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Abstract

The purpose of the present experiment was to examine (a) the
conditions that influence students' performance on activities
designed to assess understanding, (b) whether different forms of
understanding are associated with abstract principles and
component procedures, and (c) whether a developmental sequence
exists in the acquisition of these different forms of
understanding. To address these questicns, I designed two tasks
to assess three aspects of children's knowledge about the
mathematical principle of inversion. Forty students from Grade 2
and 40 students from Grade 6 were assessed individually with the
two tasks. A problem-golving task was used to examine students’
use of specific procedures to solve a problem. A comprehension
task consisted of an evaluation component and a justification
component. With the evaluation component, students’' ability to
evaluate the correct use of procedures was examined. The
justification component was used to assess students' ability to
explain the rationale behind the use of specific procedures. To
address the three original questions, three types of analyses
were performed. First, analyses of performance on each task were
conducted to determine the relative influence of different
conditions. Examination of the results revealed that students
performance on the three activities was influenced by different
conditions. Specifically, schooling appeared to have a greater
influence on the comprehension task compared to the problem-

solving task, while previous experience with inversion appeared



to have a greater influence on the problem-solving task compared
to the comprehension task. Second, relations between the tasks
were examined to determine whether different forms of
understanding are associated with abstract principles and
component procedures. Speclifically, patterns in performance
across the three activities were identified, and relations among
these activities were analyzed. Patterns associated with
knowledge of component procedures were distinguished from
patterns reflecting knowledge of abstract principles, thus
providing evidence for different forms of understanding.
Finally, Guttman Scaling was used to determine whether a
developmental sequence aexists in the acquisition of these
different forms of understanding. Examination of the Guttman
Scale indicated that the acquisition of abstract principles
precedes the acquisition of component principles in the

development of the understanding of inversion.
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1

Assessmant of Students' Understanding of the
Mathematical Principle of Inversion

A clear and comprehensive definition of understanding in
mathematics is important for educators and researchers alike.
Although there has been productive research focused on
identifying processes that underlie mathematical computation
(Ashcraft, 1982; Siegler & Shrager, 1984; Campbell & Graham,
1985; Campbell, 1987, 1989), little is known about the relation
between computational processes and understanding (Bisanz &
LeFevre, 1992; Bisanz, LeFevre, & Gilliland, 1992). For
psychologists interested in providing a full account of
remembering and problem solving, an integrated and detailed
description of the relation between computational processes and
the common notion of understanding is needed (Bisan» & LeFevre,
1992). There is also growing recognition among educators and
researchers that more emphasis needs to be placed on helping
children understand mathematics rather than just teaching them
rote procedures (Cobb, Wood, Yackel, Nicholls, Wheatley,
Trigatti, & Perlwitz, 1991; Diagnostic Mathematics Program,
Alberta Education, 1990; Greeno, 1983; Schoenfeld, 1985).
Comprehension in a domain includes knowledge of the logical or
semantic principles that define the structures of the domain.

when children are taught only to memorize mathematical facts,
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their knowledge is incomplete (Charles & Lester, 1982; Krulik &
Rudnick, 1988).

Unfortunately, understanding is often poorly and
inconsistently defined. For example, measures of children's
understanding have not been considered in enough detail to be
assessed behaviorally and therefore have played an insignificant
role in instructional design (Greeno, 1983). 1In order for
instructors to facilitate children's understanding of concepts
and principles of mathematics, and for researchers to examine the
relation between computational processes and understanding, it is
important to establish specific thecretical characterizations of
understanding.

Greeno (1983) argued that understanding must be thought of
in terms of different forms, rather than as a single construct.

A narrow definition or criterion would tend to make understanding
an all-or-none phenomenon. Bisanz and LeFevre (1992) also
suggested that different forms of understanding must be
recognized. Specifically, they argued that the context in which
understanding is assessed must be considered. For them, context
refers broadly to task demands and materials that are used to
evaluate understanding. Depending on the context, they concluded
that an individual may show evidence for some forms of
understanding but not others. Like Greeno, they suggested that

no single context is definitive for assessing understanding.
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Instead, they proposed a framework consisting of two dimensions,
activity and generality, that jointly define a contextual space
for assessing understanding. Assesement then consists of
identifying profiles of understanding, across contexts, that
reflect underlying individual differences or sequences in
acquisition (Bisanz & LeFevre, 1992).

Although the activities used to assess understanding vary
considerably in terms of the demands placed on an individual,
Bisanz and LeFevre (1992) grouped them into three general
classes: application of procedures to solve problems; explicit
justification of procedures; and evaluation of the procedures.
Application of procedures refers to the spontaneous use of a
solution procedure that reflectse, or ig at least consistent with,
a concept or principle appropriate for that problem. In tasks
involving justification of procedures, a student must give an
explanation of a concept or principle. Evaluation of procedures
refers to a person’'s decision about the applicability and
correctness of a particular solution to a problem. Bisanz and
LeFevre suggested that each of the activities can be used
independently to assess understanding.

If understanding can be differentiated into different forms,
as suggested by Greeno (1983) and by Bisanz and LeFevre (1992),
is there a developmental sequence in the acquisition of these

different forms of understanding? Currently there is little
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consensus about the nature of development of understanding in
mathematics. The development of understanding has been described
as either (a) a process in which abstract principles guide the
acquisition and use of procedures (Bullock, Gelman, &
Baillargeon, 1982; Gelman & Meck, 1983; Flavell, 1979; Silver,
1985; Starkey & Gelman, 1982) or (b) a process in which the
acquisition and use of component procedures leads to the
acquisition of abstract principles (Anderson, Boyle, & Yost,
1985; Baroody & Ginsburg, 1986; Fuson & Hall, 1983; Mayer, 1985).

The characterization of principles guiding the acquisition
of procedures has been used to describe a number of different
mathematical skills in children. Starkey and Gelman (1982)
argued that a set of arithmetic principles underlies
preschoolers' performance of addition, subtraction, inversion,
and compensation tasks. Gelman (Gelman & Gallistel, 1978; Gelman
& Meck, 1983) also suggested that knowledge of counting
principles forms the basis for the acquisition of counting
skills.

The idea that the acquisition and use of component
procedures leads to the acquisition of abstract principles is
based on the assumption that the repeated use of procedures, and
repeated presentation of materials, results in conceptual
associations that lead to the development of understanding

(Anderson, Boyle, & Yost, 1985; Mayer, 1985). Further, increased
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understanding is seen as leading to procedural advances and more
sophisticated application of procedures, resulting in more
advanced principles (Baroody & Ginsburg, 1986). For example many
ressarchers have argued that children aprarently first learn to
use numbers mechanically and only gradually construct an
understanding of number and counting (Baroody & Ginsburg, 1984;
Fuson & Hall, 1983).
RATIONALE
The present experiment was designed to examine (a) the
conditions that influence students' performance on activities
designed to assess understanding, (b) whether different forms of
understanding are associated with abstract principles and
component procedures, and (c) whether a developmental sequence
exists in the acquisition of these different forms of
understanding. To address these questions, I have designed two
tasks to assess three aspects of children's knowledge about the
mathematical principle of inversion. Bisanz and LeFevre {(1990)
argued that the effective use of shortcuts may serve as an
operational measure of how well an individual functionally
understands the concepts underlying arithmetic and the number
systems. One such shortcut is based on the logical principle of
inversion. 1In arithmetic problems that have the form a + b - b,
the successive retrieval of a sum and difference can be very

inefficient compared to the shortcut based on inversion. Using
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the principle of inversion, one can state the answer for
inversion problems is a without doing any computation (because b
- b is zero). The inversicn principle has been used to study
children's specific use of different mathematical principles
(Bisanz, LeFevre, & Gilliland, in preparation; Starkey, & Gelman,
1982) but never to assess developmental sequences involved in the
acquisition of understanding.

The two tasks are based on the activities proposed by Bisanz
and LeFevre (1992). A problem-solv was designed to
examine the procedures students use spontaneously to @olve a set
of 3-term addition and subtraction problems (application-of-~
procedures activity). Two types of problems were presented, with
large and small instances of each. Inversion problems (e.g., 5 +
7 = 7 = ?) could be soclved using an inversion-based shortcut.

Standard problems (e.g., 3 + 6 - 4 = ?) could be solved only by

using some combination of addition and subtraction.

To examine the conditions that influence performance on the
problem-solving task, students®' accuracy, responses latencies,
and self-reports about how they solved the problem were recorded.
In mental arithmetic, accuracy tends to decrease, and response
latencies tend to increase, on problems with larger numbers (the
rproblem-size effect") (Koshmider, & Ashcraft, 1992). This
problem-size effect reflects the greater difficulty of

computation with large numbers commonly found in research with
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children and adults (Koshmider, & Ashcraft, 1992). Consequently,
accuracy and response latencies should always show a problem-size
effect on Standard problems because these proklems can be solved
only by performing addition and gubtraction. Students who do not
use a shortcut also should show an identical problem-size effect
on Inversion problems. In contrast, students who use a shortcut
on Inversion problems should show no such effect because they do
not use addition and subtraction to find solutions.
students' self-reports were used to supplement the accuracy
and latency data by providing additional insights about the
procedures students used. Specifically, students were grouped
according to the proportion of times they used inversion, and
comparisons of accuracy and latency were made between these
groups. Students who reported use of an inversion~based shortcut
on inversion problems (i.e. students who gaid that the last two
numbers equalled zero (b - b = 0), so the answer had to be the
first number (a + 0)) would be expected to have high accuracy
rates, and fast latencies on inversicn problems. Students'’
accuracy, response latencies and self-reports were also used to
examine changes in performance as children progress through
school. Because of their greater experience with mathematics,
older students would be expected to have higher rates of
accuracy, have faster latencies, and report using inversion more

often than younger students.
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The comprehensjon tagk had two components: the evaluation
component corresponds to the evaluation-of-procedures activity
described by Bisanz and Lefevre (1992), and the justification
component corresponds to the justification-of-procedures
activity. Students were shown 3 sets of 3-term addition and
subtraction problems. One set consisted of small inversion
problems, 1 set consisted of large inversion problems, and 1 set
consisted of standard problems. In the evaluation component
students were asked to identify the appropriate use of a shortcut
based on inversion to solve the problems for each of the 3 sets.
This component was designed to address whether students can
recognize the appropriatenaess of procedures based on abstract
principles without requiring that the students be able to produce
those procedures. In the justification component students were
asked to justify their answer to the evaluation component. This
component was designed to assess whether students can explain
abstract principles even if they do not use procedures. For both
of the components, students' self-reports were recorded. If, on
inversion problems the student identified the appropriate use of
a shortcut and explained why that shortcut worked, they were
considered to have a conceptual understanding of the principle of
inversion. Because of thair greater expezrience with
mathematics, older students would be expected tc identify the

appropriate use of an inversion-based shortcut and explain the
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principle of inversion verbally more often than younger students.

To evaluate the hypothesis that different forms of
understanding co-exist, students' response patterns across the
different activities were examined. Bisanz and LeFevre (1992)
identified many problems associated with assessment basad solely
on one of the activities. For example, a student's spontaneous
use of a shortcut on the problem-solving task may appear to be
compelling evidence that he or she understands the principle of
inversion. However, a student may use a conceptually appropriate
procedure for reasons unrelated to the underlying concept.
Similarly, failure to provide an adequate justification does not
imply that a student lacks knowledge about a concept. He or she
may simply have difficulty verbalizing that knowledge.
Conversely, being able to provide adequate explanations or
rationales does not necessarily imply that the student can use
the corresponding procedures spontaneously.

Because of the problems discussed above, I will examine
relations among the activities and make inferences about possible
forms of understanding associated with them. Specifically,
students were classified as successful or unsuccessful on each
activity (success was determined by the presence of accurate
knowladge about inversion in students' self-reports). Response
patterns across the problem-solving task and the two components

of the comprehension task were examined. If understanding of
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inversion is not differentiated into distinct forms, students
would either successfully perform, or unsuccessfully perform, all
the activities. However, if response patterns across the
activities demonstrate that students respond successfully on some
but not all activities, we may conclude that different forms of
understanding are present.

Patterns of responses across these activities for individual
students should be informative about the developmental
sequence(s) in which understanding is acquired. For example, if
principles are acquired first, followed by procedures, then
students should perform accurately on the justification
component, but not on the problem-solving task. If procedures
are acquired first, followed by principles, students should
perform accurately on the problem-solving task but not on the
justification component.

METHOD
Subjects

Forty students from Grade 2 and 40 students from Grade 6
were assessed individually with the problem-solving task and the
two components of the comprehension task. Previous researchers
have indicated that few differences in children's overt
performance exist between Grades 1 and 4 (Bisanz & LeFevre,
1989). Between Grades 2 and 6 a dramatic increase in the

spontaneous use of inversion has been reported (Bisanz & LeFevre,
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1989). Consequently, studying students in Grades 2 and 6 allows
for the examination of a period where there may be an increase in
the use of procedures based on inversion. Because only a small
percentage (approximately 20%) of Grade 2 students have been
observed to use inversion spontanecusly (Bisanz & LaFevre, 1989;
Dhaliwal, 1989) it is important to have a sample size large
enough to observe any effects.
Materials
=Solv a
For the problem-solving task 16 problems were presented,
including 8 inversion problems (a + P - b = 3) and 8 standard
problems (3 + b - ¢ = d). Inversion problems of the form a + b -
b (as opposed to b + 4 - b) were used because in previous studies
students identified problems more easily when the identical
numbers were in close proximity (Dhaliwal, 1989). Each problem
type was divided into large and small instancas to examine
whether inversion-based strategies are employed more frequently
on problems consisting of large numbers or problems consisting of
small numbers (Dhaliwal, 1989). 1In the large form, "a" was a
number between 1 and 9, and "b® and "c" were numbers between 21
and 31. In the small form, “"a” was a number between 1 and 9, and
the values of "b" and "c" were between 1 and 9. Half the
intermediate sums (a + b) for each combination of problem type

and problem size crossed decade boundaries, and half did not.
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The order of the problems was generated unsystematically with a
few constraints: All the combinations of size and type were
spaced evenly throughout the order, and no problems with similar
answers were placed beside each other. A second order was
created by reversing the first. The complete set of problems is
listed in Appendix A.
Comprehension Task
For the comprehension task 3 different sets of 3-digit
addition and subtraction problems were presented. One set
included 8 small inversion problems, one included 8 large
inversion problems, and one included 8 standard problems. All of
the problems presented were similar to those in the problem-
solving task. Each set of problems was presented to each student
on cue cards. The three sets of problems are listed in Appendix
B.
Procedure
Students were assessed individually in two sessions, each
lasting 15 minutes. Performance was recorded with a video camer:
to enable careful analysis of responses. Specifically, when the
data were analyzed, the experimenter referred to the video tapes,
as well observations recorded with pencil and paper. Each
session began with a general briefing followed by specific
instructions for each task. The full text for the briefing and

instructions is provided in Appendix C. For the problem-solving
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task, the order of problem presentation was reversed to create a
sacond order, and the two orders were counterbalanced across
subjects. To evaluate whether previous exposure to content
related to the principle of inversion influenced students’
performance, task order was varied across subjects, with half
receiving the problem-solving task first and half receiving the
comprehension task first.
r -Solv
For the problem-solving task, students were asked to solve
each problem and then state the answer. Students' response
jatencies were recorded with a stcpwatch. They were then asked
how they solved each problem. If after approximately 40 seconds
a student was unable to solve the problem, or if they showed
clear signs of frustration, the experimenter would prompt the
student. For example the experimenter would ask the student what
numbers they were looking at, or ask them how they were trying to
solve the problem. Students were not asked to think aloud as
they solved each problem because concurrent self-reports would
have resulted in inflated responses latencies.
mprehensio
For the comprehension task, the experimenter described an
inversion-based strategy that could be used to solve the problems
in each set. He then asked the student if the strategy just

described would work for the whole set of problems (evaluation
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component). After the student had given an answer, he or she was
asked why the strategy would work or why it would not work
(justification component). The text for each description is
provided in Appendix C.
RESULTS AND DISCUSSION
Data from the problem-solving and comprehension tasx«s were
analyzed in two ways. First, measures of performance within each
task were analyzed to determine the effacts of grade, sex, task
order, problem size (small and large), and problem type (standard
and inversion). Second, the relations between the tasks were
examined to determine whether performance differed on mecasures of
problem-solving, justification, and evaluation, and whether these
three aspects of understanding form a developmental sequence.
Within-Task Analyses
Problem-Solving Task
Accuracy
Initially, the effects of schooling, sex, task order,
problem size, and problem type on the proportion of accurate
responses were examined. Determining what to score as an
accurate response presented a few problems. Some students gave
an answer and then, after discussing how they got that answer,
they changed it. Other students found it difficult to solve some
of the problems. If, after approximately 40 seconds, a student

was unable to solve the problem, or if the student showed clear
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signs of frustration, the experimenter would use prompts to help
him or her. To deal with these problems, accuracy was scored
with two sets of criteria. Injitjal accuracy was based on a
student's very first response. Answers of students who were
prompted were coded as inaccurate because they were unable to
give an answer spontaneously. Final accuracy included any
changes in students' answers after discussion of the problem.
Proportions of accurate responses for each method of scoring were
then subjected to separate 2(Grade) X 2(Sex) X 2(Task Order) X 2
(Problem Size) X 2 (Problem Type) analyses of variance with
repeated measures on the last two variables. Results of the two
analyses were similar, the only difference being that a sex
effect was found when analyzing final accuracy. Because of the
similarities between the two analyses, and because the students’
initial answers give a better indication of their spontaneous use
of strategies, only the results for initial accuracy are
presented in detail.

Students were more accurate on small than large problems
(84.08 vs. 68.0%), F(1l, 72) = 51.36, p < .01l. This problem-size
effect reflects the greater difficulty of computation with large
numbers commonly found in research with children and adults.
Accuracy was higher for inversion thaan for standard problems
(88.0% vs. 65.08%), F(1, 72) = 97.16, p < .01, a result that would

be expected if students were using the inversion-based shortcut
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on inversion problems. Finally, Grade 6 students were more
accurate than Grade 2 students (90.0% va. 62.5%), F(1, 72) =
49.15, p < .01.

Problem size interacted with grade, F(1, 72) = 9,23, p <«
.0l. Mean rates of accuracy are listed in Table 1. An
examination of the simple effects confirmed that Grade 6 students
were more accurate that Grade 2 students for both problem sizes,
Fs(1, 72) > 22.20, but this difference was greater for large
problems. Although students in both gradee were more accurate on
small versus large problems, Fs(l, 72) > 8.42, ps < .01, this
difference was greater for Grade 2 students. Thus, the greater
computational demands of large problems appears to have been
especially difficult for students in Grade 2. These data should
be interpreted cautiocusly however, because of the high accuracy
rates for Grade 6 students. With high accuracy rates there is
substantial possibility of ceiling effects, which might render
the statistical comparisons misleading.

Problem size also interacted with problem type, F(1l, 72) =
28.99 p < .0l1l. Mean rates of accuracy are provided in Table 2.
An examination of the simple effects confirmed that students were
more accurate on inversion than standard problems for both
problem sizes, Fs(l, 72) > 26.08, ps < .01, but this difference
wags greater for the large problems. These results are consistent

with the conclusion that students in both grades used a shortcut
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on Inversion problems, at least to some extent. Students were
more accurate on small versus large problems for both standard
and inversion problems Fs(l, 144) > 6.46, ps< .05. However, the
difference between large and small was greater for standard
problems than for inversion problems. Because of the greater
computational demands of large problems, when students employ a
succegssive addition and subtraction strategy, accuracy decreases
as problem size increases (problem-size effect). As expected,
this effect was especially evident for standard problems, where
an inversion-based shortcut could not be used. If students were
using successive addition and sﬁbtraction on inversion problems,
we would expect the difference between large and small problems
to be the same for both standard and inversion types. Because
the difference was smaller for inversion problems, the use of a
shortcut may moderate the problem-size effect here. Again, these
data should be interpreted cautiously because of the substantial
possibility of ceiling effects.

Interactions between problem type and grade, F(1l, 72) =
23.26, p < .01, and problem type and task order, F(1, 72) =
13.14, p < .01, were qualified by the interaction between type,
grade, and task order, F(1l, 72) = 8.88, p < .0l. Means are
provided in Table 3. An examination of simple effects revealed
that students in both grades were more accurate on inversion

problems than standard problems in both task orders, EFs(l, 72) >
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4.82, ps < .05. This difference was largest for Grade 2 students
who had previously been asked to recognize and justify inversion
(Comprehension First). The data are consistent with the
conclusion that previous exposure to the inversion procedures
increased the probability that students in Grade 2 used a
inversion-based shortcut on the problem-solving taek. Use of a
shortcut may in turn yield higher rates of accuracy because the
calculational demands of these problems are minimized when an
inversion procedure, as opposed to successive addition and
subtraction, is used. In Grade 2, students who started with the
problem-solving task were more accurate on standard problems than
those who started with the comprehension task, F(l, 144) = 5.29,
p < .05. Students who had the comprehension task first were morc
accurate on inversion problems than those who had the problem-
solving task first, F(1, 144) = 55.39, p < .0l. Even though the
Grade 2 students who started with the comprehension task were not
as proficient in solving standard problems as those who started
with the problem-solving task, their previous experience with the
principle of inversion on the comprehension task was sufficient
to increase their performance on inversion problems to the point
where their accuracy surpassed that of the other studants.
No differences in accuracy were found between task orders
for Grade 6 students, Fs(l, 144) < 1. Presumably, the problems

were so easy for the Grade 6 students that previous experience
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was unnecessary for increased accuracy. Grade 6 students in both
task orders were more accurate than Grade 2 students in both task
orders on standard problems, Fs(l, 144) > 21.69, ps < .0l. As
well, on inversion problems, Grade 6 students who had the
problem-solving task first were more accurate than Grade 2
students who started with the problem-solving task, F(1, 144) =
11.45, p < .01. There was no difference between students in the
two grades on inversion problems for students who had the
comprehension task first, F(1l, 144) = 2.50, p < .10. Thus the
effect of previous experience is large encugh to minimize grade
differences in performance on inversion problems.

Based on the analyses of accuracy data, it appears that
students used a shortcut based on inversion, and that previous
experience with that shortcut may improve accuracy considerably.
Again, these data should be interpreted cautiously because the
high accuracy rates suggest ceiling effects, which might render
the statistical comparisons misleading. Subjects' response
latencies are likely to be a more sensitive measure of existing
effects.

Latency

Effects of schooling, sex, task order, problem size, and
problem type on latency were examined. Using median latencies,
as opposed to mean latencies, has the advantage of eliminating

extreme responses that might be due to extraneous factors.
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Median latencies for responses were computed for each combination
of problem type and problem size, generating 4 medians (2 problem
psizes X 2 problem types) per subject. <“esponse latencies for
problems where the student was inaccurate might reflect different
processing than for problems with accurate performance.
Therefora, only the latencies on problems with accurate
performance were used in the analyses of latency. As mentioned
earlier, students sometimes gave an answer, and then after some
discussion of how they got the answer, they would change it. 1In
these instances, I was unable to compute latencies for the
problems. This situation occurred infrequently howaver (4.80% of
problems for Grade 2, and 3.75% of problems for Grade 6). On
problems where students were prompted by the experimenter,
latencies were estimated to be 40 seconds. Because the
variability in latencies was much greater for Grade 2 students
than Grade 6 students separate ANOVAs were computed at each grade
level. For each grade, median latencies were subjected to a
2(Sex) X 2(Task Order) X 2(Problem Size) X 2(Problem Type)
analysis of variance, with repeated measures on the last two
variables.
For Grade 2, latency varied as a function of problem size

and problem type. Students had faster latencies for small
problems than for large problems (9.1 vs. 18.5 s), F(1, 30) =

22.57, p < .01, and faster latencies for inversion problems than
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standard problems (8.9 vs. 18.7 s), F(1, 30) 45.97, p < .01. As
well, problem size interacted with problem type, F(1, 30) = 9.49,
p < .01 (see Figure 1). An examination of simple effects
revealed that students had faster latencies for inversion
problems than standard problems for both sizes, Fes(l, 60) > 6.50,
ps < .05. For both standard and inversion types, students had
faster latencies for small problems than large probleme Fs(1l, 60)
> 11.28, ps < .01. If students were using successive addition
and subtraction to solve both standard and inversion problems,
the difference between small than large problems should be the
same for both types. However the difference between small and
large was greater for standard problems (12.2 ve. 25.2 s) than
for inversion problems (6.0 vs. 11.7 8). If all students were
using a shortcut on inversion problems, we would expect there to
be no difference between small and large problems. These results
are consistent with the conclusion that Grade 2 students used
shortcuts on inversion problems some of the time.

Grade 6 students also had faster latencies for small
problems versus large problems (3.4 va. 5.9 8), F(1, 36) = 35.46,
p < .01, and faster latencies for inversion problems than
standard problems (3.0 vs. 6.3 8), E(1, 36) = 45.63, p <.01.
Again, problem size interacted with problem type, F(1, 36) =
25.10, p < .01 (see Figure 2). An examination of simple effects

revealed that for small problems there was no clear difference in
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the latencies for standard or inversion problems, F(l, 72) =
3.44, p > .05. Presumably, the small problems were so esasy that,
even if students had used shortcuts on inversion problems,
solution latencies were no faster than when successive addition
and subtraction was used on standard problems. For large
probleme however, students had faster latencies on inversion
problems than standard problems, F(1, 72) = 70.36, p < .01,
indicating they used a shortcut on large inversion problems.
Consistent with the results for Grade 2 students, Grade 6
students had faster latencies on small than on large standard
problems, E(1, 72) = 60.02, p < .01. If students were using
successive addition and subtraction on all problems, an increase
in latency between small and large inversion problems would be
expected. However, there was no difference in students latencies
between small and large inversion problems, F(l, 72) < 1. These
results are consistent with the conclusion that students were
using a shortcut on inversion problems.
For Grade 6, problem type also interacted with task order,
F(1, 36) = 6.87, p < .05, and sex, F(1, 36 = 6.14, p < .05.
Examination of the simple effects for the type by task order
interaction indicated that students in both task orders had
faster latencies on inversion problems than standard problems,
Fs(l, 36) > 8.54, ps < .01. However, the difference between

inversion and standard problems was emphasized for students who
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did the comprehension task first (2.4 vs. 7.08 for comprehension
first, and 3.7 vs. 5.78 for problem-solving first). This
difference may be due co the fact that students who started with
the comprehension task had previous experience with inversion
principles. Examination of simple effects for the type by sex
interaction revealed that both Loys and girls were faster on
inversion problems than standard problems, Fs(l, 36) > 9.14, ps <
.01, but the difference between the two problem types was greater
for girls (2.9 vs. 7.4s) than for boys (3.2 vs. 5.38).

Taken together, the accuracy and the latency analyses
indicate that students used shortcuts on inversion problems, at
least to some extent.

Self-Reporte

To evaluate the nature of the strategies students used,
their self-reports were examined. Examination of self-reports
provided converging evidence with the latency and accuracy data
about students use of shortcuts based on inversion. Comparing
students' self-reports with the accuracy and latency data also
allowed for evaluation of the verdicality of those self-reports.
Specifically, reports were classified into different categories
based on strategy use, the reliability of these classifications
was assessed, and the frequency of use for each of the strategies
was calculated. The reports were then used to interpret the

accuracy and latency data. Self-reports served as a verbal
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confirmation of shortcut use.

Students' responses were classified using two levels of
analysis. First, each response was grouped according to the
strategy used by the student to solve the problem (e.g., left-to-
right addition and subtraction, or inversion-based strategy).
Then each response was classified according to the specific steps
that students may have used to carry out their strategy (e.g. for
left-to-right addition and subtraction they may have counted on
their fingers, or used a derived fact). In classification, the
fact that students may have used more than c.ie step, or no
visible steps, was taken into account. A description of each of
the strategies observed and the procedures for scoring are found
in Appendix D.

An independent rater classified responses from 20% of the
subjects, and reliability with the experimenter's classification
was calculated for each combination of problem type and problem
size. Specifically, the number of agreements between the rater
and the experimenter was determined, and this number was divided
by the total number of responsges. Reliabilities for the small
inversion, large inversion, small standard, and large standard
problems were .91, .94, .78, and .81, respectively. Reliabilites
were low for the standard problems because the diverse and
ambiguous responses students gave on these problems wers hard to

classify. Any conclusions based on analyses of the standard
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problems must be qualified by the low raliabilities.

Examination of how frequently each strategy was used
revealed three major categories: inversion-based strategies,
left-to-right addition and subtraction strategies, and
subtraction-first strategies. Inversion-based strategies were
used only on inversion problems, and subtraction-firat strategies
were used only on standard problems. Left-to-right strategies
were used most frequently, and were usad on both problem types.
Tables 4 and 5 detail the relative frequency of each strategy for
every combination of problem type and problem size.

Inversion problems. The proportion of times students
reported using inversion-based shortcuts was calculated for large
and small problems. Proportion of inversion use was then
subjected to a 2(Grade) X 2 (Sex) X 2(Task order) X 2(Problem
Size) analysis of variance with repeated measures on the last
variable. Somewhat surprisingly, given the amount of arithmetic
instruction in school, frequency of use increased only slightly
from ages 7 to 11 (38% vs. 55%). Because of gsubstantial
variability within each age group this difference was not
significant, F(1, 72) = 3.52, p = .07. Students reported the use
of inversion shortcuts more frequently on large problems than
small problems (49.7% vs. 43.8%), E(1, 72) = 6.10, p < .05. This
result is consistent with the conclusion that on larger problems,

where students have a harder time getting the answer by simple
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addition and subtraction, they are more likely to use an
alternative, easier strategy. Finally, students used the
shortcut more when they had previous exposure with inversion on
the comprehension task (comprehension first), than when they did
not (problem-solving first) (60.0% vs. 33.5%8), F(1, 72) = 8.40, p
< .01. These results are consistent with the conclueion that
students are more likely to use inversion spontaneocusly if they
have had previous exposure to it.

Because of the substantial variability within each age
group, the means for each group may not have accurately
represented the distribution of scores. Consequently, the number
of students who used inversion 0, 1, 2, 3, and 4 times was
calculated for each grade and each problem size and these
distributions were then analyzed using nonparametric statistics.
When analyzed with the Kolmogorov-Smirnov two-sample test, no
differences between the distributions of inversion use were
evident between Grade 2 and 6 for small problems, K-S % = .894, p
> .30, and for large problems, K-S % =.783, p > .50. When the
same distributions were analyzed with the chi-square two-sample
test, no differences between the grades were evident for small
problems, x2(4, N = 80) = 3.06, p > .50, and for large problems,
x2 (4, N = 80) = 4.02, p > .30. These results are consistent
with the analysis of variance. Although some students in both

grades used inversion spontaneously, there was little increase in
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its use from Grades 2 to 6.

To examine the verdicality of self-reports, as well as to
identify converging evidence, accuracy and latency data were re-
evaluated using self-reports. Students were categorized into 3
groups based on the frequency of times they reported using
inversion. Students who reported using inversion frequently
would be expected to show different accuracy and latency patterns
than other students. Students were categorized as (a) inversion
non-users if they did not use inversion on either the small or
large inversion problems, (b) infrequent inversion users if they
used inversion between 1 and 5 times on both small and large
problems, and (c) frequent inversion users if they used inversion
between 6 and 8 times on both large and small problems. In Grade
2 there were 18 inversion non-users, 8 infrequent users, and 14
frequent users. In Grade 6 there were 11 non-users, 9 infrequent
users, and 20 frequent users. Both accuracy and latency data
were reanalyzed, and inversion use was included as a between-
subjects variable. The proportion of accurate responses was
subjected to a 2(Grade) X 2(Sex) X 2(Task order) X 3(Inversion
use) X 2(Problem Type) X 2(Problem Size) analysis of variance
with repeated measures on the last two variables. only the
effects that involved the inversion use categories are discussed.

An interaction between inversion use and problem type, E(2,

56) = 3.94, p < .05, was qualified by the interaction between
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grade, inversion use and problem type, F(2, 56) = 4.24, p < .05
(see Table 6). Although all Grade 2 students were more accurate
on inversion versus standard problems, Fs(l, 112) > 10.4, ps <
.01, students who reported using a shortcut frequently showed the
greatest difference in accuracy between the two problem types
(.99 vs. .41). The greater accuracy of frequent users can be
attributed to their use of an inversion-based shortcut. However,
the accuracies of students who did not report using a shortcut,
or reported using one infrequently, were also higher for
inversion problems. These students may have used a shortcut
that they did not mention. For example, infrequent users and
non-ugers may have used the strategy of negation (Bisanz &
LeFevre, 1990), which may have increased their accuracy.
Inversion problems may just have been easier than standard
problems. A similar pattern was observed for Grade 6 students,
although the difference between standard and inversion problemn
was only significant for students who reported using a shortcut
frequently, F(1, 112) = 6.66, p < .0S. Students who said they
used an inversion-based strategy to solve inversion problems had
higher rates of accuracy on inversion than standard problems. As
noted earlier, these results should be interpreted cautiously
because of possible ceiling effects.
Grade 2 students who frequently used a shortcut were just as

accurate as Grade 6 students on inversion problems, F(1, 112) <
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1. Because of this result, we might expect that greater
proficiency in calculation, compared to their fellow students,
accounted for frequent use of the shortcut. If this were the
case we would expect frequent users to perform more accurately on
all kinds of problems. Although Grade 2 frequent users were more
accurate than non-users, and infrequent users on inversion
problems, Fs(l, 112) > 11.5, ps < .01, they were not more
accurate than the others on standard problems Fs(l, 112) < 1.94,
ps > .10. Because Grade 2 frequent users ware not more
proficient than other atudents in all their calculations, other
variables must be considered to account for their use of the
shortcut. Perhaps frequent users were more flexible in their
thinking when solving problems. This hypothesis is considered in
more detail in a later section. In Grade 6 there was no
difference in accuracy between the three categories for both
standard and inversion problems, Fs < 1.

Inversion use also interacted with problem size, F{(2, 56) =
4.15, p < .05 (dee Table 7). Because of the computational
demands of large problems, infrequent users and non~-users should
be more accurate on small problems compared to large problems
(i.e. the problem-size effect). No differences between the two
problem sizes would be expected for students who frequently used
an inversion-based shortcut. Furthermore, students who reported

frequent use of shortcuts should be more accurate on large
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problems compared to students who reported infrequent or no
shortcut use. As expected, all three groups of students were
equally accurate on small problems, Fs(l, 112) < 0.30, ps > .25,
and students who reported using shortcuts frequently were more
accurate on large problems than those who reported little or no
shortcut use, Fe(l, 112) > 5.33, ps < .05. As well, infrequent
users and non-users were more accurate on small compared to large
problems, Fs(1l, 56) > 25.8, ps < .01, and frequent users were
equally accurate on both problem sizes, F(1, 56) = 3.26, p > .0S.
These results are consistent with the conclueion that some
students uee a shortcut on inversion problems and that shortcut
is based on the principle of inversion. As mentioned earlier,
these results need to be interpreted with caution because of
possible ceiling effects. A better indication is given by
analyses of latency data.

For each grade, median latencies were suljected to a
2(Grade) X 2(Sex) X 2(Task Order) X 3(Inversion use) X 2(Problem
Size) X 2 (Problem Type) analysis of variance with repeated
measures on the last two variables. For Grade 2, inversion use
interacted with problem type, E(2, 22) = 6.62, p < .01 (see Table
8), and with problem aize, F(2, 22) = 5.35, p < .05 (see Table
9). Because the problems were relatively easy for Grade 6
students, all their latencies were fast, and no differences

between the groups were significant.
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If students who frequently reported using an inversion-based
shortcut actually employed one, their latencies should be faster
for inversion problems compared to standard problems. Students
who reported infrequent or no use of a shiortcut should have the
same latencies for both problem types. Grade 2 frequent users
and non-users had faster latencies on inversion than standard
problems, Fe(l, 22) > 14.10, ps < .01. However, the difference
between the two problem types was greater for users (4.04 vs.
19.28 8) than non-users (11.46 vs. 20.17 s). Infrequent users’
latencies were the same for inversion and standard problems, F(1,
22) < 1. Although we would expect that non-users should not be
faster on inversion problems than standard, many students may
have used an inversion based strategy that they did not mention,
and this decreased their response latencies. It is clear though,
that students who said they used inversion were faster on
inversion problems than standard problems. Because of the
shortcut they used, frequent users should also have faster
latencies on inversion problems than the other students. Even
though all three groups were equally fast on standard problems,
Fe(l, 22) < 2.43, ps > .10, on inversion problems frequent users
were faster than infrequent users and non-users, Fs(l, 22) >
5.31, ps < .05. Even though invereion users’ performance on
inversion problems is better than that of other students, it

appears this difference is not due to superior skill in
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calculation.

Because of the computational demands of large problems,
infrequent users and non-users should be faster on small problems
compared to large problems (i.e. the problem-size effect). No
differences between the two problem sizes would be expected for
students who frequently used an inversion-based shortcut.
Furthermore, students who reported frequent use of shortcuts
should be faster on large problems than students who reported
infrequent or no ortcut use. Latencies for the three groups
did not differ significantly for small problems, Fs(l, 44) < 1
(see Table 9). On large problems, however, frequent usars were
faster than non-users, F(l, 44) = 9.49, p < .01l. The mean
latency of infrequent users was intermediate, and did not differ
significantly from the means of the other two groups (ps > .10).
As expected, frequent users were just as fast on large versus as
small problems, F(1, 22) < 1, and infrequent users and non-users
were faster on small problems, Fs(1, 22) > 9.81, ps < .01.
Consistent with the analysis of the accuracy data, these results
indicate that the problem-size effect is evident in the
performance of non-users and infrequent users, and not evident
for frequent users.

S dard b . On standard problems, some students
employed a strategy in which they would subtract the last two

numbers first, and then add the first number. For example, on 2
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+ 7 - 3, students would subtract 3 from 7 and add the result to
2. This strategy represents a shortcut that was ugaed on standa:d
problems and it is important to examine under what conditions
students employed it. Ten students in Grade 2 used subtraction-
first at least once, and no correct answers were observed when
the difference between the last two numbers was a negative
number. Seventeen students in Grade 6 used subtraction-first at
least once, and the majority of incorrect answers (12 out of 14)
also occurred when the difference between the last two numbers
was negative. Although students in both grades used the
strategy, it was used correctly only when the difference between
the last two numbers was positive.

The proportion of standard problems on which students
employed the subtraction-first shortcut was calculated and
subjected to a 2(Grade) X 2(Sex) X 2(Task Order) X 2(Problem
Size) analysis of variance with repeated measures on the last
variable. Students used this strategy on large problems more
than on small problems (21.3% vs. 12.8%), F(l, 72) = 14.44, p <
.01. Presumably on larger problems, where students have a harder
time getting the answer by simple addition and subtraction, they
are more likely to employ an alternative, easier strategy.

Inversion and subtractjon-first procedures. If students who
frequently use an inversion-based shortcut on inversion problems

alsoc use a subtraction-first shortcut on standard problems, we
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may conclude that the use of shortcute represents a general
strategy some students employ for solving problems. The
correlation coefficient between the proportion of inversion use
and the proportion of subtraction-first use was .62 for Grade 2
and .57 for Grade 6 (ps < .0l). Thus students who used the
inversion shortcut were more likely to use the subtraction-first
shortcut. To determine whether the use of these two shortcuts is
related to proficiency in calculation, correlation coefficients
were computed between accuracy on standard problems and the
frequency of using each shortcut, for each grade. These
correlations were negligible, ranging from -.14 to .04. These
results imply that individual differences in use of shortcuts are
not related to proficiency in calculation (as measured by
accuracy on standard problems).
Comprehensio
Whereas the problem-solving task was used to assess

students' spontaneous use of an inversion-based strategy, the
comprehension task was used to assess students’' ability to
identify the appropriate use of an inversion-based strategy (the
evaluation component) and explain why that strategy would work
(the justification component). Students' responses on the
comprehension task also were categorized. A description of all
the strategies observed and procedures for scoring are found in

Appendix E.
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For both lists of inversion problems, responses were
categorized as identifying the appropriate use of inversion if
the student explained the shortcut before any prompt was given
(Yes/No prompt), agreed the shortcut would work (Unconditional
Yas), or first checked and then agreed the shortcut would work
(Conditional Yes). Although placement of the latter group of
responses into this category might be questioned, a majority of
students who gave a conditional yes response for one list (large
or small) gave an unconditional yes response for the other list
(6 out of 10). Furthermore, all of the students who gave a
conditional yes response were able to justify inversion later on.
Responses were also classified in the justification component.
If the student indicated that the last two numbers cancel each
other and therefore the answer was the first number, his or her
response was coded as justifying inversion. The standard
problems were only included in the task to determine whether
students would apply the principle of inversion to problems where
it would not work. Only two students in Grade 2 incorrectly
applied the principle of inversion to standard problems.
Responses of these students' for the inversion problems were not
coded as identifying the appropriate use of inversion or
justifying inversion. Other than in the calculation of
reliability, standard problems were not included in the

subsequent analyses.
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An independent rater, scored responses from 40% of all the
subjects, and reliability with the experimenters scoring was
calculated for each combination of problem size and problem type.
For the evaluation component, reliabilities for the small
inversion, large inversion, and standard problems were .94, .94,
and 1.00 respectively. For the justification component,
reliabilities for the small inversion, large inversicn, and
standard problems were .75, .84, and .75 respectively.
Reliabilities were lower for the justification component because
of the complexity of the responses students gave. For example
responses often included two or three sentences that were
ambiguous. Reliabilities for only those responses that the
experimenter coded as inversion-based on were .87 for small
problems and .96 for large problems. Because analyses of the
justification component employ only the inversion-based responses
on inversion problems, it is appropriate to use the second set of
reliabilities (.87 and .96).
Evaluatjon Component
clagsification of responses for both large and small
problems revealed two groups of students: (a) students who
identified the appropriate use of inversion for both problem
sizes; and (b) students who did not identify the appropriate use
of inversion for both problem sizes. The distribution of

students who could and could not identify inversion on large and
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small problems was examined across several variables. Some
results are clear from examining the percentage of students who
recognized inversion for each of the variables. Similar numbers
of boys as girls (77% vs. 76%) and students who started with the
problem-solving task as those who started with the comprehension
task (78% ve. 74%) identified appropriate inversion use. As
well, students recognized inversion equally often on small
problems as large problems (76%). Grade 6 students recognized
inversion more frequently than Grade 2 students (90% vs. 62.5%),
x2 (1, N = 80) = 8.88, ps < .01l. Although the difference between
Grade 6 and Grade 2 students' use of inversion strategies in
problem solving was unexpectedly small, students in Grade 6 were
able to correctly evaluate an inversion procedure much more
frequently than students in Grade 2.
Justificatjion Component
For the justification component, the distribution of
students who could and could not explain the principle of
inversion was examined in relation to several variables. Chi-
squares were calculated to compare whether or not justification
of inversion was independent of sex, task order, problem size,
and grade. For both small and large problems, justification was
independent of sex (66.6% for boys vs. 78.0% for girls on small
problems and 71.8% for boys vs. 83.0% for girls on large

problems) and task order (73.1% for problem—solving first vs.
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71.8% for comprehension first on small problems and 82.9% for
problem-solving first vs. 71.8% for comprehension first on large
problems), X2 (1, N = 80) < 1.42, ps > .10. As well,
justification was independent of problem size (72.5% for small
ve. 77.5% for large), X2 (1, N = 160) = .53, p > .50. However,
justification varied as a function of grade for both problem
sizes, x2 (1, N = 80) > 4.58, ps < .05. Grade 6 students were
able to justify inversion more frequently than Grade 2 students
(87.5% vs. 57.5% on small and 87.5% ve. 67.5% on large).
Although Grade 6 students did not use inversion-based strategies
spontaneously in problem solving much more frequently than Grade
2 students, they were able to justify inversion more frequently.
Between-Task Analysis
Response Patterns
To examine relations among the tasks and make inferences
about possible forms of understanding associated with them, the
performance of each subject was categorized as successfully or
unsuccessfully performing each task. Flavell and Wohlwill (1969)
argued that an important distinction needs to be made when
deciding the criteria for determining success on a task.
According to Flavell and Wohlwill, competence refers to the
formal representation of some operation, and performance refers
to whether the given operation, if functional, will be called

into play. Using this distinction, success can be evaluated for
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each task in two ways. Based on a first-in-competence criterion,
students would have to show an inversion~-based response at least
once, indicating that the necessary knowledge is available but it
is not used consistently in performance. Based on an always-in-
performance criterion, students would have to demonstrate
accurate use of inversion-based knowledge on the majority of
trials in a task.

Because the performance required to meet the first~in-
competence criterion is different from that of the always-in-
performance criterion, it was desirable to categorize each
gtudent's performance based on both criteria. Students were
rated on each of the three activities (problem-solving task,
evaluation component, and justification component) and ware
categorized on the basis of their ability to successfully apply the
principle of inversion. For example, a student may have
spontanecusly used a shortcut pbased on the principle to solve
inversion problems in the problem-solving task, but not
recognized all the instances of inversion in the evaluation
component or explained the principle in the justification
component. Using the always-in-performance criterion the student
would be categorized as successfully performing the problem-
solving task, and unsuccessfully performing the evaluaticn
component and the justification component.

After categorization, patterns acrxoss the activities were
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examined. If understanding of inversion is a all or none
phenomenon, it would be expected that a student would be
successful on all activities, or unsuccessful on all the
activities. Based on the first-in-competence criterion, 47.5% of
students successfully performed all the tasks, 1.25%
unsuccessfully performed all the tasks, and 51.25% successfully
performed some but not all the taske. Based on the always in
performance criteria, 32.5% of students successfully performed
all the tasks, 13.75% unsuccessfully performed all tasks, and
53.75% successfully performed some but not all the tasks. These
results are consistent with the conclusion that different forms
of understanding co-exist.
Relations Among Activities
Guttman Scaling was used to examine the possible

developmental sequence in the acquisition of different forms of
understanding (Guttman, 1944). Wohlwill (1973) argued that
despite the original role of Guttman Scaling in the study of
presumably continuoue dimensions of attitude, matrices of
response patterns at the core of the model suggest the presence
of a set of discrete responses, such as encountered in the study
of developmental sequences. Patterns of success across the three
activities were analyzed to determine whether they formed a
Guttman scale (Torgarson, 1958). The activities were ordered

from hardest to easiest based on the number students that were
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successful on each activity. The degree to which the data fit
this pattern was calculated. Specifically, each deviation from
the expected pattern was counted as an error, these errors were
accumulated, and two standardized coefficients were computed to
determine whether the activities conformed to a Guttman scale.
The coefficient of reproducibility was calculated to determine
how well the data fit that model, and the coefficient of
scalability was calculated to determine whether the fit to the
model was due to chance. Guttman (1944) suggested that for a
pattern of responses to be considered a scale, the coefficient of
reproducibility should at least .90 and the coefficient of
scalability should be at least .60.

In the evaluation and justification components students were
required to identify and explain an abstract principle about
mathematics. In the problem-solving task students were required
to use component procedures based on that principle. If abstract
principles are acquired before component procedures, then
evaluation or justification should have been least difficult, and
problem-solving should have been most difficult.

Guttman analysis revealed that, when using the always-in-
performance criteria, problem-solving was the hardest activity,
followed by justification, and evaluation (see Table 10). The
data fit this model very well, with the coefficient of

reproducibility being .97 and the coefficient of scalability
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being .88. When the subjects were subdivided into groups by
grade and task order, the data still fit the model very well (see
Table 11). When using the first-in-competence criteria, the
model was the same as above but the data did not fit as well (see
Table 10). The coefficient of reproducibility was .91 and the
coefficient of scalability was .58, although these numbers still
indicate that the data fit the model. In general, data for Grade
6 students fit the model better than data for students in Grade
2. The influence of task order needs more detailed attention.
Performance of students who received the compreshension task first
did not fit the model as well because their experience with
inversion on this task increased their performance on the
problem-solving task. All of the scales produced, however, are
consistent with the conclusion that an understanding of
principles develops first, followed by an understanding of
component procedures.
GENERAL DISCUSSION
The preseat experiment was designed to examine (a) the

conditions that influence students' performance on three
activities designed to assess understanding of inversion, (b)
whether different forme of understanding are associated with
abstract principles and component procedures, and (c) whether a
developmental sequence exists in the acquisition of these

different forms of understanding.
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Analyzing students' performance on three different

activities allows for observation of many behaviors related
to understanding, and also for examination of conditions that
influence those behaviors. If different behaviors are observed
for different activities, and different conditions influence
performance on each activity, we may conclude that understanding
is represented in terms of different forms. In the problem-
solving task some students in both grades used sclution
procedures consistent with the principle of inversion. These
students were more accurate and had faster latencies on inversion
problems than other students. Although students who used
procedures based on inversion were more proficient on inversion
problems, they were not more proficient in mathematics generally.
Decause students who used a shortcut on inversion problems were
more likely to use a shortcut on standard problems, we can
hypothesize that these students were more flexible in their
thinking than other students. Somewhat surprisingly, given the
amount of arithmetic instruction in school, frequency of use
increased only slightly between Grade 2 and Grade 6 and there was
considerable variability in both grades. The use of inversion-
based procedures was also influenced by a student's prior
experience on a task in which with the principle of inversion
could be involved. Specifically, students who were asked to

identify and justify the inversion principle were much more
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likely than other students to use procedures based on i x=-
spontaneously. This facilitative effect was the same == S———

grades.

Although many students in both grades identified tR—

appropriate use of a strategy based on inversion, Grade

students did so more frequently than students in Grade e ————

Students in Grade 6 were also able to justify inversion

frequently than students in Grade 2. Previous expsrienc

solving inversion problems did not influence a student * SEEEEESEEE———

performance on either the evaluation component or the

justification component. If understanding were uniform ..

would expect that the conditions influencing performancassssne———

the same for all of the tasks. Although there was no g==

effect on the problem-solving task, there were large gr AEEEEEEEEEEEEEN——

effects for the comprehension tasks. Wha~ might account=

difference? The spontaneous use of inversion-based sho==

not have increased significantly between Grades 2 and 6
on the problem-solving task students were required to gesEEEEEEE———

the strategy on their own. Strategy generation may be eumEEEEESRE———

difficult for all ages of students. 1In the comprehansi<

students were required to recognize and justify a stratesaEEEEES————
has already been described to them. Because of their e>wssssssssss—

at school, students in Grade 6 may have been much more AN

these types of activities than students in Grade 2. PFu=zc
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previous experience influenced the spontaneous use of procedures
based on inversion but did not influence evaluation or
justification of inversion. These results are consistent with
the conclusion that understanding is not uniform, bu: rather it
is differentiated into many forms.

Cooney and Ladd (1992) argued that children's reports of
strategy use may not be veridical. Because the data collected in
the problem-sclving task were based upon students self-reports of
strategy use, this issue must be addressed. By classifying
subjects into groups on the basis of their self-reports, I could
examine accuracy and latency for students who claimed to use
shortcuts in varying degrees. If self-reports are not veridical,
as Cooney and Ladd suggested, then there should be no relation
between students accuracy, latency, and self-reports. If reports
are veridical however, students who report frequent use of
shortcut should have higher accuracy rates and faster latencies
than students whe did not report frequent use of shortcuts.
Students who reported using a shortcut on inversion problems had
higher accuracy rates and faster latencies than other students.
These results suggest that the self-reports were veridical.

Examination of students' response patterns across the three
activities is important because it takes into account individual
differances in student's performance. Results from these

analyses support the conclusion that it is best ic characterize
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understanding in terms of different forms, rather than as single
construct. For inversion there appears to be a form of
understanding associated with the application of procedures based
on the principle of inversion, a form associated with the
evaluation of procedures to determine their appropriateness, and
a form associated with the justification of procedures. Further,
these forms of understanding can be developmentally ordered.
Analyses support the conclusion that evaluation and justification
precedes spontaneous application in the course of acquisition.
Consistent with this conclusion is the idea that knowledge in
this domain is represented initially in terms of general,
relatively abstract principles, which in turn can be used to
guide or constrain the constructions of more specific procedurss
(Bisanz & LeFevre, 1992).

Although results from the present experiment support the
conclusion that abstract principles guide the use of componen®
procedures, a few questions must still be addressed. First, even
though acquisition of knowledge about inversion can be
represented in terms of abstract principles guiding component
procedures, acgquisition of knowledge in other domains may not
occur this way. In future studies it would be important to
examine performance in a number of knowledge domains to determine
whether the sequence of development in those domains paralleled

each other or whether development of understanding was different
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for different domains.

Second, the mechanisms by which understanding develops must
also be examined. Although using Guttman Scaling has helped to
identify a developmental sequence in which evaluation precedes
justification, which in turn precedes application of procedures,
this analysis does not address the question of how understanding
develops from one form to another. How does a student who is
able to explain why inversion works reach the point where she is
able to use an inversion-based shortcut spontaneously to solve
problems? To gain increased knowledge about the development of
understanding, it is not enough to know which form precedes
another in acquisition. Rather, the nature of change between the
forms must be examined. One way to examine change would be to
use the microgenetic method proposed by Siegler and Crowly
(1991). This method involves (a) observations of individual
students throughout the period of change, (b) a high density of
observations relative to the rate of change within that period,
and (c¢) intensive trial-by-trial analyses intended to infer the
processes that gave rise to the change. To examine different
forms of understand of inversion one should identify students at
different stages, and examine their performance over a number of
weeks.

A microgenetic study may also help to address a related

question: How do abstract principles influence the construction
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or selection and subsequent implementa’.ion of task-specific
procedure (Bisanz & LeFevre, 1992)? Bisanz and LeFevre (1990)
propose a possible model of how knowledge about the principle of
inversion might enable students to use shortcuts on inversion
problems. Abstract principles could be represented in terms of
productions (condition-action statements). In a production
system these conceptual productions could be modified by
knowledge-acquisition productions to create task-specific
procedures that enable a student to use shortcuts on certain
problems. Use of a microgenetic model would be helpful in (a)
identifying task-specific productions and (b) examining students
discrete behaviors to makxe inferences about possible conceptual
and knowledge-acquisition productions.

Using a problem-solving activity, an evaluation activity,
and a justification activity, I identified different forms of
understanding for inversion and the order in which these forms
may be acquired. For psychologists interested in providing a full
account of remembering and problem solving, an integrated and
detailed description of the relation between computational
processes and the common notion of understanding is needed
(Bisanz & LeFevre, 1992). To facilitate this goal, future
research needs to be focused more specifically on the
computational processess related to different forms of

understanding. Further, research needs to be focused on how
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these different forms of understanding are represented in
different knowledge domains. As well, educators and researcher
need to develop instructional methods and assessment techniques

that emphasize the diverse nature of understanding.
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Appendix A
Applicatjon of Procedures Problem Set
1) 7+ 2 -2 = (small inversion)
2) 2+4-~-5= (small standard)

3) 3 + 24 - 26 = (large standard)
4) 9 + 27 - 27 = (large inversion)
5) 4 + 8 - 6 = (small standard)
6) 5 + 29 - 27 = (large standard)
7) 8+ 6 -6= (small inveraion)
8) 7 + 22 - 21 = (large standard)
9) 2 + 25 - 25 = (large inversion)

10) 6

+

2 -3 = (small standard)

11) 8 + 26 - 28 = (large standard)

+

12) S5 7=-7m= (small inversion)
13) 6 + 22 =22 = (large inversion)

14) 9

+

7=-5= (small standard)
15) 4 + 28 ~ 28 = (large inversion)

16) 3

+

4 -4 = (small inversion)
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Appendix B
comprehension Task Problem Sets
Small Inversion List Large Inversion List
2+7-7m= 5 + 22 - 22 =
3+49 -9 = 8 + 27 - 27 =
8 +58 -5 = 4 + 28 - 28 =
7+ 4 =-4= 7 + 25 - 25 =
5 +2 -2 = 3 +29-29=
6 +3-3= 6 + 23 - 23 =
4+8-8a= 2 + 26 - 26 =
9 +6 ~-6= 9+ 24 - 24 =
dard

4 + 25 - 22 =
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Appendix C
Brief d struc
A) First Session: "We are trying to £find out what studewesssss—————
about different math problems. Can you help me with thi se=—————-—

(students name)? I will give you some problems to thinlk

and then I will ask you some questions. Some of the pro=i-—-—

will be easy and some will be hard. What I am interest e=e—

how you think about math, so don't worry if you have tros

some of the problems, this is not a test. All I want ycms

is try your best. The answers chat you give will be recChensss———
the video camera, and I will also write your answers dOu .S EmEE———="
this will help me to remember your answers later on. S P R ———
begin?"”

B) Problem-solving task Instructions: "Today I would liJecssusses—"
solve a number of addition and subtraction problems and

how you solved them. I will show you a set of problems

time and when you get an answer, say it out loud. I wi NN
ask you to tell me what you were thinking as you solved

problem. To give you some practice, I want you to tell

you think the answer is for the following problems.™ P
two-term problems. "Now I'm going to give you some dif f eSSS—
problems, and I want you to tell me the answers, and howkaETEEE————

the answers."”
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vSo those were some practice problems. Now lets continue with
new problems. Remember, I want you to tell me the answer first,
and then tell me what you were thinking as you solved the
problem. Are you ready to begin?”

C) Comprehension Task

Instructions: "Now I want you to look at different Lists of
problems, and for each list, I want you to tell me what is the
same about all the problems in the lint. Here is the first list.
Look at all the problems carefully and tell me how they are all
alike."”

Prompt: If the child doesn't know how they are alike,
show him or her how they are alike. For example: "For all these
problems you add one number, and then take away that same number.
Does that work down here? Is that the same for all these
problems?” Then ask the child: "If you had to tell another
student how these problems are alike, what would you tell them?"
When satisfied that the child understands how the problems are

similar continue with the task.

Comprehension Tagk Text

For each inversion set (a+b-b) say: "A boy/girl I know says
that if you start with a certain number (point at the "a”
numbers) and you add number (point at the first "b") then take
away that same number (point at the second "b"}), the answer is

always going to be the first number you started with. He/she
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says that in any problem with plus a number and minus that same
number you really don't need to add and take away those two
numbers, the answer will always the number you started with. So
here (point to a problem) the answer would be ...(have student
respond). Well any way, that's what he/she says. What o you
think? Would his/her way of doing it give you the right anewer
for all these problems, or would you have to add and subtract
each number separatuly (evaluation of procedures component)? Why
do you think that (justification of procedures component)?”

For second set of inversion problems say: "Now this list of
problems is similar to t:he last list of problems that we looked
at. See you add a number and take away the same number. Is that
the same for all the numbers in the list?”

"The same boy/girl says that, like the last list of
problems, in any problem with plus a number and minus that same
number you really don't need to add and take away those two
numbers, the answer will always the number you startaed with. So
here (point to a problem) the answer would be ... Well any way,
that's what he/she says. What do you think? Would his/her way
of doing it give you the right answer for all these problems, or
would you have to add and subtract each number separately? Why
do you think that?"

For the standard set say: "A boy/girl I know says ithat if

you start with a certain number (I will point at the "a" number)
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and you add another number ( I will point at the "b" number), and
tnen take away a different number (I will point at the "c"
number), the answer is always going to be the first number you
started with. He/she says that in any problem with plus a number
and minus a different number you really don't have to add and
take away those two numbers, the answer will always be the number
you started with. So here (point to a problem) the answer would
be... Well any way that's what he/she says. What do you think?
Would his/her way of doing it give you the right answer for all

of these problems, or would you have to add and subtract each

number separately? Why do you think that?”
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Appendix D
t i (=] t e H
Each response was classified according to (a) the strategy
used to solve a problem and (b) the specific steps that the
student may have taken to carry out that strategy. Sometimes
students used more than one step.
Left to Right: When using this strategy stucdents added and
subtracted the numbers moving from the left to the right of the
problem. Sometimes a student started addition with the largest
number even if it was the second number. This approach was
given a different code than if they started with the first
number.
Example: 7 + 4 ~ 9 =
"7 + 4 = 11"
"11 - 9 = 2"
Separation: When using the left to right strategy, some students
would separate a larger number into smaller sub3ats /'~nes, tens,
twenties)
Example: 2 + 22 - 21 =
"2 + 22 = (2 + 2) + 20 = 24"
"n24 - 21 = (4 -1) + (20 - 20) = 3"
Counting: Sometimes a student counted aloud or on fingers, while
solving a problem from left to right.

Example: 9 + 2 ~ 3 =
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"ecount 2 up (9, 10, 11)"
"count 3 down (11, 10, 9, 8)"
Suspected Counting: Sometimes it was not easy to tell if a
student was counting or not. Counting was suspected if: (a) the
student's mouth or head moved as if they were counting, (b) the
student manipulated his or her fingers, and (c) the student's
hands appeared to move under the table while he or she was
wolving a problem, and were above table when he or she was not
solving a problem.
Derived Fact: Sometimes a student used some derived fact to help
them solve a problem while moving from left to right.
Example: 8 + 4 - 6 =
"(8 + 4 = 12) (know that 6 plus 6 is 12
therefore 12 - 6 must be 6)"
No Visible Procedure: In many cases there was no visible
avidence that a student had used some type of intermediate step.
Subtraction-firet: Using this strategy, students reduced the
problem to a simpler form by subtracting first.
Example: 9 + 28 - 24 =
"(28 - 24 = 4), (4 +9 =13)"
Separation: Hers the student separated larger numbers into
subsete.
Counting: Here the student counted aloud or on fingers.

Derived Fact: Here the student uses some derived fact that they
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knew to help solve the problem.
Negation: In negation the student would add the first two numbers
together, and then would realize that he or she had to subtract
the same number that was added. The student would remember the
first number and give it as the answer rather than subtracting
the last number. It was difficult to distinguish this strategy
from both the left-to-right strategy and the inversion stratagy.
To categorize a response as negation there had to be evidence
that the student added the first two numbers (eg. giving the sum
of the first two numbers). As well, there had to be evidence
that he or she did not subtract the last number (eg. saying "It
just goes back to first number.").
Example: 9 + 28 - 28 =
"(9 + 28 = 37) (take away the 28, so it
just goes back to 9)"
Inversion: When using this strategy the student stated "the last
two numbers are the same" or "the last two numbers cancsl out”
and quickly stated the first number as the answer. There must
have been no indication that the student added or subtracted any
of the numbers in the problem
Example: 9 + 28 - 28 = 9
"(28 - 28 = 0) or (28's cancel)" or " (take away the
game number so it is the first number)”

c ateqy: Here the student used some other clear strategy
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to solve all problems.
Example: the student always gave the first number as
the answer to the problem (poeition rule, magnitude rule).
Other: Anything that did not fit the above categories was

classified as "other.”
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Appendix E
e ion Task: Evalu (o]

Classifying responses in evaluation of procedures component
involved coding the first response students made to the following
question: "Would her/his way of doing it give you the right
answer, or would you have to add and subtract each number
separately?”

Yes o om : Here the student said the inversion atrategy
would work before hearing the prompt. For example, a response
was classified as yes, no prompt if when the student was asked to
explain how all the problems in the list were the same, they said
“the last two equal zero so the answer is the first number," or
"the last two cancel out so the answer is the first number."
Unconditional Yes: Here the student agreed that the inversion
strategy could be used, and it would be correcL. For example, a
response was classified as unconditional yes if after hearing the
prompt the student said "her way would work,” or "yes they are
right.”

Conditional Yes: Here the student indicated that you could use
the inversion strategy but did so based on some condition. For
example, the student might have said "yes it could work but you
would have to add and subtract to make sure it is right.” If
there was evidence the student looked through the problems to

check if the first number was the answer, and then said "yes her
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way would be right", their response was classified as conditional
yes.
Unconditional No: Here the student indicated that the inversion
stratagy could not be used. For example, when asked if the
girl's way would work the student said "you would have to add and
gubtract all the numbers" or said "no her way would not work."
Conditional No: Here the student indicated that no the girl's
strategy would not work but the student’'s answer was baged on
gome condition. For example, the student might have said "no I
don't think her way would work but I would have to check.”
No, no prompt: Here the student said the inversion strateqy
would not work before he or she heard the prompt. For example,
before hearing the prompt the student gaid "on these ones her way
would not work."
Maybe: Here the student thinks the inversion strategy would work
but he or she was not sure.
don' w: The student did not know one way or another if the
inversion strategy would work.
nsjon Task: Just cation Com
classifying responses in the justification component
involved analyzing the justifications students gave for their
responses in the rvaluation of procedures component. This
included all responses after the gquesticn "Why do you think

that?" was asked.
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Add and Subtract: The student indicated that you must add and
subtract all the numbers to get the right answer. They did not
attempt to solve any of the problems. For example, students said
"you must add and subtract to make sure the answers are right",
or "because that'es the right way to do it", or "the numbers are
different in a problem, therefore you must add and subtract the
numbers”, or "the last two numbers don't equal zero therefore you
have to add and subtract.”
Empirjcal Proof: Some students gave an empirical proof to a
specific problem to justify their answer. For example, the
student added and subtracted all the numbers in the problem to
see if saying the first number is the answer was right. Thers
must have been evidence that they added and subtracted all the
numbers. The student might have said, "his way of doing it will
give you the right answers see, 4 + 8 = 12, and 12 ~ 8 = 4" (for
problem 4 + 8 - 8 = ).
I don't know: The student could not give a justification for
his or her answer.
Other: The student gave some clear, consistent justification
that did not fit in the other categories. For example, the
student said "the first number is always the answer,” or "the
smallest number is the answer.”
Ambiguoug: Here the student gave a reason that was not clear.

For example, the student said "because the last two numbers are
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higher the 20."

Inversion with an Example: Some students used a specific

example to justify inversion but could not state a general rule.
There was also no evidence they added all the numbers together to
check. For example, the student said "if you add 25 and take
away the same 25 you added, you only have seven left." Although
he or she gave an explanation for inversion, the student tied it
to a specific example. The student could not generalize to a
general rule.

v Gene : Here the student used a general zule to
explain inversion. Although originally, he or she may have used
a specific example, if at any time the student gave a general
rule, he or she was placed in this category. For example, the
student said "the last two numbers are the same, therefore the
answer is the first number"”, or "you add and subtract the same
number, therefore the answer is the first number®, or "the last

two numbers equal zero, therefore the answer is the firet

number."
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Table 1
Me t 8 a
Problem Size
zrade Small Laxge
2 .74 .51
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Table 2
on o oble a
Problem Size
Problem Size

Problem Tvpe Small Large

Standard .77 .52

Inversion .92 .85
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Table 3

Mean Initial Accuracy as a Function of Grade, Task Oxr <=
Problem Type

Grade 2

Problem Solving First Comprehens —x=

Problem Type
Standard .52 sy _
Inversion .72 . § S ———
Grade 6
Problem Solving First Comprehenss -
Problem Type
Standard .83 o - S

Inversion .93 -
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Table 3

Mean Injtial Accuracy as a Function of Gcade, Task Order, and

Problem Type
Grade 2
Problem Solving First Comprzhension First
Problem Type
Standard .52 .38
Inversion .72 .89
Grade 6
Problem Solving First Comprehension First
Problem Type
Standard . .83 .86

Inversion .93 .99
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Table 4
Perc of Strate Use: Inversion Problem
Problem Size

Strateqy Small Large
Left to Right 46.8 38.7

Separation 0.0 1.6

Counting 4.0 5.3

Suspected Counting 0.3 0.3

Derived Fact 0.9 0.3

No viasible procedure 6.3 30.3

Other 0.3 0.9
Negation 6.6 6.9
Inversion 43.4 49.4
Clear Strategy 3.1 4.1

Other 0.0 0.9
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Table 5

e se: Standard Proble

nrroblem Size

strateqy Small Large
Left to Right 81.5 69.5
Separat: 0.6 5.1
Counting 8.5 10.7
Suspectad Counting 0.9 0.9
Derived Fact 6.2 1.5
No visible procedure 65.0 48.4
Other 0.9 2.9
Subtraction-first 14.0 21.2
Separation G.0 2.5
Counting 0.9 0.0
Suspected Counting 0.9 0.0
No visible procedure 12.2 18.4
Other 0.0 0.3
Clear Strategy 5.3 7.5

Other 0.9 1.7
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Table 6
Accuracy a unction of Grad nv
iype
Grade 2
Standard Problems Inversion Problems
v on Us
Frequent Users .41 .99
Infrequent Users .53 .72
Non-users .44 .69
Grade 6
Standard Problems Tnversion Problems
Inversion Use
Frequent Uders .83 .98
Infrequent Users .82 .93

Non-usece .88 .95
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Table 7

Mean Accuracy of _a Function of Inversion Usé and Problem Size

Problem Size

Inversion Use Small Large
Fregquent Users .84 77
Infrequent Users .87 .63

Non-users .84 .64
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Tabla 8
Average Median latencies (in seconds) as a Function of Inversion

Problem Type

Inversion Use Standard Inversion
Frequent Users 19.28 4.04
Infrequent Users 15.14 12.94

Non-ugers 20.17 11.46
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Table 9
o versio
Use and Problem Size for Grade 2 Students
Problem Size

Inversion Use Small = Large
Frequent Users 10.51 12.81

Infrequent Users 9.17 18.61

Non-users 8.05 23.58
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Table 10

Guttman Scaling: Response Patterng

Always-in~Performance Criterion

Problem Number of
-s8olving Justification Evaluation ub
+ + + 26
+ + - 4
+ - + 3
+ - - 1
- + + 22
- + - 3
- - + 10
- - - 11

(continued)
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First-in-competence Criterion

Problem Number of
- valu b

+ + + 42

+ + - 0

+ - + 3

+ - - 6

- + + 15

- + - 4

- - + e

Note. + indicates success based on the critsrion, and - indicates

failure.
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Table 11
guttman Scaling Coefficients
Always-in-Performance Criterion
Reproducibility Scalability
Grouping
All students (both orders) .97 .88
Task Order 1 1.00 1.00
Task Order 2 .93 .76
Grade 2 (both orders) .95 .84
Task Order 1 1.00 1.00
Task Order 2 .89 .72
Grade 6 (both orders) .98 .93
Task Order 1 1.00 1.00
Task Order 2 .97 .80

(continued)
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First-in-Competence Criterion

Reproducibility Scalability

Grouping
All Students (both orders) .91 .58
Task Order 1 «95 .78
Task Order 2 .90 .52
Grade 2 (both orders) .88 .61

Tank Order 1 .94 .75

Task Order 2 .91 .70
Grade 6 (both orders) .97 .73

Task Order 1 .97 .71

Tauk Order 2 .97 .75
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Figure Captions
Figure 1. Latencies as a function of problem size and problem
type for Grade 2 students.
Fiqure 2. Latencies as a function of problem size and problem

type for Grade 6 etudents.
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