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Abstract 

Neuraminidase enzymes (NEU) catalyze the cleavage of sialic acid residues from 

sialylated oligosaccharides, glycoproteins, and glycolipids. The human neuraminidase 

enzymes (hNEU) are a family of four isoenzymes (NEU1, NEU2, NEU3, and NEU4), 

which cleave terminal sialic acid groups (exo-sialidase). Members of the hNEU family 

are proposed play important roles in health and disease by controlling the composition of 

cellular sialosides. The membrane-associated enzyme, NEU3, is responsible for cleaving 

glycolipid substrates and plays critical roles in cell signaling. Although gangliosides, 

such as GM3, are known as substrates for NEU3, there are several uncommon natural 

analogs of this substrate found in human cells, including Neu5Gc and 9-O-Ac-Neu5Ac 

derivatives.  

This thesis presents the synthesis and characterization of a series of GM3 analogs 

{Neu5Acα(2→3)Galβ(1→4)Glcβ(1→1)cer} with an octyl aglycone and containing either 

Neu5Ac, Neu5Gc, or 9-O-Ac-Neu5Ac terminal residues. Furthermore, we generated each 

of these compounds with either an α(2→3)- or α(2→6)-glycosidic linkage. Additionally, 

to examine the role of the sialic acid esterase (SIAE) enzyme, which is responsible for 

degredation of 9-O-Ac-Neu5Ac residues, we developed a synthesis of a chloro-acetate 

analog of the esterase substrate, which will be studied as an inhibitor or label of the 

SIAE. 
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Preface 

This thesis is an original work by the author, Neha Khanna. The enzymes (CMP-Neu5Ac 

synthetase, Sialic acid aldolase, α(2→3)-sialyltransferase, α(2→6)-sialyltransferase) 

required for chemoenzymatic reactions in Chapter 2 and 3 were provided by Ruixiang 

Zheng (Blake).  
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1.1 Introduction  

Carbohydrates are an essential structural component and source of energy for 

living cells. Carbohydrates are polyhydoxylated carbonyl compounds, consisting of 

mainly aldehyde (aldoses) and ketones (ketoses). Carbohydrate antigens (also called 

glycans) are expressed on the cell surface as components of glycoproteins, glycolipids, 

and gangliosides. Glycans are also collectively referred to as glycoconjugates. 

Glycoconjugates contribute significantly to fundamental biological functions, such as cell 

differentiation, cell adhesion, cell-cell interaction, pathogen-host recognition, toxin-

receptor interactions, cancer metastasis, immune responses, and regulation of signaling 

pathways.1 Glycoconjugates with terminal sialic acids are recognized by an enzyme, 

Neuramindase. 

Neuraminidases are enzymes that hydrolytically cleave the sialic acid residues 

linked to various glycoconjugates.2 Neuraminidase enzymes are interchangeably referred 

to as sialidase enzymes due to their substrates, which are known as sialic or neuraminic 

acids. Neuraminidases are widely distributed in nature, and are found in virus, fungal, 

protozoal, bacterial, avian, and mammalian species. However, the enzymes are absent in 

plant, yeast, and insects.3,4 There are two primary forms of neuraminidases: a) exo-α-

sialidase (N-acylneuraminyl glycohydrolases) and b) endo-α-sialidase (endo-N-

acylneuraminidase).2,5 Exo-α-sialidases hydrolyze the glycosidically linked terminal 

sialic acids from glycoconjugates including glycoproteins, oligosaccharides, glycolipids, 

colominic acid, and synthetic substrates. Endo-α-sialidases, on the other hand, hydrolyze 

the internal glycosidic linkages in polysialyated compounds.5 
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1.2 Sialic acids 

Sialic acids are a family of α-keto acids with a nine-carbon backbone. These are 

also known as nonulsonic acids.1 This nine-carbon chain of sialic acids is an exception to 

vertebrate glycoconjugates which are mainly composed of five and six-carbon sugars.7 

Sialic acids were first identified by Gunnar Blix and Ernst Klenk in the 1930s as a 

hydrolytic product of brain glycolipids or salivary mucins.8 The word "sialic" is derived 

from the Greek word sialos meaning saliva (coined by Blix) while the term "neuraminic" 

is derived from neuro-, which refers to the neurological source of the glycolipids (coined 

by Klenk).1 At physiological pH, sialic acids are negatively charged, which makes them 

ideal for ionic interactions with other charged species such as amino acids. In addition, 

sialic acids are easily accessible for intermolecular interactions as they are usually 

terminal sugars in glycoconjugates.7  

The sialic acids are not a single compound but are a diverse family of more than 

50 members of structurally distinct molecules.9 Naturally occurring forms of sialic acids 

are N- or O-substituted derivatives of neuraminic acid (1-1, Neu) (Scheme 1.1), which 

itself is not found in nature. In fact, neuraminic acid is biosynthesized via condensation of 

neutral six-carbon unit N-acetyl-D-mannosamine with a three-carbon pyruvate in 

presence of sialic acid aldolase. The high-energy nucleotide sugar donor form of sialic 

acid is unusual in nature as compared to other vertebrate monosaccharides. Sialic acids 

are activated as cytidine mononucleotides, i.e., CMP-Sia, whereas other vertebrate 

monosaccharides are activated in the form of uridine or guanine dinucleotides, e.g., GDP-

Man and -Fuc, UDP-Glc, -Gal, -GlcNAc, -GalNAc, -GlcUA, and –Xyl.7 

The two most common representatives of sialic acids are 5-acetamido-2-keto-3,5-



	
   4	
  

dideoxy-D-glycero-D-galactonononic acid (1-1, N-acetylneuraminic acid, Neu5Ac or 

NANA) and 2-keto-3-deoxy-D-glycero-D-galactonononic acid (1-2, 2-keto-3-

deoxynononic acid, KDN) (Scheme 1.1).6 Neu5Ac is believed to be the biosynthetic 

precursor for all other members of sialic acid family.10,11,12  The basic difference between 

Neu5Ac 1-1 and KDN 1-2 is the hydroxyl group at C5 position in KDN compared to N-

acetyl group in Neu5Ac.13 Hydroxylation of the 5-N-acetyl group of Neu5Ac gives 

another of the most commonly occurring member of sialic acids, N-glycolylneuraminic 

acid (1-3, Neu5Gc) (Scheme 1.1). Neuraminic acid (1-4, Neu), with an unsubstituted 

amino group, is considered to be derived from Neu5Ac via enzymatic deacetylation.14  

 

 

Scheme 1.1 Structures of Neu5Ac (1-1), KDN (1-2), Neu5Gc (1-3) and Neu (1-4) 

 Some typical modifications of sialic acid include modification of the hydroxyl 

groups at C4, C7, C8, and C9 positions. Several other modifications such as acetylation, 

methylation, sulfonation, lactylation, methylation, and phosphorylation increase the 

diversity of sialic acids.15,16 The linkage of sialic acid is another source of diversity. Sialic 

acids have three glycosidic linkages, α(2→3), α(2→6) and α(2→8), which are observed 

on several glycoproteins. The α(2→3) and α(2→6) is linked to β-D-galactopyranosyl 

(Gal) residues , α(2→6) to α-D-N-acetyl-galactosaminyl (GalNAc) and α(2→8) is linked 
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to other sialic acid residues in gangliosides. These linkages are generated by 

sialyltransferase enzymes such as ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia. They are 

the four families that have been reported in humans,17 and their specific activities are 

discussed in Section 1.4.3. 

 Several different characteristics of sialic acids make them a unique structural 

component of glycoconjugates. Sialic acids have been found to play critical roles in 

biological processes.6 Due to the importance of sialic acids and their ubiquity in nature, 

there is great interest in the synthesis of Neu5Ac derivatives that can be either used as 

enzyme inhibitors or biological probes.18,19,20  

1.3  Sialidases  

 Exo-­‐sialidases hydrolyse the terminal silaic acid from glycoconjugates. In the 

hydrolytic mechanism the configuration of the starting material (sialoglycoside) is 

retained, which means if the starting glycoside has the α-configuration then the product 

that is formed will also have the α-configuration (Figure 1.1).39 

The active site of sialidases contains a pair of carboxyl residues (D50, Asparatic 

acid 50 and E225, Glutamic acid 225), which play central roles in the enzyme's catalytic 

mechanism. The mechanism shown in Figure 1.1, involves the catalytic hydrolysis of a 

sialoside by NEU3 in four steps. In the first step, the dissocation of the reducing end of 

the saccharide occurs either via protonation of water or the D50 residue. Due to this 

dissosciation, an oxacarbenium intermediate is formed which is then attacked by the 

tyrosine 370 (Y370) nucleophile. This attack is assisted by neighbouring group 

participation of the E225 residue. Thus, the enzyme-sialic acid adduct formed is then 
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hydrolyzed through catalysis by D50 resulting the release the free α-sialic acid from the 

active site.39 

 

Figure 1.1 Proposed mechanism of substrate hydrolysis by NEU3 

1.3.1 Viral sialidases 

 The surface of the influenza virus is composed of two main glycoproteins, 

hemagglutinin (HA) and neuraminidase (NA, also known as sialidase). There are 16 

hemagglutinin (H1 to H16) and 9 neuraminidase subtypes (N1 to N9) that have been 

recognized in influenza.21 These surface glycoproteins are also known as carbohydrate 

recognition proteins that target sialic acid. Viral hemagglutinin facilitates influenza 

O O

OH

HN

HO OH

HO
O

O O

O
HO

OH

OH

OH
O

HO O

D50

H

O O O
H

Y370

E225

O
HO

OH

HN

HO OH

HO
O

O

O

O
HO

OH

OH

O
H
O

HO O

D50

O O O
H

Y370

E225

O OH

OH

HN

HO OH

HO
O

O O

O OH

D50

O O O
H

Y370

E225

O

OH

HN

HO OH

HO
O

O

O
H
O

H
O O

D50

O O

Y370E225

O

H



	
   7	
  

adhesion to target cell-surface glycoconjugates by recognizing terminal N-

acetylneuraminic acid (Neu5Ac, 1-1) residues on host cells.22,23,24 HA facilitates the 

internalization process of the virus by fusing the viral envelope with the host cell 

membrane.22,25,26 In comparison, the viral neuraminidase is an exoglycohydrolase, which 

contributes to the release of N-acetylneuraminic acid residues from both host cells and 

new viral glycoconjugates. This process allows the viral particles to migrate and invade 

new cells.26 Thus, both viral hemagglutinin and neuraminidase are vital for the life cycle 

of the virus, and each of these surface glycoproteins are considered drug design targets. 

1.3.2 Inhibitors of viral sialidases 

 The development of anti-viral drugs against influenza infection continues to be a 

major area of research in medicinal chemistry.26 There are three classes of influenza 

viruses: influenza virus A, influenza virus B, and influenza virus C.27 Out of these, 

influenza A and B are responsible for clinical influenza.28 The most successful anti-

influenza strategies have targeted the viral neuraminidase enzymes (vNEU), members of 

glycosyl hydrolase family 34, which cleave terminal N-5-acetyl-neuraminic acid 

(Neu5Ac) residues from host glycoproteins and glycolipids.29 

 The first generation anti-influenza neuraminidase inhibitors were Rimantadine (1-

5) (Scheme 1.2) and its derivative Amantadine (1-6) (Scheme 1.2). These compounds 

specifically targeted influenza virus A.30 The major drawbacks of these compounds were 

their lack of efficacy against influenza virus B strains, side effects, and rapid 

development of drug-resistant strains. These shortcomings have led to the design and 

discovery of a new generation of anti-influenza inhibitors.26 Presently, two viral 

neuramindase inhibitors are used clinically, Zanamivir (1-7) and Oseltamivir (1-8) 
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(Scheme 1.2). The first example of structure-based designed inhibitor of neuraminidase 

was Zanamivir (1-7).31 Later, a potent anti-influenza inhibitor with improved oral 

bioavailability Oseltamivir (1-8) was developed.32,33 Both of these viral neuraminidase 

inhibitors were designed as transition-state mimics based on 2-deoxy-2,3-didehydro-N-5-

acetylneuraminic acid (1-9) (DANA).26 

 

Scheme 1.2 Structures of viral sialidase inhibitors 

1.3.3 Human sialidases 

 Compared to the work done in developing the inhibitors of viral neuraminidase 

enzyme, very little work has been done to target their mammalian counterparts. The 

family of neuraminidase enzyme that are expressed in humans are responsible for 
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mouse cytosolic sialidase was the first expressed and purified mammalian sialidase.35 

Based on the sequencing and order of cloning and expression in humans, these 

neuraminidase enzymes are classified as four different isoenzymes: NEU1, NEU2, NEU3 

and NEU4.4 Amongst these, only NEU2 has been crystallized.36,37 The other enzymes 

have likely resisted structural analysis due to their hydrophobic content or, in the case of 
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NEU1, the requirement of a co-expression system. Due to this limitation, the design of 

specific inhibitors for these enzymes can be challenging. This problem can be partly 

overcome by using homology models for these enzymes based on the NEU2 crystal 

structure as a template. The first reported homology models for NEU1, NEU3 and NEU4 

have been used for this purpose with limited success.38 Our group has developed 

improved models of NEU3 and NEU4, which have been verified by more extensive 

modeling and site-directed mutagenesis.39,40   

 The human neuraminidase enzymes (hNEU) are present in different sub-cellular 

locations. NEU1 and NEU3 are found in plasma and lysosomal membranes of cells, 

NEU2 is found in the cytoplasm, and NEU4 is found in the lysosomal membrane and 

mitochondria.3 In addition, hNEU enzymes also have tissue-specific expression. NEU1 is 

the most highly expressed sialidase with typically 10-20 times higher expression than 

NEU3 and NEU4. NEU2 is the lowest-expressed sialidase based on RT-PCR in human 

brain and lungs.41 The human neuraminidases cleave α(2→3), α(2→6), and α(2→8) 

linkage specificities. In general α(2→6) linkages are found primarily in glycoproteins 

and α(2→8) linkages are found primarily in glycolipids. The NEU1, NEU2, and NEU4 

enzymes are known to hydrolyze glycoproteins, glycolipids and oligosaccharides, while 

NEU3 is specific to ganglioside substrates.34,42,43 It has been reported that NEU2 cleaves 

both α(2→3) and α(2→6) linkages, with preference of α(2→6) over α(2→3).44 The 

hNEU enzymes also show some significant differences in optimal pH. NEU1, NEU3, and 

NEU4 are most active at approximately pH 4.5, whereas NEU2 is most active near 

neutral pH (5.5-6.5).45 

 Deficiency in the hNEU enzymes may lead to several diseases. For example, 
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deficiency of NEU1 results in lysosomal storage diseases.46 Neuraminidase enzymes are 

also partly responsible for changes in metastasis and resistance to apoptosis of cancerous 

cells.47,48,49 Due to the importance of  hNEU enzymes in human health it is necessary to 

design inhibitors for these enzymes both as research tools, but also to explore potential 

therapeutic strategies where these enzymes may be overactive. 

1.3.4 Inhibitors of human sialidases 

 Structure-based drug design of inhibitors against hNEU enzymes has depended 

heavily on the crystal structure of NEU2.37,44,51,52,53 The homology models have been 

used for the other three isoforms.38,39  

 Limited work has been done in testing the activity of inhibitors against the human 

sialidases as compared to viral sialidases. The known inhibitors of viral sialidases show 

weak potency against human enzymes.41 DANA showed micromolar activity against 

NEU2, NEU3 and NEU4, while zanamivir was found to be a micromolar inhibitor of 

NEU2 and NEU3. On the other hand, oseltamivir was completely inactive against all of 

the hNEU enzymes. These results indicated that the C7– C9 binding pocket of the human 

enzymes are different from that of the viral enzymes. Some of the known anti-viral 

compounds have been tested against human neuraminidases.37 For example, the 

derivatives of legionaminic acid (1-10, Scheme 1.3) have been tested against NEU2, 

which indicated limited inhibitory effects.54 Synthetic derivatives of DANA with C9 

modifications were active against both NEU1 and NEU3.50,51 In 2012, Chen and 

coworkers reported that the modification at C9 and N5 positions of DANA with an azido 

group shows the best inhibitory effect with the highest potency against NEU2 and best 

selectivity over several other bacterial sialidases tested.55 
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Our group has reported highly selective inhibitors for NEU2 and NEU3 by modifying the 

C4 and C7 positions of DANA, respectively. These are the first reported compounds that 

have been confirmed to be selective for NEU2 and NEU3 over other hNEU.56,131 

1.4 N-5 and O-9 modifications of Neu5Ac and their attachment with 

glycoconjugates 

 The family of sialic acids consist mainly of N- and O-substituted neuraminic acid 

(Neu5Ac).12 Hydroxylation at N-5 position of Neu5Ac (1-1) gives Neu5Gc (1-3) whereas 

acetylation at C9 position gives 9-O-Ac-Neu5Ac (1-9) (Scheme 1.3). Neu5Gc is one of 

the less commonly expressed members of the sialic acid family in humans as is 9-O-Ac-

Neu5Ac. The modifications of Neu5Gc and 9-O-Ac-Neu5Ac glycoconjugates and what 

is known of their effects on substrate activity are discussed in detail below.  

 

Scheme 1.3 Structures of Neu5Ac (1-1), Neu5Gc (1-3), 9-O-Ac-Neu5Ac (1-9) and 

Legionaminic acid  (1-10) 

1.4.1 N-Glycolylneuraminic acid (Neu5Gc) 

 The mammalian cell surface is covered with a complex range of sugars, which are 

often terminated by sialic acids. However, N-glycolylneuraminic acid (Neu5Gc) is not 

commonly found on the surface of human cells but is widely expressed in the tissues of 

many other mammals. As a result, this monosaccharide is sometimes referred to as non-

human sialic acid.57,58 Neu5Gc is different of Neu5Ac by only one additional oxygen 
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atom. The biosynthesis of Neu5Gc involves a modification from the CMP-sialic acid 

donor. The first step of biosynthetic incorporation of both sugars (Neu5Ac and Neu5Gc) 

involves conversion of free Neu5Ac to the corresponding cytidine-monophosphate-

Neu5Ac-donor.57 The biosynthesis of Neu5Gc results from modification of the Neu5Ac-

nucleotide donor.61-70 Schauer and coworkers discovered the 

hydroxylase/monooxygenase enzyme, CMP-Neu5Ac hydroxylase (CMAH) that 

catalyzes the transfer of one oxygen atom to CMP-Neu5Ac to generate CMP-

Neu5Gc.59,60 This conversion involves the usage of different cofactors such as 

cytochrome b5 and b5 reductase, iron (Fe), oxygen (O2) and NADH (Scheme 1.4).60-70   

 

Scheme 1.4 Biosynthetic pathway of Neu5Gc-sialoside from CMP-Neu5Ac 

 CMP-Neu5Gc acts as a donor to attach Neu5Gc to an acceptor (e.g. glycoproteins 

and glycolipids) through the action of a sialyltranferase enzyme. The product sialosides 

are involved in a broad range of biological processes such as intercellular adhesion, cell-
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substrates for human NEU2 and bacterial neuraminidases.71,72 Substrate activity studies 

can be useful in designing selective sialidase inhibitors against hNEU2.71 To date, the 

substrate activity of Neu5Gc sialosides has not been tested against any other human 

neuraminidase isoenzymes. 

 In comparison to other mammals, such as rodents and ungulates, human tissues 

are deficient in Neu5Gc.73-75 In the 1970’s, researchers investigated the role of Neu5Gc 

as a foreign antigen to humans when they observed immune responses against horse 

serum used for clinical treatments, which was found to be enriched with Neu5Gc.76-78 

The lack of Neu5Gc in human tissue is due to an inactivating mutation in the gene 

encoding CMP-N-acetylneuraminic acid hydroxylase (CMAH).  

	
   The consequences of CMAH gene inactivation in humans is the loss of Neu5Gc 

and accumulation of its metabolic precursor, Neu5Ac. Secondly, pathogens that bind to 

Neu5Ac would be more able to infect human cells, whereas pathogens that bind to 

Neu5Gc would not be able to infect humans. This change in the glycan structures of 

humans could also affect the function of sialic acid receptors in the immune system. 

Mutation of the gene encoding CMAH in humans has been proposed to play a role in 

human brain evolution from other mammals.57,58	
  

 Despite the lack of activity in CMAH in humans, Neu5Gc can be found in human 

tumors, fetal tissues, and in some cultured cell lines of human origin.79-91 One reason for 

this observation may be the metabolic incorporation of Neu5Gc into human tissue from 

dietary sources of animal origin. Beef, pork, and lamb are rich sources of Neu5Gc. Cow’s 

milk and fish products have lesser amounts of Neu5Gc whereas plants and poultry do not 

contain any Neu5Gc.92 The non-human sialic acid, Neu5Gc, may play important roles in 
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human cancer. Recently, it has been reported that incorporation of Neu5Gc from food can 

lead to cancer initiation and progression as well as other inflammatory diseases. Thus, 

reducing the consumption of Neu5Gc containing food could prevent malignant diseases 

and cardiovascular disorders.92 

1.4.2 9-O-Acetylneuraminic acid (9-O-Ac-Neu5Ac) 

 Among the sialic acid family, the most frequently occurring modification is O-

acetylation. The O-acetylation can occur at the C7, 8, 9 positions of neuraminic acid to 

form N-acetyl-7,8, or 9-O-acetyl neuraminic acids. The family of O-acetylated 

sialoglycoconjugates are also abbreviated as O-AcSGs.93,94 Under physiological 

conditions, O-acetyl esters at the C7 and C8 positions are not very stable and thus 

spontaneously migrate to the C9 position of neuraminic acid, which is the most common 

biologically occurring modification.95,96 These O-AcSGs are involved in various 

physiological and pathological processes such as cell signaling, cell-cell adhesion, cell 

differentiation and metastasis.95   

 The O-acetylated sialoglycoconjugates are formed after activation of the sialic 

acid derivative, 9-O-Ac-Neu5Ac. The activated form of 9-O-Ac-Neu5Ac, cytidine 

monophosphate-9-O-Ac-Neu5Ac (CMP-9-O-Ac-Neu5Ac), acts as a donor to react with 

acceptor (e.g. glycoproteins and glycolipids) in the presence of a sialyltransferase. The 

linkage between the oligosaccharide chain of the glycoconjugate and sialic acid can be 

α(2→3), α(2→6), or α(2→8). Generally, the most common accepting subterminal sugar 

is galactose (Gal) or N-acetyl galactosamine (GalNAc), or less commonly N-acetyl 

glucosamine (GlcNAc).97  

 The O-acetylated sialoglycoconjugates can be formed by using O-acetyl 
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transferase enzymes. These enzymes catalyze the transfer of the acetyl group from acetyl-

coenzyme A (CoA) onto sialoglycoconjugates at the C7, 8, or 9 positions.96,98 However, 

the acetyl group is first inserted on the C7-OH group; from there it migrates to the C9 

position non-enzymatically, presumably via an intermediate C8 O-Ac.94,96 The O-acetyl 

esters can be removed from O-acetylated sialoglycoconjugates by using an esterase.99,100 

 The quantification of 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) is often 

done by enzymatic or chemical hydrolytic cleavage. However, these methods may result 

in incomplete release of sialic acids, de-O-acetylation, and spontaneous migration of O-

acetyl groups.97 Earlier probes for detection of 9-O-AcSGs involved a variety of sialic 

acid-binding lectins or monoclonal antibodies.91,101-106 But now these 

sialoglycoconjugates can be quantified by using MALDI-TOF mass spectrometry 

techniques.107 

 The accessibility of silaoglycoconjugates at the periphery of the cell surface 

makes them well suited to serve as molecular determinants of various biological 

processes.97 The 9-O-AcSGs are involved as differentiation markers in developmental 

processes, inhibition of binding, invasion of malarial parasites, and also in protection 

against sialidases.95,108,109,110 The acetylation of the hydroxyl group at C9 results in 

enhancing haemolysis.97 The 9-O-AcSGs plays a regulatory role in preventing 

undesirable interactions of CD22 with targets in humans by masking the binding of the 

terminal sialic acid residues to human CD22.111 As a consequence of this, 9-O-AcSGs  

prevents the initiation of CD22-dependent cellular responses, such as cell proliferation 

and differentiation, immune responses, and metastasis leading to a loss of host defense 

and immunosuppression.97 Despite their importance in various biological processes, the 
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substrate activity of these 9-O-AcSGs against human neuraminidases enzyme has not 

been studied. If these variants of sialic acid play such important biological roles, any 

enzymes that modify them will act as regulators. The identification of differential activity 

among hNEU isoenzymes may help elucidate the roles of AcSGs and the enzymes that 

interact with them. 

1.4.3 Linkage between sialic acid derivatives and various glycoconjugates 

 Sialic acids have glycosidic linkages α(2→3) or α(2→6) to β-D-galactopyranosyl 

(Gal) residues, or α(2→6) to α-D-N-acetyl-galactosaminyl (GalNAc) or α-D-N-

acetylglucosaminyl (GlcNAc) residues. Sialic acids are also found in α(2→8)-linkages to 

other sialic acid residues in gangliosides and in polysialic acid (PSA), which is a linear 

α(2→8)-homopolymer observed on several glycoproteins. This linkage is generated by 

sialyltransferase enzymes, and further expands the diversity of sialic acid residues on 

cell-surface glycoconjugates.17,112,115 Sialyltransferases are a family of 

glycosyltransferases that catalyze the transfer of sialic acid from an activated sugar donar, 

cytidine mononucleotides-sialic acid (CMP-SA) onto the terminal non-reducing end of 

oligosaccharide chains of glycoproteins and glycolipids. The reaction takes place via 

nucleophilic displacement of CMP with inversion of configuration at the anomeric 

center.113 

 Twenty sialyltransferase enzymes are thought to be required for the synthesis of 

all known sialoglycoconjugates, which show high specificity for the anomeric linkage 

between sugar donar as well as oligosaccharide acceptor. Only 15 sialyltransferases have 

been cloned from animal sources to date.112,113,114 Sialyltransferase genes may be 

differentially expressed in a tissue-, cell type-, and stage-specific manner. These enzymes 
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differ in their substrate specificity, tissue distribution and various biochemical 

parameters; however, one linkage can be synthesized by multiple enzymes.114 In spite of 

their essential roles in the recognition and biosynthesis of specific sialylated 

oligosaccharide chains, so far there is only limited information available on their 

structures, substrate specificities, and recognition processes, and on the cellular 

mechanisms involved in the regulation of their transcriptional expression.112,114  

1.5 Sialic acid acetyl esterase (SIAE) enzyme 

 The two enzymes that regulate the O-acetylation of sialic acids are Sialic acid 

transferase (SIAT) and Sialic acid acetylesterase (SIAE) (Figure 1.2). The role of SIAT 

is described above in section 1.4.3. Sialic acid acetyl esterase was originally 

characterized by Varki and coworkers, and specifically removes O-acetyl esters from 

naturally occurring sialic acids.116,117 

 

 Figure 1.2 Regulation of O-acetylation of sialic acids  

  This O-acetylation and de-O-acetylation of sialic acid modification is an 

important factor in determining the peripheral structure of N-linked oligosaccharides.99 

These esters have been involved in cell adhesion, lectin recognition, tissue 

morphogenesis, and several other biological phenomena such as tumor antigenicity, and 

complement activation.12,95,118 The activity of SIAE has been described in both viruses 

and vertebrates.117 

SIAT

SIAE

Neu5Ac 9-O-Ac-Neu5Ac

O

COO

O

OH

HN

HO OH

HO
O

O

COO

O

OH

HN

AcO OH

HO
O

Acetyl-CoA

OAc



 Sialic acid acetylesterase is thought to be a key regulator of B cell tolerance. The 

B cell receptor (BCR) is negatively regulated by the CD22 co-receptor.  The cis  

sialosides (found on the same cell surface) and trans sialosides (found on adjacent cell 

surface)  are basically responsible for this activation process.119 O-Acetylation of sialic 

acid antigen has been recognized as the mechanism that inhibits the interaction of 

sialosides with CD22 and can contribute to autoimmunity.111,120,121  Thus, inhibition of 

SIAE could increase the concentration of acetylated sialic acid, which will not interact 

with CD22 and could result in activation of the BCR (Figure 1.3). Studies in animal 

models have suggested that these enzymes are required for maintenance of 

immunological tolerance in mice.121,122  

 

Figure 1.3 BCR negatively regulated by CD22 co-receptor. Deacetylated antigen 

sialosides binds with CD22 and hence deactivate BCR whereas acetylated antigen 

sialosides doesnot binds with CD22 and thus results in activation of BCR 

 Cravatt and coworkers have reported the non-specific labeling of SIAE using 

organophosphorus reagents.123 Fluorophosphonates (FPs) are well-characterized affinity 

labels for serine hyrolases.124,125 The SIAE was identified using irreversible FPs to label 

and sequence the protein as a novel member of the serine hydrolase superfamily.123 The 
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Sialic acid acetylesterase – fluorophosphonates (SIAE-FP) interactions were 

characterized by using a gel-free version of ABPP (activity-based protein profiling). This 

ABPP enables probe-labeling sites for enzyme determination in complex proteomes.126,127 

These organophosphorus reagents are however non-specific, and are only suitable in vitro 

use and would not be useful for cell-based experiments due to their lack of specificity.  

1.6 Project Objectives 

 Members of the human neuraminidase enzyme (hNEU) family are proposed to 

play important roles in health and disease by controlling the composition of cellular 

sialosides. Thus, there is a need to explore the substrate specificity of the human 

neuraminidase enzymes in order to design selective inhibitors and to understand their 

native activity. Although gangliosides, such as GM3, are known as substrates for human 

NEU3, there are uncommon natural analogs found in human cells with unknown 

substrate activity. The most notable of these include Neu5Gc and 9-O-Ac-Neu5Ac 

derivatives. We hypothesized that these modifications of the Neu5Ac residue could alter 

the substrate activity of glycolipids and glycoproteins for hNEU. In this thesis, we test 

this hypothesis by synthesizing GM3 analogs that contain these modifications. 

 In previous work, our group has reported that a hydrophobic aglycone is required 

for substrate recognition by the NEU3 enzyme.128 More hydrophobic groups (logP > 4) 

were the best substrates for NEU3. In fact, octyl glycosides were of comparable activity 

as the native sphingolipids. Thus, GM3 analogs that contain an octyl chain are expected 

to be good substrates for NEU3 and are much simpler to generate. It was also found that 

large modifications at the C9 and N5 positions of Neu5Ac inhibited NEU3 activity.128 
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This finding suggests that naturally occurring modifications at C9 (9-O-AcNeu5Ac) and 

N5 (Neu5Gc) may also have reduced NEU3 activity. 

There is limited information about the influence of different glycosidic linkages 

on the activity of hNEU. Chen and coworkers have studied the substrate activity of a 

Neu5Gc galactoside with several bacterial neuraminidases and the human cytosolic 

neuraminidase enzyme, NEU2.71,72 In general, the α(2→3) analogs of Neu5Gc sialosides 

showed 2-4 fold higher activity as compared to the α(2→6) linked sialosides.71  However, 

the substrate activity of Neu5Gc sialosides have not been tested against any other human 

neuraminidase enzymes.  

 Considering these results, we planned to synthesize a panel of trisaccharide 

analogs of GM3 containing modifications of the Neu5Ac residue, including Neu5Gc, 9-

O-Ac-Neu5Ac, and both α(2→3) and α(2→6) glycosidic linkages (Figure 1.4). 

Enzymatic assays of these compounds with human neuraminidase isoenzymes (NEU1, 

NEU2, NEU3 and NEU4) would provide crucial insights into the role of these 

modifications in biological systems.  

 

Figure 1.4 Structure of GM3 target analogs 
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  The regulation of the 9-O-Ac modifications of sialic acid are a growing area of 

biological interest. The activity of the sialic acid esterase (SIAE) may be important for 

the study of autoimmune disease.111,120,121 We designed candidate inhibitors of SIAE 

based on C-9-α-halo-esters of Neu5Ac. The α-halo ketones have been used as specific 

covalent inhibitors for other esterase enzymes.129,130 We develop synthetic methods to 

obtain the chloro-acetate analog of the esterase substrate, which can also incorporate a tag 

to act as a probe to allow detection of SIAE (Figure 1.5). 

 

Figure 1.5 Proposed inhibitor of SIAE 
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2.1 Introduction 

The human neuraminidase enzymes are a family of glycosyl hydrolases that 

catalyze the hydrolytic cleavage of terminal sialic acid residues from sialylated 

oligosaccharides, glycoproteins, and glycolipids. These enzymes are widely distributed in 

nature, such as in viruses, fungi, protozoan, bacterial, and avian and mammalian species.1 

Dysfunction of these enzymes can lead to disorders of sialic acid storage, such as type I 

and type II sialidosis.2,3 The human neuraminidase enzymes also play important roles in 

health and disease. Some of these roles are essential in cell function such as immune cell 

activation, cellular communication, signaling, adhesion, apoptosis, and metastasis of 

malignant cells.4-15   
 In humans, the known members of the human neuraminidase (hNEU; also known 

as sialidases) enzyme family include four isoenzymes (NEU1, NEU2, NEU3, and 

NEU4). All these enzymes are classified as exo-sialidases (EC 3.2.1.18) and are members 

of glycoside hydrolase family 33 in the CaZy database.16 Out of these enzymes, NEU3 is 

known to be a peripheral membrane-associated enzyme with activity at the outer 

leaflet.17-19 The NEU3 isoenzyme is selective for hydrolytic cleavage of glycoproteins 

and glycolipids over small soluble molecules. This suggests that its basic function is to 

process substrates that are bound to the membrane.20 The NEU3 sialidase also shows a 

substantial preference for ganglioside substrates (such as glycolipids) over 

glycoproteins.21  

 Glycolipids are essential components of the plasma membrane and the specificity 

of NEU3 for these substrates could play an important role in mediating membrane 

signaling.18 The specificity of NEU3 for commonly occurring natural ganglioside 
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substrates has been examined in previous studies. Many groups have observed that this 

enzyme hydrolyses α(2→3) sialosides (e.g., GM3, GD1a, and GT1b) and α(2→8) 

sialosides (e.g., GD3, GD1b, and GT1b). 6,11,21-25 Previous studies show that α(2→3) 

sialylated glycolipids with a branch point at the adjacent galactose residue e.g,  

Neu5Acα(2→3)[Galβ(1→3)GalNAcβ(1→4)]Galβ(1→4)(Glcβ(1→1)cer, as found in 

GM1 and GM2, are poor substrates for NEU3.21-23  

 The most common natural modifications of glycoconjugates are Neu5Gc and 9-O-

acetyl-Neu5Ac. Neu5Gc is a modification of Neu5Ac with hydroxylation at the N-5 

acetyl position, whereas 9-O-Ac-Neu5Ac is acetylated at the C-9 position of Neu5Ac 

(Scheme 1.3). In humans, both Neu5Gc and 9-O-Ac-Neu5Ac are one of the less 

commonly expressed members of the sialic acid family. The modifications of Neu5Gc 

and 9-O-Ac-Neu5Ac glycoconjugates and what is known of their effects on substrate 

activity are discussed in detail below.  

 The substrate activity of Neu5Gc galactosides against human NEU2 and bacterial 

neuramindases have been reported by Chen and coworkers.27,28  These substrate activity 

studies can be useful in designing selective neuraminidase inhibitors against NEU2.27 

NEU2 is known to preferentially cleave α(2→3) linkages but also cleaves α(2→6) and 

α(2→8) sialosides.26, 27  

 The O-acetylation of Neu5Ac at O9 is the most commonly observed form of 

acetylation. The O-acetyl ester formation at the C-7 and C-8 positions of Neu5Ac are not 

very stable, and hence spontaneously migrate to C-9 position of Neu5Ac under 

physiological conditions.29,30 Earlier strategies for detection of 9-O-Ac-

sialoglycoconjugates have used a variety of sialic acid-binding lectins or monoclonal 
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antibodies.31-37 Newer methods exploit MALDI-TOF mass spectrometry techniques for 

quantification of sialoglycoconjugates.38 The 9-O-Ac-sialoglycoconjugates have been 

proposed to prevent the initiation of CD22-dependent cellular responses, such as cell 

proliferation and differentiation, immune response, and metastasis leading to a loss of 

host defense and immunosuppression.39 Despite their importance in these biological 

processes, the substrate activity of these 9-O-Ac-sialoglycoconjugates with human 

neuraminidase enzymes has not been studied in detail.  

 Our group has developed a recombinant expression system for NEU2, NEU3, and 

NEU4.40 This recombinant expression system has been used to explore the substrate 

tolerance for these enzymes.40 Moreover, our group has examined the role of the lipid 

aglycone in the substrate recognition of NEU3. In these studies, it was observed that 

NEU3 required the presence of the hydrophobic aglycone for substrate activity. More 

hydrophobic groups (those having a logP > 4) were excellent substrates (krel  > 0.9). 

Sandbhor et al. reported that modifications at the C9 or N5-Ac position of Neu5Ac with 

small groups in a trisaccharide analog of GM3 (β-octyl sialosides) were generally good 

substrates for NEU3.41 However, larger modifications and charged groups did inhibit 

NEU3 activity. These results with synthetic glycans led us to consider whether native 

modifications of the glycolipid substrates of NEU3 could have significant effects on 

enzyme activity.  

 There are limited reports describing hydrolytic cleavage by hNEU of synthetic 

glycans. Chen and coworkers have reported that the α(2→3) analogs of Neu5Gc 

sialosides generally showed 2-4 fold higher activity as compared to the α(2→6) linked 



	
   44	
  

sialosides.27 However the activity of Neu5Gc as a substrate has not yet been tested 

against any other hNEU. 

Considering these results, we hypothesized that Neu5Gc and 9-O-Ac-Neu5Ac 

analogs of glycolipids, such as GM3 (Figure 2.1), could have reduced substrate activity 

for NEU3. To explore this possibility, we set out to synthesize a panel of uncommon 

natural analogs of GM3, including Neu5Gc and 9-O-Ac-Neu5Ac analogs of GM3. These 

substrates were designed to include the required hydrophobic aglycone for substrate 

activity, and should be ideal compounds for testing with human neuraminidase 

isoenzymes (NEU1, NEU2, NEU3 and NEU4).  

 

Figure 2.1. Structure of GM3 

 The following trisaccharide analogs of GM3 containing modifications of the 

Neu5Ac residue, including Neu5Gc, 9-O-Ac-Neu5Ac, with both α(2→3) and α(2→6) 

glycosidic linkages were synthesized (Figure 2.2). 

 

Figure 2.2. Structure of GM3 target analogs 
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2.2 Results and Discussion 

2.2.1 Synthesis of β-octyl-lactoside 

 We generated glycolipid analogs of GM3 starting from β-octyl-lactoside 

following a previously reported strategy (Scheme 2.1).41 Lactose is a commercially 

available naturally occurring disaccharide with a β(1→4) glycosidic linkage between 

galactose and glucose. As illustrated in Scheme 2.1, the 8-OH groups of β-lactose (2-1) 

were protected as benzoyl (OBz) esters by treatment with benzoyl chloride (BzCl) in 

pyridine to furnish compound 2-2 in 96% yield. The selective deprotection of the 

anomeric benzoyl group was achieved using hydrazine acetate at 60 ºC to give 2-3 in 

81% yield. Compound 2-3 was then treated trichloroacetonitrile in the presence of 1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU) to give only the β-anomer of 2-4 in high yield 

(82%). The perbenzoylated lactosyl trichloroacetimidate glycosyl donor (2-4) underwent 

glycosylation with 1-octanol as an acceptor under acidic conditions to yield benzoyl 

protected β-octyl-lactoside (2-5, 92% yield). Finally, the benzoyl protecting groups were 

removed using freshly prepared sodium methoxide to provide the β-octyl-lactoside (2-6, 

94% yield).41 

 

Scheme 2.1 Synthesis of β-octyl-lactoside 
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2.2.2 Synthesis of 9-O-Ac-Neu5Ac 

The 9-O-acetyl-sialic acid (2-8; 9-O-Ac-Neu5Ac) was synthesized in one step 

based on a known protocol (Scheme 2.2).42 Sialic acid (2-7) was reacted with 

trimethylorthoacetate in the presence of a catalytic amount of p-TsOH in 85% yield. This 

is a very efficient method for substituting groups at 9-O-position of sialic acid in a single 

step without the use of protecting groups. 

 

Scheme 2.2 Single step synthesis of 9-O-Neu5Ac 

2.2.3 Synthesis of Neu5Gc 
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 Scheme 2.3 Approach towards synthesis of Neu5Gc 
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the formation of the expected product. We suspect that these conditions resulted 

primarily in decomposition of the starting material based on TLC observations. 

 

Scheme 2.5 Attempted N-deacylation of sialic acid using harsh conditions 
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first prepared ManGc (2-19, N-glycolyl-D-mannosamine), from glycolic acid (2-17) and 

its corresponding NHS ester (2-18) (Scheme 2.7).43 The NHS ester, 2-18, was then 

treated with mannosamine hydrochloride in the presence of Et3N as a base to give 2-20 as 

the desired product. Unfortunately, we obtained only starting material (observed by 

TLC). This result is likely due to the in situ decomposition of the NHS ester (2-18) to the 

free acid. 

 

Scheme 2.7 Approach towards synthesis of ManGc 
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Scheme 2.8 Attempt of synthesizing of ManGc 
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Scheme 2.9 Synthesis of ManGc 

2.2.4 Chemoenzymatic synthesis of GM3 analogs 

Chen and co-workers have reported a one pot three enzyme chemoenzymatic 

approach to the synthesis of sialosides, including Neu5Gc derivatives.47,48 N-glycolyl-D-

mannosamine (2-20) was converted in situ to the corresponding N-glycolyl-neuraminic 

acid (2-7) by the action of a recombinant sialic acid aldolase and sodium pyruvate 

(Scheme 2.10). The corresponding sugar-nucleotide donor, CMP-Neu5Gc (2-22) or 

CMP-sialic acid, could be formed by the Neisseria meningitidis CMP-sialic acid 

synthetase (NmCSS).48 Finally, the desired trisaccharide (2-23) was generated by a 

Pasteurella multocida α(2→3)-sialyltransferase.49 To generate sialosides with an α(2→6) 

linkage (2-24), we employed the Photobacterium damsela α(2→6)-sialyltransferase 

enzyme.50 

HOBt, DIC

Et3N, DMF

OH
O

OH
+

77%
2-17 2-202-19

O
OH

HN
HO

HO

HO

O
OH

O
OH

NH2.HCl
HO

HO

HO



	
   51	
  

 

Scheme 2.10 Synthesis of N-5 modified α(2→3) and α(2→6) trisaccharides 
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however, at reduced yields. We used this method for the generation of the O-9-Ac 

modified α(2→3) linked trisaccharide (2-25), pH 7.2 to yield 2-25 (37% yield). Even 

with these modified conditions, we observed partial hydrolysis of 2-25 to 2-26, which 

had to be removed during purification. A similar strategy was applied for production of 

the α(2→3) linked Neu5Ac sialoside, 2-26, at pH 8.8 (Scheme 2.11) at much higher 

yields. To produce the corresponding α(2→6) sialosides (2-27, 2-28), we used identical 

methods with the replacement of the transferase enzyme to the α(2→6)-sialyltransferase 

at pH 7.2 and 8.8 respectively (Scheme 2.11). 

 

Scheme 2.11 Synthesis of α(2→3) and α(2→6) sialosides 
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obtain our desired target using a chemoenzymatic approach. The synthesis of 9-O-Ac 

sialosides was achieved through modifications of reported chemoenzymatic strategies to 

avoid hydrolysis of the desired O-acetyl groups. These targets will be of primary interest 

for the study of human neuraminidase enzyme activity. Although previous biological 

studies suggest that these modifications could result in reduced enzymatic activity for 

NEU3, this hypothesis remains to be tested directly.  

 

Figure 2.3 Target analogs of GM3 sialosides 
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Ceric Ammonium Molybdate (CAM) or orcinol stain. Organic solvents were evaporated 

under reduced pressure at 40 ºC. Reaction products were purified by column 

chromatography on silica gel (230–400 mesh, Silicycle, Quebec, Canada), Iatrobeads 

6RS-8060 (Shell-USA Inc.) if the eluent system contained greater than 10% methanol 

and by reversed phase C-18 silica with MeOH and H2O as eluents.  Flash column 

chromatography was performed using a Combiflash companion chromatography 

instrument (Teledyne Isco, Inc., Lincoln, NE) with Redisep and Silicycle flash silica gel 

columns (40-63 µm). The yields reported are after purification. NMR experiments were 

conducted on Varian 400, 500, 600, and 700 MHz instruments. Chemical shifts are 

reported relative to the deuterated solvent peaks in parts per million. Assignments of the 

NMR spectra were based on one-dimensional experiments (APT) and/or two-dimensional 

experiments (1H–1H COSY, 1H–13C HSQC and 1H–13C HMBC). Electrospray mass 

spectra (ES-MS) were recorded on Agilent Technologies 6220 TOF. For ES-MS spectra, 

samples were dissolved in CHCl3 or CH3OH and NaCl was added. 

2.4.2 Synthetic methods 

 

2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-1,2,3,6-tetra-O-benzoyl-α/β-D- 
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(25 mL) and washed with water (3x 30 mL). The organic layer was separated and dried 

over anhydrous Na2SO4. Filtered the Na2SO4 and then organic layer was concentrated 

under reduced pressure. The product was purified by flash silica gel column 

chromatography using EtOAc–Hexane (1:2) to afford 2-2 (1.71 g, 96%) as a white solid. 

1H NMR (500 MHz, CDCl3): δ = 8.13 (dd, J = 8.1, 1.2 Hz, 1H, ArH), 8.08 – 7.97 (m, 

13H, ArH), 7.96 – 7.89 (m, 5H, ArH), 7.79 – 7.74 (m, 3H, ArH), 7.67 – 7.30 (m, 28H, 

ArH), 7.22 (ddd, J = 11.4, 10.0, 5.6 Hz, 6H, ArH), 6.17 (d, J = 8.1 Hz, 1H, H1’), 5.98 

(app. t, J = 9.3 Hz, 1H, H3’), 5.84 – 5.75 (m, 3H, H2’, H2’’, H4’’), 5.41 (dd, J = 10.4, 3.4 

Hz, 1H, H3’’), 4.93 (d, J = 7.9 Hz, 1H, H1’’), 4.64 – 4.54 (m, 2H, H6’), 4.42 (m, 1H, H4’), 

4.10 (ddd, J = 9.9, 3.7, 1.9 Hz, 1H, H5’), 3.92 (app. t, J = 6.6 Hz, 1H, H5’’), 3.84 – 3.72 

(m, 2H, H6’’). 13C NMR (125 MHz, CDCl3): δ = 165.8 (ArC), 165.6 (ArC), 165.4 (ArC), 

165.3 (ArC), 165.2 (ArC), 164.8 (ArC), 164.5 (ArC), 133.8 (ArC), 133.6 (ArC), 133.5 

(ArC), 133.42 (ArC), 133.41 (ArC), 133.39 (ArC), 133.30 (ArC), 133.2 (ArC), 130.2 

(ArC), 130.1 (ArC), 130.0 (ArC), 129.9 (ArC), 129.81 (ArC), 129.8 (ArC), 129.73 (ArC), 

129.71 (ArC), 129.68 (ArC), 129.60 (ArC), 129.5 (ArC), 129.45 (ArC), 128.88 (ArC), 

128.84 (ArC), 128.79 (ArC), 128.75 (ArC), 128.63 (ArC), 128.61 (ArC), 128.60 (ArC), 

128.5 (ArC), 128.4 (ArC), 128.43 (ArC), 128.3 (ArC), 128.32 (ArC), 101.1 (C1’’), 92.6 

(C1’), 75.6 (C4’), 73.9 (C3’’), 72.8 (C5’), 71.7 (C5’’), 71.4 (C3’), 70.7 (C2’), 69.8 (C2’’), 

67.5 (C4’’), , 62.1 (C6’),  61.0 (C6’’). HRMS (ESI) calculated for C68H54O19Na [M+Na]+ 

1197.3152, found: 1197.3144.  
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2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-α/β-D- 

glucopyranose (2-3): 

To a solution of 2-2 (600 mg, 0.51 mmol) in DMF (10 mL) was added hydrazine acetate 

(220 mg, 2.44 mmol). The reaction mixture was stirred for 1.5 h at 60 ºC. Water (20 mL) 

was added to the reaction mixture, a white solid precipitate formed that was collected by 

filtration. The solid residue was dissolved in CH2Cl2 (10 mL) and washed with water (2x 

15 mL). The organic layer was separated, dried over anhydrous Na2SO4. Filtered the 

Na2SO4 and evaporated the organic layer under vacuum. The crude residue was purified 

by flash silica gel column chromatography using EtOAc–Hexane (1:1) to furnish 2-3 

(440 mg, 81%) as a white crystalline solid. 1H NMR (500 MHz, CDCl3): δ = 8.07 – 7.93 

(m, 13H, ArH), 7.89 (dd, J = 8.3, 1.2 Hz, 3H, ArH), 7.73 (dd, J = 8.3, 1.2 Hz, 3H, ArH), 

7.66 – 7.25 (m, 28H, ArH), 7.25 – 7.13 (m, 6H, ArH), 6.13 (app. t, J = 9.7 Hz, 1H, H3’), 

5.77 – 5.62 (m, 3H, H2’, H2’’, H4’’), 5.42 – 5.37 (m, 1H, H3’’), 5.22 – 5.28 (m, 1H, H1’), 

4.94 (d, J = 7.8 Hz, 1H, H1’’), 4.59 (dd, J = 12.3, 1.9 Hz, 1H, H6’), 4.51 (dt, J = 12.3, 3.5 

Hz, 1H, H6’), 4.38 (ddd, J = 11.7, 3.4, 2.0 Hz, 1H, H4’), 4.28 – 4.22 (m, 1H, H5’), 3.94-

3.72 (m, 3H, H5’’, H6’’). 13C NMR (125 MHz, CDCl3): δ = 166.0 (ArC), 165.9 (ArC), 

165.64 (ArC), 165.62 (ArC), 165.5 (ArC), 165.43 (ArC), 165.40 (ArC), 165.32 (ArC), 

165.29 (ArC), 165.20 (ArC), 164.84 (ArC), 164.82 (ArC), 133.5 (ArC), 133.47 (ArC), 

133.46 (ArC), 133.3 (ArC), 133.2 (ArC), 133.1 (ArC), 130.0 (ArC), 129.9 (ArC), 129.8 

(ArC), 129.78 (ArC), 129.77 (ArC), 129.76 (ArC), 129.70 (ArC), 129.64 (ArC), 129.62 

(ArC), 129.5 (ArC), 129.4 (ArC), 129.0 (ArC), 128.83 (ArC), 128.81 (ArC), 128.76 
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(ArC), 128.75 (ArC), 128.65 (ArC), 128.64 (ArC), 128.62 (ArC), 128.58 (ArC), 128.55 

(ArC), 128.50 (ArC), 128.43 (ArC), 128.42 (ArC), 128.38 (ArC), 128.37 (ArC), 128.2 

(ArC), 101.0 (C1’’), 90.4 (C1’), 76.0 (C4 ’), 75.8 (C3’’), 74.3 (C5’), 73.3 (C5’’), 71.9, 

71.44, 71.42, 70.0 (C3’), 67.53 (C2’), 67.50 (C2’’), 62.3 (C4’’), 61.2 (C6’), 61.1 (C6’’). 

HRMS (ESI) calculated for C61H50O18Na [M+Na]+ 1093.2889, found: 1093.2887.  

 

2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-α-D- 

glucopyranosyltrichloroacetimidate (2-4): 

Compound 2-3 (430 mg, 0.4 mmol), DBU (6 µL) and trichloroacetonitrile (481 µL, 4.8 

mmol) were dissolved in CH2Cl2 (10 mL) and stirred for 2 h. The color of the reaction 

mixture changed to dark reddish brown. The solvent was evaporated and the residue was 

purified by column chromatography with EtOAc/Hexane (1:1) to yield 400 mg (82%) of 

2-4 as an off-white crystalline solid. 1H NMR (500 MHz, CDCl3): δ = 8.60 (s, 1H, -NH), 

8.01 (dddd, J = 15.9, 12.8, 8.4, 1.3 Hz, 12H, ArH), 7.90 (dd, J = 8.3, 1.2 Hz, 2H, ArH), 

7.75 (dd, J = 8.4, 1.3 Hz, 2H, ArH), 7.70 – 7.54 (m, 4H, ArH), 7.54 – 7.26 (m, 17H, 

ArH), 7.26 – 7.15 (m, 5H, ArH), 6.13 (d, J = 3.7 Hz, 1H, H1’), 5.81 – 5.76 (m, 2H, H2’, 

H2’’), 5.57 (dd, J = 10.1, 3.7 Hz, 1H, H3’), 5.43 (dd, J = 10.3, 3.3 Hz, 1H, H3’’), 4.98 (d, 

J = 8.1 Hz, 1H, H1’’), 4.63 – 4.54 (m, 2H, H6’), 4.39 – 4.35 (m, 2H, H4’, H5’), 3.93 (t, J 

= 7.0 Hz, 1H, H5’’), 3.85 (dd, J = 11.3, 6.2 Hz, 1H, H6’’), 3.77 (dd, J = 11.2, 7.2 Hz, 1H, 

H6’’). 13C NMR (125 MHz, CDCl3): δ = 165.7 (ArC), 165.6 (ArC), 165.57 (ArC), 165.55 

(ArC), 165.22 (ArC), 165.20 (ArC), 164.8 (ArC), 160.7 (ArC), 133.6 (ArC), 133.44 

(ArC), 133.42 (ArC), 133.3 (ArC), 130.0 (ArC), 129.9 (ArC), 129.8 (ArC), 129.73 (ArC), 
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129.71 (ArC), 129.60 (ArC), 129.59 (ArC), 129.50 (ArC), 129.4 (ArC), 128.9 (ArC), 

128.7 (ArC), 128.68 (ArC), 128.66 (ArC), 128.52 (ArC), 128.50 (ArC), 128.4 (ArC), 

128.32 (ArC), 128.31 (ArC), 101.3 (C1’’), 93.1 (C1’), 75.7 (C4’), 71.9 (C3’’), 71.4 (C5’), 

70.5 (C5’’), 70.3 (C3’), 70.0 (C2’), 67.5 (C2’’), 61.9 (C6’), 61.0 (C6’’). HRMS (ESI) 

calculated for C63H50Cl3NO18Na [M+Na]+ 1236.1986, found: 1236.1983.  

 

O-2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-β-D- 

glucopyranosyl-octanol (2-5): 

1-Octanol (64.20 µL, 0.49 mmol) was added to a reaction mixture of compound 2-4 (400 

mg, 0.33 mmol) and activated molecular sieves (2.5 g) in CH2Cl2 (10 mL). The reaction 

was charged with 1% TMSOTf (0.3 mL in CH2Cl2) at 0 ºC. The reaction was allowed to 

warm to room temperature and then stirred overnight. After completion, the reaction 

mixture was filtered on a pad of Celite. The product was purified by column 

chromatography (0 to 30% EtOAc in hexane) to yield 315 mg (92%) of 2-5. 1H NMR 

(500 MHz, CDCl3): δ = 8.05 – 7.95 (m, 13H, ArH), 7.91 (d, J = 7.7 Hz, 2H, ArH), 7.73 

(d, J = 7.8 Hz, 2H, ArH), 7.59 (ddd, J = 22.3, 15.0, 7.4 Hz, 3H, ArH), 7.49 (q, J = 7.9 

Hz, 5H, ArH), 7.45 – 7.28 (m, 9H, ArH), 7.21 (t, J = 7.6 Hz, 2H, ArH), 7.14 (t, J = 7.6 

Hz, 2H, ArH), 5.83 (app. t, J = 9.4 Hz, 1H, H3’), 5.77 – 5.72 (m, 2H, H2’, H2’’), 5.48 (dd, 

J = 9.9, 7.9 Hz, 1H, H4’’), 5.40 (dd, J = 10.3, 3.4 Hz, 1H, H3’’), 4.90 (d, J = 7.9 Hz, 1H, 

H1’’), 4.71 (d, J = 7.9 Hz, 1H, H1’), 4.62 (dd, J = 12.1, 1.6 Hz, 1H, H6’), 4.52 (dd, J = 

12.2, 4.5 Hz, 1H, H6’), 4.28 (app. t, J = 9.5 Hz, 1H, H4’), 3.92 – 3.70 (m, 4H, H5’, H5’’, 

H6’’), 3.49 – 3.43 (m, 1H, H6’’), 1.53 – 1.38 (m, 2H, -O-CH2),  1.23 – 0.95 (m, 10H, 
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5xCH2), 0.84 (t, J = 7.2 Hz, 3H, CH3-octyl). 13C NMR (126 MHz, CDCl3): δ = 165.9 

(ArC), 165.6 (ArC), 165.5 (ArC), 165.4 (ArC), 165.3 (ArC), 165.2 (ArC), 164.8 (ArC), 

133.5 (ArC), 133.47 (ArC), 133.45 (ArC), 133.33 (ArC), 133.32 (ArC), 133.2 (ArC), 

133.1 (ArC), 130.0 (ArC), 129.8 (ArC), 129.78 (ArC), 129.77 (ArC), 129.6 (ArC), 

129.53 (ArC), 129.51 (ArC), 128.9 (ArC), 128.72 (ArC), 128.71 (ArC), 128.6 (ArC), 

128.54 (ArC), 128.53 (ArC), 128.37 (ArC), 128.36 (ArC), 128.2 (ArC), 101.2 (C1’’), 

100.9 (C1’), 76.1 (C4’), 73.0 (C3’’), 72.9, 71.82 (C5’), 71.81, 71.4 (C5’’), 70.3 (C3’), 69.9 

(C2’), 67.6 (C2’’), 63.1 (C6’), 62.5 (C6’’), 61.1, 32.8, 31.8, 31.7, 29.4, 29.33, 29.31, 29.2, 

29.0, 25.7, 22.6, 14.1 (CH3-octyl). HRMS (ESI) calculated for C69H66O18Na [M+Na]+ 

1205.4141, found: 1205.4139.  

 

Octyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (2-6): 

To a solution of compound 2-5 (300 mg, 0.25 mmol) in MeOH (5 mL) was added 1% 

freshly prepared NaOMe (1.9 mL). The reaction mixture was stirred for 24 h and 

monitored by TLC (1:5, MeOH: CH2Cl2; Rf = 0.2 to 0.3). After completion of the 

reaction, the reaction mixture was neutralized to pH 7 by adding Amberlite®-IR 120 H+ 

resin. The reaction mixture was filtered and concentrated under reduced pressure. The 

crude product was purified by column chromatography by eluting with 0 to 40% of 

MeOH in CH2Cl2 in 92% yield as a white solid. 1H NMR (500 MHz, D2O): δ = 4.48 – 

4.41 (d, J = 7.9 Hz, 2H, H1’, H1’’), 3.99 – 3.86 (m, 3H, H3’’), 3.82 – 3.50 (m, 11H), 3.29 

(m, 1H, H2’), 1.64 – 1.58 (m, 2H, -O-CH2), 1.38-1.22 (m, 11H, 5xCH2), 0.84 (t, J = 6.2 

Hz, 3H, CH3-octyl). 13C NMR (126 MHz, D2O): δ = 103.0 (C1’’), 102.3 (C1’), 78.5 (C4’), 
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75.4 (C3’’), 74.8 (C5’), 74.5 (C5’’), 72.9 (C3’), 72.6, 71.0, 70.8 (C2’), 68.6 (C2’’), 61.3 

(C6’), 60.2 (C6’’), 31.1, 28.8, 28.5, 28.4, 25.1, 22.0, 13.4 (CH3-octyl). HRMS (ESI) 

calculated for C20H38O11Na [M+Na]+ 477.2306, found: 477.2301.  

 

5-Acetamido-9-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-2-nonulopyranosonic 

acid (2-8):  

Trimethylorthoacetate (0.64 mL, 5.0 mmol) and p-TsOH·H2O (5 mg, catalytic amount) 

was added to a solution of N-Acetyl neuraminic acid (155 mg, 0.5 mmol) in DMSO (1 

mL). After being stirred for 2 h, the reaction mixture was applied directly to a Dowex 1-

X8 (HCOO-) anion exchange resin. The column was washed with H2O (100 mL) and then 

the compound was eluted with formic acid (1N, 50 mL). The eluent was lyophilized over 

48 h to give 2-8 (85% yield) as a white solid. 1H NMR (CD3OD): δ = 4.37 (dd, J = 11.5, 

2.5 Hz, 1H, H9b), 4.14 (dd, J = 11.4, 6.3 Hz, 1H, H9a), 4.08 – 4.00 (m, 2H, H4, H6), 3.94 –

3.81 (m, 2H, H5, H8), 3.51 (dd, J = 9.3, 1.0 Hz, 1H, H7), 2.23 (dd, J = 12.8, 4.9 Hz, 1H, 

H3e), 2.06 (s, 3H, -O-CO-CH3), 2.03 (s, 3H, -NH-CO-CH3), 1.85 (app.t, J = 12.0 Hz, 1H, 

H3a). 13C NMR (CD3OD): δ = 173.6 (CO), 171.6 (C1), 70.6, 69.0, 68.0, 66.5 (C9), 66.3 

(C5), 52.8 (C3), 39.6 (NH-CO-CH3), 21.2 (-O-CO-CH3), 19.4. HRMS (ESI) calculated for 

C13H20NO10 [M-H]- 350.1093, found: 350.1089. 
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Methyl-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranosonate (2-9): 

To a solution of N-Acetyl neuraminic acid (2.0 g, 6.46 mmol) in 75 mL MeOH added 10 

g Amberlite®-IR 120 H+ resin, and the mixture was stirred overnight. The reaction 

mixture turned from white cloudy to colorless. The reaction mixture was filtered, and 

then concentrated to give 2-9 (91.6% yield) as a white solid. The crude product was used 

for the next step without any further purification. 1H NMR (500 MHz, D2O): δ = 4.14 –

4.02 (m, 2H, H4, H6), 3.94 (t, J = 10.3 Hz, 1H, H5), 3.90-3.82 (m, 4H, H9a, -OCH3), 3.75 

(ddd, J = 9.0, 6.3, 2.6 Hz, 1H, H9b), 3.68 – 3.60 (m, 1H, H8), 3.57 (d, J = 9.2 Hz, 1H, 

H7), 2.33 (dd, J = 13.1, 4.8 Hz, 1H, H3e), 2.06 (s, 3H, NH-CO-CH3), 1.94 (dd, J = 12.9, 

11.9 Hz, 1H, H3a). 13C NMR (125 MHz, D2O): δ = 175.7 (COOMe), 172.2 (C1), 71.2 

(C2), 71.0, 69.1, 67.5 (C9), 64.0 (C5), 54.3, 52.9 (C3), 39.5 (NH-CO-CH3), 22.9 (-COO-

CH3). HRMS (ESI) calculated for C12H21NO9Na [M+Na]+ 346.1109, found: 346.1111. 

 

Methyl-5-acetamido-2,4,7,8,9-penta-O-acetyl-3,5-dideoxy-D-glycero-D-galacto-2-α/β-

nonulopyranosonate (2-10):  

A solution of methyl-5-acetamido-3, 5-dideoxy-D-glycero-D-galactononulopyranosonate 

(1.9 g, 5.92 mmol) in pyridine (30 mL) was kept at 4 °C for 10 minutes. Acetic anhydride 

(27.98 mL, 296.1 mmol) was added dropwise for 1 h. The mixture was warmed to rt and 

stirred overnight. The solution was concentrated and the residue was purified by flash 

chromatography with 5:1 EA/hexane to give 2-10 as a white solid (92% yield, mixture of 
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anomers in 2:1). 1H NMR (500 MHz, D2O): δ = 5.42 (dd, J = 7.7, 1.8 Hz, 1H, H4), 5.38 

(dd, J = 8.1, 1.9 Hz, 1H, H7) 5.31 – 5.24 (m, 2H), 5.04 (ddd, J = 15.4, 10.3, 5.1 Hz, 1H, 

H8), 4.64 (dd, J = 11.0, 2.0 Hz, 1H, H9a), 4.41 (dd, J = 12.8, 2.7 Hz, 1H, H6), 4.24 – 4.14 

(m, 2H, H9b), 3.80 (s, 3H, -OCH3), 2.57 (dd, J = 13.7, 5.3 Hz, 1H, H3e), 2.20 (s, 3H, -

OCOCH3), 2.16 (s, 3H, -OCOCH3), 2.09 (s, 3H, -OCOCH3), 2.07 (s, 3H, -OCOCH3), 

2.04 (s, 3H, -OCOCH3), 1.93 (s, 3H, -NHCOCH3). 13C NMR (125 MHz, D2O): δ = 174.4 

(COOMe), 173.8 (-OCOCH3), 173.2 (-OCOCH3), 173.1 (-OCOCH3), 172.56 (-

OCOCH3), 172.48 (-OCOCH3), 172.46 (C1), 171.3, 169.5, 168.4, 97.0, 96.3, 72.7, 71.2 

(C2), 69.5, 69.1, 68.8, 68.7, 67.3, 67.2, 61.8, 53.9, 53.7, 48.7, 35.62 (NH-CO-CH3), 21.8 

(-OCOCH3), 20.32 (-OCOCH3), 20.23 (-OCOCH3), 20.18 (-OCOCH3), 20.16 (-COO-

CH3). HRMS (ESI) calculated for C22H31NNaO14 [M+Na]+, 556.1637, found 556.1629.  

 

Methyl 5-(N-tert-butoxycarbonylacetamido)-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-

glycero-D-galacto-2-α/β-nonulopyranosonate (2-11): 

To a stirred solution of 2-10 (288 mg, 0.53 mmol) in THF (20 mL) was added di-tert-

butyldicarbonate (Boc2O) (371 mg, 1.7 mmol), and 4-dimethylaminopyridine (DMAP; 

125 mg, 1.0 mmol). The reaction mixture was refluxed for 2 h. After completion, the 

mixture was cooled to room temperature, extracted with CH2Cl2, washed with 0.5 M 

aqueous HCl, water, and saturated NaHCO3. The organic layer was dried over Na2SO4, 

filtered and concentrated in vacuo. The crude produce was purified by flash 

chromatography (EA/hexane: 1:1) to give 2-11 as yellow oil (62% yield). 1H NMR (500 

MHz, CDCl3): δ = 5.84 (ddd, J = 15.7, 10.6, 5.3 Hz, 1H, H4), 4.54 (dd, J = 12.5, 2.6 Hz, 
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2H, H7) 4.49 –4.38 (m, 3H, H8, H9), 3.83 (s, 3H, -OCH3), 2.66 (dd, J = 13.6, 5.1 Hz, 1H, 

H3e), 2.17 (s, 3H, -OCOCH3), 2.15 (s, 3H, -OCOCH3), 2.12 (s, 3H, -OCOCH3), 2.08 (s, 

3H, -OCOCH3), 2.06 (s, 3H, -OCOCH3), 1.98 (s, 3H, -NHCOCH3), 1.66 (s, 9H, 3xCH3). 

13C NMR (125 MHz, CDCl3): δ = 173.8 (COOMe), 170.64 (-OCOCH3), 170.62 (-

OCOCH3), 170.3 (-OCOCH3), 170.0 (-OCOCH3), 169.8 (-OCOCH3), 168.3, 166.5, 97.9, 

84.9, 72.0 (C2), 71.4, 69.5, 66.1, 62.0, 53.2, 52.3, 37.18, 37.17 (NH-CO-CH3), 27.92, 

27.90, 26.8, 20.94 (-OCOCH3), 20.93 (-OCOCH3), 20.92 (-OCOCH3), 20.88 (-

OCOCH3), 20.86 (-OCOCH3), 20.76 20.75 (-COO-CH3). HRMS (ESI) calculated for 

C27H39NNaO16 [M+Na]+, 656.2161, found 656.2153.  

 

Methyl-5-acetamido-2-methoxy-3, 5-dideoxy-D-glycero-D-galacto-

nonulopyranosonate (2-13): 

To a solution of N-Acetyl neuraminic acid (100 mg; 0.32 mmol) in 10 mL MeOH at rt 

under N2 was added 25 mg Amberlite®-IR 120 H+ resin, and the mixture was stirred 

overnight. After completion, the mixture was filtered, and concentrated in vacuo to give 

2-13 (90.7% yield) as a white solid. The crude product was used for the next step without 

any further purification.  
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Methyl 5-(N-trifluoroacetamido)-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-D-

galacto-2-α/β-nonulopyranosonate (2-15): 

To a solution of 2-10 (100 mg, 0.31 mmol) in acetonitrile (1 mL) was added Et3N (0.26 

mL, 1.85 mmol) and trifloroacetic anhydride (0.13 mL, 0.93 mmol). The reaction was 

stirred at 135 ºC for 5 minutes. Methanol (20 mL) was added at 0 ºC, and the mixture was 

stirred for 5 minutes. The solvent was evaporated under reduced pressure. The crude 

residue was then purified by column chromatography, eluting with EA/ hexane (3:2) to 

give 2-15 as a yellow oil (25.4% yield). 1H NMR (500 MHz, CDCl3): δ = 6.42 (d, J = 9.4 

Hz, 1H, NHCOCH3), 5.45 (m, 1H, H4), 5.34 (dd, J = 6.1, 1.8 Hz 1H, H7), 5.21 (ddd, J = 

8.8, 6.2, 2.6 Hz 1H, H8), 4.52 (dd, J = 12.6, 2.6 Hz 1H, H9a), 4.28 (dd, J = 10.7, 2.1 Hz 

1H, H6), 4.18 – 4.11 (m, 4H, H9b), 4.09 – 4.02 (m, 1H, H5), 3.82 (s, 3H, -OCH3), 2.65 

(dd, J = 13.5, 5.0 Hz 1H, H3e), 2.21 (s, 3H, -OCOCH3), 2.20 (s, 3H, -OCOCH3), 2.12 (s, 

3H, -OCOCH3), 2.21 (s, 3H, -OCOCH3) 2.08 – 2.07 (s, overlapping, 9H, -OCOCH3, -

NHCOCH3). 13C NMR (126 MHz, CDCl3): δ = 170.7 (COOCF3), 170.2  (COOMe), 97.3, 

71.6 (C2), 70.4, 67.6, 67.2, 62.2, 62.1, 60.5, 53.5, 50.4, 35.9 (NHCOCH3), 29.72, (-COO-

CF3), 29.70, 21.1 (-COO-CH3), 20.77 (-COO-CH3), 20.64 (-COO-CH3), 20.63 (-COO-

CH3), 20.5 (-COO-CH3). 19F NMR (468.6 MHz, CDCl3): δ = -75.9 (COCF3). HRMS 

(ESI) calculated for C22H28F3NNaO14 [M+Na]+, 610.1354, found 610.1342. 
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N-Glycolyl-D-mannosamine (2-20)  

Glycolic acid (100 mg, 1.31 mmol) was added to a mixture of mannosamine 

hydrochloride (338.5 mg, 1.57 mmol) and triethylamine (0.22mL, 1.57 mmol) in 

anhydrous DMF (5 mL). After cooling the reaction mixture to 0 ºC, DIC (0.24 mL, 1.57 

mmol) and HOBt (194.7 mg, 1.44 mmol) were added consecutively and the reaction 

mixture was stirred overnight. The reaction mixture was filtered. The solvent was 

concentrated using reduced pressure. The product was purified by flash chromatography 

(CHCl3/ MeOH: 2:1) to give 238 mg (76.6%) of 2-20 as an off-white solid. The 1H NMR 

and 13C NMR data were consistent with previous reports.46 

 

O-(5-glycolylamido-3,5,-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic 

acid)- (2→3)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-octanol (2-

23):  

N-Glycolyl-D-mannosamine (2.25 mg, 9.4 µmol), cytidine triphosphate disodium salt 

(4.95 mg, 9.4 µmol), 1 M MgCl2 (80 µL) and distilled H2O (600 µL) were suspended in 

1M Tris-HCl buffer (400 µL, pH 8.8). The reaction was then charged with E. coli sialic 

acid aldolase50 (300 µL), Neisseria meningitides CMP-Neu5Ac synthetase  (NmCSS)48 

(300 µL), octyl-β-lactoside, 2-6, (2.5 mg, 6.2 µmol), Pasteurella multocida α(2→3)-

sialyltransferase49 (300 µL) and distilled H2O (600 µL). The reaction mixture was stirred 

overnight. After completion, ethanol was added to the reaction mixture. The reaction 
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mixture was centrifuged and the supernatant was then lyophilized. The crude product was 

purified by sep-pack C-18 reverse phase cartridge. The product was eluted with 

H2O/MeOH (2:1). Pure product 2-23 (2.5 mg; 53%) was obtained as a white solid after 

concentration of the fractions on high vacuum. 1H NMR (400 MHz, D2O): δ = 4.53 (d, J 

= 7.7 Hz, 1H, H1’’), 4.47 (d, J = 7.9 Hz, 1H, H1’), 4.12 (s, 2H, -NHCOCH2OH), 4.01-

3.51 (m, 24H), 3.30 (t, J = 8.0 Hz, 1H, H2’), 2.78 (dd, J = 12.5, 4.3 Hz, 1H, H3e’’’), 1.81 

(t, J = 12.0 Hz, 1H, H3a’’’), 1.66 – 1.58 (m, 2H, -OCH2), 1.38 – 1.22 (m, 10H, 5xCH2), 

0.85 (t, J = 6.6 Hz, 4H, CH3-octyl). 13C NMR (125 MHz, D2O): δ = 175.2 (COO-), 173.9 

(-NHCOCH2OH), 102.7 (C1’’), 102.1 (C1’), 99.9 (C2’’’), , 78.4, 75.5, 75.2, 74.8, 74.5, 

72.9, 70.8, 69.4, 68.14, 68.08, 67.5, 62.6, 62.5, 61.1, 61.0, 60.9, 60.2, 52.2, 51.4, 31.1, 

28.8, 28.5, 28.4, 25.1, 22.0, 13.4 (CH3-octyl). HRMS (ESI) calculated for C31H54NO20
- 

[M-H]- 760.3244, found: 760.3345.  

 

O-(5-glycolylamido-3,5,-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic 

acid)- (2→6)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-octanol (2-

24):  

N-Glycolyl-D-mannosamine (2.25 mg, 9.4 µmol), cytidine triphosphate disodium salt 

(4.95 mg, 9.4 µmol), 1 M MgCl2 (80 µL) and distilled H2O (600 µL) were suspended in 

1M Tris-HCl buffer (400 µL, pH 8.8). Added E. coli sialic acid aldolase50 (300 µL), 

Neisseria meningitides CMP-Neu5Ac synthetase (NmCSS)48 (300 µL), octyl-β-lactoside, 

2-6, (2.5 mg, 6.2 µmol), Photobacterium damsela α(2→6)-sialyltransferase50 (300 µL) 

and distilled H2O (600 µL). The reaction mixture was stirred overnight. After completion, 
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ethanol was added to the reaction mixture. The reaction mixture was centrifuged and the 

supernatant was then lyophilized. The crude product was purified by sep-pack C-18 

reverse phase cartridge. The product was eluted with H2O/MeOH (2:1). Pure product 2-

24 (3.2 mg, 68%) was obtained as a white solid after concentration of the fractions on 

high vacuum. 1H NMR (400 MHz, D2O): δ = 4.48 (d, J = 8.1 Hz, 1H, H1’’), 4.43 (d, J = 

7.7 Hz, 1H, H1’), 4.11 (s, 2H, -NHCOCH2OH), 4.01 –3.50 (m, 25H), 3.33 (t, J = 7.9 Hz, 

1H, H3e’’’), 2.72 (dd, J = 12.4, 4.4 Hz, 1H, H2’), 1.75 (t, J = 12.2 Hz, 1H, H3a’’’), 1.66 – 

1.58 (m, 2H, -OCH2), 1.38 – 1.24 (m, 11H, 5xCH2), 0.85 (t, J = 6.6 Hz, 4H, CH3-octyl). 

13C NMR (125 MHz, D2O): δ = 175.7 (COO-), 173.5 (-NHCOCH2OH), 103.3 (C1’’), 

101.9 (C1’), , 100.4 (C2’’’), , 79.7, 74.8, 74.7, 73.8, 72.8, 72.4, 72.3, 71.9, 70.83, 70.79, 

68.6, 68.5, 68.4, 68.1, 63.6, 62.6, 61.0, 60.4, 51.5, 40.2, 31.1, 28.8, 28.5, 28.4, 25.1, 22.0, 

20.1, 13.4 (CH3-octyl). HRMS (ESI) calculated for C31H54NO20
- [M-H]- 760.3244, found: 

760.3345.  

 

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic acid)- 

(2→3)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-octanol (2-26):  

N-Acetyl neuraminic acid (2.90 mg, 9.4 µmol), cytidine triphosphate disodium salt (4.95 

mg, 9.4 µmol), 1M MgCl2 (80 µL) and distilled H2O (600 µL) were dissolved in 1M Tris-

HCl buffer (400 µL pH 8.8). The reaction was then charged with  Neisseria meningitides 

CMP-Neu5Ac synthetase (NmCSS)48 (200 µL), octyl-β-lactoside, 2-6, (2.5 mg, 6.2 

µmol), Pasteurella multocida α(2→3)-sialyltransferase49 (200 µL) and distilled H2O (600 

µL). The reaction mixture was stirred overnight. After completion, ethanol was added to 
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the reaction mixture. The reaction mixture was centrifuged and the supernatant was then 

lyophilized. The crude product was purified over a sep-pack C-18 reverse phase 

cartridge. The product was eluted with MeOH/EA (1:1). The purified product 2-26 (4 

mg; 87%) was obtained as a white solid after concentration of the fractions on high 

vacuum. 1H NMR (500 MHz, D2O): δ = 4.52 (d, J = 7.9 Hz, 1H, H1’’), 4.46 (d, J = 8.1 

Hz, 1H, H1’), 4.10 (dd, J = 9.9, 3.1 Hz, 1H, H3’’), 3.99 – 3.78 (m, 7H), 3.76-3.53 (m, 

13H), 3.28 (t, J = 8.6 Hz, 1H, H2’), 2.74 (dd, J = 12.4, 4.7 Hz, 1H, H3e’’’), 2.01 (s, 3H, -

NHCOCH3), 1.77 (t, J = 12.1 Hz, 1H, H3a’’’), 1.64 – 1.57 (m, 2H, O-CH2), 1.37 – 1.22 

(m, 10H, 5xCH2), 0.84 (t, J = 6.8 Hz, 3H, CH3-octyl). 13C NMR (125 MHz, D2O): δ = 

175.1 (COO-) , 173.9 (NHCOCH3), 102.7 (C1’’), 102.1 (C1’), 99.9 (C2’’’), 78.4, 75.5, 

75.2, 74.8, 74.5, 72.92, 72.90, 71.8, 70.8, 69.4, 68.4, 68.2, 67.5, 62.6, 61.13, 61.11, 60.2, 

51.7, 39.7 (C3’’’), 31.1, 28.8, 28.5, 28.4, 25.1, 22.1 (-NHCOCH3), 22.0 (-OCOCH3), 13.4 

(CH3-octyl). HRMS (ESI) calculated for C31H54NO19Na [M+Na]+ 744.3295, found: 

744.3279. 

  

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic acid)- 

(2→6)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-octanol (2-28):  

N-Acetyl neuraminic acid (2.90 mg, 9.4 µmol), cytidine triphosphate disodium salt (4.95 

mg, 9.4 µmol), 1 M MgCl2 (80 µL) and distilled H2O (600 µL) were suspended in 1M 

Tris-HCl buffer (400 µL, pH 8.8).  The reaction was then charged with Neisseria 

meningitidis CMP-Neu5Ac (NmCSS)48 (200 µL), octyl-β-lactoside, 2-6, (2.5 mg, 6.2 

µmol), Photobacterium damsela α(2→6)-sialyltransferase50 (200 µL) and distilled H2O 
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(600 µL). The reaction mixture was stirred overnight. After completion, ethanol was 

added to the reaction mixture. The reaction mixture was centrifuged and the supernatant 

was then lyophilized. The crude product was purified by sep-pack C-18 reverse phase 

cartridge. The product was eluted with H2O/ MeOH (2:1). Purified product 2-28 (3.82 

mg; 83%) was obtained as a white solid after concentration under high vacuum. 1H NMR 

(500 MHz, D2O): δ = 4.44 (d, J = 8.1 Hz, 1H, H1’’), 4.39 (d, J = 7.6 Hz, 1H, H1’), 3.97 – 

3.46 (m, 20H), 3.28 (t, J = 8.4 Hz, 1H, H2’), 2.67 (dd, J = 11.9, 5.0 Hz, 1H, H3e’’’), 2.01 

(s, 3H, NHCOCH3), 1.70 (t, J = 12.2 Hz, 1H, H3a’’’), 1.63 – 1.54 (m, 2H, OCH2), 1.35 – 

1.19 (m, 10H, 5xCH2), 0.82 (t, J = 6.6 Hz, 3H, CH3-octyl). 13C NMR (125 MHz, D2O): δ 

= 174.9 (COO-), 173.5 (NHCOCH3), 103.3 (C1’’), 101.9 (C1’), 100.3 (C2’’’), 79.7, 74.8, 

74.7, 73.7, 72.8, 72.6, 72.4, 71.8, 70.8, 70.8, 68.6, 68.5, 68.44, 68.42, 63.6, 62.7, 62.5, 

60.3, 51.8, 40.2 (C3’’’), 31.1, 28.8, 28.5, 28.4, 25.1, 22.1, 22.0 (-NHCOCH3),  20.1 (-

OCOCH3), 13.4 (CH3-octyl). . HRMS (ESI) calculated for C31H54NO19Na [M+Na]+ 

744.3295, found: 744.3279.  

 

O-(5-Acetamido-9-acetoxy-3,5,9-trideoxy-D-glycero-α-D-galacto-non-2-

ulopyranosylonic acid)- (2→3)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-

glucopyranosyl)-octanol (2-25):  

5-Acetamido-9-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-2-nonulopyranosonic acid 

(2.75 mg, 9.4 µmol), cytidine triphosphate disodium salt (4.95 mg, 9.4 µmol), 1M MgCl2 

(80 µL) and distilled H2O (600 µL) were suspended in 1M Tris-HCl buffer (400 µL, pH 

7.2). The reaction was then charged with Neisseria meningitides CMP-Neu5Ac 
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synthetase (NmCSS)48 (200 µL), octyl-β-lactoside, 2-6, (2.5 mg, 6.2 µmol), Pasteurella 

multocida α(2→3)-sialyltransferase49 (200 µL) and distilled H2O (600 µL). The reaction 

mixture was stirred for 3 h. After completion, ethanol was added to the reaction mixture. 

The reaction mixture was centrifuged and the supernatant was then lyophilized. The 

crude product was purified by sep-pack C-18 reverse phase cartridge. The product was 

eluted with H2O/MeOH (1:2). Product 2-25 (1.8 mg; 37%) was obtained as a white solid 

after concentration of the fractions on high vacuum as a mixture of acetylated and non-

acetylated product in 2:1 ratio. Low yield was observed due to formation of hydrolyzed 

product along with the acetylated one. 1H NMR (400 MHz, D2O): δ = 4.48 (d, J = 7.7 

Hz, 1H, H1’’), 4.42 (d, J = 8.2 Hz, 1H, H1’), 4.08 – 4.01 (m, 2H, H3’’), 3.97 – 3.46 (m, 

25H), 3.24 (t, J = 8.3 Hz, 1H, H2’), 2.74 (dd, J = 12.5, 4.6 Hz, 1H, H3e’’’), 2.08 (s, 2H, -

O-CO-CH3), 1.98 (s, 3H, -NH-CO-CH3), 1.75 (t, J = 12.1 Hz, 1H, H3a’’’), 1.62 – 1.50 

(m, 2H, -O-CH2), 1.35 – 1.18 (m, 10H, 5xCH2), 0.82 (t, J = 6.8 Hz, 3H, CH3-octyl). 13C 

NMR (125 MHz, D2O): δ = 175.1 (COO-), 173.9 (-NHCOCH3), 102.7 (C1’’), 102.1 (C1’), 

99.9 (C2’’’), 78.4, 75.5, 75.2, 74.8, 74.5, 72.93, 72.89, 71.8, 70.8, 69.4, 68.4, 68.2, 67.5, 

62.5, 61.1, 60.2, 51.7, 40.1 (C3’’’) 31.2, 31.1, 28.8, 28.5, 28.4, 25.1, 23.3, 22.1 (-

NHCOCH3), 22.0 (-OCOCH3), 13.4 (CH3-octyl). HRMS (ESI) calculated for 

C33H56NO20
- [M-H]- 786.3401, found: 786.3406, 744.3289.  
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O-(5-Acetamido-9-acetoxy-3,5,9-trideoxy-D-glycero-α-D-galacto-non-2-

ulopyranosylonic acid)-(2→6)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-

glucopyranosyl)-octanol (2-27):  

5-Acetamido-9-O-acetyl-3,5-dideoxy-D-glycero-β-D-galacto-2-nonulopyranosonic acid 

(2.75 mg, 9.4 µmol), cytidine triphosphate disodium salt (4.95 mg, 9.4 µmol), 1M MgCl2 

(80 µL) and distilled H2O (600 µL) were suspended in 1M Tris-HCl buffer (400 µL, pH 

7.2). The reaction was then charged with Neisseria meningitides CMP-Neu5Ac 

synthetase (NmCSS)48 (200 µL), octyl-β-lactoside, 2-6, (2.5 mg, 6.2 µmol), 

Photobacterium damsela α(2→6)-sialyltransferase50 (200 µL) and distilled H2O (600 

µL). The reaction mixture was stirred for 3 h. After completion, ethanol was added to the 

reaction mixture. The reaction mixture was centrifuged and the supernatant was then 

lyophilized. The crude product was purified by sep-pack C-18 reverse phase cartridge. 

The product was eluted with H2O/MeOH (1:2). Purified product 2-27 (2.2 mg; 45%) was 

obtained as a white solid after concentration of the fractions on high vacuum. 1H NMR 

(600 MHz, D2O): δ = 4.44 (d, J = 8.0 Hz, 1H, H1’’), 4.39 (d, J = 7.7 Hz, 1H, H1’), 4.17 

(dd, J = 11.6, 5.6 Hz, 1H, H3’’), 4.09 – 4.04 (m, 1H), 3.96 – 3.47 (m, 25H), 3.28 (t, J = 

8.5 Hz, 1H, H2’), 2.67 (dd, J = 12.1, 4.0 Hz, 1H, H3e’’’), 2.08 (s, 3H, -O-CO-CH3), 1.98 

(s, 3H, -NH-CO-CH3), 1.70 (t, J = 12.3 Hz, 1H, H3a’’’), 1.62 –  1.55 (m, 2H, -O-CH2), 

1.35-1.19 (m, 10H, 5xCH2), 0.82 (t, J = 5.8 Hz, 3H, CH3-octyl). 13C NMR (125 MHz, 

D2O): δ = 174.9 (COO-), 174.4 (-OCOCH3), 173.5 (-NHCOCH3), 103.3 (C1’’), 101.9 
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(C1’), 100.4 (C2’’’), 79.8, 74.8, 74.7, 73.7, 72.8, 72.6, 72.4, 72.1, 71.8, 70.8, 69.3, 68.6, 

68.4, 65.7, 63.7, 62.7, 62.5, 60.4, 51.8, 40.2 (C3’’’), 31.2, 28.8, 28.6, 28.5, 28.4, 25.1, 

22.1, 22.0 (-NHCOCH3), 20.3 (-OCOCH3), 13.4 (CH3-octyl). HRMS (ESI) calculated for 

C33H56NO20
- [M-H]- 786.3401, found: 786.3396.  
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3.1 Introduction 

	
   The 9-O-acetyl sialic acid esterase (SIAE) is the enzyme that catalyzes the 

removal of the O-acetyl ester from the 9-position of naturally occurring sialic acids.1 

These enzymes are found in vertebrates and higher invertebrates, but not in plants or 

lower invertebrates.1,2  The removal of acetyl groups from the 9-position of sialic acids 

by SIAE has been described in certain mammalian viruses, in human erythrocytes,  and in 

murine and equine liver.1,3-6 All of these organisms either contain sialic acid itself or 

modify residues from a host organism. Studies of SIAE enzymes have suggested that 

while they can cleave small synthetic esters, they are otherwise specific for sialic acid 

substrates.3,4,6	
  However, the basis of specificity of these 9-O-acetylsialic acid esterases 

(SIAE) has not been explored in detail.1 The O-acetylation and de-O-acetylation of sialic 

acids, which is regulated by two enzymes, namely, sialic acid transferase (SIAT; also 

known as the sialic acid O-acyltransferase, SOAT) and sialic acid acetylesterase (SIAE), 

are thought to be involved in a variety of biological processes. These include cell 

adhesion, endogenous lectin recognition, tumor antigenicity, virus binding, and 

complement activation.2,5,6  

 The sialic acid acetylesterase enzyme also plays essential roles in maintaining 

immunological tolerance by negatively regulating the B lymphocyte antigen receptor.7 

The BCR co-receptor, CD22, regulates the activation of B cells and hence involved in 

autoimmune diseases. The interaction of cis and trans sialosides with CD22 are 

implicated in the activation process.8 Deacetylated sialosides act as ligands for CD22, 

which in turn suppress the activation of the BCR. The consequence of deactivation of the 

BCR can be immunodeficiency, autoimmunity, and B-cell malignancy.9,10,11,12 In contrast, 
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the modification of sialic acid with acetylation by SIAT results in the loss of CD22 

binding, thus the enzyme acts as an indirect activator of the BCR. Specific inhibitors of 

SIAE could be used to maintain the activation of the BCR, and could be used in 

immunotherapy or immunological research. Increased concentrations of acetylated sialic 

acid, which cannot interact with CD22, should result in activation of the BCR (Figure 

1.2, Chapter 1). Thus, SIAE inhibitors could be used as an essential tool for 

understanding how sialoside ligands balance CD22-BCR activation.   

 SIAE and its sequence homologues are novel members of the serine hydrolase 

superfamily.13 Diisopropyl fluorophosphate (DFP), which is a covalent modifier of the 

active site serine nucleophiles of esterases, is known to inhibit the SIAE enzymes.14 

Previous studies have found that fluorophosphonates (FPs) are excellent affinity labels 

for many different serine hyrolases.16,17 These organophosphorus reagents are however 

non-specific. As a result, the lack of specificity for organophosphorus reagents limits 

their utility for specific labeling of SIAE.13 The active site of the SIAE enzymes is 

different from most serine hydrolases.15 The amino acid sequence in the active site of 

SIAE contains arginine residues, which are not present in serine hydrolases.1,15 Varki and 

coworkers have postulated that SIAE enzymes have serine active site nucleophiles with 

an essential arginine residue.1 

 In this chapter, we aimed to design and synthesize sialosides for labeling and 

inhibition of SIAE. Reagents that can covalently inhibit SIAE could be used to identify 

isoforms of the enzyme or detect its activity in specific tissues. We aimed to generate C-

9-α-halo-ketones as candidate inhibitors of SIAE enzymes (3-15 and 3-17). We also 

proposed the synthesis of 9-O-chloroacetyl-Neu5Ac (3-1) so as to confirm that the 9-
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position of Neu5Ac could be substituted in a single step by chloroacetate. Ketones with 

an α-halo group are well known as covalent inhibitors for esterase enzymes.18,19 We 

describe the synthesis of a chloro-acetate analog of a known SIAE substrate, GM3. We 

also include an alkyne label (3-11) for the incorporation of additional probes that could 

be used for visualization and detection of SIAE by fluorescence spectroscopy or mass 

spectrometry (Scheme 3.1). 

 

Scheme 3.1 Proposed inhibitors of SIAE 

3.2 Results and Discussion 

3.2.1 Synthesis of 9-O-chloroacetyl-Neu5Ac 

 The synthesis of 9-O-chloroacetyl-Neu5Ac was carried out as a model reaction to 

confirm that the 9-position of Neu5Ac could be substituted in a single step by 

chloroacetate analogous to the reactivity shown in Scheme 2.2.25 We were pleased to find 

that preparation of the 9-O-chloroacetyl-Neu5Ac (3-1, Scheme 3.2) was achieved in 

good yield (79%) using 2-chloro-1,1,1-trimethoxyethane with catalytic amount of p-tosyl 

monohydtrate. 
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Scheme 3.2 One step synthesis of 9-O-chloroacetyl-Neu5Ac 

 After achieving the one step synthesis of 9-O-chloroacetyl-Neu5Ac (3-1), we 

considered that the ester linkage of 3-3 could be unstable in biological systems. We then 

focused our attention on the preparation of the 9-amino-Neu5Ac to prepare the analogous 

amide derivative.  

3.2.2 Synthesis of 9-amino-Neu5Ac 

 We started the synthesis of 9-amino-Neu5Ac from commercially available sialic 

acid (2-7). The sialic acid (2-7) was first converted to its methyl ester derivative (2-9) 

using Amberlite®-IR 120 H+ resin in 92% yield. The methyl ester, 2-9, was treated with 

p-tolulenesulfonyl chloride (TsCl) in presence of pyridine to furnish 9-O-Ts-Neu5Ac (3-

4) in 76% yield (Scheme 3.3).20 The substitution of an azido group at the C-9 of the tosyl 

derivative 3-2 was achieved by using sodium azide in a mixture of water–acetone (1:3) to 

afford 9-azido-Neu5Ac (3-3) in 87% yield. We then attempted to reduce the azide 

functionality of 3-3 using triphenyl phosphine (PPh3) with a THF–H2O mixture to give 9-

amino-Neu5Ac (3-4). Unfortunately, this reaction did not provide expected product but 

only starting material was detected. 

To test if the free carboxylic acid at C1 of the Neu5Ac residue was interfering 

with the reduction we examined methyester analogs of 9-azido-Neu5Ac. Compound 3-5 
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reduction conditions, including Pd/C under a hydrogen atmosphere, were unable to 

generate the reduced 9-amino-methyester-Neu5Ac (3-6).  

 

 

Scheme 3.3 Planned synthetic route to 9-amino-Neu5Ac  

 Based on these results, we decided to first synthesize the sialoside using 9-azido-

Neu5Ac and 9-decynelactose and then develop a strategy for reduction of the azide group 
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(3-9) by TLC. The 9-amino-sialyl-octyllactose (3-8) was formed by the reduction of 9-

azido-sialyl-octyllactose (3-7) using Pd/C (Scheme 3.4).20  

 

Scheme 3.4 Synthesis of 9-chloroacetamido-sialyl-octyllactoside 

3.2.4 Synthesis of 9-decyne-lactoside 

 We next synthesized 9-decyne-lactoside (compound 3-11) as a starting material 

for the target glycolipid analog of GM3 (compound 3-15 and 3-17). The terminal alkyne 

was intended for use in future reactions by Cu-catalyzed azide-alkyne cycloaddition 

(CuAAC). The strategy for synthesizing 9-decyne-lactoside was based on the synthesis β-

octyl-lactoside (Scheme 2.1, Chapter 2). The strategy is summarized in Scheme 3.5, 

with the first three steps identical to those of Scheme 2.1. The benzoyl-protected 9-

decynelactoside (3-10, 73% yield) was synthesized after the completion of the 

glycosylation reaction between the perbenzoylated lactosyl trichloroacetimidate glycosyl 

donor (2-4) and 9-decyne-1-ol under acidic conditions. The benzoyl-protected 9-

decynelactose (3-10) was then subjected to debenzoylation in the presence of freshly 

prepared sodium methoxide to provide 9-decyne-lactoside (3-11, 98% yield). 
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Scheme 3.5 Synthesis of 9-decyne-lactoside  

 Following chemoenzymatic methods developed by Chen and coworkers, we 

prepared the 9-azido trisaccharides using the monosaccharides 3-3 and substrate 3-11.21,22 

Both α(2→3) and α(2→6) linked sialosides were prepared in moderate to excellent yield 

(Scheme 3.6). 

 

Scheme 3.6 Synthesis of 9-azido-sialyl-dec-9-yne-lactoside  
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 For the formation of targets 3-15 and 3-17, the reduction of 9-azido trisaccharides 
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envisioned (Scheme 3.7). 
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Scheme 3.7 Steps involved in synthesis of target substrate of SIAE 

 The reduction of 9-azido-sialyl-dec-9-yne-lactoside (3-12) was attempted using 

triphenylphosphine in THF:H2O. Unfortunately, the Staudinger reduction of 3-12 was not 

successful under these conditions. Attempts with more reactive conditions, i.e., 

trimethylphosphine and NaOH in THF were also unsuccessful, with isolation of the 

starting material (Scheme 3.8). 

 

Scheme 3.8 Attempted reduction of 9-azido-sialyldec-9-yne-lactoside 
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The azide derivatives (3-12 and 3-13) were successfully synthesized via 
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1) in a single step. Also, the synthesis of trisaccharide 3-9 shows that the chloroacetyl 

group can be specifically incorporated at 9-position of sialic acid in a trisaccharide. 

Future work will need to develop reduction conditions suitable for conversion of 3-12 to 

3-14 to allow access to targets 3-15 and 3-17. 

3.4 Experimental methods 

3.4.1 General  

 All reagents were purchased from commercial sources and were used without 

further purification unless noted otherwise. Reaction solvents were purified by successive 

passage through columns of alumina and copper under an argon atmosphere using 

Innovative Technology, Inc. PURE SOLV (SPS-400-7). All reactions were performed 

under a positive pressure of argon at room temperature unless specified otherwise. The 

reactions were monitored by analytical TLC on silica gel 60-F254 (0.25 nm, Silicycle, 

Quebec, Canada) and visualization of the reaction components was achieved using UV 

fluorescence (254 nm) and/or by charring with acidified anisaldehyde solution in ethanol, 

Ceric Ammonium Molybdate (CAM) or orcinol stain. Organic solvents were evaporated 

under reduced pressure at 40 ºC. Reaction products were purified by column 

chromatography on silica gel (230–400 mesh, Silicycle, Quebec, Canada), Iatrobeads 

6RS-8060 (Shell-USA Inc.) if the eluent system contained greater than 10% methanol 

and by reversed phase C-18 silica with MeOH and H2O as eluents.  Flash column 

chromatography was performed using a Combiflash companion chromatography 

instrument (Teledyne Isco, Inc., Lincoln, NE) with Redisep and Silicycle flash silica gel 

columns (40-63 µ m). The yields reported are after purification. NMR experiments were 

conducted on Varian 400, 500, 600, and 700 MHz instruments. Chemical shifts are 
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reported relative to the deuterated solvent peaks in parts per million. Assignments of the 

NMR spectra were based on one-dimensional experiments (APT) and/or two-dimensional 

experiments (1H–1H COSY, 1H–13C HSQC and 1H–13C HMBC). Electrospray mass 

spectra (ES-MS) were recorded on Agilent Technologies 6220 TOF. For ES-MS spectra, 

samples were dissolved in CHCl3 or CH3OH and NaCl was added. 

3.4.2 Synthetic methods 

 

5-Acetamido-9-O-(2-cholroacetyl)-3,5-dideoxy-D-glycero-β-D-galacto-2-

nonulopyranosonic acid (3-1): 

2-chloro-1,1,1-trimethyoxyethane (0.23 mL, 1.62 mmol) and p-TsOH.H2O (2 mg) was 

added to a solution of N-Acetyl neuraminic acid  (50 mg, 0.16 mmol) in DMF (0.5 mL). 

After being stirred for 2 h under argon, the reaction mixture was applied directly to a 

Dowex 1-X 8 (HCOO-) anion exchange resin. The column was washed with H2O (50 mL) 

and then the compound was eluted with formic acid (1N, 25 mL). The eluent was 

lyophilized over 48 h to yield 48.5 mg (78.7%) of 3-3 as a white solid. 1H NMR (400 

MHz, D2O): δ = 4.44 (d, J = 11.5, Hz, 1H, H9), 4.30 (dd, J = 11.4, 6.3 Hz, 1H, H9), 4.27 

(s, 2H, -COCH2Cl), 4.03 – 3.93 (m, 3H), 3.91 – 3.85 (m, 2H), 3.56 (d, J = 8.9, 1H), 2.18 

(dd, J = 12.8, 4.7 Hz, 1H, H3e), 2.02 (s, 3H, -NHCOCH3), 1.79 (app.t, J = 12.2 Hz, 1H, 

H3a). 13C NMR (126 MHz, D2O): δ = 171.0 (CO), 170.0 (C1), 71.0, 69.2, 68.8 (C9,) 68.7, 

68.2 (C5), 53.2 (C3), 42.1 (-COCH2Cl) 40.3 (NH-CO-CH3), 23.1 (-O-CO-CH3). HRMS 

(ESI) calculated for C13H20ClNO10 [M-H]- 384.0776, found: 384.0698. 
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N-acetyl neuraminic acid methlyester (2-9)20: 

To a solution of N-Acetyl neuraminic acid (2.0 g; 6.46 mmol) in 75 ml MeOH was added 

10 g Amberlite IR-120 (H+ resin) and the mixture was stirred overnight. The reaction 

changed from cloudy white to colorless. The reaction mixture was filtered and 

concentrated, to give 2-9 as a white solid (91.6% yield). 1H NMR (500 MHz, D2O): δ = 

4.14 – 4.02 (m, 2H, H4, H6), 3.94 (t, J = 10.3 Hz, 1H, H5), 3.90 – 3.82 (m, 4H, H9a, -

OCH3), 3.75 (ddd, J = 9.0, 6.3, 2.6 Hz, 1H, H9b), 3.68 – 3.60 (m, 1H, H8), 3.57 (d, J = 

9.2 Hz, 1H, H7), 2.33 (dd, J = 13.1, 4.8 Hz, 1H, H3e), 2.06 (s, 3H, NH-CO-CH3), 1.94 

(dd, J = 12.9, 11.9 Hz, 1H, H3a). 13C NMR (125 MHz, D2O): δ = 175.7 (COOMe), 172.2 

(C1), 71.2 (C2), 71.0, 69.1, 67.5 (C9), 64.0 (C5), 54.3, 52.9 (C3), 39.5 (NH-CO-CH3), 22.9 

(-COO-CH3). HRMS (ESI) calculated for C12H21NO9Na [M+Na]+ 346.1109, found: 

346.1111.   

 

5-Acetamido-9-O-tosyl-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic methyl ester 

(3-2)20:  

To a solution of Neu5Ac methyl ester 2-9 (483 mg; 1.5 mmol) in pyridine (15 mL) was 

added p-toluensulfonyl chloride (429 mg, 2.25 mmol) which was cooled to -10 °C. After 

1 hour at -10 °C, the mixture was brought to 0-5 °C overnight with stirring. After 

completion of the reaction, pyridine was removed. The residue was purified by flash 

chromatography using 0 to 5% methanol/ethyl acetate. The product was obtained as a 
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white solid (538 mg, 76%). 1H NMR (500 MHz, D2O): δ = 7.78 (d, J = 8.4 Hz, 2H, 

ArH), 7.45 (d, J = 8.4 Hz, 2H, ArH), 4.25 (dd, J = 10.5, 2.3 Hz, 1H, H9b), 4.15 (dd, J = 

10.5, 5.0 Hz, 1H, H9a), 4.08 (q, J = 7.2 Hz, 1H, H4), 4.03 – 3.92 (m, 2H, H6) 3.90 – 3.70 

(m, 5H, H5, H8, OCH3), 3.50 (d, J = 9.2 Hz, 1H, H7), 2.48 (s, 3H, -ArCH3), 2.24 (dd, J = 

13.0, 4.9 Hz, 1H, H3e), 2.07 (s, 3H, -NH-CO-CH3), 1.86 (dd, J = 13.0, 11.6 Hz, 1H, H3a). 

13C NMR (125 MHz, D2O): δ = 175.0 (CO), 171.3 (C1), 146.7 (ArC), 130.6 (ArC), 130.3 

(ArC), 127.9 (ArC), 95.3, 72.6, 70.2, 67.7, 67.6 (C9), 66.6 (C5), 61.8, 53.5 (C3), 52.1, 

38.7 (NH-CO-CH3), , 22.1, 20.9 (-O-CO-CH3), 13.3. HRMS (ESI) calculated for 

C19H27NO11SNa [M+Na]+ 500.1203, found: 500.1201. 

 

5-Acetamido-9-azido-3,5,9-trideoxy-D-glycero-D-galacto-2-nonulosonic acid (3-3)20: 

Compound 3-4 (365 mg; 0.77 mmol) and sodium azide (248 mg; 3.82 mmol) were refluxed 

at 75 ºC in water:acetone (12 mL; 1:3) for 12 h. The solvent was removed under reduced 

pressure, and the product was purified by flash chromatography (80% isopropanol in 

water/ethyl acetate; 0 to 50% linear gradient) to obtain 3-5 (226 mg; 88.6%). 1H NMR (500 

MHz, D2O): δ = 4.10 – 3.99 (m, 2H, H9), 3.92 – 3.86 (m, 2H, H4, H6), 3.59 (dd, J = 13.2, 2.8 

Hz, 1H, H5/8), 3.50 (dd, J = 9.2, 1.0 Hz, 1H, H5/8), 3.46 (dd, J = 13.0, 6.1 Hz, 1H, H7), 2.19 

(dd, J = 13.0, 4.8 Hz, 1H, H3e), 2.08 (s, 3H, NHCOCH3), 1.87 (t, J = 12.6 Hz, 1H, H3a). 13C 

NMR (125 MHz, D2O): δ = 176.7 (COO-), 174.8 (NHCOCH3), 171.2 (C1), 96.4, 70.1, 69.1, 

69.0 (C9), 67.3 (C5), 67.28, 53.9 (C3), 52.3, 39.4 (NH-CO-CH3), 22.1. HRMS (ESI) 

calculated for C11H17N4O8 [M-H]- 333.1052, found: 333.1054.  
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9-azido N-acetyl neuraminic acid methlyester (3-5)20: 

To a solution of 9-azido N-Acetyl neuraminic acid 3-5 (30 mg; 0.09 mmol) in 3 ml 

MeOH was added 210 mg Amberlite IR-120 (H+ resin). The mixture was stirred 

overnight. The reaction mixture turned from cloudy white to colorless. The mixture was 

filtered and the filtrate was concentrated to give 25 mg of 3-7 (79.8% yield) as a white 

solid. 1H NMR (500 MHz, D2O): δ = 4.17 – 4.01 (m, 2H, H9), 3.92 – 3.84 (m, 2H, H4, H6), 

3.78 (s, 3H, OCH3), 3.59 (dd, J = 13.2, 2.8 Hz, 1H, H5/8), 3.54 (dd, J = 9.2, 1.0 Hz, 1H, H5/8), 

3.47 (dd, J = 13.0, 6.1 Hz, 1H, H7), 2.30 (dd, J = 13.0, 4.8 Hz, 1H, H3e), 2.04 (s, 3H, 

NHCOCH3), 1.89 (t, J = 12.6 Hz, 1H, H3a). 13C NMR (125 MHz, D2O): δ = 174.8 (CO), 

171.4 (C1), 95.4, 70.3 (C2), 69.0 (C9), 68.8, 68.7 (C9), 66.8, 66.7, 53.9 (C3), 53.5, 38.7 (NH-

CO-CH3), 22.1 (COOCH3). HRMS (ESI) calculated for C12H20N4O8Na [M+Na]+ 371.1179, 

found: 371.1173.  

 

O-2,3,4,6-Tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-2,3,6-tri-O-benzoyl-β-D- 

glucopyranosyl-dec-9-yne (3-10): 

9-Decyne-1-ol (51.57 µL, 0.30 mmol) was added to a reaction mixture of compound 2-4 

(235 mg, 0.20 mmol) and activated molecular sieves (2 g) in dry CH2Cl2 (12 mL). The 

reaction mixture was charged with 1% TMSOTf (trimethylsilyl 

trifluoromethanesulfonate) (0.3 mL in CH2Cl2) at 0 °C. The reaction was allowed to 

warm to room temperature and then stirred overnight. After completion, the reaction 

O

COOMe

OH
OH

HN

N3 OH

HO
O

O

OBz

BzO

BzO

OBz

O
O

OBz

O
BzO

OBz

7



	
   95	
  

mixture was filtered on a pad of Celite. The product was purified by column 

chromatography (0 to 30% EtOAc in hexane) to yield 175 mg (72.5%) of 3-1. 1H NMR 

(500 MHz, CDCl3): δ = 8.07 – 7.97 (m, 13H, ArH), 7.92 (d, J = 7.3 Hz, 2H, ArH), 7.76 

(d, J = 7.3 Hz, 2H, ArH), 7.63 (ddd, J = 22.2, 14.9, 7.5 Hz, 3H, ArH), 7.52 (q, J = 7.9 

Hz, 5H, ArH), 7.47 – 7.31 (m, 9H, ArH), 7.25 (t, J = 7.8 Hz, 2H, ArH), 7.17 (t, J = 7.8 

Hz, 2H, ArH), 5.83 (t, J = 9.5 Hz, 1H, H3’), 5.77 – 5.72 (m, 2H, H2’, H2’’), 5.48 (dd, J = 

9.7, 7.9 Hz, 1H, H4’’), 5.40 (dd, J = 10.4, 3.4 Hz, 1H, H3’’), 4.90 (d, J = 7.9 Hz, 1H, 

H1’’), 4.71 (d, J = 7.9 Hz, 1H, H1’), 4.63 (dd, J = 12.1, 1.8 Hz, 1H, H6’), 4.52 (dd, J = 

12.2, 4.5 Hz, 1H, H6’), 4.28 (t, J = 9.5 Hz, 1H, H4’), 3.93 – 3.70 (m, 4H, H5’, H5’’, H6’’), 

3.49-3.43 (m, 1H, H6’’), 2.13 (td, J = 7.5, 2.6 Hz, 2H, ≡CH-CH2), 1.98 (t, J = 9.6 Hz, 

2H, O-CH2), 1.60 – 1.00 (m, 12H, ≡CH-CH2CH2, 5xCH2). 13C NMR (126 MHz, CDCl3): 

δ = 165.9 (ArC), 165.6 (ArC), 165.5 (ArC), 165.4 (ArC), 165.3 (ArC), 165.2 (ArC), 

164.8 (ArC), 133.5 (ArC), 133.4 (ArC), 133.37 (ArC), 133.35 (ArC), 133.3 (ArC), 133.2 

(ArC), 133.1 (ArC), 130.0 (ArC), 129.8 (ArC), 129.7 (ArC), 129.6 (ArC), 129.61 (ArC), 

129.5 (ArC), 128.9 (ArC), 128.7 (ArC), 128.68 (ArC), 128.6 (ArC), 128.5 (ArC), 128.52 

(ArC), 128.3 (ArC), 128.26 (ArC), 128.2 (ArC), 101.2 (C1’’), 100.9 (C1’), 84.8 (C4’), 

73.0 (C3’’), 72.9, 71.8, 71.83 (C5’), 71.4 (C5’’), 70.3 (C3’), 69.9 (C2’), 68.0 (C≡C), 67.5 

(C2’’), 62.5 (C6’’), 61.1, 29.3, 29.0, 28.9, 28.6, 28.4, 25.7, 18.3. HRMS (ESI) calculated 

for C71H66O18Na [M+Na]+ 1229.4147, found: 1229.4135.  
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O-(β-D-galactopyranosyl-(1→4)-O-(β-D-glucopyranosyl)-dec-9-yne (3-11): 

To a solution of compound 3-1 (175 mg, 0.25 mmol) in dry MeOH (5 mL) was added 1% 

freshly prepared NaOMe (1.9 mL). The reaction mixture was stirred for 24 h and 

monitored by TLC (1:5, MeOH:CH2Cl2; Rf = 0.2 to 0.3). After completion of the 

reaction, the mixture was neutralized to pH 7 by adding Amberlite IR 120 acidic resin. 

The reaction mixture was filtered from the resin and concentrated under reduced 

pressure. The crude product was purified by column chromatography by eluting with 0 to 

40% of MeOH in CH2Cl2 to yield 68 mg (98%) as a white solid. 1H NMR (400 MHz, 

D2O): δ = 4.42 (d, J = 8.0 Hz, 2H, H1’, H1’’), 3.75 – 3.46 (m, 15H), 3.25 (m, 1H, H2’), 

2.13 (td, J = 7.5, 2.6 Hz, 2H, ≡CH-CH2), 1.58 (m, 2H, O-CH2), 1.47 (m, 2H, ≡CH-

CH2CH2), 1.38 – 1.24 (m, 10H, 5xCH2). 13C NMR (126 MHz, D2O): δ = 103.0 (C1’’), 

102.1 (C1’), 78.5 (C4’), 75.4 (C3’’), 74.8 (C5’), 74.5 (C5’’), 72.9 (C3’), 72.6, 71.0 (C2’), 

68.9 (C≡C), 68.6 (C2’’), 61.1 (C6’), 54.3 (C6’’), 28.7, 28.3, 28.1, 27.9, 27.7, 25.0, 17.5. 

HRMS (ESI) calculated for C22H38O11Na [M+Na]+ 501.2312, found: 501.2306.  

 

O-(5-Acetamido-9-azido-3,5,9-trideoxy-D-glycero-α-D-galacto-non-2- 

ulopyranosylonic acid)-(2→3)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-

glucopyranosyl)-dec-9-yne (3-12): 

9-azido sialic acid, 3-5, (5.24 mg; 0.02 mmol), cytidine triphosphate disodium salt (8.22 

mg; 0.02 mmol), MgCl2 (1M, 160 µL) and distilled H2O (1200 µL) were dissolved in 1M 
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Tris-HCl buffer (800 µL; pH 8.8). The reaction was then charged with Neisseria 

meningitidis CMP-sialic acid synthetase (NmCSS)22 (200 µL), dec-9-yne-β-lactoside, 3-

2, (5.0 mg, 0.10 mmol), Pasteurella multocida α(2→3)-sialyltransferase23 (200 µL), and 

distilled H2O (1200 µL). The reaction was stirred overnight at 37 ºC. After completion, 

ethanol was added to the reaction mixture. The reaction mixture was centrifuged and the 

supernatant was then lyophilized. The crude product was purified over a sep-pack C-18 

reverse phase cartridge. The product was eluted with H2O/MeOH (2:1). Pure product 3-9 

(4.8 mg; 58%) was obtained as a white solid after concentrated the fractions on high 

vacuum. 1H NMR (400 MHz, D2O): δ = 4.46 (d, J = 7.9 Hz, 1H, H1’’), 4.41 (d, J = 7.9 

Hz, 1H, H1’), 4.14 (dd, J = 9.9, 2.8 Hz, 1H, H1’’), 4.00-3.00 (m, 22H), 3.24 (t, J = 8.5 

Hz, 1H, H2’), 2.71 (dd, J = 12.4, 4.6 Hz, 1H, H3e’’’), 2.15 (t, J = 7.1 Hz, 2H, ≡CH-CH2) 

1.98 (s, 3H, -NH-CO-CH3), 1.74 (t, J = 12.2 Hz, 1H, H3a’’’), 1.62 – 1.53 (m, 2H, O-

CH2), 1.50 – 1.42 (m, 2H, ≡CH-CH2-CH2), 1.38 – 1.22(m, 10 H, 5xCH2). 13C NMR (125 

MHz, D2O): δ = 176.0 (COO-), 174.8 (-NHCOCH3), 103.6 (C1’’), 103.0 (C1’), 100.8 

(C2’’’), 79.3, 76.6, 76.2, 75.8, 75.7, 75.4, 73.8, 73.7, 71.7, 71.4, 70.4, 69.8, 69.3, 68.4, 

62.0, 61.2, 54.1, 52.7, 43.5, 40.7 (C3’’’), 31.6, 29.7, 29.2, 29.0, 28.8, 28.6, 25.9, 23.0 (-

NHCOCH3), 20.1, 18.4 (≡CH-CH2), 13.7. HRMS (ESI) calculated for C33H53N4O18 [M-

H]- 793.3360, found: 793.3352. 
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O-(5-Acetamido-9-azido-3,5,9-trideoxy-D-glycero-α-D-galacto-non-2-

ulopyranosylonic acid)-(2→6)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-

glucopyranosyl)-dec-9-yne (3-13): 

9-azido sialic acid, 3-5, (5.24 mg; 0.02 mmol), cytidine triphosphate disodium salt (8.22 

mg; 0.02 mmol), MgCl2 (1M, 160 µL) and distilled H2O (1200 µL) were dissolved in 1M 

Tris-HCl buffer (800 µL; pH 8.8). The reaction was charged with Neisseria meningitidis 

CMP-sialic acid synthetase (NmCSS)22 enzyme preparation (200 µL), dec-9-yne-β- 

lactoside, 3-2, (5.0 mg, 0.10 mmol), Photobacterium damsela α(2→6)-sialyltransferase24 

(200 µL), and distilled H2O (1200 µL). The reaction was stirred overnight at 37 ºC. After 

completion, ethanol was added to the reaction mixture. The reaction mixture was 

centrifuged and the supernatant was then lyophilized. The crude product was purified 

over a sep-pack C-18 reverse phase cartridge. The product was eluted with H2O/MeOH 

(2:1). Pure product 3-10 (6.2 mg; 78%) was obtained as a white solid after concentration 

of the fractions on high vacuum. 1H NMR (400 MHz, D2O): δ = 4.43 (d, J = 8.1 Hz, 1H, 

H1’’), 4.37 (d, J = 7.6 Hz, 1H, H1’), 4.00 – 3.41 (m, 22H), 3.27 (t, J = 8.4 Hz, 1H, H2’), 

2.65 (dd, J = 12.4, 4.6 Hz, 1H, H3e’’’), 2.15 (t, J = 7.0 Hz, 2H, ≡CH-CH2) 1.98 (s, 3H, -

NH-CO-CH3), 1.68 (t, J = 12.2 Hz, 1H, H3a’’’), 1.62 – 1.53 (m, 2H, O-CH2), 1.50-1.42 

(m, 2H, ≡CH-CH2 -CH2), 1.38-1.22(m, 10 H, 5xCH2). 13C NMR (125 MHz, D2O): δ = 

175.8 (COO-), 174.4 (-NHCOCH3), 104.2 (C1’’), 102.9 (C1’), 101.3 (C2’’), 80.7, 75.7, 

75.6, 74.7, 73.7, 73.4, 73.3, 71.8, 71.7, 71.3, 70.0, 69.5, 69.3, 64.6, 61.3, 54.1, 52.8, 41.1, 

29.7, 29.3, 29.0, 28.8, 28.6, 25.9, 23.1 (NHCOCH3), 18.4 (≡CH-CH2). HRMS (ESI) 
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calculated for C33H53N4O18 [M-H]- 793.3360, found: 793.3364. 



	
   100	
  

3.5 References 

1. Hayes, B.; Varki, A. O-acetylation and de-O-acetylation of sialic acids. Sialic acid 

esterases of diverse evolutionary origins have serine active sites and essential arginine 

residues. Journal of Biological Chemistry 1989, 264, 19443-19448. 

2. Guimaraes, M. J.; Bazan, J. F.; Castagnola, J.; Diaz, S.; Copeland, N. G.; Gilbert, 

D. J.; Jenkins, N. A.; Varki, A.; Zlotnik, A. Molecular cloning and characterization of 

lysosomal sialic acid O-acetylesterase. Journal of Biological Chemistry 1996, 271, 

13697-13705. 

3. Schauer, R. Sialic acids:  metabolism of O-acetyl groups. Methods in Enzymology 

1987, 138, 611-626. 

4. Varki, A. Diversity in the sialic acids. Glycobiology 1992, 2, 25-40. 

5. Reuter, G.; Schauer, R. Isolation and analysis of gangliosides with O-acetylated 

sialic acids. In Gangliosides and modulation of neuronal functions, Springer 1987, 155-

165. 

6. Varki, A.; Muchmore, E.; Diaz, S. A sialic acid-specific O-acetylesterase in 

human erythrocytes: possible identity with esterase D, the genetic marker of 

retinoblastomas and Wilson disease. Proceedings of the National Academy of Sciences of 

the United States of America 1986, 83, 882-886. 

7. Surolia, I.; Pirnie, S. P.; Chellappa, V.; Taylor, K. N.; Cariappa, A.; Moya, J.; Liu, 

H.; Bell, D. W.; Driscoll, D. R.; Diederichs, S. Functionally defective germline variants 

of sialic acid acetylesterase in autoimmunity. Nature 2010, 466, 243-247. 

8.	
   Walker, J. A.; Smith, K. G. CD22: an inhibitory enigma. Immunology 2008, 123, 

314-325. 



	
   101	
  

9. Conley, M. E.; Dobbs, A. K.; Farmer, D. M.; Kilic, S.; Paris, K.; Grigoriadou, S.; 

Coustan-Smith, E.; Howard, V.; Campana, D. Primary B cell immunodeficiencies: 

comparisons and contrasts. Annual Review of Immunology 2009, 27, 199-227. 

10. Goodnow, C. C. Multistep pathogenesis of autoimmune disease. Cell 2007, 130, 

25-35. 

11. Corcos, D.; Osborn, M. J.; Matheson, L. S. B-cell receptors and heavy chain 

diseases: guilty by association? Blood 2011, 117, 6991-6998. 

12. Pillai, S.; Cariappa, A.; Pirnie, S. P. Esterases and autoimmunity: the sialic acid 

acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends in 

immunology 2009, 30, 488-493. 

13. Jessani, N.; Young, J. A.; Diaz, S. L.; Patricelli, M. P.; Varki, A.; Cravatt, B. F. 

Class Assignment of Sequence‐Unrelated Members of Enzyme Superfamilies by 

Activity‐Based Protein Profiling. Angewandte Chemie International Edition 2005, 44, 

2400-2403. 

14. Main, A. Affinity and phosphorylation constants for the inhibition of esterases by 

organophosphates. Science 1964, 144, 992-993 

15. Brenner, S. The molecular evolution of genes and proteins: a tale of two serines. 

Nature 1988, 334,528-530. 

16. Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Activity-based protein profiling: the serine 

hydrolases. Proceedings of the National Academy of Sciences of the United States of 

America 1999, 96, 14694-14699.	
  



	
   102	
  

17. Jessani, N.; Liu, Y.; Humphrey, M.; Cravatt, B. F. Enzyme activity profiles of the 

secreted and membrane proteome that depict cancer cell invasiveness. Proceedings of the 

National Academy of Sciences of the United States of America 2002, 99, 10335-10340 

18. Dafforn, A.; Neenan, J. P.; Ash, C. E.; Betts, L.; Finke, J. M.; German, J. A.; Rao, 

M.; Walsh, K.; Wilams, R. R. Acetylcholinesterase inhibition by the ketone transition 

state analogs phenozyacetone and 1-halo-3-phenoxy-2-propanones. Biochemical and 

Biophysical Research Communications 1982, 104, 597-602. 

19.  Wong, S.-C. C.; Kandel, S. I.; Kandel, M.; Gornall, A. G. Covalent Labeling of 

the Active Site of Human Carbonic Anhydrase B with IV Bromoacetylacetazolamide. 

The Journal of Biological Chemistry 1972, 247, 3810-3821. 

20. Sandbhor M. S.; Soya N.; Albohy A.; Zheng R. B.; Cartmell J.; Bundle R. D.; 

Klassen J. S. and Cairo C. W. Substrate recognition of the membrane-assosciated 

sialidase NEU3 requires a hydrophobic aglycone. Biochemistry, 2011, 50, 6753-6762. 

21.  Yu H.; Chokhawala H. A.; Huang, S. S.; and Chen X. One-pot three-enzyme 

chemoenzymatic approach to the synthesis of sialosides containing natural and non-

natural functionalities. Nature Protocol, 2009, 1, 2485-2492. 

22. Yu H.; Karpel R. and Chen X. Chemoenzymatic synthesis of CMP-sialic acid 

derivatives by a one-pot two-enzyme system: Comparison of substrate flexibility of three 

microbial CMPsialic acid synthetases. Bioorganic Medicinal Chemistry, 2004, 12, 6427-

6435. 

23. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, 

Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool 



	
   103	
  

for the synthesis of sialoside libraries. Journal of the American Chemical Society 2005, 

127, 17618-17619.	
  

24. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X. Highly 

efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-

linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-

substrate specificity. Angewandte Chemie International Edition 2006, 45, 3938–3944 

25. Kiefel J. M.; Wilsony J. C.; Bennett S.; Gredley M. and Itzstein M. V. Synthesis 

and Evaluation of C-9 Modi®ed N-Acetylneuraminic Acid Derivatives as Substrates for 

N-Acetylneuraminic Acid Aldolase Bioorganic & Medicinal Chemistry, 2000, 8, 657-

664.  

 

 

 

 

 

 

 

 

 

 



	
   104	
  

 

  

 

 

 

 

 

Chapter 4 
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4.1 Summary 

 In this thesis, we describe the use of chemoenzymatic methods to generate a panel 

of novel sialic acid-containing trisaccharides for use in enzymatic studies. We were 

successful in synthesizing the target analogs of GM3 sialosides, which included variation 

of the glycosidic linkage α(2→3) and α(2→6) as well as the uncommon sialosides 

Neu5Gc and 9-O-Ac-Neu5Ac (Figure 2.3, Chapter 2). We employed a chemoenzymatic 

strategy based on established methods.1,2 The most challenging aspects were purification 

and synthesis of 9-O-acetate trisaccharides due to susceptibility of the O-Ac groups to 

hydrolysis at pH 8.8 (optimal for chemoenzymatic reactions). We were able to overcome 

these issues by optimizing the chemoenzymatic reaction conditions by reducing the pH 

and reaction time. Purifications were carried out using C-18 sep pak columns by slowly 

decreasing the polarityof eluent in order to avoid the mixture of acetylated and non-

acetylated trisaccharides. 

 The primary focus of this work was the generation of modified sialosides for 

enzymatic substrate studies. However, we also considered that the 9-O-Ac-sialosides are 

regulated by the action of sialic acid esterase (SIAE) and acetyltransferase (SIAT) 

enzymes.3,4 Although esterase enzymes have been studied using a variety of methods, the 

SIAE has not been extensively studied.3 We developed a method for the synthesis of 9-

chloroacetate and 9-chloroacetamide sialosides. Future work will be required to complete 

the synthesis of the target substrate 9-chloroacetamide trisaccharides (Scheme 3.7, 

Chapter 3).  
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4.2 Future Work 

 With the acetyl and glycolyl analogs of the GM3 oligosaccharide prepared, 

several lines of investigation are now possible. The first of these would be to test the 

substrate activity of these compounds against each of the human neuramindase 

isoenzymes (NEU1, NEU2, NEU3 and NEU4). Previous work from our group has used a 

mass spectrometry-based assay to examine the substrate activity of GM3 analogs that 

varied in their lipid aglycone.5 Substrates shown in Figure 2.3, Chapter 2 could be 

screened by using this mass spectrometry-based assay. 

 Other high-throughput screening methods using chromophore, fluorophore, or 

chemilluminescent labeled sialic acids have several limitations.6-10 First is the difficulty 

in chemically synthesizing naturally occurring sialic acid residues directly linked to the 

label. Due to this difficulty, most of these studies are limited to a few naturally occurring 

sialic acid forms.11 Secondly; these compounds do not study the effect of sialyl linkages 

and the structure of respective monosaccharide on sialidase substrate specificity.  

 To overcome these limitations, Chen and coworkers have reported a coupled 

enzyme colorimetric assay for substrate specificity studies of sialidases.14 This assay 

allows for the systematic study of the effect of the sialic acid structures, sialyl linkages, 

and the structures of the respective monosaccharide residues on the sialidase substrate 

specificity using a convenient and commonly accessible 96-well plate based high-

throughput screening format.14 However, this method requires the use of para-nitrophenol 

attached to the anomeric position of di- or trisaccharide substrates.  

 Another high-throughput method for quantifying glycoprotein sialylation is by 

using malonitrile as a fluorophore, which is added during the assay.12 This method 
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requires three steps: chemical reduction, enzymatic release of sialic acid, and chemical 

derivatization of the sialic acid using malononitrile (fluorophore).12,13 This method is 

accurate, rapid (15 min), and specific.  

 The naturally occurring modifications at C-9 (9-O-AcNeu5Ac) and N-5 (Neu5Gc) 

are hypothesized to show reduced activity based on the results reported by Sandbhor and 

coworkers.5 They found that GM3 analogs that contain an octyl chain are expected to be 

good substrates for NEU3 and are much simpler to generate the large modifications at the 

C-9 and N-5 positions of Neu5Ac inhibited the NEU3 activity. Also, the 9-O-acetyl-GD3 

have been reported with strongly reduced cleavage by membrane-bound ganglioside 

sialidase with only 12% relative activity compared to GM3.15 For the sialoside linkages, 

the α(2→3) linked sialosides generally shows 2-4 fold higher activity as compared to the 

α(2→6) linked sialosides.5,16 Mass spectrometry based kinetic assays of these 

compounds (Figure 4.1) with human neuraminidase isoenzymes (NEU1, NEU2, NEU3 

and NEU4) would provide an essential understanding of the role of these modifications in 

biological systems. 

 We designed the synthesis of the chloroacetate analog (3-15 and 3-17), which are 

expected to be the substrates for the SIAE enzyme. Although, we were able to synthesize 

an intermediate, 9-azido-sialyl-9-decyne lactose (3-12 and 3-13) chemoenzymatically but 

unfortunately we were not able to reduce the azide to amine. However our test reaction 

for the substitution of chloroacetate specifically at 9-position of sialic acid was 

successful. Also, the synthesis of a trisaccharide with an octyl chain (3-9) shows that the 

chloroacetyl group can be specifically incorporated at 9-position of sialic acid in a 

trisaccharide. We propose the reduction of azide in presence of alkyne by using TCEP 
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(tris(carboxyethyl)phosphine)), Ascorbate in presence of Ru, modified staudinger 

reduction conditions (PPh3, diethyl ether/ H2O).17,18   

 The alkyne-modified version of this compound should be capable of labeling the 

SIAE isoform that reacts with lipid analogs. A “tag-free’’ ABPP (activity-based protein 

profile) strategies will be used for the analysis of SIAE enzyme activity. This strategy is 

based on the Cu-catalyzed azide-alkyne cycloaddition reaction. Proteins are first labeled 

by an azido-sulfonate ester probe and then treated with an alkyne-tag under click-

chemistry conditions. These types of compounds can be used to label components of the 

cell and be visualized using fluorescence.19,20 

 Future work will be required to confirm that this compound does covalently 

modify the enzyme (Figure 1.3, Chapter 1). If the compound is specific for SIAE, then 

it should be a useful probe to determine the number and prevalence of the SIAE within 

cell or tissue samples. 
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Immobilization strategy for synthesis of sialosides 

 In addition to solution-phase strategies for chemoenzymatic synthesis of 

sialosides, we developed an improved protocol for use of SiaT enzymes. Solution phase 

application of enzymes has several drawbacks. First, the enzyme is generally difficult to 

recover, and must be separated from the product. Additionally, the enzymes require fresh 

preparation before synthesis and can degrade over time requiring repeated preparations. 

We considered that immobilization of the enzymes could be used to improve the 

protocol. The enzymes used were immobilized in calcium alginate as described below.1 

Immobilized enzymes were then used in the reaction mixture. The advantages of using 

immobilized enzymes over the enzymes in solution are easy purification (just filter the 

immobilized enzyme), reuse of the enzyme, and extended stability at 4 ºC. The reaction is 

somewhat slower than the solution phase equivalent, with typical times extended from 

one to two days for reaction completion with immobilized enzymes with similar yields. If 

purification is the concern, then immobilized enzymes strategy will be better over the 

enzymes in solution. 

Preparation of immobilized enzymes with cross-linking reagents 

 Sodium Alginate (20 mg) was added to 0.5 mL of a solution containing Neisseria 

meningitides CMP-NEU5Ac synthetase and 0.5 ml of Pasteurella multocida α-(2,3)-

sialyltransferase. Gluteraldehyde (40 mL) was added, and the mixture was stirred for 2 

hours. The alginate solution was then added dropwise into 5 mL of 1% calcium chloride 

and was allowed to stand for 30 min, generating alginate gel beads. The gel beads were 

washed twice with 5 mL of 1M Tris-HCl buffer (pH 8.8) containing 0.1% of calcium 

chloride solution, followed by 1M Tris-HCl reaction buffer (pH 8.8) three times (the 
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same buffer which is used for chemoenzymatic reaction) and was then used for 

chemoenzymatic reaction.  

Chemoenzymatic synthesis using immobilized enzymes 

 

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic acid)- 

(2→3)-O-(β-D-galactopyranosyl)-(1→4)-O-(β-D-glucopyranosyl)-octanol (2-26):  

N-Acetyl neuraminic acid (2.90 mg, 9.4 µmol), cytidine triphosphate disodium salt (4.95 

mg, 9.4 µmol), 1M MgCl2 (80 µL) and distilled H2O (600 µL) were dissolved in 1M Tris-

HCl buffer (400 µL pH 8.8). The reaction was then charged with resin - bound enzymes, 

octyl-β-lactoside, 2-6, (2.5 mg, 6.2 µmol), (200 µL) and distilled H2O (600 µL). The 

reaction mixture was stirred for 48 h. After completion, the resin was filtered and the 

reaction mixture was lyophilized. The crude product was purified over a sep-pack C-18 

reverse phase cartridge. The product was eluted with MeOH/EA (1:1). The purified 

product 2-26 (4 mg; 87%) was obtained as a white solid after concentration of the 

fractions on high vacuum.  

Stability of resin – bound enzymes 

These resin - bound enzymes after filtration from the reaction mixture were stored at 4 ºC 

for two weeks. To check the stability of these enzymes a test reaction on the same 

substrate was carried out. The test reaction shows the formation of product on TLC. This 

demonstrates that the enzymes are still active and can be reused again. 

O

COO

O
OH

HN

HO OH

HO
O

O

OH

HO OH
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