NL-91 (4/77)

National Library of Canada

Bibliothèque nationale du Canada

Canadian Theses Division

Division des thèses canadiennes

Ottawa, Canada K1A 0N4 51484

PERMISSION TO MICROFILM - AUTORISATION DE MICROFILMER

- AUTO	TRISATION DE MICHOFILMEN
Please print or type — Écrire en lettres moulées ou dactylograp Full Name of Author Name agrandat de la light de la lig	ohier
Full Name of Author - Nom complet de l'auteur Timothy Otto Goos	۵
Date of Birth — Date de naissance	Country of Birth — Lieu de naissance
March 19/1953	Canada
Permanent Address — Résidence fixe	
12834-89 St.	
Edmonton .7/ta	
756 37 9	
Title of Thesis — Titre de la thèse	
A Finite - Element 111	thod a Applied to a
Two-level Quasi-geost	rophic Model
At mosphere	,
University — Université	
University of Alberta Degree for which thesis was presented — Grade pour lequel cette	તે
Degree for which thesis was presented — Grade pour lequel cette	thèse fut présentée
Year this degree conferred — Année d'obtention de grade	Name of Supervisor — Nom du directeur de thèse
_198/	Dr. E.P. Lozowski
	3000 3161
Permission is hereby granted to the GATIONAL LIBRARY OF CANADA to microfilm this thesis and o lend or sell copies of the film.	L'autorisation est, par la présente, accordée à la BIBLIOTHE QUE NATIONALE DU CANADA de microfilmer cette thèse et d prêter ou de vendre des exemplaires du film.
The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.	L'auteur se réserve les autres droits de publication; ni la thès ni de longs extraits de celle-ci ne doivent être imprimés or autrement reproduits sans l'autorisation écrite de l'auteur.
Date	Signature
April 24/81	Timothy Goos

National Library of Canada Collections Development Branch

Canadian Theses on Microfiche Service

Bibliothèque nationale du Canada Direction du développement des collections

Service des thèses canadiennes sur microfiche

NOTICE

AVIS .

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially in the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nou avons tout fait pour assurer une qualité supérieur de reproduction.

S'il manque des pages, veuillez communique avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peu laisser à désirer, surtout si les pages originales ont ét dactylographiées à l'aide d'un ruban usé ou si l'univer sité nous a fait parvenir une photocopie de mauvais qualité.

Les documents qui font déjà l'objet d'un droi d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfiln est soumise à la Loi canadienne sur le droit d'auteur SRC 1970, c. C-30. Veuillez prendre connaissance de formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

THE UNIVERSITY OF ALBERTA

A FINITE-ELEMENT METHOD APPLIED TO A

TWO-LEVEL QUASI-GEOSTROPHIC MODEL ATMOSPHERE

bу

C TIMOTH

TIMOTHY OTTO GOOS

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF MASTER OF SCIENCE

IN

METEOROLOGY

DEPARTMENT OF GEOGRAPHY

EDMONTON, ALBERTA

SPRING, 1981

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR

Timothy Otto Coos

TITLE OF THESIS

A Finite-Element Method Applied to a

Two-level Quasi-geostrophic Model

Atmosphere

DEGREE FOR WHICH THESIS WAS PRESENTED

Master of Science

YEAR THIS DEGREE GRANTED

1981

Permission is hereby granted to THE UNIVERSITY OF ALBERTA
LIBRARY to reproduce single copies of this thesis and to lend or sell
such copies for private, scholarly or scientific research purposes
only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

(Signed) ! investing Good.

PERMANENT ADDRESS:

12834 - 89 Street

Edmonton, Alberta

T5E 3J9

DATED February 27 1981

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled "A Finite-Element Method Applied to a Two-level Quasi-geostrophic Model Atmosphere" submitted by Timothy Otto Goos in partial fulfilment of the requirements for the degree of Master of Science in Meteorology.

Edward Locows

K. W. Haye

A. Craggs.

Date February 27 1981

ABSTRACT -

A finite-element method (using the Galerkin formulation) and a truncated spectral method are applied to find numerical solutions to the three non-linear partial differential equations describing a two-level quasi-geostrophic model atmosphere on a β -plane. This work was undertaken to provide a vehicle with which the author could study the finite-element method and its application to problems of meteorological interest. A relatively simple meteorological problem was chosen to allow concentration on the method and its application rather than complex physical interactions.

With the finite-element method, bi-linear basis functions defined on a variable resolution grid are used while sinusoidal basis functions are used with the spectral method. The domain of the problem is a channel of length 2.8 x 10⁷m and width 4.4 x 10⁶m with a free-slip wall boundary condition applied at the north and south boundaries and periodicity assumed in the x-direction. The grid consists of a central portion with uniformly high resolution and a uniformly changing resolution away from this sub-domain. A second-order Adams-Bashforth time integration scheme is used with both numerical techniques.

Parallel integrations of up to 48 hours duration for a set of four cases are presented and compared, using the spectral solution as a highly accurate standard. In the uniform resolution sub-domain, the finite-element solution achieves a maximum S1 score of under 25 for both

height and thickness fields in three of the cases. Values of lower than 30 are generally considered to be near perfect forecasts in operational weather forecasting. However, it is to be noted that in this study, a highly simplified model is used and integrations are done from initial conditions with no inherent error. In the fourth case, numerical instability occurred due to the rapid growth of spurious short-wavelength waves generated near the boundaries. Investigations revealed that these waves were being produced by the inaccurate evaluation of normal derivatives near and on the boundaries. A possible method for overcoming this problem is discussed.

ACKNOWLEDGEMENTS

I am grateful to the people and organizations who helped me with this study.

I am indebted to my departmental supervisor, Dr. E. P. Lozowski, for his guidance, suggestions, and his thorough review of this manuscript. In particular, I wish to thank him for the confidence he placed in me in allowing me to study this particular area.

I wish to thank Dr. K. D. Hage and Dr. A. Craggs who, with Dr. Lozowski, served on my examining committee.

I wish to thank Dr. A. Staniforth of RPN in Dorval, P.Q. for supplying me copies of computer programs which have been developed in that office.

Thank you to the Department of Geography for providing me with the necessary computer resources to do this study.

This study was undertaken while I was on educational leave from the Atmospheric Environment Service of the Department of the Environment.

TABLE OF CONTENTS

		:age
ABSTRACT		iv
ACKNOWLEDGEME	NTS	vi
TABLE OF CONT	ENTS	vii
LIST OF FIGUR	ES	ix
LIST OF SYMBO	LS	xv
CHAPTER		
I	INTRODUCTION	1
	A DESCRIPTION OF THE MODEL ATMOSPHERE	5
II	A DESCRIPTION OF THE MODEL ATMOSPHERE	
2.1	The Model Equations and the Domain	5
2.2	The Boundary Conditions	14
2.3	The Energy and Potential Enstrophy Relations	15
III	THE SPECTRAL METHOD	20
3.1	A Description of the Method	20
3.2	The Application of the Spectral Method to the Model Equations	22
3.3	The Energy and Potential Enstrophy Relations	33
ıv	THE FINITE-ELEMENT METHOD	35
4.1	A Description of the Method	35
4.2	The Application of the FEM to the Model Equations	 49
4.3	The Energy and Potential Enstrophy Relations	56
4 4	The Solution Algorithm	57

CHAPTER	W.	Page
ζ.	THE RESULTS	
5.1	Introduction	61
5.2	Case I - Weak Development	66
5.3	Case II - Moderate Development	75
5.4	Case III - Strong Development	84
5.5	Case IV - Moderate Decay	87
VI	CONCLUSIONS	92
REFERENCES	•••••	149
APPENDICES		
A	Computer Program Listings	154

LIST OF F CURES

FIGURE		PAGE
2.1	Vertical discretization of the model showing the five levels used, with pressure as the vertical coordinate. ψ_i is the stream function at level i and $\tilde{\omega}_i$ is the vertical velocity at level i.	Q.
2.2	The domain in the horizontal plane ϕ_1 is the latitude at which the plane is tangent to the earth; the x-direction is east; the y-direction is north.	96
4.1	A 62 x 27 variable grid-length mesh having a 27 x 19 sub-domain of uniform high resolution. Areas A and B are the portions of the domain used for displaying the fields in Chapter 5 while area C is the verification area.	97
5.1	Initial mean height field in metres for Case I in (a) area B and (b) area A.	98
5.2	Initial thickness field in metres for Case I in (a) area B and (b) area A.	99
5.3	nitial omega field in ubar/sec for Case I in area B and (b) area A.	100
5.4	The 24-hour spectral solution for the mean height field in metres for Case I in (a) area B and (b) area A.	101
5.5	The 24-hour spectral solution for the thickness field in metres for Case I in (a) area B and (b) area A.	102
5.6	The 24-hour spectral solution for the omega field in phar/sec for Case I in (a) area B and (b) area	103 A.

	FIGURE		PAGE
	5.7	The 24-hour finite-element solution for the mean height field in metres for Case I in (a) area B and (b) area A.	104
/	5.8	The 24-hour finite-element solution for the thickness field in metres for Case I in (a) area B and (b) area A.	105
	5.9	The 24-hour finite-element solution for the omega field in μ bar/sec for Case I in (a) area B and (b) area A.	106
	5.10	The (a) energies and (b) potential enstrophy of Case I for the two solutions in the verification area.	107
	5.11	The (a) kinetic energies and (b) potential energies of Case I for the two solutions in the verification area.	108
	5.12	The (a) S1 scores and (b) the MD and MAD curves for Case I for the two solutions in the verification area.	109
	5.13	Initial mean height field in metres for Case II in (a) area B and (b) area A.	110
	5.14 .	Initial thickness field in metres for Case II in (a) area B and (b) area A.	111
	5.15	Initial omega field in µbar/sec for Case II in (a) area B and (b) area A.	112
	5.16	The 48-hour spectral solution for the mean height field in metres for Case II in (a) area B and (b) area A.	113
•	5.17	The 48-hour spectral solution for the thickness field in metres for Case II in (a) area B and (b) area A.	114

			_		
			•		
•	,				
FIG	JRE		×	PAGE	
5.10		nour spectral solution for the sec for Case II in (a) area		115	
5.19		nour finite-element solution field in metres for Case II i		116	
	and (b)	area A.	•		
5.20		nour finite-element solution ald in metres for Case II in area A.		117	
	~	· · · · · · · · · · · · · · · · · · ·	,		
5.21		nour finite-element solution a phar/sec for Case II in (a) A.		118	
5.22	• •	energies and (b) potential e for the two solutions in the		119	
5.23		kinetic energies and (b) pot II for the two solutions in a.		·120	
5.24	- • •	Sl scores and (b) MD and MAD for the two solutions in the		121	
5.25		energies and (b) potential enfor the two solutions in the		122	•
5.26		mean height field in metres rea B and (b) area A.	for Case III	123	•
5.27	2	thickness field in metres for B and (b) area A.	r Case III in	124	
5.28		omega field in ubar/sec for B and (b) area A.	Case III in	125	
	er er				
		хi			

FIGURE		PAGE
5.29	The 24-hour spectral solution for the mean height field in metres for Case III in (a) area B and (b) area A.	126
5.30 . /	The 24-hour spectral solution for the thickness field in metres for Case III in (a) area B and (b) area A.	127
5.31	The 24-hour spectral solution for the omega field in μ bar/sec for Case III in (a) area B and (b) area A.	128
-5.32	The 24-hour finite-element solution for the mean height field in metres for Case II in (a) area B and (b) area A.	129
5.33	The 24-hour finite-element solution for the thickness field in metres for Case III in (a) area B and (b) area A.	130
5.34	The 30-hour finite-element solution for the mean height field in metres for Case III in (a) area B (b) area A.	131
. 5.35	The 30-nour finite-element solution for the thick- is 1 ald in metres for Case III in (a) area B a (1 area A.	132
5.36	The (a) energies and (b) potential enstrophy of Case III for the two solutions in the verification area.	133
5.37	The (a) kinetic energies and (b) potential energies of Case III for the two solutions in the verification area.	134
5.38	The (a) S1 scores and (b) MD and MAD curves for Case III for the two solutions in the verification area.	135

FIGURE		PAGE
5.39	Initial mean height field in metres for Case IV in (a) area B and (b) area A.	136
5.40	Initial thickness field in metres for Case IV in (a) area B and (b) area A.	137
5.41	Initial omega field in µbar/sec for Case IV in (a) area B and (b) area A.	138
5.42	The 48-hour spectral solution for the mean height field in metres for Case IV in (a) area B and (b) area A.	139
5.43	The 48-hour spectral olution for the thickness field in metres for Case IV in (a) area B and (b) area A.	140
5.44	The 48 -hour spectral solution for the omega field in μ bar/sec for Case IV in (a) area B and (b) area A.	141
5.45	The 48-hour finite-element solution for the mean height field in metres for Case IV in (a) area B and (b) area A.	142
5.46	The 48-hour finite-element solution for the thickness field in metres for Case IV in (a) area B and (b) area A.	143
5.47	The 48-hour finite-element solution for the omega field in µbar/sec for Case IV in (a) area B and (b) area A.	14
5.48	The (a) energies and (b) potential enstrophy of Case IV for the two solutions in the verification area.	145
5.49	The (a) kinetic energies and (b) potential energies of Case IV for the two solutions in the verification area	146

FIGURE		PAGE
5.50	The (a) Sl scores and (b) MD and MAD curves of Case IV for the two solutions in the verification area.	147
5.51	The (a) energies and (b) potential enstropl of Case IV for the two solutions in the entire domain.	148
		17,

LIST OF SYMBOLS

SYMBOL		PAGE
a	mean radius of the earth	6
a i	eigenvalue of the i'th expansion function	23
APE	available potential energy	5
b _{li}	interaction coefficient	25
cljk	interaction coefficient	25
c _p	specific heat for dry air at constant pressure	11
С	speed	60
D .	domain	15
e _G	error in forecast gradient	63
e ⁱ (x,y)	i'th two-dimensional basis function	38
e ^m (x)	m'th one-dimensional basis function	41
f	Coriolis parameter	7
fo	Coriolis parameter at latitude ϕ_0	8
F _i (x,y)	i'th spectral expansion function	20
g	gravitational constant	17
Ι(φ)	variational integral	42

SYMBOL		PAGE
Ι*(φ)	approximation to $I(\phi)$	43
J	Jacobian function	12
KE	kinetic energy	5
1 _y	y-direction cosine	44
L _x	length of domain in x-direction	7
Ly	length of domain in y-direction	7
М	total mass of model atmosphere	. 16
N	total number of spectral expansion functions	20
NI	number of grid points in x-direction	40
NJ	number of grid points in y-direction	40
p	pressure	6
PE	potential enstrophy	16
1 ^P	potential vorticity at level i	18
$Q_{f i}$	vorticity at level i	11
g	geostrophic vorticity	9
2	vorticity of mean height field	13
P	vorticity of thickness field	13

SYMBOL		PAGE
R	gas constant for dry air	11
S1	verification score	62
S(x _i)	smoothing parameter at point x	54
t	time	9
Т	temperature	11
TAU	streamfunction of the thickness field	109
^u x	x-derivative of u(x,y)	46
ug.	x-component of geostrophic wind	9
v _g	y-component of geostrophic wind	9
∛ g	geostrophic velocity	9
x	east-west coordinate in horizontal plane	6
у	north-south coordinate in horizontal plane	6
y _o	y-coordinate at ϕ_0	6
Z	vertical coordinate	17
α	specific volume	11
β	variation of Coriolis parameter with latitude	3

SYMBOL		PAGE
Γ	boundary off domain	17
δ _{ij}	Kronecker delta	22
Δp	pressure difference between levels 1 and 3	6
θ	potential temperature	11
ρ	density	~ 17
σ .	static stability parameter	10
i i	i'th spectral expansion coefficient for the thickness field	23
ф	latitude	6
Φ ₀	latitude where tangent plane touches the earth	6
^ф В,	value of the function ϕ on the boundary	55
ţ')	(1) stream function at level i	6
	(2) i'th spectral expansion coefficient for the height field	23
Ψ	eam function for the mean height	12
$\hat{\psi}$	ion for the thickness field	12
ΨZ	zo s ream function	16
ΨE	eddy stream funct on	16
υ	over-relaxation factor	59

SYMBOL		PAGE
ũ	vertical wind component in isobaric coordinates	6
^ω i	ith spectral expansion coefficient for vertical wind component	23
$\tilde{\boldsymbol{\omega}}_{\mathbf{i}}$	vertical wind component at level i	10
Ω	angular speed of rotation of the earth	7
XCI	streamfunction of the mean height field	109

`

.

INTRODUCTION

13 m

An accurate method for producing a weather forecast has been an elusive dream throughout much of man's history. The abundance of folk beliefs (Hornstein, 1978) available for predicting the weather indicates the importance man has attached to weather forecasts.

During this century, much attention has been focussed on using numerical methods to solve the hydro-dynamical equations, thereby producing a weather forecast (Bjerknes 1904; Richardson, 1921: Charney et. al., 1950; Cressman, 1958, 1963; Shuman and Hovermale, 1968; Bourke, 1972, 1974; Machenhauer and Daley, 1972).

In recent years (Wang et. al., 1972; Cullen, 1973, 1974a, 1974b, 1976, 1979; Staniforth and Mitchell, 1977, 1978; Staniforth and Daley, 1977, 1970, 1979), the finite-element method (FEM) has been applied to the problem of numerical weather prediction. The development of larger and faster computers has made possible the use of the FEM for the prediction of large-scale atmospheric flows. The FEM enables one to use a grid with variable spacing between grid points with relative ease. This is a distinct advantage over the finite-difference methods which have been used previously.

Numerical weather prediction began when Bjerknes (1904) recognized that the primitive equations of meteorology formed a system of non-linear partial differential equations which could, in principle,

be solved to forecast the subsequent states of the atmosphere from a known initial state. He also recognized that the system did not have an analytic solution and that the available data were inadequate to specify the initial conditions. Holton (1972) shows that the primitive equations consist of the momentum equations in the horizontal (plane), the thermodynamic energy equation, the continuity equation, the hydrostatic approximation, and the equation of state. This system of equations forms the basis of large-scale numerical weather prediction. Richardson (1921) attempted the first numerical integration of these equations using a finite-difference method. Unhappily, his forecast took many months to produce and was in error by several orders of magnitude.

The development of the electronic computer in the 1946 allowed Charney et. al. (1950) to perform the first successful nearcheast weather forecast. They integrated, in time, the barotropic vorticity equation which is a simplified equation derivable from the primitive equations. By simplifying the primitive equations using certain assumptions about the atmosphere, one may obtain a system of equations which is more easily solved. Holton (1972) describes the assumptions necessary eximinate sound, gravity and inertia waves. Charney et. al. (1950) used the most simplified form of the primitive equations for their integration.

The field of numerical weather prediction has expanded rapidly since the first successful integration, with many more complicated finite difference models being developed (Cressman, 1958, 1963;

Shuman and Hovermale, 1968; Howcroft, 1971). Beginning in the late 1960's, the use of the spectral method for integrating the primitive equations was investigated (Robert, 1966, 1970; Elsaesser, 1966; Eliasen and Machenhauer, 1970; Baer and Alyea, 1971; Bourke, 1972). Efficient spectral models were not possible until Orszag (1970) described the use of transforms to allow the efficient evaluation of the product terms in the primitive equations. Since then, the spectral method has been used with success in numerical weather prediction (Daley et. al., 1976; Bourke, 1974).

In the 1970's, the FEM was first introduced to numerical weather prediction. Early work (Wang et. al., 1972; Cullen, 1973, 1974a), considered highly simplified atmospheric models. Recently, models using the primitive equations defined over the northern hemisphere have been integrated using the FEM (Staniforth and Daley, 1978, 1979; Cullen, 1979). Staniforth and Daley (1979) have found the finite-element model produces forecasts as accurate as those of the operational spectral model even though the finite-element model does not contain many of the physical processes present in the spectral model.

In this thesis, a FEM is used to solve a set of partial differential equations. These equations mathematically describe a two-level baroclinic model of the atmosphere on a β -plane. (The model is fully described in Chapter 2.) The equations of this model atmosphere are also solved using a spectral method. This solution is highly accurate and is used to evaluate the accuracy of the solution by the

FEM. In Chapter 5, the solutions using both methods are presented and compared. Although the meteorological problem under consideration is relatively simple, this approach provides a good framework within which my supervisor and I could learn about and apply the FEM.

CHAPTER 2

A DESCRIPTION OF THE MODEL ATMOSPHERE

2.1 The Model Equions and the Domain

The intent of this thesis is to study the application of the FEM to the prediction of synoptic scale atmospheric flows.

Consequently, a model atmosphere has been chosen in which such flows are possible. The quasi-geostrophic two-level model was selected as it is the simplest synoptic scale model which includes baroclinic effects. This model has been used in the past to study atmospheric flows (e.g. Phillips (1951), Holton (1972), Stone (1974), Held (1975)) as although it is a relatively simple atmospheric model, it simulates many atmospheric processes well.

A model atmosphere we callows baroclinic effects has been employed because the baroclinic conversion of potential to kinetic energy is a major process in the development of synoptic scale storms. The total potential energy of a system is the sum of its internal energy and its gravitational potential energy. Lorenz (1955) defines the available potential energy (APE) of a column of the atmosphere to be the difference between the total potential energy and the minimum total potential energy which could be achieved by an adiabatic redistribution of the mass of that air column. The APE is that portion of the total potential energy which is available for possible conversion to kinetic energy (KE). This conversion is often an unstable process, i.e. baroclinic instability.

In the quasi-geostrophic two-level model, the atmosphere is divided into levels as shown in Figure 2.1. Pressure (p) is used as the vertical coordinate. The streamfunction (ψ) is defined at levels 1, 2 and 3 and the vertical motion ($\tilde{\omega}$) at levels 0, 2 and 4 is considered. Levels 1 and 3 are the two levels of prime importance, from which the model derives its name. The pressure difference between levels 1 and 3, Δp , is 500 mb for this model. Pedlosky (1979) has shown that this model, with one small additional assumption, has the same dynamic equations as a two layer model, in which the layer between levels 0 and 2 is assumed to have a certain uniform density and the layer between levels 2 and 4 is assumed to have another uniform density.

Prior to presenting the model equations, a few definitions will be given. When the β -plane approximation is used, the earth is approximated by a plane tangent to the earth at some latitude ϕ 0, as shown in Figure 2.2. On this plane, a three-dimensional right-handed Cartesian coordinate system is defined. The unit vector \hat{i} points in the x-direction, which is east, while the unit vector \hat{j} points in the y-direction, which is north. The unit vector \hat{k} points vertically in the direction of lower atmospheric pressure. The origin of the coordinate system is defined to be at the point \hat{k} 0, \hat{k} 100 mb. A relation between latitude, \hat{k} 2, and distance along the y-axis may be written:

$$y-y_0 = a(\phi-\phi_0) \tag{2.1}$$

where a is the mean radius of the earth and y is the value of y at ϕ_0 .

The plane in Figure 2.2 is assumed to have a width of $L_y/2$ so the range of y is $[0, L_y/2]$. This definition for the width of the plane is made for consistency with the expansion functions used with the spectral method discussed in Chapter 3. The plane is assumed to have a length L_x . More precisely, it is assumed that the solution to the model equations, derived later in this chapter, is periodic in x with wavelength L_x . This length of the domain is also chosen for consistency with the expansion functions.

The particular values of L_x and L_y used are chosen by considering the type of atmospheric motions to be studied. As midlatitude synoptic scale motions will be considered in this thesis, $^{\phi}$ o is chosen to be 45° N latitude. The domain is chosen so that $L_y/2 = 4.4 \times 10^{6}$ m, which is approximately 55° of latitude on the earth. This width is chosen by considering the meridional extent of typical midlatitude long waves on the earth. It is similar to that used by others (Cullen, 1976; Grammeltvedt, 1969). The chosen length of periodicity is $L_x = 2.8 \times 10^{7}$ m which is essentially the length of the latitude circle at 45° N.

The Coriolis parameter, £, is defined by:

$$f = 2\Omega \sin \phi \tag{2.2}$$

where Ω is the earth's angular velocity. If only the first two terms of a Taylor expansion of f about y are retained, one obtains:

$$f = f_0 + \beta(y-y_0)$$
 (2.3)

,

where:

$$\beta = \frac{\mathrm{d}f}{\mathrm{d}v}\Big|_{\phi = \phi_0} = \frac{2\Omega}{a} \cos\phi_0 \qquad (2.4)$$

and f_0 is the Coriolis parameter at ϕ_0 .

The horizontal del operator is defined by:

$$\vec{\nabla} = \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y}$$
 (2.5)

while the horizontal Laplacian operator is defined by:

$$\nabla^2 = \frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{v}^2} \tag{2.6}$$

Jeffre 1922) defines the geostrophic velocity to be the velocity field resulting from a balance between the Cor s force and the pressure gradient force. When pressure is used as the vertical coordinate, the pressure gradient force term is transformed of a geopotential height gradient term. If the flow is quasi-non-divergent, the geopotential height gradient term may be replaced by a stream function gradient term.

The horizontal geostrophic velocity is quasi-non-divergent and, therefore, it may be written:

$$\dot{\vec{v}}_{g} = \hat{k} \times \dot{\vec{\nabla}} \psi_{g}$$
 (2.7)

where \vec{V}_g is the horizontal geostrophic velocity and ψ_g is the geostrophic stream function. In component form, this is:

$$u_{g} = -\frac{\partial \psi}{\partial y} \tag{2.8}$$

$$v_{g} = \frac{\partial \psi_{g}}{\partial x} \tag{2.9}$$

where $\vec{V}_g = \hat{i} u_g + \hat{j} v_g$.

The vertical velocity in pressure coordinates, $\tilde{\omega},$ is defined by:

$$\tilde{\omega} = \frac{\mathrm{d}p}{\mathrm{d}t} \tag{2.10}$$

where t is time. The geostrophic vorticity, $Q_{\mathbf{g}}$, is defined by:

$$Q_{\mathbf{g}} = \hat{\mathbf{k}} \cdot \vec{\nabla} \times \vec{\nabla}_{\mathbf{g}} = \nabla^2 \psi_{\mathbf{g}}$$
 (2.11)

The quasi-geostrophic vorticity equation may be written as (Holton, 1972; Hoskins, 1975):

$$\frac{\partial Q}{\partial t} = - \nabla_{g} \cdot \nabla \{Q + f\} + f \cdot \frac{\partial \tilde{\omega}}{\partial p}$$
 (2.12)

It is paradoxical that although the geostrophic wind is non-divergent, the second term in (2.12) is a divergence term. Holton (1972) has shown that this term is important in keeping temperature changes hydrostatic and vorticity changes geostrophic in synoptic scale systems. The temperature and vorticity fields must remain consistent with the original assumptions of the quasi-geostrophic vorticity equation. In the derivation of this equation, it is assumed that the atmosphere is in hydrostatic balance at that the flow is quasi-geostrophic.

Eqn. (2.12) is applied at levels 1 and 3 using the following finite-difference approximations for the vertical gradient of $\tilde{\omega}$:

$$\left(\frac{\partial \tilde{\omega}}{\partial p}\right)_{1} \simeq \frac{\tilde{\omega} - \tilde{\omega}}{\Delta p} \tag{2.13}$$

$$\left(\frac{\partial \tilde{\omega}}{\partial \mathbf{p}}\right)_{3} \approx \frac{\tilde{\omega}_{4} - \tilde{\omega}_{2}}{\Delta \mathbf{p}} \tag{2.14}$$

The vertical velocities at the top, $\tilde{\omega}_0$, and bottom, $\tilde{\omega}_4$, of the atmosphere are assumed to be zero. This assumption eliminates external gravity waves from the model.

Holton (1972) shows that the adiabatic quasi-geostrophic thermodynamic energy equation may be written:

$$\frac{\partial}{\partial \mathbf{r}} \left(-\frac{\partial \psi}{\partial \mathbf{p}} \right) = -\vec{\mathbf{v}}_{\mathbf{g}} \cdot \vec{\nabla} \left(-\frac{\partial \psi}{\partial \mathbf{p}} \right) + \frac{\sigma}{\mathbf{f}_{\mathbf{o}}} \tilde{\omega}$$
 (2.15)

where the static stability parameter is defined by:

$$\sigma = -\frac{\alpha}{\theta} \frac{\partial \theta}{\partial p} \tag{2.16}$$

and the potential temperature is defined by:

$$\theta = T \left(\frac{1000}{p} \right)^{R/c} p \tag{2.17}$$

In these equations, α is the specific volume and T is the temperature of the air. R is the specific gas constant for dry air and c_p is its specific heat at constant pressure. Eqn. (2.15) is applied at level 2 using the following finite-difference approximation:

$$\left(\frac{\partial \psi}{\partial \mathbf{p}}\right)_{2} \simeq \frac{\psi_{3} - \psi_{1}}{\Delta \mathbf{p}} \tag{2.18}$$

Holton (1972), applying Eqns. (2.12) and (2.15) as indicated, finds the three model equations to be:

$$\frac{\partial O_1}{\partial t} = -J(\psi_1, O_1) - J(\psi_1, f) + \frac{f_0}{\Delta p} \tilde{\omega}_2 \qquad (2.19)$$

$$\frac{\partial Q}{\partial t} = -J(\psi_3, Q_3) - J(\psi_3, f) - \frac{f}{\Delta p} \tilde{\omega}_2 \qquad (2.20)$$

$$\frac{\partial}{\partial t} (\psi_1 - \psi_3) = -J(\psi_2, \psi_1 - \psi_3) + \frac{\sigma \Delta p}{f_o} \tilde{\omega}_2 \qquad (2.21)$$

where the Jacobian operator, I, is defined by:

$$J(A,B) = \frac{\partial A}{\partial x} \frac{\partial B}{\partial y} - \frac{\partial A}{\partial y} \frac{\partial B}{\partial x}$$
 (2.22)

In Eqns. (2.19) - (2.21), the stream function is assumed to be the geostrophic stream function although the subscript denoting the geostrophic value has been dropped here and will be for the remainder of this thesis. The static stability parameter is assumed to be horizontally homogeneous and independent of time.

The stream function for the mean flow, $\overline{\psi},$ and the thickness, $\hat{\psi},$ are defined to be:

$$\overline{\psi} = \frac{\psi + \psi}{1 - 3} \tag{2.23}$$

$$\hat{\psi} = \frac{\psi - \psi}{2} \tag{2.24}$$

Note that $\hat{\psi}$ is really half the thickness between levels 1 and 3. However, for convenience, $\hat{\psi}$ will be simply referred to as the thickness in this thesis. The stream function at level 2, ψ_2 , is obtained by linearly interpolating between levels 1 and 3 giving:

$$\psi_2 \simeq \frac{\psi_1 + \psi_3}{2} \tag{2.25}$$

Thus, in Eqn. (2.21), ψ_2 may be approximated by $\overline{\psi}$.

Forming the sum and difference of Eqns. (2.19) and (2.20) and applying Eqns. (2.23) - (2.25) to (2.19) - (2.21), one obtains:

$$\frac{\partial \overline{O}}{\partial t} = -J(\overline{\psi}, \overline{O}) - J(\hat{\psi}, \hat{Q}) - J(\overline{\psi}, f)$$
 (2.26)

$$\frac{\partial \hat{\Omega}}{\partial t} = -J(\hat{\psi}, \overline{\Omega}) - J(\overline{\psi}, \hat{\Omega}) - J(\hat{\psi}, f) + \frac{f_0}{\Delta p} \tilde{\omega}_2 \qquad (2.27)$$

$$\frac{\partial \hat{\psi}}{\partial t} = -J(\bar{\psi}, \hat{\psi}) + \frac{\sigma \Delta p}{2f_0} \tilde{\omega}_2 \qquad (2.28)$$

Finally, Eqns. (2.27) and (2.28) may be combined to yield:

$$(\nabla^2 - \lambda^2) \frac{\partial \hat{\psi}}{\partial t} = -J(\hat{\psi}, \overline{Q}) - J(\overline{\psi}, \hat{Q}) - J(\hat{\psi}, f) + \frac{2f_0^2}{\sigma \Delta p^2} J(\overline{\psi}, \hat{\psi}) \quad (2.29)$$

$$(\nabla^2 - \lambda^2) \tilde{\omega}_2 = -\frac{4f_0}{\sigma \Delta p} J(\hat{\psi}, \overline{0}) - \frac{2f_0}{\sigma \Delta p} J(\hat{\psi}, f) \qquad (2.30)$$

where:

$$\lambda^2 = \frac{2f_0^2}{\sigma \Delta p^2} \tag{2.31}$$

Equations (2.26), (2,29) and (2.30) form a system of three non-linear partial-differential equations in the three unknowns: $\bar{\psi}$, $\hat{\psi}$ and $\tilde{\omega}_2$. Given boundary and initial conditions, a solution to this system of equations may be found. Baer (1970) has found an

analytical solution for a particular set of boundary and initial conditions. For more general solutions, however, numerical methods must be used. Chapters 3 and 4 describe the two numerical methods employed in this thesis.

2.2 The Boundary Conditions

A free-slip wall boundary condition was imposed at the northern and southern boundaries of the domain. Accordingly, there can be no flow perpendicular to the wall and there is no viscous boundary layer at the wall. Using Eqns. (2.7) - (2.9), the first of these conditions implies that:

$$\frac{\partial \psi}{\partial x} = 0 \tag{2.32}$$

at $y = y_0 + L_y/4$ and at $y = y_0 - L_y/4$. The second of these conditions means that no additional terms must be used with the model equations found in Sec. 2.1 at the boundary of the domain. These extra terms would be necessary to account for the turbulence generated near the boundary if free slip was not assumed.

These conditions do not completely specify the solution as ψ is specified by them only to within an arbitrary additive constant. Pedlosky (1979) and Phillips (1954) have shown that, as a consequence of the vanishing of the normal velocity component on the boundary:

$$\int_{0}^{L} x \frac{\partial^{2} \psi}{\partial y \partial t} dx = 0$$
 (2.33)

where the integration is made along the norther; southern boundaries separately. Pedlosky (1979) has shown that (2.33) is equivalent to:

$$\iint\limits_{D} \frac{\partial \psi}{\partial t} dxdy = 0$$
 2.34)

where the integration occurs over the domain, D.

As the boundary conditions, Eqn. (2.32) and (2.33) or (2.34), apply to the stream functions at each level, they also apply to linear combinations of these stream functions. Thus, they may be applied to the derived stream functions $\widetilde{\psi}$ and $\widehat{\psi}$. Equation (2.33) is the form of the second boundary condition which is used in this thesis. This form requires less computer time when numerically integrated, as it must be when applied to find a solution by the FEM.

2.3 The Energy and Potential Enstrophy Relations

The study of the energetics of the atmosphere and, in particular, of the exchanges of energy among its various forms, among the various scales of motion, and among the sources and sinks of energy, provides an important tool for understanding atmospheric motion. Also, the potential enstrophy (PE) may be used as an aid in understanding atmospheric motion. The PE is defined to be the mean squared potential vorticity. Holton (1972) shows that the potential vorticity, q, is a measure of the ratio of the vorticity of a vortex to the depth of the vortex.

These quantities so provide a useful tool for studying a particular atmospheric model, and, they may be used as a means of comparing an atmospheric model with other models or with the real atmosphere. For the chosen model, there are three quantities of interest:

- 1) the kinetic energy (KE)
- 2) the available potential energy (APE)
- 3) the potential enstrophy

The KE and APE are considered to be present in two forms: zonal (ZKE and ZAPE) and eddy (EKE and EAPE). The atmospheric flow is considered to have a basic zonal component with disturbances called "eddies" superimposed on that flow. Thus, any stream function, ψ , may be written as the sum of a zonal, ψ_{7} , and an eddy, ψ_{E} , stream function.

The KE of the horizontal flow is defined as:

$$KE = \int_{M} \frac{1}{2} (\vec{v} \cdot \vec{v}) dM \qquad (2.35)$$

where dM is an element of mass and the integration is over the total mass, M, of the atmosphere. For the two-level model under consideration, this may be written as:

$$KE = \frac{\Delta p}{g} \int \int (\nabla \overline{\psi} \cdot \nabla \overline{\psi} + \nabla \hat{\psi} \cdot \nabla \hat{\psi}) dxdy \qquad (2.36)$$

where the hydrostatic relation, $dp/dz = -g\rho$, and $dM = \rho d \times dydz$ have been used. ρ is the atmospheric density, g is the acceleration due to gravity and z is the vertical coordinate parallel to the -p direction.

Differentiating Eqn. (2.36) with respect to time and using the divergence theorem and the boundary conditions, one may show that:

$$\frac{dKE}{dt} = -\frac{2f}{g} \circ \iint_{D} \tilde{\omega}_{2} \hat{\psi} dxdv \qquad (2.37)$$

This shows that when, in the mean, warm air is ascending and cold air is descending, there is an increase in the kinetic energy, because the centre of gravity is being lowered.

For this model, Holton (1972) shows that the APE is given by:

$$APE = \frac{\Gamma}{2} \int \int \hat{\psi}^2 dxdy \qquad (2.38)$$

where $\Gamma = 4 \text{ f}_0^2/\text{go}\Delta p$. Differentiating Eqn. (2.38) with respect to time, one finds that:

$$\frac{dAPE}{dt} = \frac{2f}{g} \circ \iint_{D} \tilde{\omega}_{2} \hat{\psi} dxdv \qquad (2.39)$$

Combining Eqns. (2.37) and (2.39), one has:

$$\frac{d}{dt}(KE+APE) = 0 (2.40)$$

Thus, the total energy, TE = KE + APE, of the model is conserved but an exchange of energy between KE and APE may occur.

Relations similar to Eqns. (2.36) and (2.38) are used to calculate the eddy and zonal components of the KE and APE. Conservation relations, similar to Eqn. (2.40), yield the intuitive result that the total KE (APE) is simply the sum of the ZKE (ZAPE) and the EKE (EAPE).

The potential vorticities at levels 1 and 3 are given by:

$$q_1 = Q_1 - \frac{f_0^2}{\sigma \Delta p^2} (\psi_1 - \psi_3)$$
 (2.41)

$$q_3 = Q_3 + \frac{f_0^2}{\sigma \Delta p^2} (\psi_1 - \psi_3)$$
 (2.42)

and the PE is given by:

PE =
$$\frac{\Delta p}{2g} \int_{D} (q_1^2 + q_3^2) dxdy$$
 (2.43)

Differentiating Eqns. (2.42) - (2.44) with respect to time and using the divergence theorem, one finds that:

$$\frac{dPE}{dt} = 0 \tag{2.44}$$

Thus, the potential enstrophy is a conservative property of this model. When an approximate numerical solution is found for the model equations, the two conservative quantities, TE and PE, will provide a test of the conservation properties of that solution.

•

CHAPTER 3

THE SPECTRAL METHOD

3.1 A Description of the Method

This chapter details the method of solution of the model equations, (2.26) - (2.28), using the spectral method, which is an application of a method developed by Galerkin (1915). When this method is applied to the model equations, a highly accurate (but not analytic) solution is obtained. It is found that the solution by the spectral method conserves total energy and potential enstrophy. This spectral solution will be used to judge the accuracy of the solution by the FEM.

A simple example will be used to demonstrate the application of the spectral method to a boundary-value problem. Consider the following equation:

$$\frac{\partial f(x,y,t)}{\partial t} = g(x,y,t)$$
 (3.1)

This is similar in form to the model equations, (2.26) - (2.28). The functions f(x,y,t) and g(x,y,t) are assumed to be defined on a two-dimensional domain D and the problem is assumed to be properly posed. The functions f and g are represented using a set of N+1 expansion functions, $F_1(x,y)$, to obtain:

$$f(x,y,t) \simeq \hat{f}(x,y,t) = \sum_{i=0}^{N} f_i(t) F_i(x,y)$$
 (3.2)

$$g(x,y,t) = \hat{g}(x,y,t) = \sum_{i=0}^{N} g_i(t) F_i(x,y)$$
 (3.3)

Kreider et. al. (1966) show that if the expansion functions form a basis on the domain, the approximate functions, f and g, will converge to the true functions, f and g, as N approaches infinity. It is assumed that the expansion functions can satisfy the boundary conditions.

The approximate functions are substituted into Eqn. (3.1) using Eqns. (3.2) and (3.3) and a residual, R(x,y,t) is defined according to:

$$R(x,y,t) = \sum_{i=0}^{N} \frac{df_{i}}{dt} F_{i} - \sum_{i=0}^{N} g_{i}^{F}_{i}$$
 (3.4)

Note that in Eqn. (3.4) the total derivative with respect to time is used as the expansion coefficients, f_i and g_i , depend only on time.

The explicit dependence of the expansion coefficients on time and of the expansion functions, F_1 , on the two space variables have been omitted for the sake of brevity. As the approximate functions will not, in general, satisfy Eqn. (3.1) exactly, the residual is not necessarily zero.

In Galerkin's method, the residual is forced to zero with respect to the expansion functions in an average sense over the domain

7

(Zienkiewicz,). Thus, we insist that:

$$\iint_{D} F_{j} \left(\sum_{i=0}^{N} \frac{df_{i}}{dt} F_{i} - \sum_{i=0}^{N} g_{i} F_{i} \right) dxdy = 0$$
 (3.5)

for $j=0,1,2,\ldots,N$. This technique gives a system of N+1 ordinary differential equations for the expansion coefficients, $f_i(t)$. This system may then be numerically integrated, given initial conditions, to find the approximate solution, $\hat{f}(x,y,t)$, to Eqn. (3.1).

3.2 The Application of the Spectral Method to the Model Equations

The expansion functions must be specified and they are usually chosen with properties which are particularly appropriate to the problem under consideration. For the present problem, the following set of properties is chosen:

- 1) F_o is a constant over the domain
- 2) $\partial F_1/\partial x = 0$ along the north and south boundaries
- 3) the F₁ are orthonormal i.e.

$$\frac{1}{A} \int \int_{D} F_{i}F_{j} dxdy = \delta_{ij}$$
 (3.6)

where $\delta_{\mbox{ij}}$ is the Kronecker delta and A is the area of the domain

4) the expansion functions are eigenfunctions of the Laplacian operator so that:

$$\nabla^2 \mathbf{F}_{\mathbf{i}} = -\mathbf{a}_{\mathbf{i}}^2 \mathbf{F}_{\mathbf{i}} \tag{3.7}$$

where $a_i^2 > 0$

The first property allows one to represent a field with a non-zero mean using the expansion functions. Property 2 is chosen so that the boundary condition eqn. (2.32), may be satisfied.

Property 3 is chosen to facilitate the integration of terms in equations similar to Eqn. (3.5). Property 4 is chosen as the Laplacian operator is present in the model equations. This property will also simplify the integration of terms in equations similar to Eqn. (3.5).

Expanding the variables $\overline{\psi},~\hat{\psi}$ and $\tilde{\omega}_2$, one has:

$$\overline{\psi}(x,y,t) \approx \sum_{i=0}^{N} \psi_{i}(t) F_{i}(x,v)$$
 (3.8)

$$\hat{\psi}(x,y,t) \approx \sum_{i=0}^{N} \tau_{i}(t) F_{i}(x,y)$$
 (3.9)

$$\tilde{\omega}_{2}(x,y,t) \approx \sum_{i=0}^{N} \omega_{i}(t) F_{i}(x,y)$$
 (3.10)

Using this expansion and Eqn. (3.7), the first model equation, Eqn. (2.26), becomes:

$$-\sum_{i=0}^{N} a_{i}^{2} \frac{d\psi_{i}}{dt} F_{i} = \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} \psi_{j} \psi_{k} J(F_{j}, F_{k}) + \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} \tau_{j} \tau_{k} J(F_{j}, F_{k})$$

$$-\beta \sum_{i=0}^{N} \psi_{i} \frac{\partial F}{\partial x}^{i} + R \qquad (3.11)$$

Applying the Galerkin procedure to Eqn. (3.11) by multiplying by a particular \mathbf{F}_{ℓ} and integrating over the domain, one has:

$$-a_{\ell}^{2} \frac{d\psi_{\ell}}{dt} = \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} \psi_{j} \psi_{k} \frac{F_{\ell} J(F_{j}, F_{k})}{F_{\ell} J(F_{j}, F_{k})} + \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} \tau_{j} \tau_{k} \frac{F_{\ell} J(F_{j}, F_{k})}{F_{\ell} J(F_{j}, F_{k})}$$

$$-\beta \sum_{i=0}^{N} \psi_{i} F_{\ell} \frac{\partial F_{i}}{\partial x}$$
 (3.12)

where the averaging operator, (), is defined by:

$$\frac{1}{D} = \int_{D} \int_{D} () dxdy \qquad (3.13)$$

The terms in Eqn. (3.12) which involve the averaging operator may only be evaluated once the expansion functions have been chosen.

These terms, however, are independent of space and time. They are constants which depend only on the expansion functions and the domain of the problem and they may be written:

$$c_{\ell jk} = \overline{F_{\ell} J(F_{j}, F_{k})}$$
 (3.14)

$$b_{\ell i} = F_{\ell} \frac{\partial F_{i}}{\partial x}$$
 (3.15)

Applying the Galerkin procedure to the three model equations, Eqns. (2.26) - (2.28), and using Eqns. (3.14) and (3.15), one obtains:

$$-a_{\ell}^{2} \frac{d\psi_{\ell}}{dt} = \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} \epsilon_{\ell j k} (\psi_{j} \psi_{k} + \tau_{j} \tau_{k}) - \beta \sum_{i=0}^{N} b_{\ell i} \psi_{i}$$
(3.16)

$$-a_{\ell}^{2} \frac{d\tau_{\ell}}{dt} = \sum_{j=0}^{N} \sum_{k=0}^{N} a_{k}^{2} c_{\ell j k} (\tau_{j} \psi_{k} + \psi_{j} \tau_{k}) - \beta \sum_{i=0}^{N} b_{\ell i} \tau_{i} + \frac{f_{o}}{\Delta p} \omega_{\ell}$$
(3.17)

$$\frac{d\tau_{\ell}}{dt} = -\sum_{j=0}^{N} \sum_{k=0}^{N} c_{\ell j k} \psi_{j} \tau_{k} + \frac{\sigma \Delta p}{2f_{o}} \omega_{\ell}$$
 (3.18)

Using Eqns. (3.14) and (2.22), one may show that:

$$\sum_{j=0}^{N} \sum_{k=0}^{N} X_k Y_{jk}^{c} \ell_{jk} = \frac{1}{2} \left(\sum_{j=0}^{N} \sum_{k=0}^{N} (X_k - X_j) Y_{jk}^{c} \ell_{jk} \right)$$
 (3.19)

for arbitrary X_k and for all Y_{jk} where $Y_{jk} = Y_{kj}$. X_k and Y_{jk} represent expansion coefficients or combinations of expansion coefficients which depend only on the given defices. Eq. (3.19) may be applied to Eqns. (3.16) - (3.18) to give

$$\frac{d\psi_{\ell}}{dt} = \frac{1}{2} \left(\sum_{j=0}^{N} \sum_{k=0}^{N} \frac{(a_{j}^{2} - a_{k}^{2})}{a_{\ell}^{2}} c_{\ell j k} (a_{j}^{2} + b_{k}^{2}) + \frac{\beta}{a_{\ell}^{2}} \sum_{i=0}^{N} b_{\ell i} \psi_{i} \right)$$
(3.20)

$$\frac{d\tau_{\ell}}{dt} = \frac{1}{2} \left(\sum_{j=0}^{N} \sum_{k=0}^{N} \frac{(a_{j}^{2} - a_{k}^{2})}{a_{\ell}^{2}} c_{\ell j k} (\tau_{j} \psi_{k} + \tau_{k} \psi_{j}) \right) + \frac{\beta}{a_{\ell}^{2}} \sum_{i=0}^{N} b_{\ell i} \tau_{i} - \frac{f_{o}}{\Delta p} \frac{\omega_{\ell}}{a_{\ell}^{2}}$$
(3.21)

$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \frac{1}{2} \left\{ \sum_{j=0}^{N} \sum_{k=0}^{N} c_{\ell j k} (\tau_{j} \psi_{k} - \tau_{k} \psi_{j}) \right\} + \frac{\sigma \Delta p}{2f_{o}} \omega_{\ell}$$
 (3.22)

Eqns. (3.20) - (3.22) yield a system of 3 (N + 1) ordinary differential equations for the 3 (N + 1) expansion coefficients. Before solving these, the expansion functions must be chosen. They must satisfy the four criteria given earlier. Following Lorenz (1960), the choice of expansion functions is:

$$F_{1} = \sqrt{2} \cos \frac{2\pi}{L_{y}}$$

$$F_{2} = 2 \sin \frac{2\pi}{L_{y}} \sin \frac{2\pi}{L_{x}}$$

$$F_{3} = 2 \sin \frac{2\pi}{L_{y}} \cos \frac{2\pi}{L_{x}}$$

$$(3.23)$$

This is referred to as a truncated spectral series expansion.

Applying Eqn. (3.7) to these functions, one finds:

$$a_0^2 = 0$$
 (3.24)

$$a_1^2 = (2\pi/L_y)^2$$
 (3.25)

$$a_2^2 = a_3^2 : (2\pi n/L_x)^2$$
 (3.26)

This set of functions allows to a wavenumber n to exist in the x-direction. This particular wavenumber will be left to be chosen later. In the y-direction, only waves of one wavenumber are allowed and this is completely specified with the choice of Ly given earlier. In order to fully describe atmospheric flows, which are characterized by many wavelengths, many more expansion functions would be necessary. Limiting the model to waves of only one wavelength, however, simplifies the solution considerably. This set of functions does, however, allow one to study the non-linear interactions between waves of the same wavelength in the fields of the stream functions for the mean flow (or mean height) and the thickness. The amplitudes of the waves and the phase difference between the waves may be varied to simulate aspects of various atmospheric flow patterns.

The expansion function F_0 is used to specify the mean height of the field. It is irrelevant to the present problem, however, and will be dropped. As proof of its irrelevance, Eqn. (3.14) demonstrates that with the chosen expansion functions, $c_{\ell \uparrow k} = 0$ if any of $\ell = 0$,

j = 0, or k = 0. Eqn. (3.15) shows that $b_{\ell i}$ = 0 if ℓ = 0 or i = 0. Thus, the mean of the field does not interact with the perturbation in the field and it is, therefore, not important. Consequently, the expansion coefficients associated with F_0 will be assumed to be 0.

For the chosen domain and the three expansion functions, F_1 , F_2 and F_3 , Eqn. (3.15) gives:

$$b_{1g} = 0$$
 for $\ell = 1, 2, 3$ (3.27)

$$b_{23} = -b_{32} = -2\pi n/L_x$$
 (3.28)

Eqn. (3.14) shows that $c_{\mbox{ljk}}$ is non-zero only when the three indices are distinct and one finds that:

$$c_{321} = -\frac{32\sqrt{2}\pi n}{3L_{x}L_{y}}$$
 (3.29)

The dependent variables, $\bar{\psi}, \ \hat{\psi}$ and $\tilde{\omega}_2$, are expanded using the expansion functions to obtain:

$$\overline{\psi} = \psi_1 F_1 + \psi_2 F_2 + \psi_3 F_3 \tag{3.30}$$

$$\hat{\psi} = \tau_1 F_1 + \tau_2 F_2 + \tau_3 F_3 \tag{3.31}$$

$$\tilde{\omega}_2 = \omega_1 F_1 + \omega_2 F_2 + \omega_3 F_3 \tag{3.32}$$

Finally, Eqns. (3.23) - (3.32) are substituted into Eqns. (3.20) - (3.22) to obtain a system of nine ordinary differential equations in the nine expansion coefficients. These equations are non-dimensionalized as this will give a simpler form for the final equations. Thus, in the equations, an arbitrary expansion coefficient for the mean flow, $\psi_{\bf i}$, is replaced by ${\bf L}^2$ for $\psi_{\bf i}$. This new coefficient is non-dimensional. Similarly, $\tau_{\bf i}$ is replaced by ${\bf L}^2$ for $\tau_{\bf i}$; $\omega_{\bf i}$ is replaced by Δp for $\omega_{\bf i}$, and d/dt is replaced by for d/dt.

Simple algebraic manipulation allows one to rewrite the resulting nine non-dimensional equations as a system of stronginary differential equations and three diagnostic omega equat

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = 0 \tag{3.33}$$

$$\frac{d\psi_2}{dt} = n^2 v \mu (\psi_1 \psi_1 + \tau_1 \tau_1) - \beta^* n \mu \psi_3$$
 (3.34)

$$\frac{d\psi}{dt}^{3} = -n^{2}\nu\mu(\psi\psi + \tau\tau) - \beta^{*}r^{*}\nu$$
(3.35)

$$\frac{d\tau}{dt} = -\frac{\omega}{\omega^2} \tag{3.36}$$

$$\frac{d\tau}{dt} = n^2 v \mu (\tau \psi + \tau \psi) - \beta^* n \mu \tau - \mu \omega \qquad (3.37)$$

$$\frac{d\tau}{dt}^{3} = -n^{2}\nu\mu(\tau \psi + \tau \psi) + \beta n\mu\tau - \mu\omega$$
 (3.38)

$$\omega_{1} = \frac{-\nu}{\sigma^{*} + \frac{1}{\alpha^{2}}} (\tau_{2} \psi_{3} - \tau_{3} \psi_{2})$$
 (3.39)

$$\omega_{2} = \frac{1}{\sigma^{*} + \mu} \left(v\{n^{2}\mu(\tau_{1}\psi_{3} + \tau_{3}\psi_{1}) - (\tau_{3}\psi_{1} - \tau_{1}\psi_{3})\} - \beta^{*}n\mu\tau_{3} \right)$$
(3.40)

$$\omega_{3} = \frac{1}{\sigma + \mu} \left(v \left\{ \left(\tau_{2} \psi_{1} - \tau_{1} \psi_{2} \right) - n^{2} \mu \left(\tau_{1} \psi_{2} + \tau_{2} \psi_{1} \right) \right\} + \beta^{*} n \mu \tau_{3} \right)$$
(3.41)

where the following symbol definitions have been used:

$$\alpha = L_{x}/L_{y}$$
 (3.42)

$$L = L_{x}/2\pi \tag{3.43}$$

$$\gamma = 8\sqrt{2}/3\pi \tag{3.44}$$

$$\beta^* = \beta L/f_0 \tag{3.45}$$

$$\sigma^* = \frac{\Delta \mathbf{p}^2 \sigma}{2f_0^2 L^2} \tag{3.46}$$

$$v = \gamma a n \qquad (3.47)$$

$$\mu = 1/(\alpha^2 + n^2)$$
 (3.48)

Thus, the spectral method requires the solution of six non-linear ordinary differential equations, Eqns. (3.33) - (3.38), and three omega equations, Eqns. (3.39) - (3.41), for the nine expansion coefficients. Baer (1970) has found an analytical solution to these equations to be expressible in terms of elliptic functions. The analytical solution was not used for this thesis. Instead, a numerical solution was found because a highly accurate solution could be found numerically with considerably less computational effort than an evaluation of the analytical solution would require.

Equations (3.33) - (3.38) have the general form:

$$\frac{\mathrm{df}}{\mathrm{dt}} = g(t) \tag{3.49}$$

In order to integrate such an equation numerically, it is written in finite-difference form. For the first time step, an Euler forward difference is used:

$$f^1 = f^0 + \Delta t g^0 \tag{3.50}$$

where f° and g° are the initial values of the functions f and g and Δt is the time step. Ralston (1965) shows that this scheme has first-order accuracy. For subsequent time steps, the second-order Adams-Bashforth method is used:

$$f^{n+1} = f^n + \frac{\Delta t}{2} (3g^n - g^{n-1})$$
 (3.51)

Lilly (1965) found the Adams-Bashforth method to be simple and efficient while giving accuracy on a par with more complicated methods when he compared 8 methods for integrating equations similar to Eqns. (3.37) - (3.42).

As the spectral solution is to be used as an accurate solution with which to compare the finite-element solution, the minimization of time truncation error is very important. Haltiner (1971) indicates that the time step must be a "small" fraction of the period of variation of the spectral amplitudes. As synoptic-scale motions are being studied, the period of the spectral amplitudes is expected to be on the order of days. Thus, the qualitative criterion of Haltiner (1971) indicates that a time step on the order of hours is appropriate. Test integrations were done with time steps of 1 hour and 0.5 hours. After 24 hours of integration, the solutions with the different time steps were compared. The spectral amplitudes were found to vary by less than 1 part in 10⁴. These results suggest a time step of 0.5 hours is sufficiently small and this is used in all spectral integrations presented in Chapter 5.

The initial conditions are determined by choosing values for ψ_1^0 , ψ_2^0 , ψ_3^0 , τ_1^0 , τ_2^0 and τ_3^0 . In choosing these values, one determines not only the amplitudes of the waves but also the phase relationship between the waves in the stream function for the mean height, $\overline{\psi}$, and for the thickness, $\hat{\psi}$. This allows one to simulate a variety of atmospheric flow patterns. The initial conditions for the cases presented in Chapter 5 were chosen to represent a variety of flows. This is

done so that the solution by the finite-element method could be tested with a variety of initial conditions in order to determine its possible strengths or weaknesses.

3.3 The Energy and Potential Enstrophy Relations

The energies and potential enstrophy discussed in Sec. 2.3 can be related to the expansion coefficients. Using the definition of the kinetic energy, Eqn. (2.36), and Eqns. (3.30) and (3.31), one finds that:

$$KE = \frac{2L_{x}L_{y}^{\Delta p}L^{4}f_{o}^{2}}{g} \left(\frac{1}{L_{y}^{2}}(\psi_{1}^{2}+\tau_{1}^{2}) + \left(\frac{1}{L_{y}^{2}} + \frac{n^{2}}{L_{x}^{2}} \right)(\psi_{2}^{2}+\psi_{3}^{2}+\tau_{2}^{2}+\tau_{3}^{2}) \right)$$
(3.52)

where non-dimensionalized coefficients are used. Using Eqn. (2.38), the available potential energy of the spectral solution is found to be a en by:

APE =
$$\frac{\Gamma L_{x} L_{y} f^{2} L^{4}}{4} (\tau_{1}^{2} + \tau_{2}^{2} + \tau_{3}^{2})$$
 (3.53)

The potential enstrophy for the spectral solution, using Eqns. (2.41), (2.42) and (2.43), is found to be:

$$PE = \frac{\Delta p L_{x y 0}}{2g} \left(\{\alpha^{2} \psi_{1}\}^{2} + \{(\alpha^{2} + n^{2}) \psi_{2}\}^{2} + \{(\alpha^{2} + n^{2}) \psi_{3}\}^{2} + (\alpha^{2} + n^{2}) \psi_{3}\}^{2} + (\alpha^{2} + n^{2}) \psi_{3}^{2} + (\alpha$$

$$\{\{(\alpha^2+1/\sigma^*)\tau_1\}^2 + (\alpha^2+n^2+1/\sigma^*)\{\tau_2^2+\tau_3^2\}\}$$
 (3.54)

Differentiating Eqns. (3.52) - (3.54) with respect to time and substituting Eqns. (3.33) - (3.41) in, it is found that the total energy and the potential enstrophy are conserved by the exact spectral solution. Eqns. (3.52) - (3.54) allow the calculation of these quantities at each step of the integration. The conservation of these quantities was used as a method of verifying the accuracy of the spectral numerical solution. In practice, it was found that these quantities were conserved to better than 1 in 10^4 for a wide variety of initial conditions and lengths of integrations. In particular, it is true for all cases presented in Chapter 5.

CHAPTER 4

THE FINITE-ELEMENT METHOD

4.1 A Description of the Method

Since its initial development by structural engineers during the 1950's (e.g. Turner et. al., 1956; Argyris, 1960; Clough, 1960), the finite-element method (FEM) has become a popular means of finding approximate solutions to initial and/or boundary value problems. In recent years, (Wang, et. al., 1972; Cullen, 1976, 1979; Staniforth and Daley, 1978, 1979), the FEM has been applied to the initial-boundary-value problems of numerical weather prediction. This chapter describes the application of the FEM to the atmospheric model described in Chapter 2. A brief history of the method is given first and a discussion of the FEM follows, with a simple example used to clarify the discussion. Finally, the application of the FEM to the atmospheric model under consideration is presented.

It is difficult to determine the originator of the FEM, although Clough (1960) seems to have been the first to use the name. Until the early 1960's, the method was developed separately by mathematicians and engineers. On the engineering side, the FEM evolved from the matrix method of structural analysis (Zienkiewicz, 1977). In this method, the analysis of structures proceeded by considering the components of the structures separately. Relations between the displacements and internal forces at the nodal points of individual components were derive' in matrix form with the displacements and/ex the

. v

forces being unknown. (The nodal points are the places where the components were joined.) The solution for the unknowns proceeded by solving the system of equations, written in patrix form, for the unknowns.

This method provided the exact answer for the unknowns. The only assumption made was that mathematical relations could be used to describe real physical systems. By analogy, McHenry (1943) and Newmark (1949), for example, extended the matrix method to continuum problems, i.e. problems without easily identifiable components. They divided the continuum into a number of hypothetical components called elements. They then proceeded as before by writing a system of equations for the nodal displacements and forces and solving this system of equations. This was found to give a good approximate solution to the original continuum problem.

As the method evolved, it was found that the simplest procedure to ensure that the forces and displacements of the approximate solution represented accurately the true solution, was to introduce the concept of virtual work (Zienkiewicz, 1977). An arbitraction of virtual work (Zienkiewicz, 1977). An arbitraction of virtual work (Zienkiewicz, 1977) and arbitraction of virtual) nodal displacement is imposed and the internal and external work done by the various forces and stresses during that displacement are equated. It was accordized that this approach was equivalent to minimizing the total potential energy of the structure under consideration. Argyris (1.50), for example, detailed the resulting matrix equations, for a rectangular panel under plane stress, in a comprehensive paper on energy theorems and matrix methods

During the late 1950's and early 19 s (e.g. Szmelter, 1959; Clough, 1965), this method was recognized as an extension of the Rayleigh-Ritz method, which had been well known to mathematicians since the publications of Rayleigh (1870) and Ritz (1909). With this recognition, it became possible to give a mathematical basis to the largely intuitive developments of the engineering profession. During the last two decades, the use of the FEM has grown rapidly and a bibliography of the FEM by Norrie and deVries (1976) provides a detailed listing of many of the developments.

When applying the FEM, the domain of the problem is divided into a number of elements. The number, size and shape of the elements are chosen after consideration of the domain of the problem and the degree accuracy required. Zienkiewicz (1977) discusses some of the possible choices for elemental shapes. Triangular and rectangular shapes have been popular as they are relatively easy to work with. are no hard and fast rules for choosing the elements although there are a few guidelines. For a domain with a curved boundary, triangular elements offer an advantage as they can better approximate the boundary. For rectangular domains, rectangular elements may be advantageous as fewer elements are normally required for a given level of accuracy. Also, increasing the total number of elements and decreasing the size of the elements provides increased accuracy. One has the option of using small elements in areas of detailed interest while using larger elements elsewhere. When all the elements are chosen for a domain, the result is called the mesh or grid of the domain. It is advantageous to

automate the choice of this mesh for a given elemental shape and domain.

4:5.

In this thesis, rectangular elements are used, and Fig. 4.1 shows the mesh used for the domain defined in Sec. 2.1. The domain is divided into unequal rectangles. The entral portion of the mesh has high resolution with the elements having a length of 200 km. on a side. The element length and width varies uniformly away from this central portion. Thus, the ratio of elemental lengths between neighbouring elements is a constant. The elemental length reaches a maximum of 1200 km. and the elemental width reaches a minimum of 60 km. The high resolution portion near the north and south boundaries is used to permit a more accurate implementation of the boundary conditions, Eqns. (2.33) and (2.34). A variable grid length was used so that its effect on the solution could be investigated. The portions of the grid marked A and B in Fig. 4.1 are the portions of the domain in which the FEM solution will be presented (in Chapter 5) for comparison with the spectral solution. The portion marked C is the p rti ϵ -c which the energies and the potential enstrophy of the two solutions of the calculated.

The elemental shape must be chosen in conjunction with the basis functions, e^{i} (x,y), to be used and the number of nodes per element. The basis functions form an interpolatory basis with which a function may be interpolated on the domain. They are normally chosen to be low-order polynomials and are defined in a piece-wise sense on the domain, i.e. the i'th basis function is non-zero only over some (small) portion of the domain adjacent to element i. The choice of piece-wise defined

basis functions is a major strength of the FEM. It leads to systems of linear equations which may be written in matrix form. These matrices are normally highly sparse and banded. This gives a significant computational advantage over systems that are nearly full or not banded.

In general, when interpolating a function, one needs the basis functions and some values of the function being interpolated. In the FEM, these values are the value of the function at the nodes. The nodes are specified points on the domain and the number of nodes chosen per element determines the order of the basis functions. Thus, with rectangular elements, if four nodes are chosen per element, the basis functions are bi-linear while the use of sixteen nodes per element would be consistent with bi-quadratic basis functions. Although the noder are often chosen to be on the boundary of the elements, they may be in the interior of the element. The number of nodes per element, the nodal positions and the basis functions must be chosen together. The reader is referred to Zienkiewicz (1977) and Tong and Rossettos (1977) for examples of elements and their associated nodes and basis functions which have been used.

In this thesis, four nodes per element are used and the nodes are chosen to be in the corners of the elements. Each node is common to four elements.

Bi-linear basis functions are used. One may define the basis functions with respect to each element or, equivalently and more simply

in this case, one may define them with respect to the nodes. If the nodes are numbered $m = 1, 2, \ldots, NI$ in the x-direction and $n = 1, 2, \ldots, NJ$ in the y-direction, the basis function for node (m,n) may be written:

$$\left(\frac{\mathbf{x}-\mathbf{x}_{m-1}}{\mathbf{h}_{m-1}}\right) \left(\frac{\mathbf{y}-\mathbf{y}_{n-1}}{\mathbf{k}_{n-1}}\right) : \mathbf{x} \in (\mathbf{x}_{m-1}, \mathbf{x}_{m}), \mathbf{v} \in (\mathbf{y}_{n-1}, \mathbf{v}_{n})$$

$$\left(\frac{\mathbf{x}_{m+1}-\mathbf{x}}{\mathbf{h}_{m}}\right) \left(\frac{\mathbf{y}-\mathbf{y}_{n-1}}{\mathbf{k}_{n-1}}\right) ; \mathbf{x} \in \left(\mathbf{x}_{m}, \mathbf{x}_{m+1}\right), \mathbf{y} \in \left(\mathbf{y}_{n-1}, \mathbf{y}_{n}\right)$$

$$e^{\ell}(\mathbf{x},\mathbf{y}) = \left(\frac{\mathbf{x}-\mathbf{x}_{m-1}}{\mathbf{h}_{m-1}}\right) \left(\frac{\mathbf{y}_{n+1}-\mathbf{y}}{\mathbf{k}_{n}}\right) ; \ \mathbf{x} \in \left(\mathbf{x}_{m-1},\mathbf{x}_{m}\right), \ \mathbf{y} \in \left(\mathbf{y}_{n},\mathbf{y}_{n+1}\right)$$
 (4.1)

$$\frac{\left\{\frac{\mathbf{x}_{m+1}-\mathbf{x}}{\mathbf{h}_{m}}\right\} \left\{\frac{\mathbf{y}_{n+1}-\mathbf{y}}{\mathbf{k}_{n}}\right\} ; \mathbf{x} \epsilon \left(\mathbf{x}_{m}, \mathbf{x}_{m+1}\right), \mathbf{y} \epsilon \left(\mathbf{y}_{n}, \mathbf{y}_{n+1}\right)$$

0

; otherwise

where:

$$h_{m} = x_{m+1} - x_{m}$$

$$k_{n} = y_{n+1} - y_{n}$$
(4.2)

and ℓ is the multi-integer (m,n). The vector $[X_1, X_2, \ldots, X_{N1}]$ contains the values of the x-coordinate at the nodes while $[Y_1, Y_2, \ldots, Y_{NJ}]$ contains the values of the y-coordinate.

Thus, $e^{\ell}(x,y)$ is non-zero only over the four rectangles which have node ℓ in common. Also, $e^{\ell}(x,y)$ has a value of 1 at the node and diminishes to a value of zero at the other nodes of those four rectangles. With this definition, these basis functions are almost orthogonal, i.e. they interact only locally. Thus, the integral defined by:

$$I = \iint_{D} e^{\ell}(x,y) e^{k}(x,y) dxdy \qquad (4.3)$$

where ℓ is the multi-integer (m,n) and k is the multi-integer (M,N), is non-zero only if m=M-1, M or M+1 and n=N-1, N or N+1. Finally, it should be noted that the basis functions are separable, i.e. they may be written $e^{\ell}(x,y)=e^{m}(x)e^{n}(y)$. se basis functions may be used to interpolate a function, g(x,y), on a domain in the following way:

$$g(x,y) = \sum_{i} g_{i}e^{i}(x,y)$$
 (4.4)

where the summation extends over all nodes and the g_i are the nodal values of g(x,y).

The FEM is, in fact, a general class of methods and one must choose the particular method(s) to be used for a given problem.

Zienkiewicz (1977) provides a discussion of some of the methods which have been used. Two large sub-classes of the FEM are the variational

and the weighted residual approaches. An example of a method from each of these sub-classes is considered in this thesis. First, the Rayleigh-Ritz method (a variational approach) and then the Galerkin method (a weighted residual approach) will be discussed. The Galerkin method is the one actually used for the solution of the model equations.

To illustrate the Rayleigh-Ritz method, let us consider the two-dimensional Poisson equation:

$$\nabla^2 \phi = f(x, y) \tag{4.5}$$

valid on a domain D with the boundary condition:

$$\phi(x,y) = \overline{\phi} \tag{4.6}$$

on the boundary, Γ , of the domain where $\overline{\phi}$ is a constant. A variational principle may be written:

$$I(\phi) = \int_{D} (\nabla \phi)^{2} dxdy + \int_{D} f(x,y)\phi dxdy \qquad (4.7)$$

where $(\nabla \phi)^2 = (\partial \phi / \partial x)^2 + (\partial \phi / \partial y)^2$. Tong and Rossettos (1977) have shown that the function, ϕ , which minimizes Eqn. (4.7) and satisfies Eqn. (4.6), is also the solution of Eqns. (4.5) and (4.6). Thus, the solution of the original differential equation is also the extremum of the variational principle.

In the Rayleigh-Ritz method, an approximate solution to Eqns. (4.5) and (4.6) is found by minimizing an approximate form of

the variational principle, Eqn. (4.7). The functions ϕ and f are expanded as in Eqn. (4.4) and are substituted into Eqn. (4.7). This yields an approximate form of the variational, $I^*(\phi)$, and this is minimized with respect to changes in each of the nodal values of ϕ , i.e.

$$\frac{\partial \mathbf{I}}{\partial \phi_{\mathbf{i}}}^{*} = 0 \qquad ; \quad \mathbf{i=1,2,...,N}$$
 (4.8)

where N is the total number of interior nodes. This procedure yields a system of linear equations which may be written in matrix form as:

$$A\underline{\phi} = B\underline{f} \tag{4.9}$$

where A and B are square N x N matrices and ϕ and f are vectors of the nodal values of their respective functions. Given the nodal values of f, one may find the nodal values of ϕ by inverting A in Eqn. (4.9). This is the approximate solution to Eqns. (4.5) and (4.6).

Many boundary-value problems, however, do not have a corresponding variational principle and other methods must be used to find solutions to them. The Galerkin method is one of these. The present method is an extension of that given by Galerkin (1915). In the general weighted residual approach, the differential equation, Eqn. (4.5), is multiplied by a test function, t (x,y), and the product is integrated over the domain to yield:

$$\iint_{D} t\nabla^{2}\phi \, dxdy = \iint_{D} tf \, dxdy \qquad (4.10)$$

In the Galerkin method, the test function is chosen to be one of the basis functions.

If the derivatives in Eqn. (4.10) are of higher order than are the basis functions, it is necessary to integrate Eqn. (4.10) by parts. In two-dimensions, this can be accomplished using Green's Theorem. Following Zienkiewicz (1977), Eqn. (4.10) may be written:

$$-\iint_{D} \left[\frac{\partial t}{\partial x} \frac{\partial \phi}{\partial x} + \frac{\partial t}{\partial y} \frac{\partial \phi}{\partial y} \right] dxdy = \iint_{D} tf dxdy - \oint_{\Gamma} n_{x} t \frac{\partial \phi}{\partial x} d\Gamma - \oint_{\Gamma} \ell_{y} t \frac{\partial \phi}{\partial y} d\Gamma$$
 (4.11)

where n_x and l_y are the direction cosines between the outward normal to the boundary and the x and y axes respectively. With the boundary condition Eqn. (4.6), the last two terms of Eqn. (4.11) are zero.

Now, \$\phi\$ and f are expanded using Eqn. (4.4) and substituted into Eqn. (4.11). Upon integration, a system of linear equations similar to Eqn. (4.9) is obtained and the approximate solution may be found by inverting the new matrix A. Strang and Fix (1973) have shown that the Galerkin and Rayleigh-Ritz methods give the same system of equations if the problem has a variational form.

The right-hand-side of Eqn. (4.5) has, to this point, been treated as a simple function, f (x,y). In fact, as in the model equation (2.26) for example, the right-hand-side may be a rather complicated expression. The nodal values of this expression must be evaluative the nodal values of f) so that the solution may proceed alerkin or Rayleigh-Ritz methods. Staniforth and Dawide a detailed explanation of how this expression may be evaluated and the collowing brief explanation is based on their work.

The evaluation of complicated right-hand-sides of equations such as Eqn. (2.26) is most easily understood by breaking the procedure up into a number of smaller steps. In general, the right-hand-side involves the addition or subtraction of functions, the differentiation of functions and the products of functions. Each of these will be considered in turn.

The addition or subtraction of functions proceeds node by node. Thus, if the nodal values f_i and g_i of the functions f(x,y) and g(x,y) are known, the sum or difference, b(x,y) = f(x,y) + g(x,y), is found using:

$$b_{i} = f_{i}^{\pm g}$$
 (4.12)

for all the nodes, $i = 1, 2, \ldots, N$.

The differentiation of functions will be considered for a one-dimensional domain first. Let us consider the determination of a multiple of the first derivative of a function, u (x), in the x-direction:

$$v = \alpha u_{x} \tag{4.13}$$

where $u_x \equiv du/dx$ and α is a scalar constant. It is assumed that u is known at the nodal points x_1 , $i = 1, 2, \ldots$, N and that v is required at these points. The two functions, u and v, are expanded using the basis functions, e^i (x), and substituted into Eqn. (4.13) to obtain:

$$v_i e^i(x) = u_i e_x^i(x)$$
 (4.14)

where $e^{i}_{x}(x) = d e^{i}(x)/dx$ and where the Einstein summation convention for repeated indices is used. The Galerkin procedure is applied by multiplying by each of the basis functions successively and integrating over the domain, $[x_1, x_N]$, to obtain

$$v_{i} \int_{x_{1}}^{x_{N}} e^{k}(x)e^{i}(x) dx = \alpha u_{i} \int_{x_{1}}^{x_{N}} e^{k}(x)e^{i}_{x}(x) dx$$
 (4.15)

for $k = 1, 2, \ldots, N$. This may be written in matrix form as:

$$P_{\underline{V}} = \alpha P_{\underline{X}} \underline{u} \tag{4.16}$$

where:

$$\underline{v} = (v_1, v_2, \dots, v_N)^T$$

$$\underline{u} = (u_1, u_2, \dots, u_N)^T$$

$$p^{ki} = \int_{\mathbf{x}} e^k e^i d\mathbf{x}$$

$$p^{ki} = \int_{\mathbf{x}} e^k e^i d\mathbf{x}$$

$$p^{ki} = \int_{\mathbf{x}} e^k e^i d\mathbf{x}$$

 p^{ki} is the (k,i) element of an N x N matrix and ()^T is the transpose of that vector.

As the basis functions are nearly orthogonal, the matrices P and P_{σ} are tri-diagonal. Staniforth and Daley (1978) show that P is diagonally dominant and that the solution of this system of equations by Gaussian elimination is, therefore, stable with respect to round-off error. As a consequence of the separability of the basis functions, Staniforth and Daley (1978) find that a partial derivative in a multi-dimensional field may be obtained by taking the appropriate ordinary derivative in the direction defined by the partial derivative.

Consider now the evaluation of the product of two functions, $u^{\nu}(x)$ and $v^{\nu}(x)$, defined, again for the sake of simplicity, on a one-

dimensional domain:

$$w = \alpha u v \tag{4.18}$$

where α is a scalar constant. The three functions, u, v and w, are expanded using the basis functions and the Galerkin procedure is again applied to obtain:

$$w_{i} \int_{x_{1}}^{x_{N}} e^{k}(x)e^{i}(x) dx = \alpha u_{i}v_{j} \int_{x_{1}}^{x_{N}} e^{k}(x)e^{i}(x)e^{j}(x) dx \qquad (4.19)$$

which is valid for $k = 1, 2, \ldots, N$. The left-hand-side will be recognized as the matrix P defined by Eqn. (4.17). The right-hand-side of Eqn. (4.19) is more complicated than before and an efficient method for evaluating it is necessary. The left-hand-side is evaluated using numerical integration and, as the integrand is cubic in x, Simpson quadrature, a quadrature formula which is exact for cubics, is used. Over the range $[x_n, x_{n+1}]$, it is found that:

$$\int_{\mathbf{x}_{1}}^{\mathbf{x}_{n+1}} e^{\mathbf{n}}(\mathbf{x}) \mathbf{u}(\mathbf{x}) \mathbf{v}(\mathbf{x}) d\mathbf{x} = \frac{(\mathbf{x}_{n+1} - \mathbf{x}_{n})}{6} (\mathbf{u}_{n} \mathbf{v}_{n} + \frac{1}{2} \{\mathbf{u}_{n} + \mathbf{u}_{n+1}\} \{\mathbf{v}_{n} + \mathbf{v}_{n+1}\})$$
(4.20)

and that:

c

$$\int_{x_{n}}^{x_{n+1}} e^{n+1}(x)u(x)v(x) dx = \frac{(x_{n+1}^{-1}-x_{n}^{-1})}{6} (u_{n+1}^{-1}v_{n+1}^{-1} + \frac{1}{2}(u_{n}^{+1}u_{n+1}^{-1})\{v_{n}^{+1}v_{n+1}^{-1}\})$$
(4.2.)

Thus, the results which are necessary to evaluate the nodal values of f on the right-hand-side of Eqn. (4.9) have been established for bi-linear basis functions on a two-dimensional domain. In Section 4.2, we will consider the application of the FEM to the model equations, Eqns. (2.26), (2.29) and (2.30). The nodal values of the right-hand-sides of these equations were evaluated using the methods of this section.

4.2 The Application of the FEM to the Model Equations

The model equations, Eqns. (2.26), (2.29) and (2.30), are of the form:

$$\nabla^2 \phi - \lambda^2 \phi = f(\mathbf{x}, \mathbf{y}) \tag{4.22}$$

which is a Helmholtz equation. Staniforth and Mitchell (1977) have shown that the variational principle corresponding to Eqn. (4.22) is

$$I(\phi) = \iint_{\mathcal{D}} \left(\{ \nabla \phi \}^2 + \lambda^2 \phi^2 + 2f \phi \right) dxdy \qquad (4.23)$$

given the boundary condition Eqn. (2.33). Here, $(\nabla \phi)^2 = (\partial \phi / \partial x)^2 + (\partial \phi / \partial y)^2$.

Staniforth and Mitchell (1977, 1978) have shown that with the basis functions defined by Eqn. (4.1), the approximate minimization of I (\$\phi\$) in Eqn (3), using the Rayleigh-Ritz method, yields a solution with second-order accuracy on any sub-domain with uniform grid spacing. They discuss an alternate approach using the Galerkin method which yields a fourth-order solution on any uniform sub-domain. This is the method used in this thesis.

Applying the Galerkin method to Eqn. (4.22) yields:

$$\iint_{D} \nabla^{2} \phi e^{k}(\mathbf{x}) d\mathbf{x} d\mathbf{y} - \lambda^{2} \iint_{D} \phi e^{k}(\mathbf{x}) d\mathbf{x} d\mathbf{y} = \iint_{D} f e^{k}(\mathbf{x}) d\mathbf{x} d\mathbf{y} \quad (4.24)$$

where λ is assumed to be a constant over the domain. If ϕ and f are expanded using the bi-linear basis functions, the second-order solution

obtainable from the Rayleigh-Ritz method is found. Eqn. (4.24) may be written:

$$\sum_{i=1}^{x_{i+1}} \int_{y_{j+1}}^{y_{j+1}} (\phi_{xx} + \phi_{yy}) e^{k} dxdy - \lambda^{2} \int_{x_{i-1}}^{x_{i+1}} \int_{y_{j-1}}^{y_{j+1}} (\phi_{xx} + \phi_{yy}) e^{k} dxdy - \lambda^{2} \int_{x_{i-1}}^{x_{i+1}} (\phi_{xx} + \phi_{yy}) e^{k} dxdy + \lambda^{2} \int_{x_{i-1}}^{x_{i+1}} (\phi_{xx} + \phi_{xy}) e^{k} dxdy + \lambda^{$$

as the basis function e^k for the node (i,j) is non-zero only over the four rectangles adjoining that node.

To demonstrate the technique for finding the fourth-order solution, consider the element which has the node (i,j) in its lower left hand corner, i.e. for which we have $x_i \le x \le x_{i+1}$ and $y_j \le y \le y_{j+1}$. For this element, the right-hand-side of Eqn. (4.25) may be written:

$$R = \int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}} fe^{k} dxdy \qquad (4.26)$$

Following Staniforth and Mitchell (1978), f is assumed to be symmetric about x_i , y_j and R is therefore evaluated as one-quarter of the doubly symmetric integral over four times the area, viz:

$$R = \frac{1}{4} \int_{\mathbf{x_i}^{-H_i}}^{\mathbf{x_i}^{+H_i}} \int_{\mathbf{y_j}^{-K_j}}^{\mathbf{y_j}^{+K_j}} fe^k dxdy \qquad (4.27)$$

,

G,

13

where $H_i = x_{i+1} - x_i$ and $K_j = y_{j+1} - y_j$. Note that in Eqn. (4.27), e^k must be re-defined for the new assumed grid and that f is expanded in terms of this new e^k . This interpolate for f is substituted into Eqn. (4.27) and the integration is performed yielding an expression for R in terms of the nodal values of f. Similar integrations of the right-hand-side of Eqn. (4.25) are performed over the three remaining rectangles adjoining (i,j). A similar procedure is undertaken to obtain the left-hand-side, but an integration by parts is necessary first. For the node (i,j), this yields Eqn. (4.28), which Staniforth and Mitchell (1978) show has fourth-order accuracy on any uniform subdomain. (Eqn. (4.28) is on page 54.)

An equation similar to Eqn. (4.28) may be derived for all interior nodes. These equations form a system of linear equations in the nodal values of the functions ϕ and f. To complete this system of equations, it is necessary to impose the boundary conditions.

Denoting the north boundary with j=1 and the south boundary with j=NJ, the first boundary condition, Eqn. (2.32), gives:

$$\phi_{1,1}^{=\phi_{2,1}^{=}\cdots=\phi_{NI,1}^{=\phi_{B,1}}}$$
 (4.29)

and:

$$^{\phi}_{1,NJ}^{=\phi}_{2,NJ}^{=\cdots}^{=\phi}_{NI,NJ}^{\Xi\phi}_{B,NJ} \tag{4.30}$$

$$\frac{1}{12} \left(\phi_{1+1,j+1} \left(\frac{k_1}{h_1} + \frac{h_1}{k_j} \right) + \phi_{2-j_1,j+1} \left(\frac{k_1}{h_{1-1}} + \frac{h_{1-1}}{k_j} \right) + \phi_{1-1,j-1} \left(\frac{k_{1-1}}{h_{1-1}} + \frac{h_{1-1}}{k_{j-1}} \right) + \phi_{1+1,j-1} \left(\frac{k_{1-1}}{h_1} + \frac{h_{1-1}}{k_{j-1}} \right) + \phi_{1+1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{k_{j-1}} \right) + \phi_{1+1,j} \left(\frac{k_1}{h_1} + \frac{h_1}{k_{j-1}} \right) + \phi_{1+1,j} \left(\frac{k_1}{h_1} + \frac{h_1}{k_{j-1}} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_{1-1}} + \frac{h_1}{k_{j-1}} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{k_j} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{k_j} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{h_1} \right) + \phi_{1,j-1} \left(\frac{k_1}{h_1} + \frac{h_1}{h_1} + \frac{h_$$

 $+5h_{1}(k_{1}+k_{j-1})^{f}_{1+1,j}+5h_{1-1}(k_{j}+k_{j-1})^{f}_{1-1,j}+5k_{j-1}(h_{1}+h_{1-1})^{f}_{1,j-1}+25(h_{1}+h_{1-1})(k_{j}+k_{j-1})^{f}_{1,j}$ $= \frac{1}{144} \left[h_1 k_j^f_{1+1,j+1} + h_{1-1} k_j^f_{1-1,j+1} + h_{1-1} k_{j-1}^f_{1-1,j-1} + h_1 k_{j-1}^f_{1+1,j-1} + 5k_j (h_1 + h_{1-1})^f_{1,j+1} \right]$

 $+5h_{1}(k_{j}+k_{j+1})\phi_{1+1,j}+5h_{1-1}(k_{j}+k_{j-1})\phi_{1-1,j}+5k_{j-1}(h_{1}+h_{1-1})\phi_{1,j-1}+25(h_{1}(k_{j}+k_{j-1})+h_{1-1}(k_{j}+k_{j-1}))\phi_{1,j}\Big|$

Equation (4.28)

In order to impose the second boundary condition, Eqn. (2.33), the integrand in Eqn. (2.33) is expanded using the basis functions.

At the northern boundary, this gives:

$$\frac{\partial \phi}{\partial y}\Big|_{1,1} = \frac{\phi_{1,2}^{-\phi_{1,1}}}{k_1} \tag{4.31}$$

and at the southern boundary, it yields:

$$\frac{\partial \phi}{\partial y}\Big|_{1,NJ} = \frac{\phi_{1,NJ}^{-\phi_{1,NJ-1}}}{k_{N,I-1}} \tag{4.32}$$

for i = 1, 2, . . ., NI. In Eqns. (4.31) and (4.32), $\phi = \partial \psi / \partial t$. Eqn. (2.33) is of the form:

$$\int_{0}^{\infty} g \, dx = 0 \tag{4.33}$$

Expanding g with the bi-linear basis functions and integrating Eqn. (4.33), one obtains:

$$(h_{NI-1}+h_1)g_{1,j}+(h_1+h_2)g_{2,j}+\dots+(h_{NI-2}+h_{NI-1})g_{NI-1,j}=0$$
 (4.34)

Substituting Eqns. (4.29) - (4.31) into Eqn. (4.34) and noting that in Eqn. (2.34), $g = \partial \phi/\partial y$, one obtains:

$$\phi_{B,1} = \frac{1}{2L_x} (\phi_{1,2}(h_{NI-1}+h_1) + \phi_{2,2}(h_1+h_2) + \dots$$

$$+ \phi_{NI-1,2} (h_{NI-2} + h_{NI-1}))$$
 (4.35)

where $\phi_{B,1}$ is the value of ϕ at all nodal points along the northern boundary. Similarly, the expression for the nodal values on the southern boundary, $\phi_{B,NJ}$, is found to be given by:

$$\phi_{B,NJ} = \frac{1}{2L_{x}} (\phi_{1,NJ-1}(h_{NI-1}+h_{1}) + \phi_{2,NJ-1}(h_{1}+h_{2}) + \dots$$

$$^{+} \phi_{NI-1,NJ-1}(h_{NI-2}+h_{NI-1}))$$
 (4.36)

If the vectors ϕ and f are defined to be vectors of all (both interior and boundary) nodal values of their respective functions, Eqns. (4.35) and (4.36) may be combined with all equations similar to Eqn. (4.28) to obtain a complete system of linear equations. This may be written in matrix form as:

$$A\phi = Bf \tag{4.37}$$

An approximate solution to the elmholtz equation, Eqn. (4.22), with the oundary conditions given by Eqns. (2.32) and (2.33),

may be found by solving the matrix equation, Eqn. (4.37). The procedure for doing this is described in Section 4.4.

4.3 The Energy and Potential Enstrophy Relations

The evaluation of the kinetic energy, the available potential energy, and the potential enstrophy for the finite-element solution is done by approximating Eqns. (2.36), (2.38) and (2.43) with equations which are numerically integrated. These three equations have the form:

$$Z = \alpha \iiint_{D} f(x,y) dxdy \qquad (4.38)$$

where a is a constant and z represents the KE, PE or APE. nodal values of the integrand, f (x,y), are evaluated using the results of Section 4.2. This is done using Eqns. (2.36), (2.38) and (2.43) to define the integrand for the APE and PE respectively. In order to perform the integration, Eqn. (4.38) is approximated by a simple finite-difference representation:

$$Z \approx \alpha \sum_{i j} f_{ij} \left(\frac{h_i + h_{i-1}}{2} \right) \left(\frac{k_j + k_{j-1}}{2} \right)$$
 (4.39)

where the f_{ij} are the nodal values of the integrand, f(x,y).

34

The limits of the summations in Eqn. (4.39) must be defined. In the definitions of KE, APE and PE in Section 2.3, we considered the integration to occur over the entire domain. Thus, the summation is with $i=1, 2, \ldots, NI-1$ and $j=1, 2, \ldots, NJ$. Within these limits, the conservative properties of the solution by the FEM are checked and the results are presented in Chapter 5.

It is also of interest to calculate the KE, APE and PE in the region where the solution by the FEM has the greatest accuracy. i.e. the sub-domain with uniform resolution. Will enable a better judgement of the potential accuracy of the solution using the FEM. For the cases presented in Chapter 5, this is done for the area marked C in Fig. 4.1. These calculations are done for the spectral olution as well so the two solutions can be compared. To do this, it was necessary to calculate the nodal values of the spectral solution.

4.4 The Solution Algorithm

The five steps for the solution of the model equations (Eqns. (2.26), (2.29) and (2.30)) using the FEM are:

- to determine the right-hand-sides of the model equations.
- 2) to solve the system of equations resulting from the discretization of Eqns. (2.26) and (2.29) for $\partial \psi / \partial t$ and $\partial \hat{\psi} / \partial t$, respectively, at time t.
- 3) to extrapolate in time to estimate $\overline{\psi}$ and $\hat{\psi}$ at time $t+\Delta t$, where Δt is the time step.

- 4) to solve the system of equations resulting from the discretization of Eqn. (2.30) for $\tilde{\omega}_2$ at t + Δt .
- 5) to repeat steps one through four for the desired number of time steps.

The procedure used for performing the first step was described in Section 4.3. The solution of a system of linear equations, as required by steps 2 and 4 may be done using either direct or iterative methods. Tong and Rossettos (1977) provide a discussion of the advantages and disadvantages of each method when applied to finite-element problems. Their analysis indicates that, for the systems of equations in this thesis, a direct method would probably be most efficient in the use of computer resources. However, as the computer code was to be used a limited number of times, the efficient use of computer resources was judged to be less important than the efficient use of programming time. Hence, an iterative method is used.

Young (1...) describes many iterative methods and from these, successive over-relaxation (SOR) is chosen as it is relatively simple to program and is reasonably efficient in the use of computer resources. To apply SOR, the matrix A in Eqn. (4.37) is split into a lower triangular, L, and an upper triangular, U, matrix. Then, given an initial guess for the nodal values, ϕ^{O} , the approximate solution, ϕ^{D} , is found us

$$L\Delta \phi = B\underline{f} - A\phi^{n-1} \qquad (4.40),$$

$$\phi^{n} = \phi^{n-1} + \omega \Delta \phi \tag{4.41}$$

where ω is the over-relaxation factor. The solution proceeds by iterating with Eqn. (4.41) and (4.42) and the superscript n refers to the number of the iteration. One continues iterating until the difference between successive iterates, $\Delta \phi$, is sufficiently small. In the present thesis, iterations are continued until the relative change from one iteration to the next a a nodes in the high resolution sub-domain (Area C) is less than .1%.

The total number of iterations needed for a solution depends critically on the choice of the value for the over-relaxation factor. An attempt was made, using techniques described by Young (1971), to objectively determine the optimum over-relaxation factor, i.e. the one which resulted in the minimum number of iterations for a solution. This did not work well, however, and a factor of 1.795 was found, by trial and error, to be nearly optimum.

Step 3 was accomplished using the Euler and Adams-Bashforth methods described in Section 3.2. The length of the time step, Δt , for the solution by the FEM was chosen using different criteria than in Section 3.2 however. Haltiner (1971) shows that to prevent computational instability, the fastest travelling wave in the solution must move less than one grid interval, Δx , in one time step, Δt . This leads to the following condition:

$$\frac{\mathrm{C}\Delta t}{\Delta \mathbf{x}} \leq \frac{1}{\sqrt{2}} \tag{4.42}$$

for a two-dimensional domain where C is the speed of the fastest travelling wave. This criterion was derived using finite-difference methods rather than finite-element methods for the discretization of the space coordinates. However, to hysical into pretation of this criterion presented by Haltiner (1971) Laggests that it could at least be used as a guideline for the present work. For synoptic-scale systems, in quasi-geostrophic models where sound and gravity waves are not permitted, Holton (1972) estimates 50 m/s to be the maximum value of C. With this value and a time step of 1/2 hour, Eqn. (4.42) indicates that computational instability should be prevented in the present model for all portions of the grid with grid spacing greater than 127 km. Thus, only in a very narrow band, near the north and south boundaries of the present grid, is the possibility of computational instability indicated. A time step of 1/2 hour is used as it will mean that the time truncation errors in both methods of solution are the same and because the criterion have suggested that computational instabil! is unlikely to be a major problem.

CHAPTER 5

THE BESULT

5.1 Introduction

The model equations derived in Chapter 2 are solved using both the spectral and the finite-element methods, as discussed in Chapters 3 and 4. In this chapter, some examples of the solutions obtained using these methods, with various initial conditions, will be presented. In the accompanying discussion, some of the strengths and weaknesses of the finite-element solution will be demonstrated through a comparison with the spectral solution. Prior to presenting these results, a discussion of some of the conventions used and the numerical values of certain constants will be given.

A total of four sets of initial conditions will be presented with both methods of solution used for all four. Cases I, II and III are model atmospheres which, initially, favour the conversion of APE to KE. This conversion leads to a development (amplification) of the wave in the mean height field. The cases will be referred to as weakly, moderately, and strongly developing cases. Case IV is a model atmosphere in which a conversion of KE to APE takes place. The wave in the mean height field decays and this is called the decaying case.

As shown in Chapter 3, the spectral solution allows only waves of wavenumber n in the x-direction to exist. This wavenumber must be chosen and its value determines the scale of motion to be consi-

dered. As mid-latitude synoptic scale motions are to studied, a wavenumber of 3 to 9 is appropriate. For the chosen channel length, these wavenumbers lead to ves with wavelengths of the order of thousands of kilometers. Holton (1972) suggests that wavenumber 7 is close to the average wavenumber of rid-latitude synoptic systems. He also shows that this wave is near the wavelength of maximum baroclinic instability, i.e. the wavelength which becomes baroclinically unstable with the lowest thermal contrast. A wavenumber of 7 is used in all the cases in this chapter.

1

The static stability parameter, σ , is defined by Eqn. (2.16). It is calculated by writing Eqn. (2.16) in finite-difference form using a central difference about 500 mb. Tabulated values of θ and p for the ICAO standard atmosphere were used to find $\sigma = 2.8 \times 10^{-6}$ m⁴ s² kg⁻². This is within 25% of θ value assumed by Holton (1972) for mid-latitude synoptic scale systems.

Teweles and Wobus (1954) developed the S1 score for comparing two fields with their values determined at grid points. This score is used later in this chapter as an aid in comparing the solutions by the two methods. The S1 score compares the gradients of the fields rather than their magnitudes, for example. Such a comparison is significant meteorologically because the gradient in the stream function determines the wind speed and direction, through the geostrophic wind relation, Eqn. (2.7). The wind and the vertical wind shear are more important weather elements than the actual value of the stream function

at a point, because they determine the potential for baroclinic and barotropic growth of weather systems.

To calculate the S1 score, one first calculates the gradients in the two fields which are being compared. In the present work, the components of the gradients of the two fields in the x and y directions are calculated for all points in the verifying area (area C of Fig. 4.1) including the boundaries of that area. If e_G is defined to be the difference between the gradient of the two fields at a point and G_L is defined to be the larger o gradients, the S1 score calculated using the formula:

$$S1 = 100 \frac{\tilde{\Sigma} |e_G|}{\tilde{\Sigma} |G_L|}$$
 (5.1)

where the summation occurs over all points in the verifying area and both components of the gradients are compared at each point. The Sl score varies from 0 to 100 with lower values indicating a greater agreement of the two fields.

The mean difference (MD) and mean absolute difference (MAD) between the finite-element and spectral solutions are also calculated over the verification area. In both the MD and the MAD, the finite-element solution is subtracted from the spectral solution at all grid points within area C, including the boundaries. The mean used is the arithmetic mean.

During initial test runs, it was found that waves of short wavelength were being generated along the northern and southern boundaries when the finite-element solution was computed. These waves grew in amplitude and moved away from the boundary, gradually contaminating the solution by the FEM even in the high-resolution sub-domain. Investigations indicated that a major cause of these waves was the poor evaluation of the vorticity near the boundary. In particular, the evaluation of the second derivative of the stream function in the y-direction was subject to a large error near the boundary. A simple 3-point smoothing algorithm was introduced to damp these waves. Thus, if the function f(x) is known at the grid points (x_1, x_2, \dots, x_N) , the smoothed function, g(x), at the point x_1 is given by:

$$g(x_i) = (1 - S(x_i))f(x_i) + \frac{S(x_i)}{2} (f(x_{i+1}) + f(x_{i-1}))$$
 (5.2)

where S (x₁) is the smoothing parameter at x₁. This smoother was applied to the calculated vorticity field in the vicinity of the northern and southern boundaries. It was applied to the vorticity field each time it was evaluated, first in the y-direction and then in the x-direction. Although most smoothing was necessary in the y-direction, some smoothing in the x-direction was found to be helpful in controlling the spurious waves near the boundary. For the six grid points nearest the boundary, the smoothing parameters were .30, .50, .30, .15, .08, and .02. The largest values were near the northern and southern boundaries. The smoothing parameter was zero for all other interior grid points. The sthing parameters for the first six interior lines of

1

grid points in the x-direction, adjacent to and including the northern and southern boundaries, were .10, .15, .10, .05, .01 and .005.

The values for the smoothing parameters were determined by trial and error. This set of parameters seemed to have little effect on the long wavelengths of interest but controlled the spurious short wavelengths reasonably well. It was found that using this smoothing also reduced the about of computation time by 10 - 15% as it allowed more rapid convergence to occur in the solution of the boundary value problems by relaxation.

In displaying the height and thickness fields later in this chapter, the stream functions for the mean height and thickness fields have been converted to a height in meters. This was cally done as, in this model, the gravitational constant, g, is assumed to be independent of cheight. Following Holton (1972), the height in meters, z, is obtained using:

$$z = \psi \frac{f_o}{g} \tag{5.3}$$

where g = 9.806 m s⁻². The stream function, ψ , is either $\bar{\psi}$ or $\hat{\psi}$, depending on which field is being converted.

The omega fields displayed have the units $\mu bar/sec$. This is the unit which is commonly used as it gives values of the order of 1. It should be noted, however, that negative omega values imply ascent.

In the display of these fields, roughly two-thirds of the total domain in Fig. 4.1 shown. Referring to Fig. 5.1, for example, the lower panel is area A of Fig. 4.1 while area B of Fig. 4.1 is the upper panel. With this display, both the high and low resolution portions of the two solutions may be easily compared.

As previously stated, area C of Fig. 4.1 is the verification area. This is the sub-domain over which the various energy quantities, the PE, the S1 score, the MD and the MAD are calculated, as shown, for example, in Figs. 5.10 - 5.12. The KE, APE and PE are also calculated over the whole domain for some of the cases.

5.2 Case I - Weak Development

Case I is an example of a weakly developing situation.

Figs. 5.1 and 5.2 show that, initially, the trough in the thickness

1 eld lags (i.e. is west of) the trough in the mean height field by

90°. When the trough in the thickness field lags the trough in the height field by between 0° and 180°, the perturbations (i.e. the waves) in the mean height field will amplify. In this process, the flow becomes more meridional and the amplitude of the wave increases.

Holton (1972) shows that this amplification will occur most rapidly when the lag is 90°. Holton (1972) did a linear analysis of an atmospheric model similar to the one under consideration. He found that if the gradients in the thickness field were less than a critical value, the waves would not develop, i.e. they were stable waves. With the

stable for this case. Due to model differences and non-linear interactions, the wave does, in fact, develop.

As was discussed in Section 2.1, this growth is due to the baroclinic conversion of energy from APE to KE through the lowering of the centre of mass of the atmosphere. This will be demonstrated more clearly when, later in this section, Fig. 5.10a is discussed.

The spectral solution (SP) after twenty-four hours of integration is given in Figs. 5.4 - 5.6. The wave in the height field has undergone the expected development and retrogressed 15°. The thickness field has developed slightly and progressed eastward. Thus, the phase difference between the two fields has between by 25°. The omega field has amplified somewhat during the period and has retrogressed 22°.

Figs. 5.1 - 5.2 are also the initial conditions used for the solution by the FEM. Figs. 5.7 - 5.9 are the resulting twenty-four hour forecasts for the height, thickness and omega fields, respectively. Only a very detailed comparison of the forecasts produced by the two methods reveals any differences between them over the high resolution portion of the grid. Near the boundaries, it is apparent that the troughs and ridges in the height field of the finite-element solution (FE) have retrogressed slightly faster than those of the SP

The diagnostic omega fields for the two solutions, Figs. 5.6 and 5.9, are considerably different, however. The maxima in the omega field are larger in the FE and are closer to the southern boundary in the FE than in the SP. The minima of the FE behave in an analogous manner, i.e. they are more negative and are closer to the northern boundary than are those of the SP. Whereas the SP has a value very near 0.0 at the boundary, the boundary value of the FE is somewhat larger than 0.0, in absolute magnitude. Investigations revealed that this remarkable difference in the two omega fields was present even at the initial time. Thus, this difference is not due to the development and growth of errors during the integration but rather due to the evaluation of the diagnostic omega field of the FE. Using the boundary condition, Eqn. (2.32), one may readily show that the right-hand-side of in. (2,30) should be zero on the boundary, for the chosen initial conditions. However, since the estimate of the vorticity, \overline{Q} , is very poor on the boundary, the term $J(\psi, \overline{Q})$ is subject to a large error on the boundary. When the boundary value of the omega field is in error, the interior values of the omega field are also in error. The poor estimation of the vorticity near the boundary also causes an error in the evaluation of the right-hand-sides of Eqns. (2.26) and (2.29). However, this error is not as easily seen in these cases as one is dealing with an error in the forecast of a relatively small change (i.e. $\frac{3\psi}{3\psi}$) in a large quantity (i.e. $\frac{1}{\psi}$).

The evaluation of the boundary condition, Eqn. (2.33), also makes a contribution to the errors near the boundaries. This boundary condition requires an integration along the boundary. Thus, values

from both the included low resolution portions of the grid are used to find the boundary condition for the entire boundary. This effectively increases the truncation error in the x-direction, along the entire boundary, to that of the portion of the boundary with the lowest resolution.

P.A.

The resolution in the y-direction is very high near the boundary. This band with high resolution along the boundaries was used to try to reduce the errors along the boundaries. With such resolution, a better estimate of the vorticity on and near the boundary can be obtained. In addition, the evaluation of the boundary condition, Eqn. (2.33), has greater accuracy as the truncation error present in the discretization of $\partial \psi/\partial y$ is reduced. Because of this area of high resolution, however, a shorter time-step must be used in the integration to prevent computational instability, as was discussed in Chapter 4.

Cullen (1976), Grammeltvedt (1969) and others have used different initial conditions when performing numerical experiments with this model on this domain. Their initial conditions were characterized by fields with very little variation in the stream functions near the boundary. In effect, then, there was a buffer of 600 - 800 km. between the boundary and the region of interest. This approach was not used in the present work, however, because the highly accurate spectral solution would not have been available for comparison.

Fig. 5.10a shows the evolution of the TE, KE and APE in the verification area (area C of Fig. 4.1) for the two solutions during the

during the period of integration. This is not, however, in violation of the conservation of TE, which was demonstrated in Chapter 3, as this TE has been calculated only in the verification area and not over the whole domain. As noted in Chapter 3, the conservation of the TE of the SP over the whole domain was verified for a wide variety of initial conditions. The increase of the TE of the SP in area C is due to the motion of the fields and the development of the fields during the forecast period.

SP is due to a gain in KE while the APE has remained nearly constant.

Thus, during the development of the waves, APE has been converted to KE but also, in the verification area, there has been energy imported.

It is not possible to say what proportion of the gain in KE is due to importation and what proportion is due to development.

Fig. 5.10a confirms that, with respect to the three energy grantities, the FE has performed well. The TE of the FE has decreased relative to the SP in the verification area. The FE has lost approximately 2% of the TE in the verification area. This small error is seen to be due to a loss in the APE of the FE relative to the SP, while it is noted that the KE of the FE is extremely close to that of the SP.

The growth rate of the error seems to be nearly linear, with the error first being noticeable after approximately ten hours of integration.

Fig. 5.10b indicates that the FE has also lost a small amount of PE relative to the SP. The total loss is only .4%. Careful scrut of Fig. 5.10b reveals that the FE actually gained PE relative to the SP for the first twelve hours and then lost PE for the last 12 hours. The small variation of the PE of the FE about that of the SP indicates that the FE behaves quite well in this case.

In Fig. 5.11a, the KE of the two solutions is presented in the zonal and eddy forms, while Fig. 5.11b gives the corresponding values for the APE. As noted earlier, the KE of the two solutions is essentially the same. However, the FE has lost ZKE relative to the SP and gained an equal and opposite amount of EKE. There is roughly a 1% difference in the ZKE between the two solutions. The loss in the APE of FE relative to the SP is seen to be due to a loss of ZAPE while the EAPE of the two solutions is essentially the same.

The reasons for the differences between he two solutions, as shown in Figs. 5.10 and 5.11, are rather hard to determine precisely.

As mentioned previously, there are errors in the FE due to space and time discretization. Also, it has been shown previously that, as a result of space discretization, significant errors can occur near the boundary due to the imperfect implementation of the boundary condition. As the time discretization scheme is the same for both models, it is expected that this, by itself, makes only a very small contribution to the differences between the two solutions.—It seems probable, however, that the loss in ZAPE of the FE relative to the SP is due to the poor evaluation of the boundary condition since the boundary value plays a

relatively larger role in the determination of the zonal quantities than of the eddy quantities. The error in the ZKE of the FE is thought to be smaller because the boundary condition on the height field is satisfied better than the one for the thickness field. In this model, the boundary value of the height field should not change with time but that of the thickness field does. It was found that the forecast change in the thickness field on the boundary in the FE was subject to a large error but that the FE maintained the boundary value of the height field fairly well. It is to be noted that the thickness field determines the APE whereas the KE is determined by both the thickness and height fields. The small rors in the eddy forms of the energy quantities are thought to be due to a combination of the various errors. It is probable that, during the initial few hours, errors due to space discretization are most important. As the integration proceeds, errors from the boundary will gradually infiltrate the high-resolution portion of the domain and become more important.

Fig. 5.12a gives the Sl scores for the FE relative to the SP. There is nearly a linear growth of the Sl score for both the height and thickness fields with the Sl score for the height field growing more rapidly. In the development of this score, Teweles and Wobus (1954) indicated that, in the forecasting of the real atmosphere, an Sl score of under 30 could be considered a perfect forecast while an Sl score of over 70 would indicate a useless forecast. For the present integration, the Sl score has only grown to near 5 which indicates, according to Teweles and Wobus's subjective criteria, an exceptional forecast.

However, care must be exercised here. In the present study, a highly simplified model atmosphere is used and only a very limited number of types of waves are allowed, in contrast to many types of wave motion possible in the real atmosphere. Also, in the present study, the initial conditions are very well specified and this is not true of forecasts for the real atmosphere where the initial conditions must be specified by some objective analysis of actual reported data. it seems reasonable to assume that The S1 scores for the present study should be significantly lower than that might be expected of forecasts of the real atmosphere. It is difficult, howeve, to objectively determine how small the score should be to mine how small the score should has been generated. The differences which were seen between the two forecasts were very small and this, at least, gives one the impression that the FE was very close to the SP and that therefore, S1 scores of about 5 or less indicate a good forecast. With the presentation of the remaining cases, an approximate upper limit for the Sl score representing a good forecast may be found.

Fig. 5.12b shows that, in the mean over the verification area, the height field of the SP is 0.24 m higher than that of the FE and that the thickness of the SP is 0.08 m lower than that of the FE: Considering that the fields under consideration have magnitudes of nearly 100 m and that some points in the height field underwent changes of nearly 30 m during the forecast period, these MD errors are quite respectable. The MD for the height field is larger than that for the thickness field because there were larger changes in the height field during the forecast period.

Fig. 5.12b also gives the MAD between the two solutions in the verification area. The MAD for both fields grows to nearly 1.10 m during the period of integration. The MAD for the thickness field appears to be closer to exponential growth.

It is interesting to note that while the MD for the thickness field was smaller, in absolute value, than that for the height field, the MAD for the thickness field is larger than that for the height field. Thus, the errors in the thickness field are smaller than those of the height field but there is a greater bias in the errors of the thickness field than in the height field. In effect, these results suggest that although the error at individual points is, in general, smaller in the thickness field than in the height field, the mean of the thickness field is not being kept constant as well as is that of the height field. It is not possible to suggest the precise cause of this at this time.

An interesting comparison may be made between Figs. 5.12 and 5.11. Fig. 5.11 shows that the KE of the FE is closer to that of the SP than is the APE. Fig. 5.12a shows that the gradient of the thickness field is forecast well while in Fig. 5.12b, we have seen that the forecast magnitude of the thickness field has a bias in it. The KE depends on the gradient of the thickness field while the APE depends on the magnitude of the thickness field while the APE is in error by the largest amount, it is suggested that the errors in the forecast magnitudes of the thickness field are produced largely by a poor implementation of the boundary condition.

5.3 Case II - Moderate Development

Case II is a situation favourable for greater development than Case I. Figs. 5.13 and 5.14 show that, initially, the trough in the thickness field lags the trough in the mean height field by 90°. The thickness field for this case is very similar to that of Case I, but the wave in the height field is characterized by a much larger amplitude for Case II than for Case I. As a result, the amplitude of the omega field is larger for this case, as shown in Fig. 5.15.

With the larger meridional gradient in the height field in this case, a large mean zonal wind exists in the domain. This means that the wave in the mean height field sexpected to move faster than in Case I. Also, the larger meridional variation in the mean height field implies greater thermal advection in this case. This increases the rate of baroclinic development. Thus, both the rate of propagation and rate of development of the wave in the mean height field are expected to have been changed in Case II.

Figs. 5.16 - 5.18 give the mean height, thickness and omega fields, respectively, after 48 hours of integration with the spectral method. (The length of integration has been increased as this will provide a more stringent test on the conservative properties and of the accuracy of the FE. This will also allow a better investigation of the possibility of computational instability in the FE.) The wave in the mean height field has developed and progressed eastward approximately 15°. The wave in the thickness field has decayed and progressed

eastward approximately 45°. Thus, the phase difference between the waves in the two fields has been reduced to 60°. The wave in the omega field has decayed slightly and progressed approximately 20°.

fields, respectively, for a 48 hour forecast using the FEM. The differences between the two solutions are much more apparent in this case than in Case I. Referring to Figs. 5.16 and 5.19, it is apparent that the FE has not maintained the north-south anti-symmetry present in the SP. The troughs in the FE have undergone greater development than those of the SP while the ridges of the FE have not been built as high as those of the SP. This seems to be due to problems with the boundary values of the FE. The SP has maintained a constant value for the mean height field along the boundaries while the boundary value of the FE has changed. Although any of the errors previously discussed could be the cause of this, it is probable the main cause is the poor evaluation of the vorticity near the boundary. This, as discussed in Sec. 5.2, was found to be a major source of error near the boundary.

Related to the above problem is the curvature in the trough and ridge axes of the FE. The SP has trough and ridge axes which are north-south while those of the FE are slightly curved. It appears that the speed of these waves in the FE is slower than those of the SP near the boundaries but is faster than those of the SP in the central portion of the domain. These errors are due, either directly or indirectly, to the problems near the boundaries. The overdevelopment of the troughs of the FE has led to larger sonal wind speeds in the trough in the

middle of the domain. This leads to a more rapid progression of the trough axis in the central portion of the domain. Similarly, larger gradients in the height field near the ridge axes in the centre of the domain has caused a more rapid progression of the ridge axes. Near the boundaries, just the opposite has happened. Gradients have been reduced and the progress of the waves has been retarded.

Finally, the presence of a few small amplitude short wavelength waves in the height field of the FE near the boundaries should be noted. These are the waves which the smoother, discussed in Sec. 5.1, was designed to control. Also of note is the absence of these waves in the region of the domain where the grid of the FE has very poor resolution. The short wavelength waves could not be resolved in this portion of the domain.

Comparing Figs. 5.17 and 5.20, it is apparent that there are vast differences between the two solutions for the thickness field.

The FE has very nearly maintained the correct value for maximum value of the highs and the minimum value of the lows. However, the maxima and minima of the FE are much closer to the boundaries than are those of the SP. This is been caused by the problems with the boundary value of the FE. For this case, the boundary value of the SP has changed very little during the integration period while the boundary value of the FE has definitely changed during this period.

percent of the SP however. The zero thickness isopleth is forecast very well by the FE near the centre of the grid even in those regions with relatively poor resolution in the dire : . The phase speeds in the central portion are nearly ide: . the meridional amplitude of the zero isopleth.

The short wavelength waves are more notic able in the thickness field of the FE than they are in the height field. Their amplitudes are small however. The waves are not distinct enough in either field to judge whether these short wavelength waves are in a position favourable for development or not.

The omega fields of the two solutions, shown in Figs. 5.18 and 5.21, are drastically different. The trough and ridge axes of the FE have a distinct curvature to them whereas those of the SP are straight lines oriented north-south. This curvature is simply a reflection of the curvature of the axes in the height and thickness fields of the FE found previously. The maxima/minima of the FE are more positive/negative than are those of the SP. This is indicative of the greater development which the FE has undergone. Also, the maxima and minima of the FE are located nearer to the boundaries than are those of the SP.

There are numerous spurious short wavelength waves present in the omega field of the FE. Although they are most common and have their largest amplitudes near the boundaries, they are also present well

visible in the height and thickness fields but they must have been there or they would not be present in the omega field. Thus, some amplitude short wavelength waves have propagated well into the grid.

Fig. 5.22a shows the TE, APE, and KE in the verification area for this case. The TE of the SP rises during the integration period for the reasons discussed with Case I. However, the TE of the FE rises faster than that of the SP. After 48 hours, the TE of the FE is approximately 6% larger than that of the SP. This increase in TE is due largely to the increased gradients in the mean height field of the FE which were seen earlier. The gain in the TE confirms the the wave in the mean height field of the FE has developed more than the wave in the SP. Also, it should be noted that the divergence in the TE of the two solutions does not begin until after twenty-four hours

Further study of Fig. 5.22a reveals that the gain in the TE of the FE relative to the SP is due to a large gain in the KE of the FE relative to the SP which is only partially compensated for by a loss in the APE of the FE relative to the SP. The divergence of the KE and APE of the two solutions begins after only twelve hours of integration. During the period from twelve to twenty-four hours, the KE and APE of the FE, although in error with respect to the SP, adjust themselves so that the TE of the two solutions is the same. Thus, during the first twelve hours, the two solutions behave similarly. During the twelve to

twenty-four hour period, the FE converts APE to KE at a faster rate than does the SP. During the final 24 hours, the FE either imports energy into the verification area or it has created some spurious source of energy. It seems probable that there has been importation of energy. In the FE relatively large amounts of KE have been concentrated in the middle portion of the domain whi. the KE near the boundaries is lower in the FE than the SP. This can be seen by comparing the gradients in the mean height field of the two solutions. A calculation of the meridional momentum transport might have given further insight here but this was not thought of until after the computation was finished.

Fig. 5.22b shows that the PE of the FE is less than that of the SP during the forecast period. The PE in the verification area changes significantly during the period and the FE under-forecasts the change in PE by nearly 20%. This result is a little surprising as, with the greater development of the FE, one would expect larger vorticities in the FE than in the SP. However, the troughs and ridges are sharper in the SP than in the FE and, thus, the vorticity of the FE is lower. Also, the thickness field of the FE has smaller values over the verification area than does the SP. These effects both act to give the FE a lower PE than the SP.

In Fig. 5.23a, it is seen that the FE gains a significant amount of ZKE relative to the SP while losing a small amount of EKE relative to the SP during the forecast period in the verification area.

The difference appears in the ZKE after fifteen hours and in the EKE after twenty-four hours. The aforementioned meridional transport of east-west momentum towards the centre of the domain in the FE has presumably led to this increase in the ZKE in the verification area. It seems that EKE in the FE has been converted to ZKE as well. This is reflected in the relatively broad troughs in the FE. This, I believe, is a natural result of the process of baroclinic development. During development, ZAPE is converted to EAPE; EAPE is converted to EKE; and, finally, EKE is converted to ZKE, as discussed by Holton (1972). The wave in the FE is at a more advanced state of development than the wave in the SP. Physically, the wave in the FE has presumably begun to slow down its rate of growth and soon, it is expected the wave will undergo the process of occlusion and begin to decay.

Fig. 5.23b shows that, in fact, the APE of the two solutions is not the same during the initial twelve hours as suggested when Fig. 5.22a was discussed. The resolution of that figure was not high enough to see that the FE continuously loses APE relative to the SP. It is important to note, however, that in this case, the APE is much smaller than the KE. Thus, for this case, a 10% error in the APE has the same effect on the TE as approximately a 1% error in the KE, i.e. the error in the APE is a less important measure of the performance of the FE than is the KE.

The loss of APE in the FE relative to the SP is seen, in Fig. 5.23b, to be due to a loss of both ZAPE and EAPE. During development, there is a conversion of ZAPE to EAPE. The FE loses ZAPE slightly

between the two solutions remains relatively small. However, after twelve hours, the FE begins to lose EAPE rapidly with respect to the SP. It seems that energy in the FE, during the last thirty-six hours of development, is being rapidly transferred from ZAPE through the EAPE and EKE forms to ZKE, i.e. the FE has an accelerated transfer of energy during the baroclinic development. The result is a loss of ZAPE, EAPE and EKE in the FE relative to the SP with only the ZKE of the FE larger than that of the SP. The error in the ZKE begins to grow most rapidly a few hours after the error in the EAPE begins its rapid growth. This suggests that there is a causal relationship between the two errors. The relationship is somewhat clouded by the possibility of either net energy importation to or exportation from the verification area.

Fig. 5.24a shows that the S1 score for the thickness field has grown more rapidly than for the height field. The growth of the S1 score for both fields is approximately twice as fast as for Case I. The faster growth of the S1 scores in Case II may be due either to the faster growth or to the greater motion in Case II. In both cases, the field which underwent the greatest change had the larger S1 score. The final S1 score for the height field is near 18. In the preceding discussion of the various energy quantities, it was found that errors began to grow rapidly after twenty-four hours. After thirty hours, large differences between the two solutions were common in the energies. This suggests that an S1 score of less than ten or twelve indicates a "good" forecast. This is a subjective criterion and further discussion will be

presented with the final cases.

Fig. 5.24b gives the MD and MAD curves for the two models for this case. Most notable is the large growth of the MAD between the mean height fields. This is indicative of the greater development presen in the FE. The MD between the mean height fields grows to approximately 7 meters. This indicates that the areas of low height have developed faster than the highs have built, in agreement with what was observed earlier. In contrast, the MD between the thickness fields stays relatively small and negative. The MAD between the thickness fields rises to almost 7 m. These results indicate that although there are large errors in the thickness field of the FE, there is very little bias towards either raising or lowering the mean of the field in the verification area.

In Fig. 5.25a, the KE, APE and TE of both solutions over the entire domain are presented. The TE of the SP changes by approximately 7% during the forecast period. The TE of the SP should be conserved and this error is due to the method used for calculating the TE here. For this figure, the values of the SP at the grid points were found and a numerical integration was performed, as described in Section 4.3. Thus, this error is due to the discretization of the SP and the truncation errors in the numerical integration. In fact, as discussed in Section.

3.3, it was confirmed that the SP conserved TE to better than 1 in 10⁴. During the forecast period, the TE of the FE changes by less than 3%. Considering that the SP was subject to a 7% error due to the discretization process, the FE has conserved TE quite well. The maximum

difference between the TE of the two solutions is only 3%. The KE of the two solutions is essentially identical but the FE does gain APE relative to the SP. This is probably due to the problems with the boundary value of the thi ness field. During the integration period, this has caused a gain of 3% in the TE for the entire domain.

Fig. 5.25b gives the PE of the two solutions for the entire domain. Once again, there is a small error in the PE of the SP due to the numerical integration process. More important, however, is the striking gain in the PE of the FE after twenty-four hours. This large amount of PE is found in the spurious short wavelength waves generated near the boundaries. These waves were found to have vorticities which were an order of magnitude larger than vorticities elsewhere in the domain. It is apparent that the smoother which was used was not adequate to control the development and growth of these waves. It is probably pure coincidence that the error in the PE of the FE begin to grow most rapidly at approximately the same time the forecast in the verification area was found to degrade rapidly. The PE of the FE was found to be smaller than that of the SP right to the end of the integration. This indicates there was little or no contamination of the forecast in the verification area by the short wavelength waves. However, the exponential growth of the PE indicates the potential for future problems if the integration had proceeded further in time.

5.4 Case III - Strong Development

Case III is a situation favorable for strong development.

Pigs. 5.26 - 5.28 give the initial height, thickness and omega fields,

respectively. The height and thickness fields are characterized by large gradients and the troughs in the thickness field lag those of the height field by 90°. The thermal advection, which is essential for baroclinic development, is considerably greater than in the previous cases. This will promote strong development. The initial omega field has relatively large values for synoptic-scale vertical motion, indicating the vigour of the situation under consideration.

It was intended to integrate this case for forty-eight hours but computational instability occurred in the FE and the integration had to be terminated after thirty-two hours. Fig. 5.29 shows the mean height field of the SP after twenty-four hours. The wave has developed and progressed eastward approximately 30°. Fig. 5.30 shows the thickness field for the SP after twenty-four hours. The wave has progressed approximately 50°. The meridional amplitude of the thickness field has increased which implies the conversion of ZAPE to EAPE during the forecast period. On Fig. 5.31, we see that the amplitude of the omega field has decreased by approximately one-fourth and that the wave has progressed approximately 40°.

Figs. 5.32 and 5.33 show the mean height and thickness fields of the FE after twenty-four hours. The differences in the mean height fields of the two solutions are similar to those present in Case II.

The trough and ridge axes are tilted. There has been preferential development in the northern half of the domain and spurious short-wavelength waves are present near the boundaries again. The thickness

fields differ in many of the ways found in Case II. Once again, the high and low centres of the FE have migrated towards the boundaries.

Figs. 5.34 and 5.35 show the wean height and thickness fields of the FE after thirty hours. It is apparent that some of the short-wavelength waves, which were present along the boundaries, have grown explosively and overwhelmed the wave of interest, thereby ruining the forecast. This displays the effect of numerical computational instability. By thirty-three hours, the amplitude of these waves had grown so large that an overflow condition was obtained on the computer.

In Fig. 5.36a, we see that the FE has gained TE relative to the SP, as in Case II. As with Case II, the error is quite small after twenty-four hours of integration. The FE has, once again, gained KE relative to the SP but lost APE. After twenty-four hours, the FE in both Case II and Case III has nearly maintained the TE in the verification area through equal but opposite errors in the EKE and APE. However, the fields in Case III have undergone greater development and faster motion than those in Case II. Thus, it seems the growth of errors is not very dependent on either the rate of development or speed of the fi- ds.

In Fig. 5.36b the PE of the two solutions is presented. The error in the PE of the FE is approximately 5%, which is nearly identical to the error in the PE in Case II after twenty-four hours.

In Fig. 5.37, it will be seen that the zonal and eddy forms of the KE and APE of the FE behave in a similar manner to those in Case II. However, the errors are larger than in Case II. For example, the error in the ZKE of the FE after twenty-four hours is only 7% in Case II but is over 30% in Case III. Thus, although the error in the TE of the two cases had similar errors, the individual elements making up the TE are subject to greater errors in this case. In Case II, it was suggested that the FE underwent an accelerated development relative to the SP. The results of this section indicate that this has occurred in this case also, and, that the rate of accelerated development depends, at least somewhat, on the rate of development.

Fig. 5.38 shows the S1 scores and the MD and MAD curves for this case. Using the subjective criteria suggested in Section 5.3, the S1 scores suggest the forecast was "good" for approximately sixteen hours. The MD and MAD curves exhibit similar events to those of Case II. The errors have grown faster in this case.

5.5 Case IV - Moderate Decay

In Case IV, the troughs in the thickness field lead the troughs in the mean height field by 90°, as the initial conditions given in Figs. 5.39 - 5.41 show. The initial amplitudes of the waves are the same as in Case II. With such a phase relationship between mean height and thickness, the wave in the mean height field decays and there is a conversion of KE to APE. This is the opposite of what happened in the previous cases.

Figs. 5.42 - 5.44 give the mean height, thickness and omega fields, respectively, for the SP after forty-eight hours of integration. The wave in the mean height field has decayed in amplitude and has retrogressed approximately 12°. The wave in the thickness field has also decayed in amplitude and has progressed 70°. At this time, the waves are almost 180° out of phase. They appear to be in the process of adjusting themselves so that their phase becomes favourable for development. The omega field appears to have changed very little in either amplitude or position during the forecast period.

Figs. 5.45 - 5.47 give the three fields for the FE after forty-eight hours. The mean height field of the FE and the SP are very similar over the high-resolution portion of the grid. In fact, near the centre line of the domain, the FE is barely distinguishable from the SP until the grid spacing in the x-direction approaches 800 km. However, short-wavelength waves are present near the boundaries and those near the north boundary have not decayed as rapidly as those near the south boundary. Comparing this with the results of previous cases, it indicates there is a predilection for development/decay near the north/ south boundary. This is probably due to problems with either the calculation of various quantities (e.g. vorticities) near the boundary or due to the implementation of the boundary condition. It seems probable that this bias is related to the sign of the height field at the boundary, i.e. the positive/negative boundary wants to become more positive/ negative. The thickness field exhibits a large amount of curvature in the trough and ridge axes in this case. The precise cause of this is

unknown. However, the major cause of change in the thickness field in this case was motion as opposed to decay. Thus, it seems reasonable to expect the source of the problem to be connected to the motion of the field.

The omega field of the FE has a larger amplitude than does that of the SP. This is partially due to the causes discussed in Section 5.1. A secondary cause is the increased thermal advection in the FE over the SP due to the errors in the height and thickness fields

of the FE.

In Fig. 5.48a, it can be observed that the FE has gained TE relative to the SP during the forecast period in the verification area. This also occurred in Case II and is likely indicative of the bias with respect to development at the boundaries. The slo decrease in the TE of the SP simply indicates there is a net export of energy from the verification area, whereas a net import was found for the developing cases. The APE of the solutions is very nearly the same during the period but the FE has gained KE relative to the SP. This was the cause of the gain in the TE of the FE in the developing cases also. The APE changes very little during the period suggesting there is very little decay in the verification area, or that an importation of APE to the verification area has taken place.

Fig. 5.48b shows that the FE loses PE relative to the SP during the first thirty-six hours of integration but gains it back during

200 L

the last twelve hours. The maximum difference between the PE of the two solutions is less than 4%.

Fig. 5.49a shows that the gain of KE by the FE is due to a gain of ZKE. The EKE of the two solutions is very similar throughout the forecast period. The error in the ZKE of the FE occurs early in the forecast period and grows slowly during the period to a maximum of . 14%.

According to Fig. 5.49b, the FE loses a small amount of APE relative to the SP during the forecast period. The error is very small during the first thirty hours of integration as there are roughly equal and opposite errors in the ZAPE and EAPE. However, the errors in the ZAPE and EAPE stay relatively small throughout the forecast period.

this case. The SI score rises rapidly for the thick as field. This is further confirm to of the errors which evolved in the field rises at a much slower rate. Near the end of the period, the SI score for the height field rises height field begins to rise more rapidly. It seems possible that this is a reflection of the poor thickness forecast as the two fields are connected through the model equations.

The MAD curves for the height and thickness fields are nearly parallel as they rise. They rise to a maximum of less than 5 m, which

is quite respectable compared with the previous cases. Once again, the MD curves suggest the height field of the FE is subject to some effect which causes the mean height field of the FE to become progressively lower than that of the SP. As discussed in Sections 5.2 and 5.3, it is felt that this is due to problems at the boundary. This effect occurs early in the period and seems to have less importance in the thickness field forecast.

Fig. 5.51a gives the TE, KE and APE of both solutions over the entire domain. It is apparent that the FE has conserved TE very well. However, the FE does not convert as much KE to APE as does the SP. This is due to the problem with development and decay near the boundaries which was discussed earlier. Fig. 5.51b shows the PE for the two solutions over the entire domain. Once again, the PE of the FE rises rapidly during the forecast period, as a result of the short-wavelength waves generated near the boundaries.

CHAPTER 6

CONCLUSIONS

The finite-element method and the spectral method have been used to numerically integrate the equations describing a two-level quasi-geostrophic model of atmospheric flow on a β -plane. The solutions using the two numerical methods for a group of cases have been compared. The spectral solution, being believed to be highly accurate, was used to evaluate the performance of the finite-element solution.

It was found that the largest errors in the finite-element solution arose near the boundaries of the grid. In the interior of the grid, the finite-element solution compared very well with the spectral solution. Over that portion of the grid with high-resolution, only minor phase or amplitude differences were found between the two solutions. As the time of integration increased, the errors in the finite-element solution generated along the boundaries slowly infiltrated the interior of the grid.

Two major sources of the boundary errors were found. It was suggested that the major error source was the evaluation of derivatives perpendicular to the boundaries. In particular, higher-order derivatives were found to be subject to the greatest errors. Thus, vorticities were not well calculated by the finite-element method along the boundary. In an attempt to minimize this problem, a portion of the grid near the boundaries was chosen to have high accuracy in the direction perpendicu-

Tar to the boundaries. Further steps could possibly be taken to minimize this source of error. For example, the vorticity on the edge could be "tied" to the first interior grid point, i.e. the vorticity on the edge could be set equal to the vorticity at the first interior grid point. The success or failure of this technique would depend on the system of equations which would result from this approximation. It was not attempted as it would have required a major rewriting of computer routines and there was no strong evidence that it would dramatically improve the results. It is, however, a technique deserving of future consideration.

The second source of error at the boundary was that due to the implementation of the boundary condition, Eqn. (2.33). This required an integration along the boundary and was subject to the truncation error in the numerical integration. The magnitude of this truncation error was determined by that portion of the boundary with the largest grid spacing in the x-direction. The effect of this error on the solution could be most effectively minimized by ensuring that the boundaries are well away from the area of interest and by, if possible, using a high-order numerical integration scheme. In this work, the first technique could not be used. The second technique was not fully studied as it seemed the poor evaluation of perpendicular derivatives at the boundary was of much greater importance.

The techniques for avoiding or preventing the numerical instability found in Case III are reasonably well known. The small grid

lengths in the y-direction combined with the relatively long time-step have led to this instability. Increasing the grid length and/or decreasing the time-step would prevent this. A different time integration scheme could also be used. In the problem under consideration, the elimination of the small grid spacings near the boundary would be most economical in terms of computer time. This could be implemented when, as discussed earlier, an improved method of evaluating the derivatives perpendicular to the boundaries was found.

The two methods of solution were used for only a limited number of cases. There are other atmospheric flows which would be interesting to study. For example, it would be interesting to compare the two solutions when a barotropic atmosphere (i.e. one in which the thickness field was zero everywhere) was considered. In this case, the height field would simply translate, i.e. there could be no development. By studying cases with varying speeds of translation, one could study how well the finite-element solution deals with translation and seek to determine a relation between the growth of errors and the speed of translation. A companion set of cases to these would be those in which the height field is stationary (or nearly so) but developing. Then, one could seek a relation between the growth of errors and the rate of development. These two sets of cases would help to answer some of the questions raised in Chapter 5 where the effects of translation and development could not be separated.

 $^{^{}m l.}$ Note that the perturbation thickness field is implied here.

Although some difficulties have been experienced in implementing the FEM, it has demonstrated that it is a technique worthy of study when one is considering atmospheric flow problems. In the future, the author hopes to use the FEM for the solution of a more complicated atmospheric model. This model is presently being used for operational weather forecasting at the Alberta Weather Centre using finite-difference techniques.

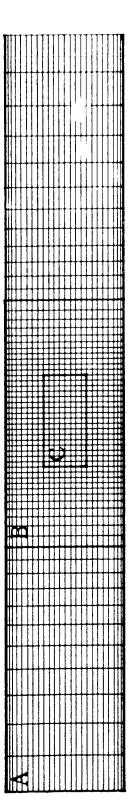
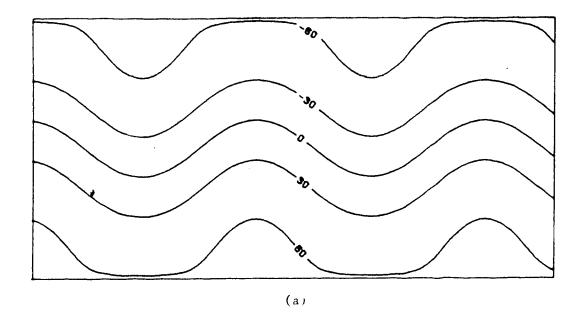

Level		Pressure (mb)
0		0
1	Ψ,	250
2		500
3	Ψ ₃	750
4	ω	1000

Fig. 2.1 Vertical discretization of the model showing the five levels used, with pressure as the vertical coordinate. ψ_i is the stream function at level i and $\tilde{\omega}_i$ is the vertical velocity at level i.


x

in the horizontal plane ϕ_i is the at the plane is tangent to the x-c rection is east; the y-direction

. . .

A 62 x 27 variable grid-length mesh having a 27 x 19 sub-domain of uniform high resolution. Areas A and $\rm B$ are the portions of the domain used for displaying the fields in Chapter 5 while area C is the verification area. Fig. 4.1

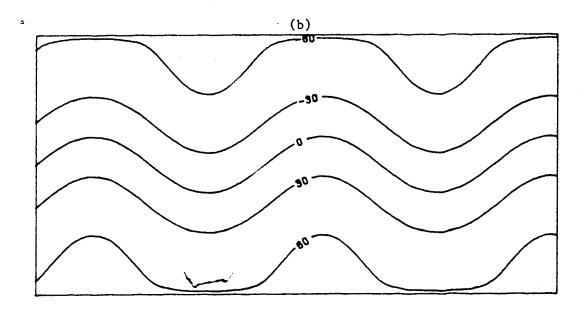
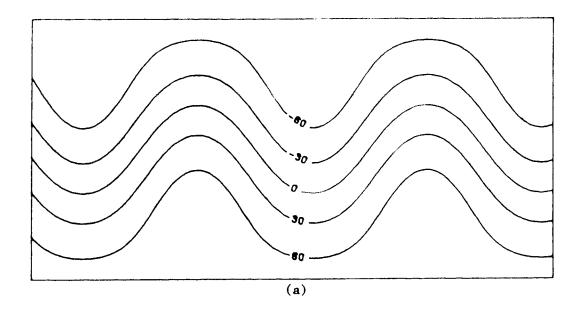



Fig. 5.1 Initial mean height field in metres for Case I in (a) area B and (b) area A.

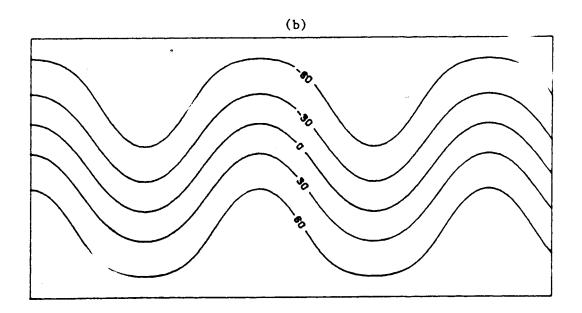
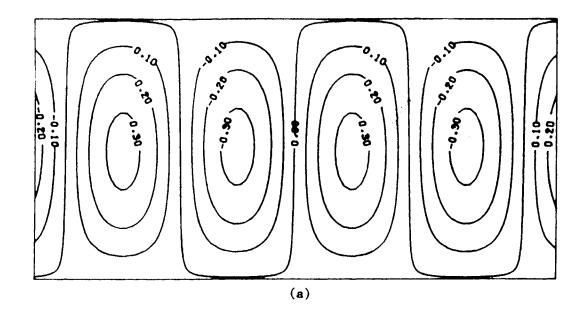



Fig. 5.2 Initial thickness field in metres for Case I in (a) area B and (b) area A.

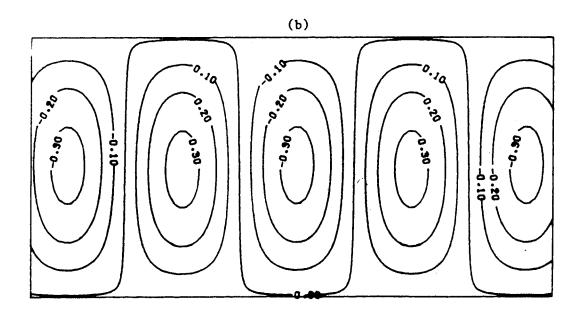
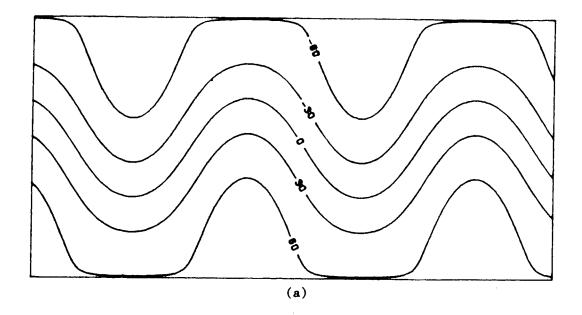



Fig. 5.3 Initial omega field in µbar/sec for Case I in (a) area B and (b) area A.

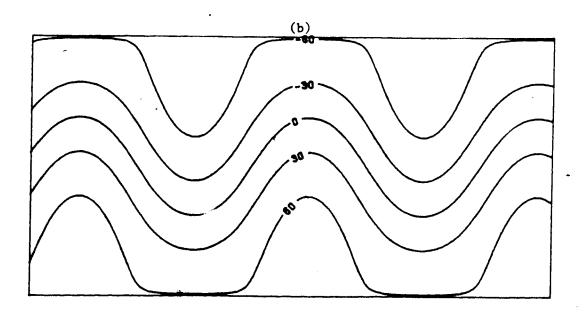
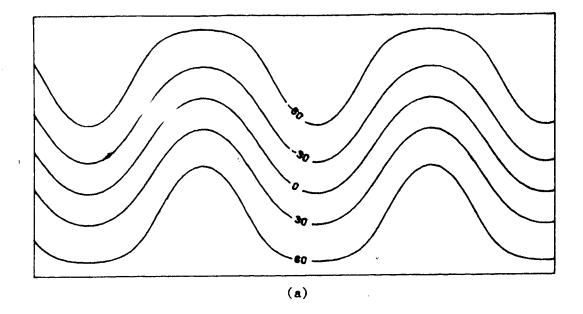



Fig. 5.4 The 24-hour spectral solution for the mean height field in metres for Case I in (a) area B and (b) area A.

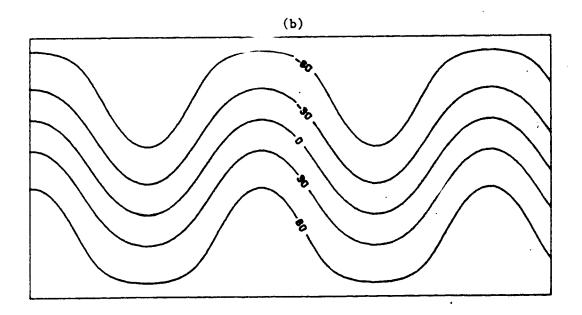
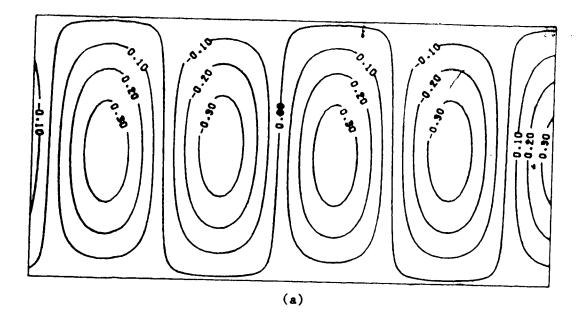



Fig. 5.5 The 24-hour spectral solution for the thickness field in metres for Case I in (a) area B and (b) area A.

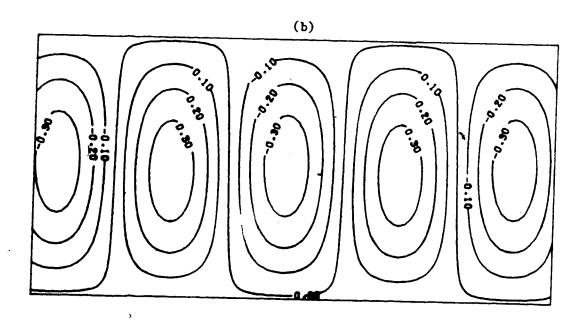
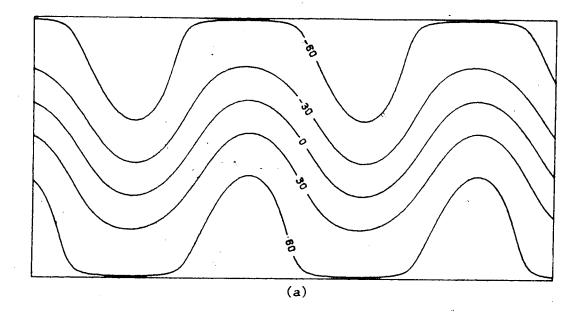



Fig. 5.6 The 24-hour spectral solution for the omega field in ubar/sec for Case I in (a) area B and (b) area A.

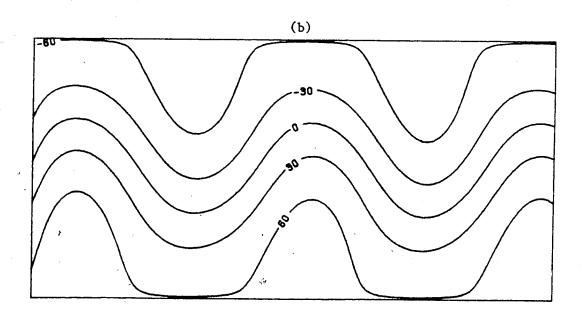
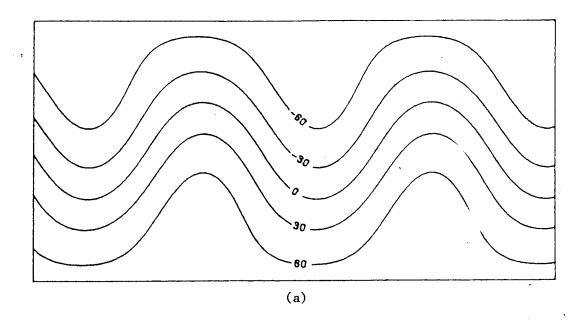



Fig. 5.7 The 24-hour finite-element solution for the mean height field in metres for Case I in (a) area B and (b) area A.

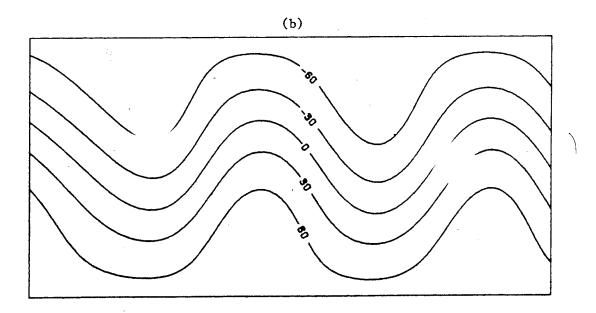
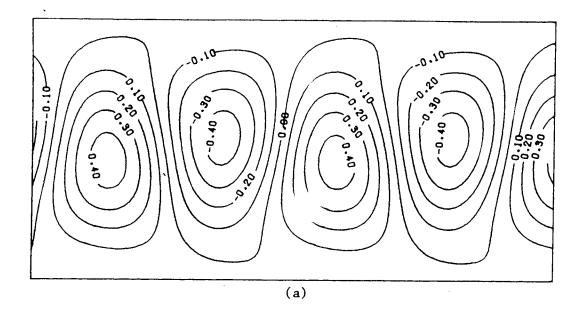



Fig. 5.8 The 24-hour finite-element solution for the thickness field in metres for Case I in (a) area B and (b) area A.

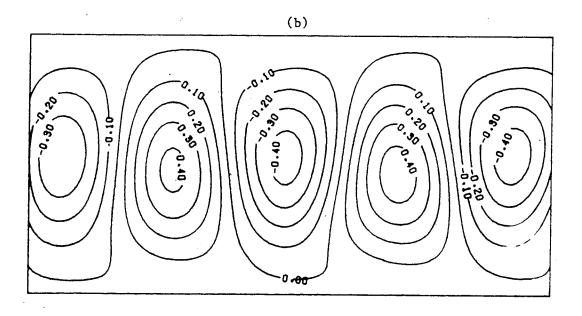
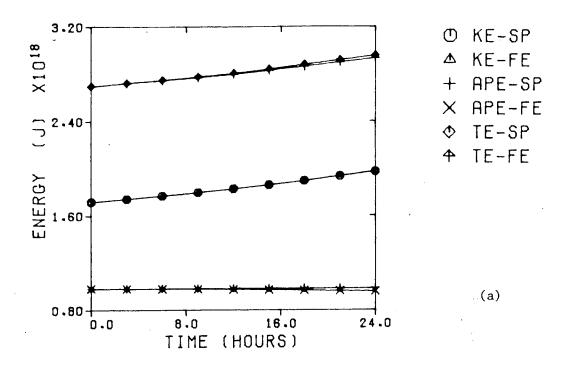



Fig. 5.9 The 24-hour finite-element solution for the omega field in μ bar/sec for Case I in (a) area B and (b) area A.

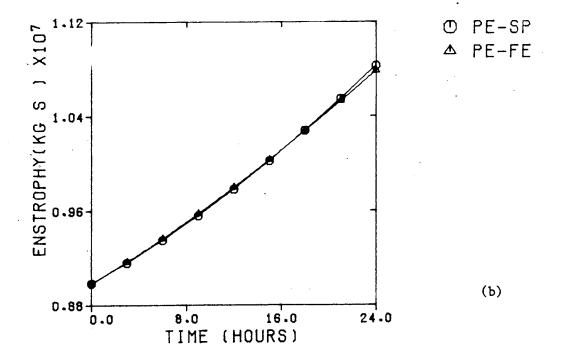


Fig. 5.10 The (a) energies and (b) potential enstrophy of Case I for the two solutions in the verification area.

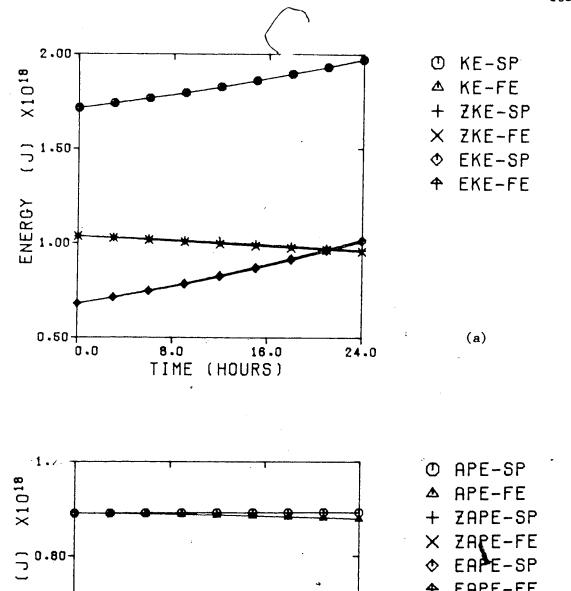


Fig. 5.11 The (a) kinetic energies and (b) potential energies of Case I for the two solutions in the verification area.

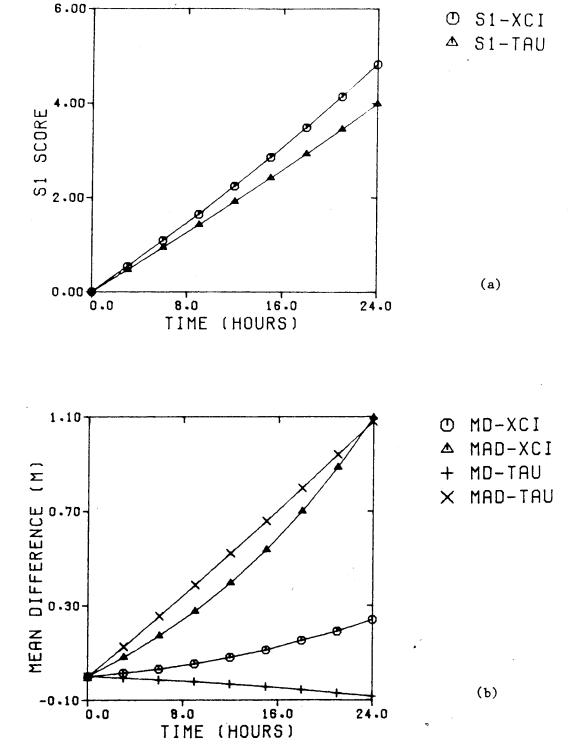
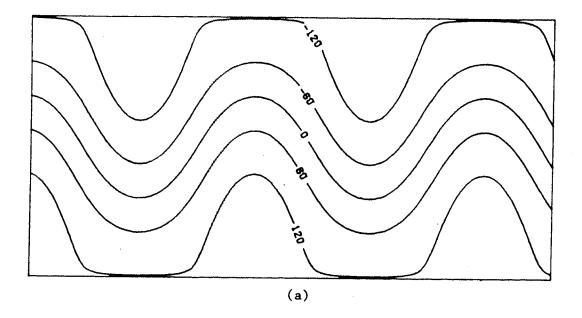



Fig. 5.12 The (a) SI scores and (b) the MD and MAD curves for Case I for the two solutions in the verification area.

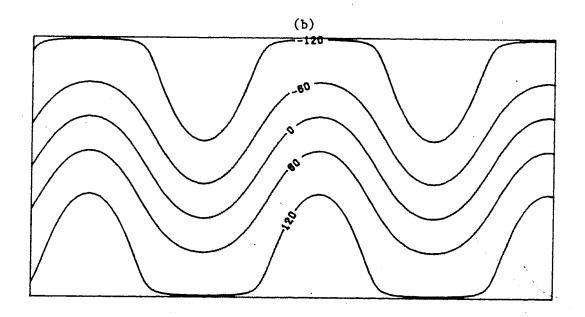
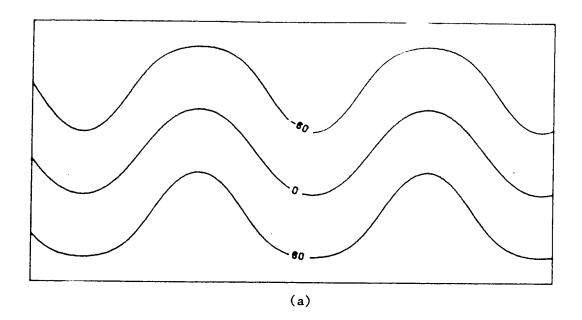



Fig. 5.13 Initial mean height field in metres for Case II in (a) area B and (b) area A.

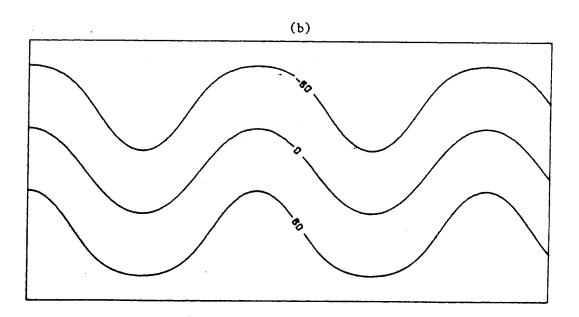
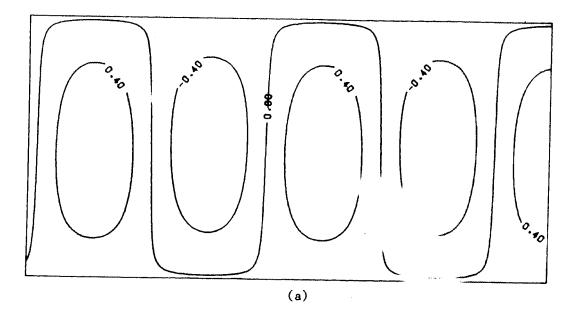



Fig. 5.14 Initial thickness field in metres for Case II in (a) area B and (b) area A.

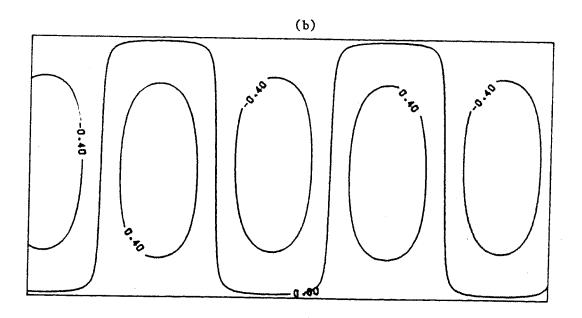
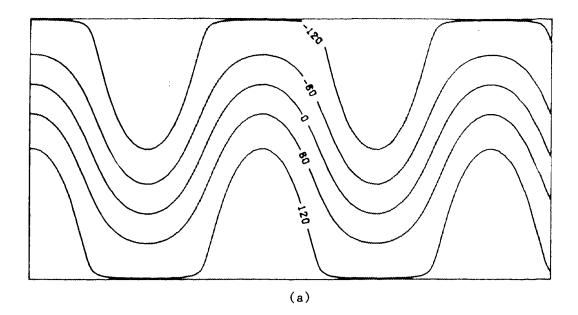



Fig. 5.15 Initial omega field in μ bar/sec for Case II in (a) area B and (b) area A.

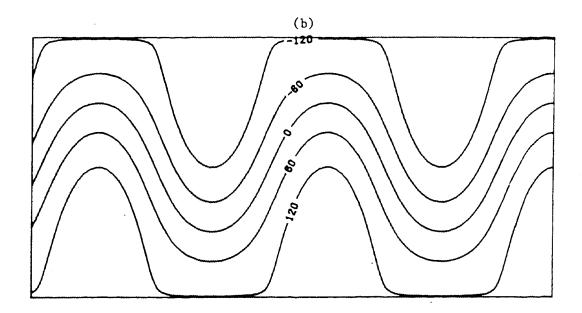
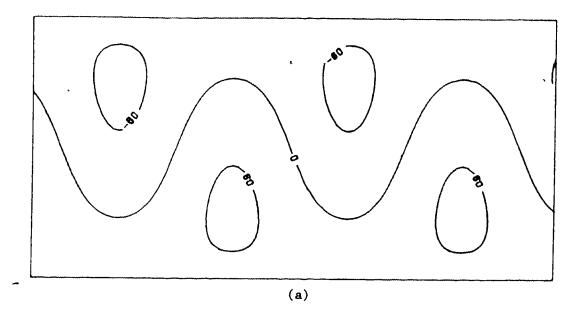



Fig. 5.16 The 48-hour spectral solution for the mean height field in metres for Case II in (a) area B and (b) area A.

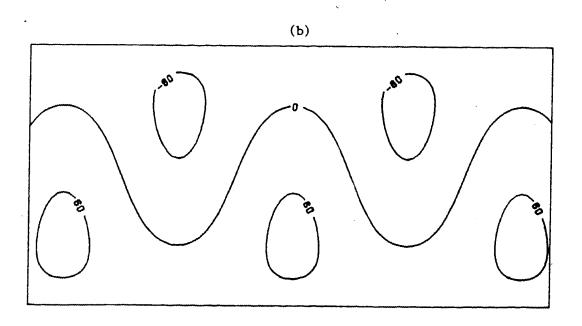
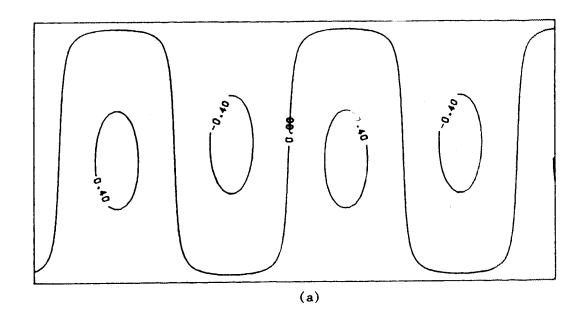



Fig. 5.17 The 48-hour spectral solution for the thickness fiel in metres for Case II in (a) area B and (b) area A.

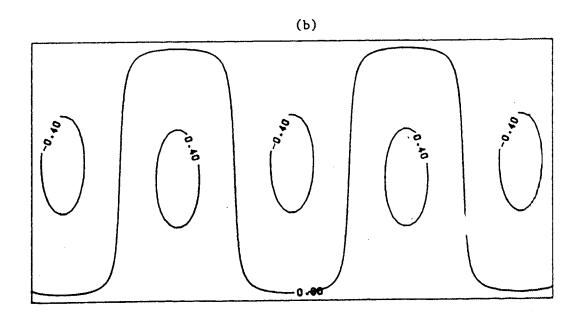
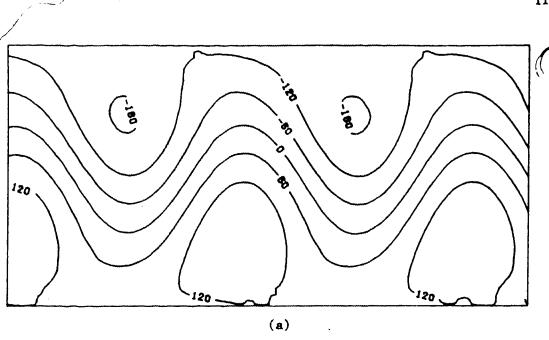



Fig. 5.18 The 48-hour spectral solution for the omega field in ubar/sec for Case II in (a) area B and (b) area A.

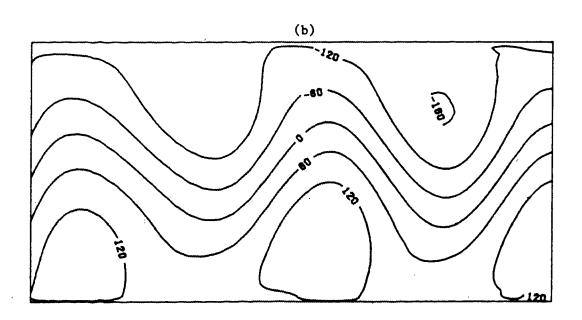
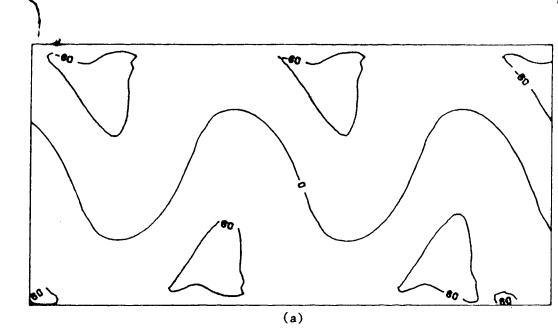



Fig. 5.19 The 48-hour finite-element solution for the mean height field in metres for Case II in (a) area B and (b) area A.

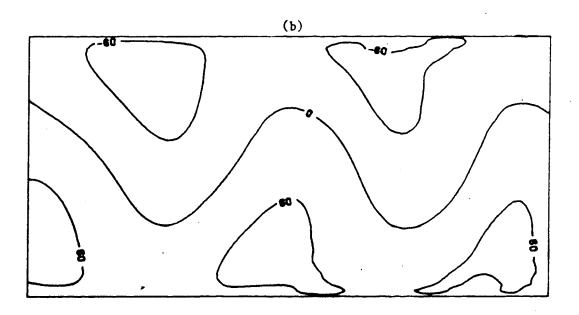
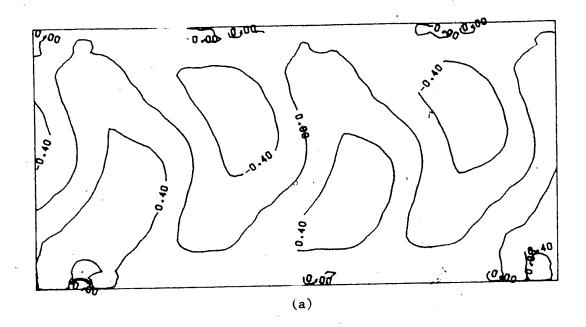



Fig. 5.20 The 48-hour finité-element solution for the thickness field in metres for Case II in (a) area B and (b) area A.

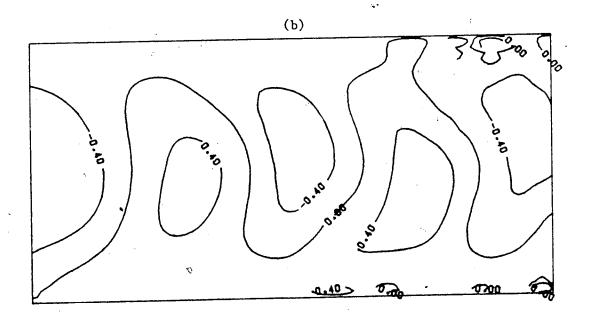


Fig. 5.21 The 48-hour finite-element solution for the omega field in ubar/sec for Case II in (a) area B and (b) area A.

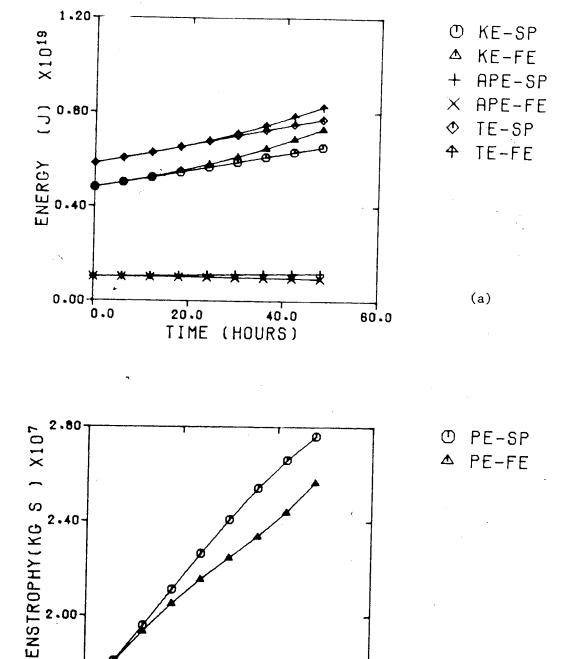


Fig. 5.22 The (a) energies and (b) potential enstrophy of Case II for the two solutions in the verification area.

40.0

60.0

20.0 40.0 TIME (HOURS)

1.60

0.0

(b)

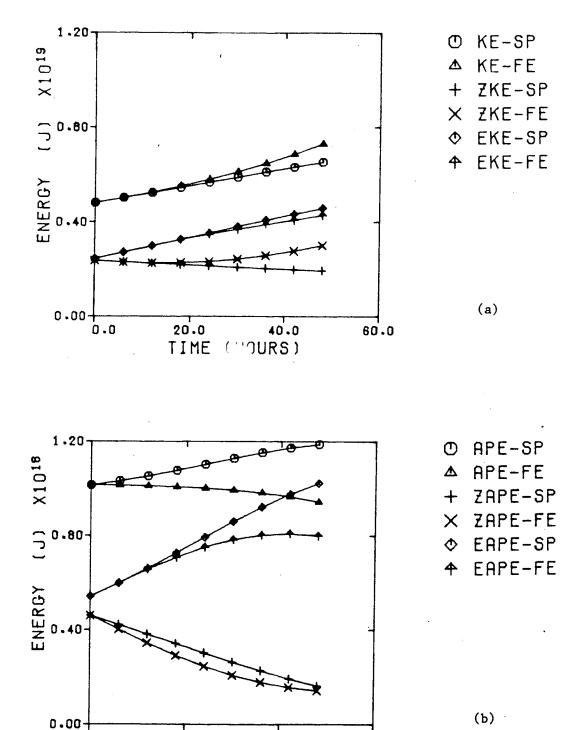
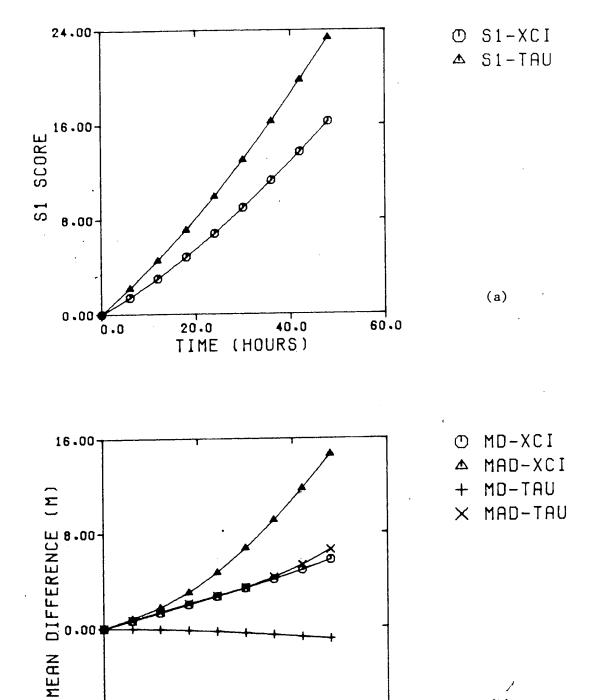


Fig. 5.23 The (a) kinetic energies and (b) potential energies of Case II for the two solutions in the verification area.

40.0


80.0

0.0

20.0

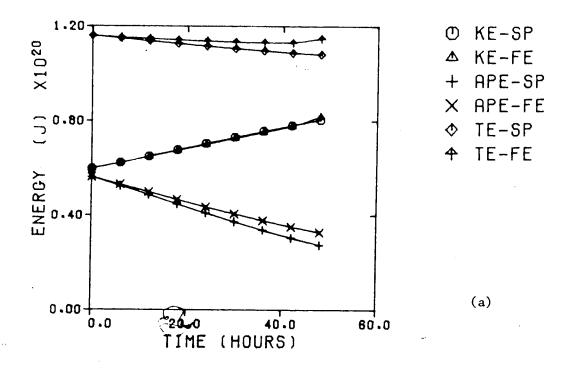
TIME (HOURS)

(b)

Ö

Fig. 5.24 The (a) S1 scores and (b) MD and MAD curves of Case II for the two solutions in the verification area.

40.0


60.0

20.0

TIME (HOURS)

-8.00-

0.0

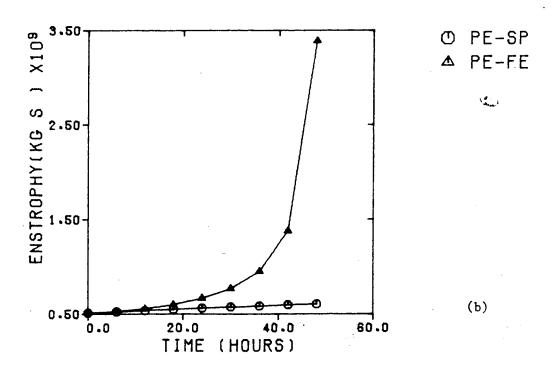
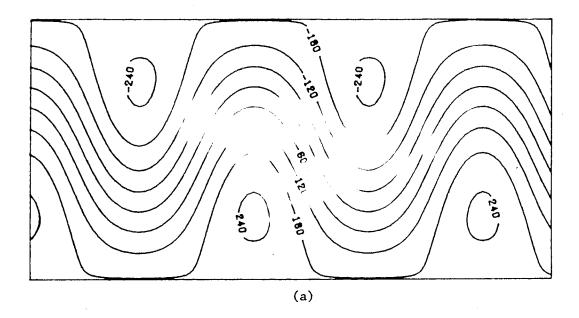



Fig. 5.25 The (a) energies and (b) potential enstrophy of Case II for the two solutions in the entire domain.

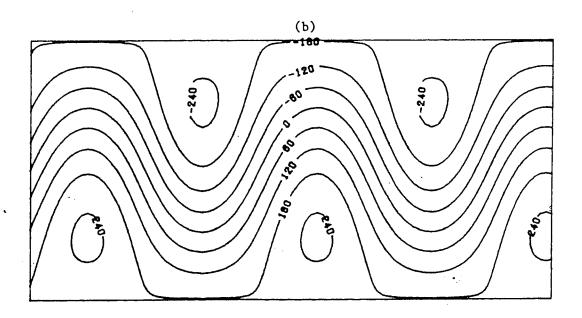
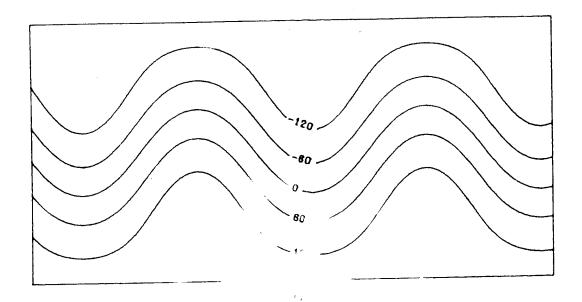



Fig. 5.26 Initial mean height field in metres for Case III in (a) area B and (b) area A.

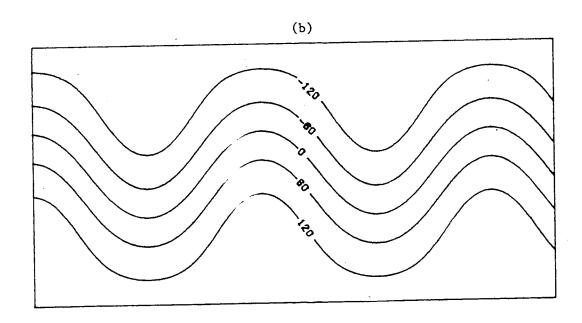
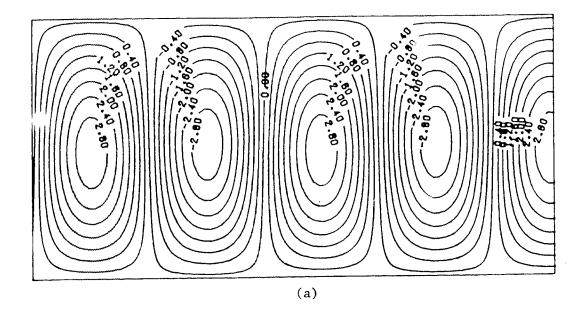



Fig. 5.27 Initial thickness field in metres for Case III in (a) area B and (b) area A.

•

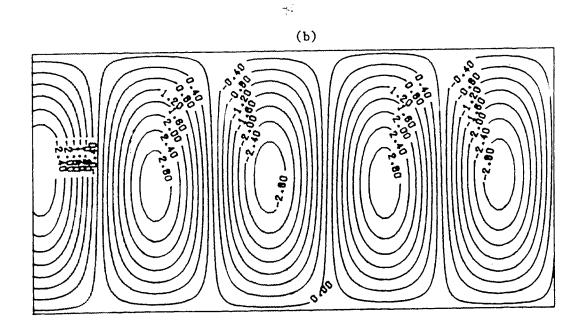
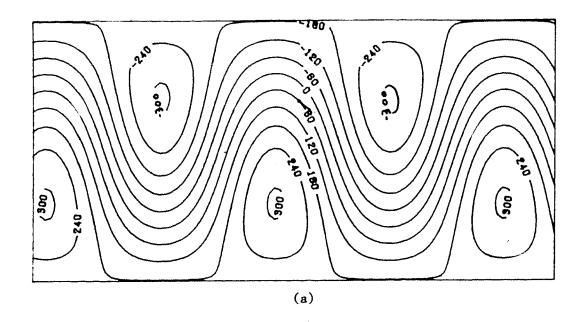



Fig. 5.28 Initial omega field in µbar/sec for Case III in (a) area B and (b) area A.

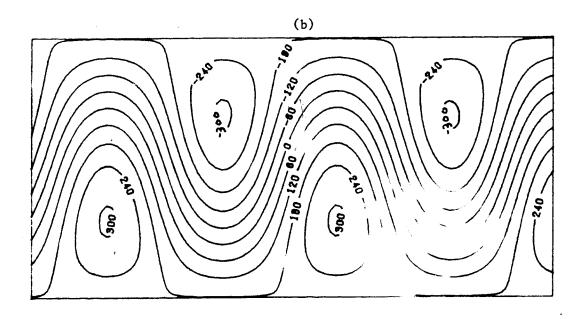
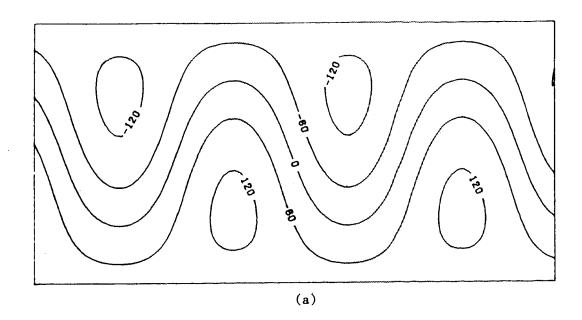



Fig. 5.29 The 24-hour spectral solution for the mean height field in metres for Case III in (a) area B and (b) area A.

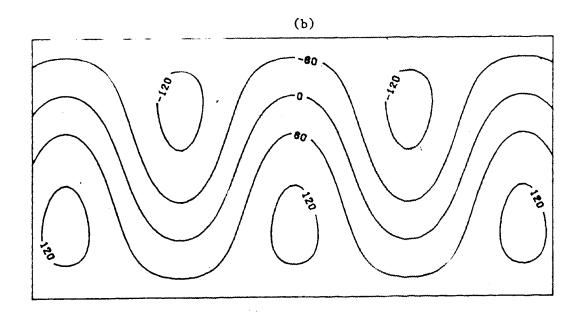
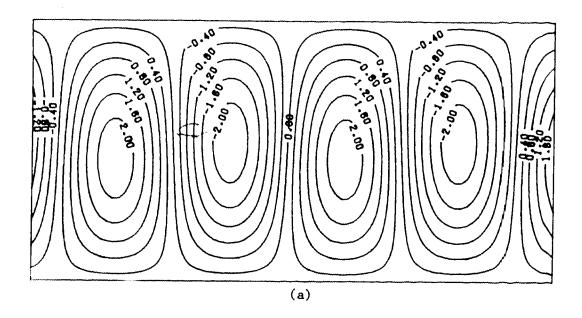



Fig. 5.30 The 24-hour spectral solution for the thickness field in metres for ase III in (a) area B and (b) area A.

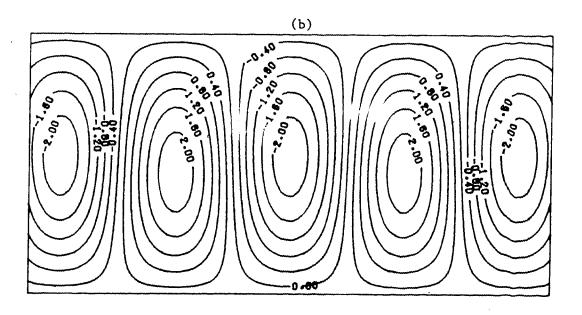
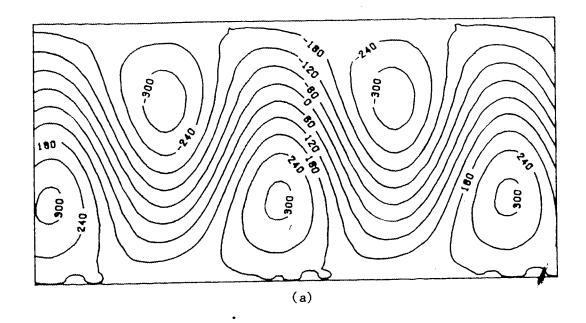



Fig. 5.31 The 24-hour spectral solution for the omega field in μ bar/sec for Case III in (a) area B and (b) area A.

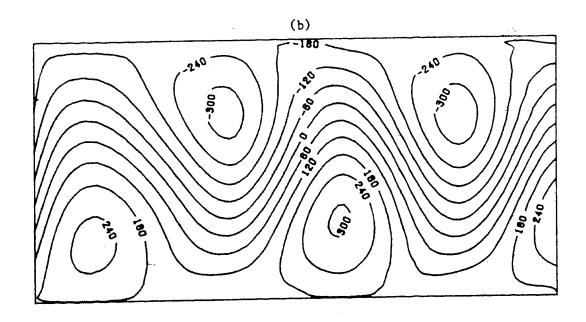
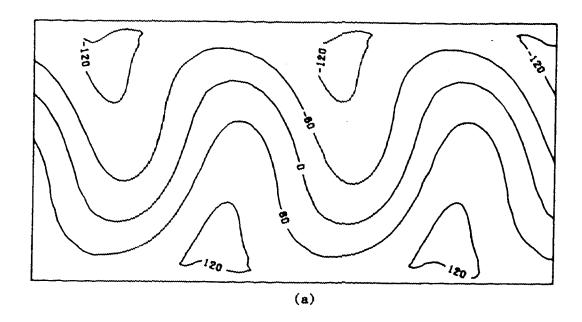



Fig. 5.32 The 24-hour finite-element solution for the mean height field in metres for Case II in (a) area B and (b) area A.

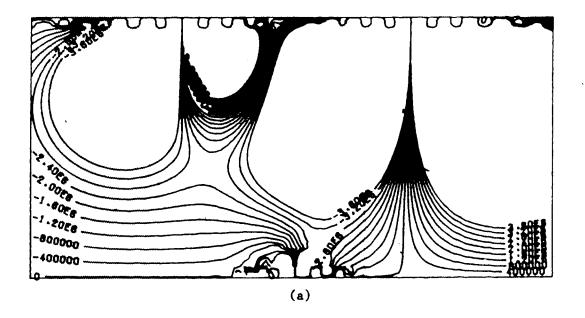



Fig. 5.33 The 24-hour finite-element solution for the thickness field in metres for Case III in (a) area B and (b) area A.

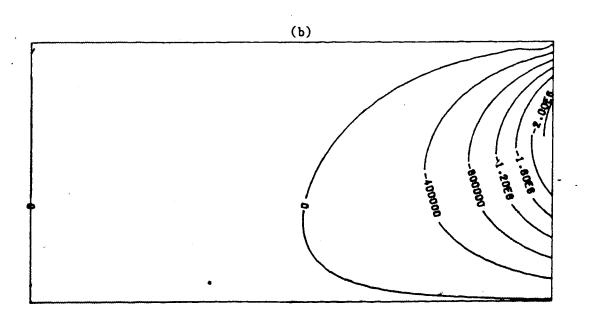
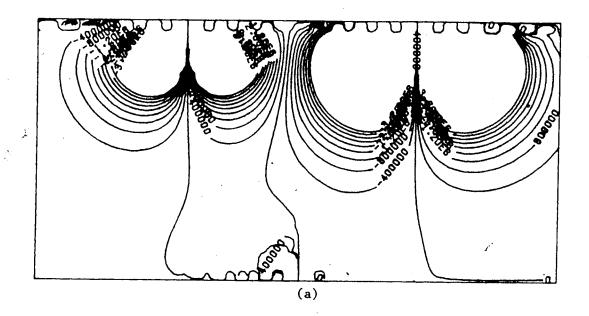



Fig. 5.34 The 30-hour finite-element solution for the mean height field in metres for Case III in (a) area B and (b) area A.

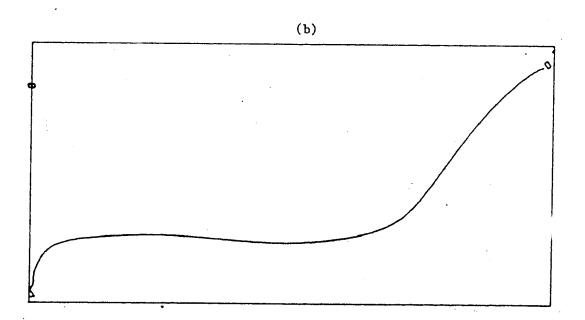
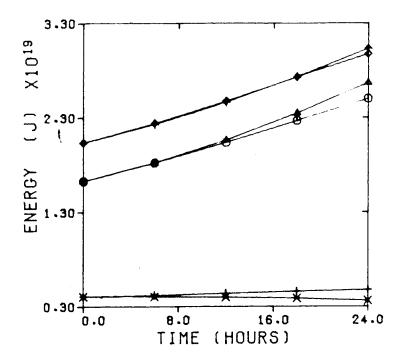



Fig. 5.35 The 30-hour finite-element solution for the thickness field in metres for Case III in (a) area B and (b) area A.

- O KE-SP
- Δ KE-FE
- + APE-SP
- X APE-FE
- ◆ TE-SP
- ↑ TE-FE

(a)

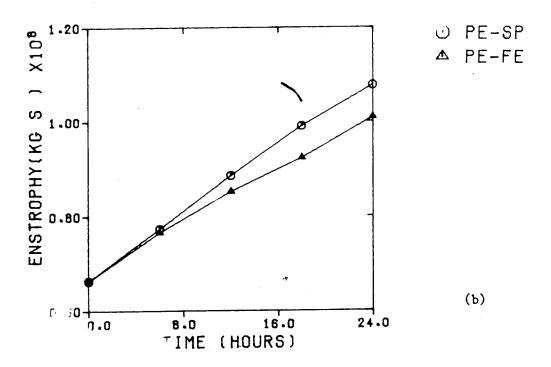


Fig. 5.36 The (a) energies and (b) potential enstrophy of Case III for the two solutions in the verification area.

ويحان

(b)

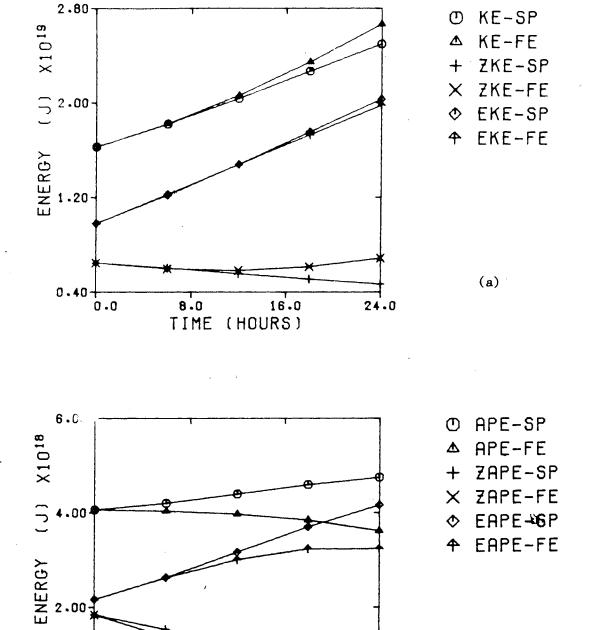


Fig. 5.37 The (a) kinetic energies and (b) potential energies of Case III for the two solutions in the verification area.

16.0

24.0

0.00+--

8.0

TIME (HOURS)

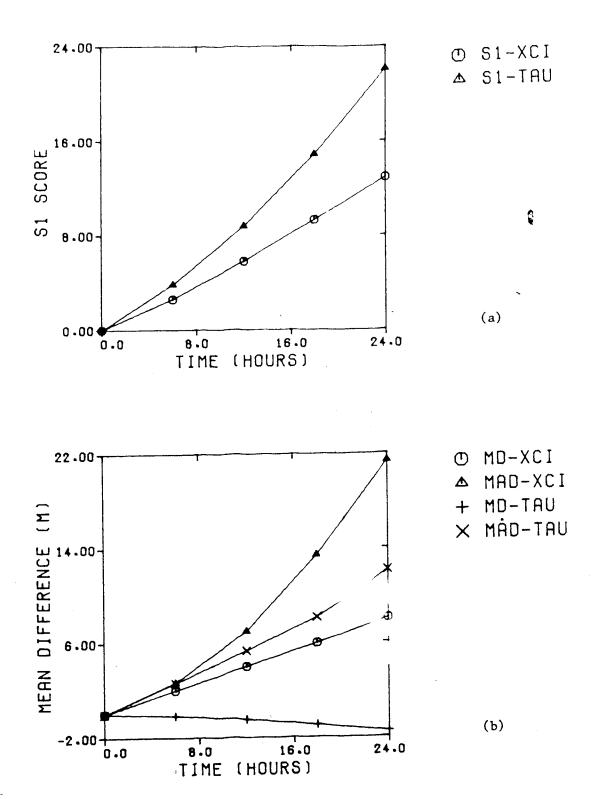
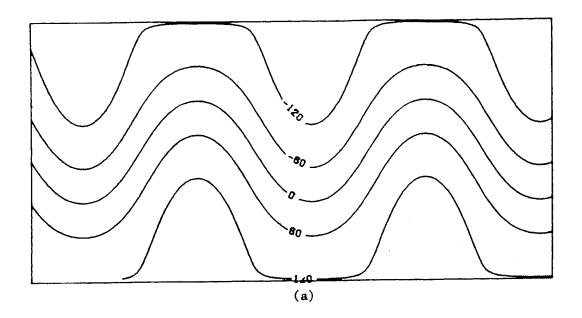



Fig. 5.38 The (a) Sl scores and (b) MD and MAD curves for Case III for the two solutions in the verification area.

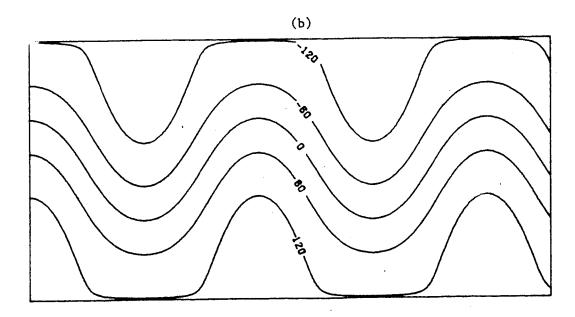
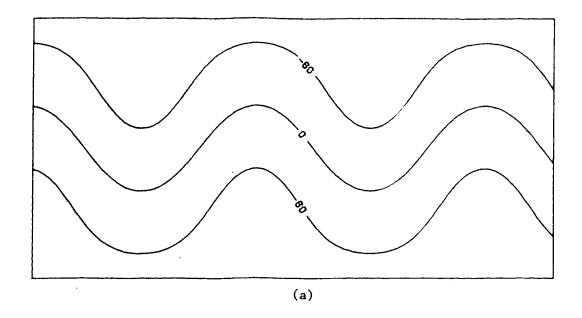



Fig. 5.39 Initial mean height field in metres for Case IV in (a) area B and (b) area A.

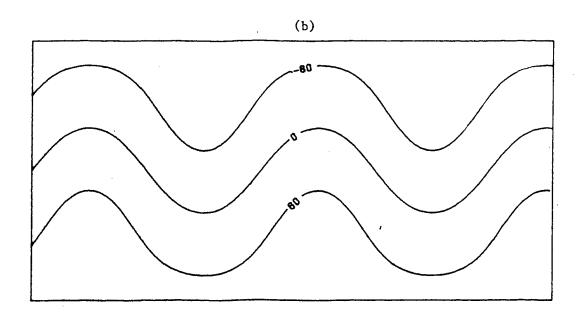
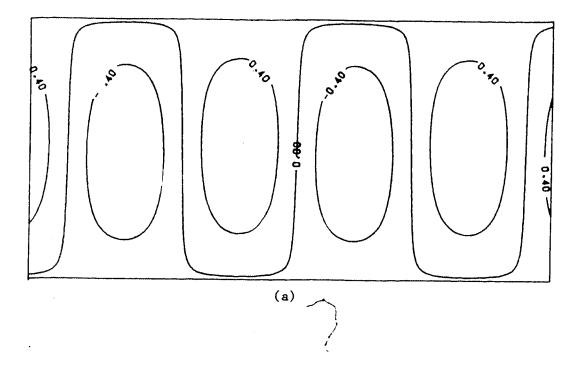



Fig. 5.40 Initial thickness field in metres for Case IV in (a) area B and (b) area A.

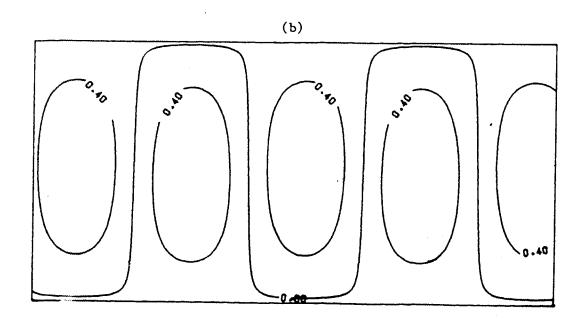
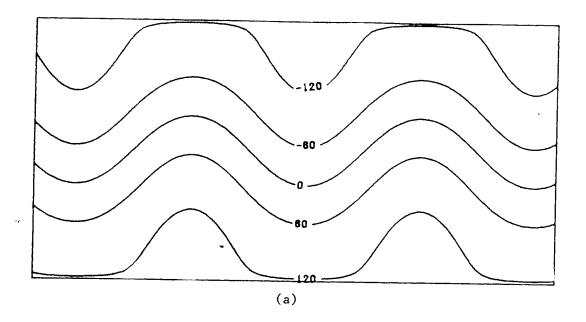



Fig. 5.41 Initial omega field in μ bar/sec for Case IV in (a) area B and (b) area A.

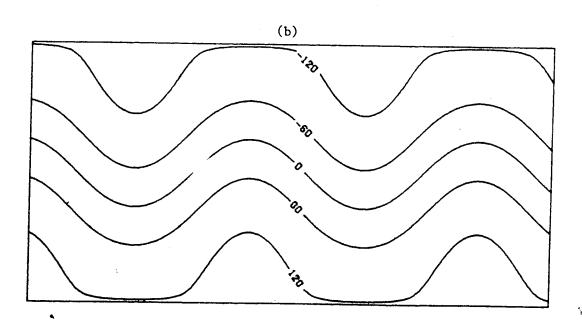
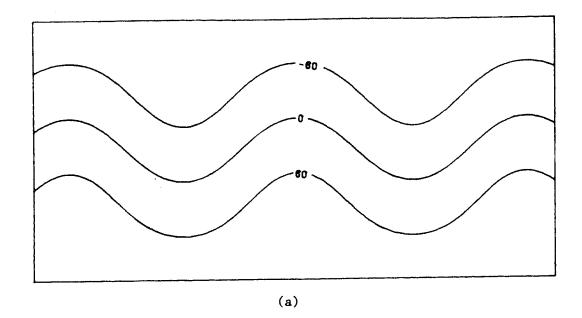



Fig. 5.42 The 48-hour spectral solution for the mean height field in metres for Case IV in (a) area B and (b) area A.

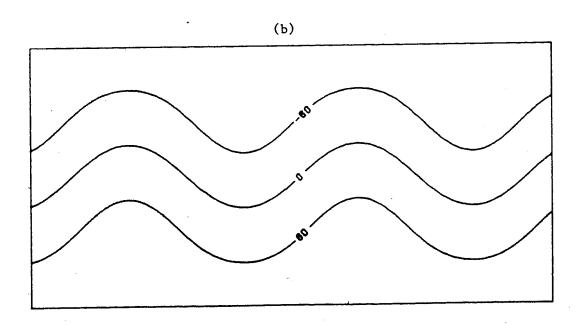
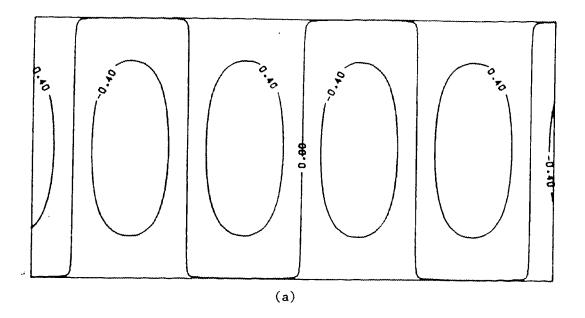



Fig. 5.43 The 48-hour spectral solution for the thickness field in metres for Case IV in (a) area B and (b) area A.

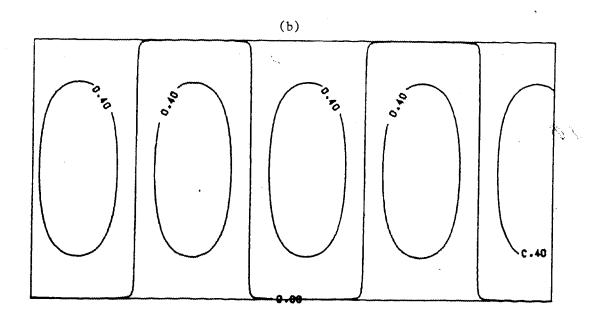
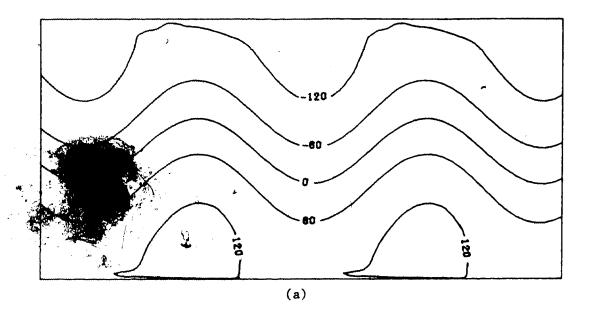



Fig. 5.44 The 48-hour spectral solution for the omega field in µbar/sec for Case IV in (a) area B and (b) area A.

•

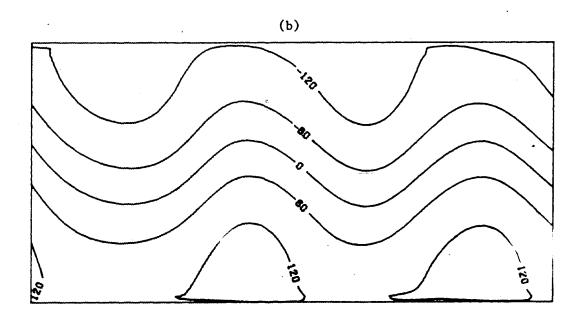
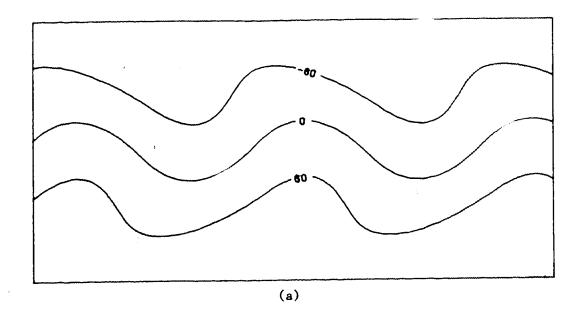



Fig. 5.45 The 48-hour finite-element solution for the mean beight field in metres for Case IV in (a) area B and (b) area A.

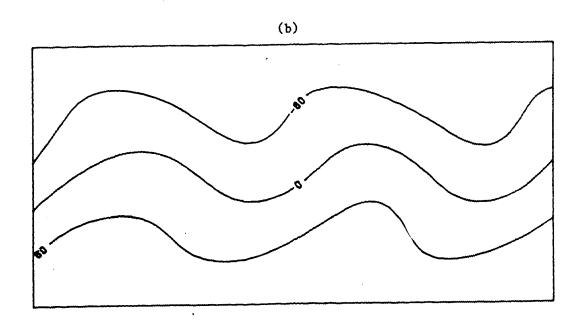
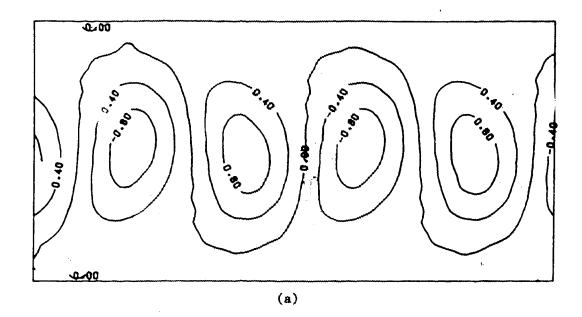



Fig. 5.46 The 48-hour finite-element solution for the thickness field in metres for Case IV in (a) area B and (b) area A.

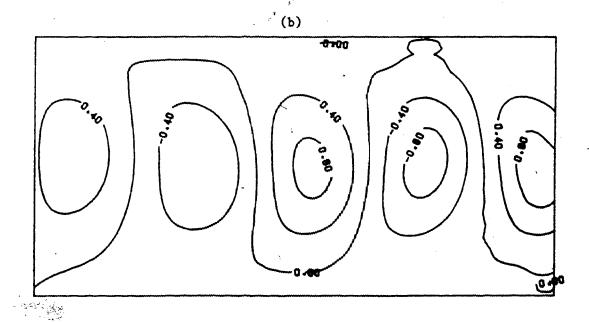
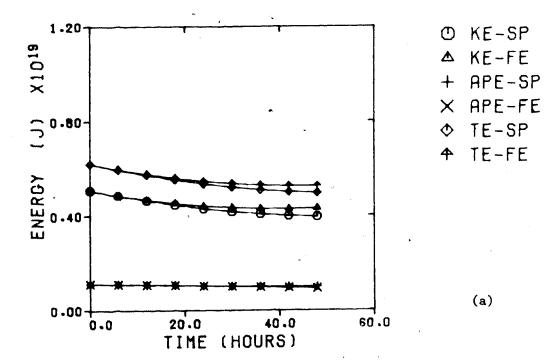



Fig. 5.47 The 48-hour finite-element solution for the omega field in µbar/sec for Case IV in (a) area B and (b) area A.

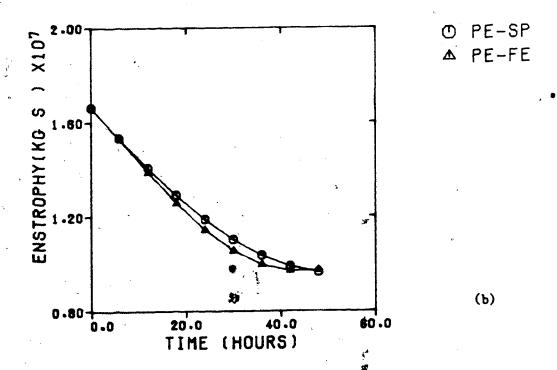


Fig. 5.48 The (a) energies and (b) porestal enstrophy of Case IV for the two solutions is the verification area.

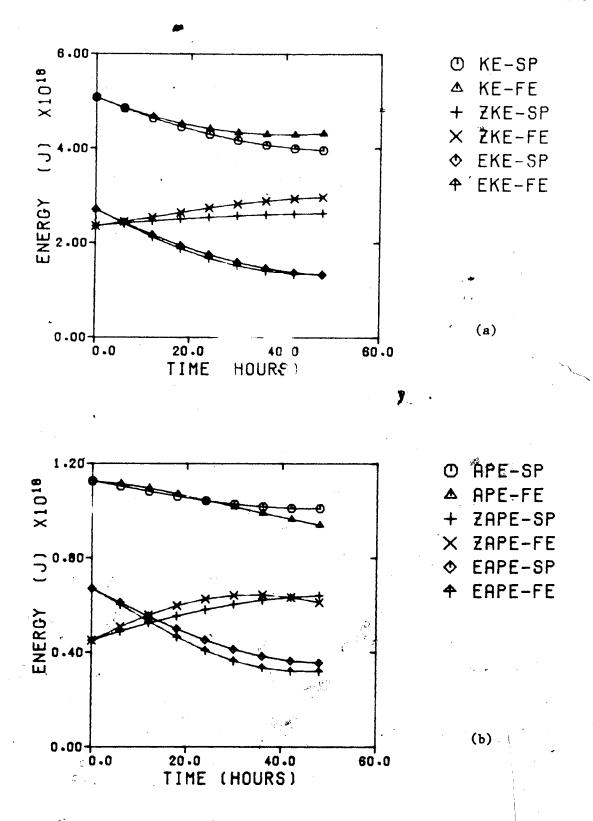


Fig. 5.49 The (a) kinetic energies and (b) potential energies of Case IV for the two solutions in the verification area.

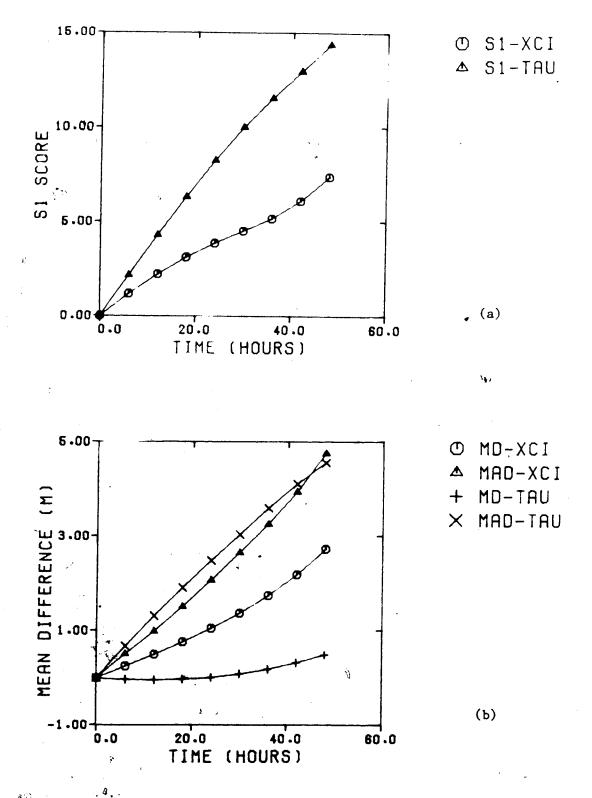
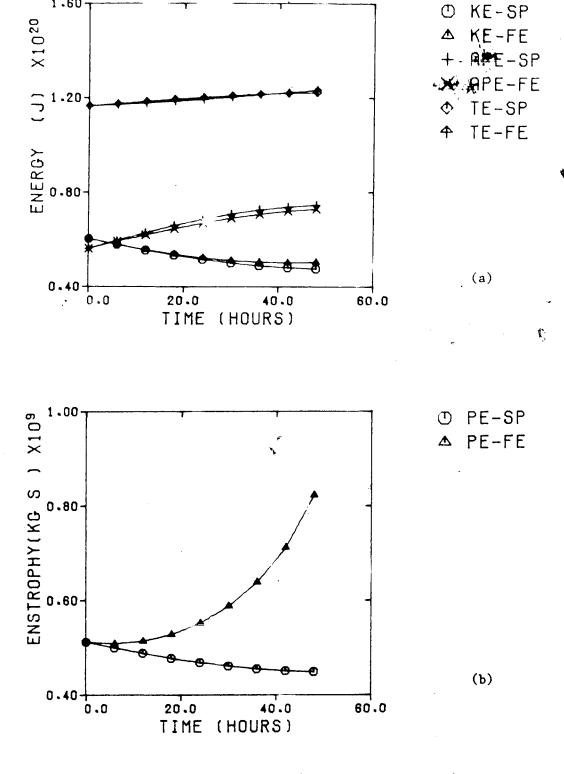



Fig. 5.50 The (a) S1 scores and (b) MD and MAD curves of Case IV for the two solutions in the verification area.

\$

1.60

The (a) energies and (b) potential enstrophy Fig. 5.51 of Case IV for the two solutions in the entire domain.

REFERENCES

- Argyris, J.H., 1960: Energy Theorems and Structural Analysis.

 Butterworth, England. (Reprinted from Aircraft Eng., 1954-1955).
- Baer, F., 1970: Analytical solutions to low-order spectral systems. Archiv. Met. Geoph. Biokl., Ser. A, 19, 255-282.
- Baer, F., and F.N. Alyea, 1971: Effects of spectral truncation on general circulation and long range prediction. J. Atmos. Sci., 29, 768-772.
- Bjerknes, V., 1904: Das problem der wettervorhersage, betracht von standpunke der mechanik and der physik. Meteor. 7., 21.
- Bourke, W., 1972: An efficient, one level. primitive equation spectral model. Mon. Wea. Rev., 100, 633-689.
- Bourke, W., 1974: A multi-level spectral model, 1, formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687-701.
- Charney, J.G., R. Fjortoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237-254.
- Clough, R.W., 1960: The finite-element method in plane stress analysis. Proc. Am. Soc. Civil Engineers, <u>87</u>, 345-378.
- Clough, R.W., 1965: The finite-element method in structural mechanics.

 Chapter 7 of Stress Analysis (eds. O.C. Zienkiewicz and
 G.S. Holister), Wiley.
- Cressman, G.P., 1958: Barotropic divergence and very long atmospheric waves. Mon. Wea. Rev., 87, 367-374.
- Cressman, G.P., 1963: A three-level model suitable for daily numerical forecasting. Tech. Memo. 22, National Meteorological Center, NWS/NOAA 25 pp.
- Cullen, M.J.P., 1973: A simple finite-element method for meteorological problems. J. Inst. Math. Applic., 11, 15-31.
- Cullen, M.J.P., 1974a: A finite-element method for a nonlinear initial value problem. J. ast. Math. Applic., 13, 233-247.
- Cullen, M.J.P., 1974b: Integrations of the primitive equations on a sphere using the finite element method. Quart. J. Roy. Meteor. Soc., 100, 555-562.

- Cullen, M.J.P., 1976: On the use of artificial smoothing in Galerkin and finite difference solutions of the primitive equations.

 Quart. J. Roy. Meteor. Soc., 102, 77-93.
- Cullen, M.J.P., and C.D. Hall, 1979: Forecasting and general circulation results from finite-element models. Quart. J. Roy. Meteor. Soc., 105, 571-592.
- Daley, R., C. Girard, J. Henderson, and I. Simmonds, 1976: Short-term forecasting with a multi-level spectral primitive equation model, Part I, model formulation. Atmosphere, 14, 98-134.
- Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102, 405-418.
- Eliasen, E., B. Machenhauer, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields.

 Institute of Theoretical Meteorology, University of Copenhagen, Report No. 2.
- Ellsaesser, H.W., 1966: Evaluation of spectral versus grid methods of hemispheric numerical weather prediction. J. Appl. Meteor., 5, 246-262.
- Galerkin, B.G., 1915: Rods and plates. Series occurring in various questions concerning the elastic equilibrium of rods and plates. Engineers Bulletin, 19, 897-908.
- Grammeltvedt, A., 1969: A survey of finite difference schemes for the primitive equations for a barotropic fluid. Mon. Wea. Rev., 97, 384-404.
- Haltiner, G.J., 1971: Numerical Weather Prediction. John Wiley and Sons, Inc., New York, 317 pp.
- Held, I.M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 1494-1497.
- Holton, J.R., 1972: An Introduction to Dynamic Meteorology. Academic Press, New York, 319 pp.
- Hornstein, R.A., 1978: Weather and Why. Atmospheric Environment Service, Environment Canada, 61 pp.
 - Hoskins, B.J., and A.J. Simmons, 1975: A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637-656.

- Howcroft, J., 1971: Local forecast model: present status and preliminary verification. Office Note No. 50, National Meteorological Center, National Weather Service, Washington, D.C., 22 pp.
- Jeffreys, H., 1922: On the dynamics of wind. Quart. J. Roy. Meteor. Soc., 48, 29-47.
- Kreider, D.L., R.G. Kulier, D.R. Ostberg, and F.W. Perkins, 1966: An Introduction to Linear Analysis. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 773 pp.
- Lilly, D.K., 1965: On the computational stability of numerical solutions of time-dependent nonlinear geophysical fluid dynamics problems. Mon. Wea. Rev., 93, 11-26.
- Lorenz, E.N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157-167.
- Lorenz, E.N., 1960: Maximum simplification of the dynamic equations. Tellus, 12, 243-254.
- Machenhauer, B., and R. Daley, 1972: A baroclinic primitive equation model with a spectral representation in three dimensions.

 Institute of Theoretical Meteorology, University of Copenhagen, Report No. 4.
- McHenry, D., 1943: A lattice analogy for the solution of plane stress problems. J. Inst. Civ. Eng., 21, 59-82.
- Newmark, N.M., 1949: Numerical methods of analysis in bars, plates and elastic bodies in "Numerical Methods in Analysis in Engineering". (Ed. L.E. Grinter). Macmillan, 1949.
- Norrie, D.H., and G. De Vries, 1976: Finite Element Bibliography. IFI/ Plenum, New York, 686 pp.
- Orszag, S.A., 1970: Transform method for calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 329-335.
- Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, New York, 624 pp.
- Perkey, D.J., and C.W. Kreitzberg, 1976: A time-dependent lateral boundary scheme for limited-area primitive equation models. Mon. Wea. Rev., 104, 744-755.
- Phillips, N.A., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor., 8, 381-394.

- Phillips, N.A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level quasi-geostrophic model. Tellus, 6, 273-286.
- Phillips, N.A., and J. Shukla, 1973: On the strategy of combining coarse and fine grid meshes in numerical weather prediction.

 J. Appl. Meteor., 12, 1102-1113.
- Ralston, A., 1965: A First Course in Numerical Analysis. McGraw-Hill Inc., New York, 578 pp.
- Raylegh, Lord (J.W. Strutt), 1870: On the theory of resonance. Trans. Roy. Soc. (London), A161, 77-118.
- Richardson, L.F., 1921: Weather Prediction by Numerical Process.

 Cambridge Univ. Press, London. Reprinted by Dover.
- Ritz, W., 1909: Uber eine neue methode zur losung gewissen variationsprobleme der mathematischen physik. J. Reine. Angew. Math., 135, 1-61.
- Robert, A.J., 1966: The integration of a low-order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237-245.
- Robert, A.J., 1970: Forecast experiments with a spectral model. Proc. Eigth Stanstead Seminar, Publications in Meteorology, No. 97, McGill University, Montreal.
- Shuman, F.G., and J.B. Hovermale, 1968: An operational six-layer primitive equation model. J. Appl. Meteor., 7, 525-547.
- Staniforth, A.N., and R.W. Daley, 1977: A finite-element formulation for the vertical discretization of sigma-coordinate primitive equation models. Mon. Wea. Rev., 105, 1108-1118.
- Staniforth, A.N., and R.W. Daley, 1978: Formulation of the DRPN baroclinic finite-element primitive equations model. Notes Scientifiques et Techniques de RPN, Atmospheric Environment Service, Dorval, 66 pp.
- Staniforth, A.N., and R.W. Daley, 1979: A baroclinic finite-element model for regional forecasting with the primitive equations. Mon. Wea. Rev., 107, 107-121.
- Staniforth, A.N., and H. Mitchell, 1977: A semi-implicit finite-element barotropic model. Mon. Wea. Rev., 105, 154-169.
- Staniforth, A.N., and H. Mitchell, 1978: A variable-resolution finiteelement technique for regional forecasting with the primitive equations. Mon. Wea. Rev., 06, 439-447.

- Stone, P.H., 1974: The meridional variation of the eddy heat fluxes by baroclinic waves and their parameterization. J. Atmos. Sci. 31, 444-456.
- Strang, G., and G.J. Fix, 1973: An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Szmelter I., 1959: The energy methods of networks of arbitrary shape in problems of the theory of elasticity. Proc. I.U.T.A.M. Symposium on Non-Homogeneity in Elasticity and Plasticity (ed. W. Olszak), Pergamom Press.
- Teweles, S. (Jr.), and H.B. Wobus, 1954: Verification of prognostic charts. Bull. Amer. Met. Soc., 35, 455-463.
- Tong, P., and J.N. Rossettos, 1977: Finite-Element Method, Basic Techniques and Implementation. MIT Press, Cambridge, Massachusetts, 332 pp.
- Wang, H.H., P. Halpen, J. Douglas, and T. Dupont, 1972: Numerical solutions of the one-dimensional primitive equations using Galerkin approximations with localized basis functions. Mon. Wea. Rev., 100, 738-746.
- Young, D.M., 1971: Iterative Solution of Large Linear Sys s. Academic Press, New York, 570 pp.
- Zienkiewicz, O.C., 1977: The Finite Element Mathod. McGraw-Hill Book Company (UK) Limited, Berkshire, England, 787 pp.

APPENDIX A

COMPUTER PROGRAM LISTINGS

This appendix contains a listing of the computer programs used and developed for this thesis. In addition, some plotting routines available on the computer were used. All calculations were done using double-precision variables.

```
С
2
                     FEMAIN
           FILE:
3
       С
           FILES:
               OBJECT - FEMAIN.O + INTERP O + DIFF O + PROJ.O + PROD.O
       С
.;
       C
5
               INPUT
6
       С
                       2 * RELDAT
       С
7
                       3 . FEMIN
       C
8
                       4 - MESHD
9
       С
                       5 * VMESH
10
               OUTPUT
11
       С
                       6 * *PRINT*
        С
12
                       7 * GARBAGE
        С
13
                       8 * FEDIAG
        С
14
        С
15
            PROPER DIMENSIONS
16
        С
                                                 ( QUN ) IY.
                                    ( TIN) IX,
              (ULN)Y, (UIN)X
        С
17
              XCI(NI,NU) ,TAU(NI,NU) ,OMEG(NI,NU)
        С
18
               WK1-WK7 DIM. MAX(NI,NJ)
19
        С
        С
20
           THIS IS THE MAIN ROUTENE FOR THE FINITE ELEMENT MODEL.
        С
21
        С
22
23
24
               IMPLICIT REAL*8 (A-H.O-Z)
25
               DIMENSION X(281), Y(45), XI(63), YI(27)
DIMENSION XCI(63,27), TAU(63,27), OMEG(63,27)
26
27
               DIMENSION FX(63,27), FY(63,27), FXY(63,27)
28
               DIMENSION D(4:281,45), WORK(45,8)
29
               DIMENSION SPAR(6)
30
               DIMENSION SPARX(6)
31
               DIMENSION WKA(63,27)
32
               DIMENSION WKB(63,27)
33
               DIMENSION WKC(63,27)
34
               DIMENSION WKD(63,27)
35
               DIMENSION WKE(63,27)
36
                DIMENSION WKF(63,27)
37
                DIMENSION WKG(63,27)
38
               DIMENSION WKH(63.27)
39
                           ∀KI(63.27)
                DIMENS'
40
                DIMENS
                           √KJ(63.27)
41
                DIMENSIUM WKK(63,27)
42
                DIMENSION WKL(63,27)
                DIMENSION OUT(63,27), XCI1(63,27), TAU1(63,27)
43
44
                DIMENSION XCT2(63,27), TAT2(63,27)
45
                REAL*8 L.LX,LY,L2,L3
46
                REAL*8 LYPR, LXPR
47
                COMMON / WKS1D1 / WK1(63)
48
                COMMON / WKS1D2 / WK2(63)
COMMON / WKS1D3 / WK3(63)
49
50
                COMMON / WKS1D4 / WK4(63)
51
                COMMON / WKS105 / WK5(63)
52
                COMMON / WK$106 / WK6(63)
53
                COMMON / WK$107 / WK7(63)
 54
                COMMON / WKS1D8 / WK8(63)
COMMON / WKS1D9 / WK9(63)
 55
 56
                COMMON / WKS110 / WK10(63)
 37
                COMMON / WKS1X1 / WK1X(63)
                COMMON / WK$1X2 / WK2X(63)
 59
                COMMON / WKS1X3 / WK3X(63)
COMMON / WKS1X4 / WK4X(63)
COMMON / WKS1X5 / WK5X(63)
 62
                COMMON / HXMESH / HX(63)
```

Ç

```
COMMON / HYMESH / HY(27)
 64
                COMMON / HXMES1 / HX1(63)
 65
                COMMON / HYMES1 / HY1(27)
COMMON / RATIO1 / RAT1(63,27)
 66
 67
                COMMON / RATII! / RATI!(63,27)
 68
                COMMON / RATIO4 / RAT4(63 27)
 69
                COMMON / RATIOO / RATO(63,27)
 70
                COMMON / RATIO2 / RAT2(63,27)
 71
                COMMON / RATIO3 / RAT3(63,27)
 72
                COMMON / RATIOS / RATS(63 27)
 73
                COMMON / CONSTA / C4,C5
 74
                LOGICAL FOURTH
 75
                LOGICAL*1 LFMT(1)/'*'/
 76
                DATA SPAR/.3000, 5000, 3000, 1500, 0800, 0200/
 77
                DATA SPARX/. 1000, .1500, .1000, .0500, .0100, .00500/
 78
 79
                ICNT *O
                CALL PLOTS
 80
                CALL ORGEP(1.0,1.0,1.0)
 B 1
 82
            SET CONSTANTS
 83
 84
                ALP#-12.000/5.000
 85
86
87
                LX#2.8007
                LY#8.8006
                PI#3, 141592654DO
 88
                LYPR=2.000*PI/LY
  89
                LXPR=2.000*PI/LX
 90
                FO#1.03120-4
 91
                DP#5.0004
 92
                BETA=1.62D-11
 93
                SIG*2.8D-6
 94
                G=9.806D0
 95
                L=LX/2.000/PI
 96
                L2=L*L
 97
                L3=1.000/L2
 98
                ALPHA*LX/LY
 99
                ALP2=1.0/ALPHA/ALPHA
 100
                C4=L*L*F0*F0/G
 101
                C5=DP+FO+10
 102
                BETAO=-BETA/FO
103
                SIGS*DP*DP/2.000/FO/FO/L/L*SIG
104
                SIGI=1.000/SIGS
 105
                SIGU=L2*SIGI
 106
                DMCT=2.000*L*L*F0*F0/(SIG*DP*DP)
 107
                OMCO=OMCT+L+L
 108
                BEPR=2.000*L*L*FO*BETA/(SIG*DP*DP)
109
                HELMCF *2.000*FO*FO/(SIG*DP*DP)
110
 111
             SET FOURTH # .TRUE. FOR FOURTH ORDER SOLUTION AND FOURTH # .FALSE. FOR SECOND ORDER SOLUTION.
 112
         C
 113
 114
         ¢
                FOURTH * . TRUE .
 115
         C
 116
             READ NO. OF POINTS IN X AND Y DIRNS OF UNDERLYING GRID.
 117
 118
         C
                READ(4, LFMT) NIU, NJU
 119
         C
 120
             READ NO. OF PTS IN X AND Y DIRNS. OF NON UNIFORM GRID
 121
122
         С
                READ(4, LFMT) NI, NJ
 123
                NIP=NI
 124
 125
                NJP = NJ
          C
 126
          C READ NO. OF PTS TN X AND Y DIRNS OF UNIFORM PART OF NON-UNIFORM GRID
 127
 128
                READ(4, LFMT) NILA, NULA
 129
```

```
130
           READ X AND Y MESH LENGTHS OF UNDERLYING UDIFORM GRID
131
        С
132
        С
               READ (4.LFMT) HXU, HYU
133
134
        С
           READ X AND Y MESH LENGTHS OF UNIFORM PART OF NON-UNIFORM GRID
135
        С
        С
136
               READ(4, LFMT) HXN, HYN
137
        С
138
            READ X-POSN'S OF UNDERLYING GRID
        С
139
140
        C
               READ(5, LFMT)(X(I), I=1, NIU)
141
        С
142
            READ Y-POSN'S OF UNDERLYING GRID
143
        C
144
        С
               READ(5,LFMT)(Y(I),I=1,NJU)
145
        С
146
        C READ X-POSN'S OF NON UNIFORM GF
147
148
        С
               READ(5, LFMT)(XI(I), I*1, NIP)
149
150
        С
        C READ Y-POSN'S OF NON UNIFOR GOID
151
        С
152
               READ(5, LFMT)(YI(I), I=1.57 0
153
154
        С
            READ NO. OF WAVES, NO. OF HOURS FOR PROG., TIMESTEP, NO. OF
155
        C
            HOURS BETWEEN OUTPUT OF MAPS.
        С
156
157
         С
               READ(3, LFMT) N, M, DT, IDT2
158
         С
159
        C-READ INITIAL VALUES OF HEIGHT, THICKNESS AND OMEGA FIELDS
160
        C
161
               READ(3.LFMT) XCII1,XCI2,XCI3,TAUU1.TAU2,TAU3,OMEG1,OMEG2,OMEG3
162
163
            READ INITIAL HEIGHT CHANGE GUESSES TO SAVE CPU TIME
         C
164
         C
165
               READ(3, LFMT)DXC1, DXC2, DXC3, DTA1, DTA2, DTA3
166
167
         С
            READ RELAXATION PARAMETERS.
168
         C
169
         C
               READ(2, LFMT) RELF, XTOL
170
               READ(2.LFMT) RELFH.XTOLH
171
               DT1=DT+.5000
172
               NIPM=NIP-1
173
               NJPM=NJP-1
174
               NIM=NI-1
175
               NJM=NJ-1
176
177
            CALCULATE GRID LENGTHS OF NON UNIFORM GRID
178
         С
179
               CALL CALH(HX1,XI,NIP)
180
               CALL CALH(HY1, YI, NUP)
181
               HX1(NIP)=HX1(NIPM)
182
               HY1(NJP)=HY1(NJPM)
183
               DO 60 I=1.NI
184
            60 HX(I)=HX1(I)
185
               DO 65 J=1,NJ
186
            65 HY(J)=HY1(J)
187
188
         С
            FORM RATIO MATRICES FOR SOLUTION
189
190
         C
               HELP=5.000*HELMCF/12.000
191
192
               DO 848 J=1,NJ
                J1=J-1
193
                HY2=HY(J)
194
                TF(J.EQ.1) GO TO 849
 195
```

```
196
               HYJ=HY2+HY(J1)
           849 DO 848 I=1.NI
197
198
               I 1 = I - 1
               HX2 *HX(I)
199
               RAT1(I,J)=HY2/HX2
200
               RATI1(I,J)+1.000/RAT1(I,J)
201
202
               IF(I,LT,2.0R,J,LT,2) GO TO 848
               HXI = HX2 + HX(I1)
203
               RATO(I,J)=HY2=HX2
204
205
               RAT2(I,J)=HY2*HXI
               RAT3(I,J)=HYJ+HX2
206
               RAT4(I, U)=RAT1(I, U)+RAT1(I1, U)+RAT1(I, U1)+RAT1(I1, U1)
207
               RAT4(I,J)=RAT4(I,J)+RATI1(I,J)+RATI1(I1,J)+RATI1(I,J1)
208
               RAT4(I,U)=RAT4(I,U)+MATI1(I1,U1)
209
               RATS(I, J)=RAT4(I,J)+HELP+HXI+HYJ
210
               RAT5(I, U)=1.000/RAT5(I, U)
211
               RAT4(I, J)=1.000/RAT4(I, J)
212
           848 CONTINUE
213
214
         С
215
         С
            CALCULATE INITIAL VALUES AT GRID POINTS
         C
216
217
               XCII1=XCII1=DSQRT(2.000)
               XCI2*XCI2*2.000
218
               XCI3=XCI3*2.000
219
               DXC1=DXC1*DSQRT(2.000)
220
               DXC2=DXC2*2.000
221
               DXC3=DXC3*2.0D0
222
               TAUU1=TAUU1=DSQRT(2.000)
223
224
               TAU2=TAU2*2.000
               TAU3=TAU3+2.000
225
               DTA1=DTA1*DSQRT(2.000)
226
227
               DTA2=DTA2*2.000
               DTA3=DTA3*2.000
228
               DMEG1 = DMEG1 + DSQRT(2.000)
229
               DMEG2 *OMEG2 *2.000
230
               DMEG3=DMEG3*2.0DO
231
               CX=2.000*PI*DFLOAT(N)/LX
232
               CY=2.000*PI/LY
233
234
               $Y=0.000
235
               UN, 1=U 001 00
236
               J1=J-1
237
               IF(J.EQ.1) GO TO 110
               SY=SY+HY(J1)
238
           110 Y2=SY+CY
239
               SIY=DSIN(Y2)
240
241
               COY-DCOS(Y2)
               SX=0.000
242
243
               IM, I # 1 001 00
244
               I1=I-1
               IF(I.EQ.1) GO TO 120 -
245
246
               SX=SX+HX(I1)
247
           120 X2=SX*CX
               SIX=DSIN(X2)
248
249
               cox=bcos(x2)
250
               S=SIY=SIX
               C=SIY+COX
251
               XCI(I,J)=XCII1*C0Y+XCI2*S+XCI3*C
252
               TAU(I,J)=TAUU1+COY+TAU2+S+TAU3+C
253
               OMEG(I,J)=OMEG1+CDY+OMEG2+S+OMEG3+C
254
               XCI1(I,J)=DXC1+COY+DCX2+5+DXC3+C
255
               TAU1(I,J)=DTA1*COY+DTA2*S+DTA3*C
256
           100 CONTINUE
257
        C
258
259
        C
            BEGINNING OF THE TIME LOOP
        C
260
               DO 1000 II+1,M
261
                                                ي.
اعلاميا
```

```
262
                 I2=(II-1)/IDT2*IDT2
 263
                 I3=I2-(II-1)
 264
                 IF(13.EQ.O) ICNT+ NT+1
 265
                 I4=(ICNT-1)/4+4-( NT-1)
 266
 267
              SET ARRAYS TO O.
 268
          С
 269
          C
 270
             FORM X-DERIV. OF XCI FIELD.
          С
 271
          C
 272
                 CALL DXDYDS(WKI, XCI, 1.000, TRUE., FALSE, NI, NJ)
 273
                 CALL PSOLVE(WKA, WKI, NI, NJ, .TRUE., .FALSE., .FALSE.)
 274
 275
          C
             FORM Y-DERIV. OF XCI FIELD.
 276
          C
 277
                 CALL DXDYDS(WKI,XCI, 1.000, .FALSE., .TRUE., NI, NJ)
 278
                 CALL PSOLVE(WKB, WKI, NI, NJ, FALSE., TRUE., FALSE.)
 279
 280
             FORM X-DERIV. OF TAU FIELD.
          C
 281
          C
                 CALL DXDYDS(WKI, TAU, 1.000, .TRUE., .FALSE., NI, NJ)
 282
 283
                CALL PSOLVE(WKC, WKI, NI, NJ, .TRUE., .FALSE., .FALSE.)
 284
          C
 285
          C
             FORMAY-DERIV. OF TAU FIELD.
 286
          ¢
                CALL DXDYDS(WKI, TAU, 1.000, FALSE., TRUE, NI, NJ)
 287
                CALL PSOLVE(WKD, WKI, NI, NJ, FALSE., TRUE., FALSE.)
 288
 289
          C
 290
             ADD TERM 5 TO WKG, THE R.H.S. OF EQN. 1
          C
 291
          C
 292
                CALL GDADGD (MKG, O. ODO, WKG, BETAO, WKA, NI, NJ)
 293
         С
294
         C
             ADD TERM 8 TO WKH, THE R.H.S. OF EQN. 2
295
         C
296
                CALL GDADGD (WKH, O. ODO, WKH, BFTAO, WKC, NT., NJ)
297
                CALL GDADGD (WKL, O.ODO, WKL - MFOR, WKG, NI, NJ)
298
         C
299
             FORM LAPLACIAN OF XCI
         C
300
         C
301
                CALL D2XYS(WKI, XCI, 1.000, .TRUE ... FALSE .. NI, NJ)
                CALL PSOLVE(WKE, WKI, NE, NJ., TRUE., FALSE., FOURTH)
302
303
                CALL D2XYS(WKI,XCI,1.000,.FALSE.,.TRUE.,NI,NJ)
304
                CALL PSOLVE(WKF, WKI, NI, NJ, .FALSE. . . TRUE ., FOURTH)
305
                CALL GDADGD(WKE, 1.000, WKE, 1.000, WKF, NI, NJ)
306
                CALL SMY (WKE, NI, NJ, SPAR, $, WRK)
307
                CALL SMX(WKE, NI, NJ, SPARX, 6, WKK)
300
            FORM Y-DERIV. OF LAPLAC OF XCI.
309
         C
310
         C
                CALL DXDYDS(WKI, WKE, 1.000, .FALSE., .TRUE., NI, NJ)
311
312
                CALL PSOLVE(WKF, WKI, NI, NJ, FALSE., TRUE., FALSE.)
313
         C
                                                          ij.,
314
         C
            FORM TERM 1 OF EON. 1
315
         C
316
                CALL NLLOOP(WKI, WKA, WKF, NI, NJ)
                CALL PSOLVE(WKJ, WKI, NI, NJ, .TRUE., .TRUE., .FALSE.)
317
318
         C
319
            ADD TO R.H.S. OF EQN. 1 (I.E. WKG)
320
         E
321
                CALL GDADGD(WKG, 1.0DO, WKG, -L2, WKJ, NI, NJ)
         C
322
323
            FORM TERM 1 OF EQN. 2
324
         C
325
                CALL NLLOOP(WKI, WKC, WKF, NI, NJ)
               CALL PSOLVE(WKJ, WKI, NI, NJ, .TRUE., .TRUE., .FALSE.)
326
327
        C
```

```
ADD TO R.H.S. OF EQN. 2 (I.E. WKH)
328
329
                CALL GDADGD(WKH, 1.000, WKH, -L2, WKJ, NI, NJ)
330
                CALL GDADGD(WKL, 1.0DO, WKL, -OMCO, WKJ, NI, NJ)
331
332
         С
            FORM X-DERIV. OF LAPLACIAN OF XCI
333
334
         С
                CALL DXDYDS(WKI, WKE, 1.000; TRUE., FALSE., NI, NJ)
335
                CALL PSOLVE(WKE, WKI, NI, NJ., TRUE., . FALSE., . FALSE.)
336
337
         С
            FORM TERM 2 OF EON 1.
         С
338
         C
339
                CALL NLLOOP (WKF, WKB, WKE, NI, NJ)
340
                CALL PSOLVE(WKI, 100, NI, NJ, TRUE, TRUE, FALSE)
341
         С
342
            ADD TO R.H.S. OF EQN. 1
343
344
         С
                CALL GDADGD(WKG, 1. ODO, WKG, L2, WKI, NI, NJ)
345
         С
346
            FORM TERM 2 OF EON. 2.
347
         С
         С
348
                CALL NLLOOP (WKF, WKD, WKE, NI. N.
349
                                                            , FALSE.)
                CALL PSOLVE(WKI, WKF, NI, NJ. . T
350
351
         С
            ADD TO R.H.S. OF EQN. 2.
352
         С
35J
         С
                CALL GDADGD (WKH, 1.000, WKH, L2, WKI, NI, NJ)
354
                CALL GDADGD (WKL, 1.000, WKL, OMCO, WKI, NI, NJ)
355
356
            FORM LAPLACIAN OF TAU
357
         C
358
                CALL D2XYS(WKE, TAU, 1.000, TRUE., FALSE., NI, NJ)
359
                CALL PSOLVE(WKI, WKE, NI, NJ, TRUE., FALSE., FOURTH)
360
                CALL D2XYS(WKF, TAU, 1.000, .FALSE., .TRUE., NI, NJ)
361
                CALL PSOLVE (WKJ. WKF. NI. NJ. . FALSE . . . TRUE ... FOURTH)
362
                CALL COADGD (WKE, 1.000, WKI, 1.000, WKJ, NI, NJ)
363
                CALL SMY(WKE,NI,NJ,SPAR,6,WKK)
364
                CALL SMX(WRE, NI, NJ, SPARX, 6, WKK)
365
366
            FORM Y-DERIY, OF LAPLACIAN OF TAU
367
368
         C
                                                      .TRUE.,NI,NJ)
                CALL DXDYDS(WRF, WKE, 1.000, .FAL.
369
                CALL PSOLVE(WKK, WKF, NI, NJ., FALSE ... TRUE., .FALSE.)
370
         C
371
            THEM TERMS OF EQN. 1
372
         С
373
                      VLLOOP(WKI, WKC, WKK, NI, NJ)
374
                CALL PSOLVE(WKJ, WKI, NI, NJ, .TRUE., .TRUE., .FALSE.)
375
         C
376
            ADD TO R.H.S. OF EQN. 5
377
         С
378
         С
                CALL GDADGD(WKG, 1.000, WKG, -L2, WKJ, NI, NJ)
379
         C
380
            FORM TERM 3 OF EQN. 2
381
         С
382
                CALL NLLOOP(WKI, WKA, WKK, NI, NJ)
383
                CALL PSOLVE(WKJ, WKI, NI, NJ, TRUE.,.
384
385
            ADD TO R.H.S. OF EON. 2
386
         C
387
         С
                CALL GDADGD(WKH, 1.000, WKH, -L2, WKJ.NI, NJ)
388
                CALL GDADGD(WKL, 1.000, WKL, -OMCO, WKJ, NI, NJ)
389
390
         C
            FORM X-DERIV. OF LAPLACIAN OF TAU
391
         C
         C
392
                CALL DXDYDS(WKF, WKE, 1.000, TRUE., FALSE, NI, NU)
393
```

```
ILL PSOLVE(WKJ, WKF, NI, NJ, TRUE , FALSE , MALSE )
               FORM TERM TOF EON. 1
                   CALL NELOOP(WKI, WKD, WKJ, NJ, NJ)
  399
                  CALL PSOLVE(WKK, WKI, NI, NJ, .TRUE., .TRUE., .FALGE.)
  400
  40 f
           С
               ADD TO R.H.S. OF EQN. 1
  402
           С
·- 403
                  CALL GDADGD(WKG, 1.000 WKG, L2, WKK, NI, NJ)
           C
  404
               FORM TERM 4 OF EQN. 2
 · 405
           С
 406
           С
 407
                  CALL'NLLQOP(WKI, WKB, WKJ, NI, NJ)
 408
                  CALL PSOLVE(WKJ.WKI,NI,NJ,.TRUE., TRUE.,.FALSE.)
 409
           C
                                            35
 410
           Ċ
               ADD TO R.H.S. OF EQN. 2
 411
           С
 412
                  CALL GDADGD (WKH, 1.000, WKH, LZ, WKJ, NI, NJ)
 4Y3
                  CALL GDADGD(WKL, 1. ODO, WKL, OMCO, WKJ, NI, NJ)
 414
           С
 415
           C
              FIND VERTICAL VELOCITY
 416
                  CALL NLLOOP(WKI WKW, WKD, NI, NJ)
CALL PSOLVE(WKJ, WKI, NI, NJ, TRUE., TRUE., FALSE.)
 417
 418
 419
                  CALL NLLOOP(WKI, WKB; WKC, NI, NJ)
                  CALL PSOLVE(WKK, WKI, NI, NJ, TRUE, , TRUE , FALSE)
 420
 421
                  CALL GDADGD(WKF, 1. ODO, WKJ, - 1. ODO, WKK, NI, NJ)
 422
                  IF(II.EQ.1) GO TO 748
                  IF(I3.NE.O.ORS 14.NE.O) GO TO-748
 423
 424
                  CALL D2XYS(WKE, WKF, 1.0DO, .TRUE., .FALSE., NI .NJ)
 425
                 CALL PSOLVE(WKI, WKE, NI, NJ, TRUE, FALSE, FOURTH)
CALL D2XYS(WKJ, WKF, NI, ODO, FALSE, TRUE, NI, NJ)
 426
                 CALL PSOLVE (WKK, WHAT, NI, NJ, FALSE. TRUE FOURTH)
CALL GDADGO WKE, 1.000 WKI, 1.000, WKK, NI, NJ)
 427
 428
429
                 CALL GDADGD (WKE, +, ODO, WKL, OMCO, WKE, NI, NJ)
 430
                 CALL PROUN(WKI, WKE, FOURTH, NI, NJ, TRUE...TRUE.)
 431
                 DO 226 J=1,NJ
 432
                 DO 226 I=1,NI
 433
             226 WKI(I,J)=ALP=WKI(I,J)
 434
                 CALL RELHEL (OMEG, WKI, NI, NJ, LX, HELMCF, RELFH, XTOLH)
435
             748 CONTINUE
436
          С
437
              ADD TERM 6 TO R.H.S. DF EQN. 2
          С
438
          C
439
                 CALL GDADGD(WKH, 1.0DO, WKH, OMCT, WKF, NI, NJ)
440
          С
441
                 WRITE(7,999) II
442
            999 FORMAT(16)
443
                 IF(I4.EQ.O.AND.I3.EQ.O) CALL OUTPUT(II,XCI,TAU,OMEG,XI,
444
                1 YI, X.Y, NI, NJ, NIU, NJU, FX, FY, FXY, D. WORK, NIP, NJP, OUT, DT)
445
                 IF(I3.EQ.O) WRITE(8) XCI
446
                 IF(I3.EQ.O) WRITE(8) TAU
447
                 IF(II.EQ.M) GO TO 1000
44R
          C
             THE R.H.S. OF EQN. 1 AND 2 HAVE NOW BEEN FORMED AND MAY PROCEED
449
             WITH THE SOLUTION.
450
         С
451
         C
452
         C
453
                 CALL PROJN(WKI, WKG, FOURTH, NI, NJ, . TRUE.
                                                                 *RUE.)
454
                CALL PROUN(WKF, WKH, FOURTH, NI, NJ, . TRUE.
455
456
         C
             SOLVE EQN. 1
457
         C
458
                D٢
                       ™ J±1,NJ
459
                Dt
                         I=1.NI
```

()

```
WKI(I,U)=ALP+WKI(I,U)
460
            225 WKF(I,U)=ALP+WKF(I,U)
461
                 CALL REL(XCI1, WKI, NI, NJ, LX, RELF, XTOL)
462
463
             SOLVE EON 2
464
         С
          C
465
                CALL RELHEL (TAU1, WKF, NI, NJ, LX, HELMCF, RELFH, XTOLH)
466
                 IF(IL_EQ.1) GO TO 240
467
468
          С
             EXTRAPOLATE IN TIME USING ADAMS-BASHFORTH METHOD.
469
          ¢
        C
470
                 DO 250 J±1.NJ
DO 250 I=1.N₽↔
471
472
                 XCI(I.J)=XCI(I.J)+DT1*(3'0D0*XCI1(I.J)-XCT2(I.J))
TAU(I.J)=THEL.J)+HEL.J)+CD0*TAU1(I.J)-TAT2(I.J))
CDNTINUE
473
474
            250 CONTINUE
GO TO 260
475
476
          С
477
             EXTRAPOLATE FIRST TIME STEP USING FORWARD DIFFERENCE
          С
478
          С
479
            240 DO 200 J=1.NJ
DO 200 E就认NI *>
480
481
                 XCI(I,1))*13X*(μ,1)*13X*(μ,1)13X*
482
                 (U,I)PUAT+TO+(U,I)UAT=(U,I)UAT
483
484
            200 CONTINUE
                                                                 17
485
            260 DO 220 J=1.NJ
                 DO 220 I=1,NI
486
                 XCT2(I,J)=XCI1(I,J)
487
                 TAT2(I,J)=TAU1(I,J)
488
            220 CONTINUE
489
           1000 CONTINUE
490
                 CALL PLOT(0.0,0.0,999)
491
                 STOP
492
              · 3)
                 END
493
                 SUBROUTINE SMY(F,NI,NJ,SPAR,K,FSM)
IMPLICIT REAL (A. H.O-2)
DIMENSION F(NI, FSM(NI,NJ),SPAR(K)
COMMON / HYMESH X HY(1)
494
495
496
497
98
99
          С
             SIMPLE 3 PT. SMOOTHER IN Y-DIRECTION
          С
500
          C :
              SPAR*SMOOTHING PARAMETERS FOR 6 GRID POINTS
          С
501
          c
502
                 NUM#NU-1
503
                                                          1
                 S2=SPAR(1)
504
                 51=1.000-52
505
                 DO 10 I=1.NI
506
                 FSM(I',1)=S1+F(I,1)+S2+F(I,2)
507
              10 FSM(I,NJ)=S1*F(I,NJ)+S2*F(I,NJM)
508
                 DO 20 J=2,6
509
                 S1=1.000-SPAR(J)
510
                 J1=J+1
511
                 J2=J-1
 512
                 DO 20 I=1,NI
 513
              20 FSM(I,J)=S1+F(I,J)+SPAR(J)+(F(I,J1)+F(I,J2))
 514
                 DO 30 J=2,6
 515
                 JP=NJ-J+:1
 516
                 S1=1.000-SPAR(J)
 517
                 J1*JP+1
 518
                 J2=JP-1
 519
                 DO 30 I=1.NI
 520
              30 FSM(I.JP)=S1*F(I.JP)+SPAR(JP)*(F(I,J1)+F(I,J2))
 521
                 NJ5=NJ-5
 522
                 DO 60 J=1.6
 523
                 DO 60 I=1.NI "
 524
              60 F(I,J)=FSM(I,J)
 525
```

3.37

```
DO 70 J=NJ5.
   526
   527
                   DO 70 I=1.NI
   528
                70 F(I,J)=FSM(I,J)
                   RETURN
   529
   ∍30
                   END
                   SUBROUTINE SMX(F,NI,NJ,SPAR,K,FSM)
   531
                   IMPLICIT REAL . 8 (A-H, 0-Z)
   532
                   DIMENSION F(NI,NJ), FSM(NI,NJ), SPAR(K)
   533
                   COMMON / HXMESH / HX(1)
   534
            С
   535
                SIMPLE 3-POINT SMOOTHER IN X-DIRECTION.
   536
            С
            С
   537
                   NIM=NI-1
   538
   539
                   DO 10 J=1,6
                   $2=SPAR(J)
   540
                   S1=1.0Q0-SPAR(J)
   541
                   FSM(NI, J) = S1*F(NI, J) + S2*F(NIM, J)
   542
   543
                   FSM(1,J)=S1+F(1,J)+S2+F(2,J)
                   JP#NJ-J+1
   544
                FSM(1, JP) = S1*F(1, JP) +62*F(2, JP)
10 FSM(NI, JP) = S1*F(NI, 50) + S2*F(NIM, JP)
   545
   546
                   DO 20 1=2.NIM
   547
                                                                         *.
   548
                   I 1 = I - 1
   549
                   I2=I+1
   550
                   DO 20 J*1.6
                   S1=1.0DO-SPAR(J)
   551
                   FSM(I,U)=S1*F(I,U)+SPAR(U)*(F(I2,U)+F(I1,U))
   552
                  #P=NJ-J+1
   553
                   FSM(I,JP)=S1*F(I,JP)+SPAR(J)*(F(I2,JP)+F(I1,JP))
   554
   5$$
                20 CONTINUE
                   NJ5=NJ-5
   556
                   DO 60 J=1,6
DO 60 I=1,NI
   557
   558
                60 F(I,J)=FSM(I,J)
   559
                   DO 70 J=NJ5,NJ
DO 70 I=1,NI
   560
  . 561
                70 F(I,J)=FSM(I,J)
   562
                   RETURN
   563
                   END
   564
ENU OF FILE
```

```
SPEC
           FILE:
       С
           FILES
5
       C
                        - SPEC.O
              OBJECT
6
       С
                        - SPLATM.O (USES FOR OUTPUT)
              INPUT
       С
8
                        3 * VMESH
        C
9
                        4 . MESHD
        С
10
                                     - INITIAL AMPLITUDES AND CONTROL DATA
                        5 * SPECD
        С
11
        C
              OUTPUT
12
                        6 = *PRINT* - OUTPUT OF MAPS AND GRAPHS
        С
13
                        7 * *PRINT* - OUTPUT OF AMPLITUDES
        С
14
                        8 * *PRINT* - ENERGY AND ENSTROPHY
        С
15
                       12 = FEMIN - INITIAL DATA FOR FEM MODEL
10 = *PRINT* - THEORETICAL CALCULATIONS
        С
16
        С
17
                   11 - SMITAG - BINARY OUTPUT FOR DIAGNOSTICS
        С
18
19
        С
             SUBROUTINES:
        С
20
                          - MAIN
        С
21
                        OUTPT
22
        С
        С
23
           MAIN ROUTINE FOR THE SPECTRAL MODEL.
24
        С
        С
25
        С
26
               IMPLICIT REAL*8 · (A-H, 0-Z)
27
               DIMENSION A(200,9), EKE(200), APE(200), TEN(200), PE(200)
28
               DIMENSION PHIH(200), PHIT(200), DPHI(200)
29
30
           PROPER DIMENSIONS FOR ARRAYS:
31
32
        С
           DIM X(NIU),Y(NUU),XCIB(NIU,NUU),TAUB(NIU,NUU),OMEGB(NIU,NUU)
        С
33
           DIM XI(NI), YI(NI)
        C
34
35
        С
              DIMENSION X(281),Y(45),XCIB(281,45),TAUB(281,45),OMEGB(281,45)
DIMENSION,XI(63),YI(27),HX1(63),HY1(27)
'36
37
               DIMENSION F(63,27), HX(63), HY(27)
38
               REAL*8 L, LX, LY, LXPR, LYPR
39
               COMMON TAU1(200), TAU2(200), TAU3(200), XCI1(200), XCI2(200)
40
               COMMON XCI3(200), DMEG1(200), DMEG2(200), DMEG3(200)
41
               COMMON C4.C5,DT
42
               LOGICAL*1 LFMT(1)/'*'/..
43
44
        C
               READ INITIAL VALUES.
45
        C
        С
46
               READ(5, LFMT) XCI1(1), XCI2(1), XCI3(1), TAU1(1), TAU2(1), TAU3(1)
47
        C
48
               N=NUMBER OF WAVES, M=NUMBER OF TIME STEPS, DT=TIME STEP
        С
49
               IDT2 = NO. OF HOURS BETWEEN OUTPUT OF MAPS.
50
        C
        С
               READ(5,1FMT) N.M.DT, IDT2
52
               WRITE(7,22) N
53
                            NUMBER OF WAVES IS ', 14)
               FORMAT('
54
         22
        С
55
               SET VALUE OF CONSTANTS
        C
56
        С
57
               FN=DFLOAT(N)
58
               ICNT=0
59
               CALL PLOTS
60
               CALL ORGEP(1,0,1.0,1.0)
61
               PI=3.1415927DO
62
```

FO=1.0312D-4

63

٠٠,

ė,

35.

" ، شرني

```
BETA = 1.62D-11
DP ... OOD4
  64
  65
                SIG=2.8D-6
  66
  67
                LY*8.80D6
  68
                LX=2.80D7
                L=LX/2.000/PI
  69
                LXPR=2.0DO+PI+FN/LX
  70
  7 1
                LYPR=2.*PI/LY
  72
                ALPHA=LX/LY
                A2=ALPHA+ALPHA
  73
  74
                BSTAR=L*BETA/FO
  75
                SIGST=DP*DP*SIG/(2.0DO*FO*FO*L*L)
                G=9.806D0
  76
  77
                GAM=1.2004D0
  78
                ITIME = O
                GAN=GAM+ALPHA+*N
  79
  80
                TO=A2+FN+FN
                T1=1.0D0/A2+SIGST
  81
                T2=SIGST+1.0D0/T0
  82
  83
                T3=A2+1.QDO/SIGST
                T4=T0+1.0D0/SIGST
  84
                A2=ALPHA+ALPHA
  85
                C1=2.0D0*PI*PI*DP*FO*FO*L**4/(G*ALPHA*SIGST)
  86
                C6=L**6*PI**4*DP*FO*FO*8.000/(G*ALPHA)
  87
                G3+DP+2.0D0+PI+L+L/G/ALPHA
G*L+F0+F0/G
G*DP+F0+10.0D0
  88
  89
  90
                M1=M+1
  91
                92
                C7=4.0D0*DSQRT(2.000)*L*L*F0/LY
  93
                C8=2.000*PI*FN/LX
 94
                CR=BETA/C8/C8
  95
  96
                C9=2.000*(1
                                +Q2/C8/Ç8)
                WRITE(12,474 ... M,DT,1DT2
 97
           474 FORMAT(216,4X,E12.6,15)
 98
 99
            GET PARAMETERS FOR F.E.M. MODEL TO MAKE DUPUT CONSISTENT
 100
         C
 101
         С
 102
                READ(4, LFMT) NIU, NJU
                READ(4, LFMT) NI, NJ
 103
                READ(4, LFMT) NILA, NJLA
 104
 105
                READ(4, LFMT) HXU, HYU
                READ(3, LFMT)(X(I), I=1, NIU)
 106
                READ(3,LFMT)(Y(I),I=1,NJU)
 107
                READ(3, LFMT)(XI(I), I=1, NI)
 108
                READ(3, LFMT)(YI(I), I=1, NJ)
109
                CALL CALH(HX1,XI,NI)
. 110
111
                CALL CALH(HY1, YI, NJ)
                NIM=NI-1
112
                1-UN=MUN
113
                (MIM) | XH=(LIN) | XH
114
                HY1(NI)=HY1(NJM)
115
                NIP=NI
116
                UN= 9UN
117
                NIM=NI-1
118
                NUM=NU-1
119
                DO 60 I=1,NIT
120
            60 HX(I)=HX1(I)
121
                DO 65 U=1, NUP
122
            65 HY(J)=HY1(J)
123
                WRITE(10,475) CR
124
           475 FORMAT(' ROSSBY PHASE SPEED = ', E12.4,//)
125
                WRITE( 10,470)
126
            470#FORMAT(4X,'ITIME',3X,'THERMAL WIND
                                                          MEAN WIND ', 10X.
127
               1'REAL PHASE SPEEDS', 6X, 'IMAGINARY SPEED', 4X, 'E-TIME')
128
               WRITE(8,12)
 129
```

```
130
            12
                 FORMAT(3X, 'TIME', 10X, 'APE', 13X, 'KE', 14X, 'TEN', 13X, 'PE')
  131
                 WRITE(7,13)
  132
            13
                 FORMATI'
                            TIME',6X,'XCI1',9X,'XCI2',9X,'XCI3',9X,
  133
                   'TAU1',9X,'TAU2',9X,'TAU3',9X,'OMEG1',8X,'OMEG2',8X,'OMEG3')
  134
                 DO 500 1-1,M
  135
                  ITIME = I - 1
  136
          C
  137
                 FIND THE VERTICAL VELOCITIES
  138
          C
 139
                 OMEG1(I)=-GAN/T1+(TAU2(I)+XCI3(I)-TAU3(I)+XCI2(I))
                 OMEG2(I)=((((TAU1(I)*XCI3(I)+TAU3(I)*XCI1(I))*FN*FN/TO
 140
 141
                   -(TAU3(I)+XCI1(I)-TAU1(I)+XCI3(I)4)+GAN
 142
                   -BSTAL FN+TAU3(1)/TO)/T2
                DMEG3(1)=(((TAU2(1)*XCI1(1)-TAU1(1)*XCI2(1))
 143
 144
                   -(TAU1(I)*XCI2(I)+TAU2(I)*XCI1(I))+FN+FN/TO)+GAN
 145
                  +BSTAR*FN*TAU2(1)/TO)/T2
                IF(I EQ.1) WRITE(12,1000) XCI1(1), XCI2(1), XCI3(1), TAU1(1),
 146
 147
               1 TAU2(1).TAU3(1).OMEG1(1).OMEG2(1).OMEG3(1)
 148
           1000 FORMAT(9(1X,E12.4))
                WRITE(7,10) ITIME,XCI1(I),XCI2(I),XCI3(I),TAU1(I),TAU2(I),
 149
 150
                  _TAU3(I).OMEG1(I).OMEG2(I).OMEG3(I)
 151
           10
                FORMAT (3X, 14, 9(1X, E12.4))
 152
          С
 153
          С
              CALCULATE PHASES
 154
         С
 155
                PHIH(I) *DATAN2(XCI2(I), XCI3(I)) * 180.000/PI
 156
                PHIT(I)=DATAN2(TAU2(I), TAU3(I))+180.0D0/PI
 157
                DPHI(I)=PHIH(I)-PHIT(I)
 158
         C
 159
         C.
              CALCULATE THEORETICAL PARAMETERS
 160
 161
                UT=C7*TAU1(I)
162
                UST=C7*XCI1(I)
                D=(Q2*CR/C8/C8)**2+4.0D0*(1.0D0-(Q2/C8/C8)**2)*UT*UT
163
164
                CTEMP=-(2.0D0+Q2/C8/C8)*CR
IF(D.GE.O.0D0) GD TO 400
165
166
167
         С
             IMAGINARY PHASE VELOCITY
168
         С
169
                CREA2*0.0000
170
                CIM=DSQRT(-D)/C9
171
                CREA1=CTEMP/C9
172
                ETAU=1.000/CIM/C8
173
                GO TO 450
174
           400 CREA1 = (CTEMP+DSQRT(D))/C9
175
               CREA2*(CTEMP~DSQRT(D))/C9
176
               CIM=Q.ODO
177
               ETAU=0.000
           450 WRITE(10,460) I.UT,UST, CREA1, CREA2, CIM, ETAU
178
179
           460 FORMAT(3X,14,6(4X,E12.4))
180
        C
181
        С
            CALCULATE ENERGIES.
182
        С
183
               APE(I)=TAU1(I)+TAU1(I)+TAU2(I}*TAU2(I)+TAU3(I)*TAU3(I)
184
               APE(I)=APE(I)=C1
185
               EKE(I) * XCI2(I) * XCI2(I) + XCI3(I) * XCI3(I) + TAU2(I) * TAU2(I)
186
                 (I)EUAT*(I)EUAT+
187
               EKE(I)=(EKE(I)*(1.000/LY/LY+FN*FN/LX/LX)+(XCI1(I)*XCI1(I)
188
                +TAU1(I)+TAU1(I))/LY/LY)
               EKE(1) = EKE(1) + C6
189
190
               TEN(I) = APE(I) + EKE(I)
191
        С
           CALCULATE POTENTIAL ENSTROPHY.
192
        С
193
        C
194
               Q1=(DABS(A2*XCI1(I)+T3*TAU1(I)))**2
195
              2 +(DABS(TO*XCI2(I)+T4*TAU2(I)))
```

and the state of the second state of the second of the sec

```
1 +(DABS(TO*XCI3(I)+T4*TAU)(I)))**2
196
              Q1=LX+LY+Q1/2.000
197
              Q3+(DABS(A2*XCI1(I)-T3*TAU1(I)))**2
198
              2 +(DABS(TO*XCI2(1)-T4*TAU2(1)))**2
199
              1 +(DABS(TO*XCI3(I)-T4*TAU3(I)))**2
200
              Q3=LX+LY+Q3/2.000
201
              PE(I)=(Q1+Q3)+C3
202
              WRITE(8,11)ITIME, APE(I), EKE(I).TEN(I), PE(I)
203
              FORMAT(3X, 14, 4(4X, E12.4))
204
               I2=(I-1)/IDT2*IDT2
205
               13=12-(1-1)
206
               IF(13 EQ.O) ICNT=ICNT+1
207
               I4=(ICNT-1)/4*4-(ICNT-1)
208
               IF( 14.EQ.O.AND.13.EQ.O) CALL OUTPT(I,X,Y,NIU,NJU,LXPR,
209
              1 LYPR, HXU, HYU, XCIB, TAUB, OMEGB.DT)
210
               IF(I3.EQ.O) CALL FOUT(F,NI,NJ,HX,HY,XCI1(I),XCI2(I),XCI3(I),
211
              1 LXPR, LYPR)
212
              IF(I3.EQ.O) CALL FOUT(F.NI,NJ,HX,HY,TAU1(I),TAU2(I),TAU3(I),
213
              1 LXPR, LYPR)
214
215
        С
               BEGIN INTEGRATION
216
        C
217
        C
               TIME # OT
218
               E GO TO 100
219
220
        С
               FINSTEP: USE EULER
221
               TAU1(2)-TAU1(1)-OMEG1(1)+DT/ALPHA/ALPHA
222
               T1BAR+(TAU1(1)+TAU1(2))/2.000
223
               TAU2(2) TAU2(1)+((T1BAR*XCI3(1)+TAU3(1)*XCI1(1))*FN*FN*GAN/TO
224
                 -BSTAR*FN*TAU3(1)/TO-DMEG2(1)/TO)*DT
225
               T2BAR=(TAU2(1)+TAU2(2))/2.000
226
               TAU3(2)=TAU3(1)+(-(T1BAR*XCI2(1)+T2BAR*XCI1(1))*FN*FN*GAN/TO
227
                 +BSTAR*FN*T2BAR/TO-OMEG3(1)/TO)*DT
228
               XCI1(2)=XCI1(1)
229
               I3BAR=(TAU3(1)+TAU3(2))/2.000
230
               XCI2(2) = XCI2(1)+((XCI1(1) + XCI3(1) + T1BAR + T3BAR)
231
                 *GAN*FN*FN/TO-BSTAR*FN*XCI3(1)/TO)*DT
232
               X2BAR=(XCI2(1)+XCI2(2))/2.000
233
               XCI3(2)=XCI3(1)+(-(XCI1(1)*X2BAR+T1BAR*T2BAR)
234
                 *GAN*FN*FN/TO+BSTAR*FN*X2BAR/TO)*DT
235
               GO TO 500
236
           100 CONTINUE
237,
               I 1=I+1
238
               12=1-1
239
240
         С
               USE ADAMS-BASHFORTH METHOD FOR SUBSEQUENT TIME STEPS
241
         С
               XCI1([1)=XCI1([)
243
              TAU1(I1)=TAU1(I)-(3.000*0MEG1(I)/ALPHA/ALPHA/2.000
244
              1 -OMEG1(I2)/ALPHA/ALPHA/2.)*DT
245
               C=(TAU1(I)*XCI3(I)+TAU3(I)*XCI1(I))+GAN*FN*FN/TO
246
              1 -BSTAR*FN*TAU3(1)/TO-OMEG2(1)/TO
247
               C2=(TAU1(12)*XCI3(12)+TAU3(12)*XCI1(12))*GAN*FN*FN/TO
248
                 -BSTAR*FN*TAU3(12)/TO-OMEG2(12)/TO
 249
               TAU2(I1)=TAU2(I)+(3.000*C/2.000-C2/2.000)*DT
250
               C=-(TAU1(I)*XCI2(I)+TAU2(I)*XCI1(I))*GAN*FN*FN/TO
251
                 +BSTAR*FN*TAU2(I)/TO-OMEG3(I)/TO
 252
               C2=-(TAU1(I2)*XCI2(I2)+TAU2(I2)*XCI1(I2))*GAN*FN*FN/TO
253
                 +BSTAR+FN+TAU2(12)/TO-DMEG3(12)/TO
254
               TAU3(I1)=TAU3(I)+(3.0D0*C/2.0D0-C2/2.0D0)*DT
               C=XCI1(1)*XCI3(1)*GAN*FN*FN/TO-BSTAR*FN*XCI3(1)/TO
C2=XCI1(12)*XCI3(12)*GAN*FN*FN/TO-BSTAR*FN*XCI3(12)/TO
 255
 256
 257
               T=(TAU1(I)*TAU3(I)+TAU1(I1)*TAU3(I1))*GAN*FN*FN/TO/2.
 258
               $cI2(I1)=XCI2(I)+(3.0D0*C/2.0D0-C2/2.0D0+T)*DT
 259
               FROM EQN. 12
 260
                C=XCI1(I)+XCI2(I)+XCI1(I1)+XCI2(I1)
 261
```

•

```
1 +TAU1(I)*TAU2(I)+TAU1(I1)*TAU2(I1)
C2=XCI2(I)+XCI2(I1)
262
263
                XCI3(I1)=XCI3(\tilde{I})-C*GAN*FN*FN/TO*DT/2.0DO*
264
265
               1 C2*BSTAR*FN/TO*DT/2.000
           500 CONTINUE
266
                DXC1*(XCI1(2)-XCI1(1))/DT
267
268
                DXC2*(XCI2(2)-XCI2(1))/DT
                DXC3=(XCI3(2)-XCI3(1))/DT
269
270
                DTA1=(TAU1(2)-TAU1(1))/DT
                                                                      de
271
                DTA2*(TAU2(2)-TAU2(1))/DT
                DTA3*(TAU3(2)-TAU3(1))/DT
272
                WRITE(12,1000) DXC1,DXC2,DXC3.DTA1,DTA2,DTA3
273
274
            PLOT OUTPUT PARAMETERS
275
         C
276
         C
277
                DO 600 I # 1, M
                A(I,1) *XCI1(I)
278
               A(1,2)=XCI2(1)
A(1,2)=XCI3(1)
279
280
                A(1,4) = TAU1(1)
281
                A(1,5)=TAU2(1)
282
283
                A(I,6)+TAU3(I)
                A(I,7)=OMEG1(I)
284
                A(I,8)=OMEG2(I)
285
286
                A(I,9) * OMEG3(I)
287
           600 CONTINUE
288
                CALL SPLATM(A, 200, 9, 9, M1, 2, - #5D-1, .5D-1)
         C
289
290
            PLOT ENERGYS
291
               DO 620 I=1.M
292
293
                A(I,1) = EKE(I)
               A(1,2) * APE(1)
               A(I,3) = TEN(I)
295
296
           620 CONTINUE
297
               CALL SPLATM(A, 200, 9, 3, M1, 2, 0, 000, 0, 000)
         С
298
299
         С
            PLOT PHASES
         С
300
               DO 640 I=1,M1
301
               A(I,1)*PHIH(I)
302
303
               A(I,2)*PHIT(I)
               A(I,3)*DPHI(I)
304
305
           640 CONTINUE
               CALL SPLATM(A,200,9,3,M1,2,-180,000,180.000)
306
               OALL PLOT(0.0,0.0,999)
307
               STOP
308
309
               SUBROUTINE OUTPT(I,X,Y,NIU,NJU, LXPR, LYPR, HXU, HYU, XCIB, TAUB,
310
               1 OMEGB, DT)
311
312
313
            SET UP FIELDS TO BE PLOTTED IN MANNER CONSISTENT WITH FEM
314
               IMPLICIT REAL+8 (A-H,O-Z)
315
               DIMENSION XCIB(NIU, NJU), TAUB(NIU, NJU), OMEGB(NIU, NJU)
316
               DIMENSION X(NIU), Y(NJU)
317
               REAL+8 LXPR, LYPR
318
               COMMON TAU1(200), TAU2(200), TAU3(200), XCI1(200), XCI2(200)
319
               COMMON XC13(200), OMEG1(200), OMEG2(200), OMEG3(200)
320
               COMMON C4,C5
321
               RT2*DSQRT(2.0QO)
322
               DO 20 KI=1,NIŬ
323
               XX=LXPR+(X(KI)-HXU)
324
325
               CX=DCOS(XX)
               SX=DSIN(XX)
326
327
               DO 20, KJ=1, NJU
```

Ç

Upper to the Bally of the Salar Sala

-415

```
YY=LYPR*(Y(KJ)~HYU)
   328
                   CY*DCOS(YY)
   329
                   SY*DSIN(YY)
   330
                   S=SX*SY
   331
                   C=CX*SY
   332
                   XCIB(KI,KJ) = RT2 + CY + XCI1(I) + 2.000 + 5 + XCI2(I) + 2.000 + C + XCI3(I)
   333
                   TAUB(KI,KU)=RT2*CY*TAU1(I)+2.0D0*5*TAU2(I)+2.0D0*C*TAU3(I)
   334
                   OMEGB(KI,KJ) #RT2*CY*OMEG1(I)+2.0D0*S*OMEG2(I)+2.0D0*C*OMEG3(I)
   335
                   XCIB(KI,KJ)=C4*XCIB(KI,KJ)
   336
                   TAUB(KI,KJ)=C4*TAUB(KI,KJ)
   337
                   OMEGB(KI,KJ) *C5*OMEGB(KI,KJ)
   338
                20 CONTINUE
   339
                   CALL FPLOT(XCIB, NIU, NJU, 1)
   340
                   CALL FPLOT(TAUB, NIU, NJU, 1)
   341
                   CALL FPLOT(OMEGB, NIU, NJU, O)
   342
                   RETURN
   343
   344
                   END
                   SUBROUTINE FOUT(F,NI,NJ,HX,HY,F1,F2,F3,LXPR,LYPR)
   345
                   IMPLICIT REAL*8 (A-H,0-Z)
   346
   347
               OUTPUT FIELDS FOR DIAGNOSTIC PROGRAM
   348
            C
            С
                   DIMENSION F(NI, NJ X(NI), HY(NJ)
REAL 8 LXPR, LYPR
F11 F 1 DSORT(2.000)
F22 F 2 000
   349
   350
   351
   352
   353
                   F33-10-2 500
SY-0.000
   354
   355
                   00 100 J=1.NJ
   356
   357
                   J1=J-1
                   IF(J1.EQ.O) GO TO 110
   358
                   SY=SY+HY(J1)
   359
               110 Y2=SY+LYPR
   360
                   SIY=DSIN(Y2)
   361
                   COY=DCDS(Y2)
   362
   363
                   SX=0.000
                   DO 100 I = 1.NI
   364
                   I1=I-1
   365
                   IF(I1.EQ.O) GO TO 120
   366
                   SX=SX+HX(I1)
   367
                                     . 17
               120 X2=SX*LXPR
   368
                   SIX=DSIN(X2)
   369
   370
                   COX=DCOS(X2)
                   S=SIY*SIX
   371
                   C#SIY*COX
   372
                   F(I,J)*F11*COY+F22*S+F33*C
   373
               100 CONTINUE
   374
                   WRITE(11) F
   375
                   RETURN
   376
                   END
   377
END OF FILE
```

* .

1 وخ

```
С
                 FILE: DIFF
                 OBJECT FILE
         С
                 SUBROUTINES:
         C
                          - DXDYDS
         C
                            CALH
         С
                         - SETD2
         С
                          - D2XYS
  8
         C
  9
         С
 10
         С
                 SUBROUTINE DXDYDS(R,U,CON,ALONGX;ALONGY,NI,NJ)
 11
 12
         C
             S/R : DXDYDS - CALCULATES A DIFFERENCE IN X AND Y DIRECTIONS
 13
         C
 15
         C
             AUTHOR : ANDREW STANIFORTH
             REVISION 001: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
 16
         С
 17
 18
         С
             ARGUMENTS :
         С
19
                                  - RESULT
- FIELD TO BE DIFFERENCED
- MULTIPLICATIVE TO TANK (BULTIPLIES DERIVATIVE)
- IF TRUE DIFFERENCE IN X DIRECTION
- IF TRUE DIFFERENCE IN Y DIRECTION
                     - R
 20
                 DUT
 21
         Č
                      - CON
         Ç
 22
                      - ALONGX
 23
         C
 24
         C
                        ALONGY
                      - NI
                                  - X DIMENSION
 25
         C
                                  - Y DIMENSION
         C
                        NJ
 26
 27
         ¢
         С
28
. 29
 30
                 IMPLICIT REAL*8 (A-H.O-Z)
                 DIMENSION R(NI,NJ),U(NI,NJ)
 31
                LOGICAL ALONGX, ALONGY
 32
 33
                 CONX = . 50DO + CON
                 NIM=NI-1
 34
                                                  11
                 NJM=NJ-1
 35
 36
                 IF(ALONGX) GO TO 100
 37
                 IF(ALONGY) GO TO 200
                 REFURN
 38
 39
         C
         ¢
              X - DERIVATIVE
 40
 41
 42
            100 CONTINUE
 43
                 IT=NI-2
                DO 150 J=1.NJ
DO 140 I=1.IT
 44
                                             7
. 45
 46
                 I1=I+1
                 12=1+2
 47
            140 R(I1,U)=CDNX+(U(I2,U)-U(I,U))
 48
                 R(1,J) = CONX + (U(2,J) - U(1,J))
            R(NI,J)=CDNX+(U(NI,J)-U(NIM,J))
150 CONTINUE
 50
 51
52
                 RETURN
53
            Y - DERIVATIVE
54
         C
55
56
            200 CONTINUE
57
                IT=NJ-2 -
                00 250 I=1,NI
58
 59
                DO 240 J=1, IT
                J1=J+1
60
                J2=J+2
61
            240 R(I,J1)=CONX*(U(I,J2)-U(I,J))
62
                R(I,1)=CONX+(U(I,2)-U(I,1))
```

```
64
                 R(I,NJ)=CONX*(U(I,NJ)-U(I,NJM))
   65
            250 CONTINUE
                 RETURN
   66
   67
                 END
   68
                 SUBROUTINE CALH(H,X,M)
  69
  70
             .S/R: CALH - CALCULATION OF GRID LENGTHS FROM POINTS X.
  71
                          H(I)=X(I+1)-X(I), I=1,M-1
  72
          C
  73
          С
             AUTHOR: A. STANIFORTH - 1973
  74
  75
             REVISION 001: A. STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION
          С
  76
          С
             REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
  77
  78
          C
             CALL:
                      CALL CALH(H, X, M)
  79
          С
  80
          С
             ARGUMENTS:
  81
          С
               OUT
                     - H - GRID-LENGHTS∰ +
                      - X - ARRAY OF POINTS IN ASCENDING ORDER
  82
          С
  83
          С
                      - M - LENGHT OF ARRAYS H AND X
  84
          C
  85
          С
             NOTES: - H(M) IS NOT CAECULATED
  86
          C
  87
                IMPLICIT REAL+8 (A-H.O-Z)
  88
                DIMENSION X(M),H(M)
  89
                DO 10 1 2, M
  90
  91
                I1=I-1
  92
                H(11)=X(1)-X(11)
  93
             10 CONTINUE
  94
                RETURN
  95
                END
                SUBROUTINE SETD2(A.B.C.CON,H.N)
  96
  97
             S/R : SETD2 - SET-UP ELEMENTS OF TRI-DIAGONAL MATRIX USED IN S/R
  98
         C
         C
  99
                             D2XYS FOR TAKING SECOND DERIVATIVES.
 100
         C
 101
         C
             AUTHOR - ANDREW STANIFORTH - JAN 79
 102
         C
             REVISION OO1: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U.OF A
 103
         C
 104
         C
             ARGUMENTS:
 105
         C
                            - LOWER-DIAGONAL ELEMENTS
 106
         С
               OUT
                     - B
 107
         C
                              DIAGONAL ELEMENTS
                     - C
 108
         С
                            - UPPER-DIAGONAL ELEMENTS
                     - CON - MULTIPLICATIVE FACTOR (CON*SECOND DERIVATIVE)
- H - MESH-LENGTHS
 109
         C
 110
         С
         С
                            - NUMBER OF NODAL POINTS
 111
 112
         C
 113
         С
 114
         C
 115
                IMPLICIT REAL*8 (A-H, 0-Z)
                DIMENSION A(N),B(N),C(N),H(N)
 116.
 117
                HR=CON/H(1)
 118
                B(1)=0.000
 119
                NM=N-1
               DO 100 I=1,NM
 120
 121
                I1=I+1
                HR=CON/H(I)
 123
                A(I1)=HR
 124
               B(I)=B(I)-HR
 125
                8(11) -- HR
 126
           100 C(I)=HR
127
               RETURN
128
                END
               SUBROUTINE D2XYS(R,U,CON,ALONGX,ALONGY,NI,NJ)
. 129
```

擊.

```
130
  131
               S/R: D2XYS - CALCULATES 2ND DERIVATIVE IN X- OR Y-
   132
           C
                              DIRECTION DEPENDING UPON WHETHER ALONGX OR
  133
           С
                              ALONGY IS TRUE,
  134
           С
  135
               AUTHOR: A. STANIFORTH - OCTOBER 1977
136
               REVISION 001: A. STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION REVISION 002: T. GODS - 1979-BO ADAPTED FOR AMDAHL AT U DF A
  137
           C
  138
  139
  140
               CALL: CALL D2XYS(R,U,CON,ALONGX,ALONGY,NI,NJ)
           C
  141
  142
               ARGUMENTS:
           C
  143
           C
                 OUT
                        - R
                                  - RESULT
  144
           C
                 IN
                        - U
                                . - IMPUT FIELD TO BE TWICE DIFFERENCIATED
  145
           С
                        ~ CON
                                    CONSTANT
  146
           C,
                        - ALONGX " IF TRUE DIFFERENTIATE IN X-DIRECTION
                        - ALONGY - IF TRUE DIFFERENTIATE IN Y-DIRECTION
  147
           С
  148
           C
                        - NI
                                  - X-DIMENSION
  149
           С
                        - NJ
                                  - Y-DIMENSION
  150
           С
 151
          C
 152
                  IMPLICIT REAL+8 (A-H, 0-Z)
 153
                 DIMENSION R(NI,NJ),U(NI,NJ)
 154
                 COMMON / WKS1D4 / WK4(1)
 155
                 COMMON / WKS1D5 / A(1)
 156
                 COMMON / WKS1D6 / B(1)
COMMON / WKS1D7 / C(1)
 157
                 COMMON / HXMESH / HX(1)
COMMON / HYMESH / HY(1)
 o158
 159
 160
                 LOGICAL ALONGY, ALONGY
 161
          C
 162
          C
 163
 164
                 NÎM=NI-1
 165
                 NJM=NJ-1
 166
                 IF(ALONGX) GO TO 100
 167
                 IF(ALONGY) GO TO 200
 168
                 RETURN
 169
          C
 170
          C
             X-DIRECTION
 171
 172
            100 CONTINUE
 173
                CALL SETD2(A,B,C,CON,HX,NI)
 174
                DO 130 J=1,NJ
175
                WK4(NI)=B(NI)=U(NI,J)
176
                DO 120 I=1,NIM
177
                 I1=I+1
178
            120 WK4(I)=C(I)=U(I1,J)+B(I)=U(I,J)
179
                DO 125 1-1,NIM
180
                I 1=I+1
181
            125 R(I1,J)=A(I1)+U(I,J)+WK4(I1)
182
                R(1;J)=WK4(1)
183
            130 CONTINUE
184
                RETURN
185
         C
            Y-DIRECTION
186
187
         C.
188
           200 CONTINUE
189
                CALL SETD2(A,B,C,CON,HY,NJ)
190
                DO 230 I=1,NI
191
                WK4(NJ)=B(NJ)=U(I,NJ)
192
                DO 220 J=1,NJM
193
                J1=J+1
194
           220 WK4(J)=C(J)+U(I,J1)+B(J)+U(I,J)
195
               DO' 225 J=1,NJM
```

(30)

*)

```
196
                  1+6=16
   197
              225 R(I,J1)=A(J1)+U(I,J)+WK4(J1)
   198
                  R(I,1)=WK4(1)
   199
              230 CONTINUE
                  RETURN
   200
   201
                  END
   202
                  SUBROUTINE GDADGO (R, CONG, G, CONH, H, NI, NJ)
   203
   204
               S/R: GDADGD \sim R(I,J)=CONG*G(I,J)+CONH*H(I,J)
   205
            C
               AUTHOR: A. STANIFORTH DEC 78
   206
   207
   208
               REVISION 001: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
            C
   200
   210 4*
               ARGUMENTS:
   211
            C
                              - RESULTING GRID
            C
                        CONG -
                                MULTIPLICATIVE CONSTANT FOR FIRST INPUT GRID
                IN
                      - ,G
                               FERST INPUT GRID
                                MULTIPLICATIVE CONSTANT FOR SECOND INPUT GRID
                             - SECOND INPUT GRID
            C
                      - H
                      - NI
                             - DIMENSION OF X-DIRN
           C
                             - DIMENSION OF Y-DIRN
           C
   218
           C
               - R AND G MAY SHARE THE SAME SPACE IF G NOT REQUIRED SUBSEQUENTLY
   219
               - R AND H MAY SHARE THE SAME SPACE IF H NOT REQUIRED SUBSEQUENTLY
   220
   221
   222
                  IMPLICIT REAL+8 (A-N.O-Z)
   223
   224
                  DIMENSION R(NI,NJ), G(NI,NJ), H(NI,NJ)
   225
                  DO 20 J=1,NJ
                  DO 20 I=1,NI
   226
   227
                  R(I,J)=CONG*G(I,J)+CONH*H(I,J)
               20 CONTINUE
   228
                  RETURN
   229
   230
                  ENO
END OF FILE
```

س

```
FILE INTERP
             OBJECT FILE INTERP O
         C
             SUBROUTINES
   6
         C
                  INTRPT
   7
                  - DINT
  8
         С
                 - ROSSR3
  9
         C
                 - SPD
  10
                    FD1
  1 1
         С
                 - FDM
  12
         С
  13
         C
                SUBROUTINE INTRPT(FI,IFI, UFI,F,IF, UF,XI,YI,X,Y,FX,FY,FXY,
 15
 16
                                    HX, HY, KL, P, S, C, A, D, WORK, KDER)
 17
 18
         C ORIGINALLY WRITTEN AT DRPN, DORVAL P.Q.
 19
 20
         C REVISION OO1 - T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
 21
         C INTRPT DOES 2-DIMENSIONAL SPLINE INTERPOLATION. THE INPUT F(IF, JF) IS C DEFINED ON THE PTS ((X(I), Y(J), I=1, IF), J=1, JF) THE OUTPUT
 22
 23
         C FI(4, IFI, UFI) IS CALCULATED AT PTS ((XI(I), YI(U), I=1, IFI), U=1, UFI)
 25
         C USING BI-CUBIC SPLINES IN TERMS OF THE PARTIAL DERIVATIVES OF F.FX.FY.
         C FXY. THESE P.D.S ARE CALCULATED BY SPD. (IF KL.EQ.1. FXY*DX(DY(F)), C WHILE IF KL.NE.1, FXY-DY(DX(F))).
 26
 27
 28
         C FD1 AND FDM RETURN END PT DERIVATIVES USED BY SPD
 29
         C THE VECTORS XI, YI, X, Y, (HX(I) *X(I+1) -X(I), I *1, IF-1).
         C (HY(J)=Y(J+1)-Y(J),J=1,JF-1), ARE ADDITIONAL INPUT.
 30
 31
         C THE ACTUAL INTERPOLATION IS DONE BY THE ROUTINE DINT, AFTER THE
32
         C EVALUATION OF FX, FY, FXY.
         C IF KDER*FALSE, THEN ONLY INTERPOLATED VALUES OF THE FUNCTION ARE
33
34
         C RETURNED.
         C IF KDER-TRUE, THE VALUES OF THE X,Y AND XY DERIVATIVES AT THE
35
        C INTERPOLATED PTS WILL ALSO BE RETURNED.
36
37
38
                IMPLICIT REAL*8 (A-H,O-Z)
39
                DIMENSION FI(4, IFI, JFI)
40
                DIMENSION F (IF, JF)
41
                DIMENSION FX(IF, JF)
                DIMENSION FY(IF. JF)
42
43
                DIMENSION FXY(IF, JF)
44
        C THE PROPER DIMENSIONS HERE ARE IFI, UFI, IF, UF, IF, UF
45
46
47
               DIMENSION XI(IFI)
48
               DIMENSION YI(JFI)
49
               DIMENSION X(IF)
50
               DIME ON Y(UF)
DIM NS ON HX(IF)
51
52
               DIMIN:
                       ુખ HY(J£)
53
        C
        C WORKING STORAGE FOR SPD, ROSSR3 (LENGTH MAXO(IF, UF) IS SUFFICIENT)
54
55
56
               DIMENSION P(IF)
               DIMENSION S(IF)
57
58
               DIMENSION A(IF)
59
               DIMENSION C(IF)
60
               DIMENSION D(IF)
61
62
        C WORKING STORAGE FOR DINT
63
```

```
DIMENSION WORK (UFI.8)
 65
               LOGICAL KDER
 66
         C CHECK TO ENSURE EXTRAPOLATION IS NOT BEING ATTEMPTED A MACHINE
  67
         C DEPENDENT INCREMENT IS ADDED IN TEST TO ACCOUNT FOR MACHINE ROUND-OFF
  68
  69
  2.5
                -1=\I(1)+DABS(XI(1)+1 (-10)
                IF(X1 LT 0 ) WRITE(6,900 ...1),
  7.1
               IF (X1 LT O ) STOP
  7 2
  - :1
                X1*YI(1)+DABS(YI(1)*1 D
               IF(X1 LT O ) WRITE(6,90
  7.4
  7.5
               IF(x1 LT.C.) STOP
 76
               X1* X(1)+DABS( X(1)+1,D=1
  77
               X1 = X(IF) + DABS(X(IF) + 1.D-12)
  78
               IF(X1.LT.O.) WRITE(6,902) IF , X(IF), IFI, XI(IFI)
 79
               IF(X1 LT O.) STOP
 80
               X1=Y(JF)+DABS(Y(JF)+1.D-12)-YI(JFI)
 R 1
               IF(X1 LT O.) WRITE(6,903) OF, Y(UF), UFI, YT(UFI)
 82
               IF(X1 LT O.) STOP
           900 FORMAT(1H1. 'EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT. XI(1)='.
 83
              1E16.8, LT X(1)=',E16.8)
 84
 85
           901 FORMAT(1H1, EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT.
              1E16.8, 'LT Y(1)=', E16.8)
 86
           902 FORMAT(1H1, 'EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT
 87
                                                                             X(',I"
              1')=',E16.8,'LT XI(',I5,')=',E16.8)
 88
 89
           903 FORMAT(1H1, 'EXTRAPOLATION ATTEMPTED, DETECTED BY INTRPT Y(', I'
              1') = ,E16 8,'LT YI(',I5,') = ',E16.8)
 90
 91
               CMU1=0.0D0
 92
               CLMDAM . 0.000
 93
               IF(KL.NE.1) GO TO 150
 94
            10 DO 100 I = 1. IF
 95
               DO 50 J=1, JF
               S(J)=F(I,J)
            50 COMPTINUE
                ∍FD1(S,HY,UF)
               CM = FDM(S,HY, df)
100
               CALL SPD (P.S.JF HY, CMU1, C1, CEMDAM, CM, A, C.D)
101
               DO 60 J=1, JF
102
               FY(I,J) =P(□)
103
            60 CONTINUE
104
               IF(KL.EQ.1) GD TD 100
105
               00 70 J*1, JF
               S(J)*FX(I,J)
106
107
            70 CONTINUE
108
               C1*FD1(S.HY,JF)
               CM*FDM(S,HY.JF)
109
110
               CALL SPD(P,S.JF,HY,CMU1,C1,CLMDAM,CM,A,C,D)
111
               DO 75 J=1,JF
112
               FXY(I,J)=P(J)
           75 CONTINUE
113
           100 CONTINUE
114
115
               IF(KL.NE.1) GD TD 600
116
           150 DO 500 J=1,JF
117
               DO 200 I=1, IF
               S(I)=F(I,U)
118
119
          200 CONTINUE
120
               C1*FD1(S,HX,IF)
121
               CM=FDM(S,HX,IF)
               CALL SPD(P,S,IF,HX,CMU1,G1,CLMDAM,CM,A,C,D)
122
123
              DO 210 I=1, IF
               FX(I,J)=P(I)
124
125
          210 CONTINUE
               IF(KL.NE.1) GO TO 500
126
127
               DO 260 I=1, IF
               S(I)=FY(I,J)
128
          260 CONTINUE
129
```

C,

```
130
                C1*FD1($,HX,IF)
 131
                CM*FDM(S, HX, IF)
 132
                CALL SPD(P, S, IF, HX, CMU+, C+, CLMDAM, CM, A, C, D)
 133
 134
                FXY(I O)=P(I)
 135
            280 CONTINUE
 136
            500 CONTINUE
 137
                IF(KL NE 1) GO TO 10
 138
            600 CALL DINT(FI, IFI, UFI, F, IF, UF, FX, FY, FXY, XI, YI, X, Y, HX, HY)
               1 WORK(1,1), WORK(1,2), WORH: 1,3), WORK(1,4), WORK(1,5), WORK(1,5)
 139
 140
                   WORK(1,7), WORK(1,8), KDER)
 141
                RETURN
 142
 143
                SUBROUTINE DINT(FI,IFI,UFI,F,IF,UF,FX,FY,FXY,XI,YI,X,Y,0Y,4Y)
 144
                 ZA, ZB, ZC, ZD, ZAY, ZBY, ZCY, ZDY, KDER)
 145
                IMPLICIT REAL*8 (A-H, 0-Z)
 146
                DIMENSION FI(4, IFI, UFI)
                DIMENSION F(IF, JF)
 147
 148
                DIMENSION FX(IF, UF)
 149
                DIMENSION FY(IF, JF)
                DIMENSION FXY(IF, JF)
 150
 151
                DIMENSION XI(IFI)
 152
                DIMENSION YI(JFI)
 153
                DIMENSION X(IF)
 154
                DIMENSION Y(JF)
 155
                DIMENSION HX(IF)
               DIMENSION HY(JF)
 156
157
                DIMENSION ZA(UFI), ZB(UFI), ZC(UFI), ZD(UFI)
 158
                DIMENSION ZAY(UFI), ZBY(UFI), ZCY(UFI), ZDY(UFI)
159
               LOGICAL KDER
160
161
         C ORIGINALLY WRITTEN AT DRPN, DORVAL P.Q.
         C REVISION 001: T. GOOS - 1979-80 ADAPTED FOR AMDAHL
162
                                                                     U OF A
163
164
         C THE DISCRETE FN F(I, J) IS ASSUMED KNOWN AT THE PTS WHOSE COORDS ARE
         C (X(I),Y(J)), WHERE I=1,...IF \cup,J=1,...JF.
165
         C IT IS ASSUMED THAT X(I).LT.X(I+1) AND Y(U).LT.Y(U+1)
166
           HX(I) MUST BE PREVIOUSLY DEFINED AS HX(I)=X(I+1)-X(I) FOR I=1,...(IF-1).
167
168
         C SIM. FOR HY(J),
169
         C IF KDER=TRUE THEN
           THIS SUBROUTINE RETURNS IN FI(K,1,J) THE INTERPOL TO VALUES OF THE
170
171
         C FUNCTION AND ITS X,Y,XY DERIVATIVES AT PTS (XI(I), I(U)).
172
         C WHERE I=1,.....IFI ,U=1,...UFI.
173
          IT IS ASSUMED THAT XI(I).LT.XI(I+1) AND YI(J).LT.YI(J+1).
         C HERE K+1 REFERS TO THE FUNCTION,
174
175
                K=2 REFERS TO THE X-DER OF THE FUNCTION,
176
                K=3 REFERS TO THE Y-DER OF THE FUNCTION,
                K*4 REFERS TO THE XY-DER OF THE FUNCTION.
177
178
        C NOTE THAT X(1).LE.XI(1).LE.XI(IFI).LE.XI(IF).
179
        C SIM. FOR Y AND YI.
180
        C IF KDER=FALSE THEN ONLY THE INTERPOLATED VALUES OF THE FUNCTION ARE
181
        C RETURNED. (I.E. CALCULATIONS ARE PERFORMED FOR K=1 ONLY).
182
        C THE APPROXIMATION USED IS A BICUBIC SPLINE OF INTERPOLATION IN
183
        C TERMS OF THE PARTIAL DERIVATIVES FX(I,J), FY(I,J) AND FXY(I,J)
        C WHERE I=1, ...IF ....J=1,...JF.
C THESE DERIVATIVES MUST BE CALCULATED OUTSIDE OF THE ROUTINE.
184
185
186
        C E.G. BY USING SUBROUTINE SPD IN A SUITABLE MANNER - SUBROUTINE INTO
187
        C DOES THIS AND CALLS THIS SUBROUTINE. (INTO IS CALLABLE FROM INTRPT).
188
        C WORKING STORAGE ARRAYS ZA, ZB, ZC, ZD HAVE DIMENSION UFI.
189
        С
190
191
               LL=2
               DO 15 J=1.JFI
192
               DO 5 L=LL.JF
193
               IF(YI(J).LE.Y(L)) GO TO 8
194
             5 CONTINUE
195
```

```
196
                L = JF
197
             8 L1=L-:
                LL=L
198
                WN=YI(J)-Y(L1)
199
200
                WD = 1.000/HY(L1)
                WE - WN - WD
201
                WE 1 = 1 . ODO - WE
202
203
                WE2-WE1-WE!
                WW#2.000*WE
204
                ZA(J)=WE2*WN
205
                ZB(J)=WE1*WN*WE
206
                ZC(J)=WE2*(1.0D0+WW)
207
                ZD(J)=WE+WE+(3.000-WW)
208
                ZAY(J) = - WW+WE 1+WE2
209
                ZBY(J) = - WE * WE + WW * WE 1
210
                ZCY(J) = -6.000*WD*WE1*WE
211
212
                ZDY(J) = -ZCY(J)
             15 CONTINUE
213
                KK = 2
214
                DO 500 I=1.IFI
215
                DO 40 K=KK, IF
216
                IF(XI(I).LE.X(K)) GO TO 45
217
            40 CONTINUE
218
                K=IF
219
            45 K1=K-1
220
                KK-K
221
222
                WM=XI(I)-X(K1)
                WDD=1.000/HX(K1)
223
                WZ=WM+WDD
224
                WZ 1=1.000-WZ
225
                WZ2=WZ1*WZ1
226
                ZZ=2.000*WZ
227
                ZE=WZ2*WM
228
                ZF=WZ1*WM*WZ
229
                ZG=WZ2*(1.0D0+ZZ)
230
                ZL=WZ*WZ*(3.0D0-ZZ)
231
                IF(,NOT,KDER) GO TO 46
232
                ZEX=-ZZ*WZ1+WZ2
233
                ZFX = - WZ + WZ + ZZ + WZ 1
234
                ZGX = -6.000 + WDD + WZ 1 + WZ
235
                ZLX=-ZGX
236
            46 LL 🗫
237
                DD 400 J=1.JFI
238
                DO 420 L=LL.JF
239
                IF(YI(J).LE.Y(L)) GO TO 450
240
241
           420 CONTINUE
242
                L+JF
           450 L1=L-1
243
244
                LL=L
                Z1=ZE*FXY(K1,L1)-ZF*FXY(K,L1)+ZG*FY(K1,L1)+ZL*FY(K,L1)
245
                Z2=ZE*FXY(K1,L)-ZF*FXY(K,L)+ZG*FY(K1,L)+ZL*FY(K,L)
Z3=ZE*FX(K1,L1)-ZF*FX(K,L1)+ZG*F(K1,L1)+ZL*F(K,L1)
246
247
                Z4+ZE+FX(K1,L)-ZF+FX(K,L)+ZG+F(K1,L)+ZL+F(K,L)
248
                FI(1,I,J)=ZA(J)+Z1-ZB(J)+Z2+ZC(J)+Z3+ZD(J)+Z4
249
                IF( .NOT .KDER) GO TO 400
250
                Z1X=ZEX*FXY(K1,L1)-ZFX*FXY(K,L1)+ZGX*FY(K1,L1)+ZLX*FY(K,L1)
251
                Z2X=ZEX*FXY(K1,L)-ZFX*FXY(K,L)+ZGX*FY(K1,L)+ZLX*FY(K,L)
252
                Z3X+ZEX+FX(K1,L1)-ZFX+FX(K,L1)+ZGX+F(K1,L1)+ZLX+F(K,L1)
253
                Z4X=ZEX*FX(K1,L)-ZFX*FX(K,L)+ZGX*F(K1,L)+ZLX*F(K,L).
254
                FI(2,I,J)=ZA(J)+Z1X-ZB(J)+Z2X+ZC(J)+Z3X+ZD(J)+Z4X
255
                FI(3,1,J)=ZAY(J)+Z1-ZBY(J)+Z2+ZCY(J)+Z3+ZDY(J)*Z4
256
                FI(4,1,J)=ZAY(J)+Z1X-ZBY(J)+Z2X+ZCY(J)+Z3X+ZDY(J)+Z4X
257
           400 CONTINUE
258
           500 CONTINUE
259
                RETURN
260
                END
261
```

```
262
                 FUNCTION FDM(F,H,M)
  263
  264
              FUNCTION: FDM - THIS FUNCTION RETURNS IN FDM THE DERIVATIVE
           С
  265
           C
                               OF F AT THE PT X(M) IN TERMS OF
  266
           С
                               F(M-3), F(M-2), F(M-1), F(M), H(M-3), H(M-2), H(M-1)
  267
          . с
                               WHERE H(I)=X(I+1)-X(I) FOR I=M-3,M-2,M-1
  268
  269
              AUTHOR: A. STANIFORTH - 1973
  270
              REVISION 001: A STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION
  271
  272
              REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
          С
  273
  274
          C FUNCTION : CALL FDM(F,H,M)
  275
          С
  276
2<del>17</del>
              ARGUMENTS:
          С
          ٠C
                       - F - FIELD OF VALUES
  278
          C
                       - H - MESH-SPACING
  279
          С
                       - M - NO OF POINTS
  280
          C
             NOTES: - THE APPROXIMATION USED IS THE DIFFERENTIATED FORM OF
  281
          C.
  282
          C
                       LAGRANGES CUBIC INTERPOLATION FORMULA FOR NON-UNIFORM
  283
          C
                       GRIDS.
 284
          C
 285
 286
                IMPLICIT'REAL+8 (A-H,O-Z)
DIMENSION F(M),H(M)
 287
 288
                H1*H(M-1)
 289
                H2=H(M-2)
 290
                H3=H(M-3)
 291
                X1=H1+H2
 292
                X2=H2+H3
 293
                EH+1X=EX
 294
                FDM=-X1*H1*F(M-3)/(H3*X2*X3)+X3*H1*F(M-2)/(H3*H2*X1)
                FDM=FDM-X3*X1*F(M-1)/(X2*H2*H1)+(1.0D0/X3+1.0D0/X1+1.0D0/H1)*F(M)
 295
 296
                RETURN
 297
                END
 298
                FUNCTION FD1(F,H,M)
 299
                IMPLICIT REAL*8 (A-H.O-Z)
 300
                DIMENSION F(M),H(M)
 301
 302
         C ORIGINALLY WRITTEN AT DRPN, DORVAL P.Q.
 303
         C REVISION 001: T. GOOS - 1979-60 ADAPTED FOR AMDAHL AT U OF A
 304
 305
 306
         С
            LET F(1),F(2),..... BE THE VALUES OF A FUNCTION F DEFINED AT
307
            SUCCESSIVE PTS X(1),X(2),.... OF A NON UNIFORM GRID.
            THIS FUNCTION ROUTINE RETURNS IN FD1 THE DERIVATIVE OF F AT THE PT
308
         C-X(1) IN TERMS OF F(1),F(2),F(3),F(4),H(1),H(2),H(3).
309
            THE APPROXIMATION USED IS THE DIFFERENTIATED FORM OF LAGRANGES CUBIC
310
         C
311
            INTERPOLATION FORMULA FOR NON UNIFORM GRIDS.
312
313
         С
314
               H1=H(1) .
315
               H2=H(2)
316
               H3=H(3)
317
               X14H1+H2
318
               X2=H2+H3
319
             CH+1X=EX
               FD1=-(1.000/H1+1.000/X1+1.000/X3)*F(1)+X1*X3*F(2)/(H1*H2*X2)
320
321
               FD1=FD1-H1*X3*F(3)/(X1*H2*H3)+H1*X1*F(4)/(X3*X2*H3)
322
               RETURN
323
324
               SUBROUTINE ROSSR3(P,A,DELTA,C,D,M)
325
        C DRIGINALLY WRITTEN AT DRPN, DORVAL P.Q.
326
        C REVISION OO1: T. GOOS - 1979-80 ADAPTED FOR AMAHL AT U OF A
327
```

```
329
            VERSION 3
            ANY TRI-DIAGONAL MATRIX SAY Q IN EQUATION QP+D MAY BE
330
         C
            NORMALIZED WITH 1'S ON DIAGONAL AND C(I), I=1,M-1 FOR UPPER DIAGONAL
331
         C
            AND A(1), I=2, M FOR LOWER DIAGONAL.
332
333
            DELTA IS A WORKING STORAGE ARRAY OF DIMENSION M
334
         C
            IF THE VECTOR D IS NOT REQUIRED, SUBSEQUENTLY THEN THE CALL STATEMENT
335
            CALL ROSSR3(P,A,D,C,D,M)
336
            WILL USE THE ARRAY D AS WORKING STORAGE AND REDUCE THE OVERALL STORAGE
337
338
            REQUIRED .
            IF THE ARRAY C IS NOT REQUIRED SUBSEQUENTLY THEN THE CALL STATEMENT
339
            CALL ROSSR3(C.A.DELTA.C.D.M)
340
            WILL REDUCE CORE STORAGE REQUIREMENTS.
341
            IF BOTH C AND D ARE NOT REQUIRED SUBSEQUENTLY THEN THE CALL STATEMENT CALL ROSSR3(C, A, D, C, D, M)
342
343
            WILL FURTHER REDUCE THE CORE REQUIREMENTS.
344
345
                IMPLICIT REAL+8 (A-H,O-Z)
               DIMENSION P(M), A(M), DELTA(M), C(M), D(M)
346
347
               C(M)=0.000
348
               P(1) = -C(1)
               DELTA(1)=D(1)
349
350
               DO 1 I=2.M
351
                I 1=I-1
352
               AI-A(I)
               X=1.000/(1.000+AI*P(I1))
353
354
               P(I) = -C(I-) +X
             1 DELTA(I)=(D(I)-AI+DELTA(I1))+X
355
               P(M)=DELTA(M)
356
                                                                                       13
357
               DO 2 I=2,M
358
               II=M-I+1
               II1=II+1
359
360
             2 P(II)=P(II)+P(II1)+DELTA(II)
361
               RETURN
362
               END
363
               SUBROUTINE SPD(P.S.M.H.CMU1.C1.CLMDAM.CM,A.C.D)
364
365
            THIS SUBROUTINE RETURNS IN P THE DERIVATIVES OF THE FUNCTION S DEFINED
366
        C
            AT M CONSECUTIVE DISCRETE DATA POINTS X(1),X(2),....X(M).
367
           .THESE DATA POINTS DEFINE A NON-UNIFORM GRID H(I)=X(I+1)-X(I) WHERE I
368
        C
            RUNS FROM 1 TO (M-1)
369
370
            IT USES SUBROUTINE ROSSR3.
            THE APPROXIMATION USED IS A CUBIC SPLINE FIT TO ALL THE DATA POINTS. IT REQUIRES BOUNDARY CONDITIONS TO BE SPECIFIED OF THE FORM
371
372
373
              P(1)+CMU1*P(2)*C1
              CLMDAM+P(M-1)+P(M)=CM
374
            FOR A NATURAL SPLINE (THIS IS LEAST RESTRICTIVE CONDITION AND IMPLIES
375
            ZERO CURVATURE AT THE END POINTS), SQD(1)=SDD(M)=O. AND WE HAVE
376
            CMU1=CLMDAM=0.5, C1=1.5*(5(2)-5(1))/H(1), CM=1.5*($(M)-5(M-1))7H(M-1)
377
378
           FOR SRECIFIED SLOPES (I.E. SD(1) AND SD(M) GIVEN) WE HAVE
379
            CMU1=CLMDAM=O. C1=SD(1)
                                          CM-SD(M)
380
381
        C
            FOR SPECIFIED SECOND DERIVATIVES (I.E. SDD(1) AND SDD(M) GIVEN) WE HAVE CMU1=CLMDAM=0.5, C1=1.5*(S(2)-S(1))/H(1)-H(1)*SDD(1)*0.25
382
        C
383
        C
                                CM=1.5*(S(M)-S(M-1))/H(M-1)+H(M-1)*SDO(M)*0.25
384
        C
385
        C
            NOTE THAT IF THE GRID SIZES H(1) ARE FIXED THEN THE CALCULATION OF A
386
        C
            AND C MAY BE MADE OUTSIDE THE SUBROUTINE AND PASSED VIA A COMMON BLOCK.
387
        C
388
389
               IMPLICIT REAL+8 (A-H, 0-Z)
               DIMENSION P(M),S(M),A(M),C(M),D(M),H(M)
390
               M 1 = M - 1
391
               DG 1 I=2,M1,
292
               I1=I-1
```

1.5

```
394
                    HI=H(I)
    395
                    HI1=H(I1)
    396
                    X1=0.5DO/(HI+HI1)
    397
                    A(I)=HI*X1
    398
                  1 C(I)=HI1*X1
                    DO 2 I=2 M1
I1=1=1
    399
    400
    401
                    12-1-1
    402
                    HI=H(I)
    403
                    HI1+H(I1)
                    SI=S(I)
X1=H(I)/H(I-1)
    404
    405
    406
                 2 D(1)=1.5DO+((SI-S(I1))+X1+(S(I2)-SI)/X1)/(HI+HI1)
   407
                    C(1)=CMU1
                   A(M)=CLMDAM
D(1)=C1
   408
   409
   410
                   D(M)=CM
   411
                   CALL ROSSR3(P,A,D,C,D,M)
RETURN
   412
   413
                   END
END OF FILE
```

4-

. 🖠

ŝ

```
FILE:
                        PROD
                 OBJECT FILE.
  2
         C
                               PROD . O
   3
         С
                 SUBROUTINES:
         C
                          NL I NX
  5
         С
                          NLLOOP
  6
         C
         С
  8
         С
  9
               SUBROUTINE NLINX (R, U, V, H6, NI)
 10
 11
         C
            ADAPTED FROM DRPN DORVAL P.Q.
 12
         С
            REVISION 001: T. GODS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
 13
         C
 14
               IMPLICIT REAL*8 (A-H,O-Z)
 15
               DIMENSION R(NI), U(NI), V(NI)
 16
         С
 17
         С
            H6(I)=H(I)/6. MUST BE PRESET BEFORE ROUTINE
 18
 19
               DIMENSION HE(NI)
 20
               NIM=NI-1
 21
               WK50=U(1)*V(1)
 22
               R(1)=0.000
 23
               DO 300 I=1.NIM
 24
               I1=I+1
 25
               H6I=H6(I)
 26
               WK4=(U(I)+U(I1))+(V(I)+V(I1))+.5000
 27
               R(I) = R(I) + (WK50 + WK4) + H6I
 28
               WK50=U(I1)*V(I1)
          300 R(I1)=(WK50+WK4)+H6I
 29
 30
               RETURN
31
               END
               SUBROUTINE NLLOOP(R,U,V,NI,NJ)
32
33
        C
           S/R : NLLOOP - COMPUTE THE HORIZONTAL PRODUCT R=U+V
34
35
36
           AUTHOR : A. STANIFORTH - REVISED DEC 78 TO REMOVE BANK CONFLICTS
        С
           REVISION 001: T. GOOS 1979-80 ADAPTED FOR AMDAHL AT U OF A
37
        С
38
        С
39
        С
           ARGUMENTS:
40
                       '- RESULTING PRODUCT
        C
             OUT
                  - R
             IN - U
41
        C
                       - INPUT FIELD
42
        С
                   ~ V
                       - INPUT FIELD
43
                   - NI - X DIMENSION
        С
44
        Ç
                   - NJ - Y DIMENSION
45
        С
46
        С
47
              IMPLICIT REAL+8 (A-H.O-Z)
48
              DIMENSION R(NI,NJ),U(NI,NJ), ₹(NI,NJ)
49
              COMMON / HXMESH / HX(1)
50
              COMMON / HYMESH / HY(1)
51
              COMMON / WKS1D1 / HX6(1)
52
              COMMON / WKS102 / UO(1)
53
              COMMON / WKS1D3 / VO(1)
54
              COMMON / WKS1D6 / RO(1)
55
              COMMON / WKS1D7 / WK7(1)
56
              COMMON / WKS1D8 / WK8(1)
57
              COMMON / WKS1D9 / WK9(1)
              COMMON / WKS110 / HOLD(1)
58
59
              TWELFT=1.000/12.000 \
              SIXTH=1.000/6.000
60
61
              NIM=NI-1
62
              NUM=NU-1
63
       С
```

```
64
                 COMPUTE H6(1) +H(1)/6
             С
      65
             C
                 AND SET RO TO O
      66
             C
     67
                    DO 50 I=1,NIM
     68
                    UO(I)*U(I,1)
     69
                    VO(1)=V(1,1)
     70
                   RO(1)=0.000
     7 1
                50 HX6(I)*HX(I)/6.000
     72
                   RO(NI)=0.000
     73
                   UO(NI)=U(NI,1)
     74
                   VO(NI)= V(NI,1)
     75
     76
            С
     77
                COMPUTE ROW PRODUCT U+V ON FIRST ROW
            `C
     78
            С
     79
                   CALL NLINX(WK7, UO, VO, HX6, NI)
    80
            С
    8 1
            С
               LOOP OVER ROWS
    82
            С
    83
                  DO 100 J-1, NUM
    84
                  J1=J+1
    85
                  HYJ1=HY(J)+SIXTH
    86
                  HYJ2=HY(J) *TWELFT
    87
                  DO 75 I=1,NI
    88
           С
    89
               ADD FIRST CONTRIBUTION TO J TH ROW
           С
    90
           С
    91
                  HOLD(I) + HYJ1 + WK7(I) + RO(I)
   92
           С
   93
              COMPUTE 2.*U AND 2.*V ON COLLOCATION ROW
           С
   94
           C
   95
                 WK8(I)*UO(I)+U(I,J1)
   96
              75 WK9(I)=VO(I)+V(I,J1)
   97
           С
   98
              COMPUTE ROW PRODUCT HY(J)*U*V/3. ON COLLOCATION ROW
          С
   99
          С
  100
                 CALL NLINX(WK7, WK8, WK9, HX6, NI)
  101
                 DO 90 I=1,NI
  102
                 WK8(I)=HYJ2*WK7(I)
  103
          С
             ADD OTHER CONTRIBUTION TO J TH ROW
  104
          C
  105
          С
 106
                RO(I)=HOLD(I)+WK8(I)
 107
          С
 108
             MOVE RESULT RO INTO R(1,J)
          С
 109
          С
 110
                R(I,J)=RO(I)
 111
          С
             ADD FIRST CONTRIBUTION TO (J+1)ST ROW
 112
          C
 113
         С
 114
             90 HOLD(1) * WK8(1)
115
         C
          C COMPUTE ROW PRODUCT U+V ON (J+1)ST ROW
116
117
         С
118
               CALL NLINX(WK7,U(1,J1),V(1,J1),HX6,NI)
119
         С
120
            ADD OTHER CONTRIBUTION TO (U+1)ST LEVEL
         С
121
         С
122
               DO 120 I=1.NI
123
               RO(I)=HYJ1+WK7(I)+HOLD(I)
124
        С
           MOVE U(1, U+1), V(1, U+1) INTO UO, VO
125
        C
126
        C
127
               DO(1)=0(1701)
128
           120 VO(I)=V(I,J1)
129
          100 CONTINUE
```

```
130
131
132
133
                      MOVE RESULT RO INTO LAST NOW OF
                     DD 150 I T, NI
150 R(I,NJ) RO(I)
RETURN
END
     134
     135
136
END OF FILE
```

```
C
          С
              FILE: PROJ
          С
          С
              OBJECT FILE:
                              PROU O
   5
          C
              SUBROUTINES
          С
                  - PROUN
   7
                  - SETABO
          С
   8
          ¢
                  - SETTRI
   9
          C
                  - SOLTRI
  10
          C
                  - PSOLVE
  1 1
          C
          С
  13
                 SUBROUTINE PROJN(R,RHS,FOURTH,NI,NJ,ALONGX,ALONGY)
  14
          С
  15
             S/R: PROJN - THE FINITE-ELEMENT PROJECTION OPERATOR (ALONG ANY
  16
          C
                            OR ALL DIRECTIONS, AS DECIDED BY THE LOGICAL VARIABLES
  17
          С
                            ALONGX, ALONGY)
  18
  19
          C
                            R = PROJECTION (RHS)
 20
 2 1
                       A. STANIFORTH - SPRING 1977
 22
 23
             REVISION 001: A. STANIFORTH - JAN 1979 VECTORIZED
         С
             REVISION 002: A. STANIFORTH - C. THIBEAULT FEB 79 DOCUMENTATION REVISION 003: T. GOOS - 1979-80 ADAPTED FOR AMDAMS AT U OF A
 24
 25
         C
 26
         C
             CALL: CALL PROJN(R,RHS,FOURTH,NI,NJ,ALONGX,ALONGY)
 27
 28
         C
 29
             ARGUMENTS:
         С
 30
         С
                OUT
                                 - RESULT OF PROJECTION
 31
         C
                IN
                       - RHS
                                 - RIGHT-HAND-SIDE TO BE PROJECTED
 32
                       - FOURTH - LOGICAL SWITCH - TRUE . FOURTH ORDER PROJECTION
         C
 33
         C
                                                                 IN HORIZONTAL
 34
         C
                                                     - FALSE . SECOND ORDER PROJECTION
 35
         C
                                                                 IN HORIZONTAL
 36
         C
                       - NI
                                 - X-DIMENSION
 37
         С
                       - NJ
                                 - Y-DIMENSION
 38
                       - ALONGX - IF TRUE PROJECT IN X DIRECTION - ALONGY - IF TRUE PROJECT IN Y DIRECTION
         C
 39
 40
         3 0
 41
            MCTES: - AT PRESENT THE CODE HANDLES SECOND AND FOURTH ORDER IN
 42
 43
                        BOTH DIMENSIONS.
 44
                      - IF ALDNGX AND ALONGY ARE ALL .FALSE., A COPY OF RHS IS
        C
 45
        C
                        RETURNED IN R.
46
        C
47
        C
48
               IMPLICIT REAL*8 (A-H.O-Z)
49
50
               DIMENSION R(NI,NJ), RHS(NI,NJ)
51
               COMMON / HXMESH / HX(1)
52
               COMMON / HYMESH / HY(1)
53
               COMMON / WKS105 / A(1)
54
               COMMON / WKS1D6 / B(1)
55
               COMMON / WKS1D7 / C(1)
56
               LOGICAL ALONGX, ALONGY
57
               LOGICAL FOURTH
54
        C
59
        C
60
           SET UP WEIGHTS FOR PROJECTION OPERATOR
        C,
          WT = 2. CORRESPONDS TO USUAL PROJECTION, WHILST
WT = 5. CORRESPONDS TO PROJECTION USED IN THE FOURTH-ORDER SOLUTION
        c(
61
62
63
                   . OF ELEIPTIC BOUNDARY-VALUE PROBLEMS.
```

```
С
65
              WTX=2 000
66
              WTY=2.000
               IF(FOURTH) WTX=5.000
67
               IF(FOURTH) WTY=5.000
68
69
          CODE FOR PROJECTION ALONG X DIRECTION
70
71
        C -
               IF ( .NOT .ALONGX ) GO TO 200
72
73
              CALL SETABC(A,B,C,HX,WTX.NI)
              NIM-NI-1
74
75
              DO 130 J#1,NJ
              DO 150 I=1.NIM
76
77
               I 1 = I + 1
78
               12=1+2
               R(I1,U)*A(I1)*RHS(I,U)+B(I1)*RHS(I1,U)
79
               IF(I.LT.NIM) R(I1,J)=R(I1,J)+C(I1)*RHS(I2,J)
80
          150 CONTINUE
81
               R(1,J)=C(1)*RHS(2,J)+B(1)*RHS(1,J)
82
          130 CONTINUE
83
              DO 135 J=1,NJ
84
              DO 135 I-1,NI
85
               RHS(I,J)=R(I,J)
86
          135 CONTINUE
87
        C
88
          200 CONTINUE
89
        C
90
           CODE FOR PROJECTION ALONG Y DIRECTION
91
92
               IF (, NOT . ALONGY) RETURN
93
               CALL SETABC(A.B.C.HY.WTY.NJ)
94
95
              NUM=NU-1
              DO 230 I=1,NI
96
              DO 250 J=1,NJM
97
98
               J1#J+1
               J2=J+2
99
               R(I,J1)*A(J1)*RHS(I,J)*B(J1)*RHS(I,J1)
100
               IF(U.LT.NUM) R(I,U1)=R(I,U1)+C(U1)*RHS(I,U2)
101
          250 CONTINUE
102
          R(I,1)=C(1)*RHS(I,2)+B(1)*RHS(I,1)
230 CONTINUE
103
104
105
               RETURN
               END
106
               SUBROUTINE SETABC (A, B, C, H, WT, N)
107
108
           S/R: SETABO - SETS THE TRI-DIAGONAL ELEMENTS OF THE MATRIX
109
                           ASSOCIATED WITH THE PROJECTION OPERATOR.
110
111
           AUTHOR: A. STANIFORTH - SPRING 1977
        C
112
113
        С
           REVISION 001: A. STANIFORTH - C. THIBEAULT FEB 79 DOCUMENTATION
114
           REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
        C
115
116
           CALL: CALL SETABC(A.B.C.H.WT.N)
117
        C
118
            ARGUMENTS:
119/
        С
                            - LOWER-DIAGONAL ELEMENTS
120
                OUT
                              DIAGONAL ELEMENTS
121
        C
                              UPPER-DIAGONAL ELEMENTS
                        С
1,22
        C
                              MESH-SPACING
123
        C
                IN
                              USUALLY WT=2., BUT WT=5. WHEN SOLVING EBV PROBLEMS
        C
124
                              TO FOURTH ORDER
125
        C
                            - NO. OF POINTS
126
        ¢
        ¢
127
        C
128
               IMPLICIT REAL+8 (A-H.O-Z)
```

\$

```
130
                    DIMENSION A(N),B(N),C(N)
    131
                    DIMENSION H(N)
   132
                    NM=N-1
   133
                    C1=0.500/(1.000+WT)
   134
                    C2*WT*C1
   135
                    A(1)=0.000
   136
                    B(1)=H(1)+C2
   137
                    C(!)=H(1)+C1
   138
                    DO 10 1=2,NM
   139
                   HI 1+H( I-1)
   140
                   HI *H(I)
   141
                   A(I)=HI1+C1.
   142
                   B(I)=(HI1+HI)+C2
   143
                   C(I)=HI+C1
   144
                10 CONTINUE
   145
                   A(N)=H(NM)+C1
   146
                   B(N)=H(NM)+C2
   147
                   C(N)=0.000
   148
                   RETURN
   149
                   FNO
   150
                   SUBROUTINE SETTRI(BIGE, BIGC, BIGA, A.B.C, N)
  151
               S/R: SETTRI - SETTRI DOES THE PREPROCESSING PASS TO SOLVE A
  152
  153
           C
                                TRI-DIAGONAL SYSTEM OF LINEAR EQUATIONS.
  154
           C
  155
           C
               AUTHOR: D. ROBERTSON - MARCH 1977
  156
           С
  157
              REVISION 001: A. STANIFORTH - C. THIBEAULT FEB 79 DOCUMENTATION
           С
               REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
  158
  159
  160
           C
              CALL: CALL SETTRI(BIGE, BIGC, BIGA, A.R. C.N)
  161
           C
  162
              ALGORITHM:
           С
  163
           C
                         - SOLVES
                                           M+P=D 1
  164
           С
 165
           C
                           WHERE M IN THE N BY N TRI-DIAGONAL MATRIX
 166
           G
 167
           C
 168
          С
                           *B(1),C(1),O.O...
 169
          C
                           *A(2),B(2),C(2),O.O....
 170
          C
 171
          С
 172
          C
 173
          C
                                .. 0,A(I),B(I),C(I),O.
 174
          C
 175
          С
 176
          C
                                              ...O,O.A(N),B(N)*
 177
 178
          C
                        - A(1) AND C(N) ARE NOT DEFINED BY THE MATRIX. BUT ARRAYS T,C
SHOULD BE OF FULL SIZE, N. FOR CONVENIENCE THIS ROUTINE
ZEROES C(N). THE METHOD IS GAUSSIAN ELIMINATION WITHOUT
179
          C
180
          C
181
          C
182
         C
                          PIVOTING, FOLLOWED BY BACK SUBSTITUTION.
183
          C
184
             ARGUMENTS
         C
185
                          BIGE - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
         C
               OUT
186
         C
                          BIGC - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
187
         C
                       - BIGA - PROCESSED ARRAY TO BE USED IN S/R SOLTRI
- A - LOWER-DIAGONAL ELEMENTS OF TRI-DIAGONAL MATRIX
188
         C
               3M
189
                                - DIAGONAL ELEMENTS OF TRI-DIAGONAL MATRIX
         C
190
         Ć
               IN
                               - UPPER-DIAGONAL ELEMENTS OF TRI-DIAGONAL MATRIX
                         C
191
         C
                       - N
                                - NO. OF POINTS
192
         C
            NOTES: - SETTRI IS CALLED TO COMPUTE BIGE, BIGC, BIGA FROM A.B.C
193
         C
194
         C
                       AFTER THAT A CALL TO SOLTRI WILL COMPLETE THE SOLUTION FOR
195
                     A GIVEN RHS D. THIS METHOD IS EFFICIENT WHEN SOLVING WITH
         C.
```

```
196
                       SEVERAL DIFFERENT RHS BUT THE SAME MATRIX M, AS ALL
                      DIVISIONS ARE DONE ONLY ONCE, AND SOLTRI PERFORMS N
 197
 198
                      VECTORIZABLE MULTIPLICATIONS FOLLOWED BY TWO SIMILAR
 199
                      RECURSIVELY DEFINED, NON-VECTORIZABLE, LOOPS, EACH HAVING
 200
                      N MULTIPLIES AND N SUBTRACTIONS, PER RHS. EXAMINATION OF
 201
                      SOLTRI SHOWS BIGA(1), BIGC(N) ARE NOT USED
 202
         C
 203
 204
 205
                IMPLICIT REAL+8 (A-F.O-Z)
                DIMENSION BIGE(N), BIGA(N), BIGA(N), A(N), B(N), C(N)
 206
 207
                BIGE(1)=1.000/B(1)
 208
                BIGC(1)=C(1)*BIGE(1)
 209
                C(N)=0.000
                DO 50 I=2,N
 210
 211
                I 1 = J :
                AI=A(I)
 212
               BIGE(I)=1.0/(B(I)-AI*BIGC(X,1))
 213
 214
               BIGC(I)=BIGE(I)*C(I)
                BIGA(I) = AI * BIGE(I)
 216
            50 CONTINUE
217
               RETURN
218
               END
               SUBROUTINE SOLTRI(N,P,D,BIGD,BIGE,BIGC,BIGA)
219
220
221
                  SOLTRI - USED AFTER SETTRI TO COMPLETE THE SOLUTION TO THE
                           TRI-DIAGONAL MATRIX PROBLEM. SEE SETTRI FOR DETAILS.
222
         С
223
         С
224
225
               IMPLICIT REAL*8 (A-H, 0-Z)
226
               DIMENSION P(N),D(N),BIGD(N),BIGE(N),BIGC(N),BIGA(N)
227
               DO 20 I=1,N
228
               BIGD(I) = D(I) * BIGE(I)
229
            20 CONTINUE
230
               DO 50 I=2,N
231
               I1=I-1
               BIGD(I)=BIGD(I)-BIGA(I)*BIGD(I1)
232
233
            50 CONTINUE
234
               P(N)-BIGD(N)
235
               DO 100 I*2,N
236
               IREV=N-I+1
237
               IREV1=IREV+1
238
               O(IREV) *BIGD(IREV) -BIGC(IREV) *P(IREV1)
239
                JUNITHC
240
                 TURN
241
               Ĕ
                 ROUTINE PSOLVE(R,RHS,NI,NU,ALONG) / C RY, FOURTH)
242
243
                 SOLVE : SOLUTION OF THE MATRIX PROBLEMS ASSOCIATED WITH THE
244
245
                           PROJECTION OPERATOR (ALONG ANY OR ALL DIRECTIONS, AS
246
        C
                           DECIDED BY THE LOGICAL VARIABLES ALONGX, ALONGY)
247
         С
248
        С
                                  R = INVERSE PROJECTION ( RHS )
249
        C
250
        С
            AUTHOR: A. STANIFORTH - REVISED DEC 78 TO EXECUTE FASTER
        C
            REVISION OO1: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A
251
252
        С
253
            ARGUMENTS:
        С
254
        C
             OUT
                               - RESULT
                     - RHS
                               - RIGHT-HAND SIDE
255
        С
              IN
256
        С
                     - NI
                               - X DIMENSION
257
        С
                     - NJ
                               - Y DIMENSION
258
        С
                     - ALONGX - IF .TRUE. , INVERSE PROJECT IN X DIRECTION
259
        С
                     - ALONGY - IF .TRUE. , INVERSE PROJECT IN Y DIRECTION
260
        C
261
        C
```

```
262
              С
      263
                     IMPLICIT REAL*8 (A-H.O-Z)
      264
                     DIMENSION R(NI,NJ), RHS(NI,NJ)
      265
                     COMMON / HXMESH / HX(1)
     266
                     COMMON / HYMESH / HY(1)
     267
                     COMMON / WKS1D1 / A(1)
     268
                     CDMMON / WKS1D3 / B(1)
     269
                     COMMON / WKS1D4 / C(1)
     270
                     COMMON / WKS1D5 / CF1(1)
     271
                     COMMON / WKS1DG / CF2(1)
     272
                    COMMON / WKS1D7 / CF3(1)
                    COMMON / WKS1D9 / TEMP2(1)
     273
     274
                    LOGICAL ALONGY, ALONGY, FOURTH
     275
     276
                 SET UP WTS ASSOCIATED WITH PROUN OPERATOR
     277
             С
                 WT=2. CORRESPONDS TO NORMAL USAGE.
     278
     279
                    WTX=2.000
     280
                    WTY # 2.000
     281
                    IF(FOURTH) WTX=5.000
     282
                    IF(FOURTH) WTY=5.000
     283
             С
     284 6
             C
                 CODE FOR SOLVING ALONG X DIRECTION
     285
             С
     286
                    IF( .NOT .ALONGX) GO TO 200
     287
                    CALL SETABC(A,B,C,HX,WTX,NI')
    288
                    CALL SETTRI(CF1,CF2,CF3,A,B,C,NI)
    289
                    DO 130 J=1,NJ
    290
                    CALL SOLTRI(NI ^(1,J), RHS(1,J), TEMP2, CF1, CF2, CF3)
    291
               130 CONTINUE
    292
                   GO TO 250
    293
               200 CONTINUE
    294
                   DO 450 J=1,NJ
    295
                   DO 450 I=1,NI
    296
               450 R(I,J)=RHS(I,J)
    297
    298
                CODE FOR SOLVING ALONG Y DIRECTION
             С
    299
             С
    300
               250 IF ( NOT ALONGY) RETURN
                   CALL SETABC (A.B.C. HY, WTY, NJ)
    301
    302
                   CALL SETTRI (CF1.CF2.CF3.A.B.C.NJ)
    303
                   DD 460) I=1, NI
                   R(I,1)*CF1(1)*R(I,1)
    304
    305
               460 CONTINUE
    306
                   DO 215 J=2,NJ
    307
                   J1=J-1
   308
                   CF3J=CF3(J)
    309 .
                   CF1J=CF1(J)
   310
                   DO 215 I = 1, NI
   311
                   R(I,U)=-CF3U+R(I,U1)+CF1U+R(I,U)
   312
              215 CONTINUE
   313
                  DO 225 J=2,NJ
   314
                   JREV=NU-U+1
   315
                  JREV1=JREV+1
   316
                  CF2J=CF2(JREV)
   317
                  DO 225 I = 1, NI
   318
                  R(I, JREV) = -CF2J*R(I, JREV1)+R(I, JREV)
   319
              225 CONTINUE
   320
                  RETURN
   321
                  END
END OF FILE
```

```
SUBROUTINE OUTPUT(II, XCI, TAU, OMEG, XI, YI, X, Y, NI, NJ, NIU, NJU,
             1 FX, FY, FXY, D, WORK, NIP, NJP, OUT, DT)
 3
       С
           ROUTINE TO PRODUCE MAPS OF FORECAST FIELDS
 5
              IMPLICIT REAL*8 (A-H.O-Z)
 6
              DIMENSION XCI(NI,NJ), TAU(NI,NJ), OMEG(NI,NJ)
 7
              DIMENSION XI(NIP), YI(NJP), X(NIU), Y(NJU)
 8
              DIMENSION D(4, NIU, NJU)
 9
              DIMENSION FX(NIP, NJP), FY(NIP, NJP), FXY(NIP, NJF , WORK(NJU, 8)
10
              DIMENSION OUT (NIP, NJP)
              DIMENSION E(281,45)
12
              COMMON / HXMES1 / HX1(1)
13
              COMMON / HYMES1 / HY1(1)
14
              COMMON / WKS1X1 / WK1(1)
15
              COMMON / WKS1X2 / WK2(1)
16
              COMMON / WKS1X3 / WK3(1)
17
              COMMON / WKS1X4 / WK4(1)
18
              COMMON / WKS1X5 / WK5(1)
COMMON / CONSTA / C4,C5
19
20
              LOGICAL KDER
21
22
          USES ROUTINE INTRPT TO PRODUCE VALUES OF FIELDS ON UNIFORM GRID
23
       С
24
              KDER = . FALSE .
25
26
              KL=2
              ITIME *DFLOAT(II-1)*DT/.370DO+.50DO
27
              CALL INTRPT(D; NIU, NJU, XCI, NIP, NJP, X, Y, XI, YI, FX,
28
             1 FY, FXY, HX1, HY1, KL, WK1, WK2, WK3, WK4, WK5, WORK, KDER)
29
              DD 100 J=1,NJU
30
              DO 100 I = 1, NIU
31
          100 E(I,J)=C4*D(1,I,J)
32
              CALL FPLOT(E, NIU, NJU, 1)
33
              CALL INTRPT(D, NIU, NJU, TAU, NIP, NJP, X, Y, XI, YI, FX,
34
             1 FY, FXY, HX1, HY1, KL, WK1, WK2, WK3, WK4, WK5, WORK, KDER)
35
36
              DD 300 J=1,NJU
              DO 300 I=1,NIU
37
          300 E(I,J)=C4+D(1,I,J)
38
              CALL FPLOT(E,NIU,NJU,1)
39
              CALL INTRPT(D, NIU, NUU, OMEG, NIP, NUP, X, Y, XI, YI, FX.
40
             1 FY, FXY, HX1, HY1, KL, WK1, WK2, WK3, WK4, WK5, WORK, KDER)
41
              DO 475 J=1,NJU
42
              DO 475 I=1,NIU
43
          475 E(I,J)=C5*D(1,I,J)
44
              CALL FPLOT(E, NIU, NJU, O)
45
              RETURN
46
              END
47
              SUBROUTINE MSHFLT(FIELD, WKX, WKY, CON, NI, NJ, IPOW)
48
49
           S/R: MSHFLT - REDUCES AMPLITUDE OF FIELD (IN-PLACE) FOR REGIONS OF
50
                              POOR HORIZONTAL RESOLUTION
51
       С
                                FIELD(I,J) = FAC*(FIELD(I,J)-CON)+CONAWHERE
       C
52
                             FAC = (HMIN(I,J)/H(I,J))**IPOW,
53
       С
                             H(I,J) = SQRT(HX(I)+HX(I) + HY(J)+HY(J)),
54
       С
                             HMIN(I,J) = SMALLEST(H(I,J)).
55
       С
56
           AUTHOR: ROGER DALEY - SUMMER 1977
57
       C
58
       C REVISION 001: A. STANIFORTH - C. THIBEAULT JAN 79 DOCUMENTATION
59
       C REVISION 002: T. GOOS - 1979-80 ADAPTED FOR AMDAHL AT U OF A.
60
61
          CALL: CALL MSHFLT(FIELD, WKX, WKY, CON, NI, NJ, IPOW)
62
63
```

```
64
             ARGUMENST .
  65
          С
              IN-OUT - FIELD - FIELD USED FOR IN-PLACE AMPLITUDE REDUCTION
  66
          С
                      ~ XI
                              - X-SPECIFICATION OF GRID
                      - Y I
  67
          С
                               - Y-SPECIFICATION OF GRID
  68
          С
                      - WKX
                               - WORK(NI)
  69
          C
                     - WKY
                                - WORK(NJ)
  70
          С
                      - CON
                               - PARAMETER CONTROLLING MEAN OF FIELD
  7:
          Ċ
                     - NI
                              - X-DIMENSION
  72
          C
                      - NJ
                               - Y-DIMENSION
  73
          С
                               - PARAMETER OF AMPLITUDE REDUCTION
                     - IPOW
  74
          С
  75
  76
                IMPLICIT REAL*8 (A-H.O-Z)
                DIMENSION FIELD(NI, NJ)
  77
  78
                DIMENSION WKX(NI), WKY(NJ)
  79
                FMIN=1.D12
  80
                DO 50 J=1,NJ
  81
                DO 50 I=1.NI
  82
                SX = DSQRT(WKX(I)*WKX(I) + WKY(J)*WKY(J))
  83
                IF(SX.LE.FMIN) FMIN=$X
  84
             50 CONTINUE
  85
                UN.1 = U 001 00
  86
                DO 100 I=1.NI
  87
                SX = DSQRT(WKX(I)*WKX(I) + WKY(J)*WKY(J))
 RR
                FAC = (FMIN/SX)**IPOW
            100 FIELD(I,J)=FAC+(FIELD(I,J)-CON)+CON
  89
 90
                RETURN
 91
                END
 92
                SUBROUTINE REL(PHIG, PG, NI, NJ, ALX, RELF, XTOL)
 93
                IMPLICIT REAL *8(A-H, 0-Z)
         С
 94
            PERFORMS RELAXATION SOLUTION FOR POISSONS EQUATION.
 95
 96
         С
 97
                DIMENSION PG(NI,NJ), PHIG(NI,NJ)
 98
                COMMON / HXMESH / HX(1)
                COMMON / RATIO1 / RAT1(63,27)
COMMON / RATII1 / RATI1(63,27)
 99
100
101
                COMMON / RATIO4 / RAT4(63,27)
102
                FIVE=5.0DO
103
               NIM=NI-1
104
                NUM=NU~1
105
                NI2=NI-2
106
               NJ2 = NJ - 2
107
               NJ4=NJ-4
108
               DNI3=2.0D0*ALX
109
               DNI3=1.0D0/DNI3
               RELFP=1.000-RELF
110
111
               DO 1000 K=1,140
               PHI = 0.000
112
113
               SUM=0.0
114
               DO 20 I=2.NIM
115
               I 1 = I - 1
               H=HX(I)+HX(I1)
116
117
            20 SUM=SUM+H*PHIG(I,2)
118
               H=HX(1)+HX(NIM)
               SUM=SUM+PHIG(1,2)+H
119
120
               SUM=SUM+DNI3
               DO 25 I=1.NI
121
            25 PHIG(I,1)=SUM
122
123
               DO 300 J=2,NJM
124
               SUP=(PHIG(1,J1)+PHIG(NI,J1))/2.000
125
               PHIG(1,J1)=SUP
126
127
               PHIG(NI,J1) - SUP
128
               d2 = d + 1
               DO 300 I=2,NIM
129
```

```
130
               Z*REL " PHIGEL, J)
               I1=I:1
131
               12=1+1
132
133
               RA11=RAT1(I1,J1)
               RAO1=RAT1(I, U1)
134
               RA10=RAT1(I1.J)
135
136
               RA=RATi(I,J)
               RAI11=RATI1(I1,U1)
137
               RAIO1=RATI1(I,J1)
138
139
               RAI10=RATI1(I1,J)
140
               RAI=RATI1(I,J)
               SUM=(RA11+RAI11)+PHIG(I1,J1) -
141
               SUM=SUM+(RAO1+RAIO1)+PHIG(I2,J1)
142
143
               SUM=SUM+(RA10+RAI10)+PHIG(I1,J2)
               SUM=SUM+(RA+RAI) *PHIG(12, J2)
144
               SUM=SUM+(FIVE+(RAI+RAE10)-RA-RA10)+PHIG(I,J2)
145
               SUM=SUM+(FIVE+(RAI11+RAIO1)-RA11-RAO1)*PHIG(I.J1)
146
147
               SUM=SUM+(FIVE*(RA10+RA11)-RAI10-RAI11)*PHIG(I1,J)
               SUM=SUM+(FIVE*(RA+RAO1)-RAI-RAIO1)*PHIG(I2,J)
148
149
               SUM#SUM/FIVE
               SUM=(SUM+PG(I,J))*RAT4(I,J)
150
               WRITE(7,806) SUM, RAT4(1,J), PG(1,J), PHIG(1,J)
        С
151
152
               PHIO=PHIG(I,J)
153
               PHIG(I,J)=Z+RELF*SUM
               IF(I.LT.18.0R.I.GT.46) GO TO 805
154
155
               IF(J.LE.5) GO TO 805
156
               IF(J.GE.NJ4) GO TO 805
               IF(PHIO.GT.-1.00-50.AND.PHIO.LT.1.00-50) GO TO 805
157
               PHIO=DABS((PHIG(I,J)-PHIO)/PHIO)
158
159
               PHI=DMAX1(PHIO, PHI)
160
          805 CONTINUE
          806 FORMAT(4(2X,E12.6))
161
162
           300 CONTINUE
163
               SUM=0.0D0
               DO 40 I=2,NIM
164
165
               I1=I-1
               H=HX(I)+HX(I1)
166
           40 SUM=SUM+H*PHIG(I,NJM)
167
               H=HX(1)+HX(NIM)
168
               SUM=SUM+PHIG(1,NJM)+H
169
               SUM=SUM*DNI3
170
               DO 45 I=1,NI
171
172
           45 PHIG(I,NJ)=SUM
               IF(K.EQ.1) GO TO 1000
173
               IF(PHI.LT.XTOL) GO TO 1505
174
175
          1000 CONTINUE
         1505 CONTINUE
176
               WRITE(7,1049) K,PHI
177
178
         1049 FORMAT( '
                          K = ', 15,4X,E12.6
               RETURN
179
180
               END
181
               SUBROUTINE TRANS(OUT, XCI, NI, NJ, NIP, NJP)
               IMPLICIT REAL*8 (A-H.O-Z)
182
               DIMENSION OUT(NIP, NJP), XCI(NI, NJ)
183
184
               NIM=NI-1
               NJM=NJ-1
185
               DO 50 J=2,NJM
186
               J1=J-1
187
               DO 50 I=2,NIM
188
               I1=I-1
189
           50 OUT([1,J1)=XCI([,J)
190
               RETURN
191
192
               SUBROUTINE RELHEL (PHIG, PG, NI, NJ, ALX, ALAM, RELF, XTOL)
193
194
               IMPLICIT REAL *8(A-H,O-Z)
        C
195
```

```
196
            PERFORMS RELAXATION SOLUTION FOR HELMHOLZ PROBLEM
197
         C
198
               DIMENSION PG(NI,NJ),PHIG(NI,NJ)
               COMMON / HXMBSH / HX(1)
199
               COMMON / RATIO1 / RAT1(63,27)
200
201,
               COMMON / RATII1 / RATI1(63,27)
               COMMON / RATIO4 / RAT4(63,27)
202
               COMMON / RATIOO / RATO(63,27)
203
204
               COMMON / RATIO2 / RAT2(63,27)
205
               COMMON / RATIO3 / RAT3(63,27)
               COMMON / RATIO5 / RAT5(63,27)
206
207
               FIVE = 5.000
208
               ALAMP = ALAM/60.DO
               NIM=NI-1.
209
210
               1 - UM×MUM
               N12=N1-2
211
               NJ2=NJ-2
212
213
               NJ4=NJ-4
214
               DN13=2.000*ALX
215
               DNI3#1.0D0/DNI3
216
               RELFP#1.000~RELF
217
               DO 1000 K=1,140
               PHI=0.0D0
218
219
               SUM=0.0
               DO 20 I=2,NIM
22
               I1=I-1
               H=HX(1)+HX(I1)
22
22
            20 SUM=SUM+H*PHIG(I,2)
2
               H=HX(1)+HX(NIM)
               SUM=SUM+PHIG(1,2)+H
2
               SUM=SUM+DNI3
               DO 25 I=1,NI
228
            25 PHIG(I,1)=SUM
229
               DO 300 J=2,NJM
230
               J1=J-1
               SUP=(PHIG(1,J1)+PHIG(NI,J1))/2.000
231
232
               PHIG(1,J1)=SUP
               PHIG(NI, J1)=SUP
233
               J2=J+1
234
               DO 300 I=2,NIM
235
           828 CONTINUE
236
               Z=RELFP*PHIG(I,J)
237
238
               I1=I-1
239
               12=1+1
               P11=PHIG(I1,J1
240
               P21=PHIG(I2,J1)
241
242
               P12=PHIG(I1, J2)
               P22=PHIG(12,J2)
243
               PO2=PHIG(I,J2)
244
245
               PO1*PHIG(I,U1)
               P10=PHIG(I1,J)
246
               P20=PHIG(12,J)
247
248
               RA11=RAT1(I1, J1)
               RAO1=RAT1(I,J1)
249
               RA10=RAT1(I1.J)
250
251
               RA=RAT1(I,J)
               RAI11=RATI1(I1.J1)
252
               RAIO1=RATI1(I,J1)
253
254
               RAI 10=RATI 1(I1.J)
               RAI=RATI1(I,J)
255
               SUM=(RA11+RAI11)*P11
256
257
               SUM=SUM+(RAO1+RAIO1)*P21
               SUM=SUM+(RA10+RAI10)*P12
258
               SUM=SUM+(RA+RAI)*P22
259
               SUM=SUM+(FIVE+(RAI+RAI10)-RA-RA10)+PO2
260
               SUM=SUM+(FIVE+(RAI11+RAIO1)-RA11-RAO1)*PO1
261
```

```
SUM-SUM+( IVE+(RA10+RA11)-RAI10-RAI11)*P10
SUM-SUM+( IVE+(RA+RA01)-RAI-RAI01)*P20
SUM-SUM/5 000
262
263
264
              SUM-SUM/SUDOO

SUMS-RAT2(I,J)*PO2 +RAT3(I,J)*P20

SUMS-SUMS-RAT3(I1,J)*P10 + RAT2(I,J1)*P01

SUMS-SUMS-FIVE+RATO(I,J)*P22+RATO(I1,J)*P12

SUMS-SUMS-RATO(I1,J1)*P11+RATO(I,J1)*P21

SUMS-SUMS-ALAMP

SUM-SUM-SUMS

210 SUM-(SUM+RATS(I,J))*RAT5(I,J)
265
266
267
268
269
270
271
                    WRITE(7,600) SUM, SUM5, RAT5(I, J), PG(I, J), PHIG(I, J)
272
                    PHIO*PHIG I,J)
273
                    PHIG(I,J) Z+RELF+SUM

IF(I LT B OR I GT 46) GO TO 805

IF(J LE J) GO TO 805

IF(J GE NJ4) GO TO 805

IF(PHIO/GT -1 OD-50 AND PHIO LT 1.00-50) GO TO 805
274
275
276
277
278
             PHIO+D/BS((PHIG(I,J)-PHIO)/PHIO)
PHI=DM(X1(PHIO,PHI)

805 CONTINUE
827 FORM/Y(316,E12.6,3X,E12.6)
300 CONTINUE
279
280
281
282
283
                    SUM#O.ODO
284
285
                    DO 40 I=2.NIM
286
                    I 1=I-1
                    H=HX(I)+HX(I1)
287
                40 SUM=SUM+H*PHIG(I,NJM)
288
289
                    H=HX(1)+HX(NIM)
                    SUM=SUM+PHIG(1,NJM)+H
290
                    SUM=SUM+DNI3
291
292
                    DO 45 I=1.NI
                45 PHIG(I,NJ)=SUM
293
                    IF(K.EQ.1) GO TO 1000
294
                    IF(PHI.LT.XTOL) GO TO 1505
295
             1000 CONTINUE
296
             1505, CONTINUE
297
             WRITE(7,1049) K,PHI
1049 FORMAT(' HELM. K=',15,4X,E12.6)
298
299
              610 FORMAT(1X,8(1X,E12.6))
300
              600 FORMAT(8(2X,E12.6))
301
                    RETURN
302
303
                    END
                    SUBROUTINE FPLOT(Z,NIU,NJU,IFLAG)
304
305
                    REAL+8 Z(NIU, NJU)
306
               PLOTS FIELDS IN 2 SECTIONS; ONE OVER THE NON-UNIFORM PORTION
107
           С
               OF THE GRID AND ONE INCLUDING THE UNIFORM PORTION OF THE
  8
30
               GRID.
                    DIMENSION F(92,45)
                    DIMENSION CVALI(19), CVAL2(19), VOP(8), IOP(8)
                 INTOUR MALUES FOR HEIGHT AND THICKNESS FIELDS.
                    DATA CVAL1/540.0,480.0,420.0,360.0,300.0,240.0,180.0.
31"
                     120.0,60.0,0 1 -60.0,-120.0,-180.0,-240.0,-300.0,
.60.0 120.0, 180.0,-540.0/
311
 18
19
                               IFS FOR OMEGA FIELD.
32C
321
                                2/3.6,3.2 2.8,2.4,2.0,1.6,1.2,.8,.4,0.0,
322
                                   2,-1 -2.0,-2.4,-2.8,-3.2,-3.6/
323
                                                0.0,-1.0,0.0,0.0,0.0/
324
                       TA MOR/S
                                   ٠,٥.٥.
325
                     3P
326
327
                    10"
```

```
328
                    IOP(4)=1
     329
                    IOP(6)=0
    330
                    IOP(7)-1
    331
                    IOP(8)=0
    332
                   IOP(5)=IFLAG
    333
                   NC = 19
    334
                   CALL ORIGIN(999,6.5,3.5,1.0,1.0)
    335
             С
    336
             C
                P IT VARIABLE PORTION
    337
    338
                   DO 100 J=1,45
    339
                   00 100 I=1,92
    340
               100 F(I,J)=Z(I,J)
    341
                   IF(IFLAG.EQ.O) CALL CONTUR(5.5.2.75,F.92,92.45,CVAL2,NC,IOP,VOP)
                   IF(IFLAG.EQ.1) CALL CONTUR(5.5,2.75,F,92,92,45,CVAL1,NC,IOP,VOP)
    342
    343
                  CALL ORIGIN(999.6.5,3.5,1.0,1.0)
    344
            С
               PLOT UNIFORM PORTION
    345
            С
    346
            Ċ
   347
                  DO 150 J= 1.45
DO 150 I=92,183
   348
   349
                  I 1 = I -91
   350
              150 F(I1,J)*Z(I,J)
   351
                  IF(IFLAG.EQ.O) CALL CONTUR(5.5,2.75,F.92,92,45,CVAL2,NC,IOP,VOP)
                  IF(IFLAG.EQ.1) CALL CONTUR(5.5,2.75,F,92,92.45,CVAL1,NC,IOP,VOP)
   352
   353
   354
                  END
END OF FILE
```

f.

```
3
          С
             FILE DIAG
          С
   5
          С
             FILES
   6
          С
                 OBJECT - DIAG
   7
          C
   8
                 INPUT
          C
   9
          C
                        1 * FEDIAG
  10
          С
                        2 = SPDIAG
  1 1
                        3 - VMESH
  12
          C
                        4 # MESHD
                        5 - SPECD
  13
          C
                 OUTPUT
  14
          C
  15
                        6 - ENERGIES AND ENSTROPHY
  16
          C
                        7 * ERRORS IN MAP FORM
 17
                        8 = MEAN ERRORS AND S1 SCORES
 18
         С
                        9 = -PDIAG
 19
         С
             COMPUTES DIAGNOSTIC VALUES FOR THE SPECTRAL AND FEM FORECASTS
 20
         С
 21
         C
             THESE VALUES INCLUDE:
 22
         C
                   KINETIC ENERGIES
                   AVAILABLE POTENTIAL ENERGIES
 23
         С
                   POTENTIAL ENSTROPHYS
 25
         С
                   MEAN DIFFERENCE BETWEEN SOLUTIONS
                   MEAN ABSOLUTE DIFFERENCE BETWEEN SOLUTIONS
 26
         С
 27
                   S1 SCORES
 28
         С
            USES SYSTEM ROUTINES TO PLOT GRAPHS OF THESE VALUES.
 29
         С
 30
 31
                IMPLICIT REAL*8 (A-H,O-Z)
                DIMENSION XCSP(63,27), TASP(63,27), XCFE(63,27), TAFE(63,27)
 32
 33
                DIMENSION XCSPO(63,27), TASPO(63,27), XCFEO(63,27), TAFEO(63,27)
 34
                DIMENSION X(281), Y(45), XI(63), YI(27)
 35
                DIMENSION HX1(63), HY1(27)
 36
                DIMENSION APE(9), EKE(9), TOT(9), PE(9)
 37
                OIMENSION APEF(9), EKEF(9), TOTF(9), PEF(9)
                DIMENSION DEXC(9), ADEXC(9), DETA(9), ADETA(9)
 38
39
                DIMENSION S1XC(9), S1TA(9)
                REAL ZZ(11,9),T(11)
40
41
                DIMENSION ZKESP(9), EKESP(9), ZAPESP(9), EAPESP(9)
                DIMENSION ZKEFE(9), EKEFE(9), ZAPEFE(9), EAPEFE(9)
42
43
                DIMENSION APET(9), APETF(9), EKET(9), EKETF(9)
44
                DIMENSION TOTT(9), TOTTF(9), PETF(9)
45
                REAL TI1(3),TI2(4),TI3(2),TI4(5)
46
                LOGICAL*1 LFMT(1) /'*'/
47
               DATA T/0.0,6.0,12.0,18.0,24.0,30.0,36.0,42.0,48.0,0.0,0.0/
               DATA TI1/'ENER','GY ','(J) '/
DATA TI2/'ENST','ROPH','Y(KG','S)'/
DATA TI3/'S1 S','CORE'/
DATA TI4/'MEAN',' DIF','FERE','NCE ','(M) '/
COMMON / HYMESH / HX(GT)
4 R
49
50
51
52
               COMMON / HYMESH / HY(27)
53
54
               COMMON / WKS1D1 / WK1(63)
               COMMON / WKS1D2 / WK2(63)
COMMON / WKS1D3 / WK3(63)
55
56
               COMMON / WKS1D4 / WK4(63)
COMMON / WKS1D5 / WK5(63)
57
58
               COMMON / WKS1D6 / WK6(63)
60
               COMMON / WKS1D7 / WK7(63)
               COMMON / WKS1D8 / WK8(63)
61
               COMMON / WKS1D9 / WK9(63)
62
63
               COMMON / WKS110 / WK10(63)
               COMMON / WORKA / WKA(63,27)
```

```
65
                COMMON / WORKB / WKB(63,27)
                COMMON / .WORKC / WKC(63, 27)
 66
                COMMON / WORKD / WKD(63,27)
 67
                COMMON / WORKE / WKE(63,27)
COMMON / WORKE / WKF(63,27)
 68
 69
 70
         C
 7 1
         С
            SET CONSTANTS
 72
         С
 73
         C
         С
            CXCI=L*L*FO*FO/G
 74
 75
         C
                CXCI=2 15357266D4
 76
         С
 77
 78
         С
            CPE * 2.000 * FO * FO / (DP * DP * SIG)
 79
         С
              * CPE=3 03820980-12
 80
 81
                CEKE = 2.1383390022
                CAPE = 6 . 4967228010
 82
                CCPE = 1.0691695E22
 83
 84
            READ PARAMETERS OF GRID
 85
         С
         С
 86
 87
                READ(4, LFMT) NIU, NJU
                READ(4, LFMT) NI, NJ
-88
                READ(3, LFMT)(X(I), I=1, NIU)
 89
 90
                READ(3, LFMT)(Y(J), J=1, NJU)
                READ(3, LFMT)(XI(I), I=1, NI)
 91
                READ(3, LFMT)(YI(J), J=1, NJ)
 92
 93
                NIP=NI
                NUP-NU
 94
         С
 95
            CALCULATE GRID LENGTHS.
 96
         С
 97
                CALL CALH(HX1,XI,NIP)
 98
99
                CALL CALH(HY1, YI, NUP)
100
                NUPM=NUP-1
101
                NIPM=NIP-1
                HX1(NIP)=HX1(NIPM)
102
103
                HY1(NUP)=HY1(NUPM)
104
                NIM=NI-1
105
                NUM=NU-1
106
                DO 60 I=1,NIP
107
            60 HX(I)=HX1(I)
                DO 65 J=1,NJP
108
            65 HY(J)=HY1(J)
109
110
        С
        C
            READ INITIAL AMPLITUDES
111
112
        С
                READ(5, LFMT) 34, X2, X3, T1, T2, T3
113
        Ç
114
                 NO. OF WAVES, M = NO. OF TIME STEPS
115
        С
116
        С
                  TIMESTEP, IPT2 = NO. OF HOURS BETWEEN MAPS
        С
117
                PEAD(5, LFMT) N.M.DT. IDT2
118
119
        С
            CALCULATE NO. OF RECORDS ON FILE
        C
120
121
        C
122
               NR=(M-1)/IDT2+1
        С
123
            SET BOUNDARIES OF COMPARISON GRID(S)
        ,C
124
125
        C
                IL1=23
126
               IR1=40
127
128
                JT 1=18
129
                JB 1 = 10
        С
130
```

```
131
            C
               MAIN LOOP
   112
   133
                   H=HX(30)
   134
                   DO 1000 II=1,NR
   135
                   51XC(II)*0 000
   136
                   $17A(II)=0 000
  137
           C
  138
           С
               READ SPECTRAL FIELDS
  139
           C
  140
                  READ(2) XCSP
  141
                  READ(2) TASP
  142
           C
  143
           C
               READ FEM FIELDS
  144
  145
                  READ(1) XCFE
  146
                  READ(1) TAFE
  147
                  IF(II.NE 1) GO TO 200
  148
                  DO 180 U-1.NU
  149
                  DO 180 I-1,NI
  150
                  XCSPO(I,J)=XCSP(I,J)
  151
                  TASPO(I,J)=TASP(I,J)
  152
                  XCFEO(I,J)=XCFE(I,J)
  153
                  TAFEO(I,U)=TAFE(I,U)
  154
             180 CONTINUE
  155
             200 CONTINUE
 156
          C
              CALCULATE ENERGIES AND ENSTROPHIES
 157
          С
 158
          C
 159
                 CALL APOTEN(APE(II), IL1, IR1, UT1, UB1, TASP, NI, NJ.
 160
                1 H.APET(II), 1)
 161
                 CALL APOTEN(APEF(II), IL1, IR1, JT1, JB1, TAFE, NI, NJ,
 162
                1 H. APETF(II), 1)
                 CALL EKINEN(XCSP.TASP.NI.NJ.H.EKE(II), IL1, IR1, UT1.
 163
 164
                1 JB1, EKET(II), 1)
 165
                 CALL EKINEN(XCFE, TAFE, NI, NJ, H, EKEF(II), IL1, IR1, JT1,
 166
                1 JB1, EKETF([]), 1)
 167
                 CALL POTENS(XCSP.TASP,NI,NU,H,PE(II),IL1,IR1,UT1.
 168
                1 JB1, CPE, PET(II), 1)
 169
                 CALL POTENS(XCFE, TAFE, NI, NJ, H, PEF(II), IL1, IR1, JT1,
 170
                1 JB1, CPE, PETF(II), t)
 171
               _ PE(II) = PE(II) * CCPE
172
                 APE(II) = APE(II) + CAPE
                 EKE(II) = EKE(II) + CEKE
173
 174
                TOT(II) = APE(II) + EKE(II)
175
                PEF(II) = PEF(II) + CCPE
                APEF(II) = APEF(II) + CAPE
176
177
                EKEF(II) = EKEF(II) * CEKE
178
                TOTF(II) = APEF(II) + EKEF(II)
179
                PET(II) = PET(II) + CCPE
180
                APET(II) =APET(II) +CAPE€
181
                EKET(II) = EKET(II) + CEKE
                TOTT(II) = APET(II) + EKET(II)
182
183
                PETF(II) = PETF(II) + CCPE
184
                APETF(II) = APETF(II) + CAPE
185
                EKETF(II) * EKETF(II) * CEKE
186
                TOTTF(II) = APETF(II) + EKETF(II)
187
                IF(II.EQ. 1) GO TO 1001
188
         С
189
         С
            CALCULATE DIFFERENCE IN LAST (II-1) OUTPUTS
190
         C
191
         С
            TRUE DIFF. FOR XCI FIELD
192
         С
193
               CALL GDADGD(WKA, 1.000, XCSP, -1.000, XCSPO, NI, NJ)
194
         С
            FORECAST DIFF. FOR XCI FIELD
195
        C
196
```

Balant Nanoger Balance Burner Stranger Balance (1988) and the control of the cont

```
197
                  CALL GDADGD(WKB. 1 ODO, XCFE, 1 ODO, XCFEO, NI, NJ)
  198
          C
  199
              FIND ERROR IN FORECAST
  200
           C
  201
                 CALL GDADGD (WKC, 1 ODO, WKA, -1 ODO, WKB, NI, NU)
  202
                 ( VEL MEAN(WKC, NI, NU, DEXC(II), IL1, IR1, UT1, UB1)
  203
                 CALL AMEAN(WKC, NI, NJ, ADEXC(II), IL1, IR1, JT1, JB1)
 204
 205
              CALCULATE DIFFERENCE IN LAST (II-1) OUTPUTS
 206
          C
              TRUE DIFF FOR TAU FIELD
 207
          C
 208
          C
 209
                 CALL GDADGD(WKA, 1 000, TASP, -1 000, TASPO, NI, NJ)
 210
          C
 211
             FORECAST DIFF FOR TAU FIELD
          C
 212
          С
 213
                 CALL GDADGD(WKB, 1.000, TAFE, ~1.000, TAFEO, NI. NJ.)
 214
          С
 215
             FIND ERROR IN FORECAST
          C
 216
          C
 217
                 CALL GDADGD(WKC, 1 ODO, WKA, -1 ODO, WKB, NI, NU)
 2 18
                 CALL MEAN(WKC, NI, NJ, DETA(II), IL1, IR1, JT1, JB1)
 219
                 CALL AMEAN(WKC, NI, NJ, ADETA(II), IL1, IR1, UT1, UB1)
 220
          C
 221
          С
             CALCULATE ST SCORES
 222
          C
 223
          С
             FOR XCI
 224
                 CALL DXDYDS(WKB, XCSP, 1.000, TRUE, FALSE, NI.NU)
 225
                CALL PSOLVE(WKA, WKB, NI, NJ, TRUE , .FALSE., .FALSE.)
 226
 227
                CALL DXDYDS(WKC, XCSP, 1.000, FALSE., TRUE, NI, NU)
 228
                CALL PSOLVE(WKB, WKC, NI, NJ, FALSE, TRUE, FALSE)
                CALL DXDYDS(WKD,XCFE, 1.000, .TRUE., .FALSE.,NI,NU)
 229
 230
                CALL PSOLVE(WKC, WKD, NI, NJ, .TRUE ... FALSE .. FALSE .)
 231
                CALL DXDYDS(WKE, XCFE, 1.000, FALSE., TRUE NI, NU)
                CALL PSOLVE(WKD, WKE, NI, NJ, FALSE., TRUE., FALSE.)
 232
 233
 234
             ERROR IN X-PRESS. GRAD - WKE
 235
         С
236
                CALL GDADGD(WKE, 1.000, WKC, -1.000, WKA, NI, NJ)
237
         С
238
             ERROR IN Y-PRESS, GRAD - WKF
239
         С
240
                CALL GDADGD(WKF, 1.000, WKD, -1.000, WKB, NI, NJ)
241
         С
242
            FORM SUM OF ABC OF ERRORS
243
244
                CALL SUM(WKE, NI, NJ, SUM1, IL1, IR1, JT1, JB1)
                CALL SUM(WKF.NI,NJ,SUM2,IL1,IR1,UT1,UB1)
245
246
                SUM3 = SUM1+SUM2
247
                CALL SUMB (WKC, WKA, NI, NJ, SUM1, IL1, IR1, UT1, UR1)
                CALL SUMB(WKD, WKB, NI, NJ, SUM2, IL1, IR1, UT1, ...)
248
249
                SUM4 = SUM1+SUM2
250
                IF(DABS(SUM4).LT.1.00-50) GO TO 435
251
                $1XC(II)=100.000*SUM3/SUM4
252
253
         С
            CALCULATE S1 SCORE FOR TAU.
254
255
           435 CALL DXDYDS(WKB, TASP, 1.000, TRUE. . . FALSE., NI, NU)
256
               CALL PSOLVE(WKA, WKB, NI, NJ, .TRUE., .FALSE., .FALSE.)
257
               CALL DXDYDS(WKC, TASP, 1.000, FALSE., TRUE, NI, NU)
258
               CALL PSOLVE(WKB, WKC, NI, NJ, .FALSE., .TRUE., .FALSE.)
259
               CALL DXDYDS(WKD, TAFE, 1.000, .TRUE., .FALSE., NI, NJ)
               CALL PSOLVE(WKC, WKD, NI, NJ, TRUE., FALSE., FALSE.)
260
261
               CALL DXDYDS(WKE, TAFE, 1.000, .FALSE., .TRUE, NI, NU)
262
               CALL PSOLVE(WKD, WKE, NI, NJ, FALSE., TRUE., FALSE.)
```

```
263
            ERROR IN X-PRESS GRAD - WKE
264
        C
265
        C
               CAL! GDADGD(WKE, 1 ODO, WKC, 1 ODO, WKA, NI, NJ)
266
267
         C
            ERROR - Y-PRESS GRAD - WKF
268
269
         C
               CALL GDADGD(WKF, 1 ODO, WKD, -1 ODO, WKB, NI, NJ)
270
        C·
271
            FORM SUM OF ABS OF ERRORS
272
         C
273
         C
              [ CALL SUM(WKE,NI,NJ,SUM1,IL1,IR1,JT1,JB1)
274
                CALL SUM(WKF,NI,NJ,SUM2,IL1,IR1,UT1,UB1)
275
                SUM3=SUM1+SUM2
276
               CALL SUMB(WKC, WKA, NI, NJ, SUM1, IL1, IR1, JT1, JB1)
277
               CALL SUMB(WKD, WKB, NI, NJ, SUM2, IL1, IR1, JT1, JB1)
278
                SUM4 = SUM1+SUM2
279
                IF(DABS(SUM4).LT 1.00-50) GO TO 436
280
                SITA(II)=100.000*SUM3/SUM4
281
           436 CONTINUE
282
          1001 CONTINUE
283
         C
284
            CALCULATE ZONAL AND EDDY ENERGIES
285
         С
         C
286
                CALL ZEENE(XCSP, TASP, NI, NJ, JT1, JB1, IL1, IR1, H.
287
               1 ZKESP(II), EKESP(II), ZAPESP(II), EAPESP(II))
288
                CALL ZEENE(XCFE, TAFE, NI, NJ, JT1, JB1, IL1, IR1, H.
289
               1 ZKEFE(II), EKEFE(II), ZAPEFE(II), EAPEFE(II))
290
          1000 CONTINUE
291
292
            INITIALIZE PLOTTING PROGRAM.
         С
293
294
         C
                CALL PLOTS
295
                CALL ORGEP(1.0,1
                                       0)
296
297
         С
            PLOT ENERGIES
298
         С
299
                DO 650 IT=1,NR
300
                ZZ(IT,1)=EKE(IT)
301
                ZZ(IT.2) = EKEF(IT)
302
                ZZ(IT,3) *APE(IT)
303
                ZZ(IT.4)=APEF(IT)
304
                ZZ(IT,5)=TOT(IT)
305
                ZZ(IT,6)=TOTF(IT)
306
            650 CONTINUE
307
                CALL LPLOT(ZZ.T.NR+2,6,3.0,3.0,TI1,3)
308
309
         С
             PLOT KINETIC ENERGIES.
310
         С
 311
                DO 690 IT=1.NR
312
                ZZ(IT, 1) *EKE(IT)
 313
                ZZ(IT.2)=EKEF(IT)
 314
                ZZ(IT,3)=ZKESP(IT)*CEKE
 315
                ZZ(IT,4)=ZKEFE(IT)*CEKE
 316
                ZZ(IT,5) = EKESP(IT) = CEKE
 317
                ZZ(IT,6) = EKEFE(IT) + CEKE
 318
            690 CONTINUE
 319
                CALL LPLOT(ZZ,T,NR+2,6,3.0,3.0,TI1,3)
 320
          С
 321
             PLOT POTENTIAL ENERGIES.
 322
          С
          С
 323
                00 695 IT=1,NR
 324
                 ZZ(IT, 1) = APE(IT)
 325
                ZZ(IT,2)=APEF(IT)
 326
                 ZZ(IT,3)=ZAPESP(IT)*CAPE
 327
```

328

ZZ(IT,4)=ZAPEFE(1)*CAPE

```
ZZ#IT.5)=EAPESP(IT)+CAPE
329
330
                ZZ(IT.6)=EAPEFE(IT)*CAPE
331
           695 CONTINUE
               CALL LPLOT(ZZ.T.NR+2,6,3 0,3 0,TI1,3)
332
333
         c
334
         С
            PLOT ENSTROPHY
335
         С
336
               DO 655 IT=1,NR
337
                ZZ(IT, 1)=PE(IT)
               ZZ(IT, 2)=PEF(IT)
338
339
           655 CONTINUE
340
               CALL LPLOT(ZZ,T,NR+2,2,3.0,3.0,TI2,4)
341
342
         С
            PLOT ST SCORES
343
         C
344
               DO 660 IT=1,NR
345
               ZZ(IT, 1)=S1XC(IT)
346
               ZZ(IT,2)=S1TA(IT)
347
           660 CONTINUE
               CALL LPLOT(ZZ,T,NR+2,2,3.0,3.0,TI3,2)
348
349
         С
350
            PLOT MEAN ENERGIES
         С
351
         С
               DO 665 IT=1,NR
352
353
               ZZ(IT, 1) *DEXC(IT) *CXCI
354
               ZZ(IT,2) * ADEXC(IT) * CXCI
               ZZ(IT,3)=DETA(IT)*CXCI
355
356
               ZZ(IT,4)=ADETA(IT)+CXCI
357
           665 CONTINUE
358
               CALL LPLOT(ZZ,T,NR+2,4,3.0,3.0,TI4.5)
359
        С
            PLOT TOTALS
360
        С
        С
361
362
               DO 830 IT=1,NR
363
               ZZ(IT, 1) = EKET(IT)
               ZZ(IT,2) = EKETF(IT)
364
365
               ZZ(IT,3)=APET(IT)
366
               ZZ(IT,4)=APETF(IT)
               ZZ(IT,5)= TOTT(IT)
367
368
               ZZ(IT,6)=TOTTF(IT)
369
           830 CONTINUE
               CALL LPLOT(ZZ,T,NR+2,6,3.0,3.0,TI1,3)
370
371
               DO 840 IT=1,NR
372
               ZZ(IT, 1)=PET(IT)
373
               ZZ(IT,2)=PETF(IT)
374
           840 CONTINUE
375
               CALL LPLOT(ZZ,T,NR+2,2,3.0,3.0,T12,4)
376
               CALL PLOT(0.0,0.0. -
377
               STOP
378
               END
               SUBROUTINE FINT(F,NI,NJ,H,SUM,IL,IR,JT,JB)
379
               IMPLICIT REAL+8 (A-H,O-Z)
380
381
               DIMENSION F(NI, NJ)
382
           PERFORMS INTEGRATION OF F OVER THE SQUARE
383
        С
384
        С
           IL<=X<=IR : JB<=Y<=JT
385
        С
           ASSUMING A UNIFORM MESH LENGTH H IN BOTH DIRECTIONS.
386
        С
387
               SUM=0.0
        C
388
           DO EDGES.
389
        ,Ç
390
        C
391
               IL1=IL+1
               IR1=IR-1
392
               DO 300 I=IL1, IR1
393
          300 SUM=SUM+F(I,JT)
```

```
395
                 DO 310 I = IL1, IR1
  396
             310 SUM = SUM + F(I, UB)
  397
                 JT1*JT-1
  398
                  JB1=JB+1
  399
                 DO 320 J=JB1,JT1
             320 SUM=SUM+F(IL,U)+F(IR.U)
  400
  401
                  SUM=SUM+.50DO
  402
  403
          C
              DO CORNERS.
 404
          C
 405
                 SUM1=F(IL,JT)+F(IR,JT)+F(IL,JB)+F(IR,JB)
 406
                  SUM=SUM+ . 25DO+SUM1
 407
          С
 408
          С
             DO INTERIOR
 409
 410
                 SUM1 # 0.0
 411
                 DO 350 J=JB1.JT1
                 DO 350 I=IL1, IR1
 412
 413
             350 SUM1=SUM1+F(I.U)
 414
                 SUM = SUM 1 + SUM
 415
                 SUM=SUM+H+H
 416
                 RETURN
 417
                 END
                 SUBROUTINE EKINEN(XCSP.TASP.NI,NJ.H.EKE,IL1,IR1.
 418
 419
                1 JT1, JB1, EKET, IFLAG)
 420
                 IMPLICIT REAL*8 (A-H,0-Z)
                 DIMENSION XCSP(63,27), TASP(63,27)
 421
 422
                 COWWON / HXWE2H / HX(63)
                 COMMON / HYMESH / HY(27)
 423
 424
                 COMMON / WKS1D1 / WK1(63)
 425
                 COMMON / WKS1D2 / WK2(63)
                COMMON / WKS1D3 / WK3(63)
 426
 427
                 COMMON / WKS1D4 / WK4(63)
 428
                COMMON / WKS1D5 / WK5(63)
                COMMON / WKS1D6 / WK6(63)
 429
 430
                COMMON / WKS1D7 / WK7(63)
                COMMON / WKS1D8 / WK8(63)
 431
                COMMON / WKS1D9 / WK9(63)
 432
433
                COMMON / WKS110 / WK10(63)
                COMMON / WORKA / WKA(63,27)
COMMON / WORKB / WKB(63,27)
434
435
436
                COMMON / WORKC / WKC(63,27)
437
                COMMON / WORKD / WKD(63,27)
438
439
         С
             FIND KINETIC ENERGY.
440
         C
441
                CALL DXDYDS(WKA, XCSP, 1.0DO, .TRUE., .FALSE., NI, NJ)
442
                CALL PSOLVE(WKB.WKA,NI,NJ, TRUE., FALSE., FALSE.)
                CALL NLLOOP(WKA, WKB, WKB, NI, NJ)
443
444
                CALL PSOLVE(WKD, WKA, NI, NJ, .TRUE., .TRUE., .FALSE.)
                CALL DXDYDS(WKA, XCSP. 1.0DO, FALSE., TRUE., NI, NU)
445
                CALL PSOLVE(WKB, WKA, NI, NJ, FALSE., TRUE., FALSE.)
446
                CALL NLLOOP(WKA, WKB, WKB, NI, NJ)
447
448
                CALL PSOLVE(WKC, WKA, NI, NJ, .TRUE., .TRUE., .FALSE.)
449
                CALL GDADGD(WKD, 1.0DO, WKD, 1.0DO, WKC, NI, NJ)
450
                CALL DXDYDS(WKA, TASP, 1.000..TRUE., .FALSE., NI, NJ)
451
                CALL PSOLVE(WKB, WKA, NI, NJ, .TRUE., .FALSE., .FALSE.)
452
                CALL NLLOOP(WKA, WKB, WKB, NI, NJ)
453
                CALL PSOLVE(WKC, WKA, NI, NJ, .TRUE. ..TRUE. .. FALSE.)
454
                CALL GDADGD(WKD, 1.0DO, WKD, 1.0DO, WKC, NI, NJ)
455
                CALL DXDYDS(WKA,TASP,1.000,.FALSE...TRUE.,NI,NJ)
                CALL PSOLVE(WKB, WKA, NI, NJ, FALSE., TRUE., FALSE.)
456
457
               CALL NLLOOP(WKA, WKB, WKB, NI, NJ)
458
               CALL PSOLVE(WKC, WKA, NI, NJ, .TRUE., .TRUE., .FALSE.)
459
               CALL GDADGD(WKD, 1.0DO, WKD, 1.0DO, WKC, NI, NJ)
460
               CALL FINT(WKD,NI,NJ,H,EKE,IL1,IR1,JT1,JB1)
```

```
461
                  IF(IFLAG.EQ.1) CALL TINT(WKD.EKET,NI,NJ)
   462
                  RETURN
  463
                  END
  464
                  SUBROUTINE POTENS(XCSP, TASP, NI, NJ, H, PE, IL1, IR1,
  465
                 1 JT1, JB1, CPE, PET, IFLAG)
                  IMPLICIT REAL*8 (A-H, 0-Z)
  466
  467
                  DIMENSION XCSP(NI, NJ), TASP(NI, NJ)
  468
                  COMMON / HXMESH / HX(63)
  469
                  COMMON / HYMESH / HY(27)
  470
                  COMMON / WKS1D1 / WK1(63)
  471
                  COMMON / WKS1D2 / WK2(63)
                  COMMON / WKS1D3 / WK3(63)
  472
  473
                  COMMON / WKS1D4 / WK4(63)
  474
                  COMMON / WKS1D5 / WK5(63)
  475
                  COMMON / WKS1D6 / WK6(63)
  476
                  COMMON / WKS1D7 /
                                      WK7(63)
  477
                  COMMON / WKS1D8 / WK8(63)
  47R
                  COMMON / WKS1D9 / WK9(63)
  479
                 COMMON / WKS110 / WK10(63)
  480
                 COMMON / WORKA / WKA(63,27)
  481
                 COMMON / WORKB / WKB(63,27)
  482
                 COMMON / WORKC / WKC(63,27)
  483
                 COMMON / WORKD / WKD(63,27)
 484
 485
           С
              FORM LAPLACE OF XCI
 486
 487
                 CALL D2XYS(WKA, XCSP, 1.0DO, .TRUE., .FALSE., NI, NJ)
                 CALL PSOLVE(WKB, WKA, NI, NJ, TRUE., FALSE., TRUE.)
 488
 489
                 CALL D2XYS(WKA, XCSP, 1.0DO, FALSE., TRUE., NI, NJ)
 490
                 CALL PSOLVE(WKC, WKA, NI, NJ, .FALSE., .TRUE., .TRUE.)
 491
                 CALL GDADGD(WKD, 1.0DO, WKB, 1.0DO, WKC, NI, NU)
 492
          C
 493
          С
             FORM LAPLACE OF TAU
 494
          С
 495
                 CALL D2XYS(WKA, TASP, 1. ODO, .TRUE., .FALSE., NI, NU)
 496
                 CALL PSOLVE(WKB, WKA, NI, NJ, .TRUE., .FALSE., .TRUE.)
 497
                 CALL D2XYS(WKA, TASP, 1. ODO., FALSE., .TRUE., NI, NU)
 498
                 CALL PSOLVE (WKC, WKA, NI, NJ, . FALSE., . TRUE., . TRUE.)
 499
                 CALL GDADGD(WKC, 1.0DO, WKC, 1.0DO, WKB, NI, NJ)
 500
          C
 501
          С
             DO SUMS.
 502
          С
 503
                 CALL GDADGD(WKA, 1.0DO, WKD, 1.0DO, WKC, NI, NJ)
504
                      GDADGD(WKA, 1.0DO, WKA, -CPE, TASP, NI, NJ)
                CA
505
                C.
                       BDADGD(WKB, 1.000, WKD, -1.000, WKC, NI, NJ)
506
                       ADGD(WKB, 1.000, WKB, CPE, TASP, NI, NJ)
                CA
507
         С
508
         С
             FORM SQUARES.
509
         С
5 10
                CALL NELOOP(WKC, WKA, WKA, NI, NJ)
511
                CALL PSOLVE(WKA, WKC, NI, NJ, .TRUE., .TRUE., .FALSE.)
                CALL NLLOOP(WKC, WKB, WKB, NI, NJ)
512 .
513
                CALL PSOLVE(WKB, WKC, NI, NJ, .TRUE., .TRUE., .FALSE.)
514
515
            FORM SUM.
         С
516
         С
517
                CALL GDADGD(WKC, 1.0DO, WKA, 1.0DO, WKB, NI, NJ)
518
         С
519
         С
            INTEGRATE.
520
         С
521
                CALL FINT (WKC, NI, NJ, H, PE, IL1, IR1, JT1, UB1)
522
                IF(IFLAG.EQ. 1) CALL TINT(WKC.PET,NI,NJ)
523
                RETURN
524
525
               SUBROUTINE MEAN(FIE, NI, NJ, AVE, IL, IR, JT, JB)
```

526

С

and the state of the second section of the sectio

```
527
             FIND ARITHMETIC MEAN OF FIELD.
 528
 529
                IMPLICIT REAL*8 (A-H, 0-Z)
 530
                DIMENSION FIE(NI,NJ)
 531.
                SUM=0.0D0
 532
                I SUM=O
 533
                DO 100 J=JB.JT
 534
                DO 100 I = IL, IR
 535
                ISUM=ISUM+1
 536
            100 SUM=SUM+FIE(I,J)
 537
                AVE = SUM/DFLOAT (ISUM)
               RETURN
 538
 539
                END
 540
                SUBROUTINE AMEAN(FIE.NI.NJ.AVE.IL.IR.JT.JB)
 541
 542
            FINDS ARITHMETIC MEAN OF
         C
                                            LUTE VALUE OF FIELD
 543
544
                IMPLICIT REAL*8 (A-H,O-Z)
                DIMENSION FIE(NI, NJ)
545
546
                SUM=0.0D0
547
                I SUM=O
548
                DO 100 J≅JB,JT
                DO 100 I=IL, IR
549
550
                ISUM=ISUM+1
551
            100 SUM=SUM+DABS(FIE(I,J))
552
                AVE = SUM/DFLOAT(ISUM)
553
                RETURN
554
                END
555
                SUBROUTINE SUM(FIE, NI, NJ, SUM1, IL, IR, JT, JB)
556
                IMPLICIT REAL*8 (A-H, D-Z)
557
                DIMENSION FIE(NI,NJ)
558
                SUM1=0.000
559
                DO 100 J*JB, JT
                DO 100 I=IL, IR
560
561
           100 SUM1=SUM1+DABS(FIE(I,J))
562
                RETURN
563
                END
                SUBROUTINE SUMB(FIE1, FIE2, NI, NJ, SUM1, IL, IR, JT, JB)
564
565
                IMPLICIT REAL*8 (A-H,O-Z)
566
                DIMENSION FIE1(NI,NJ), FIE2(NI,NJ)
567
               SUM1=0.000
568
               DO 100 J=JB.JT
569
               DO 100 I=IL, IR
               F1=DABS(FIE1(I,J))
570
571
               F2=DABS(FIE2(I,J))
572
           100 SUM1 = SUM1+DMAX1(F1,F2)
               RETURN
573
574
               END
575
               SUBROUTINE LPLOT(PL,T,NT,IFLAG,XSIZE,YSIZE,TITLE,NTITLE)
               DIMENSION PL(NT,6),T(NT),SCA(4)
576
577
               REAL TITLE(NTITLE)
578
               NUM=4*NTITLE
579
               NT2=NT-2
580
               NT 1=NT-1
581
        С
582
            SCALE HORIZONTAL AXIS
583
        С
               CALL SCALE(T, XSIZE, NT2, 1)
584
        С
585
586
        C
            SCALE VERTICAL AXIS
587
588
               XZ1=XSIZE+.8
589
               YZ1=YSIZE+.8
               CALL ORIGIN(999, XZ1, YZ1, 1.0, 1.0)
590
591
               SC=O.O
592
               OR = 1.0E55
```

Balance and a second control of

```
DO 100 I=1. IFLAG
593
594
               DO 100 J=1,NT2
595
                SC=AMAX1(SC,PL(J,I))
               OR #AMIN1(CR,PL(J,I))
596
597
            100 CONTINUE
598
                SCA(1)=OR
599
               SCA(2)=SC
600
               CALL SCALE(SCA, YSIZE, 2, 1)
601
               DO 125 I=1, IFLAG
602
               PL(NT,I)=SCA(4)
603
           125 PL(NT1, I) = SCA(3)
604
605
         С
            PLOT VERTICAL AXIS
606
         C
607
               CALL AX2EP(1.0,3,2,0,.85)
608
               CALL AXIS2(0.0,0.0,TITLE.NUM,YSIZE,90.0,SCA(3),SCA(4),-1.0)
               CALL AXIS2(XSIZE, 0.0, ' ', 1, -YSIZE, 90.0, SCA(3), SCA(4), 1.0)
609
610
611
         С
            PLOT HORIZONTAL AXIS
         C
612
613
               CALL AX2EP(1.0,3,1,0,.85)
614
               CALL AXIS2(0.0,0.0,'TIME (HOURS)',-12,XSIZE,0.0,T(NT1),T(NT),1.)
               CALL AXIS2(0.0, YSIZE, '', -1, -XSIZE, 0.0, T(NT1), T(NT), 1.)
615
616
617
         С
            PLOT CURVES
         C
618
619
               DO 150 I=1, IFLAG
620
               CALL LINE(T,PL(1,I),NT2,1,1,I)
621
           150 CONTINUE
622
               RETURN
623
               END
               SUBROUTINE APOTEN(APE, IL1, IR1, JT1, JB1, F, NI, NJ,
624
625
              1 H, APET, IFLAG)
626
               IMPLICIT REAL*8 (A-H,O-Z)
               DIMENSION F(NI,NJ)
627
628
               COMMON / HXMESH / HX(63)
629
               COMMON / HYMESH / HY(27)
               COMMON / WORKA / WKA(63,27)
630
               COMMON / WORKB / WKB(63,27)
631
632
               CALL NLLOOP(WKA,F,F,NI,NJ)
633
               CALL PSOLVE(WKB, WKA, NI, NJ, .TRUE., .TRUE., .FALSE.)
634
               CALL FINT(WKB, NI, NJ, H, APE, IL1, IR1, JT1, JB1)
635
               IF(IFLAG, EQ. 1) CALL TINT(WKB, APET, NI, NJ)
636
               RETURN
637
               END
638
               SUBROUTINE ZEENE(F1,F2,NI,NJ,JT,JB,IL,IR,H,ZKE,EKE,ZAPE,EAPE)
639
        С
            SUBROUTINE TO CALCULATE ZONAL AND EDDY ENERGIES.
640
        С
641
642
        С
            F1 * XCI
643
        C
            F2 = TAU
644
               IMPLICIT REAL*8 (A-H,O-Z)
645
               DIMENSION F1(NI,NJ),F2(NI,NJ)
               COMMON / HXMESH / HX(63)
646
               COMMON / HYMESH / HY(27)
647
648
               COMMON / WKS1D1 / WK1(63)
649
               COMMON / WKS1D2 / WK2(63)
               COMMON / WKS1D3 / WK3(63)
650
651
               COMMON / WKS1D4 / WK4(63)
652
               COMMON / WKS1D5 / WK5(63)
               COMMON / WKS1D6 / WK6(63)
653
654
               COMMON / WKS1D7 / WK7(63)
655
               COMMON / WKS1D8 / WK8(63)
               COMMON / WKS1D9 / WK9(63)
656
               COMMON / WKS110 / WK10(63)
657
               COMMON / WORKA / WKA(63,27)
658
```

· 我们就是我们的,我们就没有有一个,我们就是我们的我们就是我们的我们的我们的我们的,我们就会会会会会会会会会会会会会会。""我们的我们的,我们就会会会会会会

```
659
                    COMMON / WORKB / WKR(63.27)
   660
                    COMMON / WORKC / WKC(63.27)
   661
                    COMMON / WORKD / WKD(63,27)
                   COMMON / WORKE / WKE(63.27)
COMMON / WORKF / WKF(63.27)
   662
   663
   664
   665
                FORM AVERAGE IN Y-DIRECTION.
            С
   666
            C
   667
                   ANI =DFLOAT(IR-IL+1)
   668
                   DD 100 J=1,NJ
   669
                   SUM=0.0D0
   670
                   SUM1=0.000
   671
                   DO 105 I=IL.IR
   672
               105 SUM=SUM+F1(I,ປິ)
   673
                   DO 106 I=IL, IR
   674
              106 SUM1=SUM1+F2(I,U)
   675
                   SUM=SUM/ANI
  676
                   SUM1=SUM1/ANI
  677
                  DO 110 I=1,NI
  678
              110 WKE(I,J) = SUM
  679
                  DO 115 I=1,NI
  680
              115 WKF(I,J)=SUM1
  681
              100 CONTINUE
  682
           С
  683
               CALCULATE ZKE
  684
           C
  685
                  CALL EKINEN(WKE, WKF, NI, NJ, H, ZKE, IL, IR,
  686
                 1 JT, JB, SUM, O)
  687
           С
  688
           С
              CALCULATE ZAPE
  689
           C
  690
                  CALL APOTEN(ZAPE.IL, IR, JT, JB, WKF, NI, NJ,
  691
                 1 H, SUM, 0)
  692
                 DO 140 J=1,NJ
 69
                 DO 140 I=1,NI
 69
                 WKE(I,J)=F1(I,J)-WKE(I,J)
 695
                 WKF(I,J)=F2(I,J)-WKF(I,J)
 696
             140 CONTINUE
 697
          C
 698
              CALCULATE EKE
 699
 700
                 CALL EKINEN(WKE, WKF, NI, NJ, H, EKE, IL, IR,
 701
                1 JT, JB, SUM, O)
 702
                 CALL APOTEN(EAPE.IL, IR, UT, UB, WKF, NI, NJ,
 703
                1 H.SUM.0)
 704
                 RETURN
 705
                 END
 706
                 SUBROUTINE TINT(F, SUM, NI, NJ)
 707
                 IMPLICIT REAL+8 (A-H,O-Z)
708
                 DIMENSION F(NI, NJ)
709
                COMMON / HXMESH / HX(1)
COMMON / HYMESH / HY(1)
710
711
                NUM=NU-1
712
                NIM=NI-1
713
                SUM=0.000
714
                DO 100 J=2,NJM
715
                J1=J-1
716
                HYB=(HY(J1)+HY(J))/2.000
717
                DO 100 I=2,NIM
718
                I1=I-1
719
                HXB=(HX(I1)+HX(I))/2.000
720
                SUM=SUM+F(I,J)+HYB+HXB
721
            100 CONTINUE
722
         С
723
         Ç
            TOP AND BOTTOM
724
         С
```

the state of the s

```
HYB=HY(1)/2.000
HYB2=HY(NJM)/2.000
   725
   726
                  DO 150 I=2,NIM
   727
  728
                  I 1 = I - 1
                  HXB=(HX(I1)+HX(I))/2.000
  729
                  SUM=SUM+F(I,1)*HYB*HXB
   730
                  SUM=SUM+F(I,NJ)+HYB2+HXB
  731
              150 CONTINUE
  732
   733
               ENDS
           С
   734
           Ċ
   735
                  HXB=(HX(1)+HX(NIM))/2.000
   736
   737
                  DO 200 J=2,NJM
   738
                  J1=J-1
                  HYB=(HY(J1)+HY(J))/2.000
   739
   740
                  SUM=SUM+F(1,J)+HYB+HXB
   741
             200 CONTINUE
           С
   742
   743
           С
               CORNERS
   744
           С
                  HXB=(HX(1)+HX(NIM))/2.000
   745
                  SUM=SUM+F(1,1)+HXB+HY(1)/2.000
   746
   747
                  SUM=SUM+F(1,NJ)*HXB*HY(NJM)/2.000
                  RETURN
  748
  749
                  END
END OF FILE
```