systems, the failure rates tend to be higher, and reliability is 
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lower. Additionally, certain failures are perceived as occurring randomly without discernible 

patterns or predictability. The major failures of critical components in wind turbine systems: rotor 

blades, main bearing, gearbox and generator, are introduced in detail as follows. 

The failure of wind turbine rotor blades is a critical issue that can significantlyy impact the 

performance, reliability, and safety of wind energy systems. The first cause is material degradation. 

Rotor blades are subjected to harsh environmental conditions, including exposure to ultraviolet 

radiation, temperature variations, moisture, and airborne particles. Over time, these environmental 

factors can cause material degradation, such as erosion, corrosion, delamination, and surface 

cracking. Material degradation weakens the structural integrity of the blades, leading to potential 

failure under normal operational loads. Besides, manufacturing defects, such as improper curing, 

voids, resin-rich or resin-poor areas, and improper bonding of composite materials, can 

compromise the strength and durability of rotor blades. Defects introduced during the 

manufacturing process may go undetected, but they can initiate stress concentrations or propagate 

cracks, ultimately leading to blade failure. Finally, Wind turbine rotor blades are subjected to 

cyclic loading caused by wind forces, gusts, and turbulence. This cyclic loading induces fatigue 

stress, which can accumulate over time and lead to progressive structural damage. Fatigue failure 

can occur at critical locations, such as blade roots, blade tips, or adhesive joints, where stress 

concentrations are typically higher. Other causes include design and structural issues, lighting 

strikes and extreme events, and maintenance and inspection negligence. 

Fatigue and overloading are the causes of the main bearing failure. Wind turbine main bearings 

are subjected to continuous cyclic loading due to wind forces, variations in wind speed, and rotor 

imbalance. The repetitive stress cycles can lead to fatigue damage in the bearing components, 
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particularly in the rolling elements and raceways. Overloading of the bearing beyond its design 

limits, whether due to excessive wind speeds or mechanical issues, can accelerate fatigue failure. 

The second failure is insufficient lubrication. Proper lubrication is vital for the smooth operation 

and longevity of main bearings. Inadequate lubrication, including insufficient quantity, poor 

quality, or improper lubricant selection, can lead to increased friction, wear, and overheating. 

Insufficient lubrication film formation can result in metal-to-metal contact, leading to premature 

bearing failure. Contamination and corrosion can also lead to failure events. Wind turbine 

environments are prone to contamination by dirt, dust, moisture, and other airborne particles. 

Contaminants can infiltrate the bearing housing, leading to abrasive wear, increased friction, and 

accelerated fatigue. Additionally, exposure to corrosive elements, such as saltwater or acidic 

conditions, can cause corrosion of bearing surfaces and compromise their structural integrity. The 

last one is misalignment and improper installation. Improper installation practices, including 

inadequate alignment of the main bearing with the rotor and nacelle, can result in excessive loads 

and misalignment. Misalignment increases stress on the bearing components, leading to premature 

wear, fatigue, and ultimately, bearing failure. Proper alignment during installation and regular 

monitoring of alignment are crucial for preventing such issues. 

Wind turbine gearboxes operate under demanding conditions, subject to high loads, varying 

wind speeds, and dynamic loads caused by wind gusts and turbulence. These factors impose 

significant stress on the gearbox components, leading to potential wear, fatigue, and lubrication 

challenges. Wind turbine gearboxes are subjected to cyclic loading caused by varying wind speeds, 

gusts, and turbulence. These cyclic loads induce fatigue stress, which can accumulate over time 

and lead to progressive structural damage. Fatigue failure can occur in gear teeth, bearings, shafts, 

or other critical components within the gearbox, particularly at locations where stress 
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concentrations are higher. Proper lubrication is also crucial for the smooth operation and longevity 

of wind turbine gearboxes. Proper maintenance, monitoring, and lubrication practices are crucial 

for mitigating these issues and extending the gearbox's lifespan. 

The failure of wind turbine generators is a critical concern that can significantly impact the 

performance, reliability, and power generation capability of wind energy systems. There are four 

main reasons leading to the failure of generator: electrical system issue, mechanical stress fatigue, 

bearing and lubrication problems, and environmental factors. Electrical system failures can occur 

in wind turbine generators due to issues such as insulation breakdown, short circuits, electrical 

overloads, or voltage spikes. These issues can lead to overheating, arcing, or damage to the 

generator windings, resulting in reduced efficiency, increased wear, or complete generator failure. 

Wind turbine generators are subjected to mechanical stresses and vibrations due to rotor 

imbalances, wind gusts, and rotational forces. Over time, these mechanical stresses can lead to 

fatigue failure in the generator components, including the rotor shaft, bearings, or supporting 

structures. Fatigue cracks, mechanical wear, or misalignment can eventually cause the generator 

to malfunction or cease operation. Bearings play a critical role in supporting the rotating 

components of wind turbine generators. Bearing failures can occur due to factors such as 

inadequate lubrication, contamination, misalignment, or excessive loads. Insufficient lubrication 

can lead to increased friction, overheating, and premature wear, eventually resulting in bearing 

failure and potential damage to the generator. Wind turbine generators are exposed to harsh 

environmental conditions, including temperature variations, moisture, saltwater, and airborne 

particles. These environmental factors can lead to corrosion, erosion, or degradation of the 

generator components, particularly in offshore wind farms. Corrosion and erosion can compromise 

the insulation, electrical connections, or mechanical integrity of the generator, leading to failure.  
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2.5 Summary 

This section provides an extensive review of previous studies on three existing maintenance 

strategies for wind turbines, with a particular focus on the CBM approach. It describes the core 

processes of CBM and highlights the methods that have been widely adopted in its important 

processes. This section provides insights into the various methods applied by CBM for prognostics 

and diagnostics. In addition, it provides a basic concept and knowledge such as the wind turbine 

configuration, critical components and corresponding failure causes. 
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Chapter 3 The Proposed Numerical Method of CBM 

Optimization for Wind Farm  

A numerical method is proposed originally in study [24] and this method provides smoother 

cost surface which can benefit optimization process. However, the cost evaluation results are not 

reasonable, and optimization is not achieved according to the outcome in this study. To evaluate 

cost rate accurately and resolve optimization problems, we propose a modified model based on 

original numerical method. The modified numerical model develops a new 4-dimensional structure 

for the component age combination probability matrix and integrating a previously separate age 

combination probability transition matrix into the main cost evaluation loop. The detailed 

procedure of applying updated numerical method to evaluate maintenance cost rate is described 

by five sections in this chapter.  

In section 3.1, an ANN based prognostic method in [67] is introduced. This method is used to 

obtain lifetime percentage and prediction error for component. According to the output of ANN 

model, the predicted failure time distribution of component at a certain inspection point can be 

developed.  

Section 3.2 presents the failure probability estimation for component and turbine based on ANN 

prognostic approach. CBM prognostic method used in section 3.1 helps to get the predicted failure 

time distribution of component. The failure probability for a component at a certain inspection 

point can be calculated as conditional probability based on predicted failure time distribution. The 

detailed calculation process is presented in this section.  



35 

 

A CBM policy with two failure probability threshold values at the wind turbine level will be 

introduced in section 3.3. Two types of maintenance activities are considered in this policy: failure 

replacement when failure occurs and preventive maintenance when the probability of turbine 

exceeds higher level failure threshold. Maintenance activities will be assigned to replace the faulty 

components when replacements are needed in the wind farm. Assumptions and description of 

terms of the numerical method are introduced in section 3.4.  

In the last section 3.5, the procedure of proposed numerical method for evaluating the 

maintenance cost of CBM policy involving five steps will be developed. These steps include: 

numerical initialization; calculate age combination probability transition matrix 𝑇𝑃𝑟(𝑘𝑟) for each 

age combination, new age combination probability matrix 𝑃𝑛𝑒𝑤(𝑘𝑟) due to CBM decision and 

total cost 𝐶𝑇𝑜𝑡𝑎𝑙 for all age combination at current inspection point; update the age combination 

probability distribution matrix 𝑃𝑈(𝑘𝑟)  at each inspection interval; update the total cost at each 

inspection point; calculate the cost rate. The section from 3.5.1 to 3.5.5 will describe step 1 to step 

5 of applying the numerical method.  

3.1 Component health condition prognostics 

Health condition prognostics aims to predict the future state or condition of a system or its 

components. Prognostics goes deeper than simple condition monitoring to provide insight into the 

remaining useful time of a device or component. By analyzing historical data and current 

conditions of component at an inspection point, prognostic models can estimate how much time is 

left before failure or severe degradation occurs. Some advanced prognostic methods are able to 

estimate the associated prognostic uncertainty. The uncertainty is a measure of the reliability or 

confidence level of the predicted failure time. It provides an understanding of how certain or 
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uncertain the prognostic model in its predictions. Model-based methods and data-drive methods 

are two types of prognostic models widely used in CBM for calculating RUL of component. A 

model-based approach for CBM involves the use of mathematical or computational models to 

predict the future condition of equipment and make maintenance decisions accordingly. This 

model is based on equipment physical models and damage propagation models to perform 

reliability prognostics. One big challenge of using model-based method is model complexity. 

Developing accurate models for complex systems can be difficult. The underlying physics or 

behavior of certain equipment may be hard to capture accurately in a model. Data-driven models 

rely on analyzing historical data and real-time condition monitoring data to make predictions about 

the health and future performance of equipment. These methods use machine learning and 

statistical strategies to identify patterns, trends and anomalies in the data and do not need physics-

of -failure models. 

Among different data-driven approaches, ANN-based methods have proven to be very effective 

and versatile in predicting component health condition. In this model, one input layer, two hidden 

layers and one output layer are defined. A feed forward neural network model proposed in [67] 

will be used to obtain predicted failure distribution for components. The input values in the ANN 

are the component age values and condition monitoring measurements at the current and previous 

inspection point. The ANN model uses failure histories and suspension histories. The failure 

history of a component covers its entire operating life, from the start of operation to the end of its 

useful life. This history includes failure events and the corresponding inspection data accumulated 

during this time period. In suspension history, the component is taken out of service before the 

failure occurs. Through training the ANN model by failure histories and suspension histories, the 

model is able to predict the RUL value based on the component age and condition monitoring 
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measurements. The output value in this ANN model is life percentage at current inspection time, 

denoted by 𝑃𝑖. The predicted failure time will be obtained based on current age and life percentage 

calculated from ANN. For example, if the current age of a component at certain inspection point 

is 300 days and the life percentage is 60% getting from ANN model, the predicted failure time 

will be 300/60% = 500 days. 

To obtain the predicted failure time distribution, we use the method proposed in [68]. The main 

idea of this method is using mean 𝜇𝑝  and standard deviation 𝜎𝑝  of lifetime percentage error 

obtained form ANN model to build the predicted failure time distribution at certain inspection 

point. Suppose the age of component is 𝑡 and ANN life percentage value is 𝑃𝑡 . The predicted 

failure time considering life percentage error is 𝑡/(𝑃𝑡 − 𝜇𝑝) and the standard deviation is 𝜎𝑝 ∙ 

𝑡/(𝑃𝑡 − 𝜇𝑝). That is, the predicted failure time 𝑇𝑝  at the current inspection point follows the 

normal distribution as: 

𝑇𝑝~𝑁 (
𝑡

𝑃𝑡 − 𝜇𝑝
,

𝜎𝑝 𝑡

𝑃𝑡 − 𝜇𝑝
) (1) 

where 𝑃𝑡  is the life percentage output at age 𝑡 , 𝜇𝑝  and 𝜎𝑝  is the mean value and standard 

deviation of ANN lifetime percentage prediction errors. 𝜎𝑝 is assumed to be constant and does not 

change over time. 𝜇𝑝 and 𝜎𝑝 is estimated during the ANN training and testing processes. As the 

ANN life percentage errors are assumed to follow the normal distribution, the predicted failure 

time also follows the normal distribution.  
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3.2 Failure probability estimation for component and turbine  

Through using prognostic method mentioned in section 3.1, the failure time distribution can be 

obtained for each component by using condition monitoring data and history data. In the CBM 

policy that will be presented in next section, the maintenance decision for components will be 

made based on their failure probability at the inspection point. We have to compare the failure 

probability of turbines and the failure thresholds we define to decide the needed maintenance 

actions. To calculate the failure probability of turbines, we need to get the failure probability of all 

components in each turbine. According to the predicted failure time distribution we obtained in 

ANN model, the failure probability of each component can be estimated. It is assumed that the 

predicted failure time follows the normal distribution as discussed in section 3.1. The failure 

probability of a component can be calculated as a conditional probability and the method to 

calculate it is shown below. It is assumed that the mean and the standard deviation of the ANN 

lifetime prediction error are 𝜇𝑝 and 𝜎𝑝. According to [68], the general failure probability 𝑃𝑟 of a 

component can be derived using the following formula: 

𝑃𝑟 =
∫

1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝑡𝑝

𝜎
)2𝑡+𝐿

𝑡
𝑑𝑥

∫
1

𝜎√2𝜋
𝑒−

1
2

(
𝑥−𝑡𝑝

𝜎
)2∞

𝑡
𝑑𝑥

 (2) 

where, 𝐿 is the maintenance lead time, which is defined as the interval between the time the 

maintenance decision is made and the time when the maintenance is implemented. The lead time 

for maintenance encompasses various sequential activities, including assembling the maintenance 

team, procuring spare parts, preparing repair equipment, and traveling to the wind farm. Therefore, 
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maintenance decisions at the current inspection point will only have an impact on the wind turbine 

after the lead time is over and have no influence on the failures during the lead time. Therefore, it 

is wise to make optimal maintenance decisions based on the probability of a fault occurring during 

the preparation time, thus reducing the associated risk of failure. To reasonably simplify the 

problem, we assume 𝐿 is the same for all maintenance actions in this study. 𝑡 is the age of the 

component at the current inspection point, 𝑡𝑝 is the predicted failure time estimated by ANN, and 

𝜎 is the standard deviation of the predicted failure time distribution. We can get the mean and 

standard deviation value of predicted failure time based on the relationships between predicted 

failure time and predicted lifetime percentage error, as shown below: 

𝑡𝑝 =
𝑡

𝑃𝑡 − 𝜇𝑝
, 𝜎 =

𝜎𝑝 𝑡

𝑃𝑡 − 𝜇𝑝
 (3) 

The concept of a wind turbine system can be understood as a series configuration in which the 

failure of one component can affect the overall functioning of the system. The key components of 

a wind turbine include the rotor, gearbox, generator, and main bearing, etc. Each of these 

components is integrally linked to the operation of the wind turbine and contributes to its reliability 

and performance. Therefore, the failure probability of turbine 𝑛  with 𝑚  components can be 

defined as follows: 

𝑃𝑟𝑛 = ∏(1 − 𝑃𝑟𝑛,𝑚)

𝑀

𝑚=1

 (4) 

The failure probability for each turbine 𝑃𝑟𝑛 will be used to make maintenance decisions based 

on the CBM policy below. 
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3.3 The CBM policy 

In the field of real-life maintenance, different types of maintenance actions are considered, 

including imperfect repair, perfect repair, imperfect replacement, and perfect replacement. 

Imperfect repair and replacement refer to the maintenance action where a degraded or failed 

component is restored to a functional state but not to its original, as-new condition. After the 

imperfect maintenance, the component may still have some residual defects or reduced 

performance compared to its initial state. Perfect repair or replacement involve replacing a 

degraded or failed component with a brand-new component. The new component is assumed to 

have the same reliability and performance characteristics as the original one in its initial state. To 

simplify the maintenance problem, only perfect replacement is considered in this study, and the 

component health condition is assumed fully restored to a state as good as new after replacement. 

In this study, the CBM policy with two failure probability threshold values in turbine level 

proposed by Tian in [23] is applied for wind farm systems. The policy is explained as follows: 

(1) Perform failure replacement if any component fails.  

(2) As time goes, evaluate the probability of failure of each critical component in each wind 

turbine and the failure probability of the whole turbine 𝑛. Whenever a certain wind turbine 𝑛 has 

𝑃𝑟𝑛 > 𝑑1, where 𝑃𝑟𝑛 is the failure probability of the wind turbine 𝑛 and 𝑑1 is pre-specified level 

1 failure probability threshold value, then perform preventive replacement on certain components 

in this wind turbine. 

(3) If preventive replacements need to be done in a certain turbine, the replacement work will 

start from the component with the highest failure probability and replacement action will stop until 
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𝑃𝑟𝑛 < 𝑑2, where 𝑑2 is pre-specified level 2 failure probability threshold value of the whole wind 

turbine. 

(4) If there are failure replacement or preventive replacement required, the maintenance team, 

needed replacement equipment as well as the maintenance tools and other necessary resources will 

be assigned to the wind farm to execute the maintenance work. 

Two level failure probability threshold values are defined in the CBM policy to support the 

maintenance decision making. The key point of this policy is to find the optimal value of two 

failure probability 𝑑1 and 𝑑2  which can give us the lowest total maintenance cost.  

3.4 Assumptions and description of terms  

Without loss of generality, the CBM policy considers 𝑁 identical wind turbines in the wind 

farm, where each turbine contains 𝑀 critical components. It is assumed that those components of 

the same type are identical across all turbines, and the degradation process of a component does 

not impact the health of other components within the same turbine. The lifetime of component 𝑚 

is modeled as a Weibull distribution with a scale parameter 𝛼𝑚 and shape parameter 𝛽𝑚 [78-79].  

To facilitate analysis, the possible age of each component is divided into 𝐾  discrete age 

intervals and the same 𝐾 is applied to all component types in this study. The typical lifetime of 

component will be set as a specific value 𝑇. The first 𝐾 − 1 age intervals are set as constant 

intervals, and the interval length is  𝑇𝐼 , 𝑇𝐼  is typical lifetime divided by 𝐾. In possible age of 

component, the first defined age interval contains the age from 0 to age 1𝑇𝐼. Similarly, the second 

interval covers the possible age from 1𝑇𝐼  to 2𝑇𝐼 . The last interval encompasses the possible 
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component age from  (𝐾 − 1)𝑇𝐼  to ∞ . These 𝐾  intervals contain all possible age of the 

components, and this will be used to develop age probability distribution in the following 

calculation process. 

For instance, the lifetime of main bearing follows Weibull distribution with scale parameter 

3000 and shape parameter 3. It is assumed that the typical lifetime of this component is 30 years 

and possible age of this main bearing is divided into 20 intervals. Figure 3.1 shows the Weibull 

lifetime distribution of main bearing and 20 divided intervals. The length of interval 𝑇𝐼  is 

30 × 360/20 = 540  days. Red dotted line divides the distribution to 20 intervals. The first 

interval contains the possible age from 0 to 540 days. The second interval covers the possible age 

from 540 days to 1080 days. The length of first 19 intervals is the constant as 540 days and the last 

intervals is from 540 × 19 = 10260 days to ∞. 

 

Figure 3.1 Weibull distribution of main bearing and divided intervals 
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𝐾𝑉 is the vector indicating the possible age values, 𝐾𝑉 = (1,2, … , 𝐾). 𝑘 is the age vector, an 

its elements can take values from 𝐾𝑉. When  𝑘 = 1, it means the age is in the first possible age 

interval from 0 to age 1𝑇𝐼. Similarly, when  𝑘 = 20, it means the age of component is in the last 

possible age interval from (𝐾 − 1)𝑇𝐼 to ∞. The lifetime of each component is assumed to follow 

Weibull distribution, so the probability of component potential age in each interval can be 

calculated. 𝑃𝑟𝐴 is the matrix describing the age probability distribution for each component in 

each turbine. 𝑃𝑟𝐴(𝑘𝑛𝑚, 𝑛, 𝑚) is the age probability distribution of component m of turbine n and 

it is developed to calculate the probability of all possible age combination for components. Here, 

𝑘𝑛𝑚 represents the possible age state values of component m of turbine n, which can take values 

from vector 𝐾𝑉 = (1,2, … , 𝐾). The calculation of age distribution for component is described in 

section 3.5.1.  

3.5 CBM optimization model and solution method 

Based on CBM policy described in section 3.3, the optimization model for obtaining lowest 

maintenance cost can be simply formulated as follows: 

min 𝐶𝐸 (𝑑1, 𝑑2) 

𝑠. 𝑡. 

0 < 𝑑2 < 𝑑1<1 

(5) 

where 𝐶𝐸 is the total expected maintenance cost per unit of time by using maintenance policy 

with two level failure probability thresholds 𝑑1 and 𝑑2. The value of failure probability thresholds 

between 0 and 1. 𝑑1 is the first level threshold and 𝑑2 is the second level threshold. The value of  

𝑑1 is bigger than 𝑑2. The objective of CBM optimization is finding the optimal value of 𝑑1 and 𝑑2 
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to minimize the total maintenance cost 𝐶𝐸 . At the beginning of optimization, we have to calculate 

the total maintenance cost with two failure probability thresholds 𝑑1 and 𝑑2 by numerical method.  

In original numerical method, a 3-dimensional structure for the component RUL distribution 

matrix 𝑃𝑟𝑆(𝑘𝑛𝑚, 𝑛, 𝑚) was introduced to calculate the RUL distribution for 𝑀 components in 𝑁 

turbines. 𝐾  is the number of possible component RUL. A 7-dimensional RUL probability 

transition matrix 𝑇𝑃𝑟 was developed in pre-evaluation process for updating component RUL 

distribution matrix. For example, 𝑃𝑟𝑆(10, 1, 2) indicates the probability of RUL of the component 

2 in wind turbine 1 is 10 unit. The modified numerical method proposed a new 4-dimensional 

structure for the component age combination probability matrix 𝑃𝑈(𝑘11, 𝑘12, 𝑘21, 𝑘22)  and 

integrating a previously separate age combination probability transition matrix 

𝑇𝑃𝑟𝐴(𝑘11, 𝑘12, 𝑘21, 𝑘22) into the main cost evaluation loop. For example, 𝑃𝑈(2, 5, 12, 7) indicates 

probability of the age combination of four component in wind farm is 2, 5, 12 and 7 separately. 

𝑇𝑃𝑟𝐴(2, 5, 12, 7) indicates the transit probability from current component age combination to other 

age combination. The RUL probability transition matrix 𝑇𝑃𝑟 in original numerical method was in 

pre-evaluation process and this matrix was not changed when iteration increases. Modified 

numerical method will calculate separate age combination probability transition matrix 

𝑇𝑃𝑟𝐴(𝑘11, 𝑘12, 𝑘21, 𝑘22) at each inspection point and this is used for updating age combination 

probability matrix 𝑃𝑈(𝑘11, 𝑘12, 𝑘21, 𝑘22), which helps to obtain more accurate cost evaluation 

outcome. Figure 3.2 shows a flowchart of the proposed numerical method, and the procedure 

including 5 steps are described in more detail in the following paragraphs. 
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Step 1： Initialization 

Step 2: Calculate age combination  

probability transition matrix TPrA(kr) for 

each age combination and new age 

combination probability matrix Pnew (kr) 

due to CBM decision

Calculate total cost of all age combination 

at current inspection point CTotal 

Step 3: At each inspection  p o i n t , update 

component  age  combination p robabil i ty  

matrix PU (kr) for next inspection due to age 

increasees

Step 4: At each inspection point, update the 

a cc u m u la t iv e  total cost  u n t i l  c ur r en t 

inspection point  CTotal_sum  

tABS < TMax ?

Step 5: Calculate the cost rate CE (d1.d2)

Y

N

 

           Figure 3.2 Flowchart of the overall numerical method for cost evaluation  
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3.5.1 Step 1: Initialization 

It is assumed that there are 𝑁 wind turbines in the wind farm, and 𝑀 critical components are 

considered for each turbine. Specify the maximum iteration time 𝑇𝑀𝑎𝑥, and the inspection interval 

𝑇𝐼. 𝑇 is the possible age for the component and this value will be based on lifetime of components 

under realistic conditions. The value of 𝑇𝐼 is based on the typical lifetime 𝑇 of component and the 

number of inspection interval 𝐾 mentioned in general assumption. This value is selected to obtain 

the accurate results with high computation efficiency. For each component 𝑚 , specify the cost 

values, including the failure replacement cost 𝐶𝐹 and the variable preventive replacement cost 𝐶𝑃. 

The fixed cost of preventive maintenance in a certain wind turbine, 𝐶𝑃 𝑓𝑖𝑥 and the fixed cost of 

sending a maintenance team to the wind farm, 𝐶𝐹𝑎𝑟𝑚, also need to be specified. The cumulative 

total maintenance cost is set to be 𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚 = 0, current time is 𝑡𝐴𝐵𝑆 = 0. 

Initially, all components are assumed to be new, the age probability distribution matrix 

𝑃𝑟𝐴(𝑘𝑛𝑚, 𝑛, 𝑚)  including all component in each turbine is initialized based on Weibull 

distribution. It is established to depict the probability of all possible age values in corresponding 

interval within each turbine. For instance, 𝑃𝑟𝐴(1, 𝑛, 𝑚) denotes the probability of age being the 

first interval spanning from age 0 to 𝑇𝐼 in the Weibull distribution for this component. In contrast, 

𝑃𝑟𝐴(20, 𝑛, 𝑚) represents the probability of age being the final age interval with age spanning from 

(𝐾 − 1)𝑇𝐼 to ∞. The age probability distribution for component 𝑚 in turbine 𝑛 can be formulated 

as follows: 

𝑃𝑟𝐴(𝑘𝑛,𝑚, 𝑛, 𝑚) = ∫  
𝛽𝑚

𝛼𝑚
𝛽𝑚

𝑡𝛽𝑚−1𝑒
−(

𝑡
𝛽𝑚

)𝛽𝑚

𝑑𝑡, 𝑡 ≥ 0
𝑘𝑛𝑚𝑇𝐼

(𝑘𝑛𝑚−1)𝑇𝐼

 (6) 



47 

 

The case where 𝑘𝑟𝑛𝑚 equals 20 corresponds to the final interval, and it can be acquired through 

the following equation: 

𝑃𝑟𝐴(20, 𝑛, 𝑚) = 1 − ∑ 𝑃𝑟𝐴(𝑘𝑛𝑚, 𝑛, 𝑚)

𝐾−1

𝑘𝑛𝑚=1

 (7) 

𝑃(𝑘𝑟) component age combination probability matrix is defined initially as the matrix to 

calculate the probability for various combinations of component age at the beginning. Its formula 

is as follows: 

𝑃(𝑘𝑟) = ∏ 𝑃𝑟𝐴(𝑘𝑛𝑚, 𝑛, 𝑚)
（𝑛.𝑚）

 
(8) 

𝑘𝑟 is the vector of age state of all components in wind farm and it is defined below: 

𝑘𝑟 = (𝑘11, 𝑘12, … 𝑘1𝑀, 𝑘21, 𝑘22, 𝑘2𝑀 , … , 𝑘𝑁1, 𝑘𝑁2, 𝑘𝑁𝑀) (9) 

3.5.2 Step 2: Calculate age combination probability transition matrix 𝑇𝑃𝑟𝐴(𝑘𝑟) for 

each age combination, new age combination probability matrix 𝑃𝑛𝑒𝑤(𝑘𝑟) due to 

CBM decision and total cost 𝐶𝑇𝑜𝑡𝑎𝑙  for all age combination at current inspection 

point 

To evaluate the maintenance cost, age combination probability transition matrix 𝑇𝑃𝑟𝐴(𝑘𝑟) is 

required to be determined firstly. 𝑇𝑃𝑟𝐴(𝑘𝑟) signifies the probability of transition from the present 

age state combination to all feasible component age combination in all turbines. 𝑃𝑛𝑒𝑤(𝑘𝑟) is the 
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new age combination probability matrix after CBM decision.  𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is the maintenance cost for 

each component age combination at current inspection point. To obtain the transition matrices 

𝑇𝑃𝑟𝐴(𝑘𝑟), 𝑃𝑛𝑒𝑤(𝑘𝑟) and 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡, a flowchart is designed as shown in Figure 3.3, depicting the 

3step-by-step procedure. The essential parts will be explained in detail in subsequent paragraphs. 

At initialization stage, component age combination probability matrix 𝑃𝑈(𝑘𝑟) is equal to 𝑃(𝑘𝑟),  

𝑃𝑛𝑒𝑤(𝑘𝑟) is equal to 0 and total cost of all age combination 𝐶𝑇𝑜𝑡𝑎𝑙 is 0 at the first inspection point. 

It is assumed there are 2 wind turbines, each turbine has 2 components in a wind farm and 

component age is divided into 20 intervals. Component age combination vector (𝑘𝑟) indicates 

202×2 possible combination of all components in wind farm. (𝑘𝑟) starts from (1,1,1,1), which 

means the age state of four components are the same as 1. Then, (𝑘𝑟) moves to next possible value 

(1,1,1,2)  until reached (20,20,20,20) , which means all 202×2  possible age combinations are 

considered. Age combination probability transition matrix 𝑇𝑃𝑟𝐴(𝑘𝑟) and 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 will be calculated for 

each age combination. New component age combination probability distribution matrix 𝑃𝑛𝑒𝑤(𝑘𝑟) and total 

cost of all age combination 𝐶𝑇𝑜𝑡𝑎𝑙 will be updated when each component age combination is considered. 
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Initiation: PU (kr) = P (kr), Pnew (kr) = 0,

 C Total  = 0

Component age state

 k nm= K

Prn > d1 ?

   
Perform failure replacement

Calculate C Current 

Perform preventive replacement

Calculate C Current 

Prn < d2 ?

Y

N

Calculate age combination  probability 

transition matrix TprA (kr) and update new 

component  age combination  probability 

matrix Pnew (kr)

Update total cost of all age combination

C Total = C Totali + C Current . PU (krC )

Update PU (kr) , until last inspection point

Y

NY

Component age combination start from 

kr =(1,1,1,1), C Current = 0

Component age combination kr 

reaches (K,K,K,K) ?

N

No maintenance

N

Y

 

Figure 3.3 The flow chart of calculating age combination probability transition matrix 𝑇𝑃𝑟𝐴(𝑘𝑟), new 

component age combination probability distribution matrix 𝑃𝑛𝑒𝑤(𝑘𝑟) and total cost of all age 

combination 𝐶𝑇𝑜𝑡𝑎𝑙 
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To determine 𝑇𝑃𝑟𝐴(𝑘𝑟), several cases should be considered. If failure replacement or preventive 

replacement are conducted, some components are replaced with new one. Therefore, the age 

probability of new components should be updated in transition matrix. If there is no maintenance 

action, no age probability transition will occur. 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is also determined based on different 

maintenance actions by CBM policy.  

The determination of 𝑇𝑃𝑟𝐴(𝑘𝑟)  and 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡  considering three cases including failure 

replacement, preventive replacement and no maintenance action respectively is described in detail 

in the following. 

Case 1: Failure replacement is implemented. 

To determine transition matrix, 𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚) is generated to indicate probability of transition 

of all components. It is initially set as 0. At current inspection point, for component 𝑚 in turbine 

𝑛, if 𝑘𝑛𝑚 = 𝐾, which means 𝑅𝑈𝐿 is 0. In this case, the component is identified as failed. Therefore, 

failure replacement is required for this component. In age-based preventive replacement, a 

component that is still functional is replaced once it reaches a predetermined age threshold. The 

𝑘𝑛𝑚  used for determining failures of component is possible age state derived from Weibull 

distribution, it is different with real component age in preventive replacement. Therefore, the key 

difference between failure replacement and age-based preventive replacement is that failure 

replacement is based on the actual condition and performance of the component such as RUL 

reaching 0, while age based preventive maintenance is based on the chronological age of the 

component. 
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 The age combination probability transition matrix 𝑇𝑃𝑟𝐴(𝑘𝑟) will change due to replace failure 

component to new one. The probability of transition of new component is considered as initial age 

distribution: 

𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚) = 𝑃𝑟𝐴(𝑘𝑛𝑚, 𝑛, 𝑚) (10) 

𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will be calculated due to failure replacement, it includes the fixed cost to the farm 

𝐶𝐹𝑎𝑟𝑚, which is the cost for transportation of components and equipment to wind farm, installation 

of a large facility, and failure replacement cost 𝐶𝐹(𝑛, 𝑚) includes the expense of purchasing a new 

part or component to replace the failed one, expense on tools or equipment required for 

replacement, and labor cost for the technicians remove the failed component and install a new one.  

𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖
+ 𝐶𝐹𝑎𝑟𝑚 + ∑ 𝐶𝐹(𝑛, 𝑚)

𝑛,𝑚
∙ 𝐼𝐹(𝑛, 𝑚) (11) 

𝐼𝐹(𝑛, 𝑚) = 1  if the component fails, and 𝐼𝐹(𝑛, 𝑚) = 0 , otherwise. 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖
 is the costs 

generated from the last maintenance activity. 

Case 2: Preventive replacement is implemented. 

When 𝑘𝑛𝑚 < 𝐾 , which means  𝑅𝑈𝐿 > 0 . The failure probability will be calculated at 

inspection point for all components and turbines. ANN model is created for each type of 

components for further failure probability calculation. Weibull distributions are assumed to be 

appropriate for components lifetime, and the distribution parameters 𝛼𝑚 and 𝛽𝑚 can be estimated 

for each component 𝑚. For each type of component, based on the available failure and suspension 

histories, an ANN prediction model can be trained, and the mean and standard deviation of the 
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ANN life percentage prediction error, denoted by 𝜇𝑝,𝑚 and 𝜎𝑝,𝑚, can be calculated. The value of 

mean and standard deviation of life percentage is from [82]. 

At a certain inspection point when the time 𝑡𝐴𝐵𝑆 = 0, the age of component 𝑚 in turbine 𝑛 is 

represented by 𝑡𝑛,𝑚, and its real failure time is known at this point, which is 𝑇𝐿𝑛,𝑚. Based on the 

discussion in Section 3.2, the predicted failure time distribution can be obtained as 𝑁(𝑇𝑃𝑛,𝑚 , 𝜎𝑝 ∙

𝑇𝑃𝑛,𝑚 ). Now, based on Equation (2), the current failure probability during the lead time for the 

component is: 

𝑃𝑟𝑛,𝑚 =

∫
1

𝜎𝑝𝑇𝑃𝑛,𝑚√2𝜋
𝑒

−
1
2

(
𝑥−𝑇𝑃𝑛,𝑚
𝜎𝑝𝑇𝑃𝑛,𝑚

)2
𝑡𝑛,𝑚+𝐿

𝑡𝑛,𝑚
𝑑𝑥

∫
1

𝜎𝑝𝑇𝑃𝑛,𝑚√2𝜋
𝑒

−
1
2

(
𝑥−𝑇𝑃𝑛,𝑚
𝜎𝑝𝑇𝑃𝑛,𝑚

)2∞

𝑡𝑛,𝑚
𝑑𝑥

 (12) 

Finally, the failure probability for each turbine can calculated using equation (4) based on the 

failure probabilities of its components.  

Based on CBM policy, the decision of maintenance actions is based on identifying the specific 

components or turbines that require attention. If the 𝑃𝑟𝑛,𝑚 > 𝑑1, preventive maintenance action is 

required for certain components, the new component will replace the old one. The age combination 

probability transition matrix 𝑇𝑃𝑟(𝑘𝑟) will change due to preventive replacement. The probability 

of transition 𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚) for new component is calculated using equation (10). 

The cost will be updated as follows: 
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𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖
+ 𝐶𝐹𝑎𝑟𝑚 + ∑ 𝐶𝑃(𝑛, 𝑚)

𝑛,𝑚
∙ 𝐼𝑃(𝑛, 𝑚) + ∑ 𝐶𝑃𝑓𝑖𝑥(𝑛) ∙ 𝐼𝑃𝑓𝑖𝑥(𝑛) 

𝑛
 (13) 

𝐼𝑃(𝑛, 𝑚) = 1 if a preventive replacement is performed, and 𝐼𝑃(𝑛, 𝑚) = 0 otherwise. 𝐶𝑃𝑓𝑖𝑥(𝑛) 

is the fixed preventive replacement cost on the turbine level. 𝐶𝑃𝑓𝑖𝑥(𝑛)  and 𝐶𝐹𝑎𝑟𝑚 will only be 

considered once for all maintenance actions in the same wind turbine. Fixed preventive 

replacement costs are expenses that remain relatively constant regardless of the frequency or extent 

of preventive maintenance activities. It includes regular inspections, routine maintenance tasks, 

and ongoing costs like staff salaries and condition monitoring systems. Variable preventive 

replacement costs fluctuate depending on the specific maintenance needs and the condition of the 

equipment. Variable costs include items such as replacement parts, repair labor, and external 

contractor fees. 

Case 3: No maintenance actions. 

If there is no failure replacement and preventive replacement, 𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚)  for the 

component is set as 1 and there is no cost transition at this point. 

𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚) = 1 (14) 

Therefore, the age combination probability transition matrix and the total cost are determined 

based on 3 cases by the algorithm described above.  

𝑇𝑃𝑟𝐴(𝑘𝑟) = ∏ 𝑃𝑟𝑡(𝑘𝑛𝑚, 𝑛, 𝑚)
𝑛,𝑚

 (15) 

New age combination probability matrix after implementing replacement is denoted by 

 𝑃𝑛𝑒𝑤(𝑘𝑟). 𝑃𝑛𝑒𝑤(𝑘𝑟) at current inspection point can be obtained by applying the age combination 
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probability transition matrix 𝑇𝑃𝑟(𝑘𝑟) to age probability of corresponding age combination 𝑘𝑟𝐶, the 

formula is as follows: 

𝑃𝑛𝑒𝑤(𝑘𝑟) = 𝑃𝑛𝑒𝑤𝑖
(𝑘𝑟) + 𝑇𝑃𝑟𝐴(𝑘𝑟) ∙ 𝑃𝑈(𝑘𝑟𝐶) (16) 

𝑃𝑛𝑒𝑤𝑖
(𝑘𝑟) is new age combination probability matrix of previous possible age combination. 

The total maintenance cost 𝐶𝑇𝑜𝑡𝑎𝑙 is accumulating maintenance cost of each age combination 

cost 𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 multiply its corresponding age combination probability 𝑃𝑈(𝑘𝑟𝐶). 

𝐶𝑇𝑜𝑡𝑎𝑙 =  𝐶𝑇𝑜𝑡𝑎𝑙𝑖
+ 𝐶𝐶𝑢𝑟𝑟𝑒𝑛𝑡 . 𝑃𝑈(𝑘𝑟𝐶) (17) 

𝐶𝑇𝑜𝑡𝑎𝑙𝑖
 is the total maintenance cost obtained from maintenance actions on previous possible 

age combination. 

3.5.3 Step 3: Update the age combination probability matrix 𝑃𝑈(𝑘𝑟)   at each 

inspection interval 

The age combination probability matrix is updated at each inspection point to account for 

changes in the system. During each iteration, the age combination probability matrix is determined 

based on new age combination probability matrix 𝑃𝑛𝑒𝑤(𝑘𝑟) after CBM decision. Subsequently, 

this updated distribution is utilized in the next iteration.  

As indicated in section 3.4.2, the matrix 𝑃(𝑘𝑟) will be initialized first, indicating the initial age 

distributions for all the wind turbine components. 𝑃𝑈(𝑘𝑟) is set as 𝑃(𝑘𝑟) at the first inspection 

point. When move to next inspection point, 𝑃𝑈(𝑘𝑟) will be updated due to age increases. 𝑃𝐴(𝑘𝑟) 

is the matrix determined to calculate 𝑃𝑈(𝑘𝑟). 𝑃𝐴(𝑘𝑟) is initially set as 0 at each inspection point. 
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𝑘𝑟𝑡 represents the age vector combination of all components at next inspection point. To calculate 

updated age combination probability matrix, two cases are considered in the following: 

Case 1: When 𝑘𝑛𝑚 = 𝐾,  which means RUL of component is 0. 𝑘𝑟𝑡 is the matrix for increased 

component age combination and 𝑃𝐴(𝑘𝑟𝑡) is calculated as follows: 

𝑘𝑟𝑡 = {𝑚𝑖𝑛[(𝑘11 + 1), 𝐾], 𝑚𝑖𝑛[(𝑘12 + 1), 𝐾] … 𝑚𝑖𝑛[(𝑘1𝑀 + 1), 𝐾], …,    

            𝑚𝑖𝑛 [(𝑘21 + 1), 𝐾], 𝑚𝑖𝑛 [(𝑘22 + 1), 𝐾], 𝑚𝑖𝑛 [(𝑘2𝑀 + 1), 𝐾], …,  

           𝑚𝑖𝑛[(𝑘𝑁1 + 1), 𝐾], 𝑚𝑖𝑛[(𝑘𝑁2 + 1), 𝐾], 𝑚𝑖𝑛[(𝑘𝑁𝑀 + 1), 𝐾]} 

(18) 

𝑃𝐴(𝑘𝑟𝑡) = 𝑃𝐴𝑖
(𝑘𝑟𝑡) + 𝑃𝑛𝑒𝑤(𝑘𝑟) (19) 

𝑃𝐴𝑖
(𝑘𝑟𝑡) represents accumulative  𝑃𝐴(𝑘𝑟𝑡) obtained at previous possible age combination. 

Case 2: When  𝑘𝑛𝑚 < 𝐾, 𝑃𝐴(𝑘𝑟) is calculated by equation: 

𝑃𝐴(𝑘𝑟 + 1) = 𝑃𝐴𝑖
(𝑘𝑟 + 1) + 𝑃𝑛𝑒𝑤(𝑘𝑟) (20) 

𝑃𝑈(𝑘𝑟) = 𝑃𝐴(𝑘𝑟)  (21) 

𝑃𝐴𝑖
(𝑘𝑟 + 1)  represents accumulative 𝑃𝐴𝑖

(𝑘𝑟 + 1) obtained at previous possible age 

combination. 

3.5.4 Step 4: Update the total cost at each inspection point 

The accumulative total cost until the present inspection point is represented by 𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚 , 

which is updated at each inspection point. The formula is as follows: 
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𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚 = 𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚𝑖
+  𝐶𝑇𝑜𝑡𝑎𝑙 (22) 

where 𝐶𝑇𝑜𝑡𝑎𝑙 represents the cost incurred at each inspection point due to maintenance actions, 

such as preventive and failure replacements, which are determined by the maintenance policy.  The 

accumulative total cost is updated at each iteration by adding the cost generated at the previous 

inspection point 𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚𝑖
. This process is repeated until the last inspection point is reached, at 

which point the accumulative total cost for the entire lifetime is obtained.  

3.5.5 Step 5: Calculate the cost rate  

For each combination thresholds of 𝑑1 and 𝑑2, the 𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚 value is updated at each iteration 

until the maximum iteration time 𝑇𝑀𝑎𝑥  is reached. Various approaches exist for evaluating 

maintenance costs, such as total maintenance cost, annual maintenance cost, and maintenance cost 

rate. Among these, the maintenance cost rate is a popular method as it provides a way to compare 

maintenance costs on a per-day basis. The cost rate is calculated using the following formula: 

𝐶𝐸(𝑑1, 𝑑2) =
𝐶𝑇𝑜𝑡𝑎𝑙_𝑠𝑢𝑚

𝑇𝑀𝑎𝑥
 (23) 

where 𝑇𝑀𝑎𝑥 is the time of the maximum iteration. It can be calculated by: 

𝑇𝑀𝑎𝑥 = 𝐼𝑇𝐼 (24) 

where 𝐼 is the total number of the iteration and 𝑇𝐼  is the length of interval. The maximum 

iteration time is the product of the number of maximum iteration and inspection interval length. 
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3.6 Summary 

This chapter introduces detailed description of the modified numerical method algorithm. There 

are five sections from component health condition prognostics, failure probability estimation for 

component and turbine, CBM policy, general assumptions and description of terms, to CBM 

optimization model and solution method. The last section 3.5 is the key part, which introduces 

procedure of modified numerical method for CBM optimization. There are five steps for applying 

modified numerical method. Step 1 is numerical initialization. A new age combination probability 

transition matrix developed in step 2 and a new 4-dimensional structure for the component age 

combination probability matrix developed in step 3 are most important parts. Step 4 and 5 are for 

updating total cost and calculating cost rate. 
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Chapter 4 Numerical Method Verification and Comparison 

This chapter presents the verification of numerical method, and stability analysis of numerical 

and simulation methods employed in the optimization of CBM strategies. Through a series of 

numerical examples and comparative studies, the feasibility and stability of the numerical method 

is evaluated and compared against the simulation approach. Section 4.1 illustrates a numerical 

example, and the numerical method is applied in this example to obtain CBM optimization results. 

Subsequently, the simulation method with sufficient iterations, is employed on the same example 

in section 4.2. The optimization results obtained through both methods are conducted to verify the 

effectiveness of the numerical method. To enforce the verification of the numerical method, two 

case studies are developed. In section 4.2.3, Example 1 explores the impact of varying fixed 

preventive maintenance costs on the optimal CBM policy using both numerical and simulation 

method, thereby providing additional verification for the numerical approach. Section 4.2.4 

Example 2 investigates the influence of changing fixed costs associated with wind farms on the 

optimal CBM strategy using both methods, further confirming the solidity of the numerical method. 

Section 4.3 is dedicated to assessing the stability of the numerical and simulation methods through 

comparative studies. Five comparative studies are developed between these two methods in this 

section. Comparative Study 1 examines the impact of limited simulation iterations on the stability 

of optimization outcomes of simulation method. In comparative study 1, the number of simulation 

iteration is set to be smaller, specifically to 1080 iteration time, and the lowest maintenance cost 

rate with thresholds are obtained. Seven repeated experiments are conducted to compare the cost 

rate variation of these two methods. Based on the comparative study 1, comparative study 2 

increases the number of simulation iteration to 18000 iteration time and compare the results of 

both methods. Furthermore, comparative study 3 is comparing the stability of both method when 
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simulation iteration is large enough and this study is based on CBM optimization results in section 

4.1.2 and section 4.2.2. This study involves seven repeated experiments to determine the 

consistency of the optimal CBM policy of two methods. In addition, Comparative Studies 4 and 5 

provide insights into the stability analysis of the optimal CBM policy with respect to various fixed 

preventive maintenance costs and wind farm fixed costs, respectively.  

4.1 A numerical example 

4.1.1 Example introduction 

A numerical example is developed to demonstrate the numerical method for implementing 

CBM policy in a wind farm. To simplify the problem, we assume that there are two wind turbines 

in the wind farm and each turbine has two components: the rotor (including the blades) and the 

main bearing. We assume that the failure time of the components follows the Weibull distribution, 

and the corresponding parameters of each component are presented in Table 1. The Weibull 

distribution can effectively model various types of failure rates, including increasing, decreasing, 

and constant failure rates. This makes it suitable for different types of wind turbine components, 

which may have different reliability characteristics over time. Extensive empirical evidence 

suggests that the Weibull distribution accurately describes the failure behavior of many mechanical 

and electronic components, including those in wind turbines. Its ability to fit actual field data 

makes it a practical choice for reliability analysis and maintenance planning. Wind turbine 

components often have extensive historical data available from operational and failure records. 

The Weibull distribution can effectively utilize this data to model and predict future failures. Study 

[74] investigated the use of Weibull distribution in analyzing SCADA data for fault detection in 
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wind turbines. [75] discussed the application of the Weibull distribution in conducting FMEA for 

wind turbines, providing a robust framework for understanding and mitigating component failures. 

 The component lifetime distribution parameters are specified based on the data given in Ref. 

[69] and [70]. The specific costs of different maintenance actions for each component are also 

shown in Table 1, it includes the failure replacement cost, variable and fixed preventive 

replacement costs, and fixed cost to the wind farm. The cost value for each maintenance action is 

specified based on the cost-related data given in Ref. [71] and [72]. The ANN prediction method 

is used to predict the failure time distribution of the wind turbine components and suppose the 

standard deviations of the ANN life percentage prediction errors are 0.12 and 0.10, respectively, 

as shown in Table 4.1. The standard deviation values are selected by referring to that estimated 

using the bearing degradation data in Ref [68] and [73].  

Table 4.1 Parameter values for major components 

Components Rotor  Main bearing  

Scale parameter α (days) 3,000 3,750 

Shape parameter β 3.0 2.0 

Failure replacement cost ($k) 112 60 

Variable preventive maintenance cost ($k) 28 15 

Fixed preventive maintenance cost ($k) 25 

Fixed cost to the wind farm ($k) 50 

ANN lifetime prediction error  

(Standard deviation values) 

0.12 0.10 
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4.1.2 CBM optimization results using the numerical method 

In this case, the maintenance lead time is assumed to be 30 days for all components. The 

inspection interval is set to be 1.5 years, and there are 20 inspections for a component during a 

typical lifetime for 30 years. 36 sets of different failure threshold combinations are calculated to 

find the lowest maintenance cost.  

The total maintenance costs and cost rates for wind farm can be estimated by using the 

numerical method described in chapter 3. The cost values of 36 pairs of thresholds are presented 

in Table 4.2. Figure 4.1 illustrates a three-dimensional plot depicting the relationship between 

maintenance costs and failure probability threshold values 𝑑1  and 𝑑2  , with both 𝑑1  and 𝑑2   

represented on a logarithmic scale. Notably, the total maintenance costs value is influenced by the 

variations in the combinations of 𝑑1 and 𝑑2 thresholds and the lowest cost rate is attained with 

corresponding failure threshold values. Therefore, the optimal CBM policy can be found when the 

lowest maintenance cost value appears. When both 𝑑1  and 𝑑2   are set to relatively large, the 

maintenance cost is the highest with $194.70/day. The first level failure threshold value 𝑑1 and 

second level failure threshold value 𝑑2 value are set to be decreasing and the cost rate figure shows 

a downward and upward trend. The optimal failure probability threshold values are found to be: 

𝑑1 = 2.1544 × 10−3  , 𝑑2 = 1 × 10−6  and the optimal maintenance cost per unit of time is 

$129.97/day. The optimal maintenance cost obtained by numerical method is the lowest cost of all 

tested failure thresholds. When evaluating lowest cost, the numerical method terminates after a 

number of iterations, which may not be sufficient for convergence to the global optimum. In 

addition, complex problems with multi-dimensionality increase the computational complexity and 

the likelihood of the algorithm converging to a suboptimal solution due to limited computational 
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resources. Therefore, we did not have a way to prove that that the optimal solution is absolutely 

optimal. Figure 4.2 and 4.3 provides detailed visualizations of the relationship between 

maintenance costs and individual failure probability threshold values, with one threshold 

maintained at its optimal value while the other varies. Figure 4.2 shows the cost rate versus 𝑑1 plot 

while 𝑑2 is kept at 𝑑2 = 1 × 10−6 ,which the lowest maintenance cost rate is found and the cost 

versus 𝑑2  plot while 𝑑1  is kept at 𝑑1 = 2.1544 × 10−3  is presented in Figure 4.3. Specifically, 

these figures illustrate the pronounced variability in maintenance cost rates corresponding to 

changes in 𝑑1, compared to the relatively minor fluctuations observed with alterations in 𝑑2. Hence, 

it is obvious that adjustments in 𝑑1 thresholds exert a more significant impact on maintenance cost 

estimations than alterations in 𝑑2 thresholds. Furthermore, Curve fitting is applied to the entire 

cost surface and the results are shown in Figure 4.4, Figure 4.5, Figure 4.6. 

Table 4.2 Cost values ($/day) of 36 pairs combined failure thresholds. 

 

  𝑑1 

  4.6416 × 10−2 2.5 × 10−2 1.3 × 10−2 2.1544 × 10−3 4.6416 × 10−4 2.1544 × 10−4 

 

𝑑2 

1 × 10−4 194.7000 186.7064 177.3487 131.3097 146.4757 174.3688 

1 × 10−6 194.7000 186.7064 177.3487 129.9717 143.2200 168.5211 

2.15 × 10−9 194.7000 186.7064 177.3487 130.6099 142.4294 168.2753 

1 × 10−10 194.7000 186.7064 177.3487 132.0142 144.8557 170.1415 

2.15 × 10−13 194.7000 186.7064 177.3487 133.9111 146.2159 172.4440 

1 × 10−14 194.7000 186.7064 177.3487 135.4471 148.8234 175.2710 
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Figure 4.1 Cost rate versus failure probability threshold values in the logarithmic scale of the 

numerical method 

 

Figure 4.2 Cost rate versus threshold 𝑑1 in the logarithmic scale of the numerical method 

(𝑑2 = 1 × 10−6 ) 
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Figure 4.3 Cost rate versus threshold 𝑑2 in the logarithmic scale of the numerical method 

(𝑑1 = 2.1544 × 10−3 ) 

 

Figure 4.4 Cost rate versus failure probability threshold values in the logarithmic scale of 

the numerical method using curve fitting 
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Figure 4.5 Cost rate versus threshold 𝑑1 in the logarithmic scale of the numerical 

method using curve fitting (𝑑2 = 1 × 10−6 ) 
 

 

Figure 4.6 Cost rate versus threshold 𝑑2 in the logarithmic scale of the numerical method 

using curve fitting (𝑑1 = 2.1544 × 10−3 ) 
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With the optimal failure threshold values 𝑑1 = 2.1544 × 10−3 and 𝑑2 = 1 × 10−6 , the cost 

rate is evaluated across varying iterations and the results are shown in Figure 4.7. The maximum 

iteration limit is set to be 80. The cost rate rises rapidly in initial iterations, the rate of increase is 

slowing down gradually in subsequent iterations. An observable trend emerges where in the cost 

rate converges towards a steady-state value beyond a certain number of iterations and the cost rate 

surface is quite smooth. This convergence emphasizes the stability of the cost rate over long 

iterations, indicating that the optimization process reaches an equilibrium state. 

 

 

Figure 4.7 Cost rate versus number of iterations of the numerical method 



67 

 

4.2 Verification of numerical method 

4.2.1 Simulation method for verification 

To verify the results of the numerical method, a simulation method is applied to the identical 

example outlined in section 4.1.1. By comparing the minimal maintenance costs obtained from 

both simulation and numerical methods, the feasibility of the numerical method can be verified. 

Simulation method is a statistical technique for solving mathematical problems reliant on random 

sampling. Today, with advancements in computational power, the simulation method has become 

integral in diverse disciplines, including engineering, business, healthcare, environmental science, 

and social sciences. 

In previous studies, the simulation method has demonstrated utility in estimating the wind farms 

maintenance cost. The simulation method proposed in [23] is used to estimate the maintenance 

cost rate. The maintenance policy for simulation method is the same for the numerical method with 

two level failure probability thresholds. The maintenance cost rate 𝐶𝐸 for the wind farm can be 

computed utilizing the equation in [23]: 

𝐶𝐸 =
∑ ∑ 𝐼𝐹𝑛,𝑚𝑐𝑓,𝑚 + ∑ (∑ 𝐼𝑃𝑛,𝑚𝑐𝑝,𝑚 + 𝐼𝑇𝑛𝑐𝑝,𝑇) + 𝐼𝐹𝑎𝑟𝑚𝑐𝐹𝑎𝑟𝑚

𝑀
𝑚=1

𝑁
𝑛=1

𝑀
𝑚=1

𝑁
𝑛=1

𝑇𝑀𝑎𝑥
 (24) 

where 𝑐𝑓,𝑚,  𝑐𝑝,𝑚, 𝑐𝑝,𝑇, 𝑐𝐹𝑎𝑟𝑚 is the failure replacement cost for component 𝑚, the variable 

preventive replacement cost for component 𝑚, the fixed cost of maintaining a wind turbine, and 

the fixed cost of sending a maintenance team to the wind farm. 𝐼𝐹𝑛,𝑚, 𝐼𝑃𝑛,𝑚, 𝐼𝑇𝑛, 𝐼𝐹𝑎𝑟𝑚 indicate 

whether a failure replacement being performed on component 𝑚 in turbine 𝑛, whether a preventive 
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replacement is being performed on component 𝑚 in turbine 𝑛, whether a preventive replacement 

being performed in turbine 𝑛, whether a maintenance team is being sent to the wind farm. 𝑇𝑀𝑎𝑥 is 

the maximum simulation time. 

The simulation method is applied to solve the same example in section 4.1.1. Maintenance lead 

time is assumed to be 30 days and the inspection interval is set at 10 days. We use identical lifetime 

distribution parameters and cost data for the components and wind farm maintenance actions, as 

presented in Table 1. With this study, our objective is to assess the capability of the numerical 

method to accurately estimate maintenance costs. By using the same input parameters and CBM 

policy, we facilitate a direct comparison of the results derived from the simulation and numerical 

methods, thus measuring the feasibility of the numerical methods. 

4.2.2 CBM optimization results using simulation method 

The simulation method is applied with a substantial number of iterations, totaling 

approximately 50,000 times. The cost rate is plotted against the failure probability threshold values 

in Figure 4.8. The failure probability threshold values are given in the logarithm scale. The total 

maintenance cost is affected by the two failure probability threshold values. When both 𝑑1 and  𝑑2 

values are set to 1, implying that only failure replacement is considered, the cost rate reaches its 

peak value, approximately $185 per day. As the value of two threshold gets smaller, the cost rate 

value shows a decreasing and increasing trend. Subsequently, as the values of these two thresholds 

decrease, indicating the inclusion of preventive maintenance measures alongside failure 

replacement, the dynamic changes of the cost rate occur accordingly. 
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The optimal maintenance policy is identified based on minimizing the total maintenance cost 

rate, leading to the determination of the corresponding optimal failure probability threshold values: 

𝑑1  =  0.1,  𝑑2  =  1 × 10−7 . The corresponding optimal maintenance cost per unit of time is 

$119.14/day. The cost rate versus 𝑑1 plot in the logarithmic scale while 𝑑2 is kept at the optimal 

value 1 × 10−7 is presented in Figure 4.9, and the cost rate versus 𝑑2 plot while 𝑑1is kept at 0.1 

is depicted in Figure 4.10. Figure 4.11 shows the curve of cost rate versus number of iterations 

with optimal failure threshold values. The cost rate curve exhibits significant fluctuations when 

the iteration count is relatively low, indicative of the initial stages of optimization. However, as the 

iteration count increases, the magnitude of these fluctuations decreases, signifying the convergence 

of the optimization process towards a more stable configuration. This observation highlights the 

iterative nature of the optimization process, with stability increasing as the number of iterations 

increases. 

 

Figure 4.8 Cost versus failure probability threshold values in the logarithmic scale of the 

simulation method 
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Figure 4.9 Cost versus threshold 𝑑1 of the simulation method in the logarithmic scale 

( 𝑑2  =  1 × 10−7) 

 

Figure 4.10 Cost versus threshold  𝑑2  of the simulation method in the logarithmic scale  

(𝑑1  =  0.1) 
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Figure 4.11 Cost rate versus number of iterations of the simulation method 

To verify the numerical method, the cost rate value of numerical method and simulation method 

is shown in Table 4.3. For the same example, the lowest maintenance cost rate using simulation 

method is $119.14 per day with optimal threshold value 𝑑1  =  0.1,  𝑑2  =  1 × 10−7. The lowest 

cost rate using numerical method is $129.97 per day with optimal threshold value 𝑑1 =

2.1544 × 10−3and 𝑑2 = 1 × 10−6. Comparing these results, the difference between the minimal 

maintenance cost rates obtained from the simulation and numerical methods is $10.83 per day. The 

cost rate value obtained from numerical method is close to simulation method, which is able to 

demonstrates that the numerical method is able to estimate the maintenance cost for wind farm 

system in an accurate way. 
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Table 4.3 Cost rate and threshold value comparison for simulation and numerical method 

Method Cost rate ($/day) Threshold d1 Threshold d2 

Simulation 119.14 0.1 1×10-7 

Numerical 129.97 2.1544×10-3 1×10-6 

4.2.3 Sensitivity analysis 1: CBM optimization considering various fixed preventive 

maintenance cost 

To demonstrate the effectiveness of numerical method for different scenarios, the fixed 

preventive maintenance cost is varied to distinct values. Both the numerical and simulation 

methods are subsequently employed to obtain the lowest maintenance cost rates corresponding to 

these variations. The various fixed preventive maintenance cost value and corresponding cost rate 

for two methods are summarized in Table 4.4 and visualized in Figure 4.12. As the fixed preventive 

maintenance cost increases, there is a corresponding rise in the total maintenance cost rate for both 

methods. The cost rate value derived from the numerical method exhibit minimal differences 

compared to those obtained from the simulation method for each fixed preventive cost value. This 

consistency emphasizes the ability of the numerical methods to accurately estimate total 

maintenance cost rates across a variety of fixed preventive maintenance cost scenarios. Thus, the 

results confirm the validity and reliability of the numerical methods in adapting to different 

maintenance cost parameters, enhancing their applicability and usefulness in real-world 

environments. 
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Table 4.4 Lowest cost rate of various fixed preventive maintenance value for simulation and 

numerical method. 

 

 

Figure 4.12 Various fixed preventive maintenance cost value and corresponding cost rate for 

the simulation and numerical method 

       Fixed preventive maintenance cost value ($k) 

Method 10 15 20 25 30 35 40 

Simulation 103.38 105.33 113.25 119.14 121.29 126.75 128.51 

Numerical 111.57 117.70 123.84 129.97 136.11 142.24 148.38 
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4.2.4 Sensitivity analysis 2: CBM optimization considering various fixed cost to 

wind farm 

In Sensitivity analysis 1, the fixed preventive maintenance cost is varied to verify the numerical 

method, while in Sensitivity analysis 2, another parameter, the fixed cost to the wind farm, is set 

to different values for verification purposes. The specific values of assumed fixed costs to wind 

farm and the corresponding lowest cost rates obtained from both the numerical and simulation 

methods are detailed in Table 4.5 and visually represented in Figure 4.13. As the value of the fixed 

costs of the wind farm increases, the cost rate values derived from the two methods tend to increase. 

The consistency observed between the numerical and simulation methods in the comparison of 

total maintenance cost rates indicates the feasibility of the numerical method in estimating 

maintenance costs for various fixed cost to wind farm scenarios. 

Table 4.5 Lowest cost rates of various fixed cost to the wind farm for simulation and 

numerical method. 

 

                                Fixed cost value to the wind farm ($k) 

Method 35 40 45 50 55 60 65 

Simulation 102.21 106.15 109.87 117.70 123.00 128.16 133.94 

Numerical 114.72 119.80 124.89 129.97 135.06 140.14 145.22 
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4.3 Comparative study with simulation method  

While the simulation method is a powerful and widely used method, it has some limitations.  

Due to sampling-based characteristics, one disadvantage is that the feasibility of simulation results 

depends greatly on the quantity of the random sampling. If the sampling amount is not sufficient, 

the simulation results may be meaningless, leading to unreasonable estimates. Indeed, in reality, a 

number of practical constraints limit the feasibility of employing large numbers of samples, 

especially in complex systems where computational resources may be limited. Factors such as 

computational efficiency, time constraints, and resource availability may limit the number of 

samples that can be generated and analyzed in a given period of time. In scenarios where limited 

computational resources constrain the ability to utilize a sufficient number of samples in simulation 

methods, the reliability of results may be compromised. In such cases, the numerical method offers 

 

Figure 4.13 Various fixed cost to wind farm and corresponding cost rate for the simulation 

and numerical method 
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a valuable alternative that can provide reliable estimations of system behavior without the need for 

extensive sampling. Comparative study 1 and 2 between two methods in section 4.3.1 and 4.3.2 

focus on considering the limitations of simulation samples. 

Another constraint of simulation method is that it has no guarantees of exact solutions. 

Simulation methods provide estimates with a certain level of confidence, but do not guarantee an 

exact solution. While increasing the sample size can enhance the accuracy of simulation results, 

there is remains a degree of uncertainty in the process. This uncertainty poses challenges in the 

optimization process, particularly when precise solutions are required for decision-making. 

Comparative study 3 is developed to express the variability and uncertainty in simulation results 

and contrast with the stability and consistency by the numerical method.  

Comparative study 4 and 5 compare the stability and consistency of two methods with various 

fixed preventive maintenance cost and fixed cost to wind farm respectively. 

4.3.1 Comparative study 1: Considering small iteration time of the simulation 

method 

The comparative study 1 is performed between simulation and numerical method when the 

number of samples is smaller in simulation method. The number of samples are related to the 

maximum iteration time in algorithm. The maximum iteration time of the numerical method is the 

same as sensitivity analysis in section 4.1.2, and thus, the optimal outcomes from that section are 

utilized as a benchmark for subsequent seven repeated experiment. For the simulation method, the 

maximum iteration time is set to a large value to get an accurate result for validating the numerical 

method in section 4.2.2. This comparative study illustrates the effectiveness of simulation methods 



77 

 

under conditions of small sample size as iteration times 1080 . By applying the simulation method 

with small iteration time to the same example and assumptions delineated in Section 4.1, we aim 

to measure its performance and comparative accuracy with the numerical methods.  

The cost rate is plotted against the failure probability threshold values, as illustrated in Figure. 

4.14. The lowest replacement maintenance cost rate can be determined from the figure, where the 

corresponding failure probability threshold values are found to be 𝑑1  =  0.0631,  𝑑2  =

 6.3096 × 10−6. The corresponding lowest maintenance cost per unit of time is $91.1738/day.  

The cost rate versus 𝑑1  plot in the logarithmic scale while 𝑑2  is kept at the optimal value 

6.3096 × 10−6  is presented in Figure 4.15, and the cost rate versus 𝑑2 plot while 𝑑1is kept at 

0.0631  is depicted in Figure 4.16. However, it is clear that the cost rates estimated by the 

simulation method exhibit significant fluctuations for different combination thresholds, and 

therefore the minimum maintenance cost cannot be definitively considered as optimal. This 

variation highlights the importance of ensuring a sufficient number of samples during the 

simulation process for the accuracy and reliability of the optimization results. 
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Figure 4.14 Cost versus failure probability threshold values in the logarithmic scale 

considering small simulation iteration time 

 

Figure 4.15 Cost versus threshold 𝑑1 in the logarithmic scale considering small simulation 

iteration time (𝑑2 = 6.3096 × 10−6 ) 
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To compare the reliability of simulation and numerical methods, a series of seven repeated 

experiments is conducted for each method, utilizing the threshold values corresponding to their 

respective lowest cost rates. For the numerical method, we find the lowest maintenance cost rate 

is $129.97 per day through CBM optimization with failure threshold value 𝑑1 = 1 × 10−2 and 

𝑑2 = 1 × 10−6 in section 4.1.1. This optimal failure threshold value remains constant in numerical 

method for seven repeated experiments and maintenance cost rates are estimated. For the 

simulation method, repeated experiments are executed using the failure threshold values 𝑑1 =

0.0631  and 𝑑2 = 6.3096 × 10−6  associated with its lowest maintenance cost rate. The failure 

thresholds and corresponding lowest maintenance cost rate for simulation and numerical method 

is shown in Table 4.6. The comparison results are shown in Figure 4.17.  

 

 

Figure 4.16 Cost versus threshold 𝑑2 in the logarithmic scale considering small simulation 

iteration time (𝑑1 = 0.0631 ) 
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Table 4.6 Lowest cost rate and corresponding threshold value for simulation and numerical 

method with small iteration time of the simulation method 

In seven repeated experiments, the cost rate value of numerical method remains consistently at 

$129.97 per day, which is the same value of the optimal CBM policy. Conversely, the cost rate 

derived from the simulation method exhibits notable fluctuations, with an approximate variance 

of $100 per day between the highest and lowest values. This variability in simulation results is 

attributed to the inherent characteristics of the sampling process. When the number of samples is 

insufficient, the method may fail to encompass an adequate range of possible scenarios, thereby 

inadequately reflecting the actual situation.  

Therefore, while simulation methods remain valuable tools for capturing system dynamics and 

uncertainty, the numerical method offers a practical and efficient alternative, especially in 

scenarios where large-scale sampling is not feasible. By providing stable and reliable estimations 

of system behavior, the numerical method addresses the challenges posed by limited sampling size, 

making it a valuable tool for decision-making in complex engineering and systems management 

contexts. 

Method Cost rate ($/day) Threshold d1 Threshold d2 

Simulation 91.17 0.0631 6.3096×10-6 

Numerical 129.97 2.1544×10-3 1×10-6 
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4.3.1 Comparative study 2: Considering increased iteration time of the simulation 

method 

Based on the results in comparative 1, the maximum simulation iteration time is set larger as 

18000 times  in this comparative study. Figure. 4.18 shows the cost rate versus failure probability 

threshold values in the logarithmic scale. Through the figure, the minimum maintenance cost rate 

can be discerned, identified at corresponding failure probability threshold of 𝑑1  =  0.0398,  𝑑2  =

 1.8478 × 10−11. The corresponding minimum maintenance cost is $99.04/day. Subsequently, in 

Figure 4.19, the logarithmic representation of the cost rate versus 𝑑1  is illustrated while 

maintaining  𝑑2  at its optimal value of 1.8478 × 10−11 . Figure 4.20 presents the relationship 

 

Figure 4.17 Repeated experiments for simulation and numerical method increased 

simulation iteration time   
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between the cost rate and  𝑑2  while 𝑑1   remains fixed at 0.0398 . It becomes evident that the 

estimated cost rates, derived through the simulation method, exhibit notable fluctuations across 

varying threshold combinations. Consequently, the identification of an optimal minimum 

maintenance cost rate is challenging. 

 

Figure 4.18 Cost versus failure probability threshold values in the logarithmic scale 

considering increased simulation iteration time  
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Figure 4.19 Cost versus threshold 𝑑1 in the logarithmic scale considering increased 

simulation iteration time (𝑑2 = 1.8478 × 10−11) 

 

 

Figure 4.20 Cost versus threshold 𝑑2 in the logarithmic scale considering increased 

simulation iteration time (𝑑1 = 0.0398 ) 
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The lowest maintenance cost rate with corresponding failure thresholds of simulation and 

numerical method is shown in Table 4.7. Seven repeated experiments are conducted based on 

results obtained in both methods and shown in Figure 21. The cost rate derived from the simulation 

method fluctuated in repeated experiments, with an approximate variance of $30 between the 

highest and lowest value. Upon comparison with a previous comparative study 2, where the 

maximum iteration time of the simulation method was extended from 1080 to 18000, it was 

observed that the magnitude of these fluctuations decreased. Despite this reduction, the 

fluctuations still exert a significant impact on the optimization process. 

Table 4.7 Lowest cost rate and corresponding threshold value for simulation and numerical 

method with increased iteration time of the simulation method 

 

 

Method Cost rate ($/day) Threshold d1 Threshold d2 

Simulation 99.04 0.0398 1.8478×10-11 

Numerical 129.97 2.1544×10-3 1×10-6 
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Figure 4.21 Repeated experiments for simulation and numerical method considering 

increased simulation iteration time  

 

4.3.2 Comparative study 3: Considering large iteration time of the simulation 

method 

Section 4.1 and 4.2 present the CBM optimization results of numerical and simulation methods. 

Figure 4.7 and 4.11 is the cost rate curve versus number of iterations of numerical and simulation 

methods. In figure 4.7, the cost surface of numerical method is quite smooth, and the cost rate 

remains stable throughout the iterations. This consistency indicates that the numerical method 

converges to a specific cost rate value, demonstrating its efficiency in optimization. In contrast, 

Figure 4.11 shows the cost surface of simulation method, where the cost surface fluctuates 

significantly at the initial of iteration. As the number of iterations increases, the magnitude of these 
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fluctuations decreases, although they persist to some extent. This observation indicates that 

although the simulation method tends to stabilize as the number of iterations increases, it retains a 

degree of variability throughout the optimization process. 

The comparative study 3 is performed between simulation with large number of iteration and 

numerical method. Seven repeated experiments are conducted for both methods, utilizing the 

respective optimal failure thresholds. The comparison results are shown in Figure 4.22. For the 

numerical method, the cost rate remains constant across all seven experiments, maintaining a value 

of $129.97 per day. This consistent performance highlights the method's stability and reliability in 

optimization processes. In contrast, the simulation method produced varying values for the cost 

rate over the seven experiments, fluctuating between $117.69 and $122.75 per day. These 

fluctuations demonstrate the inherent instability of the simulation method and obstruct the 

achievement of optimal values due to the inability of the simulation method to consistently 

converge.  

In comparison, the numerical method has a more stable cost rate, which is helpful in 

determining the optimal value. This stability increases the efficiency of the method in the 

optimization process and gives it an advantage over simulation methods in situations where 

accurate and reliable results are required. 
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4.3.3 Comparative study 4: Considering various fixed preventive maintenance cost 

In comparative study 3, the numerical method is proved to be more stable than simulation 

method by using one case. Comparative study 4 expands upon the previous findings by conducting 

further comparative studies between simulation and numerical methods, focusing on varying fixed 

preventive maintenance cost values. The optimal failure threshold and lowest total maintenance 

cost rate is determined by CBM policy using two methods for each fixed preventive maintenance 

cost in section 4.2.3 sensitivity analysis 1. The optimal failure threshold obtained for each fixed 

preventive maintenance cost is subsequently utilized for repeated experiments. The lowest cost 

 

Figure 4.22 Repeated experiments for simulation and numerical method considering large 

simulation iteration time 
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rate of various fixed preventive maintenance cost for simulation and numerical method is shown 

in Table 4.  

The results of seven repeated experiments for various fixed preventive maintenance value is 

shown in Figure 4.23. For numerical method, the cost rates remain at the same value with the 

lowest cost obtained by optimal CBM policy for each fixed preventive maintenance cost value in 

seven repeated experiments. In contrast, the cost results obtained in each repeated experiment 

differ from the lowest cost of the CBM policy, indicating a lack of consistency in estimation. The 

comparison results between simulation and numerical method demonstrate that the numerical 

methods provide greater stability in estimating maintenance cost rates for a variety of fixed 

preventive maintenance cost values compared to simulation methods. The ability of numerical 

methods to consistently match the optimal costs obtained through the CBM policy highlights its 

reliability and stability in estimating maintenance costs under different scenarios. 

  

(a) Fixed preventive maintenance cost is $10,000 (b) Fixed preventive maintenance cost is $15,000 
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(c) Fixed preventive maintenance cost is $20,000 (d) Fixed preventive maintenance cost is $30,000 

 

 

(e) Fixed preventive maintenance cost is $35,000 (f) Fixed preventive maintenance cost is $40,000 

Figure 4.23 Repeated experiments of various fixed preventive maintenance value for the 

simulation and numerical method considering large simulation iteration time 
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4.3.4 Comparative study 5: Considering various fixed cost to wind farm 

In comparative study 4, the fixed preventive maintenance cost is various for reflecting different 

actual circumstances. This sensitivity analysis changes fixed cost to the wind farm and other 

assumptions are the same for comparative study 4. The optimal failure threshold and lowest total 

maintenance cost rate is found by CBM policy using two methods for each fixed cost to wind farm 

in section 4.2.4 sensitivity analysis 2. These optimal failure thresholds are then utilized for repeated 

experiments. The lowest cost rate of various fixed cost to the wind farm for simulation and 

numerical method is shown in Table 4.5.  

The results of seven repeated experiments for various fixed cost to the wind farm is shown in 

Figure 4.24. For numerical method, the cost rates for each fixed cost to the wind farm are consistent 

with the same lowest cost value obtained by optimal CBM policy in seven replicated experiments. 

In comparison, the cost results obtained by the simulation method in each of the repeated 

experiments are different from the lowest cost from CBM policy. The large fluctuations are still 

existing in seven replicated experiments. With various fixed cost to the wind farm, the numerical 

method is more reliable for estimating total maintenance cost rate compared to simulation method. 
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(a) Fixed preventive maintenance cost is $35,000 (b) Fixed preventive maintenance cost is $40,000 

 
 

(c) Fixed preventive maintenance cost is $45,000 (d) Fixed preventive maintenance cost is $55,000 
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(e) Fixed preventive maintenance cost is $60,000 (f) Fixed preventive maintenance cost is $65,000 

Figure 4.24 Repeated experiments of various fixed cost to the wind farm for the simulation 

and numerical method considering large simulation iteration time 

4.4 Summary 

Chapter 4 is structured into three sections. In first section, an example of numerical method is 

presented and the optimal CBM policy within lowest maintenance cost rate is determined. In 

section 2, the simulation method is applied in the same example to obtain the optimal CBM policy 

and lowest cost rate. By comparing the optimal results obtained by both methods, validity and 

accuracy of the numerical method are affirmed. To further verify the numerical method, two case 

studies with changing two parameters fixed preventive maintenance cost and fixed cost to wind 

farm are developed respectively to prove the reasonability and accuracy of numerical method. 

Section 3 constitutes four comparative studies to emphasize the superiority of the numerical 

method in terms of accuracy, stability, and reliability in estimating total maintenance cost rates. 

The conclusions obtained in chapter are as follows: 
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For both numerical and simulation method, the first level failure probability threshold 𝑑1 exerts 

a more significant impact on maintenance cost estimations than alterations in 𝑑2 thresholds. 

For the simulation method, the cost rate curve exhibits significant fluctuations when the 

iteration count is relatively low. The stability is increasing as the number of iterations increases 

but variation is still existing. For the numerical method, the cost rate surface is smooth during the 

iteration process and the cost rate converges towards a steady-state value beyond a certain number 

of iterations. 

For the same example, the numerical method and simulation method are both applied to 

estimate the maintenance cost rate and find the optimal CBM policy. The lowest cost rate value 

obtained from numerical method is close to simulation method, which demonstrates that the 

numerical method is able to estimate the maintenance cost for wind farm system in an accurate 

way. Two case studies considering various fixed preventive maintenance cost and fixed cost to 

wind farm also prove the feasibility of the numerical method. 

For the simulation method, the cost estimation results are fluctuating significantly when the 

sample size is limited, and it is not able to provide meaningful results in this situation. When 

sample size is sufficient, the cost estimation results is more accurate with less fluctuation, but 

variation still exists and affect the optimization process. For the numerical method, the cost 

estimation results are not affected by the sample size, and it is more feasible and stable than the 

simulation method. 

In summary, this study stresses the value of numerical methods in more accurate and reliable 

maintenance cost estimates. Reliance on numerical methods can facilitate informed decision-
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making and resource allocation, thereby improving the efficiency and effectiveness of engineering 

project and system management. 
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Chapter 5 Summary and Future Work 

5.1 Summary 

For a wind farm, maintenance is an important procedure to ensure normal operating of wind 

turbine and reduce the downtime cost. A proper maintenance strategy can improve system’s 

reliability, reduce downtime and maintenance costs. The maintenance strategy used in this research 

is a CBM policy with two failure probability thresholds. The simulation methods were widely used 

in CBM policy cost evaluation, but the sampling characteristic may lead to issues such as local 

minima and convergence, thereby complicating the optimization process. A numerical method was 

originally proposed in a previous study to evaluate the maintenance cost rate of wind farm systems, 

aiming to address limitations identified in the simulation methods mentioned above. However, it 

had issues in obtaining reasonable cost evaluation and optimization results.   

 This thesis develops a modified numerical method based on previous studies for more accurate 

wind farm CBM cost evaluation and aims to find optimal CBM policy for a wind farm with lowest 

maintenance cost rate.  

The main contributions of this thesis include three aspects: 1) Develop a modified numerical 

method to evaluate cost more accurately and find the optimal CBM policy applying proposed 

numerical method. 2) Verify the numerical method results of optimal CBM policy. 3) Compare 

the optimization results of the numerical and simulation method, emphasizing the stability of the 

numerical method. 
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For the first contribution, the reasonable and accurate maintenance cost rate is evaluated by 

proposed numerical method and optimal CBM policy with lowest maintenance cost is found in 

this thesis, which addresses the issues and achieves more accurate results. To achieve the first 

contribution, there are five steps in the numerical method for maintenance cost estimation: 

initialization; calculate component age combination probability transition matrix, new age 

combination probability matrix and total cost of all age combination; update component age 

combination probability matrix in each inspection interval; update cumulative total cost in each 

inspection point; calculate the cost rate.  For a specific example considering two wind turbine and 

each turbine has two components, a group of failure threshold values are tested, and the 

maintenance cost rate of each threshold combination is estimated by applying the numerical 

method through five steps above. The optimal CBM policy is found, which is the combination 

threshold values with lowest maintenance cost rate. The optimal failure probability threshold 

values obtained by the numerical method are able to guide the maintenance work of this wind farm. 

Though the study objective of the numerical method is wind turbine system and wind farm, it can 

also be widely applied on other systems with multiple critical components. 

For the second contribution of verification the numerical method, a simulation method is used 

for achieving this purpose. The simulation method developed in [23] is able to estimate 

maintenance cost rate for wind farm. The simulation method is applied to the same example with 

the numerical method. A group of failure threshold values are tested using the simulation method 

and the optimal thresholds are found with the minimum maintenance cost rate. For the same 

example, the lowest maintenance cost rate is estimated by the numerical and the simulation method. 

The minimum maintenance cost rate of the numerical method is close to lowest cost of simulation 

method, which proves that the numerical method is able to estimate maintenance cost rate 
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accurately. To further verify the numerical method, one parameter, fixed preventive maintenance 

cost value is changed to assess the performance of the numerical method. Six different fixed 

preventive maintenance cost values are assumed for both numerical and simulation method and 

the optimal results of both methods are compared.  

The third contribution aims to compare the feasibility and stability of both methods considering 

different sample size of the simulation method. Five comparative studies are conducted for both 

methods. In comparative study 1 and 2, the feasibility and stability of the results of the simulation 

and numerical method are compared considering limited sample size of the simulation method. 

Comparative study 3 explore the stability of both method when the sample size of the simulation 

method is sufficient. Comparative study 4 and 5 compare the stability for both methods with 

various fixed preventive maintenance cost and fixed cost to wind farm respectively. 

5.2 Future work 

CBM optimization is an important research topic for various field beyond wind farm such as 

manufacturing, aviation, oil and gas, power generation and so on. This thesis utilizes the numerical 

method to find the optimal CBM policy with lowest maintenance cost. However, there are some 

challenges we met during the research process. 

One challenge is long computing time of calculating the maintenance cost. The numerical 

method algorithm uses 4-dimensional age combination probability matrix and transition matrix. 

These transition matrixes require being updated at each inspection point until the maximum 

iteration time. Thus, the amount of calculation is huge in the whole process. In the examples, case 

studies and comparative studies, we made relatively simple assumptions considering two turbines 
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and each turbine has two critical components in a wind farm. For complex system with more 

turbines and components, computing time will increase exponentially with the increase of the 

number of components. Therefore, the algorithm is required to be modified to improve the 

computing efficiency and deal with more comprehensive problems. 

One limitation of this study is that the inspection interval is 1.5 years and there are total 20 

inspection points considering the computing time. Though the lowest cost rate obtained based on 

this assumption is close to the simulation method, there is still minor difference. Other smaller 

values of inspection interval can be considered in the further investigation and compare the cost 

estimation to the simulation method. 

One area can be improved is considering inspection cost in the cost estimation model. In 

existing model, we are considering failure replacement cost, variable preventive maintenance cost, 

fixed preventive maintenance cost and fixed cost to the wind farm. Inspection cost is a part of 

maintenance cost, and it mainly includes labor cost, cost for equipment and tools, and 

transportation and accommodation. The largest portion of the inspection cost often goes towards 

labor. This includes the wages or fees for qualified technicians or inspectors who conduct the 

inspections. Specialized equipment and tools may be necessary to perform certain types of 

inspections. If the wind farm is located in a remote area or requires travel to access, travel expenses 

such as transportation, lodging, and meals for inspection personnel may be included in the overall 

cost. The evaluated maintenance cost would be more accurate if inspection cost is considered in it. 

An additional area for improvement is the ANN model. Currently, the ANN model is trained 

and tested using historical data collected from the component. In the future, as more condition 

monitoring data and event data are collected from the component, the ANN model can be trained 
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with new data. This will enable the model to provide more accurate results and be used in CBM 

optimization. Enhanced training with comprehensive and up-to-date data will improve the model's 

predictive capabilities, leading to better maintenance strategies and increased reliability of the 

components. 

The last improvement area is validation of the numerical method. The numerical method has 

been verified through simulation using multiple examples, demonstrating its capability to generate 

reasonable and stable cost evaluation results. However, validation of the numerical method has not 

been conducted in this thesis and requires further investigation. Validation is crucial as it ensures 

that the numerical method accurately reflects the real-world system or phenomena it intends to 

model. In the future, the numerical method should be tested on real-world case studies relevant to 

the application of CBM for wind turbines. This testing will help confirm that the method's 

outcomes align with observed data and practical outcomes, thereby enhancing its reliability and 

applicability in practical settings. 
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