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Abstract

This thesis presents a collection of studies on the topic of survivable transparent optical

networks. As backbone networks increase in capacity, the issue of their survivability grows

correspondingly in importance. The transparent optical network offers many advantages

as the optical backbone network of the future, but also faces several challenges with re-

gards to network protection. The fundamental question addressed by this thesis is therefore

“How can we achieve high availability and failure resiliency in transparent optical transport

networks?” We cover the design, characterization, and comparison of several protection ar-

chitectures, many of them novel, that share the property of pre-cross-connection, a property

that is important for protection of transparent networks. The architectures studied include

span p-trees, PXTs, path p-trees, p-cycles, FIPP p-cycles, and UPSR-like p-cycles.

We first present detailed studies of the PXT, span p-tree, and path p-tree architectures.

This includes the development of efficient design algorithms and structural analysis of effi-

cient designs. The results indicate a clear hierarchy of efficiency, with cycles being the most

efficient, followed by trails, and then trees. However, we discover that architectures with

lower average efficiency can be used to complement more efficient structures in rare cases.

We also present a new design method for PXTs that is as capacity-efficient as the prior

established method, but produces designs with greatly improved structural characteristics.

We then move on to address PXT protection under a collection of real-world design

constraints. The results show that PXTs strike a balance between efficiency and flexibility

under these constraints. A further study on the problem of failure localization in transparent

p-cycle networks demonstrates the possibility of integrating low cost failure localization

capabilities into p-cycle network designs.

Finally, we propose UPSR-like p-cycles as a way to combine the simplicity and speed

of dedicated protection with the flexibility of mesh-based approaches. The results from our



design experiments show that this architecture is able to take advantage of mesh topologies

in a way that traditional ring-based approaches cannot. We also demonstrate methods by

which UPSR-like p-cycle networks can deliver superior dual failure restorability to a select

class of high priority services.
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Glossary

λ Wavelength

3R Regeneration involving re-timing, re-transmission, and pulse re-shaping.

ADM Add-Drop Multiplexer

AMPL A Mathematical Programming Language

APS Automatic Protection Switching

BLSR Bidirectional Line Switched Ring

CWDM Coarse Wavelength Division Multiplexing

DCF Dispersion-Compensating Fibre

DCS Digital Cross-Connect System

DGE Dynamic Gain Equalizer

DRS Disjoint Route Set

DS-N Digital Signal-Level N

DSP Demand-wise Shared Protection

DWDM Dense Wavelength Division Multiplexing

EXC Electronic Cross-Connect

FIPP Failure-Independent Path-Protecting (p-Cycles)

Greedy Algorithm An algorithm that solves an optimization problem by making a se-
ries of small, locally optimal choices instead of searching directly
for the global optimum.

Green Fields Design assumption under which the network is built “from scratch”,
with no initial infrastructure or base level of served traffic.

ILP Integer Linear Programming

JCP Joint Capacity Placement

Lightpath A point-to-point optical circuit with fixed bandwidth and guaranteed
transmission characteristics

LP Linear Programming



Metaheuristic A heuristic method for solving a general class of problems express-
ible in a certain form (defined by the particular metaheuristic in
question).

MIP Mixed Integer Programming

MIPGAP Mixed Integer Programming Gap. A parameter to the MIP solver
that determines how close to optimal the current best solution must
be before the solver terminates, e.g., a mipgap of 0.005 (or 0.5%)
means that the solver must guarantee that the solution at the time of
termination is at most 0.5% from optimality.

MPLS Multiprotocol Label Switching

MPλS Multiprotocol Wavelength Switching

MTD Maximum Transmission Distance

Network Family A set of network topologies consisting of a master network and
the set of networks obtained by removing one span at a time from
the master while maintaining the property of bi-connection until no
more spans can be removed in this way.

Network Topology A graph, usually undirected, that represents the sites served by the
network and the logical connections between them.

NP Nondeterministic Polynomial (Time)

OADM Optical Add-Drop Multiplexer

OBS Optical Burst Switching

OC-N Optical Carrier Signal - Level N

OEO Optical-Electronic-Optical

Offline Algorithm An algorithm pertaining to the design or operation of a network that
can be executed off-site, independent from the network nodes, usu-
ally to determine some kind of static preplan that is later acted upon
by the network during its operation.

Online Algorithm An algorithm that is executed on-site at a network node(s) to dy-
namically respond to events in the network while it is operating.

OOO All optical

Opaque Describes a channel or process in an optical network that operates
on the underlying electronic payload of the optical carrier signal
(involving OEO conversion) in a manner that requires the payload
to conform to certain specifications. A network in which all paths
are generally opaque is called an opaque network.

OPPR Optical Path Protection Ring

OPS Optical Packet Switching

OSPR Optical Shared Protection Ring



OR Operations Research

OTN Optical Transport Network

OXC Optical Cross-Connect

PDH Plesiochronous Digital Hierarchy

Pre-cross-connected (also Preconnected) Refers to protection paths that are established as
an operational lightpath in advance of failure (as opposed to paths
that are only preplanned, which are known in advance of failure
but must be established by one or more cross-connect actions at
intermediate OXCs at time of failure)

PXT Pre-Cross-Connected Trail

QoP Quality of Protection

R1 Restorability to single failure (span failures usually assumed)

R2 Restorability to dual failures (span failures usually assumed)

SBPP Shared Backup Path Protection

SCP Spare Capacity Placement

SDH Synchronous Digital Hierarchy

SONET Synchronous Optical Network

STS-N Synchronous Transport Signal - Level N

TDM Time Division Multiplexing

Translucent Describes a network containing transparent “domains” connected
by opaque channels/processes.

Transparent Describes a channel or process in an optical network that operates
purely on the optical signal and is therefore agnostic as to the format
of the electronic payload used to modulate the optical carrier. A
network in which all paths are transparent is called a transparent
network.

UPSR Unidirectional Path Switched Ring

Waveband In optical networks, a group of wavelengths that is switched, added,
or dropped together as a unit. The wavebands in the network are
defined entirely by the capabilities of the switching equipment, i.e.,
there is no fundamental physical property that groups a certain set
of wavelengths into a waveband.

WDM Wavelength Division Multiplexing

WSS Wavelength Selective Switch



Chapter 1

Introduction

1.1 Motivation and Objectives

The modern world is highly dependent upon telecommunications networks and the ser-

vices they provide. The integrity of these services relies directly upon the reliability of

the underlying transport (backbone) network. The need for a reliable backbone network is

therefore every bit as pressing as it is for any other essential infrastructure of our society,

such as water, power, or roads. Modern transport networks invariably use optical fibre as

the physical medium, which is by itself highly vulnerable to physical failure (i.e., cable

breaks). In fact, the most common cause of network failures is inadvertent cable cuts due

to dig-ups [Craw93, Flan90]. And by no means is a cable cut an uncommon event: FCC

statistics from 2002 state that metro networks experience 13 cuts per year for every 1000

miles of fibre, and that long haul networks experience 3 cuts per year per 1000 miles of

fibre [VePo02]. For long haul networks containing upwards of 30,000 miles of fibre, this

corresponds to one cable cut somewhere in the network every four days on average. The

importance of network survivability was recently underlined in a new way by the charac-

terization of simple cable cuts as “the ultimate form of denial-of-service attack” [Poul06].

There are many ways to approach the problem of increasing network availability. We

could protect the physical fibre itself, but this is a costly and inflexible solution and can only

be taken so far. Cables will fail; ensuring high availability means recovering intelligently

from failures. We could protect the higher service layers of the network directly via re-

dundancy measures in both hardware and software protocols, but one physical layer failure

may multiply into hundreds or thousands of service-level connection failures, flooding the
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network with retry attempts which can cause further congestion. The reconfigurability and

flexibility of the transport layer, combined with the fact that it sits below and therefore sup-

ports most other network layers, makes it ideal for implementing restoration techniques.

The most popular restorability techniques use switching in the transport layer to reroute

damaged paths at failure time, taking advantage of the mesh-like nature of transport net-

works to utilize alternate paths for the affected flow.

While modern transport networks use optical signals for the point-to-point links, these

signals are frequently converted to the electronic domain in order to extract dropped traffic,

add new signals, or to perform regeneration, signal monitoring, or other tasks. However,

it is highly attractive to consider a network in which signals remain all-optical from origin

to destination: a so-called transparent optical network. Such a network is agnostic as

to the signal format and coding, making it ideal for transporting any number of different

signal types from different services simultaneously. However, restoration in transparent

networks faces unique challenges. Optical paths in a transparent network must be carefully

preengineered, which cannot be achieved if certain paths need to be reconfigured at failure

time. We can use dedicated backup paths if we wish to be able to control their optical

properties in advance of failures, but this is generally very inefficient in terms of cost.

The aim of this thesis, then, is to investigate methods for achieving cost-efficient restora-

tion in transparent optical networks. We cover many different novel restoration schemes

that are appropriate for transparent networks. The focus is on the analysis of capacity

efficiency, including comparative studies, through which we gain new knowledge about

which architectures are the best suited to certain situations. We also concern ourselves

with the structural properties of these architectures, such as complexity and manageability.

A significant portion of the thesis is also dedicated to a study on the impact of multiple

real-world considerations on the design of a restorable transparent network using various

of these architectures.

1.2 Contributions

In brief, the major contributions of this thesis can be summarized as follows:

• Analysis and comparison of novel shared pre-cross-connected protection structures
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that establishes a hierarchy of efficiency in the structure space.

• Treatment of real-world design issues in pre-cross-connected architectures.

• Introduction and analysis of a novel dedicated pre-cross-connected protection archi-

tecture (UPSR-like p-cycles).

1.3 Thesis Organization

Chapter 2 covers fundamental background concepts which are essential to understanding

the work presented in this thesis. We cover transport network and restorability concepts,

approaches to network design, and present a literature survey on network restorability tech-

niques, focusing on those that are similar or otherwise relevant to the architectures studied

in this thesis.

Chapters 3 through 5 provide a thorough analysis of the different structural variations

available for preconnected restoration architectures. Chapter 3 begins with span-protecting

p-trees. The architecture concept is first developed and explained, in terms of the restora-

tion method and switching actions that would be performed at failure time. We then investi-

gate the fundamental efficiency of the span p-tree architecture, as deduced from controlled

design experiments. We go on to analyze the structural properties of span p-trees, to clar-

ify why they are or are not efficient in certain situations. Chapters 4 and 5 repeat this

same basic approach for Pre-Cross-Connected Trails (PXTs) and path-protecting p-trees,

respectively. We also compare multiple architectures in these Chapters, including the ar-

chitectures studied in this thesis and other well-known schemes (such as p-cycles [GrSt98]

and FIPP p-cycles [KoGr05]). Chapter 4 is unique in that it addresses the characteristics

of designs produced using two different methods: first the preexisting PXT design method

from the literature and then our own design approach. No such preexisting design methods

exist for the p-tree architectures.

Chapter 6 changes focus to a more practical treatment of the issues with designing

restorable transparent optical networks. The Chapter follows the progression of the de-

sign of one specific network, using Pre-Cross-Connected Trails (and to a lesser extent span

and path p-trees), under an increasing number of design constraints imposed by real-world
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considerations.1 We present the development of our design methods, as well a comparison

with other architectures in terms of design cost, flexibility, availability, etc. We also present

results for other architectures that were produced by other researchers for comparative pur-

poses. Finally, at the end of this Chapter we also present a small but relevant study into the

problem of localizing failures in transparent p-cycle networks.

Finally, Chapter 7 investigates UPSR-like p-cycles, a new architecture that is concep-

tually different than those studied earlier in the thesis, due to the way in which it takes

advantage of the mesh topology to perform restoration. UPSR-like p-cycles use dedicated

protection for fast switching, but allow more topological freedom for the working paths

than prior ring-based schemes. We begin with an investigation into the best design method

for a single UPSR-like p-cycle, and then move on to the full network design case, also pro-

viding an analysis of characteristic efficiency and a comparison to other similar schemes.

Finally, we present ways in which UPSR-like p-cycles can be used to implement differen-

tiated QoP classes based on first dual failure restorability levels, and then protection speed

classes.

Chapter 8 gives a concluding discussion, summarizing the contributions of the thesis.

1This work was performed as part of a joint research project with a team from Nokia Siemens Networks,
and was supported by their funding.

4



Chapter 2

Background

The following Chapter outlines fundamental concepts that will be used throughout the rest

of the thesis. We begin with a brief background on transport networking. Next, we give an

overview of some terms and language that are frequently used in network theory. We then

cover the idea of network restorability and some of the classic approaches that have been

studied. Finally, we go over the main techniques for network design used in this thesis,

focusing mainly on Integer Linear Programming (ILP).

2.1 Transport Networks

2.1.1 Transport Network Concept

From a user’s point of view, different types of network services (e.g., telephone service, the

Internet, bank machines, etc.) operate independently of one another. For all he knows, there

is a separate national telephone network, national data network, national banking network,

etc. While this is true in a logical and functional sense, the real view of the underlying

network infrastructure is quite a bit more complicated. They may be separated at the lo-

cal level, but for long distance transport they are all supported by the same high capacity

transport network (also called a backbone network). The fundamental concept is that traf-

fic from multiple different services is packaged together into high rate transport containers

that are then routed over a common high-bandwidth infrastructure. The transport network

takes advantage of the economies of scale associated with these high rate containers, as

well as the statistical stability of large flows, to achieve efficient mass transport of the data

produced by a wide variety of services.
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Modern transport networks almost exclusively use optical fibre as the transmission

medium, so we will restrict ourselves here to discussion of optical transport networks. The

current transport networking paradigm is to use reconfigurable optical switching equipment

to establish optical circuits between the sites where the optical signals are assembled, disas-

sembled, and switched. This optical switching equipment has a degree of reconfigurability

to adapt to changes in or growth of the demand placed on the network, but over the short

term optical circuits are relatively fixed. Recently, there have also been many promising

developments in the areas of Optical Packet Switching (OPS) and Optical Burst Switching

(OBS), technologies that use rapid setup and teardown of optical circuits to implement a

packetized mode of data transfer in optical networks. This represents a move towards the

simplified network view of “IP over optics” (with all voice, data, etc. presumably over

IP). However, regardless of whether this truly does represent the future of the transport

network, circuit-based transport will always have a place, due to the economy of scale

associated with the large-scale accumulation of flows.

We will now provide a brief overview of the two most common optical transport net-

working technologies to facilitate understanding of and motivate the work done in this

thesis.

2.1.2 SONET

Conceived in the late 1980s, the Synchronous Optical Network (SONET) standard [BlWa02,

ToSc02] was developed mainly as a way to enforce standardization of optical signal for-

mats such that network equipment would no longer be proprietary to each operator. In this

way, SONET became a widespread standard for Time Division Multiplexed (TDM) trans-

port networks. Closely related to SONET is the Synchronous Digital Hierarchy (SDH).

Both are slight variations on the same concept, with SONET having the highest penetration

in the United States and Canada and SDH in the rest of the world. SONET/SDH define a

hierarchy of digital signal “packages” that may be multiplexed together via TDM and sent

over high capacity optical connections. Table 2.1 (adapted from Chapter 1 of [Grov03])

lists the levels of the SONET signal hierarchy. The capacity of a SONET network is ex-

pressed in terms of integer quantities of the signals in this Table. Lower rate signals can be

multiplexed together to form higher rate signals, e.g., 3 STS-1 signals multiplexed into a
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SONET Signal Level Optical Signal Data Rate (Mb/s)
STS-1 OC-1 51.84
STS-3 OC-3 155.25
STS-12 OC-12 622.08
STS-24 OC-24 1244.16
STS-48 OC-48 2488.32
STS-192 OC-192 9953.28

Table 2.1: SONET Signal Hierarchy

STS-3. The SONET level signals are then modulated onto optical carriers for transmission

by optical SONET equipment. The equivalent rate optical carrier signals for each SONET

signal level are also listed in Table 2.1.

Even though a SONET network is a type of optical network, the concepts discussed in

this thesis are not directly applicable to SONET, as the SONET hierarchy rigidly defines

the format of the digital signal, so a SONET network is by definition not a transparent

optical network. This brief description of SONET is given only to provide some historical

background for the concept of Wavelength Division Multiplexing (WDM).

2.1.3 WDM

With increasing bandwidth requirements comes the need for higher rate transport signals.

Under SONET this means the need to transmit higher and higher data rates on a single

wavelength. However, as data rates increase we face challenges with processing this high

volume of data in the electronic domain. The alternative is to transmit several optical carri-

ers in parallel over the same fibre, which is the foundation of the WDM concept [Kart00].

While a SONET network manages digital signals by multiplexing in the time domain

of a single optical carrier, WDM networks, as the name suggests, multiplex signals on

different wavelengths in the same optical fibre. Therefore the fundamental unit of capacity

in a basic WDM network model is an entire wavelength. There are two types of WDM in

current use: coarse WDM (CWDM) and dense WDM (DWDM) [Kart00]. In CWDM only

two to four lasers operate simultaneously in the low-loss windows of the optical fibre, while

in DWDM the wavelengths are more numerous and packed more tightly. Frequencies,

power levels, etc., must be much more exactly controlled in DWDM systems as a result.

With the potential to (theoretically) transmit over a thousand wavelengths on a single
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fibre, we can see the huge potential transmission capacity offered by DWDM. However,

DWDM networks come with their own challenges. It is very difficult to convert the huge

quantities of data involved to the electronic domain and process it there, so we require new

optical equipment to perform transport layer functions and keep transport signals in the

optical layer as much as possible. However, this means that the packaged signals are much

more difficult to access because optical technology is currently much less mature than

electronic technology. This also means that other transport functions are more difficult,

because optical operations tend to be more difficult than electronic ones (e.g., wavelength

conversion vs. timeslot management). When we speak of transparent optical transport

networks in the remainder of this thesis, we are generally referring to transparent DWDM

networks.

2.2 Network Theory

This Section outlines some of the major terms and concepts used to discuss the theory of

abstract networks.

2.2.1 Network Topology

We represent the topology of a transport network by its network topology graph (or simply

network graph or topology) [Bhan99]. Terms related to the network topology graph are

illustrated in Figure 2.1. This graph consists of nodes and spans (equivalent to vertices and

edges in graph theory). A single span may be made up of a number of links. While the

spans represent the connectivity of the network as established by the physical layer (cables

and ducts), links represent the indivisible units of transmission capacity in the network.

Taking an analogy from a different type of traffic engineering: if we think of the network

spans as roads then the links are the individual lanes in each road. A link is therefore an

abstract concept that will represent different transport containers in different networks. For

example, the links in a traditional SONET network may represent the different timeslots

available for STS-1 TDM signals, while links in a WDM optical network would represent

entire wavelengths. When considering network planning and restoration, individual links

are assigned to be either working or spare links. Working links carry network traffic during
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Figure 2.1: A network topology graph and some standard terms

normal network operation, while spare links are only used when they are required to carry

rerouted traffic in response to the network entering a failed state.

The nodes in a network topology are an abstract representation of the sites connected

by the network. In a transport network these are building sites containing the equipment to

switch traffic in the network, and also to groom and add/drop traffic from the smaller metro

area or local area networks that are attached to the backbone. Therefore it is important to

note that the topology of the transport network alone cannot generally be used to derive the

entire end-to-end path from user to user in the network (although each user can be thought

to be residing somewhere within one of the nodes in the network).

2.2.2 Demands and Routing

The requirements on the network to carry traffic between nodes are called demands or de-

mand pairs [Wu92]. In the transport network context, demand represents traffic aggregated

from the network edge and packaged into higher granularity transport containers. Therefore

demand magnitudes (volume) are usually given as integer values. A node in the network

represents one of the edge nodes if it has a nonzero demand between itself and at least

one other node, called as such because it sits on the edge of the transport network serving

demand from one or more client networks. A node that exchanges zero demand with other

nodes therefore represents a core node of the network that is used only for the switching

of transiting demands. When the set of demand volumes between each pair of nodes is

written out as a table, it forms the demand matrix. In general we assume that demands in

the network are symmetrical (and therefore the demand matrix is also symmetrical), unless

stated otherwise.
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A demand between two nodes is served by being assigned a route through the topol-

ogy from the origin to the destination. A route describes a concatenation of one or more

network spans over which the demand is transported. The specific concatenation of links

that the traffic travels over is called a path. A route is therefore only a topological concept,

while a path contains also the specifics of which specific capacity “containers” (wave-

lengths/timeslots/etc.) will be used to carry the traffic. To extend our road analogy, a route

describes the sequence of roads needed to travel from point A to point B, whereas a path

also includes the details of every lane change taken over the entire trip. Routes and paths

created for the service of demand pairs are referred to as working routes and working paths

respectively. In contrast, routes and paths that are used to carry rerouted traffic over spare

capacity due to a network failure are called protection or backup routes/paths.

In the optical transport network context, the network establishes these routes (optical

circuits) between nodes to provide client networks with end-to-end connection services.

Therefore the topology seen by client networks (e.g., the IP network) is not generally the

same topology as the one seen by the transport network. The routes in the transport network

effectively form the virtual topology used by the client networks. So while two IP routers

may see a direct connection between each other in the IP layer, this connection may be

equivalent to an optical circuit consisting of many hops in the transport layer. Therefore

the degree of connectivity is generally greater in higher network layers because the number

of logical circuits established at a node will generally be much larger than the number of

direct connections offered to nodes that are directly adjacent in the lower-level topology

graph.

2.2.3 Restorable Networks

In general terms, a restorable network is any network that contains some degree of protec-

tion from failures of major topology elements (nodes and spans). Of course, any network

will contain a certain amount of redundant backup equipment to improve availability, but

we usually reserve the term “restorable” for networks that use network intelligence to-

gether with topological diversity and routing redundancy to restore the network to a fully

functioning state given a certain class of failure scenario (e.g., fibre cut or node failure).

Although we may, in practice, wish to design different networks with varying degrees
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of restorability, in this thesis we will focus on networks that are able to completely recover

from the failure of any single span. This is referred to as single span failure restorability,

or simply span R1 [Clou04]. We focus on span failures rather than node failures because

of the assumption that span failures are much more likely. Spans represent the physical

connective media of the network, i.e., optical fibre, which is fundamentally more vulnerable

than the nodes in the network, which represent switching hardware that is kept in secure,

disaster-protected buildings and is much more easily maintained, monitored, and guarded

in comparison. We focus on single failures because the contribution of single failures to

network unavailability is orders of magnitude greater than other failure scenarios that are

much less likely (R2, R3 restorability, etc.) Therefore full single span failure restorability

can be seen as the first order approximation of true “full restorability”. Under full span R1,

second order effects (dual span failures or node failures, if considered to be significant) are

what define the availability of the network [ClGr02].

To enable restorability we use spare capacity to reroute demands when failure events

occur. There are real-world costs associated with the installation, monitoring, and main-

tenance of this capacity, so we prefer that the amount of spare capacity be kept low. A

common efficiency metric for restorable network designs is spare capacity redundancy (or

simply redundancy), defined as the ratio of the cost of the installed spare capacity S to the

cost of the installed working capacity W .

Redundancy =
S
W

(2.1)

The redundancy or the raw spare capacity outlay value S are often equated with the

concept of network “cost”, and in our experiments we usually accordingly attempt to solve

for designs with low or (where possible) minimal redundancy. However, it should be rec-

ognized that the goal here is not the minimal cost result itself; after all, at this level of ab-

straction we cannot even be sure of the correspondence between the theoretical redundancy

and the cost of a real network. Rather, we use this objective to inform our design methods

such that we might generate new knowledge about the best way to design restorable net-

works: what works and what doesn’t, what strategies are most effective, etc. “Low cost”

is a guiding principle in our research and not an end in itself. Therefore it is important

not to become caught up on incremental differences in design costs. It is instead more im-
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portant to ask “what does this result tell us about the scheme(s) in question?” This is the

philosophy used when interpreting the results of the experiments throughout this thesis.

2.2.4 Pre-Cross-Connection and Transparent Networks

The focus of this thesis is the application of restorable network techniques to the specific

case of transparent optical transport networks. In this Section we explain the concept of

cross-connection, pre-cross-connected protection, and how this concept is relevant to the

problem of restoration in transparent networks.

2.2.4.1 Cross-Connection

We have already explained how the working paths in a network consist of a concatenation

of working links. Likewise, paths that are damaged due to failures are replaced, in whole or

in part, by protection paths consisting of a concatenation of spare links. The concatenation

process that is used to concatenate the links to form paths in transport networks is called

cross-connection. The name of the device used to cross-connect the network depends on

the type of network being considered. For example, a SONET (or SDH) network uses

devices called Digital Cross-Connect Systems (DCS), whereas the counterpart for a WDM

or DWDM network would be called an Optical Cross-Connect (OXC) [ToSc02]. These

devices control the forwarding of the basic tributary signals of the network (i.e., STS-1 in

SONET, or individual wavelengths in DWDM networks) by mapping connections between

the input and output ports on the device. Block diagrams of a SONET DCS and an OXC are

given in Figure 2.2 (adapted with permission from [Grov03]). Note that adding/dropping of

tributary signals, although notionally a different concept, is in practice often implemented

on the same devices that handle cross-connection as a generalized node will both switch

transiting traffic as well as handle add/drop from the client network. The diagrams in Figure

2.2 (a) and (b) both contain provisions for add/drop functionality (STS-1/DS3 rate access

on the SONET DCS and local access of electronic domain signals for the OXC).

2.2.4.2 Pre-Cross-Connection

To enable restoration in transport networks, the idea is to use the reconfigurability provided

by the DCS or OXC hardware to perform switching at failure time to establish new paths
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(a) SONET DCS

(b) OXC (no wavelength conversion or regeneration)

Figure 2.2: Functional block diagrams of a SONET DCS and an OXC
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Figure 2.3: How capacity sharing of backup paths can require cross-connect formation at
time of failure

that can be used to avoid the failure and prevent a service outage. In the general case, we

might imagine a complete reconfiguration of the network at every node in order to optimally

reorganize the network for the most efficient use of spare capacity. In reality, however, this

is not desirable due to a number of practical considerations.

Forming cross-connections in protection paths at failure time is a fundamental require-

ment of many protection architectures (though none take it to such an extreme as in our

“complete reconfiguration” example). Take as an example a situation that occurs in Shared

Backup Path Protection (SBPP), shown in Figure 2.3. The solid lines represent working

paths and the dashed lines are single units of spare capacity. For now we will not concern

ourselves with the details of this architecture; it will be discussed in more detail later. It is

enough to know that, in this situation, path AB can be protected by path AXYB through

the spare links. Likewise, CD may be protected by CXYD. However, note that depending

on whether AB or CD fails, different links become concatenated with link XY to form the

protection path. Therefore, even though the protection paths are known ahead of time, the

actual cross-connects required to form these paths cannot be preestablished at XY in such

a way that they handle both failure scenarios; they must be established at failure time.

The property of pre-cross-connected (or preconnected) protection was originally pro-

posed as a measure to increase protection switching speed by minimizing the amount of

post-failure switching [GrMa94]; if we can configure the cross-connects in the network in

such a way as to minimize the average number of changes to this arrangement that must

be made over all failure scenarios, failure response speed will increase in the average case.

Even now, most authors refer to full pre-cross-connection of protection paths mostly as
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a means to decrease switching times [ChCh04, LiHa06, HeSo07]. However, we will see

that complete preconnection of protection capacity is also highly relevant when consider-

ing the problem of failure recovery in transparent networks. In a completely preconnected

restorable network, all cross-connections used in both failure and non-failure states must be

established in advance of failure time (except at the source and destination nodes, because

there will always have to be some switching here to move between the working and backup

path). This may seem to be a very restrictive constraint, but it is in fact a property of many

common protection architectures, even some that have been shown to be quite efficient.

2.2.4.3 Transparent Optical Networks

In terms of transparency, optical networks can be classified as fully transparent, translu-

cent, or opaque [Mukh06]. A fully transparent optical network is any network in which

a payload may be modulated onto a wavelength carrier and transported to its destination

regardless of the formatting of the payload in terms of framing, bit-rate, line-coding, etc.

In practice, today, this means that the optical circuit on which a payload is transported is

all-optical, i.e., it does not contain any optical to electronic conversions en route which

would place requirements on the digital format and bit rate of the payload. In current net-

works, this also implies that each payload must be carried along an all-optical path that

does not change wavelength (i.e., the same WDM wavelength from source to destination),

because a viable all-optical wavelength conversion technology is not yet available. This is

the type of network that we focus on in this thesis. This explains why we do not consider

SONET networks; they consist fundamentally of electronic SONET level signals that are

multiplexed/demultiplexed and processed in the electronic domain and then modulated onto

optical carriers for transmission by SONET optical equipment. In other words, a SONET

network fundamentally standardizes the electronic signal format and performs intermediate

electronic-domain signal processing for add/drop and multiplexing, and therefore cannot be

transparent.

The other extreme is an optically opaque network in which optical to electronic conver-

sion occurs on every path at every cross-connecting node. From a routing standpoint, such

a network provides the greatest flexibility. There is no concern about wavelength matching,

and cross-connections can be made at any time without concern about viability of the end-
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to-end path because electronic regeneration occurs at the input to every span. In effect, no

optical carrier signal travels more than one span in such a network. The term translucent

refers to optical networks with a mix of pure-optical and optoelectronic cross-connection

functions. A typical translucent architecture involves a number of fully transparent domains

that interconnected via o-e-o cross-connecting hubs that provide regeneration, wavelength

conversion and signal cross-connection functions. The network is transparent to optical

paths that are contained within a single domain, but paths that cross domain boundaries

must again conform to the network’s signal formatting standards.

Although the simplicity of management and routing is greater in an opaque network, op-

tically transparent cross-connects reportedly cost very much less than o-e-o cross-connection

functions. Along the same lines, the complexity and power utilization of optical switching

equipment per bit is significantly lower than for corresponding electronic devices. Also,

transparency is functionally advantageous to avoid the necessity of electronically adapt-

ing the data to match network-specific transmission payload protocols and bit rates. For

these reasons there is considerable motivation to consider protection architectures specif-

ically suited to entirely transparent optical networks or within the transparent domains of

translucent networks.

From the point of view of survivability, protection paths are not as simply formed in

a transparent network as in an opaque network. Any all-optical multi-hop path must be

carefully engineered ahead of time to conform to restrictions on optical carrier power, dis-

persion, noise, attenuation, etc. Preconnecting the protection path prior to failure enables

preengineering and testing of the backup path prior to its use. This guarantees that the

backup will have sufficient optical path integrity and will be in a known-working condi-

tion when required for protection switching. Without this pre-failure guarantee, it is not

realistic to expect that a set of optical channels concatenated on the fly will instantly result

in a functional (e.g., BER < 10−12 say) end-to-end optical path, considering the numer-

ous impairments that must be simultaneously mastered in the engineering of this optical

path. Currently, engineering just single-hop lightwave channels in a dense WDM carrier

environment at 10 or 40 Gbps rates with multiple shared optical amplifiers in the path (let

alone end-to-end lightpaths of 5 or 6 hops) is a largely manual process that involves careful

alignment of individual components. Freeman [Free02] (Ch. 6 and 10) describes the nu-

16



merous impairments that must be compensated for in order to design a single point-to-point

optical fibre link operating at transport data rates of 10 or 40 Gbps. At the very least, power

level differences from switching optical carriers through multichannel optical amplifiers

creates disturbances that take time for adaptive power level schemes to compensate. So

any scheme that assumes on-the-fly changes in the configuration of the network’s optical

cross-connections at the time of failure will suffer from some uncertainty about the optical

path engineering of the backup path.

Because cross-connection of protection paths at failure time in a transparent network

is not just slow (as it would be in an opaque network), but nearly impossible, we see that

preconnection is practically a requirement of this type of network. This is the motivation

behind investigating preconnected network protection architectures in this thesis.

2.2.5 Established Methods for Protection and Restoration

Many different strategies for network restoration have been developed in order to face the

growing need for reliable transport networks. This Section contains an overview of some

of these approaches, proceeding roughly in the order of their discovery, with particular

attention paid to whether or not they are preconnected and their suitability for transparent

networks.

2.2.5.1 Automatic Protection Switching

The simplest form of protection, Automatic Protection Switching (APS) involves maintain-

ing dedicated, disjoint backup paths for each working path in the network [Bhan99]. In the

event of the failure of some network element, the end nodes of any affected working paths

detect the failure and switch their transmission onto the pre-determined backup path. This

method can be used to protect against node failures as well as span failures if the protection

paths are made node-disjoint from their corresponding backup paths (although obviously

demands with the failed node as the source or destination cannot be restored from within

the transport layer).

This approach certainly has the advantage of simplicity as the failure response requires

no knowledge about the nature of the failure or its location. The only intelligence required

is that nodes are able to detect failures in transmission and coordinate the switch onto the
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pre-defined backup path. Otherwise there is no communication between different sets of

node pairs and the possibility of spare capacity contention is nonexistent. The trade-off for

this simplicity is that this approach is very costly in terms of the amount of spare capacity

used. Because each working path requires its own dedicated backup path, the APS scheme

is generally at least 100% redundant.

Because backup paths are dedicated, it is also possible to transmit the signal payload

along both the working and backup paths simultaneously. This type of arrangement is

called 1+1 APS. Under this configuration, neither path can really be identified as primary

or secondary; the receiver simply selects continuously between the signal of higher quality.

This allows switching to be near-instantaneous, as the “backup” path is already active the

instant a failure occurs. The alternative is 1:1 APS, where the backup path is not active

until the failure occurs [Bhan99]. A related approach is 1:N protection, in which N working

channels share a single backup path. As long as the working paths are all disjoint from each

other, 100% restorability is assured in all single span failure scenarios.

APS is preconnected, and therefore suitable for transparent networks. In fact, this

scheme is common in modern optical networks even though it is capacity inefficient, due

to its simplicity.

2.2.5.2 Demand-Wise Shared Protection

Demand-Wise Shared Protection (DSP), while very similar to APS, was only proposed very

recently. It was introduced in [KoZy03, KoZy05] as a method to “combine the advantages

of both dedicated (APS) and shared (SBPP) protection” [KoZy05]. It is functionally sim-

ilar to M:N APS, in that working capacity is diversified across a set of M topologically

disjoint working routes that then are able to share N protection channels laid down on a

single protection route. This path is therefore dedicated to the protection of that particu-

lar set of working routes, but shared between them (hence “demand-wise shared”). DSP

requires a highly connected topology to achieve significant savings over APS because it be-

comes more efficient as it is able to diversify the working capacity over more disjoint paths

(increasing the number of paths that share protection). If it is impossible or inefficient to

discover more than 2 disjoint paths between the end nodes, DSP essentially reduces to 1:1

APS.
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2.2.5.3 Unidirectional Path-Switched Rings

Unidirectional Path-Switched Rings (UPSR) are an evolution of APS systems that attempt

to integrate the fast switching and simplicity of APS into a more structured approach to

protection [Grov03]. In a UPSR network, spare and working capacity is arranged in cycles,

called rings. A single ring consists of a cycle of working capacity coupled with a cycle of an

equal amount of spare capacity. The working capacity of the ring is used to route demands

between the nodes on the ring during normal network operation. In the event of a failure

on the ring, the cycle of spare capacity is used to reroute the demand around the failure.

UPSR rings can be used to protect entire paths end-to-end if both end nodes lie on the ring,

but paths can also traverse multiple rings (using “matched node” arrangements to prevent

single points of failure at the transition nodes), with each ring protecting its own segment

of the path.

Figure 2.4 shows the restoration action of a UPSR. Note that before failure, the bidirec-

tional traffic exchanged between A and B is split such that the two directions take routes

around opposite sides of the ring, both in a clockwise direction. In the event of a failure on

one of these paths, the traffic is switched onto the protection fibre in the counter-clockwise

direction such that the new route avoids the damaged section of the ring. The technical

term “UPSR” is, strictly speaking, specific to SONET and its standards for self-healing ring

topologies, but the concept illustrated in Figure 2.4 can be equally applied to a DWDM net-

work if we simply assume that each fibre transports a set of wavelengths from the DWDM

grid, as opposed to a single optical carrier modulated with a SONET signal. The WDM

equivalent of UPSR is the Optical Path Protection Ring (OPPR) [Maed98].

UPSR rings retain most of the benefits and drawbacks of APS systems. They are pre-

connected, and switching is still fast and simple, but the necessity of coupling the working

and protection rings means that rings are again 100% redundant at best.

2.2.5.4 Bidirectional Line-Switched Rings

Bidirectional Line-Switched Rings (BLSR) are a self-healing ring topology similar to UPSR,

except that they use a slightly different protection mechanism that allows the spare capacity

on the ring to be shared between failures [Grov03]. As the name suggests, BLSR rings are

line-switched (i.e., span-switched, using our terminology), meaning that rerouting is done

19



(a) UPSR before failure (b) UPSR after failure

Figure 2.4: Operation of a UPSR (taken with permission from [Douc04])

between the end-nodes of the failed span, not the entry and exit points of the failed path on

the ring as with UPSR.

Figure 2.5 contains a diagram of the operation of a BLSR. Unlike a UPSR, in a BLSR

the two opposing traffic directions are routed along the same side of the cycle. When a span

fails, the end-nodes of that span perform a loopback into the protection fibres, restoring the

failed path. Because a BLSR uses line switching, protection involves a certain degree of

backhaul, where the signal must travel to an end-node of the failed span before it reverses

direction to be transported along the protection fibres on the opposite side of the cycle.

BLSR, like UPSR, has fast switching and is also preconnected, although BLSR is able to

achieve smaller ring sizes and be more capacity-efficient due to the sharing of the protec-

tion fibres. The WDM equivalent of BLSR is the Optical Shared Protection Ring (OSPR)

[Maed98].

2.2.5.5 Shared Backup Path Protection

Shared Backup Path Protection (SBPP) is one of a set of techniques known as mesh-based

techniques, called so because they take advantage of the highly interconnected, mesh-like

nature that most real networks exhibit to achieve efficient restoration, instead of forcing

working and protection routing into artificial structures like rings. SBPP is presented
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(a) BLSR before failure (b) BLSR after failure

Figure 2.5: Operation of a BLSR (taken with permission from [Douc04])

amongst a survey of network restoration techniques in [RaMu99]. SBPP is similar to APS

in that each working path is assigned a single predetermined backup path. However, it dif-

fers in that the backup paths are not dedicated to their respective working paths. Instead,

the spare capacity that makes up the backup paths can be shared for the protection of mul-

tiple working paths. This is possible if the working paths that share protection capacity are

disjoint from each other. If this is the case, then no single failure can affect any one of the

working paths at the same time, and thus it is ensured that no two working paths will ever

contend for the same spare capacity.

When multiple failures occur, outage can be produced either due to the simultaneous

failure of both a working and backup path (true of any restoration scheme), or because

of the failure of multiple working paths that share the same spare capacity. Therefore

availability using SBPP will generally be lower than for APS. However, this is made up for

by a large spare capacity savings due to spare capacity sharing.

We have seen an illustration of two working paths sharing portions of their backup

paths under SBPP in Figure 2.3. SBPP is not preconnected, and therefore not suitable for

transparent networks, as we have discussed.
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2.2.5.6 Span Restoration/Protection

Span restoration (or span protection) is another mesh-based approach to survivability. Dis-

tributed automatic span restoration was first proposed in [Grov87, Grov89]. There is actu-

ally an important conceptual difference between the terms “protection” and “restoration”

here, but we will treat them as the same for the sake of our simple explanation of the basic

survivability mechanism.

Unlike SBPP, span protection acts locally, protecting the network’s working capacity

on a span-by-span basis (as with BLSR) instead of protecting whole working paths end-to-

end. It works by designating a fixed protection path for each working link on each span in

the network. This designation is pre-planned, i.e., it is predetermined and not calculated as

a real-time response to span failures. Then, if a span fails, the end-nodes of the span switch

transmission from the failed working links to these predetermined backups. Backup paths

are also allowed to share spare capacity. Therefore span protection can be thought of as

a span-protecting version of SBPP. In both SBPP and span protection, the spare capacity

in the network can be considered as a single “pool” of capacity that is available for the

formation of pre-planned protection paths at failure time.

Span protection, since it allows sharing of capacity between failure scenarios, is a very

efficient scheme. However, it suffers the same drawback as SBPP: even though protection

paths are pre-planned, they cannot in general be established by cross-connect switching

actions until the time of failure (unless special design considerations are made with this

constraint in mind). Therefore generalized span protection it is also not suitable for trans-

parent networks. However, there is some degree of ambiguity of terminology here as “span

protection” has also over time come to refer to any protection scheme that protects on a

span-by-span basis. Some of these schemes (such as p-cycles) are preconnected and thus

are more suitable for transparent networks. The above description of span protection refers

to the most general case in which backup paths for each span are not chosen with any

particular regard towards preconnection.

2.2.5.7 p-Cycles

The p-cycle concept arose from a desire to combine the fast switching capabilities of rings

with the high efficiencies of mesh-based restoration. The concept was first brought to
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(a) A p-cycle structure (b) Failure of an on-cycle span (c) Failure of a straddling span

Figure 2.6: A p-cycle and its operation

light in the seminal paper [GrSt98], which demonstrated that such a “best of both worlds”

approach was possible. Since then, p-cycles have attracted a great deal of attention, and are

currently very well-studied [ScGr02, StGr00, ZhYa02, LiWa06, LiRu04].

A p-cycle is a cycle of capacity, similar to a UPSR or BLSR ring, except that a p-cycle is

a spare capacity structure only, and does not need to be co-routed with the paths it protects.

A p-cycle “sits above” the working layer and simply provides protection relationships to

the working capacity on the spans that it is able to protect. The protection capabilities of

a p-cycle are illustrated in Figure 2.6. When there is a failure on one of the spans that is

on the p-cycle itself, it is able to perform a loopback operation to reroute the failed span

around the rest of the p-cycle (similar to BLSR). However, if there is a failure on a span that

is not on the p-cycle but has both end-nodes on the p-cycle (a straddling span or straddler),

the end-nodes of the failed span can “break in” to the cycle to provide up to two protection

paths around the two halves of the cycle bisected by the failed span. In general, a restorable

network is protected by a whole set of cycles that is together able to provide at least one

unit of protection to every unit of working capacity on every span.

It has been shown that p-cycles are a very efficient protection architecture, able in

some cases to closely approach the theoretical redundancy lower bound for span protec-

tion [Grov94]. This is thought to be mainly due to the 2:1 protection relationship offered to

straddling spans. At the same time, we can see that the p-cycle structures themselves have

the preconnection property because we can form any of the available protection paths for

the protected spans simply by performing loopback or break-in, where appropriate. There-

fore p-cycles seem to be an interesting choice for transparent networks. There is one caveat,

however. Because p-cycles are span-protecting structures, a failure effectively “breaks” the

working path at the end-nodes of the failed span, where a substitute protection path from
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(a) A FIPP p-cycle structure (b) Failure of an on-cycle path (c) Failure of a straddling path

Figure 2.7: A FIPP p-cycle and its operation

the p-cycle is reinserted. Therefore we still have the problem of the optical integrity of the

restored-state path being unknown before the failure occurs. This is surely better than, say,

span protection, where we do not even establish the protection paths until failure time, but

still poses a problem for transparent networks. This is true of any span-protecting precon-

nected structure, including others studied in this thesis.

2.2.5.8 FIPP p-Cycles

Failure Independent Path-Protecting (FIPP) p-cycles are essentially a path-protecting vari-

ant of the p-cycle concept [KoGr05]. It is not the only way to marry path protection with

p-cycles, but it is the most direct and the most relevant to the other architectures studied

in this thesis, so we will describe it briefly here. Like p-cycles, FIPP p-cycles can provide

both on-cycle and straddling protection, except that FIPP p-cycles protect paths end-to-end

instead of individual spans. A demonstration of FIPP p-cycle protection is given in Figure

2.7. Similar to p-cycles, when path that is (partially or fully) on the cycle fails, the cycle

can provide one protection path; when a straddling path fails, two protection paths can be

provided. FIPP p-cycles are preconnected, like p-cycles, with the added advantage that

protection switching does not break up the existing working path because it is replaced

wholesale with the preconnected protection path. We discuss FIPP p-cycles in greater de-

tail later in Section 2.4 as part of the literature survey of established pre-cross-connected

protection architectures.

2.3 Restorable Network Design Methods

Up to this point we have discussed the basic concepts behind network protection/restoration,

as well as several approaches for achieving high network availability. In this Section we
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discuss the main experimental and theoretical methods that are used to study these protec-

tion approaches, paying particular mind to the methods that are used in this thesis. Later

Chapters will refer occasionally back to this Section for more complete explanations of

certain techniques.

2.3.1 Goals and Assumptions of Network Design

Before undertaking comparative studies of these and other protection architectures, we

must first define the parameters and objectives of such studies. For example, as mentioned

in Section 2.2.3, it is often assumed that a “restorable network design” is a design in which

there is sufficient protection to provide 100% recovery of damaged flow in the case of any

single span failure. While other design objectives are also used frequently in the literature,

the 100% span R1 assumption is usually assumed unless stated otherwise, as it is in this

thesis. Not all 100% span R1 designs will be exactly equivalent in terms of availability

(which will be determined by susceptibility to dual failures), but 100% span R1 is generally

assumed to provide a minimum standard of availability in most cases.

Although the network design approach used in this thesis is appropriate for the theo-

retical nature of our comparisons between different architectures, it is also very different

to how one would expect the planning of real networks to be done in the field. The ap-

proach taken for most of this thesis is the green fields approach, which refers to network

design “from the ground up”, assuming zero installed network infrastructure (except the

right-of-way agreements and building locations that define the network topology) and a

fixed demand matrix that represents exactly known quantities with zero uncertainty. This

is opposed to real network planning, which is almost always an incremental approach that

considers how to best serve incremental demand growth while at the same time leaving op-

tions open for predicted future growth, taking into account a certain degree of uncertainty

in the predictions. We use the green fields approach most often in this thesis because it en-

ables a pure comparison of ideal designs, allowing us to more easily obtain new knowledge

about properties of the architectures we study. However it is important to remember that

achieving this ideal in real networks is not realistically possible.
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2.3.2 Evaluation Criteria

Given the constraints on the design problem (e.g., 100% span R1) and a given design

method, the one remaining question is how we are to evaluate the quality of the design.

This comes into play especially when performing comparative studies, when we wish to

know how various architectures, that are otherwise identical in terms of restorability, com-

pare in terms of other metrics. Again, there are many possible choices, but by far the most

common is to evaluate them in terms of a cost metric. Because true system cost is a highly

complex value to calculate (besides also being very system-specific and therefore not suited

to more general studies), we generally use a simplified cost surrogate. The most common

cost metric is simply the amount of capacity used by the design. A design that uses less

capacity to achieve the same 100% R1 target is more efficient and therefore more desirable.

There are a number of variants of this metric; depending on the study, we might use

either spare capacity or total capacity. Redundancy metrics (e.g., Equation 2.1) are also

used. When measuring amounts of capacity, we generally either measure absolute capac-

ity units (e.g., total wavelength channels in a WDM network), or a total distance-channel

count (e.g., channel-km for WDM). The prior case treats the cost of any unit of capacity on

a span the same, regardless of how long the span is, whereas the second case gives propor-

tional weight to capacity used on longer spans. Which model is used will generally depend

on the type of network being considered and the economics of the span costs involved. In

long-haul networks, span lengths can be great and cause distance-related costs (e.g., shield-

ing/regeneration/etc.) to dominate (meriting the distance-channel model), whereas in metro

scale networks span costs tend to be dominated by a constant factor per-span (suggesting

the absolute channel count).

The cost of the design is often not the only important property, however. Secondary

evaluation criteria may include availability (or span R2, which is closely related), length of

paths (working or protection), or metrics related to the complexity of the design. In fact,

we will often investigate structural complexity of the 100% span R1, low capacity designs

that we generate throughout the architecture studies in this thesis. Structural complexity

is different from these other criteria in that it is not easily quantified into metrics. We

will often use various metrics to support discussion of complexity, but this discussion will

always be coloured by the context in which complexity is important. For the most part,
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we will be discussing either complexity concerns related to operational complexity (that is,

operational issues that need to be understood by a human designer that would be hindered

by a high degree of complexity in the protection layer), or complexity concerns that have

implementation issues for transparent optical networks specifically, as per the focus of this

thesis.

2.3.3 Integer Linear Programming Methods for Network Design

Linear programming (LP) [Dant63] provides a mathematical framework in which we may

implement the constraints and objectives for network design that we have expressed above

in qualitative terms. It provides a simple way of framing and solving a variety of optimiza-

tion problems, including network design problems for the above-mentioned architectures

and others. The resulting mathematical “program” is given to an optimization engine that

then processes the problem until obtaining an optimal solution (or one within a predefined

margin of optimality). The assurance of the optimality of the results allows us to perform

quantitative comparisons of different architectures with confidence. Integer linear pro-

gramming (ILP), a subset of linear programming in which all quantities to be computed are

integers, is the primary method used for obtaining the results and performing the analysis

in the rest of this thesis.

2.3.3.1 Overview

Mathematical programming refers to a specific way of expressing an optimization problem

mathematically. Under this framework, the problem is expressed in terms of a series of

constraints (expressed as inequalities or equalities) on a set of variables, as well as a sin-

gle objective function expressed in terms of those same variables that must be minimized

(or maximized). Linear programming problems are mathematical programming problems

in which both the constraints and objective function are linear expressions. Common and

efficient algorithms exist to solve linear programming problems, and there are many com-

mercial tools that can parse such problems from standardized notation and solve them au-

tomatically. The linear program itself is simply a standard form that presents the problem

in a form that the solver can understand. Once the solver has found an optimal set of values

for the problem variables, it is up to the user to assign significance to the values in terms of

27



the original problem.

Take as an example a classical diet problem. As the problem goes, a person is on a

special diet, during which they must take in a certain minimal amount of each of N types of

nutrients. There are M foods, each unit of food type i containing an amount ni j of nutrient

j. Food i has a cost of ci per unit. The problem is to minimize the total cost of the diet

while still meeting the nutrient requirements. One can see immediately that the nutrient

requirements will need to be expressed as constraints, while the cost minimization goal

will be represented in the objective function. The variables will be the amount of each type

of food that is consumed. For this problem, the nutrient requirements can be expressed as:

M

∑
i=1

ni j · xi ≥ R j j = 1..N (2.2)

Note that this expression represents not just a single constraint (inequality), but a set of

N constraints (one for each nutrient). This constraint set conveys the requirement that, for

each nutrient, the amount of that nutrient obtained from all foods combined must exceed

R j (which we use to represent the minimum requirement). Note that we have used xi to

represent the amount of food i that is consumed during the diet. Then all that is left is to

specify the quantity to minimize:

Minimize
M

∑
i=1

ci · xi (2.3)

This minimizes the total cost of all foods consumed. We can see that this mathematical

program is linear because all expressions are a sum of terms that consist of a constant

multiplied by a variable (one of the xi values). Note that even though the ni j and ci values

are represented by letter symbols, and thus are “variables” in the mathematical sense, they

are constants in the context of an instance of this mathematical program. In other words,

they are part of the input to the problem and are not decided by the solver (unlike the

values xi which are true variables in the linear programming sense). We refer to terms such

as these as parameters because they are varied only outside the program by the user in

order to change the details of the particular problem instance under study.

An integer linear programming problem is simply a linear programming problem with

the additional constraint that all of the variables involved are constrained to only take on
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integer values instead of continuous real values. For example, if the previous diet problem

was modified to consider a schedule of pills that had to be taken whole, the number of units

of each food would then cease to be continuous and become a strictly integer quantity. Even

though this integrality constraint is itself not linear, fast algorithms also exist (based on

traditional linear programming algorithms) to solve integer linear programming problems.

In theory, the solution of ILP problems is an NP-complete activity, meaning that there is

currently no known polynomial time solution algorithm [GaJo79]. In practice, however,

problems of the size encountered in the field of real-world network design can be solved

quickly using these methods, making them a useful addition to the toolset of a network

designer.

2.3.3.2 Application to Network Design

We have seen how a simple example problem can be expressed using (integer) linear pro-

gramming notation. However, over time, the field of network design has accrued its own

customs and notations for network-specific ILP problems. These customs are also used in

this thesis and thus bear some explanation here.

In addition to variables, parameters, constraints and an objective function, network-

related problems often make use of sets of objects. These objects do not have any direct

representation in the mathematical expressions of the problem but represent higher level

entities in the design problem that have various parameters and variables as attributes. For

example, in the diet problem mentioned above we might define the set F of foods (which

has a cardinality of M). Then we would say that xi and ci are the amount of food i eaten and

the cost of food i, respectively, for each i in F (instead of for i from 1 to M). Converting

integer indices to actual sets of objects in this way can often make the representation of the

problem more clear, especially for large problems.

In network problems, sets are generally used for each of the major types of network

element. For example, a set of spans is usually defined. Then variables for the amounts of

spare and working capacity on each of these spans can be defined based on these sets. In

addition, sets of working paths and protection paths are also sometimes defined, depending

on the architecture in question, that can then have variables for working/restoration flow

quantities assigned to them. The use of these sets actually represents a significant advance
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in the use of ILPs for network design. Initially, work in this area tended to use the so-called

arc-flow approach, in which working or protection flow was assigned on a per-span basis,

with various constraints used so that the conservation of flow from one node to another

along a route was maintained. Eventually, however, Herzberg et al. [Herz94] proposed that

these routes be enumerated explicitly in the problem statement, instead of arising from the

solution process itself. While this approach may seem unwieldy in that the set of possible

routes between each node pair may become quite large, it has the advantage of allowing

the user to limit the set of routes according to his preference. This allows, for example,

elimination of routes longer than some predefined hop limit, which is very difficult using

arc-flow approaches.

Finally, the approaches such as p-cycles that use the concept of “protection structures”

will have a set of such structures, with their costs and protection capabilities defined by

parameters. As with the Herzberg route-enumeration approach, this allows the designer to

groom the set of allowed structures according to his preference and the capabilities of the

network.

2.3.3.3 Tools

The linear programming solver used in the following thesis work is a commercial pro-

gram called CPLEX [ILOG09], from ILOG. The software used to interpret the symbolic

linear programming language into problem tableaus solvable by CPLEX is called AMPL

[FoGa03]. For this thesis, CPLEX and AMPL software versions 9 and 10 were both used

(the precise version number used is not relevant to the quality of the solutions, but dif-

ferent versions may have optimization differences that affect solution times). Problems

were solved on one of two machines: either on a desktop PC running Windows 2000 with a

2.8GHz Pentium 4 processor and 1 GB of RAM, or, when large amounts of memory or CPU

power were required, a shared server running SunOS 5.8 with four 900 MHz SPARC-V9

processors and 16 GB of RAM. These specifications are not necessarily enough to exactly

recreate the conditions under which our ILP problems were run, but rather are given here

to provide a reference for the amount of computing power required to solve these problems

to the degrees of accuracy and within the timeframes mentioned in the following pages.
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2.3.3.4 Terminology

In discussion of the results of the ILP models in this thesis, we will sometimes refer to the

mipgap of the solution. The mipgap (gap from optimality of the mixed integer program)

is a parameter that controls how close to optimality the solution must be before the solver

terminates. The solver is able to make use of information gained in the branch-and-bound

ILP optimization algorithm to place a bound on the cost of the optimal solution, and will

terminate when the cost of the best discovered solution approaches this bound to within the

mipgap.

Ideally we want truly optimal solutions, but often it can be productive to set the mipgap

to a very small but nonzero value to prevent the solver from examining countless nearly-

identical solutions to find the “true” optimum. This gives us solutions that are “close

enough” to true optimality in potentially much less time. In the experiments that follow,

unless a specific mipgap value is mentioned, it should be assumed that the default mipgap

value of 0.0001 was used. A mipgap value of 0.0001 implies that the solution is guaranteed

to be within 0.01% of optimal.

2.3.4 Common Techniques

There are other techniques aside from ILP that are used in the field of restorable network re-

search that have become widely adopted due to their usefulness, generality, or other factors.

This Section provides an overview of any such techniques that are used in this thesis.

2.3.4.1 Network Families

One of the major challenges of studying the characteristics of protection in mesh networks

is that we can only rarely make definitive, generalized statements on the properties of cer-

tain architectures or algorithms over the set of all possible networks. More commonly,

we need to perform a number of experiments under a wide variety of conditions to pro-

duce a general picture of the property under investigation. This raises questions regarding

which test cases are appropriate for which experiments, whether or not we have considered

networks with a wide enough variety of properties in each case, etc.

One technique that has been introduced to address this problem is the practice of gen-

erating network designs across entire “families” of networks. A network family is based
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on a single “master network” topology, which is the most highly connected member of the

family. In this thesis, all our master networks are of average nodal degree d = 4. We then

proceed by removing one span from this network at random to obtain the next network in

the family. This random removal is controlled so that the new network retains the property

of bi-connection (for every pair of nodes we can find at least two span-disjoint routes be-

tween them). This process continues, removing one span at a time until we can no longer

remove a span without violating the bi-connection property. All of the networks generated

in this way make up the network family.

Performing tests on a set of networks from a network family as opposed to a set of ran-

domly generated networks has the advantage of being able to slowly vary the connectivity

of a fixed set of nodes [ToDo08]. In a set of randomly generated networks, topologies of

degree 3.0 and 3.01 may differ wildly from each other, for example, but we know that “ad-

jacent” networks in a family will vary by only a single span. Also, because the node pattern

remains the same, we can keep the same demand pattern over all members of the family in

a meaningful way (we can keep the same demand pattern over any set of random networks

with the same number of nodes, but its meaning will be totally altered if the node positions

and connectivity are completely changed). This method has some pitfalls too, of course: by

limiting ourselves to a family based on a single network, we may be blinding ourselves to

effects that will only occur or behave differently on a network with a different arrangement

of nodes and overall connectivity. To address this issue, we can solve our design problems

over a number of different network families.

2.3.4.2 Enumeration and Limitation of Candidate Structure Sets for ILP

The flexibility of the mathematical language used to express ILP problems gives us many

ways to represent the same network protection problem. In general, however, we tend to use

an approach in which much of the problem data is pre-generated in an initial data prepa-

ration (occasionally “datprep” for short) stage. This data is then loaded into the AMPL

program to fill in the values for the parameters of the problem. The most important func-

tion of this step is to generate the set of candidate structures that the problem is allowed to

consider as protection options for the network. For example, in a p-cycle network, the set

of candidate structures would be a set of cycles. It is also possible to represent the p-cycle
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problem without explicit cycle enumeration [WuYe07a, WuYe07b, WuYe08], but we use

explicit generation because it is both less complex and more flexible. It is less complex

in that, even though a large set of data needs to be generated, the generation of cycles can

be done with a straightforward search algorithm. The explicit enumeration approach is

also more flexible because it allows us to control precisely which structures are included in

the set, making it simple to control the characteristics of the structures used in the design.

For example, if the length of protection paths is of particular concern, we can restrict the

candidate set to only structures below a certain size.

Throughout this thesis there will be many cases where explicit enumeration of the entire

space of structures for a particular problem is infeasible because of the large size of this

space. In these cases, we use this method to restrict the size of the candidate set out of

necessity, so that we can obtain results in a reasonable amount of time. The criteria used

to limit the candidate set will be mentioned where applicable, but otherwise it should be

assumed that we use the entire set of structures available in the network.

2.4 General Literature Survey

This Section contains an overview of the literature that is directly relevant to work in this

thesis. Literature that pertains more specifically to the topics of the subsequent Chapters

will be introduced and/or discussed in more detail at the beginning of those Chapters.

2.4.1 Preconnection to Enhance Restoration Speed of Span-Protected
Networks

Before the emphasis on preconnection for transparent networks, preconnection was gener-

ally seen as the means to increase the speed of protection actions only. For quite a while,

the field of network protection was plagued with the false dichotomy that one could ei-

ther have fast protection in a very inefficient design (generally using 1+1 APS or SONET

rings), or designs with high efficiency that were slower to respond to failure (such as span

restoration). The search for improved restoration speed under the capacity efficiency of

mesh-based protection led Grover and MacGregor [GrMa94] to investigate the possibility

of optimizing the cross-connections in preexisting mesh-based restorable designs so as to

minimize the number of changes to the cross-connect state of the network over all possible
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span failures. This work outlines a method to establish a partially preconnected design that

represents a sort of middle-ground between totally dynamic schemes (such as span restora-

tion) and schemes with static cross-connections (such as a ring-based network). This line

of work eventually lead to the discovery of p-cycles [GrSt98].

2.4.2 Novel Preconnected Schemes

Many of the well-established protection architectures we covered in Section 2.2.5 qual-

ify as preconnected, even though they may not have been recognized as such at the time

of their discovery. Table 2.2 gives a summary of these schemes, classified by protection

mechanism and structure type. Since the realization of the importance of preconnection

in transparent networks has become more widespread, there has been a small explosion of

research interest in different types of preconnected protection architectures. Recent work

has explored many variations on the concept of a preconnected structure, including differ-

ent types of structure topology (i.e., linear, cyclical, branching) and protection approaches

(generally span-protecting vs. path-protecting). The following Section outlines the work

that has been done on the architectures that will be investigated and discussed in this thesis.

Scheme Structure Protection Type
APS Linear Path-protecting

UPSR Rings Cyclical Path-protecting
BLSR Rings Cyclical Span-protecting

p-Cycles Cyclical Span-protecting

Table 2.2: Classification of traditional or well-studied preconnected protection schemes

2.4.2.1 PXTs: Linear Path-Protecting Structures

Pre-Cross-Connected Trails (PXTs) were originally proposed in [ChCh04]. PXTs, as the

name suggests, are preconnected segments of spare capacity that form a trail through the

network. Such trails can be used to both protect against the failure of individual spans

or the failure of entire paths end-to-end, but as defined in this work PXTs are considered

to be path-protecting structures only. In addition, [ChCh04] explicitly allows PXTs to be

looping and self-intersecting structures, meaning that they can cross the same node or span

multiple times. This is different from most architectures studied previously, such as p-
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cycles, under which it is assumed, for simplicity’s sake, that p-cycles are not allowed to

intersect themselves on either spans or nodes. This topological freedom means that PXTs

can be potentially very complicated, making them both more difficult to research and also

to implement in real networks. Note that by the definition in [ChCh04], PXTs can also be

closed structures (i.e., cycles), in which case they behave effectively like path-protecting

p-cycles.

In [ChCh04], the PXT concept was developed in tandem with the development of a

greedy online heuristic algorithm for PXT-based network design with dynamic demand

arrivals. In this investigative framework, more demand will periodically be requested by

node pairs, and the network must have the capability to both serve the demand under normal

operating conditions as well as assure its continued operation in the event of any single

span failure. The algorithm described in [ChCh04] is adapted specifically to this type of

network operation as it dynamically grows PXTs in response to demand arrivals. That is,

the PXT configuration of the network is never rearranged such that existing preconnections

are broken: either an existing PXT is extended or a new PXT is created altogether. The

algorithm is greedy in the sense that it takes the action (extending one of the existing PXTs

or creating a new one) that minimizes the incremental increase in cost of the protection

capacity in the network due to the protection of the new demand. This approach has the

advantage of being very fast, but makes a sacrifice in terms of capacity efficiency because

as demands accumulate the design produced by many incrementally efficient choices may

drift further from an optimal design that could be achieved by a complete recomputation of

the PXT configuration (e.g., using ILP methods).

Even though [ChCh04] makes reference to the possibility of shrinking or eliminating

PXTs if demands disappear from the network, no provision is made in their algorithmic

description for this mechanism, and their results focus on networks designed purely based

on the accumulation of demand with no departures. The only results given in [ChCh04]

are the capacity costs of the final network designs of 6 different networks over 3 different

demand patterns (18 designs overall). Since they only give the costs of the final designs and

provide no information about the intermediate incremental cost increases, the results from

[ChCh04] essentially characterize only the performance of the algorithm in the offline,

green fields design case, despite the fact that it is intended for online operation.
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2.4.2.2 Tree-Based Preconnected Protection

A tree is defined as a set of connected nodes and spans in a network such that each node

has exactly one path to every other node in the tree through the spans of the tree (i.e., a

connected, acyclic graph) [Brua92]. A tree used as a protection structure can use these

paths as protection paths whenever the transmission between a pair of nodes in the tree

has experienced a failure. A tree may protect against the failure of single-span or multi-

span working paths between tree nodes in this way. We call a tree that does the former

a span-protecting p-tree, while a tree that protects an end-to-end working path we call a

path-protecting p-tree. In general, a p-tree design will consist of several copies of many

topologically different trees, the combination of which is able to protect all of the network’s

spans or demands against any single span failure. In this sense the concept is very similar

to that of p-cycles.

The development of tree-based preconnected protection is difficult to trace, particularly

because the property of preconnection has not been emphasized in studies of trees. In

addition, some fluctuation of terminology has contributed to the confusion of some of the

discussion of tree-based protection. We will cover a broad range of the literature on trees

here in order to clarify exactly what work has contributed to the preconnected tree concept.

Span p-Trees

The work that has most clearly stated its intent for the examination of trees as preconnected

structures is [Stam97]. It investigates trees as span-protecting structures only, in two dif-

ferent contexts. First it studies a greedy heuristic algorithm that generates preconnected

(or pre-configured, to use its own terminology) trees that are generated in the protection

layer of a network with working and spare capacities already installed. The intent is for the

resulting trees to maximize the network’s single span failure restorability, but the algorithm

does not guarantee that the result will be 100% restorable. In addition, the resulting designs

are analyzed with two different restoration responses in mind: the first uses only precon-

nected paths from the trees, but the second also allows preconnected paths to be broken to

form additional protection paths on demand if the preconnected paths cannot completely

restore a span failure. Evidently, this is quite a reversal from the traditional p-cycle design

exercise: instead of starting from low capacity designs and proceeding to investigate their
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characteristics, the intent here was to form trees in an existing network using best guesses

about their desirable characteristics and then analyze the effectiveness of the result.

The second way in which [Stam97] addresses tree-based protection is an exercise that

uses a genetic algorithm to build preconnected span-protecting structures. Again, this

method starts with a capacitated design and generates structures by creating preconnec-

tions. The idea of creating tree-based designs from scratch and analyzing them based on

confidence in their near-optimality is therefore not used in this work. However, this ap-

proach still allows the author to compare trees with other types of preconnected structures

and come to the conclusion that trees are not very efficient structures as compared to cycles

in particular.

The next closest publications to touch on the idea of preconnected trees for span protec-

tion is the series of papers [ShYa01, ShYa04, YaZh02] produced by O. Yang et al. These

works develop the idea of hierarchical trees, or hierarchical p-trees as branching, pre-

planned protection structures. However, despite the authors’ use of the term “p-trees” (the

“p-” prefix originally intended to include the concepts of both pre-planning and preconnec-

tion), the concept of preconnection is never directly addressed.

The concept of the hierarchical tree is first presented in [ShYa01], and a distributed net-

work protocol for the discovery of such a tree is later proposed in [YaZh02]. A hierarchical

tree is defined here as a logical spanning-tree arrangement of network spans such that the

amount of capacity on a span is smaller than the capacity of its parent span. The idea is

that there will be more protection paths going through the higher-level spans of the tree,

and thus they will need more capacity. Note that [ShYa01] only seems to consider network

designs that use a single hierarchical tree. Organizing spare capacity into multiple distinct

structures is not considered. Also, it is noted in [ShYa04] that using only one such structure

by itself cannot guarantee full single failure restorability because spans on the tree itself are

unprotected. Therefore [ShYa04] defines a special restorability action for these spans that

uses a pre-designated “secondary parent” node for the child node of all on-tree spans. In the

event that an on-tree span fails, its child node will connect to its secondary parent, which

will then use a backup path through the tree as if a span between the child and secondary

parent had failed. Therefore this scheme is not a purely tree-based scheme, but rather a

hybrid. Finally, [ShYa04] forms hierarchical trees in networks with pre-installed capacity,
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and does not consider green fields p-tree design. The intent here is again to generate a

best-efforts tree from an existing design and determine its performance.

Path p-Trees

A group of related publications [LaSt02, GrCo03a, GrCo03b] investigates the use of tree

structures, called backup trees, used for the protection of entire end-to-end paths. Backup

trees are developed in these works as a method for reducing spare capacity requirements in

restorable Multiprotocol Lambda Switching (MPλS, a type of label switching) networks.

These trees offer protection to unidirectional paths that converge at the root node. This con-

figuration has the advantage that protection flows never split, which makes it conceptually

simpler than a configuration with truly branching protection. Therefore rather than pro-

viding true tree-like protection, these trees instead provide a mechanism to share a single

channel between different flows, allowing capacity savings.

This is a direct result of the label-directed nature of the MPλS networks that this scheme

was designed to protect. Because all protection flows that transit a node are assigned the

same label, their ultimate destination must be the same; the network has no way of dis-

tinguishing them. Therefore the type of trees studied in [LaSt02, GrCo03a, GrCo03b] are

uniquely suited to the protection of MPλS networks, and are not necessarily suited to the

context of transparent DWDM networks that we assume in this thesis.

Another set of publications on the subject of tree-based path protection focuses on

the use of a single pair of complementary trees to protect the network against failure

[MeFi99, ZhXu08, XuCh02, XuCh03]. These trees (termed the “red” and “blue” trees)

are not protection structures per se, but rather logical tree routings that are arranged such

that in the case of any single link failure, every pair of nodes will still be connected through

at least one of the trees. Therefore this is similar to the backup trees concept in that although

the protection routings may form trees, no true branching protection is being performed.

Red/blue trees are tools for the operation of pre-planned protection, but they do not define

actual capacitated structures.
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2.4.2.3 Failure Independent Path-Protecting Cycles

We have already mentioned FIPP p-cycles as an example of an established protection ar-

chitecture in Section 2.2.5. We now go into more detail regarding their operation and prior

literature. The p-cycle concept was first fully generalized to the path-protecting case in

[KoGr05, KoGr05a]. FIPP p-cycles provide protection to working paths in the same way

that p-cycles provide protection to spans. If a working path shares any spans in common

with the cycle itself, it is considered to have an on-cycle relationship with that cycle. In this

case, the cycle only provides one protection path for the working path if it fails, because if

the failure occurs on one of the spans that the working path and the cycle share then that

half of the cycle will obviously be failed and unable to provide a protection path.

Note that it is technically possible for a cycle to provide two protection paths to the

working path if the failure in question occurs on a span that is not on the cycle. However,

this introduces failure dependence into the FIPP p-cycle restoration mechanism because

the nodes in question must have knowledge about the location of the failure. While this is

feasible with intelligent enough network equipment, it goes against the failure independent

nature of FIPP p-cycles. If a working path does not share any spans in common with the

cycle, the working path has a straddling relationship with the cycle, which may then provide

two protection paths in the same manner that a regular p-cycle does to a straddling span.

There is one special case of FIPP p-cycle protection that bears further explanation, even

though it also falls under the heading of on-cycle protection. This special case occurs when

a working path has an on-cycle relationship to the cycle on both of the “halves” of the cycle

as divided by the end nodes of the working path. The simplest possible such case, called

the Z-case due to the Z-like appearance of the working path, is illustrated in Figure 2.8.

The Figure shows that we cannot find a single protection path between the end-nodes of

the working path on the cycle that can be used in all failure scenarios because both potential

protection paths intersect with the working path on one span. This means that the protection

path that is used when the working path fails will necessarily be different between certain

failure scenarios, in order to avoid overlapping with the failed section of the cycle.

At first this may seem to be a violation of the failure independence property of FIPP

p-cycles. However, [KoGr05] clarifies that in this sense failure independence refers only

to the knowledge required to perform restoration. If restoration can be performed using
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Figure 2.8: The “Z-case” of protection for FIPP p-cycles

the exact same actions without any more specific knowledge than the simple fact that the

working path has failed then it is still considered failure independent. Therefore [KoGr05]

is able to justify this special case as failure independent using the following explanation:

upon detection of a working path failure at the end-nodes, the nodes attempt to form a

protection path on a predefined, arbitrary half of the cycle. During this process they check

whether or not a failure has occurred on this half of the cycle. If it has, they simply switch to

using the other half. Because this does not use any network capability besides the detection

of a failure somewhere on a path, and because this action works properly regardless of the

location of the failure, it is still failure independent; no special-case signaling is required.

There is a complication introduced into the FIPP p-cycle concept as a consequence of

the ability of a single FIPP p-cycle to protect multiple different end-to-end working paths.

Because FIPP p-cycles protect entire paths end-to-end instead of single spans, there is the

potential for multiple protected paths to fail simultaneously if they are non-disjoint. This

is not a problem for regular p-cycles because the spans that a cycle protects are disjoint

by definition and cannot fail simultaneously under the single span failure assumption. But

in the case of FIPP p-cycles, contention for spare capacity between simultaneously failed

paths may occur if they are both protected by the same FIPP p-cycle. Therefore the addi-

tional constraint has been added to the FIPP architecture that all of the paths protected by

a cycle must belong to a disjoint route set (DRS). As the name suggests, this refers to a set

of routes that are all span-disjoint from each other.

The first FIPP p-cycle design method was introduced as a spare capacity placement

formulation in [KoGr05a], and then a joint capacity placement method was outlined in

[BaGr07]. These methods are optimization-based approaches that use an ILP model to
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find a minimum cost FIPP p-cycle arrangement such that all demands in the network are

protected by at least one cycle. The formulations are similar to the standard p-cycle network

design model (i.e., from [GrSt98] or elsewhere). However, because of the aforementioned

DRS restriction, new parameters must be introduced to encode the DRSs in the network,

and the constraints are altered such that cycles are assigned to protect DRSs instead of

individual demands explicitly. Unfortunately, in any network of realistic size, the number

of possible DRSs will be far too large for the complete model to solve in a reasonable

amount of time. Therefore the method used in [KoGr05a] and [BaGr07] is to only include

a randomized selection of possible DRSs in the model, under the assumption that this

selection contains enough variety to produce a solution that is close to optimal.

This solution, though practical, is unsatisfactory in the sense that it makes it difficult

to draw definite answers to questions of network science regarding FIPP p-cycles from the

solutions of the model. Therefore efforts continue to find methods to solve the optimal

FIPP p-cycle problem efficiently. The approach taken in [JaRo07] is to use an Operations

Research (OR) technique called column generation to reduce the size of the ILP problem.

This technique works by dynamically generating the “columns” of the problem (in the case

of FIPP p-cycles, a column corresponds more or less to a DRS) as they are needed, instead

of including them all from the beginning. This technique can be used to solve problems to

optimality without including all of the possible columns for the problem. However, even

with the column generation method, the runtimes for FIPP p-cycle problems of realistic

size remain high.

Although we will not be studying FIPP p-cycles directly in this thesis, we will often use

FIPP p-cycle designs for reference and comparison purposes because of the well-known ef-

ficiency of cycles as protection structures. The DRS method for FIPP p-cycles also serves

as a basis for the network design methods that we propose for other path-protecting struc-

tures (PXTs and path p-trees). Therefore FIPP p-cycles serve as an important conceptual

precursor for much of the work in this thesis.

2.4.2.4 Summary

Table 2.3 gives a summary classification of the novel schemes discussed above, in the same

way as Table 2.2 did for the more well-established architectures.
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Scheme Structure Function
PXTs Linear Path-protecting

FIPP p-Cycles Cyclical Path-protecting
Span p-Trees Branching Span-protecting
Path p-Trees Branching Path-protecting

Table 2.3: Classification of newly proposed preconnected protection schemes

2.4.3 Generalized Pre-Cross-Connected Frameworks

Occasionally, the subject of pre-cross-connected protection has been approached using

methods that attempt to take into account the entire set of pre-cross-connected structure

simultaneously (as opposed to dividing this set into different architectures, e.g., FIPP p-

cycles, trees, PXTs, etc.) These approaches are theoretically powerful because they can

compare many types of structure simultaneously, but run into trouble because the size of

this problem becomes large very quickly as the network’s size increases. Therefore they

have to resort to measures such as using metaheuristics, using only very small “toy” net-

works as test cases, or otherwise restricting the parameters of the simulation so as to reduce

the problem size, which in turn reduces the strength of the conclusions that can be drawn

from the results.

We have already mentioned one example [Stam97] that used a genetic algorithm to

build pre-cross-connected structures. Another more recent work [HeSo07] uses an ILP

model to impose the pre-cross-connection constraint on optimal SBPP designs. Because

SBPP is the most general case of shared path protection, the results for pre-cross-connected

SBPP could theoretically tell us the best way of using pre-cross-connected path protection.

However, closer inspection shows that the proposed ILP method by its nature must oper-

ate given a fixed number of available wavelengths. The number of wavelengths can be

increased arbitrarily to produce the corresponding green fields designs, but this comes with

a corresponding increase in complexity. Furthermore, the results are greatly limited by the

authors’ choice of parameters (only 2 alternate protection routes are considered for each de-

mand pair). Finally, the authors do not investigate the structural properties of the solutions,

focusing only on capacity utilization. Therefore, despite the vast theoretical generality of

the ILP model, this work in practice does not have a direct impact on knowledge in the field

concerning the relative merits of different types of pre-cross-connected protection.
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Chapter 3

Span-Protecting p-Trees

3.1 Introduction

This Chapter describes our investigations into the first truly preconnected, tree-based pro-

tection architecture for transparent networks: span-protecting p-trees. First we provide an

explanation of the span-protecting p-tree concept, addressing the theoretical interest as well

as concerns about practicality. We then survey the literature related to span-protecting p-

trees and explain why the concept introduced in this thesis is distinct from that presented

in most prior literature on tree-based protection and why the work performed here is dif-

ferent from what has come before. We then go through our in-depth investigation into the

characteristic efficiency of span p-trees and the structural properties of efficient span p-tree

designs.1

3.1.1 Background
3.1.1.1 Degree-N Cross-Connections

Traditionally, preconnected network protection structures are thought of implicitly as degree-

2 structures, meaning that cross-connections are always between two and only two units

of spare capacity at a network node. This reflects the capabilities of the physical cross-

connect hardware used in real networks. A high-level view of a path formed through a

traditional cross-connection action at a degree-3 node is shown in Figure 3.1 (a), while a

more detailed illustration of the internal switching actions at the node is given in Figure

1Some of the work in this Chapter has been published in Photonic Network Communications:
A. Grue, W. D. Grover, “Comparison of p-Cycles and p-Trees in a Unified Mathematical Framework,”

Photonic Network Communications, vol. 14, no. 2, October 2007, pp. 123-134.
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(a) Degree-2 (b) Degree-3

Figure 3.1: High-level logical views of paths formed through degree-2 and (hypothetical)
degree-3 cross-connections

3.2 (a).2 Purely within the realm of theory, however, there is no reason that we cannot

consider cross-connections between three or more units of spare capacity. In a theoretical

degree-3 cross-connection, one can consider any one of the three units involved to be cross-

connected to both of the other units, meaning that a traffic-serving path may be established

in any one of three ways through the cross-connect without the need for any switching

actions. The possible path traversals of such an arrangement are illustrated in Figure 3.1

(b). Figure 3.2 (b) shows the equivalent switching-level detail required to implement such

a cross-connection, with equipment for signal splitting and merging taking the place of the

switches. This arrangement assumes that each pair of “merged” incoming signals for out-

going transport on the third connection contains at most one active signal at any one time;

otherwise, some contention resolution must occur to decide which signal gets to use the

outgoing channel.

Allowing this type of cross-connect (and equivalent arrangements for a degree of 4,

5, etc.) opens up the possibility for branching preconnected structure, i.e., trees. In fact,

the presence of degree-N cross-connections allows the realization of any arbitrary precon-

nected structure, containing any combination of adjacent network spans and any number

of cycles and branches. Using degree-N cross-connections, we can even conceive of a

process in which the assignment of unit spare capacity links produced by an optimal span-

2The colours in Figures 3.1 and 3.2 are purely to distinguish the inputs and outputs from each of the 3
adjacent spans, and should not necessarily be taken as indicators of optical wavelength; these diagrams apply
to any generalized switching transport network, optical or otherwise.
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(a) Degree-2 (b) Degree-3

Figure 3.2: Internal switching views of paths formed through degree-2 and degree-3 cross-
connections

restorable mesh or SBPP design algorithm is consolidated into a single preconnected struc-

ture, incorporating both theoretically maximum efficiency and full preconnection into the

same design. Therefore the concept of the degree-N cross-connect seems at first to trivial-

ize the restorable network design problem. However, as we will see next, some conceptual

difficulties that arise when considering the implementation of more complicated degree-N

preconnected structures suggest that we should restrict ourselves to the set of branching

structures that do not contain cycles, i.e., trees only.

3.1.1.2 Concept Restrictions: The p-Tree Definition

It is understandable to be initially skeptical as to whether the concept of cross-connections

with degree higher than 2 are meaningful in a real-world sense. After all, the concept of

cross-connection seems to imply linking the flows in two capacity units together. To use a

water analogy for network flow, the idea is similar to that of connecting two pipes together

so that water may flow from one into the other. However, there is no reason to reject the

possibility outright if one thinks of the multiple degree cross-connect as a type of flow

splitter. Only instead of splitting the flow in two, as in the water analogy, the data or signal

coming into the node from any one span is copied onto each of the spans in the outgoing

direction.

It is productive at this point to stop and determine whether considerations such as this,

that arise when trying to reconcile the theoretical construct of degree-N preconnection with
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Figure 3.3: Conceptual difficulty with the operation of a cyclical, branching preconnected
protection structure due to signal collisions

the realities of current technology, can be used to provide some reasonable restrictions on

the complexity of degree-N preconnected structures in order to focus the concept enough

for an initial experimental examination into its implications. Right away, the character-

ization of degree-N preconnection as fundamentally a signal-splitting operation raises a

concern about the feasibility of branching structures that also contain cycles. Figure 3.3

illustrates one possible problem with such a structure. This Figure shows a preconnected

structure configuration in a 5-node network. The diagram shows a subset of the possi-

ble propagation directions for flow on the tree between the two leftmost nodes (assuming

some span or path between these nodes requires restoration). Upon failure of the span, the

backup signals will propagate into the structure from both ends of the span. Only some of

the branches of the flow are illustrated, for the sake of simplicity. The path indicated by

the solid arrows represents one path that the restoration flows would take given the splitting

model of degree-3 preconnections. The diagram shows that, due to the cycle in the struc-

ture, the flow actually loops back on itself and re-enters the end-node that dispatched the

flow originally, overlapping with the path that the restoration of the failed downward flow

would also take. In this circumstance, the network would have no way to determine which

flow to transmit over this and other spans.

Another way to phrase this problem is that the propagation of restoration flow in a

branching structure with cycles violates our stipulation that a merging action at a degree-3

cross-connection must never have two signals present simultaneously on the two incoming

channels. At the very least, the operation of such a structure would therefore need to incor-

porate significant node-to-node signaling to control the propagation of restoration flow to
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prevent situations like this one. Thus the first obvious restriction to the degree-N precon-

nected structure concept is that such a structure must sacrifice the possibility of cyclicity in

order to make sense as a restoration concept, even under some very modest assumptions.

Therefore our degree-N structures should be strictly trees. In a tree, this flow conflict prob-

lem cannot occur; restoration flow simply spreads outward from the node that introduces

it, until it reaches the leaf nodes of the tree or is intercepted by the other end-node of the

node pair that is effecting restoration.

Note that this restriction rules out the scenario we described earlier, in which the ca-

pacity plan produced by an arbitrary network design method is simply preconnected at all

possible junction points, creating an ideal minimum cost preconnected capacity plan. Gen-

erally, preconnecting an arbitrary plan in this way will at some point create a cycle in the

preconnected structure, making its implementation infeasible by the justification we have

given above. However, it may be that some types of designs under certain architectures can

either be preconnected this way without producing cycles, or can be easily modified slightly

such that this would become possible. This may be an interesting approach to tree-based

preconnected network design, but remains for future work, as it will not be considered in

this thesis.

From now on we will refer to non-cyclical, purely tree-like pre-cross-connected pro-

tection structures as p-trees. Depending on whether the trees provide protection between

the end-nodes of a single span or protect entire paths end-to-end, we will refer to them as

span-protecting p-trees and path-protecting p-trees, respectively. Another restriction to the

p-tree concept that we can make out of hand is that p-trees must be simple structures, i.e.,

they cannot cross the same span or node more than once (as with p-cycles). This is prac-

tically a requirement for the experimental study of p-tree architectures because, without it,

the size of the set of possible protection structures is simply too large. This has practical

implications for ILP-based design models, as they generally rely on the ability to enumer-

ate sets of candidate structures for the design explicitly. Consider the fact that a non-simple

tree could, in theory, contain multiple spare links on the same span cross-connected at one

of the span’s end nodes. This means that even the set of potential protection structures

that cross only two particular adjacent spans would be infinite, because this set consists of

structures containing N spare links on one span cross-connected to M spare links on the
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other span, with no upper bound on the values of N or M. Restricting the set of p-trees to

be simple, on the other hand, sets a strict upper bound on the number of possible structures

in a network. As an additional benefit, it facilitates comparison with other architectures

that traditionally operate under similar restrictions, such as p-cycles.

Thus we define p-tree architectures as architectures in which the protection structures

consist of simple tree structures, not containing any cycles, that are used to protect failed

flow between pairs of end-nodes by forming protection paths within their preconnected

spare capacity. We will begin our investigation into tree-based protection by focusing first

on span-protecting p-trees.

3.1.1.3 Previous Span-Protecting Tree Literature

At this point, distinctions should be drawn between the p-tree architecture as discussed in

this thesis and previous work on tree-based protection schemes, most of which has been

performed using significantly different definitions and assumptions. [Stam97] is the only

source to examine true tree-based pre-cross-connected protection. However, it did so in the

context of a pre-capacitated network, and not with an eye towards characterization of trees

as a standalone architecture in terms of efficiency and complexity, as we do here. Despite

this, the results can still be used to draw conclusions about the fundamental efficiency of

p-trees: namely, that trees compare poorly in efficiency to cycles. This is a conclusion that

we will address later in our own results as well.

Reference [ShYa01] and its extensions [ShYa04] and [YaZh02] are the next most rele-

vant to this discussion, as they also address the use of tree-based protection arrangements

for span protection. Reference [ShYa04], in fact, introduces the term “p-tree” to describe

the concept. This is unfortunate, however, because their conception of tree-based protec-

tion is not at all like the tree-based extension of p-cycles that is suggested by the name and

that is treated in this thesis. To help underline the differences between their hierarchical

trees and true p-trees, the basic concepts of [ShYa01, ShYa04, YaZh02] will be outlined

here.

Reference [ShYa01] describes the concept of a hierarchical tree that seems to be moti-

vated by the idea of extracting a natural tree hierarchy from a network in which each node in

the network is connected to each other node through some path in the (spanning) tree, and
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each link in the tree contains more capacity than all of its child links. The idea is that such

a hierarchy can be used as a natural protection arrangement for the entire network. Spans

that are not part of the tree are protected by paths that travel from the span’s end-nodes up

through parent links in the tree until they meet at a single parent node, possibly (but not

necessarily) the root. In this way, hierarchical tree protection is somewhat similar to how

a single spanning tree, used as a span-protecting p-tree and capacitated many times over,

could protect all of the spans in a network at once. Reference [ShYa01] outlines the basics

of a distributed algorithm to form a hierarchical protection tree in a network given a single

root node, while [ShYa04] goes on to develop in much more detail the specifics of both

an optimization model and a heuristic for finding such a tree. Reference [YaZh02] further

develops a distributed protocol for discovering such a tree during network operation.

While this concept is tree-based, it is similar to true p-trees only superficially; they dif-

fer in numerous other ways. First of all, hierarchical tree protection fundamentally only

uses a single spanning tree to protect the entire network. Therefore the tree itself cannot

protect its own spans, so an alternate method must be used for their protection. The pos-

sibility suggested in [ShYa01] is that nodes that become disconnected from their parent

due to the failure of a tree span be assigned a backup parent elsewhere on the tree. Pro-

tection then occurs by routing the first part of the protection route through to the backup

parent. Therefore this method is not a pure tree-based method like p-trees, but requires

hybridization with other methods to even provide 100% single failure restorability. Also,

hierarchical trees are not single-unit preconnected structures, but instead consist of differ-

ent amounts of spare capacity on each span. Indeed, the concept of preconnection is not

addressed in either [ShYa01] or [ShYa04], raising the question of why this scheme is called

“p-trees” at all, given that the “p-” prefix was originally intended to represent the idea that

p-cycles were preconnected protection structures. The authors do point out that protection

paths in hierarchical tree protection are pre-determined (i.e., pre-planned), but this is a sep-

arate concept from preconnection. Preconnected paths are by definition pre-planned, but

the reverse is not generally true.

We can actually impose the idea of preconnection upon the hierarchical p-tree concept

in retrospect by considering a single hierarchical tree to actually be a combination of p-trees

layered on top of each other, each p-tree containing a subset of the spans of the spanning
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Figure 3.4: Splitting a “hierarchical p-tree” into single-unit copies of three different true
span-protecting p-trees

hierarchical tree. This idea is illustrated in Figure 3.4. The master tree, with spare capacity

amounts on spans as indicated, is split into three different single-unit p-trees. The reader

can verify that this split maintains all the protection paths provided by the original tree.

Therefore the hierarchical tree concept can be seen in hindsight as a very specialized case

of multi-tree p-tree protection, and even then only for the off-tree spans. Of course, when

it comes to the on-tree spans, the hybrid “secondary parent” approach is still taken, as

discussed above. Therefore, even under this supplementary framework, the scheme still

cannot be fully preconnected.

Overall, then, hierarchical tree protection is only very tenuously related to the idea of

true span-protecting p-trees. While p-trees are truly discrete, self-contained tree-based pro-

tection structures, a hierarchical tree only represents a tree-based organization of nodes that

regulates the sharing of spare capacity between protection paths for failed spans. Precon-

nection can be imposed on the scheme, but this idea was not considered in the original

work. In fact, the hierarchical tree concept need not use the terminology of structure-based

protection at all. Instead, it can simply be viewed as an additional constraint imposed on the

standard span restoration architecture, with protection paths constrained to lie within the
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structure of the hierarchical tree (along with the use of a backup parent for on-tree spans).

Therefore it should not be assumed that any work within this thesis on the subject of span-

protecting p-trees is in any way a duplication of the efforts of [ShYa01, ShYa04, YaZh02],

because their use of the “p-tree” label for their work is not consistent with our use of the

term or with the spirit of the use of similar terminology (i.e., p-cycles).

One other publication on the topic of span-protecting trees [LiYa03] by the same au-

thors as [ShYa01, ShYa04, YaZh02] investigates a different concept in which the network is

protected by two pre-configured spanning trees. This is similar to the red/blue tree concept

[MeFi99, ZhXu08, XuCh02, XuCh03], except that red/blue trees are path-protecting, not

span-protecting (see the corresponding discussion of the literature in Chapter 5 on path-

protecting p-trees). As with red/blue trees, these trees are not physical structures but rather

logical trees that define pre-configured (but not necessarily preconnected) protection paths.

Finally, this concept is presented as a method for protecting the physical mesh network, not

the transport network, which leads to different assumptions about protection requirements

(e.g., that a single link failure corresponds to the failure of only a single unit of capacity (fi-

bre) on each span). Therefore this concept is again distinct from that of p-trees as proposed

in this thesis.

[WuYe08] addresses a concept that the authors call “PXTs”, but closer reading reveals

that the structures they discuss are span-protecting segments, unlike PXTs, which are path-

protecting. Therefore they are more properly seen as a special case of span-protecting trees

in which the tree nodes are all at most degree-2 (which we will come to call p-segments

later in this Chapter), and thus are relevant to our work on p-trees here. [WuYe08] ex-

tends their ILP framework for non-simple p-cycles without explicit cycle enumeration from

[WuYe07a, WuYe07b] to p-segments, and uses the ILP model to establish the difference

of capacity usage in designs using simple vs. non-simple structures. However, their ap-

proach has several limitations. Despite their claims that explicit structure enumeration has

“huge computational complexity”, their implicit structure generation constraints increase

the complexity of the model itself, meaning they can only use it on very small test net-

works. Furthermore, their model involves a parameter J that limits the maximum number

of protection structure sets that can be used, and all their tests are run with J = 2, quite

a severe restriction. Finally, they are only concerned with capacity efficiency, and do not
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focus at all on structural properties. Therefore their analysis is both quite different and

significantly more limited in scope than the one we provide for p-trees and p-segments in

the following pages.

3.1.2 Goals and Objectives

With the span-protecting p-tree concept defined and distinguished from previous work on

tree-based span protection, we were able to make initial forays into the problem of design-

ing networks that use this architecture. We wanted first of all to make basic observations

about the architecture’s own characteristic spare capacity efficiency, as well as make some

comparisons between p-trees and p-cycles, currently the most prominent span-protecting

preconnected architecture in the literature. The secondary goal was to draw conclusions

about the structural characteristics of efficient trees, both as a stand-alone architecture and

when combined with p-cycles.

3.2 Experimental Tools

3.2.1 ILP Design Model

In order to begin investigating span-protecting p-trees, we first had to define a standard

method for producing p-tree based designs. Rather than producing an entirely new design

algorithm from scratch, however, we made the observation that the standard ILP p-cycle

design model (introduced in [GrSt98]) could also be used, with no modifications, to obtain

minimum spare capacity cost p-tree designs. This model is as follows:

ILP Model

Sets:

S The set of spans in the network, indexed by i for a failure span, and j for

surviving spans.

P The set of (simple) cycles of the graph eligible for formation of p-cycles, in-

dexed by k.

Input Parameters:
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wi The number of working channels (or capacity units) on span i that require

protection.

xk
i The number of protection relationships provided to span i by a unit-sized copy

of p-cycle k. xk
i = 2 if span i straddles cycle k, xk

i = 1 if span i is on cycle k,

and xk
i = 0 in all other cases.

δ k
j Encodes the spans on a p-cycle. δ k

j = 1 if cycle k includes span j (i.e., if

xk
i = 1), and δ k

j = 0 if it does not (i.e., xk
i = 0 or xk

i = 2).

C j The cost of a unit of capacity placed on span j.

Decision Variables:

s j The integer number of spare channels assigned to span j in the design.

nk The integer number of unit-capacity p-cycle copies of cycle k in the design.

Objective Function:

Minimize

∑
j∈S

C j · s j (3.1)

Constraints:

wi ≤ ∑
k∈P

xk
i ·nk ∀i ∈ S (3.2)

s j = ∑
k∈P

δ
k
j ·nk ∀ j ∈ S (3.3)

Constraint 3.2 ensures that every span has all of its working capacity protected by p-

cycles and constraint 3.3 ensures that there is enough spare capacity to support the place-

ment of the p-cycles chosen for the solution. Objective function 3.1 minimizes the total

cost of spare capacity in the network.

Note that despite the definition of P above as a set of cycles specifically, there is nothing

in this model restricting the set of protection structures to be cycles. If the parameters xk
i

and δ k
j are set to the appropriate values, they can be used to represent any preconnected,
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span-protecting structure. If, for some k in P, δ k
j is set to 1 for the spans on a specific tree

structure in the network, and xk
i is set to 1 for spans with end-nodes on this tree but that are

not on the tree itself, then the structure represented by member k of the set P is actually

a span-protecting p-tree. If the set P is then populated entirely with these tree structures

instead of cycles, the model can be used without changes to compute a lowest cost set of

p-trees to protect the network from single span failures.

Furthermore, the ability of the model to accommodate both p-cycles and p-trees also

allows it to solve for designs that use a hybrid of the p-cycle and p-tree architectures. This

is possible by populating the set P with both candidate cycles and candidate trees. The

solver is indifferent to the distinctions we make conceptually between the two protection

architectures and will simply use the best span-protecting structures out of the set it is given

to protect the network with minimum spare capacity cost. This high degree of generality

allows us to make some very fair and objective comparisons between the p-tree and p-cycle

architectures by first allowing the solver to find hybrid designs, and then examining the

result to determine the relative values of the tree and cycle contributions to the solution.

3.2.2 Tree Generation

Of course, even though the ILP model remains the same for the transition from p-cycle

to p-tree design, the data preparation stage must be changed in order to generate sets of

parameters that describe trees instead of cycles. Because the p-tree architecture is relatively

new, models for designing p-tree networks have not seen much use or explanation in the

literature. Therefore the method that we have used to generate the candidate trees for

the model is described here in detail. This method can be considered a highly modified

breadth-first search technique, designed to produce the set of all simple trees within certain

size restrictions and nodal degree restrictions, with no duplicates. Note that we are only

interested in the topology of the trees we generate, and therefore we do not define a root

node or a hierarchy of nodes in our trees; they are unrooted trees.

The fundamental concept behind this algorithm is the idea of a tree “template” that

describes a set of trees with certain spans in common. A template consists of both a tree

“skeleton”, the set of spans that a tree must contain, and a set of “forbidden” spans, the

spans that a tree must not contain. In other words, a tree template describes a set of trees that
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contain the spans in the skeleton and do not contain forbidden spans, optionally containing

the spans that are in the network but neither in the skeleton nor forbidden. The algorithm

then works based on the observation that the set of trees described by a template T is

exactly equal to the sum of the set of trees described by two modified templates, T + S

and T − S, where we use the notation T + S to mean T with some span S added to the

skeleton and T −S to represent T with some span S added to the forbidden set. Evidently

T +S and T −S cannot contain any trees in common, as trees in T +S must contain S and

trees in T − S cannot contain S. Therefore T + S and T − S represent the division of the

trees represented by T into the set of trees that contain S and the set of trees that do not.

Furthermore, T + Sand T − S together represent all of the trees described by T with no

overlap.

This observation was used to implement a recursive tree generation function that takes

as input a template T and returns the trees described by that template. The function finds

a span S not currently in the skeleton or forbidden set of T but that would also result in a

valid tree when combined with the existing skeleton, and then calls itself recursively twice,

first with T + S as the argument and with T − S as the argument. This template splitting

operation is illustrated in Figure 3.5. The sets of trees returned by these two function calls

are combined and then returned as set of trees described by T . Because, as mentioned,

the sets provided by T + S and T − S cannot overlap, no expensive duplicate checking is

required. The recursion is stopped when no span can be found to add to the tree that is not

in the skeleton or forbidden set of T ; in this case, T describes simply a single tree, because

all spans are mandated as to whether or not they may be in the tree, and this single tree (the

skeleton) is returned as the only element in the set. Using this function, the set of all trees

in the network can be generated by simply calling this function with the argument being a

template with an empty skeleton and forbidden set.

Limitations on tree size and nodal degree were also easily implemented in this algo-

rithm. To implement tree size limit, the algorithm needed only to be modified to terminate

recursion when adding a span S to the skeleton would cause the tree to become too large.

In this case all trees within the size limit and specified by T consists only of the single

tree described by the skeleton, since the tree cannot be expanded any more, so this tree is

returned by itself. Similarly, nodal degree was limited by not considering choices of span
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Figure 3.5: A template is split into two complementary templates that together represent
all the trees of the original

S such that addition of S to the skeleton would result in a node of degree that exceeds the

limit. The same effect can also be accomplished performing a pass at the beginning of each

recursive call that automatically adds all such spans to the set of forbidden spans.

3.3 Pure p-Tree and p-Cycle Design Comparison

3.3.1 Test Cases

This model was first used to generate p-tree designs for two different network families to

determine the efficiency and other properties of the architecture in networks with a wide

range of nodal degrees. For an explanation of the network family concept, see Section

2.3.4.1.

The two families used were created from a master network with 15 nodes and 30 spans,

and a master network with 20 nodes and 40 spans, respectively (see Appendix A.1.1 and

Appendix A.1.2 respectively for topology details). The set of candidate trees for each test

case was produced by finding all trees in the test network containing 7 or fewer spans

with a maximum tree nodal degree of 3. These size restrictions may seem severe, but

were necessary in order to limit the set to a size that would allow a solution to be found

in a reasonable amount of time. For the purposes of comparison, corresponding p-cycle

designs were also calculated for each test case. The set of candidate cycles for these tests

contained the entire set of cycles in the network. Therefore the p-cycle designs are truly

optimal designs for their corresponding topologies. For all tests, both p-tree and p-cycle,
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working capacity was assigned by routing all demands along a single shortest path between

the nodes that exchange the demand.

3.3.2 Results

Figure 3.6 shows the spare capacity costs for these p-tree and p-cycle designs. Note that

data for p-trees is not available for the sparser (lower nodal degree) members of the network

families. This is because of a serious difficulty with the design of pure p-tree networks

that was revealed by these tests: the solver was unable to find any feasible solution that

satisfied 100% single span failure restorability for the sparser networks in question. This is

a consequence of the size limitation on trees that is specified above. In the sparser networks

the smallest possible protection path for some spans may exceed the length of the largest

tree in the candidate set (in this case, 7 hops), meaning that there are no candidate trees

that can provide restoration for that span. Of course, the same situation could occur in a p-

cycle design if p-cycle length were restricted similarly, but this is not necessary in practice

because the set of network cycles will always be very much smaller than the set of trees.

Therefore span-protecting p-trees already pose a significant design challenge, in that

using as the candidate set a complete set of trees under a size limit that is high enough

to allow a feasible design to exist means using a set that is also too large to be practical.

Of course, it is always possible to supplement a complete set of small trees with a small

set of large trees to ensure the existence of a feasible solution. But that approach would

negatively impact our ability to make judgments about the pure p-tree architecture, as we

could not be certain that we were not simply measuring the efficiency of the largest trees in

the network as opposed to the entire set. Therefore we have avoided taking this approach

for the purposes of this initial investigation.

Setting aside this concern for the moment, we also see that, for the networks for which

a design does exist, the cost of the designs is exceedingly high, double or even triple that of

the p-cycle designs. Given these results and the above problem, it is hard to see p-trees as

practical network protection structures. It is possible that not allowing the solver to consider

the larger trees in the network is a great hindrance on its ability to produce efficient design,

but attempting to include these trees makes the design problem unacceptably difficult, as

the size of the set of trees grows very fast as the limit on tree length is increased.
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Figure 3.6: Comparison of spare capacity costs of p-tree and p-cycle designs for networks
from the 15 node and 20 node network families

Even though these designs have impractically high capacity costs, analyzing the in-

dividual trees that they contain provides some insights into the characteristics of span-

protecting p-trees. For example, diagramming the solutions by drawing their trees as over-

lays on top of a diagram of the network topology reveals that a significant fraction of the

trees in the network do not actually use any degree-3 junctions. In other words, these

“trees” are simply degree-2 linear segments, like PXTs except that they are span-protecting

instead of end-to-end path-protecting. This observation led us to analyze the composition

of the network designs in terms of the proportion of “true” degree-3 trees and degree-2

segments. Figure 3.7 breaks down each of the designs in terms of the number of unique

structures of both types that they contain. In other words, multiple capacitated copies of

the same tree or segment are considered as only a single structure for the purposes of this

Figure. The Figure reveals that, as nodal degree increases, the diversity of the set of true

tree structures chosen by the solver tends to increase, while the number of different types of

segments chosen tends to slowly decrease. This trend is present in networks from both the

15 node and 20 node families but is stronger in the 20 node case. The reason for this trend

can be understood intuitively; as the network increases in connectivity, the opportunities for
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Figure 3.7: The usage of “true” degree-3 trees vs. degree-2 linear segments in the pure
p-tree designs, represented by the number of unique structures used

tree-like connectivity will increase, and the number of degree-3 trees will increase faster

than the number of segments. Therefore, all other things being equal, by sheer probability

the solver will be more likely to use trees than segments. In fact, given how quickly the set

of degree-3 structures increases, it is actually remarkable that the levels of segments remain

as high as they do.

Normalizing the data from 3.7 to the total number of candidate degree-3 and degree-2

structures given to the solver tells us what fraction of the candidate structures of each type

are used in the optimal designs. The plot of this data is given in Figure 3.8. According to

this Figure, the set of candidate trees and the set of candidate segments both see about the

same proportion of usage across all of the test cases. This reinforces our initial observation

that segments are an important part of tree-based design. Furthermore, the fact that seg-

ments match trees in terms of their proportional usage in the designs suggests that it may

be possible to simplify the design problem by discarding trees completely and only using

segments. If the trees can be replaced with segments that are able to do the job of efficient

protection almost as well, it may be possible to do so without incurring much of a cost

penalty. We will return to this idea later.
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Figure 3.8: The percentage of the candidate structure sets that are actually used in the
network designs

Figure 3.9 gives another comparison of tree usage versus segment usage, similar to that

given by Figure 3.7, except that this Figure is a plot of the actual number of capacitated

structure copies of each type. This differs from the plot of unique structures because a sin-

gle unique structure represents a topological template that may be instantiated as multiple

unit capacity structures in the spare capacity layer of the network. Figure 3.7 represents the

topological templates while Figure 3.9 represents the capacitated structures.

This Figure shows a similar trend as the one seen in Figure 3.7, only the decreasing

importance of segments in more highly connected networks is even more exaggerated.

This data can be thought of as more closely representing the importance of each type of

structure to the network design, because it takes into account the actual capacity allocated

to each type rather than just the diversity of different topological structures within the

tree and segment categories. From this point of view, segments and trees are of roughly

equal importance in the least dense networks, but in the most densely connected networks

segments are reduced to merely a supplement to degree-3 trees, taking up only 10 to 15%

of the total number of capacitated structures. Therefore we can expect that attempting to

eliminate trees in the more highly connected designs may incur a higher cost penalty.
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Figure 3.9: The usage of “true” degree-3 trees vs. degree-2 linear segments in the pure
p-tree designs, represented by the number of structure copies used

3.4 Hybrid p-Tree and p-Cycle Designs

3.4.1 Motivation

We have already seen that it is difficult to design pure p-tree networks using “complete”

sets of trees as candidates (i.e., the entire set of trees under certain size and nodal degree

limitations), because the size of the set of trees that is required even to obtain a feasible

design is in some cases impractically large. Furthermore, even in cases where designs

can be obtained, these designs are impractically inefficient. A solution to both of these

problems is to hybridize p-trees with an architecture that uses both manageably-sized and

efficient sets of candidate structures, such as p-cycles. If a feasible p-cycle design exists for

a certain set of candidate cycles, then a design with equal or lesser cost is also guaranteed

to exist when the solver is presented with the option of improving on the cycle-only design

by using trees for protection as well. In this way, the hybrid tree/cycle designs can be

viewed as a method that uses p-trees as a supplement to p-cycles. Considering the problems

with using pure p-trees encountered above, this may be the best way to view tree-based

architectures going forward.
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The other benefit of solving for hybrid tree/cycle designs is that it provides a fair, objec-

tive way of making comparisons between the two architectures. The exercise is completely

free from human intervention; the ILP solver itself is the one that discriminates between

trees and cycles by simply determining how many of each belong in an optimal network

design. After the solver determines this, analysis can be performed on the composition of

the resulting design to draw conclusions about the strengths and weaknesses of each archi-

tecture. It is, in essence, a way of having the two types of structures “compete” with each

other on an even playing field in order to determine how they each contribute to efficient

span protection.

3.4.2 Method and Test Cases

To reiterate, as mentioned above, the design method involves using the same model as

before (from Section 3.2.1), and populating the set P with both candidate cycles and candi-

date trees. The solver then uses these structures to come up with a solution including some

combination of both p-cycles and p-trees. Using this method, hybrid designs were found

for all of the test cases used for the pure span p-tree architecture designs. As mentioned in

Section 3.2.1, this was accomplished by simply including both trees and cycles in the set of

candidate structures for the standard p-cycle SCP ILP model. The candidate sets given to

the model for each of the tests were formed by combining the tree and cycle candidate sets

from both of the corresponding pure architecture tests. In other words, all network cycles

were used, as well as all trees containing 7 or fewer spans and with a nodal degree limit of

3.

3.4.3 Results and Analysis

None of the hybrid designs were able to surpass the efficiency of the pure p-cycle designs

by more than 1.6%. Therefore p-trees seem to be totally outclassed by p-cycles for span

protection. Despite this fact, some of the optimal designs did contain significant numbers

of trees (up to 33%, 73 tree copies out of a total of 200 capacitated structures, in the 20

node, 36 span network). This means that even though trees are not efficient in general,

it is possible for select p-trees in select problem instances to be used in a way that is no

worse than the use of p-cycles for the same problem instance. There is some interest in
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inspecting these trees to see if they have any common characteristics that identify them as

the best examples of p-trees. Before doing so, however, we will describe some experiments

that were performed to ensure that the presence of trees in these designs was necessary to

achieve optimality and not a result of the solver choosing among equivalent-cost optimal

designs. Performing this check first lets us analyze the chosen trees with certainty that

their selection for inclusion in the network design over p-cycles represents a cost-reducing,

rather than arbitrary, decision by the solver.

3.4.4 Further Experiments and Results

We have seen that some optimal hybrid designs were able to use a large number of p-trees,

though they did not significantly improve on pure p-cycle designs. This leads us to suspect

the possibility that, due to the large variety of choices provided to the solver because of

the large size of the set of candidate trees, many designs of equivalent minimum cost may

actually exist, some of which use a significantly larger number of p-trees than others. To

test this possibility, the previous tests were run again using a model with a slightly modified

objective function:

Minimize

∑
j∈S

C j · s j−α ·∑
k∈T

nk (3.4)

Where T is the subset of P that consists of all trees in P. This transforms the model

into a bicriteria formulation that minimizes the network cost while also trying to maximize

the total number of trees used in the design. The value of α sets the trade-off between

network cost and total tree count. In our tests the value of α was set to 1. Because the

costs of the network designs involved were all significantly greater than 1, this tells the

solver to find designs with essentially the same costs as the designs found in the previous

experiment, only using the greatest number of trees possible. Therefore this experiment

tests for the existence of the postulated equivalent-cost designs with more trees by trying

to solve directly for them. If, however, the resulting designs have the same cost with the

same number of trees and cycles, we can be sure that the designs are unique.

The designs produced by this experiment, however, were almost exactly equivalent to

those produced by the unmodified model. Only one design used more trees than the orig-

inal, and even then it used only one more tree with the same number of cycles. Therefore

63



there are no designs that are both cost equivalent to the original designs and that contain a

significantly larger proportion of trees.

The same tests were all performed again one final time using another modified objective

function:

Minimize

∑
j∈S

C j · s j +α ·∑
k∈T

nk (3.5)

This is identical to the last objective function except that the tree-weighting term is

given a positive sign instead of a negative sign. This means that when α is set to some

small positive value (again, 1 in our tests), the formulation now tries to minimize the total

number of trees instead of maximizing it (while still finding an optimal cost solution). The

results of these tests tell us whether or not p-trees can be partially or completely expunged

from optimal hybrid solutions.

However, the results of this test were again almost identical to the original results. The

greatest difference was that in one design (the 20 node, 36 span network) a solution was

found using 71 trees and 129 cycles instead of 73 trees and 127 cycles. Also, one design

(the 20 node, 31 span network) actually used one more tree than the design found with the

original model. The explanation for this anomaly is that the default mipgap of the solver,

although very small, is nonzero. Thus the solver was able to come within this very small

mipgap in this anomalous case while still using more trees than in the original solution,

and terminated. However, all other cases solved to complete optimality (0% mipgap at

termination) and thus this one trial is the only anomalous case.

This one anomaly does not affect our conclusion that there do not exist cost-equivalent

designs that contain fewer trees than the original hybrid designs. Combined with the results

of the last test, we may conclude that the minimum cost hybrid designs for these networks

are unique and represent the true optimal proportion of trees to cycles to attain networks of

absolute minimum cost.

3.4.5 Visualization of Efficient p-Trees

Because the uniqueness of the optimal hybrid designs has been established, we can con-

clude that the p-trees that are present in these designs are in some sense “as efficient” as
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p-cycles, even if it is only in the context of these specific solutions. Therefore the struc-

ture of these trees merits investigation to determine if any traits of “good” trees can be

abstracted from their commonalities.

The trees from the hybrid designs were extracted and drawn on top of the network

topology diagram using an automated process. In these (and other structure diagrams in-

cluded in this thesis), the structures themselves (i.e., p-trees or p-cycles) are indicated by

the solid blue lines, while the spans they protect are drawn using dashed lines of various

colours. These diagrams are included in Appendix C. The most obvious feature of this

set of diagrams is that in all but two of the cases the “trees” are actually only degree-2

segments. This is quite different from the pure p-tree design case, in which the proportion

of true trees was normally quite large, with segments being in the minority. Therefore it

seems that adding p-cycles to the mix of structures has the effect of changing the relative

efficiency of segments versus true trees. In the presence of the generally superior p-cycles,

segments must have characteristics that enable them to remain attractive for occasional use

more often than the degree-3 trees. We will return to this idea later when we investigate

segments in more detail.

In addition, all of the segments used in the hybrid designs are used for the protection of

only a single span. In other words, they function in effect as dedicated 1:1 APS arrange-

ments, only used for span protection instead of end-to-end path protection. Even though

they could be closed with only the addition of a single span to transform them into p-cycles,

the details of the design problems must be such that in these specific cases the added ben-

efits of p-cycle protection would not make up for the addition of even this small amount

of spare capacity. This idea is supported by the observation that none of these degree-2

segments, if closed into cycles by adding a single span, would have any straddling spans.

Straddling spans are generally thought to be essential to the high efficiency of p-cycles

[Stam97]. Therefore, these 1:1 APS segments represent cases in which the transition from

p-tree protection to p-cycles is the least attractive. This is evidence that APS-type dedicated

protection arrangements can in fact be an important part of mesh-based efficient precon-

nected network designs. These results are supported by those found prior in [WuYe08];

even though their experiments are less thorough and more limited in scope than ours, their

diagrams clearly show the same pattern of protection provided mostly by cycles, with var-
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(a) Tree from the 15 node, 25 span network (b) Tree from the 15 node, 27 span network

Figure 3.10: The two “true” trees from the hybrid tree/cycle designs

ious dedicated APS-like segments for a small number of spans.

We now turn to an analysis of the two “true” trees (trees containing junctions of degree-

3 or higher) in the network designs, in order to determine why these and only these trees

are used in the optimal designs. These trees are found in the designs of the 25 span and

27 span networks from the 15 node network family. Diagrams of these trees can be found

in Appendix C with the rest, but are also given in Figure 3.10 (a) and (b) respectively.

Looking first at tree (a), we see that it is used to protect two spans. One of these spans uses

a protection path in the tree consisting of only two hops, the smallest protection path that

a span can ever use. The other span, however, uses a long path that traverses the diameter

of the network twice over. We can see that this span must take such a long path because

no shorter paths exist between its end-nodes once the span has failed. Now, consider if this

span was protected by a segment composed only of this protection path, instead of the tree

in Figure 3.10 (a). In other words, consider if the extra span that is attached at the degree-3

junction at the bottom of the tree were removed. In this case, adding the protected span

itself to the segment would create a p-cycle that could protect not only the original span but

also all of the six newly on-cycle spans with only a small increase in cost.

In contrast, consider the choice actually made by the solver, in which the segment is

not closed but instead has an extra span added to make it a tree. This span only allows for

the protection of one more span, as opposed to the 6 on-cycle protection relationships that
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would be gained if the segment were closed. So we can see that both our hypothetical cycle

and the tree in Figure 3.10 (a) have the same approximate cost, yet theoretically the cycle

can protect more capacity. It is simply the peculiarities of this network design that make this

a priori inefficient decision into an efficient one in this specific context. However, we can

understand why the tree protection is more likely to be used in this case by making a few

observations. First of all, notice that, as with the 1:1 APS segments discussed before, our

theoretical p-cycle would not have any straddling spans and therefore would not be able to

achieve the characteristic p-cycle 2-to-1 protection relationship for any span. Also notice

that the upper protected span cannot be protected as a straddler of any cycle. No matter

what structure protects it, it will do so in a 1-to-1 manner. Therefore we can explain the

use of this tree not by the fact that it is so intrinsically efficient, but because the conditions

for p-cycle use in this situation are so poor that the a priori estimated efficiency of a tree

becomes comparable.

Moving to Figure 3.10 (b), we can see that the presence of 2 additional spans in this net-

work means that many shorter protection paths are introduced for the upper protected span

from Figure 3.10 (a). This explains the fact that the same near-segment type of protection is

no longer used for this span, and that there is some p-cycle that protects it instead. But the

tree that is present instead is a smaller tree that still makes up a subset of the spans in tree

(a). This tree, like tree (a), also protects 2 spans: the lower span protected by (a) as well as a

span that is present in the 27 span network but not the 25 span network. Interestingly, these

two spans are the first and fourth most highly capacitated (with working capacity) spans

in the network design. Therefore it makes sense to use a very efficient structure to protect

them. By inspection, we can easily find many p-cycles that could protect these two spans.

However, in order to protect either of them as straddling spans, the cycles would have to be

large, due to the nature of the topology, negating the advantage of 2-to-1 protection. It is

possible to protect them as on-cycle spans with smaller p-cycles, but to do so would still be

less efficient than the pictured tree. For example, the smallest cycle containing both spans

is still 4 spans long, while the pictured tree contains only 3. Therefore p-cycle use is again

made difficult in this case, this time due to a combination of topological and working path

routing factors.

So in both cases, as with the degree-2 segments, we can explain the use of degree-3 trees
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over cycles as a result of situations in which the usual advantages of p-cycle protection are

negated. In these exceptional situations, the solver is occasionally able to make a gain

by reaching outside the set of p-cycles to consider structures that normally would not be

very efficient. However, we have seen that p-cycles are sufficient for cost-optimal span

protection in the vast majority of cases.

3.5 Pure p-Segment and p-Tree Design Comparison

3.5.1 Motivation

We saw initially that a significant proportion of the structures in a pure p-tree design can ac-

tually be degree-2 linear segments, especially in sparser network topologies. Furthermore,

the experiments in the previous Section have shown that the majority of “trees” chosen for

inclusion in hybrid p-cycle/p-tree designs are in fact only degree-2 structures, like span-

protecting PXTs. To distinguish these structures from PXTs (which have been established

in the literature as path-protecting structures only) and to extend terminology from existing

literature, we shall call these span-protecting segments p-segments.

The fact that trees of degree higher than 2 are seldom used in the hybrids raises the

possibility that the addition of more complex trees on top of simple p-segments might not

provide much of a cost improvement. In other words, most of the efficiency of p-trees

may in fact be achievable using only the significantly smaller set of p-segments, just as we

have seen that the maximum possible efficiency of the overall preconnected span protection

concept is encapsulated almost entirely in the relatively small set of p-cycles. To investigate

this possibility, pure p-segment designs were compared with p-tree designs.

3.5.2 Experimental Method

The pure p-tree network design experiments were repeated with p-segments in place of

p-trees. This was easily accomplished by using the same tree generation algorithm as with

the p-tree tests, only with the tree degree limit set to 2. The size limit was again set to 7

for all tests, the same as in the pure p-tree designs, in order to reproduce the previous test

set with the all degree-3 structures removed. These tests let us determine the difference

created by the presence or absence of the set of tree structures containing degree-3 nodes.
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Figure 3.11: Spare capacity costs of p-tree and p-segment designs for the 15 node network
family

After this, another experiment was performed in which the size limit for segments was

increased in order to give the p-segment design problems a number of candidate segments

roughly equal to the number of trees in the p-tree design problems. To accomplish this, a

size limit of 9 spans was used for all of the 15 node test networks and a limit of 10 spans

was used for the 20 node test networks. The results of these tests were used to compare

the overall efficiency of segments versus full trees when given comparable numbers of

candidate structures.

3.5.3 Results and Analysis

3.5.3.1 p-Segments vs. p-Trees with the Same Size Limit

Plots of the costs of the p-segment and p-tree designs for the 15 node and 20 node networks

are shown in Figure 3.11 and Figure 3.12, respectively. Because the p-segment designs only

use a degree-2 subset of the structures used in the p-tree designs, each p-segment design

must always be either the same cost or more expensive than the p-tree design for the same

network.

However, the results show that p-segments are not very much worse at all. The 15 node
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Figure 3.12: Spare capacity costs of p-tree and p-segment designs for the 20 node network
family

p-segment designs are at most only 6% more costly than the corresponding p-tree designs.

The corresponding figure for the 20 node designs is only 8.6%. Note that this is true even

for the highly connected networks, even though it was found earlier that segments make

up only 10 to 15% of the total number of capacitated structures in the p-tree designs for

these networks. Therefore, even though tree-based designs are not efficient in general (for

example, as compared to p-cycles, as we have seen), most of the efficiency they do have

seems to be able to be carried by the degree-2 structures. This is even more significant when

one considers that degree-2 structures consist of only about 15% to 20% of the candidate

structures provided to the design problems for the most highly connected test networks,

where high nodal degree causes the size of the set of purely degree-3 structures to increase

the most dramatically.

3.5.3.2 p-Segments vs. p-Trees with Similar Candidate Structure Set Sizes

Figure 3.13 and Figure 3.14 show the results of the second experiment in which the length

limit on the p-segments was increased such that the numbers of candidate segments were

approximately equal to the number of candidate trees in the p-tree designs. First of all, the
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p-segment curves extend further than the p-tree curves because feasible solutions exist for

more of the networks. This is because of the higher size limit on candidate structures. As

we have stated, limiting the size of trees to 7 spans means that, in the sparser networks, there

are no trees that are able to protect some of the network’s spans. When the size limit for the

segments is extended to 9 (in the 20 node networks) or 10 (in the 15 node networks), far

more spans can be protected in the sparser networks. Therefore in the p-segment case, the

only networks containing unprotectable spans are the 15 node network with 16 spans and

the 20 node networks with 21 and 22 spans. This is another advantage of p-segments over

p-trees; the smaller size of the structure set means that longer structures can be included

more easily.

Whereas the first test evaluated the contribution of p-trees on top of p-segments, this

second test is more of a competition between the two architectures, due to the equalized

size of the structure sets. The p-segment designs are not allowed to use degree-3 structures,

but they make up for this by using more degree-2 structures. Therefore it is not guaranteed

that one or the other will be more efficient in any particular case. However, in the networks

where comparable p-tree designs exist, we see that the p-segment designs usually have a

lower cost than the corresponding p-tree designs. In the set of 15 node networks, the p-

segment designs are between 3.6% and 11.4% less costly than their corresponding p-tree

designs. In the set of 20 node networks, the p-segment designs are up to 11% less costly.

However, it must be noted that one of the p-segment designs (for the most dense 40 span

network) is actually 4.6% more costly.

As mentioned above, the method used to produce appropriately sized candidate p-

segment sets (experimentally varying the structure size limit) was only approximate. There-

fore the numbers of candidate structures used in each pair of p-tree and p-segment tests for

any given network were never exactly the same. Figure 3.15 and Figure 3.16 show the

numbers of such structures used on a logarithmic scale for the 15 node and 20 node designs

respectively. The sizes of the two sets are quite close over all of the 15 node networks,

but differ more for the 20 node networks. It is more difficult to attain a close match in

the 20 node case because the curves have significantly different shapes; the curve for trees

“bulges” up more in the middle, so that the sizes of the sets are more similar at the extremes

of nodal degree and differ more in the intermediately sized networks. However, in no case
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Figure 3.13: Comparison of p-segment and p-tree designs (for the 15 node network family)
that use approximately the same number of candidate structures

Figure 3.14: Comparison of p-segment and p-tree designs (for the 20 node network family)
that use approximately the same number of candidate structures

72



Figure 3.15: The sizes of the candidate structure sets used by the p-segment and p-tree
designs with equalized candidate set sizes for the 15 node network family (Figure 3.13)

is the set of segments for the 20 degree networks larger than the set of trees. This makes

it even more remarkable that p-segments are usually able to outperform p-trees in these

networks.

These two exercises have demonstrated that using true p-trees instead of just degree-2

p-segments represents a type of diminishing returns. Increasing the degree limit on the

structures significantly increases the size of the possible structure set, but only allows a

small (5% to 10%) decrease in cost. Furthermore, replacing the degree-3 structures with

roughly the same number of larger degree-2 structures decreases cost in almost all cases.

This is fairly conclusive evidence that structures that utilize degree-3 preconnections are

not generally efficient when used for span protection.

3.6 Hybrid p-Segment and p-Cycle Designs

3.6.1 Motivation

Now that we have examined the performance of p-segments, both as a pure architecture

and when included as a subset of the p-tree architecture, we would like to investigate the

performance of p-segments when hybridized with p-cycles, both to compare the p-segment
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Figure 3.16: The sizes of the candidate structure sets used by the p-segment and p-tree
designs with equalized candidate set sizes for the 20 node network family (Figure 3.14)

and p-cycle architectures and to make comparisons with the previous p-tree/p-cycle hybrid

designs.

3.6.2 Test Cases

The test cases for this experiment consisted of all of the p-segment design problems from

the previous Section, with the set of all network cycles added as candidate structures in

every case. In other words, hybrid designs were computed for all of the 15 node networks

using p-segment size limits of both 7 and 9 spans, and for all of the 20 node networks using

p-segment size limits of both 7 and 10 spans.

3.6.3 Results and Analysis
3.6.3.1 p-Segment vs. p-Tree Hybrids with the Same Size Limit

First we will perform a comparison between the p-segment/p-cycle and p-tree/p-cycle hy-

brid designs that both use size limits of 7 for their segments/trees respectively. It turns out

that the differences between the design costs of these two sets of results are very small, and

in fact zero in most cases. First of all, any p-tree hybrid designs that did not actually use

any degree-3 trees are not affected by the shift to p-segment-only hybridization, as all of
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the original structures used are either segments or cycles, and thus the same designs remain

optimal in the p-segment-restricted problem specification. Therefore the only networks for

which differences should exist are the ones that used degree-3 trees in the original hybrids,

i.e., the 25 and 27 span networks in the 15 node network family. Looking at the results,

there is indeed a difference between the p-tree and p-segment hybrid design costs for both

networks. However, the difference in the 25 span case is so minuscule that it would not

be noticeable were the differences in most of the other networks not identically zero; the

difference in this case is only approximately 1.2 out of a total cost of about 183000. The

difference in the 27 span case is similarly small: about 100 out of 141000.

Both pairs of designs merit in-depth investigation to determine what rearrangements of

structures were performed to find designs of such similar cost. To do this, we again used an

automated process to draw diagrams of all the structures (both cycles and trees/segments)

used in the designs. The structure diagrams are given in Appendix D. We have already

discussed the p-cycle/p-tree designs and included their tree diagrams in Appendix C, but

Appendix D gives complete diagrams for these two networks in particular, including all

of their structures, trees and cycles alike. For the 25 span network, even though the two

types of hybrid designs differ by less than a thousandth of a percent in cost, they use quite

different sets of p-cycles, sharing only 4 unique p-cycles in common (out of 11 and 10

total unique cycles for the p-segment and p-tree design respectively). As for trees, the p-

tree hybrid uses only a single degree-3 tree and a single segment, which are topologically

similar; they differ only by a single additional span. The p-segment hybrid uses this same

segment, meaning that the it remained efficient despite significant changes to the p-cycle

configuration. Additionally, together the tree and segment from the p-tree design contribute

a total of 15 protection units to the protected span that they share in common (due to their

topological similarity). Then, when the tree is made unavailable in the p-segment design,

the number of copies of the segment is increased to 15, meaning that 15 units of non-cycle

protection is used in both designs to protect the same span. In retrospect, this is what

we would expect, as the poor efficiency of trees and segments in general means that very

few different possibilities for efficient tree-based protection will exist in a given topology.

Therefore we would expect “tree-like” protection to occur to a similar degree in differently

constrained designs for the same topology.
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In the 27 span case, the p-tree design contained copies of a single degree-3 tree (the

same tree already depicted in Figure 3.10 (b)). The p-segment hybrid design, however, is

composed entirely of cycles. We might have expected that the solver would be able to find

a segment very similar in structure to the tree and use that instead, as we saw in the 25

node p-tree and p-segment hybrid designs. But this is not the case, so evidently we cannot

always expect that the presence of a tree in a design indicates some fundamental deficiency

of cycles that requires a non-cyclical structure to correct. The lack of a transition from a tree

to a similar segment in this case likely cannot be given a simplified, intuitive explanation;

the use of other structures to make up for the lack of trees depends entirely on the complex

interactions of the protection capabilities of both the entire set of segments and the set of

cycles.

3.6.3.2 p-Segment vs. p-Tree Hybrids with Similar Candidate Structure Set Sizes

As noted in the previous Section, all p-segment hybrids were identical to their correspond-

ing p-tree hybrid where the p-tree hybrid did not actually contain any true p-trees. We

have seen that the 25 span and 27 span p-tree hybrids from the 15 node family do con-

tain true p-trees. However, the p-segment hybrids for these two networks do not change

even when the size of the candidate segment set is increased such that the p-tree and p-

segment hybrid problems are given roughly the same number of structures. In other words,

the added number of larger segments provides no benefit to the hybrid design problems in

these cases. Therefore no new comparisons may be made; all the same observations made

in the previous Sections apply, as the designs under consideration are identical.

3.6.3.3 p-Segment Hybrid Designs Using Different Numbers of Candidate Segments

We can compare the two types of segment designs to each other in order to gain some

insight into how increasing the number of segments provided to the hybrid problem can

increase the efficiency of the designs obtained. It was mentioned previously that no im-

provement was obtained in the two specific cases of the 25 and 27 span networks in the

15 node network family; this is also the case for 28 out of the 35 total test cases. Even in

cases where an improvement in cost is found, it never exceeds 0.14%. This is unsurpris-

ing, considering that the improvement that the addition of segments/trees provided to basic
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p-cycles in the first place was already very small (at most 1.6% as mentioned earlier). The

fact that this experiment shows diminishing returns as the segment size limit is increased

suggests that there is no significantly higher level of efficiency that is attainable with larger

segments that would make them competitive with p-cycles in terms of efficiency. If this is

in fact true in certain cases, it must occur at a higher segment length limit.

We have tested this possibility explicitly in 4 out of the 35 test cases: the 20 span and 26

span networks in the 15 node family, and the 25 span and 36 span networks in the 20 node

family. This set includes both a sparsely connected and richly connected network from both

families, so as to allow us to test the effect of the p-segment length limit under different

conditions without having to repeat the test on every one of the 35 different networks.

For each of the test networks, the p-segment/p-cycle hybrid design problem was solved

multiple times, each time with a different size limit for the p-segments. In the 15 node/20

span network, the 15 node/26 span network, and the 20 node/25 span network, the problem

was solved for p-segment length limits from 5 to 14, 5 to 14, and 5 to 19 respectively. These

ranges extend all the way up to the maximum p-segment length in the respective networks;

in other words, increasing the limit further would not admit any more p-segments to the

design problem, as segments that long cannot exist in these networks. In the 20 node/36

span network, tests were run using length limits from 5 to only 10, as this network is so

highly connected that increasing the limit past this point results in a problem so large that

it is unsolvable.

The results given in Table 3.1 show that long p-segments are not useful in p-cycle-

hybridized designs. In the two sparse networks, any segments longer than only 6 hops are

not useful at all for increasing the efficiency of the design. When the networks are more

connected, the maximum useful length limit increases, demonstrating that segments are

slightly more useful in more densely connected networks. This is likely because a trail’s

efficiency relative to that of a cycle increases with connectivity; the relative incremental

gain of adding an extra straddling span on a trail is higher than for a cycle because the

cycle protects all of its on-cycle spans as well

Regardless, in none of the tests were any but the shortest of segments useful for im-

proving design cost. In contrast, both small and large p-cycles were useful in all of the

designs. We have seen already that tree- or segment-like protection supplements p-cycles
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Network
15 node,
20 span

15 node,
26 span

20 node,
25 span

20 node,
36 span

Maximum improvement
from increasing length

limit

0.055% 0.030% 0.32% 0.30%

Maximum length limit that
provides cost improvement

6 7 6 9

Number of cycles in
design problem

43 985 32 9800

Shortest p-cycle used in
lowest cost solution

7 hops 8 hops 4 hops 9 hops

Largest p-cycle used in
lowest cost solution

12 hops 15 hops 18 hops 19 hops

Table 3.1: The effect of the p-segment length limit on the costs of p-segment/p-cycle hybrid
designs

by performing protection in very specialized cases where the usual efficiency of p-cycles

does not apply. This new information tells us that, more specifically, p-segments tend to

outperform p-cycles in these specialized cases only when the p-segments are short. We

might have suspected this from the fact that long p-segments suffer (in comparison to p-

cycles) from the lack of on-segment protection relationships, but this investigation provides

experimental confirmation of our intuition.

This result is especially significant given that the same effect does not occur in the pure

p-segment designs. As we found earlier, in the pure designs increasing the length limit

on the set of segments from 7 to even just 9 or 10 decreases the cost in most networks

to the point that the segment designs are better than p-tree designs found using equally

sized candidate structure sets. In the hybrid designs, however, increasing the length limit

has almost no effect, as Table 3.1 shows. Therefore this is another instance in which the

presence of p-cycles changes the properties of other structures in a relative sense. We

have seen previously that the addition of p-cycles to the p-tree design problem increases

the usefulness of the simpler p-segments over true degree-3 p-trees, and now we see that

adding p-cycles to p-segments alone has the effect of making them shorter, simplifying the

segments even further.
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3.7 Summary and Future Work

In this Chapter we have created and examined minimum cost designs for span-protecting

p-trees and p-segments, both with and without hybridization with p-cycles. The results

have shown that degree-3 trees by themselves are extremely inefficient in comparison with

p-cycles. Furthermore, even when trees are hybridized with p-cycles, the resulting designs

show only an incremental improvement over designs that use p-cycles alone. This, com-

bined with the fact that the set of trees is orders of magnitude larger than the set of cycles,

and the fact that the implementation of preconnected degree-3 branches is a questionable

concept in the first place, means that span-protecting p-trees are not an attractive standalone

protection architecture. Their implementation should only really be considered as a sup-

plement to more efficient or simple schemes in cases where efficiency is of such paramount

importance that the incremental cost savings would outweigh all of the difficulties.

However, trees remain interesting from a theoretical perspective because they are able

to improve on p-cycle protection in select instances. We have found that p-trees are used in-

stead of p-cycles only in peculiar situations where it can be seen that the normal advantages

of p-cycles (namely on-cycle protection and the 2:1 straddling span protection relationship)

do not apply. Furthermore, we have found that when hybridized with p-cycles, the type of

trees that are used in the solutions is for the most part limited to the subset of degree-2

segments. Further experiments have shown that these segments tend to be both short and

dedicated to the protection of a single span. Therefore the main purpose of “tree” protec-

tion in p-cycle hybrid designs is to provide small patches of dedicated APS-like protection

in cases where efficient p-cycle protection for those spans cannot be found.

Perhaps the most interesting higher-level result we have obtained from these experi-

ments is the observation that the hybridization of p-tree structures with p-cycles funda-

mentally changes the relative attractiveness of certain tree structures over others. In the

degree-3 p-tree case, adding p-cycles results in the dominance of segments over degree-

3 structures in the solution, whereas in pure p-tree designs degree-3 structures are in the

majority. Then, even when the design is limited to using degree-2 segments, the presence

of p-cycles prevents all but the shortest of segments from being useful, whereas segments

of all lengths are present in pure designs. These observations can be tied together by the
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stipulation that p-cycles are such good protection structures by themselves that any type

of supplementation with other structures requires only the simplest and smallest of non-

cycle-based additions or changes. Interestingly, this observation agrees with statements in

[LiYa03] concerning the efficiency of trees, namely that the authors found that it was best to

construct their spanning trees with fewer branches, rather than more, by using a depth-first

search. Furthermore, in Figure 1 of [LiYa03], which shows two example spanning trees,

the two trees are both examples of segments that would form (Hamiltonian) p-cycles, save

for the absence of a single span in both cases. Therefore our observed hierarchy of cycles

over segments over trees is not without precedent in the literature, though in reference to a

concept quite different from our own p-trees.

The next step in the research of span-protecting p-trees would be to expand the network

design problem to consider joint placement of working and spare capacity (i.e., JCP as

opposed to SCP design). While the results obtained so far all indicate that trees are very

inefficient, it is possible that they have more significant benefits when working routing is

allowed to deviate from the shortest-path routing that is assumed in the above SCP formu-

lations. The other logical direction in which to proceed (and which this thesis will take in

Chapter 5) is to consider trees for the protection of end-to-end paths instead of just indi-

vidual spans. Previous work, along with the work presented in the following Chapter, has

shown that linear segment-based path protection using PXTs can actually be a relatively

cost-effective approach, even when compared to efficient schemes like p-cycles. Therefore

tree-based protection may also become more viable when applied to path protection.
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Chapter 4

Characterization of
Pre-Cross-Connected Trails

4.1 Introduction

This Chapter describes our investigations into the concept of pre-cross-connected trails, or

PXTs. First we present the PXT concept. Unlike p-trees, PXTs stood as a well-defined,

preexisting architecture before our investigations, so we begin by explaining the concept

as it stood prior to our research. We then continue our investigations using the established

greedy heuristic design method to more fully determine its implications. We then present

our own design approach based on ILP and demonstrate how it is able to produce designs

with superior properties. Finally we introduce some variations on the ILP approach and

investigate their implications on the efficiency and other properties of PXT designs.1

4.1.1 Background

4.1.1.1 PXT Definition

PXTs are linear (degree-2) preconnected path-protecting structures. A PXT consists of

a series of spare capacity units (spare channels) that are cross-connected to each other

forming a trail through the network. A trail is formally defined in graph theory as an

alternating sequence of connected nodes and edges through a graph such that all edges

1Some of the work in this Chapter has been published in the Journal of Optical Networking:
A. Grue, W. D. Grover, “Characterization of pre-cross-connected trails for optical mesh network protec-

tion,” Journal of Optical Networking, vol. 5, no. 6, June 2006, pp. 493-508.
A. Grue, W. D. Grover, “Improved method for survivable network design based on pre-cross-connected

trails,” Journal of Optical Networking, vol. 6, no. 2, February 2007, pp. 200-216.
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are distinct. In the optical network context, a single span may contain multiple channels

(or edges) so while a PXT may not contain a single channel more than once, it may cross

a single span several times, as long as each traversal of this span is through a different

channel within that span. This is unlike p-cycles, which are generally restricted to being

simple cycles (i.e., cycles that do not cross the same node or span more than once). Their

topological freedom allows PXTs to become quite complex.

A PXT protects a failed working path by providing an end-to-end protection path that is

made out of a segment of the PXT’s preconnected capacity. Under the assumption of single

span failures only, a PXT is allowed to protect multiple working paths as long as any two

working paths that can be affected by the same span failure do not use the same protection

path on the PXT (i.e., as long as contention for spare capacity does not occur). Generally, a

restorable PXT-based network design consists of many PXTs that provide complementary

coverage to the network’s working paths such that the network is fully restorable in the

case of the failure of any single network span. PXTs may also be used to protect against

node failures, but the work in this Chapter is focused exclusively on span failures.

4.1.1.2 Previous PXT Literature

The PXT definition given above was first introduced into the literature in [ChCh04]. The

same work also outlined the description of an algorithm to perform PXT-based network de-

sign. This algorithm is a spare capacity placement algorithm only, meaning that it produces

a spare capacity assignment and preconnection plan based on a fixed description of work-

ing routing given in the input. The specification of the algorithm given in [ChCh04] states

that the input working routing is done as shortest-path routing, which is the usual assump-

tion for spare capacity assignment methods. However, in theory the same PXT-building

algorithm could be used for any arbitrary working routing assignment. In fact, we will see

later that it is necessary in some situations to deviate from shortest-path routing in order to

allow basic 100% single span failure restorability.

The proposed algorithm is also developed as an online algorithm, meaning that it is

meant to be an algorithm that runs during the operation of the network to handle the pro-

tection of connection requests as they arrive dynamically. This is notably different from

the common “green-fields” assumption used in much p-cycle design literature, for exam-
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ple, under which entire networks are designed at once for the protection of a static list of

demands. The algorithm from [ChCh04] instead performs a type of incremental design,

extending existing PXTs or creating new ones to protect newly arrived demands in a low

cost way. It does not, however, perform extensive revisions of the PXT arrangement in

order to use the absolute minimum possible capacity at all times. Therefore its use does

not generally result in minimum cost PXT designs. Instead, it is a greedy algorithm that

attempts to produce a design with relatively low cost by following some simple heuristics.

In addition to providing an extensive description of the greedy heuristic PXT design

algorithm, [ChCh04] gives some initial results for the amount of spare capacity used by

designs produced by this algorithm for a small collection of test networks and demand

patterns, and compares them against comparable results for 1+1 APS and so-called “Path

Protection”. However, the authors do not go into much depth in this section, devoting most

of their space towards an explanation of the algorithm. Therefore many questions about

the details of the PXT designs go unanswered: the simple capacity numbers given do not

reveal any information about the underlying PXT structures used by the designs. Subse-

quently, the authors of [MaHa07] challenged the methodology of [ChCh04], providing a

comparison between the PXT heuristic and other protection approaches that was both more

thorough and more fair, but they did not investigate the properties of the PXT designs or

any new approaches to designing PXT networks.

Shortly after the publication of [ChCh04], [KiLu04] was published, introducing a con-

cept identical to PXTs under the name “Streams”, seemingly independent of and unknown

to the authors of [ChCh04]. Even more interestingly, [KiLu04] also introduces a design

algorithm that mirrors that from [ChCh04] almost exactly. Therefore the same concept

seems to have been co-discovered by these two independent groups almost simultaneously.

However, [ChCh04] was published earlier, so we will continue to use the terminology and

assumptions from this work going forward.

There is other work that deals with the concept of linear cross-connected segments

while pre-dating the concept of PXTs as proposed in [ChCh04]. Specifically, [GrMa98,

GrMa94, MaGr97] were written on the topic of performing partial preconnection of spare

capacity in pre-computed restorable network designs in order to maximize the average

speed of any restoration response. Although these works experiment with forming lin-
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ear segment of preconnected capacity, they cannot be called PXTs, as dynamic cross-

connections may be made between segments, or broken within segments, in response to

failure in order to form protection paths. The idea in this case is to use knowledge about

failure responses ahead of time to form preconnections where they will likely be needed in

order to speed up the restoration response of the network. The idea of total preconnection

as required for transparent networks was not yet introduced at this point.

The contributions to PXT research since the original paper have been sparse. [LiHa06]

investigates using PXT protection to enable QoP classes with differentiated protection

speeds. [WuYe08] addresses a concept that the authors call “PXTs”, but which are ac-

tually span-protecting segments, which we would call “p-segments” in the context of this

thesis. Therefore this work is discussed in the literature review of Chapter 3.

4.1.2 Goals and Objectives

The over-arching goal of our PXT investigations was to understand the PXT architecture

more thoroughly to the degree that we would be able to make comparisons to other ar-

chitecture, both novel (p-trees) and well-known (p-cycles). More specific goals included

discovering the fundamental, characteristic capacity efficiency of PXTs (as opposed to the

efficiency achieved by specific algorithms), determining the structural properties of effi-

cient PXT designs, and developing a better PXT design method.

4.2 Heuristic Approach to PXT Design

4.2.1 Goals and Objectives

The impetus for our study of PXTs was the publication of [ChCh04]. As mentioned, it

presented a PXT design algorithm without delving very deeply into the fundamental prop-

erties of PXTs. Therefore our first objective was to re-implement the PXT design algorithm

described in [ChCh04] and inspect the designs generated by this method in more detail. A

secondary objective was to test modifications to the algorithm to determine if it could be

improved (either in terms of producing more efficient designs or designs with other desir-

able properties).
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4.2.2 Heuristic PXT Algorithm Overview

This Section contains a description of our implementation of the greedy heuristic PXT

design algorithm. The overview that follows is simply our own reinterpretation of the ex-

planation given in [ChCh04], and is included both to demonstrate our understanding of the

concept and to clarify our implementation in the case that there are any subtle differences

between our interpretation and the implementation used by the original authors.

This heuristic is based on a greedy iterative approach that protects the unit demands of

the network one-by-one, attempting to minimize the increase in spare capacity at each step.

Each step consists of protecting an as-yet unprotected demand, considered in the context

of already developed PXTs for prior demands. This may involve using only existing PXTs

as they stand, extending certain PXTs, or even creating entirely new PXTs. This step-by-

step approach is suited to the protection of demands that are provisioned dynamically as

they arrive throughout the operational life of the network. This is opposed to the static

“green fields” design approach, in which all demands are known (or projections of them

are made) at design time, and are used to provision the initial network state (which may

then be upgraded if sufficient demand growth is experienced in the future). Reference

[ChCh04] refers to its algorithm as an “online” algorithm because it is run continuously

during network operation (the green fields approach would usually be taken by “offline”

algorithms only).

The PXT algorithm proceeds as follows. Initially the network design contains no PXTs

and zero spare capacity. To protect the first demand, an initial PXT is created to serve as

its dedicated backup path (the working path and its PXT together form the logical equiva-

lent of a dedicated 1:1 APS arrangement). In subsequent iterations, the algorithm attempts

to use existing PXTs in the network to protect other demands so as to minimize the in-

cremental capacity required for each demand, extending the existing PXTs with additional

spare channels if necessary. When extending existing PXTs is not the minimum cost option

to protect the current demand, a new dedicated APS-equivalent PXT is generated for that

demand and the design is iteratively developed from there. When all demands have been

protected in this way, the result is a set of PXTs that defines an amount of spare capacity

on each span and the pre-cross-connections that must be made such that PXTs are formed

which are able to completely protect against all combinations of working path failures that
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result from the failure of a single span.

The output of the algorithm is deterministic and does not contain randomization at any

point (the choice of equal-cost protection decisions at each step might be arbitrary, but can

still be implemented deterministically). However, the final output will depend on the order

in which the demands are protected. It will produce the same final result each time it is

run as long as the same demands are considered for protection in the same order. Because

this ordering for the green fields problem is arbitrary but may affect the solution quality,

the algorithm can be run multiple times, each with a different randomized demand order,

when used in the offline sense, in order to avoid any artifacts that may be associated with a

particular demand sequence.

4.2.2.1 Working Routing Algorithm

Some words should be given to a brief description of the algorithm that we use to generate

the working routes for demands before the protection algorithm described above can even

begin. The algorithm is a form of minimum cost routing, modified slightly to reflect the

requirements of the PXT architecture. Specifically, the PXT concept assumes that a demand

has a single predefined protection path for its working path, embedded within the PXT that

protects it. For this to be possible there must always exist at least one route between the

end-nodes of a demand that is disjoint from its working route. But if working routing is

done via a naïve shortest-path approach, this may not be possible. Our working routing

algorithm is modified slightly to use shortest working routes except in those cases where

this would lead to what is called the “trap,” where taking the shortest path would cause

there to be no other disjoint routes between the end-nodes to use as a protection path. In

these cases, Bhandari’s algorithm [Bhan99] (also described in [Grov03], pp. 210-211) is

used to find the shortest combination of a working route and one other disjoint route that

could act as a backup.

An example of the “trap” topology is illustrated in Figure 4.1. Assume span costs are

proportional to distance, so the straight-through path in this topology is strictly the shortest

path. Figure 4.1 (b) shows what would happen using naïve shortest-path routing. We can

see here that a shortest-path working route eliminates any other route between the input

and output. In Figure 4.1 (c), we can make protection possible by choosing a slightly
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(a) The trap topology

(b) Falling into the trap

(c) Routing using the shortest cycle

Figure 4.1: Working routing for PXTs when a trap topology exists

“suboptimal” working path. We also see that the two paths here form the shortest cycle

(here the only cycle) containing the input and output nodes. Another way to view the

“trap” problem in the context of this particular design algorithm is that in each step the

greedy heuristic PXT design algorithm removes the current working path from the graph to

search for the lowest cost disjoint protection path for that working path. In trap situations,

this would result in disconnecting the graph between the endpoints of the demand if we

used naïve shortest-path routing.

4.2.3 Spare Capacity Efficiency of Greedy Heuristic PXT Designs

4.2.3.1 Experimental Method

Our first activity upon completing and testing the program was to use it to produce PXT

designs for a variety of network topologies and demand patterns in order to characterize

its capacity efficiency. We first attempted to reproduce the test cases used in [ChCh04] as

a check to ensure that our implementation matched that of the original authors as closely

as possible, before moving on to other test suites. Our interest at this point is only in the

overall costs of the final designs produced by this algorithm for the protection of a fixed,
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predetermined set of demands; the intermediate designs produced with each single step of

the algorithm will not be considered here.

Reproduction of Original Test Suite

Reference [ChCh04] gives results in the form of network spare capacity costs for the final

network designs produced by the algorithm for a set of 6 test networks, each under 3 differ-

ent demand patterns. Unfortunately, these tests are not completely reproducible using the

given information. The first problem is that one of the demand pattern called “unbalanced”

is a randomized demand pattern, and precise numbers are not given. Therefore we have

only computed results using the first 2 types of demand pattern, “uniform” and “neighbor”.

The “uniform” pattern consists of a constant amount of 5 units of demand between every

node pair. The “neighbor” demand pattern consists of 10 units of demand between each

pair of adjacent nodes only. Network designs were calculated using each of these 2 demand

patterns for each of the 6 test network topologies given.

Another factor that hinders reproducibility is the fact that the tests given in [ChCh04]

present their demands to the algorithm in an unpublished order. Therefore, the best we can

do to attempt to reproduce these tests is to perform a variety of randomized trials and then

compare the overall average result to the values given in [ChCh04]. While this will not

totally confirm whether or not our implementation is correct, a close agreement between

the values should give us some confidence in our interpretation of the given algorithm.

Therefore we solved for 10 network designs per network topology and demand pattern

combination, and we have reported both the average network spare capacity cost and the

range of capacity costs (minimum and maximum) for this set of 10 designs.

Additional Test Suite

The set of test cases used in [ChCh04], in addition to being small, is also not very repre-

sentative of real networks. Real topologies and demand patterns are much more irregular

than those used for most of the tests. Therefore, in order to gain more of an idea about how

the algorithm would perform in real networks, we performed tests using the algorithm on a

suite of realistic topologies and demand patterns.

This test suite consisted of each of the networks from 3 network families, containing
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15, 20, and 25 nodes respectively (see Appendix A.1.1, Appendix A.1.2, and Appendix

A.1.3 respectively for topology details). Each network family was given its own demand

pattern that was used for all networks within that family. To create these 3 demand patterns,

a uniformly randomized value of demand between 1 and 10 was assigned to each node pair.

5 randomized demand orders were calculated for each of these three demand patterns. Each

of these 5 demand orders was then used by the heuristic to solve for a PXT network design

for each of the 61 test networks.

4.2.3.2 Results and Analysis

Reproduction of Original Test Suite

Table 4.1 gives our results for each of the 12 test cases. It also includes the values reported

in [ChCh04] for reference. Although in most test cases the average capacity cost value

of our 10 test runs is remarkably close to the original values, it does differ markedly (by

almost 70%) in one case, marked with italics (K6,6). The reason for the discrepancy in

this case is unknown. Given the striking agreement in all other cases, even the case that

uses the same K6,6 topology with a different demand pattern, it is possible that there was

simply a typographical error in the original paper. This is supported by the fact that the

two values differ by almost exactly 100; a single digit may have mistyped. On the other

hand, it is possible that there is some detail of the specific demand pattern and network

topology combination in this case that is unusually sensitive to the possible differences in

implementation details between the two programs (e.g., the way they handle the arbitrary

choice between equal-cost decisions). Whatever the case, the overall good agreement for

the rest of our tests gives us confidence in the accuracy of this implementation.

Additional Test Suite

Figure 4.2 is a plot of the spare capacity costs of the designs calculated for the networks

from the 15 node, 20 node, and 25 node network families. Each PXT data point actually

represents an average cost over the 5 different randomized demand orders for that test case.

The spare capacity costs of corresponding optimal p-cycle designs for the same networks

are also given for comparison. From the plot, we can see that the PXT designs are at least

comparable to the p-cycle designs, and are in most cases actually more efficient. The cost
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Results Presented in
[ChCh04]

Results Obtained by Our
Implementation (10 randomized

trials)
Network/Demand

Pattern
Working
Capacity

Spare
Capacity

Working
Capacity

Average
Spare

Capacity

Spare
Capacity

Range
UNIFORM

Demand Pattern
12-cycle + 3 edges 840 894 840 884.1 874 to 894

3 x 4 grid 770 587 770 590.7 564 to 611
Tietze’s graph 645 362 645 366.9 350 to 384

Murakami & Kim 600 533 600 510.2 505 to 517
Icosahedron 540 178 540 183.7 174 to 196

K6,6 480 139 480 236.2 230 to 241
NEIGHBOR

Demand Pattern
12-cycle + 3 edges 150 189 150 196.7 187 to 209

3 x 4 grid 170 236 170 233.1 225 to 242
Tietze’s graph 180 206 180 201.1 170 to 225

Murakami & Kim 240 233 240 234.4 225 to 243
Icosahedron 300 205 300 199.5 174 to 224

K6,6 360 188 360 171.6 161 to 189

Table 4.1: Our greedy heuristic test results compared with those from [ChCh04]
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Figure 4.2: Costs of greedy heuristic PXT designs compared with optimal p-cycle designs

differences between the two are more visible in Figure 4.3, which plots the cost ratio of

PXT to p-cycle designs.

A feature not shown by the graph is that the costs for each network design hardly vary at

all over the 5 different demand orders. Over all test cases, the greatest discrepancy between

a single one of the 5 trials and the average is only 3.3%. On average, the worst of the 5 trials

only differs from the average by 1.1%. Therefore it seems that even though the designs are

order-dependent, the costs of these designs are not very sensitive to variations in demand

order at all. This result explains why we did not see much of a difference between our

results and those from [ChCh04] in the previous Section, even though we could not know

their exact demand orderings.

The similarity in cost between our random trials intuitively suggests that there may be

a deeper similarity in the details of the PXT configurations themselves. To investigate this

possibility, we examined the correlation between the protection routing of the demands in

each of the 5 different designs for each network. For each of the 10 unique combinations

of 2 designs chosen from the set of 5, we calculated the number of demand units that use
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Figure 4.3: Ratio of PXT to p-Cycle spare capacity costs for data from Figure 4.2

the same protection paths in both designs. This value is averaged over the 10 two-design

combinations and then divided by the total number of demand units in the demand pattern

in order to obtain the values for the data points in Figure 4.4. These data points represent

an approximate metric for the average correlation between protection routing of all pairs

of the 5 randomized trials for each test case. The metric is approximate because it does not

take into account the possible differences between the sharing of protection paths between

different demands, meaning that it reports a value that we can consider to be higher than

the “true” similarity between designs. For example, the 25 span networks in the 25 node

family all report 100% similarity in protection routing (the network is simply a ring, so the

protection possibilities are so limited that the heuristic chooses the same paths every time).

However, the network designs have slightly different costs because of the aforementioned

differences in PXT sharing.

Despite this limitation, we can use this metric to show that the heuristic protects the

demand set in remarkably similar ways over a variety of randomized runs. Figure 4.4

shows a relatively consistent pattern of demand routing correlation over the entire range
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Figure 4.4: Correlation between the protection routing of pairs of designs from 5 random-
ized trials of the greedy PXT heuristic

of nodal degrees for each of the 3 network families. Even in the most dense networks,

the correlation does not drop below 30%, meaning that even in the worst case 1/3 of the

demands in the network still share the same protection routing between any two of the five

designs. This observation is reinforced by Figure 4.5, which shows the degree of correlation

across all five random trials (i.e., the percentage of protection paths that remain constant

across all five designs). Even here, the amount of similarity is striking. The most obvious

explanation for this is the fact that, under this algorithm, there are certain demands that will

usually generate new 1:1 APS-equivalent PXTs as their protection paths instead of sharing

protection with existing PXTs.2 Because these paths are found via shortest-path search,

they will always be the same for the same demand in different designs (even if these 1:1

APS PXTs are extended later by the algorithm, the original protection path will remain the

same). Therefore, if the number of demands that generate their own 1:1 APS PXTs is large

enough, any two given designs should have a large number of these demands (and thus

2Note that just because a demand generates a 1:1 APS PXT for its protection, this does not mean that
this PXT will remain as-is in the final network design. As subsequent demands are protected, this PXT may
be extended or merged with other PXTs such that it shares its protection capacity between the protection of
multiple different demands.
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Figure 4.5: Correlation between the protection routing of all 5 randomized trials of the
greedy PXT heuristic

protection paths) in common.

Further investigation shows that the number of demands for which a new 1:1 APS PXT

is generated for protection is indeed significant. The average figure over each of the 5 tests

cases for all of the 15 node networks is 19.7% (fraction of demand volume for which a

new APS-equivalent PXT is generated out of total demand volume), 21.8% for the 20 node

networks, and 26.4% for the 25 node networks. Furthermore, the protection routing sim-

ilarity between 1:1 APS PXT-creating demands makes up a significant proportion of the

total protection similarity seen between each of the test cases. For example, when con-

sidering similarities between each of the 10 combinations of 2 test runs for each network,

the similarity between APS-creating demands makes up between 15% and 45% of the total

similarity in the set of 15 node networks, between 18% and 39% in the 20 node networks,

and between 24% and 56% in the 25 node networks. In most cases the percentage of sim-

ilarity contributed by APS-creating demands exceeds the proportion of these demands out

of the entire demand set volume, indicating that they are more likely to be similar to each

other than other demands, as we predicted. Furthermore, the percentage of similarity con-

tributed by APS-creating demands tends to increase as we generate and compare more test
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runs for a particular network, indicating that the consistency of routing for APS-creating

demands is higher in general than for other demands.

To clarify with an example, Figure 4.6 gives the salient results for just the 20 node,

40 span test network. This Figure shows the average number of similarly routed demands

when the comparison is made between sets of 2, 3, 4, and 5 of the 5 different designs

calculated for this network. One curve gives these values for the case where all demands are

considered, while the other gives values for only APS-creating demands. The data points

for a comparison set size of “1” express self-similarity of the designs, and therefore simply

represent the total number of demands in the network and average number of APS-creating

demands across the 5 test cases, respectively. This plot shows the increasing proportion

of similarly routed APS-creating demands as larger sets of designs are compared together.

APS-creating demands make up an average of 17% of the total demand volume over the

5 different test runs, but when comparing these test runs in pairs, we find that on average

38% of the similarity between pairs is caused by APS-creating demands. When comparing

triplets of designs, this figure increases to 45%, and comparing sets of 4 and 5 designs raises

this figure to 50% and 54%, respectively. We can see from the plot that this effect is caused

by the fact that the similarity in protection routing decreases drastically, but the number of

similar APS-creating demands remains roughly the same. For this amount of similarity to

exist, most of the same demands must be choosing to create new 1:1 APS PXTs in each of

the test cases. This Figure only shows the results for the 20 node, 40 span test network, but

the same pattern is seen across all of the test cases. This is quite significant because demand

order is randomized between every trial, meaning that for some demands the creation of a

1:1 APS PXT is generally the most efficient incremental protection solution, no matter what

the current state of the PXT configuration of the network is or what demands have already

been protected. This idea will be returned to in a later Section, in which we investigate the

PXT configuration of a design produced by the greedy heuristic algorithm in detail.

4.2.3.3 Conclusions

This exercise has shown us what we can expect, in terms of both spare capacity efficiency

as well as consistency of the results, from designs produced from the greedy heuristic.

Many test cases over three separate network families have shown that the greedy PXT
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Figure 4.6: Proportion of protection routing correlation contributed by APS-generating
demands in the 20 node 40 span network

heuristic algorithm produces designs with efficiencies on par with those of p-cycle designs,

and sometimes significantly better in cases where the network is both large and sparsely

connected. As for consistency, we have seen that consistency in the protection routing of

demands, particularly demands that produce new 1:1 APS PXTs for their protection in the

course of the algorithm, means that the efficiency of the designs does not vary wildly even

when the algorithm is assigned to protect the same set of demands in different, randomized

orders. This result suggests a regularity to the greedy heuristic design algorithm that is

unexpected in the face of its order-dependence.

4.2.4 Improving the Results of the Greedy Heuristic Using Simulated
Annealing

4.2.4.1 Motivation

At this point we have seen that using the greedy heuristic algorithm (as presented in Section

4.2.2) to design PXT-based networks results in designs with capacity efficiencies compa-

rable to or better than those of p-cycle designs for the same networks. Despite this, the

algorithm is fundamentally suboptimal, relying on a simplification of the total design prob-

96



lem into a series of incremental protection subproblems. Therefore we suspect that there

will in general exist a method to further improve the cost of these solutions. Unfortunately,

the fully optimal problem will likely always elude our grasp due to its size, which means

that we will never be able to know with certainty how far the designs are from optimal.

However, we can try to use some standard heuristic optimization methods (metaheuristics)

to improve our sub-optimal designs, both for the practical benefits and also to gain further

insight into how close to optimal we can expect to come using the original greedy heuristic

alone.

For these purposes we applied the metaheuristic called simulated annealing. Simulated

annealing is a process that performs a succession of small random modifications to a start-

ing solution in an attempt to find improvements to a given objective function. Random

changes are either accepted, in which case the process continues using the new, changed

solution, or rejected, in which case the new solution is discarded and another randomized

modification is attempted. Changes that worsen the value of the objective function may be

accepted, but the process is biased such that changes that result in a local improvement are

more likely to be accepted. Furthermore, the chance of accepting locally negative changes

decreases as the process goes on, until the process only accepts local improvements and

eventually stagnates in a local minimum/maximum when it can find none. The hope is

that this local minimum/maximum is close to the global minimum/maximum. The algo-

rithm gets its name from the process of annealing metal, in which metal is heated and then

gradually cooled. This process increases the strength of the metal by allowing the crystal

structure to slowly shift into a regular pattern. In much the same way, simulated annealing

first attempts to escape local minima by allowing a more random search but then slowly

“cools down” its search to more closely approximate a standard gradient search as time

passes, ending with a final “crystallized” solution that is hopefully an improvement over

the initial solution.

The following Section describes our experiments with adding a simulated annealing

process to the end of the greedy heuristic, such that the result of the original algorithm is the

starting point for the annealing process. We examine two different approaches to annealing

and present some results that show how much simulated annealing can be expected to

improve on the original solution.
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4.2.4.2 Implementation

In order to implement simulated annealing for a specific problem, a number of components

of the metaheuristic must be defined in relation to the elements of that problem. These

components are the objective function, the random change algorithm, and the annealing

schedule.

The objective function is the same concept as in the integer linear program; it is simply

the cost of the spare capacity used in the PXT design, which we want to minimize.

The random change algorithm is the algorithm that is used to make the incremental

random changes to the current solution to the problem (in our case, a PXT arrangement for

the network). This is the most complex part of the implementation of simulated annealing

for the problem of PXT design. This is because this process must both change the design

significantly enough that the search can make progress through the search space, but at the

same time the result of each change must remain a valid PXT design that provides 100%

single span failure restorability to the network. Therefore we cannot simply add, remove,

or change the spans on PXTs at random because doing so would almost certainly result in a

design where certain demands were not protected. We could still follow this approach if we

followed up each random change with a repair step in which the design was repaired back

to full 100% restorability, but that approach would likely result in a random change step

that is too coarse to produce good results on our problem. Instead, the current functionality

of the greedy heuristic itself can be altered slightly to obtain the type of change function

we are looking for.

The fundamental operation of the greedy heuristic is the incremental protection step,

in which a single-unit unprotected demand is protected using a least-cost combination of

existing PXTs and newly allocated spare capacity. We can modify this operation to create

a suitable random change function by first running this process in reverse on a number

of demands to “unprotect” them, and then running the incremental protection step again

for each of the unprotected demands in a different, randomized order. In other words,

first the selected demands are removed from their respective PXTs and any spare capacity

units on sections of these PXTs that become unused as a result are deallocated. This may

result in fracturing certain PXTs into smaller parts, or even the elimination of some PXTs

entirely. Then the demands are protected again, one by one, by using the existing PXTs or
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by allocating new spare capacity, as in the original greedy heuristic algorithm. It is possible

that this process may result in a design equivalent to the original, but in general we can

expect that the PXT configuration will be at least slightly different because the environment

of existing PXTs that each demand is protected under will likely be different than when that

demand was incrementally protected in the original run of the greedy heuristic.

The degree of change produced by this process will depend on the number of demands

on which we perform this re-protection operation. In the most extreme case, where it is

allowed to re-protect every demand in the network, a single step of this randomization

procedure actually represents an entirely new execution of the original greedy heuristic.

Such an extreme case would violate the purpose of the random change algorithm, which is

to introduce minor changes to the design that explore the search space of the problem, but

we will experiment with less extreme variations on the magnitude of this parameter in the

experiments that follow.

Finally, the annealing schedule of a simulated annealing implementation refers to the

way in which the “cooling” process is handled. This refers both to the change in the ac-

ceptance rate of negative (i.e., cost-increasing) random changes over time, as well as the

method used to decide when to terminate the annealing process. As with most aspects of a

metaheuristic, there is no de facto correct choice for the annealing schedule, but there are

some standard methods that have been found to work well for a variety of problems. One

of the simplest methods, and the method we use in the following experiments, is to use a

threshold variable T that represents the largest possible change in the objective function

for which a random change will be accepted. In other words, all negative (cost increasing)

changes that produce a change in the objective function lower than this value will be ac-

cepted. Changes that improve the objective function are always accepted. The “cooling” of

the process is implemented by establishing a schedule by which T is decreased over time,

reducing the degree to which the simulation will explore negative changes in order to avoid

local minima. The simulation is then terminated when T reaches a predefined value T0. For

our experiments, we follow a simple schedule of reducing T by a predefined amount ∆T

every n steps. The parameters T , T0, ∆T , and n can be varied to observe their effects on

the improvements found by the annealing simulation. This approach has the advantage that

termination will occur in a constant, pre-determined number of steps
⌈

T−T0
∆T

⌉
·n.
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4.2.4.3 Initial Tests: a Degenerate Case

Before performing a full investigation into the effects of variations in the parameters on

the simulated annealing process, we ran some simple tests using a degenerate case of the

simulated annealing algorithm in which the number of demands re-protected was limited

to one. This is a degenerative case because, under this restriction, the random change

function will never produce a design with a higher cost than the old design. Because the

demand protection function from the greedy heuristic algorithm finds the protection path

with absolute minimum cost, there is no way for it to find a more expensive way to protect

the demand than was used originally. At the very least it can always use the same path

that was used originally, resulting in an unchanged design. This guarantee breaks down

in the multiple demand re-protection case because the demands are re-protected in a new,

randomized order that has the possibility to create a worse design than the original.

The ability to avoid local minima in the search space by making locally bad decisions

is a fundamental part of a simulated annealing implementation, so we cannot use the term

“simulated annealing” to describe a process that uses this degenerative form of the change

function. Instead, it is simply a brute force search that successively polls random demands

and determines if their protection paths can be reduced in cost by re-routing them individ-

ually. This is similar to how a human being might inspect a design manually to determine

if any obvious improvements could be made to the protection routing. We ran this search

on a large variety of test networks and demand patterns in order to determine how much

progress we might typically expect to make by using this straightforward method. This set

of tests included all of the topology and demand pattern combinations used in [ChCh04]

and previously repeated in Section 4.2.3.1. Also used for the tests were the most and least

highly connected networks from each of the 15 node, 20 node, and 25 node network fam-

ilies (i.e., the 16 span and 30 span networks from the 15 node family, the 21 span and 40

span networks from the 20 node family, and the 25 span and 50 span networks from the 25

node family). These networks were chosen because they are more realistic than most of the

test networks from [ChCh04], and therefore their results will likely represent more closely

the benefits that could be expected from using this algorithm in practice. For all of the

chosen test cases, the search was performed on all of the designs found for these test cases

in Section 4.2.3.2, i.e., the process was run on each of the 10 randomized demand order
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Network Topology Demand
Pattern

Average %
Improve-

ment

Average Time
for Search as %

of Heuristic
Runtime

12-cycle + 3 edges Uniform 0.83 56
3 x 4 grid Uniform 1.22 50

Tietze’s graph Uniform 1.01 47
Murakami & Kim Uniform 0.45 50

Icosahedron Uniform 1.42 32
K6,6 Uniform 0.64 29

12-cycle + 3 edges Neighbor 0.25 61
3 x 4 grid Neighbor 0.04 94

Tietze’s graph Neighbor 1.29 59
Murakami & Kim Neighbor 1.19 52

Icosahedron Neighbor 2.26 35
K6,6 Neighbor 0.23 20

15 node 16 span Random 0.30 44
15 node 30 span Random 0.25 29
20 node 21 span Random 0.11 21
20 node 40 span Random 0.34 16
25 node 25 span Random 0.08 14
25 node 50 span Random 0.19 12

Table 4.2: Design improvements obtained with simulated annealing degenerate case (1
demand random change function)

designs produced for the 12 test cases from [ChCh04] and on each of the 5 randomized

demand order designs produced for the networks from the network families.

The results of the degenerate annealing search algorithm are given in Table 4.2. The

values that are reported are averages over all of the designs that were used for each test

case. The average amount of time required by the search procedure is also given in the

Table as a percentage of the time required to generate the original design, in order to give

an idea of the time cost required to obtain these improvements. Overall, the performance

of this search is not impressive. In the best case, it improves a design on average by a little

over 2%, at the cost of an additional 35% of runtime.
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Test d T T0 4T n
1 2 10000 1 1000 10
2 10 10000 1 1000 10
3 100 10000 1 1000 10
4 100 1000 1 100 10
5 100 100 1 10 10

Table 4.3: Parameter values for simulated annealing tests

4.2.4.4 Full Tests

The initial tests do not give us much confidence in the ability of this approach to find im-

provements to the PXT design. However, it is possible that limiting the algorithm to making

such small incremental changes causes it to become trapped in local minima of the search

space. We conducted further tests using the full range of the capabilities of the simulated

annealing algorithm to determine if some combination of parameters would allow the algo-

rithm to make some significant improvements. Unfortunately, as with most metaheuristic

search algorithms, there is no way to analytically determine the best parameter settings for

simulated annealing ahead of time. Furthermore, the large number of degrees of freedom

in the parameters of the algorithm (e.g., T , T0,4T , and n as discussed above as well as d,

the number of demands re-protected in each step) means that making an exhaustive scan

of the parameter space is impractical. So the experiments that follow take a trial-and-error

approach, covering a wide range of parameter combinations while at the same time making

some educated guesses as to which combinations are more likely to work well than others,

so as to limit the number of experiments to a practical level.

As part of the effort to limit the number of test cases, we decided to stop using the 6

original test networks from [ChCh04] and limit ourselves to only the networks from our

network families. The networks from [ChCh04] are, after all, not representative of real

networks, and so results on these networks would not be as valuable in terms of extrapolat-

ing the results to real network design scenarios. We limit ourselves to the maximally and

minimally connected networks from our three network families. The combinations of the

values of the d, T , T0,4T , n parameters that we used for the tests are given in Table 4.3.

The results for these test cases are given in Table 4.4. Each “% improvement” result

is an average over 5 test cases. Tests 1, 2, and 3 investigate the effect of increasing the d
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Network Average % Improvement
Test 1 Test 2 Test 3 Test 4 Test 5

15 nodes, 16 spans 0.56 1.16 2.59 2.77 2.90
15 nodes, 30 spans 0.32 0.53 0.99 1.60 1.76
20 nodes, 21 spans 0.13 0.28 1.20 1.20 0.98
20 nodes, 40 spans 0.31 0.83 2.43 2.54 2.32
25 nodes, 25 spans 0.11 0.30 0.71 1.56 1.48
25 nodes, 50 spans 0.22 0.66 2.28 2.33 1.99

Table 4.4: Design improvements obtained with full simulated annealing under various an-
nealing parameter combinations

parameter. We can see that there is a uniform improvement between test 1 and 2, and again

between 2 and 3, where the only difference is an increased number of re-protected demands

in each step. However, the time cost for achieving these improvements is extreme. Figure

4.7 shows the cost improvements for tests 1, 2, and 3 from Table 4.4 plotted against the cor-

responding runtime for the annealing process, given as a percentage of the time required

for the initial greedy heuristic (e.g., a value of 100% corresponds to a doubling of the orig-

inal heuristic runtime to achieve the new result). Runtime is plotted on a logarithmic axis

to correspond to the exponential increase in d over our 3 tests. The plot shows that this

corresponds to roughly an exponential increase in runtime; the data points are clustered

horizontally around approximately 20%, 100%, and 1000% of the original algorithm run-

time for d=2, 10, and 100 respectively. This is something we would expect assuming that

the re-protection time for a single working path were a constant time operation. Sustaining

this exponential increase in d was beyond our capability, as the runtimes were already al-

most impractically long at this point (nearly a day for the longest test). Therefore we did

not investigate increasing d any further.

Note that at d = 100 we are already protecting a large fraction of the network in each

step. The 15 node family has a demand pattern with only 518 working paths, which means

we are effectively re-doing 20% of the original algorithm for each step, over the course of

100 steps. For the 25 node family this is proportionally less, 100 paths being only about

6% of the 1615 working paths. However, this still means that it is highly likely that each

demand is re-protected several times through the course of the algorithm (a 6% chance

for each demand to be chosen in each of 100 steps means that the chance it has not been
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Figure 4.7: Extra runtime required to achieve improvements to heuristic PXT designs
through simulated annealing by varying the number of re-protected paths per step (pa-
rameter d)

re-protected by the end of the algorithm is less than 0.2%). This gives us confidence that

simulated annealing is exploring the solution space in a significant way at these parameter

values.

As increasing the number of steps (by increasing the ratio of T to4T ) would result in

a further increase in runtime, our fourth and fifth tests investigate the effect of varying the

overall average temperature. Here, we scale down T and4T such that the temperature is

smaller in each step, but the same total number of steps are executed. Test 4 scales down

the values by a factor of 10, and test 5 scales them down by a factor of 100. Test 4 shows

a further minor improvement over all networks, indicating that more tightly controlling

the less advantageous changes has a minor benefit. With test 5, however, the results are

uncertain, with some networks showing a small gain and others showing a small loss.

4.2.4.5 Conclusions

We have seen that simulated annealing can achieve incremental improvements on the ini-

tial designs from the greedy heuristic PXT design algorithm. However, scaling up these
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improvements requires a significant computational investment. In particular, on our test

machine and for this class of networks, achieving anything greater than a 0.5% decrease in

cost generally requires at least a doubling of the runtime of the initial algorithm. Up to a

2.5% decrease is possible, but at runtimes exceeding 10 times that of the original algorithm.

A degenerate case of simulated annealing in which only positive changes are accepted will

complete very quickly but can achieve only at most about 0.3% improvement on realistic

test networks. Overall, it seems that either we require more computational power or a dif-

ferent algorithmic approach altogether to improve upon these PXT designs, or the designs

produced by the heuristic are in fact near-optimal.

4.2.5 Characterization of PXTs Produced by the PXT Heuristic

4.2.5.1 Motivation

Up until this point we have concerned ourselves only with the overall capacity costs of the

designs produced by the PXT heuristic, without taking into account any other properties

of interest. This echoes the superficial treatment given in [ChCh04], and is suitable for

an initial characterization of the general attractiveness of the design algorithm. However,

to understand PXTs more fully, we must answer questions that remain unanswered in the

original work [ChCh04]. For example: How long are the PXTs produced by this algorithm?

How many different PXT structures are required? How often are the PXTs self-looping in

nature? How practical would a network operator find such structures? With PXTs, can a

network operator clearly visualize and control the restored-state routing and path length of

failed working paths? These are unaddressed issues of concern about the practical com-

plexities and operational implications of the PXT proposal in [ChCh04], and they compel

us to perform a more detailed characterization study. The following work was undertaken

to gain insight into the characteristics of the PXT concept; to be able to visualize what the

set of PXTs arising from the design algorithm in [ChCh04] would look like, and appreci-

ate how they would be structured so as to be used in different ways under different failure

scenarios, and so on.
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Figure 4.8: The Murakami & Kim network topology (12 nodes, 24 spans)

4.2.5.2 Experimental Method

This experimental study focuses on the in-depth characterization of the PXTs in a single

network design. For the purposes of this study, the most “realistic” network topology from

[ChCh04] was chosen (Murakami & Kim). The network is shown in Figure 4.8. In order to

limit the number of PXTs produced by the algorithm to a manageable level for our analysis,

the demand pattern contained only 3 units of demand between each node pair. The heuristic

algorithm was used to produce a design for this network using a randomized ordering of

the network’s demands. In addition, the program was run several more times with different

randomized demand orders in order to determine if the design under study was typical in

terms of cost redundancy and therefore roughly representative of the problem, as opposed

to an artifact of one specific demand ordering.

Once the design was obtained, the program’s output was inspected and used to produce

a list of PXTs, along with their structural details (spans and nodes crossed) and lists of the

demands protected by each PXT. This information was used to produce the diagrams in

Appendix E that show the PXTs and the demands they protect overlaid on the topology of

the network. Each PXT has its own diagram, in which the thick blue arrowed line represents

the PXT itself. Where possible, the working paths of the demands the PXT protects are

also drawn as the various coloured lines tipped with circular knobs. This cannot be done

for all PXTs as some of them simply protect too many demand to be illustrated on a single

diagram.
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4.2.5.3 Results

Overview

For later reference, the total cost of working routing for the network was 59,696. In these

and other cost statements, the units are distance-channel counts, i.e., if the lengths of spans

are taken in km then costs are in units of channel-kilometers. The cost of spare capacity

for the heuristic design was 53,591, giving it a (distance-weighted) capacity redundancy of

89.8%. When compared to 5 other randomized trials, the design under study was found

to be quite typical in terms of cost, with the costs of the other designs falling within 10%

of the case selected for detailed inspection. Therefore it is reasonable to study this design

as a representative to draw general conclusions about the nature of PXTs produced by the

algorithm.

For comparative reference purposes, p-cycle and span-restorable mesh designs were

also produced for the same topology and demand pattern. These were perfectly optimal

reference solutions produced with now-standard ILP methods and documented in [Grov03]

or elsewhere (e.g., the p-cycle model is also given in Section 3.2.1). The p-cycle model was

given the complete set of network cycles as candidate p-cycles and the span-restorable mesh

model was given the complete set of restoration routes as candidates, so we can be confident

that these solutions are completely optimal for their respective architectures. The spare

capacity costs were 51,748 (p-cycle) and 46,681 (span-restorable mesh), corresponding to

redundancies of 86.7% and 78.2% respectively. Therefore the PXT heuristic algorithm was

able to approach the efficiency of an optimal p-cycle design within 3% while also providing

the additional desirable property of end-to-end working path protection.

Typical Illustrative Results

As we can see from the detailed portrayal of PXT solutions in Appendix E, some individual

PXTs can be surprisingly complex. An immediate intuitive concern is that these structures

would be quite impractical in the view of most network operators. As [ChCh04] itself

alludes, protection structures should be compact, manageable, and easily visualized and

maintained. Reversion after repair should also be a simple process. PXTs produced by

the heuristic from [ChCh04] can evidently be so complicated that we cannot even fully

represent them and their protected routeset in a single diagram.
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Notwithstanding, we can use the results to demonstrate, for conceptual appreciation,

how PXTs would actually work. To do so, the response of one of the PXTs to an example

span failure is illustrated in Figure 4.9 and Figure 4.10. Figure 4.9 shows how the spare

capacity of a PXT can be broken up into four protection path segments in response to the

failure of a single span. The new coloured lines layered on top of the blue PXT represent

these protection paths (the sections of the PXT that remain blue are not required and remain

unused). Figure 4.10, in turn, separates these protection paths into 4 subfigures and shows

how they are used to protect 4 working paths that are all affected by the span failure. Each

working path is protected end-to-end by one of the protection paths formed out of the

preconnected channels of the PXT.

These illustrations show that even though the PXT is quite convoluted, each failure

causes the preconnected spare capacity in the PXT to be divided up into very simple protec-

tion paths. The convoluted nature of the PXTs is a result of so many protection paths being

shared between many different working paths to achieve capacity efficiency. So indeed, the

PXT concept works, and achieves good capacity efficiency, but it seems to engender ex-

tensive operational complexity in the pre-failure state, the restored re-routing state, and the

post-repair reversion process. This is a significant revelation, especially since the authors

of [ChCh04] motivate their work by a concern about the possible size of p-cycles. The fact

is that in contrast to the PXT of Figure 4.9, which is only one of 31 PXTs in the complete

design and uses 35 hops, the largest possible p-cycle in this network has only 11 hops. (The

Murakami & Kim graph is not Hamiltonian, but if it was then even a design using a single

Hamiltonian p-cycle would require a single structure of only 12 hops to protect the entire

network.)

More practically, the optimal multi-cycle p-cycle design employs eight distinct cycles,

none of which is longer than 10 hops. It may be argued that the methods used to pro-

duce these designs are different (an online algorithm for PXTs and an offline algorithm for

p-cycles), so the results are not comparable. But simple algorithms also exist to update

a p-cycle configuration incrementally with near-optimal efficiency. And because p-cycles

are formed by cross-connecting spare capacity it is possible to recompute and update the

configuration following batches of demand arrivals, keeping always very close to an opti-

mal set of p-cycles (see [Grov03], Chapter 10). In addition, the very first paper on p-cycles
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Figure 4.9: Creation of 4 protection paths in a 35-hop PXT in response to the failure of a
single span (details shown in Figure 4.10)

[GrSt98] outlined an online distributed self-organizing protocol, which would continually

adapt the set of p-cycles to a condition close to that of the corresponding problem solved

optimally with all demands known at the time. It is unlikely, therefore, that the p-cycle

solutions here are significantly different from the set of p-cycles that would be in place

had the demands accumulated incrementally instead. Under known methods, they would

be very similar to the optimal solutions here, and thus clearly very different than the set of

incrementally evolved PXTs from the PXT algorithm of [ChCh04]. Overall, then, this ex-

ercise shows that the PXTs produced by the algorithm from [ChCh04] can be significantly

more complex than the cycles used in comparable p-cycle designs.

Statistical Characterization of the Design

Visual inspection of the PXTs provides some interesting qualitative insights into the nature

of the algorithm, but restorable network design also involves quantitative concerns about

capacity efficiency, operational complexity, and other characteristics. Therefore in this

Section we calculate various metrics of interest for each PXT in the design to support more

quantitative comparison and assessment of the characteristics of PXT designs that may be

significant to network operators. Table 4.5 lists these metrics for each PXT in the design.

The operational significance of some of these measures is discussed below. In addition,

each PXT is assigned a numerical identifier for reference. The metrics abstracted from the
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Figure 4.10: Breakdown of the individual protection paths shown together in Figure 4.9
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designs and appearing in order as follows in Table 4.5 are:

Hops: Length of the PXT in hops.

Length: Physical length of the PXT.

Copies: Number of copies of this PXT placed in the network. In practice this will always

be 1, as the heuristic algorithm internally tracks each PXT individually. Therefore

even if two PXTs end up being exactly the same, the algorithm will consider them as

separate.

Closed: Whether or not the PXT’s tail is preconnected to the head, forming a cyclical

structure like a ring or p-cycle.

Self node-crossings: The number of times the given PXT loops through a node. This is a

significant measure of the complexity of a PXT from a network operator’s point of

view. Note that such looping at intermediate nodes does not imply cyclical closure

of the actual PXT path.

Self span overlaps: The number of times the PXT crosses over a span that it has already

covered.

Number of demands protected by the PXT.

Path-structure coincidence count: The number of spans a PXT has in common with the

working paths of its own protected demands. Spans that are used by more than one

demand are counted multiple times.

Total protected working capacity: The total distance-channel count of working channels

protected by the PXT.

Maximum simultaneous protected path failures: The largest number of protection paths

that can be simultaneously activated within the PXT in response to any single span

failure.

Longest protection path (by hops and length): Length of the longest protection path, by

hops or by actual physical length respectively, used by any of the demands protected

by the PXT.
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Redundancy: This is calculated by dividing the PXT’s own total distance-channel count

product for spare capacity by the total of its protected working capacity.

Several of these metrics characterize factors affecting the complexity of operation of

PXTs as real protection structures in an optical network. The number of self node-crossings

and self span overlaps in a PXT both affect the impact that the failure of a single node or

span may have on the integrity of a single PXT. To an operator they represent the difficulty

of keeping track of information about the PXT throughout its operational life, and espe-

cially through the transition between non-failed and failed states. The specific problems

that network operators may have with PXTs with a large number of self-intersections will

likely vary from operator to operator, and are beyond the scope of this work. However,

considering the fact that modern day network operators are used to simple ring and APS

systems, the comparative step in complexity to massive structures with over 30 hops that

may, for example, cross entire continents multiple times may be perceived as operationally

impossible by many.

The worst case maximum number of simultaneous failures that a PXT protects against

is another metric that has no limit imposed currently in design, but that may be important

to network operators. A PXT that forms a large number of protection paths may need to

perform many switching actions due to a single failure. From the standpoint of individual

protection segments, one could argue that switching is still simple because each segment

will only perform two actions: one at each end-node affected by the failure. However, from

an overall network viewpoint, each PXT is a contiguous optical path that must be broken

up when it is used to protect against failures. This means that large PXTs may require

some type of synchronization to ensure that protection segments on the same PXT do not

interfere with each other when they are brought into use as backup paths. Again, this is

likely system specific and will not be discussed in detail here, but serves as motivation to

reduce this particular metric where possible.

4.2.5.4 Discussion

Complexity Metrics

The metric values in Table 4.5 that represent PXT structural properties reinforce the visual

impression that some PXTs can be very complicated. We might assume that this complexity
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is what allows the number of efficient sharing relationships to be high, but the per-structure

redundancy values show that high complexity does not always correspond to high capacity

efficiency. For example, PXT 15 has 24 self node-crossings but protects 21 demands with

a redundancy of only 83%. This lead us to question the real value of allowing such compli-

cated structures to be considered at all. We thought it might be possible to use an alternate

design method that would greatly restrict the complexity of the PXTs in the design while

still retaining the capacity efficiency of a shared mesh scheme.

Table 4.5 also gives the metric values for the length of the longest protection path seg-

ment obtained from each PXT by any of the demands it protects. From these values we

can see that even in the longer PXTs the complexity of protection paths themselves does

not run away significantly. This is the benefit of a mechanism of the modified Dijkstra’s

algorithm, called span rivalry, that the heuristic uses to enforce the simplicity of protection

paths. This reinforces the earlier statement that even though these PXTs are topologically

complex, they remain operationally simple in some regards.

Undesirability of Span-Looping PXTs in Transparent Optical Networks

Aside from general objections to high complexity in protection structures that ought to be

understandable by human operators, there exists an even stronger objection against looping

PXTs that is based on real technical concerns. This problem arises when such looping

involves a span overlap, as illustrated (using an actual PXT from our heuristic algorithm

solution) in Figure 4.11.

If we assume that all-optical wavelength conversion hardware is unavailable, PXTs in a

transparent optical network must have wavelength continuity over all of their preconnected

spans. Therefore, in a situation in which the PXT crosses any span twice, a double re-

quirement for one of the wavelengths on that span is created, implying that two separate

fibres must be used to support the PXT on the overlapping edge. In other words, these

“span self-looping” PXTs create an absolute requirement for either expensive regeneration

hardware or the multiplication of active fibres used to support the PXT: one extra fibre for

each time a PXT crosses over the same span. Figure 4.12 is a histogram of the minimum

number of fibres required by the heuristic design on each span in the network, as set by

the maximum number of PXT-loopings on each span in our design (assuming sufficient
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Figure 4.11: A PXT that crosses over the same span twice, requiring two separate fibres on
that span to support the operation of two channels with identical wavelengths

wavelengths available on each fibre). The average over all spans is 2.6 fibre pairs per span.

Therefore, in transparent DWDM networks it is clear that a non-looping PXT design would

provide a major capacity savings simply from elimination of the fibre multiplication effect

of span-looping PXTs.

This is an obvious and overwhelming reason to try to prohibit PXTs from ever involving

such self-span overlaps as a result of their looping characteristics, which the algorithm from

[ChCh04] permits, both for efficiency and because it would be more complex to prohibit

this behaviour. Given this observation, it is natural to ask whether it would be practical to

alter the heuristic algorithm itself to restrict the complexity of the PXTs it creates, perhaps

by limiting them to only be simple trails. This turns out not to be so easily effected in

the algorithm. To understand why, we must discuss the modified version of Dijkstra’s

shortest path algorithm that is used in the greedy PXT design heuristic to find the protection

paths for new demands. This algorithm consists of Dijkstra’s original algorithm modified

to include the concept of “rival” spans for the purpose of restricting the protection paths

formed by the algorithm to being simple paths. Intuitively, one might assume that this

mechanism could simply be modified slightly in order to force the overall PXTs to be

simple as well. The most straightforward approach to take would be to add a new criteria
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Figure 4.12: Histogram of the lower bound on the number of fibre pairs on each span
arising from self-span looping characteristics of the PXTs in the heuristic design

for span rivalry, under which spans are rivals if using them both in the protection path for a

demand would result in combining or extending PXTs in such a way that the resulting PXT

would be non-simple.

Unfortunately, although this works for span self-disjointness, this scheme cannot be

made to properly enforce the node-disjointness criterion for simple PXTs. Basically, we

cannot flatly call two PXTs rivals if they contain any nodes in common because PXTs

that share a single end-node are joinable on that end-node without that node being used

twice. Therefore we need to allow rivalry exceptions for PXTs that share a single end-

node. However, if we allow this uniformly then the PXTs may later become joined in a

way that is not through this common node (say through an intermediate PXT or other real

spans in the network). In this case they will overlap on that one node, making the PXT and

any extensions of that PXT non-simple. Therefore, when used to enforce the self node-

disjointness property of simple PXTs, the concept of rivalry becomes conditional on the

order in which the PXTs are joined together. This makes it impossible to implement this

condition within the framework of the greedy heuristic algorithm.

Note, however, that the fibre multiplication problem does not apply to PXTs which

loop only across nodes. That type of PXT is still realizable in a network using only a

single fibre-pair per span, although it may still be operationally complex. We have seen

that enforcing the “span self-disjointness” property by itself, while allowing looping over

nodes, is possible within the given heuristic framework, so we can indeed achieve designs
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Figure 4.13: 1:1 APS-equivalent PXTs from the heuristic design

without fibre multiplication using a modified version of the PXT greedy heuristic, even

though the PXTs will not in general be simple PXTs. We touch briefly on designs that

allow this type of PXT in an experiment in Section 4.4.

PXT Lengths and 1:1 APS-Equivalents in the PXT Design

One marked characteristic of this design is a wide range of PXT lengths (from 289 to 6470).

This is to be expected from the algorithm because its fundamental operation is to extend the

length of PXTs. The algorithm attempts to extend existing PXTs in the network to protect

additional demands, and long PXTs will have a higher chance of containing a protection

path that can protect another demand. Therefore it is likely that already long PXTs will be

made even longer, while short PXTs remain short because extending them to be as efficient

as a longer PXT will generally require a larger relative capacity investment.

An interesting discovery arising from the exercise of visualizing each PXT from the

design solution (Appendix E) is that PXTs at the lowest end of the length spectrum are

actually just instances of dedicated 1:1 APS arrangements. This type of PXT makes up

a significant fraction of the PXTs in the design. The design contains 16 individual (unit

capacity) PXTs (out of a total of 31) of this type. One such PXT is illustrated in Figure

4.13.

In the context of the details of the algorithm, these 1:1 APS-equivalent cases can be

thought of as instances of the “starter” PXTs for a single demand that never lead to any

extension opportunities. In other words, no subsequently protected demands can extend

these PXTs in an efficient manner for their own protection. This is a significant new insight
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Figure 4.14: The distribution of individual PXTs according to their distance-weighted ca-
pacity redundancies in the heuristic design

about PXTs and how they relate to prior 1:1 APS concepts including the suggestion that

APS-equivalent PXTs can be required components of an efficient overall preconnected

network design. This is slightly counter-intuitive because taken individually no 1:1 APS

setup can ever be less than 100% redundant.

Individual PXT Redundancy

The individual PXT redundancy (defined in Section 4.2.5.3 above) is a simple measure of

the efficiency of any individual PXT in an overall network design. Of course, by itself,

it does not take into account the interactions between many different PXTs in the design,

meaning that the optimal design may contain PXTs that individually seem very inefficient,

but are a required part of an efficient complete design. Nevertheless, investigating individ-

ual PXTs in terms of this metric is a useful way of characterizing the design. Figure 4.14

shows how the PXTs are distributed according to their individual redundancies.
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The design contains a group of PXTs over a range of redundancies from 0.6 to 2.2, and

then two distinct groupings in the 2.4-2.8 and 3.2-3.6 ranges. These groups of less efficient

PXTs correspond to the 1:1 APS-equivalents. Apart from these outlying groups, however,

we see that the algorithm generally produces more PXTs with better (lower) individual

redundancies, despite the fact that this is not an explicit goal of the algorithm. Therefore

this metric may be used a priori to roughly approximate the desirability of (longer) PXTs

in the network design.

Need for an Optimization-Based ILP Design Method

At this point our research established a real need for a different type of PXT design method.

The reasons are twofold. First of all, it is preferable that protection structures be compact,

manageable, and easily visualized and maintained. We have also outlined the undesirability

of looping PXTs in a network where wavelength continuity is necessary. The PXT heuristic

does not provide a simple way to control these measures. Secondly, the existing algorithm

is designed as an online algorithm. It can also be used in an offline manner to solve the

“green fields” design problem, but if used in this way its output will depend on some

arbitrary ordering of demand arrivals. This shows that it is not tailored to the offline design

problem. Therefore we saw a need for an algorithm designed specifically for the offline

case.

Traditionally, the method used to solve the offline design problem has been to write

ILP models expressing the constraints and to use readily available commercial programs to

solve these problems. It is also well known that an ILP can provide precise control over the

structures used in a restorable network design (e.g., the p-cycle design model, in which the

candidate p-cycle set is explicitly enumerated and thus can be filtered subject to any number

of criteria that the designer wishes). Therefore we proceeded to apply ILP methods to the

PXT design problem.
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4.3 Optimization-Based Approach to PXT Design

4.3.1 Motivation

As is often the approach when answering basic questions of network science, we initially

only wanted only to use ILP methods to establish a lower bound on the cost of the PXT

architecture. We intended to develop an ILP-based reference model to discover the fun-

damental limits to the PXT concept’s efficiency and find out how close the heuristic from

[ChCh04] could approach truly optimal designs. It occurred to us during the investigation,

however, that an ILP-based approach also provides a practical alternative design method

in its own right, under which the complexity of individual PXT structures can be easily

controlled.

The optimal solution of a complete PXT design problem is very difficult to obtain in

general. The main contributors to the complexity of a formal ILP design model for PXT

network design are the number of distinct trails that exist in a network (especially if looping

is allowed), and the fact that for each such candidate PXT there is a combinatorial explosion

in the number of combinations of demands that the PXT may be able to protect. Of all these

combinations only a small fraction will be valid because any combination of demands

with non-disjoint working routes is not allowed to share protection capacity. Encoding

this restriction in the model requires a constraint for each demand pair/PXT combination,

resulting in a huge number of constraints for even small problems. However, we would be

misguided to allow the complexity of the entire problem, solved to complete optimality,

to distract us from the fact that an ILP model of the same problem, solved with only a

partially-populated set of candidate structures and protectable demand combinations, can

constitute an effective and easily tailored form of heuristic in its own right.

By way of example, the same problem was encountered when formulating the opti-

mization problem for Failure Independent Path-Protecting (FIPP) p-cycles [KoGr05], an-

other preconnected network protection architecture. An ILP model with reduced complex-

ity was developed for FIPP p-cycles in [KoGr05a] by taking the so-called Disjoint Route

Set (DRS) approach, which is applicable to PXT design as well. The DRS algorithm is

a heuristic approach that uses ILP methods. The heuristic aspect is introduced when, in-

stead of considering every possible combination of working routes that could be protected
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(a)

(b) (c)

(d) (e)

Figure 4.15: A PXT (a) and 4 possible DRSs that it could protect ((b) through (e))

by each PXT, we consider for protection only a limited collection of randomly assembled

sets of working routes that are all disjoint from each other. Each of these sets is called a

DRS. Because no single span failure can affect more than one working path in a DRS, it is

impossible for spare capacity contention to occur on the PXT that protects a DRS. Figure

4.15 illustrates the DRS concept by showing a PXT alongside 4 possible combinations of

DRSs that could be protected by it. If the randomly generated set of DRSs for this PXT

consisted of only those shown in the Figure, the solver would have the option of using the

PXT to protect these 4 different combinations of demands only.

Once the DRSs and a set of candidate PXT structures are generated, the ILP model

needs only to assign PXTs to the protection of the DRSs that are present in the generated

set. The DRS generation approach, like the approach of generating a limited set of candi-

date structures, is used to reduce the burden on the solver by reducing the size of an expo-

nentially large set to something manageable at the expense of accepting sub-optimality.

Because this method worked so well for FIPP p-cycles, we decided to adopt it for PXT

design as well. We call this an “optimization-based” heuristic PXT design method because,

even though the resulting designs will not in general be truly optimal, the ILP solver is

used to ground the results against truly optimal solutions in the sense that the results can be

improved in the direction of true optimality by providing the model with a more complete

set of parameters to work with. The following Section describes the DRS-based PXT ILP

model. This model is conceptually identical to the model used for FIPP p-cycles, though
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its use for PXT design is novel.

4.3.2 ILP Model

The DRS-based PXT ILP model is as follows:

ILP Model

Sets:

S The set of spans in the network, indexed by j.

P The set of all candidate PXTs, indexed by k.

C The set of all DRSs, indexed by c.

D The set of demand relations, indexed by r.

Input Parameters:

C j The cost of a unit of capacity (i.e., a single channel) placed on span j.

dr The number of demand units required by relation r.

δ k
j Encodes the spans of a PXT. It is equal to the number of times that PXT k

crosses span j. Can only be 0 or 1 for simple PXTs.

xk
c Encodes the protection relationship between PXT k and DRS c. xk

c = 1 if PXT

k can offer protection for DRS c. xk
c = 0 otherwise.

ζ r
c Encodes the relationship between DRS c and demand pair r. ζ r

c = 1 if DRS c

contains demand r. ζ r
c = 0 otherwise.

β k
r The number of protection paths PXT k can provide to demand pair r. This

can be any integer greater than or equal to zero, as some PXTs may be able to

provide multiple protection paths simultaneously.

Decision Variables:

nk The number of copies of PXT k used in the design.
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nk
c The number of copies of PXT k used to protect DRS c specifically.

s j The number of spare channels allocated on span j in the design.

Objective Function:

Minimize

∑
j∈S

C j · s j (4.1)

Constraints:

dr ≤ ∑
k∈P

∑
c∈C

ζ
r
c · xk

c ·β k
r ·nk

c ∀r ∈ D (4.2)

nk ≥ ∑
c∈C

xk
c ·nk

c ∀k ∈ P,∀c ∈C (4.3)

s j ≥ ∑
k∈P

δ
k
j ·nk ∀ j ∈ S (4.4)

Constraint 4.2 ensures that all the demand between node pair r can be fully protected

by PXTs. Constraint 4.3 ensures that the total number of instances of PXT k provisioned is

equal to the sum of all the requirements for this PXT from each individual DRS. Constraint

4.4 ensures that sufficient spare capacity exists to form all of the PXTs selected by the

design. This model is conceptually identical to the FIPP DRS model recently presented

in [KoGr05a], the only difference being that the set of candidate FIPP p-cycles is simply

replaced with a set of candidate trails for our purposes.

Note that this model comes close to being a complete mathematical representation of

the PXT design problem, but falls short only because of the DRS assumption. In the gen-

eralized design problem, a PXT is allowed to protect sets of non-disjoint working routes

as well, as long as their response to joint failure does not result in capacity contention.

The DRS simplification forces PXTs to protect only sets of disjoint routes. This is de-

sirable from both the standpoint of computational complexity and operational complex-

ity [KoGr05a], but is nonetheless an approximation of the “full” definition of PXTs from

[ChCh04]. Apart from this one assumption, heuristic compromises are introduced only

according to how the parameter sets are formed for a particular numerical instantiation of

the model. While we could theoretically achieve the full efficiency potential of this model

124



by fully populating the candidate sets, in practice this is not possible. Generally the model

will not be usable to obtain completely optimal DRS-protecting PXT designs because (1)

the set of candidate PXTs P provided to the solver will be incomplete (because the set of

all possible trails is unmanageably large; in fact, if trails are allowed to repeat spans and

nodes, it is infinite), and (2) the set of DRSs C provided to the solver will also in general

be incomplete (because the set of all possible DRSs will also be prohibitively large).

4.3.3 Pre-processing to Produce the Model Inputs

A pre-processing data preparation stage is required in order to generate the set of candidate

PXTs, the set of DRSs, and other input parameters. This stage was implemented as a

stand-alone program that accepts user-defined values for the following parameters:

The minimum number of disjoint route sets containing each demand: The DRS gen-

eration algorithm begins by placing a single “seed” route into an initially empty DRS,

and then continues by randomly adding working routes to the DRS that are disjoint

from all the routes currently contained in the DRS. This is done until no more routes

can be added, either because the DRS size limit has been reached or because no more

disjoint routes exist. This process is performed using each demand in the network

in turn as the seed, and is repeated for each seed a number of times that is defined

by this parameter. This ensures that each demand is represented in the given number

of different DRSs at the very least, although it may of course also be added to other

DRSs as part of the DRS generation process for different seed demands. Addition-

ally, a special set of DRSs is generated, independent of the value of this parameter,

which consists of DRSs containing only a single demand. One such DRS is gener-

ated for each demand in the network. This is done to allow the possibility of simple

1:1 dedicated APS options in the solution, if this is optimal. More on 1:1-equivalent

PXTs is explained in the results discussion.

The minimum number of candidate trails to generate for the protection of each DRS:

After the set of candidate DRSs is assembled, candidate trails are generated. To as-

semble this set, each DRS contributes a set of trails that pass through the source and

destination node of each demand in that DRS. A trail in this set may not necessarily
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protect all of the demands of the DRS, because it may not be able to provide disjoint

protection paths to every working path. So, to ensure an adequate number of protec-

tion choices for each demand in the problem, enumeration of these trails continues

until each demand in the DRS is protected by a number of trails equal to or greater

than the value of this parameter. Therefore the number of trails in the set will always

either equal or exceed this value. These trails are generated from shortest to longest,

i.e., first the shortest suitable trail is found, then the second shortest, and so on until

this criterion is met. The reason for choosing short trails is straightforward; a short

trail will be more efficient than a long trail for protecting a given DRS, as it uses less

spare capacity to do so.

The maximum number of working paths in a DRS: It was found in [KoGr05a] that re-

stricting the size of DRSs to a reasonable number of demands reduces complexity

while not having a significant impact on solution efficiency. The maximum size of

any DRS can be limited via this parameter. This control is also of value when overall

service availability is considered in the case of multiple simultaneous failures, as this

is a direct way to limit the total number of protection relationships any individual

PXT will bear.3

The data preparation stage also performs working path routing and working capacity as-

signment. To facilitate comparisons to results for the heuristic from [ChCh04], the ILP-

based heuristic uses the same working path routing for demands.

4.3.4 Experimental Method and Test Cases

The ILP model was used to generate a 100% single span failure restorable network design

for a single test network. The network used was again the 12 node and 24 span (degree-4)

“Murakami & Kim” network topology from Figure 4.8. Span costs were assigned based

on the Euclidean distance between nodes in the network as drawn. The demand pattern

consisted of three unit capacity connection requirements for every node pair in the network.

These are all the same test parameters that were used for the tests of the heuristic in Section

3The point is that although any solution from the above model will be 100% single-failure restorable, the
susceptibility to dual failures, which is what determines availability in a survivable network, depends directly
on how much sharing of protection paths is allowed to occur. (See for example [ScGr04])
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4.2.5.2. As before, this is network design in an offline sense, in which we presume to

know the demand volumes fully ahead of time, and span capacities are assigned without

imposing any pre-determined maximum. However, the same method can also be adapted

as an online algorithm; we touch on this later on. Note that, unlike our tests of the heuristic

that used a single arbitrarily randomized demand order, the ILP model does not have any

inherent ordering or order-dependency on the demands to be protected; protection of the

entire set of demands is considered concurrently as a single overall optimization problem.

The pre-processing program used to populate the data set of the ILP model generated

20 DRSs for each “seed” working route and 20 candidate trails per DRS. Maximum DRS

size was limited to 10 routes. For this step all candidate trails were also constrained to be

simple trails. This both helps to limit the set of candidates to a reasonable size as well as

meets the aim of eliminating non-simple PXTs from the resulting network design. This

particular test network contains a total of 10,922 such trails (i.e., this is the total number of

distinct simple trails that exist between all node pairs). The set of such candidate trails for

the problem was found directly by exhaustive depth-first search. Although we could have

explicitly limited the maximum length of candidate PXTs at this stage as well, we wanted

to produce initial comparative test results using the entire set of “tamed” candidate PXTs

for this graph. In this circumstance, the graph itself limits the maximum hop length of

any PXT for us however. There being 12 nodes, and with no looping allowed, this means

that no candidate PXT in this design will be over 11 hops in length. The ILP model was

implemented in AMPL 9.0 and solved using the CPLEX 9.0 MIP solver. An optimal4

solution was obtained by CPLEX after 2.1 hours.

4.3.5 Results

4.3.5.1 Summary

As in our prior PXT characterization effort, we graphically inspected the tamed PXTs in

the design produced by the ILP model. Diagrammatic portrayals of each PXT in this design

are given in Appendix F, in which the network design is broken down into figures showing

4Use of the term “optimal” in this context refers only to a complete CPLEX termination for this particular
problem tableau (which, as mentioned, is only partially-populated in terms of the DRS options available).
Because the full problem was not solved, the results do not represent a truly optimal PXT design, but rather
an optimal solution of a problem which is an approximation of the full problem.
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each unique PXT along with the working paths that it protects. PXTs are drawn with thick

blue lines with arrows at the ends. The working paths that the PXT protects are illustrated

by the multi-coloured lines that end in circles. The ILP model generates PXT designs by

capacitating each candidate PXT a number of times, so the diagrams also indicate how

many times each PXT is capacitated. Note that the design employs candidate PXT 36

twice in two separate diagrams. This is not simply a two-channel deep instance of the same

PXT used for a common group of demands, but rather the PXT is used twice to protect two

different DRSs. In contrast to the portrayals of the heuristic-generated PXTs (Appendix E)

it can be immediately appreciated why we refer to the PXTs found in the present results as

being “tamed”.

The total cost of working routing was 59,696 (identical to the routing for the heuristic

on this network, as they use an identical algorithm). The units of cost are distance-channel

counts (i.e., if the lengths of spans are taken in km then costs are in units of channel-

kilometers). The cost of spare capacity for the ILP design was 57,476. This gives it a

redundancy of 96.3%, which is 6.5% higher than the redundancy (89.8%) achieved by the

greedy heuristic. This is entirely attributable to the taming restrictions we have now added

(that the solution employ only simple trails as candidate PXTs) and the limitations on DRS

candidates. The result suggests that the restrictions that improve PXT characteristics and

reduce the ILP problem to manageable complexity have a measurable, but not large, effect

on the efficiency achievable with the concept.

To check whether the restricted population of the data sets of the ILP problem was

significantly limiting the efficiency of the design, several more trials were attempted with

parameter values ranging up to 30 DRSs per demand, 40 PXTs per DRS, and a maximum

DRS size of 20 demands. In none of these cases did the redundancy of the resulting de-

sign improve on that of the original design by more than 1%. Therefore we can consider

the ILP-based PXT design to have a network cost redundancy that is close to the best that

can be expected from this approach. In other words, it is indeed the taming restrictions of

non-looping PXTs and DRS-only protection that account for the reduced design efficiency,

and not side-effects introduced by the heuristic compromises that make the design prob-

lem solvable. Although we can only partially populate the problem model, the DRS/PXT

decision alternatives are sufficiently well represented as to be achieving very nearly global
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optimality given the fundamental constraints of this particular model. In addition, these

results confirm that this design is typical in terms of efficiency, and not a statistical out-

lier caused by a set of unusually good or bad randomized choices (i.e., in the randomized

selection of demands for DRS generation).

We also compared these results with those for p-cycle and span-restorable mesh de-

signs for the same topology and demand pattern (calculated in Section 4.2.5.3). Again,

these solutions are completely optimal for their respective architectures. Their spare ca-

pacity costs were 51,748 (p-cycle) and 46,681 (span-restorable mesh), corresponding to

redundancies of 86.7% and 78.2% respectively. Therefore the ILP heuristic algorithm was

able to approach the efficiency of an optimal p-cycle design within 10%.

4.3.5.2 Statistical Characterization of the Design

For comparative purposes, the same metrics as in Section 4.2.5.3 were calculated for the

tamed PXTs from the ILP-based design heuristic. Table 4.6 lists these metrics for each

PXT from the design. Each PXT is assigned a numerical identifier for reference.

4.3.6 Discussion
4.3.6.1 Complexity Metrics: Comparing Tamed and Untamed PXT Designs

Of course, because the ILP method restricts all PXTs to only be simple trails, the self

node-crossing and self span-crossing values in Table 4.6 are all zero for the tamed design.

Similarly, because the DRS restriction allows PXTs to only protect demands that are dis-

joint from each other (making the network state much simpler to comprehend when in a

restored service state), the maximum simultaneous protected failures are all 1 (because no

more than one demand in a DRS can fail at once). This emphasizes that the ILP method

can be used to easily restrict PXT complexity with a high degree of control. For example, if

a network operator deemed that PXTs with a single self-node-intersection were acceptably

simple, the ILP-based heuristic could easily admit such PXTs simply by modifying the pre-

processing program to generate that type of PXTs as well. Adding such a consideration to

the greedy heuristic would be much more difficult, if not totally impractical.

Regarding the longest protection path provided by each PXT, it is interesting to see that

this value for the tamed ILP PXTs is not significantly shorter than for the heuristic PXTs.
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The average values for the ILP and greedy heuristic designs are almost identical: 786 and

772 (distance units) respectively. The metric also reaches a similar maximum value of ap-

proximately 1600 in both networks. This can be explained by the fact that any PXT design

will have a built-in upper limit on the degree of sharing that can occur in its PXTs, due to

the inherent limitations of both the network topology and the PXT architecture itself. This

creates corresponding practical limits on the lengths of protection paths, because longer

protection paths require more sharing of the capacity in order to remain efficient. There-

fore, we should expect that any two designs of roughly equivalent efficiency, no matter how

they are obtained, would display convergent protection path length limits, even if their other

characteristics were markedly different. But what the result makes clear is that while both

methods are able to formulate a preconnected protection plan with almost identical prop-

erties of cost and protection path length, the ILP method is able to “untangle” the highly

inter-connected protection arrangements produced by the greedy heuristic into a larger, but

more manageable, set of tamed PXT structures.

4.3.6.2 PXT Lengths

The PXT lengths generated by the greedy heuristic ranged from 289 to 6470. In contrast,

the lengths in the ILP design are only between 285 and 1850. PXT length is reduced by

more than two thirds here as a consequence of only using tamed PXTs in the ILP problem.

Furthermore, we could have equally as easily limited their maximum length directly by

restricting the candidate PXT lengths even further, if necessary. Other factors being equal,

shorter PXTs seem desirable wherever optical power and impairment budgets are an issue,

for example, and the use of smaller protection structures also localizes management and

reconfiguration effects. Therefore the ability to manage PXT lengths in this way is highly

advantageous. Checking the details of the candidate set, we found that the longest PXT

candidate given to the ILP model is 2000 distance units long and the shortest is 92 units

long. Therefore the PXTs used in the solution span almost the entire range of candidate

PXT sizes.

In addition, the lengths of the PXTs that were used in the ILP solution appear to be

divided into two distinct groupings, one group of short PXTs of only a few hops, and

another group of PXTs of almost the maximum length of a simple trail (11 hops for this
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Figure 4.16: Histogram of PXT Lengths in the ILP design (both for the candidate set and
the PXTs in the resulting design)

12 node graph). Figure 4.16 uses a histogram to illustrate this grouping tendency. The

graph shows the frequency of occurrence of lengths in both the set of candidate trails and

in the set of PXTs used by the solution (for the purposes of this histogram, only distinct

PXTs in the solution are counted, i.e., multiple copies of the same PXT are not taken

into consideration). The set of candidates is already biased into a bimodal distribution in

the pre-processing step due to the two distinct sets of DRSs that are generated: regular

randomized DRSs and the special single-demand DRSs, described earlier in Section 4.3.3.

When the pre-processing program generates the set of trails for the potential protection of

each of the DRSs, short PXTs will generally be generated for the single-demand DRSs and

long PXTs will generally be chosen for the large DRSs. However, the set of PXTs used in

the solution is even more biased towards the extremes of the length spectrum.

4.3.6.3 1:1 APS Equivalences

In Section 4.2.5.4 it was discovered by drawing out the PXTs from the heuristic network

design that many of the PXTs produced by the greedy heuristic are simply instances of
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Figure 4.17: 1:1 APS-equivalent PXT from the ILP design

dedicated 1:1 APS arrangements. When the same exercise was performed for the ILP-based

design, a similar set of 1:1 APS PXTs was observed. The ILP design has 18 distinct PXTs

of this type (out of a total of 41 distinct PXT structures). Again, multiple unit capacity

copies of a single structure are not considered in this measurement. These PXTs are shown

in Appendix F as PXTs 0 through 17. Figure 4.17 gives an example of one of these PXTs.

It turns out that it is mainly these 1:1 APS-equivalent PXTs that make up the lower lobe

of the PXT length distribution in Figure 4.16. Because such arrangements protect only

one demand in a totally redundant end-to-end manner, they must be short in order to be

efficient. Conversely, the rest of the PXTs protect DRSs that contain many demands and so

tend to be long in order to maximize the number of protection paths they can provide.

The emergence of the 1:1 APS-equivalent cases from the greedy heuristic was explained

as resulting from the algorithm’s greedy nature. But the presence of many 1:1 equivalents

in the ILP design is unexpected and harder to explain. Because the ILP-based method

is closer to being a global optimization, yet we again see the appearance of significant

numbers of 1:1 APS-equivalents, we conclude that this is probably a fundamental aspect of

efficient PXT network design, not an effect arising from any particular methodology alone.

This is further evidence that certain 1:1 APS structures, though individually inefficient, can

still be an essential part of low-cost restorable network designs.
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Figure 4.18: Comparison of capacity redundancies of individual PXTs between the greedy
heuristic and ILP-generated designs

4.3.6.4 Individual PXT Redundancy

As described earlier, the individual capacity redundancy of a PXT is defined as the ratio

of the spare capacity used by that PXT to the total amount of working capacity it can pro-

tect. Figure 4.18 compares the capacity redundancy distribution of the PXTs in the greedy

heuristic design with those from the ILP-based heuristic design. Overall, both designs

show the same general pattern of many PXTs with low redundancies in addition to separate

groupings in 2.4-2.8 and 3.2-3.6 ranges. The groupings of PXTs with higher redundancies

correspond mostly to the less efficient 1:1 APS-equivalents (although there are 1:1 APS

PXTs in lower redundancy ranges as well). The numbers above certain bars in the Figure

represent how many of the 18 1:1 APS PXTs in the ILP design are in that range, if there

are any.

The fact that the 1:1 APS PXTs are grouped around approximately the same redundancy

ranges in both designs suggested to us that both the ILP and the heuristic may have used

approximately the same 1:1 APS PXTs. Indeed, inspection of the solutions reveals that 8

of the 11 1:1 APS-equivalents used in the heuristic design are also found in the ILP design.
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This indicates that the greedy heuristic is relatively good at finding the individually good

1:1 APS-equivalent PXTs. The fact that these PXTs are not desirable to be extended for the

protection of additional demands by the greedy heuristic must translate well into the realm

of the ILP optimizer, which also decides that these demands cannot efficiently share their

protection with a group of other demands as part of a long PXT.

4.3.7 Further Experiments

Some of the results suggested further questions that were able to be answered by small

additional side studies. The following Sections give a brief overview of the methodologies

and results obtained.

4.3.7.1 Comparison to FIPP p-Cycles and FIPP p-Cycle Hybrids

Having investigated the properties of PXTs and PXT design algorithms independently, it is

of interest to know how PXTs compare to other protection architectures. We have already

mentioned comparable results on a single test network for both p-cycles and span-restorable

mesh (in Section 4.3.5), which show that PXTs (in this network) can compare favorably to

both. However, while we can use these architectures as efficiency references, they are

not very comparable structurally to PXTs, because both are span-protecting techniques.

A more suitable choice for comparison, as an established high-efficiency path-protecting

architecture, are FIPP p-cycles. Additionally, as we use the same ILP model to compute

designs for both, we can take advantage of this in the same way we did for span p-trees and

p-cycles and also investigate the properties of optimal (or near-optimal) hybrid designs.

Method

Both sets of comparative results (a FIPP p-cycle design and a hybrid design) were gener-

ated on the same (Murakami & Kim) test network using the same demand pattern, working

routing, and DRS parameters as in Section 4.3.4 (20 DRSs per demand, 20 candidate struc-

tures per DRS, and maximum DRS size of 10). The FIPP p-cycle design was given all

simple cycles as the set of candidate cycles. The hybrid design was given both the set of all

simple cycles and the set of all simple trails as candidate structures.
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Figure 4.19: Comparison of PXT, FIPP p-cycle, and hybrid designs

Results

The results are illustrated in Figure 4.19. We see that the PXT and FIPP p-cycle designs

both have similar capacity costs. Also, we are able to achieve more than a 10% decrease

in cost with the hybrid designs. This is in stark contrast to the span-protecting case, where

the addition of segments was not able to improve p-cycle designs by greater than 1.6%

(see Section 3.3 and following Sections on limiting the tree selection to segments only).

This suggests that non-cyclical protection structures are much more suited for path protec-

tion than span protection. From these results, we can conclude that PXTs deserve at least

equivalent consideration with FIPP p-cycles in terms of efficiency in the field of pre-cross

connected, path-protecting restoration strategies. For a more detailed examination of PXTs

vs. FIPP p-cycles and hybrid designs, see Section 5.3, which encapsulates a discussion of

the contribution of PXT protection into a discussion of path p-trees/FIPP p-cycle hybrids.

4.3.7.2 Further Limitation of PXT Lengths

Given that our results showed that it is possible to limit the complexity (and, as a side-effect,

length) of PXTs without giving up much in the way of efficiency, it was interesting to us to

investigate the consequences of limiting these characteristics even further. To this end, we

performed another experiment in which tamed PXT designs were produced using the same

method, network topology, and parameters used in the original design experiment, except

that the set of candidate PXTs was further restricted to contain only simple trails less than

a certain number of hops in length. Designs were generated with hop limits from 11 down

to 4. Reducing the hop limit past 4 results in an infeasible design problem, because in these
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Figure 4.20: The costs of PXT and p-cycle network designs in which the set of candidate
structures is limited by structure length

cases there do not exist any PXTs long enough to protect certain demands. Because the

longest possible trail in the network is 11 hops long, the 11-hop-limited case represents

another design created using the exact same data set and parameters as used in Section

4.3.4 (although it will not be identical because the data set is created using a randomized

selection of DRSs, as explained in Section 4.3.3).

Figure 4.20 shows the costs of the network designs produced by these 8 experiments,

and for comparison, the costs of corresponding p-cycle designs produced with the same

limits on the maximum circumference of the set of candidate cycles. The p-cycle reference

designs used the same working path routing as the PXT designs. The PXT curve reproduces

a trend that is already well known in the p-cycle case, in which the addition of longer

structures provides diminishing returns as the allowed length becomes larger. However,

this effect is not as pronounced in the PXT case, as the reduction in capacity cost is still

significant even as the allowed PXT length approaches the maximum of 11.

To examine this trend in more detail, Figure 4.21 shows the same values from Figure

4.20 normalized to the spare capacity costs of reference designs with no limit on structure

size (for PXTs and p-cycles respectively). Hence the position of each data point on the
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Figure 4.21: The network design costs shown in Figure 4.20 normalized to the cost of of
the corresponding reference design with no limit on structure size

y-axis represents the capacity penalty for restricting the structure size to the value on the

x-axis. Here the previous observation becomes more pronounced. The p-cycle designs

only increase in cost by 5% if the size of the candidate cycles is limited to 8, whereas

the corresponding limited PXT design is 12% more costly than that of the unlimited case.

This phenomenon suggests that PXTs (at least when they are restricted to being simple

trails) are more reliant on length for efficient protection than p-cycles are reliant on cycle

circumference. This makes sense, given that PXTs must always be at least as long as

the working paths they protect (assuming shortest-path working routing), whereas p-cycles

protect on an individual span-by-span basis and thus do not have an explicit lower bound

on their size.

We also attempted the converse experiment, in which the limitations on the PXTs were

relaxed instead of tightened. We took the approach of allowing the PXTs to loop through

nodes (but not over spans), instead of forcing them to be strictly simple trails. As mentioned

in Section 4.2.5.4, such a design would also be realizable in a single-fibre-pair network.

However, this dramatically increases the size of the potential candidate set, requiring us

to rather arbitrarily limit the PXTs that are included in the problem, which in turn limits our
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ability to make comparisons with previous results. We were able to generate a solution to

within 1% of optimality for a problem that was given approximately 20,000 of the shortest

node-looping PXTs (in addition to all 10,922 simple trails). However, its cost was actually

3% greater than the corresponding design using simple trails only. This small difference,

combined with the 1% margin of error and the possibility of cost fluctuations introduced

by the pseudo-random DRS algorithm, makes this result inconclusive at best.

4.3.7.3 Comparison of PXT Design Methods as Online Algorithms

We have shown so far that the ILP-based heuristic is a practical alternative to the original

heuristic proposed in [ChCh04] when used as an offline algorithm. However, the greedy

heuristic was originally proposed as an online algorithm for the protection of demands as

they arrive dynamically during network operation. Therefore in this Section we outline a

method for using our ILP-based heuristic as an online algorithm for survivable service pro-

visioning, and describe an experiment that compares the performance of the two methods

when used in an online sense. The results also provide insight into the workings of the

heuristic and highlight the ability of the ILP-based approach to be more selective about its

choice of PXTs while at the same time attaining good capacity efficiency.

Approach

The ILP model itself does not have to be changed in order to be used in the online context.

Instead, we need only change the way in which the model is used. For online protection,

instead of solving the model only once for the protection of an entire set of pre-determined

demands, the model is solved each time there is a new demand arrival (or departure, if they

are considered as well) to re-optimize the PXT configuration of the network. The routing

of existing demands remains undisturbed when new demands arrive, as routing is always

done via the shortest paths.

Experimental Method and Test Cases

We use the same approach to characterize online performance as used in [ChCh04] orig-

inally and also earlier in Section 4.2.3.1. That is, we consider only random arrivals (not

departures) and examine total capacity use as demands are served, without any assumed
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finite limits on edge capacities. To test the use of the ILP-based heuristic as an online al-

gorithm and to compare it to the greedy heuristic, we simulated an online service provision

scenario under random demand arrivals using the same Murakami & Kim network used

above. The random arrival sequence consisted of all of the single-unit demands from the

demand pattern used in tests from Section 4.3.4, organized in a randomized arrival order.

Both the greedy heuristic and ILP-based method were used to protect these demands in this

same randomized sequence.

Two variations of the ILP-based method were used. The first used the ILP model given

in Section 4.3.2 with no modifications. The second used a slightly modified objective

function:

Minimize

∑
j∈S

C j · s j +α ·∑
k∈P

nk (4.5)

The first term is the standard spare capacity cost objective function. The second term

effects the bicriteria minimization of the total number of PXTs used, in addition to the usual

capacity minimization. For our experiments, α was set to 1, which is a small value in this

context. The presence of the second term, with small but nonzero weight, causes the solver

to effectively choose amongst alternative solutions that are all equivalently optimal in the

primary objective function term to find one that contains fewer PXTs. As the technique is

used here, the second term is kept so small that its presence will not cause the solver to make

concessions in the first term, being in this case the spare capacity cost of the network. (The

value of α is thus arbitrary over a wide range and α = 1 is just one such suitable value that

we could use here.) This modified model is partly motivated by the thinking that the least

complex network from an operator’s point of view may be one with the smallest number

of tamed PXTs, given that tamed PXTs in a network still remain easily understandable by

a human designer even if they become long, in contrast to those that may loop. Therefore,

if cost-wise equivalent designs exist, we should choose the one that uses the fewest PXTs.

The greedy heuristic is designed to deal with an ordered set of demands in any case, so

so its method of use remained the same. In the two ILP-based tests (regular and bicriteria),

first each new demand was routed using the same working routing algorithm as before,

then the sets of DRSs and candidate trails were re-generated from scratch, and finally the

model was used to solve the current cumulative protection problem, i.e., after the arrival of
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demand N the problem was solved for the protection of all demands 1 through N together.

For all three methods, the network state was recorded in each step.

Results

A graph of the spare capacity totals after each demand arrival for the three design methods

is shown in Figure 4.22. Only two different curves appear because the bicriteria ILP model,

as mentioned above, is designed to produce networks with almost identically the same costs

as those from the regular ILP model. The only difference is that the number of PXTs in the

bicriteria designs may be lower. The spare capacity totals are then broken down visually

in terms of the average length of the PXTs in the solutions (Figure 4.23) and the number

of PXT structures in the solutions (Figure 4.24). These two Figures are a breakdown of

Figure 4.22 in the sense that the total amount of spare capacity in a design is, by definition,

equal to the product of the average length of the PXTs and the number of PXTs.

The ILP curve in Figure 4.22 is quite close to the greedy heuristic curve, showing that

the ILP is able to perform nearly as well as the greedy heuristic in the online context as

well, over a wide range of demand volumes, while avoiding the formation of looping PXTs

completely. However, what the graph does not show is the difference in computation times.

Recall that each step of the heuristic is truly an incremental protection problem for a single

new demand, while the ILP method reconsiders the protection of every demand protected

to date. The result of this is that each iteration of the heuristic takes a fraction of a second,

compared to a few hours for the ILP problems with the highest levels of demand volume.

But in networks of the foreseeable future this is not necessarily a problem, as long as a

notice period of equal or greater length is given before the demand is put into service.

Regarding the two variants of the ILP-based method, the designs produced by the bi-

criteria ILP were identical to those of the unmodified ILP in the vast majority of cases. In

only 2% of the cases was a design with fewer PXTs found, and then only by at most 3

fewer PXTs. Furthermore, in none of these cases were the network design costs found to

be exactly the same, with the only difference between the two designs being the number of

PXTs used. In other words, the spare capacity cost of the design always had to be increased

slightly in order to accommodate a reduction in the number of PXTs (with a net reduction

in the value of the bicriteria objective function, despite the choice of a small value for α).
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Figure 4.22: Spare capacity costs of the designs produced by each intermediate step of the
ILP-based heuristic and the greedy heuristic when used as online algorithms

Therefore we can conclude that it is not a common occurrence that a PXT design produced

using this method can be simplified into a design of the same cost that uses fewer PXTs.

Designs that are found by this model to be optimal are generally unique.

Figure 4.23 and Figure 4.24 together give a more detailed picture of the differences

between the internal workings of the greedy heuristic and the ILP-based heuristic. Because

the greedy heuristic grows existing PXTs, it uses fewer, more complicated structures to

protect the network as more and more demands arrive. The ILP methods, however, are able

to tame the complexity of structures under approximately the same amounts of capacity by

growing the number of structures uniformly while keeping the average length stable. Under

these methods, the linear growth of capacity in the network comes almost entirely from the

number of PXTs used rather than PXT size. Thus we can think of the ILP approach as

providing an extra measure of discrimination that is able to select, out of a set of designs

with roughly similar capacity efficiency, designs with additional desirable properties. What

the heuristic is able to accomplish with a process that is relatively uncontrolled can be

accomplished by the ILP model even when the set of structures provided to it is significantly
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Figure 4.23: Average PXT length in the designs produced by each intermediate step of the
ILP-based heuristic and the greedy heuristic when used as online algorithms

more limited.

4.3.8 Conclusions

The results show that the ILP approach to PXT design leads to highly efficient PXT-based

solutions and does so using simple, non-looping PXT structures, which we refer to as

“tamed PXTs”. Additionally, it permits precise control of the maximum length of any

PXT. In contrast, the prior heuristic produces PXTs with potentially unbounded length and

complexity. We have also demonstrated a method of adapting the ILP-based algorithm to

the online protection of incrementally arriving demands. In all cases, the cost efficiencies

of our tamed network designs closely approach those found using the original heuristic.

Inspection of the PXTs produced by the ILP method also gave some insights into PXT

network design in general. We found that, even though our method is quite different from

the original heuristic approach, both methods tend to produce designs containing a sig-

nificant proportion of PXTs that are equivalent to 1:1 APS arrangements for many of the

same demands. The spontaneous emergence of the 1:1 APS architecture for a significant
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Figure 4.24: Total number of PXTs in the designs produced by each intermediate step of
the ILP-based heuristic and the greedy heuristic when used as online algorithms

number of node pairs in both the greedy heuristic and ILP-based designs, when it was not

explicitly assumed or intended, suggests that it has some inherent merit in certain cases

where a fully pre-cross-connected protection is required. In this regard, one way to view

the PXT network designs that were obtained is that they are a hybrid of dedicated (1:1 APS)

treatments for selected demand pairs, and shared protection structures for the remainder of

the protected demands. Notably, this is similar to the view given previously in the con-

text of ring-mesh hybrid design (see Ch. 11 of [Grov03]) of ‘forcer clipping’ to explain

how cost-effective hybrid survivable architecture designs work in a shared mesh network

environment.

4.4 Modified PXT Constraints: Span Self-Disjoint PXTs

4.4.1 Motivation

The two methods for PXT design that we have considered so far, the greedy heuristic and

the optimization-based heuristic, have been disassociated not only by their differing design
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approaches, but also by the type of PXTs that they allow into designs. The greedy heuristic

allows any PXT supported by the definition of the PXT concept, including PXTs that loop

over themselves on nodes or spans, but the tests we have done using the optimization-

based heuristic has been limited to using only PXTs that are simple trails. In the following

Sections we detail our efforts into equalizing the class of PXTs considered by both methods,

so they may be more directly compared. In other words, we introduce the class of PXTs

that are span self-disjoint, but that may not be node self-disjoint. These PXTs are not

allowed to cross the same span more than once, but may cross over themselves at nodes

only. The fact that they cannot cross the same span more than once means that there is

an upper bound on PXT size in the network, meaning that the set of these PXTs is finite

in size. Unlike simple PXTs, however, their ability to loop through nodes more than once

gives rise to the possibility of more interesting types of protection relationships, i.e., the

creation of multiple protection paths for the same working path in the same PXT (so-called

“p-cycle-like protection”). These properties make span self-disjoint PXTs an interesting

candidate for additional study. We have already dabbled with using this type of PXT in the

ILP-based algorithm in Section 4.3.7.2, but the conditions of the study were such that the

results were inconclusive. In this Section we aim to adjust the conditions of the study such

that a meaningful comparison can take place.

As we noted in Section 4.2.5.4 when investigating the greedy PXT heuristic, there is a

rather simple way that the algorithm can be modified to use only span self-disjoint PXTs,

even though we have seen that restricting it to completely simple PXTs is impractical. As

for the ILP formulation, we simply need to modify the candidate PXT generation algorithm

to allow the PXTs it generates to cross over nodes multiple times. The size of this PXT set

will certainly be larger than the set of simple trails, but the span self-disjointness criteria

places an upper bound on the size of a candidate PXT in the network, meaning that this set

is at least finite in size. Note the contrast between the implications for the two algorithmic

approaches: span self-disjoint PXTs represent a restriction of the greedy PXT heuristic,

but a relaxation of the ILP approach.
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4.4.2 Greedy Heuristic
4.4.2.1 Implementation

Because it is so difficult to enforce strict simplicity on the PXTs produced by the greedy

heuristic, it comes as a surprise that the problem becomes quite simple when this restriction

is relaxed to only span self-disjointness. To implement this, we only need to make a slight

modification to the step that encodes span rivalries in the modified Dijkstra’s algorithm.

In the original greedy heuristic, this step ensures that all protection paths (not PXTs) are

simple paths. However, we can modify this mechanism to suit our needs by also producing

rivalries between spans that, if combined into a single protection path, would result in a

merger or extension of PXTs such that the resulting PXT would cross the same span more

than once. The reason this method works for span self-disjoint PXTs but not fully simple

PXTs is due to problems with enforcing rivalries between PXTs that share nodes, as was

described in more detail in Section 4.2.5.4.

This modification adds a small amount of complexity to the rivalry generation step, and

using the modified Dijkstra’s algorithm with more rivalries will increase its complexity

even further from that of the standard Dijkstra’s algorithm, but overall the time required to

run the algorithm still remains reasonable.

4.4.2.2 Experimental Method

The modified greedy heuristic with this additional constraint on PXT complexity was first

used to generate designs for the Murakami & Kim network, considering span costs as being

equal to span lengths, with a uniform demand pattern of 3 units (as in Section 4.2.5.2 and

4.3.4). The networks used for the greedy heuristic capacity characterization tests in Section

4.2.3.1 (including again the Murakami & Kim network) were also used, again with span

costs equal to 1 and a uniform demand pattern of 5 units.

4.4.2.3 Results

The costs of the resultant designs are given in Table 4.7. The average cost penalty of in-

cluding the simple PXT constraint is approximately 5% if we ignore the K6,6 network. The

cost increase is listed as negative here because the simple PXT designs are actually cheaper

than the non-simple designs. Recall that this is also the network for which our initial re-
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Trial
Network 1 2 3 4 5

Average
Cost

Original
Cost

Cost
in-

crease
(%)

3-unit demand pattern, distance-based costs
Murakami
& Kim

55,855 56,350 55,474 58,522 57,848 56,810 53,591 6.0

5-unit demand pattern, hop-based costs
12-cycle +
3 edges

926 903 928 895 926 915.6 884.1 3.6

3 x 4 grid 641 634 642 620 635 634.4 590.7 7.4
Tietze’s
graph

401 390 411 390 395 397.4 366.9 8.3

Murakami
& Kim

517 518 511 517 510 514.6 510.2 0.9

Icosahedron 200 195 193 195 186 193.8 183.7 5.5
K6,6 186 193 190 190 186 189.0 236.2 -20.0

Table 4.7: Cost increases resulting from enforcing span self-disjointness in the greedy PXT
heuristic

sults differed greatly from those found in [ChCh04] (Section 4.2.3.2). This supports the

hypothesis that, rather than the difference being due to an error in the report of the original

results, the extremely regular nature of this particular topology may render the results more

susceptible to subtle differences in implementation of the heuristic. Instead of increasing

the cost of the design by limiting the PXT growth options, the simple PXT constraint may

counter-intuitively break the heuristic out of a course of PXT growth that ends up having

a negative overall impact on the cost of the design in the totally unconstrained case. For

example, perhaps the internal orderings of demands and the choice mechanism between

equal-length paths cause the heuristic to build an initial “mega-PXT” that subsequently

cannot be extended or shred with any more demands, resulting in many inefficient PXTs

that follow. Imposing the simple PXT constraint can be thought of as a way to artificially

stop the growth process at some point, resulting in a larger set of shorter PXTs with more

balanced lengths.

Overall, the cost increase for imposing this constraint is not great, especially consider-

ing that it can make the difference between a WDM-based PXT design that can or cannot be
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implemented in a single-fibre network without added required wavelength conversion. This

further supports the conclusion that limiting the complexity of PXTs does not necessarily

require a significant impact on PXT efficiency.

We should also mention the qualitative observation that imposing this constraint caused

a significant increase in the runtimes for the algorithm. The increase depends upon the

test network, but could be up to a factor of 4 in some cases. Therefore it seems that this

constraint causes a significant increase in average case computational complexity for the

algorithm. However, because this algorithm is so fast for these test cases to begin with, the

runtimes were still quite manageable from a practical standpoint: no more than 5 minutes

in the worst case.

4.4.3 ILP-Based Heuristic

4.4.3.1 Implementation

Because the PXTs used in the ILP-based PXT experiments to this point have all been simple

PXTs they have also, by definition, been span self-disjoint PXTs in addition to being node

self-disjoint. Therefore, while the span self-disjointness criteria for PXTs was an additional

constraint for the heuristic, for the ILP formulation it is actually a relaxation on the criteria

for the PXTs in the candidate set. Because the ILP model already supports the inclusion

of arbitrary PXTs as candidate structures, the only change that must be made is to the

candidate PXT generation algorithm itself. The simple depth-first search procedure that is

used to generate trails need only be modified to allow traversal through the same node more

than once.

The difficulties with this approach are therefore not a result of any complexity in the

implementation, but rather of practical limitations on memory and processor speed. Even

though the set of span self-disjoint PXTs is finite, it is still orders of magnitude larger than

the set of simple trails, meaning that generating the full set is impractical for networks of

the sizes we use here. Therefore we need a way of limiting the number of PXTs that are

generated that is both consistent and justifiable. For our experiments, we have chosen the

method of generating, for each node pair in the network, at least the N shortest span self-

disjoint trails between those two nodes. We say “at least” because there may exist many

trails with the exact same length such that to include all of them would result in a set with
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more than N trails. In this case, to limit the set to exactly N trails would mean arbitrarily

choosing between many equal-length trials. Therefore in cases such as these, all of the

span self-disjoint trails with equivalent length to that of the Nth shortest trail will also be

included.

Unfortunately, this means that we will generally be using only a small fraction of all

possible span self-disjoint trails in the ILP. Specifically, even though simple PXTs are a

special case of span self-disjoint PXTs, the limitations on the set size means that we will

not in general be generating all simple PXTs; in the end, only simple PXTs below a certain

threshold length will be included, depending on the length of the longest PXT found within

the first N span self-disjoint PXTs. Therefore, even though allowing self node-crossing

represents a relaxation on the constraints on PXT structure, we might see an increase in

design costs as compared to the original ILP because of the incompleteness of the candidate

set. Therefore, in order to both facilitate comparison with results for both the heuristic and

original ILP, we took the approach of supplementing the set of span self-disjoint PXTs with

the entire set of simple PXTs generated earlier (with duplicates removed). This allows us

to more directly determine the degree to which span self-disjoint PXTs are able to improve

upon simple PXT designs.

4.4.3.2 Experimental Method

Unfortunately, our approach for including span self-disjoint PXTs in the ILP model in-

troduces yet another parameter (N) into our already heavily parametrized DRS-based ILP

model, giving us another source of variability in our results. The following results use the

largest value of N for which we were both able to complete the PXT generation procedure

and also find optimal (or near-optimal) solutions for our design problems. The understand-

ing is that, while these results do not represent the theoretically optimal improvement of

span self-disjoint PXTs over simple PXTs, they do indicate the degree of improvement that

can be expected for a given degree of effort (indicated by the value of N) put into expand-

ing the candidate structure set. Because this value will be different for different networks

(depending on size and connectivity of the topology), we will give the value for each test

case separately.

The ILP was used to generate designs for the same networks and demand patterns as
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the previous Section (4.4.2.2). For each network we performed 5 trials, each using a dif-

ferent run of the non-deterministic DRS generation algorithm. We also obtained results for

designs using only simple trails (as per the original PXT ILP design method from Section

4.3.4) to use as reference designs. For the Murakami & Kim network with the “uniform

5” demand pattern we reused the results for the design from Section 4.3.5 as the reference;

for all other cases, 5 “simple PXT only” designs were generated and the average cost was

taken as the reference.

Unfortunately, meaningful results using the set of span self-disjoint PXTs were not

obtainable for the K6,6 network topology, in which the high degree of connectivity (d = 6)

causes the number of span self-disjoint PXTs to explode even for very small values of N.

For this network, the search for span self-disjoint PXT consumes too much memory and

fails. The Icosahedron and Murakami & Kim networks are also highly connected, though

not to the same degree (d = 5 and 4 respectively), and so here we must restrict the size

of the set of span self-disjoint trails more severely than for the other networks. All other

networks have d < 4.

The designs were solved to full optimality in all cases, except for the Tietze’s graph

and Icosahedron cases. For designs including the self node-crossing PXTs, the Tietze’s

graph tests were solved to within 2.6% of optimality on average, and the Icosahedron tests

were solved to within 3.6% of optimality on average. For the reference “simple trails only”

designs, the Tietze’s graph tests were solved to within 1% of optimality and the Icosahedron

tests were solved to within 4% optimality.

4.4.3.3 Results

The results are given in Table 4.8. Values are marked with an asterisk where the design

could not be solved to optimality. These results show that we can expect a minor cost de-

crease from including PXTs that cross over themselves on nodes. This decrease is propor-

tional to the number of additional PXTs that we can add to the problem; in the Murakami &

Kim and Icosahedron cases we see a smaller decrease.5 However, it is important to realize

just how much we must expand the problem in order to obtain these modest improvements.

5Note that the value for Icosahedron are less certain, because the solution mipgap is large as compared to
the observed cost difference (3% to 4% vs. 0.3%).
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Trial
Network N 1 2 3 4 5 Av-

erage
Cost

Simple
Trails
Only

Cost
De-

crease
(%)

3-unit demand pattern, distance-based costs
Murakami
& Kim

900 56,737 56,368 56,848 56,909 56,103 56,593 57,476 1.5%

5-unit demand pattern, hop-based costs
12-cycle +
3 edges

9000 1155 1150 1155 1150 1155 1153 1244.2 7.3%

3 x 4 grid 9000 698 702 702 701 705 701.6 732.6 4.2%
Tietze’s
graph

9000 547* 546* 541* 534* 546* 502.6* 542.8* 7.4%*

Murakami
& Kim

900 561 552 547 559 560 555.8 568.6 2.3%

Icosahedron 400 316* 308* 310* 315* 312* 312.2* 313.2* 0.3%*

Table 4.8: Cost decreases resulting from allowing self-node crossing in the candidate PXTs
for the ILP-based PXT design method (expressed as an added set of span self-disjoint
PXTs)

For example, in the “Tietze’s graph” case where we see the largest improvement, we use

on average about 2700 simple PXTs in the “simple only” case, but about 7400 total PXTs

in the combined case. This shows the diminishing returns associated with increasing the

size of the candidate set; most of the efficiency of the designs can be attained with simple

structures alone.

4.4.4 Comparative Results

Table 4.9 shows the combined data from Tables 4.7 and 4.8, comparing the results for the

greedy heuristic and the ILP-based design method using span self-disjoint PXTs (and also

comparing them against the original heuristic and ILP designs.) We see that adjusting the

two methods to use similar structures does indeed adjust the results closer to each other (as

it must, because heuristic costs must increase and ILP costs should decrease), but there is

still a large gap in some cases.

The full ILP problem, with all span self-disjoint PXTs and all DRSs included, solved

to optimality, should be able to match or surpass the heuristic in terms of cost in all cases,
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Original Span Self-Disjoint PXTs
Heuristic

Cost
ILP
Cost

Cost
Differ-
ence

Heuristic
Cost

ILP
Cost

Cost
Differ-
ence

3-unit demand pattern, distance-based costs
Murakami
& Kim

53,591 57,476 7.2% 56,810 56,593 -0.4%

5-unit demand pattern, hop-based costs
12-cycle +
3 edges

884.1 1244.2 40.7% 915.6 1153 25.9%

3 x 4 grid 590.7 732.6 24.0% 634.4 701.6 10.6%
Tietze’s
graph

366.9 542.8 47.9% 397.4 502.6 26.5%

Murakami
& Kim

510.2 568.6 11.4% 514.6 555.8 8.0%

Icosahedron 183.7 313.2 70.5% 193.8 312.2 61.1%

Table 4.9: Comparative results for span self-disjoint PXTs under the greedy heuristic and
ILP design methods

so this shows that the practical limitations to the size of the problem mean that we are still

far from achieving optimality in some cases (such as the 12-cycle + 3 edges case and the

Tietze’s graph case, in which the ILP designs cost more than 25% more than the respective

heuristic designs). However, the ILP compares most favorably to the heuristic for the most

realistic test cases (for the Murakami & Kim network), and even surpasses the heuristic in

one of them.

4.4.5 Conclusions

We have seen that it is feasible and practical to introduce the concept of span self-disjoint

PXTs to both the greedy heuristic and ILP-based design methods. In the heuristic case it

is as an additional constraint that incurs a small cost increase (between 1 and 10%), with

the benefit of simplifying the structures involved such that they could be implemented in

a single-fibre DWDM network without wavelength conversion. In the ILP case it is as

a relaxation on the type of PXTs allowed that results in a small cost savings (between 1

and 7%) at the cost of greatly increasing the number of candidate PXTs in, and hence the

complexity of, the design problem. Comparative results show that practical limitations on

the size of the ILP problem puts it at a disadvantage when the potential set of candidate
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structures is very large.

4.5 Summary and Future Work

This Chapter represents the first in-depth investigation into the PXT architecture and associ-

ated design methods. We first characterized the efficiency of the first PXT design algorithm

in the literature on our own test cases and proceeded to investigate methods of improving

the results using simulated annealing. Results showed that minor improvements were pos-

sible given enough processing time. We then pursued a more detailed characterization of

the designs produced by this algorithm and found that they had some significant disadvan-

tages in terms of structural complexity. Among the implications was the fact that it could

not guarantee that the resulting PXTs could be implemented in a DWDM network without

wavelength conversion, and indeed tended to violate this condition more often than not.

We then proposed our own design method, based on standard ILP techniques and

adapted from a design method for FIPP p-cycles, that was shown to give results with simi-

lar efficiency and improved structural properties. A comparison of PXTs to FIPP p-cycles

then showed that PXTs could be comparable in terms of efficiency, and that a hybrid of the

two structures could have significantly lower cost. We then saw that even though the origi-

nal PXT design heuristic was designed to be an online algorithm, our ILP method could be

adapted to perform as an online algorithm that gives comparable results. Finally, we saw

that the efficiency gap between the two approaches can be narrowed significantly in more

realistic test cases if the structure types used by both algorithms are equalized.

By no means does this represent an exhaustive study of PXTs, however. As a novel

architecture, there are still many unknowns in the area of PXT network design. In this

Chapter we used the DRS method developed for FIPP p-cycles as a tool with which to

study the properties of PXTs. However, we did not investigate methods of fine-tuning this

tool to suit the properties of PXTs specifically. Future work may investigate the effect

of modifications to the DRS method on the efficiency of PXT designs, e.g., variations

in parameters such as the size and composition of the DRS set, as well as the sizes and

composition of the DRSs themselves. The results could point the way towards a method

of streamlining the ILP model, allowing us to obtain comparable results with smaller data
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sets. This would further allow deeper investigations into properties of PXTs as we would

be able to solve problems with larger structure sets.
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Chapter 5

Path-Protecting p-Trees

5.1 Introduction

Having investigated span-protecting pre-cross-connected trees in Chapter 3, it is natural to

extend the concept to end-to-end path protection. However, we first required the work in

Chapter 4 to establish an ILP framework for path-protecting architectures in general (as

opposed to FIPP p-cycles alone, as the concept was originally developed), in order to apply

this approach to tree-based protection. This Chapter covers our definition and investigation

of the path-protecting p-tree concept. First, though, we must address some issues with the

concept of tree-based path protection.

5.1.1 Background

5.1.1.1 The Path p-Tree Concept

The p-tree concept requires some further revision when it is extended to path protection,

because the working model of degree-N cross-connection as a splitting function (see Sec-

tion 3.1.1.1) directly implies some problems with the formation of protection paths in the

p-tree structures. In the context of single span failures alone, this concern only arises in the

path protection case because of the possibility for two paths protected by the same structure

to fail simultaneously due to the failure of a single span.

Such non-disjoint path failures are handled by other architectures (e.g., PXTs and FIPP

p-cycles) by providing disjoint protection paths for the failed working paths within the

protection structure. Even though the two working paths may fail simultaneously, they can

be protected at the same time by the same structure because they will not contend for the
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(a) (b)

Figure 5.1: Path protection in (a) trees, with associated propagation of restored-state flow
due to splitting, and (b) PXTs, where restored-state flow is intercepted only by the destina-
tion node

same spare capacity. The same may not be true for path p-trees, however, if one assumes

a splitting model for the behaviour of protection signals at nodes with degree greater than

2. This problem is illustrated in Figure 5.1, which shows the restoration action of both a

path-protecting p-tree (a) and a PXT (b) for the failure of a single protected unidirectional

working path (dashed arrow).

In the p-tree case, due to the broadcast behaviour of splitting the restoration flow at

degree-3 nodes, the restoration flow propagates throughout the entire tree. This broadcast

restoration state flow will interfere with the protection paths for any other working paths

that may have been affected by the same failure. In the PXT case, however, the restoration

flow can be intercepted (dropped) at the destination node of the failed flow. In this case,

the remaining spans of the PXT are unaffected by the failure and thus could be used for the

protection of another working path if it were to fail jointly with the original working path.

This fundamental difficulty with the control of the propagation of restored state flow

within branching structures greatly complicates the use of p-trees for the simultaneous pro-

tection of multiple failed working paths. In cases more complicated than the one depicted

in Figure 5.1(a), the failure of a working path will cause propagation of restored state flow

throughout part, but not all, of the p-tree (including but not limited to the spans on the pro-

tection path where this is appropriate and expected) because of the fact that the end-node

of the failed path possesses enough information to be able to intercept (terminate) this flow.

To be most efficient, we would like to be able to form additional protection paths out of the

capacity in the remaining unaffected portions of the tree, but taking this into consideration

would greatly complicate p-tree design. The alternative would be to postulate a type of
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signaling between p-tree nodes to allow nodes other than the end-node of a failed working

path to terminate restoration flow to avoid this situation, with the corresponding increase in

operational and design complexity that this suggests.

Instead it seems to be reasonable to, at least initially, make the simplifying assumption

that path-protecting p-trees should not be allowed to protect against the failure of multi-

ple simultaneously failed working paths. Of course, this does not preclude the possibility

of sharing protection between multiple working paths across different single-span failure

scenarios, as long as none of the working paths have any such scenarios in common (i.e.,

they are all span-disjoint.) This restriction is essentially the same as the DRS restriction

for FIPP p-cycles, although the motivation behind it is different. This is the assumption we

will continue with in the following studies, with the associated benefit that it allows us to

use the DRS models developed in [KoGr05a] and Section 4.3.2.

5.1.1.2 Previous Path p-Tree Literature

The general literature survey in Section 2.4 provided a summary of the existing literature

that discusses path-protecting trees. We will now describe how this literature relates specif-

ically to the path p-tree concept as defined in this thesis.

The group of publications [LaSt02, GrCo03a, GrCo03b] investigates the use of tree

structures, called backup trees, used for the protection of entire end-to-end paths. Backup

trees are developed in these works as a method for reducing spare capacity requirements

in restorable MPλS networks in particular. As a result, many restrictions are imposed

on backup trees that cause them to behave somewhat like very special cases of the more

general path-protecting p-tree concept.

The first major difference is that these trees offer unidirectional protection only, instead

of the protection for bidirectional flows offered by p-trees. This restriction is able to solve

some problems with tree-based protection by forcing the protection flows to only travel

“up” the tree, from the leaf nodes to the root node, such that different protection paths

may merge but never split. This means that, while hardware selection of incoming flows at

the nodes of the tree may be needed, splitting of flow is never required, and therefore the

complications and restrictions that result from flow splitting do not apply. As such, these

trees do not provide “true” tree-like protection so much as they do a mechanism to share a
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single channel between different flows, allowing capacity savings. This is a direct result of

the label-directed nature of the MPλS networks that this scheme was designed to protect.

Second, as suggested by the above restriction, it is required that within a single backup

tree, all protection flows provided by the tree must terminate at one node: the root. In

other words, a backup tree can only protect a unidirectional flow that terminates at its root.

Again, this is because of label-switching. Because all protection flows that transit a node

are assigned the same label, their ultimate destination must be the same: the network has

no way of distinguishing them. This is significantly different from the operation of p-trees

because a p-tree can provide any portion of its preconnected capacity as a backup path,

using any nodes as the origin and destination so long as they are somewhere on the tree.

Therefore the type of trees studied in [LaSt02, GrCo03a, GrCo03b] are uniquely suited

to the protection of MPλS networks, making use of label switching concepts to combine

protection flows into branching structures that, although they resemble trees, are really

quite different from the kind we study here. So we can be sure that the work in this thesis

on path-protecting p-trees does not duplicate the previous studies of [LaSt02, GrCo03a,

GrCo03b].

There is also the range of publications on the subject of red/blue trees [MeFi99, ZhXu08,

XuCh02, XuCh03], a scheme in which two unidirectional trees are established such that any

span failure will leave any pair of nodes connected through at least one of the two trees.

Despite having the appearance of tree-based protection, this is actually quite different from

our concept of path p-trees because the red/blue tree arrangement is really just a representa-

tion of a combined protection routing plan for multiple failure cases, and does not define the

capacitated protection structures or channels by itself. Therefore, just as with the backup

tree concept, red/blue trees do not represent tree-based pre-cross-connected protection as

path p-trees do. Furthermore, the reduction of the protection options to just the routes

found in the red/blue trees prevents options such as splitting of the protection of a working

path between multiple structures. Also, because the trees are unidirectional, restored state

paths will generally be different for both directions of a bidirectional demand. Therefore

the red/blue tree concept is also quite separate from the concept of path p-trees presented

here.

From this survey of literature on the topic of tree-based path protection it seems that
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true preconnected, branching protection structures have not as of yet been given serious

consideration in the field. Even [Stam97], which investigates protection using arbitrary

preconnected structures, only does so in the span-protecting context. Therefore this Chapter

represents the first foray into the study of path p-tree protection.

5.1.2 Goals and Objectives

Path p-trees are the most complex protection architecture studied in this thesis thus far,

owing to the fact that they combine the complexities of tree-based protection and path

protection. Because true tree-based path protection had not been studied before, our initial

goal for the project was simply to determine if standard ILP-based design methodologies

could be applied to the problem at all, or whether some other approach would need to be

taken (e.g., custom heuristics, as for PXTs in [ChCh04] and cycles, trees, etc. in [Stam97]).

Given that ILP-based methods would be effective to some extent, our intent was to use these

methods to the greatest effect possible to determine characteristics of path p-trees such as

characteristic efficiency and their ability to achieve improvements via hybrids with other

architectures. In this case we chose FIPP p-cycles, making this a path-protecting analogue

to our research into hybridization of span p-trees with “regular” p-cycles.

5.2 Capacity Efficiency Characterization

5.2.1 Motivation

We wanted to begin the study of path-protecting p-trees by using standard ILP methods to

create optimal (minimum capacity) restorable network designs based on the architecture,

both to serve as a reference for future studies and also in order to investigate their properties.

It was also our goal to be able to compare path p-trees to other path-protecting architectures,

such as PXTs and FIPP p-cycles, in the areas of both capacity efficiency and the properties

of the specific structures used in the designs.

5.2.2 Initial Method

We again followed the standard practice of using an ILP model to design p-tree based

networks. However, path p-trees combine the computational problems of both tree-based
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protection and path protection. We must deal with both the huge size of the candidate

tree set (as with span p-trees) and the large number of combinations of paths that may be

protected by each of these trees (as with PXTs and FIPP p-cycles). Because of this, we

incorporated the complexity managing approaches of these prior studies, limiting the size

and nodal degree of our candidate trees and extending the DRS ILP model to the path p-tree

design problem.

5.2.2.1 ILP Model

The design model used for path p-trees is mathematically identical to the one used for PXTs

(see Section 4.3.2). Therefore it will not be reproduced in its entirety here. Just as the p-

cycle model can be adapted for use with span p-trees by appropriately setting parameters

to represent trees instead of cycles (as discussed in Section 3.2.1), so can the PXT model

be adapted for use by path-protecting p-trees. The DRS generation step must be modified

slightly in order to compute the protection parameters for demands and DRSs using trees

instead of trails, but this is a technical change and not a conceptual one. It still determines

whether or not the structure (whether tree or trail) can provide a disjoint protection path for

each working path.

5.2.2.2 Test Cases

The path-protecting p-tree model was used to generate designs for the networks from the

15 node network family. For each network, the DRS generation program was given all

trees with a maximum size of 7 spans and a maximum degree of 3 as the set of candidate

p-trees; this is the same set of trees that was given to the span p-tree model in Section 3.3.

The DRS parameters were set to generate 10 DRSs per demand and 10 trees per DRS, with

a maximum DRS size of 10. These parameter values are quite limited compared to the

values that we used for the PXT designs in Section 4.3.4, but it is necessary to set them this

low in order for the problems to solve in a reasonable amount of time (due to the increased

complexity overall of the tree problem as compared to the PXT problem).

We also compared these path-protecting p-tree designs against designs from other archi-

tectures: span-protecting p-trees, FIPP p-cycles, and p-cycles. For span-protecting p-trees,

the designs found in Section 3.3 were used. For FIPP p-cycles, designs were found using
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Figure 5.2: Costs of path-protecting p-tree designs compared to those of other architectures
for the 15 node network family

the FIPP DRS ILP method, given 10 DRSs per demand, 10 cycles per DRS, and a maxi-

mum DRS size of 10, i.e., the same parameters as used for the path p-tree DRS method.

For p-cycles, optimal designs were computed.

5.2.3 Initial Results

The costs of the resulting designs are given in Figure 5.2. The span-protecting architectures

use dashed lines and hollow markers, while the path-protecting architectures use solid lines

and markers. The tree-based architectures use triangular markers while the cycle-based

architectures used circular ones. Note that, because the FIPP p-cycle designs were found

using the same DRS generation parameters that were used for path p-trees, these designs

are less optimal than FIPP designs that could be found using larger parameter values (due

to the much smaller set of candidate cycles as compared to candidate trees). All designs

have been solved to within at least 1% of optimality.

We see first of all that path p-trees suffer from the same problem we saw with span

p-trees; the limited size of trees in the candidate set means that 100% single span failure

restorable designs cannot be found for the sparsest of the networks. In this case, this is

162



because there are some demands in these networks for which there does not exist any trees

that can protect them, because their shortest eligible protection path is longer than the tree

size limit of 7 spans. Therefore both p-tree architectures suffer from this serious issue when

attempting to obtain results that are close to optimality.

Also note that the difference between span and path p-tree efficiencies becomes ex-

tremely pronounced as network connectivity is reduced to the minimum limit at which

feasible designs still exist. This effect may occur because of the restrictions on the sets of

candidate tree structures. We can see how this would affect span-protecting tree designs

more severely than path-protecting tree designs in the cases where the network nodal de-

gree (i.e., connectivity) is barely high enough to allow the presence of a feasible design

using the given sets of trees. In these cases, using path-protecting p-trees, the working

paths with shortest protection paths of length 7 will have very few p-trees available to

protect them (i.e., only 7-hop degree-2 path p-trees, basically PXTs), but these structures

will still hopefully not be too individually redundant, especially considering that other de-

mands may have the opportunity to share their protection with this p-tree. However, using

span p-trees in the same networks, there will now be some individual spans with mini-

mum protection path lengths of 7 hops, which will each have to be protected by a 7-hop

degree-2 span p-tree (p-segment). In this case, opportunities for sharing with other spans

still exist, but the individual redundancy considering only the span in question and the 7-

hop p-segment will be much higher (on the order of a 7:1 ratio or 700% assuming roughly

equal span lengths). Therefore we expect that the low-connectivity span p-tree design will

contain much more inefficiency that is “locked-in” due to the topology and limited number

of protection alternatives.

These observations seem theoretically correct, but were called into question when we

discovered problems with the soundness of our design methodology via analysis of the

structural properties of the path p-trees themselves.

5.2.3.1 Structure Analysis

Just as in the span-protecting case, we mapped out the structures used in our designs in

order to gain further insight into the characteristics of efficient path p-trees. In doing so, we

found that by far most of the protection in these designs was provided by APS-equivalent
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degree-2 degenerate trees (i.e., PXTs). We have seen that APS-type protection can be

common in efficient designs (e.g., in pure PXT designs, as in Section 4.17), but the usage

in this case seemed excessive, with more than 95% of protection in all designs provided in

this way.

To discover why this might have occurred, we looked into the data sets generated for

the DRS problem (DRSs, candidate structures, and their protection relationships), and dis-

covered that, for the most part, protection relationships between trees and DRSs were only

being discovered for the single-demand DRSs, and not for the DRSs that were built up from

single demand “seeds” (see the DRS method description for PXTs in Section 4.3.3). The

result is that each structure, whether true tree or segment, almost always only had the option

of APS-type protection. This also explains why almost all structures in the resulting de-

signs were segments: a tree will always be less efficient than a segment for APS protection,

as any branches on the tree that are not part of the APS protection path are extraneous.

This is a major flaw in the design process, as it almost entirely rules out shared pro-

tection for trees, making it impossible for us to perform meaningful comparisons to other

architectures. The reason for this result is due to a negative interaction between three fac-

tors: the limits on tree sizes, the DRS filling method, and the properties of p-tree protection.

For FIPP p-cycles (the architecture for which the DRS method was initially developed), we

almost always want large DRSs as a cycle that protects many demands will generally be

more efficient. That is why the DRS method builds the DRS up in size until no more

demands can be added (either because of routing conflicts with the existing demands or

because the size cap has been reached). In the DRS method, the requirement for a cycle to

protect a DRS is that all of the end-nodes of the paths in the DRS are on the cycle, meaning

that large DRSs will generally require large cycles. However, for cycles, at worst 1 unit of

protection can be offered to any path in a DRS it protects, so even if we require our cycles

to be large by generating DRSs containing many paths with many distinct end nodes, we

are guaranteed to receive some “return” in terms of increased protection.

For PXTs the situation is different because a path with its end nodes on the PXT may

not be able to be protected at all. However, we are still able to generate all of the PXTs in

a realistically sized network, so that means we still have large PXTs available to cover our

large DRSs, even though it may well provide zero units of protection to certain demands.
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For p-trees, however, we must limit the size of our trees, so we do not, in general, have trees

that are large enough to protect our large DRSs. This is why we found very few protection

relationships for our non-trivial DRSs in the design problem input files. In this situation, the

solver has no option but to use the single-demand DRSs, and so we get designs consisting

mainly of APS protection.

5.2.4 Modified Design Method

We have seen that the DRS method, as used for PXTs in this thesis, is not appropriate for

path p-tree designs under the structure size constraints we must use for our experiments

here. In light of the explanation above, we decided to alter the DRS model for path p-trees

(see Section 4.3.2) in order to accommodate their special properties. The fundamental

problem was that the DRS protection parameter xk
c was not being set for any DRS c except

for the set of trivial DRSs containing just one demand. This is because to set xk
c = 1, tree

k must contain all of the end-nodes of all demands in DRS c. But under our current design

method, DRSs are large and trees are size-limited, meaning that it is very unlikely that a

large enough tree exists to protect any of our DRSs. However, note that this criterion for

setting xk
c is actually somewhat arbitrary. What if we were to relax this criterion and instead

set xk
c = 1 in some cases where tree k did not contain all end nodes of the demands in DRS

c? In this case, k could not possibly protect these demands, so β k
r = 0 for each of them.

This means that even if k is used to protect this DRS, the actual protection contribution in

the protection constraint will be 0, due to the multiplication with β k
r .

This shows that we can in fact set xk
c = 1 for any combination of k and c and still have

a valid model that produces accurate results. The only difference is that the more tree/DRS

combinations in which we set xk
c = 1, the more protection opportunities the solver will have

and the better the optimal result will be. This means that setting xk
c = 1 for all tree/DRS

pairs will produce the best results, but we cannot do this in practice because the size of

the model would become much too large to solve. Therefore we need to choose a smart

way in which to set the values of xk
c. For PXTs and FIPP p-cycles, the end-node containing

constraint seemed to work well, but we have seen that the situation is quite different for

path p-trees.

Therefore we needed to find a better way to set the values of xk
c. Two options present
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themselves. The first is to maintain the same DRS generation method (generating large

DRSs) and find a way to set xk
c = 1 for the non-trivial DRSs so as to give the solver better

protection options. The second is to change our method of DRS generation such that the

“default” method of setting xk
c works well, and leave that part of the design method un-

changed. We decided on the prior method, as it allows us to generate designs using the

same data files containing the same sets of pre-generated DRSs and trees used for our pre-

vious experiments. In addition to requiring less effort and time, this makes the results more

easily comparable with our our prior results, as the only difference in the data sets will be

the values of the xk
c parameter.

For generating our new designs, redefined xk
c such that xk

c = 1 for any DRS c and tree

k for which the tree could protect at least one of the demands in c. This is vastly different

from our original approach, which sets xk
c to 1 only when a tree contains all of the end

nodes of all of the demands in c, and is unconcerned with the details of protection (except

indirectly through the fact that a path may be protected only if it has both end nodes on the

tree). Table 5.1 gives the fraction of the tree/DRS combinations in which xk
c = 1 under both

the original approach and our redefinitions of xk
c for 3 of our test networks (16 node, 23

node, and 30 node). As we would expect, the number of possible protection relationships

greatly increases as a result of this strategy, by a factor of ~5 for the 16 span network and

over a factor of 100 for the more highly connected networks.

This leads us to expect that the results for these new design problems should be much

better, and more importantly more representative of the true efficiency of path p-trees.

However, the complexity of the problem also increases, because the solver has many more

options to consider. More precisely, the number of variables will increase, because the set

of per-DRS protection variables (nk
c) is defined over all combinations of DRS c and PXT

k such that xk
c = 1. The number of constraints will not change, although the number of

terms in constraints 4.2 and 4.3 (the DRS protection and PXT allocation constraints) will

increase, perhaps indirectly influencing complexity by increasing the “linkage” between the

variables involved in these constraints. However, we are still able to solve these problems

to optimality quickly. We are aided by the fact that we can use the values of the variables

in our initial solutions as a starting point for these new solutions, as any existing solution

is still a valid solution for the new problems. This saves time by allowing us to start from
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Network Original DRS method xk
c = 1 when any demand is protectable

15 node, 16 span 0.0135 0.0630
15 node, 23 span 0.00339 0.363
15 node, 30 span 0.00242 0.288

Table 5.1: Fraction of possible DRS protection options for candidate trees under the im-
proved approach to setting xk

c = 1 for selected test networks

within approximately 10% to 20% of optimality, instead of starting from scratch.

5.2.5 New Results

The plot in Figure 5.3 shows the design costs of the new designs appended to the original

results from Figure 5.2. The old results have been replaced with red crosses and the curve

for the new results takes on the formatting of the old. Increasing the number of available

protection relationships vastly decreases the cost of the path p-tree designs. Our original

observations remain valid; if anything, the difference between span and path p-trees has

become more pronounced.

Although these results are now less directly comparable to those for FIPP p-cycles (be-

cause they now use different variations on the DRS method), they are also more indicative

of the characteristic capacity efficiency of path p-trees. At the very least, we can say that

their design costs are now comparable to those for p-cycles and FIPP p-cycles, although still

significantly higher. Certainly, they are much more comparable than the span-protecting

p-tree designs were. This is understandable considering that PXTs are a special case of

path-protecting p-trees, and we have already seen that PXTs can have efficiencies compa-

rable to FIPP p-cycles (see Section 4.19). Therefore path p-tree designs must have costs

equal to or less than costs for a PXT design with an equivalent restriction on PXT length.

Figure 5.3 also shows that the transition from span protection to path protection has a

much more drastic effect for trees than for cycles. While FIPP p-cycle designs usually have

roughly the same costs as their span-protecting p-cycle counterparts in this network family,

path p-tree designs are almost always cheaper than the span p-tree designs. This can be

understood intuitively as a function of a tree’s ability to spread its branches further apart in

a network than a cycle can spread, given the same amount of capacity. For example, in a

6 span cycle no node is more than 3 hops away from any other node, because of a cycle’s
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Figure 5.3: Costs of path-protecting p-tree designs generated using a more representational
DRS method

closed nature. Two nodes at either end of a 6 span tree, however, may be up to 6 hops

away. Under a span protection framework, and assuming realistic network topologies in

which there tend to be more spans between close nodes than nodes that are far from each

other, this means that a cycle of a certain size is more likely to be able to protect many spans

than a tree of the same size, because the nodes in the cycle are more likely to be close and

thus have spans between them. Large and spread-out trees are wasted under this framework,

as spans between distant nodes in the trees are not likely to exist. Therefore we expect the

set of span-protecting trees to be much less dense with efficient structures than the set of

cycles, a fact that was confirmed by our tests on span-protecting p-trees. However, under

path protection with a full demand matrix (as we have here), working paths exist between

every node pair in the network, near and far alike. Therefore the utility of larger trees is

increased and the same set of trees becomes denser with good possibilities for protection

when full end-to-end paths are considered.
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5.2.5.1 Structure Analysis

Because of the great decrease in cost for the path p-tree designs after our improvements

to the DRS method, we might expect that the designs are now making much more use of

“true” p-trees. Analyzing the details of the p-tree structures used shows that this is true.

Table 5.2 shows the number of true trees and PXTs used in each of the designs, as well

as the proportion of total structures that are true trees. First of all, the new designs use

many fewer structures; this is a direct result of being able to use larger structures instead

of mostly short 1+1 APS-equivalent PXTs. As for the degree of tree protection, while the

initial designs used only a small amount, the new designs can use almost as many true

trees as PXTs in some networks. Because the total number of trees is so large, we cannot

illustrate them all in an Appendix. However, we do give some select examples to illustrate

certain points later in this analysis (Figure 5.5).

One characteristic that is common across both the old and new results is that there is

a general trend towards less tree protection in the higher degree networks (although the

decline is hardly regular). This runs counter to our expectations based on the explanatory

framework we have built so far concerning the effective “protection reach” of different

types of structures vs. their total size. In a sparsely connected network, the shortest possible

protection path between any two nodes is long, and becomes shorter as spans are added.

Therefore, we would expect to require more PXTs in a sparse network to provide these

long protection paths. However, the opposite is occurring here.

Under the modified DRS method, the issue of protection path length may no longer

be paramount, because the set of protection relationships for each demand is now very

densely populated, with each demand facing many choices for protection from PXTs and

trees alike. Instead, trees are likely being used here as special case “fixes” in certain areas

where the use of PXTs would be suboptimal (as seen with both p-trees and p-segments

with respect to p-cycle designs in Chapter 3). Figure 5.4 shows an extreme case in which

the only possible (non-cycle) structure that can protect both demands at once is a tree. This

is the case because the end-nodes of both demands are degree-2 nodes, and therefore any

non-cycle structure that protects them must terminate at both of those end-nodes, meaning

that either we must use 1+1 APS protection for both, or we need to use a tree with its

branches terminating at each of the 4 end nodes. As network connectivity increases, the
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Original Designs Increased DRS Protection
Network Number

of True
Trees

Number
of

Segments
(PXTs)

%
True
Trees

Number
of True
Trees

Number
of

Segments
(PXTs)

%
True
Trees

23 span 12 464 2.5% 90 111 44.8%
24 span 9 460 1.9% 70 138 33.7%
25 span 12 470 2.5% 67 147 31.3%
26 span 3 508 0.6% 80 132 37.7%
27 span 6 493 1.2% 79 118 40.1%
28 span 0 504 0% 85 111 43.4%
29 span 0 518 0% 49 172 22.2%
30 span 0 518 0% 60 162 27.0%

Table 5.2: The amount of “true” tree vs. PXT protection in both initial and improved path
p-tree designs

(a) Protection paths (b) Tree

Figure 5.4: An artificial case in which shared protection for two demands must be provided
by a tree

number of demands with degree-2 end nodes will decrease, freeing up options for shared

protection on PXTs in addition to trees.

Figure 5.5 illustrates this point using examples from our solutions, all of them actual

trees extracted from our design for the 23 span network. Subfigure (a) is the most similar

to our artificial example because a simple PXT is not able to protect both demands simul-

taneously. The reader can verify, by tracing out the possible protection paths that do not

combine to form a tree, that such a structure would have to be either a cycle or a non-simple

PXT. In this case this occurs because each of the demands has one degree-2 end node, com-

bined with a kind of low-degree “choke point” that exists at the other end of the network.

This shows that not only are degree-2 end nodes a factor, but low connectivity through-

out the network can produce a requirement to use trees for shared protection. Subfigure

(b) shows a similar situation involving more demands. Here, the red and orange demands
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share one degree-3 end node, as do the purple and green demands, creating again a situa-

tion where the protection structure must terminate at these nodes. The branching structure

of the tree allows it to reach both of these nodes, as well as all the other end nodes of the

demands, to complete the protection paths. These examples show that using p-trees allows

increased opportunities for sharing in low degree conditions. As connectivity increases in

the network, these situations occur less frequently, as there are more routings that will al-

low a linear structure to connect all end-nodes of the demands in a DRS. Essentially, low

connectivity will require more of the routing flexibility of p-trees.

Of course, there is nothing in the design problem that mandates that we must use the

exact DRSs in the examples given in Figure 5.5, protecting these particular groupings of

demands by the same structures. We can imagine that a different DRS arrangement for

these demands would allow groupings of end nodes that would be more friendly to easy

access by PXTs instead of trees. This may indeed be the case, but the fact is that we see

more of these groupings for the more sparsely connected networks, indicating that they

are more necessary for efficient protection in these cases. Again, as in the span-protecting

case (and even more so here because of the necessarily incomplete nature of the DRS-

based design problems), we cannot derive certain rules for path p-trees to determine when

they must be used and when they must be avoided for efficient protection. We are simply

advancing a statistical argument that, we feel, strongly suggests a higher suitability of p-

trees for sparse networks.

Another interesting feature gleaned from inspecting the trees in our designs is the ob-

servation that, as with our PXT observations in Section 4.3.5, there are many trees that

could have their protection capabilities greatly enhanced by minor alterations that would

transform them into cycles (that is, FIPP p-cycles in the path-protecting case). Such ex-

amples are shown in Figure 5.5 (c) and (d). In both cases, we can just add one span and

move another to make the trees into cycles that still protect all of the pictured demands

because of a cycle’s ability to protect demands that overlap with it. This suggests that the

benefits of path p-tree protection in low-degree cases may diminish or disappear entirely

in the presence of FIPP p-cycles. This further motivates the following comparison of path

p-trees with FIPP p-cycles and an investigation of hybrid designs.
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(a) (b)

(c) (d)

Figure 5.5: Examples trees from path p-tree designs
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5.3 Hybridization with FIPP p-Cycles

5.3.1 Motivation

At this point, it was natural to continue on the same investigative course that we took

with span p-trees: hybridization with a cycle-based architecture. The purpose of this is

twofold: first to determine the degree of improvement that trees can provide over cycles

alone, and second to gain insights into the properties of situations in which trees and cycles

can complement each other, this time under the paradigm of path protection. In the case of

path protection, the relevant cycle-based architecture is FIPP p-cycles.

5.3.2 Initial Method

Because we can find path p-tree and FIPP p-cycle designs using the same DRS ILP model,

we are able to follow the same approach used to hybridize span p-trees with p-cycles. In

other words, we can generate a design problem that uses both trees and cycles simulta-

neously as candidate structures. The DRS generation element, however, adds some com-

plexity to this hybrid approach. Because the generation of candidate structures depends

on the set of DRSs that is generated prior, there are a number of ways that the problems

could be merged together. For example, it would be possible to first generate both DRSs

and candidate structures independently for both trees and cycles as normal, and then merge

the two DRS sets and candidate sets together. Another approach is to first generate only

a single set of DRSs, then generate both trees and cycles for the protection of these DRSs

simultaneously. We opted to take this second approach initially, as it most closely satisfies

the philosophy of treating trees and cycles impartially, as generalized structures instead of

conceptually separate architectures.

First, the set of DRSs is generated as normal, as per the PXT DRS or pure path p-tree

DRS method. Next, only the set of cycles is searched in an attempt to find at least the

designated (by user-assigned parameter) number of structures that can protect each DRS.

After this stage, if there are any DRSs left that still require more structures to protect them,

only then is the set of trees searched as in the normal path p-tree DRS method. The intent

was for this search to then continue until each of the DRSs in question have the designated

number of protection relationships from trees and cycles. The combined tree and cycle
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Figure 5.6: Spare capacity costs of initial hybrid path p-tree and FIPP p-cycle designs

candidate set is then used as the candidate set for the problem.

Note that these experiments were performed before the problems with the DRS method

for path p-trees were identified, and therefore the DRS protection relationships were un-

derrepresented for the path p-tree candidates, as with our initial results for pure path p-tree

designs. Therefore these initial results do not truly represent the ability of path p-trees to

supplement FIPP p-cycles. However, the results of the exercise were successful in terms of

motivating us to improve this approach to the hybrid path p-tree/FIPP p-cycle problem, so

we will discuss them briefly before moving on to discuss our further modifications.

5.3.3 Initial Results

The costs of the hybrid designs are given in Figure 5.6, along with the costs of the FIPP

p-cycle-only designs. It shows that the hybrids are hardly ever able to improve significantly

on the pure FIPP designs. Initially it was assumed that this was a situation analogous to the

span-protecting case in Section 3.4, where cycles naturally dominate trees in terms of effi-

ciency, but we later discovered the problems with the original DRS method in conjunction

with p-trees and realized that we could not draw strong conclusions about the characteristic

efficiency of p-trees from these results.
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At the time, however, this was unknown to us, so this poor showing for path p-trees

motivated us to search for other causes. Indeed, we discovered a different problem, this

one isolated to the hybrid design process. We inspected the output of the DRS generation

algorithm to determine whether or not it was biasing the problem given to the solver, and

discovered that, for the networks containing 23 to 30 spans, the candidate structure genera-

tion process was actually generating zero candidate trees for use in the problem. Therefore

for all of these networks the solved problem can be considered to be identical to the FIPP

problem (the differences in results being caused by differences in different runs of the non-

deterministic DRS generation algorithm). Even in the other cases where trees are used, this

number is often quite small. For example, the 22 span network is only given 3 candidate

trees, as compared to 134 cycles. Trees only outnumber cycles in the data sets for networks

with 19 spans and below (even though the size of the full tree set will always be much

greater than the number of cycles). Therefore the problems will already be heavily biased

in favour of cycles in the majority of cases, and these results do not provide a valuable

comparison between trees and cycles, regardless of how well populated the set of potential

protection relationships is.

This is all a direct result of the candidate structure selection method, which is biased

heavily in favour of cycles. Because the entire set of cycles is checked first, before any trees

are considered, it is possible that the process will terminate entirely before any candidate

trees are discovered at all, due to the large number of protection relationships that cycles

are able to provide alone. In a way this is no different from the ordinary DRS method

for FIPP p-cycles, which sorts cycles by length and thus prioritizes short ones over long

ones. It is still justifiable as a practical design methodology, because in general we do not

expect trees to be as efficient as cycles in any case, so we only wish to consider them if we

cannot find a desired number of possible protection choices among cycles. However, it does

interfere with our efforts to compare path p-trees and FIPP p-cycles theoretically, because

trees are unduly eliminated early in the heuristic DRS/structure generation step instead of

being compared fairly against cycles by an impartial solver, as was our intention. In order

to obtain useful results, we needed to resolve two problems with our design algorithm: both

the under-representation of tree candidates and the underpopulation of their potential DRS

protection relationships.
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We must also mention for completeness that a bug was also discovered in the imple-

mentation of the candidate structure generation procedure. As stated above, the intent was

for this procedure to generate first cycles, then trees, until the total number of protection

relationships for each demand exceeded the minimum defined by the relevant parameter.

The bug, however, caused the protection relationship count to become reset when moving

from cycles to trees. This means that in any case where there were not enough cycles to

cover the required N protection relationships, trees were then generated to provide all N

relationships, no matter how many had already been dealt with by using cycles. This bug

was fixed for the following tests. Our design methodology already had enough problems

at this point that our results had no real theoretical value in any case (though they did have

value in terms of informing our attempts to develop a more fair version of the design pro-

cess). However, note that, unlike our other problems, this bug actually biased the solutions

partially in favor of trees, by generating more than were intended (at least, in situations

where trees were generated at all).

5.3.4 Modified Method and Experiments

The issue with underrepresented DRS protection in trees was fixed in a similar way as

it was for the pure p-tree designs in Section 5.2.4. For the hybrid designs, this involved

changing the values of xk
c for all structures, trees and cycles included (in order to be fair

to both architectures, as per the intent of the exercise). As with the pure p-tree case, we

used initial solutions with limited numbers of tree protection options as starting points for

solving our new designs. We also took the same approach, at first, of setting xk
c = 1 in

all cases where at least one demand was protectable, but unfortunately we found that this

resulted in problems that would not progress significantly away from their initial conditions

and towards optimality in a reasonable amount of time, because of the complexity of the

problem. We were still able to achieve results within approximately 5% of optimality for

most networks (solutions were found for the 16 span through 26 span networks), but in

the more densely connected networks the original design would report more than 10%

from optimality, with negligible change after over a day. Therefore we needed to find an

alternative method with reduced complexity for these networks.

The modified approach was to set xk
c = 1 only in cases where more than half of the
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demands in a DRS were protectable by the structure in question. This method still increases

the number of available protection relationships, just not to such a great degree as before.

Using this approach, most designs were able to be solved within 5% of optimality. It is these

results (for the “>50% protection” approach) that we present in the following Section. Note

that this method, unlike the first, can actually remove protection relationships in certain

cases, because there may be trees that pass through all the end nodes of demands in a DRS

that can actually only protect less than half of the demands because the protection paths

are not routed disjointly from the working paths. However, this approach will still increase

the number of protection relationships on average. Furthermore, it is still more suited to

trees than the original DRS “end-node intersection” approach, because it takes protection

capabilities directly into account.

As for the issue with the generation of the structures themselves, we wanted a method

that would remove as much of the bias as possible from the selection process in order to be

able to use the hybrid design problems to make a fair comparison between FIPP p-cycles

and path-protecting p-trees. Such a method would ignore the distinction between trees and

cycles, treating them as generalized path-protecting structures and sorting them in an order

for consideration that is as “neutral” as possible. The first such approach that comes to

mind is simply total randomization of the combined set of trees and cycles. However, this

adds an extra element of non-determinism to the DRS algorithm which already has issues

with repeatability due to its random nature.

The method we decided on was to combine the set of cycles and trees together and then

sort sort the combined set by total structure size (the sum of the lengths of all on-structure

spans). This maintains the original order of the tree and cycle sets individually, as they are

normally sorted by length separately, while at the same time giving both types of structures

a chance to be chosen to protect DRSs, as they are interleaved into the same list. This is

the approach taken in the following experiments.

This method is not without its flaws. For example, sorting the combined structure set

by length with the expectation that smaller structures protecting the same DRS do so more

efficiently ignores the fact that a cycle will likely be able to provide much more protection

to a DRS than a tree of the same size. While a FIPP p-cycle can always provide either

1 or 2 protection paths to a working path that has both of its end nodes on the cycle, a
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Network Cycle-Biased Selection “Fair”
(Length-Sorted)

Selection
Number of

Cycles
Number of

Trees
Number of

Cycles
Number of

Trees
16 spans 3 258 3 258
17 spans 7 598 7 598
18 spans 14 844 14 844
19 spans 24 1143 24 1332
20 spans 43 50 36 2109
21 spans 73 38 58 3321
22 spans 134 3 89 4177
23 spans 186 0 132 4358
24 spans 294 0 213 4585
25 spans 423 0 308 3861
26 spans 575 0 456 2901
27 spans 664 0 491 3276
28 spans 772 0 649 3625
29 spans 992 0 805 3084
30 spans 1286 0 1009 3082

Table 5.3: Number of candidate structures for path p-tree/FIPP p-cycle hybrid designs un-
der the original (cycle-biased) and new (combined list sorted by length) candidate structure
selection methods

tree may not even be able to provide 1 such path if the structure is not disjoint from the

working path. Therefore it may be argued that this method of sorting the structures gives

undue preference to trees, considering their characteristic inefficiency. The weaknesses of

the approach must simply be kept in mind when drawing conclusions from the data.

The parameters used to perform the following experiments were identical to those per-

formed in the previous Section. Using the new candidate structure selection approach, trees

were indeed more densely represented in the candidate sets. Table 5.3 gives a breakdown of

the number of each type of structure under both the old and new methods. The Table shows

how, under the original method, trees are initially well represented, but become dominated

by cycles suddenly as the number of spans is increased to 20. We also see that under the

new method the number of cycle candidates is reduced slightly (because of the increased

contribution of trees), but that large numbers of both structures are still included across all

of the test cases.
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Figure 5.7: Spare capacity costs of hybrid path p-tree and FIPP p-cycle designs with “fair”
candidate structure selection

5.3.5 Results of Corrected Experiments

Figure 5.7 shows the costs of the new results as compared to the pure FIPP designs and the

original, flawed hybrid designs, discussed above. The curve for the hybrids from Figure

5.6 is replaced with red crosses and the curve for the new hybrids takes on the formatting of

the old. The Figure shows a large improvement in all cases, as expected from our twofold

effort to improve the protection ability of trees in the design problem. As a result, the hy-

brids can now improve on the FIPP p-cycle designs by a significant margin. The average

improvement is 14.5%, with a maximum of 30% in the 16 span topology. Regardless of

whether this method can be said to value tree and cycle candidates “equally”, it certainly

allows the tree candidates to be be present in amounts that can provide improvements in

many cases over cycles, without over-representing them to the extent that their characteris-

tic inefficiency becomes dominant over cycles. Note that in all cases where results for the

“xk
c = 1 where any protection is possible” method were available, they did not improve upon

the results in Figure 5.7 by more than ~3%, so we can be sure that the method used here

was sufficient to provide enough protection options for trees to capture their true efficiency.

The extreme improvement in the 16 span case is understandable, given that there are
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only three candidate cycles in this network, meaning that there are not many different

choices available for protection using FIPP p-cycles alone. Therefore the design is able

to benefit greatly even from the opportunity for 1+1 APS protection that is introduced by

the inclusion of degree-2 path p-trees (i.e., PXTs). Indeed, only one true tree structure was

used in this design, with the rest being 1+1 APS-equivalent PXTs. We will discuss the

details of the structure composition of our designs more in the following Section.

By now we have seen that non-cyclical protection has much more relevance in a path-

protecting context than a span-protecting context, so the ability of trees to improve upon

cycle designs in this same context is not entirely surprising. As to whether this improve-

ment is due to actual tree protection, or if it is really mostly PXT protection, that will be

determined from the following study of the structural characteristics of these designs.

5.3.5.1 Structure Analysis

Again, we mapped out the structures used by our designs in order to determine how ex-

actly path p-trees are used to enhance FIPP p-cycles. Table 5.4 gives a breakdown of the

percentage of structures in each design that are cycles, PXTs, and true trees. As we can see

from the Table, while PXTs can have a significant presence in FIPP p-cycle design, true

tree protection is extremely rare. Indeed, 9 of the designs do not use any tree protection at

all, including those for the 6 most highly connected networks. The few true trees that are

used in these designs are illustrated in Appendix G.1.

This seems to suggest that tree protection, as in the span-protecting case, becomes ir-

relevant when the possibility of cyclical protection is introduced. However, there may be a

feature of the DRS methodology being used here that interferes with the potential of tree-

based protection. We say this because our partial results for the original approach (in which

xk
c = 1 whenever protection is possible) show a significantly different composition of struc-

tures for many designs. In these designs, PXTs can still make up a significant proportion

of the structures (an average of 21.5%), but there are significantly more trees: an average

of 5.0% of structures are trees over all designs. The 23 span network has the most trees:

approximately 50% of structures are cycles, 30% are PXTs, and 20% are true trees. This

is also the network with the greatest capacity difference between the results (about 3.3%).

On average the number of trees is still small, but is significantly greater than the results
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% of Total Structures
Network FIPP

p-Cycles
PXTs True

Trees
16 spans 70.8% 28.6% 0.5%
17 spans 88.6% 11.4% 0.0%
18 spans 80.2% 19.8% 0.0%
19 spans 84.4% 15.6% 0.0%
20 spans 79.3% 19.8% 0.8%
21 spans 84.6% 13.5% 1.9%
22 spans 75.7% 21.6% 2.7%
23 spans 59.6% 39.5% 0.9%
24 spans 55.7% 43.5% 0.9%
25 spans 57.6% 42.4% 0.0%
26 spans 98.3% 1.7% 0.0%
27 spans 88.6% 11.4% 0.0%
28 spans 78.1% 21.9% 0.0%
29 spans 59.8% 40.2% 0.0%
30 spans 49.0% 51.0% 0.0%

Table 5.4: Contribution of cycles, true trees, and PXTs to protection in hybrid FIPP p-
cycle/path p-tree designs

reported in Table 5.4. This suggests that most of the capacity efficiency of the design is due

to cycles, but that a significant difference in the efficiency of the non-cyclical protection

can occur when we eliminate potential protection relationships for lightly protected DRSs

(i.e., DRSs for which less than 50% of the demands can be protected). The true trees in

these solutions are illustrated in Appendix G.2.

To understand this effect, we looked at the properties of the structures themselves,

specifically the trees and PXTs in the two designs for the 23 span network, where we saw

the most disparity between our two approaches. Examining these structures showed that

almost all of them in the “>50% protection” case are 1+1 APS-equivalent PXTs; only one

structure is a true tree that protects multiple demands. In contrast, the PXTs and trees in

the “any protection” design often protect multiple demands; there are only 6 out of 32 PXT

copies that are equivalent to 1+1 APS arrangements. However, the number of demands pro-

tected by these types of structures rarely exceeded 3. This is understandable because we

are only able to include small trees in our data set, so it is likely that they can only protect

small sets of demands. Unfortunately, to determine if larger trees could be more efficient,
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we would have to add them to the design problem as well, which we have explained is not

possible given the constraints on computing power that we are under. However, as a practi-

cal matter we have seen that it is possible for small path p-trees in hybrid tree/cycle designs

to handle the niche of protecting small DRSs. The FIPP p-cycles handle the large DRSs,

which they are especially suited to, while small trees and PXTs are efficient for protecting

the few remaining demands.

5.3.6 Conclusions

Overall, path p-trees become rather unimportant when cycles are introduced to the design

problem, as PXTs and FIPP p-cycles are able to efficiently handle by far most of the pro-

tection in the network. Even when we are able to give the maximum advantage to path

p-trees by allowing them to protect the widest possible variety of DRSs, the number of

tree structures is small and the decrease in capacity cost is minimal (although definitely

measurable). If path p-trees have a place in efficient network design, it will be in special

cases where capacity efficiency is of utmost concern and designers are able to identify areas

in an otherwise FIPP p-cycle design where a small group of demands is more efficiently

protected by a small tree.

5.4 Summary and Future Work

Characterization of the efficiency of path-protecting p-trees showed that they are more

comparable to cycles and trails than their span-protecting counterparts, but that they are still

at a significant disadvantage as a standalone architecture. Structural analysis of the designs

showed that they contain significant numbers of true trees (as opposed to PXT equivalents).

As a byproduct of these investigations, we also discovered that the DRS method, as used for

FIPP p-cycles and PXTs, is not directly suited to the path p-tree design problem, and must

be modified to obtain meaningful results. Investigations into hybridization with FIPP p-

cycles showed that the utility of true trees decreases significantly in the presence of cycles,

although again not as severely as in the span-protecting case. Tree/cycle hybrids are able to

improve to a noticeable degree upon pure FIPP p-cycle designs, although this improvement

is mostly due to PXT equivalent p-trees.
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The fact that tree-based, preconnected protection may be useful, even in a small frac-

tion of cases, means that there may be merit in a further investigation of the meaning of

the concept of degree-3+ cross-connection and its device-level implementation. On a more

fundamental level, this Chapter establishes a hierarchy of protection efficiency: tree protec-

tion is dominated by PXT protection, which is dominated in turn by cycles. This hierarchy,

which we have seen holds in both span- and path-protecting cases, is one of the fundamen-

tal contributions of this thesis.

Unfortunately, computational constraints have impeded a thorough investigation of this

topic, even more so than in Chapter 3 on span-protecting p-trees. Not only do we have to

perform experiments with an incomplete tree set, we have also seen how the DRS-based

approach to path-protecting structure design can easily lead to false conclusions if we do

not carefully inspect the different effects that the implementation can have on different

types of protection structures. Basically, the DRS approach, necessary for the feasibility

of optimization-based path-protecting structure design, upsets the fairness and neutrality

of the combined ILP approach to hybrid design that we initially found so desirable. The

investigation and discussion here forms only an initial foray into the area of path p-tree,

which we hope will become increasingly accessible with increases in computer power and

improved design methods.

That said, the next steps for the research of path p-tree design methods would almost

certainly need to address these computational issues. For example, a method of thinning

the population of candidate trees, while at the same time allowing structures of a variety of

sizes, would allow us to make more definitive statements about the usefulness of large vs.

small trees. Another approach would be to abandon the ILP-based design method entirely

and investigate heuristics: the greedy PXT design heuristic may be easily adapted to p-tree

protection. We have already seen that the heuristic can do as well as or better than our ILP-

based method in the PXT case (because it considers structures that our ILP approach does

not), so it may be even more suited to the p-tree case where the sheer size of the solution

space weighs heavily against the ILP approach.
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Chapter 6

Cross-Architecture Considerations for
the Protection of Transparent Optical
Networks

6.1 Introduction

To this point, we have been focusing very narrowly on comparisons between pre-cross-

connected architectures, usually in terms of their capacity efficiency, without considering

more broadly the implications of implementing these architectures for the protection of real

optical networks. This Chapter collects a number of studies, related by the fact that they all

investigate practical considerations of protection in optical networks using the architectures

studied previously in this thesis (span and path p-trees, p-cycles and FIPP p-cycles, and

PXTs).1

1Some of the work on the HAVANA project in the first part of this Chapter has been published at DRCN
2007 and ICC 2009:

A. Grue, W. D. Grover, M. Clouqueur, D. Schupke, J. Doucette, B. Forst, D. Onguetou, D. Baloukov,
“Comparative Study of Fully Pre-Cross-Connected Protection Architectures for Transparent Optical Net-
works,” Proceedings of the 6th International Workshop on Design of Reliable Communication Networks
(DRCN 2007), La Rochelle, France, 7-10 October 2007, pp. 1-8.

A. Grue, W. D. Grover, M. Clouqueur, D. Schupke, D. Baloukov, D. Onguetou, B. Forst, “CAPEX Costs
of Lightly Loaded Restorable Networks Under a Consistent WDM Layer Cost Model,” to appear in the
proceedings of IEEE International Conference on Communications (ICC 2009), Dresden, Germany, 14-18
June 2009.

The work presented in the second part of this Chapter on failure localization has been published in IEEE
Communications Letters:

W. D. Grover, A. Grue, “Self-Fault Isolation in Transparent p-Cycle Networks: p-Cycles as their Own
m-Cycles,” IEEE Communications Letters, vol. 11, no. 12, December 2007, pp. 1004-1006.
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6.2 Comparative Study of Protection Architectures for
Transparent Optical Networks

In 2005, the Network Systems research group (of which I am a member) at TRLabs was

approached by researchers at Siemens (now Nokia Siemens Networks, or NSN) regarding

the possibility of a cooperative research project on the topic of protection architectures for

transparent optical networks. The project, named HAVANA (High AVAilability Network

Architectures), was to focus specifically on networks implemented using NSN-specific net-

working technology, and would address several areas of practical interest to NSN, such as

dual failure restorability and cost modeling.2

The work described in this Chapter was done as part of this collaborative project. Re-

sults from comparative studies with other architectures performed by other researchers are

credited to the appropriate project members.

6.2.1 Goals

We have already discussed the general motivation behind the investigation of network pro-

tection technologies specific to transparent optical networks. However, the treatment given

to the problem so far in this thesis has been largely theoretical in nature, focusing on stud-

ies of relative theoretical purity over large families of artificially generated networks. The

HAVANA project, in contrast, was to focus on the more practical aspects of network de-

sign for a single network under the constraint of transparent networking. The goals for the

project can be expressed threefold as:

1. Characterize and compare several protection architectures

2. Consider a mix of many “real world” design constraints simultaneously

3. Develop a set of tools for achieving goals 1 and 2

This thesis will focus mainly on the first two goals, as the implementation details of the

tools used to produce our results are not, in general, of academic interest.

2My own role in the project was that of a Research Engineer for the first year, and as a Senior Project
Engineer for years 2 and 3. This role involved coordination of my own research activities with that of a
team of up to 5 other Research Engineers involved with the project, as well as producing deliverables (e.g.,
summary slides and reports) and putting together and presenting conference papers based on project results.
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6.2.2 Overview and Methodology

The study was performed in three distinct stages, corresponding to the three years of the

project. At each stage, the goals of the project were reevaluated and new investigative tasks

were outlined. The project covered the following areas:

Year 1

• Basic restorable network design with spare capacity minimization objective

• Dual failure restorability analysis of single failure restorable designs

• Implications of wavelength continuity constraint

• Implications of length limitations on protection paths

Year 2

• Single node failure restorability analysis of single span failure restorable designs

• Implications of the constraint that working and protection paths must share the same

wavelength (same-wavelength protection)

Year 3

• Cost modeling

The study followed an “accumulative” approach, under which the initial basic single span

failure restorable designs were carried forward into subsequent investigations and modified

according to the findings, i.e., adjusted to satisfy wavelength continuity, protection path

length limits, etc. The result at the end of year 2 of the project was a set of “best feasible”

designs that were then used for the cost modeling exercise.

My role as a researcher in this project was to perform the above investigations for PXTs

and (to a lesser extent) path- and span-protecting p-trees. However, as the study was fun-

damentally comparative, results for other architectures are also provided in the following

Sections, and credited to the appropriate authors. The other architectures included in the

study were DSP, p-cycles, and FIPP p-cycles.

186



Figure 6.1: Topology for test network TestSet0 that was used for the study

6.2.3 Study Parameters

As mentioned, the study focused largely on the design of restorable networks for a single

network topology and demand pattern (named “TestSet0”). The network topology used was

the “Germany” network shown in Figure 6.1. Besides being of special interest to Nokia

Siemens Networks, it is also a standard topology that is used in many other simulations

found in the literature (e.g., for DSP in [GrKo05]). The network has 17 nodes and 26

spans, with an average degree of d = 3.06. The demand pattern was provided by NSN as

an example on a “realistic” demand matrix that could be expected from such a network.

This matrix is described in Appendix B.11. Demand is expressed in units of wavelength

channels.

6.2.4 Basic Restorable Network Design

6.2.4.1 Method

For PXTs, basic single span failure restorable network designs were generated for PXTs

using both the greedy heuristic (Section 4.2) and ILP-based heuristic (Section 4.3) methods.

The greedy heuristic for PXTs requires no parameters and simply runs until the network is

completely protected. However, the results will vary depending on the order that demands

are protected. The program was run 10 times, each time with a new randomized demand

order, so as to determine the extent of the effect of demand order on the resulting capacity
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cost. Costs were found to vary up to 10% between different runs (i.e., ±5%). The design

with the lowest cost was chosen as the reference design for further discussion.

For our ILP experiments, we enumerated all of the simple trails in the network as can-

didate PXTs. There are 13,640 such trails in the network under study. The parameters used

for the ILP method (outlined in Section 4.3.3) were 30 DRSs per demand, 30 candidate

trails per DRS, and a maximum DRS size of 15 demands. After experimentally testing

several permutations of parameters, these values were found to produce good designs in a

reasonable amount of time.

For p-trees, the set of candidate trees was limited in the manner described in Section

3.2.2. The span p-tree model was given as candidates all trees with a maximum size of 9

spans and maximum degree of 4, a total of 136,690 trees. The path p-tree model, being a

DRS model, is more complex and therefore cannot handle as many candidates given the

same computational power and time. So the path p-tree model was given the set of all trees

with maximum size of 8 spans and maximum degree of 3, a total of 45,997 trees. The DRS

parameters used for the path p-tree model were 20 DRSs per demand, 20 candidate trees

per DRS, and a maximum DRS size of 10 demands.

Each of these four design problems (heuristic PXT, ILP PXT, span p-tree and path p-

tree) was solved twice, using two different models for capacity cost. Under the “distance-

based” model, the cost of a unit of capacity on a span was assumed to be equal to its length.

Under the “hop-based” model, the cost of a unit of capacity on a span was assumed to be

1 everywhere. These models can be seen as the two extremes of a continuum over which

capacity cost has both a constant “setup” component (e.g., transponders and amplifiers at

the end-nodes) and a transmission component that varies depending on span length (e.g.,

amplifiers/regenerators at periodic locations on the span to ensure sufficient SNR at the

receiver). The “distance-based” model is one in which the constant setup cost is assumed

to be negligible in comparison to the costs of amplification and regeneration; in the “hop-

based” model the opposite is true. Which of these models is more accurate will depend

on the relative costs of the real-world components, but detailed cost modeling was not a

concern at this point in the study, so both models were used in the absence of more specific

information.

The working routing method used for the ILP-based and heuristic-based PXT designs,
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as well as for path p-trees, was shortest-path routing with modifications used to eliminate

the “trap” case that would result in designs not completely restorable against single failures

(see Section 4.3.3). The working capacity cost was 166 units for the hop-based cost model

and 23934 units for the distance-based cost model. Because span p-trees do not protect

end-to-end paths, the “trap” situation is not a concern, so we simply used a basic shortest-

path routing algorithm. This algorithm was also allowed to split flow (demand bundles)

in a balanced manner between working routes with identical lengths, a situation that will

occur frequently when the hop-based cost model for spans is used. Demand splitting like

this was not allowed in the working routing algorithm for path p-trees or PXTs, because

the complexity of DRS-based models is sensitive to the number of distinct working routes

used in the working capacity assignment.

6.2.4.2 Results

For PXTs, The ILP models required several hours to solve to full optimality. In contrast,

the heuristic required only a few seconds to generate a solution in each case.

The span p-tree design solved to optimality (a full CPLEX termination with an optimal

design) in only a few minutes. The path p-tree design required several hours to solve to

full optimality in the hop-based case, but only a few minutes for the distance-based case.

Interestingly, the actual CPLEX solution time for path p-trees was only a fraction of a

second; by far the bulk of the time was used to generate the columns and rows of the ILP

problem itself from the AMPL model and its data.

The results of all 8 experiments are summarized in Table 6.1. The data in this Ta-

ble reflects properties of PXTs and p-trees established earlier in this thesis. For example,

the greedy heuristic PXTs use fewer structures to achieve the same amount of protection.

Further calculation establishes that the average lengths of greedy heuristic PXTs in these

designs are 12 (hop-based) and 1950 (distance-based), whereas the average lengths for the

ILP designs are 5.6 (hop-based) and 790 (distance-based). Also, p-trees are again shown

to be very capacity inefficient. This, combined with the uncertainly surrounding the feasi-

bility of their implementation (e.g., what does a fully pre-cross-connected degree-3 node

mean?), puts them at an extreme disadvantage with respect to the other architectures in this

study where practical implementation issues are at the forefront.
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Design Spare
Capacity
(channel-

km)

Redundancy Number
of

Structure
Copies
Used

Number
of Unique

Struc-
tures
Used

Hop-Based
Cost Model

ILP-Based
PXTs

209 126% 32 25

Heuristic
PXTs

168 101% 14 14

Span p-Trees 303 183% 47 23
Path p-Trees 271 163% 70 51

Distance-
Based Cost

Model

ILP-Based
PXTs

28915 121% 32 29

Heuristic
PXTs

23398 98% 12 12

Span p-Trees 45313 189% 65 23
Path p-Trees 37533 157% 71 48

Table 6.1: Summary of PXT and p-tree “low capacity” reference designs (100% single
span failure restorable)

The results also show quite a large gap between the efficiency of the designs produced

by the ILP-based PXT design approach and the heuristic-based PXT design approach. In

our studies on the Murakami & Kim network in Chapter 4, even though the heuristic was

able to outperform the ILP-based approach, the gap was not nearly so large. This suggests

that, for this particular test network and demand pattern, limiting the PXTs to being simple

trails in the ILP model is a significant limiting factor on capacity efficiency. However, the

complex nature of the self-intersecting PXTs that the heuristic produces is still a significant

reason to consider the ILP-based approach to be advantageous. Also, we must keep in

mind that in the end, the true “real world” cost of these designs depends not on span-based

transmission costs, but on the node hardware required to support the capacity plan, and we

have not yet seen how these two cost measures are correlated. Therefore any conclusions

about characteristic cost at this point must be considered to be tentative.

Figure 6.2 gives a graphical comparison of the redundancies of the PXT and p-tree de-

signs to the other architectures included in the study. The redundancy of 1+1 APS (173%)

is given as a horizontal red line on the Figure. This Figure highlights the low efficiency of
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Figure 6.2: Comparison of spare capacity redundancy values of initial low capacity designs
for all HAVANA architectures

p-trees. Path p-trees use nearly as much capacity as APS and DSP, showing that path p-

trees do not make significant use of the ability to share protection capacity between disjoint

working paths. Span p-trees are even more inefficient than APS; this is possible because

span p-trees are span-protecting and therefore we cannot say that APS is strictly a degen-

erate case of span p-trees (otherwise we would expect span p-trees to be as costly or less

costly than APS in all cases). We can see that PXTs and FIPP p-cycles compare favor-

ably to each other, but p-cycles are able to attain much higher efficiency than any other

architecture, path-protecting or otherwise.

The results for APS and DSP were produced by Brian Forst (see also [FoGr07, Fors09]),

the results for p-cycles were produced by Diane Onguetou, and the results for FIPP p-cycles

were produced by Dimitri Baloukov.

Effect of DRS Parameters on Results

The ILP problems used for these experiments were incomplete due to the large size of the

candidate sets for the PXT, span p-tree, and path p-tree problems (as explained in Sections

4.3, 3.2.1, and 5.2, respectively). Therefore some attention should be given towards the

efforts taken to determine that these results were close enough to optimal to be meaningful

and comparable with each other and the other architectures in the study.
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When we were initially experimenting with p-tree generation to determine how large

we could feasibly make the candidate set, we generated p-tree designs using size limits

of both 8 and 9, and degree limits of both 3 and 4, and all four combinations of those

two variations. The (9,4) combination was finally chosen as the reference design that is

described in Table 3, but the costs of the solution in all four instances was actually exactly

the same. This tells us that, for this network at these specific tree degree and size limits,

there is no benefit in considering larger trees for protection.

Because the path p-tree model takes so long to generate solutions, we did not spend

as much time looking into variations of candidate tree parameters for path p-trees. How-

ever, we did attempt one more experiment to test whether or not our initial design fairly

represented the efficiency of path p-trees. In this test, the DRS parameters were increased

to 30 DRSs per demand, 30 candidate trees per DRS, and a maximum DRS size of 15.

Despite these increases, the cost of the resulting design was 277, higher than the cost of

271 for the initial design. This is possible because of the random variations introduced by

the nondeterministic nature of the DRS generation algorithm. Despite this unpredictability,

it is reasonable to make the general conclusion that there are probably not major gains to

be made by further increasing the DRS parameters from those used in our original test. We

decided to keep the original design as the “official” path p-tree reference design because of

its lower cost, even though the size of its populated data set was smaller.

Additional runs of the PXT ILP model were also performed. In initial tests, the hop-

based model was run with only 20 DRSs per demand, 20 candidate trails per DRS, and a

maximum DRS size of 10 demands. However, there was no difference between the cost of

this design and the reference design, described above, which used the parameter values (30,

30, 15). This does not necessarily mean that the designs were exactly the same (indeed,

this is unlikely, as the DRS selection procedure is randomized). It just serves to show that

the DRS parameter values used are more than adequate, as the increase in the size of the

populated data set between the two tests did not produce any improvement.

The distance-based model was also run again with the same parameters to determine

whether wide variance should be expected between different runs. If the variance was wide,

it would be wise to perform averaging over a wide set of test runs to obtain more reliable

characteristic capacity cost data. The difference in the results was only 1%, however, so
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the existing design was considered to be adequate.

6.2.5 Dual Span Failure Restorability

As basic low-capacity design of p-tree and PXT networks has already been investigated in

detail, the above exercise was undertaken only to obtain reference designs to carry forward

into further investigations. The first such investigation was an analysis of dual span failure

restorability (“span R2”) in the reference designs. In other words, given the existing designs

with guaranteed 100% span R1, how much span R2 can we obtain “for free”, given the

existing spare capacity allocation, protection structures, and predefined protection actions?

Span R2 was calculated by simulating each design’s response to every possible dual

failure scenario and recording the total numbers of damaged working routes, as well as

the total number of these working routes that could be restored. For the purposes of this

analysis, it is assumed that nodes are only capable of performing a single, pre-determined

switching action in the event of failure. In other words, we assume that nodes have no

ability to adaptively respond to multiple failures; whenever a failure is detected on a work-

ing path, the same restoration response is attempted regardless of possible prior failures

and recovery actions. If this attempt fails due to a failure on the protection path, then

the demand simply remains unrestored. The dual failure restorability of each architecture

was expressed using the ratio of demand flows restored to the total number of demand

flows affected (damaged) by either of the two failures, over all dual failure scenarios (i.e.,

R2 = flows restored
flows affected).

6.2.5.1 Method

To perform the R2 analysis, scripts were written to perform a simulation of the network

designs’ responses to each possible dual-failure scenario. Once the script analyzes each

of these dual failure responses to determine the number of affected demands that are

restorable, the R2 value is computed. This basic method was used for all architectures

in the study. A high-level pseudocode of this algorithm is as follows:

1. For each protection structure in the design

a. Make an explicit assignment of the protection paths it
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provides to the spans/demands it protects (depending on

whether the architecture is span/path-protecting,

respectively).

2. For each dual span failure scenario [s1,s2]:

a. Trigger the failure of span s1:

i. Mark failed working paths as affected and switch them

to their designated protection paths.

b. Trigger the failure of span s2:

i. All protection paths activated in step 2.a.i. that

contain s2 are considered unrestorable but all of their

spare capacity is still held and considered unusable.

ii. All working paths unaffected in step 2.a. that contain

s2 are marked as affected and switched to their protection

paths (and marked as restored) if possible, i.e., if the

required spare capacity is still available.

c. Count the total number of working paths affected by the

failure scenario as well as the number of restored paths.

3. Compute from the total number of affected and restored

working paths over all failure scenarios.

Step 1 (explicit assignment of protection structures) is necessary for many of our designs

because they may contain a certain degree of overprotection.3 That is, it is possible that

some of the spans/paths in the network are protected by more structures than they need to

be, meaning that they have a choice of which protection structure they can use. This has

no effect on span R1 (always 100% for our designs), but when it comes to R2 calculations,

the precise assignment of structures may affect the R2 value. We took the approach of

3This does not apply to the PXT heuristic designs because the greedy algorithm explicitly assigns PXTs
to working paths as it proceeds.
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simply performing an arbitrary assignment of structures to protected spans/paths, because

if the overprotection is minimal the effect of variations in the assignment on R2 should be

equivalently minimal. A more thorough approach would be to use another ILP model to

find an assignment that maximizes R2, but this would introduce a great deal of complexity

into the problem for minimal benefit.

6.2.5.2 Results

Table 6.2 summarizes the results of the span R2 analysis. For PXTs, it is not clear why the

heuristic design has so much higher R2 restorability than the ILP design in the hop-based

case, whereas in the distance-based case they are practically identical. Simple random

chance is one possible explanation. However, it is noteworthy that the heuristic does not

in any case exhibit a lower R2 value than the ILP-based solution, even though the heuristic

designs are significantly more capacity-efficient. This may merit further investigation, as

it suggests that the advantage afforded by the complex PXTs used by the heuristic is not

reduced cost, but rather higher availability.

We also see that the p-tree designs have significantly higher span R2 than the PXT

designs in most cases. This is a natural result of their lower capacity efficiency. A high

degree of sharing of the protection capacity in protection structures will result in an effi-

cient design, but when a dual failure occurs, any two working paths affected by the failures

that share protection capacity will contend for this capacity, and only one at most will be

restorable. Also, a high degree of sharing will usually result in longer protection paths,

as protection paths are detoured to make sharing relationships possible. But a longer pro-

tection path will also make it more likely that a second failure in the network will affect

the protection path, making the working path unrestorable. Therefore we see that protec-

tion capacity sharing increases the likelihood of the two types of failure events (two failed

working paths contending for capacity and failures on both a working path and its protec-

tion path) that cause unrestorability of dual span failures. Our p-tree designs, being less

efficient, have less sharing and therefore are able to fully restore a larger number of dual

span failure events.

In terms of a comparison to the other architectures considered by the study, the results

for PXTs and p-Trees are near the upper end of the spectrum. The architecture with the
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Design Demands
Affected

Demands
Restored

R2 Restora-
bility

(Restored /
Affected)

Hop-Based
Cost Model

ILP-Based
PXTs

8116 5457 67%

Heuristic PXTs 8116 6288 77%
Span p-Trees 8290 6746 81%
Path p-Trees 8116 6713 83%

Distance-
Based Cost

Model

ILP-Based
PXTs

8468 5945 70%

Heuristic PXTs 8468 5967 70%
Span p-Trees 8684 7162 82%
Path p-Trees 8468 7030 83%

Table 6.2: Summary of dual span failure restorability in PXT and p-tree restorable network
designs

highest span R2 value was DSP with R2=85%, unsurprising considering the design has a

redundancy very close to that of APS. We can see that span and path p-trees both come close

to this value with redundancies in the range of APS and DSP as well. PXTs, however, have

R2 values more in the range of p-cycles (R2=66%). This is a surprising result, considering

that the redundancy of p-cycles is quite a bit lower than that of PXTs (~70% vs. ~120%).

This speaks highly of the ability of p-cycles to restore so many dual failures using so little

spare capacity.

The results for APS and DSP were produced by Brian Forst (see also [Fors09]), the

results for p-cycles were produced by Diane Onguetou, and the results for FIPP p-cycles

were produced by Dimitri Baloukov.

6.2.5.3 Effect of Allowing Protection Path Stub Release

The pseudocode representation of the R2 analysis method explicitly states in step 2.b.i that

spare capacity that is used for the protection against the first failure is never considered

available for use by other protection paths that may potentially be formed in response to

the second failure. This is the case even if the second failure causes the failure of the initial

protection path. However, path-protecting architectures may have an additional recourse

available to them if this occurs. Even though the protection path loses integrity due to a
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(a) Before failure

(b) First failure

(c) Second failure

Figure 6.3: Spare capacity stub release in a dual span failure scenario for PXTs

failure, all units of spare capacity on that path that are not also on the failed span (called

the stubs of the failed path), are still intact, and thus could be released and used instead to

protect against further failures. This may allow further demands to be restored in the event

of a second failure, increasing R2 restorability.

The spare capacity stub release concept for dual failures is illustrated in detail in Figure

6.3. Subfigure (a) shows a PXT structure (solid line) protecting two paths (dashed lines). In

subfigure (b) one path has failed and the entire structure is used to protect it (symbolized by

the structure changing to the colour of the failed path). In subfigure (c) a failure occurs on

the PXT, meaning it can no longer be used to protect the first path. The undamaged sections

of the PXT are released, and part of it is then used to protect the other demand, which has

now also failed. The structure shown in this Figure is a PXT, but the same concept applies

to path p-trees.

As explained above, it was assumed for the purposes of the initial study that the network

was not intelligent enough to support this functionality. However, we calculated protection
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path stub release R2 values for the PXT and path p-tree designs anyway, in order to deter-

mine the R2 gains that could be made were this degree of network intelligence available.

The effect was however found to be small. For the p-tree designs, the number of restorable

demands increased by only 3 (out of over 8000 affected demands in each case) in both the

hop and distance-based path p-tree designs. For PXTs the effect was slightly greater; R2

increased by approximately 1% for both the ILP and heuristic designs. These gains are

likely not large enough to justify the price of requiring centralized tracking of network fail-

ure states (although if such a feature is available, it can be used to attain a small increase in

R2 and, therefore, availability).

6.2.5.4 Further Outlook for p-Trees

At this point in the study we had identified both quantifiable advantages and disadvantages

of p-trees: the designs tend to be approximately 60% more capacity redundant than PXTs,

while seeing a corresponding increase in span R2 of about 10%. This alone is not enough

to totally rule p-trees out of practical usage, as network operators might be willing to pay

more for increased availability (perhaps for demands of higher availability gold or platinum

QoP classes). They also remained of high theoretical interest in general. For the purpose

of the HAVANA project, however, with its focus on practical problems and solutions, they

were dropped from further studies due to the questions surrounding the feasibility of their

implementation in real networks. The decision was made to move forward with the tra-

ditionally preconnected (i.e., degree-2) structures only, in order focus more closely on the

defined goals of the project. Therefore we will discuss only PXTs for the remainder of this

Chapter.

6.2.6 Assigning Wavelengths to Lightpaths

To this point, a restorable PXT design has consisted of simply a working capacity routing

plan and a set of PXTs. This defines for us the capacity requirements on each span, as well

as the cross connection configuration for the OXC/OADM equipment. However, there is a

third set of variables that is required when we consider this design in a WDM context: the

assignment of physical wavelengths to each lightpath in the network. For the purpose of this

study, we assume a network with no wavelength conversion at all. Therefore each working
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path and each PXT is one lightpath end-to-end. The initial design process assumed the

plentiful availability of wavelengths on each span, but a real network has a limited number

of wavelengths per fibre. Also, even if the number of available wavelengths on a span is

sufficient to support the wavelength channel requirement (aggregate of spare and working

capacity) on that span, it may still be impossible to find a wavelength assignment for the

network without wavelength conflicts, due to the wavelength continuity constraint for paths

and PXTs. These were the issues to address when solving the wavelength assignment

problem for PXTs.

6.2.6.1 Method

Before delving into the details of the wavelength assignment method, we must explain the

fact that this study was only done on the ILP-based PXT designs, and not the designs gen-

erated by the greedy heuristic. This is explained by the discussion in Section 4.2.5.4 on the

topic of wavelength continuity in heuristic PXT designs. For heuristic-based PXTs, either

we will have multiple fibre requirements on many of the network spans, or we must intro-

duce wavelength conversion into the network. The first option would make the wavelength

assignment problem trivial (as the multiple fibres would result in a large surplus of avail-

able wavelengths in the network), and the second option is not in the spirit of the current

investigation (although the more general design problem in which wavelength conversion

is available at a cost is certainly still of interest).

The approach taken for wavelength assignment was to use a secondary ILP model to

assign wavelengths to each of the continuous wavelength paths in the designs, such that

the total number of wavelengths used in the assignment was minimized. We use the term

“secondary model” because it uses the outputs of the first model as parameters for the new

wavelength assignment problem; it is not a combined model that both solves the network

design and wavelength assignment plan simultaneously. The model used was as follows:

ILP Model

Sets:

S The set of spans in the network, indexed by s.
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P The set of all wavelength-continuous lightpaths in the network (i.e., both work-

ing paths and PXTs), indexed by p.

W The set of wavelengths available in each fibre, indexed by w.

Input Parameters:

δ
p
s Encodes the spans on lightpath p. δ

p
s = 1 if lightpath p crosses span s, 0

otherwise.

Decision Variables:

up
w A binary variable that determines whether or not lightpath p uses wavelength

w.

aw A binary variable that is 1 if wavelength w is used anywhere in the network,

and 0 otherwise.

Objective Function:

Minimize

∑
w∈W

aw (6.1)

Constraints:

∑
p∈Ps.t.δ p

s =1

up
w ≤ 1 ∀s ∈ S,∀w ∈W (6.2)

∑
w∈W

up
w = 1 ∀p ∈ P (6.3)

aw ≥ up
w ∀p ∈ P,∀w ∈W (6.4)

Constraint 6.2 ensures that there are no wavelength conflicts by stating that each wave-

length on a span can only be used by at most one path that crosses that span. Equation 6.3

ensures that each path is assigned exactly one wavelength. Equation 6.4 calculates the over-

all usage of each individual wavelength in the network based on whether or not it is used

by any lightpath. The objective function then minimizes the total number of wavelengths

200



used. The wavelength continuity constraint is implicit in this model because the wavelength

variable up
w sets the wavelength usage on a per-path basis, not for each individual path hop.

Note that, for the purposes of determining if a feasible wavelength assignment exists

for a PXT design, this model does not even have to be run to optimal termination. To obtain

such an assignment, the model only needs to be run until a feasible integer solution is found.

Such a solution represents a valid wavelength assignment, although it may not use the

minimum number of wavelengths possible. Because our goal with this model was mainly

to analyze the feasibility of wavelength assignment, the objective function is somewhat of

an arbitrary placeholder, present only because the solver requires it to guide the solution

process.

6.2.6.2 Test Cases

As mentioned above, this model was only run on the ILP-based designs. Also, it was

determined at this point that carrying through hop-based and distance-based designs was

duplicating effort unnecessarily. We decided, with the help of our colleagues at NSN,

that the hop-based model of span cost was likely to be more realistic than the distance-

based model for their purposes, so distance-based designs were dropped from the study.

Therefore, from now on results apply only to the hop-based cost model design case.

The first test case was run on the initial low capacity 100% span R1 ILP-based PXT

reference design (using the hop-based cost model). The problem was given two wavelength

bands to work with, each containing 20 wavelengths. A feasible wavelength assignment

was expected for this case, as the largest total capacity requirement of any single span in

the design was only 24 wavelength channels out of the maximum of 40, leaving plenty of

room for the solver to find a workable solution. In contrast, the goal of the second test

was to create a PXT design using only a single band of 20 wavelengths. Obviously we

could not use the original reference design for this purpose, as we know it must contain at

least 24 wavelengths. Therefore we needed to first re-solve the PXT ILP model to create

a new design with at most 20 wavelength channels of capacity on any span. We did this

by using the exact same populated data set as for the initial low capacity design test in

Section 6.2.4, and adding a single additional constraint to the model that prevented any

span from carrying more than 20 units of total capacity. The wavelength assignment model
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was then run on this modified design, this time given only a single wavelength band with

20 wavelengths.

6.2.6.3 Results

40 Wavelength Design

As expected, the first test using 2 bands of 20 wavelengths each was able to find a valid

wavelength assignment. The model solved for an optimal design containing the absolute

minimum of 24 assigned wavelengths in only a few seconds.

20 Wavelength Design

For the first part of this test, in which the PXT design was re-solved with the additional 20-

capacity-unit cap on each span, the solver was able to find the new design in approximately

the same amount of time as it required to find the original design. The capacity cost of this

design was 213 as compared to 209 for the original reference design, a cost increase of only

2%. Note that it was not guaranteed that such a design would be found. It is conceivable that

capacity forcing effects might create a minimum capacity floor for the network that would

exceed 20 units for some spans, meaning that the 20-unit cap constraint would render the

problem infeasible. The fact that such a design was found, and with such a low increase

in spare capacity cost, indicates that PXTs are flexible enough to support rearrangement of

the design to accommodate capacity cap limits on spans.

After this new design was found and the wavelength assignment model was run, an

assignment using only 20 wavelengths was then found in only a few seconds. Note that

although the 20 unit capacity limit per span is a necessary condition for a 20 wavelength

design, it is not a sufficient condition; the wavelength continuity constraint for paths means

that even though a span may require only 20 wavelengths, some of the 20 paths that cross

the span may need to be assigned the same wavelength in order to accommodate other areas

of the design. If we had found this problem to be infeasible, a reasonable approach would

have been to try a capacity cap of 19, 18, etc. until a 20 wavelength design was found.
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6.2.7 Transparent Optical Path Lengths

Another characteristic of real networks that has an impact on restorable network design is

the practical limit on the lengths of transparent optical paths. If a signal is sent transparently

on an optical fibre, even with regular amplification, there is a limit to how far the signal

can be sent before the SNR degrades unacceptably. Therefore, a network either needs to

be designed carefully such that no lightpaths exceed this limit, or the design process must

include the placement of 3R regenerators. Regeneration, however, involves OEO conver-

sion of the signal and therefore violates transparency of all regenerated paths. Therefore,

in order to maintain the advantages of transparency for all paths and to avoid the cost of

regeneration equipment, it is advantageous to simply control path lengths a priori.

This may not be a practical approach to take with existing systems, but it is a valid

approach for a theoretical study in which we can return to the original “green fields” de-

sign problem whenever necessary to consider a new requirement or design factor. In the

following Section, we first analyze the optical path lengths in the PXT reference designs,

and then go on to develop a method of restricting the path lengths in these designs.

6.2.7.1 Analysis of Reference Design

The equation defining the limitations on preconnected path length due to optical losses is

as follows:

length+(hops−1) ·80km≤ 2000km (6.5)

The path length limit, as given in Equation 6.5, is 2000 km. The length of the path

is given in km. However, note that the left hand side expression is not solely a length

measurement but also incorporates the number of hops in the path. This is because the

path undergoes a retransmission loss at each node which is the equivalent of the loss over

80 km of fibre. This expression can therefore be thought of as the “equivalent length”

of the path for transparent transmission purposes. Therefore the following analysis is of

this “equivalent optically transparent length” (or “transparent length” or “optical reach”,

etc.) of the lightpaths in the PXT design, and not the actually physical length (although in

practice these values will be quite close for this network).
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Our first exercise was to inspect our wavelength-assigned PXT designs and record the

transparent length of each lightpath (both protection and working paths). If this value is

greater than 2000 km for any path, then the network design as it stands requires the use of

regeneration hardware at some nodes in order to support the establishment of the paths in

question. Note that we do not consider the transparent length of entire PXTs to be important

in this exercise; even though a PXT is pre-cross-connected end to end, each individual

working path may only use a small subset of this preconnected path as a protection path.

The end-to-end pre-cross-connection is performed only to ensure that any sub-path formed

as a protection path will be pre-cross-connected as well. In the failure state, we will not

in general be transmitting across the entire PXT end-to-end (although if there is an entire-

PXT protection path, the length of the PXT will be reflected indirectly as the length of this

path in the following analysis).

It is important to note that, as with R2 analysis, an extra step must be taken before

performing this path length analysis for the ILP-based design to explicitly assign working

paths to the PXTs (and protection paths within those PXTs) that protect them. Again, this

is because of the possibility of overprotection. For working paths that are protected by

more PXTs than they need to be, the choice of PXT assignment matters, as the lengths of

the protection paths will generally be different depending on which PXT is chosen. For

our initial analysis, we did not place any special criteria on PXT assignment. In other

words, the assignment was arbitrary. We proceeded in this way with the understanding

that, if transparent reach limit violations were discovered, we would have to investigate the

possibility of rearranging the PXT assignment to satisfy the reach condition.

In-depth optical reach analysis of the heuristic-based designs was not performed be-

cause we already knew that there were significant problems with the implementation of

that type of PXT in a single-fibre network without wavelength conversion.

6.2.7.2 Analysis Results

Figure 6.4 contains a histogram giving the distribution of the equivalent lengths of the

protection paths in the ILP PXT reference design. The red bar represents the reach limit

of the network of 2000 km. Most (91%) of the protection paths lie below this limit, but 9

paths exceed it. The longest path has an equivalent length of 2907 km, almost 1.5 times
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Figure 6.4: Distribution of equivalent transparent path lengths in the original reference ILP
PXT design (protection paths)

the maximum limit. Figure 6.5 is the corresponding histogram for working paths, using

the same axes. Unlike the protection paths, all of the working paths are significantly under

the 2000 km limit, a fact that is assured by shortest-path routing in this particular network.

Therefore the working routing is not a concern as far as transparent reach is concerned, but

we still must make some changes to the protection layer of the design at the very least in

order to satisfy this restriction.

Before trying to modify the protection layer to shorten these 9 overlong paths, we first

investigated the possibility discussed above, that we might be able to rearrange the PXT

assignment for overprotected demands such that the protection paths of these demands

would become shorter. Because we can rearrange protection paths only for overprotected

demands, the set of overprotected demands in the network must be protected by at least

one of our 9 problematic paths, otherwise we cannot make any gains using this approach.

Unfortunately, even though this design contains 3 overprotected demands, none of their

protection paths are among those above the 2000 km limit. Therefore we needed to make

changes to the PXT configuration itself in order to solve this problem.
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Figure 6.5: Distribution of equivalent transparent path lengths in the original reference ILP
PXT design (working paths)

6.2.7.3 Modified ILP Method with Path Length Limits

Altering the ILP-based PXT design approach to take transparent reach restrictions into

account is straightforward. Recall from the definition of the PXT ILP model in Section

4.3.2 the parameter β k
r that determines whether PXT k is able to offer protection to demand

r. This parameter is 1 (for simple PXTs) if k can protect r and 0 otherwise. We can therefore

enforce transparent reach restrictions on any PXT design problem by manipulating this

parameter to ensure that the parameter is never 1 for a combination of k and r such that the

protection path used by r in k is longer than 2000 km. The constraints of the model do not

have to be modified at all.

To test this method, we executed a post-processing step on the same data set used to

populate the ILP PXT problem for the original reference design (recall that the same data

set was also used for the 20-wavelength restricted design). This step involved iterating

through every PXT and examining the demands for which β k
r had been initially calculated

as 1. If the protection path for this demand was too long, we toggled the value of β k
r to

0. Note that this type of procedure could also be done directly during the DRS generation

procedure itself instead of as a post-processing step, and that this might produce slightly

206



better results, as the DRS method would then be generating its DRSs with accurate infor-

mation as to which PXT could protect which demand. The advantage of post-processing

the existing data set, however, is the fact that experiments run using this modified data set

will use the same DRS and PXT sets used by the initial experiment, making the results

more easily comparable. For example, we know that the cost of the resulting design must

increase, as it is a more highly constrained version of the original problem. In contrast, if

we were to run the DRS method again, this time excluding directly the protection paths that

are too long, the randomized set of DRSs would be completely different, and the cost of

the design would be affected by this in an unpredictable way, reducing our ability to judge

the effect of this modification on the capacity cost of the design. In essence, this method

allows us to modify one variable at a time and measure the effect.

After obtaining our modified data set, we solved the PXT design problem with this

data, along with the 20-wavelength constraint discussed in Section 6.2.6. We then verified

that this design could be given a valid 20-wavelength assignment. The result was then a

design that satisfied both the optical reach and 20-wavelength limitations of our problem

definition.

6.2.7.4 Results with Explicit Path Length Constraint

The resulting design had a spare capacity cost of 220 units. Recall that the original design

had a cost of 209, and the 20-wavelength design a cost of 213. Therefore including reach

considerations increases cost by 7, another 3%. Together the two constraints raise the cost

by 5% over that of the initial design. The histogram of the protection path optical length

requirements is shown in Figure 6.6. All protection paths are below the 2000 km reach

limit because paths longer than this are explicitly forbidden by the post-processing step for

the model’s data set. As for the working paths, there is no explicit check in this method that

ensures that they are short enough. As we have mentioned, this is not a concern for shortest-

path routing in this network, but for the design of general networks the working routing

must be inspected to ensure that it too meets the requirements for transparent reach. Of

course, if shortest-path routing does not satisfy these requirements, regeneration hardware

will be strictly required at some point in the network, the placement of which becomes an

entirely different problem.
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Figure 6.6: Distribution of equivalent path lengths for protection paths in a PXT design
with explicit path length limit and 20 wavelength constraint

The result of this work was a modified reference design that satisfied all of the restric-

tions considered by the study at the time. Therefore we used this “best feasible” design

as the standard design for all subsequent investigations. For the comparable work on path

length restrictions in p-cycle networks that also came out of this project, see [OnGr08].

6.2.8 Same-Wavelength Protection

As we are going over each substudy of the project chronologically, some words now should

be spent on the topic of same-wavelength protection. However, the content of this investi-

gation is essentially repeated in Section 6.2.11 (cost modeling), where it comes into play

when considering optically switch vs. electronically switched protection. Therefore most

of the discussion was incorporated into Section 6.2.11, with this Section only including a

brief explanation of the concept and discussion of the problem.

6.2.8.1 Motivation and Approach

In the first year of the project, it was assumed that the hardware used for protection switch-

ing was able to switch transmission from a working path on one wavelength to a protection

path on a different wavelength if necessary. At the outset of the second project year, how-
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ever, it was pointed out by our colleagues at Nokia Siemens Networks that enforcing the

constraint that protection must occur on the same wavelength as the working path could

possibly carry non-negligible cost benefits. Also, the capability to have a working and pro-

tection path on different wavelengths may not even be present in all network technologies.

This motivated us to study the implications of imposing this additional protection constraint

on the architectures under study.

For this initial consideration, we restricted ourselves to the level of a thought experiment

only, in answering the question “What are the theoretical effects of same-wavelength pro-

tection on our pre-cross-connected protection architectures?” The idea was that important

observations could be made before running actual experiments, observations that would be

important when continuing the investigation forward to discover the actual qualitative cost

benefits of same-wavelength protection. Several observations were made for each architec-

ture and compiled into a report for NSN for this part of the study. However, all of these

observations come out in the cost modeling study in Section 6.2.11, so we will not discuss

them in detail here.

6.2.9 Node Failure Restorability Analysis

Usually the study of restorable networks is confined to investigating restoration against

span failures. Indeed, all of the designs created for the TestSet0 network so far have been

created with the aim of providing full restorability against all single span failures. This

follows from the fact that spans represent a fundamentally much more vulnerable medium

(fibre) than nodes (DCS, OXC, whole CO buildings, etc.). However, node failures do

happen (catastrophic power failure, building fires, etc.), even if they occur at a much lower

rate than span failures, so it is of some interest to determine how our protection architectures

behave in their presence.

6.2.9.1 Motivation and Approach

It is a commonly touted feature of path-protecting architectures that they are able to protect

against node failures as well as span failures. See, for example, [ZhZh06], which states that

“The significant advantage of p-cycle based path protection over link protection is the node

failure recovery capability”. It is true that, under end-to-end path protection, it is as easy
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to perform a path switch as a result of a failed node as it is for a failed span. When the end

nodes detect a loss of light, they will switch to the protection path in the same manner no

matter what type of failure scenario exists on the working path (i.e., any number of failed

nodes and spans in any combination will produce the same failure state from the point of

view of the end nodes). Span protection cannot achieve this, because a failed node cannot

be used to switch directly; the closest we can achieve to span protection is to route around

the failure at the two nodes one hop removed from the failed node. However, this node

failure protection capability does not translate into an automatic node failure restorability

guarantee if the network is not explicitly designed to take this into account. Unless the

network is designed with node failures in mind, a sufficient number and arrangement of

intact protection paths may not exist after a node fails. This may not be acceptable if the

system needs to be designed for extremely high availability.

Having established this fact, the question remains whether or not this is even an issue

for networks designed to protect against span failures. It may be the case that many node

failures are protected by default, with only a small portion being unprotected, even when

the network is not designed specifically for this objective. Conversely, it may also turn out

that a high proportion of failures are unprotected, requiring a network redesign to attain ac-

ceptable availability levels. The first objective of the node failure restorability investigation

was to quantify the degree of node failure restorability attainable via by the PXT reference

design. We then investigated both the methods required for adjusting the designs to provide

100% node failure restorability, as well as the effect this adjustment has capacity efficiency.

6.2.9.2 General Properties of the TestSet0 Network

In this Section, we discuss some properties of the German TestSet0 network that are inde-

pendent of the particular protection architecture used and also important to the node failure

restorability study. Recall that a shortest-path (by hops) demand routing is used in most of

our designs (with modifications where necessary to support restorability). For each node,

the resulting traffic handled by that node can be broken down into demand that that bypasses

(transits it), and demand that it sources or sinks. When a node failure occurs, any demand

that originates or terminates at the failed node is irreparably lost. Only working paths that

transit the node can be restored by being switched to protection paths. We call these paths
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Figure 6.7: Percentage of demand at each node in the HAVANA Germany network that
transits that node

affected transiting paths, or simply transiting paths. Figure 6.7 shows the percentage of

paths at each node that are transiting paths (Figure provided by Diane Onguetou). 26% (69

out of 263) of all affected paths over all single node failures are transiting paths, meaning

that at most 26% of the demand affected by all single node failures could be restored in

a best-case scenario. Therefore the most useful metric for node failure restorability is to

consider only the percentage of transiting affected paths that can be restored, as this value

can theoretically always be increased to 100% by adding a suitable amount of protection.

6.2.9.3 Study Methodology

Node R1 Calculation Script

Single node failure restorability was first calculated using an automated script, in a manner

analogous to the method used for span R2 calculation in Section 6.2.5. This script first

makes a direct assignment of PXTs to protected working paths (as in the R2 case, mul-

tiple assignments may be possible in the case of overprotection; the chosen assignment

is arbitrary). It then iterates through each possible node failure sequentially, noting for

each failure both the amount of demand affected by the failure and the amount of this de-

mand that is restorable. At the end of the inspection process, the restorability fraction is

calculated as the total number of restored paths divided by the total number of affected

(transiting) paths.
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Figure 6.8: A type of PXT protection where the order of protection reactions will affect the
amount of restored flow

In a network only designed to survive span failures, not all paths may be restorable in

the face of a node failure. For PXTs, this may be caused by three separate factors. First of

all, a node failure may cause contention between multiple failed paths that are all assigned

to be protected by the same PXT. Secondly, a node failure may cause both the failure of a

working path and the failure of the protection path on the PXT that would normally protect

that demand. Both of these cases result in a network failure state in which some of the

failed demand is unrestorable because of the insufficient allocation or structuring of PXT

resources. The final case is the case in which the demand is fundamentally unrestorable

because of the failure of one of its end nodes, as already discussed.

Note that, if more than one working path is in contention for the use of a PXT due to a

node failure, assignment of protection by this script is done on a “first come, first served”

basis, with no regard as to whether that assignment is optimal. This can result in sub-

optimal results if 3 or more paths are in contention. Figure 6.8 illustrates a situation where

this can occur. Assume working paths A, B, and C share a node (but not a span) in common.

If this node fails and working path A is chosen for protection first, it will block out B and

C, resulting in only 1 protected working path instead of 2. Unlike the span R2 case, this

problem cannot be solved by considering the failure event as two separate failures, ordered

in time, because the failure of the node is considered to be a single event that affects all

failed working paths simultaneously.

The node R1 analysis script was run first on the initial low capacity PXT design gen-

erated in year 1 of the project (i.e., the minimum-cost design only, not considering optical

path length restrictions or wavelength continuity constraints). It was then run also on the

finalized 20-wavelength, 2000 km optical path length limited PXT design.
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ILP Approach

Despite the possibility of situations shown in Figure 6.8, assuming this occurs with relative

rarity, we expect the analysis script approach to closely approximate the maximum node

failure restorability that can be attained. Furthermore, assuming the network is sufficiently

“dumb”, the “first come, first served” process is likely the best type of reaction we can

expect from it in practice. For example, it would be much more operationally complex for

the end nodes of multiple failed working paths to be able to communicate and organize

themselves such that the greatest number of paths is restored in all cases. Therefore, the

results obtained from this approach can be thought of as a good indication of practically

attainable node failure restorability. However, to address any doubts concerning the opti-

mality of the results obtained using the script, a more advanced method was also used to

evaluate optimally obtainable node failure restorability. Under this method, a script again

investigates the total affected and restored demand volume in each node failure scenario,

except this time instead of assigning backup paths in the simple “first come, first served”

iterative way, a small ILP problem is computed in order to find the optimal assignment in

each case.

The following model is solved once for each combination of node failure and protected

DRS to determine the optimal protection assignment for that DRS in the case of that node

failure (avoiding the trivial cases where no working path in the DRS is affected by the node

failure). Even though it is solved many times, the model is simple and has a minimal data

set (the problem being local to a single DRS), and therefore solves extremely fast in each

case; total solution time is negligible.

ILP Model

Sets:

S The set of spans in the network, indexed by i.

A The set of demands that are affected by the failure, indexed by r.

Parameters:
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θ i
r Encodes the protection path of demand r (in the DRS considered in this prob-

lem) as protected by the PXT under consideration. This value is 1 for span i if

the protection path crosses that span and 0 otherwise.

n The number of copies allocated to the current cycle used to protect the current

DRS. This is obtained from the value of the variable nk
c from the PXT design

model solution (see Section 4.3.2).

ar The amount of protection offered by the current PXT to demand r in the current

DRS. This value is calculated a priori to settle instances of over-protection, as

described above.

Variables:

pr Indicates the number of demand units of demand r that receive protection un-

der this failure scenario.

Objective Function:

Maximize

∑
rεA

pr (6.6)

Constraints:

pr ≤ ar ∀r ∈ A (6.7)

∑
r∈Aand θ i

r=1

pr ≤ n ∀i ∈ S (6.8)

Note that the failed node is not represented explicitly in this model, but is represented

implicitly by the combination of failed demands in the DRS (i.e., set A). Constraint 6.7

ensures that each demand will be assigned an amount of protection no greater than the

amount given it by the PXT. The actual protection value in the solution may be less than

this in the node failure case because of contention with other demands. Constraint 6.8

limits the total protection offered to demands that have overlapping protection paths to an

amount no greater than the number of PXT copies allocated to the current DRS. It is this
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constraint that controls contention due to multiple path failures. The objective function

simply maximizes the total amount of protection. Summing up this objective function

value over all of the individual problems for a given design will give us the total maximum

number of restorable demand units.4 The node R1 analysis method based on this ILP model

was used to check the results obtained using the naïve “first come, first served” script.

6.2.9.4 Results

Even though the analysis method needed to be greatly modified for us to be able to de-

termine the absolute upper bound values for node R1, the values obtained using the two

methods were identical in all cases. This suggests that there is not much to be gained by

pursuing absolutely optimal restoration behaviour in the case of node failures, and that the

naïve “first come, first served” approach is adequate.

Over all single node failures, a total of 263 demand units were affected. Of these

demands, 194 are fundamentally unrestorable, having the failed node as an end-node. This

is twice the number total demand in the network (97), because each demand pair has 2 end

nodes that will occur once each over all single node failures. Therefore only 69 out of the

263 affected demand units are potentially restorable. The two node R1 analysis methods

found that 51 of these 69 were restorable in both designs (both the original low-capacity

design and the and the “constraints-feasible” design). This corresponds to a single node

failure restorability value of 74%.

6.2.10 Design for Single Node Failure Restorability

We have seen that PXTs are indeed able to achieve a significantly large proportion of the

theoretical maximum node failure restorability in networks designed only for restorability

of single span failures. Given this fact, the question arises of how easy it is to move from

this to 100% node failure restorability, either by augmenting existing designs or redesigning

the network with modified design methods.

4That is, optimal given the protection assignment performed at the beginning of the script to obtain the
values of ar, but we have seen in the past that the choice of this assignment makes a negligible difference,
e.g., in dual failure restoration.
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6.2.10.1 Method

When designing for full node failure restorability, we would like to produce a design that is

comparable to the existing reference design, one that uses the same set of candidate PXTs

and DRSs, rather than creating a design that is totally distinct. This suggests an approach in

which we augment the existing design rather than beginning again from scratch. However,

the added node failure restorability constraint has the side effect that some DRSs that were

considered in the initial design will become invalid (because some working paths in a DRS,

while span disjoint, may not be node disjoint), and some PXTs that were considered for

protection of a certain DRS will likewise become invalid (because it may share a node with

one or more of the working paths in that DRS). Therefore it really makes more sense to

begin the design process over from scratch, with the added node restorability constraint.

Initial Method: Modification of DRS/PXT data

Our initial approach was similar to the method used in Section 6.2.7.3 to create designs

that satisfied the optical path length limitation requirement. Under this approach, the DRS

and PXT sets used for the initial design problem are modified to screen out the invalid

cases produced by the node restorability constraint. The result was a data set in which all

paths in each DRS were node-disjoint and all PXTs were node-disjoint from their protected

working paths.

This process is more complex than the optical path length case, because here there are

many possible choices that can be made to modify the data to satisfy the new constraints.

For example, if paths P1 and P2 in some DRS are not node-disjoint, the constraint may be

satisfied by either removing P1 or removing P2 from the DRS (or both), but it is not clear

a priori which choice is preferable. The script was written to remove working paths on

a first-considered basis, i.e., the DRSs are scanned first for any conflicts with demand 1,

and demand 1 is removed from the DRS in these cases. This continues on for demand 2,

demand 3, etc. Then all PXTs are examined and the protection relationship parameter is

changed to zero in any instances where a protection path and the protected working path

would not be node disjoint.

This script was run on the same data set used to produce the original reference design.

Unfortunately, the solver reported that the resulting problem was infeasible, because no
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protection possibilities existed for some demands. Evidently this process removed too

many protection relationships. Therefore another approach had to be found.

Secondary Method: Re-calculation of PXT and DRS Data Set

Because the existing data could not be modified to support node failure restoration, the only

recourse was to re-compute the PXT and DRS sets from scratch, taking node disjointness

into account from the very beginning. Adjusting the program to do just that is simply a

matter of modifying the span-disjointness tests for DRSs and PXTs to node-disjointness

tests instead. Unfortunately, recalculating the parameter sets removes any significant cor-

relation between this test and the previous reference designs. Therefore 5 data sets were

calculated this way in order to obtain any idea of the characteristic difference between the

node- and span-restorability cases.

Unfortunately, all 5 of these cases reported infeasibility of the problem in AMPL (i.e.,

fundamental infeasibility of the constraint set). Furthermore, the infeasibility was because

of the unrestorability of the same three demands in each case. Upon further inspection the

reason was found to be obvious; these demands are routed along working paths such that,

although other span-disjoint paths between the end nodes exist in the network, no node-

disjoint paths exist, which is a requirement for the possibility of node failure restoration at

all. Therefore, full single node failure restorability is not even possible without adjusting

the working routing of the network. The working routes in question are shown in Figure

6.9 (a).

Finalized Method: Working Routing Adjustment and Data Set Re-calculation

Accounting for the above discovery requires that we depart even further from the initial

reference designs. To enable full node R1, the demands in Figure 6.9 were re-routed along

the shortest routes for which there also existed at least one alternate node-disjoint path

between the end-nodes (recall that the original routing only guaranteed the existence of a

span-disjoint path). This resulted in an increase in working capacity; total working capacity

increased from 166 to 168. The modified working routes for the three problematic demands

are illustrated in Figure 6.9 (b).

After this modification was made, the data set was again re-computed 5 times, as in our
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(a) Working paths in original design with no
possible node-disjoint protection paths

(b) Rerouting of original working paths to al-
low node failure restorability

Figure 6.9: Illustration of the need for working path rerouting to enable full node failure
restorability

previous method. Note that we cannot simply use the same DRSs and PXTs as in the refer-

ence design (as in our initial method), as that data is all dependent on the specific demand

routing that was used initially and found to be insufficient for node failure restorability.

Our 5 data sets were then used to create 10 single node failure restorable designs: 5 regular

designs and 5 designs under the 2000 km reach limit. We also tried to create 5 designs

under both the reach limit and 20 wavelength limit, but these designs were found to be

infeasible. The node failure restorability constraint simply requires too much capacity for

the design to fit under the 20 wavelength channels per-span limit.

6.2.10.2 Results

The 5 “regular” single node failure restorable designs had spare capacity costs of 287, 290,

290, 286, and 287 respectively, an average of 288. Combined with a working capacity cost

of 168, this means they had an average total cost of 456. The original design had a total

cost of 375 (166 working and 209 spare). This is an average cost increase of 22% to go

from 74% to 100% node failure restorability.

The costs of the 5 optical path length-constrained designs were 287, 291, 292, 288, and
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287, an average of 289. The average total cost is 457. The cost of the original (length

and wavelength constrained) design was 386 (166 working and 220 spare). This is a cost

increase of 18%, again to go from 74% to 100% single node failure restorability.

All designs were checked by hand to ensure that they were able to attain 100% single

node failure restorability. The observed cost increases are understandable considering that

we have to protect an additional 18 out of the 69 transiting path failures; 35% more paths

are protected for an approximate cost increase of 20%.

6.2.11 Cost Modeling

Up until this point, we have been using spare capacity (or total capacity) as a surrogate for

real network cost. As explained in Section 6.2.6, the “hop-based” capacity cost model we

have been using assumes that network costs will be dominated by per-span setup costs for

lightpaths (costs that must be paid regardless of span length). However, in reality network

costs will contain some mixture of hop-based and distance-based considerations, in addi-

tion to other components that are not related directly to wavelength channel count (e.g.,

path-terminating equipment, whole fibre port costs, etc.).

The purpose of the work in this Section was to replace our basic wavelength-channel

based cost model with a more realistic one and to determine the effects this would have

on our observations regarding cost. Because we are modeling WDM transport networks,

the new model needed to apply to the WDM layer. We decided to use the “NOBEL cost

model” from [GuLe06], at the recommendation of our NSN colleagues. The advantage of

using a standardized model is that it gives us some confidence that the choice of relative

cost values is realistic, and therefore that the conclusions we can draw from the cost results

in the following Section can tell us something about how to design real networks using

these architectures.

After identifying the model, our next step was to identify and execute architecture-

specific approaches for reducing cost under this model, and to study these results compar-

atively between all architectures. Under guidance from NSN, we then made some modifi-

cations to the model to better represent the type of protection switching they support, and

studied the effect of these changes on the results.
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6.2.11.1 The NOBEL Cost Model

The NOBEL cost model is a cost model for the WDM layer recently developed by the

European NOBEL project. It describes a set of normalized CAPEX costs for the span

equipment, node architectures, and transmission equipment required by a WDM network.5

All costs in the model are normalized to that of a single 10G transponder. The collaborators

on the NOBEL project worked together to develop a set of normalized costs that would be

accurate enough to be realistic, but general enough to apply across a variety of different

vendor equipment. This model was used for the study because it was both standardized

and freely available. A model based on NSN-specific equipment would, of course, produce

results more relevant to networks based on NSN equipment, but at the expense of prevent-

ing us from forming more general conclusions about the cost of protection in other types

of WDM networks.

The tables of model components and corresponding costs from [GuLe06] are repro-

duced here as Table 6.3 (trimmed to contain only the components used for this study). MTD

refers to the Maximum Transmission Distance that the equipment is capable of. Equipment

of different MTD cannot be mixed and matched within the same path (e.g., a 750 km

transponder card may use different encoding from a 1500 km card). Equipment that is

used by paths of a variety of lengths (e.g., many different paths may use the same in-line

amplifier or segment of dispersion-compensating fibre) must have an MTD large enough to

accommodate the longest such path.

The paper also contains an example of the implementation of an optical path using the

components of the model, shown in Figure 6.10. An optical path consists of a sequence of

optical links connected by OADM/OXC devices. These links are made up of a sequence of

optical spans (distinct from the network topological sense of the term “span”), each with

an in-line amplifier and length of dispersion-compensating fibre (DCF). The model also

requires a dynamic gain equalizer (DGE) every four spans. Each transparent OADM/OXC

requires a transparent node amplifier at the ingress/egress of every fibre port. Paths are

added/dropped at each OXC via tunable 10G transponder cards. Further switching of the

5A second version of the NOBEL model has since been published in [HuGu08]. This is a multi-layer
model that also takes into account the cost of elements in the IP/MPLS layer, the Ethernet layer, and the
SDH/OTN layer. Because our focus was on the WDM layer only, we did not consider this new version of the
model.
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Cost per... 10G
Transponder

Card

In-line amplifier Dispersion
compensating fibre
(per 80 km span)

MTD = 750 km 1 3 0.9
MTD = 1500 km 1.4 3.8 1
MTD = 3000 km 1.9 4.7 1.2

(a) Reach dependent equipment

Cost per... OADM (2 fibre
ports)

OXC (N = 3 to 5
fibre ports)

OXC (N = 6 to 10
fibre ports)

40 channels 11.8 5.35 ·N +2 5.85 ·N +2

(b) Capacity dependent equipment

Cost per... Transparent
Node Amplifier

Dynamic Gain
Equalizer (every
fourth amplifier

site)

10G equivalent
EXC switch port

Single unit 1.25 3 0.28

(c) Other equipment

Table 6.3: Costs of relevant components in the NOBEL model from [GuLe06]

electronic signals may occur between the OXC and the client, but this is not shown here.

With regards to switching equipment, the baseline node equipment model is given in

Figure 6.11. An arbitrary node consists of a single OADM/OXC interfaced to an Electronic

Cross-Connect (EXC). Some of the transponders interfaced with the add/drop ports of the

OXC are exposed directly to the client, and are only switched optically. Others are in-

terfaced intermediately to the EXC, which allows both electronic and optical switching of

signals (more on this in the discussion of protection switching). A given node may not have

an EXC at all if no electronic switching is required. The difference between the presence

and absence of the EXC under this model is irrelevant in any case, as an EXC is priced

incrementally according to the number of ports required, with a zero base cost. Therefore

in the following discussion we are only concerned with the number of ports used at each

node.

As for protection structures, protection switching, and the transmission equipment re-

quired to support working and protection paths in tandem, the NOBEL paper does not cover

resiliency and therefore does not give standard or recommended models of protection-
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Figure 6.10: Elements of an optical path under the NOBEL model

Figure 6.11: Baseline node architecture for the NOBEL cost model study

related items. Therefore part of the cost evaluation exercise was to first establish our own

model of protection switching using NOBEL components. We have already mentioned that

each node contains the capability for either switching signals electronically or optically (or

both, if required). Therefore we considered two different types of protection switching:

optical and electronic. Optical protection switching utilizes the OXC to switch a signal

output from a single transponder between two different end-to-end concatenated wave-

length paths. Electronic switching switches the signal in the electronic domain from one

transponder to another. Illustrations of optical and electronic switching using the baseline

node architecture from Figure 6.11 are given in Figure 6.12 (a) and (b) respectively.

Because optical switching does not change the transponder being used for the path, it

implies that working and protection are transmitted on the same wavelength (of the tunable

transponder card). Electronic switching, on the other hand, has the freedom of being able

to use different wavelengths for the working and protection paths if necessary, because the

signal is routed to an entirely new transponder via the EXC. However, we pay for the flexi-

bility of electronic protection switching with higher cost. From Figure 6.12, we can see that
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(a) Optical switching

(b) Electronic switching

Figure 6.12: Implementations of optical and electronic protection switching using NOBEL
model components

optical switching requires only a single transponder (per end-node of the lightpath) in addi-

tion to the standard node switching equipment. Electronic switching, however, requires use

of 3 ports on the EXC (one client-side and 2 for the working and protection transponder),

and two transponders. Assuming 750 km MTD equipment, a transponder has a cost of 1

and a port on the EXC costs 0.28. Therefore the cost is 1 for optical switching, compared to

2.84 for electronic switching, a nearly threefold cost increase. Considering that a network

may contain an aggregate of hundreds of these protected wavelength paths, this can add up

to a large difference in cost. Therefore we would prefer to use optical switching wherever

possible to reduce costs.

6.2.11.2 Method

Producing models for all of the pieces of a restorable network design gave us a method of

representing our restorable network designs in the context of the NOBEL cost model. The

next step was to tabulate equipment requirements for our network designs to generate some

initial cost results. This Section covers this process for PXTs only; the same process was

performed by others for the other architectures, but we will only present the final results for

comparative purposes. We would have liked to use the reference “best feasible” reference
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designs (described in Section 6.2.7.4), as the intention was to carry them forward to further

stages of the project, but we discovered some minor modifications that needed to be made

first so that cost evaluation on them would make sense.

Path Lengths

The path length limitation investigation in Section 6.2.7 used 2000 km as the limit on the

equivalent length of the optical paths. However, we have seen that the NOBEL model

describes equipment with MTD capabilities up to 3000 km, with divisions at 750 km and

1500 km. Therefore it does not make sense to perform cost evaluation on designs artificially

limited to 2000 km; we should either allow the design to use up to 3000 km paths, or limit

the design to 1500 km to achieve cost savings through MTD reduction. Therefore we did

not use the path length limited PXT designs, using instead the previous designs with no

limits on path lengths.

Wavelength Assignment

Many features of the cost model are wavelength-dependent (e.g., the cost difference be-

tween same- and different-wavelength protection), so we needed to use a design with wave-

lengths assigned to all paths for this investigation. We could have used one of the designs

generated in the wavelength assignment portion of the HAVANA study (see Section 6.2.6),

but we immediately observed that these assignments (both for 20 and 40 wavelengths) were

designed under conditions that did not have cost reduction in mind, and that could be im-

proved by simple adjustments to the ILP model. More specifically, the wavelength assign-

ment ILP model used to generate those results used an objective function that minimized

the total number of different wavelengths used in the network, a metric which should have

no direct impact on cost under this model. On the other hand, we have observed that there

is a direct cost benefit to using optical protection switching wherever possible. Because

this requires the working and protection paths to use the same wavelength, we decided

we would do better to find a wavelength assignment that could maximize the amount of

same-wavelength protection in the network.

To do so, we made the following modifications to the ILP model described in Section

6.2.6.1:
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Modified ILP Model:

New Parameters:

op
q This binary parameter is equal to 1 iff q is a PXT, p is a working path, and q

protects p. Essentially, it encodes our preference as to whether paths p and q

should use the same wavelength and be counted towards the amount of same-

wavelength protection used in the network (to be maximized in the objective

function).

New Variables:

dp
q This binary variable is 1 iff paths p and q use different wavelengths and 0

otherwise. It is defined over only all p,q such that op
q = 1, because these are

the only paths whose wavelength relationship we are interested in.

Modified Objective Function:

Minimize

∑
p,qεPs.t.op

q=1

dp
q (6.9)

New Constraints:

dp
q ≥ up

w−uq
w ∀p,q ∈ P,∀w ∈W (6.10)

dp
q ≥ uq

w−up
w ∀p,q ∈ P,∀w ∈W (6.11)

The objective function simply minimizes the number of working path/PXT pairs using

different-wavelength protection (maximizing the number of cases where optical protection

switching can be used). Constraints 6.10 and 6.11 differ only in the order of subtraction

on the right hand side. These constraints set the different wavelength protection variable

dp
q according to which wavelengths are used by the paths p and q. If, neither path uses a

given w, the constraint reduces to dp
q ≥ 0. If, however, path p uses wavelength w and path

q does not, Equation 6.10 reduces to dp
q ≥ 1, and 6.11 reduces to dp

q ≥−1. If path q uses a

wavelength that p does not, we see the two same resultant inequalities, albeit reversed. In

both cases, dp
q , being binary, is set to 1.
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This model was used to generate another 40 wavelength solution to the wavelength

assignment problem, this time with same-wavelength protection maximized. The result-

ing design had 77 working paths (out of 97, approximately 80%) using same-wavelength

protection.

Equipment Enumeration Method

After finalizing the design that would be used for cost evaluation, we were then able to

enumerate the required equipment based on the NOBEL model and our own models for

protection switching. At this point we must mention some final additional assumptions

that were used specifically in the case of PXTs. In certain special cases in which there are

two (or more) working paths that terminate at the same node, and both paths use electronic

protection switching, we assumed that the paths can both share the transponder that is used

to access the PXT, i.e., only one PXT access transponder is required in total. This situation

is illustrated in Figure 6.13. The EXC controls access to the PXT by switching client signals

to the access transponder. If the access transponder needs to transmit in different directions

depending on which way the protection path is formed in the PXT, we can use the switching

functionality of the OXC to switch transmission to the appropriate fibre port. This is a rare

situation, and has only a small effect on cost, but should be mentioned nonetheless.

NOBEL costs were calculated via two methods. First, equipment was tabulated man-

ually using a spreadsheet to perform many of the calculations (e.g., longest path crossing

a span that sets equipment MTD, transponder requirements for working paths and protec-

tion switching, etc.). Then the expertise developed by this process was used to develop an

automated cost calculation script run entirely from within AMPL on the solution values

produced by the CPLEX solver. The script was tested to ensure that it produced the same

results as those obtained by inspection via the spreadsheet.

6.2.11.3 Initial Results

The initial results of this exercise are presented in Figure 6.14, compared with costs for the

other architectures. Total costs are broken down into node costs (cost of OXCs, including

fibre ports, and transparent node amplifiers), span costs (amplifiers, DCF, etc. required to

support the optical links), and transmission costs (cost of transponders and EXC ports). For
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(a) Pre-failure state

(b) Failure 1 (c) Failure 2

Figure 6.13: The sharing of protection access transponders in path-protecting shared archi-
tectures

all of the following cost modeling exercises, results for APS and DSP were produced by

Brian Forst (see also [Fors09]), the results for p-cycles were produced by Diane Onguetou,

and the results for FIPP p-cycles were produced by Dimitri Baloukov.

Note that there were many different cost results produced for the other architectures

under many different conditions, in an attempt to find their own strategies for cost reduction

(this process for PXTs will be outlined in the following Sections). The conditions under

which the specific costs presented in Figure 6.14 were obtained will not be described here

in detail, as it would require too much discussion that would be tangential to the subject at

hand (PXTs). Rest assured that these results are comparable to our initial PXT results in

that they are subject to similar network conditions (e.g., 3000 km maximum path length),

although the design methods have been varied from traditional approaches in some cases to

produce results that are more characteristic of minimum cost designs under the parameters

of this particular test network.

The most immediately interesting feature of Figure 6.14 is that the cost of PXTs (and
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Figure 6.14: Initial NOBEL cost comparison between PXTs and other HAVANA architec-
tures

indeed the other shared architectures as well) is actually greater than that for some of the

dedicated protection architectures (1:1 APS and DSP). This development was initially a

shocking one, as the results seemed to contradict the widely held assumption in the field that

shared protection architectures will enable the deployment of more cost-effective networks.

However, even though DSP uses a significantly greater number of spare wavelengths for its

design, the shared architectures are more expensive by a noticeable margin.

Focusing on PXTs in particular, we can begin to understand why this is so. Figure 6.14

shows that there is no difference in the node costs; both designs use the same number of

OXCs and OADMs at the same nodes, because the number of fibres and fibre ports in both

designs are identical at every node (1 fibre per span). This observation highlights an im-

portant fact: under the NOBEL model, the fibre is the fundamental cost-setting component

for both node and span costs. Node costs increase incrementally with the number of fibre

ports, and span equipment is allocated on a per-fibre bases, serving all of the wavelengths in

that fibre. As long as the level of load is low enough, the fibre-level granularity of the cost

model will essentially cover up the differences in wavelength usage and “level the playing

field” between shared and dedicated protection, from a cost perspective.

Looking at the differences in span and transmission costs reveals the true cost differ-
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entiators for a single-fibre network in the NOBEL model. Given that the same amount

of span equipment is required by both DSP and PXT designs, the only cost difference is

in the MTD of the equipment used, and here PXTs are at a disadvantage. Shared pro-

tection achieves savings by detouring protection paths in intelligent ways such that the

possibilities for sharing are maximized; if sharing were not possible, we might as well use

shortest-routed protection paths, as with APS. PXTs, then, naturally uses longer protection

paths than DSP. Because the longer paths cross more spans, and the MTD of span equip-

ment is determined by the longest path to cross that span, most of the network spans end

up having MTD requirements near that of the longest path in the network, which for this

PXT design is very near the limit of 3000 km. DSP, on the other hand, with its working

and protection routing that is near-shortest-path, requires only MTD 1500 km equipment,

achieving savings on this front over PXTs.

A similar reasoning applies to transmission costs. The number of transponders in a

design is bounded from below by the number of paths. This bound is constant across all

architectures, being independent even from the number of fibres. Designs will exceed this

bound depending on the amount of different-wavelength protection (because of the need

for an access transponder of a different wavelength). DSP has a double advantage here;

because sharing only occurs between multiple units of the same demand, DSP can achieve

100% same-wavelength protection. However, as described in Section 6.2.11.2, PXTs can

only achieve about 80% same-wavelength protection, meaning more transponders are used.

Then, in addition, because protection paths in PXT designs are long, the MTD requirements

for the transponders are higher, increasing costs even further.

This concept was illustrated concretely by an exercise that was performed on the PXT

design during the cost evaluation process. It was observed, while developing the cost tab-

ulation spreadsheet, that the length of one of the protection paths in the network actually

exceeded 3000 km by a small amount. This was a mistake, as it was simply assumed that

no path in the original (unrestricted path length) design exceeded 3000 km. To fix this,

the working path that used this overlong protection path was “split off” from its protect-

ing PXT, had its wavelength changed, and was given a new PXT to protect it end-to-end

in a dedicated manner (essentially a 1:1 APS arrangement). Both the original PXT and

the new one used same-wavelength protection for this demand, so no access transponder
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was required in either case. This splitting exercise saw the design cost decrease by 1.8

because the length of the protection path was now below 750 km and therefore the costs of

the transponders at both endpoints of the path were reduced by 0.9 (from 1.9 to 1.0). The

increase in wavelength utilization (because of the creation of the new PXT) has no effect

on cost.

In retrospect, then, it should be obvious that our traditional capacity minimization

shared protection approaches are not suited to lightly loaded networks under the NOBEL

model, because the high modularity of fibre-level capacity elements hides the impact of

wavelength loading on costs, causing other effects (MTD and optical protection switching)

to become the cost-determining factors. These results also agree with the results of similar

work on the CAPEX costs of path protection [StCo08], published during the course of our

study, that show a similar minor difference between the costs of shared and dedicated pro-

tection in the transparent case. In our case, we can see that this is because most of the cost

is simply invested in the fixed “start-up” equipment for the fibre infrastructure, and there-

fore has very little variability. An additional exercise calculating the cost of an unprotected

network (i.e., working paths only) showed that this fixed initial investment was upwards

of 95% of the cost of the DSP design; the 5% increment is only due to increased MTD

requirements for upgrading some transponders to support the longer protection paths. The

variability in this cost increment will tend to favour the architecture with shorter paths (to

reduce MTD), and fewer wavelength dependencies between paths (so as to enable maxi-

mum same-wavelength protection). This provides a clue towards developing methods to

reduce costs for PXTs under the NOBEL model, which we will discuss in the following

Section.

Note that even though the shared architectures are more expensive, they still have an

advantage in terms of using up less of an essential network resource: capacity. This is

beneficial when considering demand growth, for example; the shared architectures will

be able to sustain more growth before provisioning new fibres or upgrading transmission

rates (e.g., from 10G to 40G). The trade-off in this case is therefore one of increased cost

outlay now vs. expansion cost later. The higher cost of shared protection can therefore be

considered not as a liability, but as an investment.
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6.2.11.4 Cost Improvement

After determining that short paths and same-wavelength protection were the key to low

cost, our next step was to apply these properties to PXT designs. As explained in Sec-

tion 6.2.11.2, we already optimize the same-wavelength protection in our designs before

evaluating costs. Therefore the obvious approach to reduce costs further is to limit path

lengths. Here we run into a conceptual difficulty that has the potential to reduce the prob-

lem to absurdity: APS is theoretically a special case of PXTs (if all PXTs protect a single

working route), and APS achieves 100% same-wavelength protection as well as shortest-

cycle working and protection routes, so therefore the lowest cost PXT design under this

framework should be simply the APS design.

Obviously this reduction does not produce any insights of value into PXTs. Instead, we

took a halfway approach by limiting the length of PXTs in the design while at the same

time maintaining “true” PXT characteristics like spare capacity sharing. This was done in

exactly the same way as in Section 6.2.7.3, by eliminating protection relationships in the

ILP problem data file where protection paths would be too long. This time, the limit was

set to 1500 km, so that we could reduce the MTD of all equipment in the network to at

most the 1500 km category. The new total costs are illustrated in Figure 6.15, along with

those for APS and DSP as before, as well as new costs for FIPP p-cycles, which are also

able to take advantage of the path length limitation strategy.

The Figure shows that path length limitation is an effective way of reducing cost for

both FIPP p-cycles and PXTs. Now the span costs are also equal across DSP, FIPP p-cycle,

and PXT designs, in addition to node costs (as before). This is because all spans now use

1500 km MTD equipment in all three designs. However, DSP still has an advantage in

terms of transmission costs, because it still uses fewer transponders with lower MTD. Even

though all span equipment is 1500 MTD, DSP still has more paths that are short enough

to fall into the 750 km MTD category. In addition, FIPP p-cycles and PXTs are still not

able to achieve 100% optical protection switching (the sharing relationships that impose

constraints on the wavelength assignment are not affected directly by the reduction of path

lengths).

The exercise was repeated again to try to reduce all paths below 750 km, but this results

in an infeasible problem because there are some working paths in the network for which the
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Figure 6.15: NOBEL cost comparison between dedicated architectures, FIPP p-cycles and
PXTs under 1500 km path length constraint

shortest possible protection path is longer than 750 km. Therefore we stopped our efforts to

reduce cost at this point. In any case, the results of this exercise prompted our colleagues at

Nokia Siemens Networks to propose some alterations to the cost model such that it would

more closely correspond to their own networking solutions.

6.2.11.5 Effect of Demand Scaling

Our observations about the cost determining factors for this combination of cost model and

test case suggest that we might see a dominance of shared architectures over dedicated ones

under more highly loaded network conditions. More demand would require more working

and spare capacity, pushing the capacity requirements on many spans into the multiple fibre

region, which would multiply the cost of span and node equipment (due to more fibre ports

on the OXCs). Shared architectures would be at an advantage, because they would use

fewer fibres. To test this prediction, we compared DSP and PXT designs under a demand

scaling factor of 10 (i.e., all demands in the network multiplied by a factor of 10). We

solved for an optimal DSP design and a 1500 km path length limited PXT design under

this demand pattern and then evaluated their costs under the NOBEL model. We assumed

40 wavelengths per fibre, as before.
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Unfortunately, the cost calculation process in the multi-fibre case is not so simple, for

several reasons. First of all, because we can no longer assume just one fibre on all spans, we

must multiply the number of available wavelengths on all span to accommodate 10 times

the number of paths. This makes the wavelength assignment ILP extraordinarily more

complex; in our case, it was found to be essentially intractable. Secondly, the large number

of fibres means that many nodes now have a requirement for more than the maximum of

10 fibre ports specified in the NOBEL model, so we need multiple OXCs and/or OADMs

at these nodes. This introduces additional requirements on the routing of paths, as we must

make sure that every path transiting a node does so on the same OXC. If we avoid this

by taking into account interconnection of OXCs, we must incorporate the additional costs

for doing so into the model. Finally, calculating the “true” cost of such a design is difficult

because the MTD of the equipment for a fibre is defined by the longest path that traverses it,

and for any given span we will have a combinatorial number of choices as to how to route

the many different paths that cross that span within several different fibres. Calculating

how to best do this for all spans in the network is an optimization problem in itself.

Due to these issues, we were not able to calculate precise design costs. Instead we

calculated approximate costs under the following assumptions:

1. Optical protection switching is used everywhere.

2. The MTD for the span equipment of all fibres on a span is defined by the longest path

that crosses that span.

3. A node with multiple OXCs/OADMs has the capability to switch any path from any

fibre port to any other fibre port (i.e., we assume OXC interconnection “for free”).

The first assumption is required because we cannot solve the wavelength assignment prob-

lem (or at least, not in any optimal sense that gives meaning to the amount of optical protec-

tion switching that results), so we simply assume the best case. Based on past experience,

this is being generous to PXTs, because sharing means that we have less flexibility for

wavelength assignment. However, if the pool of overall available wavelengths increases

(as it must when fibres are multiplied), finding same-wavelength protection will become

easier, so this is not totally unrealistic. The second assumption is to avoid the fibre-specific
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Figure 6.16: NOBEL cost comparison between DSP and PXTs with tenfold demand scaling

routing problem, and is conservative for both architectures, although likely more so for

PXTs, because PXT designs tend to have a larger spread of path lengths, and thus it is

more likely that we would be able to intelligently “pack” certain fibres with short paths

to reduce MTD on those fibres. The third assumption is also somewhat realistic, as local

OXC interconnections could use cheap, short-range optics. Therefore we have reason to

believe that the results of this investigation, while not perfectly accurate, should still be

representative for the high-demand, multi-fibre case.

A comparative cost breakdown of the two designs is given in Figure 6.16. As the Figure

shows, PXTs are able to achieve lower cost than DSP in this case and under the assumptions

listed above. Node and span costs are lower for PXTs, as predicted, simply because of the

lower number of fibres and fibre ports; the DSP design uses a total of 125 fibres, whereas the

PXT design uses only 113. Transmission costs are higher for PXTs because the protection

paths are longer, and therefore the transponders require a higher MTD in more cases, as

expected. However, this is not enough to offset the savings due to fibre reduction.

These results support the predicted correlation between demand volume and lower rel-

ative costs for shared architectures. We would expect this margin to only increase with

higher demand as the modularity of a single fibre becomes less of a contributing factor.

Also, this analysis does not take into account any modularity-aware design methods that

could more efficiently pack wavelengths into fibres and could therefore potentially reduce

the fibre requirements of PXTs as compared to DSP even further. Therefore these results

may be conservative for PXTs.
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Figure 6.17: An OXC based on the WSS architecture

6.2.11.6 Effect of Client Protection Switching

Communications with Nokia Siemens Networks regarding the NOBEL cost model results

revealed that one of our assumptions about our optical switching capability was in fact

incorrect, or at least not in accordance with the capabilities of NSN networking equip-

ment. Specifically, our colleagues pointed out that freely available optical switching of

added/dropped paths (i.e., optical protection switching of client signals at path end-nodes)

is not possible under the WSS (wavelength selective switch) architecture for OXCs. An

illustration of a 3-port OXC using the WSS architecture, taken from [GuLe06], is given in

Figure 6.17. The important point is that under this architecture, the colourless add ports

are after the WSS, “pointing” directly into the fibre. This means that we cannot use the ca-

pability of the WSS to perform protection switching, because added signals enter the fibre

immediately.

This greatly affects our assumptions about low cost design under this model, because

it means that cost reduction by using optical protection switching is not possible. Instead,

a form of electronic switching must be used for all paths, regardless of whether or not the

wavelength of the backup path is the same. The NSN team suggested modeling this switch-

ing capability as a set of client protection switching cards (PSC) at each node that interface

between the client optical signal and the OXC. A diagram of this proposed arrangement is

shown in Figure 6.18. The idea is that a node would have a bank of these PSC cards, one for

each client signal to be added/dropped at that node. Note that this is slightly different from

the EXC implementation, because a bank of PSC cards would only have the flexibility to

switch each client signal between 2 paths, as opposed to the flexibility of a full EXC switch
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Figure 6.18: A PSC interfaced to a WSS-based OXC

matrix (which would be unnecessary in this situation in any case).

The cost model for the set of PSC cards at a node consists of a base cost for the card

“rack” and one initial card and an incremental cost for any more cards in addition to the

first. We assumed a 10% cost increment per card, giving the following expression for PSC

costs at a node:

C · (1+(N−1) ·0.1)

Here, N is the number of cards at a node. For this investigation we assumed C = 1,

which NSN considered to be roughly accurate. We also assumed that all cards at a node

(across any number of different clients) are grouped together into one rack to amortize the

base cost C (as opposed to different clients using their own separate racks).

This new model adds a small wrinkle to our protection switching model in the special

case where protection transponders are shared (e.g., the case shown in Figure 6.13 for the

original NOBEL model). For the unmodified NOBEL model we could rely on the EXC

switch fabric to control access to the shared protection transponder, but using PSC cards

we require additional equipment to do this. The example in Figure 6.18 shows the basic

case with one working transponder and one protection transponder, but if two client signals

need the option of using the same protection transponder, we need an arrangement like

that shown in Figure 6.19. Here, another PSC is “cascaded” with the two client-exposed

PSCs and interfaced with the protection transponder so that either client PSC can access

the protection transponder depending on which working path fails. The alarm lines of
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Figure 6.19: Cascade arrangement of PSC for protection transponder sharing

W1 and W2 are connected such that if W1 fails but W2 does not, the protection PSC

will be switched to its W port and the W1 PSC will access the transponder. If W2 fails

and W1 does not, the protection PSC will be switched to its P port and the W2 PSC will

access the transponder. If both fail, then W2 will still access the transponder and W1 will

be unrecoverable. The orientation of the protection PSC can be flipped vertically in this

diagram to change which path has priority in a dual failure scenario.

Larger cascade arrangements are also possible when the number of working paths shar-

ing the protection transponder is 3, 4, etc. In general, the number of cascaded cards will be

equal to 2N−1 where N is the number of client signals that need to share (so N−1 more

cards then if sharing were not required). This consideration adds a small cost increase for

instances of protection transponder sharing, but does not have an overall large contribution

in cost, because situations like this are rare in PXT designs and the cost increment is only

0.1 for every card. So, for example, even if 5 cards needed to share (which never happens

in our designs), the added cost would only be 4 ·0.1 = 0.4, in designs where cost values are

on the order of 1000. However, this is still an important implementation detail.

The costs for our network designs under this modified design model are illustrated

in Figure 6.20. As stated, this model forces electronic protection switching to be used

everywhere, reducing cost variability even further. The only remaining cost variability

factor is essentially transponder MTD, meaning that the architecture with the shortest paths

is the cheapest. Even then, the possible variability is low, given that none of these designs

use equipment with MTD greater than 1500 km, yet topological constraints mean that it

is not possible for many paths to be shorter than 750 km. Figure 6.20 shows that node

and span costs are the same in all cases, with a minor variation in transmission costs due
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Figure 6.20: NOBEL cost comparison between dedicated architectures, FIPP p-cycles and
PXTs with PSC modification

to transponder MTD differences. Again, FIPP p-cycles and PXTs are at a disadvantage

because protection paths are longer because efficient sharing requires that protection paths

are deviated from the shortest path.

Overall, this model has the effect of compressing the variability across any set of

intelligently-designed networks, regardless of the architecture. However, we must keep

in mind that although the costs of the designs are very similar, their network utilization

levels can be vastly different. Table 6.4 contains the numerical results presented in Figure

6.20, with additional data regarding the utilization levels of the network. The “Remaining

Wavelength Capacity” column shows how many free wavelength channels are unused over

all spans in the network. This column represents how much more room there is in the de-

sign for additional paths in general. The “Load on Maximally Loaded Span” column shows

how many wavelength channels are utilized on the most heavily loaded span. Because we

assume 40 wavelengths per fibre and a single-fibre network, the maximum this value can be

is 40. This column shows how close the network is to requiring a major capacity upgrade

in the worst case that additional paths use the maximally loaded span. The data from both

of these columns shows that PXTs are able to achieve significantly less network utilization

than APS and DSP under the same approximate cost. A similar pattern was also seen in

the “regular” NOBEL case (i.e., before the PSC modification). FIPP p-cycles are not able
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Architecture Node
Costs

Span
Costs

Transmission
Costs

Total
Cost

Remaining
Wave-
length

Capacity

Load on
Maximally

Loaded
Span

1:1/1+1 APS 374 275 438 1087 587 40
DSP 374 275 422 1071 595 36
FIPP

p-Cycles
374 273 458 1105 495 33

PXTs 374 275 440 1089 639 28

Table 6.4: NOBEL cost and network wavelength usage comparison with PSC modification

to achieve low utilization in this instance because the design method used for this test case

sacrifices capacity efficiency to achieve cost-reducing savings in other areas.

6.2.11.7 Conclusions

These tests have shown that for restorable transparent optical networks, under a realis-

tic cost model for the WDM layer, the spare capacity metric is not an accurate predictor

of relative system costs. In fact, under the conditions used here, spare capacity usage is

negatively correlated with cost. Under the NOBEL model, it is more accurate to say that

network capacity is a resource that is purchased by the relatively fixed start-up costs of the

single-fibre network, and a protection architecture that uses less of this capacity is therefore

more cost-efficient. The predicted cost savings of low capacity does not appear as an actual

reduction in the cost of the initial design, but rather manifests in the long term as a greater

time delay before capacity upgrades (either through outlay or requisition of additional fibre

or via transmission system upgrades) are required due to demand growth. This is a valuable

point of view to keep in mind when presenting shared mesh protection concepts to network

operators going forward.

6.2.12 Project Summary

Overall the HAVANA project succeeded in its goals of comparing a wide variety of ar-

chitectures across several simultaneous real world design constraints. Perhaps the most

valuable insight of the study came at the end, where the implementation of the NOBEL

cost model cast a new light on our perception of the relationship between spare capacity
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efficiency and network cost.

As for PXTs specifically, the results of the project continued to support the conclusion

that they are a viable strategy for path protection in transparent networks, at least on par

with FIPP p-cycles in terms of network utilization and design cost, and perhaps superior

when considering wavelength continuity and optical path length constraints. The DRS

ILP-based design approach for PXTs holds up well under a WDM layer cost model, even

more so than for FIPP p-cycles, because of their increased flexibility and suitability towards

purely optical protection switching. Both path and span p-trees, on the other hand, did not

perform favourably in the study, as expected from the results of the work in Chapters 3 and

5.

6.3 Failure Localization in p-Cycle Networks

Although it was not part of the HAVANA study, and was motivated by work from an entirely

different source, the following study follows in the same vein of investigating problems sur-

rounding the implementation of transparent optical networks. We take a method proposed

for localization of single span failures and apply it to restorable p-cycle networks, with

an eye towards the use of this combined localization and protection scheme in transparent

networks.

6.3.1 Background

The failure localization problem is relevant to restorable networking in general, but is par-

ticularly significant in the transparent case. In an opaque network, every optical line signal

is electronically processed at each node, so a span failure is easily localized to the span on

which the signal is lost. But in an optically transparent network, loss-of-light will propagate

along the length of the affected path to the end-nodes. This is acceptable for end-to-end

path switched protection, but if we are using span protection (e.g., p-cycles), we need to

know the precise span that has failed so the end nodes can activate the loopback or break-

in switching action. To achieve low cost, optically transparent switching nodes typically

do not have fast-acting abilities to sense and isolate such failures. Methods are available

following the failure to sectionalize the fault, but they are generally slower than required
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for activation of a protection switching response. However, a promising idea for fault lo-

calization, only recently proposed and studied in the work of Zeng, Huang and Vukovich

[ZeHu06, Zeng07], takes a distributed approach with the elegant idea of an m-cycle cover

of the graph.

The idea behind m-cycles is to find a special cycle cover of the graph such that the

combination of cycle failures in a failure state will encode the location of the failed span. If

a network graph has a cycle cover in which the set of cycles covering each span differs by

at least one cycle, then, when a span fails, the span can be uniquely identified by the com-

bination of covering cycles which display an alarm state. This assumes one signal monitor

per cycle, which can be placed at any node on the cycle. This central idea was studied

in the Ph.D. thesis by Zeng [Zeng07]. As so far considered, the idea is to use the result

of the m-cycle localization process as input to a separate protection or restoration scheme.

The m-cycle scheme itself is agnostic about the survivability mechanism employed, and

could be used as the activating input for any span-protecting scheme. Furthermore, to our

knowledge, all existing work on m-cycles has been performed in the absence of any consid-

erations regarding the protection mechanism itself. In [2] the main focus is to find a cycle

cover that maximizes the degree of fault localization at minimum cost (some combination

of total cycle length and number of cycle monitors). A branch and bound algorithm was

developed to produce near-optimal solutions for the minimum cost m-cycle cover problem.

The idea of m-cycles strongly resonated with us as being very similar to p-cycles, if

not in concept than at least in structure. Both concepts revolve use the idea of a cycle

formed out of preconnected spare channels, though they are used to different ends. Also,

to implement p-cycles in a transparent network would require enhanced failure localization

capabilities. Therefore it seemed natural to us to attempt to combine the two concepts. This

Section outlines our attempts to answer the question “can p-cycles also serve as m-cycles?”

More precisely, can a group of span-protecting p-cycles as a set also serve as an m-cycle

cover of the graph for the purposes of fault localization?6

It was not initially obvious that p-cycle network design could simultaneously include

m-cycle properties without significant added cost because the design goals of both schemes

6Dr. Grover originally proposed these questions in Fall 2006 as a response to the work in [Zeng07], after
which followed our joint investigation of the topic.
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seemed to be at cross-purposes. m-Cycles must constitute a cycle-cover, in which only the

on-cycle spans of the m-cycles are important, whereas p-cycles are most efficient when they

“stand off” from the working span capacities they protect (i.e., straddling span relationships

are the most preferred from an efficiency standpoint). Therefore our goal was to develop

a method to design a combined p-cycle/m-cycle network with full span failure protection

and failure localization, to determine if this combination was feasible and practical.

6.3.2 Method

As usual, we took an ILP approach to the problem, representing both the p-cycle restoration

constraints and m-cycle localization constraints in a single model to achieve both properties

with the same set of cycles. For p-cycles, we began with the basic p-cycle model, given in

Section 3.2.1. We then added the constraints for the m-cycle cover problem. One phrasing

of the problem is that, for every pair of spans in the network, there must be at least one

m-cycle that crosses one span but not the other. In addition, every span must be covered by

at least one m-cycle. Represented mathematically, these constraints are, respectively:

∑
k∈Ps.t.δ k

i
⊕

δ k
j =1

nk ≥ 1 ∀[i, j] ∈ S2, i 6= j (6.12)

∑
k∈Ps.t.δ k

j =1

nk ≥ 1 ∀ j ∈ S (6.13)

Note that constraint 6.12 alone is enough to guarantee the m-cycle localization property,

except that without constraint 6.13 it will allow the case in which there is some span in

the network that is covered by no cycles (this is possible even if the p-cycle constraints

are enforced as well if the span is protected only as a straddler). Although it would be

guaranteed that no other span failure would result in none of the cycles failing, in reality this

would be indistinguishable from the case in which no failure had occurred at all. Constraint

6.13 explicitly adds this additional case that will be present in all problems and must be

distinguished from actual span failure events.

A model using the variables, parameters, and sets from the original p-cycle model and

these two constraints alone would provide optimal solutions to the m-cycle model, a more

generalized version of the branch-and-bound method in [Zeng07]. Combined with the p-
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cycle constraints (see 3.2.1), we have a model that guarantees both span failure restorability

and localization in the same design.

6.3.3 Caveat: Chain Subnetworks

Before continuing to the test cases, we must point out one of the pitfalls inherent in m-cycle

localization, as it affects which networks we are able to use and places limitations on the

results. Namely, the fault localization by m-cycles cannot be 100% when degree-2 nodes

exist in the network. For two spans to produce different m-cycle alarm combinations, there

must be at least one cycle that passes over one span, but not the other. But if a cycle passes

through one span in a degree-2 chain, it necessarily passes through the others. The work in

[Zeng07] recognizes this and proposes supplementing m-cycle designs in such cases with

individual span monitors for the failure of spans in these chains. Here we accordingly

either consider design for full localization only in chain-free networks or we seek designs

that achieve maximum localization rather than 100% localization in networks with chains.

6.3.4 Test Cases

This combined design model was solved on three test networks also used in [Zeng07],

illustrated in Figure 6.21 (a) (b) and (c). The Bellcore and NSFNET networks contain

chain subnetworks, so full localization is not possible. Two approaches were taken to

obtain comparative results in these cases. In one, chains were eliminated to obtain the

meta-mesh topologies (see [GrDo02] for a description of the meta-mesh concept) with all

nodes having degree-3 or greater. The modified topologies are shown in Figure 6.21 (d)

and (e). Under the second approach, the design model was adapted to solve for maximum

fault localization instead of total localization. The fault localization levels achieved are

then the same as the best results for these networks in [Zeng07]. This approach allows

assessment of any extra capacity needed to endow a p-cycle network with the same (either

complete or partial) levels of localization achievable for optimal m-cycle design alone. In

these tests, span costs are all set to 1 and the working capacity distribution is that arising

from least-hop routing of one lightpath between every node pair.

An additional five tests for the effects of demand volume and pattern were performed

on network 15n30s1 in Figure 6.21 (f). This is a topology of degree-4 with no chains. Span
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(a) Bellcore
(b) NSFNET

(c) Smallnet

(d) Bellcore without chains
(e) NSFNET without chains

(f) 15n30s1

Figure 6.21: Test topologies for combined p-cycle/m-cycle designs

costs here are the Euclidean distances between the end-nodes of each span. The baseline

test on this network uses uniform random demand in the interval [1. . . 10] between each

node pair, routed via shortest paths. In the next three tests, these demand volumes are

divided by 2, 4, and 6, and rounded down to the nearest integer value. The final test uses

a unit demand between every node pair. The purpose of these tests was to determine the

effect of the magnitude of the demand pattern on the results.

6.3.5 Results

Results are summarized in Table 6.5. In one case (the “Divided by 6” demand pattern on

the 15n30s1 network), the solver had to be terminated before an optimal solution could

be found, because it was simply taking too long to solve. The value is marked with an

asterisk in the Table, along with the distance from optimality of the current best integer

solution at the time of termination (3%). In fact, we saw that the complexity of the problem

in the 15n30s1 network (in terms of computation time) increased as the demand volume

decreased.7 We can explain this because of the fact that, as demand volume goes to zero,

the problem tends towards the pure m-cycle problem (no demand needs to be protected, but

7The “Divided by 6” demand pattern is the most sparse amongst our 15n30s1 tests. Because the demands
in the original demand pattern have values from 1 to 10, and we round down to integer values when dividing
by 6, this demand pattern mostly has demands with 0 magnitude, with the highest demand value being 1
(
⌊ 10

6

⌋
= 1). Therefore it is actually a less heavily loaded demand pattern than even “Unit demand”, which

has a full matrix of single unit demands.
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Network Topology Demand
Pattern

Pure
p-Cycle
Design
Cost

Design
Cost With
m-Cycle
Property

Cost
Increase

(%)

15n30s1 Random 1-10 133792 134131 0.25%
Divided by 2 58117 58623 0.87%
Divided by 4 23045 23578 2.31%
Divided by 6 11547 12442*

(3%)
≤7.75%

Unit demand 26749 27106 1.33%
Bellcore (with chains) Unit demand 151 156 3.31%

Bellcore (chains removed) Unit demand 79 83 5.06%
NSFNET (with chains) Unit demand 139 139 0%

NSFNET (chains removed) Unit demand 92 92 0%
Smallnet Unit demand 38 45 18.42%

Table 6.5: Combined p-cycle/m-cycle designs compared to pure p-cycle designs

every span still requires failure localization under this formulation). This problem involves

strictly binary decisions (“Should this cycle be placed or not?”), and ILP problems using

binary variables are classically very difficult for ILP solvers to handle. This is one of the

reasons that [Zeng07] used a custom branch-and-bound algorithm to solve the problem.

An example of an m-cycle set, taken from the Smallnet network design, is given in

Figure 6.22. We can determine by inspection that each span failure will produce a unique

failure “symptom” in the cycles. In other words, if we consider the failure state of each

cycle as a bit, each single span failure will produce a unique 6-bit word. This sets a maxi-

mum limit of the number of total localizable failure scenarios in this design of 26−1 = 63

(subtracting 1 for the non-failed network state). This logarithmic relationship between the

number of m-cycles and the number of localizable failures is noted in [Zeng07].

Results for the set of tests on the 15n30s1 network illustrate that increasing the demand

volume decreases the incremental fractional cost of adding the m-cycle requirement to a

p-cycle design. This makes sense because the total spare capacity for survivability is at

least monotonically increasing with network demand (for p-cycles and for any scheme

restorability scheme), whereas the m-cycle cover is a purely topology dependent fixed cost

type of investment for the network as a whole. Or, to look at it another way, as the working

capacity of a network increases it becomes increasingly easy to find a subset of cycles to
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Figure 6.22: The m-cycle cover set for the Smallnet network topology

realize the fault localization cover requirement within a restorable p-cycle design. This

explains the relatively high excess capacity result (18%) for Smallnet, and gives a general

insight about how sheer volume of demand in a network will inevitably dilute the relative

cost of incorporating m-cycle monitoring in the network design. The Smallnet network’s

small size combined with the unit demand pattern means that it has very little demand

volume with which to dilute this cost.

The main finding in Table 6.5 is that it seems to be feasible and economic to integrate m-

cycle functionality into a p-cycle network design. The contrasting tendencies of m-cycles

and p-cycles to prefer on-cycle versus straddling span relationships are not so difficult to

reconcile after all. However, the economics of this will depend on the demand volume in the

network. At the very least, we can say that it is economic in the unit demand pattern case in

realistically sized networks. This result for the unit demand pattern has special significance,

because it can be thought of as the full-communication (communication between every

node pair) demand pattern with the minimum possible volume of working capacity against

which to dilute or amortize the added cost of the m-cycle cover set. We would expect this

condition to be met in most modern transport networks.

6.3.6 Conclusions

We have shown that it is not difficult or necessarily costly to obtain m-cycle fault local-

ization in p-cycle networks. The added cost of perturbing the p-cycle design to include

an m-cycle cover can even be zero in certain cases. At the very least, it is a fixed cost
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for a given topology and hence becomes less significant to the total cost of a network as

its demand increases. The designs that we have produced here are really still p-cycle de-

signs, the same as those produced by the original model, except with the m-cycle cover

property incorporated into them. This can be thought of as a method to increase the utility

and efficiency of m-cycles as presented originally in [Zeng07], where they are only used

for monitoring and are not themselves part of the capacity usable for protection. In our

designs, the same p-cycle in a transparent network can be centrally monitored for loss-of-

light as part of the m-cycle cover, and then be activated as part of the survivability solution

immediately afterward. This potentially opens up span protection via p-cycles as a viable

option for transparent networks.
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Chapter 7

UPSR-Like p-Cycles

7.1 Introduction

The one concept that ties together all of the studies presented so far in the thesis is that of

spare capacity sharing. Indeed, sharing is the primary attribute of mesh-based restorable

networking: taking advantage of the mesh topology to share spare capacity between topo-

logically dispersed working paths. To use a simple dedicated protection scheme (such as

APS or UPSR rings) in a mesh topology seems to be a waste of its highly interconnected

nature.

However, dedicated protection does carry with it certain advantages. For example,

availability will generally be higher (because availability in a single failure restorable net-

work is a function of dual failure restorability, which will tend to increase with higher

spare capacity redundancy). Also, the switching of dedicated protection is inherently sim-

pler. This raises the question of whether it is possible to take advantage of some of the

properties of mesh networks while still retaining the advantages of dedicated protection.

This Chapter introduces a new architecture called “UPSR-like p-cycles” that incorporates

these properties. In this Chapter we develop and analyze methods of designing restorable

networks using UPSR-like p-cycles, and in the process investigate several of their charac-

teristics.1

1Some of the work in this Chapter has been accepted as a paper at the Workshop on Reliable Networks
Design and Modeling:

A. Grue, W. Grover, “UPSR-like p-Cycles: A New Approach to Dual Failure Protection,” to appear in
the Proceedings of the Workshop on Reliable Networks Design and Modeling (RNDM 2009), St. Petersburg,
Russia, 12-14 October 2009.
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7.1.1 Background

As mentioned above, the availability of dedicated protection will be higher in general be-

cause of higher resilience to dual failures [ClGr02]. However, this statement only applies

as an average over all demands and failure scenarios, and does not mean that a network

using dedicated protection and designed for single failure restorability only will be able to

provide guaranteed dual failure restorability to a class of high priority demands. In this

regard, dedicated and shared protection are on equal footing; extra considerations must

be made for both the capacity plan and failure response in order to handle dual failures.

A number of techniques have been proposed to enable guaranteed dual failure restorability

for high priority QoP classes with p-cycles, including straddler-routing [KoGr05b], a multi-

QoP approach using span-restorable mesh restoration [GrCl05] or p-cycles [ClGr05], and

reconfigurable p-cycles [ScGr04].

However, it occurred to us that resilience to dual failures could also be enabled in a

p-cycle architecture by combining the principle of path-protecting p-cycles (see [KoGr05])

with the dedicated protection approach of UPSR rings.2 In a UPSR ring, the working signal

is simultaneously circulated in both directions around the cycle from the source to the des-

tination, such that a single failure on either side of the ring will leave the other path intact.

A UPSR-like p-cycle would incorporate this simultaneous circulation principle with the

mesh-like routing of working paths in traditional p-cycles (i.e., removing the requirement

for working paths to be routed strictly on-cycle).

This bears some similarity to the approach proposed recently in [Kama06], which also

employs simultaneous circulation of working and protection signals in p-cycles for fast

protection switching. The approach in [Kama06] shares the p-cycle by making use of

network coding principles. This approach can handle at most one path failure at a time,

and is especially susceptible to dual failures because of the network coding requirements.

In contrast, UPSR-like p-cycles can provide enhanced R2. If a working path is routed as a

straddler, there are two possible protection paths around both sides of the cycle. Should the

default protection path fail in addition to the working path, a high-priority demand might

preempt traffic on the other side of the cycle and use some of that capacity to create a

2Dr. Grover first proposed this new architecture in Winter 2007, originating and providing the impetus for
the line of work followed by this Chapter.
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(a) UPSR

(b) UPSR-like p-cycle

Figure 7.1: Routing in UPSR and UPSR-like p-cycles

second protection path. See Fig 7.1 for an illustration of this difference between UPSR and

UPSR-like p-cycles.

This additional routing flexibility not only introduces the possibility of cost savings

over UPSR by reducing the length of working routes, but leaves open the possibility of

further optimization of structure capacity by making choices for protection routing within

the structure itself. As shown in Fig. 7.1(b), there are two routing options available for a

straddling working path on a UPSR-like p-cycle. By taking advantage of routing options

in a mesh network, we can combine the benefits of UPSR protection with some of the

well-known efficiency of p-cycles (see [GrSt98]).

7.1.2 Goals

The purpose of this study is to answer some of the research questions regarding UPSR-

like p-cycles. What is the best way to route the protection paths? How would the routing

problem be solved in an ILP, and do there exist better (faster, simpler) methods to solve this

problem? How can we design efficient networks using UPSR-like p-cycles? What savings
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can they achieve over regular UPSR, and how do they compare to more efficient schemes?

To what extent can they provide enhanced R2 for priority services? These questions will

be answered over the course of the following sub-studies.

7.2 Single-Ring View with Straddlers Only

7.2.1 Problem Description

As we were starting from the ground-up with a new architecture, we decided to begin by

treating only the issues with designing a single UPSR-like p-cycle. This problem is non-

trivial, unlike the regular UPSR design problem, because of the fact that working paths

may now be disjoint from the cycle. This means that we now have to make a decision as

to which direction the protection path will take around the cycle. This problem has some

similarities to the “BLSR sizing problem”, which is the problem of routing demands on a

BLSR ring such that the capacity of the ring is minimized (discussed further in [MoGr98]).

The problems are different, however, as the protection paths here do not share spare capac-

ity (in order to maintain the 1+1 APS property of simultaneous transmission along both the

working and spare paths). We also further simplify the initial investigation by only consid-

ering straddling working paths (i.e., completely disjoint from the cycle) for protection, and

solving the routing decisions for these paths.

The objective of this problem is taken to be the minimization of the total link capacity

used by the cycle. For the purpose of this investigation, the UPSR-like p-cycle is assumed to

use an identical amount of capacity on every span of the cycle. If this were not true, and the

cycle were allowed to use a variable amount of capacity on each span, the design problem

would become trivial as it would only be necessary to route each protection path along the

shortest route around the cycle in order to achieve minimum capacity usage. But if the

UPSR p-cycle is seen as a single structure of uniform capacity (as with a regular UPSR,

e.g., a separate, reserved “pipe” that protects a certain set of demands or path segments

as a single encapsulated structure), the problem then becomes one of finding protection

routings that overlap in a way such that the cycle capacity “ceiling” forced by the most

heavily capacitated span is minimized.

A way of solving this problem that intuitively seems to be near-optimal would be to
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Figure 7.2: Potential suboptimality of shortest-path protection routing on a UPSR-like p-
cycle

simply route all protection paths along the shortest available side of the cycle. We would

expect this approach to reduce the ring cost in an indirect way by minimizing the total

amount of utilized spare capacity in the ring. However, we might also expect that in some

situations this will result in unintelligent routing decisions that unbalance the capacity dis-

tribution on the cycle, producing a suboptimal result. Such a situation is illustrated in Figure

7.2, in which span S is already heavily loaded by other demands and therefore should be

avoided. Another approach may be to balance the capacity on the cycle by attempting to

split the capacity of each working route in two ways around the cycle (assuming the split-

ting of working routes is allowed). Of course, the way to guarantee that the cycle capacity

is minimized is to use an ILP model to optimize the objective function over the entire space

of design possibilities. All three of these approaches (shortest-path, split routing, and full

optimization) were tried and are compared in the following Section.
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7.2.2 Experimental Setup

In total, five approaches to the ring loading problem were investigated. An ILP-based

approach was used to implement each of them. The first three approaches are summarized

as follows:

(a) Shortest-path: Each working route is allocated protection on the shortest protection

route around the cycle (by hops). In case of ties, the solver makes an intelligent

choice (including possibly splitting protection paths between both halves).

(b) Equal split: Each working route is allocated half of its protection around each half of

the cycle. In case of odd amounts of demand, the solver again makes an intelligent

routing choice.

(c) Optimization: The optimizer freely chooses the directions of all protection paths.

During the course of the study, it was recognized that, if this scheme is to replicate the

simplicity and fast switching of 1+1 APS, it may be desirable for the protection paths (and

working paths) to remain unsplit, i.e., each end-to-end demand should be served by only

a single working and protection route (so that, for example, the protection signal does not

need to be split into two lower-rate signals at the transmitter and then recombined at the

receiver). This introduces the following “no-splitting” variants to schemes a and c (not b

for obvious reasons):

(d) Shortest-path without splitting: Each working route is allocated protection on the

shortest protection route around the cycle (by hops). In case of ties, the solver still

makes an intelligent choice, but this choice is binary; splitting is not allowed.

(e) Optimization without splitting: The optimizer freely chooses the directions of all

protection paths, but all protection paths for the same demand must follow the same

route (i.e., no splitting).

7.2.2.1 ILP Model

The above 5 schemes were implemented using the following ILP model as a base:

ILP Model
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Sets:

D The set of demands to be protected by the cycle being loaded, indexed by r.

S The set of spans on the cycle, indexed by i.

Pr A set of protection paths on the cycle for each demand r in D. Can contain

either 1 or 2 paths depending on whether the demand is routed on-cycle or

straddling, respectively. Indexed by q.

T q
r The set of cycle spans contained in protection path q for demand r.

Parameters:

dr The number of demand units to be protected by the cycle for demand r.

α Scaling value for the bicriteria objective function.

Variables:

si The amount of spare capacity used for protection on span i of the cycle.

h The highest amount of spare capacity used on any one span of the cycle (sets

the total UPSR-like p-cycle capacity).

uq
r The number of copies of protection path q allocated to protect demand r.

Objective Function:

Minimize

h+α ∑
i∈S

si (7.1)

Constraints:

si ≤ h ∀i ∈ S (7.2)

∑
q∈Pr

uq
r = dr ∀r ∈ D (7.3)
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si = ∑
r∈D

∑
q∈Pr s.t. i∈T q

r

uq
r ∀i ∈ S (7.4)

More accurately, the above model implements optimization approach c) as described

above. The objective function will find the design with the minimum ring capacity (h),

that also uses the minimum total capacity (the second term in the objective function). This

term is weighted with α such that it will never be greater than 1, so that it will not have

an impact on the value of h (an integer). This was done to prevent the solver from finding

a design that, though “optimal” in the sense of using a minimally sized ring, uses obtuse

routing decisions resulting in sub-optimal capacity usage that nonetheless remains below

the optimal spare capacity “ceiling”. We would rather obtain designs using the best routing

possible, so that we can draw more general conclusions about intelligent routing in UPSR-

like p-cycles.

Constraint 7.2 is what establishes the value of h based on the largest spare capacity

usage among all of the spans on the cycle. Constraint 7.3 ensures that enough protection

paths are allocated to protect each demand. Constraint 7.4 calculates spare capacity based

on protection path usage. Protection paths are not shared, so this calculation is a simple

sum. Note that the model implicitly allows splitting of restored flow around the cycle, as

there is nothing preventing a straddling path from claiming a nonzero amount of protection

on both of its possible protection paths in Pr.

This model solves very quickly, because it is a local problem for a single cycle only and

therefore only needs to consider a handful of spans and demands at once. It is not difficult

to modify it to handle design approaches a) and b) as well by simply adding constraints. To

implement design approach a), the following constraint is added to the model:

uq
r = 0 ∀r ∈ D,∀q ∈ Pr s.t.q 6= shortest path in Pr (7.5)

This constraint set only really applies to straddling demands where 2 potential protec-

tion paths exist (for non-straddlers, Pr will only contain one path and therefore no constraint

will be generated). This is simply a mathematical way of saying that if one path is longer

than the other, it cannot be used (i.e., the shorter path must be used instead). Note that

this leaves open the possibility of splitting between two equal-length shortest routes, as
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described above in a). Note also that we could achieve this same effect by pre-processing

the data to remove strictly shortest protection paths.

To implement design approach b), the following constraint is added to the model:

uq1
r −uq2

r ≤ 1 ∀r ∈ D,∀q1,q2 ∈ Pr s.t.q1 6= q2 (7.6)

This constraint again only applies in the straddling case, and states that the difference

in usage between the two protection paths must never exceed 1. Therefore, if the amount

total amount of demand is odd, the difference in usage between the two paths will be

exactly one, and if the amount of demand is even, the difference will be zero. This allows

a certain amount of leeway in cases when the amount of demand is odd, but keeps to the

spirit of investigating the effects of the general design policy of equally splitting protection

wherever possible.

As mentioned, this model, along with the above 2 optional constraints, implements

strategies a) through c) as described above. To represent the no-splitting concept for strate-

gies d) and e), however, we must modify the original model in this way:

Variable Modifications

uq
r This time it is a binary variable that is 1 iff demand r uses protection path q for

protection and 0 otherwise.

Constraint Modifications

Constraint 7.3 needs to be modified to take into account the fact that protection path usage

is now a binary variable:

∑
q∈Pr

uq
r = 1 ∀r ∈ D (7.7)

Constraint 7.4 must be modified for a similar reason:

si = ∑
r∈D

∑
q∈Pr s.t. i∈T q

r

uq
r ·dr ∀i ∈ S (7.8)

This new model ensures that no splitting will occur by making the routing decision

a binary one. The above changes to the basic model (i.e., without supplementary con-
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straints 7.5 and 7.6) implement strategy e) (fully optimized routing without splitting). To

implement strategy d) (shortest-path routing without splitting), we simply use this modified

model along with supplementary constraint 7.5. Note that, although some of these routing

strategies could be implemented using more basic approaches than ILP, it is convenient for

us to represent them here as ILP problems both because of the guarantee of the optimality

of the solutions and because our ability to solve the problems follows directly from our

ability to represent them all mathematically. The models are simple enough that solution

times are trivial in any case.

7.2.2.2 Test Cases

This problem only concerns the routing of a single ring. Therefore, the only variability in

the test cases consists of the ring size (in terms of spans or nodes) and the demand pattern

(all of which are demands that originate and terminate on the ring). This is much simpler

than a whole-network design problem, in which we might consider any arbitrary network

graph topology. This means that we need concern ourselves less with the characteristics

of the ring (being in this case only its size), and focus more on the characteristics of the

demand pattern.

In keeping with this, the test cases consist of many variations on demand patterns over

a small number of different sizes of rings. To start off with, we consider the simplified case

of straddling protection only, i.e., the case where every demand has a choice between two

different protection routes. The parameters of the straddling-only test cases are summarized

in Table 7.1. The label “All straddlers” means that every node pair in the ring (except

adjacent nodes) carries demand that we assume is routed as a straddler with respect to the

cycle. We exclude adjacent nodes from this set, because we assume in these cases that any

working flow would be routed directly along the span linking the two nodes, preventing

this path from being a straddler. Therefore this case represents one of maximal routing

freedom, while still taking into account the implications of shortest-path routing.

After completing trials 8 through 28, the method was automated to calculate the results

for a much larger number of test cases so as to derive some statistical conclusions over

a large set of randomized tests. These random tests again used a ring of 6 nodes/spans

and a full set of straddling demands. In each test case the magnitude of each demand was
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Test Case Ring Size
(Number of

Nodes/Spans)

Demand Pattern

1 6 All straddlers (9 total):
5 7 6 9 4 5 8 6 3

2 6 5 straddlers (demand pattern from
case 1 with 4 randomly deleted):
5 9 4 8 3

3 6 All straddlers, unbalanced demand
values:
1 5 7 7 12 11 15 18 16

4 8 All straddlers (20 total):
5 7 6 9 4 5 8 6 3 5 7 6 9 9 4 5 4 6 7 6

5 9 All straddlers (27), balanced
demand values

6 9 All straddlers, unbalanced demand
values
(linearly increasing from 1 to 27)

7 6 All straddlers, unbalanced demand
values
(linearly increasing from 1 to 9)

8 through 28 6 All straddlers, uniformly random
distribution between 0 and 20 (21
randomly generated cases)

Table 7.1: Summary of UPSR-like p-cycle single ring design test cases (straddling protec-
tion only)
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Test Case Loading Strategy
a)

Shortest-
Path With
Splitting

b)
Equal Split

c)
Optimized

With
Splitting

d)
Shortest-

Path
Without
Splitting

e)
Optimized
Without
Splitting

1 23 26 23 26 26
2 15 15 15 15 15
3 38 46 38 41 41
4 46 60 46 49 49
5 59 81 57 59 59
6 178 187 136 178 142
7 18 23 18 19 19

8 through 28
(averages)

41.8 41.7 47.3 46.0

Table 7.2: Summary of results (ring costs) for UPSR-like p-cycle single ring design (strad-
dling protection only)

assigned a random value between 1 and 20. The optimal ring costs were calculated under

approaches a) through e) for 20,000 randomized trials.

7.2.3 Results

Table 7.2 gives the results of the experimental trials outlined in Table 7.1. The first thing

that the Table demonstrates is that equal split routing is uniformly worse than shortest-

path routing, while not being significantly simpler (both make their routing decisions in-

dependently for each demand on the ring without considering the global ring situation), so

we should be able to disregard this as a viable strategy. The real competition is between

optimized routing and shortest-path routing, with shortest-path routing being simpler at

the expense of being occasionally less efficient. What Table 7.2 shows, however, is that

shortest-path routing produces the same ring size as a full optimization in a surprising

number of cases. This suggests that in many cases the optimal local choice is in fact the

optimal choice overall. If it is true that shortest-path routing is near-optimal in most cases,

then we may be able to perform whole-network optimal design for this architecture under

the simplifying assumption of shortest-path routing.

However, the results show that there are certain cases where shortest-path routing is not

259



so good. The most striking case is case 6, which was specifically constructed as a case

to foil the shortest-path strategy. To expand on the description given in Table 7.1, it is

a test case with a 9-span ring and a full demand pattern of 27 straddling demands. The

magnitudes of the demand varied linearly from 1 to 27. The test was constructed this way

so as to provide an unbalanced set of demands that would create a situation in which it was

not ideal for many of the demands to be routed shortest-path, similar to the case illustrated

in Figure 7.2.

Tests 8 through 28 were conducted in order to determine how often optimization would

result in improvement over shortest-path routing. The tests were continued until a differ-

ence in the ring size between the two methods was observed, i.e., in only the last out of

the 21 test cases were the results any different. The automated trials expand on this result.

Over all 20,000 trials, strategies a) and c) (that allow splitting) differed in only 9.5% of

the cases, and the results for shortest-path routing used only 0.6% more ring capacity on

average. When the same test was performed for the non-splitting case (i.e., strategy d)

vs. e)), the results differed in 36.5% of the cases, but overall the rings using shortest-path

loading required only 0.9% more capacity. Therefore we can be quite confident that, in

the case where rings are used to protect sets of straddling demands of roughly comparable

magnitude, shortest-path loading is nearly optimal.

7.3 Extension to On-Cycle Protection

To this point we have considered the simpler case of UPSR-like p-cycles that only protect

straddling demands. However, there is no reason why we cannot extend the concept to the

protection of demands whose working paths are not routed disjoint from the cycle. In fact,

this case is even simpler in terms of planning, as there can be at most one viable protection

path for such a demand. Figure 7.3 (a) illustrates this fact. Figure 7.3 (b) shows a case

where no protection is possible because the working path intersects both possible protec-

tion paths. This case is analogous to the Z-case for FIPP p-cycles (see Figure 2.8). For

FIPP p-cycles, one protection unit can still be provided to the path, because the restoration

action will implicitly “choose” the direction in which restoration occurs depending on the

failure (even though the restoration action can still be designed to be failure-independent).
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(a) On-cycle path that can be pro-
tected

(b) On-cycle path that cannot be
protected

Figure 7.3: On-cycle path protection cases for UPSR-like p-cycles

For UPSR-like p-cycles, however, this is not possible, as transmission must occur on the

working and backup paths simultaneously. Theoretically, such protection would be possi-

ble if backup transmission occurred simultaneously on both halves of the cycle; then, no

matter what span failure occurred, at least one path would remain intact. However, such

an arrangement would effectively reserve the entire cycle for use of that demand, making

it very capacity inefficient. Therefore we do not consider this case in the following study.

Because on-cycle paths have only one possibility for protection, there is no real routing

problem for these paths considered in isolation. Routing an on-cycle path is a one-step

process of assigning dedicated spare capacity along the (only possible) backup path. What

is interesting about the extension for on-cycle protection is the effect that this will have

on the routing decisions for straddling paths. The capacity mandated by on-cycle paths

represents a kind of “spare capacity floor” that serves as an input to the straddling protection

problem. If this capacity is zero, or equal on every span, there is no impact on the routing of

straddlers, and the same optimal solution as in the all-straddler case will still apply. When

this capacity floor is relatively even, we would similarly expect that the straddler solution

would not change greatly and that our observations about straddler routing so far would not

be affected. If this capacity floor is relatively uneven, however, it may have a significant

effect on straddling path routing.
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7.3.1 Experimental Setup

Table 7.3 describes the individual test cases used. Again, in addition to the test cases in this

Table, randomized trials were also used to further test the characteristics of the designs.

The random tests again used a ring of 6 nodes/spans. The demand pattern contained a full

set of both straddling and on-cycle demands. The set of straddling demands consisted of

all demand pairs between non-adjacent nodes in the ring (each with 2 possible protection

paths), as in the straddler-only test cases. The set of on-cycle demands consisted of all

demand pairs between adjacent nodes (each with only 1 possible protection path, as we

assume that shortest-path working routing will cause the working paths to only ever reside

on the single span between these two nodes), combined with all demand pairs between

non-adjacent nodes, each represented twice, once for each side of the cycle that might

contain the overlap with the working path. As mentioned above, on-cycle demands do

not represent routing decisions and only provide a minimum capacity floor for the cycle,

so accounting for all these various possibilities may simply be equivalent to generating a

randomized capacity floor for the cycle. The full exercise was performed for the sake of

representing all possibilities in the problem, and because the problem is simple enough to

solve that including these additional details does not impede the solution process.

In each test case the magnitudes of the demands assigned random values between 1 and

20. The ring costs were calculated under approaches a) through e) for 20,000 randomized

trials.

7.3.2 Results

The results for the test cases from Table 7.3 are given in Table 7.4. As for the automated

trials, strategies a) and c) (that allow splitting) differed in 34% of the cases. However,

on average the results for shortest-path routing used only 1% more ring capacity. When

the same test was performed for the non-splitting case (i.e., strategy d) vs. e)), the results

differed in 53% of the cases, but overall shortest-path loading required only 1.2% more

capacity. Again, shortest-path routing appears to be near-optimal. However, note that this

is only the case where the capacity floor from on-cycle demands is (statistically) flat.

To incorporate a non-statistically flat distribution of on-cycle demands, the simulation
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Test Case Ring Size
(Nodes/Spans)

Demand Pattern

1 6 Full matrix (15 total) with both
balanced straddlers and on-cycle
demands

2 6 Full matrix (15 total) with balanced
straddlers but unbalanced on-cycle
demand

3 6 Full matrix (15 total) with balanced
straddlers (in the range of 0 to 10)
and one on-cycle demand that is
routed around exactly half of the
cycle (magnitude 20)

4 9 Full matrix (36 total) with both
balanced straddlers and on-cycle
demands

5 9 Full matrix (36 total) with balanced
straddlers but unbalanced on-cycle
demands

6 9 Full matrix (36 total) with balanced
straddlers (in the range of 0 to 10)
and one on-cycle demand that is
routed around half of the cycle (5
spans, magnitude 20)

Table 7.3: Summary of UPSR-like p-cycle single ring design test cases (straddling and
on-cycle protection)

Test Case Loading Strategy
a)

Shortest-
Path With
Splitting

b)
Equal Split

c)
Optimized

With
Splitting

d)
Shortest-

Path
Without
Splitting

e)
Optimized
Without
Splitting

1 39 44 39 40 40
2 97 109 97 99 99
3 39 46 39 41 39
4 88 111 88 88 88
5 99 123 97 99 99
6 77 101 71 77 71

Table 7.4: Summary of results (ring costs) for UPSR-like p-cycle single ring design (strad-
dling and on-cycle protection)

263



was re-run, this time removing all on-cycle demands including one (arbitrary, randomly

chosen) span in their protection path (to cause a reduction in the spare capacity floor on

this span and the surrounding spans). For these tests, the results differed in 77% of the

cases, but shortest-path loading still requires only 3.5% more capacity on average. So

the difference was greater, but still minor, even in this most extreme case in which the

methodology was designed to maximally depress the spare capacity floor on a single span.

7.3.3 Conclusions

The exercises performed to this point can be taken as convincing evidence that shortest-

path routing of protected demands is near-optimal in the “average worst case” scenario.

In other words, if a network designer were to follow this policy, he would not, on average,

tend to produce designs that were excessively inefficient in terms of spare capacity usage (as

compared to the truly optimal designs). However, this does not rule out special cases where

exceptional routing decisions may be made to achieve savings. As usual, the discretion of

a human designer must be applied.

7.4 Full Network Design Problem

The results so far have given us a good indication of how to properly load a single UPSR-

like p-cycle. We have seen that, on a cycle with a balanced distribution of protected paths,

shortest-path routing performs almost identically to optimized routing. We can use this

information to inform our study of the design of entire networks protected by UPSR-like

p-cycles.

7.4.1 ILP Models

As with the ring loading problem, we can imagine two types of policies for UPSR-like

p-cycles: with splitting allowed, and with splitting prohibited. We present models to de-

sign UPSR-like p-cycle-protected networks under both of these policies below. Again we

assume that each ring is sized according to the maximum amount of capacity used on any

span of the ring.

ILP Model
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Sets (both models):

D The set of demands to be protected in the network, indexed by r.

S The set of spans in the network, indexed by i.

C The set of cycles that can be used as UPSR-like p-cycles, indexed by c.

Sc The set of spans crossed by cycle c.

Pc
r The set of protection paths provided to demand r by cycle c (will be empty if

demand r cannot be protected by cycle c). Indexed by q.

T c,q
r The set of spans contained in protection path q of cycle c for demand r.

Parameters (both models):

dr The number of demand units to be protected for demand r.

Variables (both models):

sc
i The amount of spare capacity used on span i on cycle c.

si The total amount of spare capacity used on span i.

hc The size of ring c.

uc,q
r Usage of protection path q on cycle c for demand r. The exact sense of this

variable will depend on the splitting policy, as in the single ring loading prob-

lem. In the splitting case, it is an integer, and represents the number of times

the path is used. In the non-splitting case it is binary and represents the all or

nothing decision of using this path for demand r.

Objective Function (both models):

Minimize

∑
i∈S

si (7.9)

Constraints (both models):
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sc
i ≤ hc ∀c ∈C,∀i ∈ Sc (7.10)

si ≥ ∑
c∈C s.t. i∈Sc

hc ∀i ∈ S (7.11)

Constraints (splitting allowed):

∑
c∈C

∑
q∈Pc

r

uc,q
r ≥ dr ∀r ∈ D (7.12)

sc
i ≥ ∑

r∈D
∑

q∈Pc
r s.t. i∈T c,q

r

uc,q
r ∀c ∈C,∀i ∈ Sc (7.13)

Constraints (no splitting):

∑
c∈C

∑
q∈Pc

r

uc,q
r ≥ 1 ∀r ∈ D (7.14)

sc
i ≥ ∑

r∈D
∑

q∈Pc
r s.t. i∈T c,q

r

uc,q
r ·dr ∀c ∈C,∀i ∈ Sc (7.15)

There are obvious parallels between this model and the model for the single-ring case.

Constraint 7.10 is constraint 7.2, generalized to the case where many rings are present in

the network. Constraint 7.11 is new, but only aggregates the total capacity from all rings

onto each span. Protection constraints 7.12 and 7.14 are the whole-network versions of

equations 7.3 and 7.7, with additional summation terms because protection is now spread

over a set of many cycles. Cycle capacity constraints 7.13 and 7.15 are the equivalents of

constraints 7.4 and 7.8. The only addition is the new superscript c to apply the constraint

to the entire set of cycles.

Note that the constraints have been changed from strict equalities (as in the single-ring

design) to more relaxed inequalities. This was done to reduce the complexity of the model

by relaxing the constraints, as the model has quite long solution times for realistically

sized networks (as we will see in the next Section). The resulting designs will still be

optimal, but note that this allows for a certain amount of “sloppiness” in the solutions, e.g.,

the protection variable uc,q
r may be set such that certain demands are overprotected in the

solution, as long as this overprotection does not increase the total ring capacity for cycle c

past the optimal amount.
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7.4.2 Initial Tests

The version of the above model with protection splitting allowed was first run on a network

with 15 nodes, 30 spans, and a full demand pattern ranging from 1 to 10 units between

each node. Demands were all routed shortest-path. Unfortunately, the model was found

to be quite complex. Several days were required to even obtain a feasible integer solution

(however, this initial solution was optimal to within a 0.6% mipgap). In the non-splitting

case, a feasible solution was not even found after several days. The complexity of the non-

splitting model is higher because the real-valued variables become binary variables, which

are notoriously problematic for ILP solvers. Therefore the non-splitting model was not

considered further in these tests.

The complexity of this model is not surprising considering that this problem has simi-

larities to the FIPP p-cycle design problem. Although UPSR-like p-cycles do not need to

deal with the concept of DRSs (disjointness is not a concern because every path receives

dedicated protection), the model must still keep track of the assignment of each protection

path on each cycle to each demand. Explicit assignment of protection is a concern unique to

path-protecting design models, and greatly multiplies the number of variables in the model.

Another problem with solving designs for this architecture is that, because the Z-case

cannot be protected, every working path must have at least one unique span-disjoint path

between its endpoints to serve as the protection path. Now, even though a bi-connected

network is guaranteed to contain at least 2 such span-disjoint paths between ever node pair,

if working path routing is performed via a naïve shortest-path approach, the working path

may be chosen such that no disjoint path can then be found (the so-called “trap topology”).

Therefore we took care to perform a modified type of shortest-path routing that avoids this

case (as in Section 4.2.2.1). In the rest of the following test cases, this type of demand

routing was used.

7.4.3 Shortest-Path Routing Approximation

To get results from this model in more reasonable lengths of time, we could simply restrict

ourselves to smaller networks. However, another alternative is to use the insights gained in

the single ring design case to build approximations into the model that reduce its complexity
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Test Case Nodes Spans Demand Pattern
NSFNET 14 21 1 unit between every node pair
Bellcore 15 28 1 unit between every node pair
ARPA2 21 25 1 unit between every node pair
Smallnet (small demand pattern) 10 22 1 unit between every node pair
Smallnet (larger demand pattern) 10 22 Uniform random (1-10)
15n30s1 family 15 16 to 30 Uniform random (1-10)

Table 7.5: Summary of UPSR-like p-cycle full network design test cases

while not sacrificing much in terms of the quality of the solutions.

In the single ring design case, we saw that the shortest-path routing method would often

give optimal solutions. Therefore we modified the original model to only allow protection

for straddlers along the shorter arcs of the cycles that could protect them. This can be done

in a variety of ways, such as adding a constraint to enforce shortest-path routing (as done

above in the single ring case), modifying the input data set to only contain the shortest

protection paths, or modifying the model itself to only consider a single protection path for

each demand. We chose the pre-processing method, removing the longest protection path

for each straddling demand from the input data completely. In cases where two protection

paths of the same length existed, one was removed arbitrarily. This is the preferred method

for reducing problem complexity, as it cuts down the data set used by the model. The

approach of adding constraints to the model would only increase complexity.

7.4.4 Experimental Setup

Two questions interest us here. First of all, how good are the results produced by a model

that uses the shortest-path routing approximation as compared to the original? And sec-

ond, does this reduction of variables and constraints significantly reduce solution times?

With this in mind, both the original model and the model using shortest-path routing only

(versions with protection splitting allowed) were run on the test cases given in Table 7.5

to compare solution times and capacity efficiency. The NSFNET, Bellcore, and Smallnet

topologies have been shown earlier in Figure 6.21. ARPA2 is shown in Figure 7.4.
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Figure 7.4: ARPA2 network topology

7.4.5 Results

A summary of the results is given in Table 7.6. The results show that, in the full network

design case, the difference between full optimization and the shortest-path approximation

is even more negligible than in the single ring case; the cost premium never exceeds 1%.

Also, many designs show what seems to be a cost decrease; this would be impossible were

the designs fully optimized, but in this case is simply because the shortest-path designs

are able to be solved to a tighter mipgap in a shorter amount of time. Unfortunately, the

CPLEX instance used to solve these problems is run on a shared processor, so accurate

timing information is not available. However, it was consistently observed that the shortest-

path approximation model reached designs closer to optimality in less time than the fully

optimal model when solved under conditions of similar load on the CPLEX server.

7.4.6 Design Properties

We have seen in Sections 7.2 and 7.3 that shortest-path routing often approaches the effi-

ciency of optimal routing, even in cases where it would seem to be at a disadvantage. The

numerical results from the full network experiments seem to also bear out this assertion,

with there being negligible difference between the shortest-path and fully optimized ver-

sions of the same design problem. How do we explain this feature? Qualitatively, it is

intuitive to suggest that the wide number of possible cycle covers available to protect each

demand makes it very likely that a configuration of rings exists in which every ring serves

well-balanced load (the case in which shortest-path routing performs the best). To further

investigate the details of this phenomenon, we looked more closely at the properties of our

full network designs.
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Test Case Full Model Shortest-Path
Approximation

Cost
Difference

Cost Mipgap Cost Mipgap
NSFNET 340 1.17% 339 0.68% -0.3%
Bellcore 366 1.27% 366 0.43% 0.0%
ARPA2 1637 0 1637 0 0.0%

Smallnet (small
demand pattern)

104 3.85% 104 3.73% 0.0%

Smallnet (large
demand pattern)

588 1.02% 588 0.37% 0.0%

15n30s1
family

16 spans 4450 0 4450 0 0.0%

17 spans 3642 0 3642 0 0.0%
18 spans 3352 0 3352 0 0.0%
19 spans 3202 0 3202 0 0.0%
20 spans 2977 0 2978 0 0.0%
21 spans 2783 0 2788 0 0.2%
22 spans 2538 0.07% 2542 0 0.2%
23 spans 2348 0.07% 2356 0 0.3%
24 spans 2236 0.24% 2250 0.06% 0.6%
25 spans 2022 0.22% 2033 0 0.5%
26 spans 1857 0.09% 1874 0 0.9%
27 spans 1777 0.51% 1785 0.16% 0.5%
28 spans 1686 0.59% 1692 0.10% 0.4%
29 spans 1603 1.13% 1598 0.25% -0.3%
30 spans 1528 0.62% 1526 0.33% -0.1%

Table 7.6: Comparison of optimal UPSR-like p-cycle designs to those solved using the
shortest-path protection routing approximation method
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7.4.6.1 Comparison to APS

One way to evaluate the effectiveness of the UPSR-like p-cycle designs is to compare them

to 1+1 APS designs on the same network. Both architectures use dedicated protection

with simultaneous transmission of working and protection signals; the only difference is

that UPSR-like p-cycles are confined to arranging the backup paths into cyclical structures.

Therefore UPSR-like p-cycles can only be strictly less efficient on the same network (given

the same working routing), and an analysis of the cost gap between the two will reveal how

closely UPSR-like p-cycle designs can approach their maximum efficiency limit, both when

designed optimally and when designed under the shortest-routing only constraint.

Table 7.7 gives a comparison between 1+1 APS and UPSR-like p-cycles in the designs

for the 15 node network family. The cost values for APS and UPSR-like p-cycles under

shortest-path-only protection are given, as well as figures for the percentage increase in

spare capacity over APS. The results for the fully optimal model are excluded, as they are

so similar to the shortest-path results. The Table shows that the increase can be significant,

but more so in networks with low nodal degree. In the more highly connected networks the

cost premium is less than 5%.

The Table also gives some other metrics of interest. The “% Unused Spare Capacity”

column measures how much of the capacity in the UPSR-like p-cycle designs is not used

for protection paths. In any given UPSR-like p-cycle, some spans of the cycle may not

be loaded to the entire capacity of the ring. This metric records how much of this spare

capacity “slack” there exists in the entire network design. This is not a factor for a 1+1

APS design, because each APS structure is allocated to exactly fit the size of the protected

working path. Taking this unused capacity into account, we can compute the “% Extra

Used Capacity” metric that measures how much more capacity is used for protection in

the UPSR-like p-cycle designs compared to the APS designs. This metric captures extra

protection capacity in UPSR-like p-cycles due to the cycle-routing constraint. The Table

shows that this increase is marginal over the entire range of nodal degrees, averaging only

3%.

The relatively low values for both the “unused spare capacity” metric and the “extra

used capacity” metric together show that the optimizer is able to find a combination of cy-

cles out of the vast number of possibilities that both evenly loads the cycles and also does
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Network
Spans

APS
Spare

Capac-
ity

UPSR-Like p-Cycles (Shortest-Path Protection)

Cost % Extra
Cost Over

APS

% Unused
Spare

Capacity *

% Extra
Used

Capacity
Over APS

16 4028 4450 10.5% 8.0% 1.6%
17 3134 3642 16.2% 9.0% 5.2%
18 2950 3352 13.6% 8.9% 2.9%
19 2838 3202 12.8% 8.5% 2.4%
20 2701 2978 10.3% 5.5% 4.1%
21 2559 2788 8.9% 5.4% 2.6%
22 2352 2542 8.1% 4.4% 3.3%
23 2144 2356 9.9% 4.0% 5.5%
24 2080 2250 8.2% 3.7% 4.2%
25 1900 2033 7.0% 4.1% 2.6%
26 1773 1874 5.7% 2.3% 3.3%
27 1709 1785 4.4% 2.2% 1.6%
28 1607 1692 5.3% 2.9% 1.4%
29 1534 1598 4.2% 1.4% 2.6%
30 1472 1526 3.7% 0.7% 2.8%

Table 7.7: Comparison of UPSR-like p-Cycle design costs to the 1+1 APS lower bound
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not detour the lengths of protection paths much beyond the shortest-path APS lower bound.

This suggests that shortest-path routing may be used the vast majority of the time, even in

the fully optimal design results, the same conclusion that we drew from our observations

regarding the efficiency of shortest-path routing closely approaching the efficiency of opti-

mal design. We will further investigate the frequency of shortest-path routing in the designs

in the next Section.

7.4.6.2 Shortest-Path Routing Properties

All results up to this point have suggested that shortest-path protection routing for UPSR-

like p-cycles is near-optimal. To confirm this, we directly analyzed the routing details of

the designs generated by our full optimization model. The results in Table 7.8 provide an

analysis of the frequency of shortest-path routing in these designs for the 15 node network

family. The first column lists the networks from least to most connected. The next three

columns provide the analysis for all protected demands. A column for the total amount

of protection is provided because, as mentioned earlier, overprotection is possible, and

therefore total protection may vary slightly between different designs. There are a total of

518 demand units to be protected in the demand pattern used, so we see that overprotection

is rare.

The next two columns give the amount of shortest-path protection as both an absolute

value and a percentage of all protection. We can see that shortest-path protection is ex-

tremely common in well connected networks but tapers to a small value in sparse networks.

This is because sparse networks will not have many straddling protection opportunities, and

thus most working paths will need to be protected as on-cycle paths, with their protection

paths being routed along the longer side of a cycle. For example, in the most extreme case

when the network has an average nodal degree of 2, there will only be a single cycle in the

entire network, and all demands will need to have their protection routed along the longer

side of the cycle (because working routing is done via shortest paths).

The next three columns take this effect into account by only reporting the results for

demands that are protected as straddling paths (i.e., demands for which there actually exists

a choice for protection routing). Here we can see that over all network designs, the shortest-

path routing decision is very common. At least 85% of straddling-protected demand is
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All Protection Demand Routed as Straddlers
Network
Spans

Total Pro-
tection

Amount
Pro-

tected
Shortest-

Path

% Pro-
tected

Shortest-
Path

Total Pro-
tection

Amount
Pro-

tected
Shortest-

Path

% Pro-
tected

Shortest-
Path

16 518 25 4.8% 0 0

17 518 60 11.6% 9 9 100.0%
18 518 68 13.1% 24 24 100.0%
19 519 76 14.6% 35 34 97.1%
20 518 95 18.3% 51 45 88.2%
21 518 175 33.8% 80 68 85.0%
22 518 244 47.1% 127 118 92.9%
23 518 255 49.2% 136 124 91.2%
24 518 290 56.0% 182 162 89.0%
25 519 326 62.8% 194 175 90.2%
26 518 425 82.0% 250 229 91.6%
27 518 460 88.8% 288 275 95.5%
28 518 471 90.9% 312 296 94.9%
29 520 486 93.5% 319 304 95.3%
30 518 482 93.1% 324 312 96.3%

Table 7.8: Analysis of shortest-path routing in fully optimized UPSR-like p-cycle designs
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routed shortest-path in all of these designs. Also, it is possible that there exist equivalent-

cost solutions to these in which shortest-path routing is even more common (because the

current model does not prefer these solutions over other equal-cost designs explicitly).

Therefore we see that not only does the shortest-path protection routing simplification

on our model not affect the resulting cost, but that fully optimized designs naturally tend

to shortest-path protection routing. This shows conclusively that shortest-path routing is

preferable in the vast majority of cases. This information should help simplify the design

process for network engineers who wish to implement UPSR-like p-cycle protection.

7.4.6.3 Comparison to UPSR

Though we have gained insight into how to best design networks protected by UPSR-like

p-cycles, the question remains how much of an advantage they really provide over regular

UPSR. Evidently, there is the advantage of flexibility; UPSR-like p-cycles provide dedi-

cated protection but do not require working paths to be routed along the ring like regular

UPSR. This means that the design of the working and protection layers in the network can

be decoupled, allowing both layers to be more agile and enabling more flexible dynamic

service provisioning. But we would also like to have a quantitative comparison in terms of

the gain in capacity efficiency that is also a result of this increased routing flexibility.

Obtaining such a comparison is difficult for several reasons. First of all, UPSR-like

p-cycles have been treated as a SCP design problem only, while UPSR design is inherently

JCP; working paths and rings are laid out simultaneously in order to support efficient ring

loading. Also, because UPSR design is a relatively complex problem (due in part to its

JCP nature), it is generally not solved using ILP methods but instead using metaheuristics

such as tabu search. Therefore optimal UPSR designs are not available in general for

realistically sized networks, making comparisons difficult. We could attempt to formulate

a JCP version of the UPSR-like p-cycle model, but we have already seen that the SCP

model can be difficult to solve, and a JCP version would be exponentially more so (similar

to attempting regular UPSR design using ILP).

One comparison we can make with relative ease is to compare the results for UPSR-like

p-cycle to those obtained via an SCP approach to UPSR design. As mentioned, this will

not generally result in optimal UPSR designs, so such a comparison will not give a fair
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representation of the two architectures in terms of optimal efficiency. However, this kind of

comparison is useful in the sense that it will reveal the extent to which UPSR-like p-cycles

benefit from their ability to protect non-co-routed working paths. Or, put another way, it

will show how inefficient basic UPSR can be in comparison to UPSR-like p-cycles when

used to protect an identically-routed working layer, in the case where the routing of this

working layer may not be ideal for UPSR.

ILP Model

Creating a SCP UPSR model is quite simple. In fact, the UPSR p-cycle full network design

model detailed in Section 7.4.1 can already function as a UPSR model, as long as the

parameter set is pre-processed to eliminate all protection relationships that are not allowed

under a UPSR framework (i.e., only keep protection relationships for working paths that are

completely co-routed on the cycles that protect them). This pre-processing step will reduce

the size of the parameter set, making the model easier to solve for UPSR than UPSR-like

p-cycles.

Test Cases

This model was run on the 15 node network family with the same demand pattern as in the

previous tests (Section 7.4.4).

Results

Table 7.9 shows that the cost premium of SCP-designed UPSR over SCP-designed UPSR-

like p-cycles increases approximately linearly from 0 for the most sparse network to nearly

40% for the most highly connected. For the degree ~3 networks (22 and 23 spans) the

premium is roughly 10%. We can understand this trend by the fact that as the network

becomes less highly connected, the number of non-UPSR-like protection relationships de-

creases. In the extreme case where the entire network is simply a degree-2 cycle, the entire

network simply becomes one large ring, and UPSR-like p-cycles reduces to the degenerate

case of basic UPSR (all working paths are on the ring).

Note that, as stated previously, this is UPSR designed via SCP methods, and thus not

representative of true UPSR efficiency (the costs obtained here give a loose upper bound on
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Spans in
Network

Cost
(UPSR-like

p-cycle)

Cost (UPSR
SCP)

Cost
Increase

16 4450 4450 0.0%
17 3642 3691 1.3%
18 3352 3466 3.4%
19 3202 3334 4.1%
20 2977 3152 5.9%
21 2783 3014 8.3%
22 2538 2780 9.5%
23 2348 2613 11.3%
24 2236 2529 13.1%
25 2022 2411 19.2%
26 1857 2262 21.8%
27 1777 2232 25.6%
28 1686 2206 30.8%
29 1603 2131 32.9%
30 1528 2129 39.3%

Table 7.9: Comparison of UPSR-like p-cycle designs to UPSR SCP designs

those for JCP UPSR designs). However, we would expect this effect to be present in the JCP

design case as well, due to this same observation about graph connectedness. Therefore

we can expect more significant gains from UPSR-like p-cycles in more highly connected

networks. Indeed this is true for all mesh-like protection schemes. It is notable that this

effect is relevant even in the case where the protection scheme in question is not shared.

Therefore UPSR-like p-cycles are able to take advantage of mesh topologies without using

sharing, which is usually considered to be an important feature of mesh-based protection.

7.4.6.4 Dual Failure Restorability

We began this Chapter by motivating UPSR-like p-cycles with an explanation of their po-

tential for improving dual failure restorability, and specifically by noting their potential

for providing guaranteed dual failure restorability for priority services. Therefore we now

inspect the dual failure properties of the full-network UPSR-like p-cycle designs we have

generated.
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Method

Our span R2 analysis method is similar to the method used in Section 6.2.5 for Project

HAVANA. We use this method to compare two different policies. The first policy uses only

the default single failure response to recover from failures. If a dual failure affects both a

working path and its backup path, the path is not restored (and neither is any capacity on its

backup path used). This applies to both on-cycle and straddling working paths. Under the

second policy, we allow preemption of other cycle capacity to restore straddling paths in

the case of a simultaneous working path and protection path failure. In other words, in each

dual failure scenario, we first protect any straddling paths that are made unrestorable by the

dual failure by preempting capacity around the opposite side of the cycle, and only then do

we proceed to protect any other paths (straddling or on-cycle) affected by only one of the

two span failures. On-cycle paths are of course unrestorable when hit by both failures, as

they only have one possible protection path on the cycle. We compare the results of these

two dual failure response policies in the following Section.

Results

The results are given in Figure 7.5 and Figure 7.6. The plotted values represent the per-

centage of demand units that are restorable over all dual failures. Figure 7.5 compares the

results for both straddling and on-cycle paths separately under the two policies, whereas

Figure 7.6 gives the total average R2 for all paths in each case. There are no data points

for straddlers in the 16 span (least connected) network because no demands are routed as

straddlers in this design. In Figure 7.5 data points for straddlers use filled circles, while

data points for on-cycle demands use unfilled circles. In both Figures, the data curves for

the preemption policy uses the solid blue lines, while curves for the non-preemption policy

use the dashed red lines.

We can see from Figure 7.5 that using the preemption policy greatly increases the aver-

age dual failure restorability of straddlers (especially for the more sparse networks) while

not greatly affecting that of on-cycle demands. Further, Figure 7.6 shows that the preemp-

tion policy does not have a negative effect on total dual failure restorability; rather, overall

average R2 is increased by a small amount. Therefore not only does this policy allow us

to increase R2 for a specific set of priority demands, it also has a positive effect on R2 in
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Figure 7.5: Average dual failure restorability for straddlers and on-cycle routed demands
in UPSR-like p-cycle designs

general, which may make it worthwhile to adopt even when there is no need to implement

a QoP class scheme. We can easily understand this effect based on the simple fact that the

preemption policy essentially creates new, shared protection paths for straddling demands

in certain scenarios, and thereby makes more use of the existing spare capacity to protect

against failures.

However, even though we can use this policy to achieve a high degree of R2 for strad-

dling demands, we cannot use it to guarantee 100% dual failure restorability. This is be-

cause even though we allow straddlers to preempt the protection of on-cycle demands,

there still exist certain dual failure scenarios in which two or more straddlers contend for

the same capacity. In order to be able to guarantee full R2 for a certain set of demands, we

must go further in modifying the network design to accommodate them. We will do so in

the next Section.

7.4.7 Conclusions

We have learned many things about the design of UPSR-like p-cycle-protected networks

through the above exercises. First of all, we have seen that shortest-path routing is a useful

simplifying assumption for UPSR-like p-cycle ILP models. It removes routing decisions,
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Figure 7.6: Average overall dual failure restorability for all paths in UPSR-like p-cycle
designs

reducing the design problem to something akin to the p-cycle problem, where each cycle

can provides a fixed amount of protection for a fixed configuration of working paths, given

a fixed investment. It does this while carrying with it only a mild spare capacity penalty.

Going on to compare UPSR-like p-cycles to other architectures, we first find that they

are nearly as efficient as dedicated protection can be, averaging 5 to 10% more expensive

than APS designs on the same network. The comparison to UPSR further shows that its

p-cycle like adaptability to varying working layer routings gives it a significant flexibility

advantage. Finally, we have seen that we can provide superior dual failure restorability for

straddling demands by preempting other traffic on the p-cycle to allow for a second pro-

tection path. Going further to provide 100% R2 for a select class of high priority demands

without using preemption will be considered in following Section.

7.5 Quality of Protection Levels

So far we have only considered designing UPSR-like p-cycles for one type of protection:

restorability of single span failures with dedicated protection paths for fast, UPSR-like

protection switching. Our analysis of dual failure restorability has been confined only to
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the R2 obtainable from 100% span R1 designs. The following Section first covers a multi-

QoP approach to UPSR-like p-cycle design in which we define distinct single-failure and

dual-failure recoverable classes and investigate how we can produce designs to satisfy these

requirements. We then move on to consider QoP classes distinguished instead by speed of

protection, and investigate how to design networks using such a scheme.

7.5.1 Dual Span Failures

The most straightforward way to guarantee protection from dual span failures using UPSR-

like p-cycles is to allow a straddling path to use both halves of a cycle as dedicated protec-

tion paths (all three paths transmitting simultaneously). This allows up to 2 of the 3 disjoint

paths to fail without affecting the integrity of the signal. As a bonus, it would also allow

for improved error correction in the unfailed state (e.g., bit or word-based voting between

the 3 received signals). Note that this approach would not work for demands that cannot

be routed as straddlers, e.g., demands for which there does not exist a disjoint simple cycle

between its end-points. However, such a demand could not be protected (in a dedicated

manner) from dual failures in any case, because this means that two disjoint protection

paths cannot be found at all.

A more flexible approach would be to allow any working path to be protected by any

two disjoint protection paths, whether on the same cycle or on different cycles. However,

note that in the same-cycle dual failure protection case, the working path reserves the entire

cycle for protection (much the same as the hypothetical Z-case single failure protection

scenario described in Section 7.3). In essence, this represents a perfectly loaded ring, the

ideal scenario for this architecture. Therefore, even though the multi-ring option provides

more flexibility, it is questionable whether or not it can improve over the simple single-

cycle case.

Because the single-cycle dual failure approach reserves an entire cycle for the use of

the protected path, dual-span failure restorable demands do not interact with other demands

in the design problem. For any dual-span failure restorable demand, the optimal configu-

ration is to use the shortest disjoint cycle between its endpoints as a UPSR-like p-cycle for

protection. Therefore the design problem can proceed in two stages: first, find the shortest

disjoint cycle between the endpoints of each dual-failure restorable class demand and allo-
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cate a sufficient number of copies. Then, perform the normal UPSR-like p-cycle design on

the remaining demands.

In contrast, allowing dual failure protection across multiple cycles is more complex to

design for, as the model must take into account disjointness of each pair of protection paths

in the overall cycle set (to ensure that a dual-failure protected demand is protected by two

paths that cannot fail due to the same span failure). This is another reason for preferring

the single-cycle approach. Therefore we performed tests to determine if the multi-cycle

approach could demonstrate an advantage in terms of capacity efficiency that would justify

this fundamental increase in complexity.

7.5.1.1 ILP Model

To support dual failure protection in our UPSR-like p-cycle ILP model, we must add to it

another class of dual failure protected demands. The following modifications to the optimal

UPSR-like p-cycle model (with splitting allowed) from Section 7.4.1 will allow it to solve

for fully optimal dual failure protection for this class of demands.

ILP Model

Sets (new):

D1 and D2 These sets are subsets of the set D from the original model, consisting of

all single failure protected and dual failure protected demands, respectively.

D1
⋃

D2 = D and D1
⋂

D2 = Ø.

Constraints:

Constraint 7.12 must be modified to apply to only demands in D1, as it defines protec-

tion requirements for single failure protection only, i.e.:

∑
c∈C

∑
q∈Pc

r

uc,q
r ≥ dr ∀r ∈ D1 (7.16)

The following constraints must be added to handle protection for demands in D2:

∑
c∈C

∑
q∈Pc

r

uc,q
r ≥ dr ·2 ∀r ∈ D2 (7.17)
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∑
c∈C

∑
q∈Pc

r s.t. i∈T c,q
r

uc,q
r ≤ dr ∀r ∈ D2,∀i ∈ S (7.18)

All other aspects of the model remain the same. These modifications separate the pro-

tection constraints into two categories; one for the single-failure restorable demand class

and one for the dual-failure class. We are already familiar with constraint 7.16, its scope

has just been limited to span R1 class demands. Constraint 7.17 ensures that there is enough

protection to protect each demand twice over. However, this alone is not sufficient, as we

also must make sure that each half of this double protection is disjointly routed. This is

what constraint 7.18 accomplishes. This is done by ensuring that, for every span in the

network, the total amount of protection that crosses that span does not exceed the magni-

tude of the protected demand. This way, if a dual failure affecting both demand r and the

span in question occurs, we know that there will be some other combination of routes in

the network that provide at least dr units of protection.

7.5.1.2 Experimental Setup

Multi-QoP protection introduces another degree of freedom into our test cases, as the net-

work may now contain single failure and dual failure protected demands in any relative

proportion. With this in mind, we compared the fully optimal model given above with the

simple two-step method outlined at the beginning of Section 7.5.1 (i.e., R2 demands sep-

arated out and allocated as straddlers to their shortest cycles, then R1 demands protected

via ILP as usual) over a range of R1/R2 demand ratios on the same network. The network

chosen was the 15 node, 22 span network from the 15 node network family. This network

was chosen because it was reasonably connected (average degree of ~3) and because the

full UPSR-like p-cycle network design could be solved quickly.

The test cases were formed by starting with the all-R1 case (as in previous experiments),

and then “converting” 5 demand pairs at a time to R2-protected demands. The result is not a

series of tests in which the amount of actual R2-protected demand volume increases linearly

(because the magnitude of the 5 randomly chosen demands may not be consistent between

each step), but it does provide us with a set of tests in which the amount of R2-protected

demand varies slowly from none to the all of the demand in this network. Overall there were
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Number
of R2-

Protected
Demands

Optimal
Design
Cost

Mipgap R1
Alone

Mipgap R2 Alone
(Single-
Cycle

Protection)

Single-
Cycle R2

Protection
Total

Design
Cost

Cost
Increase

for
Simplified

Method

0 2538 0.07% 2538 0.07% 0 2538 0.00%
5 2664 0.04% 2455 0.04% 222 2677 0.49%

10 2851 0% 2348 0% 517 2865 0.49%
15 3030 0% 2217 0% 839 3056 0.86%
20 3152 0.04% 2160 0.08% 1031 3191 1.24%
25 3251 0.03% 2106 0.05% 1196 3302 1.57%
30 3366 0.07% 2042 0% 1382 3424 1.72%
35 3476 0.06% 1972 0% 1586 3558 2.36%
40 3627 0.04% 1882 0% 1850 3732 2.89%
45 3708 0% 1855 0% 1977 3832 3.34%
50 3849 0.03% 1767 0% 2217 3984 3.51%
55 3990 0.03% 1714 0% 2463 4177 4.69%

Table 7.10: Comparison of optimal R1/R2 QoP designs to designs using same-cycle protec-
tion for R2-class demands

50 demand pairs out of 105 for which dual failure protection was impossible. Therefore

the number of R2-protected demands varies from 0 to 55, for a total of 12 test cases.

7.5.1.3 Results

Table 7.10 shows the results for the above test cases. Mipgap values are given for complete-

ness, but they are all very low, corresponding at most to a possible variation in 1 or 2 units

of capacity. The Table shows that, although the optimizer can find some better alternatives

to single-cycle protection for R2-class demands, the total cost difference between the two

does not exceed 5%, even when fully half of the demands in the network require R2 protec-

tion. This shows that the separable optimal R1/single-cycle R2 design method can be used

to simplify UPSR-like p-cycle R1/R2 QoP designs without sacrificing much efficiency.

7.5.2 Protection Speed Classes

It is reasonable to assume that, even if the fast protection provided by UPSR-like p-cycles

is desirable for some demands in the network, there will be some paths that carry traffic
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of a less critical nature for which it is acceptable to have a brief delay inherent in switch-

ing actions typical of mesh-based strategies (such as those for a BLSR ring or p-cycle).

Therefore it is of interest to consider how this type of protection might be implemented

in UPSR-like p-cycle networks, including supporting both “fast” UPSR-like and “slow”

mesh-like protection as different protection classes in the same network.

Because the capacity used for “fast protection” class demands is dedicated, it cannot be

shared for use by this type of demand. Instead, a UPSR-like p-cycle that provides this class

of protection must reserve some number of its channels for shared protection for any “slow-

class” flows it protects. We assume that the ring can reserve a different number of shared

channels for this purpose on every span, and that this reserved capacity, combined with

the dedicated reserved capacity for UPSR-like operation, produces the per-span capacity

requirements that together define the ring’s size. Otherwise, slow-class flows would reserve

entire unit p-cycles by themselves, and the design problem would be trivially separable into

two design problems for p-cycles and UPSR-like p-cycles independently.

In the following investigation, we assume that the rings use regular p-cycle protection

(i.e., span protection) for slow-class flows. FIPP-type p-cycle protection would also be

possible, but introduces more complexity into the design problem (i.e., path disjointness

constraints, requiring some type of DRS approach). A hybrid of UPSR-like p-cycle pro-

tection and span p-cycle protection offers opportunities for capacity savings, as the solver

uses shared p-cycle capacity to “fill up” the capacity slack in the UPSR-like p-cycle design

caused by unbalanced ring loading. However, since we have seen that the rings in UPSR-

like p-cycle designs are in general loaded very evenly, we anticipated ahead of time that

these gains would not be very great.

7.5.2.1 ILP Model

Again, we can modify the basic UPSR-like p-cycle model introduced in Section 7.4.1 to

allow for p-cycle type protection. Again, we use the model with splitting allowed because

of its lower complexity. The following changes must be made:

ILP Model

Sets (new):
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D f and Ds Set D f is a subset of set D from the original model, consisting of all demands

that receive fast-class protection. Ds is a new set of demands that represent the

working capacity allocated to the working paths of the to slow-class demands

(routed shortest-path), broken down into individual single-span demand pairs.

This is explained in more detail below.

Variables:

σ c
i The amount of shared spare capacity reserved on span i on cycle c.

Constraints:

Constraint 7.10 must be changed to accommodate the new type of capacity:

sc
i +σ

c
i ≤ hc ∀c ∈C,∀i ∈ Sc (7.19)

This constraint sizes each ring according to a combination of both its shared (p-cycle)

capacity and dedicated (UPSR-like p-cycle) capacity.

Constraint 7.11 must be modified to apply only to fast-class demands that use dedicated

capacity:

sc
i ≥ ∑

r∈D f

∑
q∈Pc

r s.t. i∈T c,q
r

uc,q
r ∀c ∈C,∀i ∈ Sc (7.20)

The only change here is that D has been changed to D f .

The following constraint must then be added:

σ
c
i ≥ uc,q

r ∀c ∈C,∀r ∈ Ds,∀q ∈ Pc
r ,∀i ∈ T c,q

r

This is an equivalent to constraint 7.20 that calculates shared capacity requirements for

slow-class demands. The sum disappears from the inequality because the capacity is shared

between different demands on the same span. Therefore it is not defined by the sum, but

rather the greatest of all capacity requirements for that cycle from all protection paths of all

slow-class demands over that span.

To use this model to allocate p-cycle protection for slow-class demands, we only need

recognize that, mathematically speaking, span protection is a special case of path pro-

tection when the paths are only one hop long. With this in mind, we form the set Ds,

286



containing |S| demands, corresponding to a one-hop working path for every span in the

network (these demands do not overwrite or replace any existing one-hop working paths

from the original D). Then, we perform shortest-path working routing on the demands that

belong to the slow-class of protection. The resulting span capacities are then assigned to

their corresponding “single-span demands” in Ds as their demand volumes. The original

end-to-end slow-class demands are then removed from the original D, as they are effec-

tively replaced by the span-by-span equivalent demands in Ds. Then, as long as protection

paths are properly computed for these single spans, the model will provide protection for

these spans under regular p-cycle type protection, using the shared capacity allocated to

each UPSR-like p-cycle. In other words, this is a method of “tricking” a path-based model

into behaving like a span restoration model by creating a set of single-span working paths

equivalent to shortest-path routed working capacity totals on each individual span.

7.5.2.2 Experimental Setup

The above model was used to create network designs across a range of ratios of slow/fast-

class protected traffic. The 15 node, 22 span network topology from the 15 node family

was again used. The test cases were formed by starting with the base case (in which all 105

demand pairs were protected with fast-class protection, i.e., the 15 node, 22 span case from

Table 7.6), and “converting” 5 demand pairs at a time to slow-class protection, proceeding

in this way until all 105 demand pairs were protected using regular p-cycles. The demand

pairs converted in each step were randomized, and are therefore not the same as those

chosen in the test cases for Section 7.5.1.2. The entire range (from 0 to 105 demand pairs)

could be covered this time, as there are no topological limits on either class of protection.

We call this method the “joint” method in the following discussion.

As a comparative benchmark, the same test cases were solved using a non-joint design

method, i.e., the fast-class and slow-class demands were considered as completely separate

working layers and designed independently as two totally separate ILP problems, and not

allowed to share the use of the same rings. Such designs must be at least as expensive as

the joint designs, as they are unable to take advantage of capacity synergies between the

two protection types (e.g., capacity in one protection “layer” that is extraneous to that layer

but can be used in a meaningful way by the other layer).
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The non-joint results were computed in the following way. The UPSR-like p-cycle

layer was solved using the regular UPSR-like p-cycle model described in Section 7.4.1 (or

by using the hybrid model from this Section with all demands in Ds removed or scaled to

zero). The p-cycle designs were solved first by using the joint model with all demands in

D f scaled to zero, and then checked against results obtained from the traditional p-cycle

SCP model given the same working capacity distribution. These results were found to

agree in all cases, validating the p-cycle protection portion of the hybrid model. However,

the p-cycle SCP model was found to solve faster and was able to be quickly solved to strict

optimality in all cases, while the hybrid model could not be. This is understandable, as the

hybrid model solves for additional information that is extraneous to the pure p-cycle case

(e.g., the specific protection paths used for every span on every protecting cycle).

7.5.2.3 Results

The results shown in Table 7.11 indicate that the optimal hybrids are all but identical in cost

to the designs solved as disjoint problems. In fact, some cases show a cost decrease in the

disjoint case. This is impossible assuming true optimality of the solutions (any valid non-

jointly designed hybrid is a valid solution of the joint model as well), but the discrepancy

in this case occurs because the non-joint designs are able to be solved to a tighter mipgap.

This result strongly suggests that it may be not only a trend but also a provable state-

ment that the joint model cannot improve at all on a design solved non-jointly. However, no

obvious proof is forthcoming at this point. Indeed, it is intuitive that an optimal p-cycle de-

sign that effectively wastes minimal capacity would not be able to offer any spare capacity

synergies to a UPSR-like p-cycle design, but this does not strictly rule out the possibility

of ring-sharing between the two architectures to achieve capacity savings.

We performed an inspection exercise on the above designs to determine how much

of this ring-sharing was actually occurring. First of all, the designs were re-solved using

a slightly modified model in which constraint 7.12 was replaced by a slightly modified

constraint with the inequality replaced by a strict equality (so that the designs would not

contain any overprotection), using the existing designs as a starting point for the solver.

Then, each ring was analyzed to determine if the spare capacity used by the two classes

of demands was separable into disjoint UPSR-like p-cycles and regular p-cycles which
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Number of
Demands

Using
p-Cycle

Protection

Joint
Design
Cost

Mipgap UPSR-
like

p-Cycle
Cost

Alone

Mipgap p-Cycle
Cost

Alone

Total
Non-Joint

Design
Cost

Increase
(Absolute

Cost)

0 2538 0.06% 2538 0.06% 0 2538 0
5 2541 0.10% 2491 0.09% 50 2541 0

10 2462 0.13% 2363 0.05% 97 2460 -2
15 2406 0.13% 2228 0 176 2404 -2
20 2399 0.12% 2101 0 296 2397 -2
25 2244 0.05% 1916 0 328 2244 0
30 2198 0.09% 1860 0.05% 339 2199 1
35 2156 0.13% 1774 0 382 2156 0
40 2099 0.05% 1663 0 436 2099 0
45 2043 0.10% 1560 0.06% 483 2043 0
50 1969 0.08% 1440 0 529 1969 0
55 1895 0.10% 1272 0 623 1895 0
60 1834 0.10% 1194 0 640 1834 0
65 1814 0.08% 1109 0 705 1814 0
70 1790 0.10% 1068 0 722 1790 0
75 1735 0.06% 885 0 850 1735 0
80 1668 0% 689 0 979 1668 0
85 1594 0.08% 531 0 1063 1594 0
90 1512 0% 436 0 1076 1512 0
95 1449 0.17% 332 0 1117 1449 0

100 1273 0% 153 0 1120 1273 0
105 1152 0.12% 0 0 1152 1152 0

Table 7.11: Comparison of optimal hybrid UPSR-like p-cycle/regular p-cycle designs to
non-jointly solved hybrid designs
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had the same combined ring size as the original hybrid ring. It turns out that most of the

designs are almost entirely separable in this way. In each of the designs, there is at most

one (topological) ring that is shared in a non-separable way. Separating out the p-cycle

and UPSR-like components of each ring (allocating new rings in these non-separable cases

because of the removed ring-sharing component) increases the cost of the designs by at

most 4% in the worst case, and only by 1% on average over all test cases. This is on top

of the fact that the results show that separable designs can be computed via separate ILP

models for no increase in capacity whatsoever.

Perhaps efficiency gains through joint design are not impossible at all, but simply an

exceedingly rare event, given how tightly balanced each layer can be designed individually.

We cannot determine this from the tests above. What we can conclude, however, is that the

joint model offers little, if any, benefit over a disjoint approach. Furthermore, we can say

that hybrid designs themselves also hold little appeal in terms of capacity benefits. This

means that network operators have the option of treating their network as two independent

protected networks (for p-cycle and UPSR-like protected services respectively), even using

equipment from different vendors for the unique needs of both architectures if desired,

without incurring extra capacity costs.

7.5.3 Conclusions

In this Section we have developed methods for extending UPSR-like p-cycles to two differ-

ent QoP scenarios: combined single/dual span failure protection, and combined fast/slow

protection switching classes. These exercises have shown that designing for these scenarios

can be accomplished easily using a separable ILP model approach. For dual failures, a sim-

ple approach in which dual-failure restorable demands are protected by a double-redundant

ring (essentially 2+1 APS) produces near-optimal results, and a relatively simple ILP model

can be used for true optimization if necessary. For demands that do not require fast protec-

tion, a p-cycle hybrid with ring sharing was considered, and it was found that the optimal

design in this case can be obtained by designing the fast and slow layers as independent

networks.
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7.6 Summary and Future Work

In this Chapter we have considered many variations on the design and operation of UPSR-

like p-cycles. We began with an ILP model for finding optimal solutions to the simple

single-cycle design case, but found that it was possible to obtain near-optimal results in

most cases by following a simple shortest-path routing policy. This insight helped us in

the next Section when we found that the complexity of the whole-network design problem

was high when we allowed a choice for protection routing along either side of the cycle.

Instead, we developed a simplified model that enforced shortest-path routing while still

allowing selection of the protection cycle for each working path, and found that the results

compared favorably to other dedicated protection architectures (APS and UPSR). We also

demonstrated that these UPSR-like p-cycle designs could provide significantly enhanced

R2 to paths protected as straddlers.

We then investigated the possibility of providing different QoP classes to demands in a

UPSR-like p-cycle network. Our study of dual span failure protection showed that it was

possible to attain near-optimal designs that provide R2 protection for a subset of demands

by simply protecting these demands with dedicated cycles on which protection is trans-

mitted both ways around the cycle (essentially 2+1 APS). Then, our study of protection

speed classes showed that it was possible to attain near-optimal designs that provide “fast”

(1+1 APS-style) and “slow” (shared mesh speeds) protection switching classes by design-

ing hybrid UPSR-like p-cycle/regular p-cycle networks via a separated, two-step design

approach.

As with any new networking concept, there are many opportunities for expanded work

on several topics. We present a few such ideas here.

7.6.1 Single Failure Protection for the Z-Case

We have mentioned that the so-called “Z-case” protection is technically possible with

UPSR-like p-cycles if both sides of the ring are used to transmit 2 simultaneous protec-

tion signals, effectively using the dual-failure protection mechanism to guarantee single

span failure protection. Dual span failure protection would be guaranteed only in cases

where the working path fails at a point that is not also on the cycle. We have excluded this
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case from the study because its inherent capacity inefficiency can be appreciated a priori,

but the question remains as to what effect, if any, its inclusion might have on design cost.

Also, it may have benefits in other arenas, e.g., using the three transmitted streams in the

non-failed case to perform advanced error correction.

7.6.2 Hybrid with FIPP p-Cycles

We have investigated the scenario where demands that do not require the near-instant-

switching capabilities of UPSR-like p-cycles are protected using the span-protecting p-

cycle mechanism with a bank of shared spare capacity that lies on the same topological

rings. In another scenario, although these demands may not require fast protection switch-

ing, it may still be desirable to switch them as entire end-to-end paths. For this, we can

easily envision a similar hybrid in which the shared protection mechanism is FIPP p-cycles

instead of span p-cycles. The design problem for this case is more complex as the disjoint-

ness of working paths that share the same spare capacity must be ensured, requiring a shift

of the model to a DRS-like approach.

7.6.3 JCP Design for UPSR-like p-Cycles

So far we have only considered SCP ILP models for designing UPSR-like p-cycle-protected

networks. However, as mentioned above, UPSR networks have traditionally been designed

using JCP methods. This is mainly due to the necessity of routing working paths on the

rings themselves, as UPSR are fundamentally structures that require coordinated planning

of both the working and protection layers of the network. Although UPSR-like p-cycles

do not have this limitation, it would still be of interest to explore JCP methods, both to

determine the possible gains in capacity efficiency and also to allow a more “apples to

apples” comparison to UPSR. Investigations along this avenue may involve either JCP ILP

models, or custom JCP metaheuristics, in the same way that the complexity of the UPSR

design problem has lead to design approaches such as tabu search.
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Chapter 8

Closing Discussion

8.1 Summary of Thesis

The objective of this thesis was to deepen the body of knowledge on strategies for efficient

protection in transparent optical networks and to propose and characterize several new

architectures designed for this purpose. We began with a survey of existing protection

strategies with an eye towards identifying those that satisfy the preconnection constraint.

We then outlined a number of new schemes and described the existing literature related to

them. These schemes included PXTs, span p-trees, and path p-trees.

We first performed a thorough analysis of span p-trees, developing a method to produce

optimal span p-tree designs and then using this tool to compare span p-trees with other

span-protecting architecture (p-cycles and p-segments). In the process we gained an under-

standing of how trees, segments, and cycles are fundamentally able to protect against failed

spans in an efficient way. The key finding here was that tree protection in a span-protecting

context is fundamentally inferior to segment-based protection, which is in turn inferior to

cycle-based protection.

We then turned to PXTs, beginning with an analysis of the state-of-the-art design algo-

rithm. A detailed analysis of the results of the algorithm showed a weakness in the high

complexity of the resulting structures, the implication being that the algorithm could not

be used to design PXT networks for transparent optical networks without wavelength con-

version capability. We then proposed our own design approach based on ILP methods and

showed that it was able to produce designs of comparable efficiency with greatly improved

PXT characteristics, both when used as an offline or online algorithm.
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We then proceeded to examine tree protection in a path-protecting context with path

p-trees. We saw that the existing DRS method was not suitable to path p-tree design and

introduced changes that allowed us to obtain more meaningful results. We then used this

method to analyze the properties of path p-trees, both as a standalone architecture and in

conjunction with FIPP p-cycles. The results showed that trees were not efficient structures

in general, but could be used to greater effect in path-protecting designs than p-trees in a

span-protecting context. Combined with our span p-tree results, these findings cemented

the efficiency hierarchy of cycles over trails over trees.

Following this was an outline of HAVANA, a co-operative research project with re-

searchers at Nokia Siemens Networks that investigated the implications of many constraints

on transparent optical networks on a variety of protection architectures. We presented

the results for PXTs, along with comparative results for other architectures from other

researchers. The results showed that PXTs tended to strike a middle ground between cost-

effectiveness and flexibility in the face of constraints on structure length, wavelength conti-

nuity constraints, and requirements for enhanced availability such as node failure restorabil-

ity or dual failure restorability. We then presented a related study demonstrating a method

for introducing failure localization capability into p-cycle networks through hybridization

with m-cycles.

Finally, we introduced the concept of UPSR-like p-cycles, an architecture that uses

dedicated protection to provide fast and simple protection switching while still taking ad-

vantage of the mesh topology to achieve savings over regular UPSR. We developed ILP-

based design methods for the architecture with complexity such that near-optimal designs

could be obtained in a reasonable amount of time. Results showed that we can achieve

designs that are comparable to APS in terms of efficiency and noticeably better than SCP-

based UPSR designs. We also showed how UPSR-like p-cycles could be used to provide

enhanced R2 to a class of high priority services, and then developed methods for imple-

menting QoP classes with differentiated availability and protection speeds in UPSR-like

p-cycle networks.
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8.2 Main Contributions

Overall this thesis has contributed significantly to the field of network design in the area of

preconnected protection for transparent optical transport networks. Our contributions can

be summarized as follows:

• Improved understanding of the optimality of the existing pre-cross-connected trail

design algorithm and properties of the designs produced with it.

• Development of a new design method for efficient pre-cross-connected trail networks

with improved structural properties.

• Development of design methods for capacity-efficient span p-tree and path p-tree

under computational limitations.

• Development of design methods for PXTs under constraints on wavelength continu-

ity, path length, and node failure restorability.

• Development of a design method for the low-cost integration of failure localization

capabilities into p-cycle networks.

• Improved knowledge of the relative capacity efficiencies of cycles, trails, and trees

(both span-protecting and path-protecting).

• Improved knowledge of hybrid designs and the individual roles of cycles, trails, and

trees in hybrid protection.

• Introduction of the UPSR-like p-cycle concept and the development of fast and effi-

cient design methods for UPSR-like p-cycles.

• Characterization of UPSR-like p-cycle designs in terms of efficiency and enhanced

R2 properties.

• Development of design methods for differentiated QoP levels for services in UPSR-

like p-cycle networks.
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8.3 Other Contributions

The Ph.D. work associated with this thesis also resulted in the following publications,

patents, and technical reports, which are given in chronological order.

8.3.1 Journal Papers

1. A. Grue, W. D. Grover, “Characterization of pre-cross-connected trails for optical

mesh network protection,” Journal of Optical Networking, vol. 5, no. 6, June 2006,

pp. 493-508.

2. A. Grue, W. D. Grover, “Improved method for survivable network design based on

pre-cross-connected trails,” Journal of Optical Networking, vol. 6, no. 2, February

2007, pp. 200-216.

3. A. Grue, W. D. Grover, “Comparison of p-Cycles and p-Trees in a Unified Mathe-

matical Framework,” Photonic Network Communications, vol. 14, no. 2, October

2007, pp. 123-134.

4. W. D. Grover, A. Grue, “Self-Fault Isolation in Transparent p-Cycle Networks: p-

Cycles as Their Own m-Cycles,” IEEE Communications Letters, vol. 11, no. 12,

December 2007, pp. 1004-1006.

8.3.2 Peer-Reviewed Conference Papers

1. A. Grue, W. D. Grover, M. Clouqueur, D. Schupke, J. Doucette, B. Forst, D. Ongue-

tou, D. Baloukov, “Comparative Study of Fully Pre-Cross-Connected Protection Ar-

chitectures for Transparent Optical Networks,” Proceedings of the 6th International

Workshop on Design of Reliable Communication Networks (DRCN 2007), La Rochelle,

France, 7-10 October 2007, pp. 1-8.

2. A. Grue, W. D. Grover, M. Clouqueur, D. Schupke, D. Baloukov, D. Onguetou, B.

Forst, “CAPEX Costs of Lightly Loaded Restorable Networks Under a Consistent

WDM Layer Cost Model,” Proceedings of the IEEE International Conference on

Communications (ICC 2009), Dresden, Germany, 14-18 June 2009.
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3. A. Grue, W. Grover, “UPSR-like p-Cycles: A New Approach to Dual Failure Pro-

tection,” to appear in the Proceedings of the Workshop on Reliable Networks Design

and Modeling (RNDM 2009), St. Petersburg, Russia, 12-14 October 2009.

8.3.3 Patents Pending

1. W. Grover, A. Grue, “Self-Fault Isolation in Transparent p-Cycle Networks”, US

Patent Application No. 12/204,564, TRLabs, submitted September 4, 2008.

8.3.4 Technical Reports and Presentations

1. A. Grue, B. Forst, D. Onguetou, D. Baloukov, J. Doucette, A. Kodian, W. D. Grover,

“Project HAVANA: Comparative Study of Fully Pre-cross-connected Protection Ar-

chitectures for High Availability Transparent Optical Networking,” TRLabs Techni-

cal Report ST-06-01, Edmonton, Canada, 9 November 2006.

2. A. Grue, B. Forst, D. Onguetou, D. Baloukov, J. Doucette, A. Kodian, W. D. Grover,

First-year Slide Decks Produced for Nokia Siemens Networks, Project HAVANA,

2006

3. A. Grue, B. Forst, D. Onguetou, D. Baloukov, W. D. Grover, Second-year Slide

Decks Produced for Nokia Siemens Networks, Project HAVANA, 2007.

4. A. Grue, W. D. Grover, J. Doucette, B. Forst, D. Onguetou, D. Baloukov, “High

Availability Network Architectures (HAVANA): Comparative Study of Fully Pre-

Cross-Connected Protection Architectures for Transparent Optical Networks”, Paper

presentation at DRCN 2007, La Rochelle, France, 10 October 2007.

5. A. Grue, W. D. Grover, B. Forst, D. Baloukov, D. Onguetou, “High Availability

Network Architectures (HAVANA): Application of the NOBEL Cost Model”, Invited

talk given to Nokia Siemens Networks, Munich, Germany, 19 September 2008.

6. A. Grue, W. D. Grover, B. Forst, D. Baloukov, D. Onguetou, “High Availability

Network Architectures (HAVANA): Overview and Wrap-up”, Presentation given to

Nokia Siemens Networks, Edmonton, Canada, 10 December 2008
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7. A. Grue, B. Forst, D. Onguetou, D. Baloukov, W. D. Grover, Third-year Slide Decks

Produced for Nokia Siemens Networks, Project HAVANA, 2008.

8.4 Future Research Directions

8.4.1 Segment-Protecting Architectures

The work in this thesis has focused on architectures that either protect individual failed

spans or entire end-to-end paths. However, there does exist an intermediate possibility,

called segment protection, in which working paths can be divided up into sub-segments of

arbitrary length, each with its own protection path. This approach is very complex, both

computationally and operationally, because it is a general approach that incorporates span

and path protection as special cases as well as the entire range in-between. If a way was

found to obtain near-optimal designs for segment-protecting preconnected architectures,

however, it would reveal much about how the efficiencies of different types of preconnected

structures are affected by the length of the protected segments.

8.4.2 Design Using Joint Capacity Placement

For the most part, this thesis has limited itself to the study of spare capacity placement

formulations only, i.e., we have assumed fixed shortest-path routing of demands. This

disregards situations where it might be possible to coordinate the routing of the working

and protection layers to achieve some benefit, such as higher availability, lower capacity

utilization, etc. One possible avenue of future research would be to investigate the design

problems from this thesis in the context of joint capacity placement and determine what

effect this would have on the efficiency of preconnected protection structures (especially

the less efficient ones such as p-segments and p-trees).

8.4.3 Improved Design Methods

This category serves as a catch-all for any research that would enable the solution of more

complete design problems. We have seen numerous times throughout this thesis that com-

putational limitations prevent us from obtaining truly optimal designs, which can limit

the certainty of our conclusions. We have taken pains to work around these limitations
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whenever possible, but some problems remain beyond our grasp (e.g., completely opti-

mal path p-tree solutions). One promising method is column generation [JaRo07], which

avoids the need to generate large sets of candidate structures. Other possibilities include

custom heuristics or metaheuristics, such as the genetic algorithm ILP approach (GA-ILP)

[OnGr08].
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Appendix A

Test Network Topology Details

This Appendix gives the topological details of all the test networks used in this thesis.

Details for the network families (with 15 node, 20 node, and 25 node master networks) are

given first in a compressed form. Details for other networks that are not part of network

families follow afterward.

A.1 Network Families

For network families, a diagram and complete span and node listing is provided for only

the master (most highly connected) networks. For the subsequent, lower degree networks,

we provide a list of spans only (the number and placement of nodes remains constant). For

each network, the span that is to be removed to generate the next member of the family is

shown in bold text.

A.1.1 15 Node Network Family (15n30s1)
A.1.1.1 Master Network Diagram
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A.1.1.2 Node Listing

Node X Coordinate Y Coordinate
N01 125 140
N02 268 55
N03 413 162
N04 525 97
N05 290 233
N06 612 218
N07 508 349
N08 572 485
N09 402 456
N10 259 325
N11 291 598
N12 292 483
N13 186 458
N14 49 421
N15 75 274

A.1.1.3 Master Network Span Listing

Span Origin Destination Length
S01 N01 N02 166.355
S02 N01 N05 189.404
S03 N01 N15 143.024
S04 N02 N03 180.205
S05 N02 N04 260.409
S06 N02 N05 179.354
S07 N03 N04 129.495
S08 N03 N05 142.021
S09 N03 N06 206.729
S10 N04 N06 149.03
S11 N05 N07 246.941
S12 N05 N10 97.082
S13 N05 N15 218.874
S14 N06 N07 167.263
S15 N07 N08 150.306

Span Origin Destination Length
S16 N07 N09 150.615
S17 N08 N06 269.98
S18 N08 N11 302.87
S19 N09 N08 172.456
S20 N09 N10 193.933
S21 N10 N06 368.86
S22 N10 N14 230.903
S23 N11 N12 115.004
S24 N11 N14 299.822
S25 N12 N09 113.265
S26 N12 N10 161.409
S27 N13 N10 151.717
S28 N13 N12 108.908
S29 N14 N13 141.908
S30 N15 N14 149.282

A.1.1.4 Family Member Span Listings

15n30s-30s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

15n30s-29s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17
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S18 S19 S20 S21 S23 S24 S25 S26 S27 S28 S29 S30

15n30s-28s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S13 S14 S15 S16 S17 S18

S19 S20 S21 S23 S24 S25 S26 S27 S28 S29 S30

15n30s-27s S01 S02 S03 S04 S05 S06 S07 S09 S10 S11 S13 S14 S15 S16 S17 S18 S19

S20 S21 S23 S24 S25 S26 S27 S28 S29 S30

15n30s-26s S01 S02 S03 S04 S05 S06 S07 S09 S10 S11 S13 S15 S16 S17 S18 S19 S20

S21 S23 S24 S25 S26 S27 S28 S29 S30

15n30s-25s S01 S02 S03 S04 S05 S07 S09 S10 S11 S13 S15 S16 S17 S18 S19 S20 S21

S23 S24 S25 S26 S27 S28 S29 S30

15n30s-24s S01 S02 S03 S04 S05 S07 S09 S10 S11 S13 S16 S17 S18 S19 S20 S21 S23

S24 S25 S26 S27 S28 S29 S30

15n30s-23s S01 S02 S03 S04 S07 S09 S10 S11 S13 S16 S17 S18 S19 S20 S21 S23 S24

S25 S26 S27 S28 S29 S30

15n30s-22s S01 S02 S03 S04 S07 S10 S11 S13 S16 S17 S18 S19 S20 S21 S23 S24 S25

S26 S27 S28 S29 S30

15n30s-21s S01 S02 S03 S04 S07 S10 S11 S13 S16 S17 S18 S19 S20 S21 S23 S25 S26

S27 S28 S29 S30

15n30s-20s S01 S02 S03 S04 S07 S10 S11 S13 S16 S17 S18 S20 S21 S23 S25 S26 S27

S28 S29 S30

15n30s-19s S01 S02 S03 S04 S07 S10 S11 S13 S16 S17 S18 S20 S21 S23 S25 S26 S27

S29 S30

15n30s-18s S01 S02 S03 S04 S07 S10 S11 S13 S16 S17 S18 S20 S21 S23 S25 S27 S29

S30

15n30s-17s S01 S03 S04 S07 S10 S11 S13 S16 S17 S18 S20 S21 S23 S25 S27 S29 S30

15n30s-16s S01 S03 S04 S07 S10 S11 S13 S16 S17 S18 S20 S23 S25 S27 S29 S30
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A.1.2 20 Node Network Family (20n40s1)

A.1.2.1 Master Network Diagram

A.1.2.2 Node Listing

Node X Coordinate Y Coordinate
N01 183 456
N02 222 322
N03 275 163
N04 266 297
N05 403 116
N06 470 253
N07 378 241
N08 331 314
N09 476 318
N10 607 311
N11 533 410
N12 634 482
N13 513 516
N14 406 389
N15 285 437
N16 338 473
N17 433 538
N18 510 637
N19 380 549
N20 260 543
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A.1.2.3 Master Network Span Listing

Span Origin Destination Length
S01 N01 N02 139.56
S02 N01 N04 179.36
S03 N01 N20 116.181
S04 N02 N03 167.601
S05 N02 N04 50.606
S06 N03 N07 129.201
S07 N04 N03 134.302
S08 N04 N05 227.002
S09 N04 N08 67.186
S10 N05 N03 136.356
S11 N05 N06 152.506
S12 N05 N07 127.475
S13 N06 N10 148.772
S14 N06 N15 260.923
S15 N07 N06 92.779
S16 N07 N08 86.822
S17 N07 N09 124.631
S18 N08 N09 145.055
S19 N08 N15 131.32
S20 N09 N11 108.227

Span Origin Destination Length
S21 N09 N14 99.705
S22 N10 N09 131.187
S23 N10 N12 173.118
S24 N11 N12 124.036
S25 N11 N13 107.87
S26 N12 N18 198.497
S27 N13 N17 82.97
S28 N14 N11 128.725
S29 N14 N13 166.066
S30 N14 N17 151.427
S31 N15 N14 130.173
S32 N15 N16 64.07
S33 N16 N11 204.924
S34 N16 N14 108.074
S35 N16 N20 104.805
S36 N17 N19 54.129
S37 N18 N13 121.037
S38 N19 N16 86.833
S39 N19 N18 156.984
S40 N20 N19 120.15

A.1.2.4 Family Member Span Listings

20n40s-40s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34

S35 S36 S37 S38 S39 S40

20n40s-39s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35

S36 S37 S38 S39 S40

20n40s-38s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S21 S22 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36

S37 S38 S39 S40

20n40s-37s S01 S02 S03 S04 S05 S06 S07 S08 S10 S11 S12 S13 S14 S15 S16 S17 S18

S19 S21 S22 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37

S38 S39 S40
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20n40s-36s S01 S02 S03 S04 S05 S07 S08 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

S21 S22 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38

S39 S40

20n40s-35s S01 S02 S03 S04 S05 S07 S08 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

S21 S22 S23 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39

S40

20n40s-34s S01 S02 S03 S04 S05 S07 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S21

S22 S23 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40

20n40s-33s S01 S02 S03 S04 S05 S07 S10 S12 S13 S14 S15 S16 S17 S18 S19 S21 S22

S23 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40

20n40s-32s S01 S02 S03 S04 S05 S07 S10 S12 S13 S14 S15 S16 S17 S18 S19 S21 S22

S23 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S40

20n40s-31s S01 S02 S03 S04 S05 S07 S10 S12 S14 S15 S16 S17 S18 S19 S21 S22 S23

S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S40

20n40s-30s S01 S02 S03 S04 S05 S07 S10 S12 S14 S15 S16 S17 S18 S19 S21 S22 S23

S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S37 S38 S40

20n40s-29s S01 S02 S03 S04 S05 S07 S10 S12 S14 S15 S16 S18 S19 S21 S22 S23 S26

S27 S28 S29 S30 S31 S32 S33 S34 S35 S37 S38 S40

20n40s-28s S01 S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S19 S21 S22 S23 S26 S27

S28 S29 S30 S31 S32 S33 S34 S35 S37 S38 S40

20n40s-27s S01 S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S19 S21 S22 S23 S26 S27

S28 S30 S31 S32 S33 S34 S35 S37 S38 S40

20n40s-26s S01 S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S19 S21 S22 S23 S26 S27

S28 S30 S31 S32 S33 S35 S37 S38 S40

20n40s-25s S01 S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S21 S22 S23 S26 S27 S28

S30 S31 S32 S33 S35 S37 S38 S40

312



20n40s-24s S01 S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S21 S22 S23 S26 S27 S28

S30 S32 S33 S35 S37 S38 S40

20n40s-23s S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S21 S22 S23 S26 S27 S28 S30

S32 S33 S35 S37 S38 S40

20n40s-22s S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S21 S22 S23 S26 S27 S28 S30

S32 S33 S37 S38 S40

20n40s-21s S02 S03 S04 S05 S10 S12 S14 S15 S16 S18 S22 S23 S26 S27 S28 S30 S32

S33 S37 S38 S40

A.1.3 25 Node Network Family (25n50s1)
A.1.3.1 Master Network Diagram

A.1.3.2 Node Listing

Node X Coordinate Y Coordinate
N01 92 136
N02 175 78
N03 266 117
N04 359 32
N05 390 159
N06 344 239
N07 480 223
N08 561 195
N09 515 297
N10 432 290
N11 564 411
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Node X Coordinate Y Coordinate
N12 446 414
N13 504 482
N14 390 454
N15 351 316
N16 337 556
N17 168 571
N18 212 427
N19 127 451
N20 193 375
N21 155 283
N22 52 349
N23 105 254
N24 245 286
N25 210 190
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A.1.3.3 Master Network Span Listing

Span Origin Destination Length
S01 N01 N02 101.257
S02 N01 N21 159.931
S03 N02 N03 99.005
S04 N02 N25 117.341
S05 N03 N04 125.992
S06 N03 N06 144.803
S07 N05 N04 130.729
S08 N05 N07 110.436
S09 N06 N24 109.59
S10 N07 N06 136.938
S11 N07 N08 85.703
S12 N07 N10 82.42
S13 N08 N04 259.563
S14 N08 N09 111.893
S15 N08 N10 160.206
S16 N09 N10 83.295
S17 N09 N11 124.085
S18 N10 N06 101.71
S19 N11 N10 179.067
S20 N11 N13 92.957
S21 N11 N15 233.225
S22 N12 N11 118.038
S23 N12 N13 89.376
S24 N13 N14 117.388
S25 N14 N12 68.819

Span Origin Destination Length
S26 N15 N10 85.071
S27 N15 N12 136.488
S28 N15 N14 143.405
S29 N15 N17 313.869
S30 N16 N14 114.948
S31 N16 N18 179.627
S32 N17 N16 169.664
S33 N17 N19 126.811
S34 N18 N15 177.882
S35 N18 N17 150.572
S36 N19 N18 88.323
S37 N20 N18 55.362
S38 N21 N19 170.317
S39 N21 N22 122.332
S40 N21 N24 90.05
S41 N22 N19 126.606
S42 N22 N20 143.377
S43 N23 N01 118.714
S44 N23 N21 57.801
S45 N23 N22 108.784
S46 N24 N15 110.164
S47 N24 N20 103.078
S48 N25 N05 182.65
S49 N25 N06 142.678
S50 N25 N21 108.046

A.1.3.4 Family Member Span Listings

25n50s-50s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34

S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-49s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34

S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-48s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S36
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S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-47s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17

S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S37

S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-46s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18

S19 S20 S21 S22 S23 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S37 S38

S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-45s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18

S19 S20 S21 S22 S23 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S37 S39

S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50

25n50s-44s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18

S19 S20 S21 S22 S23 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S37 S39

S40 S41 S42 S43 S44 S46 S47 S48 S49 S50

25n50s-43s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18

S19 S20 S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S37 S39 S40

S41 S42 S43 S44 S46 S47 S48 S49 S50

25n50s-42s S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18

S19 S20 S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S39 S40 S41

S42 S43 S44 S46 S47 S48 S49 S50

25n50s-41s S01 S02 S03 S04 S05 S06 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18 S19

S20 S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S39 S40 S41 S42

S43 S44 S46 S47 S48 S49 S50

25n50s-40s S01 S02 S03 S04 S05 S06 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18 S19

S20 S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S39 S40 S41 S42

S43 S44 S47 S48 S49 S50

25n50s-39s S01 S02 S03 S04 S05 S06 S08 S09 S10 S11 S12 S13 S14 S16 S17 S18 S19

S20 S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43
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S44 S47 S48 S49 S50

25n50s-38s S01 S02 S03 S04 S05 S06 S08 S09 S10 S11 S13 S14 S16 S17 S18 S19 S20

S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44

S47 S48 S49 S50

25n50s-37s S01 S02 S03 S04 S05 S06 S08 S09 S10 S11 S13 S14 S16 S17 S18 S19 S20

S21 S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44

S47 S48 S50

25n50s-36s S01 S02 S04 S05 S06 S08 S09 S10 S11 S13 S14 S16 S17 S18 S19 S20 S21

S22 S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47

S48 S50

25n50s-35s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S17 S18 S19 S20 S21 S22

S24 S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48

S50

25n50s-34s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S17 S19 S20 S21 S22 S24

S25 S26 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-33s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S17 S19 S20 S21 S22 S24

S25 S27 S29 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-32s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S17 S19 S20 S21 S22 S24

S25 S27 S30 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-31s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S17 S19 S20 S21 S22 S24

S25 S27 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-30s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S19 S20 S21 S22 S24 S25

S27 S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-29s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S19 S20 S21 S24 S25 S27

S31 S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50
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25n50s-28s S01 S02 S04 S05 S06 S08 S09 S10 S13 S14 S16 S19 S20 S24 S25 S27 S31

S32 S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-27s S01 S02 S04 S05 S06 S08 S10 S13 S14 S16 S19 S20 S24 S25 S27 S31 S32

S33 S34 S40 S41 S42 S43 S44 S47 S48 S50

25n50s-26s S01 S02 S04 S05 S06 S08 S10 S13 S14 S16 S19 S20 S24 S25 S27 S31 S32

S33 S34 S40 S41 S42 S43 S44 S47 S48

25n50s-25s S01 S04 S05 S06 S08 S10 S13 S14 S16 S19 S20 S24 S25 S27 S31 S32 S33

S34 S40 S41 S42 S43 S44 S47 S48

A.2 Other Networks

A.2.1 12-cycle + 3 edges Network
A.2.1.1 Network Diagram

A.2.1.2 Node Listing

Node X Coordinate Y Coordinate
Node1 100 225
Node2 146 144
Node3 232 86
Node4 347 94
Node5 439 135
Node6 501 215
Node7 502 324
Node8 445 404
Node9 340 441

Node10 229 438
Node11 143 405
Node12 89 332

318



A.2.1.3 Span Listing

Span Origin Destination Length
S01 Node1 Node2 1
S02 Node2 Node3 1
S03 Node3 Node4 1
S04 Node4 Node5 1
S05 Node5 Node6 1
S06 Node6 Node7 1
S07 Node7 Node8 1
S08 Node8 Node9 1

Span Origin Destination Length
S09 Node9 Node10 1
S10 Node10 Node11 1
S11 Node11 Node12 1
S12 Node12 Node1 1
S13 Node1 Node4 1
S14 Node5 Node8 1
S15 Node9 Node12 1

- - - -

A.2.2 3 x 4 grid Network

A.2.2.1 Network Diagram

A.2.2.2 Node Listing

Node X Coordinate Y Coordinate
Node1 120 90
Node2 255 92
Node3 405 91
Node4 122 230
Node5 256 227
Node6 407 233
Node7 118 370
Node8 261 370
Node9 414 372

Node10 122 500
Node11 258 498
Node12 410 496
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A.2.2.3 Span Listing

Span Origin Destination Length
S01 Node1 Node2 1
S02 Node2 Node3 1
S03 Node3 Node6 1
S04 Node6 Node5 1
S05 Node5 Node4 1
S06 Node4 Node7 1
S07 Node7 Node8 1
S08 Node8 Node9 1
S09 Node9 Node12 1

Span Origin Destination Length
S10 Node12 Node11 1
S11 Node11 Node10 1
S12 Node10 Node7 1
S13 Node4 Node1 1
S14 Node2 Node5 1
S15 Node5 Node8 1
S16 Node8 Node11 1
S17 Node9 Node6 1

- - - -

A.2.3 Tietze’s graph Network

A.2.3.1 Network Diagram

A.2.3.2 Node Listing

Node X Coordinate Y Coordinate
Node1 280 93
Node2 518 456
Node3 58 460
Node4 228 254
Node5 286 234
Node6 343 249
Node7 374 307
Node8 363 365
Node9 326 402

Node10 250 400
Node11 195 363
Node12 194 307
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A.2.3.3 Span Listing

Span Origin Destination Length
S01 Node4 Node5 1
S02 Node5 Node6 1
S03 Node6 Node7 1
S04 Node7 Node8 1
S05 Node8 Node9 1
S06 Node9 Node10 1
S07 Node10 Node11 1
S08 Node11 Node12 1
S09 Node12 Node4 1

Span Origin Destination Length
S10 Node4 Node9 1
S11 Node10 Node6 1
S12 Node7 Node12 1
S13 Node5 Node1 1
S14 Node8 Node2 1
S15 Node11 Node3 1
S16 Node3 Node2 1
S17 Node2 Node1 1
S18 Node1 Node3 1

A.2.4 Murakami & Kim Network

A.2.4.1 Network Diagram

A.2.4.2 Node Listing

Node X Coordinate Y Coordinate
Node1 94 195
Node2 162 93
Node3 267 198
Node4 439 269
Node5 470 431
Node6 377 365
Node7 201 385
Node8 337 448
Node9 298 535

Node10 124 539
Node11 79 433
Node12 210 609

321



A.2.4.3 Span Listing

Span Origin Destination Length
S01 Node1 Node2 1
S02 Node2 Node3 1
S03 Node3 Node1 1
S04 Node3 Node4 1
S05 Node4 Node5 1
S06 Node5 Node8 1
S07 Node8 Node6 1
S08 Node6 Node7 1
S09 Node7 Node8 1
S10 Node8 Node3 1
S11 Node3 Node7 1
S12 Node7 Node4 1

Span Origin Destination Length
S13 Node1 Node7 1
S14 Node11 Node3 1
S15 Node11 Node7 1
S16 Node11 Node8 1
S17 Node8 Node9 1
S18 Node9 Node10 1
S19 Node10 Node7 1
S20 Node11 Node10 1
S21 Node10 Node8 1
S22 Node9 Node12 1
S23 Node12 Node10 1
S24 Node9 Node7 1

A.2.5 Icosahedron Network

A.2.5.1 Network Diagram

A.2.5.2 Node Listing

Node X Coordinate Y Coordinate
Node1 294 25
Node2 564 415
Node3 61 418
Node4 299 172
Node5 381 210
Node6 377 293
Node7 302 332
Node8 210 293
Node9 214 212

Node10 269 233
Node11 320 233
Node12 299 276
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A.2.5.3 Span Listing

Span Origin Destination Length
S01 Node1 Node2 1
S02 Node2 Node3 1
S03 Node3 Node1 1
S04 Node4 Node5 1
S05 Node5 Node6 1
S06 Node6 Node7 1
S07 Node7 Node8 1
S08 Node8 Node9 1
S09 Node9 Node4 1
S10 Node10 Node11 1
S11 Node11 Node12 1
S12 Node12 Node10 1
S13 Node10 Node9 1
S14 Node10 Node4 1
S15 Node10 Node8 1

Span Origin Destination Length
S16 Node11 Node4 1
S17 Node11 Node5 1
S18 Node11 Node6 1
S19 Node12 Node8 1
S20 Node12 Node6 1
S21 Node12 Node7 1
S22 Node4 Node1 1
S23 Node6 Node2 1
S24 Node8 Node3 1
S25 Node9 Node1 1
S26 Node1 Node5 1
S27 Node5 Node2 1
S28 Node2 Node7 1
S29 Node7 Node3 1
S30 Node3 Node9 1

A.2.6 K6,6 Network
A.2.6.1 Master Network Diagram

A.2.6.2 Node Listing

Node X Coordinate Y Coordinate
Node1 69 136
Node2 122 140
Node3 187 140
Node4 247 145
Node5 317 146
Node6 404 145
Node7 61 317
Node8 132 322
Node9 197 324

Node10 261 327
Node11 312 329
Node12 406 327
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A.2.6.3 Span Listing

Span Origin Destination Length
S01 Node1 Node7 1
S02 Node1 Node8 1
S03 Node1 Node9 1
S04 Node1 Node10 1
S05 Node1 Node11 1
S06 Node1 Node12 1
S07 Node2 Node7 1
S08 Node2 Node8 1
S09 Node2 Node9 1
S10 Node2 Node10 1
S11 Node2 Node11 1
S12 Node2 Node12 1
S13 Node3 Node7 1
S14 Node3 Node8 1
S15 Node3 Node9 1
S16 Node3 Node10 1
S17 Node3 Node11 1
S18 Node3 Node12 1

Span Origin Destination Length
S19 Node4 Node7 1
S20 Node4 Node8 1
S21 Node4 Node9 1
S22 Node4 Node10 1
S23 Node4 Node11 1
S24 Node4 Node12 1
S25 Node5 Node7 1
S26 Node5 Node8 1
S27 Node5 Node9 1
S28 Node5 Node10 1
S29 Node5 Node11 1
S30 Node5 Node12 1
S31 Node6 Node7 1
S32 Node6 Node8 1
S33 Node6 Node9 1
S34 Node6 Node10 1
S35 Node6 Node11 1
S36 Node6 Node12 1

A.2.7 Germany Network

A.2.7.1 Master Network Diagram
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A.2.7.2 Node Listing

Node X Coordinate Y Coordinate
N01 108 75
N02 196 124
N03 276 84
N04 273 184
N05 476 174
N06 109 266
N07 143 282
N08 81 303
N09 103 340
N10 419 335
N11 194 445
N12 167 513
N13 144 571
N14 210 597
N15 269 630
N16 377 654
N17 352 520

A.2.7.3 Span Listing

Span Origin Destination Length
S01 N01 N02 120
S02 N01 N07 232
S03 N02 N03 95
S04 N02 N04 100
S05 N03 N04 133
S06 N03 N05 255
S07 N04 N05 246
S08 N04 N07 183
S09 N04 N10 215
S10 N04 N11 262
S11 N05 N10 145
S12 N06 N07 31
S13 N06 N08 30

Span Origin Destination Length
S14 N07 N09 73
S15 N08 N09 34
S16 N09 N11 152
S17 N10 N11 294
S18 N10 N17 229
S19 N11 N12 71
S20 N11 N17 187
S21 N12 N13 53
S22 N13 N14 62
S23 N14 N15 72
S24 N14 N17 156
S25 N15 N16 119
S26 N16 N17 149
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Appendix B

Test Network Demand Pattern Details

This Appendix gives the details of the demand patterns used for the experiments throughout

this thesis. Demand patterns are given both for network families and individual networks.

For a given network family, the demand pattern is constant across all members of the family.

B.1 15 Node Network Family (15n30s1)
Demand Origin Destination Size

D1 N01 N02 8
D2 N01 N03 4
D3 N01 N04 5
D4 N01 N05 6
D5 N01 N06 10
D6 N01 N07 3
D7 N01 N08 9
D8 N01 N09 9
D9 N01 N10 5
D10 N01 N11 10
D11 N01 N12 1
D12 N01 N13 1
D13 N01 N14 4
D14 N01 N15 4
D15 N02 N03 8
D16 N02 N04 2
D17 N02 N05 5
D18 N02 N06 1

Demand Origin Destination Size
D19 N02 N07 6
D20 N02 N08 1
D21 N02 N09 1
D22 N02 N10 3
D23 N02 N11 9
D24 N02 N12 6
D25 N02 N13 5
D26 N02 N14 5
D27 N02 N15 7
D28 N03 N04 2
D29 N03 N05 9
D30 N03 N06 2
D31 N03 N07 3
D32 N03 N08 6
D33 N03 N09 5
D34 N03 N10 9
D35 N03 N11 9
D36 N03 N12 6
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Demand Origin Destination Size
D37 N03 N13 1
D38 N03 N14 4
D39 N03 N15 2
D40 N04 N05 3
D41 N04 N06 2
D42 N04 N07 4
D43 N04 N08 7
D44 N04 N09 9
D45 N04 N10 3
D46 N04 N11 5
D47 N04 N12 6
D48 N04 N13 4
D49 N04 N14 2
D50 N04 N15 1
D51 N05 N06 10
D52 N05 N07 7
D53 N05 N08 9
D54 N05 N09 6
D55 N05 N10 3
D56 N05 N11 3
D57 N05 N12 1
D58 N05 N13 1
D59 N05 N14 7
D60 N05 N15 3
D61 N06 N07 4
D62 N06 N08 6
D63 N06 N09 4
D64 N06 N10 5
D65 N06 N11 2
D66 N06 N12 5
D67 N06 N13 8
D68 N06 N14 9
D69 N06 N15 3
D70 N07 N08 5
D71 N07 N09 5

Demand Origin Destination Size
D72 N07 N10 7
D73 N07 N11 7
D74 N07 N12 1
D75 N07 N13 9
D76 N07 N14 4
D77 N07 N15 7
D78 N08 N09 2
D79 N08 N10 3
D80 N08 N11 6
D81 N08 N12 8
D82 N08 N13 8
D83 N08 N14 2
D84 N08 N15 10
D85 N09 N10 8
D86 N09 N11 6
D87 N09 N12 8
D88 N09 N13 10
D89 N09 N14 1
D90 N09 N15 1
D91 N10 N11 10
D92 N10 N12 2
D93 N10 N13 1
D94 N10 N14 7
D95 N10 N15 1
D96 N11 N12 5
D97 N11 N13 7
D98 N11 N14 1
D99 N11 N15 3
D100 N12 N13 3
D101 N12 N14 5
D102 N12 N15 1
D103 N13 N14 10
D104 N13 N15 3
D105 N14 N15 3

- - - -
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B.2 20 Node Network Family (20n40s1)
Demand Origin Destination Size

D1 N01 N02 9
D2 N01 N03 1
D3 N01 N04 7
D4 N01 N05 3
D5 N01 N06 3
D6 N01 N07 5
D7 N01 N08 9
D8 N01 N09 4
D9 N01 N10 7
D10 N01 N11 2
D11 N01 N12 6
D12 N01 N13 2
D13 N01 N14 3
D14 N01 N15 1
D15 N01 N16 2
D16 N01 N17 6
D17 N01 N18 1
D18 N01 N19 3
D19 N01 N20 10
D20 N02 N03 6
D21 N02 N04 7
D22 N02 N05 3
D23 N02 N06 6
D24 N02 N07 3
D25 N02 N08 2
D26 N02 N09 9
D27 N02 N10 1
D28 N02 N11 10
D29 N02 N12 2
D30 N02 N13 8
D31 N02 N14 6
D32 N02 N15 3
D33 N02 N16 10
D34 N02 N17 10
D35 N02 N18 4
D36 N02 N19 2
D37 N02 N20 3
D38 N03 N04 2
D39 N03 N05 4

Demand Origin Destination Size
D40 N03 N06 5
D41 N03 N07 8
D42 N03 N08 4
D43 N03 N09 9
D44 N03 N10 5
D45 N03 N11 8
D46 N03 N12 7
D47 N03 N13 2
D48 N03 N14 3
D49 N03 N15 8
D50 N03 N16 2
D51 N03 N17 1
D52 N03 N18 3
D53 N03 N19 5
D54 N03 N20 8
D55 N04 N05 5
D56 N04 N06 2
D57 N04 N07 5
D58 N04 N08 8
D59 N04 N09 6
D60 N04 N10 5
D61 N04 N11 3
D62 N04 N12 7
D63 N04 N13 10
D64 N04 N14 6
D65 N04 N15 2
D66 N04 N16 9
D67 N04 N17 5
D68 N04 N18 9
D69 N04 N19 9
D70 N04 N20 6
D71 N05 N06 9
D72 N05 N07 5
D73 N05 N08 7
D74 N05 N09 6
D75 N05 N10 8
D76 N05 N11 5
D77 N05 N12 5
D78 N05 N13 5
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Demand Origin Destination Size
D79 N05 N14 8
D80 N05 N15 1
D81 N05 N16 7
D82 N05 N17 10
D83 N05 N18 9
D84 N05 N19 8
D85 N05 N20 8
D86 N06 N07 10
D87 N06 N08 5
D88 N06 N09 2
D89 N06 N10 3
D90 N06 N11 3
D91 N06 N12 4
D92 N06 N13 7
D93 N06 N14 10
D94 N06 N15 6
D95 N06 N16 1
D96 N06 N17 1
D97 N06 N18 10
D98 N06 N19 7
D99 N06 N20 2

D100 N07 N08 4
D101 N07 N09 4
D102 N07 N10 9
D103 N07 N11 3
D104 N07 N12 4
D105 N07 N13 8
D106 N07 N14 4
D107 N07 N15 1
D108 N07 N16 6
D109 N07 N17 9
D110 N07 N18 3
D111 N07 N19 10
D112 N07 N20 1
D113 N08 N09 4
D114 N08 N10 3
D115 N08 N11 6
D116 N08 N12 10
D117 N08 N13 5
D118 N08 N14 8
D119 N08 N15 8
D120 N08 N16 5

Demand Origin Destination Size
D121 N08 N17 9
D122 N08 N18 6
D123 N08 N19 4
D124 N08 N20 3
D125 N09 N10 8
D126 N09 N11 8
D127 N09 N12 8
D128 N09 N13 3
D129 N09 N14 2
D130 N09 N15 10
D131 N09 N16 10
D132 N09 N17 7
D133 N09 N18 5
D134 N09 N19 4
D135 N09 N20 10
D136 N10 N11 8
D137 N10 N12 5
D138 N10 N13 4
D139 N10 N14 10
D140 N10 N15 1
D141 N10 N16 8
D142 N10 N17 9
D143 N10 N18 5
D144 N10 N19 1
D145 N10 N20 1
D146 N11 N12 2
D147 N11 N13 2
D148 N11 N14 7
D149 N11 N15 8
D150 N11 N16 10
D151 N11 N17 5
D152 N11 N18 1
D153 N11 N19 10
D154 N11 N20 2
D155 N12 N13 8
D156 N12 N14 6
D157 N12 N15 7
D158 N12 N16 9
D159 N12 N17 2
D160 N12 N18 4
D161 N12 N19 7
D162 N12 N20 9
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Demand Origin Destination Size
D163 N13 N14 9
D164 N13 N15 2
D165 N13 N16 3
D166 N13 N17 8
D167 N13 N18 7
D168 N13 N19 5
D169 N13 N20 8
D170 N14 N15 3
D171 N14 N16 9
D172 N14 N17 3
D173 N14 N18 8
D174 N14 N19 6
D175 N14 N20 1
D176 N15 N16 4

Demand Origin Destination Size
D177 N15 N17 6
D178 N15 N18 10
D179 N15 N19 1
D180 N15 N20 6
D181 N16 N17 1
D182 N16 N18 9
D183 N16 N19 6
D184 N16 N20 5
D185 N17 N18 4
D186 N17 N19 7
D187 N17 N20 1
D188 N18 N19 2
D189 N18 N20 1
D190 N19 N20 9

B.3 25 Node Network Family (25n50s1)
Demand Origin Destination Size

D1 N01 N02 2
D2 N01 N03 1
D3 N01 N04 9
D4 N01 N05 7
D5 N01 N06 1
D6 N01 N07 2
D7 N01 N08 4
D8 N01 N09 10
D9 N01 N10 1
D10 N01 N11 3
D11 N01 N12 4
D12 N01 N13 3
D13 N01 N14 4
D14 N01 N15 3
D15 N01 N16 10
D16 N01 N17 1
D17 N01 N18 6
D18 N01 N19 1
D19 N01 N20 10
D20 N01 N21 3
D21 N01 N22 9
D22 N01 N23 10
D23 N01 N24 9

Demand Origin Destination Size
D24 N01 N25 4
D25 N02 N03 8
D26 N02 N04 1
D27 N02 N05 5
D28 N02 N06 8
D29 N02 N07 4
D30 N02 N08 2
D31 N02 N09 6
D32 N02 N10 3
D33 N02 N11 9
D34 N02 N12 6
D35 N02 N13 3
D36 N02 N14 10
D37 N02 N15 4
D38 N02 N16 6
D39 N02 N17 3
D40 N02 N18 4
D41 N02 N19 10
D42 N02 N20 6
D43 N02 N21 3
D44 N02 N22 7
D45 N02 N23 7
D46 N02 N24 1
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Demand Origin Destination Size
D47 N02 N25 1
D48 N03 N04 6
D49 N03 N05 4
D50 N03 N06 3
D51 N03 N07 6
D52 N03 N08 3
D53 N03 N09 5
D54 N03 N10 9
D55 N03 N11 1
D56 N03 N12 3
D57 N03 N13 1
D58 N03 N14 2
D59 N03 N15 6
D60 N03 N16 6
D61 N03 N17 9
D62 N03 N18 3
D63 N03 N19 5
D64 N03 N20 1
D65 N03 N21 5
D66 N03 N22 10
D67 N03 N23 6
D68 N03 N24 8
D69 N03 N25 3
D70 N04 N05 1
D71 N04 N06 5
D72 N04 N07 7
D73 N04 N08 6
D74 N04 N09 5
D75 N04 N10 4
D76 N04 N11 5
D77 N04 N12 3
D78 N04 N13 1
D79 N04 N14 3
D80 N04 N15 3
D81 N04 N16 8
D82 N04 N17 2
D83 N04 N18 7
D84 N04 N19 9
D85 N04 N20 9
D86 N04 N21 8

Demand Origin Destination Size
D87 N04 N22 5
D88 N04 N23 3
D89 N04 N24 8
D90 N04 N25 1
D91 N05 N06 5
D92 N05 N07 4
D93 N05 N08 4
D94 N05 N09 10
D95 N05 N10 8
D96 N05 N11 8
D97 N05 N12 4
D98 N05 N13 2
D99 N05 N14 8
D100 N05 N15 9
D101 N05 N16 8
D102 N05 N17 8
D103 N05 N18 6
D104 N05 N19 7
D105 N05 N20 2
D106 N05 N21 4
D107 N05 N22 6
D108 N05 N23 1
D109 N05 N24 4
D110 N05 N25 6
D111 N06 N07 5
D112 N06 N08 4
D113 N06 N09 1
D114 N06 N10 4
D115 N06 N11 2
D116 N06 N12 6
D117 N06 N13 6
D118 N06 N14 9
D119 N06 N15 1
D120 N06 N16 9
D121 N06 N17 3
D122 N06 N18 3
D123 N06 N19 5
D124 N06 N20 5
D125 N06 N21 8
D126 N06 N22 3
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Demand Origin Destination Size
D127 N06 N23 10
D128 N06 N24 8
D129 N06 N25 2
D130 N07 N08 9
D131 N07 N09 4
D132 N07 N10 1
D133 N07 N11 7
D134 N07 N12 2
D135 N07 N13 8
D136 N07 N14 3
D137 N07 N15 7
D138 N07 N16 6
D139 N07 N17 3
D140 N07 N18 9
D141 N07 N19 5
D142 N07 N20 1
D143 N07 N21 2
D144 N07 N22 5
D145 N07 N23 7
D146 N07 N24 4
D147 N07 N25 1
D148 N08 N09 8
D149 N08 N10 5
D150 N08 N11 3
D151 N08 N12 1
D152 N08 N13 5
D153 N08 N14 7
D154 N08 N15 10
D155 N08 N16 7
D156 N08 N17 5
D157 N08 N18 6
D158 N08 N19 9
D159 N08 N20 5
D160 N08 N21 10
D161 N08 N22 7
D162 N08 N23 4
D163 N08 N24 6
D164 N08 N25 10
D165 N09 N10 2
D166 N09 N11 10

Demand Origin Destination Size
D167 N09 N12 5
D168 N09 N13 5
D169 N09 N14 10
D170 N09 N15 1
D171 N09 N16 4
D172 N09 N17 8
D173 N09 N18 2
D174 N09 N19 4
D175 N09 N20 5
D176 N09 N21 5
D177 N09 N22 3
D178 N09 N23 5
D179 N09 N24 9
D180 N09 N25 3
D181 N10 N11 7
D182 N10 N12 5
D183 N10 N13 4
D184 N10 N14 8
D185 N10 N15 2
D186 N10 N16 10
D187 N10 N17 2
D188 N10 N18 5
D189 N10 N19 3
D190 N10 N20 10
D191 N10 N21 6
D192 N10 N22 7
D193 N10 N23 9
D194 N10 N24 9
D195 N10 N25 9
D196 N11 N12 9
D197 N11 N13 2
D198 N11 N14 4
D199 N11 N15 7
D200 N11 N16 10
D201 N11 N17 4
D202 N11 N18 2
D203 N11 N19 8
D204 N11 N20 8
D205 N11 N21 7
D206 N11 N22 10
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Demand Origin Destination Size
D207 N11 N23 2
D208 N11 N24 2
D209 N11 N25 5
D210 N12 N13 4
D211 N12 N14 4
D212 N12 N15 10
D213 N12 N16 2
D214 N12 N17 7
D215 N12 N18 3
D216 N12 N19 4
D217 N12 N20 3
D218 N12 N21 9
D219 N12 N22 8
D220 N12 N23 8
D221 N12 N24 6
D222 N12 N25 10
D223 N13 N14 1
D224 N13 N15 4
D225 N13 N16 4
D226 N13 N17 8
D227 N13 N18 9
D228 N13 N19 5
D229 N13 N20 9
D230 N13 N21 3
D231 N13 N22 6
D232 N13 N23 4
D233 N13 N24 8
D234 N13 N25 6
D235 N14 N15 5
D236 N14 N16 9
D237 N14 N17 3
D238 N14 N18 9
D239 N14 N19 8
D240 N14 N20 6
D241 N14 N21 5
D242 N14 N22 9
D243 N14 N23 8
D244 N14 N24 5
D245 N14 N25 9
D246 N15 N16 4

Demand Origin Destination Size
D247 N15 N17 1
D248 N15 N18 5
D249 N15 N19 4
D250 N15 N20 5
D251 N15 N21 9
D252 N15 N22 6
D253 N15 N23 1
D254 N15 N24 8
D255 N15 N25 5
D256 N16 N17 4
D257 N16 N18 10
D258 N16 N19 8
D259 N16 N20 1
D260 N16 N21 6
D261 N16 N22 5
D262 N16 N23 7
D263 N16 N24 1
D264 N16 N25 7
D265 N17 N18 1
D266 N17 N19 3
D267 N17 N20 3
D268 N17 N21 9
D269 N17 N22 10
D270 N17 N23 2
D271 N17 N24 10
D272 N17 N25 3
D273 N18 N19 3
D274 N18 N20 9
D275 N18 N21 1
D276 N18 N22 4
D277 N18 N23 5
D278 N18 N24 9
D279 N18 N25 10
D280 N19 N20 8
D281 N19 N21 4
D282 N19 N22 5
D283 N19 N23 9
D284 N19 N24 10
D285 N19 N25 4
D286 N20 N21 1
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Demand Origin Destination Size
D287 N20 N22 1
D288 N20 N23 1
D289 N20 N24 6
D290 N20 N25 10
D291 N21 N22 3
D292 N21 N23 6
D293 N21 N24 10

Demand Origin Destination Size
D294 N21 N25 8
D295 N22 N23 2
D296 N22 N24 5
D297 N22 N25 8
D298 N23 N24 7
D299 N23 N25 1
D300 N24 N25 7

B.4 12-cycle + 3 edges Neighbor Pattern

Demand Origin Destination Size
D1 Node1 Node2 10
D2 Node2 Node3 10
D3 Node3 Node4 10
D4 Node4 Node5 10
D5 Node5 Node6 10
D6 Node6 Node7 10
D7 Node7 Node8 10
D8 Node8 Node9 10

Demand Origin Destination Size
D9 Node9 Node10 10

D10 Node10 Node11 10
D11 Node11 Node12 10
D12 Node1 Node12 10
D13 Node1 Node4 10
D14 Node5 Node8 10
D15 Node9 Node12 10

- - - -

B.5 3 x 4 grid Neighbor Pattern

Demand Origin Destination Size
D1 Node1 Node2 10
D2 Node2 Node3 10
D3 Node3 Node6 10
D4 Node5 Node6 10
D5 Node4 Node5 10
D6 Node4 Node7 10
D7 Node7 Node8 10
D8 Node8 Node9 10
D9 Node9 Node12 10

Demand Origin Destination Size
D10 Node11 Node12 10
D11 Node10 Node11 10
D12 Node7 Node10 10
D13 Node1 Node4 10
D14 Node2 Node5 10
D15 Node5 Node8 10
D16 Node8 Node11 10
D17 Node6 Node9 10

- - - -
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B.6 Tietze’s graph Neighbor Pattern
Demand Origin Destination Size

D1 Node4 Node5 10
D2 Node5 Node6 10
D3 Node6 Node7 10
D4 Node7 Node8 10
D5 Node8 Node9 10
D6 Node9 Node10 10
D7 Node10 Node11 10
D8 Node11 Node12 10
D9 Node4 Node12 10

Demand Origin Destination Size
D10 Node4 Node9 10
D11 Node6 Node10 10
D12 Node7 Node12 10
D13 Node1 Node5 10
D14 Node2 Node8 10
D15 Node3 Node11 10
D16 Node2 Node3 10
D17 Node1 Node2 10
D18 Node1 Node3 10
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B.7 Murakami & Kim Neighbor Pattern
Demand Origin Destination Size

D1 Node1 Node2 5
D2 Node1 Node3 5
D3 Node1 Node4 5
D4 Node1 Node5 5
D5 Node1 Node6 5
D6 Node1 Node7 5
D7 Node1 Node8 5
D8 Node1 Node9 5
D9 Node1 Node10 5
D10 Node1 Node11 5
D11 Node1 Node12 5
D12 Node2 Node3 5
D13 Node2 Node4 5
D14 Node2 Node5 5
D15 Node2 Node6 5
D16 Node2 Node7 5
D17 Node2 Node8 5
D18 Node2 Node9 5
D19 Node2 Node10 5
D20 Node2 Node11 5
D21 Node2 Node12 5
D22 Node3 Node4 5
D23 Node3 Node5 5
D24 Node3 Node6 5
D25 Node3 Node7 5
D26 Node3 Node8 5
D27 Node3 Node9 5
D28 Node3 Node10 5
D29 Node3 Node11 5
D30 Node3 Node12 5
D31 Node4 Node5 5
D32 Node4 Node6 5
D33 Node4 Node7 5

Demand Origin Destination Size
D34 Node4 Node8 5
D35 Node4 Node9 5
D36 Node4 Node10 5
D37 Node4 Node11 5
D38 Node4 Node12 5
D39 Node5 Node6 5
D40 Node5 Node7 5
D41 Node5 Node8 5
D42 Node5 Node9 5
D43 Node5 Node10 5
D44 Node5 Node11 5
D45 Node5 Node12 5
D46 Node6 Node7 5
D47 Node6 Node8 5
D48 Node6 Node9 5
D49 Node6 Node10 5
D50 Node6 Node11 5
D51 Node6 Node12 5
D52 Node7 Node8 5
D53 Node7 Node9 5
D54 Node7 Node10 5
D55 Node7 Node11 5
D56 Node7 Node12 5
D57 Node8 Node9 5
D58 Node8 Node10 5
D59 Node8 Node11 5
D60 Node8 Node12 5
D61 Node9 Node10 5
D62 Node9 Node11 5
D63 Node9 Node12 5
D64 Node10 Node11 5
D65 Node10 Node12 5
D66 Node11 Node12 5
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B.8 Icosahedron Neighbor Pattern

Demand Origin Destination Size
D1 Node1 Node2 10
D2 Node2 Node3 10
D3 Node1 Node3 10
D4 Node4 Node5 10
D5 Node5 Node6 10
D6 Node6 Node7 10
D7 Node7 Node8 10
D8 Node8 Node9 10
D9 Node4 Node9 10
D10 Node10 Node11 10
D11 Node11 Node12 10
D12 Node10 Node12 10
D13 Node9 Node10 10
D14 Node4 Node10 10
D15 Node8 Node10 10

Demand Origin Destination Size
D16 Node4 Node11 10
D17 Node5 Node11 10
D18 Node6 Node11 10
D19 Node8 Node12 10
D20 Node6 Node12 10
D21 Node7 Node12 10
D22 Node1 Node4 10
D23 Node2 Node6 10
D24 Node3 Node8 10
D25 Node1 Node9 10
D26 Node1 Node5 10
D27 Node2 Node5 10
D28 Node2 Node7 10
D29 Node3 Node7 10
D30 Node3 Node9 10

B.9 K6,6 Neighbor Pattern

Demand Origin Destination Size
D1 Node1 Node7 10
D2 Node1 Node8 10
D3 Node1 Node9 10
D4 Node1 Node10 10
D5 Node1 Node11 10
D6 Node1 Node12 10
D7 Node2 Node7 10
D8 Node2 Node8 10
D9 Node2 Node9 10
D10 Node2 Node10 10
D11 Node2 Node11 10
D12 Node2 Node12 10
D13 Node3 Node7 10
D14 Node3 Node8 10
D15 Node3 Node9 10
D16 Node3 Node10 10
D17 Node3 Node11 10
D18 Node3 Node12 10

Demand Origin Destination Size
D19 Node4 Node7 10
D20 Node4 Node8 10
D21 Node4 Node9 10
D22 Node4 Node10 10
D23 Node4 Node11 10
D24 Node4 Node12 10
D25 Node5 Node7 10
D26 Node5 Node8 10
D27 Node5 Node9 10
D28 Node5 Node10 10
D29 Node5 Node11 10
D30 Node5 Node12 10
D31 Node6 Node7 10
D32 Node6 Node8 10
D33 Node6 Node9 10
D34 Node6 Node10 10
D35 Node6 Node11 10
D36 Node6 Node12 10
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B.10 Uniform Pattern for All 12 Node Networks (12-cycle
+ 3 edges, 3 x 4 grid, Tietze’s graph, Murakami &
Kim, Icosahedron, K6,6)

Demand Origin Destination Size
D1 Node1 Node2 10
D2 Node2 Node3 10
D3 Node1 Node3 10
D4 Node3 Node4 10
D5 Node4 Node5 10
D6 Node5 Node8 10
D7 Node6 Node8 10
D8 Node6 Node7 10
D9 Node7 Node8 10
D10 Node3 Node8 10
D11 Node3 Node7 10
D12 Node4 Node7 10

Demand Origin Destination Size
D13 Node1 Node7 10
D14 Node3 Node11 10
D15 Node7 Node11 10
D16 Node8 Node11 10
D17 Node8 Node9 10
D18 Node9 Node10 10
D19 Node7 Node10 10
D20 Node10 Node11 10
D21 Node8 Node10 10
D22 Node9 Node12 10
D23 Node10 Node12 10
D24 Node7 Node9 10

B.11 Germany Network
Demand Origin Destination Size

D1 N01 N03 2
D2 N01 N11 2
D3 N02 N03 1
D4 N02 N04 1
D5 N03 N04 3
D6 N03 N05 1
D7 N03 N07 1
D8 N03 N08 1
D9 N03 N09 1
D10 N03 N10 2
D11 N03 N11 1
D12 N03 N14 1
D13 N03 N16 1
D14 N04 N05 2
D15 N04 N07 4
D16 N04 N08 1
D17 N04 N09 4
D18 N04 N10 3
D19 N04 N11 5

Demand Origin Destination Size
D20 N04 N14 1
D21 N04 N17 2
D22 N05 N10 2
D23 N05 N11 1
D24 N05 N16 1
D25 N05 N17 1
D26 N06 N07 1
D27 N06 N08 1
D28 N06 N09 1
D29 N07 N08 1
D30 N07 N09 4
D31 N07 N10 3
D32 N07 N11 3
D33 N08 N09 2
D34 N08 N11 1
D35 N08 N14 1
D36 N09 N10 3
D37 N09 N11 5
D38 N09 N14 1
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Demand Origin Destination Size
D39 N10 N11 3
D40 N10 N14 1
D41 N10 N15 1
D42 N10 N16 1
D43 N10 N17 1
D44 N11 N12 1
D45 N11 N13 1
D46 N11 N14 2
D47 N11 N15 2
D48 N11 N16 2

Demand Origin Destination Size
D49 N11 N17 1
D50 N12 N13 1
D51 N12 N14 1
D52 N13 N14 1
D53 N13 N16 1
D54 N14 N15 1
D55 N14 N16 1
D56 N14 N17 1
D57 N15 N16 1
D58 N16 N17 1
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Appendix C

Span p-Tree Diagrams for
p-Tree/p-Cycle Hybrid Designs for the
15n30s1 and 20n40s1 Network Families

The diagrams on the following pages show the p-trees in the hybrid designs that were

generated for the 15n30s1 and 20n40s1 network families. Only the trees are shown, as

cycles vastly outnumber trees in the designs and therefore there are far too many to be

shown here. Each diagram is captioned with the number of spans in the network that it was

found in.

Structures are drawn with solid lines. Protected spans are shown as dashed lines.
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C.1 15n30s1 Family

16 span network 17 span network 20 span network

25 span network 25 span network 27 span network

30 span network (master)
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C.2 20n40s1 Family

24 span network 25 span network 26 span network

27 span network 30 span network 31 span network

35 span network 36 span network 40 span network (master)
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Appendix D

Structure Diagrams: p-Tree/p-Cycle
Hybrid Designs and p-Segment/p-Cycle
Hybrid Designs for the 15n30s1-25s and
15n30s1-27s Networks

The diagrams on the following pages show all of the structures used in both the p-tree/p-

cycle and p-segment/p-cycle hybrid designs that were generated for the 25 node and 27

node networks in the 15n30s1 network family. For the p-segment/p-cycle hybrid designs,

the 7-hop limited and the 9/10-hop limited designs were identical, so the diagrams listed

here apply to both equally. Structures are drawn with solid lines. Protected spans are shown

as dashed lines. Straddling spans on cycles are shown with two dashed lines because they

are given two units of protection.
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D.1 15n30s1-25s Network

D.1.1 p-Tree/p-Cycle Hybrid Design
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D.1.2 p-Segment/p-Cycle Hybrid Design
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D.2 15n30s1-27s Network

D.2.1 p-Tree/p-Cycle Hybrid Design
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D.2.2 p-Segment/p-Cycle Hybrid Design
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Appendix E

Structure Diagrams: Greedy Heuristic
PXT Design

This appendix contains diagrams of all of the PXT structures in the greedy heuristic PXT

design for the Murakami & Kim network topology. PXTs are illustrated with thick blue

lines terminated with arrowheads, while demands are shown using thinner lines with cir-

cular handles at the ends. Each diagram also shows the PXT’s distinguishing ID number,

the length of the PXT (in hops), and the number of protected demands. Demands are not

shown on diagrams where the number of protected demands is too high to illustrate clearly.
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Appendix F

Structure Diagrams: ILP-Based
Heuristic PXT Design

This appendix contains diagrams of all of the PXT structures in the PXT design gener-

ated by the ILP-based heuristic design method (i.e., the DRS-based ILP model) for the

Murakami & Kim network topology. PXTs are illustrated with thick blue lines terminated

with arrowheads, while demands are shown using thinner lines with circular handles at the

ends. Each diagram also shows the PXT’s distinguishing ID number, the length of the PXT

(in hops), and the number of protected demands. Demands are not shown on diagrams

where the number of protected demands is too high to illustrate clearly. Note that PXT 36

is pictured twice, because it is used to protect two different DRSs.
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Appendix G

Structure Diagrams: True Tree
Diagrams for Path p-Tree/FIPP p-Cycle
Hybrid Designs

G.1 Designs Using “>50% Protection” DRS Protection Cri-
terion

The following diagrams show all of the true tree structures used in the hybrid path p-

tree/FIPP p-cycle designs that were generated for the 15n30s1 network family. These de-

signs used the method of setting xk
c = 1 whenever PXT k could protect more than half of

the demands in DRS c. Structures are drawn with solid lines. Protected working paths are

shown as dashed lines.

16 span network 20 span network 21 span network

22 span network 23 span network 24 span network
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G.2 Designs Using “Any Protection” DRS Protection Cri-
terion

The following diagrams show all of the true tree structures used in the hybrid path p-

tree/FIPP p-cycle designs that were generated for the 15n30s1 network family. Note that

designs were only solvable for the 16 through 26 span networks. These designs used the

method of setting xk
c = 1 whenever PXT k could protect any of the demands in DRS c.

As such, they contain many more true trees than those shown in the previous Section (Ap-

pendix G.1). Structures are drawn with solid lines. Protected working paths are shown as

dashed lines.

16 span network 17 span network 17 span network

17 span network 17 span network 17 span network

18 span network 18 span network 18 span network
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19 span network 20 span network 20 span network

20 span network 20 span network 20 span network

20 span network 21 span network 21 span network

22 span network 23 span network 23 span network
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23 span network 23 span network 23 span network

23 span network 23 span network 23 span network

23 span network 25 span network 25 span network

25 span network 26 span network
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