
Low-Level control of small scale helicopter using Soft Actor-Critic
method

by

Majid Kamyab

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Chemical Engineering

Department of Chemical Engineering

University of Alberta

© Majid Kamyab, 2021

Abstract

Unmanned Aerial Vehicles (UAVs), or drones, have been employed in a variety of

applications, ranging from surveillance to emergency operations. These systems com-

prise an ”inner loop” that provides stability and control and an ”outer loop” in charge

of mission-level tasks, such as way-point navigation. Despite their inherent instabil-

ity, different techniques for controlling these robots have been devised under stable

environmental conditions. However, these algorithms must know a robot’s dynamics

to be effective; furthermore, more complex control is necessary for UAVs to perform

in unstable environmental conditions. In this research, a simulated drone has been

successfully controlled using model-free reinforcement learning with no prior knowl-

edge of the robot’s model. Soft Actor-Critic (SAC) method is trained to perform

low-level control of a small-scaled helicopter in a set-point control system. First,

a simulation environment is created in which all tests were carried out and then it

is shown that SAC can not only develop a strong policy, but it can also deal with

unknown circumstances. The result obtained by the SAC agent is also compared to

a sliding mode controller to compare the capability of this method to a traditional

nonlinear control method. The SMC method proved to be superior by a steady state

error of 0, compared to a steady state error of 0.05% for the SAC agent. However,

the SAC agent is a model free technique which does not have access to the model of

the helicopter, on the other hand the SMC is a model based technique whuch needs

the system identification of the helicopter system.

ii

Acknowledgements

I want to express my gratitude to my distinguished supervisor, Dr. Dubljevic, for his

essential supervision, support, and instruction throughout my Master’s degree. My

thanks go to the Faculty of Engineering for providing me with the money to pursue

my studies at the University of Alberta’s Department of Chemical Engineering. In

addition, I’d like to thank Dr. Koch for his invaluable assistance. I’d want to thank my

friends, lab mates, colleagues, and research team – Hamid Khatibi – for a memorable

time spent together in academic and social contexts. My thanks also go to my mother,

brother, and father for their support during my education.

iii

TABLE OF CONTENTS

1 Introduction 1

1.1 Autonomous UAV . 1

1.2 Traditional Control Systems . 3

1.3 The Use of Reinforcement Learning as an Optimal Control Method . 11

1.4 Simulation Environment for RL . 14

1.5 Thesis Objective and outline . 15

1.5.1 Chapter 2: Reinforcement Learning Background 15

1.5.2 Chapter 3: Simulation environment 15

1.5.3 Chapter 4: Result and discussion 16

1.5.4 Chapter 5: Conclusion and future work 16

2 Review of Reinforcement Learning 17

2.1 Introduction and terminology . 17

2.1.1 Markov Decision Process . 17

2.1.2 Dynamic programming . 21

2.1.3 Monte Carlo methods . 21

2.1.4 Temporal Difference . 22

2.2 Policy search . 23

2.2.1 Deep Reinforcement Learning 24

2.3 Actor-critic methods . 25

2.4 Soft Actor Critic . 25

2.4.1 Entropy-Regularized Reinforcement Learning 26

2.4.2 SAC algorithm . 26

iv

3 Simulation Environment 29

3.1 Introduction . 29

3.2 Governing equations . 29

3.2.1 States and control input . 29

3.2.2 State-space equations . 30

3.2.3 Blade flapping . 31

3.2.4 Force derivation . 32

3.2.5 Moment derivation . 35

3.2.6 Induced velocity . 36

3.3 Sliding mode control . 39

3.3.1 Force derivation in control affine form 39

3.3.2 Moment derivation in control affine form 42

3.3.3 Control point state space equations 44

3.3.4 Control point position . 44

3.3.5 Implementation of sliding mode controller 45

3.4 Environment setup . 47

3.4.1 Environment Reset . 49

3.4.2 Step . 49

3.4.3 Observation . 50

3.4.4 Reward . 50

3.4.5 Checking for a terminal state 51

3.4.6 Summary . 51

4 Result and discussion 52

4.1 SAC agent . 52

4.1.1 Architecture . 53

4.1.2 Hyper-parameters . 53

4.2 Results . 56

4.2.1 Training and evaluation . 56

4.2.2 Comparison of Controllability and stability to the SMC 56

v

5 Conclusions and Future Directions 66

5.1 Conclusions . 66

5.2 Future work . 66

Bibliography 68

vi

LIST OF TABLES

3.1 Constant parameters in the helicopter modeling 38

4.1 Hyper parameters of SAC agent. 55

4.2 Comparison of SAC and SMC based on the response characteristics of

the helicopter dynamic system for the case of initial point set to [-1,-1,-1]. 58

4.3 Robustness response characteristics of the helicopter dynamic system

for the SAC policy by a simulated wind for the case of initial point set

to [-1,-1,-1]. 59

vii

LIST OF FIGURES

2.1 Reinforcement learning schematic and the agent environment interaction. 17

3.1 Function approximation of va by v′a, R
2 = 0.947. 38

3.2 Environment Flowchart . 48

4.1 SAC controller schematic . 52

4.2 Actor diagram for SAC agent, the inputs are the 16 states of the heli-

copter X(t) and the 4 control inputs U(t), the outputs are the average

µ and the standard deviation σ of the agent actions 53

4.3 Critic diagram for SAC agent, inputs are the states and actions while

the output is the Q value for the given input. 54

4.4 Actor and critic neural network diagram 54

4.5 Averaged discounted return µG and standard deviation σG of each it-

eration using the random actions of the policy. 57

4.6 Helicopter SMC and SAC positional states by initial position [-1,-1,-1]. 60

4.7 Helicopter SMC and SAC angular velocities by initial position [-1,-1,-1]. 61

4.8 Helicopter SMC and SAC Euler angles by initial position [-1,-1,-1]. . . 62

4.9 Helicopter SMC and SAC velocities by initial position [-1,-1,-1]. . . . 63

4.10 Helicopter SMC and SAC control input by initial position [-1,-1,-1]. . 64

4.11 Helicopter SMC and SAC flapping states by initial position [-1,-1,-1]. 65

viii

Nomenclature

Subscripts

cg Center of gravity [−]

d Desired value for the variable [−]

fus Fuselage [−]

ht Horizontal tail [−]

mr Main rotor [−]

tr Tail rotor [−]

vt Vertical tail [−]

Symbols

E[X] Expected value of a random variable X

α1 Stabilizer bar rate derivative 53 [−]

α2 Stabilizer bar input derivative 55 [−]

αtail Slope of the tail servo angle to the PW of the signal −1698.5 [rad/s]

αtail Slope of the tail servo angle to the PW of the signal [rad/s]

δ0tail Y-intercept of the tail servo angle to the PW of the signal [rad]

δ0tail Y-intercept of the tail servo angle to the PW of the signal 1.4724 [rad]

δcoll Main rotor collective pitch input [rad]

ix

δlat Lateral cyclic pitch input [rad]

δlon Longitudinal cyclic pitch input [rad]

δped Tail rotor blade pitch input [rad]

δx, δy Euler rotation angles of the swashplate [rad]

η Sliding surface reach time factor [−]

γ Discounted rate in RL. [rad]

λ surface convergence rate factor [−]

λ0 Main rotor inflow ratio [−]

V State value [−]

D Buffer in RL. [−]

µ Advance ratio [−]

µx Non-dimensional airflow components along x axis [−]

µy Non-dimensional airflow components along y axis [−]

µz Non-dimensional airflow components along z axis [−]

Ω Nominal main rotor speed 115 [rad/s]

µ Normalized Advance ratio [−]

Φ Angular velocity transformation matrices from the body to inertial coordinates

[−]

ϕ, θ, ψ Euler angles [rad]

Ψ Blade azimuth angle [rad]

ρ Air density 1.107 [kg/m3]

σmr Main rotor solidity factor [−]

x

τf Main rotor flapping time-constant 0.04 [s]

τmr Main rotor blade element radial distance ratio [−]

τs Stabilizer bar flapping time-constant 0.2 [s]

τtr Tail rotor blade element radial distance ratio [−]

Θ0tail Zero pitch angle of the tail blade [rad]

θ0tail Zero pitch angle of the tail blade 0.1169 [rad]

Θmr Pitch angle of the main rotor [rad]

Θtr Pitch angle of the tail rotor [rad]

ξ Ranodm number generated in a normal distribution. [−]

a1 Coefficient of the first harmonic approximation in the Fourier series represen-

tation of the rotor flapping equations in x direction [rad/s]

aκ Tunable parameter in policy search of RL. [−]

aµ Mean (expectation) of action in a gaussian distribution. [−]

aσ Standard deviation of action in a gaussian distribution. [−]

Ab Lateral flapping cross-coupling derivative −0.1 [−]

at Action of the agent in RL [−]

av Longitudinal translational velocity contributions to the flapping of the main

rotor [rad/s]

Alon Longitudinal cyclic to flap gain at nominal rpm 1 [−]

B Body coordinates

b1 Coefficient of the first harmonic approximation in the Fourier series represen-

tation of the rotor flapping equations in y direction [rad/s]

BA Longitudinal flapping cross-coupling derivative 0.1 [−]

xi

Be bound on b [−]

bv Lateral translational velocity contributions to the flapping of the main rotor

[rad/s]

Blat Lateral cyclic to flap gain at nominal rpm 0.9875 [−]

CD0tr Tail rotor zero lift drag coefficient 0.06 [−]

CD0 Main rotor blade zero lift drag coefficient 0.01 [−]

CL0 Main rotor blade zero lift curve slope 0.008 [−]

CLαtr Tail rotor blade lift curve slope 4.95 [rad−1]

CLα Main rotor blade lift curve slope 5.49 [rad−1]

cmr Main rotor chord 0.082 [m]

ctr Tail rotor chord 0.025 [m]

d a boolean indicating wheter it is a terminal state or not [−]

F Vectors of external forces [kg.m/s2]

Fe bound on f [−]

Fx Force along x axis [kgm/s2]

Fy Force along y axis [kgm/s2]

Fz Force along z axis [kgm/s2]

G Expected return of MDP process. [−]

H Entropy of a stochastic policy. [−]

I Inertia coordinate

Is Equivalent moment of inertia tensor of the TPP rotor disk

Ixx Rolling moment of inertia 0.3 [kg.m2]

xii

Iyy Pitching moment of inertia 1.6 [kg.m2]

Izz Yawing moment of inertia 2.0 [kg.m2]

J Jacobian matrix [−]

Kλ Main rotor downwash factor at fuselage 1 [−]

Kc Longitudinal flapping due to the stabilizier bar factor [−]

Kd Lateral flapping due to the stabilizier bar factor [−]

Ks Longitudinal flapping cross-coupling derivative 0.3 [−]

Ku Flapping due to the forward velocity factor [−]

Kv Flapping due to the sideway velocity factor [−]

Kβ Hub torsional stiffness 255 [N.m]

Kµ Scaling of flap response to speed variation [−]

Klat Lateral cyclic to lateral flap gain 0.98 [−]

Klon Longitudinal cyclic to longitudinal flap gain 1 [−]

L Mean Squared Bellman Error MSBE. [−]

l learning rate 0.3 [kg.m2]

M Vectors of external moments [kg.m2/s2]

m Helicopter mass 11.5 [kg]

Mx Moment along x axis [kgm2/s2]

My Moment along y axis [kgm2/s2]

Mz Moment along y axis [kgm2/s2]

ntr Gear ratio of tail rotor to main rotor 6 [−]

xiii

p Angular rate component (pitch)along x-axis of the CG in I rotated into B

[rad/s]

q Angular rate component (roll) along y-axis of the CG in I rotated into B

[rad/s]

Qmr Drag torque of main rotor kg.m/s2

r Angular rate component (yaw) along z-axis of the CG in I rotated into B

[rad/s]

RI
b Linear velocity transformation matrices from the body to inertial coordinates

[−]

Rt Reward of the environment in RL [−]

Rmr Main rotor radius 0.95 [m]

Rtr Tail rotor radius 0.15 [m]

Sh Horizontal tail area [m2]

st Observation of the environment in RL [−]

Svt Vertical tail area [m2]

Sfusx Frontal fuselage area 0.1 [m2]

Sfusy Side fuselage area 0.83 [m2]

Sfusz Vertical fuselage area 0.51 [m2]

T Thrust kg.m/s2

U Vector of input [δcol, δlat, δlon, δped]
T [−]

u Velocity component along x-axis of the CG in I rotated into B [m/s]

un Normalized air relative velocity comp along n-axis. in the main rotor rpn

coord. [−]

xiv

up Normalized air relative velocity comp along p-axis. in the main rotor rpn

coord. [−]

ur Normalized air relative velocity comp along r-axis. in the main rotor rpn coord.

[−]

untr Normalized air relative velocity along n-axis in the tail rotor rpn coord. [−]

uptr Normalized air relative velocity along pr-axis in the tail rotor rpn coord. [−]

urtr Normalized air relative velocity along r-axis in the tail rotor rpn coord. [−]

uwind Wind velocity along x-axis of the CG in I rotated into B [m/s]

v Velocity component along y-axis of the CG in I rotated into B [m/s]

Va Normal-to-the-disk component of the free stream velocity normalized by Vh

[−]

va Axial inflow ratio [−]

Vfus Dynamic pressure of the fuselage. [m/s]

Vh Main rotor induced velocity in hover [m/s]

Vitr tail rotor induced velocity [m/s]

Vi Main rotor induced velocity [m/s]

vwind Wind velocity along y-axis of the CG in I rotated into B [m/s]

w Velocity component along z-axis of the CG in I translated into B [m/s]

wwind Wind velocity along z-axis of the CG in I rotated into B [m/s]

x, y, z Position of CG in I coordinates [m]

xfus Tail rotor hub offset from CG along x-axis −1.22 [m]

xht Horizontal tail offset from CG along x-axis [m]

xvt Horizontal tail offset from CG along x-axis [m]

xv

zcg Main rotor hub height from CG −0.32 [m]

zc Vertical displacement of the swashplate [m]

zvt Vertical tail offset from CG along z-axis [m]

Acronyms

CG Center of gravity [−]

xvi

Chapter 1

Introduction

1.1 Autonomous UAV

Unmanned aerial vehicles (UAVs) are aircraft with no human on board. They are

controlled remotely or automatically. Unmanned Aerial Vehicles (UAV) are gaining

popularity, both in terms of academic research and potential applications [1].

Classification of the UAVs has two major sub-classes of fixed-wing and rotary-

wing. the rotary-wing UAVs received growing attention in recent years thanks to the

improvements in embedded microprocessors and batteries. surveillance [2, 3], disaster

management [4, 5], and rescue missions [6] are only a few numbers of examples of the

broad implementation field of the rotary-wing UAVs.

The majority of recent years’ research is focused on quadcopters which are rotary-

wing aircraft with four rotors [7, 8, 9, 10] Thanks to their agility and ease of control.

On the other hand, single rotor helicopters have gotten less attention from researchers,

mainly because they are intrinsically unstable; they have highly coupled nonlinear

dynamics, and wind gusts can easily disturb them.

The helicopter is the principal representation of the rotary wing family. The con-

ventional helicopter layout has two engine-powered rotors: the main rotor and the

tail rotor. The main rotor generates the thrust power for the helicopter’s elevation.

The tail rotor offsets the main rotor torque and maintains the helicopter orientation.

The change in body orientations of the helicopter results in the inclination of the

main rotor, and therefore generating the propulsive force for the helicopter’s longitu-

dinal/lateral movement.

All flying features and physical principles of their full-sized counterpart are re-

1

tained by small helicopters. Moreover, in comparison to full scale helicopters, they

are inherently more manoeuvrable and competent. Due to their satisfactory flying

ability, size and low expense, UAV science community has engaged in developing

minimal cost and reliable autonomous navigation technologies.

Four control inputs are used for the helicopter. Two cyclic controls which han-

dle the helicopter’s longitudinal/lateral movement, a collective control of vertical

movement and, lastly, the control of pedal control of the helicopter’s heading move-

ment. unrestrained helicopter movement is governed by an underactuated structure,

in which the number of control inputs (4) is less than the number of degrees of free-

dom to be controlled (6 DOF), making it difficult to use the traditional approach

for controlling Euler–Lagrange systems (which is usually used in the industrial au-

tomation). For these reasons, much research has concentrated on control method

for unmanned drones that ensures stability and durability. These factors lead to

a complex control problem for single rotor small-scaled helicopters. However, the

payload capacity of these helicopters is superior to quadcopters, making them more

suitable for transportation in emergency situations [11]. As single rotor small, scaled

helicopters received less attention, in this study, we will focus on this type of UAVs.

The exact dynamics of the helicopter are unidentified and represented using me-

chanical relevant mathematical formulas of lesser order, as in most engineering dis-

ciplines. It should be emphasized that the estimated model is simply a ”abstract

concept” since a comprehensive description of the real dynamics of the helicopter is

almost infeasible [12].

As a single-rotor helicopter is unstable by nature, it requires a flight control sys-

tem that operates the vehicle, which is like a human pilot in a large, scaled helicopter.

As a result, the flight control can either accept remote control input from an operator

or operate autonomously. Remote control of single rotor helicopters is not econom-

ically viable, so autonomous control is preferred for most commercial applications.

Therefore, the autonomous control of unmanned aerial vehicles (UAVs) is the goal of

this research.

2

1.2 Traditional Control Systems

Control of single rotor helicopters is studied through classic (continuous) or modern

(digital) control approaches. Most helicopter systems are inherently non-linear, with

non-linear differential equations specified for their dynamics. Researchers, however,

generally construct linearized helicopter systems models for analytical purposes. In

particular, if this system runs around an operational point and the signals involved

are minor, a linear model that estimates a certain non-linear helicopter system may

be produced. A large number of approaches have been suggested by researchers for

the design and study of control systems for linear systems.

Traditional flight control systems are primarily classified as linear or nonlinear.

This categorization is often based on the rotor-craft model expression provided by the

controller. Linearization designs are more application-focused and have been used on

the majority of helicopter models. Their appeal derives from the ease of control,

which reduces both computation cost and duration of the project.

In general, most control systems are based on the broadly established idea of

stabilization derivatives, utilizing a linear system of helicopter dynamics. However, a

substantial study has been carried out in recent years on non-linear dynamic formula-

tions in the context of helicopter control flight. The concepts of nonlinear controllers

are mostly assessed for their conceptual framework to the problem of helicopter nav-

igation. Their application remains a major issue, mostly because of the control sys-

tem’s increasing order and complex nature. Its contribution, however, is crucially

important to understand the constraints and possibilities of helicopter navigation.

A linear Multiple-Input Multiple-Output (MIMO) coupled helicopter model serves

as the foundation for the linear controller architecture. The internal model method

and integral control design are two common design strategies for dealing with the

trajectory tracking of linear systems. The proposed control method has the draw-

back of being complicated to build, whereas integral control is limited to instances

where the reference output is a continuous signal. The key principle underlying the

linear controller design is to identify the desired state vector for each of these two

subsystems, such that when the helicopter status variables converge with their in-

tended state values, the tracking error asymptotically converges to zero. For each

3

subsystem, the desired state vectors are components and higher derivatives of the

reference output vectors.

The linear H∞ control theory is used for a linear helicopter model such as the

one done. However, control laws based on linear helicopter dynamics is not global-

ized since it shows desired behavior just around a region of operation. This has led

to a large number of studies using non-linear control approaches to implement dy-

namic helicopter models. The feedback linearity control for trajectory tracking was

implemented based on a lower order component of the Lagrangian helicopter model

[13].

Because of its highly cross-coupling nature of single rotor small scale helicopters

(SRSSH), usually, a MIMO approach is implemented [14, 15]. H∞ method is also

used in [16, 17] using a 30-state nonlinear model by an inner loop and outer loop

technique. Sliding mode controller is also used for control of SRSSH [18].

Controller design approaches ignore the multivariate character of rotor-craft dy-

namics as well as the strong link between rotorcraft variables and control inputs. In

this sort of framework, each control input is in charge of regulating a single rotorcraft

outlet. interconnections between rotorcraft outputs are ignored, and each control

input is linked to a SISO feedback loop. The SISO feedback mechanisms associated

with the control inputs are totally independent of one another. The SISO feedback

mechanisms are built using standard looping platforms [19]. The amplitude and gain

tolerances of a feedback loop determine the other’s stability. These tolerances define

the amount of amplitude and timing that the controller may inject to keep the feed-

back cycle dynamics constant. However, in the case of multivariable systems, these

tolerances can readily lead to erroneous findings.

An 11 state linear model was developed to examine the feedback controller features

of the PID technique [20]. Based on the prediction error technique, a time-domain

identification procedure was used to identify the set of parameters. The PID design

proved unable to reduce the mutual coupling among helicopter’s lateral and longi-

tudinal movements, and the aircraft control system was confined to standstill flying.

The obtained findings revealed that SISO strategies have mediocre reliability and

that multidimensional procedures are essential to minimize the helicopter dynamics’

intrinsic strongly coupled impact.

4

Because of the lag time between the helicopter’s translational and attitude sub-

systems, most linear control schemes employ a multi-loop control method [21, 22, 23].

Each input controls one helicopter output via a single-input single-output (SISO)

feedback system, and the helicopter’s attitude equations are separated from transla-

tional motion using two primary control loops. The slower outer-loop regulates the

helicopter’s heaving, longitudinal, and lateral movements by computing the needed

collective input and attitude angles to guide the aircraft along its intended route. The

basis inputs to the inner feedback loop are then these desirable attitude angles. The

inner-loop is used to regulate the helicopter’s attitude, which moves at a considerably

quicker rate than the translational motion.

A linearized model of the helicopter dynamics is used in the multi-loop approach

and the cross-couplings between different DOFs are neglected. Since the cross-

coupling dynamics are important, this often results in poor performance of the con-

troller. To account for the cross-couplings that exist between different DOFs of the

helicopter, a multi-input multi-output (MIMO) control approach has been used in

recent years [14, 24].

Koo et al. use the input-output feedback linearization technique to provide a

MIMO solution for the control of small-scale helicopters. The helicopter dynamics

are not linearized by the accurate input-output linear system, resulting in instabil-

ity zero dynamics. The zero dynamics are then stabilized in the simulated world

by ignoring the connections between moments and forces and utilizing approximate

input-output linearization to obtain limited tracking. Instead of controllable inputs

like the collective, cyclic, and pedal inputs, unrealistic control inputs like the gradi-

ents of the main and tail rotor thrust and the flapping angles are employed to describe

the system [14].

The influence of thrust force components associated with the primary rotor disc

displacement is ignored by most nonlinear dynamic systems. These parasite forces

have a minimum impact on movement dynamics. This is standard procedure. This

approximation leads to several mathematical models with a response form appropriate

for backstep control designs laid forth in [25] and numerous researchers used this

procedure [26, 27, 28].

Mahony et al. described a MIMO strategy for controlling small-scale aircraft

5

in hover using a backstepping mechanism [15]. To do this, the flapping behaviors

and friction forces are ignored, and the control design is based on a mathematical

model of the helicopter dynamics around hover. In a study done by Raptis et al.,

a time-dependent backstepping approach is used to create a MIMO control scheme

for a small-scale helicopter [24]. Simplifying hypotheses are used to generate the

helicopter’s dynamic model in a cascading design appropriate for the backstepping

control scheme. For instance, in all aviation phases, induced velocity is considered to

be constant and the impacts on the thrust computations of the vehicle velocity are

disregarded so that main and tail rotors are respectively proportionate in proportion

to the input of collectives and pedals. The main and tail rotors’ drag torque is also

disregarded.

Another non-linear control scheme is given in a work by Godbolt et al. [29]

employing a cascade method. In order to unite attitude and movement dynamics,

the internal loop control mechanism is utilized. The control design uses simplification

principles. For example, due to the rigidity of the main rotor shaft, the contributions

of the rolling and pitching moments to the fuselage dynamic attitude are ignored.

Also, because of the rotor blowing in the translational dynamics, it neglects the

influence of smaller body forces. A nonlinear control technique is then taken into

account to offset the tail rotor’s impacts to small friction forces.

An H∞ controller’s usual construction consists of two components. The first ele-

ment consists of Proportional Integral compensators and low pass filters in a manner

similar to the traditional approaches of single input single output systems. The Pro-

portional Integral compensators enhance the system’s low-frequency gain, reducing

disturbances, and attenuating steady-state error. The low pass filters are generally

employed for noise reduction. The second element of the control is the H1 synthe-

sis component, which is determined by a constant signal gain for stabilizing multi-

functional dynamic response, as well as being appropriate for a performance criterion

[21, 30].

A single value loop forming process based on two degrees of H∞ freedom was

created in the research done by Walker et al. [19] which is an observation basis

multivariate controller. The controls were to build a complete autopilot system for

a helicopter. The flying system is incorporated with piloted aviation operations, as

6

opposed to automated flight technologies. The aim of the remote control is for the

helicopter to monitor the pilot’s control input and speed control. The control scheme

is designed to eliminate the connection between axes of helicopter dynamics, therefore

lowering the burden of the pilot. The pilot is alone responsible for generating the

benchmark and high-speed controls that are required to move the aircraft.

An innovative architecture of static H∞ output controls was given to stabilize

an autonomous helicopter in a hovering citegadewadikar2009h. The optimum control

technology makes it possible to devise multivariate feedback systems that enhance

the rank of the control unit utilizing fewer states. The structure of the controller

feedback loops coincided with the actual flight experience of the helicopter such that

the controller’s design was acceptable. The H∞ control system form decreases the

influence on high-frequency Helicopters of un-modeled dynamics.

In a research by Kendoul et al. [31] the control design for a Yamaha R-50 helicopter

using H∞ loop forming technology is provided. The control design is composed of non

30-state model of helicopter dynamics in an internal loop approach that is linearized

by various operational positions in the desired trajectory envelope. Then an H∞

loop-fitting controller is built to cover this required flying area based on the acquired

linear models.

The UAV control scheme is studied in [32] for a non-linear trajectory tracking

control. The non-linear model of helicopter dynamics is discretized and the tracking

control issue is then formulated to reduce costs using a quickly converged steepest

descent approach. The primary problems of application are the coordination of the

cost weight matrix and the constants in the probability density.

In the majority of situations, three nonlinear matrix expressions are required to

solve the final loop control issue. In [33], the H∞ synthesis portion of the controller

was resolved by solving just two paired matrix formulas that do not need the infor-

mation of the initial stabilization gain. There are two principal loops in the control

system framework. The first loop is capable of stabilizing the dynamic behavior of

the arrangement, and the second loop is for position monitoring. A 13-state linear

model of the coupling fuselage and rotor dynamic is the architecture of the control

unit. The sequence and structure of the model were adopted in [34].

In another study, Riccati Equation concept is provided [35]. The complicated

7

dynamics of the helicopter are modified to a pseudo linear, state-dependent (SDC)

coefficient and a feedback-optimum matrix is produced at all times by solving the

LQR equation. Because there are many non-parametric terms in SDC form and the

fact that the helicopter model is not aligned in terms of the control system, it is

ignored to achieve a control-affine SDC helicopter dynamics framework necessary for

SDRE control designs in certain non-linearity models. A non-linear compensation is

then built to increase the control signal to roughly cancel ignored nonlinear effects.

Owing to its resilience with boundary parameter uncertainties, the sliding mode

controller can be another non-linear, small-scale, unmanned helicopter management

MIMO method. A robust, nonlinear, sliding mode controller flight control is given

in [36] for a compact, standalone hover helicopter. The dynamics of the nonlinear

helicopter are initially oversimplified by disregarding the drag torque of the rotors and

the rear and the connections of the aerodynamic forces and momentum. Then the

linearized model is transformed for a squared model into a linear system. For input

refined systems, untrue control inputs such as the rolling, pitch, and yaw moments

are considered instead of the actual control inputs, and the gradient is considered to

be the primary rotor thrust.

The Translational Rate Control (a technique for a UAV is detailed in a study by

Pieper et al. [37]) for another sliding mode controller approach in hovers. A funda-

mental, linearized model of the hovering helicopter and a Sliding mode controller is

built to comply with the operating quality requirements for the Translational Rate

Control hover control system.

A reference model sliding mode controller design is detailed in a study by Wang

et al. [38] and a multi-loop control method is employed to regulate the hover of a

UAV. The non-linear helicopter model is modeled linearly around the hover and the

coupling movement of the helicopter is ignored, to treat every DOF as a self-contained

SISO system. The PID technique is then developed for each of the longitudinal and

the lateral controller designs and heavily loaded loops.

Another sliding mode controller technique is presented in a research for controlling

a UAV [39]. In this method, the DOFs of helicopter movement are decoupled in these

three principal feedback loops: position, speed, and orientation loop. To get an

appropriate form for the sliding mode controller method, the Equations of each loop

8

are simplified. For instance, for the Euler angles in the speed cycle, the small-angle

presumption is utilized to linearize the equations and get an input-affined shape. A

sliding mode controller for each loop is then designed.

A small-scale autonomous helicopter group control is presented adopting a sliding

mode controller approach [40]. In order to produce arbitrary tri-dimensional forma-

tions, a sliding mode controller is established for each technique, and the training will

be maintained by two leaders/follower controllers. The rotor’s flapping complexities

are ignored and unrealistic control inputs including the main and tail rotor thrust and

pitch and roller moments are applied to describe the system in an input-affine man-

ner instead of actual controlled inputs. The square shape is then exploited to get the

control design using a reference points technique.

The aerodynamics of the helicopter is separated into three components with slow,

medium, and rapid modes with a multiple time control based on the technique of

the slider mode controller [41]. In all flying regimes, nonlinearities of the main and

tail rotor intake are removed and the induced speed is presumed to be fixed. A

nonlinear controller is built with a sliding mode controller for each mode and results

for simulation are provided. Nevertheless, for controls that may result in a non-unique

solution, the slow mode controller requires an iterative process.

It is vital that the control architecture is strong enough in the case of the heli-

copter which has considerable uncertainty. In the presence of parametric and model

uncertainty, there is a design that ensures limited traceability [42]. The suggested

control scheme includes stabilizing strategies for input saturation feedback systems

as well as adaptive nonlinear output control techniques.

In another study, the helicopter model includes the dynamic behavior of the heli-

copter movement equations that are augmented by a modified aerodynamic force and

torque generating model. The Helicopter Dynamics nonlinear model is presented in

[43]. In most studies into the design of a non-linear helicopter controller, this par-

ticular model was used. The precise linearization input-output fails to linearise the

model of the helicopter which leads to instability of zero dynamics. The usage of the

approximation model, which does not consider the thrust forces created by the main

rotor flap movement, has also been demonstrated to be fully linearized.

In [14], an approximation linearization in input-output was used to achieve a

9

helicopter system that is dynamically linear without zero dynamics and that has the

required characteristic of relative smoothness. The difficulty of an oscillatory ship

deck helicopter landing [44] has been appropriately controlled using a conceptual

representation. In [45], the design of a floating flight controller for the unmanned

APID-MK3 helicopter is described with a unique approach.

In the literature, the majority of control schemes, including Multi-loop and MIMO,

are implementing the linear model of the helicopter under various trimming require-

ments, instead of using the non-linear model directly. This confines the correctness of

the linear model to the neighborhood of its linearization of the trimmed requirements.

Several linear models are therefore necessary to cover a variety of flying regimes and

several gain programmed controllers are required in all such regimes to control the

helicopter [46].

Aerodynamic forces and moments fluctuate substantially across different flying

circumstances due to the complicated aerodynamic performance of helicopter thrust

output. These approximations are not desired for managing an autonomous helicopter

over a broad variety of flying phases, through linear system and/or rejection of non-

linear components [47].

The issue of optimal control methods is that they all necessitate knowledge of

the robot’s dynamics, requiring system identification and model derivation for each

UAV. Depending on the task, this can become tedious, if not impossible. Notably,

the final control system will be a one-of-a-kind solution to a specialized study. These

strategies may be insufficient to deal with changing conditions, unanticipated events,

and stochastic environments [48].

Previous approaches to nonlinear control using neural networks and nonlinear in-

version were published in [22]. Nonlinear control approaches have also been presented.

In all situations, the requirements for nonlinear inversion and the increase of a NN

raise the controller’s order substantially. In this way, it becomes impossible to derive

the controller from the helicopter’s non-linear governing equations. Consequently,

these cases have used developed controls based on the helicopter’s linearization dy-

namics. In the research of Hovakimyan et al. [49] the reduced model uses just the

heavy and longitudinal mobility of the helicopter, which further restricts it.

In order to obtain adequate efficiency, the control strategies presented in the re-

10

search stated above require accurate knowledge of the dynamic models involved. The

issue is how to manage unforeseen disturbances to the nominal model in helicopter

operations. Unexpected disturbances of this nature usually involve parameters and

analytical uncertainty, unmodelled dynamics, and environmental disturbance. The

existence of uncertainties and external disturbances can disrupt the feedback con-

troller’s operation and lead to significant deterioration. Approximation approaches

utilizing artificial neural networks (NN) were suggested to address the presence of

model uncertainty. In [50], approximated NN-enhancing dynamic reversal was pre-

sented, while in [51] neuronal dynamic programming was demonstrated to be benefi-

cial in the monitoring and trim control of the helicopter.

On this basis, the following question is posed: What if the vehicle teaches itself

how to perform a task optimally without using a model? This leads to the next

section on reinforcement learning.

1.3 The Use of Reinforcement Learning as an Op-

timal Control Method

Artificial intelligence (AI) has lately caused a breakthrough in various industries

worldwide, ranging from engineering to medical services. Recent advancements in

computer technology and data storage, along with AI’s learning capacities, have pro-

pelled AI to the forefront of numerous applications, such as object recognition and

natural language processing. AI is expected to contribute more than 15 trillion USD

to the global economy while increasing GDP by 26% by 2030. Overall, artificial

intelligence (AI) is a powerful tool that covers many aspects of nowadays scientific

achievements [52].

Machine learning (ML) is arguably the most significant branch of AI. It is de-

scribed as an ability in computer systems that allows them to learn without the need

for continuous control over it [53]. The area of machine learning may be divided fur-

ther into supervised learning, unsupervised learning, semi-supervised learning, and

reinforcement learning.

The term ”supervised learning” refers to a situation in which the ”experience,” or

training example, provides essential information that is absent in the unknown ”test

11

examples” whereby the learned knowledge is to be implemented. An expert provides

the additional information in experience. It tries to generalize across experiences and

then applies this knowledge to predict labels for test examples [54]. Since the agent

tries to mimic the expert, it will not wholly provide the same response as the expert.

This error is called the Bayes error rate [55].

In unsupervised learning, there is no distinction between training data and test

data. A typical example of such a job is grouping data collection into subgroups

of related objects. Semi-supervised learning is a combination of supervised learning

and unsupervised learning. During training, semi-supervised learning mixes a small

quantity of labeled data with a lot of unlabeled data, which will improve learning

accuracy.

Ideally, supervised learning or semi-supervised learning can completely replicate

the supervisor. However, it cannot outperform the supervisor in terms of outcomes.

Reinforcement learning (RL) attempts to solve this dilemma by substantial changes

to the learning process. Ultimately, the objective of RL is to enable machines to

outperform all existing approaches. The RL agent tries to achieve a better result than

the currently feasible ones by learning the best mapping of states to actions using

a reward signal as a criterion. RL methods allow a vehicle to discover an optimal

behavior on its own through trial-and-error interactions with its surroundings. This

is based on the commonsense idea that if an action results in a satisfactory or better

situation, the tendency to perform that action in the initial situation is reinforced.

RL is like classical optimal control theory [56] in engineering platform. Both

theorems deal with the problem of determining an input (i.e., optimal controller

in control theory or optimal policy in RL) for solving the optimization problem.

Furthermore, both rely on a system’s notation being described by an underlying

set of states, actions, and a model that captures transitions between one state and

the other. So RL can tackle the same problem that optimal control does [57, 58].

However, because the agent does not have access to the state vector dynamics, the

agent must learn the repercussions of its actions via trial and error while interacting

with the environment.

Although there are some recent achievements on model-based RL [59], most of

the RL algorithms are model-free. They attempt to control without the knowledge

12

of a dynamic model; in other words, it only receives the current states* and a reward

from the environment (helicopter in this case) in each step.

This framework has received much attention in recent years, with promising out-

comes in a range of domains, including outperforming human specialists on Atari

games [60], Go [61], and replicating complex helicopter maneuvers. [62, 63, 64] . A

remarkable range of robotics challenges may be conveniently formulated as reinforce-

ment learning problems dating back to 1992 when the OBELIX robot is trained to

push objects [65]. A model-free policy gradient technique was used to teach a Zebra

Zero robot arm how to perform a peg-in-hole insertion task [66].

Recently, RL-based UAV control has received a lot of interest. The initial research

generated an engineered reward function. They developed a model of robot dynamics

through demonstration but then employed the model in simulation, leading to the

simulation of robot state while using RL to optimize a NN controller for autonomous

helicopter flying [67] or inverted helicopter maneuver [63]. However, defining the

reward function could be an arduous task. One solution would be to utilize an expert

and award the helicopter for emulating the expert’s behavior. Abbeel et al. used this

approach to perform aerobatic helicopter flight [62].

In recent years, deep learning has been shown to improve the RL field [68]. Deep

learning relies on neural networks’ powerful function approximation properties, which

can automatically find compact low-dimensional representations of high-dimensional

data (e.g., images). This enabled reinforcement learning methods to scale up to

previously unreachable problems.

Deep reinforcement learning has also gained attention recently in UAV control,

William Koch et al. [69] compared Deep Deterministic Policy Gradient (DDPG) [70],

Trust Region Policy Optimization (TRPO) [71] and Proximal Policy Optimization

(PPO) [72] algorithms on the Iris quadcopter and then comparing the result to a PID

controller. Although TRPO and DDPG failed to reach stability, they have shown that

PPO results are powerful enough to be comparable to a PID controller. Barros and

Colombini [73] also proved that the Soft Actor-Critic (SAC) [74] method can perform

a low-level control on a commercial quad-rotor Parrot AR Drone 2.0. However, there

*in the fully observable Markov decision process (FOMDP). In the partially observable Markov
decision process, a history of states is required in each step.

13

is still a lack of research on a small-scaled single-rotor helicopter.

1.4 Simulation Environment for RL

In RL, the amount of try and error required to learn beneficial actions is usually high.

As a result, sampling the environment is the primary challenge with reinforcement

learning. One way to approach this is by having parallel similar real-world environ-

ments doing the same thing [75]. However, in the case of the UAV, failure means

the loss of a UAV, and hence it is costly. This problem is exacerbated by several

real-world factors that make UAVs a problematic domain for RL [76]. UAVs are

frequently dangerous and costly to run during the initial training such that the air-

craft will fail several times until it reaches a satisfactory performance. This will need

high maintenance costs in addition to the original hardware expenditures. Moreover.

Robotic have continuous high-dimensional state and action spaces, and finally, it re-

quires a fast online response. As a result, the use of a simulation environment seems

necessary for the initial learning procedure of an RL algorithm.

To compensate for the expense of real-world interactions, the UAV must first learn

the behavior in simulation and then transfer it to the real vehicle. Usage of a simulator

provides an affordable approach in order to create samples. In a simulation, it is

possible to crash the UAV as many times as needed; In addition, no safety measures

must be taken for, and there would also be no lag in the process due to maintenance

or any other real-world issues. Simulations are also more reproducible; For example,

wind gusts are not easy to reproduce in the real world, while in simulation, the wind

gust random model can be saved and reused elsewhere.

The issue with using a simulation environment is that none of them can completely

capture real-world complexity. When a policy is trained in simulation, it usually is

not optimal to use in the real world [77]. One possible solution would be to initially

train the policy in simulation and then perform tuning in the real world [78, 79].

14

1.5 Thesis Objective and outline

In this research, we wish to expand on recent research in RL, especially Deep Rein-

forcement Learning (DRL) to control a SRSSH. More precisely, low-level control rules

are learnt directly from the UAV simulation. Notably, the purpose of this thesis is

only to train the DRL technique in a simulated setting and providing proof that the

aformentioned method is capable of stabilizing the unmanned small scaled helicopter

in an acceptable way, leaving future work to examine the transfer to the actual world

or produce more complicated maneuvers. In the following, the outline of this thesis

is included.

1.5.1 Chapter 2: Reinforcement Learning Background

A wrong choice of RL method or its hyper-parameters can be time-consuming or even

impossible to reach good stability of the UAV. This is because it mainly necessitates

an extensive exploration of the state-space in order to extract acceptable policies.

So, in the second chapter, a review of reinforcement learning methods is discussed.

By providing a mathematical framework and describing essential components, this

chapter includes a formal introduction to RL. Following that, the chapter provides an

overview of Value-based and policy-based methods. Finally, the chapter introduces

the DRL algorithm, SAC, which will subsequently be used for UAV control.

1.5.2 Chapter 3: Simulation environment

This chapter introduces the Simulated environment used for interaction with the RL

method. First, the helicopter dynamics are discussed, including the forces applied to

the UAV, such as fuselage and main rotor forces. Secondly, its effect on the 6 degrees

of freedom (DOF) UAV is discussed. In addition a traditional control approch, more

specifically sliding mode controller is introduced to compare the result of RL policy

with the optimal control theory method. Finally, the environment setup is discussed,

including the actions and rewards in the RL platform.

15

1.5.3 Chapter 4: Result and discussion

This chapter contains the results of applying the RL algorithm on a simulated envi-

ronment, as well as a discussion and comparing the result of the obtained policy with

the one generated by the sliding mode controller. In addition the effect of disturbance

on the controller is discussed.

1.5.4 Chapter 5: Conclusion and future work

The conclusion and recommendations for future work are given in the final section of

this chapter.

16

Chapter 2

Review of Reinforcement Learning

2.1 Introduction and terminology

In section 1.3 the RL framework was briefly discussed. In this chapter, the details of

this methodology are explained.

2.1.1 Markov Decision Process

MDP is consecutive decision-making in which actions impact immediate rewards and

later states, and hence future rewards. In other words, MDP is a stochastic control

process using a discrete-time framework. An MDP system consist of 4 components

(figure 2.1):

� states (St ∈ S): A state (s) is a collection of all essential information about the

current situation that can be used to forecast future states. For example, in the

case of a robot arm trying to grab a box, the current position of the robot arm

could be the state. States can be a multidimensional discrete or continuous set.

Agent

Environment

Action atstate st Reward rt

Figure 2.1: Reinforcement learning schematic and the agent environment interaction.

17

Sometimes, an observation of the states is available instead of the states them-

selves. For example, instead of a current position of the arm, a snapshot picture

is available.

� action (At ∈ A): Actions are utilized to control the states by the agents policy,

which is a mapping from states to actions. It can be either stochastic a = π(.|s)

or deterministic a = µ(s). Actions somehow can be compared to the control

input in the feedback of a control system. As an example, in a navigation

problem, the actions are the torque applied to the wheels. Actions might belong

to a discrete or continuous set, and they can also be multidimensional.

� Reward (Rt ∈ R ⊂ R): It is the measure of how well the agent is choosing the

actions, to put it another way, how well is its policy. For example, in the robot

arm problem, it could be how close it is to grab the box.

� environment (p) : The environment is fully described by its dynamics (distribu-

tion) which can be stochastic st+1 = p(.|st, at) or deterministic st+1 = p(st, at).

Environment could be any sort of system in which a reward could be defined

for a set of given actions applied to the environment.

The MDP framework is conceptual and adaptable, and it may be widely used in

a variety of situations in several ways, including the stock price prediction [80] to

low-level control of UAVs [81]. Therefore, the definitions are different compared to a

control platform. In an MDP, the interaction between the agent (controller) and the

environment (the plant, controlled unit) happens in a discrete-time steps platform.

The agent performs actions (control signal), receives the reward, and ends up being

in a new state. Each interaction between the environment and the agent is called a

step. in each step the agent receives states St and reward R(st) from environment

and generates a set of action(s) At based on its policy which would transform the

environment states to a new one St+1 based on transition probability P (st+1|st, at)

and consecutively provide with a Rt+1. So MDP can be defined as a tuple [56]:

D ≡ (S,A, P,R) (2.1)

Expected Reward can be based on the current state and action r = r(s, a):

18

r(s, a) = E[Rt|St−1 = s, At−1] (2.2)

Or be based on the state-action-next state:

r(s, a) = E[Rt|St−1 = s, At−1, St = s′] (2.3)

Expected return

Broadly speaking, the goal of a policy is to maximize the average reward or dis-

counted return (a weighted average in which distant rewards have a less impact) in

an episode*. In other words, the goal is to maximize the expected return Gt. There

are different ways of defining the expected return [82], here we discuss the one with

discounted rate γ ∈ (0, 1) in an episode with T as final time step:

G = Rt + γRt+1 + γ2Rt+2 + · · ·+RT 0 ≤ γ ≤ 1 (2.4)

γ is usually a number close to one since a low γ can result in an instability [76].

If γ is chosen to be 1, then the approach is called average-reward criterion [83]. In

this case, it usually cannot distinguish between short-term transient reward, and it

is mostly dominated by the steady-state region. If the policy achieves both accept-

able short-term and long-term optimal behavior, then it is known as bias optimal [84].

Value function

The Value function specifies how good a state is in an episode while a specific policy

π is followed. It can be based only on the state V π(s):

V π(s) = Eπ[G|st = s] (2.5)

where Eπ denotes the expected return given that the agent follows policy. Note that

the value of expected return should be calculated until terminal state is reached. In

*episode consists of steps, starting from initial to terminal state, when the terminal state is
reached, the process starts over from the initial state.

19

a similar way the State-Action Value function of acting a in state (s) is defined as:

Qπ(s, a) = Eπ[G|st = s, at = a] (2.6)

The value functions are policy dependent, meaning that the value of a state could

be low in a policy while it would be high in another one; having this in mind, it is

obvious that the optimal value functions are the ones obeying the optimal policy π∗:

V π∗
(s) = Eπ∗

[G|st = s] (2.7)

Qπ∗(s, a) = Eπ∗
[G|st = s, at = a] (2.8)

Qπ∗(s, a) is the same as having the optimal policy because given the state (s) we

can obtain the optimal policy from the below equation:

a∗(s) = argmax
a
Q∗(s, a) (2.9)

Bellman equation

Bellman equation expresses the value of a state, based on the value of its successor

states. Bellman equation is obeyed in all the above equations for example in the

Value function we have:

V π(st) = R(st, π(st)) + γ
∑
st+1

P (st+1|st, π(st))V π(st+1) (2.10)

V π∗
(st) = R(st, π

∗(st)) + γ
∑
st+1

P (st+1|st, π∗(st))V
π(st+1) (2.11)

In a situation with discrete actions, determining the optimal policy is simple, since

an exhaustive search is possible if the optimal value function and the transition prob-

abilities for the following states are known, however, in case of continuous spaces,

function approximation methods are utilized.

There are numerous value function-based methods which has 3 major classes of:

1. Dynamic programming-based methods.

20

2. Monte Carlo methods

3. Temporal difference methods.

2.1.2 Dynamic programming

Dynamic Programming (DP) is well suited in a discrete scheme [85]; however, it is

possible to use it in a continuous framework. DP uses value functions to arrange and

guide the search for optimal policies. The transition probability of the environment

should be available, or it could be determined from experience.

In a DP algorithm policy iteration is used, which is a process that alternates

between policy evaluation and policy improvement. Initially, a random policy is used

to start the approach, then the value function for the current policy is determined

by policy evaluation. Each value of state in the current iteration is updated based

on the values of the state in the previous iteration (bootstrapping), the policy π, and

transition probability p. Finally, the policy is improved based on the most recent

value function.

2.1.3 Monte Carlo methods

Unlike the DP, Monte Carlo methods learn directly from experience� with no prior

knowledge of MDP transitions. They carry out rollouts by executing the existing

policy on the system, which is referred to as operating on-policy. The value function

is updated after an episode is ended. This process is done using the average returns

using the current experiences. The frequency of transitions and rewards is recorded

and utilized to calculate value function estimates. As more episodes are produced,

the average value will converge. The policy is improved by making it greedy regarding

the value of the states. Although the method is quite simple, it is pretty powerful;

for example, in the game of Tetris, this method outperforms most of the other ones

[86].

�sampled episodes from environment

21

2.1.4 Temporal Difference

Temporal Difference (TD) is a generalization of the Monte Carlo method. It also

utilizes the bootstrapping of the DP so that TD(1) is the same as the Monte Carlo

method, updating the values only when the episode is ended. TD(0) only considers

the sampled successor states rather than the full distribution over the successor states

in DP. In TD(λ) (0 ≥ λ ≥ 1), values are updated before the end of the episode, and

more than 1 step ahead is used.

Two popular TD approaches exist, with slightly different update procedures, state-

action-reward-state-action (SARSA) [87] and Q-learning [88]. SARSA uses the below

equation for updating the Q value.

Q(st, at)← Q(st, at) + α[Rt+1 + γQ(xt+1, ut+1)−Q(st, ut)]

While Q-learning uses:

Q(st, at)← Q(st, ut) + α[Rt+1 + γmax
at+1

Q(xt+1, at+1)−Q(st, at)] (2.12)

SARSA is an on-policy algorithm, which means that its behavior and target pol-

icy are the same. Target policy is the output policy of the agent, which is used for

evaluating the algorithm. The behavior policy πb is how the agent acts in exploration.

Since exploratory policies are not optimal, on-policy methods such as SARSA may

quickly converge to a local optimum.

Off-policy agents, such as Q-learning, employ different target and behavior poli-

cies; hence, they may use equal probability for taking actions in each state, so

πb(a
∗|s) > 0; as a result, they would find the optimal policy given enough time

[89].

Value function methods struggle with the challenges of RL in robotic because they

demand data to be filled into the entire state-action space, and they are intrinsically

unstable [90]. In addition, the bootstrapping will result in a bias if we want to

22

use function approximation techniques which is inevitable in continuous spaces of

robotics. As a result, value-based methods are not suitable for robotic applications,

so we introduce a new family of RL methods called the policy search in the next

section.

2.2 Policy search

Policy search approaches do not require using a value function model and instead

search for the optimal policy. The concept behind this method is that it is feasible

to enhance an episode’s return without knowing the value of each state. The disad-

vantage of this technique is that it requires evaluating the policy and calculating the

return in order to determine if the chosen policy is superior or not. Usually, a pa-

rameterized policy is chosen, and the parameters are tuned to maximize the expected

return. This is usually done by methods such as gradient ascent [91] or hill climbing

[92].

Policy searches provide many advantages. For example, it is feasible to take ad-

vantage of an expert for parameter initialization [93], or it is possible to choose the

suitable policy parameter structure, ensuring robustness and stability [83]. Therefore,

making policy search, a well-suited method for robotic which is proven by real system

applications [94, 95].

In the case where gradient ascent is used for the optimization of the policy, we

have:

J(πκ) = Eπκ [Gt] (2.13)

κk+1 = κk + α(∇κJ(πκ)|κ=κk (2.14)

In which, ∇κGπκ| is called policy gradient [96]. Which can be expressed as:

∇κJπκ = γtGt
∇κπκ(at|st)
πκ(at|st)

(2.15)

∇κJπκ = γtGt∇κ log πκ(at|st) (2.16)

23

The term ∇κ log πκ(at|st) is referred to as eligibility vector. Equation 2.16 is first in-

troduced by [97] known as REINFORCE algorithm. This algorithm needs the episode

to be terminated to calculate Gt, which is why this algorithm is considered a Monte

Carlo algorithm. Methods such as Trusted Region Policy Optimization (TRPO) [71]

or Proximal Policy Optimization (PPO) [72] are examples of using such methodology.

For continuous actions, instead of learning the probability of the infinite number

of actions, usually a Gaussian distribution is used:

π(a|s, κ) = 1

aσ(s, κ)
√
2π
exp
(
− (a− aµ(s, κ))2

2aσ(s, κ)2
)

(2.17)

One of the methods to parameterize the policy is using a neural network named

Deep Reinforcement Learning.

2.2.1 Deep Reinforcement Learning

In RL, neural networks (NN) are function approximation tools when the state or ac-

tion space is continuous or too large. In some instances, it is simpler to approximate

the value function, whereas, in others, it is easier to approximate policy. In latter

cases, policy-based methods are more favorable as they yield a better asymptotic

policy [98]. In both cases, a neural network can be employed for value approximation

or policy approximation.

Neural networks can learn to map states to values or state-action pairs to Q val-

ues. Instead of using a lookup table to store, index, and update all possible states

and their values - which is impossible with huge problems- We can train a neural

network on samples from the state and action space to predict the value of states or

which actions to take given a state.

Now that policy search is introduced, it is possible to discuss the next generation

of RL, actor-critic methods.

24

2.3 Actor-critic methods

Actor-critic methods are policy search methods in which a bias is introduced through

bootstrapping in order to improve learning speed and reduce variance. The actor-

critic method to the REINFORCE is like the TD algorithm to the Monte Carlo

methods.

If only one step of the return is considered, (like TD(0)) the general formula for

an actor-critic method can be given as:

κk+1 = κk + α
(
Rt+1 + γv̂ω(St+1)− v̂ω(St)

)
∇κ log πκ(at|st) (2.18)

2.4 Soft Actor Critic

Soft Actor-Critic (SAC) is an actor-critic off-policy algorithm with a stochastic pol-

icy [99, 74]. It is inspired by stochastic policy optimization and Deep Deterministic

Policy Gradient (DDPG) approaches [70]. It has similarities to Twin Delayed DDPG

(TD3) method [100] such that both use two clipped Q approximators. Since it is a

stochastic method, it also benefits from something similar to target policy smoothing.

Which makes it a potent tool in the robotic control field [101].

The main feature of the SAC algorithm is that it tries to balance a trade-off

between expected return and entropy [102]. The more the entropy, the higher the ex-

ploration, and the less the entropy, the higher the expected return in the short term.

This is related to the exploration-exploitation trade-off: increasing entropy leads to

more exploration, speeding up learning later. It can also prevent converging to futile

local optimums.

Before we can discuss the further details of the algorithm, it is necessary to discuss

the details of the usage of entropy in RL.

25

2.4.1 Entropy-Regularized Reinforcement Learning

The entropy-regularized reinforcement learning changes the goal of RL by including an

entropy term, so that the optimal policy not only aims to increase the reward but also

tries to increase its entropy at each visited state [103]. The temperature parameter

α balance between exploration and exploitation in such way that by increasing α the

policy would try to explore more by adding a stochastic term the reward importance.

The formula for this method is:

π∗ = argmax
π

Eτ∼π[
T∑
t=0

γt
(
r(st, at, st+1) + αH(π(.|st))

)
] (2.19)

in which H(π(.|st)) is the entropy of a stochastic policy, given by:

H(π(.|st)) = E[− log π(.|st)] (2.20)

So, comparing a deterministic policy to an entropy regularized policy, when mul-

tiple actions are almost equally valuable, the policy commits equal probability mass

to the actions instead of choosing the most valuable action. In this framework, the

state value and the state-action value should be modified:

Vπ(s) = Eτ∼π

[
T∑
t=0

γt
(
r
(
st, at, st+1 + αH

(
π(.|st)

)))
|s0 = s

]
(2.21)

Qπ(s) = E
τ∼π

[
T∑
t=0

γt
(
r
(
st, at, st+1 + αH

(
π(.|st)

)))
|s0 = s, a0 = a

]
(2.22)

2.4.2 SAC algorithm

The SAC algorithm is given in Algorithm 2. The Q functions are updated using the

Mean Squared Bellman Error (MSBE)

L(δi,D) = E
(s,a,r,st+1,d)∼D

(Qδi(s, a)−
(
r + γminQδtarg,j(st+1, at+1)− α log πκ(at+1|st+1)

)︸ ︷︷ ︸
y(r,st+1,d)

)2
 ,

(2.23)

26

In which D is the buffer of the algorithm in which the transitions are stored. Hence

the Q functions are updated by the following gradient:

δi,new = δi,old + lδ∇δi,old

1

|B|
∑

(s,a,r,st+1,d)∈B

(
Qδi,old(s, a)− y(r, st+1, d)

)2
for i = 1, 2

(2.24)

The policy is updated given:

max
κ

E
s∼D,ξ∼N

minQδi(s, aκ(s, ξ))− α log πκ(aκ(s, ξ)|s), (2.25)

The policy is updated by:

κnew = κold + lκ∇κ
1

|B|
∑
s∈B

(
minQδi(s, aκ(s))− α log πκ (aκ(s)| s)

)
(2.26)

sampling aκ(s) from Gaussian distribution of policy πκ(·|s) is done by the squashed

Gaussian function:

at = fκ(st, ξt) (2.27)

at = tanh(µκ(st) + σκ(st) · ξt), ξ ∈ N (0, I) (2.28)

However, after convergence is reached in order to evaluate the policy, the randomness

term of the action is omitted to improve performance:

āt = tanh(µκ(st)) (2.29)

27

Algorithm 2 sac algorithm

1: Initialization: initialize policy parameters θ
2: initialize Q-function parameters δ1, δ2
3: initialize target network parameters δtarg,1 ← δ1, δtarg,2 ← δ2
4: initializing the replay pool D
5: repeat
6: repeat
7: sample action a ∼ πθ(·|s)
8: observe next state st+1 reward r and done signal d ∈ [TRUE,FALSE]
9: save (st, at, r(st, at), st+1, d) in replay pool D
10: if d is TRUE then
11: reset environment state.
12: end if
13: until D > Dmin
14: sample action a ∼ πθ(·|s)
15: observe next state st+1 reward r and done signal d ∈ [TRUE,FALSE]
16: save (st, at, r(st, at), st+1, d) in replay pool D
17: if d is TRUE then
18: reset environment state.
19: end if
20: if it’s time to update the parameters then
21: for j in range(however many updates) do
22: sample a batch of transitions, B = {(s, a, r, st+1, d)} from D
23: Update Q-functions.
24: Update policy.
25: Update target networks by linearization

δtarg,i ← ηδtarg,i + (1− η)δi for i = 1, 2

κtarg ← ηκtarg + (1− η)κ

26: end for
27: end if
28: evaluate the policy to check the convergence using āt
29: until convergence
30: Return κ, δ1 and δ2

28

Chapter 3

Simulation Environment

3.1 Introduction

Small-scale helicopters are highly nonlinear systems with complex coupling. Analyz-

ing velocity fields around the rotor requires complicated experiments and numerical

methods, which differ in each flight regime such as hover, stall, etc. [104, 105, 106].

There are numerous studies on mathematical models of the helicopter dynamics and

governing equations of the forces and moments applied to it [107, 108, 109]. For this

study, we have used the model already developed for the Evolution-EX helicopter in

[110]. Here we briefly discuss the model development of this helicopter.

3.2 Governing equations

A combination of four subsystems describes the Evolution-EX helicopter’s (EEH)

dynamics: the rigid-body dynamics of the fuselage, the main rotor, the tail rotor,

and the empennage. Two frameworks are defined like other dynamic problems: the

body (B) and the Inertia (I) framework.

3.2.1 States and control input

The states regarding the UAV dynamics include the velocity vector [3× 1]:

V = [u, v, w]T (3.1)

In this equation, u denotes the velocity in the x direction, v represents the velocity

in the y direction, and w is the velocity in the z direction. and the angular velocity

29

vector [3× 1]:

ω = [p, q, r]T (3.2)

In this equation, p represents represent the angular velocity in the p direction, q

denotes the angular velocity in the y direction, and r is the angular velocity in the z

direction. with respect to body coordinates B and the position vector [3× 1]:

p = [x, y, z]T (3.3)

and the Euler angles vector which is roll pitch and yaw [3× 1]:

Θ = [ϕ, θ, ψ]T (3.4)

with respect to inertia framework I and the input vector [4× 1]:

U = [δcol, δlat, δlon, δped]
T (3.5)

the δcol is the collective input which is responsible for increasing the angle of attack

in all the angles of the blade plane, the lateral input δlat is responsible to increase the

angle of attack for a lateral movement of the helicopter and δlon on the other hand

is doing the same thing for a longitudinal movement. The δped increases the angle of

attack of the blades for the tail rotor in the same way that δcol does for the main rotor

blades. In the next section the governing equations regarding the states are discussed

3.2.2 State-space equations

The Newton-Euler equations of motion of the helicopter fuselage are defined as:

V̇ =
1

m
F − ω × V (3.6)

ω̇ = I−1M − I−1(ω × Iω) (3.7)

Θ̇ = Φ(Θ)ω (3.8)

30

ṗ = RI
b(Θ)V (3.9)

F and M are defined as vector of external forces and moments respectively. Deriva-

tion of F and M are elaborated in 3.2.4 and 3.2.5 respectively. RI
b and Φ are linear

and angular velocity transformation matrices given as follows:

RI
b =

s(θ)c(ψ) −c(ϕ)sin(ψ) + s(ϕ)s(θ)c(ψ) s(ϕ)s(ψ) + c(ϕ)s(θ)c(ψ)
c(θ)s(ψ) c(ϕ)c(ψ) + s(ϕ)s(θ)s(ψ) −s(ϕ)c(ψ) + c(ϕ)s(θ)s(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 (3.10)

Φ =

1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)

c(θ)
c(ϕ)
c(θ)

 (3.11)

in which s, c and t stands for ”sin”, ”cos” and ”tan” respectively. The I is the

moment of inertia in which the off-diagonal terms are neglected:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.12)

The Ixx, Iyy and Izz are the rolling, pitching and yawning moment of inertia.

In the following sections, equations regarding the derivation of forces and moments

in 3.6 and 3.7 are introduced.

3.2.3 Blade flapping

The dynamics of main rotor and stabilizer bar of the EEH is modeled by hybrid

model approach [111]. In this approach ȧ and ḃ are tip-path-plane (TPP) longitu-

dinal and lateral flapping angles respectively and the coefficients of first harmonic

approximation in the Fourier series form. The rotor flapping state equations are:

ȧ = −q − a

τf
+

1

τf
(Kuµx +Kwµz) +

Alon
τf

(δlon +Kcc) + Ab
b

τf
(3.13)

ḃ = −p− b

τf
+

1

τf
(Kvµy) +

Blat

τf
(δlat +Kdd) +Ba

a

τf
(3.14)

31

Ku is the flapping due to the forward velocity factor, the Kv on the other hands

denotes the flapping due to the side-way velocity factor. In the same way, Kw is con-

sidered to be te flapping due to downward velocity factor. Kc reflects the longitudinal

flapping due to the stabilizer bar factor and Kd depicts the lateral flapping due to

the stabilizer bar factor. Alon denotes the longitudinal cyclic to flap gain at nominal

rpm and Blat is the lateral cyclic to flap gain at nominal rpm. Last but not least, the

τf is the main rotor flapping time-constant.

µx, µy and µz are the non-dimensional airflow components defined as:

µx =
u− uwind
ΩRmr

µy =
v − vwind
ΩRmr

µz =
w − wwind
ΩRmr

(3.15)

And the Ku, Kv and Kw are given by:

Ku = 2Kµ(
4

3
δcol −

V i

ωRmr

) (3.16)

Kv = −Ku (3.17)

Kw = 16Kµµ
2
mr

sign(µmr)

(1− µ2
mr/2) ∗ (8sign(µmr) + CLασ)

(3.18)

The stabilizer bar state equations c and d are TPP longitudinal and lateral flap-

ping angles of the stabilizer bar given by:

ċ = −q − c

τs
+
Clon
τs

δlon (3.19)

ḋ = −p− d

τs
+
Dlat

τs
δlat (3.20)

3.2.4 Force derivation

The force is derived as follows:

32

F =

FxFy
Fz

+RI
b

 0
0
mg

 (3.21)

in which Fx, Fy and Fz are defined as:

Fx = −a Tmr + Fx,fus (3.22)

Fy = b Tmr + Ttr + Fy,fus + Fy,vt (3.23)

Fz = −Tmr + Fz,fus + Fz,ht (3.24)

Tmr is the main rotor thrust and Ttr denotes the tail rotor thrust. Tmr is given by:

Tmr = fTmr + bTmrU ; (3.25)

in which fTmr is the autonomous term of the main rotor thrust:

fTmr =
1

4
ρπR4

mrΩ
2σmr(CL0(

2

3
+ µ2

x + µ2
y) + CLα(µz − λ0)) (3.26)

In which Rmr is the main rotor radius and Ω represents the nominal main rotor

speed. σmr depicts the main rotor solidity factor and CL0 and CLα are the main rotor

blade zero lift curve and blade lift curve slope respectively.

λ0 is the inflow ratio expressed as:

λ0 =
Vi

ΩRmr

(3.27)

The solidity factor derived by:

σmr =
Ncmr
πRmr

(3.28)

and bTmr in 3.25 is control input coefficient term given by:

bTmr =
1

4
ρπR4

mrΩ
2σmrCLα

[
µ2
x + µ2

y +
2
3
−µy µx 0

]
(3.29)

Similarly, it is possible to derive the tail rotor thrust Ttr:

33

Ttr = fTtr + bTtrU ; (3.30)

In which fTtr is the autonomous term of the tail rotor thrust:

fTtr = −
1

4
ρπR4

trn
2
trΩ

2σtrCLαtrvtail (3.31)

And input coefficients bTtr is given by:

bTtr = −
1

4
ρπR4

trn
2
trΩ

2σtrCLαtr

[
0 0 0 u2tail + w2

tail +
2
3

]
(3.32)

The normalized velocities at tail rotor can be given as:

utail =
u− uwind
ΩtrRtr

vtail =
v − vwind − Vitr + xfusr

ΩtrRtr

wtail =
w − wwind −KλVi + xfusq

ΩtrRtr

(3.33)

The tail rotor nominal speed is given by:

Ωtr = ntrΩ (3.34)

In which the ntr is gear ratio of tail rotor to main rotor. Fy,vt is the vertical tail

force derived by:

Fy,vt =
1

2
ρSvt

(
Cvt
Lα
Vvt(v − vwind) + v2tail

)
(3.35)

In the above equation, the ρ is the air density. Svt denotes the vertical tail area,

And horizontal tail force Fz,ht is:

Fz,ht =
1

2
Sht

(
Cht
Lα
| u− uwind | wht + w2

ht

)
(3.36)

In equation 3.35 Vvt and vtail are axial and normal velocities in vertical tale defined

as:

Vvt =
√
(u− uwind)2 + (w − wwind + xvtq −KλVi)2

vtail = v − vwind + xvtr − Vitr
(3.37)

34

Similarly in equation wht is the horizontal tail velocity in the z direction 3.36:

wht = w − wwind − xhtq −KλVi (3.38)

The Kλ is the main rotor downwash factor at fuselage.

Fz,fus, Fy,fus and Fx,fus are drag forces derived by:

Fx,fus = −
1

2
ρSfusx Vfus(u− uwind) (3.39)

Fy,fus = −
1

2
ρSfusy Vfus(v − vwind) (3.40)

Fz,fus = −
1

2
ρSfusz Vfus(w − wwind + Vi) (3.41)

the dynamic pressure of the fuselage Vfus in expression 3.67 is defined as:

Vfus =
√
(u− uwind)2 + (v − vwind)2 + (w − wwind + Vi)2 (3.42)

3.2.5 Moment derivation

Moment includes 3 terms roll, pitch and yaw:

M =

Mroll

Mpitch

Myaw

 (3.43)

The three terms in the above equation are given as:

Mroll = (Kβ − TmrZcg)b; (3.44)

Mpitch = (Kβ − TmrZcg)a; (3.45)

Myaw = Qmr + Ttrxfus; (3.46)

35

Zcg is the Main rotor hub height from center of gravity and xfus is the tail rotor

hub offset from center of gravity along x-axis. Main rotor drag torque Qmr is derived

by:

Qmr = fQmr + bQmrU ; (3.47)

In which the main rotor drag torque terms are given as:

fQmr =
1

8
ρπR5

mrΩ
2σmrCLα

(
CD0

CLα

(
µ2
x + µ2

y + 1
)
− 2(µz − λ0)2

)
(3.48)

bQmr =
1

8
ρπR5

mrΩ
2σmrCLα(λ0 − µz)

[
4
3
− µy µx 0

]
(3.49)

3.2.6 Induced velocity

As indicated in [112] and [113] the blade element analysis considers each blade ele-

ment as a two-dimensional airfoil. The aerodynamic behavior of neighboring blade

elements is independent of each other. An induced inflow velocity on each blade ele-

ment should be accounted for, which is a product of the rotor wake. Analytical ways

of calculating the induced velocity may be found using momentum theory, vortex

theory, or nonuniform inflow calculations [112].

In general, the inflow velocity calculation is a challenging task due to its non-

uniformity across the blade span; mathematical simplifications should be applied

to minimize the complexity of the analysis. Finally, after determining the velocity

components of the blade element, the aerodynamic forces acting on this element are

calculated. The complete dynamic behavior of the blade is obtained by integrating

the applied forces of the individual elements throughout the blade span. Here we use

an experimental approach for induced velocity.

Vi and Vitr are induced velocity in main rotor and tail rotor respectively. Vi is

given by:

Vi =
va√
1 + µ̄2

(3.50)

In which:

36

Vh =
√
mg/(2ρπR2

mr) (3.51)

µ =
√
µ2
x + µ2

y (3.52)

µ̄ =
µ

Vh/(ΩRmr)
(3.53)

Va = −
w − wwind

Vh
(3.54)

va =


−1

2
Va −

√
V 2
a

4
− 1 if Va ⩽ −2

1− 1
2
Va +

25
12
V 2
a + 7

6
V 3
a if − 2 < Va < 0

−1
2
Va +

√
V 2
a

4
+ 1 if Va ⩾ 0

(3.55)

Similarly, Vitr is:

Vitr =
vatr√
1 + µtr

2
(3.56)

In which:

Vhtr =
√
fFy,mr/(2ρπR

2
trxfus) (3.57)

µtr =
√
u2tail + w2

tail (3.58)

The µtr is the advance ratio normalized by Vhtr/(ΩRtr:

µtr =
µtr

Vhtr/(ΩRtr)
(3.59)

Vatr = −
v − vwind + xfusr

Vh
(3.60)

vatr =


−1

2
Vatr −

√
V 2
atr

4
− 1 if Vatr ⩽ −2

1− 1
2
Vatr +

25
12
V 2
atr +

7
6
V 3
atr if − 2 < Vatr < 0

−1
2
Vatr +

√
V 2
atr

4
+ 1 if Vatr ⩾ 0

(3.61)

37

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Va

0.0

0.5

1.0

1.5

2.0

2.5
v′
a

va

Figure 3.1: Function approximation of va by v′a, R
2 = 0.947.

Instead of using equation 3.55 and 3.61, we use the following approximate func-

tions by regression as they provide a faster calculation time in simulations:

v′a =
4.055

(1.28Va + 1.45)2 + 1.7
+ 0.066 (3.62)

v′atr =
4.055

(1.28Vatr + 1.45)2 + 1.7
+ 0.066 (3.63)

Figure 3.1 depicts the two functions va and v′a based on Va.

The constant parameters in the above modeling is given in the table 3.1.

Table 3.1: Constant parameters in the helicopter model-
ing

Parameter Value Dimension Parameter Value Dimension

α1 53 [−] α2 55 [−]
Ω 115 [rad/s] ρ 1.107 [kg/m3]
τf 0.04 [s] τs 0.2 [s]
τs 0.2 [s] Ab −0.1 [−]
Alon 1 [−] Ba 0.1 [−]
Blat 0.9875 [−] CD0tr 0.06 [−]
CD0 0.01 [−] CL0 0.008 [−]
CLαtr 4.95 [rad−1] CLα 5.49 [rad−1]

38

Table 3.1 Continued:

cmr 0.082 [m] ctr 0.025 [m]
Ixx 0.3 [kg.m2] Iyy 1.6 [kg.m2]
Izz 2.0 [kg.m2] Kλ 1 [−]
Ks 0.3 [−] Kβ 255 [N.m]
Klat 0.98 [−] Klon 1 [−]
m 11.5 [kg] ntr 6 [−]
Rmr 0.95 [m] Rtr 0.15 [m]
Sfusx 0.1 [m2] Sfusy 0.83 [m2]

Sfusz 0.51 [m2] xfus −1.22 [m]
zCG −0.32 [m]

3.3 Sliding mode control

In order to compare the results obtained by the RL method to a traditional control

method, we here provide the details of a sliding mode controller as a nonlinear method.

As it is an under actuated system which means that there are only have 4 inputs and

6 states to control. Based on [114, 110] in order to use sliding mode controller on

a helicopter, first we have to change it to a square and affine in control form so we

discuss how this is achieved.

3.3.1 Force derivation in control affine form

In order to provide a control input by sliding mode controller, each of the force and

moment should be linearized based on the control input. Control-affine form of each

term is given as a input coefficient ”b” and a ”f” term which is related to autonomous

response of the system. Force is given as:

F = fF + bFU (3.64)

fF is the autonomous term of the force expressed as:

fF =

 fFx,mr + Fx,fus
fFy,mr + fFy,tr + Fy,vt + Fy,fus

fFz,mr + Fz,ht + Fz,fus

+RI−1

b

 0
0
mg

 (3.65)

in which:

39

fFx,mr = fT (τfq − av) (3.66)

Fx,fus = −
1

2
ρSfusx Vfus(u− uwind) (3.67)

fFy,mr = (τfp+ bv)fT (3.68)

fFy,tr = fTtr (3.69)

fFz,mr = −fT (3.70)

av and bv in 3.66 and 3.68 are respectively longitudinal and lateral translational

velocity contributions to the flapping of the main rotor and defined by the following

terms:

av =
∂a1
∂µx

µx +
∂a1
∂µz

µz

bv =
∂a1
∂µy

µy

(3.71)

the dynamic pressure of the fuselage in expression 3.67 is defined as:

Vfus =
√
(u− uwind)2 + (v − vwind)2 + (w − wwind + Vi)2 (3.72)

fTmr is the main rotor thrust autonomous term in the control affine form given by

3.26. and λ0 is the inflow ratio expressed as:

λ0 =
Vi

ΩRmr

(3.73)

σmr is the solidity factor derived by:

σmr =
Ncmr
πRmr

(3.74)

The velocities at tail rotor can be normalized given as:

40

utail =
u− uwind
ΩtrRtr

vtail =
v − vwind − Vitr + xfusr

ΩtrRtr

wtail =
w − wwind −KλVi + xfusq

ΩtrRtr

Ωtr = ntrΩ

(3.75)

similarly velocities at vertical tail or horizontal tail can be defined.

In equation 3.35 Vvt and vtail are axial and normal velocities in vertical tale defined

as:

Vvt =
√
(u− uwind)2 + (w − wwind + xvtq −KλVi)2

vtail = v − vwind + xvtr − Vitr
(3.76)

Similarly in equation 3.36:

wht = w − wwind − xhtq −KλVi (3.77)

bF in equation 3.64 is the input coefficient of the force which is defined as:

bF =

 bFx,mr

bFy,mr + bFy,tr

bFz,mr

 (3.78)

In which the following terms are used:

bFx,mr = (τfq − av)bT −
[
0 0 KlonfT 0

]
(3.79)

bFy,mr = (−τfp+ bv)bT −
[
0 KlatfT 0 0

]
(3.80)

bFy,tr = bTtr (3.81)

bFz,mr = −bT (3.82)

bT and bTtr is the main rotor thrust input coefficient in the control affine form

given as 3.29 and 3.32.

41

3.3.2 Moment derivation in control affine form

Control affine form of moment is given as:

M = fM + bMU (3.83)

fM is calculated by:

fM =

fMx,mr + fMx,tr +Mx,vt

fMy,mr + fMy,tr +My,ht

fMz,mr + fMz,tr +Mz,vt

 (3.84)

in which:

fMx,mr = (−τfp+ bv)(Kβ − fT ∗ zcg) (3.85)

fMx,tr = −zfusfTtr (3.86)

Mx,vt = −Fy,vtzvt (3.87)

fMy,mr = (−τfq + av)(Kβ − fT zcg) (3.88)

fMy,tr = fQtr (3.89)

My,ht = −Fz,htxht (3.90)

fMz,mr = fQ (3.91)

fMz,tr = xfusfTtr (3.92)

Mz,vt = Fy,vtxvt (3.93)

fQtr in equation 3.89 is the autonomus term of the tail rotor drag torque:

42

fQtr =
1

8
ρπR5

trn
2
trΩ

2σtrCLαtr

(
CD0tr

CLαtr

(
u2tail + w2

tail + 1
)
− 2v2tail

)
(3.94)

similarly fQ in 3.91 is derived from 3.48.

bM in equation 3.83 is:

bM =

bMx,mr + bMx,tr

bMy,mr + bMy,tr

bMz,mr + bMz,tr

 (3.95)

in which:

bMx,mr = zcg(τfp− bv)bT +
[
0 Klat(Kβ − fTmrzcg 0 0

]
(3.96)

bMx,tr = −zfusbTtr (3.97)

bMy,mr = zcg(τfq − av)bT +
[
0 0 Klon(Kβ − fTmrzcg) 0

]
(3.98)

bMy,tr = bQtr (3.99)

bMz,mr = bQ (3.100)

bMz,tr = xfusbTtr (3.101)

in equation 3.99 the bQtr is defined as:

bQtr =
1

8
ρπR5

trn
2
trΩ

2σtrCLαtr

[
0 0 0 vtail

]
(3.102)

Similarly for expression 3.100 the bQ is derived from 3.49. if we combine all the

state space equations we have:

[
V̇
ω̇

]
︸ ︷︷ ︸
ẋ6×1

=

[
fF
m
− ω × V

I−1(fM − ω × Iω)

]
︸ ︷︷ ︸

f6×1

+

[
fU
m

I−1bM

]
︸ ︷︷ ︸

f6×4

U (3.103)

43

3.3.3 Control point state space equations

the control point is set to be a point other than CG. This point is a point in the

negative direction of z axis in the body coordinates of the helicopter. So by controlling

this new control point position and yaw of center of gravity it is possible to control

the UAV by using the following set of equations:[
ẌCP

ψ̈

]
︸ ︷︷ ︸
Ÿ4×1

=

[
f13×1

f21×1

]
︸ ︷︷ ︸

f6×1

+

[
b13×4

b21×4

]
︸ ︷︷ ︸

b4×4

U (3.104)

in which:

f1 = RI
b

(fF
m

+DI−1(fM − ω × (Iω))
)

(3.105)

f2 = fs(I
−1fM − I−1ω × (Iω)) + fqq + frr; (3.106)

In which:

fq = ϕ̇ cosϕ sec θ + θ̇ sinϕ tan θ sec θ (3.107)

fr = −ϕ̇ sinϕ sec θ + θ̇ cosϕ tan θ sec θ (3.108)

fs = [0 sec θ sinϕ sec θ cosϕ] (3.109)

The b1 and b2 are the control input coefficients in the control point state space

equations given as:

b1 = RI
b

(FU
m

+DI−1bM
)

(3.110)

b2 = fs(I
−1bM); (3.111)

3.3.4 Control point position

In this part of the simulation the current position XCP and velocities ẊCP of the

control point system Y is calculated using the current states of the UAV center of

gravity XCG:

44

XCP = XCG +RI
bdB (3.112)

In which:

dB = [0, 0,−d] (3.113)

XCG = [x, y, z] (3.114)

d is the distance from the center of gravity to the control point which is 1 meter

in this study. First order derivative of the control point position can be derived by:

ẊCP = RI
b(V + (ω × dB)) (3.115)

Θ̇ = Φ(Θ)ω (3.116)

the yaw of the UAV which is the forth row of the Y is the third row of the angular

velocity in inertia coordinates:

Θ̇ = Φ(Θ)ω (3.117)

so we have:

Ẏ = [
ẊCP

ψ̇
]4×1 (3.118)

Y = [
XCP

ψ
]4×1 (3.119)

3.3.5 Implementation of sliding mode controller

By having 3.118 it is now possible to use sliding mode controller on the helicopter:

si = ẏi − ẏd,i + λiyi − λiyd (3.120)

The λi are the convergence rates which is supposed to be strictly positive.

45

λ =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 (3.121)

The objective is to control the 3.118 instead of the state space equations of 3.103:

ẏr = ẏd,i − λiyi + λiyd (3.122)

The parameters for sliding mode controller are given next. The first one is the

surface reach time given by the following equation:

η =
[
1 1 1 1

]T
(3.123)

The Fe is a vector used as a bound on F:

Fe =
[
10 10 5 5

]T
(3.124)

The Be is the bound on b matrix defined by:

Be =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (3.125)

The error of the controlled states from the desired value is defined by the Ỹ :

Ỹ = Y − Yd (3.126)

And the derivative of the Ỹ is as follows:

˙̃Y = Ẏ − Ẏd (3.127)

The surface function in the sliding mode controller is formulated as:

sr = Ẏd − λỸ (3.128)

So the first order derivative of the sr can be determined by:

ṡr = Ÿd − λ ˙̃Y (3.129)

46

E stands for the identity matrix:

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.130)

K is the sliding mode control gain matrix given as:

K = (E −Be)
−1(Fe +Be | − f + ṡr|+ η); (3.131)

The boundary layer thickness bs is implemented to remove the chattering problem

of the sliding mode controller.

bs =
[
0.8 0.8 1 1

]T
(3.132)

So K̄ would be the the sliding mode control gain matrix term without the issue

of chattering:

K̄ =

{
K̄i = Kisi/bsi if |si| < bsi for i = 1, 2, 3, 4
K̄i = Kisign(si) if |si| ⩾ bsi for i = 1, 2, 3, 4

(3.133)

As a result, the control input of the helicopter can be derived using the following

equation:

U = b−1(−f + ṡr − K̄) (3.134)

3.4 Environment setup

Now that we have discussed the dynamic of the helicopter, it is possible to set up the

environment suitable for an RL process, which is developed in OpenAI Gym [115].

OpenAI gym is a software development kit for creating and comparing reinforcement

learning algorithms. figure 3.2 shows the flowchart of the environment and the dashed

line means that the agent is a system outside of the environment. While trying to

implement an RL algorithm in a Gym environment, for each episode, first a reset

function is called, then the step function is called until a terminal state is reached.

47

initialize
model

reset the
environ-
ment

step the
environ-
ment

agent

is it a
terminal
state

(d=True)?

d, R & S

yes

A

no

A

Figure 3.2: Environment Flowchart

48

In the following sections, the critical points in each part of this environment are dis-

cussed.

3.4.1 Environment Reset

Each time the environment is restarted, the helicopter is randomly placed in a position

where x, y, and z are uniformly distributed in [−1, 0, 1] so there would be 27 initial

states. Other states are kept constant in this phase at hover state.

3.4.2 Step

In each step of the episode, first, the control input is generated from the actions, then

the RK45 method is used for solving the set of ODEs. In addition, the reward and

the condition of reaching a final state are considered. They are elaborated in the

upcoming sections.

Actions

Instead of having the 4 actions as output of the agent, 16 actions are generated by the

agent in each step and the control input of the helicopter is find through the following

set of equations:

δcol = a1z + a2w (3.135)

δlat = a3y + a4v + a5p+ a6ϕ (3.136)

δlon = a7x+ a8v + a9q + a10θ (3.137)

δped = a11r + a12ψ (3.138)

This strategy would help the gradient ascent of the agent to find suitable actions

for each step more easily.

49

3.4.3 Observation

The velocity, angular velocity, location, euler angles vectors, and control input of the

helicopter are all considered observations in this research. control input is considered

an observation since it is not directly generated by the agent.

3.4.4 Reward

The reward function is the most important part of the environment as it provides the

goal of the RL algorithm. In this research it consists of 4 terms given as follows:

rt(s) = rf + rp + rψ + ru (3.139)

In the above equation, rf is the flying reward term, rp represents the position

reward term, rψ denotes the yaw angle reward term and the ru stands for the control

input reward term.

Flying term

Flying reward rf is just a constant (18.8 in this case), assures that the algorithm is

rewarded for longer episodes. The absence of this term will lead to a local minimum of

reward in which the agent tries to end the episode to stop receiving negative rewards

by crashing the helicopter. It also helps to stabilize the UAV in the long term.

Position term

The position error rp punishes the agent for the distance between the current position

of the UAV and the origin:

rp(t) = −10∥X(t)∥2 (3.140)

Yaw angle term

This term also similarly punishes the agent for the error of ψ:

rψ(t) = −0.25|ψ(t)| (3.141)

50

Control input terms

The control input terms consist of a derivative and a norm term to reduce chattering

and increase energy consumption of the UAV:

ru = −0.015∥U∥ − 0.08∥U ′∥ (3.142)

3.4.5 Checking for a terminal state

Unless the helicopter crashes or 8 seconds have passed, it is not a terminal state.

Crashing in this research is when the states are outside of the [−100, 100], except for

the Euler angles which the bounds are ϕ ∈ [−π, π], θ ∈ [−π/2, π/2] and ψ ∈ [−2π, 2π].

3.4.6 Summary

In this section, the dynamics for 6-DOF nonlinear dynamics of a small-scale UAV is

provided. It included the effect of the fuselage, main rotor, tail rotor, etc. The setup

of the environment is explained, and the code is given in Appendix A. The procedure

to implement the actions and rewards in this research is also explained in detail. The

implementation specifics of the SAC algorithm in this context are elaborated on in

the next chapter, and the results are analyzed.

51

Chapter 4

Result and discussion

4.1 SAC agent

In order to solve the helicopter environment, as presented in the previous chapter, we

implemented the SAC algorithm. In this section, we have provided the implementa-

tion of the soft actor-critic as a controller for the helicopter which is shown in figure

4.1. We have implemented 5 other reinforcement learning methods such as D4PG

[116], proximal policy optimization (PPO) [72], Trust Region Policy Optimization

(TRPO) [117], deep deterministic policy gradient [118] and Twin Delayed DDPG

[100] and we were unable to find an stabilized performance of the helicopter using the

aforementioned algorithms.

For this study, we use garage [119] as an API for the agent. Garage implements

state-of-the-art deep reinforcement learning algorithms in Python and coherently in-

tegrates with the deep learning library PyTorch [120] and Tensorflow [121]. The

library provides a straightforward approach to evaluate and test different algorithms

in Gym environments. The schematic of agent-environment interaction is illustrated

in Figure 4.1.

Xd SAC agent Helicopter

-

A(t)

X(t)

S(t)

Figure 4.1: SAC controller schematic

52

X(t)

U(t)

Input
layer

Hidden
layers

Output
layer

µa1

σa1

...

µa16

σa16

Figure 4.2: Actor diagram for SAC agent, the inputs are the 16 states of the helicopter
X(t) and the 4 control inputs U(t), the outputs are the average µ and the standard
deviation σ of the agent actions

4.1.1 Architecture

In this section, we discuss the architecture of the SAC actor and critic neural network.

Actor

The actor diagram and schematic of this SAC agent is given in figures figs. 4.2 and 4.4

which includes 2 hidden layer of size 128 and 128 fully connected layers with a Recti-

fied Linear Unity (RelU) activation function and a tanh activation function at last in

order to narrow the result to [-1,1], the actions are then linearly mapped to the action

range based on the environment*. In order to constraint the standard deviation of

the policy, it is set to be between [e−20, e1].

Critic

The diagram for the Critic neural network is depicted in figs. 4.3 and 4.4. The diagram

includes 2 hidden layer of size 256 and 256 fully connected layers with RelU activation

function after each hidden layers.

4.1.2 Hyper-parameters

Optuna package is utilized for optimization of all the hyperparameters of the SAC

agent [122]. The SAC agent’s primary hyper-parameters are given in table 4.1 as part

*check action wrapper at Appendix A

53

s(t)

a(t)

Input
layer

Hidden
layers

Output
layer

Q̂(s, a)

Figure 4.3: Critic diagram for SAC agent, inputs are the states and actions while the
output is the Q value for the given input.

linear:
→ 128

observations

linear:
→ 128

linear:
→ 32

actions

linear:
→ 256

observation and actions

linear:
→ 256

linear:
→ 1

Q̂

RelU

RelU

Tanh

RelU

RelU

actor neural network layers critic neural network layers

Figure 4.4: Actor and critic neural network diagram

54

of its implementation.

Table 4.1: Hyper parameters of SAC agent.

Hyper parameter Value description

T 5× 107 Total number of environment steps.

B 2048 mini batch which is the number of samples
from the buffer randomly sampled for each
stochastic gradient decent step update

D 107 replay buffer size, which is the total number
of steps saved in buffer (when new ones are

added the oldest ones are removed.)

lκ 3× 10−4 learning rate for optimization of policy
by this factor.

lδ 3× 10−4 learning rate for optimization of Q functions.

τtarget 5× 10−3 updating the target network linearly
by this factor.

γ 0.99 factor for discounting later rewards.

α 3× e−0.009i the temperature term in SAC policy.

χ 3× 10−3 The learning rate of Adam optimizer.

σmean e−20 the minimum standard deviation of the
actions in the stochastic policy of SAC.

σmean e1 the maximum standard deviation of the
actions in the stochastic policy of SAC

imax 104 the maximum number of iteration

The replay buffer is designed to contain 107 transition tuples before starting the

SAC algorithm. The experience replay buffer enables learning from prior policy ex-

periences while avoiding correlated samples in the gradient step. Furthermore, we

implement an upgraded target network with a target factor of 5 × 10−3.This is mo-

55

tivated by the desire to improve the stability of the learning process. Based on line

21 of algorithm 2, if it is time to update, the gradient step per epoch is set to 2 and

the gradient step per iteration is set to 8. For each time a gradient step is executed,

a mini-batch of 2048 random samples is chosen from the replay buffer. The learning

rate for Adam optimizer on both neural network is set to be 3× 10−3.

The training of the network included about 5× 107 to 6× 107 environment time

steps of about 0.03, simulation time. The simulation is run in a 32-cores Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10GHz which took about 3–4 days.

4.2 Results

4.2.1 Training and evaluation

The training result is given in 4.5. The iteration is continued for 10,000 iterations;

however, no significant improvement is found after 6000. The standard deviation

increases as the number of iterations increases. This is acceptable because at first, in

all the episodes, the simulated UAV crashes. However, as the training progresses, the

agent improves its action to stabilize the helicopter and hence the difference between

the return of points closer to the origin and those placed at a more distant point from

the origin grows.

4.2.2 Comparison of Controllability and stability to the SMC

In order to be able to compare the results obtained by an RL method to a traditional

control method, the results of controlling the initial point set to [-1,-1,-1] are shown

in figs. 4.6 to 4.11 for both the sliding mode controller (SMC) and the SAC policy

obtained. As seen, the resulting policy achieves good stabilization capability.

The settling time is considered to be the time when the states reach 0.10 m of the

origin which is the desired state. The rise time in this study is considered to be the

time for the response to rise from the absolute value of 0.9 m to 0.1 m in the vicinity

of origin for each x, y and z states. Considering the aforementioned definitions the

comparison between the SAC and SMC is given in table 4.2.

56

0 2000 4000 6000
iteration

0

1000

2000

3000

4000

μG

0 2000 4000 6000
iteration

500

1000

1500

2000

2500

3000

3500

σG

Figure 4.5: Averaged discounted return µG and standard deviation σG of each itera-
tion using the random actions of the policy.

57

Table 4.2: Comparison of SAC and SMC based on the
response characteristics of the helicopter dynamic system
for the case of initial point set to [-1,-1,-1].

settling time [s] rise time [s] overshoot [m] SS error [m]

x,SMC 5.07 0.79 0.13 0.0
x,SAC 4.41 3.96 0 0
y,SMC 1.36 1.0 0.09 0.05
y,SAC 2.96 2.66 0 0.05
z,SMC 1.51 1.47 0.03 0
z,SAC 2.6 2.45 0.1 0.1

Based on the given comparison result on 4.2 the sliding mode controller provides a

better result in the case of x y and z. The ψ angle has a 10.8◦ steady-state error which

is not superior to the sliding mode controller (1.8◦). However, it should be mentioned

that the sliding mode controller is a highly tuned controller for this system. On the

other hand, the SAC agent is a model-free method in which it did not have any access

to the model.

The result of the control input is given in figure 4.10. There are some vibrations

in the δped and δcol, We find that it was somewhat hard to reduce these vibrations

because as we increased the control derivative input term in the 3.142, the policy

would alternate between getting closer to the target and achieving a stable hovering

somewhere far from the origin.

robustness

In order to test the robustness of the policy, a simulated wind is blown at the UAV

given the following equation:

Vwind,t = Vwind,t−1 +W (4.1)

in which W is a random number in [-0.1,0.1] at each time step and using the

policy generated. It achieved 100% stability in all the 27 initial positions, In order

to compare the results of the simulation with and without the wind, the rise time,

settling time, and steady-state errors are given in table 4.3 for the [-1,-1,-1] case.

58

Table 4.3: Robustness response characteristics of the he-
licopter dynamic system for the SAC policy by a simu-
lated wind for the case of initial point set to [-1,-1,-1].

settling time [s] rise time [s] overshoot [m] SS error [m]

x 4.29 3.87 0 0.03
y 2.87 2.57 0.08 0.02
z 2.47 2.36 0.09 0.09

59

0 1 2 3 4 5 6 7 8
t

1.0

0.8

0.6

0.4

0.2

0.0

x
x, SMC

0 1 2 3 4 5 6 7 8
t

1.0

0.8

0.6

0.4

0.2

0.0

y
y, SMC

0 1 2 3 4 5 6 7 8
t

1.0

0.8

0.6

0.4

0.2

0.0

z
z, SMC

Figure 4.6: Helicopter SMC and SAC positional states by initial position [-1,-1,-1].

60

0 1 2 3 4 5 6 7 8
t

2

1

0

1

2

p
p, SMC

0 1 2 3 4 5 6 7 8
t

1.5

1.0

0.5

0.0

0.5

1.0

q
q, SMC

0 1 2 3 4 5 6 7 8
t

0.2

0.1

0.0

0.1

0.2

r
r, SMC

Figure 4.7: Helicopter SMC and SAC angular velocities by initial position [-1,-1,-1].

61

0 1 2 3 4 5 6 7 8
t

0.3

0.2

0.1

0.0

0.1

0.2

, SMC

0 1 2 3 4 5 6 7 8
t

0.2

0.1

0.0

0.1

0.2

, SMC

0 1 2 3 4 5 6 7 8
t

0.00

0.02

0.04

0.06

, SMC

Figure 4.8: Helicopter SMC and SAC Euler angles by initial position [-1,-1,-1].

62

0 1 2 3 4 5 6 7 8
t

0.5

0.0

0.5

1.0
u, SAC
u, SMC

0 1 2 3 4 5 6 7 8
t

0.50

0.25

0.00

0.25

0.50

0.75

1.00 v, SAC
v, SMC

0 1 2 3 4 5 6 7 8
t

0.0

0.5

1.0

1.5

2.0 w, SAC
w, SMC

Figure 4.9: Helicopter SMC and SAC velocities by initial position [-1,-1,-1].

63

0 1 2 3 4 5 6 7 8
t

0.15

0.10

0.05

0.00

0.05

lon

lon, SMC

0 1 2 3 4 5 6 7 8
t

0.1

0.0

0.1

0.2

0.3

0.4

0.5

col

col, SMC

0 1 2 3 4 5 6 7 8
t

0.10

0.05

0.00

0.05

0.10

lat

lat, SMC

0 1 2 3 4 5 6 7 8
t

0.10

0.15

0.20

0.25

ped

ped, SMC

Figure 4.10: Helicopter SMC and SAC control input by initial position [-1,-1,-1].

64

0 1 2 3 4 5 6 7 8
t

0.10

0.05

0.00

0.05

0.10

a, SAC
a, SMC

0 1 2 3 4 5 6 7 8
t

0.02

0.00

0.02

b, SAC
b, SMC

0 1 2 3 4 5 6 7 8
t

0.1

0.0

0.1

c, SAC
c, SMC

0 1 2 3 4 5 6 7 8
t

0.1

0.0

0.1

d, SAC
d, SMC

Figure 4.11: Helicopter SMC and SAC flapping states by initial position [-1,-1,-1].

65

Chapter 5

Conclusions and Future Directions

5.1 Conclusions

This study shows how to train a reinforcement learning agent using a model-free

off-policy technique, specifically the Soft Actor-Critic algorithm, to produce a policy

capable of performing low-level control of a simulated small-scaled helicopter. The use

of this method for the same task has never been disclosed previously. The result of the

SAC method is compared to an sliding mode controller, although the result was not

superior, having in mind that the SAC method did not have access to the dynamics of

the simulated helicopter, it provided a promising result in which the average steady

state error was 0.05% for the given [-1,-1,-1] case while the sliding mode controller

provided an almost 0 error on the steady states. We also assessed the policy in an

environment with the random wind as a disturbance to test the robustness of the

method, and it is demonstrated that the SAC technique was capable of achieving

stability in all trials.

5.2 Future work

The comparison of the results in the previous section showed that there is still room

for improvement in case if stability criteria of the achieved policy, one way to improve

it is to work in more detail about the reward function of the policy, another procedure

would be to improve the RL algorithms by modifications as the RL field is improving

day by day. Although it was demonstrated here that the small-sized helicopter could

be stabilized using the SAC approach, trajectory tracking and recovery operations

66

were not conducted in this study and can be addressed in future studies. In [73],

similar study was conducted on a quadcopter.

The ability to efficiently apply deep RL algorithms to the real world to address

practical applications may be the most compelling motivator for future advances in

the area. This study showed that RL is capable of controlling the helicopter; however,

this has been done in the simulation environment, future studies could be focused on

using such policies in real-world data. A review of similar approaches may be found

in [77].

There is a possibility of a relatively large gap between the simulation environment

and the real-world data; a possible moderator would be to take advantage of a more

sophisticated model such as the one for Yamaha R-50 helicopter [16, 17] to improve

the replication of the environment.

67

Bibliography

[1] Kimon P Valavanis and George J Vachtsevanos. Handbook of unmanned aerial
vehicles, volume 2077. Springer, 2015.

[2] Eduard Semsch, Michal Jakob, Dušan Pavlicek, and Michal Pechoucek.
Autonomous uav surveillance in complex urban environments. In 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and In-
telligent Agent Technology, volume 2, pages 82–85. IEEE, 2009.

[3] Anuj Puri. A survey of unmanned aerial vehicles (uav) for traffic surveillance.
Department of computer science and engineering, University of South Florida,
pages 1–29, 2005.

[4] Iván Maza, Fernando Caballero, Jesús Capitán, José Ramiro Mart́ınez-de Dios,
and Ańıbal Ollero. Experimental results in multi-uav coordination for disaster
management and civil security applications. Journal of intelligent & robotic
systems, 61(1):563–585, 2011.

[5] Andreas Birk, Burkhard Wiggerich, Heiko Bülow, Max Pfingsthorn, and Sören
Schwertfeger. Safety, security, and rescue missions with an unmanned aerial
vehicle (uav). Journal of Intelligent & Robotic Systems, 64(1):57–76, 2011.

[6] Ebtehal Turki Alotaibi, Shahad Saleh Alqefari, and Anis Koubaa. Lsar: Multi-
uav collaboration for search and rescue missions. IEEE Access, 7:55817–55832,
2019.

[7] Teppo Luukkonen. Modelling and control of quadcopter. Independent research
project in applied mathematics, Espoo, 22:22, 2011.

[8] Daniel Gheorghiţă, Ionuţ Vı̂ntu, Letiţia Mirea, and Cătălin Brăescu. Quad-
copter control system. In 2015 19th International Conference on System The-
ory, Control and Computing (ICSTCC), pages 421–426. IEEE, 2015.

[9] Pengcheng Wang, Zhihong Man, Zhenwei Cao, Jinchuan Zheng, and Yong Zhao.
Dynamics modelling and linear control of quadcopter. In 2016 International
Conference on Advanced Mechatronic Systems (ICAMechS), pages 498–503.
IEEE, 2016.

68

[10] Omar I Dallal Bashi, WZ Hasan, N Azis, S Shafie, and Hiroaki Wagatsuma.
Unmanned aerial vehicle quadcopter: A review. Journal of Computational and
Theoretical Nanoscience, 14(12):5663–5675, 2017.

[11] Quan Quan. Introduction to multicopter design and control. Springer, 2017.

[12] Beibei Ren, Shuzhi Sam Ge, Chang Chen, Cheng-Heng Fua, and Tong Heng
Lee. Modeling, control and coordination of helicopter systems. Springer Science
& Business Media, 2012.

[13] JC Avila Vilchis, Bernard Brogliato, Alejandro Dzul, and Rogelio Lozano. Non-
linear modelling and control of helicopters. Automatica, 39(9):1583–1596, 2003.

[14] T John Koo and Shankar Sastry. Output tracking control design of a helicopter
model based on approximate linearization. In Proceedings of the 37th IEEE
Conference on Decision and Control (Cat. No. 98CH36171), volume 4, pages
3635–3640. IEEE, 1998.

[15] Robert Mahony, Tarek Hamel, and A Dzul. Hover control via lyapunov con-
trol for an autonomous model helicopter. In Proceedings of the 38th IEEE
Conference on Decision and Control (Cat. No. 99CH36304), volume 4, pages
3490–3495. IEEE, 1999.

[16] Marco La Civita, George Papageorgiou, William C Messner, and Takeo Kanade.
Integrated modeling and robust control for full-envelope flight of robotic heli-
copters. In 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422), volume 1, pages 552–557. IEEE, 2003.

[17] M La Civita, George Papageorgiou, William C Messner, and Takeo Kanade.
Design and flight testing of an h00 controller for a robotic helicopter. Journal
of Guidance, Control, and Dynamics, 29(2):485–494, 2006.

[18] Sepehr Pourrezaei Khaligh. Control-oriented modeling and system identification
for nonlinear trajectory tracking control of a small-scale unmanned helicopter.
University of Alberta (Canada), 2014.

[19] DJ Walker and I Postlethwaite. Advanced helicopter flight control using two-
degree-of-freedom h (infinity) optimization. Journal of Guidance, Control, and
Dynamics, 19(2):461–468, 1996.

[20] Bernard Mettler, Mark B Tischler, and Takeo Kanade. System identification
of small-size unmanned helicopter dynamics. In Annual Forum Proceedings-
American Helicopter Society, volume 2, pages 1706–1717. Citeseer, 1999.

[21] H Jin Kim and David H Shim. A flight control system for aerial robots: algo-
rithms and experiments. Control engineering practice, 11(12):1389–1400, 2003.

69

[22] Eric N Johnson and Suresh K Kannan. Adaptive trajectory control for au-
tonomous helicopters. Journal of Guidance, Control, and Dynamics, 28(3):524–
538, 2005.

[23] Lorenzo Marconi and Roberto Naldi. Robust full degree-of-freedom tracking
control of a helicopter. Automatica, 43(11):1909–1920, 2007.

[24] Ioannis A Raptis, Kimon P Valavanis, and Wilfrido A Moreno. System identi-
fication and discrete nonlinear control of miniature helicopters using backstep-
ping. Journal of Intelligent and Robotic Systems, 55(2):223–243, 2009.

[25] Miroslav Krstic, Petar V Kokotovic, and Ioannis Kanellakopoulos. Nonlinear
and adaptive control design. John Wiley & Sons, Inc., 1995.

[26] Isabelle Fantoni, Rogelio Lozano, and SC Sinha. Non-linear control for under-
actuated mechanical systems. Appl. Mech. Rev., 55(4):B67–B68, 2002.

[27] A Azzam and Xinhua Wang. Quad rotor arial robot dynamic modeling and
configuration stabilization. In 2010 2nd International Asia Conference on In-
formatics in Control, Automation and Robotics (CAR 2010), volume 1, pages
438–444. IEEE, 2010.

[28] Robert Mahony and Tarek Hamel. Robust trajectory tracking for a scale model
autonomous helicopter. International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, 14(12):1035–1059, 2004.

[29] Bryan Godbolt. Experimental nonlinear control of a helicopter unmanned aerial
vehicle (UAV). University of Alberta (Canada), 2013.

[30] Islam SM Khalil, JC Doyle, and K Glover. Robust and optimal control. prentice
hall, new jersey, 1996.

[31] Farid Kendoul, David Lara, Isabelle Fantoni, and R Lozano. Real-time non-
linear embedded control for an autonomous quadrotor helicopter. Journal of
guidance, control, and dynamics, 30(4):1049–1061, 2007.

[32] H Jin Kim, David H Shim, and Shankar Sastry. Nonlinear model predictive
tracking control for rotorcraft-based unmanned aerial vehicles. In Proceedings
of the 2002 American control conference (IEEE Cat. No. CH37301), volume 5,
pages 3576–3581. IEEE, 2002.

[33] Jyotirmay Gadewadikar, Frank Lewis, Kamesh Subbarao, and Ben M Chen.
Structured h-infinity command and control-loop design for unmanned heli-
copters. Journal of guidance, control, and dynamics, 31(4):1093–1102, 2008.

[34] Bernard Mettler. Identification modeling and characteristics of miniature ro-
torcraft. Springer Science & Business Media, 2013.

70

[35] Alexander Bogdanov and Eric Wan. State-dependent riccati equation control
for small autonomous helicopters. Journal of guidance, control, and dynamics,
30(1):47–60, 2007.

[36] H Ifassiouen, M Guisser, and H Medromi. Robust nonlinear control of a
miniature autonomous helicopter using sliding mode control structure. World
Academy of Science, Engineering and Technology, 2:1, 2007.

[37] JK Pieper. Application of slmc: Trc control of a helicopter in hover. In Proceed-
ings of 1995 American Control Conference-ACC’95, volume 2, pages 1191–1195.
IEEE, 1995.

[38] Wei Wang, Kenzo Nonami, and Yuta Ohira. Model reference sliding mode con-
trol of small helicopter xrb based on vision. International Journal of Advanced
Robotic Systems, 5(3):26, 2008.

[39] Jian Fu, Wen-hua Chen, and Qing-xian Wu. Chattering-free sliding mode con-
trol with unidirectional auxiliary surfaces for miniature helicopters. Interna-
tional Journal of Intelligent Computing and Cybernetics, 2012.

[40] Farbod Fahimi. Full formation control for autonomous helicopter groups. Robot-
ica, 26(2):143–156, 2008.

[41] Yunjun Xu. Multi-timescale nonlinear robust control for a miniature helicopter.
IEEE Transactions on Aerospace and Electronic systems, 46(2):656–671, 2010.

[42] Alberto Isidori, Lorenzo Marconi, and Andrea Serrani. Robust nonlinear mo-
tion control of a helicopter. In Robust Autonomous Guidance, pages 149–192.
Springer, 2003.

[43] T John Koo and Shankar Sastry. Differential flatness based full authority heli-
copter control design. In Proceedings of the 38th IEEE Conference on Decision
and Control (Cat. No. 99CH36304), volume 2, pages 1982–1987. IEEE, 1999.

[44] Alberto Isidori, Lorenzo Marconi, and Andrea Serrani. Robust autonomous
guidance: an internal model approach. Springer Science & Business Media,
2012.

[45] Bourhane Kadmiry and Dimiter Driankov. A fuzzy flight controller combining
linguistic and model-based fuzzy control. Fuzzy Sets and Systems, 146(3):313–
347, 2004.

[46] James Downs, Ron Prentice, S Alzell, Adam Besachio, CM Ivler, Mark B Tis-
chler, and MH Mansur. Control system development and flight test experience
with the mq-8b fire scout vertical take-off unmanned aerial vehicle (vtuav). In
Annual Forum Proceedings-American Helicopter Society, volume 63, page 566.
AMERICAN HELICOPTER SOCIETY, INC, 2007.

71

[47] Ioannis A Raptis and Kimon P Valavanis. Linear and nonlinear control of
small-scale unmanned helicopters, volume 1. Springer, 2011.

[48] Benchun Zhou, Weihong Wang, Zhenghua Liu, and Jia Wang. Vision-based nav-
igation of uav with continuous action space using deep reinforcement learning.
In 2019 Chinese Control And Decision Conference (CCDC), pages 5030–5035.
IEEE, 2019.

[49] Naira Hovakimyan, Nakwan Kim, Anthony J Calise, JVR Prasad, and Eric
Corban. Adaptive output feedback for high-bandwidth control of an unmanned
helicopter. In AIAA Guidance, Navigation and Control Conference, AIAA-
2001-4181, 2001.

[50] Nakwan Kim, Anthony Calise, J Eric Corban, and JVR Prasad. Adaptive
output feedback for altitude control of an unmanned helicopter using rotor
rpm. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
page 5323, 2004.

[51] Russell Enns and Jennie Si. Helicopter trimming and tracking control using
direct neural dynamic programming. IEEE transactions on neural networks,
14(4):929–939, 2003.

[52] S Anand and G Verweij. What’s the real value of ai for your business and how
can you capitalise, 2019.

[53] Manjusha Pandey. Machine Learning: Theoretical Foundations and Practical
Applications. Springer Nature, 2021.

[54] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[55] Andrew Ng. Machine learning yearning. URL: http://www. mlyearning.
org/(96), 139, 2017.

[56] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[57] Rui Nian, Jinfeng Liu, and Biao Huang. A review on reinforcement learn-
ing: Introduction and applications in industrial process control. Computers &
Chemical Engineering, 139:106886, 2020.

[58] Warren B Powell. Ai, or and control theory: A rosetta stone for stochastic
optimization. Princeton University, page 12, 2012.

[59] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Koza-
kowski, Sergey Levine, et al. Model-based reinforcement learning for atari.
arXiv preprint arXiv:1903.00374, 2019.

72

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[61] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[62] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An applica-
tion of reinforcement learning to aerobatic helicopter flight. Advances in neural
information processing systems, 19:1, 2007.

[63] Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben
Tse, Eric Berger, and Eric Liang. Autonomous inverted helicopter flight via
reinforcement learning. In Experimental robotics IX, pages 363–372. Springer,
2006.

[64] Andrew Y Ng, H Jin Kim, Michael I Jordan, Shankar Sastry, and Shiv Bal-
lianda. Autonomous helicopter flight via reinforcement learning. In NIPS,
volume 16. Citeseer, 2003.

[65] Sridhar Mahadevan and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcement learning. Artificial intelligence, 55(2-
3):311–365, 1992.

[66] Vijaykumar Gullapalli, Judy A Franklin, and Hamid Benbrahim. Acquir-
ing robot skills via reinforcement learning. IEEE Control Systems Magazine,
14(1):13–24, 1994.

[67] J Andrew Bagnell and Jeff G Schneider. Autonomous helicopter control using
reinforcement learning policy search methods. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No. 01CH37164),
volume 2, pages 1615–1620. IEEE, 2001.

[68] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[69] William Koch, Renato Mancuso, Richard West, and Azer Bestavros. Reinforce-
ment learning for uav attitude control. ACM Transactions on Cyber-Physical
Systems, 3(2):1–21, 2019.

[70] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[71] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on ma-
chine learning, pages 1889–1897. PMLR, 2015.

73

[72] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017.

[73] Gabriel Moraes Barros and Esther Luna Colombini. Using soft actor-critic for
low-level uav control. arXiv preprint arXiv:2010.02293, 2020.

[74] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochas-
tic actor, 2018.

[75] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research,
37(4-5):421–436, 2018.

[76] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[77] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real trans-
fer in deep reinforcement learning for robotics: a survey. In 2020 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), pages 737–744. IEEE, 2020.

[78] Loc D Tran, Charles D Cross, Mark A Motter, James H Neilan, Garry Qualls,
Paul M Rothhaar, Anna Trujillo, and Bonnie D Allen. Reinforcement learning
with autonomous small unmanned aerial vehicles in cluttered environments-”
after all these years among humans, you still haven’t learned to smile.”. In 15th
AIAA aviation technology, integration, and operations conference, page 2899,
2015.

[79] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep
transfer across domains and tasks. In Proceedings of the IEEE international
conference on computer vision, pages 4068–4076, 2015.

[80] Jae Won Lee. Stock price prediction using reinforcement learning. In ISIE
2001. 2001 IEEE International Symposium on Industrial Electronics Proceed-
ings (Cat. No. 01TH8570), volume 1, pages 690–695. IEEE, 2001.

[81] Chen-Huan Pi, Kai-Chun Hu, Stone Cheng, and I-Chen Wu. Low-level au-
tonomous control and tracking of quadrotor using reinforcement learning. Con-
trol Engineering Practice, 95:104222, 2020.

[82] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-
ment learning: A survey. Journal of artificial intelligence research, 4:237–285,
1996.

[83] Dimitri P Bertsekas. Dynamic programming and optimal control 3rd edition,
volume ii. Belmont, MA: Athena Scientific, 2011.

74

[84] Mark E Lewis and Martin L Puterman. Bias optimality. In Handbook of Markov
decision processes, pages 89–111. Springer, 2002.

[85] Lucian Buşoniu, Bart De Schutter, and Robert Babuška. Approximate dynamic
programming and reinforcement learning. In Interactive collaborative informa-
tion systems, pages 3–44. Springer, 2010.

[86] Victor Gabillon, Mohammad Ghavamzadeh, and Bruno Scherrer. Approximate
dynamic programming finally performs well in the game of tetris. In Neural
Information Processing Systems (NIPS) 2013, 2013.

[87] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connec-
tionist systems, volume 37. Citeseer, 1994.

[88] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[89] Richard S Sutton. Learning to predict by the methods of temporal differences.
Machine learning, 3(1):9–44, 1988.

[90] Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on
artificial intelligence and machine learning, 4(1):1–103, 2010.

[91] Leemon C Baird III. Reinforcement learning through gradient descent. Techni-
cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COM-
PUTER SCIENCE, 1999.

[92] Hajime Kimura, Masayuki Yamamura, and Shigenobu Kobayashi. Reinforce-
ment learning by stochastic hill climbing on discounted reward. In Machine
Learning Proceedings 1995, pages 295–303. Elsevier, 1995.

[93] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2219–2225. IEEE, 2006.

[94] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task
policy search for robotics. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 3876–3881. IEEE, 2014.

[95] Vishesh Vikas, Piyush Grover, and Barry Trimmer. Model-free control frame-
work for multi-limb soft robots. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1111–1116. IEEE, 2015.

[96] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour,
et al. Policy gradient methods for reinforcement learning with function approx-
imation. In NIPs, volume 99, pages 1057–1063. Citeseer, 1999.

[97] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

75

[98] Ozgur Simsek, Simon Algorta, and Amit Kothiyal. Why most decisions are
easy in tetris—and perhaps in other sequential decision problems, as well. In
International Conference on Machine Learning, pages 1757–1765. PMLR, 2016.

[99] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and
Sergey Levine. Soft actor-critic algorithms and applications, 2019.

[100] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[101] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and
Sergey Levine. Learning to walk via deep reinforcement learning, 2019.

[102] Robert M Gray. Entropy and information theory. Springer Science & Business
Media, 2011.

[103] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforce-
ment learning with deep energy-based policies. In International Conference on
Machine Learning, pages 1352–1361. PMLR, 2017.

[104] Piotr Doerffer and Oskar Szulc. Numerical simulation of model helicopter rotor
in hover. Task Quarterly, 12(3):227–236, 2008.

[105] Thomas Crittenden, Dmitry Shlyubsky, and Ari Glezer. Combustion-driven jet
actuators in reversed flow configurations. In 2nd AIAA Flow Control Confer-
ence, page 2689, 2004.

[106] MT Patterson and PF Lorber. Computational and experimental studies of
compressible dynamic stall. Journal of fluids and structures, 4(3):259–285, 1990.

[107] Gareth D Padfield. Helicopter flight dynamics: the theory and application of
flying qualities and simulation modelling. John Wiley & Sons, 2008.

[108] Pascual Marqués and Andrea Da Ronch. Advanced UAV Aerodynamics, Flight
Stability and Control: Novel Concepts, Theory and Applications. John Wiley
& Sons, 2017.

[109] John M Seddon and Simon Newman. Basic helicopter aerodynamics, volume 40.
John Wiley & Sons, 2011.

[110] Sepehr Pourrezaei Khaligh. Control-oriented modeling and system identification
for nonlinear trajectory tracking control of a small-scale unmanned helicopter.
2014.

[111] Bernard Mettler, Mark B Tischler, and Takeo Kanade. System identification
modeling of a small-scale unmanned rotorcraft for flight control design. Journal
of the American helicopter society, 47(1):50–63, 2002.

76

[112] Wayne Johnson. Helicopter theory. Courier Corporation, 2012.

[113] Gordon J Leishman. Principles of helicopter aerodynamics with CD extra. Cam-
bridge university press, 2006.

[114] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume
199. Prentice hall Englewood Cliffs, NJ, 1991.

[115] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[116] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney,
Dan Horgan, Dhruva Tb, Alistair Muldal, Nicolas Heess, and Timothy Lilli-
crap. Distributed distributional deterministic policy gradients. arXiv preprint
arXiv:1804.08617, 2018.

[117] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015.

[118] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In International
conference on machine learning, pages 387–395. PMLR, 2014.

[119] The garage contributors. Garage: A toolkit for reproducible reinforcement
learning research. https://github.com/rlworkgroup/garage, 2019.

[120] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[121] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

77

https://github.com/rlworkgroup/garage

[122] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2019.

78

Appendix A

The code of the helicopter environment. The full library is available at github.

Algorithm 1: Helicopter environment algorithm.

1 import sympy as sp
2 import numpy as np
3 from numpy import concatenate as concat
4
5 import gym
6 from gym import spaces
7 from env . He l i c op t e r import He l i c op t e r
8 from u t i l s ma in import s a v e f i l e s
9
10
11 class Hel icopterEnv (gym .Env) :
12 def i n i t (s e l f) :
13 s e l f . U input = [U1 , U2 , U3 , U4] = sp . symbols (”U1: 5 ” , r e a l=True)
14 s e l f . x s t a t e = [
15 u ve l o c i t y ,
16 v v e l o c i t y ,
17 w ve loc i ty ,
18 p angle ,
19 q angle ,
20 r ang l e ,
21 f i a n g l e ,
22 the ta ang l e ,
23 s i a n g l e ,
24 xI ,
25 yI ,
26 zI ,
27 a f l app ing ,
28 b f l app ing ,
29 c f l app ing ,
30 d f l app ing ,
31 uwind ,
32 vwind ,
33 wwind ,
34] = sp . symbols (”x1 :20 ” , r e a l=True)
35 s e l f . My he l i copter = He l i c op t e r ()
36 s e l f . t = sp . symbols (” t ”)
37 s e l f . symbol i c s tates math , j acob ian = s e l f . My he l i copter .

lambd eq maker (s e l f . t , s e l f . x s ta t e , s e l f . U input)
38 s e l f . d e f au l t r ang e = de f au l t r ang e = (=2 , 2)
39 s e l f . v e l o c i t y r ang e = ve l o c i t y r ang e = (=100 , 100)
40 s e l f . a ng v e l o c i t y r ang e = ang ve l o c i t y r ang e = (=100 , 100)
41 s e l f . a ng p ve l o c i t y r ang e = ang p ve l o c i t y r ang e = (=100 , 100)
42 s e l f . Ti , s e l f . Ts , s e l f . Tf = 0 , 0 . 03 , 8
43 s e l f . ang l e range = ang l e range = (=np . p i / 2 , np . p i / 2)
44 s e l f . p s i r ang e = ps i r ang e = (=2 * np . pi , 2 * np . p i)
45 s e l f . observat ion space domain = {
46 ” u v e l o c i t y ” : v e l o c i t y r ange ,
47 ” v v e l o c i t y ” : v e l o c i t y r ange ,

79

https://github.com/MKamyab1991/sac_helicopter.git

48 ” w ve l o c i t y ” : v e l o c i t y r ange ,
49 ” p ang le ” : ang p ve l o c i t y range ,
50 ” q ang l e ” : ang ve l o c i t y range ,
51 ” r ang l e ” : ang ve l o c i t y range ,
52 ” f i a n g l e ” : ang le range ,
53 ” the t a ang l e ” : ang le range ,
54 ” s i a n g l e ” : p s i range ,
55 ” xI ” : de f au l t r ange ,
56 ” yI ” : de f au l t r ange ,
57 ” z I ” : de f au l t r ange ,
58 ” a f l a pp i n g ” : v e l o c i t y r ange ,
59 ” b f l app ing ” : v e l o c i t y r ange ,
60 ” c f l a pp i n g ” : v e l o c i t y r ange ,
61 ” d f l app ing ” : v e l o c i t y r ange ,
62 ” d e l t a c o l ” : (=10 , 10) ,
63 ” d e l t a l a t ” : (=10 , 10) ,
64 ” d e l t a l o n ” : (=10 , 10) ,
65 ” de l ta ped ” : (=10 , 10) ,
66 }
67 s e l f . s t a t e s s t r = l i s t (s e l f . observat ion space domain . keys ())
68 s e l f . l ow obs space = np . array (tuple (zip (* s e l f .

observat ion space domain . va lue s ())) [0] , dtype=np . f l o a t 3 2)
69 s e l f . h i gh obs space = np . array (tuple (zip (* s e l f .

observat ion space domain . va lue s ())) [1] , dtype=np . f l o a t 3 2)
70 s e l f . ob s e rva t i on space = spaces . Box(low=s e l f . low obs space , high

=s e l f . h igh obs space , dtype=np . f l o a t 3 2)
71 s e l f . d e f a u l t a c t r an g e = (=0.3 , 0 . 3)
72 d e f a c t i o n = (=1 , 1)
73 l a t a c t i o n = (=1 , 1)
74 s e l f . ac t ion space domain = {
75 ” c o l z ” : d e f a c t i on ,
76 ” co l w ” : d e f a c t i on ,
77 ” lon x ” : d e f a c t i on ,
78 ” lon u ” : d e f a c t i on ,
79 ” lon q ” : d e f a c t i on ,
80 ” l o n e u l 1 ” : d e f a c t i on ,
81 ” l a t y ” : l a t a c t i o n ,
82 ” l a t v ” : l a t a c t i o n ,
83 ” l a t p ” : l a t a c t i o n ,
84 ” l a t e u l 0 ” : l a t a c t i o n ,
85 ” ped r ” : d e f a c t i on ,
86 ” ped eu l 3 ” : d e f a c t i on ,
87 }
88 s e l f . l ow ac t i on = np . array (tuple (zip (* s e l f . ac t ion space domain .

va lue s ())) [0] , dtype=np . f l o a t 3 2)
89 s e l f . h i gh ac t i on = np . array (tuple (zip (* s e l f . ac t ion space domain .

va lue s ())) [1] , dtype=np . f l o a t 3 2)
90 s e l f . l ow ac t i on spac e = s e l f . l ow ac t i on
91 s e l f . h i gh a c t i on spa c e = s e l f . h i gh ac t i on
92 s e l f . a c t i on spac e = spaces . Box(low=s e l f . l ow ac t i on space , high=

s e l f . h i gh ac t i on space , dtype=np . f l o a t 3 2)
93 s e l f . min reward = =13
94
95 s e l f . no t imes teps = int ((s e l f . Tf = s e l f . Ti) / s e l f . Ts)

80

96 s e l f . a l l t = np . l i n s p a c e (s e l f . Ti , s e l f . Tf , s e l f . no t imes teps)
97 s e l f . counter = 0
98 s e l f . bes t reward = f loat (”= i n f ”)
99 s e l f . l onges t num step = 0

100 s e l f . reward check t ime = 0 .7 * s e l f . Tf
101 s e l f . h i g h a c t i o n d i f f = 0 .2
102 obs header = str (l i s t (s e l f . observat ion space domain . keys ()))

[1 : =1]
103 ac t header = str (l i s t (s e l f . ac t ion space domain . keys ())) [1 : =1]
104 s e l f . header = (
105 ”time , ”
106 + act header
107 + ” , ”
108 + obs header [0 : 1 3 0]
109 + ” , a , ”
110 + ”b , ”
111 + ”c , ”
112 + ”d , ”
113 + obs header [1 8 9 : 2 4 0]
114 + ” , rew , ”
115 + ”cont rew , ”
116 + ” int rew , ”
117 + ” s i r ew , ”
118 + ” f rew , ”
119 + ”dinput rew , ”
120 + ” input rew , ”
121)
122 s e l f . saver = s a v e f i l e s ()
123 s e l f . reward array = np . array ((0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0) , dtype=np . f l o a t 3 2)
124 s e l f . r eward l im i t = [
125 1 .00 e02 ,
126 3 .40 e03 ,
127 1 .34 e02 ,
128 1 .51 e03 ,
129 3 .28 e01 ,
130 7 .78 e00 ,
131 3 .15 e04 ,
132 3 .09 e01 ,
133 3 .00 e02 ,
134 8 .46 e00 ,
135 1 .52 e04 ,
136 9 .27 e01 ,
137]
138 s e l f . c on s t an t d i c t = {
139 ”u” : 0 . 0 ,
140 ”v” : 0 . 0 ,
141 ”w” : 0 . 0 ,
142 ”p” : 1 . 0 ,
143 ”q” : 1 . 0 ,
144 ” r ” : 0 . 0 ,
145 ” f i ” : 1 . 0 ,
146 ” theta ” : 1 . 0 ,
147 ” s i ” : 0 . 0 ,

81

148 ”x” : 0 . 0 ,
149 ”y” : 0 . 0 ,
150 ”z” : 0 . 0 ,
151 ”a” : 0 . 0 ,
152 ”b” : 0 . 0 ,
153 ”c” : 0 . 0 ,
154 ”d” : 0 . 0 ,
155 }
156 s e l f . s ave counte r = 0
157 s e l f . l onges t num step = 0
158 s e l f . bes t reward = f loat (”= i n f ”)
159 s e l f . d i v e r g e count e r = 0
160 s e l f . numTimeStep = int (s e l f . Tf / s e l f . Ts + 1)
161 s e l f . i f s a v e = 0
162 s e l f . l ow con t r o l i npu t = [0 . 0 1 , =0.1 , =0.1 , 0 . 0 1]
163 s e l f . h i gh c on t r o l i npu t = [0 . 5 , 0 . 1 , 0 . 1 , 0 . 5]
164 s e l f . cont inp dom = {” co l ” : (=2.1 , 2 , 1) , ” l a t ” : (=3.2 , 3 . 2) , ”

lon ” : (=3.5 , 3 . 5) , ”ped” : (=1.1 , 1 . 1) }
165 s e l f . c o n t s t r = l i s t (s e l f . cont inp dom . keys ())
166 s e l f . i n i t i a l s t a t e s = (
167 np . array (
168 (
169 3 .70 e=04, # 0u
170 1 .15 e=02, # 1v
171 4 .36 e=04, # 2w
172 =5.08e=03, # 3p
173 2 .04 e=04, # 4q
174 2 .66 e=05, # 5r
175 =1.08e=01, # 6 f i
176 1 .01 e=04, # 7 the t a
177 =1.03e=03, # 8 s i
178 =4.01e=05, # 9x
179 =5.26e=02, # 10y
180 =2.94e=04, # 11 z
181 =4.36e=06, # 12a
182 =9.77e=07, # 13b
183 =5.66e=05, # 14c
184 7 .81 e=04,
185) ,
186 dtype=np . f l o a t32 ,
187)
188 + 0.01
189)
190
191 s e l f . wind1 = np . array ((0 , 0 , 0))
192 s e l f . jk = 1
193
194 def r e s e t (s e l f) :
195 # i n i t i a l i z a t i o n
196 s e l f . t = 0
197 s e l f . a l l o b s = np . z e r o s ((s e l f . no t imesteps , len (s e l f .

h i gh obs space)))
198 s e l f . a l l a c t i o n s = np . z e ro s ((s e l f . no t imesteps , len (s e l f .

h i gh a c t i on spa c e)))

82

199 s e l f . a l l c o n t r o l = np . z e r o s ((s e l f . no t imesteps , 4))
200 s e l f . a l l r ewa rd s = np . z e ro s ((s e l f . no t imesteps , 1))
201 s e l f . c on t ro l r eward s = np . z e r o s ((s e l f . no t imesteps , 1))
202 s e l f . c on t ro l r ewards1 = np . z e ro s ((s e l f . no t imesteps , 1))
203 s e l f . c on t ro l r ewards2 = np . z e ro s ((s e l f . no t imesteps , 1))
204 s e l f . c on t ro l r ewards3 = np . z e ro s ((s e l f . no t imesteps , 1))
205 s e l f . c on t ro l r ewards4 = np . z e ro s ((s e l f . no t imesteps , 1))
206 s e l f . c on t ro l r ewards5 = np . z e ro s ((s e l f . no t imesteps , 1))
207 s e l f . c on t r o l i npu t = np . array ((0 , 0 , 0 , 0) , dtype=np . f l o a t 3 2)
208 s e l f . j j = 0
209 s e l f . counter = 0
210 s e l f . wind = s e l f . wind1
211 s e l f . jk = s e l f . jk + 0.001
212 s e l f . c u r r e n t s t a t e s = concat ((s e l f . i n i t i a l s t a t e s , s e l f . wind) ,

ax i s=0)
213 s e l f . c u r r e n t s t a t e s [9] = s e l f . i n i t i a l s t a t e s [9]
214 s e l f . c u r r e n t s t a t e s [1 0] = s e l f . i n i t i a l s t a t e s [1 0]
215 s e l f . c u r r e n t s t a t e s [1 1] = s e l f . i n i t i a l s t a t e s [1 1]
216 s e l f . obse rvat i on = s e l f . ob s e r va t i on f unc t i on ()
217 s e l f . done = False
218 s e l f . i n t e g r a l e r r o r = 0
219 return np . c l i p (s e l f . observat ion , =0.5 , 0 . 5)
220
221 def act ion wrapper (s e l f , cu r r en t a c t i on , obs) => np . array :
222 s e l f . n o rm i l i z e d a c t i o n s = cu r r en t a c t i on
223 un act = (cu r r en t a c t i on + 1) * (s e l f . h i gh ac t i on = s e l f .

l ow ac t i on) / 2 + s e l f . l ow ac t i on
224 s e l f . a l l a c t i o n s [s e l f . counter] = s e l f . n o rm i l i z e d a c t i o n s #

unnormal i zed ac t ion
225 s e l f . c on t r o l i npu t [0] = un act [0] * 5 * obs [1 1] + un act [1] * 5

* obs [2]
226 s e l f . c on t r o l i npu t [2] = (
227 un act [2] * 5 * obs [9] + un act [3] * 5 * obs [0] + un act [4]

* 5 * obs [4] + un act [5] * obs [7]
228)
229 s e l f . c on t r o l i npu t [1] = (
230 un act [6] * 5 * obs [1 0] + un act [7] * 5 * obs [1] + un act [8]

* 5 * obs [3] + un act [9] * obs [6]
231)
232 s e l f . c on t r o l i npu t [3] = un act [1 0] * 5 * obs [5] + un act [1 1] * 5

* obs [8]
233 s e l f . c on t r o l i npu t [0] = 2.1167 * np . tanh (s e l f . c on t r o l i npu t [0])

+ 0 .1
234 s e l f . c on t r o l i npu t [1] = 2.03125 * np . tanh (s e l f . c on t r o l i npu t [1])
235 s e l f . c on t r o l i npu t [2] = 2.02857 * np . tanh (s e l f . c on t r o l i npu t [2])
236 s e l f . c on t r o l i npu t [3] = 2.2227 * np . tanh (s e l f . c on t r o l i npu t [3])

+ 0 .18
237
238 s e l f . a l l c o n t r o l [s e l f . counter] = s e l f . c on t r o l i npu t
239
240 def f i n d n e x t s t a t e (s e l f) => l i s t :
241 cu r r en t t = s e l f . Ts * s e l f . counter
242 # s e l f . wind = s e l f . wind + 0.4 * (np . random . random ())
243 s e l f . c u r r e n t s t a t e s [1 6 : 1 9] = s e l f . wind

83

244 s e l f . c u r r e n t s t a t e s [0 : 1 9] = s e l f . My he l i copter .RK45(
245 cur r en t t , s e l f . c u r r e n t s t a t e s [0 : 1 9] , s e l f .

symbol i c s tates math , s e l f . Ts , s e l f . c on t ro l i nput ,
246)
247
248 def ob s e r va t i on f unc t i on (s e l f) => l i s t :
249 s e l f . obse rvat i on = concat ((s e l f . c u r r e n t s t a t e s [0 : 1 6] , s e l f .

c on t r o l i npu t) , ax i s=0)
250 s e l f . a l l o b s [s e l f . counter] = concat ((s e l f . c u r r e n t s t a t e s [0 : 1 6] ,

s e l f . c on t r o l i npu t) , ax i s=0)
251 for i i i in range (20) :
252 cur r en t range = s e l f . observat ion space domain [s e l f .

s t a t e s s t r [i i i]]
253 s e l f . obse rvat i on [i i i] = (
254 2 * (s e l f . ob se rvat i on [i i i] = cu r r en t range [0]) / (

cu r r en t range [1] = cu r r en t range [0]) = 1
255)
256 return s e l f . obse rvat i on
257
258 def r eward funct ion (s e l f , observat ion , r ew co f =[10 , 0 . 08 , 0 . 0 1 5]) =>

f loat :
259 e r r o r = =r ew co f [0] * (np . l i n a l g . norm(obse rvat i on [9 : 1 2] . reshape

(3) , 4))
260 i f a l l (abs (s e l f . c u r r e n t s t a t e s [9 : 1 2])) < 0 . 1 :
261 e r r o r = e r r o r + 1 = abs (obse rvat i on [8])
262 reward = e r r o r . copy ()
263 s e l f . c on t ro l r eward s [s e l f . counter] = e r r o r
264
265 s e l f . c on t ro l r ewards1 [s e l f . counter] = (
266 0 .025 * s e l f . c on t ro l r eward s [s e l f . counter] + s e l f .

c on t ro l r ewards1 [s e l f . counter = 1]
267)
268
269 reward += s e l f . c on t ro l r ewards1 [s e l f . counter]
270 x = s e l f . c u r r e n t s t a t e s [9]
271 y = s e l f . c u r r e n t s t a t e s [1 0]
272 s i = s e l f . c u r r e n t s t a t e s [8]
273 z = s e l f . c u r r e n t s t a t e s [1 1]
274 s e l f . c on t ro l r ewards2 [s e l f . counter] = =0.1 * np . tanh (
275 0 .250 / ((1 + 20 * (x ** 2 + y ** 2 + z ** 2)) ** 3 / 2) *

abs (s i)
276)
277 reward += s e l f . c on t ro l r ewards2 [s e l f . counter]
278
279 s e l f . c on t ro l r ewards3 [s e l f . counter] = 5000 / s e l f . numTimeStep
280 reward += s e l f . c on t ro l r ewards3 [s e l f . counter]
281
282 s e l f . c on t ro l r ewards4 [s e l f . counter] = =r ew co f [1] * sum(
283 abs (s e l f . c on t r o l i npu t = s e l f . a l l c o n t r o l [s e l f . counter = 1 ,

:])
284)
285 reward += s e l f . c on t ro l r ewards4 [s e l f . counter]
286
287 s e l f . c on t ro l r ewards5 [s e l f . counter] = =r ew co f [2] * np . l i n a l g .

84

norm(s e l f . c on t ro l i nput , 2)
288 reward += s e l f . c on t ro l r ewards5 [s e l f . counter]
289
290 s e l f . a l l r ewa rd s [s e l f . counter] = reward
291
292 return reward
293
294 def check d ive rge (s e l f , reward) => bool :
295 boo l 1 = any(np . i snan (s e l f . c u r r e n t s t a t e s))
296 boo l 2 = any(np . i s i n f (s e l f . c u r r e n t s t a t e s))
297 i f boo l 1 or boo l 2 :
298 s e l f . j j = 1
299 s e l f . obse rvat i on = s e l f . a l l o b s [s e l f . counter = 1]
300 reward = s e l f . min reward = 100
301 return True , reward
302 i f np . i snan (reward) or np . i s i n f (reward) :
303 reward = s e l f . min reward = 100
304 return True , reward
305 for i in range (12) :
306 i f (abs (s e l f . a l l o b s [s e l f . counter , i])) > s e l f .

h i gh obs space [i] :
307 s e l f . saver . d i v e r g e s av e (s e l f . observat ion space domain , i

)
308 s e l f . j j = 1
309
310 i f s e l f . j j == 1 :
311 return True , reward
312 i f s e l f . counter >= s e l f . no t imes teps = 1 : # number o f t imes t ep s
313 return True , reward
314 return False , np . c l i p (reward , =1000 , 1000)
315
316 def done jobs (s e l f) => None :
317
318 s e l f . bes t reward = 0
319 counter = s e l f . counter
320 s e l f . s ave counte r += 1
321 cu r r en t t o t a l r ewa rd = sum(s e l f . a l l r ewa rd s)
322 i f s e l f . s ave counte r >= 1000 :
323 s e l f . s ave counte r = 0
324 s e l f . saver . r eward s t ep save (s e l f . best reward , s e l f .

longest num step , cu r r en t t o t a l r eward , counter)
325 i f counter >= s e l f . l onges t num step :
326 s e l f . l onges t num step = counter
327 i f cu r r en t t o t a l r ewa rd >= s e l f . bes t reward and sum(s e l f .

a l l r ewa rd s) != 0 :
328 s e l f . bes t reward = cu r r en t t o t a l r ewa rd
329 i i = s e l f . counter + 1
330 s e l f . saver . be s t r eward save (
331 s e l f . a l l t [0 : i i] ,
332 s e l f . a l l a c t i o n s [0 : i i] ,
333 s e l f . a l l o b s [0 : i i] ,
334 s e l f . a l l r ewa rd s [0 : i i] ,
335 np . concatenate (
336 (

85

337 s e l f . c on t ro l r eward s [0 : i i] ,
338 s e l f . c on t ro l r ewards1 [0 : i i] ,
339 s e l f . c on t ro l r ewards2 [0 : i i] ,
340 s e l f . c on t ro l r ewards3 [0 : i i] ,
341 s e l f . c on t ro l r ewards4 [0 : i i] ,
342 s e l f . c on t ro l r ewards5 [0 : i i] ,
343) ,
344 ax i s =1,
345) ,
346 s e l f . header ,
347)
348
349 def s tep (s e l f , c u r r en t a c t i on) :
350 s e l f . c on t r o l i npu t = cu r r en t a c t i on
351 try :
352 s e l f . f i n d n e x t s t a t e ()
353 except Overf lowError or ValueError or IndexError :
354 s e l f . j j = 1
355 s e l f . obse rvat i on = s e l f . ob s e r va t i on f unc t i on ()
356 reward = s e l f . r eward funct ion (s e l f . ob se rvat i on)
357 s e l f . done , reward = s e l f . check d ive rge (reward)
358 i f s e l f . j j == 1 :
359 reward == s e l f . min reward
360 i f s e l f . done :
361 s e l f . done jobs ()
362 s e l f . counter += 1
363 i f np . i snan (reward) or any ((np . i snan (s e l f . obse rvat i on))) :
364 reward = =100
365 s e l f . c u r r e n t s t a t e s = s e l f . i n i t i a l s t a t e s * 0 = 10
366 s e l f . obse rvat i on = s e l f . ob s e r va t i on f unc t i on ()
367 return np . c l i p (s e l f . observat ion , =100, 100) , np . c l i p (reward ,

=1000 , 1000) , s e l f . done , {}
368
369 def make constant (s e l f , t r u e l i s t) :
370 for i in range (len (t r u e l i s t)) :
371 i f i == 1 :
372 s e l f . c u r r e n t s t a t e s [i] = s e l f . i n i t i a l s t a t e s [i]
373
374 def c l o s e (s e l f) :
375 return None

86

	Introduction
	Autonomous UAV
	Traditional Control Systems
	The Use of Reinforcement Learning as an Optimal Control Method
	Simulation Environment for RL
	Thesis Objective and outline
	Chapter 2: Reinforcement Learning Background
	Chapter 3: Simulation environment
	Chapter 4: Result and discussion
	Chapter 5: Conclusion and future work

	Review of Reinforcement Learning
	Introduction and terminology
	Markov Decision Process
	Dynamic programming
	Monte Carlo methods
	Temporal Difference

	Policy search
	Deep Reinforcement Learning

	Actor-critic methods
	Soft Actor Critic
	Entropy-Regularized Reinforcement Learning
	SAC algorithm

	Simulation Environment
	Introduction
	Governing equations
	States and control input
	State-space equations
	Blade flapping
	Force derivation
	Moment derivation
	Induced velocity

	Sliding mode control
	Force derivation in control affine form
	Moment derivation in control affine form
	Control point state space equations
	Control point position
	Implementation of sliding mode controller

	Environment setup
	Environment Reset
	Step
	Observation
	Reward
	Checking for a terminal state
	Summary

	Result and discussion
	SAC agent
	Architecture
	Hyper-parameters

	Results
	Training and evaluation
	Comparison of Controllability and stability to the SMC

	Conclusions and Future Directions
	Conclusions
	Future work

	Bibliography

