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ABSTRACT 

Measurement of construction labor productivity involves various subjective factors (e.g., 

motivation, stress, fatigue). Most measurement approaches for subjective factors in productivity 

applications require manual data collection (e.g., questionnaires, interviews, observations); 

therefore, research gaps exist regarding how to (a) directly measure subjective factors using data 

that reflect workers’ real performance at single points in time and (b) integrate these factors into 

existing or new models in labor productivity applications. This paper proposes an empirical 

framework for integrating real-time data from multiple sensors for directly measuring subjective 

factors affecting labor productivity. The proposed framework, which was designed, built, and 

evaluated using design science research methodology, contributes to the body of knowledge as 

part of a longer-term study proposing an empirical framework for triangulating data from a multi-

sensor system to simultaneously measure multiple subjective factors affecting labor productivity. 

Study outcomes will complement existing artificial intelligence, simulation, and statistical models 

for construction productivity applications. 

INTRODUCTION 

Labor productivity is one of the determining factors contributing to the success of any construction 

project. Although monitoring labor productivity is vital in terms of construction project 

management, the current literature finds that it is challenging to accurately measure and manage 

construction productivity (Yi and Chan 2014). McKinsey Global Institute (2017) found that the 

labor-productivity growth for the construction industry averaged only 1% in the last 10 years. 

Therefore, the construction industry needs innovative techniques and advanced technologies to 

more objectively, effectively, and accurately measure labor productivity. 

Measurement of construction labor productivity includes a combination of objective and 

subjective factors (Hwang et al. 2018). Objective factors, such as completeness of construction 

tasks, availability of materials and equipment, rework frequency, and change orders, can be 

measured numerically by using historical databases and data collected in the field (Yi and Chan 

2017). Subjective factors in construction labor productivity applications often involve various 

human-related factors, such as motivation, emotion, cognitive load, fatigue, and stress (Aryal et 

al. 2017; Johari et al. 2020). Subjective factors can be determined using linguistic variables to 

report opinions and judgements, which often require the use of survey questionnaires and 

interviews (Hasan et al. 2018). Each subjective factor is a function of numerous variables within 
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individuals, who may behave based on an attitude that they are unaware of or cannot express, 

which makes it difficult to measure their implicit attitude with direct questions. Most measurement 

approaches for subjective factors in productivity applications rely on indirect measures, such as 

surveys and observations, or secondary data such as data that have already been collected by others 

and are readily available from public sources, such as online libraries, internet searches, and 

databases. To support direct measurements of subjective factors that affect labor productivity, 

researchers are using sensors to collect timely data that reflect the real performance of construction 

workers at a single point in time (Ahn et al. 2019; Nwaogu and Chan 2021). However, current 

sensor-based measurement approaches in productivity applications only examine one or two 

subjective factors at a time (Choi et al. 2019; Jebelli et al. 2019). Therefore, research gaps exist 

regarding how to (a) simultaneously, measure multiple subjective factors and (b) integrate these 

factors into existing or new models that previously used indirect measures or secondary data for 

such factors. 

To address the existing research gaps, this paper proposes an empirical framework that 

utilizes a multi-sensor system to simultaneously measure various subjective factors (e.g., 

motivation, stress, fatigue) that affect construction labor productivity. The subjective factors 

derived from the proposed framework will be used to replace those that were measured using 

indirect measures and also add new factors (e.g., improvisation) to existing predictive and 

simulation models in labor productivity applications. The proposed framework demonstrates a 

practical automated means for collecting and measuring multiple subjective factors that affect 

construction labor productivity in terms of human physiological (e.g., stress, fatigue, cognitive 

load) and biological (e.g., brainwaves, heart rate, skin temperature) responses. A longer-term study 

is planned that will use the proposed framework to analyze sensor-based data. 

SENSOR APPLICATIONS IN MEASURING LABOR PRODUCTIVITY 

Direct measurements of human emotions, fatigue, stress, and other physiological factors that affect 

construction labor productivity have been made in construction with real-time data collected using 

sensors (Johari et al. 2020). Sensors provide opportunity to collect physiological and biological 

signals that can be used to derive information on human attitudes and emotions (Aryal et al. 2017; 

Sun et al. 2020). To analyze sensing signal data, machine learning approaches have recently been 

used, including support vector machine, artificial neural networks, k-nearest neighbors algorithm, 

random forest, decision tree, discriminant analyses, fuzzy logic, bidirectional long short-term 

memory algorithm, and ensemble classifiers (Al Jassmi et al. 2019; Alberdi et al. 2016; Arpaia et 

al. 2020; Bangaru et al. 2021; Khowaja et al. 2020; Umer et al. 2020). For example, Jebelli et al. 

(2019) used workers’ physiological signals from a wristband-type biosensor (i.e., PPG, EDA, ST) 

to develop a model that could recognize construction workers’ physical-demand levels during 

construction activities. A machine learning model using a supervised-learning algorithm (i.e., 

Gaussian kernel support vector machine) was developed to allow the prediction of the construction 

activities’ demand levels (i.e., low physical intensity, high physical intensity) based on 

physiological signals collected from workers. The model allowed automated and noninvasive 

assessment of workers’ physical demands in the field by using wearable biosensors. The model 

enables the early detection of highly physically demanding tasks on construction sites, which will 

improve construction workers’ productivity, safety, and general well-being. Ryu et al. (2020) 

noted that the use of sensors has gained attention in terms of their potential to replace human 

observers with automated monitoring technologies for data collection on construction activities. 

In the same study, they explored the use of wrist-worn accelerometer-embedded activity trackers 

for automated action recognition of masonry workers. They used machine learning with the 
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collected data to classify workers’ actions into four masonry tasks. They note that automated 

worker action recognition can be used for more effective management of work performance in 

terms of productivity. 

Further, sensors provide opportunity to directly collect and derive information regarding 

human neural mechanisms, physiological responses (e.g., fatigue), biological responses (e.g., heart 

rates), and other subjective factors that affect construction labor productivity. Six types of sensors 

are commonly used in construction productivity, including inertial measurement unit (IMU), 

electrocardiography (ECG/EKG), photoplethysmography (PPG), electrodermal activity (EDA) / 

galvanic skin response (GSR), electromyography (EMG), eye trackers, and 

electroencephalography (EEG) (Ahn et al. 2019). Some biological responses, including heart rate, 

skin temperature, and brain waves, are frequently used to measure common subjective factors, 

such as stress, fatigue, and emotion. Table 1 summarizes six common subjective factors (mental 

and physical fatigue, mental and physical stress, heat stress, emotion, cognitive load, and 

situational awareness) that can be measured using sensors in construction productivity applications 

along with their associated physiological and/or biological sensor signal(s). The subjective factors 

and their associated sensors are used to design the proposed empirical framework for measuring 

construction labor productivity in the next section. 

EMPIRICAL FRAMEWORK FOR MEASURING LABOR PRODUCTIVITY USING A 

MULTI-SENSOR SYSTEM 

Design Science Methodology for Proposing a Sensor-based Framework. This study follows a 

design science research methodology approach, which is a scientific method for introducing a new 

artefact, such as a model or framework, that brings a new solution to a practical problem (Da Rocha 

et al. 2012). The artefact in this study is the sensor-based empirical framework for directly 

measuring subjective factors affecting construction labor productivity. Design science 

methodology was used to design, build, and evaluate the artefact including four components: 

constructs (i.e., concepts of the artefact), models (i.e., mechanisms of the artefact), methods (i.e., 

establishment of the artefact), and instantiations (i.e., implementation of the artefact) (Weber 

2018). The design science methodology was applied in designing this framework as follows. 

To design the proposed framework, a literature review was conducted to summarize and 

study the subjective factors that affect construction labor productivity. This step involved 

investigating the root causes of the subjective factors based on human responses in order to form 

the constructs in designing the artefact. The constructs in the design process included human 

physiological (e.g., emotions, fatigue, cognitive load) and biological (e.g., brainwaves, heart rate, 

skin temperature) responses that govern the subjective factors affecting labor productivity. To 

build the proposed framework, a series of lab experiments using multiple sensors were prepared 

for collecting the constructs and deriving the subjective factors that affect labor productivity. The 

constructs and their associations can provide understandings regarding human neural mechanisms, 

physiological responses, and biological responses that govern the subjective factors affecting labor 

productivity. Eventually, the subjective factors will be integrated into existing and new artificial 

intelligence (AI) (e.g., machine learning, optimization, fuzzy logic), simulation (of construction 

processes, agents, and systems), and statistical models that previously used indirect measures for 

such factors. To evaluate the proposed framework, the longer-term study will use surveys and 

perform interviews with an expert panel concentrating on applications of sensor technologies in 

construction. The evaluation plan will focus on applicability, scalability, and completeness of the 

proposed framework. The results are expected to advise construction practitioners on how to guide 

workers’ productivity and behaviors on real-world projects and predict their impact on 
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construction performance. The proposed sensor-based framework is described in detail in the 

following section. 

Table 1. Sensors used to measure subjective factors affecting labor productivity 

Subjective Factor Reference Physiological and Biological Signal(s) Sensor(s) 

Mental and 

physical fatigue  

Aryal et al. (2017) 
Skin temperature, electroencephalogram 

waves 
EDA and EEG 

Umer et al. (2020) 

Heart rate, heart rate variability, skin 

temperatures, respiration rate, perceived 

exertion monitoring, mental effort 

PPG and GSR 

Maman et al. (2017) 

Heart rate, accelerations and inclination 

angles, movement variability, movement 

durations and repetitions 

ECG/EKG and 

IMU 

Jebelli et al. (2018) 
Electrodermal, skin temperature, 

photoplethysmogram, brain waves 

EDA, PPG, and 

EEG 

Hwang et al. (2018) 
Photoplethysmogram, skin temperature, 

brain waves 

PPG, GSR, 

EEG 

Heat stress 

Yi and Chan (2017) Heart rate, skin temperature 
ECG/EKG, 

EDA 

Ojha et al. (2020) 
Heart rate, electrodermal activity, 

electrodermal response, skin temperature 
PPG, EDA 

Mental and 

physical stress 

Arpaia et al. (2020) 

Cortisol concentration in blood or saliva, 

galvanic skin response, heart rate, brain 

activity 

GSR, 

ECG/EKG 

Alberdi et al. (2016) 
Heart rate, blood pressure, respiration rate, 

galvanic skin response, electrocardiogram 

PPG, GSR, 

ECG/EKG 

Jung and Yoon (2017) 
Blood pressure, respiration rate, galvanic 

skin response 
PPG, GSR 

Lee et al. (2017) 
heart rate variability, galvanic skin response, 

electrocardiogram 

ECG/EKG, 

GSR 

Khowaja et al. (2020) Galvanic skin response, heart rate variability PPG, GSR 

Jebelli et al. (2019) Electroencephalogram  EEG 

Emotion 

Al Jassmi et al. (2019) 

Heart rate, galvanic skin response, 

electrocardiogram, skin temperature, 

respiration pattern 

ECG/EKG, 

GSR 

Liu et al. (2016) 
Electroencephalography, blood volume 

pressure, electromyogram 
EEG, EMG 

Cognitive load 

Chen et al. (2016) Electroencephalography  EEG 

Wang et al. (2017) Brain waves 
ECG/EKG, 

PPG 

Situational 

awareness 
Choi et al. (2019) 

Electrodermal activity, heart rate, skin 

temperature 
EDA, PPG 

Sensor-based Framework Development. The proposed empirical framework is designed to 

investigate human neurological mechanisms, physiological responses (e.g., emotions, fatigue, 

cognitive load), and biological responses (e.g., brainwaves, heart rate, skin temperature) that 

govern the subjective factors affecting construction labor productivity by using a multi-sensor 

system in a laboratory setting. The collected sensory signals are then translated into the subjective 

factors to use in new data-driven predictive and simulation models for construction labor 

productivity. The framework involves five steps: (1) baseline setting, (2) data collection, (3) data 

sampling, (4) data analysis, and (5) predictive and simulation modeling, as shown in Figure 1. 
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Feedback from the cross-validation step will provide any necessary adjustments to the first and 

second steps. 

 

Figure 1. Sensor-based empirical framework for measuring subjective factors affecting 

construction labor productivity 

First, baseline settings are established with (a) a series of baseline activities (e.g., standing, 

walking, lifting lightweight objects) and (b) a baseline for each sensor used in each baseline 

activity. This step prepares a baseline for comparison with any changes in a worker’s physiological 

and biological responses between at-rest or basic-level activity (i.e., light-intensity activities of 

daily life) and working conditions. Outcomes of this step include a set of sensor signal constructs 

for several baseline activities that is then used as a yardstick to compare with any changes that 

occur in the signals during working activities. For example, the level of physical fatigue of a 

worker at rest before installing drywall can be measured using ECG, EEG, and PPG sensor signals 

and used as a baseline to compare with the same kinds of measurements made when the worker is 

installing drywall. Six types of sensors commonly used in the construction labor productivity 

domain, including (1) ECG; (2) EMG; (3) EEG; (4) GSR; (5) PPG; and (6) eye trackers, will be 

used in a series of lab experiments in this study. This multisensory system can help establish 

baselines for various states of construction workers during work-related activities set up in 

subsequent lab experiments. Using multiple sensors enables the collected physiological and 

biological signal data to be triangulated and facilitates better and more comprehensive 

measurement of specific subjective factors (e.g., motivation, stress, fatigue, cognitive load, 

physical ability). 

Second, human physiological and biological response data in terms of sensor signals during 

certain construction activities will be collected via a series of experimental setups for comparing 

with the baseline established in the first step. These responses can be detected using single sensors 

and/or a multi-sensor system (i.e., a combination of multiple sensors that have interchangeable 

measurement features). Experimental setups mimicking real-world construction activities will be 

simulated in a lab environment, where data will be collected from the sensors connected to human 

subjects, consisting of researchers and actual construction workers. The setup of relative 

measurements will be incorporated along with randomized control experiments, which will be 

developed in order to discern any change when a new intervention is introduced. For example, a 

control experiment can be developed to measure changes in heart rate and blood pressure of a 

testing human subject when they are mimicking one activity and are interrupted by having to do 

another activity. The raw sensor signals are sampled and processed in the next step. 

Third, data sampling includes signal processing to filter noise and remove undesired effects 

(i.e., any variations in the recorded sensor signals that does not originate from the signal source of 
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interests) for all relevant physiological and biological sensor signals. Desired signals are processed 

with feature extraction in terms of time and frequency domains. The time domain includes a set of 

features, such as mean, median, and standard deviation, while the frequency domain includes a set 

of peak data in collected sensors’ signals. Then, feature selection is conducted to reduce the 

dimension of the signal data and derive the physiological and biological signals. The product of 

this step is a set of physiological and biological signals used for subsequent data analysis. 

Fourth, data analysis includes classifying and translating the physiological and biological 

signals (e.g., brainwaves, heart rate, skin temperature) into the subjective factors (e.g., fatigue, 

stress, cognitive load) affecting construction labor productivity. This translation utilizes AI-based 

classification techniques including support vector machines and clustering. For example, heart rate 

and blood pressure signals can be extracted to infer the subject’s levels of physical demand (Arpaia 

et al. 2020). Brainwaves, skin temperature, and heart rate signals can be used to infer the subject’s 

levels of fatigue (Aryal et al. 2017). The levels of mental stress and cognitive load can be studied 

by using brainwave and heart rate signals (Alberdi et al. 2016). Cross-validation techniques are 

used to demonstrate how well the collected physiological and biological signals are classified and 

translated as indications of subjective factors to be used in predictive and simulation models. 

Validation results provide feedback to inform any necessary adjustments to the experimental 

setups. Any negative classification results (i.e., signals that do not belong to the group representing 

the subjective factor) help with further modification of randomized control experiments, activities, 

and interventions set up to produce and record the physiological and biological signals. 

Finally, subjective factors derived from the classification step replace those produced by 

indirect measures (e.g., survey questionnaires and interviews) and add new subjective factors (e.g., 

improvisation) to existing predictive and simulation models in labor productivity applications. 

Outcomes and Discussion of the Sensor-based Framework. The use of a combination of 

kinematic and physiological sensors in advanced construction labs around the world is still novel 

and limited in the number of available sensors for specific research purposes. The results of the 

proposed framework can benefit a wide range of AI (e.g., machine learning, optimization, fuzzy 

logic), simulation (of construction processes, agents, and systems), and statistical (e.g., analysis of 

variance [ANOVA] and regression) models in the productivity literature, as shown in Table 2. 

Subjective factors that are directly measured using sensors can be used to replace those that 

are measured using indirect means (e.g., surveys, observations) or secondary data (e.g., online 

libraries, internet searches, databases). In addition, new subjective factors, such as improvisation, 

feeling of safety, and proactive work behaviors, can be added to extend the knowledge base of 

factors currently considered in existing models and to complement other modeling efforts in using 

fuzzy machine learning and hybrid techniques to predict labor productivity. For instance, current 

literature shows no evidence of directly measuring motivation of workers, which is one of the most 

difficult factors to measure, yet it is one of the most significant factors affecting construction 

productivity (Gerami Seresht and Fayek 2018). Motivation is a function of numerous variables 

that are difficult to directly measure and highly variable in individuals (Raoufi and Fayek 2018). 

The motivation of workers can be derived using a combination of some subjective factors/variables 

measured using sensors (e.g., factors that either represent or affect motivation). The proposed 

sensor-based framework utilizes a multi-sensor system, which will enable the collected 

physiological and biological signal data to be triangulated and facilitate better and more 

comprehensive measurement of challenging subjective factors like motivation. For example, 

usingthe framework proposed here, the subjectively measured crew motivation factors (e.g., 

efficacy, commitment/engagement, identification, cohesion) in the fuzzy system dynamics model 
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for labor productivity presented by Gerami Seresht and Fayek (2018) will be measured directly 

using sensors. New predictive and simulation models will be developed using directly measured 

subjective factors as considered in future work. 

Table 2. Selected predictive and simulation models for construction labor productivity 

Author(s)/year Model Measurement method Existing subjective factors 

Artificial intelligence techniques (i.e., machine learning, optimization, and fuzzy logic) 

Jebelli et al. 

(2019) 

Gaussian kernel 

support vector 

Machine 

Physiological sensory data Workers’ physical-demand levels 

Gerami Seresht 

and Fayek 

(2018) 

Fuzzy system 

dynamics 
Survey questionnaires 

Crew motivation, site restrictions, soil 

moisture, material quality, material 

preinstallation requirements 

Jebelli et al. 

(2018) 

Online multi-task 

learning algorithms 
Physiological sensory data Workers’ stress patterns 

Tsehayae and 

Fayek (2016) 

Context-specific 

fuzzy inference 

system 

Survey questionnaires 

Craftsperson motivation, team spirit of 

crew, treatment of foremen by 

superintendent and project manager, 

craftsperson trust in foreman, level of 

interruption and disruption 

Simulations of Construction Processes, Agents, and Systems 

Kedir et al. 

(2020) 

Fuzzy agent-based 

multicriteria 

decision-making 

model 

Field data (i.e., interview 

surveys, observations, 

project documents, 

external databases) 

Susceptibility, zealot percentage, 

noninteractive motivation variability, 

initial motivation states of crews. 

Raoufi and 

Fayek, (2020) 

Fuzzy Monte Carlo 

agent-based 

simulation 

Field data (i.e., interviews, 

observations, project 

documents, external 

databases) 

Crew motivational factors, situational/ 

contextual factors, crew performance 

metrics 

Raoufi and 

Fayek (2018) 

Fuzzy agent-based 

simulation 
Survey questionnaires 

Motivation, visibility of outcome of task 

design, communication, working 

relationship, building trust 

Gerami Seresht 

and Fayek 

(2018) 

Fuzzy system 

dynamics 
Survey questionnaires 

Crew motivation, site restrictions, soil 

moisture, material quality, material 

preinstallation requirements 

Statistical Models 

Choi et al. 

(2019) 

Hierarchical linear 

modeling 
Physiological sensory data 

Workers’ perceived risk, electrodermal 

response 

Sun et al. 

(2020) 

Spearman 

correlation 
Movement sensory data 

Workers’ safety behavior (i.e., 

individuals’ gait adaptations, personality 

traits) 

Ryu et al. 

(2020) 
ANOVA 

Accelerometer, gyroscope, 

magnetometer sensory data 

Body loads, work experience, work 

methods, productivity of masons 

Hamzeh et al. 

(2018) 

ANOVA and 

Kruskal–Wallis H 

test 

Survey data 
Antecedents, behaviors, consequences of 

improvisation 
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CONCLUSIONS AND FUTURE WORK 

This study proposes an empirical framework using a multi-sensor system to bridge the existing 

research gaps regarding how to simultaneously measure multiple subjective factors and integrate 

these data into existing or new models that previously used indirect measures for such factors. The 

proposed framework is designed to collect and translate human physiological and biological 

responses into subjective factors that affect labor productivity via a series of lab experiments using 

multiple sensors. The directly measured subjective factors will be integrated into existing and new 

predictive and simulation models to complement the efforts in measuring construction labor 

productivity. This study is in line with previous research in construction productivity applications 

in recognizing the effectiveness of using sensors in collecting and measuring subjective factors 

that affect labor productivity. The findings of this study are expected to help project managers 

better control construction planning practices by directly measuring the subjective factors (e.g., 

motivation, fatigue, stress) that affect construction productivity. 

The study makes several contributions. First, the proposed sensor-based empirical 

framework improves researchers’ ability to more objectively, effectively, and accurately measure 

subjective factors (e.g., stress, motivation, fatigue) that have previously only been measured 

subjectively or using indirect measures. The result is achieved by utilizing various sources of 

evidence from a multi-sensor system to triangulate sensing signal data and directly derive these 

factors. Accordingly, the outcomes of this study provide a holistic approach that will augment 

existing modeling efforts, including AI, simulation, and statistical models, and other sensor-based 

research for construction labor productivity applications around the world. Second, the proposed 

sensor-based framework assists construction practitioners in identifying several methods to 

improve their productivity, advise planning practices, and better workplaces by deepening 

understanding of how these factors impact workers on a neurological level. For instance, 

construction activities with a high potential for stress and fatigue can be identified and adjusted, 

resulting in higher productivity as well as increased well-being of workers. 

Future work goals are to develop a longer-term study, including new data-driven predictive 

and simulation models for construction labor productivity applications that incorporate subjective 

factors measured using the proposed framework for driving strategic management decision-

making. The proposed framework will be validated with empirical data, consisting of 

physiological and biological signals collected following a series of developed lab experiments. 

Several AI (e.g., machine learning, optimization, fuzzy logic, hybrid fuzzy techniques), simulation, 

and statistical modeling approaches will be considered. For example, support vector machines can 

derive subjective factors from raw sensor signals by identifying the boundary line that separates 

two or more groupings of signals. Fuzzy cluster analysis and pattern recognition can be used to 

partition sensor signals into meaningful clusters and then develop an inference system to recognize 

the patterns of the sensor signals and ultimately derive relevant subjective factors. Properly 

exploiting outcomes from predictive modeling and dynamic simulation approaches using a multi-

sensor system will help construction practitioners develop more adequate productivity 

improvement strategies and inform strategic management decision making for construction 

activities. 
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