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ABSTRACT -

A finite-element method (using the Galerkin formulation) -
and a truncated spectral method are applied to find numerical solutioms
to the three non-linear partial differential equations describing a
two-level quasi-geostrophic model atmosphere on a f-plane. This work
. was undertaken to provide a vehicle with which the author could study
the finite-element method and its application tb problems of meteoro-~
logical interest. A relatively simple meteorological problem was
chosen to allow concentration on the method and its application rather

than complex physical interactions.

With the finite-element method, bi-linear basis functioms
defined on a variable resolution grid are used while sinusoidal basis
functions are used with the spectral method. The domain of the problem
is a channel of length 2.8 x 107m and width 4.4 x 106m with a free-slip
wall boundary condition applied at the north and south boundaries and
periodicity assumed in ihe x-direction. The grid consists of a c&atral
portion with uniformly high resolution and a uniformly changing resolu-
tion away from this sub-domain. A second-orderhAdams-Bashforthlkime_ ‘

integration scheme is used with both numerical techniques.

Parallel integrations of up to 48 hours duration for a set of
four cases are presented and compared, using the spectral Qpluiioh as a
highly accurate standard. In the uniform resolution sub-domain, the

finite-element solution achieves a maximum S1 score of under 25 for both

a
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height and thickness fields in three of the cases. Values of lower than
30 are generally considered to be near perfect forecasts in operational
weather fo;ecasting. However, it 1s to be noted that in this study, a
highly simplified mode] is used and integrations are done from initial
conditions Qith no inherent error. 1In the fourth case, numerical
+instability occurred due to the rapid growth of spurious short-wave-
length waves generated near the boundaries. Investigations revealed
that these waves were being produced by the inaccurate evaluation of
normal derivatives near and on the boundaries. A possible method for

overcoming this problem is discussed.
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CHAPTER 1
INTRODUCTION

An accurate method for producing a weather forecast has

been an elusivé dream throughout much of man's history. The abundance
of folk beliefs (Hornstein, 1978) available for predicting the weather
indicates the importance man has attached to weather forecasts.

During this century, much attention has been focussed on using
numerical methods to solve the hydro-dynamical equations, thereby ’
producing a weather forecast (Bjerknes [904; Richardson, 1921-
Charney et. al., 1950; Cressman, 1958, 1963; Shuman and Hovermale,

1968; Bourke, 1972, 1974; Machenhauer and Daley, 1972).

s In recent years (Wang et. al., 1972; Cullen, 1973, 1974a,
1974b, 1976, 1979; Staniforth and Mitchell, 1977, 1978; Stanifnrth and
Daley, 1977, 19: , 1979), the finite-element method (FEM) has seen
applied to the problem of numerical weather prediction. The develop-
ment of larger and faster computers has made possible the use of the
FEM for the prediction of large-scale atmospheric flows. The FEM
enables one to use a grid with variable spacing between grid points
with relative ease. This is a distinct advantage over the finite-

difference methods which have been used previously.

Numerical weather prediction began when Bjerknes (1904)
recognized that the primitive equations of meteorology formed a system

of non-linear partial differential equations which could, in principle,



!
be solved to forecast the subsequent states of the atmosphere from a
known initial state. He also recognized that the system did not have
an analytic solutioﬁ and that the ;vailable data were inadequate to
specify the initial conditions. Holton (1972) shows that the primi-
tive equations consist of the momentum equations in the horizontal
(plane), the thermodyéamic energy equation, the continuity equation,
the hydrostatic approximation, and the equation of state. This system
of equations forms the basis of large-scale numerical weather predic-
tion. Richardson (1921) attempted the first numerical integration of
these equations using a finite-difference method. Unhappily, his fore-
cast took many months to produce and was in error by several orders of

‘magnitude,

The development of the electronic computer in the 194C

allowed Charney et. al. (1950) to perform the first successful n: :7.-
cal weather forecast. They integrated, in time, the barotropic vorti-
city equation which is a simplified equation derivable from the primi-
tive equations. By simplifying the primitive equations using certain
assumptions about the atmosphere, one may obtain a system of equations
which is more easily solved. Holton (1972) describes the assumptions
necessary e.iminate sound, gravity and inertia waves. Charney et. al.
(1950) used the most simplified form of the primitive equations for

their integration.

The field of numerical weather prediction has expanded
rapidly since the first successful integration, with many more compli-

cated finite difference models being developed (Cressman, 1958, 1963;

“



Shuman and Hovermale, 1968; lowcroft, 1971). Beginning in the late
1960's, the use of the spectral method for integrating the primitive
equations was investigated (Robert, 1966, 1970; Elpaesser, 1966;
Eliasen and Machenhauer, 1970; Baer and Alyea, 1971; Bourke, 1972).
Efficient spectral models were not possible until Orszag (1970)
described the use of transforms to allow the efficient evaluation of
the product terms in the primitive equations. Since then, the spec-
tral method has been used with success in numerical weather prediction

(Daley et. al., 1976; Bourke, 1974).

In the 1970'3} the FEM was first introduced to numerical
weather prediction. Early work (Wang et. al., 1972; Cullen, 1973,
1974a), considered highly simplified atmoapheri; models. Recently,
models using the primitive equations defined over the northern hemis-
phere have been integrated using the FEM (Staniforth and Daley, 1978,
1979; Cullen, 1979). Staniforth and Daley (1979) have found the
finite~element model produces forecasts as accurafe as those of the
operational spectral model even though the finite-element model does
not contain many of the physical processes present in the spectral

model.

In this thesis, a FEM is used to solve a set §f partial
differential equations. These equations mathematically describe a two-
level baroclinic model of the atmosphere on a f-plane. (The model is
fully descrihgd in Chapter 2.) The equations of this model atmosphere
are also solved using a spectral method. This solution is highly

accurate and is used to evaluate the iccuracy of the solution by the



FEM. 1In Chapter 5, the solutions using both methods are presented
and compared. Although the meteorological problem under consideration
is relatively simple, this approach provides a good framework within

which my supervisor and I could learn about and apply the FEM.



CHAPTER 2
A DESCRIPTION OF THE MODEL ATMOSPHERE

2.1 The Model E-. ions and the Domain

‘ The intent of this thesis is to study the application of
the FEM to the prediction of synoptic scale atmospheric flows.
Consequently, a model atmosphere has been chosen in which such flows
are posq’ble. The quasi-geostrophic two-level model was selected as
it is the simplest synoptic scale model which includes baroclinic
effects. This model has been used in the past.to study atmospheric
flows (e.g. Phillips (1951), Holton (1972), Stone (1974), Held (1975))

as although it 1s a relatively simple atmospheric model, it simulates

many atmospheric processes well.

A model atmosphere wr c* allows baroclinic effects has been
employed because the baroclinic conversion of potential to kinetic
energy is a major process in the development of synoptic scale storms.
The total potential energy of a system is the sum of its internal
energy and its gravitational potential energy. Lorenz (1955) defines
the available pofential energy (APE) of a column of the atmosphere to
be the difference between the total potential enérgy and the minimum
total potential energy which could be achieved by an adiabatic redistri-
bution of the mass of that air columm. The APE is that éortion of the
total potential energy which is available for possiéle conversion to
kinetic energy (KE). This conversion is often’an unstable process,

i.e. baroclinic instability.

4



In the quasi-geostrophic two-level mddel, the atmosphere
is divided into levels as shown in Figure 2.1. Pressure (B) is used
as the vertical coordinate. The streamfunction (y) is defined at

4

levels 1, 2 and 3 and the vertical motion (@) at levels O, 2 and 4
is considered. Levels 1 and 3 are the two levels of prime impoftance,
from which the model derives its name. The pressure difference
between levels 1 and 3, Ap, is 500 mb for this model. Pedlosky (1979)
has shown that this model, with one small additional assumption, has
the same dynamic equations as a two layer model, in which the layer
between levels 0 and 2 is assumed to have a certain uniform density

and the layer between levels 2 and 4 is assumed to have another uniform

density.

Prior to presenting the model equations, a few definitions
will be given. When the B-plane app:oiimation is used, the eargh is
approximated by a plane tangent to the earth at some latitude ¢o, as
shown in Figure 2.2. Om ;his plane, a tﬁree—dimensional ™ ght-handed
Cartesian coordinate sysﬁem is definea. . The unit vector ; points in
the x-direction, which is east, while the unit vector 3 points in the
y-direction, which is north. The unit vector i points vertically in
the direction of lower atmospheric pressure. The origin of the coordi-
nate gystem 1s defined to be at the point x = 0, y = O, p = 1000 mb.

‘A relation between latitude, ¢, and distance along the y-axis may be

wvritten:
y—yo - 8(¢“¢°) (2-1)

vhere a is the mean radius of the earth and Y is the value of y at %.



The plane in Figure 2.2 is assumed to have a width of Ly/2
so the range of y is {0, Ly/2]. This definition for the width of the
plane is made for consistency with the expansion functions used with
the spectral method discussed in Chapter 3. The plane is assumed to
have a length Lx' More pfeciéely,.it is assumed that the solution
to the model equations, derived later in this chapter, is periodic in
x with wavelength Lx' This length of the domain is also chosen for

consistency with the eXpansidn functions.

The particular values of LX and Ly used are chosen by

[1

considering the type of atmospheric motions to be studied. As mid-
latitude synoptic scale motioné will be considered in this thesis, ¢o
is chosen to be 45°N latitude. The domain is chosen so that Ly/Z =

414 X 106m,‘which is approximately 55° of latitude on the earth. This
width is chosen by considering the meridional extent of typical mid-
latitude long waves on the earth. It is similar to that used by others
(Cullen, 1976; Grammeltvedt, 1969). The cﬂasen length of periodicity
is tx = 2.8 x 107m which is essentially the length of the latitude

1

circle at 45°N.

4
The Coriolis parameter, £, is defined by:
f = 20 sing (2.2)

where Q is the earth's angular velocity. If only the first two terms

of a Taylor expansion of f about y, are retained, one obtains:

£ £+ B(yy) (2:3)



where:

and fo is the Coriolis parameter at 'o.

The horizontal del operator is defined by:

- ) A_3__
Ve=iogt iy (2-S)v
while the horizontal Laplacian operator is defined by:
. A} B
2 2 .
72 = 3 4 (2.6)
3% v2 )

- '

Jeffre '1922) defines the geostrophic velocity to be the
velocity field resulting from a balance between tﬁe Cor s force and \
the preséure gradient force. When pressure is used as the vertical
coordinate, the pressure gradient force term is transformed : o a
geopotential height gradient term. If the flow is quasi-nén—divergent,

the geopotential height gradient term may be replaced by a stream

function gradient term.

The horizontal geostrophic velocity is quasi-non-divergent

and, therefore, it may be written:



vV o=k x vy : (2.7)

where V 1is the horizontal geostrophic velocity and wg is the geo-

strophic stream function. In compone- form, this is:

Jy
u8 = - 5y (2.8)
oy
v = 1 (2.9)
g 9x

The vertical velocity in pressure coordinates, @, is defined
by:

-
It (2.10)

k- T xV =92y (2.11)

The quasi-geostrophic vorticity equation may be written as

(Holton, 1972; Hoskins, 1975):

30 .
B .U Bo+fr+ £ B 2.12
3t Vg {'g ) o 3p ( )
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It 1s paradoxical that although the geostrophic wind is non—diyergent,
the second term in 2.12) is a divergence term. Holton (1972) has
shown that this term is important in keeping temperature changes
hydrostatic and vorticity changes geostrophic in synoptic scale
systems. The temperature and vorticity fields must remain consistent
with the original assumptions of the quasi-geostrophic vorticity
equation. 1In the derivation of this equation, it is assumed that tﬁe

atmosphere is in hydrostatic balance ar ~ that the flow is quasi-geo-

strophic.

Eqn. (2.12) is applied at levels 1 and 3 using the following

finite-difference approximatioﬁs for the vertical gradient of &:

3wy . 2.0 (0.13) .
ap 1 ap

- o -

oSwl . 4 2 (2.14)
op 3 Ap :

The vertical velocities at the top, GO’ and bottom, m4, of the atmos-

phere are assumed to be zero. This assumption eliminates external

gravity waves from the model.

Holton (1972) shows that the adiabatic quasi-geostrophic

thermodynamic energy equation may be written:

JCH DL ) IR 2 D1 7] N« S : .
at[ ap] vg v[ BPJ+fO“ (2.15)
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where the static stability parameter is defined by:

- - %‘gg_ (2.16)

and the potential temperature is defined -by:

R/c
6 = T[EQEQJ P (2.17)

In these equations, a 1s the specific volume and T is the temperature
of the air. R is the specific gas constant for dry air and cp is its
specific heat at constant pressure. Eqn. (2.15) is applied at level

2 using the following finite-difference approximation:

v -y
[2&% EASEASY (2.18)
)2 op _ . .

Holton (1972), applying Eqns. (2.12) and (2.15) as indicated,

finds the three model equations to be:

30, £,
30, £
3 O~ J(w3,Q3) - J(w3,f) vy 62 (2.20)

d (b ~0.) = - - obp . ‘
5;<w1 w3) J(wz,wl w3) + 56, (2.21)

o]
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where the Jacobian operator, i, is defined by:

J(A,B) = %Q—B _ A 3B (2.22)

~

In Eqns. (2.19) - (2.21), the stream function is assumed to be the
geostrophic stream function although the subscript denoting &he
geostrophic value has been dropped here and will be for the remainder
of this thesis. The static stability parameter 1s assumed to be

horizontally homogeneous and independent of time.

The stream function for the mean flow, E; and the thickness,

~

Y, are defined to be:

v+
v = —li—j- (2.23)
- Y -y
Y = _L_lz (2.24)

Note that ¢y is really half the thickness between levels 1 and 3.
However, for convenience, ¥ will be simply referred to as the thickness
in this thesis. The stream function at level 2, wz, is obtained by

linearly interpolating between levels 1 and 3 giving:

Thus, in Eqn. (2.21), ¥, may be approximated by V.
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Forming the sum and difference of Eqns. (2.19) and (2.20)

and applying Eqns. (2.23) - (2.25) to (2.19) - 2.21), one obtains:

w.’;ig, C3ED) - 3 - I@,6) (2.26)
ié- J,0 7.0 ; ‘o
5 = - JW,0) - J(p,0) - I, ) + o O (2.27)
3A - Ap .
IR (RO %?5 o, (2.28)

Finally, Eqns. (2.27) and (2.28) may be combined to yield:

, Ei A . . 2£2 .
(V =i ) It = - J(W’O) - J(UJ,O) - J(‘JJ,f) + _G—A_SZ J(‘P,‘P) (2-29)

4fo . 2fo N
232y A om e e ———
(Ve-2%) @, oip J(y,0) obp J(,f) (2.30)
where:
2f§
2 »
A EE;Q (2.31)

Equations (2.26), (2,29) and (2.30) form a system of three

non-linear partial-differential equations in the three unknowns:

E; Yy and 62. Given boundary and initial conditions, a solution to

this system of equations may be found. Baer (1970) has found an
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analytical solution for a particular set of boundary and initial
conditions. For more general solutions, however, numerical methods

must be used. Chapters 3 and 4 describe the two numerical methods

employed in this thesis.

2.2 The Boundary Conditions

A free-slip wall boundary condition was imposed at the
northern and southern boundaries of the domain. Accordingly, there can
be no flow perpendicular to the wall and there is no viscous boundary
layer at the wall. Using Eqns. (2.7) - (2.9), the first of these

conditions implies that:

L1 (2.32)

ax

at y = Yo + Ly/4 and at y = Yo ~ Ey/é. The second of these conditions
means that no additional terms must be used with the model equations
found in Sec. 2.1 at the boundary of the domain. These extra terms
would be necessary to account for the turbulence generated near the

boundary if free slip was not assumed.

These conditions do not completely specify the solution as
¥ is specified by them only to within an arbitrary additive constant.
Pedlosky (1979) and Phillips (1954) have shown that, as a consequence

of the vanishing of the normal velocity tomponent on the boundary:
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L
X BZ"
SI-gx =0 (2.33)
dvait
where the integration 1is made along the norther: " southern boun-
da- ies separately. Pedlosky (1979) has shown th: (2.33) is
equivalent to:
[ Y
f J dxdy = 0 7.34)
ot -
D

where the integration occurs over the domain, D.

As the boundary conditions, Eqn. (2.32) and (2.33) or
(2.34), apply to the stream functions at each level, they also apply
to linear combinations of these stream functions. Thus, they may be
applied to the derived stream functions ¥ and &. Equation (2.33) is
the form of the second boundary condition which is used in this thesis.
This form requires less computer time when numerically integrated, as

it must be when applied to find a solution by the FEM.

2.3 The Energy and Potential Enstrophy Relations

The study of the energetics of the atmosphere and, in parti-
cular, of the exchanges of energy among its various forms, among the

various scales of motion, and among the sources and sinks of energy,
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provides an important tool for understanding atmospheric motion.

Also, the potenti-1l enstrophy (PE) may be used as an aid in under-
standing atmospheric motion. The PE is defined to be the mean squared
potential vorticity. Holton (1972) shows that the potential vorti-
city, q, 1s a measure of the ratio of the vorticity of a vortex to

the depth of the vortex.

These quantities so provide a useful tool for studying a
particular atmospheric model, and, they may be used as a means of
comparing an atmospheric model with other models or with the real

atmosphere. For the chosen model, there are three quantities of inter-

est:

1) the kinetic energy (KE)
2) the available potential energy (APE) j

3) the potential enstrophy

The KE and APE are considered to be present in two forms:
zonal (ZKE and ZAPE) and eddy (EKE and EAPE). The atmospheric flow is
considered to have a basic zonal component with disturbances called
"eddies" superimposed on that flow. Thus, any stream function, ¥, may

be written as the sum of a zonal, wz, and an eddy, wE’ stream function.

The KE of the horizontal flow is defined as:

KE = f -;- (V-¥) dM - (2.35)
M
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where dM 1s an element of mass and the integration is over the total
mass,bM, of the atmosphere. For the two-level model under considera-

tion, this may be written as:

KE = AE‘ J J (V990 + VIL'VlI)) dxdv (2.36)
D

where the hydrostatic relation, dp/dz = -gp, and dM = pd x dydz have
been used. p 1s the atmospheric density, g 1s the acceleration due
to gravity and z is the vertical coordinate parallel to the -p direc-

tion.

Differentiating Eqn. (2.36) with respect to time and using

the divergence theorem and the boundary conditions, one may show that:

2f .
9% - —50 j J G, dxdy (2.37)
D

This shows that when, in the mean, warm air is ascending and cold air
is descending, there is an increase in the kingtic energy, because the

centre of gravity is being lowered.
For this model, Holton (1972) shows that the APE is given by:

APE = %f J 2 dxdy (2.38)
D
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where T = 4 foz/gGAp. Differentiating Eqn. (2.38) with respect to

time, one finds that:

dAPE - Eio J f
|

I . Gy dxdy (2.39)

D

Combining Eqns. (2.37) and (2.39), one has:

%E(KE+APE) = 0 (2.40)

Thus, the total energy, TE = Kﬁ + APE, of the model is conserved but

an exchange of energy between KE and APE may occur.

Relations similar to Eqns. (2.36) and (2.38) are used to
calculate the eddy and zonal components of the KE an& APE. Conserva-
tion relations, similar to Eqn. (2.40), yield the intuitive result
that the total KE (APE) is simply the sﬁﬁAof the ZKE (ZAPE) and fhe

EKE (EAPE).

The potential vorticities at levels 1 and 3 ar- given by:

f2

o]
- - — - (2.41
q] 01 obp (wl wa) )

f2
0
= + -
q3 Q3 ohp? (wl wa) (2.42)

T RIS o TR TP R e ey
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and the PE 1s given by:

Pl
w AP 2 2
FPE = 52 J J (cl +a) dudy (2.43)
D

Differentiating Eqns. (2.42) ~ (2.44) with respect to time and using
the divergence theorem, one finds that:

dPE
It Q (2.44)

Thus, the potential enstrophy is a conservative property of this model.
When an approximate numerical solution is found for the model equa-
tions, the two conservative quantities, TE and PE, will provide a test

of the conservation properties of that solution.
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CHAPTER 3

THE SPECTRAL METHOD

3.1 A Description of the Method

This chapter details the method of solution of the model
equatioﬂs, (2.26) - (2.28), using the spectral method, which is an
application of a method developed by Galerkin (1915). When this
method is applied to the model equations, a highly accurate (but not
analytic) solution is obtained. Yt 1s found that the solution by the
spectral method conserves total energy and potential enstrophy. This
spectral solution will be used to judge the accuracy of the solution

by the FEM.

A simple example will be used to demonstrate the application
of the spectral method to a boundary-value problem. Consider the

following equation:

(X, v,t) g(x,y,t) (3.1)

it

This is similar in form to the model equations, (2.26) - (2.28). The
functions f (x,y,t) and g (x,y,t) are assumed to be defined on a
two-dimensional domain D and the problem is assumed to be properly

posed. The functions f and g are represented using a set of N+ 1

expansion functions, F, (x,y), to obtain: ™~
: N
f(x,y,t) = fx,y,t) =} £,(t) F,(x,y) (3.2)

i=0

AN
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.- . N
g(x,v,0) = g(x,y,t) = [ g (t) F (x,v) (3.3)
1=0 B

oy )

Kreider et. al. (1966) show that if the expansion functions form a

~ ~

basis on the domain, the approximate functions, f and g, will converge
to the true functions, f and g, as N approaches infinity. It is
assumed that the expansion functions can satisfy the boundary condi-

‘tions.

The approximate functions are substituted into Eqn. (3.1)
: ~
using Eqns. (3.2) and (3.3) and a residual, R (x,y,t) 1s defined

according to:

e R
R(x,y,t) = — F, - ) g.F (3.4)
1=0 dt i i=0 i 4 .

Note‘that in Eqn. (3.4) the total derivative with respect to time is

used as the expansion coefficients, fi and 8y» depend only on time.

N

L]

The explicit dependence;pf the expansion coefficients on
time and of the expansiin funct?énsi Fi: En‘the two space variables
have been omitted for the sake of brevity. As the approximate functions
will ndt, in gqﬁeral, satisfy Eqn. (3.1) exactly, ihe residusl is not

oy

necessarily zero. -

In Galerkin's method, the residual is forced to zero with

respect to the expansion functions in an average sense over the domain

~>
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(Zienkiewicz, ). Thus, we insist that:
- Nodf, N ]
| ] P,y o Fi - ¥ g F, j dxdv = 0 (3.5)
R Ym0 b

for yj =0, 1,2, . . ., N. This technique gives a system of N + 1
ordinary differential equations for the expansion coefficients,
fi(t)' This system may then be numerically integrated, given initiél
conditions, to find the approximate soiutiom, % (x,y,t), to Eqn.

(3.1). .

3.2 The Applicarion of the Spectral Method to the Model Equations

«

The expansion functions must be specified and they are
usually chosen with properties which are particularly appropriate to
the problem under consideration. For the present problem, the follow-

ing set of properties is chosen:

1) Fo is a constant over the domain
2) BFi/Bx = 0 along the north and south boundaries

3) the Fi are orthonormal 1i.e.

=

J J F,F, dxdy = 54 (3.6)
D

wﬁére Gij is the Kronecker delta and A is the area of )

thé domain

et v 7 oA, A T B TSI O N L ST TR el et L
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4) the expansion functions are eigenfunctions of the

3

Laplacian operator so that:

V2F = - a2
1 ajFy | (3.7

where a 2 >0

The first property allows one to represent a field with a
non-zero mean using the expansion functions. Property 2 1is chosen
so that the boundary conditior gn. (2.32), may be satisfied.
Property 3 is chosen to facilitate the integration of terms in equa-
tions similar to Eqn. (3.5). Property 4 is chosen as the Laplacian
operator is present in the model equations. This property will also
simplify the ih;egration of terms in equations similar to Eqn. (3.5).

-

Expanding the variables E; Y and &2, one has:

vix,y,t) = ) by () F(x,v) (3.8)
i=0
bOo,y,t) = ) T (e) Fo(xy) (3.9)
i=0
‘
N
G, (x,y,8) = ] w (t) F (x,y) (3.10)
1=0 :

Using this expansion and Eqn. (3.7), the first model equation, Eqn.

(2.26), becomes:
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g du, NN NN
2 © o o) . i
Tlat gy Fyt Ll el w I LF) + 8 T alt ot (. ,F)
120 i dt i 10 k=0 k"§"k i’k j=0 k=0 k jk i’k
N 3F
- ! —_—
B ) v, 57 + R (3.11)

Applying the Galerkin procedure to ‘Eqn. (3.11) by multiplying by a

particular F2 and integrating over the domain, one has:

dw2 N N g ? ) '
- g2 —* = zzw‘wm-&- art,t, F J(F,,F )
Ldr o, NP 'A0 A SR ERRE R 20 Km0 K3k 27K
N 3F,
-8B, ¥, F — (3.12)
1=0 i 2 3x
where the averaging operator, ( ), 1is defined by:

( ) = f f ( ) dxdy (3.13)

D

The terms in Eqn. (3.1Z, which involve the averaging operator
may only be evaluated once the expansion functions have been chosen.
_:These terms, however, are independent of space and time. They are

constants which depend only on the expansion functions and the domain

of the problem and they may be written:
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ij = F J(F Fk)

j’ (3.1[0)
BFi
bli = FQ 3% (3.15)

Applying the Galerkin procedure to the three model equa-

tions, Eqns. (2.26) - (2.28), and using Eqns. (3.14) and (3.15), one

obtains:
2T ] )
- AL (\pw+rt) b, ¥ (3.16)
% dx j_OkOalzjk K 3k iolii
ot 1 AR
- a¢t — = c (T v, +tp.1t,) - B )b T, +~—uw (3.17)
g dt j0k=0 PR (So bt T Bp e
dr N
w =-! Z k¥4 Tk QAR“’Q (3.18)
© §=0 k=0
Using Eqns. (3.14) and (2.22), one may show that:
N N N N
IR ’;f( - (xk_xj)Y'kcljk} (3.19)
j=0 k=g ¢ I3 =0 k=0 j
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for arbitrary Xk and for all ij where ij = ij. Xk and YjK represent

expansion coefficients or combinations of expansion coefficients which

depend only on the given “* lices. E- (3.19) may be applied to Eqns.

(3.16) - (3.18) to give

dy N N (32_ 2) 9
1 i %% o 8
dt N N (82— 2) N c
L 1[ Z ak } 8 \ o wz
— = c (T w +71 w ) + - b T _ (3.21)
dt 2 j=0 k=0 2% 23" 37k k7 ay iéO i1 Ap Zg
de 1[ N N A
FT ) Z 2 c (T Y, =T ¥ )] +9"‘Ew (3_22)
dt 2 120 k=0 ik 37k k7j 2fo 2

Eqn;. (3.20) - (3.22) yield a system of 3 (N + 1) ordinary
differential equations for the 3 (N + 1) expansion coefficients.
Before solving these, the expansion functions must be chosen. They
must satisfy the four criteria given earlier. Following Lorenz (1960),

the choice of expansion functions is:

F=1
0

F1= Y2 cos %zy

v
o N (3.23)
F =2 sin &y sin —nx
2 L L
v x
F = 2 gin 2Iy cos 2-Tlfxx
3 L L
v x
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This is referred to as a truncated spectral series expansion.

Applying Eqn. (3.7) to these functions, one finds:

aé = 0 (3.24)
2 - 2
aj (Zn/Ly) (3.25)
a a n/T )< . (2mn/L ) (3.26)
2 3 ; x
This set of functions ailows vc. . 1 wavenumber n to exist

in the x-direction. This parti .lar wavenumb._.r will be left to be
chosen later. In the y-direction, only waves of one wavenumber are
allowed and this is completely specified with the choice of Ly given
earlier. 1In opber to fully describe atmospheric flows, which are

, éharacterized by many wavelengths, many more expansion functions would
be necessary. Limiting the model to waves of only one wavelength,
however, simplifies the solution considerably. This set of functions
does, however, allow one to study tﬁe non-linear interactions between
waves of the-same wavelength ir the fields of the stream functioﬁs for
the mean flow (or mean height) anc the thickness. The amplitudes of the
waves and the phase aifference between the waves may be varied to

simulate aspects of various atmospheric flow patterns.

" The expansion function Fo is used to specify the mean height
of the field. It is irrelevant to the present problem, however, and
will be dropped. As proof of its irrelevance, Eqn. (3.14) demonstrates

that with the chosen expansion functions, czjk = 0 if any of L = O,
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jJ =0, or k = 0. Eqn. (3.15) shows that bli = 0 if £ = 0 or 1 = O.
Thus, the mean of the field does not interact with the perturbation
in the field and it is, therefore, not important. Consequently, the

expansion coefficients associated with FO will be assumed to be 0.

For the chosen domain and the three expansion functionms,

Fi, F, and F3, Eqn. (3.15) gives:
b,,=0 for 2 =1,2,3 (3.27)
b23 = - b32 = — an/Lx (3.28)

Eqn. (3.14) shows that ¢ is non-wero only when the three indices are

v Lik
distinct and one finds that:

32/2m

321 T30 L (3.29)
Xy

The dependent variables, E; Y and mz, are expanded using the

expansion functions to obtain:

Y = wlyl + ¢2F2 + “'3F3 (3.30)
¢.- TlFl + rze + T3F3 (3.31)
o. = wF. + w.F, + w,F (3.32)

1"1 272 373

B

2
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Finally, Eqns. (3.23) - (3.32) are substituted into Eqns. (3.20) -
(3.22) to obtain a system of nine ordinary differential equations in
the nine expansion coefficients. These equations are.non-dimension—
alized as this will give a simpler form for the finalAequations. Thus,

in the equations, an arbitrary expansion coefficient for the mean flow,

2

] 1s replaced by L fo wi. This new coefficient is non-dimensional.

0

Similarly, T ;w

{0 is replaced by Ap fo Wy and

is replaced by L2 fo T

i i

d/dt is replaced by £, d/dt.

Simple algebraic manipulation allows one to rewrite the
resulting nine non-dimensional equations as a system of ‘- -~rdinary

~differential equations and three diagnostic omega equat

dwl

= =0 ) (3.33)
dwz ) *

Fral vu(wlefrlnB) - B nuw3 (3.34)

dy * -

-3—3 = - n?op(p v +T T ) - B b (3.35)
t 12 12 :

drl w

—_] .- 1 .

- - | (3.36)

dr x

EEZ - nzvu(rlw3+13wl) - B e, - b, (3.37)

dt , *

—_3 - - + + - .

T n vu(rlwz rzwl) ) nu'c2 uw3 (3.38)



[

1

2 g +u

w =

3 g +u

*
£ 2 - H - — ;
w * (vin u(11w3+13w1) (13¢1 rlwg)} 8 nuga)

1
— (it v -t v ) - nfur v AT b))+ 8 nur )
112 12 21 o3

where the following symbo™ definitions have been uged:

t
H

<
"

™
]

=
]

LX/Ly

L /2n
x

8v/2/ 3w

yar.

1/ (a?+n?)
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Thus, the spectral method requires the solution of six
non-linear ordinary differential equations, Eqns. (3.33) - (3.38),
and three omega equations, Eqns. (3.39) - (3.41), for the nine expan-—
sion coefficients. Baer (1970) has found an analytical solution to
these equations to be expressible in terms of elliptic functions. The
analytical solution was not used for this thesis. Instead, a numerical
solution was found because a highly accurate solution could be found
numerically with considerably less computational effort than an evaiua-

tion of the ana'vtical solution would require.

Equations (3.33) - (3.38) have the general form:

§§'= g(t) (3.49)

In order to integrate such an equation numerically, it is written in
finite-difference form. For the first time step, an Eulef forward

Aifference is used:

£l = £0 4 ptgd (3.50)

where £° and go are the initial values of the functions f and g and
At 1s the time step. Ralston (1965) shows that this scheme has first-
order accuracy. For subsequent time steps, the second-order Adams-

Bashforth method is used:

gl oLy A—’Z‘(Bg“-g“—l) (3.51)
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Lilly (1965) found the Adams-Bashforth method to be simple and effi-
cient while giving accuracy on a par with more complicated methods
when he compared 8 methods for integrating equations similar to

Eqns. (3.37) - (3.42).

As the spectral solution is to be used as an accurate solu-
tion with which to compare the finitp-element solution, the minimiza-
tion of time truncation error is very important. Haltiner (1971) ‘
indicates that the time step must be a "small" fraction of the per;A%
of variation of the spect~~1 amplitudes. As synoptic-scale motions are
being studied, the period of the spectral amplitudes is expected. to be
on the order of days. Thus, the qualitative criterion of Haltiner (1971)
indicates that a time step on the order of houfs is appropriate. Test
integrations were done with time steps of 1 hour and 0.5 hours. After
24 hours of integration, the solutions with the different time steps
were compared. The spectral amplitudes were found to vary by less than
1 part in 104. These results suggest a time step of 0.5 hours is
sufficienti?‘sqell and this is used in all spectral integrations presen-—
ted in Chapter ’5

1
I

s
The initial conditions are determined by choosing values for

¢1°, ¢2°, w3°, Tlo, 7.° and 130. In choosing these values, one deter-

2

mines not only the amplitudes of the waves but also the phase relation-

ship between the waves in the stream function for the mean height, EL

and for the thickness, y. This allows one to simulate a variety of

.. atmospheric flow patterns. The initial conditions for the cases presen-

“ed in Chapter 5 were chosen to represent a variety of flows. This is



done so that the solution by the finite-element method could be tested
with a variety of initial conditions in order to determine its pos-

sible strengths or weaknesses.

3.3 The Energy and Potential Enstrophy Relations

The energies and potential enstrophy discussed in Sec. 2.3
can be related to the expansion coefficients. Using the definition of
the kinetic energy, Eqn. (2.36), and Eqns. (3.30) and (3.31), one finds

that:

2L L _ApL“f4 2 \
_Txy o Il 242y 4 (L., D 24p2412412) (3.52)
KE 5 g§<wl+11)_ (ff' iiJ(w2+¢3 )

where non-dimensionalized coefficients are used. Using Eqn. (2.38),
the =vailable potential energy of the spectral solution is found to

be . ‘en hy:

.erL f214
APE = -——-{}Jl—— (rf+r§+12)\ (3.53)
3

»

The potential enstrophy for the spectral solution, using Eqns. (2.41),
(2.42) and (2.43), 1s found to be:
ApL_L £

Xyo 2y 12 2442 2 2 2
PE = —5 ({a%y )2 + {(a®n2)y )2 + {(aZ+nd)y }2 +

L(a2+1/c*)rl}7 + (a2+n2+1/o*){r§+r§}) (3.54)
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Differentiating Eqns. (3.52) — (3.54) with respect to time
and substituting Eqms. (3.33) - (3.41) in, it is found that the total
energy and the potential enstrophy are conserved by the exact spectral
solution. .Eqns. (3.52) - (3.54) allow the calculatioh of these quan-
tities at each step of the integration. The conservation of these
quantities was used as a method of verifying the accuraﬁ? of the spec-
tral numerical solution. In practice, it was found that these quanti-
ties were conserved to better than 1 in 104 for a wide variety of

initial conditions and lengths of integrations. In particular, it is

true for all cases presented in Chapter 5.
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CHAPTER 4

THE FINITE-ELEMENT METHOD

4.1 A Description of the Method

Since its initial development by structural engineers during
the 1950's (e.g. Turner et. al., 1956; Argyris, 1960; Clough, 1960),
the finite-element method (FEM) has become a popular means of finding
approximate solutions to initial and/or boqndary value proble&g. In
recent years, (Wang, et. al., 1972; Cullen, 1976, 1979; Staniforth
and Daley, 1978, 1979), the FEM has been applied to the initial-boundary-
Yg}dé-problems of numerical weather prediétion. This chapter describes

//
- the application of the FEM to the atmospheric model described in

Chapter 2. A brief history of the method is given first and a discus-
- sion of the FEM follows, with a“simple example used to clarify the
discussion. Finally, the application of the FEM to the atmospheric

model under consideration is presented.

It is difficult to determine the originator of the FEM,
although Clough (1960) seems to have 5een the first to use the hame.
Until the early 1960's, the method was developed separately by mathe-
maticians and engineers. On the engineering side, the FEM evolved
from the matrix method of structural analysis (Zienkiewicz, 1977). 1In
this method, the analysis of structures proceeded by cohsiéering the
components of the structures separatél§; Relations between the dis-
placements and internal forces at the nodal points of individual com-

ponents were derive’ in matrixlform with the displacements and/gh the
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forces being unknown. (The nodal points are the places where the
components were joined.) The solution for the unknowns proceeded by
solving the system of equations, written in : a1trix form, for the

unknowns.

This method provided the exact answer for the unknowns.

The only assumption made was that mathematical relations could be used
to describe real physical systems. By analogy, McHenry (1943) and
Newmark (1949); for.example, extended the matrix method to continuum
problems, i.e.)problems without easily identifiable components. They
divided the continuum into a number of hypothetical components called
elements. They then proceeded as before by writing a system of equa-
tions for the nodal displacements and forces and solving this system
of equations. This was found tg.give a good approximate solution to

the original continuum problem.

As the method evolved, it was found that the simplest proce-
dure to ensure that the forces and displacements of the approximate
solution represented accurately the true solution, was to introduce the
concept of virtual work (Zienkiewicz, 1977). An arbitr: .e. virtual)
nodal d%splacement is imposed and the internal and external work done by
-he various forces and stresses duriné that displacement are equated.

It wa- :.ccnized that this approach was equivalent to minimizing the
tota. pccenti 1 energy of the structure under consideration. Argyris
(1 50), fr~ example, det=iled tbe resulting matrix equations, for a

rectangular panel under plane stress, in a comprehensive paper on energy

theorems and matrix methods
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During the late 1950's and early 10 s (e.g. Szmelter, 1959;
Clough, 1965), this method was recognized as an extension of the
Rayleigh~Ritz method, which had been well known to mathematicians since
the publications of Rayleigh (1870) and Ritz (1909). With this recog-
nition, it became possible to give a mathematical basis to the largely
intuitive developments of the engineering profession. During the last
two decades, the use of the FEM has grown rapidly and a bibliography of
the FEM by Norrie and deVries (1976) provides a detailed listing of many

of the developments.

When applying the FEM, the domain of the problem is divided
into a number of elements. The number, size and shape of the elements
are chosen after consideration of the domain of the problem and the
degree accuracy required. Z@gnkiewicz (1977) discusses some of the
possible choices for elemental shapes. Triangular and rectangular
shapes have been popular as they are relatively easy to work with. There
are no hard and fast rules for choosing the elements although thgye are
a few guidelines. For a domain with a curved boundary, triangular ele-
ments offer an advantage as they can better approximate the boundary.
For rectangular domains, rectangular elements may be advantageous as
fewer elements are no-mally required for a given level of accuracy.
Also, increasing the total number of elements and decreasing the size
of the elements provides increased accuracy. One has the option of
using small elements in areas of detail d iInterest while using larger
elements elsewhere. When all the elements are chosen for a domain, the

" result is called the mesh or grid of the domain. It is advantageous to
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automate the choice of this mesh for a given elemental shape and
domain. ‘
U

Tn th.s thesis, rectangular elements are used, and Fig. 4.1
shows the mesh used for the domain defined in Sec. 2.1. The domain is
divided into unequal rectangles. The ontral prrtion of the mesh has
high resolution with the elements having a length of 200 km. on a side.
The element length and width varies uniformly away from this central
portion. Thus, the ratio of elemental lengths between neighbouring
elements is a constant. The elemental length reaches a maximum of
1200 km. and the elemental width reaches a minimum of 60 km. The high
resolution portion near the north and south boundaries is used to permit
4 more accurate implementation of the boundary conditions, Eqns. (2.33)
and (2.34). A variable grid length was used so that its effect on the
solution could be investigated..-The portions of the grid marked A and
B in Fig. 4.1 are the portions of the domain in which the FEM solution
will be presented (in Chapter 5) for compar{-<an with the spectral
solution. The portion marked C is the p rtic ¢ which the energies and

the potential enstrophy of the two solut.:n- ¢ be calculated.

The elemental shape must be chosen in conjunction with the
basis functions, ei (x,y), to be\qsed and the number of nodes per element.
The basis functions form an interpolatory basis with which a function
may be interpolated on the domain. They are normally chosen to be low-
order polynomials and are defined in a piece-wise sense on the domain,
i.e. the 1'th basis function is non-zero only over some (small) portion

of the domain adjacent to element i. The choice of plece-wise defined
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basis functions is a major strength of the FEM. It leads to systems
of linear equations which may be written in matrix form. These matrices
are normally highly sparse and banded. This gives a significant

computational advantage over systems that are nearly full or not banded.

In general, when interpolating a function, one needs the
basis functions and some values of the function being interpolated. 1In
the FEM, these values are the value of the function at the nodes. The
nodes are specified points on the domain and the number of nodes chosen
per element determines the order of the basis functions. Thus, with
rectangular elements, if four nodes are chosen per element, the basis
functions are bi-linear while tﬁe use of sixteen nodes pef element
would be consistent with bi-quadratic basis functions. Although the
nod- - are often chosen to be on _the boundary of the elements, they may
be in the interior of the element. The number of nodes per element,
the nodal positions and the basis functions must be chosen together.
The reader is referred to Zienkiewicz (1977) and Tong and Rossettos
(1977) for examples of elements and their associated nodes and basis

functions which have been used.

In this thesis, four nodes per element are used and the nodes
are chosen to be in the corners of the elements. Each node is common

to four elements.

Bi-linear basis functions are used. One may define the basis

functions with respect to each element or, equivalently and more simply
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in this case, one may define them with respect to the nodes. If the
nodes are numbered m = 1, 2, . . ., NI in the x-direction and n = 1,
2, . . ., NI in the y-direction, the basis function for node (m,n) may

be written:

- - poxe(x ,x ), ve (vooyov.)

2
e oy - h ey ] Oy el ) @

3 XC(X » X ’ YE(}’n,Ym_l)

k ? m m+1)

0 sy otherwise

where:

hm- xnr-!-l_xm

(4.2)
k

n ‘ntl 7n
and 2 1s the multi-integer (m,n). The vector [Xl, Xz, . e e, XYI] con-
tains the values of the x-coordinate at the nodes while [Yl, Y2’ .

YNJ] contains the values of the y-coordinate.

S — ST e e it A e gt s opag 1 i g
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Thus, el (x,y) 1is non-zero only over the four rectangles
which have node % in common. Also, eR (x,y) has a value of 1 at the
node and diminishes to a value of zero at the other nodes of those four
fectangles. With this definition, these basis functions are almost
orthogonal, i.e. t-:y interact only locally. Thus, the integral

defined by:

1

1 = f J el(x,y) ek(x,y) dxdy 4.3
D

where % is the multi-integer (m,n) and k is the multi-integer (M,N), is
non-zero only if m= M - 1, Mor M+ 1l andn =N -1, Nor N + 1.
Finally, it should be noted that the basis functions are separable, i.e.
they may be written e* (x,y) = ™ (x) % (. se basis functions

may be used to interpolate a function, g (x,y), on a domain in the

following way:

”

g(x,y) =} giei(x,y) (4.4)
i

where the summation extends over all nodes and the g, are the nodal

values of g (x,y).

Tne FEM is, in fact, a general class of methods and one must
choose the particular method(s) to be used for a given problem.
Zienkiewicz (1977) provides a discussion of some of the methods which

have been uged. Two large sub-classes of the FEM are the variational
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and the weighted residual approaches. An example of a method from
each of these sub-classes i3 considered in this thesis. First, the
Rayleigh-Ritz method (a variational approach) and then the Galerkin
method (a weighted residual approach) will be discussed. The Galerkin

method is the one actually used for the solution of the model equations.

To illustrate the Rayleigh-Ritz method, let us consider the

two-dimensional Poisson equation:

v2¢ = f(x,y) (4.5)

valid on a domain D with the boundary condition:

$(x,y) = ¢ (4.6)

on the boundary, I', of the domain where ¢ is a constant. A variational

principle may be written:

. (
I($) = - J (V$)2 dxdy + J J f(x,v)¢ dxdy 4.7)
‘D D

where ( V4§ )2 = ( 3¢ / 3x )2 + ( 3¢ />3y )2. Tong and Rossettos (1977)
have shown that the fuﬁction, ¢, which minimizes Eqn. (4.7) and satis-
fies Eqn. (4.6), 1s also the solution of Eqns. (4.5) and (4.6). Thus,
the solution of the original differential equation is also the extremum

of the variational principle.

In the Rayleigh-Ritz method, an approximate solution to

Eqns. (4.5) and (4.6) is found by minimizing an approximate form of
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the variational principle, Eqn. (4.7). The functions ¢ and f are
expanded as in Eqn. (4.4) and are substitugfd into Eqn. (4.7). This
yvields an approximate form of the variational, I* (¢), and this is
minimized with respect to changes in each of the nodal values of ¢,

i.e.
2L .o i=1,2,.....N (4.8)

where N is the total number of interior nodes. This procedure yields

a system of linear equations which may be written in matrix form as:
A¢ = Bf (4.9)

where A and B are square N x N matrices and $ and f are vectors of the
nodal values of their respective functions. Given the nodal values of
f, one may find the nodal values of ¢ by inverting A in Eqn. (4.9).

This is the approximate solution to Eqmns. (4.5) and (4.6).

Many boundary-value problems, however, do not have a corres-
ponding variational principle and other methods must be used to find
solutions to them. The Galerkin method is one of thesg. The present
method is an extension of that given by Galerkin (1915). 1In the general -
weighted residual approach, the differential equation, Eqn. (4.5), is
multiplied by a test function, t (x,y), aﬁd the product is integrated

over the domain to yield:
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f f
J J tv2¢ dxdv = J J tf dxdv (4.10)

D D

In the Galerkin method, the test function is chosen to be omne of the

basis functions.

. If the derivatives in Eqn. (4.10) are of higher order than
are the basis functions, it is necessary to integrate Eqn. (4.10) by

parts. In two-dimensions, this can be accomplished using Green's

Theorem. Following Zienkiewicz (1977), Eqn. (4.10) may be written:

2|

(3¢ 3¢ , 3t 2¢) 13 3 4

- — - f - -

j J tax ™ + v BYJ dxdv tf dxdv nxtax dr Eytay dr  (4.11)
D T T ]

where nx and 1y are the direction cosines between the outward normal
to the boundary and the x and y axes respectively. With the boundary

condition Eqn. (4.6), the last two terms of Eqn. (4.11) are zero.

Now, ¢ and f are expanded using Eqn. (4.4) and substituted
into Eqn. (4.11). Upon integration, a system of linear equations
similar to Eqn. (4.9) 1s obtained and the aprroximate solution may be
found by inverting the new matrix A. Strang and Fix (1973) have shown
that the Galerkin and Rayleigh-Ritz methods give the same system of

equations if the problem has a variational form.
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The right-hand-side of Eqn. (4.5) has, to this point, been
2
treated a5 a simple function, f (x,y). In fact, as in the model
equation (2.26) for example, the right-hand-side may be a rather

complicated expression. The nodal values of this expression must be

The evaluation of cuwmplicated right~hand-sides of equations
such as Eqn. (2.26) 1is most easily understood by breaking the procedure
up into:a number of smaller steps. In general, the right~hand-side
involves the addition or subtraction of functions, the differentiation

of functions and the products of functions. Each of these will be

considered in turn.

The addition or subtraction of functions proceeds node by
node. Thus, if the nodal values fi and 84 of the functions f (x,y) and
8 (x,y) are known, the sum or difference, b (x,y) = £ (x,y) + g (x,v),

is found using:

b, = f igi (4.12)

for all the nodes, 1 =1, 2, . . ., N.
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The differentiation of functions will be considered for a
one~dimensional domain first. Let us consider the determination of a
multiple of the first derivative of a function, u (x), in the x-direc-

tion:

v = au (4.13)
X

du/dx and a is a scalar constant. It is assumed that u is

where u
x i

known at the nodal points Xy i=1,2, .. ., Nand that v 1s required

at these points. The two functions, u and v, are expanded using the

basis functions, ei (x), and substituted into Egn. (4.13) to obtain:

viei(x) - uiei('x) 4. 14)

where eix (x) = d ei (x)/dx and where the Einstein summation convention
for repeated indices is used. The Galerkin procedure is applied by
multiplying by each of the basis functions successively and integrating

over the domain, [xl, xN], to obtain

ek(x)ei(x) dx = au, ek(x)ei(x) dx o (4.15)

%) X1

Vi

| [

for kx =1, 2, . . ., N. This may be written in matrix form as:

Pv = aP u (4.16)
-— *— .

YT et oa  podoala puasdi b, iy TP ST Y e
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where:
T
v = (VI’VZ’ ..... ,VN)
T
u (ul,uz, ..... ,Lﬁq)
(4.17)
*N
Pk1 - f ekei dx
*1
*N
Pki = I ekei dx
X x
Xy
ki T

p  is the (k,i) element of an N x N matrix and ( )  1is the transpose

of that vector.

As the basis functions are nearly orthogonal, the matrices
P and P are tri-diagonal. Staniforth and Daley (1978) show that P
is diagonally dominant and that the solution of this system of equa-
tions by Gaussian elimination is, therefore, stable with respect to
round-off error. As a consequence of the separability of the basis
functions, Staniforth and Daley (1978) find that a partial derivative
inﬁﬁfigiii—dimensional field may be obtained by taking the appropriate

ordinary derivative in the direction defined by the partial derivative.

Consider now the evaluation of the product of two functions,

v
u (x) and v (x), defined, again for the sake of simplicity, on a one-



48
dimensional domain:

w = auv (4.18)
where a is a scalar constant. The’ three functions, u, v and w, are -
expanded using the basis functions and the Galerkin procedure is
again applied to obtain:

o -
1T k
wiJ ek(x)ei(x) dx = auivjj e (x)ei(x)ej(x) dx (4.19)
*1 X
which is valid for k = 1, 2, . . ., N. The left-hand-side will be

recognized as the matrix P defined by Eqn. (4.17). The right-hand-
side of Eqn. (6.19) i{s more complicated than before and 4n efficient

method for evaluating it is necessary. The left-hand-side is evaluated

-

using numerical integration and, as the integrand is cubic¢ in x,

Simpson quadrature, a quadrature formula which is exact for cubics,

is used. Over the:range [ xn,‘xn+1], it is found that:

! o ’ “
et (X)u(x)v(x) dx = (xn+1_xh) (u v + l{ + Hv +v . D
” 6 vt 2l Mg e D (420
x N »
1
i ;]
and that: <

-

y
- H
gt i p PN, o
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»~
X
n+l " : (xn+1-xn) 1
ik : ~

| e (Hu(x)v(x) dx = — (un+1vn+l+ E{un+un+1}{vn+vn*l}) (4.2.)
X

n

For a multi-dimensional ° in, Staniforth and Daiéy (1978)

show that product terms like . .. ‘- 8) may be reduced to weighted

o
sums of products evaluated on one-dimensional domain. That is, one

numerically integrates in one d ~ion and t.en inJLgrates along the
other direction.

Thus, the results which are necessary to evaluate the nodal
values of f on the right—haﬂa-side'of‘Eqn. (4.9) have been established
for bi-linear basis functions on a two-dimensional domain. In Section

4.2, w¥ will consider the application of the FEM to the model equa-
o 4
o

tionsf Eqns. (2.26), (2.29) and (2.30). The nodal values of the right-

~ hand-sides of these equations were evaluated'using the methods of this

section.

4,2 The Application of the FEM to” the Model Equations -

The model equatiocus, Eqns. (2.26), (2.29) and (2.30), are of

the form:
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2]

26 - A2 = f(x,V) (4.22)

which is a Helmholtz equation. Staniforth and Mitchell (1977) have

shown that the vartiational principle corresponding to Eqn. (4.22) is

: (
1(p) = J }({V},}z + 2262 + 2f¢) dxdv (4.23)
n

given the boundary condition Eqn. (2.33). Here, ( V¢ )~

Coo / ax )2+ (ag/ av)’

Staniforth and Mitchell (1977, 1978) have shown thgg with the
basis functions defined by Eqn. (4.1), the approximate minimization of
I (¢) in Egn 23), using the Rayleigh-Ritz method, y&elds a solution
with second-order accuracy on any sub-domain with uniform grid spacing.
They discuss an alternate approach using the Galerkin method which s
yielﬁs a fourth-order solution on any uniform sub—domain. This is the

method used in this thesis.

Applying the Galerkin method to Egn. (4.22) yields:

g

N
f J V2¢ek(x) dxdy - XZJ J Qek(x) dxdy = J J fek(x) dxdy (4.24)

D D D

: wh$re A is adsumed to be a constant over the domain. If ¢ and f are

expanded using the bi-linear basis functions, the second-order solution
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obtainable from the Rayleigh-Ritz method is found. Eqn. (4.24) may
be written:

' 3
[

X141 Y4+l 141 Y441 *pe1tn

: k
J J (6. +$_ De" dxdy - AZJ J pe" dxdy = J { fe' dxdv (4.25)
xx ' yy "

as the basis function ek for the node (1,j) 1is non-zero only over the
four rectangles adjoining that node.

" To demonstrate the technique for finding the fourth-order
solution, consider the element which has the node (1,3) ip 1its fowerg
left hand corner, i.e. for which we have x, < x h3k ) and yj <y j_yj+1.

i
For this element, the right-hand-side of Eqn. (4.25) mav be written:

»

\ I3
41 Y401 ,
R = f feX dxdy (4.26)
xi yj

Following Staniforth and Mitchell (1978), f is assumed to be symmetric
about Xy, yj and R 1s therefore evaluated as one-quarter of the doubly

symmetric integral over four times the area, viz:

xi+ﬂi yj+Kj
1
R = 2 f f fe¥ dxdy (4.27)
xi-Hi yj-.Kj



where Hi = Xy T Xy and Kj - yj+l.- yj. Note that 1in Eqn. (4.27),
ek must be re-defined for the new assumed grid and that f is expanded

in terms of this new ek. This interpolate for‘f fs substituted into
Eqn. (4.27) and the integration is performed yielding an expression for
R in terms of the nodal values of f. Similar integrations of the {ight~
hand;side of Eqn. (4.25) are performed over the three remaining
rectangles adioining (1,j). A similar procedure is undertaken to obtain
the left-hand-side, but an integration by parts is hecessary first.

For the node (i,j), this yields Eqn. (4.28), which Staniforth and

Mitchell (1978) show has fourth-order accurscy on any uniform sub-

domain. (Eqn. (4.28) 1s on page 54.)

An equation similar to Eqn. (4.28) may be derived for all
interior nodes. These equations form a systéﬂ?ﬁf linear equations in
the nodal values of the functions ¢ and £f. To complete this system of

equations, it is necessary to impose the boundary conditions.

Denoting the north boundary with j = 1 and the south boundary

with j = NJ, the first boundary condition, Eqn. (2.32), gives:

and:

PLLNI™02 N0 O, N %, N (4.30)

Y
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In order to impose the second boundary condition, Egn. (2.33),
othe integrand in Eqn. (2.33) is expanded using the basis functions.

At the northern boundary, this gives:

¢, 59
3¢ _ 71,2 %,1
AR K (4.31)

and at the southern boundary, it yields:

3¢ IR AR A (4.32)
3y |1,NJ kg )

J-1
for £ =1, 2, . . ., NI. 1In Eqns. (4.31) and (4.32), ¢ = ay/dt.

Eqn. (2.33) is of the form:

£

I S
1 g dx = 0 : (4.33)
0

Expanding g with the bi-linear basis functions and integrating Eqn.

(4.33), one obtains:

(hNI-l+h1)81,j+(h1+h2)g2,j+ ..... + gy oty J8ygog,g = O (4.34)

Substituting Eqns. (4.29) - (4.31) into Eqn. (4.34) and noting
! £ o

that in Eqn. (2.34), g = 3¢/3y, one obtaing:
o -
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1
51 Ei;(¢1,z(hnz-1+h1> * oy p(hpHh) +oL

h (4.35)

+ ¢ (h

N1-1,2 Pyp ooty )

where ¢B 1 is the value of ¢ at all nodal points along the northem

boundary. Similarly, the expression for the nodal values on the

southern boundary, ¢B NI® is found to be given by:
2

s L

B,NJ 2Lx(¢1,NJ—1(h

+h) + ¢2,NJ-1(h1+h2) Foenn

NI-1

* On1-1,n0-1 COnr-pthyrop)) (4.36)

If the vectors ¢ and f are defined to be vectors of all
(both interior and boundary) nodal values of their respective functions,
Eqns. (4.35) and (4.36) may be combined with all equations similar to

Eqn. (4.28) to obtain a complete system of linear equations. This may

be written in matrix form as:

A¢ = Bf (4.37)

An approximate solution to the ‘elmholtz equation, Eqn.

(4.22), with the " oundary conditions given by Eqns. (2.32) and (2.33),



e i DT UR L ERRUT L A e A e

56

may be found by solving the matrix equation, Eqn. (4.37). The proce-

dure for doing thi 1is described in Section 4.4,

4.3 The Energy and Potential Enstrophy Relations

The evaluation of the kinetic energy, the available potential
energy, and the potential enstrophy for the finite-element solution
is done by approximating Eqns. (2.36), (2.38) and (2.43) with equations

which are numerically integrated. These three equations have the form:

2 = GJ [ f£(x,v) dxdv (4.38)
D

where a is a constant and z represents the KE, PE or APE. nodal
values of the integrand, f (x,y), are evaluatec using the results of
Section 4.2. This is done using Eqns. (2.36), '{2.38) and (2.43) to
define the integrand for the ..”. APE and PE respectively. In order
to perform the integration, Eqn. (4.38) 1is approximated by a simple

finite-difference representation:

h +h kK +k |
T £ [ 1 1‘1] [ h J‘l} (4.39)
3 N

where the fij

are the nodal values of the integrand, f (x,y).
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The limits of th¢ summations in Eqn. (4.39) must be
defined. 1In the definitions of KE, APE and PE in Sectdon 2.3, we
considered the integration to occur over the entire domain. Thus,
the summation is with { = 1, 2, . . ., NI -1 and j=.1,2, ..., N
Within these limits, the conservative properties of the solution by

the FEM are checked and the results are presented in Chapter 5.

It is also of interest to calculate the KE, APE and PE in
the region where the soluﬁion by the FEM has the greatest accuracy,

will enable a better

i.e. the sub-domain with uniform resolution.
Judgement of the potential accuracy of the solution using the FEM.

For the cases presentéd in Chapter 5, this is done for the area marked
C in Fig. 4.1. These calculations are done for the spectra’ olution
as well so the two solutions can be compared. To do this, it was
necessary to calculate the nodal values of the spectral solutionm.

A,

4.4 The Solution Algorithm

The five steps for the solution of the model equations

(Eqns. (2.26), (2.29) and (2.30)) using the FEM are:

1) t§ determine the right-hand-sides of the model equations.
2) to solve the system of equations resulting from the
discretization of Eqns. (2.26) and (2.29) for
aE?ac and a@/at, respectively, at time t.
3) to extrapolate in time to estimate E-and”$ at time

t + At, where At is the time step.
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4) to solve the system of equations resulting from the
discretization of Eqn. (2.30) for &, at t + At.
5) to repeat steps one through four for the desired number

of time steps.

The procedure used for performing the first step was des-
cribed in Sectic.a 4.3. The solution of a system of linear equations,
as required by steps 2 and 4 may be done using either direct or itera-
tive methods. Tong and Rossettos (1977) provide a discussion of the
advantages and disadvantages of each method when applied to finite-
element problems. Their analysis indicates that, for the systems of
equations in this thesis, a direct method would probably be most
efficient in the ﬁse of computer resources. However, as the computer
code was to be used a limited number of times, the efficient use of
computer resources was judged to be less important than the efficient

use of programming time. Hence, an iterative method is used.

Young (1...) describes many iterative methods and from these,
successive over-relaxation (SOR) is chosen as it is relatively simple
to érogram and 1s reasonably efficient in the use of computer resources.
To apply SOR, the mat¥ix A in Eqn. (4.37) is split into a lower tri-
angular, L, and an upper triangular, U, matrix. Then, given an initial
guess for the nodal values, g?, the approximate solution, 2?, is found

T

-

LA¢ = Bf TwAi ‘ - (4.40),
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where w is the over-relaxaticu tac.or. The solution proceeds by
“terating with Eqn. (4.41) and (4 :2) and the superscript n refers to
the number of the iteration. One continues iterating until the differ-
ence between successive iterates, 0¢, is suffdiciently smali [n the
present thesls, iterations are continued until the relative change from
one iteration to the next a- a. nodes in the %:i:::gsolution sub-domain

W(Area C) is less than .1X.

The total number of iterations needed for a solution depends
critically on the choice of the value for the over-relaxation factor.
An attempt was made, using techniques described by Young (1971),
objectively determine the optimum over-relaxation factor, i.e. the one
which resulted in the minimum number of iterations for a solution.
This did not work well, however, and a factor of 1;795 was found, by

trial and error, to be nearly optimum.

Step 3 was accomplished using the Euler and Adams-Bashforth
methods described in Section 3.2. The length of the time step, At,
for the solution by the FEM was chosen using different criteria than in
Section 3.2 however. Haltiner (1971) shows that to prevent computa-
tional instability, the fastest travelling wave in the solution must
move less than one gri4d <dngerval, Ax, in one time step, At. This leads

to the following condition:

v
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(4.42)

for a two-dimensional domain where C is the speed of the fastest
travelling wave. This criterion was derived using finite«differenge
methods rather than finite-element mr :ods for _ne 3Iiscretization éf
the space coordinates. However, - ‘hysica” ‘nt- pretation of this
criterion presented by Haltiner (19,1, . yyests that it could at least
be used as a guideline for the .-e.ent work.> For synoptic~scale
systems, in quasi—geostfophic models whege ;ound and gravity waves are
not permitted, Holton (1972) estimates 50 m/s to be the maximum value
of C. With this value and a time step of 1/2 hour, Eqn. (4.42) indi-~
cates that computational instability should be prevented in the present
model for all portions of the grid with grid spacing greater than

127 km. Thus, dhly in a very narrow band, near the north and south
boundaries of the present grid, is the possibility of computational
instability indicated. A time step of 1/2 hour is used as it will ﬁean
that the time truncation errors in both methods of solution are the same
and because the criterion'have suggested that computational instabil?:

is unlikely to be a major problem.
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CHAPTER 5

THE PTSULT

5.1 Introduction

The model equations derived in Chapter 2 are solved using
both the‘spectral and the finite-element methods, as discussed in
Chapters 3 and 4. 1In this chapter, some examples of'the sol;tions
obtained using these methods, with various initial conditions, will
be presented. In the accompanying discussion, some of the strengths
and weaknesses of the finite-element solution will be demonstrated
through a comparison with the spectral solution. Prior to presenting
these results, a discussion of some of the conventions used and the

numerical values of certain constants will be given.

A total of four sets of initial conditions will be presented
with both methods of solution used for ali four. Cases I, II and III
are model atmospheres which, initially, favour the conversion of APE
to KE. This conversion leads to a development (amplification) of the
wave in the mean height field. The cases will be referred to as
weakly, moderately, and strongly developing cases. Case IV is'a model
Aatmosphere in which a conversion of KE to APE takes place. The wave in’

the mean height field decays and this is called the decaying case.

As shown in Chapter 3, the spectral solution allows only
waves of wavenumber n in the x-direction to exist. This wavenumber

must be chosen and its value determines’ghe scale of motion to be consi-

- ..
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dered. As mid—la‘itude synoptic scale motions are t. studied, a
wavenumber of 3 to 9 is appropriate. For the chosen channel length,
these wavenumbers lead to : ves with wavelengths‘of the ordef of
thousands of kilometers. Holton (1972) suggests that wavenumber 7
is close to the average'wavenumber of rid-latitude synoptic systems.
He also shows tgat fhis wave 1s near the wavelength of maximum b;ro~
clinic instability, i.e. the wavelength which becomes baroclinic§11§
unstable with the lowest thermal contrast. A wavenumber of 7 is used
in all the cases in this chapter.
4

The static stabdbility parameter, o, is defined by Eqn. (2.16).

It is calculated by writing Eqn. (2.16) in finitgzdifference form

using a central difference about 500 mb. Tabulated values of 6 and p
for the ICAO standard atmosphere were used to find o = 2.8 x‘1o'6 A
m4 82 kg_z- This 18 within 25X of 2 v{luc assumed by Holton (1972)

for ﬁid-latitude synoptic scale systems.

T

Teweles and Wobus (19§4j_devtinped-the S1 score for comparing
two fields with their values determined at grid points. This score
is used later in this chapter as an aid in comparing the solut;ons by
the two nethods; The Sl score conparezathe gradients of.the fields
rather than their magnitudes, for example. Such a comparison is signi- .
ficant meteorologically becaﬁse'the gradient in the stream functi ﬁ
determines the wind speed and directiom, thiough the’géosttophic wind
relation,uzqﬁ. (2.7). The wind and the vertical wind.shear are more

Y :
important veather elements than the actual value of the streafgfunction

-~
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at a point, because they determine the potential for baroclinic and

barotropic growth of weather systems.

»

i

To galCUlate the S1 score, one first calculates che.gradients
in the two fields which are being compareds In the present work, the
components of the gradients of the two fields in the x and y direc-
tions are calculated for ail points in the verifying area (area C of
Fig. 4.1) including the boundaries of that area. If es is defined to

be the difference between the gradient f the two fields at a.point

and G 1s defined to be the larger o o gradients, the S1 %core

. . = 100 —Tazr -(5:1) .

calculated using the formula:

‘=:~\

where the summation occurs over all| points in the verifying area and
&, .

‘both components of the gradients are cc.pared at each point The S1

score varies from'0 to 100 with lower values indicating a greater agree-

’

ment of the twc Sields. : 1

& K
The mean difference (MD) and mean absolute difference (MAD)

re also calculated

\

over the verification area. In both the MD an e MAD, the finite-

~

elemenc solution is subCracted from the spectral solution at all grid

points vithin area C, including the boundaries. The mesn used is the

¢

arithnetic mean.
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During initial test runs, it was found that waves of short
waz:length wer being generated along the northern and southern
bo_’r g ss when the ‘finite-element solution was computed. These waves
grew iﬂ amplitude and moved away from the boundary, gradually contam-

inating the solution by the FEM even in the high-resolution sub-domain.

QEQVestigations indicated that a major cause of these waves was the

L

poor evaluation of the vorticity near the boundary. In partfcular,

the evaluation of the second def%%ative of the strégm function in the

N . .
[ «

y«~direction was subject to a large eg&p:;héa:;the_boundary. A simple .
3-point smoothidg algorithm was introdud?é“;o*damp these waves. Thus,

. . f}
if the function f (x) is kdovm at the grid-points (xl, Xps o v e xN), \
. = . < .

the smoothed function, g (xi,.at the pointixi”fh given by:

A

RN
RSN

8(x) = (1 - S(xi))ffxtzgfh—~§—— (£(x;, ) + £0x;_ 1)) G

v'b
\"?_?\

] )

“ \' ‘ 11 ﬁ,“:-" . \
where S (xi) is the smoothinig parameter at X;. This smoother was

St
>

applied to the calculated vorticity field ir- the viciniﬁy of the north-
ern and southern boundaries. It was applied to the vorticity field
each time it was evaluated,,firsé in the -y-direction and then in the |
x-direétion. Although most smOotging was necessary inJZhe y~direction,
some smoothing in the x-direction was found to be'helpful in controkliﬂé
the'spurioué waves near the\bdundary. For th; six grid points nearest
the boundary, thevsmoothing parameters were 130, .50, .30, .15, .08,

and .02. The largest 6§1ue§ were near the'égxfhern and southern boun-

K

daries. The smoothinglparameter wvas zero for all other interior grid

npoihtd; The s »thing parameters fqr"thé'firat six interior lines of

=

N e »
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grid pointo in the x-direction, adjacent to and including the northern

and southern boundaries, were .10, .15, .10, .05, .0l and .005.

3§ -

The values for the smoothing parameters were determined by

trial and errax. This set of parameters seemed to have little effect

on the long wavelengths of interest but controlled the spurious short .

oty

wavelengths reasonegég 9ol1 Iﬁ was found that using this smoothing
3 L
also reduced the amutation time by 10 - 15Z as it allowed

more rapid convergence to occur in the 301utioﬁ”bf the joundary value

% problems by relax&ﬁ1QP

- S a N ~ i
. . .

] . N ,
: s e 4

. In displaying the height,apd thickness fields later in this,&L

. chapteg, the stream functions for the mean height#and thickness fields
have been converted to a height in meters. This was E&iily done, as,’

in this model, the gravitatdgpnal constant, g,fis assumed to’ be {nJepen—

Followiﬁ-

+4 dent of height. Holton (1972),’the height in meters, z, ie
- & ' ‘ ' . 4
> -obtained using: - : .
& ' 0 ' “ .
fo : S
zZ=y — 5.3)
¥ 2 (5,

where g = 9,806 m 9-2. The stream function, ¥, is either $"or ¥, depen-

ding on which field is being converted. -

The omega fields displayed have the units pbar/sec. This is °
the unit which is commonly used as it gives values of the order of 1.

It should be noted, however, that negative omega values imply ascent.

[N
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In the displ ¥

khese fields,. roughly two-thirds of the

total domain in Figl 4, \shown. Referring to Fig. 5.1, for example,
the lower panel is area A of Fig. 4.1 while area B of Fig. 4.1 is the
upper panel. With this display, both the high and low resolution

portions of the two solutions may be easily compared.

As previously stated, area C of Fig. 4.1 is the verification
area. This 1is the gub-domain over which the various energy quanti;%ss,
- Ty
the PE, the S1 score, the MD aqﬂ;the MAD are calculated,'as shqyp,
for example, in Figs. 5.10 - 5.12. The KE, APE and PEVdre also

calculated over the whole domain for some of the cases.

'

5.27 Case I - Weak Development

!

Case I is an example of’a wéékly éeveloping situation.
Figs. 5.1 and 5.2 show that, initially, the trougk in the thigkness
1-eld lags (i.e. is west of) tﬁé trough in the 'mean height field by
90°. .. enczhe trough in the thickness field lags the trough in the
height fieL? by between 0° and 180° » the perturbations (i.e. the waves)
in the mean height field will amplify» In-this process, the flow
becdmes more metidion;I and the amplitude of the wave increases.

Holton (1972) shows that this amplification will occur most rapidly

when the lag is 90° Holton (1972) did a-lipear analysis of an atmos- ﬁ"

- pheric model simjlar to the one under consideration. He found that

if the gradients in the thickness field were less than a critical value,
the waves would not develop, 1i.e. they were stah!2 waves. With the.

values used in the present study, his analysis - _gests the wave should be
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stable for this case. Due to model differences and non-linear inter-

»

actions, the wave does, in fact, develop.

As was discussed in Section 2.1, this growth is due to the
baroclinic conversion of energy from APE to KE through the lowering of
the centre of mass of the atmosphere. This will be demonstrated more

clearly when, later in this section, Fig. 5.10a is discussed.

The spectral solution (SP) after twenty-four hours of inte-

gration 1is given in$§igs. 5.4 - 5.6. The wave in the height field

RS

has undergone the expected development and retrogressed 15°. The

‘ thickness%i'eld hﬁdev%loped slightly. and progressed eaa'twar@ﬂ_

Thus, the phase difference betwden the two fields has bé uced by
25°. The omega field has amplified somewhat during Ehe period and has

o
retrogressed 22 4

Figs. 5.1.- 5.2 are alsé the initial conditions used for
the solution by the FEM. Figs. 5.7 - 5.9 are the resulting twenty-
four hour foréc_gsts for the height, thickness and omega fields,
respectively. Only a very d,\e\tailed comparison of ‘the forecasts produced

. . 7‘\(.‘ .
by rhe two methods reveals any differences between them over the hi‘gixifr

resolution portion of the grid. Near the boundaries, it is appareqt

that the troughs and tidgés in the height field of the férite-element

solution (FE) have retrogressed slightly faster than those of the SP%
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The diagnostic omega fields for the two solutioms, Figs.
5.6 and 5.9, Q;e considerably different, however. The maxima in e
the omega field are larger in the FE and are closer to-the southern

boundary in the FE than in the SP. The minima of the FE behaVe in

i

an analogous manner, i.e. they are more negative and are closer to

N4

the northern boundary than are thdse of the SP. Whereas the SP has a
value very near 0.0 at the boundary, the boundary value of the FE fg
somewhat larger than O. 0 in absolute magnitude. . Investigations

g7 .
revealed that this‘remarkable difference in the two omega fields was
present even at the initial time. Thus, this difference is not due
:yuedt and growth of errors during ;he integration byt

V-,.' ‘;’ . )
“Pthe evaluat}pn.o& the diagnostic omega field of the FE

rather due
Using the boundary condition Bqn. (2.32), one may readily show that
thg right-hand-side o: :n. (2;30) should be zero on the Boundary, fox
the chosen initjial conditions. However, since the estiﬁate‘of the
vorticity, 6; is very poor on the boundary,lthe term J(&,a) is subjecqﬂ
to a large error on the boundary. When the boundary value of the omega

field is in error, the interior values of the omega field are also in

. error. The poor estimation of ‘the vorticit near the boundary also

causes an error in the evaluation of the right-hand-sides of Eqms.
(2.26) affd (2.29). However, thiérer;or is not as easily seen in these
cases as one is dealing with an error in the forecast of a relatively
shall change (i.e. aﬁfséilin 3 4#;gé quantity ({i.e. .

,

‘ The evaluation of the boundary conditionm, Eqn.'(2.33), also

‘s
r'3

makes a contribution to the errors near the boundaries. This boundary

- v
conditiop requires an integration along the boundary. Thus, values . ..
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from both tre |- ine low resolution portions of the grid are used
to;find the boundary condition for the entire boundary. This effec-
tively increases the truncation error in‘the x~-direction, along the
entire boundafy;“td that of,theﬁpprtion of the boundary with the
lowest res&iution.
o
The resolution in the y-diret;ion is very high near the

boundary. This band with high reéolu;ion along .the boundJ‘ges was used

Y

to try to. reduce the errors along the boundaries. With such resolu-

‘tion, a better estimate of the vorticity on and near the boundary can

-

be obtained. In addition, the evaluation of the boundary condition,

‘Fqn. (2.33), has‘greater accuracy as the truncation error present in

the discretizafion.of 3y/3y is reduced. Because of this area of high

resolution, however, a shorter time-step must be used in the integration

to prevent computational instgbility, as was discussed in Chapter 4.

Cullen (1536), Grammeltvedt (1969) and others have used
different initial conditions when performing numericgl experiments with

this model on this domain. Their initial conditions were characterized
A L) ?’

by fields with very little variation in the stream functions near the .

~.
boundary. . In éffect, then, there was a buffer of 600 - 800 km.-between

the boﬁndary and the region of intereft. This approach was not used 1n‘“

the present work, however, because the highly accurate spectral solution

i

would not have been available for comparison.
: v

Fig. 5.10a shows the evolutiog of the TE, KE and APE in thﬂ\

verification area (area C of Fig. 4.1) for the two solutions during the
. - ‘ : »
L 4

§
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»
forecast period. The TE of the SP increases by approximately 307
during the period of 1ntegratio&; This is not, however, in violation
of the conservation of TE, which was demonstrated in Chapter 3, as
this TE has been calculated only in the verification area and not over
the whole domain. As noted in Chapter 3, the conservation of the TE
of the SP over the whole domain was verified for a wide variety of
initial condftions. The increase of the TE of the SP in area C is due

to the motion of the fields.and the development of the fields during

the forecast period.

e
‘ing to Fig. 5.10a, we see that the gain in TE of the
SP is due to a gain in KE while the APE has remained nearly constant.

‘Thus; during the development of the waves, APE has been converted to KE

-~

but also, in the verification area, there has beeg energy imported.
. 4
It is not possible to say what proportion of the gain in KE is due to

importation and what proportion 1is due to development.

o

‘ . ‘ t -

' Fig. 5.10a confirmé that, with respect to the three energy

of
~

relative fo the SP in the verification area. The FE has lost approxi-

mately 2% of the TE in the verification area. This small error is seen
H

to be due to a loss in the APE of the FE relative to the SP, whgle it
1s noted that the KE of the FE 1is exXtremely close to that of the SP. .
The growth rate of the err?;iseems to be nearly linear, with the error

first being,noticeable after a;broximately ten hours of integration.
, \u.rs .

N 3
v Y "
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Fig. «5.10b indicates that the FE has also lost a small amount

of PE relative to the SP. The total loss is only .4X. Careful scru¥§

JrY

of Fig. 5.10b reveals” that the FE actually gained PE relative to the ﬁ{qi{g
-

o,
Ty

SP for the first twelve hours and then lost PE for the last 12 hours.
The small variation of the PE of the FE about that of the SP indicates

S
that the FE behaves quite well in this case.

In Fig. 5.11la, the KE of the two solutions is presented in
the zonal and edéy forms, while Fig. 5.11b gives the corresponding
values for the APE. As noted earlier, the KE of the two solutions is
essentially the same. However, the FE has lost ZKE relative to the SP
and gained an equal and opposite amoudt of EKE. There is roughly a 1%
difference in the ZKE between the two solutions. The loss in the APE of
FE relative to the SP 1s seen to be due to‘a'loss of-ZAPE while the

EAPE of the two solutions is essentially the same.

T@g reasons for the differences betwee he two solu;ions, as
shown in Figs. 5.10 and 5.11, are rathef hard to determine ptecisely.
As mentioned previously, there are‘error; in the FE due to space and
time discretization. Also, it has been dhown previously that, as a

-

result of space discretization, significant errors can occur near the
™ =
boundary due to the imperfect impiementation of;the boundary condition.
As_the time discretization scheme is Ehe same for both models, it is
expected that this, by itself, makes on%z e very small contribution to
the differences between t%e two solutioqsi=;it seems probable, however,
that the loss in ZAPE of the fE relative to the SP is due Egzthe poor

evaluation of the boundary condition since the boundary value plays a
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relatively larger role in the determination of the zonal quantities
than of the eddy quantities. The error in the ZKE of the FE is thought
to be smaller becsuse the boundary condition bn the helight field is
satisfied better than the one for the thick;;ss field. In this model,
the boundary value of the height field should not change with time but
that of the thickness field does. It was found that the’forecas:
change in the thickness field on the boundary in the FE was subject to
a large error but that the FE maintained the boundary value of the
height field fairly well. It is to be noted that the thickness field
v
and height fieldsd'qfhe smal

Fu
quantities are thoﬁihtﬁto be due to a combination of the various errors.

determines the APE whereas t}ﬁE is determined by both the thickness

rors in‘the eddy forms of the energy

It is probable that, during the initial few hours, errors due to space
discretization are most important. As the integration proceeds, errors
from the boundary will gradually infiltrate the high-resolution portion

of the domain and become more important.

. '\’\ S

Fig. 5.12a gives the S1 scores for tﬁe FE relative o the SP.
There ?? nearly a linear growth of the S1 secore for both the height and
thickness fields with the S1 score fo; the height fiefd growing more
rapidlyj. In the development of this score, Teweles and Wobus (1954)
indicatZH that, in the forecasting of tﬁe real atmosphere, an 51 score
of underv30 could be comsidered a perféct forecast wgile an S1 score of
over 70 would ind¥cate a useless forecast. For the present integration,

the S1 score has only grown to near 5 which indicates, according to

X
Teweles and Wobus's subjective criteria, an exceptional forecast.
- b
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However, care must be exercised here. 1In the present study, a highly
simplified model atmosphere is used and only a very limited number of
types of waves are allowed, in contrast to many types of wave motion
possible in the real atmosphere. Also, in the present study, the ini-
tial conditions are very weli specified and tﬁis is not true of fore—
caets for the real atmosphere where the initial conditions must be
specified by some objective analysis of actual reported data. Thus,
it seems reasonaEle to assume that Yhe g1 scores for the present study
should be significantiy lower than"hat might be expected of forecasts

of the real atmosphere. It is difiitult, howevd@, to objectively deter-

1
- D ‘d

mine how small the score should be" tf'dahcludo that a '"good" forecast’

has been generated The differeeces whgch were seen between the two
forecasts were very small and this, at least, gives one‘the impression

that the FE was very close to the SP and th%&g therefore, S1 sgores of /&

RN

about 5 or less indicate a good forecast.. With the presentat of the
remaining caees, an approximate u&éer 1imit for the S1 score representing
a good forééast may be found. *
. -E:}H

Fig. 5.12b shows thaR\ in the mean over the verification area,
the height field of the SP is 0.24 m higher than that of the FE and that
the thickness of the SP is 0.08 m %ower than that of the FE: Considering
that the fields under consideration have magnitudes of nearly 100 m and
that some points in the height field underwent changes of nearly™30 m
during the forecast period, these MD errors are quite respectable. The
MD for the height field is larger than that for the thickness field
because there were larger chapges in the aeighc field durihg the fore-

cast period. , -

e
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Fig. 5.12b also gives the MAD between the two solutions in
the verification area. The MAD for both fields grows to nearly 1.10 m
during the period of integration. The MAD for the thickness fiems
nearly linear growth while that for the height field appears to bé“

closer to-exponential growth.

It is interesting to note'that while the MD for the thickness
field was smaller, in absolute value, than that for the height field,
-
the MAD for the thickness field ls larger than that for the height field.
Thus, the errors in the thicknegg”field "re smakler than those of the

height field but there is a greater bias in the errors of the thickness
E .

field than in the héight field. 1In efféct, théséﬁresults suggest;tha;
although the error at individual points is, in general, smaller in thé
thickness field than in the height figld, the meaﬁ of the thickness
field is not being kept constant . as well as is that of the height fielé.
It is not possible to suggest the precise cause of this at th;a time.

. . . £ .

An intereéting comparison may be made»betweeg éigs. 5.12 ﬁ&d

5.11. Fig. 5.11 shows that the:KE of the FE is closer to that of the SP .
than is the APE. Fig. 5.12a sﬁgws that the gradient of the thickness
field is forecast well while in Fig. 5.12b, we hﬁ;& seen that the fore-

&

cast magnitude of the thickness field has a bias in it. The KE depénds :

“on the gradient of the thickness field while the APE depends on the

RO :
magnitude of the thickness field. Given that the ZAPE is in error by

the largest amount, it is suggesgéd that ;he errors in the forecast
magnitudes of the thickness field are produced largély by a poor imple-

mentation of the boan&ary condition.

%
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5.3 cCase II -~ Moderate Development

Case 1I is a situation favourable for greater development than ™’

Case I. Figs. 5.13 and 5.14 show that, initially, the trough in the

thickness field lags the trough in the mean height field by 90°. The

thickness fi‘.ﬂ for this case is very similar to that of Case I, but the

-

'wave in the height field is characterized by a much larger amplitude

for Case.II than for Case I. As a result, the emplitude of t.~ omega

field isglgisét for this case, as showh in Fig. 5.15. ga‘

! W

With the larger meridional gradient it the height field in

this ‘case, a large mean zonal wind exists in the domain. This means

that the wave in the mean height field s expected to move faster than

by in. Case I. Also{ the larger meridional variation in the mean height

) -
field implies greater thermal advection in this case. This increases
the rate of baroclinic development Thus, both the rate of propagation
and rate of development of the wave in the mean height field are expec-~

ted to have ‘been changed in Case II. i

Figs. 5.16 -~ 5.18 give the mean height, thickness and omega
fields, respectively, after 48 hours of integration with the spectral
method. (The length of integration has been increased as this will
provide a more stringent test on the conservative pfopertieszand of the
accuracy of the FE. Thls.will also allow a better investigafien'of the
poseibility of computational idetebili;y in the FE.). The wave in the " -

mean height field has developed and progressed eastward approximately

15°, - The wave in the thickness fie{d has decayed and progresséd

L

&
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eastward approximate.y 45°. Thus, the phase difference between the
waves in the two fields has been reduced to 60°. The wave in the

omega field has decayed slightly and progressed approximately 20°.

Figs. 5.19 - 5.21 show the mean height, thickness and omega

fields, respectively, for a 48 hour forecast using the FEM. The

Ca
’difféoances between the two solutions aye much more apparent in this

\sq than in Case I. Referring to Figs. 5.16 and 5.19, 1t 1is apparenc
that the FE has not maintained the north-south anti-symmetry present
in the SP. The trough; in the FE have undergone greater devglopment*
than those of the SP while the tidges of the FE have not been built as
high as those of the SP. This ‘seens to be due to ptoblems with the
boundary values of the FE. The SP has maintaineﬁ}a constant value for'
‘the mean height field along the boundaries while the boundary value of
th; FE has changed. Altgough aﬁy of the etroks previously discussed
could be the cause of thi;, it is probable the main cause 1s,;he poor
;valuatiqp of the‘vorticity near the bougdnr&.. This, as dﬂécussﬁg>in
Sec. 5.2, was found to be a major source of error near thq Poqndary.

Related to the above problem is the curvature: tn the trough
and tidg! axes of the FE. The SP has trough and ridge axes which are

north—south while those of the FE are slightl& curved. It appears that

the speed of these waves in the FE is slower than those of the SP near

: the boundaries but is faster than those of the SP in the .central portion

4£ ths damain. These errors are due, either directly or 1ndirectly, to

v
the problems near the boundaries. The averdevclopment of the troughs -

of the FE has led to larger zonal vind speeds in the trough in the ‘
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middle of the domain. This leads to a more rapid progression of the
trough axis in the central portio f the domain. Similarly, larger
gradients in the height field near the ridge axes 1in the centre of the
domain has caused a more rapid progression of the ridge axes. Near
the boundaries, just the opposige has happened. Gradients have been

reduced and the progress of the waves has been retarded.

Finally, the presence of a fe: small amplitude short wave-
length waves in the height field of the FE near the boundaries should
be noted. These are the waves which the smoother, discussed in Sec.
5.1, was designed to control. Also of note 1s the absence of these
waves in the region of the domain where the grid of the FE has very

poor resolution. The short wavelength waves could not be resolved in

this portion of the domain.

Comparing Figs. 5.17 and 5.20, it is apparent that there are
vast differenc;§\between the two solutions for the thickness field.
The FE has very nearly maintained the correct value for » maximum
value of the highs and the minigum value of the lows. However, the
maxima and minima of the FE are much closer to the boundaries than are
those of the SP. This =s been caused sy thé‘;roblems with the boundary
value of the FE. For this case, the boundary value of the SP has

changed very little during the iﬂtegration period while the boundary

value of th¢ “E has definitely changed during this period.
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li. the central portion of the grid, the FE is within a few
percent ot the SP however. The zero thickness isopleth is forecast
very well by the FE near the centre of the grfd even in those regions
with relatively poor resolution in the dire : . The phase speeds

in the central portion are nearly ider . the meridional!

amplitude of the zero isopleth.

The short wavelength waves are moré notic able in the thick-
ness field of the FE than they are in the height field. Their ampli-
tudes are small however. The waves are not distinct enough in either
field to judge whether these short wavelength waves are in a position
favourab ~ for development or not.

The omeg. fields of the two solutions, shown in Figs. 5.18
anu 5.21, are drastically different. The trough and ridge axes of the
FE have a distinct curvature to them whereas those of the SP are.straight
lines oriented north-south. This curvature is simply a reflection of
the curvature of the axes in the height and thickness fields of the
FE_fOund previéusly. The maxima/minima of the FE are more positive/
negative than are those of the SP. This is indicative of the greater
development which the FE has undergone. Also, the maxima and minima of

the FE are located nearer to the boundaries than are those of the SP.

There are numerous spurious short wavelength waves present in
the omega field of the FE. Altt ugh they are most common and have

their large -t amplitudes nearthe boundaries, they are also present well



1y

into the domain. These waves in the interior of the domain w: ~e not
visible in the height and thickness fields but they must ha'~ been
““ere or they would not be present in the omega field. Thus, some

~m- 1 amplitude short wavelength waves have propagated well into the

grid.

Fig. 5.22a shows the TE, APE, and KE in the verification area
for this case. The TE of the SP rises during the integration period
for the reasons discussed with Case I. However, the TE of tﬁe FE rises
faster than that of the SP. After 48 hours, the TE of the FE is
approximately 6% larger than that of the SP.. This increase in TE {is
due largely to the increased gradients in the mean height field of the
FE which were seen earlier. The gain in the TE confirms thz the wave
in the mean height field of the FE has developed more than the wave in
the SP. Also, it should be noted that the divergence in the TE of the

two solutions does not begin until after twenty-four hours

Further study of Fig. 5.22a reveals that the gain in the TE
of the FE relative to the SP is due to a large gain in the KE of the FE
Arelative to the SP which is only partially compensated for by a loss in
the APE of the FE relative to the SP. The divergence of the KE and
APE of the two solutions begins after only twelve hours of integration.
During the period from twelve to twenty-four hours, the KE and APE of
the FE, although in error wi;h respect to the SP, adjust themselves so
that the TE of the two solutions is the same. Thus, during the first

twelve hours, the two solutions behave similarly. During the twelve to
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twenty-four hour period, the FE converts APE to KE at a faster rate

than does the SP. During the final 24 hours, the FE either imports
energy into the verification area or it has created some spurious source
of energy. It seems probable that there has been importation of

energy. In the FE relatively large amounts of KE have been concentrated
in the middle portion of the domain.whi. the KE near the boundaries

is lower in the FE than the SP. This can be seen by comparing the
gradients in the mean height field of the two solutions. A calculatiog\
-f the meridional momentum transport might have given further insight
here but this was not thought of until after the computation was

finished.

Fig. 5.22b shows that the PE of the FE is less than that of
the SP during the forecast period. The PE in the verification area
clanges significantly during the period and the FE under-forecasts the
change in PE by nearly 20X. This result is a little surprising as, with
the greater development of the FE, one would expect larger vorticities
in the FE than in the SP. However, the troughs aﬁd ridges are sharper
in the SP than in the FE and, thus, the vorticity of the FE is lower.
Also, the thickness field of thé FE has smaller values over the verifi-
cation area than does the SP. These effects both act to give the FE a

lower PE than the SP.

In Fig. 5.2%a, it is seen that the FE gains a significant
amount of ZKE relative to the SP while losing & small amount of EKE

relative to the SP during the forecast period in the verification area.
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The difference appears in the ZKF after fifteen hours and in the EXE
after twenty-four hours. The aforementioned meridional transyport of
east-west momentum towards the centre of the domain in the FE has
presumably led to this increase in the ZKE in the verification area.
It seems that EKE i(n the FE has been converted to ZKE as well. This
is reflected in the relatively broad troughs in the FE. This, 1
believe, i1s a natural result of the process of baroclinic development.
During development, ZAPE is converted to EAPE; EAPE 1is converted to
EKE; and, finally, EKE is converted to ZKE, as discussed by Holton
(1972). The wave in the FE is at a more advanced state of development
than the wave in the SP. P;ysicallv, the wave in the FE has presumably

begun to slow down its rate of growth and soon, it is expected the wave

will undergo the process of occlusion and begin to decay.

Fig. 5.23b shows that, in fact, the APE of the two solutions
is not the same during the initial twelve hours as suggested when
Fig. 5.22a was discussed. The resolution of ;hat figure was not high
enough to see that the FE continuously loses APE relative to the SP.
It is important to note, however, that in this case, the APE is much
smaller than the KE. Thus, for this case, a 10¥ error in the APE has
the same effect on the TE as approxihately a 1% error in the KE, i.e.

the error in the QPE is a less important measure of the performance of

the FE than is the KZ.

The loss of APE in the FE relative to the SP is seen, in Fig.
5.23b, to be due to a loss of both ZAPE and EAPE. During development,

there is a conversion of ZAPE to EAPE. The FE loses ZAPE slightly



faster initially than the SP does but the difference in the ZAPE

between the two solutions remains relatively smal! However, after
twelve hours, the FE begins to lose EAPE rapidly with respect to the
SP. It seems that energy in the FE, during the last thirty-six hours
of development, is being rapidly transferred from ZAPE through the

EAPE and EKE forms to ZKE, i.e. the FE has an accelerated transfer of
energy during the baroclinic development. The result is a loss of
ZAPE, EAPE and EKE in the FE relative to the SP with only the ZKE of
the FE larger than that of the SP. The error in the ZKE begins to grow
most rapidly a few hours after the error in the EAPE begins {its rapid
growth. This suggests that there is a causal relationship between the
two errors. The relationship is somewhat clouded by the possibility of
either net energy importation to or exportation from the verification

area.

Fig. 5.24a shows that the S1 score for the thickness field has
grown more rapidly than for the height field. The growth of the S1
score for both fields is approximately twice as fast as for Case'[. The
faster growth of the Sl scores in Case II may be due either to the
faster growth or to the greater motion im Case II. In both casés, the
field which underwent the greatest change had the larger Sl score. The
final S1 score for the height field is near 18. In the preceding discus-
sion of the various energy quantities, it was found that errors began to
grow rapidly after twenty-four hours. After thirty hours, large differ-
ences between the two solutions were common in the energiés. This
suggests that an S1 score of les; than ten or twelve indicates a ''good"

forecast. This is a subjective criterion and further discdssion,will be
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" . presented with the final cases.
$

Fig..S.Ebb gives the MD and MAD curves for the two models for
this case. Most notable is the large growth of the MAD between the
mean height f{elds. This -s indicative of the greater development
presen in the FE. The MD between the mean he&ght fields grows to
approximately 7 meters. This indicates that the areas of low height
have developed faster than the highs have built, in agreement with what
was observed earlier. 7Tn contrast, the MD betpeen the thickness fields
stays relatively small and negative. The MAD Letween the thickness
fields rises to almost 7 m. These results in&icate that although there
are large errors in the thickness f{eld of the FE, there is very little

bias towards either raising or lowering the mdan of the field in the

verification area.

In Fig. 5.25a, the KE, APE and TE of both solutions over the
entire domAin are presented. The TE of the S? changes by approximatelv
7% during the forecast period. The TE of theiSP should be conserved and
this error is due to the method used for calcFlating the TE here. For
this figure, the values of the SP at the gridjpoints were found and a
numerical integration was performed, as descgibed in Section 4.3. Thus,
this error is due ta the discretization of tﬁe SP and the truncation
errors in the numerical integration. In fadt, as discussed in Section.
3.3, it was confirmed that the SP conserved TE to better tham 1 in 104.

During the forecast period, the TE of the FE changes by less than 3%.

Considering that the SP was subject to a 7% error due to the discreti-

zation process, the FE has conserved TE quite well. The maximum
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difference between the TE of the two solutions 1is only 3X. The KE of
the two solutions is essentially identical but the FE does gain APE
relative to the SP. Tbia is probably due to the problems with the
boundary value of the thf{ 'ness field. During the integration period,

this has caused a gain of 31 {n the TE for the entire domain.

Fig. 5.25b gives the PE of the two solutions for the entire
domain. Once again, there is a small error in the PE of the SP due to
the numerical integration process. More important, however, is the
striking gain in the PE of the FE after twenty-four hours. Thig large
amount of PE is found in the spurious short wavelength waves generated
near the boundaries. These waves were fou&d to have vorticities which
were an order of magnitude larger than vorticities elsewhere in the
domain. It {s apparent that the smoother which was used was not ade-
quate to control the development and growth of thes; waves. It is
probably pure coincidence that the error in the PE of the FE begin to
grow most rapidly at approximately the same time the forecast in the
verification area was found to degrade rapidly. The PE of the FE was
found to be smaller than that of the SP right to the end of the integra-~
tion. This indicates there was little or ng contamination of the fore-
cast in the verification area by the short wavelength waves. However,
the éxponential growth of the PE indicates the potential for future

problems if the integration had proceeded further in time.

5.4 Case III - Strong Development

Case III is a situation favorable for strong development.

Pigs. 5.26 - 5.28 give the initial height, thickness and omega fields,
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respectively. The height and thickness f{elds are characterized by
large gradients and the troughs in the thickness f'old lag those of

the height field by 90°. The thermal advection, whi.h 1s essential

for baroclinic development, is considerably greater than in the previous
cases. This will promote strong development. The initial omega field
has relatively large values for synoptic~scale vertical motion, ind{
cating the vigour of the situation under consideration.

It was intended to integrate this case for forty-eight hours
but computational instability occurred in the FE and the integration
had to be terminated after thirty-two hours. Fig. 5.29 shows the mean
height field of the SP after twenty-four hours. The wave has developed
and progressed eastward approximately 30°. Fig. 5.30 shows the thick-
ness field for the SP after twenty-four hours. The wave has progressed
approximately 50°. The meridional amplitude of the thickness field has
increased which implies the conversion of ZAPE to FEAPE during the fore-
cast period. On Fig. 5.31, we see that the amplitude of the omega

field has decreased by approximately one-fourth and that the wave has

progressed approximately 40°.

Figs. 5.32 and 5.33 show the mean height and thickness fields
| of the FE after twenty-four hours. The differences in the mean height
Eields of the two solutions are similar to those present in Case Id.
The trough and ridge axes are tilted. There has been preferential
development in the northern half of the domain and spurious short-wave-

length waves are rresent near the boundaries again. The thickness
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fields differ in many of the ways found in Case I1. Once again, the
high and low centres of the FE have migrated towatds the boundaries.
\\

Figs. 5.34 and 5.35 ahow CQQ Mtan height and thickness
tields of the FE after thirty-hours. Ic 43 apparent tha' some of the
short-wavelength waves, which were present along the boundaries, have
grown explosively and overwhelmed the wave of interest, thereby
ruining the forecast. This displays the effect of numerical computa-~
tional instability. By thirty-three hours, the amplitude of these waves
had grown so large that an overflow condition was obtained on the

computer.

In Fig. 5.36a, we see that the FE has gained TE relative to
the SP, as in Case I1. As with Case II, the error is quite small after
twenty~-four hours of integration. The FE has, once again, gained KE
relative to the SP but lost APE. After twenty-four hours, the FE in
both Case II and Case III has nearly maintained the TE in the verifica-
tion area through equal but opposite errors in the EKE and APE. How-
e;er, the fields in Case III have undergone greater development and
faster motion than those in Case II. Thus, it seems the growth of

errors is not very dependent on either the rate of development or speed

of the fi- d

In Fig. 5.36b the PE of the two solutions is presented. The
error in the PE of the FE is approximately 5%, which is nearly identical

to the error in the PE in Case II after twenty-fosr hours.
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In Fig. 5.37, it will be seen that the zonal and eddy forms
of the KE and APE of the FE behave in a st#hilar manner to those 1in
Case II. However, the errors are larger than in Case II. For example,
the error in the ZKE 6f the FE after twenty-four hours is only 7% :a
Case II but is over 30X in Case III. Thus, although the error in the
TE of the two cases had similar errors, the individual elements making
up the TE are subjeét to greater errors in this case. In Case II, it
was suggested that the FE underwent an accelerated development relative
to the SP. The results of this section indicate that this has occurred

in this case also, and, that the rate of accelerated development

depends, at least somewhat, on the rate of development.

Fig. 5.38 shows the S1 scores and the MD and MAD curves for
this case. Using the subjective criteria suggested in Section 5.3, the
S1 scores suggest the forecast was ''good" for approximately sixteen
hours. The MD and Mép curves exhibit similar events to those of Case

a II. The errors have grown faster in this case.

5.5 Case IV - Moderate Decay

In Case IV, the troughs in the thickness field lead the
troughs in the iean height field by 900, as the initial conditions given
in Figs. 5.39 - 5.41 show. The initial amplitudes of the waves are the
same as in Case II. With suéh a phase relationship between mean height
and thickness, the wave in the mean height field decays and there is
a conversion of KE to APE. This is the opposite of what happened in the

previous cases.
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Figs. 5.42 - 5.44 give the mean height, thiclmess and omega
fields, respectively, for the SP after forty-eight hours of integratiom.
The wave in the mean height field has decayed in amplitude and has
retrogressed approximately 12°. The wave in the thickness field has
also decayed in amplitude aﬁh has progressed 70°. At this time, the
waves are almost 180° out of phase. They appear to be in the process
of adjusting themselves so that their phase becomes favourable for

development. The omega field appears to have changed very little in

either amplitude or position during the forecast period.

Figs. 5.45 - 5.47 give the three fields for the FE after
forty-eight hours. The mean height field of the FE and the SP are very
similar over the high-resolution portion of the grid. In fact, near
the centre line of the domain, the FE is barely distinguishable from the
SP until the grid spacing in the x-direction approaches 800 lm. However,
short-wavelength waves are present nhear the boundaries and ﬁhooe near
the north boundary have not decayed as rapidly as those near the south
boundary. Comparing this with the results of previous cases, it indi-
cates there is a predilection for development/decay near the north/
south bound;ary. This is probably due to problems with either the calcuy-
lation of various quantities (e.g. vorticities) near the boundary or
due to the implementation of the boundary condition. It seems probable
that this bias is related to the sign of the height field at the boun-
dary, i.e. the positive/negative boundary wants to become more positive/
negative. The thickness field exhibits a large amount of curvature in

the trough and ridge axes in this case. The precise cause of this is



unknown. However, the major cause of <hgnge in the thickness field in
this case was motion as opposed to decay. Thus, it seems reasonable

to expect the source of the problem to be connected to the motion of

" the field.

t

The omega field of the FE has a larger amplitude than does
that of the SP. This is partially due to the causes discussed in
L )

Section 5.1. A secondary cause is the increased thermal advection in

the FE over the SP due to the errors in the height and thickness fields

/

of the FE. ‘

g

In Fig. 5.48a, it can be observed that the FE ﬁas gained TE
relative to the SP during the forecast period in the verification area;
This glso occurred in Case II and 1s likely indicative of the bias with
rgspect to development at the boundaries.. The slc daérgase in the TE
of thé SP simply indicates there is a net eéport»of energy from the
verification area; whereas a net import was found for the developing
cases. The APE of the solutions is very nearly the same during the
period but the FE has gained KE relative to the SP. This was /ti:he cause
of the gain 1; the TE of the FE in the developinhg cases also. The APE
changes very little duriné the period suggesting there is very little

decay in the verification area, or that an importation of APR,to the

verifiecatior area has taken place.

~ Fig. 5'.18b shows that the FE loses PE relative to the SP

during the first th;;tyfgix hours of integ;ation but gains it back during
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the last twelve hours. The maximum difference between the PE of the

two solutions is less than 4.

Fig. 5.49a shows that the gain of KE by the FE is due to a
gain of ZKE. The EXE of the two solutions 1is very similar throughout
tﬁe forecast period. The error in the ZKE of the FE occurs early in
the forecast period and grows slowly during the period to a maximum of
14%.

[
According to Fig. 5.49b, the FE loses a small amount of APE
relative to the SP during the forecast period. The error is very small
during the first thirty hours of integration as there are roughly equal
and opposite errors in the ZAPE and EAPE. However, the errors in the
ZAPE and EAPE stay relatively smgli throughout the forecast period.

/

)

Fig. -ives the S1 scores and the MD and MAD curves for
this case:‘ T*érgI‘Sforg rises rapidly for the thick- ~s field. This is
further confi- dio: of fﬁe errors which evolved in " FE during the
rapid movement ol _nis field. The S1 score for the height field rises
at a much slower rate. Near the end of the period, the S1 score for the
height field begins to rise more rapidly. It seems possible.that this

is a reflection of the poor thickness forecast as the two fields are

connected through the model equations.

The MAD curves for the height and thickness fields are nearly

. parallel as they rise. They rise to a maximum of less than 5 m, which
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is quite respectable compared with the previous cases. Once again,
the MD curves suggest the height field of the FE 1s subject to some
effect which causes the mean height field of the FE to become progres-
sively lower than that of the SP. As discussed in Sections 5.2 an.
5.3, it is felt that this is due to problems at the boundary. This

effect occurs early in the period and seems to have less importance in

the thickness field forecast.

Fig. 5.5la gives the TE, KE and APE of both solutions over
the entire domain. It is_épparent that the FE has conserved TE very
well. However, the FE does not convert as much KE to APE as does the
SP. This 1s due to the problem: v¢ith development and decay near the
boundaries which was discusséd earlier. Fig. 5.51b shows the PE for
the two solutions over the eﬁtire domain. Once again, the PE of the FE
rises rapidly during the fotrecast ﬁeriod,_as d result of the short-

wavelength waves generated near the boundaries.
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CHAPTER 6

CONCLUSIONS

The finite-element method and the spectral method have been
used to numerically integrate the equations describirvc a two—levgl
quasi-geostrophic model of atmospheric flow on a B-plane. The solu-
tions using the two numerical methods for a group of cases have been
compared. The spectral solution, being believed to be highly accurate,

was used to evaluate the performance of the finite-element solution.

It was found that the largest errors in the finite-element
solution arose near the boundaries of the grid. In the interior of the
grid, the finite-element solution compared very well with the épectral
solution. Over that portion of the gridkwith high-resolution, only
minor phase or amplitude differénces were found between the two solu-
tions. As the time of integration increased, the errors in the finite-

e.ement solution generated along the boundaries slowly infiltrated the

interior of the grid.

Two major sources of the boundary errors were found. It was
suggested that the major error source was the evaluation of derivatives
perpendicular to the boundaries. In particular, higher-order deriva-
tives were found to be subject to the greatest errors. Thus; vorticities
were not well calculated by the finite-element method along the boundary.
In an attempt to minimize this problem, a poftion of the grid near the

boundaries was chosen to have high accuracy in the direction pefpendicp—
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lar to the boundaries. Further steps could possibly be taken t¥d mini-
mize this source of error. For example, the vorticity on the eflge
could be '"tied" to.the first interior grid point, i.e. the vo ticity
or the . lge couid be set equal to the vorticity at the first Qngerior
grid point. The success or failure of this technique would depend on
the system of equations which would result from this approximation.
It was not attempted as it would have required a major rewriting of
computer routines and there was no stfong evidence that it would

dramatically improve the results. It is, however, a technique deserving

of future consideration.

The second source of error at the boundary was that due to
the implementation of the boundary condition, Eqn. (2.33). This required
an integration along the-boundary and was subject to the truncation
error in the numerical integration. The magnitude of this truncation
error was determined by that portion of the boundary with the largest
grid spacing in the x~direction. The effect of this error on the solu-
tion could be most effectively minimized by ensuring that the boundar-
ies are well away from the area ¢! interest and by, if possible, using
a high-order numerical integration schemé. In this work, the first
technique could not be used. The second technique was not fully studied
as it segped the poor evaluation of perpendicular derivatives at the

boundary was of much greater importance.

The téchniques for avoiding or preventing>the numerical

instability found in Case III are reasonably well known. The small grid
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lengths in the y-direction combined with the relatively long time-step
have led to this instability. Increasing the grid length and/or |
decreasing the time-step would prevent this. A different time inte-
gration scheme could also be used. In the problem under considerationm,
the elimination of the small grid spacings\near‘the boundary would be
most economical in terms of computer time. This éould be implemented
wvhen, as discussed earlier, an improved method of evaluating the deri-

vatives perpéndicular to the boundaries was found.

The two methods of solution were used for only a limited
number of cases. There are other atmospheric flows which would be
interesting to study. For example, it would be interesting to compare
the two solutions when a barotropic atmosphere (i.e. one in which the
thickness field was zero everywhere) was considered} In this case,
the height field would simply translate, i.e. there could be no develop-
ment. By studying cases with varying speeds of translation, one could
study how well the finite-element solution deals with translation and
seek to determine a relation between the growth of errors and the speed

"of translation. A companion set of cases to these would be those in
which the height field is stationary (or nearly so) but developing.
Then, one could seek a’relstion between the growth of errors and the
rate of development. These two sets of cases would help to answer some
of the questions raised in Chapter 5 where the effects of tramslation

and development could not be separated.

AN

1. Note that the perturbation thickness field is implied here.
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Although some AiffiCulties have been experienced in implem-
enting the FEM, it has demonstrated that it is a technique worthy of
study when one 1s considering atmospheric flow problems. 1In the
future, the author hopes to use the FEM for the solution of a more
complicated atmospheric model. This model is presently being used
for operational weather forecasting at the Alberta Weather Centre.using

finite-difference techniques.
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level Pressure ( mb '
0 i — 0
1 ¥ 250
2 “2 ‘\": 500
3 W:‘ 750
4 ") 1000

Fig. 2.1 Vertical discretization of the model showing
the five levels used, with pressure as the
vertical coordinate. ¢, is the stream function

at lev:1 i and By is the vertical velocity at
level {1,

o%

in e horizontal plane ¢, is the
ar . the plane is tangent to the
%x-- rection s east; the y-direction
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Fig. 5.1 Initial mean height field in metres for Case I
in (a) area B and (b) area A.
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Fig. 5.2

Initial thickness field in metres for Case I
in (a) area B and (b) area A.
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Fig. 5.4 The 24-hour spectral solution for the mean height
field in metres for Case I in (a) area B and
(b) area A.
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"Fig. 5.5 The 24-hour spectral solution for the thickness
field in metres for Case I in (a) area B and
(b) area A.






Fig. 5.7 The 24-hour finite-element solution for the mean
height field in metres for Case I in (a) area B
and (b) area A. 4
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Fig. 5.8 The 24-hour finite-element solution for the thick-
ness field in metres for Case I in (a) area B
~and (b) area A. '
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Fig. 5.9 The 24-hour finite-element solution for the omega
field in pbar/sec for Case I in (a) area B and
(b) area A.
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Fig. 5.13 1Initial mean height field in metres for Case II in
(a) area B and (b) area A.



Fig. 5.14 1Initial thickness field in metres for Case II in
‘ (a) area B and (b) area A.
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Fig. 5.15

Initial omega field in ubar/sec for Case II in
(a) area B and (b) area A.

112



MW I M B s e e

The 48-~-hour spectral solution for the mean height
field in metres for Case II in (a) area B and
(b) area A.
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Fig. 5.17 The 4f-hour spectral solution for the thiclkness
fiel. .n metres for Case II in (a) area B and
(b) area A.
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Fig. 5.18 The 48~hour spectral solutiocn for the omega field
in pbar/sec for Case II in (a) area B and
(b) area A.

115



nhw// 116

120 %\p
129 .
) .

120

Fig. 5.19 The 48-hour finite-element solution for the mean
height field in metres for Case II in (a) area B
and (b) area A.
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Fig. 5.20 The 48-hour finité-element solution for the thick-
ness field in metres for Case 1I in (a) area B
and (b) srea A.
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Fig. 5.21 The 48-hour finite-element solution for the omega
field in ubar/sec for Case II in (a) area B and

(b) area A.
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Initial mean height field in metres for Case III

in (a) area B and (b) area A.

Fig. 5.26
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Fig. 5.27 1Initial thickness field in metres for Case III in
(a) area B and (b) area A.
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Fig. 5.29 The 24-hour spectral solution for the mean height
field in metres for Case III in (a) area B and
(b) area A.
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(b)

The 24-hour spectral solution for the omega field

in ubar/sec for Case 1II in (a) area B and
(b) area A.

Fig. 5.31
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Fig. 5.32 The 24-hour finite-element solution for the mean
height field in metres for Case II in (a) axea B
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Fig. 5.33

The 24~hour finite~element solution for the thick-
ness field in metres for Case III in (a) area B

and (b) area A.
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Fig. 5.34 The 30-hour finite-element solution for the mean
height field in metres for Case III in (a) area B
and (b) area A.
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(b)

Fig. 5.35 The 30-hour finite-element solution for the thick-
ness field in metres for Case III in (a) area B
and (b) area A.
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Fig. 5.39 Initial mean height field in metres for Case IV
in (a) area B and (b) area A. -
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Fig. 5.40 Initial thickness field in metres for Case IV
in (a) area B and (b) area A.
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Fig. 5.41 Initial omega field in ubar/sec for Case IV in
(a) area B and (b) area A.



POTATSOOR

:
:

Fig. 5.42 The 48-hour spectral solution for the mean height
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Fig. 5.43 The 48-hour spectral solution for the thickness
field in metres for Case IV in (a) area B and
(b) area A.
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Fig. 5.44 The 4B-hour spectral solution for the omega field
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Fig. 5.45 The 48-hour finite-element solution for the mean
bgight field in metres for Case IV in (a) area B
and (b) area A.
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Fig. 5.46 The 48~hour finite-element solution for the
thdckness field in metres for Case IV in (a) area B

and (b) areas A.
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Fig. 5.47 The 48-hour finite-element solution for the omega
field in ubar/sec for Case IV in (a) area B and

(b) area A.
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APPENDIX A

COMPUTER PROGRAM LISTINGS

This appendix contains a listing of the computer Drograms

used and developed for this thesis. In addition, some plotting

routines available on the computer were used. All calculations

were done using double-precision variables.
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FILE: FEMAIN
FILES:
OBJUECT - FEMAIN.O + INTERP O + DIFF O # PROJ.O + PROD.O
INPUT
2 = RELDAT
3 = FEMIN
4 = MESHD
5 = VMESH
ouTPUT
6 -« *PRINT*
7 = GARBAGE
8 = FEDIAG
PROPER DIMENSIONS
X(NIU) LY (NJU) CXT(NIPD LYT(NUP)
XCI(NI.NJ) L TAU(NI  NJ) JOMEG(NI .NJ)
WK 1-WK7 DIM. MAX(NI NJ)

THIS IS THE MAIN ROUTIME FOR THE FINITE ELEMENT MODEL.

IMPLICIT REAL*B (A-H,0-Z)

DIMENSION X(281). Y(4S), XI(63). YI(27)
DIMENSION XCI(63,27), TAU(63,27), OMEG(63,27)
DIMENSION FX(63,27) FY(63,27).FXY(63.27)
DIMENSION D(4;:281,4%5) WORK(45,8)
DIMENSION SPAR(E)

DIMENSION SPARX(S6)

DIMENSION WKA(€3,27)

DIMENSION WKB(63,27)

DIMENSION WKC(63,27)

DIMENSION WKD(63,27)

DIMENSION WKE(63,27)

DIMERS ION WKF(63,27)

DIMENSION WKG{63,27)

DIMENSION WKH(63,27)

DIMENS” KI(63.27)

DIMENS KJ{(63.27)

DIMENSICU: WKK(6€3,27)

DIMENSION WKL(&3,27)

DIMENSION OUT(83.27).XC11(63,27),TAU1(63,27)
DIMENSION XCT2(63,27),TAT2(63.27)

REAL*8 L.LX,LY,L2,L3

REAL*B LYPR,LXPR

COMMON / WKS1D1 / WK1(63)

COMMON / WKS1D2 / WK2(63)

COMMON / whS1D3 / wK3(63)

COMMON / WKS1D4 / WK4(63)

COMMON / WKS51DS / WKS5(63)

COMMON / WKS1D6 / WK6(6€3)

COMMON / WKSI1D7 / WK7(63)

COMMON / WKS108 / wK8(63)

COMMON / WKS$S1D9 / WK9(63)

COMMON / WKS110 / WK10(63)

COMMON / WKS1X1 / wWK1X(63)

COMMON / WKS1X2 / wk2x(63)

COMMON / WKS1X3 / WK3X(63)

COMMON / WKS1X4 / wKax(63)

COMMON / WKS1X% / WxSXx(63) o

COMMON / HXMESH / ;

HX(63) .
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C
C
c

OO0 OO0 OO0

c
c

COMMON / HYMESH / HY{(27)
COMMON / HXMESt / HX1(63)
COMMON / HYMESt / HY1(27)
COMMON / RATIODY / RAT1(63,27)
COMMON / RATIIY / RATI$(863,27)
COMMON / RATIO4 / RATAy:a °7)
COMMON / RATIOO / RATO(63,.7)
COMMON / RATID2 / Rsi2(G3,27)
COMMON / RATIQ3 / RAT3(63.27)
COMMON / RATIQS / RATS(ARX .7)
COMMON / CONSTA / €C4.C5

LOGICAL FODURTH
LOGICAL*1 LFMT( 1)/ *"/

DATA SPAR/.300D0, .50D0. .3000. . 1500, .08D0, .0200/
ODATA SPARX/. 1000, .15D0O, . 1000, .0500, .01D0, .00%00/

ICNT=0
CALL PLOTS
CALL ORGEP(1.0,1.0.1.0)

SET CONSTANTS

ALP=-12.0D00/5%.000

LX=2.8007

LY=8.8006

PI=3.1415926%400
LYPR=2.0D0*PI/LY
LXPR=2 ., 0D0O*PI/LX

FO=1.03120-4

DP=5.0004

BETA=1.62D0-11

S1G=2.8D-6

G=9.806D0

L=t X/2.000/P1

L2=L*L ,

L3=1.000/L2

ALPHASLX/LY

ALP2=1 _.O/ALPHA/ALPHA
C4a=L*L*FO*FO/G

CS=DP*FO*10.

BETAO=-BETA/FO
SIGS=DP*DP/2.0D0/FO/FO/L/L*SIG
SIGI=1.0D0/SIGS

SI1GU=L2*SIGI

OMCT=2 . 0D0*L*L*FO*FO/(SIG*OP*DP)
OMCO=OMCT*L*L

BEPR=2 .ODO*L*L*FO*BETA/(SIG*DP*DP)
HELMCF =2 ODO*FO*FO/(SIG*DP*DP)

i\

SET FOURTH = .TRUE. FOR FOURTH ORDER SOLUTION AND
FOURTH » .FALSE. FOR SECOND ORDER SOLUTION.

FOURTH = . TRUE.

READ NO. OF POINTS IN X AND Y DIRNS OF UNDERLYING GRIO.

READ(4,LFMT) NIU NJU

READ NO. OF PTS IN X AND Y DIRNS. OF NON UNIFORM GRID

READ(4 . LFMT) NI .NJ
NIP=NI
NJP=NJ

READ NO. OF PT8 fﬁ-; AND Y DIRNS OF UNIFORM PART OF NON-UNIFORM GRID

READ(A,LFMT) NILA,NJLA
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130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
143
146
147
148
149
150
151
152
183
184
155
156
157
158
189
160
161
162
163
164
165
166
167
168
169

171
172
173
174
17%
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
183
194
198

[sNeRy] aOo0O0n [sNeNeNe] [eXeXe] [eXeNe] OO0 ao0Oo0 [eNeRe] OO0

[sNeNe] oo0oo0n

[eNsNel

READ X AND Y MESH LENGTHS OF UNDERLYING UDIFORM GRID
READ (4. LFMT) MHXU,HYU

READ X AND Y MESH LENGTHS OF UNIFORM PART OF NON-UNIFORM GRID
READ(4,LFMT) HXN,HYN

READ X-PQOSN’S OF UNDERLYING GRID
READ(5.LFMT)(X(I),I=1 ,NIU)

READ Y-POSN‘S OF UNDERLYING GRID
READ(S.LFMT)(Y(1),I=1,NUU)

READ X-POSN’S OF NON UNIFORM Gs
READ(S.LFMT)(XI(I), I=1 NIP)

READ Y-POSN'S OF NON UNIFOR* 441D
READ(S.LFMT)(YI(I) I=1.2" ° i

READ NO. OF WAVES, NO. OF HOURS FOR PROG., TIMESTEP, NO. OF
HOURS BETWEEN OUTPUT QOF MAPS. ’

READ(3,.LFMT) N,M.DT,IDT2

"READ INITIAL VALUES OF HEIGHT, THICKNESS ANO OMEGA FIELDS

P

READ(3.LFMT) XCXI1.XCIQ.XCIS,TAUU1.TAU2.YAU3.0MEG1.0NEG2.0NEGS
READ INITIAL HEIGHT CHANGE GUESSES TO SAVE CPU TIME
READ(3.LFMT)DXC1,DXC2,DXC3,DTA1 . DTAZ, DTAZ
READ RELAXATION PARAMETERS.

READ(2,LFMT) RELF _XTOL
READ(2.LFMT) RELFH, XTOLH
DT 1=0T* . 5000

NIPM=NIP-1

NUPM=NJP -1

NIM=NI-1

NUM=NJ- 1

CALCULATE GRID LENGTHS OF NON UNIFORM GR1D

CALL CALH(HX1.XI,NIP)
CALL CALH(HY1,YI NJUP)
HX 1 (NIP)=HX1(NIPM)
HY 1 (NJUP ) sHY 1 (NJPM)
DO 60 I=1,NI

60 HX(I1)=HX1(I)
DO 65 J=1,NJ

65 HY(J)=HY1(J)

FORM RATIO MATRICES FOR SOLUTION

HELP=S.ODO*HELMCF/12.0D0

DO 848 J=1,NJ :
Jisy-1

HY2sHY (V)

"TF(J.EQ.1) GO TO 849



196
197
198
199

20t
202
203
204
205

207
208
209
210
211
212
213
214
218
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
23%
236
237
238
239
240
241
242
243
244
, 245
246
247
248
249
250
251
%2
2%3
254
2953
286
257
a9%8
258
260
261

HYJUsHY2+HY (J1)
849 DO 848 I=1 NI
I1m]- "
HX2=HX( 1)
RAT1(I,J)=HY2/HX2
RATIN(I J)=1 ODO/RATI(I . J)
IF(1.LT.2.0R.J.LT.2) GO TO 848
HX T 2HX2+HX(11)
RATO(1.J)=HY2*HX2
. RAT2(1I.J)=HY2*HXI
RATI(I,J)=HYU*HX2
RATA(I1.J)=RATI(I J)+RATI(I1,J)+RATI(I J1)+RATI(I, UY)
RATA(1,J)*RATA(T JI+RATTI(I,U)+RATIA(I1, J)+RATII(L J1)
RATA(1.U)="RATA(I,J)*MATLI1(11,U1)
RATS(1,J)=RATA(I, J)I+HELP*HXI *HYV
RATS(I,J)=1.0D00/RATS(I, J)
RATA(I.J)*1.000/RATA(1,J)
848 CONTINUE
c .
C CALCULATE INITIAL VALUES AT GRID POINTS
c
XCIT1=XCII1*DSQRT(2.000)
XCI2=XC12*2.0D0
XCI3=XCI3*2.000
DXC1=DXC1*DSQRT(2.000)
DXC2=0xC2"2.000
DXC3=DXC3*2.000
TAUU1=TAUU1*0SQRT(2.000)
TAU2=TAU2*2.000
TAU3=TAU3*2.000
DTA1=DTA1*0DSQRT(2.0D0)
DTA2=DTA2*2.000
DTA3=DTA3*2.000
OMEG 1 *OMEG 1*DSQRT( 2.000)
OMEG2*OMEG2*2 . 0DO
OMEG3I=OMEGI* 2. 0D0
CX=2.0DO*PI*DFLOAT(N)/LX
CY=2.0D0*P1/LY
SY=0.0D0
DO 100 JU=1 ,NY
- d‘.d_'
IF(J.EQ.1) GO TO 110
SYsSY+HY(J?)
110 Y2=SY*CY .
SIY=DSIN(Y2)
COY=DCOS(Y2)
$SX=0.0D00
DO 100 I=1 NI
Ii{=I-1
‘1F(1.£0.1) GO TO 120
SXaSX+HX(I1)
120 X2w=SX*CX
SIX=DSIN(X2)
COX=DCOS(X2)
S=SIY=SIX
C=S1Y+COX
XCI(I.,J)sXCII1+COY+XCI2*S+XCI3*C
TAU(I ,U)*TAUUI*COY+TAU2*S+TAUI*C
OMEG(I.J)=0OMEGI*COY+OMEG2*S+OMEGI*C
XCI1(I,J)=DXC1*COY+DCX2*S+DXC3*C
TAU1(I,J)*DTA1*COY+DTA2*S+DTA3*C
100 CONTINUE
c v
C BEGINNING OF THE TIME LOOP
c

el

DO 1000 II=1.M N

s

ol



262
262
264
263
266
2867

269
270
PRA]
272
273
274
278
276
277
278
279

281
282
283
284
285
286
287
2088
289
290
bi B
292
2923
294
293

W7

310
311
J12
313
J14
318
316
317
318
e
320
321
222
322
324
329

27

OO0 0n

OO0 o0oan O0o0 [eNeNe! o000

o060 [+ X e X2 Oo00n

o000 000

(4]

I2=(I11-1)/1DT2+1D7T2
I3=12-(11-1)

IF(I3.EQ.O) ICNT+« 'NT#+1
I4=( ICNT-1)/4%4-¢ NT-1)

SET ARRAYS 10 O.

FORM X*?ERIV. OF XCI FIELD.

CALL DXDYDS(WKI,XCI.1.0DO, TRUE..

CALL

PSOLVE(WKA WKI NI NJ., TRUE

FORM Y-DERIV. OF XCI FIELD.

CALL
CALL

OXDYDS(wKl XCI,1.000, FALSE.,
PSOLVE(WKB ,WKI NI NJ,. FALSE.,

FORM x-DERIV. OF TAU FIELD.

CALL
CALL

OXOYDS(WKI  TAU, 1 .0DO. . TRUE .,
PSOLVE(WKC . WKI NI, NJ, . TRUE..

FORM..Y-DERIV. OF TAU FIELD.

CALL
CALL

OXDYOS(WKI,TAU, 1.000, .FALSE .,
PSOLVE(WKD ,WKI NI . NJ, . FALSE.,

ADD TERM S TO WKG, THE R.H.S. OF EON.

1

_FALSE. NI, NJ)

. FALSE ., FALSE )
.TRUE . NI.NU)
.TRUE ., . FALSE )

_FAUSE. ,NI,NJ)

.rltS!...FALSE.%
- TRUE _ NI, NJ)
.TRUE ., .FALSE.)

CALL GDADGO(M¥XG.O.000,WKG, BETAO,WKA NI NJ)

ADD TERM B TO WKM, THE R.\M.S. OF EON. 2

CALL GDADGOD(WKH,0.0D0.WKH BFTAO, WKL, NT . NJ)
GDADGD (WKL ,0.000, WKL i R WKG,NI NJ)

CALL

FORM LAPLACIAN OF XxCI

D2XYS(WKI  XCI, 1.000, . TRUE. . _FALSE. .NI.NJ)
PSOLVE(WKE ,WCI NI, NJ, . TRUE., FAMSE. FOURTH)
D2XYS(WKI XCI, 1.0D0, .FALSE., .TRUE. .N1.NJ)
PSOLVE (WKF ,WKKI NI N, .FALSE. . TRUE.,FOURTH)
GDADGD(WKE , 1.0D0, WKE . 1.QDO, WF NI,NJ)

CALL
CALL
CALL
CALL
CALL
CALL
CALL

SMY (WKE NI ,NJ,.SPAR, § . WRK )
SMX(WKE N1, NJ, SPARX, 6, WKK)

FORM Y-DERIV. OF LAPLAC OF XCI.

CALL DXDYDS(WKI WKE,1.000..FALSE., TRUE. . NI ,NJ)
CALL PSOLVE(WKF WKI NI _NJ,.FALSE., TRUE., FALSE.)

FORM TERM 1 OF EON. 1 ‘

CALL

NLLOOP (WACT , WiKA  WKF NI NJ)

3

CALL PSOLVE(WKJ WKI NI.NJ.. TRUE.,.TRUE.

ADD TO R.H.S. OF EON. 1 (I1.E. wKG)

..FALSE.)

éALL GDADGD(WKG, 1 .0DO,. WG, ~L2,WKJ, NI, NJ)

FORM TERM 1 OF EQN. 2

CALL

NLLOOP (WK , WKC,WKF NI NJ)

CALL PSOLVE(WKJU,WKI NI NJ,.TRUE., .TRUE., .FALSE.)

u
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ADD TO R.H.S. OF EQN. 2 (1.E. WKH)

CALL GDADGD(WKH, 1.0D0.WKH, -L2,WKJ.NI.NJ)
CALL GDADGD(WKL, 1 ODO,WKL.-OMCO.WKJ . NI.NJ)

FORM X-DERIV. OF LAPLACIAN OF XCI

CALL DXDYDS(WKI,WKE, K 1.000; TRUE ., FALSE..NI,NJ)
CALL PSOLVE(WKE.,WKI NI NJ. . TRUE., FALSE.. L FALSE.)

FORM TERM 2 OF EON 1.

CALL NLLOOP (WKF , WKB, K WKE NI NJ)
CALL PSOLVE(WKI . NI, NU, TRUE , TRUE . FALSE.)

ADD TO R.H.S. OF EON. 1
CALL GDADGU(WKG,1.0ODO,WKG.L2 WKI NI.NJ)
FORM TERM 2 OF EON. 2.

CALL NLLOOP(WKF ,WKD,WKE NI N
CALL PSOLVE(WKI,WKF NI NJ,.T . .FALSE.) e

ADD TO R.H.S. OF EON. 2.

CALL GDADGOD (WKH, 1. 0DO.WKH, L2 .WKI NI .NJ)
CALL GDADGD(WKL,1.0DO,WKL, OMCO WKI NI ,NJ)

“
.

FORM LAPLACIAN OF TAU - . . .

‘

CALL D2XYS(WKE,TAU,1.0D0, .TRUE. . .FALSE. NI NJ)~

CALL PSOLVE(WKI WKE,NI.NJ, TRUE., FALSE.,FOURTH)
CALL D2XYS(WKF,TAU,1.000, .FALSE.. .TRUE. NI, NJ)

CALL: PSOLVE (WKJ .WKF NI NJ. .FALSE., TRUE,. FOURTH)
CALC-CUAGGD ( WKE , 1.0D0, WK1, 1.0D0,WKJ,NI . NJ) ‘
CALL SMY(WKE NI.NJ,SPAR,6, WKK)

CALL SMX(WKE NI NJ,SPARX, 6 WKK)

] \
FORM Y-OERIY. CF LAPLACIAN OF iTAU
CALL DXDYDS(WKEF WKE.1.000, .FAL. ..TRUE.,NI,NJ)
CALL PSOLVE (WKK.WKF_NI.NJ. FALS? . . TRUE., .FALSE.)

" oM TERM3 OF EQN. 1

CaA. NLLOOP(WKI,WKC. WKK,NI,NJ) )
CALL PSOLVE(WKJ, WKI,NI.NJ,.TRUE., TRUE...FALSE.)

ADD TO R.H.S. OF EQN. ¢
CALL GDADGOD(WKG,1.0D0,WKG,-L2,WKJ. NI NJ)

FORM TERM 3 OF EON. 2

‘

CALL NLLOOP (WKI, WKA WRK NI, NJ)
CALL PSOLVE(WKJ,WKI.NI ,NJ, TRUE.,.TR E.)

‘ADD TO R.H.S. OF EON. 2 .

CALL GDADGD(WKH, 1.000,WKH, -L2,WKJ.NI ,NJ)
CALL GDADGD (WKL, 1.0DO,WKL  -OMCO,WKJ NI NJ)

FORM X-DERIV. OF LAPLACIAN OF TAU

CALL DXDYDS(WKF .WKE,1.000, .TRUE.. FALSE. NI, NJ)
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LL PSOLVE(WKJ WKF NI NJ, TRUE , FALSE . -ALSF )
b1
FORM TERM 4 OF EON. 1

CALL NLLOOP(WKI WKD & WKJ,NT NJ)
CALL PSOLVE(WKK WKI NI NJ, TRUE , TRUE., FAL.£.)

ADD TO R.H.S OF EQN. 1
CALL GDADGD(WKG,1.000 WKG,L2,WKK NI NJ)

FORM TERM 4 OF EON. 2
CALL 'NLLOOP (WK1 WKB,WKJ.NI.NJ)
CALL PSOLVE(WKJ WKI ,NI.NJ,.TRUE., TRUE.,L .FALSE.)
“iy2,
g3
ADD TO R.H.S. OF EQON. 2 - i
[ BN
CALL GDADGD(WKH, 1.0D0,WKH, L3, wKu NI . N\J)
CALL GDADGD(WKL, 1.0DO, WKL, oﬁto WKJU NI TNJ)

FIND VERTICAL VELOCITY

CALL NLLOOP(WKI KA, WKD NI, NJ)
CALL PSOLVE(WKJ.WKI.NI.NJ, -JRUE ., .TRYE., “ALSE.}
CALL NLLOOP(WKI, K WKB;WKC,NI.NJ)
CALL PSOLVE(WKK.WKI,NI,NU,.TRUE., TRUE .. TALSE. )
CALL GDADGD(WKF, {-.ODO,WKJ, - t.000,WKK,NI NJ)
IF(I1.EQ.1) GO TO 74%8 ) .
IF(I3.NE.O.OR; 14 NE.O) GO TO- 748
CALL D2XYS{WKE, WKF,1.000. TRUE...FALSE..NA‘NJ)
* CALL PSOLVE(WKI,WKE, Np NU, .TRUE., FALSE.,FOURTH)
. CALL D2XYS(WKJ,WKF.A..0D0O, ‘FaLsE. _TRUE .., NI NJ)
CALL PSOLVE (WKK. wuu“nt NU, FALSE -TRUE . . FOURTH)
CALL GDADGD(WKE. 1. ﬂkl .0DO0., WKK, NI . NJ)
CALL GDADGD(WKL, ODG“VKL omco WKE NI, NJ)
 CALL PROUN(WKI,WKL,FOURTH NI .NJ, “TRUE...TRUE.)
D0 226 J=1,NJ 70
DO 226 I=1,NI
226 WKI(I,J)=ALP*wWKI(I,U)
CALL RELHEL(OMEG,WKI NI .NJ,LX,HELMCF RELFH,XTOLH)
748 CONTINUE

ADD TERM 6 TO R.H.S. DOF EQN. 2
CALL GDADGD(VKH.1.000.VKH‘OMCT,VKF,NI.NJ)

WRITE(7.999) II > . j’
999 FORMAT(I6)
IF(I4.EQ.O0.AND.13. EQ O) CALL OUTPUT(II,XCI,TAU,OMEG,XI,
# YI,X.Y,NI.NU,NIU,NJU,FX FY FXY D.WORK,NIP NJP, OUT,DT) .
IF(13.€0.0) WRITE(8) XCI
IF(I3.EQ.0) WRITE(8) Tau
IF(I1.EQ.M) GO TO 1000

THE R.H.S. OF EQN. 1 AND 2 HAVE NOW BEEN FORMED AND MAY PROCEED
WITH THE SOLUTION.

CALL PROUN(WKI ,WKG,FOURTH,NI.NJ,.TRUE. "RUE.)

CALL PROUN(WKF ,WKM,FOURTH,NI . NJ, .TROE.  2UE.)
SOLVE EON. 1

Dr Todet N
Dt I=1,NI
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460 ) WKI(I,JU)=ALP*WKI(I.J)
46 1 225 WF(LJ)-ALP‘VKI’(I.J)
462 CALL REL(XCIY . WKI, NI ,NJ,LX,RELF _XTOL) 1
463 c N Z
464 C SOLVE EON. 2
465 c
466 CALL RELHEL (TAU1,WKF NI NJ.LX HELMCF RELFH,XTOLH)
467 IF(I‘,EO.I) GO TO 240
468 c .
469 C EXTRAPOLATE IN TLME USING ADAMS-BASHFORTH METHOD.
470 c
471 DO 250 J=1.NJ
472 - DO 25C D=1 NP~ , N
473 XCI(1.J)=XCJt4,J)+0T1*(3°0DO*XCI1(I,4)-XCT2(I.J))
474 AUCT.u) =TANGE . o ol 1 (T.0D0 TAUT(T. U) -TAT2(1. 1))
47% 250 CONTINUE gy e s
476 o GO TO 260°° * ™
4717 c .
478 C EXTRAPOLATE FIRST TIME STEP USING FORWARD DIFFERENCE. ...
479 c - - W
.- 480 240 DO 200 U=1.NJ
481 DO 200 ER4.NI - N
482 XCI(1,J)»XxCPeI J)+DT*XCI1(1,J):
+ 483 TAULT . J)=TAUGT,J)+DT*TAUI(I,J)
© 484 200 CONTINUE Lo
485 260 DO 220 J=1.NJ S 3 4
486 DO 220 I=1 NI '
487 & XCT2(1.J)=XCI1(1,J) L 3 AT
488 TAT2(1.J)=TAU1(1,J) -
489 % - 220 CONTINUE . '
490 000 CONTINUE 4 "
491 CALL PLOT(0.0,0.0,999) . .
492 ., SToP ; R
493 ” END > “
494 SUBROUTINE SMY(F . NI NJ,SPAR K, FSM)
49% IMPLICIT REALZ ~H20-2) v
496 DIMENSION F( FFSM(NI ,NJ) . SPAR(K)
S 497 «, COMMON / HYMES _HYL1) .
. 8 c .
~-&9 C- SIMPLE 3 PT. SMOOTHER IN Y-DIRECTION i .
o _500 [l < q
%0t O C SPAR=SMOOTHING PARAMETERS FOR & GRID POINTS
502 [of : -
503 NUMaNJY- 1 "
504 S2=SPAR( 1) ‘
505 Si=1,000-52
506 DO 10 I=1 NI N
507 FSM(I-, 1)=S1%F (1, 1)+S2*F(1,2)
508 10 FSM(1,NU)=S1*F(I NJU)+S2*F (1, NUM)
509 DO 20 U=2.6 :
510 S1=1.000-SPAR(J)
511 Jisg+1
512 J2=y-1
513 00 20 I=1,NI <
514 20 FSM(I,J)=S15F(I,J)+SPAR(U)I*(F(1 J1)+F(1,U2))
5195 DO 30 J=2.6 .
516 JPaNY~J+1
517 Si=1,000-SPAR(Y)
518 Jingp+ e
519 J2=JP-1 : .
520 DO 30 I=t,NI ’
521 20 FSM(I.JP)=S1*F(I.UP)+SPAR(UP)*(F(I,U1)+F(1,42))
822 NJS=NJ-5
523 DO 60 J=1.6 \
524 DO 60 I=1,NI ~



526
527
528
529
30
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
580
5514
552
553
554
594
556
557
558 b
559
560
-561
562
563
564

" Enu OF FILE

C
C
C

&

70

NV T AN LUTE “-»m .y

DO 70 J=NUS.N
DO 70 I=1 NI
F(1.d)=FSM{I.J)
RETURN

END

SUBROUTINE SMX(F NI, NJ,SPAR K, FSM)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION F (NI ,NJ),FSM{(NI . NJ), SPAR(K)

COMMON / HXMESH / HX(1) .

SIMPLE 3-POINT SMOOTHER IN X-DIRECTION.

10

20

60

70

NIM=NI -1

DO 10 J=1.,6

$2=SPAR(J)

Si=1.0Q0-SPAR(J)

FSM(NI,J)=S1*F(NI,J)+S2*F(NIM, J)
FSM(1.J)=S1*F(1,J)+S2*F(2.J1} ..
JP*NU-U+ 1 PR
FSM(1,.UP)=St*F{1 uUpP 2*F(2,UP)
FSM(NI.dP)-$1‘F(NI.$;3+S2‘F(NIM.JP) o
DO 20.I=2, NIM ,

Ii=1-1 >,

12=1+41

DO 20 JU=1.6

Six{.0DO-SPAR(J) )
FSM(I.J)=S1*F(1.J)+SPAR(J)*(F(12,U)+F(11,J)) ,
AP =NU-J+ 1

FSM(I.JP)=S1%F (I ,.JP)+SPAR(J)I*(F(I12,UP)+F(I1,JP))

CONTINUE

NJUS=NJ-5

DO 60 U=1,6

D0 60 I=1 NI )

F(I,J)=FSM(I1.,J) :

DO 70 J=NJUS,NJ

DO 70 I=1,NI

F(I.,U)=FSM(TI,J)

RETURN

END

g
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fFILE: SPEC
FILES:
OBJECT - SPEC.O
- SPLATM.O
INPUT ]
3 » VMESH
4 « MESHD
5 = SPECD
ouUTPUT
6 = *PRINT®*
7 = *PRINT*
8 = *PRINT®
12 = FEMIN
10 = *PRINT*
11 = ol
SUBROUJ INES:
- MAIN
V' o v L1 T
“ ﬁ}ouw

MAIN ROUTINE FOR THE SPECTRAL MODEL:

IMPLICIT REAL*8:.-(A-H,0-2)

mawy
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(USES FOR OUTPUT)

INITIAL AMPLITUDES AND CONTROL DATA

QUTPUT OF MAPS AND GRAPHS
QUTPUT OF AMPLITUDES

ENERGY AND ENSTROPHY

- INITIAL DATA FOR FEM MODEL
THEORETICAL CALCULATIONS

AG - BINARY OUTPUT FOR DIAGNOSTICS

DIMENSION A(200.9).EKE(200),APE(200),TEN(200).PE(200)
DIMENSION PHIH(200) . PHIT(200) ,DPHI(200)

PROPER DIMFNSIONS FOR ARRAYS:

DIM X(NIU).Y(NdU).XCIB(NIU.NJU).TAUB(NXU.NJU).OMEGB(NIU.NJU)
DIM XI(NI).YI(NI) ’

DIMENSION X(281).Y(45).XCIB(281.45).TAUB(281,45).0MEG8(281,45)
'DIMENSION.XI(63),YI(27) HX1(63), HY1(27)

DIMENSION F(63.27) ,HX(63) ,HY(27)

REAL*8 L,LX,LY,LXPR, LYPR

COMMON TAU1(200)“TAU2(200).TAU3(200).XCI1(200).XC12(200)
COMMON XC13(200).0MEG1(200) ,OMEG2(200) ,OMEG3(200)

COMNON C4.CS

o7

LOGICAL*T LFMT(1)/"*"/

READ INITIAL VALUESE\

REAB(S.LFMT) XCI1(1),XCI2(1).XCIA(1) . TAUI(1).TAU2(1) . TAU3(H)

¥

<

N=NUMBER OF WAVES, M=NUMBER OF TIME STEPS, DT=TIME $TEP
IDT2 = NO. OF HOURS BETWEEN OUTPUT OF MAPS .

READ(S5.1LFMT) N, M, DT, IDT2

WRITE(7.22)

FORMAT (’

SET VALUE OF CONSTANTS

FN=DFLOAT(N)
ICNT=0
CALL PLOTS

N

NUMBER OF WAVES IS ‘,I4) ® :

CALL ORGEP(1.0,1.0.1.0)

PI=3. 1415927
FO=1.03120-4

DO
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64 BETA=1 620-11
65 DP#Q 00D4
66 s1G=2.8D-6 .
67 LY=8.8006
68 LX=2.8007
69 L=LX/2.000/P1 “
70 LXPR=2 .0DO*PI*FN/LX ,
71 LYPR=2 ¢PI/LY -
72 ALPHA=LX/LY
73 A2=ALPHA*ALPHA
74 BSTAR=L*BETA/FO ’
78 SIGST=DP*DP*SIG/(2.0DQ*FO*FO*L*L)
76 G=9.806D0O
77 GAM={ . 2004D0 S
78 ITIME=O
79 GAN=GAM*ALPHA YN
80 : TO=A2+FN*FN
.8 g Ti=1 0ODO/A2+SIGST .
82 T2=SIGST+1.0D0/TO ,
83 T3=A2+1.0D0/SIGST
84 T4=TO+1.0D0/SIGST
85 . A2=ALPHA*ALPHA
86 C1=2.0D0*PI*PI*OP*FO*FO*L**4/(G*ALPHA*SIGST)
87 CEmL**6*PI**4*DP*FO*FO*8.000/(G*ALPHA)
88 0P *2.000*PI*L*L/G/ALPHA .
89 Sk LFO*FO/G _ S
. 90 - P*FO*10.00D0
91 M1sM+1 [
92 02=2.000+FO*Fo/ (WM OP -OP)
93 * C7=4.0DO*DSQRT(2.080)*4L*L*FO/LY
94. C8=2 . 0DO*PI*FN/LX
95 CR=BETA/CB/CS8
96 . €9=2.000*( 1 +Q2/C8/C8) -
97 WRITE(12,474° .. M,DT,4DT2 ¢
98 474 FORMAT(216,4x £12.6,15)
99 C P ¥
100 C GET PARAMETERS FOR F.E.M. MODEL TO MAKE OUPUT CONSISTENT
101 c
102 READ(4,LFMT) NIU,NJU
103 READ(4,LFMT) NI, NJ -
104 READ(4,.LFMT) NILA,NJLA
105 READ(4.LFMT) HXU,HYU
106 “READ(3.LFMT)(X(I),I=1,NIU)
107 READ(3.LFMT)(Y(1),I=1,NJu)
108 READ(3,LFMT)(XI(I).I=1,NI)
109 READ(3,LFMT)(YI(I),I=1 ,NJ)
« 110 CALL CALH(HX1,XI,NI)
1114 CALL CALH(HY1 . YI NJ)
112 NIM=NI-1 : - .
113 NUM=NJ- 1 -
114 -  HXT(NI)=HX1(NIM)
115 : HY 1 (NI ) =HY 1(NUM) s
116 NIP=NI "
117 NJP=NJ
118 NIM=NI-1
5 . 119 NUM=NJ -4 .
T 120 , DO 60 I=1,Nim""
S 12 : 60 HX(I)=HX1(I) ~
122 DO 6% dJ=1,NJUP
123 65 HY(J)=HY1(J) .
124 WRITE(10.47%) CR
12 47% FORMAT(’ ROSSBY PHASE SPEED = ‘, E12.4,//)
12 - WRITE(10,470)
127 4TO#FORMAT(4X, 'ITIME’ ,3X, ' THERMAL WIND MEAN WINO ’, 10X,
128 1/REAL PHASE SPEEDS’.6X,’'IMAGINARY SPEED’ ,4X, E-TIME')
129 . . WRITE(8,12) :

v
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130
131
132
133
134
135
136
137
138
139
140
141
142
143

coad

144

145
146
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12 FORMAT(JX,’TIME’.1OX.’APE’.13X.’KE’.14X.’TEN’,13X.’PE')
WRITE(7,13)

13 FORMAT ( TIME' ,6X, "XCI1’ 9x_ 'XCI2’,9X,‘XCI3’,9X,
1 ‘TAU1',9X.’TAU2’.9X.’TAU3',9X.'0MEG1’.8X.‘0MEG?'.8X,’0MEG3’)
DO 500 t=1.M

ITIME=T-1
c ,
c FIND THE VERTICAL VELOCITIES
o

OMEG1(1)=-GAN/T1*(TAU2(I)*XCI3(1)-TAUI(I)*XCI2(I))
OMEG2(I)=(((TAUS(I};*XCII(1)+TAUI(I)*XCI1(1))*FN*FN/TO
1 =(TAUS(I)*XCI1(I)-TAUI(I)*XCI3(I1)8)*GaAN
2  -BSTAI "FN*TAU3(1)/T0O)/12
OMEGI(I)=(((TAU2(I)*XCI1(I)-TAUI(I)*XCI2(1))
T ~(TAUI(I)*XCI2(1)+TAU2(T1)*XCI1(I¥)*FN*FN/TO)*GAN
2 +BSTAR*FN*TAU2(I)/TO)/T2
IF(1.EQ. 1) WRITE(12,1000) XCI1(1),XCI2(1).XCI3(1).TAUI(1),
vy TAU2(1).TAU3(1) OMEG1(1),0MEG2(1).0OMEGI(1)
1000 FORMAT(S(1X,E12.4))
’ WRITE(7,10) ITIME,XCI1(I),XCI2(1),XCI3(1),TAUI(I),TAU2(T),
. t LTAU3(I) . OMEG1(I),OMEG2(1) OMEGI(I)
10 FORMAT(3X,14,9(1X . €12.4))

c .

C  CALCULATE PHASES

c ‘ .
PHIH(1)=DATAN2(XCI2(1),XCI3(I))*180.000/P1I
PHIT(I)=DATAN2(TAU2(I),TAU3(I))*180.000/P1
DPHI(I)=PHIH(1)-PHIT(I)

C

c CALCULATE THEORETICAL PARAMETERS

o .
UT=CT*TAU1(1)
UST=CT*XCI1(1) : .
D=(Q2=CR/CB/CB)**2+4.0D0*(+.0DO-(Q2/CB/CB) %2 ) *uUT+UT
CTEMP=-(2.000+02/C8/C8)*CR
IF(D.GE.0.000) GO Td%400

c

c IMAGINARY PHASE VELOCITY

¢ ;

CREA2=0.0000
CIM=DSQRT(-D)/C9
CREA1=CTEMP/C9
ETAU=1.000/CIM/C8
GO0 TO 450 B

400 CREA1«(CTEMP+DSQRT(D))/C9 )
CREA2=(CTEMP-DSQRT(D))/C8 .
CIM=Q.000 e
ETAU=O.0DO

450 WRITE(10,460) I,.UT,UST,CREA1,CREA2.CIM, ETAU

460 FORMAT(3X,14,6(4X,E12.4)) :

CALCULATE ENERGIES. -

[eNe Ny

APE(I)=TAUT(I)*TAUt(I)+TAU2(I3*TAU2(I)+TAUI(1)*TAUI(I)
APE(1)=APE(1)=C1H
EKE(T)=XCI2(I)*XCI2(I)+XCI3(1)*XCI3(I)+TAU2(I)*TAU2(1)

1 +TAU3(1)*TAU3(1) -
EKE(I)=(EKE(I)*(1.000/LY/LY+FN*FN/LX/LX)+(XCI1(T)*XCI1(1)
1 +TAUI(I)*TAUI(I))/LY/LY)

EKE(I)=EKE(1)*C6

TEN(I)=APE(I)+EKE(I)

CALCULATE POTENTIAL ENSTROPHY.

o000

Oi-(DABS(Az;XCI1(I)¢T3‘TAU1(I)))“2
2 +(DABS(TO*XCI2(1)+T4*TAU2(1)))M2

%
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3
196 1 *(DABS(TO‘XCIB(X)*Td‘TM&NI)\\"?
197 Qistx*LY*Q1/2.000 "
198 03=(DABS(A2*XCI1(1)-T3*TAUI(I)))**2
199 2 +(DABS(TO*XCI2(1)-T4*TAU2(1)))**2
200 1 +(DABS(TO*XCI3(I)-T4*TAU3(T)))**2
201 Q3=LX*LY*Q3/2.000
202 PE(I)=(Q1+Q3)*C3
203 WRITE(8.11)ITIME, APE(I) . EKE(I).TEN(I) PE(I)
204 11 FORMAT(3X,14,4(4X,E12.4))
205 12=(1-1)/1DT2*1D07T2
206 13=12-(1-1)
207 IF(]3 EO.O) ICNT=ICNT+1
208 14=(ICNT-1)/4*4-(ICNT-1)
209 IF(F4 EQ.O.AND.I13.EQ.0) CALL OUTPT(I.X,Y ,NIU.NJU.LXPR.
210 1 LYPR.HXU,HYU,XCIB,TAUB OMEGB.DT)
211 IF(I3 €Q.0) CALL FOUT(F.NI.Nu,Hx,Hv.xcx1(1).xc12(1).xc13(1).
212 1t LXPR,LYPR) ,
213 1IF(13.EQ.0) CALL FOUT(F .NI . NJ.HX, HY TAU1(I), TAU2(1) TAU3(1),
214 1 LXPR,LYPR)
215 c
216 c BEGIN INTEGRATION
217 C S
218 TIMESY *0T
219 ’E'r..!d\ GO TO 100
220 c o F R
221 c FRSH $TEP: USE EULER
222 TAU1(2)=TAU1(1)-OMEG1(1)*DT/ALPHA/ALPHA
223 TIBAR=(TAUT(1)+TAU1(2))/2.000
224 , TAU2(2)-IAU2(1)*((T1BAR'XCX3(1)+TAU3(1)‘XCI1(1))‘FN‘FN'GAN/TO
225 4 -BSTAR*FN*TAU3(1)/TO-OMEG2(1)/TO)*DT
226 T2BAR=(TAU2( 1)+TAU2(2))/2.000
227 TAU3(2)-TAU3(1)+(—(T1BAR‘XC12(1)+TIBAR‘XC11(1))’FN‘FN'GAN/T0
228 y +B8STAR*FN*T2BAR/TO-OMEG3(1)/T70)*DT
229 XCI1(2)=XCI1(1) .
230 T3BAR=(TAU3(1)+TAU3(2))/2.000 4
231 XC12(2)=XCI2(1)+((XCI1(1)*XCI3(1)+T1BAR*T3BAR)
232 4 *GAN*FN*FN/TO-BSTAR*FN*XCI3(1)/T0)*DT
233 X2BAR=(XCI2(1)+xCI12(2))/2.000
234 XC13(2)=XCI3(1)+(-(XCI1(1)*X2BAR+T IBAR*T2BAR)
23% 1  *GAN*FN*FN/TO+BSTAR*FN*X2BAR/TO)}*DY
236 . GO TO %00 RO
237+ YOO CONTINUE
238 S KT 3 3 -
239 12=1-1 -
240 C
241 C USE ADAMS-BASHFORTH METHOD FOR SUBSEQUENT TIME STEPS
w2 C :
243 XCI1(I1)=XCI1(I) R !
244 - TAU!(I!)-TAU1(I)-(3.ODO‘0MEG1(I)/ALPHA/ALPHA/Q.ODQ”A
245 1 -OMEG1(12)/ALPHA/ALPHA/2.)*DT ' :
246 Ca(TAUT(I)*XCII(I)+TAUI(I)*XCI1(1))*GAN*FN*FN/TO
247 41 -BSTAR*FN*TAU3(I)/TO-OMEG2(1)}/TO
248 | C2'(TAU1(X2)‘XCI$(I2)+TAU3(I2)‘XCI1(12))'GAN‘FN'FN/TO
249 1 -BSTAR*FN*TAU3(12)/TO-OMEG2(12)/T0O :
250 TAU2(I1)=TAU2(1)+(3.000*C/2.000-C2/2.000)*DT
251 C--(TAU1(I)’XCI2(I)*TAU2(!)‘XCX1(1))‘GAN‘FN‘FN/TO -
252 1 +BSTAR*FN*TAU2(1)/TO-OMEG3(1)/TO - h
253 C2=-(TAUT(I2)*XCI2(12)+TAUR(12)*XCI1(12))*GAN*FN*FN/TO «
254 1 +BSTAR*FN*TAU2(12)/TO-OMEGA(I2)/TO
25% TAU3(11)-TAua(I)+(3.ooo-c/2.ooo—c2/2.ooo)'or
256 CsXCI1(1)*XCI3(I1)* “EN*FN/TO-BSTAR*FN*XCI3(1)/TO
257 C2=XCI1(12)*xC13( *GAN*FN*EN/TO-BSTAR*FN*XCI3(12)/T0O
2%8 . T-(TAUi(I)'TAua(I)+TA01(11)‘TAU3(I1))‘GAN'FN'FN/T0/2.
259 . £C12(11)=xC12(1)+(3.0D0%C/2.0D0-C2/2.0D00+T)*0T -
. 260 c FROM EON. 12 -
: 261 c-xcx1(!)-xc12(x)+xc11(tt)-xcf5(11)

[ S ]

1 ‘ .
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262 1 +TAUT(T)*TAUQ{ T)+TAUI(I1)*TAU2(TI1)
263 c2-xc12(1)+xc$x1)
264 XCIA(I1)=XT13(1)~C*GANSFN*FN/TO*DT/2 . 0ODO+
265 1 C2*BSTAR*FN/T0*DT/2.0D0
266 500 CONTINUE
267 DXC1=(XCI4(2)-XCI1(1))/DT
268 DxC2=(xc12¢2)-xcr2(1))/ov
269 . DXCP=(XCI3(2)-XCI3(1))/DT
270 OTAt=(TAU1(2)-TAUI(1))/DT &
271 DTAZ=(TAU2(2)-TAU2(1))/DT qeC e
272 DTAI=(TAU3I(2)-TAU3(1))/DT
273 WRITE(12,.1000) DXC1,DXC2,.D0XC3.DTAY, DTA2 DTA3
274 c
278 C PLOT OUTPUT PARAMETERS
276 c
277 DO 600 1=t M
278 ACT, ) =XCI(I)
279 A(I, ; =XCI12(1)
280 A(I, 3)=xCI13(1)
281 A(I.4)=TAUI(])
282 A(I.5)=TAv2(1)
283 A(I.,6)=TAU3(1)
284 A(T,7)=OMEG1(]) N
285 A(I.8)=0OMEG2(1) ,
286 A(1,9)=0OMEG3(1)
287 600 CONTINUE
288 CALL SPLATM(A,200,9.9,M1,2,-®D-1, .5D~1)
289 c B
290 C PLOT ENERGYS
291 c
292 DO 620 I=t .M
. 293 A(I, 1)=EKE(I)

et A(I,2)=APE(I])
29s . A(I.3)=TEN(I)
296 620 CONTINUE
297 CALL SPLATM(A,200,9,3,M1,2,0.000,0.0D0)
288 c
299 C PLOT PHASES
300 c
301 DO 640 I={, M1
302 A(L, 1)=PHIH(I)
303 7 A(1,2)=PHIT(I) ¢
304 A(L,3)=DPHI(I)
308 640 CONTINUE . }
306 CALL SPLATM(A,200,9,3,M1,2,-180.000, 180.000) 4
307 OALL PLOT(0.0,0.0,999)
308 sTOP
309 END
310 SUBROUTINE OUTPT(I,X,Y,NIU,NUU, txpa LYPR,HXU ,HYU,XCIB,TAUB,
31 1 OMEGB.DT)
312 c -
313 C SET UP FIELDS TO BE PLOTTED IN MANNER CONSISTENT WITH FEM
314 . -
31% IMPLICIT REAL®S (A-H,O- z) ;
316 DIMENSION XCIB(NIU,NJU),TAUB(NIU,NJU), onEce(qu NJUU)
317 DIMENSION X{NIU),Y(NW)
318 REAL*8 LXPR,LYPR
319 COMMON TAU1(200), TAU2(200),TAU3(200),.XC11(200),.XCI12(200) ' N
320 COMMON XC13(200),0MEG1(200),0MEG2(200),0MEGI(200)
321 COMMON C4.CS
322 RT2*DSQRT(2.0Q0) . ~ »
323 00 20 KI=1{ NI ‘ o L
324 XX=l XPR'(X(K!) qu) ST .

- 32% CX=DCOS(XX)
326 SX=DSIN(XX)
327 - D0 20,KJ=1,NJU o~
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328 YY=LYPR* (Y (XJ)-HYU)
329 CY=DCOS(YY)
330 SY=DSIN(YY) :
331 S=SX*SY
332 C=CX*SY
333 XCIB(KI.KJ)=RT22CY*XCI1(1)+2.000%5*XCI2(1)+2.000*C*XCI3(I)
334 TAUB(KI ,KJ)=RT2°CY*TAU1I(1)+2.000*S*TAU2(1)+2 ODO*C*TAUI(T)
335% OMEGB (K1 .KJ)=RT2*CY*OMEG1(1)+2.0D0*S*OMEG2(1)+2.0DO*C*OMEGI(I)
336 XCIB(KI . KJ)=C4*XCIB(KI .KJ) RN
337 TAUB(KI . KJ)=CA*TAUB(KI .KJ) -
a3s OMEGB (K1 ,KJ)=CS*OMEGR (KT ,KJ)
339 20 CONTINUE
340 CALL FPLOT(XCIB,NIU,NJU, 1)
341 CALL FPLOT(TAUB NIU,NJU, 1)
342 CALL FPLOT(OMEGB ,NIU, NJUU,0)
343 RETURN
344 END
345 SUBROUTINE FOUT(F,NI,NJ,HX HY . F1 F2,F3 LXPR,LYPR)
346 IMPLICIT REAL*8 (A-H,0-2)
347 c '
348 C OUTPUT FIELDS FOR DIAGNQSTIC PROGRAM
349 C . -~
350 [0} ¢ SION F(NI.N (NI).HY(NJ)
351 nE:&s prn.l.vpgy :
352 Fit RT(2. ‘ .
353 F 229 H00 ’
354 F33 oo
355 SY=0. B
356 00 160 J=1.NJ
357 Jieg-1
358 1F(J1.€Q.0) GO TO 110
359 . SY=SY+HY(J1)
360 110 Y2=SY*LYPR
36t SIV=DSIN(Y2)
362 cOoY=DCOS(Y2)
363 $X=0.000
364 00 100 I=1 NI
365 I1=1-1 .
366 IF(I1.EQ.0) GO TO 120
367 SX=SX+HX(I1) - -
368 120 X2=SX*LXPR c A Lo
369 SIX=DSIN(X2) )
370 COX=DCOS(Xx2)
3 - SeSIY*SIX N
372 C=SIY*COX ’
373 F(I,J)*F11*COY+F22*5+FI3*C
are 100 CONTINUE
37% WRITE(1t) F s
376 RETURN .
ar7 ; ENO
EMD: OF FILE
A
‘.' L4
' -
’
e
,/,
-‘
~— .
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FILE: DIFF
OBJECY FILF: DIFF.O
SUBROUTINES :

- DXDYDS

- CALH

- SETD2

- D2XYS

SUBROUT INE DXDYDS(R,U.CON.ALONGX;ALONGV.NI.Nd)

S/R : DXDYDS - CALCULATES A DIFFERENCE IN X AND Y DIRECTIONS

AUTHOR : ANDREW STANIFORTH ~

REVISION OO1: T. GOOS - 1979;!6\;3;PTED FOR AMDAHL AT U OF A

ARGUMENTS _ © g
outT - R %%gl. - .RESULT o
IN - U = - FIELD.TO BE
- CON -~ MULTIPLICATIVE ¥

- ALONGX - IF .TRUE. DI#

- ALONGY - IF .TRUE. DIFFER
- NI ~ X DIMENSION
- NJ - Y DIMENSION

IMPLICIT REAL*8 (A-H.0-2)
DIMENSION R(NI.NJU),U(NI.NJ)
LOGICAL ALONGX,ALONGY
CONX= , 50DO*CON
NIM=NI-1{ i
NJUM=NJ- 4 -
IF(ALONGX) GO TO 100
-;£§AL0NGV) GO TO 200

URN .

- g “ -
X - DERIVATIVE N ;

100 CONTINUE

IT=NI-2

/DO 150 J=1.NJ \
DO 140 I=1,1IT -
[1=1+1
12%1+2 -

130 n(x1.u)-cowx*(u(xz,u)-u(:.uy
R{1,J)=CONX*(U(2.J)-U(1,U))

R(NI,U)}=CONX*(U(NI.J)-U(NIM J))

150 CONTINUE
RETURN

Y - DERIVATIVE

200 CONTINUE
ITeNJ~2-
00 250 I=1,NI
00 240 y=1,IT
NN
J2ey+2

240 R(1.J1)=CONX*(U(I,v2)-U(1,J))
R(I.1)=CONX*(U(I,2)~U(1.1))

IN Y DIRECTION

170

AIPLIES DERIVATIVE)
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64 R{I,NJ)=CONX*(U(TI . NJU)-U(I.NUM))
65 250 CONTINUE
66 RETURN
67 END \
68 SUBROUTINE CALH(H,X.M) .
69 c
70 C .S/R: CALH - CALCULATION OF GRID LENGTHS FROM POINTS X.
71 c H{I)=X(I+1)-X(1), I=1,M-14
72 c
73 C AUTHOR: A. STANIFORTH - 1973
74 c
75 C REVISION OOt: A. STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION
76 C REVISION 002: T. GOOS - 1979-BO ADAPTED FOR AMOAHL AT U OF A
17 c ’ '
78 C CALL: CALL CALH(H,X M)
79 c
80 C  ARGUMENTS .
81 C OUT - H - GRID-LENGHTS «
82 C IN - X ~ ARRAY OF POINTS IN ASCENDING ORDER
83 C - M - LENGHT OF ARRAYS H AND X
84 C
8S C NOTES: - H(M) IS NOT CAtCULATED '
86 c 8
87 c ¢ .
88 IMPLICIT REAL*8 (A-H,0-2) .
a9 ¢ DIMENSION X{M) H(M) " N _ v
80 DO 10 k2, M e Y- Ct
91 11=1- ' o
82 H(I1)eX(I)-X(I1) ‘
93 10 CONTINUE \
94 RETURN
95 " END )
96 SUBROUTINE SETD2(A.B,C.CON,H.N)'’
97 c *
98 C S/R : SETD2 - SET-UP ELEMENTS OF TRI-DIAGONAL MATRIX u;eo IN S/R
29 c D2XYS FOR TAKING SECOND DERIVATIVES.
100 c
101 C AUTHOR -~ ANDREW STANIFORTH - JAN 78
102 c . : .
103 * C REVISION OO1: T. GOOS - 1979-80 ADAPTED .FOR AMDAHL AT U OF A r
105 C  ARGUMENTS: oo Ty
106 c OUT - A - LOWER-DIAGONAL ELEMENTS y i ’
107 ¢ - B - DIAGONAL ELEMENTS :
108 c - € - UPPER-DIAGONAL ELEMENTS -,
109 c - CON - MULTIPLICATIVE FACTOR (CON®*SECOND DERIVATIVE)
110 c - H - MESH-LENGTHS ;
111 c - N - NUMBER OF NODAL POINTS
112 (o]
113 c
114 c P
118 - IMPLICIT REAL*8 (A-H,0-2) ‘ R “
116. DIMENSION. A(N) .B{N),C(N), H(N) v
117 HR=CON/H( 1)
118 - B(1)=0.000
119 . NM=N- {
" 120 DO 100 I=1,NM
121 I1=1+1
122 HR=CON/H(1)
123 A(I1)=HR ’ ,
124 B(1)=B(I)-HR . .
128 B(11)=-MHR ¥ A
126 100 C(1)=HR i
127 : RETURN |
128 END

(129 SUBROUTINE DQXVS(R U, CON, ALONGX , ALONGY . NI, NJ)
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S/R: D2XYS ~ CALCULATES 2IND DERIVATIVE IN X- OR Y-
DIRECTION DEPENDING UPON WHETHER ALONGX OR
ALONGY IS TRUE.

AUTHOR: A. STANIFORTH - OCTOBER 1977

REVABION OOt1: A. STANIFORTH - C. THIBEAULT UAN 79 DOCUMENTATION
RE ION 002: T. GOOS - 1979-BO ADAPTED FOR AMDAHL AT U OF a

-
CALL: CALL D2XYS(R .U, CON, ALONGX , ALONGY NI .NJ)

ARGUMENTS :
ouT - R
IN - u .
- ~ CON

RESULT
INPUT FIELD YO BE TWICE o;rrensncx;rso P
CONSTANT e
IF TRUE DIFFERENTIATE IN X- -DIRECTION |

IF. TRUE OIFFERENYIATE IN Y-DIRECTION

- NI - ‘X DIMENSION
- NJ . - Y-DIMENSION

2
S

[}

»

gg

< X

LI I T R |

-
IMPLICIT REAL*S {A-H,0-2)
OIMENSION R(NI,NJ),U(NI.NJ)
COMMON / WKS1D4 / wKa(1)
COMMON / WKS1DS / A(1)
COMMON / wxS1D8 / 8(1)
COMMON / WKS1D7 / C(1)
c / HXMESH / HX(1)
col / HYMESH / HY(1)
LOGICAL ALONGX,ALONGY o

NEmeNI- 1 . .
NuMeNJ-1 . v _ , :
IF{ALONGX) GO TO 100 ‘
IF(ALONGY) GO TO 200
RETURN . i ,
' - F
X~DIRECTION .

100 CONTINUE
CALL SETD2(A.B,C,CON,HX, NI)
DO 130 us1 Ny
!KA(NI)-B(NI)'U(NI.J)
DO 120 I=1 NIM
183 CX]

120 WK4(I)=C(I)*U(11,J)+B(I)*u(I, J)
DO 125 1=1 NIM
IMu]+g

125 R(I1,U)=A(I1)*U(I,J)+WKa(I1)

- R(1.J)=wKa(1)

130 CONTJINUE
RETURN _ : 3

‘

v-oxnzc1:o~ ~

200 CONTINUE ¢
CALL SETD2(A,B,C.CON, nv Nu)
00 230 I=1,NI
HK4(NJ)'B(NJ)'U(I Nu) . )
D0 220 u=1,NuM : ' .
Ji1=g+1 . -

220 WK4(J)=C(U)*U(I,u1)+8(J)*Ull.J) ’ . ~
DO 228 J*1,NUM" \

-

)
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230
END OF FILE

Jingsy
228
R(I,
CONTINUE
RETURN
END

230

R(I.U1)=A(Jt)*U(]I, J)swKa(uUt)
1)awK4( 1)

SUBROUT INE GOADGD(R.CONG,G,CONH H NI Ny)

S/R;

GDADGD -

173

R{I,J)=CONG*G(I,J)+CONH*H(I J)

AUTHOR: A. STANIFORTH DEC 78

REVISION 001:

ARGUMENTS :

outr. - R

IN - CONG
0 JG

CONM

H

NI

R VI

- R AND G MaY
~ R AMD H MAY

v

T.

LR A

GOOS - 1979-80 ADAPTED

\

RESULTING GRID
MULTIPLICATIVE CONSTANT
FERST INPUT GRID
MULTIPLICATIVE CONSTANT
SECOND INPUT GRID
DIMENSION OF X-DIRN .
DIMENSION OF Y-DIRN

FOR

FOR

FOR

SHARE THE SAME SPACE IF G NOT

SHARE THE SAME SPACE

DO 20 I=1,N]
R(I.J)=CONG*G(I. u)ocobum(x J)

20 CONTINUE
RETURN
ENO

‘

INPLICIT REAL*S (A-W.0-2) ;
DIMENSION R(NI.NJ).G(NI.NJ). H(m NJ)
DO 20 u=1.,NJ

IF H NOT

AMDAHL AT U OF A

FIRST INPUT GRID

-SECOND INPUT GRID

REQUIRED SUBSEQUENTLY
REQUIRED SUBSEQUENTLY

Al
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FILE INTERP
OBUECT FILE INTERP O
SUBROUTINES
INTRPT
- DINT
~ ROSSRA3
- SPD
FD1
FDM

SUBROUTINE INTRPT(FI . IFI JFI,F IF JUF XI.YI . X,Y FX FY_ FXY,
1 HX MY KL, P, S.C,A D, WORK KDER)

ORIGINALLY WRITTEN AT DRPN, DORVAL P Q
REVISION OO! T. GOOS - 1979-80 ADAPYED FOR AMDAHL AT U Of A

INTRPT DOES 2-DIMENSIONAL SPLINE INTERPOLATION. THE INPUT F(I1F . JF) IS
DEFINED ON THE PTS ((X(I).Y(J).I=1_IF) . J=1,JF) THE OUTPUT

FI(4.1F1 JFI) IS CALCULATED AT PTS ((XI(I).YI(J),I=1,1F1),J=1.JFi)
USING BI-CUBIC SPLINES IN TERMS OF THE PARTIAL DERIVATIVES OF F . FX, Fv.
FXY THESE P.D.S ARE CALCULATED BY SPD. (IF KL.EQ. 1. FXY=DX(DY(F)).
WHILE IF KL.NE.1, FXY-DY(DX(F)))

FD1 AND FDM RETURN END PT DERIVATIVES USED BY SPD .

THE VECTORS XI.YI,X,Y,(HX(I)*X(I+1)-X(I).I=1 IF-1),
(HY(U)=Y(U+1)-Y(J).J=1 JF-1), ARE ADDITIONAL INPUT.

THE ACTUAL INTERPOLATION IS DONE BY THE ROUTINE DINT, AFTER THE
EVALUATION OF FX,FY,FXY.

IF KDER=FALSE, THEN ONLY INTERPOLATED VALUES OF THE FUNCTION ARE
RETURNED . -~

IF KDER=TRUE., THE VALUES OF THE X,Y AND XY DERIVATIVES AT THE
INTERPOLATED PTS WILL ALSO BE RETURNED.

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION FI(4,IFI,UFI)
DIMENSION F (IF,JF)
DIMENSION FX(IF, JF)
DIMENSION FY(IF, JF)
DIMENSION FXY(IF, JUF)

THE PROPER DIMENSIONS HERE ARE IFI,JFI.IF.JF.IF.u:
DIMENSION XI(IFI)

DIMENSION YI(JUFI)
DIMENSION X(IF)

DIMs N Y (JF)
DIM NS HX(IF)
DIM "N < HY (JF)

WORKING STORAGE FOR SPD,ROSSR3 (LENGTH MAXO(IF.JF) .S SUFFICIENT)

OIMENSION P(IF)
DIMENSION S(IF)
DIMENSION A(IF)
DIMENSION C(LF)
DIMENSION D(IF)

WORKING STORAGE FOR DINT

~d
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66

&R
(333

86

94

100
101
102
103
104
105
106
107
108
109
110
140
11z
113
114
1185
116
117
118
119
120
121
122
123
124
125
126
127
128
129

¢
C
o
v

VHIE

DIMENSTON WORK(JF T 8)
LOGICAL KDER

WO TO ENSURE EXYTRAPOQULATION 14 NOT BEING ATTEMPTIED A MACHINE

DEPENDENT INCREMENT IS ADDFOD IN TFST 0 ACCOUNT FOR MACHINE ROUND-QOFF

00

901

902

903

60

70

75
100

150

200

St L IYEDABSIXI (1)t (-1 i
FOXY LT O ) WRITE(6,90C 1)

IF(x1 LT O ) sTorP

X1=YI{1)+0ABS(YI(1)*1 D

IF(X1T LT © ) WRITE(6.90

IF(yt LT ( ) STOP

X1» X(1)+DABS( X(1)*1 D-:

X1=X(IF)+DABS(X(IF)*1 D-12 .

IF(XS LT 0. ) WRITE(6,902) I+ X(IF). IFI XItIFY)

IF(X* LT O.) s10P

X1=Y(JF)*DABS{Y(JUF )=t D-12)-YI(JFI)

IFEXt LY O ) WRITE(6.903) JF Y(JF) JFT _vT{JFI)

IF(X1 (T O ) STOP )

FORMAT{ 1Ht '~ EXTRAPOLATION ATTEMFPTED, DETECTED BY INTRPT XI(1)="
1€16 .8, LT xX(1)=" E16 8)

FORMAT (111, EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT YI(1)="’
1E16 8, 'LT Y(1)=' E16.8)

FORMAT (1H1, " EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT X( ', ITW
1°)= _E16.8, LT XI(', 1%, )= ,E16.8)

FORMAT(1Ht, ' EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT vY(' .1
1°)= E16 B,'LT YI(',I5%,’ )=’ F£16_8)

CMU1=0.000 ‘

CLMDAM = O 00O

IF(KL .NE_1) GO TO 150

DO 100 I=1.IF

DO 50 J=1,JF

S(\J)'F(I.\J)

CO*iTINUE

T FD1(S.HY JF)

CM = FDM(S HY .f}

CALL SPD (P.S,.0% HY CMU1 . Ct i MDAM . CM A . C.D)

DO 60 J=1,JF

FY(I.JYeP( 2

CONT INUE

IF(KL . EQ. 1) GO TO ‘00

DO 70 J=1,JF

S{J)=FX(1.J)

CONT INUE : -

C=FD1(S . HY JF) . /,////

CM=FDM(S HY, JF) ’

CALL SPD(P,S.JUF ,HY CMU1,C1, CLMDAM CM A, C . D)}

DO 75 J=1,JF

FXY{(I,J)=P(U) -

CONT INUE

CONTINUE

IF(KL.NE 1) GO TO 600

DO S00 J=1, JF

DO 200 I=1,1IF

S(I)=F(1.4J)

CONTINUE

C1=FDI(S.HX . IF) -
CM=FDM( S HX,IF)

CALL SPD(P,S.IF HX.CMU1,C1 CLMDAM CM A .C.D)

DO 210 I=1,1F

FX(I.,J)=P(1)

CONTINUE

IF(KL.NE.1) GO 70 %500

DO 260 I=1,1F

S(I)=FY(I.,J)

CONTINUE



130
131
132
133
134
135
136
137
138
139
140
141
142
140
t44
145
146
147
148
149
150
151
152
153
154
135
156
157
158
159
160
16 1
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
i78
179
180
181
182
183
184
1835
186
187
188
189
190
191
192
193
194
195
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CA=FDY(S . HY 1f)
CM=FDM(S Hx IF)
CALL SPOD(P S IF HX CMULt Ct  LMDAM, UM A, C. )
DO 280 =1t IF
FXYLT . =P (1)
280 CONT INUE
SO0 CONTINUE ’
IF(KL NE 1) GO TO 10
600 CALL DINT(FI.IFI UFT F IF OF FX_FY EXY XI,YD X, Y HYX_ MY,

1 WORK (1. 1) WORK(1,2) WOR“ 1 3) WORK( 1, ,4) WORK({ '+ S) WORK( ! ...
2 WORK( 1,7), WORK(1,8) KDER)

RETURN

END

SUBROUTINE DINT(FI,IFL JFI F IF JF FX_FY _FXY_ XI YI.X VY 18 4y

1 ZA.28,.2C,2D,ZAY 2BY , 2ZCY . 2DY KDER)
_IMPLICIT REAL*8 (A-H,0-2)

DIMENSION FI(4,IFI,JF1)

DIMENSION F(I1F,JF)

DIMENSION FX(IF, JF)

DIMENSION FY(IF, JF)

DIMENSION FXY(IF, JF)

DIMENSION XI(IFI)

DIMENSION YI(JFI)

DIMENSION X(IF)

DIMENSION Y(JF)

DIMENSION HX(IF)

DIMENSION HY(JF)

DIMENSION ZA(JFI),ZB(JUFI),ZC(JFi),ZD(UFI1)
OIMENSION ZAY(JUFI),ZBY(JFI). ZCY(JFI1).2ZDY(UFI)
LOGICAL KDER

ORIGINALLY WRITTEN AT DRPN. DORVAL P Q.

REVISION OO1: T. GOOS - 1979-80 ADAPTED FOR AMDAHIL J OF A
THE DISCRETE FN F(I,J) IS ASSUMED KNOWN AT THE PTS WHOSE COORDS ARE
(X(I).Y(J)), WHERE I=t .. . IF ,Jd=1,..  JF

IT IS ASSUMED THAT X(I).LT.X(I+1) AND Y(J).LT.Y(J*+1)

HX (1) MUST BE PREVICUSLY DEFINED AS HX(I)=X{I+1)-X(1) FOR I=t, . (iF-1).
SIM. FOR HY(J). .
IF KDER=TRUE THEN

THIS SUBROUTINE RETURNS IN FI(K.I1,J) THE INTERPOL "7 VALUES OF THE
FUNCTION AND ITS X,Y,XY DERIVATIVES AT PTS (XI(I), i{J)).
WHERE I=1,... .. IFI JJm, L LJFT.

IT IS ASSUMED THAT XI(I).LT.XI{(I+1) AND YI(J).LT . YI(J+1).
HERE K=1 REFERS TO THE FUNCTION,
K=2 REFERS TO THE X-DER OF THE FUNCTION,
K=3 REFERS TO THE Y-DER OF THE FUNCTION,
) K«4 REFERS TO THE XY-DER OF THE FUNCTION.
NOTE THAT X€1) LE.XI(1).LE.XI(IFI).LE . XI(IF).
SIM. FOR Y AND YI.
IF KDER=FALSE THEN ONLY THE INTERPOLATED VALUES OF THE FUNCTION ARE
RETURNED. (1.E. CALCULATIONS ARE PERFORMED FOR K=t ONLY).
THE APPROXIMATION USED IS A BICUBIC SPLINE OF INTERPOLATION IN
TERMS OF THE PARTIAL DERIVATIVES FX(I.J).FY(I.J) AND FXY(I.J)
WHERE I=1,, . IF  J=1,. .. JF.
THESE DERIVATIVES MUST BE CALCULATED OUTSIDE OF THE ROUTINE.
E.G. BY USING SUBROUTINE SPD IN A SUITABLE MANNER - SUBROUTINE INTD
DOES THIS AND CALLS THIS SUBROUTINE. (INTD IS CALLABLE FROM INTRPT).
WORKING STORAGE ARRAYS ZA,ZB,ZC,ZD HAVE DIMENSION JUFI.

Li=2

DO 15 us=1 JFI

DO S L=LL.JUF

IF(YI(J).LE.Y(L)) GO TO B
S CONTINUE

N



196
197
198
199

201
202
203
204
205

207
208
209
210
PRR
212
213
214
215
216
217
218
219
220
221
222
223
224
228
226
227
228
228
230
231
232
233
234
23%
236
237
238
239
240
241
242
243
244
245
246
247
248
248
250
251
252
233
254

256
257
258
259

261

40

45

46

420

450

400
500

L=Jf

L=l -

LL=L

WNeYI(J)-Y(L1Y)

wh =1 000/HY(L1)

WE ~WN*WD

WE 1=1.000-WF
WE2=WE t *WE !

Ww=2 0DO*WE
ZA(J)=WE2*WN
ZB(J) =WE 1 *WN*WE
ZC(J)=WE2*( 1 ODO+WW)
Z0(J)=WE*WE* (3. 0D0-WW)
ZAY(J)=-WW*WE 1+WE2
IB8Y(J) = -WE*WE+WW*WE 1
ZCY(J)=-6 . 0DO*WD*WE 1*WE
20Y(J)=-2CY(J)
CONTINUE

KK =2

DO 500 I=1.IFI

DO 40 KeKK,IF
IF(XI(1).LE.X(K)) GO TO 4%
CONT INUE

K=IF

Kisk-1

KK =%

WM=XTI(I)-X(K1)
WDD=1.000/HX (K1)
WZ=wWM*WwDD
WZ1=1 . 0D0-WZ
WZ2=WZ1*W2Z1
22=2.0D0*wWZ

ZE=WZ2*WM

ZF =WZ1°WM*W2Z
2G=WZ22*(1.000+22)
ZL=WZ*WZ*(3.000-22)
IF( .NOT _KDER) GO TO 46
ZEX=m-2Z*WZ1+WZ2
ZFXo-WZ*WZ+22*WZ ‘
ZGX=-6.000*WDOD*WZ1*WZ
2L X=-2GX

LL#P

DO 400 J=1 JUFI

DO 420 Ls=LL.JF
IF(YI(J).LE.Y(L)) GO TO 450
CONT INUE

L=JF

Li=L-1

LL=L

Z1'ZE‘FXY(K1.L‘)-ZF‘FXY(K.L1)*ZG‘FV(K1.L1)‘ZL‘FY(K,L1)

Z2=ZE*FXY (XK1, L)-ZF*FXY(K, L)+
Z3=Z2E*FX(K1, L1)-ZF*FX(K, L1)+
ZasZE*FX(K1,L)-ZF*FX(K.L)+ZG
FI(1.1,J)=ZA(J)*21-2B(J)*22+
IF( .NOT.KDER) GO TO 400

Z1X-ZEX‘FXV(K‘.L1)-ZFX‘FXY(K.L1)¢ZGX‘FY(K1,L1)*ZLX'FV(K.L1)
Z2X'ZEX‘FXY(K1,L)-ZFX‘FXY(K,L)*ZGX‘FN(K1.L)#ZLX‘FY(K.L)
23X'ZEX‘FX(K1.Li)-ZFX‘FX(K.L‘)*ZGX'F(Ki.L1)*ZLX‘F(K.L1)
ZlX'ZEX‘FX(Kl,L)-ZFX‘FX(K.L)‘ZGX'F(K1,L)#ZLX'F(K,L)-

gngY(K1.L)*ZL'Fv(K.L)
SE(K1,LIT+ZL*F(K, LY)
*F(K1,L)+ZL*F(X,L)
2C(U)*23+20(J) 24

FI(2.1.J)=ZA{JY)*Z1X-28(J)*22X+2C(J)*23IX+2ZD(J)"Z4X

FI(3.1,J)=ZAY(J)*Z1-2BY(J)*Z

Fl(é.I.d)'ZAY(d)‘l1X—ZBY(d)‘ZQX*ZCY(d)‘ZSX*ZDV(d)'ZlX

CONTINUE
CONT INUE
RETURN
END

2+2CY(J)*Z3+420Y(JU)*Z4

177
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262 FUNCTION FDM(F .+ M)
2632 C

264 C FUNCTION: FDM - THIS FUNCTION RETURNS IN FDM THE DEKIVATIVE

265 C OF F AT THE PT X(M) IN TERMS QOF

266 c F(M-3).F(N—2).F(M-1),F(N).H?i-ﬁ'.Hfﬁ-}?,H(ﬁ-1)

267 - C WHERE H(I)=x(I+1)-X(1) FOR I=M-3 M-2 M-1

268 C -

269 C AUTHOR: A. STANIFORTH - 1973 4

270 C .

279 C REVISION OO1: A STANIFORTH - C. THIBEAULT JAN 79 DOCUMENIATION
272 C REVISION 002: T GOOS - 1979-80 ADAPTED FOR AMDAML AT U OF &

273 c

274 C FUNCTION : CALL FOM(F . H_.M)

27% C

2;3 C  ARGUMENTS -

2 N¢ IN - F - FIELD OF VALUES :

278 c - H - MESH-SPACING

279 c - M - NO OF POINTS

280 c \

281 €’ NOTES: - THE APPROXIMATION USED IS THE DIFFERENTIATED FORM OF

282 c LAGRANGES CUBIC INTERPOLATION FORMULA FOR NON-UNIFORM

283 c GRIDS . .

284 C

28% c -

286 IMPLICIT 'REAL*8 (A-H,0-2)

287 DIMENSION F(M) . H(M)

288 HisH(M-1) .
289 H2=H(M~2)

290 H3=H(M-3)

291 X1=H1+H2

292 X2=H24+H3

293 X3aX 1+H3 '

294 . FDM--X1'H1‘F(M-S)/(HG‘X2‘X3)*X3‘H1‘F(M—2)/(H3‘H2°X1)

298 FDM-FDN-XJ‘X1'F(M-1)/(x2°H2'H1)4(1.OOO/X341.OOO/X141.OOO/Hi)‘F(M)
296 RETURN ’

297 END

298 FUNCTION FD1(F . H M)

299 IMPLICIT REAL*8 (A-H.0-2)

300 DIMENSION F(M), H(M)

301 c

302 C ORIGINALLY WRITTEN AT DRPN, DORVAL P.Q. .

303 C REVISION OOt: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A

304

30% (o] g

306 C LET F(1).F(2)....... BE THE VALUES OF A FUNCTION F DEFINED AT

307 C SUCCESSIVE PTS Xx(1).x(2)...... OF A NON UNIFORM GRID.

308 £ THIS FUNCTION ROUTINE RETURNS IN FD1 THE DERIVATIVE OF F AT THE PT
308  C—Xx(1) IN TERMS OF FO1).F(2),F(3),F(4) ,H(1) ,H(2) ,H(3).

310~ C THE APPROXIMATION USED IS THE DIFFERENTIATED FORM OF LAGRANGES CUBIC
311 C INTERPOLATION FORMULA FOR NON UNIFORM GRIDS. ’

312 c )

313 (o . .

314 Hi=H(1) . i .
318 H2=H(2) . .

316 HI=N(3)

317 X 1H14H2 ‘

318 X2*H2+H3

319 ¢ X3=X{+H3

320 FD'--(1.000/“1*1.0QO/X1¢1.0DO/Xs)‘F(1)*x1'X3‘F(2)/(H1'H2'X2)
321 FO!-FD1-H1'X3‘F(3)/(Xi'HZ‘H3)*Ht‘x1’F(4)/(Xa‘xz'HS) )
322 RETURN '

323 END .

324 SUBROUTINE ROSSR3(P,A,DELTA,.C.D, M) 8
328 Cc

326 C ORIGINALLY ITTEN AT ORPN, DORVAL P.Q.

327 . C REVISION OO1: T. GOOS - 1979-80 ADAPTED FOR_AMAML AT U OF A
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330
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334
338

337
338
339
340
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342
343
344
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347
348
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350
381
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383

334

356
387
ki1 ]
359
360
36t

363
364
3es
366
367
J68
369
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VERSION 3

ANY TRI-DIAGONAL MATRIX SAY Q IN EQUATION QP=D MAY 8E

NORMALIZED WITH 1’S ON DIAGONAL AND C(1), I=1.M-1 FOR UPPER DIAGONAL
AND A(1),I1=2 M FOR LOWER DIAGONAL.

DELTA IS A WORKING STORAGE ARRAY OF DIMENSION M
IF THE VECTOR D IS NOT REQUIRED. SUBSEQUENTLY THEN THE CALL STATEMENT
CALL ROSSR3I(P.A,D,.C,D.M)
WILL USE THE ARRAY D AS WORKING STORAGE AND REDUCE THE OVERALL STORAGE
REQUIRED.
IF THE ARRAY C IS NOT REQUIRED SUBSEQUENTLY THEN THE CALL STATEMENT
CALL ROSSR3I(C.A,DELTA,C,D.M)
WILL REDUCE CORE STORAGE REQUIREMENTS.
IF BOTH C AND D ARE NOT REQUIRED SUBSEQUENTLY THEN THE CALL STATEMENT
CALL RDSSR3(C,.A.D.C.D.M)
WILL FURTHER REDUCE THE CORE REQUIREMENTS.
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION P(M) A(M) . DELTA(M) . C(M), D(M)
C(M)=0.000
P(1)=-C(1)
DELTA(1)=0( 1)
00 1 I=2.M
11-1-
Al=A(1)
X=1t 0D0O/(1.000+A1*P(11))
P(1)=-C(1)*X
1 DELTA(I)=(D(I)-AI*DELTA(I1))*X
P(M)=DELTA(M)
DO 2 1=2.M P
ITeM-14+1
IT14=l14¢
2 P(I1)=P(I1)*P(II1)+DELTA(IL)
RETURN
END
SUBROUTINE SPD(P.S,.M,H,CMUY,C1,CLMDAM,CM,A,C.D)

THIS SUBROUTINE RETURNS IN P THE DERIVATIVES OF THE FUNCTION S DEFINED
AT M CONSECUTIVE DISCRETE DATA POINTS X(1),Xx(2),..... x(M).

-THESE DATA POINTS DEFINE A NON-UNIFORM GRID H(1)=X(I+1)-X(1) WHERE I

RUNS FROM 1 TO (M-1) )
IT USES SUBROUTINE ROSSRI.
THE APPROXIMATION USED IS A CUBIC SPLINE FIT TO ALL THE g,-a POINTS.
IT REQUIRES BOUNDARY CONDITIONS TO BE SPECIFIED OF rne F
P(1)+CMUI*P(2)eCH
CLMOAM®P(M-1)+P(M)=CM
FOR A NATURAL SPLINE (THIS IS LEAST RESTRICTIVE CONOITION AND IMPLIES
2ZERO CURVATURE AT THE END POINTS), (1)=SOD(M)=0, AND WE HAVE
CMU1=CLMDAN=0.5, C1=1.89(S(2)-S(1))/H(1), CM=1, s'(S(u) -S(M-1))7H(M-1)

FOR SRECIFIED SLOPES (I1.E. SD(1) AND SD(M) GIVEN) vt'HAve
CMU1=CLMDAM=0. C1sSD(1) CM=SD(M) -

FOR SPECIFIED SECOND DERXVATXVES (1.€. SoD(1) AND'SOD(N) GIVEN) WE HAVE
CMUI=CLMDAM=0.5, C1=1.5*(S(2)-S(1))/H(1)-H(1)*SDD(1)°0.28% .
: CM=1.52(S(M)-S(M-1))/H(M=-1)+H(M-1)*SDD(M)*0. 25

NOTE THAT IF THE GRID SIZES H(1) ARE FIXED THEN THE CALCULATION OF A
AND C MAY BE MADE OUTSIDE THE SUBROUTINE AND PASSED VIA A COMMON BLOCK.

IMPLICIT REAL®S (A-H,0-2)

DIMENSION P(M),S(M) . A(M), C(M) . D(M), H(N)
M1eM- 1 . ’

DO 1 I=2 Mi,
Ite-1

2

“ J
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394 HI=H(1) »
ET13 HIteH(TIt)
396 X120.800/(HI+H1 1)
kI3 A(I)wHI*Xx1
398 t C(I)=HIt*x1
399 DO 2 I=2,M
400 Lt=129 .
401 f271e9
402 HIsw(1)
403 HIteH(I1Y)
404 SI=S(1)
408 X1=H(T)/H(I-1)
406 2 o(x)-'.soo-((SI-s(I1))'x1¢(5(x2)-sx)/xt)/(Hx¢H11)
407 C(1)=Cmu1
408 A(M)=CLMOAM
409 D(1)=Ct
410 D(M)=CM
41 CALL ROSSRA(P.A,.D.C.D.M)
412 RETURN
413 END
END OF FU.E
£ 4
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FILE: PROO
OBJUECT FILE. PROD.O
SUBROUTINES -
NL INX
NLLOOP

SUBROUTINE NUINX(R,U,V . H6 NI)

ADAPTED FROM DRPN DORVAL P Q
REVISION OOt: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A

IMPLICIT REAL*8 (A-H,0-7)
DIMENSION R(NI), U(NI). V(NI)

H6(I1)=H(1)/6. MUST BE PRESET BEFORE ROUTINE

DIMENSION H6(NI)
NIM=NI-{
WKSO=U(1)*Vv(1)
R(1)=0.000
DO 300 I=1_NIM
I1=l+1
HET=H6( 1) .
WiKa= (U(T)+U(11))*(V(1)+V(I$))* 5000
R(I)=R(1)+(WKSO+WK4)*HE61
WKSO=U(T1)=v(I1)

300 R(11)=(WKSO+WK4)*HEI
RETURN
END :
SUBROUTINE NLLOOP(R,.U,V,NI . NJ)

S/R : NLLOOP - COMPUTE THE HORIZONTAL PRODUCT R=U*V

AUTHOR : A. STANIFORTH - REVISED DEC 78 TO REMOVE BANK CONFLICTS
REVISION OO1: T. GOOS 1979-80 ADAPTED FOR AMOAHL AT U OF A

ARGUMENTS :
OUT - R - RESULTING PROOUCT Y
IN ° - U - INPUT FIELD ,
- V- INPUT FIELD ’
- NI - X DIMENSION /
- NJ - Y DIMENSION ) ’

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION R(NI.NJ) U(NI ,NJ) (NI NJ)
COMMON / HXMESH / HX( 1)

COMMON / HYMESH / HY(1)
COMMON / WKS1D1 / Hx&(1) g
COMMON / WKS102 / UO( 1)

COMMON / WKSI1D3 / VO( 1) . .

COMMON / WKS1D6 / RO(1) /

COMMON / WKS1D7 / wKT(1) - ’//

COMMON / WKS1D8 / wKB(1)

COMMON / WKS1D9 / wKkS(1)

COMMON / WKS110 / HOLD(1)

TWELFT=1.000/12.000 -
SIXTH=1.000/6.000

NIM=NT - 1 . »
NUM=NU- 1
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COMPUTE H6(1)=H(1)/6
AND SET RO TO o

DO 50 1«1 NIM
Uo(I)=u(r, 1)
VO(TI)=V(I. 1)
RO(I1)=0. 00O
50 HX6(I)eHX(1)}/6 00O
RO(NI)=0 000
UO(NI)=U(NI, 1)
VO(NI )= V(NI . 1)
Jm= 1
COMPUTE ROW PRODUCT U*V ON FIRST ROwW
CALL NLINX(VK?LUO,VO,HXG.NI)
LOOP OVER ROWS
DO 100 U=1 Num
Ji=y+
A HYJ1=HY(y)*SIXTH
HYJ2=HY(U) *TWELFT
DO 75 1=1 NI
ADD FIRST CONTRIBUTION TO U TH ROW
HOLD(I)'HVJi‘UK?(I)‘RO(X)
COMPUTE 2.+*U AND 2.*V ON COLLOCATION ROW

WKB(I)=UO(I)+U(I.y1)
7 WKI(I)=vO(1)+Vv(1.y1)

COMPUTE ROW PRODUCT HV(J)'U‘V/3. ON COLLOCATION'QOV
CALL NLINX(VK7.VK8,VK9.HXG.NI)
DO 90 I=1, NI
VKB(I)-HYJ?‘VK7(I)

ADD OTHER CONTRIBUTION T0 U TH ROW
RO(I)'HOLD(I)‘;KB(I)

MOVE RESULT RO INTO R(1.U)
R(I.J)=RO(1)

ADO FIRST CONTRIBUTION TO (J+1)ST ROW

90 mLD(I)-wKa(i)

- COMPUTE ROW PRODUCT U*V ON (u+1)ST ROW

CALL NLINX(VK7.U(1'01),V(1,01).HXG,NI)
ADD OTHER CONTRIBUTION TO (U+1)ST LEVEL

DO 120 1=1,N]
RO(I)=HYU1*wKT7(] )+HOLD(1)

MOVE U(T. U+ 1) V(I us1) INTO vo.vo
VO(I)=u(r. u1)

120 vO(I)=v(1,41)
100 ~ONTINUE
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N ' . .\1 i 1}
130 c . , N .
131 C MOVE RESULT RO INTO LAST ROW'OF R \\
132 c » ; N N -
133 00 150 171 NI N
134 150 R(1.NU)=RO(1) S
135% RETURN T

136 END -
END OF FILE ’ :
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FILE: PROU
OBJUECT FILE: PROU O
suanou71~ss~
PROUN X
- SETABC
- SETTRI
- SOLTRI
- PSOLVE

SUBROUT INE PROUN(R ,RHS  FOURTH NI  NJ, ALONGX . ALONGY )

S/R: PROJUN - THE FINITE- ELEMENT PROUECTION OPERATOR (ALONG ANY
OR ALL DIRECTIONS., AS DECIDED BY THE LOGICAL VARIABLES
ALONGX , ALONGY )
R = PROJECTION (RHS)

AUTHOR A. STANIFORTH - SPRING 1977

REVISION OO1: A. STANIFORTH - JAN 1979 VECTORIZED

REVISION 002: A. STANIFORTH - C. PHIBEAULT FEB 79 DOCUMENTATION

REVISION 003: T. GOOS - 1979-80 ADAPTED FOR AMDAMA. AT U OF a

CALL: CALL PROJN(Q,RHS,FOURTH.NI,Nd.ALONGX_ALONGY)

ARGUMENTS : ‘

our - R - RESULY OF PROJECTION
IN - RMS - RIGHT-HAND-SIDE TO BE PROJUECTED
- FOURTH - LOGICAL SWITCH - TRUE = FOURTH ORDER PROJECTION
IN HORIZONTAL
- FALSE = SECOND ORDER PROJECTION
IN HORIZONTAL
. - NI - X-DIMENSION
- N - Y-DIMENSION
- ALONGX - IF _TRUE. PROJECT IN X DIRECTION
- ALONGY - If _TRUE. PROJECT IN Y DIRECTION
NCTES: - AT PRESENT THE CODE HANDLES SECOND AND FOURTH OROER IN

BOTH DIMENSIONS .
- IF ALONGX AND ALONGY ARE ALL .FALSE.. A COPY OF RHS IS

RETURNED IN R.

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION R(NI.NJ), RHS(NI,Ny)
COMMON / HXMESH / HX(1)
COMMON / HYMESH / HY(1)
COMMON / WKS10S / A(1)

COMMON / WKSID€ / B(1)

COMMON / WKS1IDT / C(1) -
LOGICAL ALONGX , ALONGY

LOGICAL FOURTH

SET UP WEIGHTS FOR PROJUECTION OPERATOR

WT = 2. CORRESPONDS TO.USUAL PROJECTION, WHILST

WT = 3. CORRESPONDS TO PROJECTION USED IN THE FOURTH- ORD(R SOLUTION
OF ELLIPTIC BOUNDARY-VALUE PROSLENS .
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wWTXx=2 000
wWTy=2 00O
[F(FOURTH) wWTX=% _ 0DO
IF(FOURTH) wTY=% ODO

CODE FOR PROUECTION ALONG X DIRECTION

1F({ .NOT ALONGX) GO YO 200
CALL SETABC(A.B, C.HX,¥TX_.NI1)
NIM=N] -1
DO 130 J=1 ,NJ
DO 180 1=1 NIM
Tiwlst
[121+2
R(I1.J)*A(I1)*RHS(I J)+B(I1)*RHS(11.J)
IF(I.LT.NIM) R(I1.J)=R(I1 J)+C(I1)*RHS(12, J)
150 CONTINUE
R(1.J)=C{1)*RHS(2.U)+B(1)*RHS( 1. J)
130 CONTINUE
DO 135 J=1.NJ
D0 13% I=4,NI
RHS(1.J)=R(IJ)
13% CONT INUE

200 CONTINUE
COOE FOR PROJECTION ALONG Y DIRECTION

IF( .NOT ALONGY) RETURN

CALL SETABC(A.B,.C.HY WTY.NJ)

NuUM=NJ -~ 1

DO 230 I=1 NI

D0 250 J=1.NUM

Jiny+1

J2=J+2

R(I.J1)=A(U1)*RHS(I J)+B(U1)*RHS(T, J1)

IF(J.LT.NUM) R(I.J1)=R(I.Jy1)+C(J1)*RHS(1,U2)
2%0 CONTINUE

R(I.1)*C(1)*RHS(I1,2)+B(1)*RHS(], 1)
230 CONTINUE

RETURN

END

SUBROUTINE SETABC(A.B,C H . WT N)

S/R: SETABC - SETS THE TRI-DIAGONAL ELEMENTS OF THE MATRIX
ASSOCIATED WITH THE PROJECTION OPERATOR.

AUTHOR: A. STANIFORTH - SPRING 1977

»
REVISION OOY: A. STANIFORTH - C. THIBEAULT FEB 79 DOCUMENTATION
REVISION O02: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A

CALL: CALL SETABC(A,B,C.H WT N)
ARGUMENTS :

ouT -~ A - LOWER-DIAGONAL ELEMENTS
- B - DIAGONAL ELEMENTS
~ C - UPPER-DIAGONAL ELEMENTS
IN - H -~ MESH-SPACING N
- WT - USUALLY WT=2., BUT WT=S. WHEN SOLVING EBV PROBLEMS

TO FOURTH OROER
NO. OF PQINTS . -

'
z
'

IMPLICIT REAL*8 (A-H,0-2)
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131

133
134
13%
136
137
138
139
140
141
142
143
144
145
146
147
148
149
1%0
151
152
153
154
15%
156
187
158
159

161
162
163
164
165
166
1687
168
169
170
171
172
173
174
175
176
177
178
1179
180
181
182
183
184
188
186
187

189

190

191
192
183

198 .

OIMENSION A(N).B(N).C(N}
DIMENSION MH(N)

NM=N- {

C1=0.500/ 1
C2=WT+C1

OOO*VTQ

- A(1)=0.000
B(1)=H(1)+C2

C(1)=H(1)+C1 -
D0 10 [=2 Nw

HItsH(T1-1)

HI=H(1)

A(T)wMI1eCY
B(1)=(HI1+HT)*C2
C(I)=HI*CH

10 CONTINUE

A(N)sH(NM)*C 1
B(N)=H(NM)*C2 -
C(N)=0. 000 :

RETURN
END

SUBROUTfNE SETTRI(B!GE,BIGC.BIG

S/R:

AUTHOR: D.

REVISION 001: A.
REVISION 002: T.

.

SETTRI - SETTRI DOES THE PREPRQ

TRI-DIAGONAL SYSTEM OF
ROBERTSON - MARCH 1977

STANIFORTH -~ C.
GOoOos -

/”

A.A.B.C N

T

CESSING PASS TO SOLVE A

LINEAR EQUATIONS .

THIBEAULT FEB 79 DOCUMENTATION
1979-80 ADAPTED FOR AMDAML AT -U OF a

CALL: CALL SETTRI(BIGEABIGC.BIGA.A R C.N)

ALGOR]I THM:

AFTER THAT A CALL TO SOLTRI

A Y

GIVEN RHS D. THIS

MATRIX

- SOLVES Mepap !
WHERE M IN THE N BY N TRI-DIAGONAL MATRIX
“pow tone
*8(1).c(1),0.0..... .
" *A(2).8(2).c(2).0.0 ... .
- L
- ’ *
. . : -
. 0.A(1).8(1).c(I).0. .. .
L R L
- L)
. ...0.0.A(N).B(N)*
LA N X LA X E
- A(1) AND C(N) ARE NOT DEFINED BY THE MAT
SHOULD BE OF FULL SIZE. N. FOR CONVENI
ZEROES C(N). THE METHOO IS GAUSSIAN ELIM]
PIVOTING, FOLLOWED BY BACK SUBSTITUTION.
ARGUMENTS . '
out - BIGE - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
- BIGC - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
. - 81GA - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
TN - A - LOWER-DIAGONAL ELEMENTS OF
: -8 - DIAGONAL ELEMENTS OF TRI-DIAGONAL
IN - c - UPPER-DIAGONAL ELEMENTS OF TR]
- N - NO. OF POINTS
o -~ .
NOTES: - SETTRI IS CALLED TO COMPUTE

8IGE.BIGC.BIGA FROM A,B.C

WILL COMPLETE THE SOLUTION FOR
METHOD IS EFFICIENT WHEN SOLVING UITH_

TRI-DIAGONAL MATRIX
~DIAGONAL MATRIX

186

1x, BUT ARRAYS‘,C
E THIS ROUTINE ’
NATION WITHOUT
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20
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SEVERAL DIFFERENT RHS BUT THE SAME MATRIX M, AS ALL
DIVISIONS ARE OONE ONLY ONCE. AND SOLTRI PERFORMS N
VECTORIZABLE MULTIPLICATIONS FOLLOWED BY TWO SIMILAR

Rr CURSIVELY DEFINED, NON-VECTORIZABLE , LOOPS, EACH HAVING
N MULTIPLIES AND N SUBTRACTIONS, PER RHS. EXAMINATION OF
SOLTRI SHOWS BIGA(1), BIGC(N) ARE NOT USED.

IMPLICIT REAL*B (A-+' . 0-2)
DIMENSION BIGE(N).BI.+ (N),BIGA(N).A(N).B(N),C(N)
BIGE(1)=1.0D0/B(1)

BIGC(1)=C(1)*BIGE(1)

C(N)=0.000

DO 5C I=2.N .

[1=1

AI=A(1) -~
BIGE(I)=1.0/(B(1)-AT*BIGCON)) -

BIGC(I)=BIGE(1)*C(1) N ¥
BIGA(I)=AI*BIGE(I) -

CONT INUE

RETURN .
.END ’ ‘
SUBROUTINE SOLTRI(N,P.D.BIGD.BIGE,.BIGC.BIGA) .

SOLTRI - USED AFTER SETTRI TO COMPLETE THE SOLUTION.TO THE
TRI-DIAGONAL MATRIX PROBLEM. SEE SETTRI FOR DETAILS.

IMPLICIT REAL*8 (A-H,0-2)

ODIMENSION P(N).D(N).BIGD(N).BIGE(N) ,BIGC(N), BIGA(N)
DO 20 I=1,N

BIGD(I)=D(I)*BIGE(I) .
CONTINUE ’
DO 50 I=2.N

11=1-1

BIGD(I)=BIGD(I1)-BIGA{1)*BIGD(I1)

CONT INUE

P(N)*BIGD(N)

DO 100 1=2.,N

IREV=N-T+1

IREVI=IREV+1

O(IREV)=BIGD(IREV}-BIGC(IREV)*P{IREV1)

INTINUE

‘TURN
E AT
¢ {ROUTINE PSOLVE(R,RHS, NI NU,ALONG> ‘' T 1Y FOURTH) L3
R "SOLVE : SOLUTION OF THE MATRIX PROBLEMS ASSOCIATED WITH THE -(

PROJECTION OPERATOR (ALONG ANY OR ALL DIRECTIONS, AS
DECIDED BY THE LOGICAL VARIABLES ALONGX,LALONGY)

R = INVERSE PROJECTION ( RHS ) “

THOR: A. STANIFORTH - REVISED DEC 78 TO EXECUTE FASTER-

VISION OO1: 7. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
GUMENTS :
ouT - R - RESULT
IN - RHS - RIGHT-HAND SIDE
= NI - X DIMENSION
- NJ - Y DIMENSION
- ALONGX - If .TRUE. , INVERSE PROJECT IN X DIRECTION
- ALONGY - IF _TRUE. , INVERSE PROJECT IN Y DIRECTION
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29
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END OF FILE

[oReNeNel

‘foo

aO0o0n

S T e T e

IMPLICIT REAL*8 (A-H.0-2)
DIMENSION R(NI,NJ) . RHS(NI NJ)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/

/
/
/
/
/
/
/

HXME SH
HYME SH
WKSI1D 1
wWKS 103
WKS1D4
WKS 1D5
WKS 1D6
WKS 107
wKS 109

/
/
/
/
/
/
/
/

/

HX (1)

HY (1)
A(t)
B(1)
c(1)
CF1(1)
CF2(1)
CF3(1)
TEMP2( 1)

LOGICAL ALONGX,LALONGY, FOURTM

SET UP WTS ASSOCIATED WITH PROUN OPERATOR .
2. CORRESPONDS TO NORMAL USAGE .

WT=

‘WTX=2.0D0
WTY=2.0D0

[F{(FOURTH) WTX=5 0ODO
IF(FOURTH) wWTv=S%_ 0DO

CODE FOR SOLVING ALONG X DIRECTION

130

200

IF(.NOT.ALONGX) GO TD 200 -

-
-

CALL SETABC(A,B,C,HX,WTX,NI)
CALL SETTRI(CF1,CF2,CF3,A,B,.C.NI)
DO 130 J=1,NU

CALL SOLTRI(NI ~(1,J) ,RHS(1.J).TEMP2

CONTIM

GO TO 250

CONTINI

UE

UE

DO 450 J=1,NJ
DO 450 I=1 NI
450 R(I.J)=RHS(I,u)

CODE FOR SOLVING ALONG 'Y DIRECTION

250 IF( _NOT_ ALONGY) RETURN
CALL .SETABC(A;B,C ,HY WTY NJ)

460

215

22%

caLL

TTRI(CF1,CF2,CF3.A.B

DO 460 jI=1 NI
R(I.1)=CF1(1)*R(1.1)

CONT

UE

DO 215 J=2,NJ

Ji=g-1

CF3JU=CF3(J)
CF1J=CF1(J)
DO 215 I=1 NI
R(I,U)=-CF3U*R(I.J1)+CF1J*R(1.J)

CONT INI

UE

DO 225 u=2,NJ
JREV=NUY-J+1
JREV1=UREV+ 1
CF2y=CF2(JREV)
DO 225 1=1,NI

R(I,JREV)=-CF2J*R(I,JREV1)+R(I.JREV)

CONT INUE

RETURN
END

.C.NJY)

.CF1,CF2,CF3)

188
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SUBRQUTINE OUTPUT(II , XCI,TAU OMEG,XI YI X,Y NI NJ.NIU NJU,
1 FX,FY _FXY D,WORK NIP NJP OUT OT)

ROUTINE TO PRODUCE MAPS OF FORECAST FIELDS
IMPLICIT REAL*8 (A-H.0-2)
DIMENSION XCI(NI ,NJ),TAU(NI ,NJ) OMEG(NI NJ)
DIMENSION XI(NIP).YI(NJUP), X{(NIU),Y(NJU)
DIMENSION D(4 NIU,NJU)
DIMENSION FX({NIP . NJUP),FY(NIP NUP) FXY(NIP NJi WORK(NJU.8)
DIMENSION OUT(NIP NUP)
DIMENSION E(281,45)
COMMON / HXMES1 / HWX1(1)
COMMON / HYMES1 / HY1(1)
COMMON / WKS1Xt / WK1(1)
COMMON / WKSI1X2 / wK2(1)
COMMON / WKS1X3 / WK3(1)
COMMON / WKS1X4 / WK4(1)
COMMON / WKS1XS / WKS(1) R
COMMON / CONSTA / C4,CS - K
LOGICAL KDER o
USES ROUTINE INTRPY {0 PRODUCE VALUES OF FIELDS ON UNIFORM GRID
KDER=_ FALSE.
KL=2 )
ITIME=DFLOAT(II-1)*DT/.37000+.5000
CALL INTRPT(D;NIU.NJU,XCI . NIP NUP X,Y XI YI,FX,
1 FY,FXY,HX1,HY1 KL, WK1, WK2, WK3,WK4,KWK5, WORK KDER)
DO 100 J=1,NJU
DO 100 I=1,NIU
100 E(1.J)=C4a*D(1.1.4) /
“" CALL FPLOT(E.NIU,NUU,1) \
~ CALL INTRPT(D.NIU.NJU,TAU ,NIP NJP X,Y XI,YI FX,
1 FY.FXY , HX1,HY1 KL.WK1, 6 WK2, WK3, K WK4, WK5 WORK, KDER) ¢
DO 300 J=1,NJU '
DO 300 I=1,NIU
300 E(I1,J)=C4+0(1.1.J)
CALL FPLOT(E.NIU.NJU,1).
CALL INTRPT(D.NIU.NJU.OMEG.NIP ,NJP X .Y XI YI FX.
1 FY.FXY.HX1,HY1 KL,WK1, K WK2, WK3, WK4, WKS, WORK, KDER)
DO 475 J=1,NJU “
DO 475 I=1,NIU -
475 E(1,U)=CS5*D(1,1,4)
CALL FPLOT(E,NIU,NJU,O)
RETURN
END
SUBROUTINE MSHFLT(FIELD,WKX,WKY ,CON NI .NJ,IPOW)
S/R: MSHFLT - REDUCES AMPLITUDE OF FIELD (IN-PLACE) FOR REGIONS OF
POOR HORIZONTAL RESOLUTION
FIELD(I,J) = FAC*(FIELD(I,JU)-CON)+CON,WHERE
FAC = (HMIN(I,J)/H(1,J))**IPOW, ‘
H(I.J) = SORT(HX(I)*HX(I) + HY(J)*HY(J)),
HMIN(I,J)= SMALLEST(H(I.JU)).
AUTHOR: ROGER DALEY - SUMMER 1977
REVISION OO1: A. STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION
REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A.
CALL: CALL MSHFLT(FIELD,WKX WKY_ CON NI ,NJ,IPOW)
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UMENST -
-OUT - FIELD - FIELD USED FOR IN-PLACE AMPLITUDE REDUCTION
- X1 - X-~SPECIFICATION OF GRID
- Y1 - Y-SPECIFICATION OF GRID
-~ WKX - WORK(NI)
- WKY - WORK(NJ)
- CON - PARAMETER CONTROLLING MEAN OF FIELD
- NI - X-DIMENSION
- NJ - ¥%-DIMENSION -
- IPOW - PARAMETER OF AMP! ITUDE REDUCTION

IMPLICIT REAL*8 (A-H.,0-27)

DIMENSION FIELD(NI . NJ)

DIMENSION WKX(NI) K WKY(NJ)

FMIN={ D12

DO SO J=1,NJ

DO 50 I=1 NI

SX = DSQRT(WKX(I)*WKX(I) + WKY(JU)*WKY(U))
IF(SX.LE FMIN) FMIN=S$X

CONT INUE

DO 100 J=1 . NJ

DO 100 I=1t NI -

SX = DSQRT(WKX(I)*WKX(I) + WKY(J)*WKY(J))
FAC = (FMIN/SX)**I1POW
FIELD(I,J)=FAC*(FIELD(I,JU)-CON)+CON
RETURN :

END

SUBROUTINE REL(PHIG.PG.NI ,NJU,ALX,RELF,XTOL)
IMPLICIT REAL *8(A-H,0-2)

FORMS RELAXATION SOLUTION FOR POISSONS EQUATION.

DIMENSION PG(NI NJ).PHIG(NI K NJ)
COMMON / HXMESH / HX(1)
COMMON / RATIO1 / RATI1(63,27)
COMMON / RATIIY1 / RATI1(63.27)
COMMON / RATIO4 / RAT4(63,27)
FIVE=S . 0ODO

NIM=NT-1

NJUM=NU-~ 1

NI2=NI-2 »

NJ2=NJ-2 ‘

NJ4=NJ-4

DNI3=2 . 0DO*ALX
DNI3=1.0DO/DNI3
RELFP=1 . 0ODO-RELF

DO 1000 K=1,140

PHI=0O.00D0

SUM=0 .0

DO 20 I=2.NIM

Tt=1-1

HeHX (I )+HX(11)
SUM=SUM+H=PHIG(1,2)

HeHX( 1)+HX(NIM)
SUM=SUM+PHIG(1,2)*H
SUM=SUM*DNI 3

DO 25 I=1,NI

PHIG(I. 1)=5UM

DO 300 J=2 . NuUM

Ji=J-1
SUP=(PHIG(1,J1)+PHIG(NI,U1))/2.000
PHIG(1,U1)=SUP

PHIG(NI ,J1)=5SUP

J2aJ+1

DO 300 I=2.NIM
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160
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168
170
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1727

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
188
190
191
192
193
194
19%

805

300

40

45
1000
- 1505

1049

S0

Z=REL ' CMIGUT L J)

I1=1-1

12=141

RAI1=RATI(I1,U1)

RAOT=RATI(], 1)

RA1O=RAT (11, J)

RA=RATI{I.J)

RAT11=RATII(I1,u1)

RAIOI=RATII(I, U1)

RAIIO=RATII(11,y)

RAI=RATII(I J)

SUM=(RA11+RAT11)*PHIG(I1,U1)

SUM=SUM+ (RAO1+RATIO1)*PHIG(12,.U1)

SUM=SUM+ (RA10+RAT 10)*PHIG(11,U2)
SUM=SUM+ (RA+RAT )*PHIG(12,U2)

SUM=SUM+ (FIVE*(RAI+RAC 10)-RA-RA10)*PHIG(I,J2)
SUM=SUM+ (FIVE*(RAT11+RAIO1)-RA11-RAOT)*PHIG(I . J1)
SUM=SUM+(FIVE*(RA10+RA11)-RAI10-RAI11)*PHIG(I1 J)
SUM=SUM+ (FIVE*(RA+RAO1)-RAI-RAI01)*PHIG(I2.J)
SUMrFSUM/FIVE \

SUM= (SUM+PG(I,J))*RATA(T J)

WRITE(7,806) SUM RAT4(I,J).PG(I.J).PHIG(I,J)
PHIO=PHIG(I J)

PHIG(I.J)=Z+RELF*SUM

IF(1.LT.18.0R.I.GY.46) GO TO BQOS

IF(J.LE.5) GO TO 805

IF(J.GE.NJ4) GO TO 805
IF(PHIO.GT.-1.00-50.AND .PHIO.LT.1.0D~-50) GO TO BOS
PHIO=DABS{ (PHIG(I,J)-PHIO)/PHIO)

PHI =DMAX 1({PHIOD, PHI)

CONT INUE

FORMAT(4(2X.E12.6))

CONT INUE

SUM=0.0D0

DO 40 I=2,NIM

I1=1-1

H=HX(I)+HX(I1)

SUM=SUM+H*PHIG( 1., NJUM)

H=HX( 1)+HX(NIM)

SUM=SUM+PHIG( 1,NUM)*H

SUM=SUM*DNI3

DO 45 I=1 NI

PHIG(I.NJ)=SUM

IF(K.EQ. 1) GO TO 1000

IF(PHI .LT.XTOL) GO TO 1505

CONT INUE

CONTINUE

WRITE(7.1049) K,PHI

FORMAT (’ K = ’, 15,4X,E12.6)

RETURN

END

SUBROUTINE TRANS(OUT,XCI NI ,NJ,NIP NUP)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION OUT(NIP ,NJP) XCI(NI NJ)

NIM=NI -1

NUM=NJ- 1

DO SO J=2.NJUM

Ji=d-1

DO 50 I=2,NIM

I1=1-1 :

OUT(I1.J1)=XCI(I,J)

RETURN

ENO

SUBROUTINE RELHEL(PHIG,PG.NI NJ,ALX,ALAM RELF XTOL)
IMPLICIT REAL *8(A-H,0-2)

.

191
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196 c PE RMS RELAXATION SOLUTION FOR HELMHOLZ PROBLEM
197 c g 3

198 IMENSION PG(NI NJ),PHIG(NI N.)
199 COMMON / HXMBSH / HX(1)

200 . COMMON / RATIOY / RAT1(63,27)
201, , COMMON / RATIIt / RATI1(63,27)
202 COMMON / RATIO4 / RAT4(63.27)
203 COMMON / RATIOO / RATO(63,27)
204 COMMON / RATIO2 / RAT2(63,27)
205% COMMON / RATIO3 / RAT3(63,27)
206 8 COMMON / RATIOS / RATS(63,27)
207 FIVE=S 000

208 ALAMP=ALAM/60.D0

209 NIM=NI -1

210 NUM=NJ-

211 NI2=NI-2

212 NU2=NJ-2

213 NU4=NU-4

214 DNI3=2 . ODO*ALX

215 DN13=1. ODO/DNI3

216 . RELFP=1 . ODO-RELF

217 00 "1000 K=1, 140

218 PHI=0.0DO ’

21 SUM=0.0

22 DO 20 I=2.NIM

22 T1=1-1

22 H=HX(T)+HX(I1)

2 SUM=SUM+H*PHIG(I,2)

2 HeHX( 1)+HX(NIM)

2 SUM=SUM+PHIG(1,2)*H

2 SUM=SUM*DNI3

2 DO 25 I=1,NI

228 PHIG(I,1)=SUM

229 DO 300 J=2,NJUM

230 Ji=J-1

231 SUP=(PHIG(1,U1)+PHIG(NI JU1))/2.000
232 PHIG('1,J1)=SUP

233 PHIG(NI J1)=SUP

234 J2ry+t

235 DO 300 I=2,NIM

236 828 CONTINUE .

237 Z=RELFP*PHIG(I,J)

238 Ti=]-1

239 12=1+1

240 P11sPHIG(I1, U1,

241 P21=PHIG(I2,Jt)

242 P12=PHIG(I 1,uU2)

243 P22=PHIG(I12.42)

244 PO2=PHIG(I,U2)

248 PO1=PHIG(I J1)

246 ’ P10=PHIG(I1,J)

247 P20=PHIG(I12.J)

248 RA11=RATI(I1,J1)

249 RAO1=RAT1(I,J1t)

250 RA10sRAT1(I1.J)

251 RA=RATI(I,J)

252 RAT11=RATII(I1,JT)

253 RAIO1=RATII(I.UY)

254 RAI1O=RATI(I.J)

285 RAI=RATII(I,J)

256 SUM=(RA11+RATI11)*P 11

257 SUM=SUM+ (RAO1+RA101)*P21

258 SUM=SUM+(RA 1O+RAI10)*P 12

259 . SUM=SUM+ (RA+RAT ) *P22

260 SUM=SUM+(FIVE*(RAI+RAI 10)-RA-RA10)*PO2

261 . SUM=SUM+ (FIVE*(RAI11+RAIO1)-RA11-RAO1)*PO1

TG T WD O BT MR AR 3L e b
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80%
827
300

40

45

1000

1505,

1049
610
600

700

GR

INTOUR

SUM=SUM+ (§

SUMS=RAT2QI,J)*PO2

+RATI(1,U)*P20

SUMS=SUMS4RATI(I1.J)*P10 + RAT2(I,J1)*PO1

SUMS = SUMS
SUMS = SUMS
SUMS = SUMS *RLAMP
SUM=SUM-SUMS

SUM= (SUM+AR(1.J))*RATS(],V).

WRITE(7.6Q0) SUM,.SUMS RATS(1.J).PG(I.J),.PHIG(I.J)

PHIO=PHIGHI ,J)

PHIG(I J)WPZ+RELF*SUM
IF(I.LT
) GO TO 805

Jiu4) GO TO B80S
fGT.-1.00-50.AND.PHIO . LT.

CONTI

FOR%/ (316,.E£12.6,3X,E12.6)
SUM¥O . ODO

DO 40 I=2 NIM ~
It=]-14

HeHX{T)+HX(I1)
SUM=SUM+H*PHIG( 1 .NJUM)
HeHX (1) +HX(NIM)
SUM=SUM+PHIG( 1  NUM)*H
SUM=SUM*DNI3

DO 4% 1=9,NI
PHIG(I , NJ)=SUM
IF(X.EQ.1) GO TO 1000

IF(PHI .LT.XTOL) GO TO 1805

CONTINUE

CONT INVE
WRITE(7,1049) K, PHI
FORMAT( ' HELM. K=’

FORMAT(1X,8(1X ,E12.6)
FORMAT(8(2X,E12.6))
RETURN

END

a

.OR.1.GT7.46) GO TO 805

IVE*(RA10+RA11)-RAT10-RAI11)*P 10
SUM=SUM+ (R IVE* (RA+RAO1)-RAT-RATO1)*P20
SUM=SUM/ S RODO

IVE+RATO(TI,J)*P22+RATO(I1,J)*P12
RATO(I11,J1)*P11+RATO(T J1)*P21

1.00-%0) GO TO 80%

15,4X . E12.6)

)

SUBROUTINE FPLOT(Z,NIU,NUU, IFLAG)

REAL*8 Z(NIU,NJU)

ID.

JIMENSION F(92,45)

B

JIMENSION CVAL1(18),CVAL2(19),VOP(8),10P(8B)

“ALUES FOR HEIGHT AND THICKNESS FIELDS.

PLOTS FIELDS IN 2 SECTIONS; ONE OVER THE NON-UNIFORM PORTION
OF THE GRID AND ONE INCLUDING THE UNIFORM PORTION OF THE

LATA CVAL1/%540.0,480.0,420.0,360.0,300.0,240.0,180.0.

“20.0,60.0.0

6C.C  '20.¢. 180.0,-540.0/
o IES FOR UMEGA FIELD.
2/3.6,3.7 2.8,2.4,2.0,1.6
- 2,-* " -2.0,-2.4,-2.8,
TA 4P, L.0.0. 0.0.-1.0,0.0,

Ay
P

PR
i

-60.0,.-120.0.-180.0,-240.0,-300.0,
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354

END OF FILE

Cc
C
C

(o}
C
o

P

100

I0OP(4) =1
10P(6)=0

IOP(7)=1

10P(8)=0

IOP(S)=1FLAG

NC=19

CALL ORIGIN(999.6.%,3.8 1 0.1 ()

)T VARIABLE PORTION
DO 100 u=1, 4%

DO 100 1+1,92
F(I,u)=2(1.0)

PUWPIAC I ey n g g

194

IF(IFLAG.EQ.0) CALL CONTUR(5.5.2.75.F.92,92.45.CVAL2.NC.XOP.VOP)
IF(IFLAG.EQ. 1) CaLL CONTUR(5.5.2.75.F.92.92.45.CVAL1,NC.IOP,VOP)

CALL 0RIGIN(999.GA5.3A5.1.0.1.0)

PLOT UNIFORM PORTION

150

DO 150 U~ 1,45
DO 150 1=92, 183
It=1-91
FOI1.d)=2(1.v)

\

\.

\,

|

IF(IFLAG.EQ.0) CALL CONTUR(5.5,2475.F.92,92.45.CVAL2.NC.IOP.VOP)
IF(IFLAG.EQ. 1) cALL CONTUR(S.5.2.75.F,92.92.45.CVAL1.NC.IOP,VOP)

RETURN
END

l/—‘
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FILE- OQOIAG

FILES

OB R®ADNDWN -

0000000000000000OOOOOOOOOO(‘)OOO

OBJECT - DIAG

INPUT

FEDIAG
SPDIAG

VME SH .
ME SHD

SPECD

N aWwWwN -
. =% 8 0

ouUTPUT

ENERGIES AND ENSTROPHY
ERRORS IN MAP FORM

MEAN ERRORS AND S1 SCORES
-PDIAG

O®™® 9O

COMPUTES DIAGNOSTIC VALUE:- ‘OM THE SPECTRAL AND FEM FORECASTS
THESE VALUES INCLUDE:

KINETIC ENERGIES

AVAILABLE POTENTIAL ENERGIES

POTENTIAL ENSTROPHYS

MEAN DIFFERENCE BETWEEN SOLUTIONS

MEAN ABSOLUTE OIFFERENCE BETWEEN SOLUTIONS
S1 SCORES

oy

YSES SYSTEM ROUTINES TO PLOT GRAPHS OF THESE VALUES.

IMPLICIT REAL*B (A-H,0-2)
DIMENSION XCSP(6€3,27).TASP(63,27) XCFE(63,27), TAFE(63,27)
OIMENSION XCSPO(63,27).TASPO(63,27),XCFEO(63.27).TAFEO(63.27)
DIMENSION X(281),Y(4S),X1(63).YI(27)

DIMENSION HX1(63),HY1(27)

DIMENSION APE(S),EKE(9),TOT(9).PE(9)

OIMENSION APEF(8), EKEF(9),TOTF(9),PEF(9)

DIMENSION DEXC(9), ADEXC(9).DETA(9). ADETA(9)

DIMENSION S1XC(9).S1TA(9)

REAL ZZ(11.9).7T(11)

DIMENSION ZKESP(9),EKESP(9),ZAPESP(S), EAPESP(9)

OIMENSION 2KEFE(9).EKEFE(9).2APEFE(9).EAPEFE(9)

DIMENSION APET(9)., APETF(9),EKET(9),EKETF(9)

DIMENSION TOTT(S).TOTTF(9),PET(8).PETF(9)

REAL TI(3),T12(4),T13(2),TI4(S)

LOGICAL*1 LFMT(1) /r*"/

DATA T/O.O.G.O.12.0.18‘0.24.0.30.0.36.0.42.0.48.0.0.0.0.0/

DATA TI{1/'ENER’,’'GY ','(J) ‘/

DATA TI2/°ENST’,'ROPH’,'Y(KG’.’ S })'/
DATA TI3/'St $-_ ‘CORE‘/ :

DATA TIA4/'MEAN’) DIF’, ‘FERE’','NCE ‘,"(M) */
COMMON / HXMESH / HX(63)

COMMON / HYMESH / HY(27)

COMMON / WKS1D1 / WK1(63)

COMMON / WKS1D2 / WK2(63)

COMMON / WKS103 / wK3(63)

COMMON / WKS1D4 / wWK4(63)

COMMON™" WKS1DS / WKS(63)

COMMON / WKS1D6 / WKE6(63)

COMMON / WKSID7 / WK7(63)

COMMON / WKS1D8 / WwK8(63)

COMMON / WKS1D9 / WK9(63)

COMMON / WKS110 / WK10(63)

COMMON / WORKA / WKA(63,27)
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110
111
112
113
114
118
116
117
118
119
120
121
122
123
124
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126
127
128
128
130

oooo0an

OO0

ao

[eNeNe]

OO0 [eNeNeNe] o000

2 X2 Xs)

COMMON
COMMON
COMMON
COMMON
COMMON

/ WORKS
/ WORKC
/ WORKD
/ WORKE
/ WORKF

SET CONSTANTS

CXCI=L*L*FO*FO/G

CXCl=2

CPE=2 ODO*FO*FO/(DP*DP*SIG)

/ WKB(63,
/ WKC(63.
/ WKD{61.
;. WKE(63,
/ WKF (63,

1535726604

* CPE=3 03820980-12
1383390022
CAPE=6 4967228010
CCPE=1.069169%5E22

CEKE=2

READ PARAMETERS OF GRID.

READ(4.
READ(4,
READ(3,
READ(3.
READ(3,
READ(3.
NIP=NI

NUP=NJ

LFMT) NIU,NJU
LFMT) NI, NJ

LFMT)(X¢I).I=1,NIU)
LEMT )(Y(J),JU=1.NJUU)
LFMT)(XI(T) I=1 NI)
LFMT)(YI(J),J=1t NJ)

CALCULATE GRID LENGTHS.

CALL CALMH(HX1,XI NIP)
CALL CALK(HY1,YI NUP)
NUPM=NUP - 1
NIPM=NIP-1
HX1(NIP)=HX 1(NIPM)
HY 1 (NUP ) =HY 1 (NUPM)
NIM=NI -1
NUM=NJ- 1
DO 60 I=1t,NIP
60 HX(I)=HX1(1)
DO 65 J=1,NUP
65 HY(J)=HY1(J)

READ INITIAL AMPLITUDES

READ(S.LFMT) X4 ,x2.x3,T1,7T2,73

N NO. OF WAVES,

CEAD(S,LFMT) N M, 0T 10T2
CALCULATE NO. OF RECORDS ON FILE
NR=(M-1)/10T2+1

SET BOUNDARIES OF COMPARISON GRID(S)

IL1=23
IR1=40
JT1=18
J8 1=10

27)
27)
27)
27)
271

M = NO.'OF TIME STEPS
TIMESTEP, IPT2 = NO. OF HOURS BETWEEN MAPS

196
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160
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162
163
164
165
166
167
168
169
170
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174
175
176
177
178
179
180
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182
183
184
185
186
187
188
189
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1914
192
193
194
198
196
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IN LOOP

HEHX (30)

DO 1000 119 NR
S1XC(I1}=0 000
SITA(IT)=0 000

READ SPECTRAL FIELDS

READ(2) xcsp
READ(2) TaSP

READ FEM FIELDS

READ( ) XCFE
READ( 1) TAFE

IF(IT NE t) GO TO 200
DO 180 U=1 Ny

DO 180 I1=1 NI

XCSPO(I ,J)=xCSP(1.y)
TASPO(I . JU)=TASP(1.J)
XCFEO(I . U)=XCFE(1.4)
TAFEO(I ,J)=TAFE(T1 . 4)

180 CONTINUE
200 CONTINUE

CALCULATE ENERGIES A&}ENSTROPHIES

CALL APOTEN(APE(II). IL1.IRY,UT1 UBY, TASP NI.NJ.

1 H.APET(I1).1)

CALL APOTEN(APEF(I1). IL1. IR, UT Y UB1, TAFE,NI.NU,

1 H APETF(II).1)

CALL EKINEN(XCSP,TASP,NI.NJ,H.EKE(II),IL1.IR1.JT1_
1 UB1 EKET(II), 1)

CALL EKINEN(XCFE.TAFE,NI,Nu,H.EKEF(II).IL1.191.JT1.
t UBT EKETF(I]), 1)

CALL POYENS(XCSP.TASP.NI.Nd.H.PE(XI).IL1,IR1.JY'.

1 JUB1, CPE,PET(I1).1)

CALL POTENS(XCFE_TAFE.NI.Nd.H,PEF(XI).IL1.IR1.JT1,
' JB1,CPE,PETF(II).1)
PE{II)=PE(Il)*CCPE
APE(JI)=APE(IT)*CAPE
EKE(I1)=EKE(IT)*CEKE
TOT(I1)=APE(II)+EKE(TI])
PEF(II)=PEF(II)*CCPE
APEF(I1)=APEF(I1)*CAPE
EKEF(II1)=EKEF(I1)*CEKE
TOTF(I1)=APEF(II)+EXEF(11)
PET(I1)=PET(I1)*CCPE
APET(II)-APET(II)‘CAPE‘(
EKET(I1)=EKET(I!)*CEKE \
TOTT(II)=APET(II)+EKET(I])
PETF(II)=PETF(I1)*CCPE
APETF(II)=APETF(1]1)*CAPE .
EKETF(IT)=EKETF(II)*CEKE "
TOTTF(II)=APETF(IT)+EKETF(IT)

IF(I1.EQ. 1) GO TO 1001

CALCULATE DIFFERENCE IN LAST (II-1) QUTPUTS

TRUE DIFF. FOR XCI FIELD

CALL cvoGo(va.1.ooo.xcsp.-1,ooo.xcspo.NI.Nd)

FORECAST DIFF. FOR XCI FIELD
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200
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202
203
204
20%
206
207
208
209
210
211
212
213
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215
216
217
218
219
220
221
222
223
224
228
226
227
228
229
230
231
232
233
234
233
236
237
238
239
240
241
242
243
244
243
246
247
248
249
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2852
233
254
288
256
257
258
259
260
261
262
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[aNeNe]
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CALL GDADGD(WKB. 1 ODO. XCFE. 1 ODO, «(FEO._NI.NJ)
FIND ERROR IN FORECAST

CALL GDADGD(WKC, 1 ODO,WKA, -1 )0 WKB NI . NJ)
CAEL MEAN(WKC NI NY, DEXC(II) ILY IRt JT1, uB1)
CALL AMEAN(WKC NI NJ ADEXC{ITI) IL1. IRt UTy uB1)

CALCULATE DIFFERENCE IN LAST (l1-1) OUTPUTS
TRUE DIFF FOR TAU FIELD

CALL GDADGO(WKA 1 ODO.TASP -1 ODO.TASPO_ NI . N.)
FORECAST DIFF FOR TAU FIELD

CALL GOADGO(WKB., 1 ODO.TAFE.-t ODO.TAFEO NI Ny)
FINO ERROR IN FORECAST

CALL GDADGOD{WKC, ! ODO.WKA, -1 ODO.WKB NI . NJ)
CALL MEAN(WKC NI NJ.DETA(II). ILY1, IR, JTY, UB1T)
CALL AMEAN(WKC NI NJ. ADETA(II) . ILY, IR UT1.UBY)

CALCULATE St SCORES
FOR XxCI

CALL DXDYDS(WKB_XCSP,1 ODO. . TRUE.. FALSE NI NJU)
CALL PSOLVE(WKA WKB NI.NJ, TRUE ., FALSE.,L . FALSE )
CALL DXDYDS(WKC XCSP.1.0D0. .FALSE., TRUE .NI_.NJ}
CALL PSOLVE(WKB, WKC NI . NJ, FALSE , TRUE., .FALSE )
CALL DXDYDS(WKD.XCFE, (1. ODO. TRUE , FALSE. NI NJ)
CALL PSOLVE(WKC,WKD NI.NJ, TRUE., FALSE . FALSE. )
CALL DXDYDS(WKE XCFE.1.000. FALSE . TRUE NI.NJ)
CALL PSOLVE(WKD, WKE NI NJ. FALSE. , TRUE.. FALSE )

ERROR IN X-PRESS. GRAD - WKE

CALL GDADGD(WKE, 1 0ODO.WKC, -1.0DO0,WKA NI NJ)
ERROR IN Y-PRESS. GRAD - WKF

CALL GDADGD(VKF.'.OOO;UKD,-i,OOO.UKB.NI.Nd)
FORM SUM OF AB< OF ERRORS

CALL SUM(WKE NI NJ,SUM1, iL!.IR1 . JT1,U81)

CALL SUM(WKF NI NJU,SUM2,ILY.IR1 JT1,UB1)

SUM3 =SUM 1+ SUM?2

CALL SUMB(WKC, WKA NI NJU,SUMt IL1,IRY UT1, uR¢)
CALL SUMB(WKD,wKB NI, NJ,SUM2, ILt, IRT UT1, . )
SUM4 =SUM 1+ SUM?2

IF(DABS{(SUM4) .LT.1.00-50) GO TO 435
SIXC(I1)=100.000°SUM3/SUM4

CALCULATE St SCORE FOR TAU.

435 CALL DXDYDS(WKB,TASP,1.0DQ..TRUE...FALSE. .NI.NJ)
CALL PSOLVE(WKA WKB NI.NJ. TRUE., FALSE.. FALSE )
CALL DXDYDS(WKC TASP,1.000..FALSE.,.TRUE..NI.NJ)
CALL PSOLVE(WKB,WKC NI NJ, FALSE.,.TRUE., FALSE.)
CALL DXDYDS(WKD.TAFE, 1. 0DO..TRUE.. FALSE..NI.NJ)
CALL PSOLVE(WKC ,WKO, NI NJ. TRUE., . FALSE., FALSE.)
CALL DXOYDS(WKE,TAFE, 1.000..FALSE. . TRUE. .NI.Ny)
CALL PSOLVE(WKD WKE,NI.NJ, FALSE...TRUE., FALSE.)

198
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g FRROR IN X -PRESS GRAD - wWKE

¢ CAlL' GDADGO(WKE 1 ODO wKC, -1 ODO . WKA N1 . NJ)
E ERROR « Y-PRESS GRAD - WKF

- CALL GDADGD(WKF 1 00O .WKD, -1 ODO WKB.NI.NJ)
g' FORM SUM OF ABS OF ERRORS

c

r CALL SUM(WKE .NT . NJ . SUM1 IL1 IR1 JUTt UB1)
CALL SUM(VKF,N;,NJ.SUMQ.!L«.IR|.JT1,J81)
SUMI = SUM 1+ SUM2
CALL SUMB(HKC.VKA.NX.Nd.SUN1,lL!.IR1.dT1.J81)
CALL SUMB(VKD_HKQ;NI.NJ,SUM2.1L1.Iﬂ1.dY'.dB')
SUM4 = SUM 1 +SUM2
IF(DABS(SUM4) LT 1 O0-50) GO TOQ 436
SITA(I1)=100. 000*SUMI/SUM4
436 CONTINUE
1001 CONTINUE
C
C CALCULATE ZIONAL ANO EDOY ENERGIES .
C
CALL ZEENE(XCSP.TASP NI NJ.JUT!1, JUBt TLI IR1 . H,
1 ZKESP(XI).EKESP(II).ZAPESP(II).EAPESP(XI))
CALL ZEENE(XCFE.TAFE,NI.Nd.dTi.JB!,IL1,IR1.H.
1 ZKEFE(!X).EKEFE(II).ZAPEFE(II).EAPEFE(II))
1000 CONTINUE

C

C INITIALIZE PLOTTING PROGRAM.

C
CALL PLOTS
CALL ORGEP(1.0.° 0)

C

C PLOT ENERGIES

c
DO 6%0 1T=1 ,NR
ZZ(IT,1)=EKE(IT)
ZZ(IT 2)=EKEF(IT)
2Z(I1T,3)=APE(IT)
Z2(17.4)=APEF(IT)
2Z(IT,%)=TOT(IT)
22(17.6)=TOTF(IT)

650 CONTINUE

CALL LPLOT(ZZ.T.NR+2,6,3.0,3.0.711.3)

c

C PLOT KINETIC ENERGIES.

C
DO 690 IT=1.NR
22(17.1)=EKE(IT)
2Z(1T.2)=EKEF(IT)
22(17.3)=ZKESP(IT)*CEKE
22(1T7.4)=ZKEFE(IT)*CEKE
2Z(1T.5)=EKESP(IT)*CEKE
22(17.6)=EKEFE(IT)*CEKE

690 CONTINUE

CALL LPLOT(ZZ.T.NR+2,6,3.0,3.0,711.3)

c

C PLOT POTENTIAL ENERGIES.

c

DO 695 IT=1,NR
ZZ(1T.1)=APE(IT)
2Z(1T,2)=APEF(IT)
2Z(17,3)=ZAPESP(1T)*CAPE
22(17.4)=ZAPEFE({. }*CAPE

a4
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69%

?
:
ZZ1T . S)=EAPESP(IT)*CAPE
ZIN1T . 6)=EAPEFE(IT)*CAPE
CONT INUE
CALL LPLOT(ZZ.T.NR+2.6.3 0.3 O.T11.2)

PLOT ENSTROPHY

€55

DO 655 [T=1 NR

ZZ(1T . 1)=PE(1T)

ZZ(IT . 2)=PEF(IT)

CONTINUE

CALL LPLOT(ZZ.T.NR+2,2,3.0.3.0,T12.4)

PLOT St SCORES

660

DO 660 IT=1 NR
22(1T7T.1)=SHXC(IT)

ZZ(IT 2)=SH1TACIT)

CONTINUE

CALL LPLOT(ZZ.T NR+2,2.3.0.3.0.T13,2)

PLOT MEAN ENERGIES

663

DO 665 IT=1 _NR

ZZ(IT,1)=DEXC(IT)*CXCI
2Z(1T,2)=ADEXC(IT)*CXCI

ZZ(IT 3)=DETA(IT)*CXCI

2Z(17 4)=ADETA(IT)*CXCI

CONTINUE

CALL LPLOT(ZZ.T ,NR+2,4.3.0.3.0.714.5)

PLOT TOTALS

830

840

DO 830 IT=1,NR
ZZ(IT ., 1)=€EKET(IT)

ZZ(IT 2)=EKETF(IT)

2ZZ(IT,3)=APET(IT)

ZZ(IT, 4)=APETF(IT)

ZZ(IT.S5)= TOTT(IT)

22(17T.6)=TOTTF(IT)

CONTINUE

CALL LPLOT(2Z,.T ,NR+2,6,3.0.3.0.T11.3)
DO 840 IT=1 NR - '
2Z(IT.1)=PET(IT)
ZZ(1T,2)=PETF(IT)
CONTINUE

CALL LPLOT(ZZ.T,NR+2,2,3.0.3.0,T12.4)
CALL PLOT(0.0.0.0. ~

sTOP

END

SUBROUTINE FINT(F NI NU,H,SUM IL, IR, JT,uB)

IMPLICIT REAL*8 (A-H.0-2)
DIMENSION F(NI.NJ)

PERFORMS INTEGRATION OF F OVER THE SQUARE

IL<=2X<=]R

JB<=Y<ayT :

Caiay e Rl L e

ASSUMING A ONIFOR" MESH LENGTH H IN BOTH DIRECTIONS.

00

300

SUM=0.0
EDGES .

IL1=fL+1
IR1=IR-1
00 300 I=ILY,IR?
SUM=SUM+F (I, JT)

gy

g it —— 3 o

200

-
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402
403
404
408
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
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456
457
458
459
460

[eNeNe!

[eNeNe!

c

DO 310 TI=IL1,IRY
310 SUM=SUM+F( 1, UB)

JT 1=dT -1

JB1=yB+ 1

00 320 JU=JB1,JT 1
320 SUM=SUM*¥ {IL,JU)+F(IR.J)
SUM=SUM* 50D0

DO CORNERS.

SUMI=F (TL, UT)+F (IR, JT)+F(IL.UB)+F(IR,uUB)
SUM=SUM+  25D0*SUM1

DO INTERIOR.

SUM{=0.0

DO 350 J=JB1.JTH
DO 350 I=ILt,IR{
350 SUMI=SUMI+F (], J)
SUM=SUM1+SUM
SUM=SUM*H*H

RETURN
END

SUBROUTINE EKINEN(XCSP,TASP NI, NJ.H,EKE,ILY, IR,
1 JT1,UB1,EKET,IFLAG) :

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION XCSP(63,27),TASP(63,27)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

HXME SH
HYME SH
WKS 1D 1
WKS 1D2
WKS1D3
WKS 1D4
WKS 1DS
WKS 106
WKS1D7
WKS1D8
WKS 1D9
WKS 110
WORKA /
WORKB /
WORKC /
WORKD /

/

/
/
/
/
/
/
/
/
/
/
/

FIND KINETIC ENERGY.

HX(63)
HY(27)
wK1(63)
wK2(63)
WK3(63)
wK4(63)
WK5(63)
WK6(63)
WK7(63)
wK8(63)
wK9(63)
WK 10(63)
WKA(63,27)
WKB(63,27)
WKC(63,27)
WKD(63,27)

CALL DXDYDS(WKA, XCSP,1.0DO, .TRUE., . FALSE. ,NI,NJ)
CALL PSOLVE(WKB.WKA, NI NJ, .
CALL NLLOOP(WKA,LWKB,WKB NI,
CALL PSOLVE(WKD,WKA,NI NU, .
CALL DXDYDS(WKA,XCSP.1!.0D0.
CALL PSOLVE(WKB,WKA NI, NJ, .
CALL NLLOOP(WKA,WKB,WKB NI,
CALL PSOLVE(WKC,WKA,NI . NJ, .
CALL GDADGD(WKD, 1.0D0,WKD, 1.0D0,WKC,NI NJ)

CALL DXDYDS(WKA,TASP,1.0D00..TRUE., .FALSE..NI.NJ)
CALL PSOLVE(WKB.WKA NI NJ, . TRUE.,.FALSE., . FALSE.)
CALL NLLOOP(WKA,WKB,WKB.NI,NJ)

CALL PSOLVE(WKC,WKA,NI NJ,.TRUE...TRUE., FALSE.)
CALL GDADGD(WKD, 1.0D0,WKD, 1.0DO,WKC NI NJ)

CALL DXDYDS(WKA,TASP,1.000, .FALSE.,.TRUE. NI ,NJ)
CALL PSOLVE(WKB,WKA. NI NJ,.FALSE., . TRUE., FALSE.)
CALL NLLOOP(WKA,wWKB WKB, NI NJ)

CALL PSOLVE(WKC,WKA NI, NJ, .TRUE., .TRUE., .FALSE.)
CALL GDADGD(WKD, 1.000,WKD. 1.000,WKC ,NI.NJ)

CALL FINT(WKD.NI,NJ.M.EKE,IL1.IR1,JT1,JB1)

TRUE., .FALSE., . FALSE.)
NJ)

TRUE.,.TRUE., .FALSE.)
.FALSE., . TRUE. ,NI.NJ)
FALSE...TRUE., .FALSE.)
NU)

TRUE., .TRUE., .FALSE.)



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

501
502
503
504
505
506
507
508
509
510
S11
512
513
14
515
516
$17
518
519
520
521
522
523
524
525
526

OO0 [eNeNe! OO0 [eNoNe]

[eNeoNe]

ano

[
<
ro

[F(IFLAG EQ. 1) CALL TINT(WKD EKET NI, ,NJ)

RETURN
END

SUBROUTINE POTENS(XCSP,TASP NI NJ.H.PE,IL1,IRY,
1 JT1,UB1 ,CPE.PET,IFLAG)

IMPLICIT REAL*B (A-H,0-7)

DIMENSION XCSP(NI,NJ),TASP(NI.NJU)

COMMON

/

COMMON /

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

FORM LAPLACE OF XxCI

/
/
/
/
/
/
/
/
/
/
/
/
/

/

HXMESH
HYMESH
WKS1D 1
WKS1D2
WKS1D3
WKS tD4
WKS1DS
WKS106
WKS1D7
WKS1D8
WKS1DS
WKS110

/

/
/
/
/
/
/
/
/
/
/
/

HX(63)

HY (27)

WK1(63)
WK2(63)
WK3(63)
WK4(63)
WKS(63)
WKE(63)
WK7(63)
wWK8(63)
WK3(63)
WK 10(63)

WORKA / WKA(63,27)
WORKB / WKB(63,27)
WORKC / WKC(63,27)
WORKD / WKD(63,27)

CALL D2XYS(VKA,XCSP.1AODO..TRUE‘..FALSEA.NI,NJ)
CaLL PSOLVE(VKB.VKA.NI,Nd.fTRUE...FALSE...TRUE.)
CALL D2XYS(VKA,XCSP.1.000..FALSE...TRUE..NI.NJ)
CALL PSOLVE(VKC.VKA.NI.NU..FALSEA..TRUE.,.TRUE.)
CALL GDADGD(VKD.1.000.VKB.1.0DO,WKC.NI.NJ)

FORM LAPLACE OF TAU

CALL DQXYS(VKA.TASP.1.ODO..TRUE4..FALSE..NI.NJ)
caLL PSOLVE(VKB,VKA,NI.NJ..TRUE,..FALSE.,.TRUE.)
CALL D2XYS(WKA,TASP.1.000..FALSE...TRUE..NI.Nd)
CALL PSOLV#(HKC.NKA,NI.NU,.FALSE...TRUE.,.TRUE.)
CALL GDADGD(WKC,1.0DO.VKC.1.0DO.HKB.NI.NJ)

DO SUMS.

CALL GDADGD(WKA,1.0DO.WKD, 1.0D0,WKC NI, NJ)
ca SDADGD (WKA, 1.0D0,WKA, -CPE, TASP NI, NJ)
C. JDADGD(WKB, 1.0D0, WKD, - 1.0DO, WKC,NI .NJ)

c-

FORM SQUARES.

TADGD(WKB, 1.0DO,WKB.CPE.TASP,NI.NJ)

CALL NLLOOP(WKC,WKA,WKA NI, NJ)
CALL PSOLVE(VKA.VKC.NI.NJ..TRUE...TRUE.,.FALSE.)
CALL NLLOOP{WKC,WKB,WKB, NI, NJ)
CaLL PSOLVE(VKB,HKC,NI.NU,.TRUE.,.TRUE...FALSE.)

FORM SUM.

CALL GDADGD(WKC, 1.0DO,WKA, 1.0DO, WKB.NI .NJ)

INTEGRATE .

CALL FINT(WKC,NI ,NJ,H,PE,ILY1 IRY JT1,Q81)
IF(IFLAG.EQ.1) CALL TINT(WKC,PET, NI ,NJ)

RETURN
END

SUBROUTINE MEAN(FIE, NI ,NJ,AVE,IL, IR, JT.UB)
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557
558
559
560
561
562
563
564
565
566
567
S68
569
570
571
572
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574
575
576
577
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580
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590
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592
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C

C
C
C

C
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FIND ARITHMETIC MEAN OF FIEL

100

IMPLICIT REAL*8 (A-H.0-2) L
DIMENSION FIE(NI NJ)

SUM=0 . 0DO

I1SUM=0

DO 100 J=uB.JT

DO 100 I=IL,IR

ISUM=TSUM+ 9

SUM=SUM+FIE(I,J)

AVE=SUM/DFLOAT(ISUM)

VRETURN

END

SUBROUTINE AMEAN(FIE NI NJ, AVE,IL,IR,JT,JUB)

FINDS ARITHMETIC MEAN OF _UTE VALUE OF FIELD

100

100

IMPLICIT REAL*8 (A-H.D-2)
DIMENSION FIE(NI,NJ)

SUM=0 . 0DO

1SUM=0

DO 100 U=JB.UT

DO 100 I=IL,IR

ISUM=SUM+ 1

SUM=SUM+DABS(FIE(I,J))
AVE=SUM/DFLOAT(ISUM)

RETURN

END

SUBROUTINE SUM(FIE,NI,NJ,SUM1 IL.IR,JT,uB)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION FIE(NI . NJ)

SUM1=0.00D0

DO 100 U=uUB.JT

00 100 I=IL,IR

SUM1=SUM{I+DABS(FIE(I.J))

RETURN

END

SUBROUTINE SUMB(FIES,FIE2.NI NJ.SUM!T, IL.IR,JT,UB)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION FIE1(NI NU).FIE2(NI NJ)

T SUM1=0.000

DO 100 JU=JB.JT
DO 100 I=IL.IR

F1=DABS(FIE1(1.4J))

F2=DABS(FIE2(I,J))

SUM1=SUM1+DMAX1(F1,F2)

RETURN

END

SUBROUTINE LPLOT(PL,T,NT,IFLAG,XSIZE, YSIZE,TITLE,NTITLE)
DIMENSION PL(NT . 6),T(NT),SCA(4)

REAL TITLE(NTITLE)

NUM=4*NTITLE

NT2=NT-2

NT 1=NT-1

SCALE HORIZONTAL AXIS

CALL SCALE(T,.XSIZE,.NT2,1)

SCALE VERTICAL AXIS

XZ1=XSIZE+.B

YZ1=YSIZE+.8

CALL ORIGIN(999,xZ1.Y21,1.0,1.0)
SC=0.0

OR=1_0OESS
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593 DO 100 1=1,IFLAG
594 DO 100 U=1 .NT2

595 SC=AMAX1(SC.PL(J.1))

596 OR=AMNI(CR,PL(U. 1))

597 100 CONTINUE

598 SCA( 1)=0R

599 SCA(2)=5SC

600 CALL SCALE(SCA,YSIZE.2.,1)

601 DO 125 I=1,IFLAG

602 PL{NT,1)=SCA(4)

603 125 PL{NT1,1)=SCA(3)

604 c

605 C PLOT VERTICAL AXIS

606 C

607 CALL AX2EP(1.0.3.2.0,.85) ]
608 CALL AXIS2(0.0,0.0.TITLE.NUM, YSIZE . 90.0,SCA(3),SCA(4).-1.0)
609 CALL AXIS2(XSIZE.0.0,‘ *,1,-YSIZE,S0.0.SCA(3),SCA(4),1.0)
610 C

611 C PLOT HORIZONTAL AXIS

612 C

613 CALL AX2€EP(1.0,3,1,0,.85)

614 CALL AXIS2(0.0.0.0,'TIME (HOURS)’,-12,XSIZE, 0.0, T(NT1) T(NT) 1. )
615 CALL AX1S2(0.0,YSIZE,’ ' ,-1,-XSIZE,O0.O0,T(NT1) ,T(NT),1.)
616 C

617 C PLOT CURVES

618 c

619 DO 150 I=1,IFLAG

620 CALL LINE(T.,PL(1,I),NT2,1,1.1)

621 150 CONTINUE

622 RETURN

623 END .

624 SUBROUTINE APOTEN(APE,IL1,IR1,JT1,JB1.F NI . NJ,

625 1 H,APET , IFLAG)

626 IMPLICIT REAL*8 (A-H,0-2)

627 DIMENSION F (NI, NJ)

628 COMMON / HXMESH / HX(63) .

629 COMMON / HYMESH / HY{(27) =

630 COMMON / WORKA / WKA(63.,27)

631 COMMON / WORKB / WKB(63,27)

632 CALL NLLOOP(WKA,F,F,NI ,NU)

633 CALL PSOLVE(WKB,WKA ,NI NJ,.TRUE., TRUE., . FALSE.)

634 CALL FINT(WKB,NI ,NJU.H,APE,IL1t IR1,JT1,UB1)

635 IF(IFLAG.EQ. 1) CALL TINT(WKB.APET NI ,NJ)

636 RETURN

637 END ’

638 SUBROUTINE ZEENE(F1,F2,NI NJ,JT.UB,IL.IR.H,2ZKE EKE,ZAPE,LEAPE)
639 (%

640 C SUBROUTINE TO CALCULATE ZONAL AND EDDY ENERGIES.

641 C .

642 C Fi{ = XCI

643 C F2 = TAU

644 IMPLICIT REAL*8 (A-H,0-2)

645 DIMENSION F{(NI,NJ),F2(NI, NJU)

646 COMMON / HXMESH / HX(63)

647 COMMON / HYMESH / HY(27)

648 COMMON / WKS1D1 / WK1(63)

649 COMMON / WKS1D2 / WK2(63)

650 COMMON / WKS1D3 / WK3(63)

651 COMMON / WKS1D4 / WK4(63)

€652 COMMON / WKS1DS / WK5(63)

653 COMMON / WKS1D6 / WK&6(63) -

654 COMMON / WKS1D7 / WK7(63)

655 COMMON / WKS1D8 / WKB(63)

656 COMMON / WKS1D9 / WK9(63)

657 COMMON / WKS110 / WK10(63)

658 . COMMON / WORKA / WKA(63,27)



[

COMMON / WORKB / WKR(63,27)
COMMON / WORKC / WKC(63.27)
COMMON / WORKD / wkD(63,27)
COMMON / WORKE / WKE(63,27)

COMMON / WORKF / WKF(63.27)

C FORM AVERAGE IN Y=DIRECTION.

Cc

105

106

110

115
100
(o}

ANI=DFLOAT(IR-IL+1)
DO 100 Us1.NU
SUM=0. 000
SUM1=0.000

DO 105 I=IL,I
SUM=SUM+F {(I,J)
DD 106 IsIL,IR
SUM1=SUMI+F2(1,u)
SUM=SUM/ANI '
SUM1t=SUM1/AN]

DO 110 1=1,NI
WKE(I, J)=SUM

DO 11% I=1 NI
WKF(I,J)=SUM?
CONTINUE

C CALCULATE ZKE
c .

C

CALL EKINEN(VKE.VKF.NI.Nd.H.ZKE.IL.IR.
t JT,UB,SUM,0)

C CALCULATE zaPe
c

140
[

CALL APOTEN(ZAPE,IL,IR,JUT,UB,WKF NI ,NJ,
1 H,SUM,0)

DD 140 Js=1,NJ

DO 140 I=1,NI

WKE(I.J)=Ft(I,J)-WKE(I,d)
WKF(I.J)=F2(1,J)-WKF(I.J)

CONT INUE

C CALCULATE EKE

C

100

CALL EKINEN(WKE,WKF,NI,NJ,H,EKE,IL.IR,
1 JT,JB,SUM,.0)

CALL APOTEN(EAPE.IL,IR,UT.UB.WKF,NI.NJ.
1 H,SUM,0)

RETURN

END ‘
SUBROUTINE TINT(F,SUM,NI,NJ)
IMPLICIT REAL*S (A-H,0-2)
DIMENSION F(NI NY)

COMMON / HXMESH / HX(1)
COMMON / HYMESH / HY(1)
NUM=Ny - 1

NIM=N] -4

SUM=0 .0DO

DO 100 U=2,NJyM

Jisy-1

HYB= (HY(J1)+HY(U))/2.000

DO 100 I=2, NIM .

It=]-~1

HXB= (HX(I1)+HX(1))/2.000
SUM=SUM+F (I, yJ)*HYB*HXB

CONT INUE

c
C TOP AND BOTTOM
C -
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72%
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
ENO OF FILE

[eNeX2]

OO0

HYB=HY(1)/2.0D0

HYB2=HY (NUM)/2.000

DO 150 [=2,NIM

I1=1-1
HXB=(HX(I11)+HX(1))/2.000
SUM=SUM+F (I, 1) *HYB*HXB
SUM=SUM+F (I ,NJ)*HYB2+HXB

150 CONTINUE

ENDS

HXB=(HX{ t)+HX(NIM))/2.000
DO 200 J=2,NJM

Ji=g-1
HYB=(HY(J1)+HY(J))/2.000
SUM=SUM+F (1, J)*HYB*HXB

200 CONTINUE

CORNERS

HXB=(HX( 1 )+HX(NIM))/2.000
SUM=SUM+F (1. 1)*HXB*HY(1)/2.000
SUM=SUM+F (1 ,NJ) *HXB*HY (NUM) /2.0D0
RETURN

END
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