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ABSTRACT 

Traffic signs play a critical role in the safety and efficiency of any roadway, but with limited 

information on the current status of traffic sign inventories, the placement and condition of 

traffic signs goes largely unchecked. Therefore, the collection of a complete traffic sign 

inventory (TSI) is needed to ensure traffic signs meet the needs of the current driving population. 

However, the size of current global traffic sign networks makes applying traditional survey 

methods to the collection of a TSI difficult, if not economically infeasible. Therefore, there is 

room for technological and methodological advancement to create a new TSI process to 

inventory and analyze traffic signs. This thesis proposes the use of light detection and ranging 

(LiDAR) and video-log imaging to conduct an automated extraction of a TSI. The details of 

traffic sign location, orientation, placement, and panel classification define the fundamental 

components of a TSI.  

Traffic signs are extracted through a Gaussian mixture model, density clustered, and 

filtered for flatness before measuring the vertical and horizontal orientation through principal 

component analyses. Traffic sign placement is dependent on the location of lane markings. 

Therefore, the road surface near each traffic sign is extracted, rasterized, and intensity 

manipulated to determine the linear lane marking intensity edges. The markings are used to 

determine the lateral and vertical placement of the traffic signs. Sign classification is determined 

from video-log images by applying a trained GoogLeNet convolutional neural network. This 

completes the traditional TSI and creates a platform with which to analyze the efficacy of traffic 

sign placements. Additionally, the detail provided by LiDAR scans allows for the measurement 

of the visibility of the traffic signs, which is unavailable through traditional surveying methods. 

This is used to assess the time available to drivers to read and react to traffic signs placed along 
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the segment. A 4-km test segment was utilized to assess the accuracy of the proposed method, 

providing an Eastbound TSI for 30 traffic signs.  

The intensity-based extraction of traffic signs had a precision, recall, and F1-Score of 

98.3%, 92.06%, and 95.08%, respectively. The extraction of lane markings had a precision, 

recall, and F1-Score for the left-lane markings of 100%, 89.36%, and 94.38%, respectively. The 

corresponding values for right-lane markings were estimated as 93.47%, 86%, and 89.58%, 

respectively. The image classifier had a sample of 13,604 training images spanning 155 traffic 

sign classes and 10 false positive classes within Alberta. The structure is trained within a half 

hour on GPU and ~8 hours on CPU and produces 83.6% accuracy on the validation set. This 

translates to a Top-1 and Top-2 classification error of 10.35% and 3.24%, respectively. However, 

when applied to the original video-log images, the sliding window procedure used to apply the 

trained classifier to cropped image samples creates the opportunity for misclassifications across 

the video-log image. This reduces the accuracy of the classifier to 53.3%. Finally, the visibility 

assessment considered day and night-time conditions as well as the impact of consecutive 

placement (i.e. driver’s attention fixated on only the nearest sign). This provides a discussion of 

how available visibility affects different driving populations and which traffic signs are most 

susceptible to being missed while driving.  

This thesis presents a method for the expedited accurate extraction of a TSI, including 

location, orientation, placement, classification, and visibility. Utilizing the detail available from 

high-density LiDAR scans, the extractions are completed with a high degree of accuracy and 

with time benefits over the traditional manual methods. The contributions of this thesis include 

(i) proposing a method for the extraction of a TSI, (ii) assessing sign visibility, and (iii) creating 

Canada’s first traffic sign image database. This sets the stage for continued research into the 
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extraction of TSIs, the continued development of a traffic sign image database for Canada, and 

guidance for industry professionals considering using LiDAR or video-logs for creating a TSI.  
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1 INTRODUCTION 

1.1 BACKGROUND & MOTIVATION 

The key to the effectiveness of any transportation infrastructure, whether it be for pedestrian, 

cyclist, transit, commuter, or commercial vehicle traffic, is the inventory and maintenance of 

transportation assets. Otherwise known as Transportation Asset Management (TAM), this 

process is applied to maintain a cost-effective, safe, and efficient transportation network [1]. 

Fundamental to any TAM system is reliable, accurate asset management data. Combined with an 

effective data management system, a complete asset management portfolio allows for a better 

understanding of the transportation network, resulting in decreased lifecycle cost and increased 

level of service (i.e., performance) of assets for users [2]. This ensures the installed assets adhere 

to the standards set by transportation officials (i.e., to assess the performance of assets) and 

provide the supply necessary to meet the demands of current and future populations. 

 Specific to transportation engineering, an efficient asset management network would 

include descriptive detail of the network-level assets, including signal heads, light fixtures, 

traffic signs, bridge structures, roadway geometric features, etc. However, no asset is more 

fundamental to the driving environment than traffic signs. Signs are a physically small but 

incredibly important asset of any transportation network, utilized by engineers to communicate 

critical information to road users. Traffic signs are used to provide information about traffic 

control, upcoming geometric changes, navigation, and work-zone traffic guidance. These signs 

ensure the safe and efficient use of any transportation network. As such, a comprehensive TAM 

inventory of traffic signs is of utmost importance.  

Canada has 1.13 million lane-kilometres of two-lane equivalent roadway, all of which 

require traffic signs to inform the driving population of the road environment ahead [3]. This 

results in a significant quantity of traffic sign assets that must be placed and maintained to meet 

the needs of the driving population. Although the intention of previous legislation was to unify 

traffic sign and signal design, many jurisdictions utilize their own transportation infrastructure 

guidelines. In North America, the Manual on Uniform Traffic Control Devices (MUTCD) 

governs the use of traffic signs on highways and provides general recommendations on where 

traffic signs should be located [4]. Given the vast quantity of signs required to guide global 
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traffic movements, municipalities look to traffic sign inventories to inform them of the current 

location, status, and history of the traffic signs along any given road segment.  

Due to their extreme volume, inventories are not commonly available, as is the case for 

traffic sign assets present in Canada. A study was conducted by the United Kingdom Department 

of Transport which discusses the growth seen by developing countries in the volume of their 

traffic sign assets. Their study estimated the volume of traffic signs placed in the United 

Kingdom in 2013 [5], combining data from 19 local authorities to create a model to estimate the 

number of traffic signs in the country. Compared against a previous study in 1993, the number of 

traffic sign assets available on UK road networks increased by over 110% for the sign groups 

that could be compared; placing increased stress on their regional asset management systems. 

Although changes within Canada and the United Kingdom are not directly comparable, the total 

built-up area for Canadian census metropolitan areas has increased 157% from 1971 to 2011, 

highlighting the significant increase in land used by people in Canada which are connected by 

roadways [6].  

Assessing different elements of the expansive road network and ensuring these elements 

meet design requirements that satisfy the needs of drivers is an integral step to creating a safe 

and efficient driving environment. In the case of traffic signs, the amount of information on a 

traffic sign, its location on the highway, and whether it meets legibility requirements or not are 

extremely important attributes that determine a sign’s ability to efficiently convey critical 

information to the drivers in time for them to take appropriate action. These attributes become 

even more critical when considering statistics showing that the median age in developed regions 

around the world is expected to increase to as high as 45 years by 2050, increasing the number of 

drivers with potentially limited capabilities [7].  

Additionally, in recent years, roadway design has shifted the responsibility of improving 

road safety from the driving population towards designing more forgiving highways, where road 

infrastructure is designed to accommodate the vulnerability of the human body as well as human 

fallibility [8]. To this end, the assessment of elements is especially important considering that 

“Although the MUTCD specifies the general location of large roadside signs, the highway design 

engineer has a significant degree of latitude in the exact placement of any given sign.” [9]. The 

design engineer may place a sign based on their judgement, providing an element of human input 

not accounted for in design guides. Given the combination of the expected population shift and 
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the human component to traffic sign installation, the placement and visibility of traffic signs 

along a highway must be constantly assessed to ensure that drivers are able to see and react to 

those signs in a timely manner.   

The current practice of collecting measurements on traffic sign placement can be 

primarily manual, as shown in Figure 1.1. This process is applied to each traffic sign along a 

network, requiring a field technician to stop along the roadway, likely blocking traffic from using 

the right-most lane to protect the technician and measure the location, orientation, and lateral and 

vertical placement of each sign. Not only is this time consuming and inefficient on a large scale, 

this process also places the technician at risk. This requires personnel on foot conducting traffic 

sign measurements for inventory purposes, putting their safety at risk as they stop in or disrupt 

traffic to conduct these measurements. This is recognized in Sign Click [10], an in-house 

software developed for the Kentucky Department of Transport that uses manual input of a sign’s 

condition, mounting type, etc., gathered from inspections. However, attempting to mitigate the 

danger of field-collected traffic sign inventories (TSI), Sign Click specifies that “Data should be 

collected safely … [and] shoulders should be utilized as much as possible. If the road has no 

shoulders then either a median or the right lane must be used as to let the flow of traffic continue 

normally. On two lane roads, make sure that your vehicle is visible to the drivers and allow them 

to pass when oncoming traffic is clear.” 

 

 
Figure 1.1 – Manual Traffic Sign Data Collection [11] 
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As mentioned previously, manual measurement processes are time consuming, greatly 

reducing the frequency at which traffic signs can be inventoried on a network level. Attempts 

have been made to digitize TSI processes with the introduction of video and photo-logs and site-

visit GPS stamps at sign locations. For example, Barg et al. developed CityPoints, a web 

application for the development of a Google Street View based TSI [12]. The application is 

embedded onto the Google Street View application, allowing users to manually classify traffic 

signs and calculate their global coordinates from Google’s extensive roadway image database. 

The application uses multiple angles of a traffic sign to triangulate the coordinates, which are 

verified for accuracy using field-collected data. GPS readings could only guarantee a positional 

accuracy of 5 metres, but this is further reduced in dense urban areas. Results were overlain on a 

satellite image to visually compare positional accuracy, with the CityPoints approach offering 

greater consistency in sign position than the GPS results. 

Similarly, Balali et al. [13] conducted an automated TSI from Google Street View images 

to remove the manual component of the assessment altogether. By interacting with the Google 

Street View API, a TSI was created by classifying traffic sign images into one of four categories: 

regulatory, warning, stop, or yield signs. Traffic signs are classified using a histogram of oriented 

gradients (HOG)+Color with a linear support vector machine (SVM) classifier based on previous 

work by the authors. They apply a multi-scale sliding window that passes over the entire image. 

Additionally, traffic signs are only considered detected if they are similarly classified from at 

least three different views. The automated TSI procedure resulted in 100% and 83.93% detection 

accuracy for warning and regulatory signs, respectively, and 91.96% classification accuracy. 

Although the image or video-based TSI processes remove a large portion of the field-work 

required to collect a complete inventory, there are a few drawbacks. Firstly, the image or video-

based collection of a TSI is still incredibly time consuming when conducted manually. Secondly, 

it is quite difficult to extract or measure additional information from the images or videos. The 

previous work into image or video-based methods recognizes the need for advancements into the 

available TSI methods, moving away from manual field measurements towards safer, more 

accurate methods. Undoubtably however, there is still extensive room for improvement in the 

creation of TSIs, both in efficiency and in the level of detail collected. The process of extracting 

a TSI needs a streamlined approach to conduct efficient, accurate measurements and assessments 

of traffic sign placements. Extracting a TSI would greatly benefit from a hands-off approach, 
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wherein the survey of traffic signs would be collected and measured remotely. This would 

reduce the required field time for collecting traffic sign information and makes the surveying 

process safer for technical staff and other road users.  

1.2 CREATING A COMPLETE TRAFFIC SIGN INVENTORY 

To understand how the TSI can be improved, the components of a single traffic sign within a TSI 

should be detailed. The fundamental focuses of previous TSI procedures were locating and 

classifying the traffic signs along a segment. Although this information is critical to the general 

mapping of traffic sign assets, this leaves practitioners without information about sign placement, 

including orientation, lateral offset, vertical offset, and height. These characteristics are 

fundamental to the understanding of how signs impact traffic, hence their inclusion in regional 

design guides such as the MUTCD [4], Roadside Design Guide [9], and the Alberta Highway 

Guide and Information Traffic Sign Manual [14].  

As stated in Section 1A.04 of the MUTCD [4] “To aid in conveying the proper meaning, 

the traffic control device should be appropriately positioned with respect to the location, object, 

or situation to which it applies. The location and legibility of the traffic control device should be 

such that a road user has adequate time to make the proper response in both day and night 

conditions.” Therefore, in order to assess the correct placement of a traffic sign to maintain a safe 

and efficient roadway network, a TSI should consider the placement standards, as shown in 

Figure 1.2 (a) for a highway guide sign installation. Additionally, traffic sign placement is 

dependent on the local angle of the signs relative to the traffic stream. Both ground-mounted and 

overhead signs are tilted away from drivers to retain traffic sign visibility and reduce glare from 

vehicle headlights. The Alberta Highway Guide and Information Sign Manual [14] provides 

general orientation specifications for traffic signs - tilted 1°-3° from perpendicular unless 

otherwise stated. This is described in further detail in Figure 1.2 (b). 
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(a) (b) 

Figure 1.2 – Alberta Traffic Sign Guide Lateral, Vertical, and Angular Placement [14] 

 

Placement characteristics are critical because the reflectivity of traffic signs is directly 

related to the sign’s position [15]. The correct positioning of shoulder-mounted and overhead 

signs ensures the correct amount of light is reflected from the headlights back towards the driver 

to maximize the conspicuity of traffic signs. Failure to mount signs in the correct position and 

orientation can result in blinding oncoming traffic or reduced conspicuity of the traffic signs. 

Both scenarios are detrimental to the safety of passing traffic and to the effectiveness of the 

traffic signs. Monitoring the placement conditions within a TSI ensures mounted traffic signs 

meet geometric design standards and thus, the needs of the driving population. 

The fundamental TSI characteristics outlined by the previously mentioned geometric 

parameters define the characteristics of a standard TSI. In addition to the standard TSI, the 

measurement of traffic sign visibility is an additional indicator of sign placement efficacy. In 

case of any environmental irregularities such as steep cross slopes and cluttered clear zones, the 

placement of traffic signs is left up to engineering judgement [8], [16]. Given the variability of 

alignment and geography along a roadway network, situational circumstances and engineering 

judgement can lead to inconsistent placement of traffic signs, which might impact effectiveness. 

Therefore, the measurement of the first location at which a sign is visibile will determine if the 

placement meets the needs of the driving population. 



7 
 

Legibility, a subset of visibility, is defined as the maximum distance at which the smallest 

detail on a sign can be perceived [17]. This is defined as 30 feet per inch, or 3.6 metres per cm, 

of letter height in the MUTCD [4]. The MUTCD does not provide any specific guidance for 

symbols, but Castro and Horberry [17] defined the legibility distance for symbols as 250 metres. 

Realizing that a single measure might not be truly representative of different sizes of symbols, 

other research provides a more comprehensive legibility distance of 6.9 m per cm of symbol 

height [18]. Figure 1.3 highlights the legibility distance for a vehicle with a traffic sign on the 

left side of the travel lane. 

 

 

Figure 1.3 – Legibility Distance of Traffic Signs [17] 

  

The addition of visibility completes the information required from a TSI, but a full 

inventory of traffic signs is difficult to complete from manual, image, or video-based inventory 

methods. One technology that could be used to efficiently create a TSI is mobile Light Detection 

and Ranging (LiDAR) technology. Using information on reflection time, energy, and intensity, 

the positional information of points on specific objects is computed. LiDAR scanning creates 

360°-virtual point cloud data of the highway. To collect LiDAR data, Mobile Laser Scanning 

(MLS) equipment is mounted on a vehicle that collects georeferenced point clouds while 

travelling at highway speeds. This causes minimal disruption to traffic and increases the 
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efficiency of the data collection process. Creating TSIs using mobile LiDAR has gained traction 

in global research in recent years [19]–[21].  

The use of mobile LiDAR for asset management in the transportation industry is also 

supported by the National Cooperative Highway Research Program (NCHRP). The Guidelines 

for the Use of Mobile LiDAR in Transportation Applications [22] was published to provide 

suggestions for use of mobile LiDAR in the current transportation industry. This includes the 

application of LiDAR to all components of a project, including planning, development, 

construction, operations, asset management, maintenance, safety, and future research and 

advancement. Furthermore, guidelines are provided for data collection methods and translating 

results into industry products, key to the successful integration of this up-and-coming technology 

into existing asset management and analysis workflows [22]. Therefore, the industry-recognized 

method of mobile LiDAR scanning may provide the efficiency and accuracy needed to complete 

a TSI. 

1.3 RESEARCH PROBLEM STATEMENT 

By creating a complete TSI, the regional transportation authority can update its understanding of 

the inventory and placement of traffic signs serving today’s traffic. This information can be 

incorporated into regional maintenance plans to ensure traffic sign panels are up-to-date and 

effective for the current driving population. Additionally, the availability of a TSI eases the 

burden on industry professionals or contracting firms when conducting work on regional 

highways. An inventory allows for better contractor preparedness before going on site, providing 

information on traffic signs to safely plan work zones. 

To discuss the application of LiDAR for the extraction of a TSI, this thesis is broken into 

four primary components; namely, traffic sign extraction, lane marking extraction, image-based 

traffic sign classification, and traffic sign visibility measurement. The traffic sign extraction 

component locates the signs along a mobile LiDAR scanned segment, clustering candidate sign 

panel points and measuring sign panel orientation. The lane marking extraction component is 

used to determine traffic sign placement, as the placement is measured from the nearest lane 

marking. The traffic sign classification is image-based, utilizing a neural network structure to 

classify traffic signs as one of the 155 available traffic sign classes. The development of the 

traffic sign dataset used to train the image classifier is the first of its kind in Canada. Finally, the 

traffic sign visibility component serves to measure the first point along a segment at which each 
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traffic sign is visible. To assess the applicability of mobile LiDAR to the creation of a TSI, the 

measurements and extractions are validated, where possible, using manual methods. The 

algorithm development process and TSI extraction outcomes are highlighted in Figure 1.4. 

 

 

Figure 1.4 – Algorithm Development and TSI Extraction Workflow 
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In summary, this research collects a sample traffic sign inventory within Alberta, Canada, 

applying the fusion of mobile LiDAR scanning and video-log imaging through the following 

research objectives: 

1. Creating a traffic sign inventory by extracting information on sign location (i.e., latitude 

and longitude coordinates), sign placement (i.e., vertical and lateral distance), and sign 

orientation (i.e., yaw and pitch of traffic sign panel). The addition of the orientation and 

placement measurements to the traffic sign inventory allow practitioners to assess the 

general traffic sign placement in greater detail. Sign conspicuity is highly dependent on 

these parameters, and their accurate and timely measurement from a reliable data source 

allows for the discussion of adherence to placement standards and the effects of non-

compliance. 

2. A link between LiDAR and video-log imaging in the absence of information; for traffic 

sign classification. The link between LiDAR and video-log images creates the 

opportunity to provide LiDAR-based assessments with additional detail about the 

surrounding area from another data source. In this case, this link will be utilized to 

classify the traffic signs which exist along a test segment, otherwise difficult from the 

LiDAR data alone.  

3. Traffic sign visibility assessment (i.e., the distance of first available visibility). The 

visibility assessment is a new addition to the creation of a TSI, providing practitioners 

with an understanding of the locations along a roadway at which different traffic signs are 

visible to the driving population. This allows for an assessment of traffic sign visibility 

compliance and a discussion of the effects of consecutive sign placement on sign 

visibility. 

4. The creation of Canada’s first traffic sign dataset. To conduct a neural network-based 

classification of traffic sign images, this thesis creates the first traffic sign image database 

within Canada. Spanning 155 traffic sign classes with 12,315 images, this database 

creates the opportunity for continued research into traffic signs within the Canadian 

context and for applications to the transportation industry in Canada. 

1.4 THESIS STRUCTURE 

The research is split into four main components: sign extraction, lane marking extraction, sign 

classification, and visibility. This is done to first locate the traffic signs and determine their 
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orientation. The lane markings are then extracted as they are needed for placement 

measurements. The classification is considered separately from the placement measurements and 

utilizes an image-based approach. Finally, the visibility assessment, which is dependant on the 

sign extraction, completes the creation of the TSI. Consequently, the thesis starts with Chapter 1 

which provides an introduction into the need for a TSI and its components. Additionally, the 

introduction has described the setting of the research presented in this thesis.  

Chapter 2 conducts a review of the available literature for the four components of the TSI 

- LiDAR-based sign extraction, lane marking extraction, and visibility assessment. Additionally, 

sign classification is reviewed through LiDAR-based and image-based methods. 

Chapter 3 describes the methodology utilized within this thesis as applied to the four 

components. The traffic sign and lane marking extractions both utilize the intensity component 

of the LiDAR data to locate these assets. Their extraction is utilized to determine traffic sign 

orientation and placement. Sign panel classification is conducted through an image-based 

process, where a manually created set of 13,604 training images across 155 traffic sign image 

classes and 10 false positive image classes is used to train a convolutional neural network image 

classifier. Finally, the traffic sign visibility assessment creates sightlines between traffic signs 

and trajectory points to determine the maximum distance at which each traffic sign is visible.  

Chapter 4 contains results and discussions of the application of the proposed methods to 

create a TSI. Where applicable, confusion matrices are used to quantify the accuracy of asset 

extractions, with discussions of the cause of false or missed extractions. This chapter also briefly 

discusses processing time the processing time of the proposed methods, discussing the time 

advantage of a remote sensing-based method. Finally, Chapter 5 completes this thesis with a 

discussion of the contributions, limitations, and future research for the processes outlined in this 

thesis.  
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2 LITERATURE REVIEW 

Traffic sign regulations were first introduced with the International Convention on Motor Traffic 

in 1909 [23]. This Convention was commissioned to regulate the essentials of road travel, 

including the construction of motor vehicles, international travel, and traffic signs and signals. 

However, this Convention and a series of subsequent international updates throughout the first 

half of the 1900s still did not fully regulate traffic signs and signals. With the increase of 

international travel, economic cooperation, and the growing need for a unified set of 

international standards, the Convention of Road Signs and Signals was held in Vienna, Austria in 

1968 to provide uniformity amongst traffic signs and increase international traffic safety [23]. 

Annex 1 of the Convention defines eight classes of traffic signs, including (A) danger warning 

signs, (B) priority signs, (C) prohibitory or restrictive signs, (D) mandatory signs, (E) special 

regulation signs, (F) information, facilities, or services signs, (G) direction, position, or 

indication signs, and (H) additional panel signs. Since 1968, the Convention has seen further 

updates to continue unifying the regulations surrounding traffic signs, signals, and pavement 

markings, with the most recent revision dating 2006 [23]. 

The components of a TSI can be described as local geometric characteristics (i.e., size 

and shape) and global geometric characteristics (i.e., lateral and vertical placement) required to 

be measured from the nearest lane marking for highway applications. These characteristics will 

be reviewed considering a LiDAR-based extraction. Additionally, image-based traffic sign 

classification will be reviewed to determine the state-of-the-art in image recognition. Finally, the 

additional application of traffic sign visibility will be considered for the sign inventory. The 

flexibility of large-scale survey data like the LiDAR data used in this study allows for the 

consideration of traffic sign visibility measurements. 

2.1 TRAFFIC SIGN EXTRACTION 

The current industry practice for traffic sign inventory is tedious and manual. Certain processes 

have been created with technological advancement, including the use of still images and video 

feeds of a vehicle in motion, but are still limited in their ability to conduct recurrent traffic sign 

inventory. Additionally, the previously highlighted examples require manual measurement of 

additional attributes about the traffic sign, like placement and dimensions. LiDAR data, with the 

capability of millimetre-level accuracy and widespread data collection capabilities, represents an 
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alternative to inventory signs. The following details the current state of research regarding 

LiDAR-based sign extraction. 

Gargoum et al. [20] proposed a traffic sign extraction methodology for LiDAR data 

collecting using a REIGL VMX-450 dual scanner. The multistep process includes (i) retro-

intensity filtering, (ii) 3D density based spatial clustering for applications with noise (DBSCAN), 

and (iii) geometric filtering. DBSCAN was applied using a minimum hit count of 17 points and a 

spacing of 1.0 metres. Traffic signs were filtered by height considering the regional minimum 

sign height. Furthermore, GIS software was used to create buffer zones both along the pavement 

surface and at a large offset from the centreline of the road. The proposed method was tested on 

three different highways totaling 12 kilometres, with a minimum detection rate of 93.4%. 

 Ai and Tsai [24] conducted LiDAR traffic sign extraction through their proposed multi-

filter process. The LiDAR data was collected using a REIGL LMS-Q120i with a scan collection 

rate of 10,000 points per second. The LiDAR data is subject to a retro-intensity filter, an 

elevation filter, and a lateral offset filter before finally being clustered by distance and filtered for 

hit count. Filters were assessed for maximum detection accuracy through sensitivity analysis, 

resulting in optimized thresholds for urban and interstate scanning scenarios. The optimized 

parameters are summarized in Table 2.1. Overall, this method reported a 91.4% detection rate 

with seven false positives (FP). 

 

Table 2.1 – Geometric and Intensity Threshold Values [24] 

Parameter Interstate Local Urban 

Retro-intensity [%, (16-bit)] 0.70 (45,874 as 16-bit*) 0.65 (42,597 as 16-bit*) 

Traffic Sign Elevation [metres] 2.13 1.83 

Minimum Lateral Distance [metres] 2.13 0.61 

Maximum Lateral Distance [metres] 17.98 6.71 

Minimum Hit Count (at 96.5 km/h operating speed) 10 points 20 points 

*NOTE: intensity percentage values were converted to 16-bit intensity value to compare against intensity thresholds 

noted in other publications. 

 

 Soilán et al. [21] proposed a traffic sign extraction methodology consisting of (i) point 

cloud preprocessing, (ii) ground and non-ground extraction and intensity filtering, (iii) geometric 

filtering and distance-based clustering, and (iv) projection onto RGB images for traffic sign class 
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recognitions. The point cloud was filtered at 20 metres from the trajectory, as this defines the 

limit of the region of interest for urban traffic sign extraction conducted here. Points are then 

rasterized at 0.5-metre cell spacing, with rasters created for point count, height, average intensity, 

accumulated height, and vertical variance. An additional raster (𝐼ℎ𝑒𝑖𝑔ℎ𝑡) consisting of the 

accumulated height weighted with the vertical variance is created. The Iheight and intensity 

image results were combined through a Boolean AND operation in a coarse ground filtering 

process leaving only high intensity non-ground points. The remaining points represent traffic 

sign candidates, but also contain reflective poles, walls, and facades. Therefore, a Gaussian 

mixture model (GMM) with two components is applied to segment the higher intensity points to 

extract the traffic signs. The resulting points are clustered based on distance using DBSCAN, 

where MinPts = 25 and Eps = 0.2 metres. 

To determine the geometric orientation of each candidate traffic sign cluster, principal 

component analysis (PCA) is applied to filter cluster flatness. Finally, a simple height filter is 

applied to remove clusters less than 25 cm tall, as these cannot represent traffic signs. Additional 

attributes are determined to describe the position of each candidate traffic sign, including (i) 

traffic sign position (centroid), (ii) traffic sign height (measured from centroid to ground), (iii) 

the distance between scanning trajectory and traffic sign, (iv) the angle between the traffic sign 

and the scanning trajectory, and, (v) if the sign is pole mounted, the inclination of the pole in 

profile and plan views of the traffic sign. 

Riveiro et al. [25] outline three main components for traffic sign detection: (i) 

segmentation, (ii) clustering, and (iii) feature recognition. First, an intensity map (i.e., a 

projection of the LiDAR points onto the horizonal plane) is created. Then, coarse thresholding is 

applied to extract the highly reflective surfaces (i.e., traffic signs) from the intensity map. These 

pixels are mapped back into LiDAR points to segment the signs from the point cloud. Finally, an 

optimized threshold is computed using the segmented LiDAR points and an optimal value is 

obtained using a GMM. The GMM is fit comprising of four Gaussian curves, separating the 

traffic sign panels and poles detected from the rough intensity segmentation. The two Gaussian 

curves with the highest areas are taken to be the traffic sign panel points, with the optimized 

threshold set as the mean minus two times the standard deviation for the lower of the two 

Gaussian curves.  This encompasses 95% of the points in the lower Gaussian distribution and 

retains points belonging to the higher Gaussian distribution. To remove other high intensity 
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objects (car lights, lamp posts, etc.) after filtering, DBSCAN and curvature analysis are also 

conducted. DBSCAN was conducted using a minimum number of 50 points and a search radius 

of 0.2 metres - to avoid clustering license plates. Geometric-based filter was applied to remove 

points belonging to road structures (car lights, lamp posts, other reflective objects).  

Deng and Zhuo [26] proposed a traffic sign detection framework which considers the use 

of colorized LiDAR scans. Planar objects are detected through the creation of aggregation-based 

feature vectors, where RGB, HSV, and CIELab color spaces are combined with LiDAR 

intensity. Using a priori knowledge of traffic sign 3D planar geometry and correcting for 

perspective deformation, sign recognition is completed using a linear SVM with HOG features 

classifier. The authors noted difficulty with traffic sign detection in real-world situations where 

occlusion, lighting changes, perspective distortion, and weather may obscure signs. 

Arcos-García et al. [27] proposed a traffic sign detection procedure that considers the 

fusion of LiDAR scanned point clouds and recurrent driver-perspective images. The point cloud 

is first pre-processed by (i) removing points greater than 15 metres from trajectory (not of 

interest for traffic sign extraction), (ii) conducting ground extraction, and (iii) conducting ground 

region growing, where ground seeds are selected using a nearest neighbor search of the 

trajectory, where voxels with vertical mean and variance differences less than 0.1 m and 0.05 m 

(empirically tuned) compared to kNN trajectory voxels are clustered and used as seeds to grow 

the “ground region”.  

The non-ground region is then used to begin extracting traffic signs. The authors propose 

an unsupervised classification algorithm based on a GMM with two components. All non-ground 

points are assigned to one of two GMM classes and the class with the highest mean (i.e., closest 

to 65,535; maximum intensity) is selected for further processing. The remaining points are 

grouped using DBSCAN, followed by principal component analysis to filter for cluster flatness, 

and finish with a cluster height filter identical to Soilán et al. [21]. 

 Wen et al. [28] proposed a traffic sign detection process through terrain point filtering, 

linear structured objects detection, and reflectance intensity-based sign surface filtering. Terrain 

points are gridded in XY, then for each non-empty grid, points are selected within a percentile 

for elevation. The representative points within the grid cells neighboring the current cell are used 

to fit a local plane, assigning the points outside of a bounding box around the plane as “off-
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terrain”. This is repeated by assigning points to one of four sub-grid cells and segmenting until 

the finest level is reached.  

Euclidean clustering is applied to segment off-terrain points into clusters, followed by an 

eigen-decomposition of the covariance matrix to calculate the principle directions within each 

cluster. Linear structures are identified considering 𝜆1 ≫ 𝜆2 ≅ 𝜆3 and 𝜆1/𝜆2 > 10, where 𝜆𝑖 is 

the principal component in the 𝑖𝑡ℎ direction. Additionally, clusters that contain less than 50 

points are removed. Traffic signs are selected by their retroreflective properties as clusters with 

intensity greater than 60,000. Road surface and road boundary are extracted through a curb-

based method, which considers local difference in elevation to differentiate curbs from the road 

surface and other features. 

Traffic sign placement is measured as the traffic sign height above ground, the distance 

from traffic sign to road boundary, the orientation of the traffic sign with respect to the road 

direction, the inclination (i.e. vertical angle) of the traffic sign board, the horizontal pitch of the 

traffic sign, and the planarity and curvature of the traffic sign. The scanning was conducted using 

a RIEGL VMX-450, reported positional accuracy of ±0.231, ±0.287, ±0.442 metres in x, y, 

and z, respectively. Additionally, the vertical and horizontal placement and rotational accuracies 

are ±0.063 and ±0.076 metres and ±52" and ±37", respectively. Difficulties in accuracy were 

noted by the authors as follows: traffic signs were not extracted from point cloud due to 

incomplete scans, or if the scans were conducted in the opposite direction of a traffic sign, 

thereby only collecting the back face (i.e. not the reflective side, not picked up in high intensity 

filter). 

Yu et al. [29] devised a traffic sign extraction methodology using a bag-of-visual-phrases 

representation of 3D points, considering both single features and distributed features in local 

point cloud regions. First, an upward region-growing algorithm segments the point cloud into 

ground and non-ground points. Points are voxelized and a set of point cloud segmentation 

training data is then segmented into supervoxels using the voxel cloud connectivity segmentation 

algorithm.  

A deep Boltzmann machine (DBM) feature encoder is proposed to generate high-order 

features of local point cloud regions. Each non-ground query object is run through the trained 

DBM and assessed for similarity to the trained traffic sign point features. The three-dimensional 

candidate traffic sign clusters are transformed into traffic sign image coordinates to extract image 
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information. An additional Gaussian-Bernoulli DBM is applied to conduct image-based traffic 

sign recognition, with 161,792 augmented image samples are used to train the Gaussian-

Bernoulli DBM model. The proposed methodology resulted in 94.6% correctness, providing a 

unique alternative to previously proposed traffic sign methodologies. However, this method 

noted the need for exceptional computational power. 

2.2 LANE MARKING EXTRACTION 

The extraction of lane markings from remote sensing data, mainly LiDAR fused with driver 

point-of-view images, has become increasingly popular with the recent interest in driver 

assistance systems. In that context, knowledge of the location of lane markings allows for the 

driver assistance applications like lane keep assist, lane departure warning, and semi/fully 

autonomous driving systems. However, in the context of transportation infrastructure, the 

knowledge of the location of lane markings allows for the assessment of several transportation 

planning and operations requirements. This includes the assessment of lane width, lane marking 

visibility, and for this research, traffic sign offset. As per the Alberta Highway Guide and 

Information Sign Manual [14], minimum lateral and vertical traffic sign offsets are required for 

the safe and efficient placement of traffic signs - measured from the nearest lane marking. 

Guan et al. [30] propose an image-based lane marking extraction method, where the 

reflectivity of the lane markings is manipulated through multiple intensity thresholds and 

statistical segmentation along the road cross-section. The point cloud is segmented using curb 

extraction to detect the road surface, and the road surface is then split into cross sections 

longitudinally along the direction of the roadway. Then, georeferenced feature (GRF) images are 

developed from the cross sections using a modified inverse distance weighting method, where 

pixel intensity values are determined by distance and intensity-weighting. Intensity-weighting is 

used locally (i.e., cross section level) and globally (i.e., segment level), where intensity value 

weights are determined through analyses of the GRF image point density and intensity 

histograms, effectively equalizing the intensity histograms. The intensity of the cross section is 

fit to a Gaussian normal distribution and segmented into bins, where each bin contains one 

standard deviation of the fit distribution. A binary intensity threshold technique is then applied to 

each intensity bin, segmenting each bin into foreground (i.e., lane markings) and background 

(i.e., road surface). Finally, the road markings are further refined through morphological closing 

operations. 
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Riveiro et al. [31] propose a scan-line and image based lane marking extraction 

procedure, where the roadway is segmented using the scan-lines and converted into images for 

the application of image processing techniques. Scan-lines (defined as “scanner cycles” in this 

paper) are assessed with PCA to a local neighborhood of points (10 points) to determine the 

“traversal limits” of the roadway. The roadway is further segmented into “strips” (i.e., cross 

sections) consistently 18 metres in length, collected with 50% overlap to ensure that zebra 

crossing paint lines are not segmented within separate cross sections. Each strip is rasterized by 

determining the best-fit plane to the points and assigning the pixel value to the nearest point in 

the cross section. Binary images are created through intensity thresholding as in Guan et al. [30]. 

Morphological operations of median filter (to reduce salt and pepper noise) and closing (to fill in 

holes within the zebra marking) are applied. The Canny edge detection process is applied to 

determine the edges of the binarized lane marking images, finalized with the application of the 

Hough Transform to detect linear segments within the extracted edges. The extracted Hough 

lines are meant to represent the edges of the lane markings as these are linear for zebra crossings. 

Kumar et al. [32] proposed an intensity-based road marking extraction method, which 

utilizes automated distance-based intensity thresholding. Using the road boundary extracted 

during their previous study, road marking extraction is developed based on the assumption that 

road markings exhibit higher intensity than their surrounding road surface elements. For the 

extracted road surface, a series of cross sections are created and rasterized using an optimized 

cell size. Raster cell values are based on average values of intensity and range and normalized 

based on their global minimum and maximum. Range-based intensity thresholding is then 

applied to each intensity raster image. The trajectory of the scanning vehicle is used to select a 

range value to be applied for multiple values of thresholding. This results in multiple ‘blocks’ 

along the raster image at which intensity thresholding will be applied unique to that block. The 

initial threshold value (𝑇1) is set empirically and used to estimate the threshold values within all 

four blocks (𝑇𝑙1, 𝑇𝑙2, 𝑇𝑙3, 𝑇𝑙4), assuming a two-lane road (i.e., two blocks per lane). The raster cell 

size was optimized through a comparison of extraction results along a 10-metre segment. 

Average lane marking width and length was compared to the design standards, choosing the cell 

size that produces the closest width and length. 

Binary morphological operations and a priori knowledge of road marking dimensions are 

applied to resulting extractions to complete the road markings and reduce road surface noise. The 
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resulting raster images are converted to binary images and linearly dilated along the direction of 

the lane markings to fill any holes. Connected component labelling is applied to the resulting 

cells and filtered using length and width thresholds. Raster cells are then eroded to revert to the 

original shape and size of the road markings. The erosion uses the same angled linear structural 

elements as used in the dilation operation. This procedure resulted in object and point detection 

completeness of 90.91% and 88.43%, respectively. 

Guan et al. [33] utilize interpolated GRF images from three-dimensional points, utilizing 

weighted raster neighborhoods and tensor voting to extract road markings. This work is based on 

the theory that LiDAR scanning intensity is dependent on a point’s distance from the scanner and 

incidence angle. First, a curb-based segmentation of the road surface was conducted and 

subsequently transformed into two-dimensional georeferenced images. These are subdivided into 

square sub-images and a weighted neighboring difference histogram is applied. For each sub-

image, this analyzes the intensity differences within each pixel neighborhood and automatically 

determines a locally optimal threshold for candidate road marking pixel extraction.  

dm(i, j) =
∑ |Iuv

M − Iij
M| ∗ (Iuv

M − Iij
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where N(i,j) is the subset of neighborhood pixels. The value of 𝑑𝑚(𝑖, 𝑗) determines the location 

of road markings, where if 𝑑𝑚(𝑖, 𝑗) is close to zero then the pixel is at the centre of the road 

marking or road surface. If 𝑑𝑚(𝑖, 𝑗) is negative, then the pixel is at an internal boundary of a road 

marking. And if 𝑑𝑚(𝑖, 𝑗) is positive then the pixel is at an external boundary of a road marking. 

Then, the candidate road marking pixels are further refined by applying two-dimensional 

multi-scale tensor voting (MSTV), which suppresses pixel noise while preserving the lane 

markings. A multi-threshold technique is applied to the tensor size map during MSTV iterations 

to remove pixels with low tensor size. Finally, lane markings are clustered together through a 

region growing process that segments potential lane markings into their respective parts and 

removes any incorrect lane markings.  

Yan et al. [34] propose a scan-line-based procedure for the extraction of road markings. 

LiDAR scans are preprocessed, analyzed to extract road points, and then analyzed to extract road 

markings. First, the point cloud is organized into a series of scan lines using each point’s 

timestamp and scanner angle. Then, the roadway is extracted through a review of the height 
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difference between the point cloud and the scanning vehicle’s trajectory and an analysis of a 

moving least squares line. The scan lines are then analyzed using a moving window median filter 

of its intensity to minimize intensity noise. The Edge Detection and Edge Constraint (EDEC) 

method is then applied to detect road markings, followed by refinement based on local segments 

and linearity features to reduce false positive extractions. 

Lane markings with fake road marking points (FRMP) are analyzed perpendicular to their 

principal axis, where stand-alone FRMPs should produce linear segments. The neighborhood 

surrounding each potential lane marking point 𝑝 is assessed for linearity, where linearity is 

defined in Equation 2 and 𝜆1 and 𝜆2 are the first and second principal components of the 

perpendicular section (i.e., eigenvalues). 

Lλ =
λ1 − λ2

λ1
 2 

 If 𝐿𝜆 exceeds 0.9, the point p and its neighborhood are considered FRMPs and are 

removed. The final extraction was found to be 96% complete and 93% correct when the raster of 

the extraction was compared to the raster of the manually extracted points. 

Yu et al. [35] propose a method to extract road markings from 3D point cloud rather than 

2D images. First, the road surface is extracted from the point cloud using curb-based 

segmentation. Then, road markings are detected through a two-fold procedure (i) cross-sectional 

intensity thresholding and (ii) spatial density filtering. First, the extracted road surface is 

segmented into cross sectional blocks of equal length, and each block is split into four regions 

parallel to the direction of travel. Then, a multi-thresholding algorithm is applied to separate the 

blocks into road marking and road surface points. As a result of the reflective properties of the 

bituminous components of the pavement, additional noise exists alongside the desired road 

markings. Therefore, a spatial density filter is applied to the extracted road marking points to 

remove road surface points that exhibit similar intensity characteristics to the road markings. 

Finally, the resulting cleaned road markings are classified through distance-based clustering and 

voxel-based normalized cut segmentation, identifying the road markings as boundary lines, stop 

lines, rectangular lines, arrow markings, and other road marking types. 
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2.3 TRAFFIC SIGN IMAGE CLASSIFICATION 

As outlined in Section 1.1, the collection of images for traffic sign inventory is a commonly 

considered alternative to manual image classification and serves as a valuable addition to the 

LiDAR-based traffic sign extractions that were previously detailed. Although mobile LiDAR 

data excels in the accurate location and measurement of objects within a scanned area, drawing 

conclusions about an object strictly from visual information is dependent on the density of the 

point cloud collected. This is typically not a concern in urban areas as the lower speed limits 

allow the same scan rate to collect a higher density of points on the same object. However, at 

highway speeds, the density of points on any given object decreases as the exposure time of each 

object to the scanner decreases. Therefore, information on the color of scanned objects may be 

sparse, which is where the fusion of LiDAR scans and color images can fill in this information. 

The mobile LiDAR data used in this study did not have any assigned color attributes, making the 

fusion with video-log images even more important to the completeness of a traffic sign 

inventory. 

Computer vision has been a longstanding problem and popular topic within global 

research since the late 1960’s [36], but recent advancements in computer hardware technology 

and the rise of semi-autonomous and autonomous vehicles have both heavily contributed to the 

recent resurgence in computer vision research. The challenge of general object classification 

from images has been of focus in the industry, with research teams developing vast image 

databases resulting in the annual ImageNet object classification challenge from 2013 onwards. 

Ultimately, the development of these databases resulted in purposefully designed modelling 

techniques for object recognition, including images of traffic signs. 

As a result of the Vienna Convention and resulting updates, traffic signs across the 

Europe are common to many European Union countries [23]. Alternatively, the Laboratory for 

Intelligent and Safe Automobiles (LISA) dataset is an annotated dataset of driving perspective, 

where images that contain a specific traffic sign are annotated as such [37]. This focuses on 

traffic sign extraction, given the American driving perspective, and although some of the traffic 

signs used in the United States are similar to those used in Canada, there is a lack of specific 

regions of interest around only the traffic sign making this dataset difficult to use for this 

application. However, if a similar dataset existed for the Canadian context, the perspective 
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provided by these images would be comparable to the perspective of the images collected during 

LiDAR scanning. 

To conduct traffic sign classification from images, the characteristics of a traffic sign 

must be defined, either visually (color, shape, etc.) or through a comparison against examples of 

traffic signs (image logs, videos, etc.). Initial attempts at traffic sign recognition considered the 

color and shape of traffic signs, commonly using color transformations and image gradients to 

roughly classify traffic sign super-classes [21], [25]. However, with the recent resurgence of 

convolutional neural network (CNN) image classifiers, having a complete image dataset 

available alongside a stable CNN allows for greatly improved image classifiers capable of high 

levels of detail. For use in CNN classifiers, several traffic sign datasets have been made 

available. The problem of image-based traffic sign recognition has been longstanding [36], and 

the use of geometric attributes and two-dimensional representations of the potential traffic signs 

have been used in preliminary attempts to classify traffic signs from three-dimensional point 

cloud data. 

Riveiro et al. [25] classified rasterized LiDAR traffic sign clusters into super-classes 

based on the goodness of fit of a sign’s shape to a set of polynomials. Super-classes of danger, 

give way, prohibited or obligation, and indication, taken to be directly related to traffic sign 

shape classes of triangle, inverted triangle, circular, and rectangular. The curvature of LiDAR 

clusters was calculated using PCA, only retaining planar clusters as candidate traffic signs. Using 

the third principal component (which describes the direction of least variance, i.e., the face of the 

sign), all clusters were rotated to align them for rasterization. The shape of the signs is estimated 

based on the point distribution within raster images. Pixel size is chosen depending on the 

scanning location (urban areas are lower speed, therefore a higher resolution of points requiring a 

lower pixel resolution).  

The gradients of the raster images are used to analyzed individual traffic sign clusters, 

splitting multiple traffic signs if they are present (common with pole mounting in urban areas) 

and assessing the contour of detected traffic signs. Polynomials are fit to the edge of the traffic 

sign raster images, allowing traffic signs to be distinguished by the degree of their polynomial as 

rectangular (degree 0), triangular (degree 1), rhomboid (degree 1 with horizontal axis of 

symmetry), circular (degree 2), and octagonal (degree 2 with additional constraints). The authors 

noted that distinguishing between circular and octagonal signs was often difficult due to their 
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structural similarity. Data was collected with an Optech LYNX scanner, resulting in final 

completeness and correctness rates of 92.11% and 93.96%, respectively. 

Soilán et al. [21] conduct image-based traffic sign recognition using color 

transformations, where feature extraction is conducted using a Histogram of Oriented Gradients 

and passed through a Support Vector Machine classifier for super-class recognition. Seven 

super-classes define the different traffic sign types; prohibition, danger, give way, no entry, stop, 

indication and obligation. For each input image, red and blue color maps are computed. 

Transformed from RGB to the Hue Luminance Saturation color space. Regularized logistic 

regression is trained to correctly classify color in the bitmap images in a variety of lighting 

conditions. Shape is classified for each image using HOG and SVM. Each traffic sign is also 

classified within its superclass for the general classes (i.e., prohibition, danger, indication, and 

obligation). The CIELab color space was used within an additional HOG and SVM pair for 

classification. Negative training images are provided from random background (i.e., surrounding 

environment) images and image samples from other sub-classes in the same superclass. In the 

urban and rural contexts, this method had 97.2% and 94.57% precision and 81.4% and 82.19% 

recall, respectively. 

However, these classification procedures only provide unfinished classifications, partially 

due to the lack of available training data against which to compare potential traffic signs. In 2011 

and 2014, respectively, the German Traffic Sign Recognition Benchmark (GTSRB) [38] and the 

Belgian Traffic Sign Classification dataset (BTSC) [39] were collected to aid traffic sign 

recognition research. The GTSRB contains 50,000 images labelled across 43 classes and was 

used in a traffic sign recognition competition won by Cireșan et al. [40]. The BTSC contains 

4591 training images and 2534 test images across 62 traffic sign classes. Both datasets have been 

used to train and evaluate the performance of traffic sign recognition computer vision algorithms. 

Cireșan et al.[40] trained a multi-column deep neural network (MCDNN), where multiple 

DNN models are trained and the output activations are averaged to produce the final 

classification result. Each deep neural network (DNN) contains nine layers, with 25 separate 

DNN columns trained based on one of five different image contrast enhancement and 

normalization techniques each randomly initialized five times. With 39209 training images and 

12630 testing images the 25 column MCDNN obtained 99.46% accuracy. The five input image 

types are: 
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1. Original image; no transformation. 

2. Image adjustment; increases image contrast by saturating the top and bottom 1% of pixel 

intensities. 

3. Histogram equalization; pixel intensity transformation, which results in a roughly 

uniform pixel intensity histogram. 

4. Adaptive histogram equalization; local version of histogram equalization, where a non-

overlapping window 6x6 in size is passed over the image and the pixels are contrast 

enhanced – also producing a roughly uniform histogram. 

5. Contrast normalization; enhanced edges within an image using a 5x5 difference of 

Gaussians filter.  

 

Arcos-García et al. [27] utilized a mixture of GTSRB, BTSC, and Spanish traffic signs to 

train a traffic sign classifier in Spain. The combination of the three labelled image sets contained 

44130 training images and 15345 validation images for 83 classes. The image sample was an 

imbalanced dataset, with 9/83 categories in the training set and 21/83 categories in the validation 

set containing less than 10 samples. 17/83 categories contain more than 100 training samples. 

The deep neural network used to classify traffic sign images is designed around convolutional 

and spatial transformer layers. The spatial transformer network layers are used to ensure the 

CNN is spatially invariant to the input images. Spatial transformer networks are applied to 

circumvent the need for additional data augmentation, normalization, or training supervision. 

Images are contrast normalized within the CNN using contrast normalization layers, which apply 

Gaussian kernels in local regions. 

The authors detect traffic signs within their video-log images by transforming their 

LiDAR extracted traffic signs into the image coordinate space. Once every LiDAR point has 

been projected onto an image, the bounding box, which is inflated 25% to account for calibration 

errors and to add background detail, is extracted. Both the LiDAR scans and the video-log were 

collected using a LYNX Mobile Mapper, based on the REIGL VMX-450 scanner. This creates a 

region-of-interest within the image, which serves as the input to their trained NN classifier. 

The training dataset contains images obtained from mobile scanning, combined with the 

German [38] and Belgian [39] datasets, which contain traffic signs that are similar to those in 

Spain. Only image classes with seven or more samples were used in the initial dataset. Traffic 
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signs collected in Spain comprise of 897 training images and 452 validation images over 43 

classes. Combination with GTRSB and adapted BTSC resulted in 44,130 training images and 

15,345 validation images. 

2.4 TRAFFIC SIGN VISIBILITY ASSESSMENT 

The assessment of legibility distance for traffic signs has been sparingly studied in the literature, 

with most studies simulating occlusions that occur along traffic sign sightlines. The literature 

considers occlusion management scenarios, where different types of occlusions are tracked, and 

dynamic occlusion scenarios, where occlusions are tracked when passing heavy vehicle traffic.  

Dahlstedt and Svenson [41] analyzed different traffic sign characteristics for their effects 

on legibility distance. Traffic signs were placed along a segment and drivers were instructed to 

audibly note when they saw traffic signs, and on which side of the road. A passenger in the back 

seat of the vehicle then recorded the distance to the sign by reading distance markers only visible 

to them. This procedure required 1-5 hours of driving per subject for the 12 subjects and resulted 

in 72 measurements of traffic sign legibility distance. 

Baek [42] examined legibility distance by analyzing distance-tagged digital photologs of 

real highway environments. Images were collected by a survey vehicle equipped with an array of 

high-resolution cameras. Line of sight was manually assessed for the collected traffic sign 

images, with the author considering traffic sign occlusions as binary events; either a traffic sign 

is significantly obstructed, or there is no obstruction. Line of sight measurements in the 

unobstructed case were limited by the resolution of the images. Line of sight was determined for 

3142 traffic signs, with some traffic signs being skipped because the fell out of frame on 

horizontal curves or line of sight could not be measured in urban close-quarters. The authors 

determined that road classification, sign size, and type of obstruction had a significant impact on 

the line of sight to obstructed signs. 

Huang et al. [43] utilize a point cloud to extract traffic signs and analyze their occlusion 

from trajectory points. The proposed method conducts traffic sign extraction considering 

intensity and geometric properties. Then, the degree of occlusion of the extracted traffic signs is 

determined by iteratively finding the visible points from driver locations along the scanning 

trajectory. Traffic signs are linked to upstream trajectory points from the traffic sign based on 

local safe sight distance requirements, which amounts to a smaller distance in the urban centres 
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analyzed in this study. The occlusion of traffic signs was measured with a precision and recall of 

73.81% and 91.06% on average, respectively. 

Wu et al. [44] extended their previous work on traffic sign detection from LiDAR data to 

evaluate the visibility of these traffic signs. The proposed framework creates feature vectors for 

each traffic sign whereby details are determined from the LiDAR data and from video-log 

imagery. The LiDAR data is utilized to determine horizontal and vertical orientation, flatness, 

and local distances of the traffic sign. The images are utilized to make pixel-wise and pixel-

region measures of the traffic sign, determining sign panel area, and differences in the sign 

panel’s edge strength, mean color, and color histograms as compared to the background of the 

image. These feature vectors are used to calculate the visibility of the traffic signs and compare 

them against subjective measures from the images. Signs were categorized as being invisible or 

having low, medium, or high visibility. The comparison between the calculated and subjective 

visibility measures were within 5% of one-another. 

There were also some examples where legibility distance was utilized but not studied for 

the specific purpose of measurement. Al-Kaisy et al. [45] analyzed different factors that result in 

occlusions by heavy vehicles within the legibility distance of a standard passenger car (PC). A 

parametric analysis was conducted considering characteristics of the traffic sign and the driving 

environment to determine the probability of a traffic sign being occluded by a heavy vehicle and 

the probability of a PC missing the traffic sign under variable traffic conditions. The authors 

considered legibility distance between a travelling vehicle and a traffic sign within their 

simulated environment. 

Discetti and Lamberti [46] assessed stopping sight distance (SSD) along select horizontal 

curves, and when SSD could not be improved through changes to roadside furniture, a traffic 

sign was placed with an adjusted speed to ensure adequate SSD was available for those curves. 

For the added speed signs, traffic sign sight distance was measured with an optical laser and 

verified with a pilot vehicle.  

Unlike the previously mentioned publications, Nassar and Al-Kaisy [47] considered 

legibility distances to measure occlusions for guidance signs within buildings. The authors 

determined the percentage of the sightline which was occluded and the probability of missing the 

sign; similar to the procedure by Al-Kaisy et al. [45]. The line of sight to each sign was measured 
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within a simulated environment, where the position of building occupants was changed with each 

time step and the line of sight recalculated to locate line of sight occlusions. 

2.5 SUMMARY 

Based on the reviewed literature, the intensity-based manipulation of the point cloud to 

extract candidate traffic signs is commonly conducted through both heuristic thresholds and 

statistical measures. Candidate traffic sign points are then combined based on their local 

neighborhood, commonly through distance and density-based clustering to create meaningful 

groups of points. Finally, candidate traffic sign clusters are further processed through the 

creation of cluster descriptors, typically through principal component analysis. This defines the 

local orientation of a candidate traffic sign cluster and is useful in the false-positive filtering 

process. Sign placement is calculated through a comparison against the local lane markings. For 

their extraction, common to the bulk of the reviewed literature is the extraction of the road 

surface, the manipulation of the intensity attribute of LiDAR data, and the linearity of lane 

markings. Previous literature focuses on one of two extraction techniques – point-based or raster 

and image based. Both approaches are equally powerful, however the previous research 

surrounding image processing provides a proven background of intensity classification research 

for lane marking extraction. For this work, this thesis contributes the creation of a complete TSI, 

determining the position of signs along the segment and measuring their placement and 

orientation. Both attributes are used in discussions about sign conspicuity in Chapter 4. 

The fusion with image-based processes is commonly used to provide additional detail to 

the candidate traffic sign clusters. The power of image processing makes the classification of 

traffic signs from images a realistic endeavour and a key component to the completion of a 

traffic sign inventory. For the purpose of traffic sign image classification, neural network 

structures are the most common and the most accurate methods for traffic sign image 

recognition. However, the literature highlights varied approaches within each of the proposed 

neural network structures. The literature examples provide robust image classifications with 

marginal differences in accuracy. This thesis will discuss the application of an industry 

recognized neural network structure for image-based traffic sign classification. For this work, 

this thesis develops the first-of-its-kind training dataset for Alberta, Canada to conduct CNN-

based image classification. 
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Finally, in contrast to the literature, this study develops an algorithm to automatically 

quantify real-world visibility distances from LiDAR data to determine the maximum distance at 

which traffic signs are visible. This is compared against required legibility distances and used to 

discuss the effects of consecutive traffic sign placement on sign visibility. This thesis contributes 

the visibility measurement of traffic signs – a new addition to the literature which considers the 

maximum distance at which traffic signs along a segment are visible. 
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3 METHODOLOGY 

Given the sheer size of the LiDAR data collected for highway network scanning, the extraction 

of a single asset (traffic sign) becomes a big data management problem. The proposed procedure 

is a process of feature engineering, where meaning is created from the LiDAR dataset through 

data discretization and the creation of geometric and intensity-based descriptors. Before 

describing the proposed methodology, the following section will describe the data used within 

this thesis.  

3.1 DATA DESCRIPTION   

To assess the application of LiDAR data for traffic sign asset management, highway segments 

were scanned with a state-of-the-art LiDAR scanner. The LiDAR data was collected for Alberta 

Transportation by a third-party subcontractor using RIEGL’s VMX 450 Laser Scanning System. 

The RIEGL VMX-450 system uses two VQ-450 scanners with IMU/GNSS units (Inertial 

Measurement Unit/Global Navigation Satellite System) to collect LiDAR data. The laser 

scanners are symmetrically configured on the left and right sides, pointing toward the rear of the 

vehicle at a heading angle of approximately 145°. The VQ-450 scanner has a scan rate of up to 

1.1 million points per second and a scan speed of 400 lines per second [48]. The density of the 

points on a scanned object depends on the range, and the speed of the data collection truck. 

Provincial surveys conducted at 95 km/h result in LiDAR point densities on the pavement 

surface of 150-1000 points/m2. It is worth noting that the MLS system can be mounted on any 

vehicle to conduct the surveys.  

 

 

Figure 3.1 – RIEGL VMX-450 Dual Scanner with 360° Field of View Cameras [49] 
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The operation of a LiDAR scanner such as the one in Figure 3.1 results in a collection of 

individual points, which when assembled, collectively represent a point cloud. A point cloud is 

an accumulation of the points collected when a light pulse from a scanner reflects off an object 

and returns to the scanner. The number of points in any given point cloud is directly proportional 

to the scan rate of the LiDAR scanner used and the speed at which the scanning vehicle travels. 

The RIEGL VMX-450 [48] consists of two scanning heads and can collect 1.1 million points per 

second at a scan rate of up to 1.1 MHz, resulting in the dense point cloud in Figure 3.2.  

 

 

Figure 3.2 – Sample of LiDAR Data: Highway Speed RIEGL VMX-450 

  

Part of the attractiveness of the application of LiDAR is the relative accuracy capable by 

larger LiDAR scanners – of which the REIGL VMX-450 is an example. The RIEGL dual 

scanner reports an 8mm absolute accuracy [48]. The NCHRP Report 748 [22] suggests different 

point density and accuracy measurements for different extraction and measurement procedures 

from LiDAR data. Engineering surveys and post-construction quality control requiring >

100 pts/m2 resolution and <  0.05m accuracy. Along the test segments within this thesis the 

VMX-450 has a point density of roughly 400 pts/m2 along the road segment. Therefore, to 
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retain the quality of the TSI conducted in this study, high density and high accuracy mobile 

scanners offer an accurate inventory. 

The resulting dense point clouds consist of the temporal, geographic, and additional 

attributes as per the American Society for Photogrammetry and Remote Sensing’s LAS 

Specification Version 1.2 [50]. Table 3.1 contains information regarding the Point Data Format 

of information used within this thesis. Additional attributes are available in the LAS 1.2 format 

but are not used because they are incomplete or unavailable. It should be noted that LAS 1.4 

format is the latest point cloud format currently available, but LAS 1.2 was the latest version 

available during scanning.  

Table 3.1 – LiDAR Point Data Record Format [50] 

Data Type Format Size 

X Long 4 bytes 

Y Long 4 bytes 

Z Long 4 bytes 

Intensity Unsigned short 2 bytes 

Scan Angle Rank Char 1 byte 

Point Source ID Unsigned short 2 bytes 

  

Alongside the collection of LiDAR data used for this research Alberta Transportation 

collected a series of roadside video-log images (henceforth referred to as “video-log”) that show 

the driving perspective of a vehicle on its left and right-hand sides. The camera array collects a 

video-log simultaneously with the LiDAR scanning, and the video-log is geo-referenced using 

the camera’s latitude and longitude coordinates. Samples of the video-log, shown in Figure 3.3, 

display the perspective of a specific side of the driving vehicle and includes collection date, 

kilometre marker, location, and latitude and longitude coordinates embedded at the top of the 

image. The video logs supplement the LiDAR analysis to provide further information about the 

sign itself (i.e., size, color, lettering, etc.) and visual proof of the detection rate (i.e., false 

positives, false negatives, etc.). 
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Figure 3.3 – Sample Video-log of Highway 1, Alberta, Canada 

  

This research will consider a portion of Highway 1 extending a length of 4-km in the 

Eastbound direction which lies in the South-Western part of the Province of Alberta. The 

segment is part of a multi-lane divided highway located southwest of the city of Calgary. The 

speed limit on the segment is 110 km/h. Highway 1 is a critical highway within Alberta’s 

economy, serving inter- and intra-provincial commercial, tourist, and leisure traffic travelling 

into the Rocky Mountains year-round. The segment is bounded by rivers, lakes, rock faces, and 

thick tree-lines past the clear zone and can greatly vary in horizontal and vertical alignment.  

3.2 LIDAR DATA VIEWING & PROCESSING 

All algorithms outlined in this thesis were scripted using MathWorks’ MATLAB version 2018a 

[51]. The volume of data present in LiDAR scanning requires the big data processing capabilities 

present in MATLAB’s programming environment. For visualization, LiDAR data is passed into 

Applied Imagery’s Quick Terrain Reader [52]. Quick Terrain Reader is also compatible with 

Google Earth’s .KML files, which were used to visually debug extraction results.  

3.3 TRAFFIC SIGN EXTRACTION 

3.3.1 INTENSITY-BASED EXTRACTION 

The fundamental difference between traffic signs and their surroundings is that they have retro-

reflective properties. In the point cloud context, this results in points with high intensity values 

on the traffic signs. As suggested by Soilán et al. [21] and Riveiro et al. [25], a Gaussian Mixture 

Model with Expectation Maximization (GMMEM) was used to determine the probability that 

any point’s intensity matches the intensity distributions of the entire point cloud. The value of 
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fitting a GMM is that the algorithm remains open to variation, ensuring that high intensity points 

are extracted regardless of the test segment in question. The intensity histogram of the entire 

point cloud for the test segment is shown in Figure 3.4. Figure 3.4 (a) shows the entire intensity 

histogram with a peak around 16000, and Figure 3.4 (b) shows only the high intensity region 

(intensity > 35000) in the LiDAR segment which contains the traffic signs.  

 

  

(a) (b) 

Figure 3.4 – Intensity Histogram of Test Segment 

 

Fitting a two-component GMM through expectation maximization to the intensity 

histogram requires two steps: the expectation step and the maximization step. The following 

description of the calculations behind the GMM process is based on Hastie and Tibshirani [53]. 

Starting with the intensity histogram, the two Gaussian distributions are initialized with guesses 

for the means (𝜇�̂�), standard deviations (𝜎�̂�
2
), and weighting parameters (�̂�) for the two 

distributions. For 𝑘 number of Gaussian distributions, the probability of a value (𝑥) belonging to 

one distribution is given by the linear combination of the Gaussians – as given in Equation 3.  

p(x|μ, σ) =  ∑ πi

1

√2πσi
2

i∈[0,k)

e−(x−μi)
2/2σi

2
 3 

 In the expectation step, the initial guesses of the mean and standard deviation for each 

Gaussian are used to determine the probabilities. This determines which Gaussian curves are 

“responsible” for the values of all points using Equation 4. For example, if a point has an 80% 

probability of belonging to Gaussian curve 1 and a 20% probability of belonging to Gaussian 

curve 2, then the first and second Gaussian curves are 80% and 20% responsible for the value of 

the point, respectively.  
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ric =
πc N(xi, μc, σc)

∑ πj N(x, μj, σj)j∈[0,k)

 4 

 The maximization step then takes the responsibilities from the expectation step to 

recalculate the means, standard deviations, and weighting values of the Gaussian curves. Using 

Equations 5 and 6, the new mean and standard deviation redefine the Gaussian curves, and this 

process is repeated until convergence. Equation 7 recalculates the weighting parameters for the 

Gaussian curves. 

μc
new =

∑ ricxii

∑ rici
 5 

μc
new =

1

∑ rici
∑ric(xi − μc

new)2

i

 6 

πc =
∑ rici

n
 7 

 With the GMM fit to the intensity histogram, the potential traffic sign points are extracted 

based on the Gaussian curve with the higher mean. Points that have an intensity greater than one 

standard deviation below the mean are considered candidate traffic sign points. One standard 

deviation is chosen to minimize high intensity noise present in the dataset, such as passing 

vehicles and highway markers, while maintaining candidate traffic sign points. 

3.3.2 TRAFFIC SIGN CLUSTERING 

To determine geometric features about the extracted set of candidate traffic sign points and to 

conduct false-positive filtering, the extracted points are clustered using DBSCAN [54]. 

DBSCAN is utilized by [20], [21], [24], [25], [27], [28] and is conducted to place individual 

candidate traffic sign points into grouped regions of interest, removing high intensity noise (e.g. 

street lights, license plates, passing vehicles, etc.) kept in the GMM process, and providing a new 

candidate point format for further analysis. DBSCAN is an unsupervised distance-based 

clustering technique designed to group data irrespective of shape using minimal information 

about the input dataset. The minimum number of points per cluster (MinPts) and the maximum 

intra-point spacing (Eps) must be predefined, and DBSCAN segments the data into density-

reachable and density-connected clusters and noise [54]. Cluster and noise classifications are 



35 
 

shown in Figure 3.5, where clusters contain points that are density-reachable and density-

connected with respect to the original parameters MinPts and Eps. If a point is not density-

reachable from any cluster, the point is labelled as noise. An example is visually detailed in 

Figure 3.5, where Eps is shown by the red circles and MinPts is defined as 3 points. In Figure 3.5 

(a), the no other point is density-reachable from Point P. Therefore, Point P would be classified 

as noise during this step. In Figure 3.5 (b), Point Q is density reachable from Point P, connecting 

the points that are also density-reachable. The number of points that are density-reachable from 

P is also greater than the MinPts, thereby assigning these points to a cluster in this step. For 

further detail on this method, please consult Ester et al. [54]. 

 

  

(a) (b) 

Figure 3.5 – DBSCAN Cluster Definition 

  

These parameters are assigned based on the desired attributes of the point clusters. 

DBSCAN was used for traffic sign extraction in a few literature examples, as outlined in Table 

3.2. The difference in DBSCAN attributes are related to the environment in which scanning 

occurs and the scanner used. As the compared studies all used comparable scanners, capable of 

up to 1.1 million points per second, the difference in clustering attributes are likely due to the 

speed at which scans were conducted. Highway LiDAR scanning is conducted near 100 km/h 

[24], whereas urban scans can be conducted at speeds as low as 30 km/h. Therefore, the same 

object scanned in the highway environment will have a lower point density when compared to 

the same object scanned in an urban environment. 
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Table 3.2 – DBSCAN Traffic Sign Extraction Attributes 
Authors Area Type Minimum Points (#) Epsilon (metres) 

Gargoum et al. [20] Highway 17 1 

Riveiro et al. [25] Urban 50 0.2 

Soilán et al. [21] Highway and Urban 25 0.2 

 

Although the literature provides different recommendations for DBSCAN clustering 

attributes for traffic sign extraction, the extractions conducted by Gargoum et al. [20] utilize the 

same LiDAR scanned datasets for the Province of Alberta. The DBSCAN clustering attributes 

proposed in [20] will be used for this study. With the completion of traffic sign point clustering, 

the list of possible traffic signs can be further filtered to reduce false-positive extractions. The 

traffic sign clusters exhibit little unique properties by themselves, requiring additional processing 

to create additional traffic sign descriptors. Previously used in point cloud processing by [19], 

[21], [25], [27], [31], [35], [55], PCA is a common data exploration method that determines the 

structure of an input dataset. The following description of the calculations behind PCA are based 

on Smith [56]. For a single set of three-dimensional geometric data (as in a single candidate 

traffic sign cluster), 𝑝 = {𝑥, 𝑦, 𝑧}𝑚 for m points, the data is adjusted by removing the mean. 

pm
i = xi −

1

m
∑pi

m

 8 

 Then, the problem of determining the principal components can be formalized by 

determining the 3D vector, which when the data is projected on that vector has maximum 

variance. The covariance of the mean-removed points is determined across all n dimensions, 

where: 

cov(x, y) =
∑ (xm

i − xm)(ym
i − 𝑦

𝑚
)n

i=1

n − 1
 9 

C =  (

cov(x, x) cov(x, y) cov(x, z)

cov(y, x) cov(y, y) cov(y, z)

cov(z, x) cov(z, y) cov(z, z)
) 10 

 Finally, PCA requires an eigenvalue decomposition of the covariance matrix. The result 

is three principal components (𝜆𝑖) for the three input dimensions described by their magnitude 

(eigenvalues) and direction (eigenvectors) in Figure 3.6. For traffic signs, the principal direction 

is governed by the largest dimension of the traffic sign. A horizontal guide sign’s principal 
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component exists along it’s horizontal axis, whereas a maximum speed sign’s principal 

component exists along it’s vertical axis. For traffic signs that are symmetrical, the first and 

second principal components should be roughly equal, but irrespective of a traffic sign’s size, the 

third principal component will always be orthogonal to the traffic sign panel. 

 

 

Figure 3.6 – Three- Dimensional Principal Component Analysis 

  

For the three-dimensional data within a point cloud this results in three directional vectors 

with which to determine the orientation of any given point cluster. Geometrically, the clusters 

defining traffic signs can be simplified to clusters that exhibit flatness. The flatness of a cluster 

of points is defined in Equation 11 [57]. For a cluster of point to be considered flat, as is required 

for a traffic sign, the flatness of a cluster must be less than 1/3 [57]. 

F =  
√(λ2) − √(λ3)

√(λ1)
 11 

Additionally, the local angle of the traffic sign cluster was calculated to determine the 

traffic sign orientation relative to the travel lane. The perpendicularity of the traffic sign relative 

to the nearest travel lane was determined by comparing the 3rd principal component of a traffic 

sign cluster to the trajectory of the scanning vehicle. The result is the lateral and vertical angle of 

the traffic sign relative to the scanner travel direction and the horizontal normal, respectively. For 

a traffic sign 𝑇𝑖 with principal components 𝜆1, 𝜆2, and 𝜆3, the nearest trajectory vector 𝑇𝑣 =

[𝑥𝑣, 𝑦𝑣 , 𝑧𝑣], and the normal vector to the surface at the nearest trajectory vector, 𝑁𝑣 =

[𝑥𝑁𝑣
, 𝑦𝑁𝑣

, 𝑧𝑁𝑣
], the horizontal and vertical angles of the traffic sign, 𝛼 and 𝛾, respectively, are 

given by Equations 12 and 13. 
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α = tan−1(Tv, λ3) 12 

γ = tan−1(Nv, λ3)  −  90 13 

3.3.3 COMPARISON TO VIDEO-LOG IMAGES 

Video-log images are collected simultaneously alongside LiDAR scanning. This includes a log 

of the images, their collection location, angle, and filename. This can be used to locate the 

images relative to points extracted from the LiDAR data. For the extracted traffic signs, the 

nearest trajectory point is located for each potential traffic sign. This trajectory point is compared 

against the video-log of the collected images, using the heading angle of the camera to 

approximate which image corresponds to each potential traffic sign cluster. The image frames 

shown in Figure 3.7 (c) - (g) outline an additional step taken to ensure the images contain the 

traffic sign of interest. This is done to provide the image classification procedure, described later, 

with additional samples of the traffic sign to verify the classification. Figure 3.7 is a sample 

extraction, with the LiDAR position and traffic sign shown in Figure 3.7 (a) and (b) illustrate a 

LiDAR traffic sign and an image of the sign in Google Earth [58], respectively. 

 

 

(a) 
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(b) (c) (d) 

   

(e) (f) (g) 

Figure 3.7 – LiDAR to Image Extraction Sample 

  

Once the set of nearest images have been collected, the classification of the traffic sign 

within the image comes from the maximum classification accuracy of a sliding window passed 

over the input images. The classification that is most consistent across multiple images is 

assigned as the classification of the current traffic sign. 

3.4 LANE MARKING EXTRACTION 

The literature highlights images of the point cloud as a popular basis for lane marking extraction 

– leveraging the recent influx of image processing research to aid the intensity-based lane 

marking extraction. Therefore, this research explores a lane marking extraction method 

considering the advantages of using a two-dimensional representation of a LiDAR-scanned 

roadway. To this end, the LiDAR point cloud was voxelized to create expanded regions of 

interest along the roadway used for the extraction of cross sections. Voxelization splits scanned 

point cloud data into cubes of equal size, resulting in an alternative representation of the point 

cloud with a fraction of the point density. All points 𝑃(𝑥, 𝑦, 𝑧) in a point cloud are assigned to a 

voxel 𝑣(𝑖 , 𝑗, 𝑘) depending on the dimensions of the point cloud and the desired size of the 

voxels. If the length, width, and height of a voxel are defined as 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧, and the origin of 
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the point cloud is denoted as 𝑥𝑜, 𝑦𝑜, and 𝑧𝑜, the voxel coordinates of a point are determined as 

follows: 

i = int (
x − xo

dx
) 14 

j = int (
y − yo

dy
) 15 

k = int (
z − zo

zx
) 16 

Next, to refine the point cloud into constituent “object” and “non-object” point classes, 

the point cloud is subject to a ground and non-ground separation. This process is built upon the 

assumption that, for a section of given LiDAR scan, the ground will always be the lowest point 

in that section and any other point is a non-ground object. Algorithmically, given a column of 

voxels 𝑉𝑐 in location {𝐼, 𝐽, 𝑘} where 𝑘 >  0 and {𝐼, 𝐽, 𝑘} ∈ 𝑉𝑐, the ground voxel 𝑔𝑣 is defined by 

Equation 17. The non-ground voxels are then defined as {𝐼, 𝐽, 𝑘} ∉ 𝑔𝑣. 

gv = min{I, J, k} 17 

Road surface extraction is common in lane marking extraction, with [31] conducting 

raster-based extraction and [30], [35] conducting curb or elevation-based extraction. This work 

will consider only rural highway segments, leaving curb extraction unavailable for road surface 

extraction. To conduct elevation-based road surface extraction, the voxels calculated to discretize 

the point cloud and create the raster cross sections can be used to extract the road surface. For the 

extraction of a road surface, the elevation of the points within each voxel provides a description 

of the local change in elevation. For the purpose of road surface extraction, the standard 

deviation of elevation is calculated for each voxel as in Equation 18, where 𝜎 is the standard 

deviation, 𝑧𝑖 is the elevation of point 𝑖, 𝑛 is the number of points in voxel 𝑣, and 𝑧𝑣̅̅ ̅ is the mean 

of elevation. For a set of {𝑖, 𝑗} voxel indices within a LiDAR scan, the voxels are segmented to 

extract the road surface using the heuristic filter in Equation 19. 

σ = √
∑ zi

v − zv̅n
i = 1

n
 18 
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Vstd(i, j) = {
other, Vstd(i, j) > 0.01

candidate road surface, Vstd(i, j) ≤ 0.01
 19 

The largest cluster of candidate road surface voxels is taken to be the road surface. To 

extract roadway cross sections, a parametric representation is used based on the voxel 

coordinates and the trajectory location of the scanning vehicle. For a trajectory point 𝑉𝑇 =

𝑖𝑇 , 𝑗𝑇 , 𝑘𝑇, cross section width (𝑤) in metres, cross section depth (𝑑) in metres and the vectors 

parallel and perpendicular to the scanning vehicle’s direction of travel (𝑣𝑃𝑎𝑟 , 𝑣𝑃𝑒𝑟), cross section 

number 𝑥 is defined as: 

V1(x) = VT(x) + vper(x) ∗ w/voxel size 20 

V2(x) = VT(x) − vper(x) ∗ w/voxel size 21 

Pw = V1 + tw(V1 − V2) ∈ tw = 0: step increment: 1 22 

XS(x) = Pw + td ∗ (d/voxel size) 23 

This results in detailed rasters of the roadway cross section, where the pixel value is 

assigned as the average intensity within each voxel. The cross sections are split into 5-cm pixels, 

where the pixel size was chosen to retain detail about the local intensity changes within the cross 

sections while still discretizing the points in the cross section into a manageable format. The 

roadway is now described by two-dimensional raster images, allowing for the application of 

image processing techniques to begin extracting the lane markings. Lane markings differ from 

their surroundings in that they exhibit greater intensity and follow linear patterns along the road 

segment. Figure 3.8 shows an example of the rasterization. 
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Figure 3.8 – Raster Image of Cross Section 

  

The raster image is then completed by applying the morphological closing operation to 

fill gaps between raster pixels. The closing operation applies a structural object to erode the 

dilation of the input raster [59]. Structural objects can be applied as square, rectangular, circular, 

or of arbitrary sizing. In the erosion operation, the structural element is centred on each 

background pixel and the image’s pixel values within that structural element are collected. If at 

least one foreground pixel exists within the structural element, the current background pixel is 

set to the value of the foreground pixel. Similarly, in the dilation operation, the structural element 

is centred on each foreground pixel and the image’s pixel values within that structural element 

are collected. If any pixel within the structural element is not a foreground pixel, then the current 

foreground pixel is set as a background pixel. The results of the complete erosion operation are 

outlined in Figure 3.9. 
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Figure 3.9 – Erosion Operation Applied to Raster Image 

 

With the road surface split into cross sections, the focus is now on further reducing the 

point cloud to retain only the lane marking points. The primary differentiation between lane 

marking points and the pavement is its intensity value; also considered by every publication 

reviewed previously. However, as seen in Figure 3.9, the intensity of the lane markings along a 

cross section are not necessarily uniform due to uneven wear and tear and their location from the 

LiDAR scanner. Therefore, contrast enhancement will be used to make the lane marking points 

more discernible. This is typically conducted through gamma adjustment of the original image’s 

cumulative density function (CDF). The procedure for contrast enhancement will be based on the 

work by Huang et al. [60]. For the 65,536 unique intensity values available in 16-bit color space, 

the AGCWD process starts by defining the probability density function (PDF) of the input 

image. For images, the PDF can be approximated using a histogram, h[i], of the image, 

normalized such that the area under the histogram is equal to 1. Therefore, for an image with N 

pixels the PDF is: 

P[i] =  
1

N
 h[i] 24 

The PDF of the input image is then modified using characteristics of the PDF and a 

defined weighting parameter. This is conducted to account for common fluctuations within the 

CDF due to environmental variations [60]. The weighted PDF is given in Equation 25, where 

PDFmin and PDFmax correspond to the minimum and maximum values of the PDF for the input 

image, and w is a weighting parameter. 
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PDFw = PDFmax  (
P[i] − PDFmin

PDFmax − PDFmin
)

w

 25 

The gamma correction process is then applied based on the CDF of the input image, 

where the gamma correction parameter and final image gamma correction are defined by 

Equations 26 - 28, where 𝑙 ∈ [𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] and T(l) is the gamma adjusted intensity values. 

CDFw = ∑
PDFw

∑PDFw
 26 

γ = 1 − CDF_w 27 

T(l) = 65535 (
l

65535
)
γ

 28 

The MATLAB script written for contrast enhancement was adapted from [61] for its 

application to the raster images in this study. The improvement in contrast makes the lane 

markings present within the rasters more prominent compared to their surroundings. Finally, 

gaussian smoothing was used to alleviate some of the aliasing caused by the rasterization process 

– applied using a standard deviation of 0.5 for the Gaussian curve. However, contrast 

enhancement creates an interesting challenge when assessing image quality, as a comparison 

against the initial image as the ideal reference image is not always reasonable. The contrast 

enhanced image is often of better quality than the original image. To determine the quality of the 

contrast enhancement, the patch-based contrast image quality index (PCQI) is used to illustrate 

the result of the contrast enhancement and determine the optimal weighting to apply to the 

raster’s PDF [62]. The PCQI mimics the human visual perception of contrast to determine when 

an image’s contrast has been enhanced without the need for a perfect reference image. The 

greatest quality improvements come from contrast adjustments with a high mean PCQI, where 

changes to the input image can be discerned based on using a PCQI heatmap. 

With the contrast of the lane markings enhanced, the next stage of their extraction 

requires a definition of the edges that define the lane marking. The following description of the 

Canny edge detector is based on Forsyth and Ponce [63]. The Canny edge detector utilizes local 

intensity gradients within an image to determine pixel edges. The edge detection process consists 

of five stages: (i) Gaussian filtering, (ii) intensity gradient calculation, (iii) non-maximal 
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suppression, (iv) two-fold edge thresholding, and (v) tracking edges by hysteresis. A Gaussian 

kernel is applied to smooth noise within the image, where the kernel is defined in Equation 29, 

where σ is the standard deviation of the Gaussian curve. 

G(x, y) =
1

2πσ2
exp (−

x2 + y2

2σ2
) 29 

The effect of the image smoothing is highly dependent on the size of the Gaussian kernel 

and the chosen standard deviation. After smoothing the image, the intensity gradient and 

orientation for each pixel is determined using Equations 30 and 31. 

M = √(Gx
2 + Gy

2) 30 

θ = arctan (
Gy

Gx
) 31 

 The next stage, non-maximal suppression, scans the pixels within an image and removes 

all edge pixels that are less than the set threshold. For each pixel, the gradient at that pixel is used 

to identify the location of an edge, where pixel edges are located perpendicular to the gradient of 

the pixels. By comparing against adjacent pixels, if the current pixel is maximum and its 

magnitude is greater than the defined threshold, this pixel is marked as an edge.  

A two-fold threshold is applied to select candidate edges by preserving high value edges 

and remove weak edges caused by color variation or noise. The threshold is applied by 

considering the pixel intensity relative to the threshold, where: 

a. if pixel value > high threshold = strong edge; 

b. if pixel value < high threshold and pixel value > low threshold = weak edge; and, 

c. if pixel value < low threshold, suppress value. 

 

The high and low threshold values are determined empirically dependent on the image 

content, where the lower threshold is 40% of the upper threshold value. Finally, edges are 

tracked through the process of hysteresis. The edge detection process is finished by connecting 

the extracted edges, suppressing all weak edges that are not connected to strong edges.  

However, due to natural changes in intensity along the roadside and road surface, edges 

other than the lane markings are typically also present. Therefore, the Hough transform [63] is 



46 
 

used to search for linear objects within the series of edges. This process is meant to locate 

prominent linear edges caused by the lane markings.  

The Hough transform creates a two-dimensional accumulator array from an input image 

using Equation 32. For each pixel in an image, its neighborhood is analyzed to determine if this 

pixel belongs to a linear edge and the values of r and 𝜃 are calculated. The accumulator values 

are combined into bins, displayed in Figure 3.10, where the bins with higher values correspond 

to lines with the best representation within an image. Multiple prominent linear edges within an 

image by specifying a series of accumulator peaks can now be extracted by locating the edges of 

multiple lane markings within a raster image. 

xcos(θ) + ysin(θ)  + r = 0 32 

 

 

Figure 3.10 – Hough Transform Line Detection 

  

With the addition of lane markings local to each traffic sign, the mounting height and 

lateral placement of the traffic sign can be calculated from the bottom and nearest edges of the 

traffic sign to the nearest lane marking. For a given point cloud containing a traffic sign cluster 

defined by the set of n points {𝑥𝑇𝑆, 𝑦𝑇𝑆, 𝑧𝑇𝑆} ∈ 𝑃𝑇𝑆, a traffic sign point on the edge nearest to the 

lane marking 𝑃𝑛
𝑇𝑆 = {𝑥𝑛, 𝑦𝑛, 𝑧𝑛}, the nearest lane marking as defined by vector 𝑃𝐿𝑀⃑⃑ ⃑⃑ ⃑⃑  ⃑ =

[𝑥𝐿𝑀, 𝑦𝐿𝑀, 𝑧𝐿𝑀], and a lane marking point 𝑃𝐿𝑀 = {𝑥𝐿𝑀, 𝑦𝐿𝑀, 𝑧𝐿𝑀}, the lateral and vertical 
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placement of the traffic sign, 𝑑𝐿 and 𝑑𝑉, respectively, are defined in Equations 33 and 34. The 

‖ ‖, ×, and min{ } operators refer to the vector norm, cross product, and minimum 

calculations, respectively. 

dL = 
‖(Pn

TS − PLM) × PLM⃑⃑ ⃑⃑ ⃑⃑  ⃑‖

‖PLM⃑⃑ ⃑⃑ ⃑⃑  ⃑‖
 33 

dV = min{zTS
i − zLM ϵ i = 1: n} 34 

The lateral placement is thereby measured from the inside edge of the sign and the 

vertical placement measured from the bottom edge of the sign. Traffic sign placement standards 

are defined to maintain a combination of “safety, visibility, and practicality” [64], making both 

lateral and vertical placement attributes fundamental to the maintenance of a safe and efficient 

roadway. With the location, placement, and orientation measurements complete, professionals 

and municipalities can assess the correctness and effectiveness of current traffic sign placements. 

The final stage of a traditional TSI requires the classification of the traffic signs to be 

determined. The following section will discuss the fusion of LiDAR and video-logs for the 

purpose of traffic sign classification.   
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3.5 TRAFFIC SIGN CLASSIFICATION 

3.5.1 NEURAL NETWORK STRUCTURE 

NCHRP Report 748, while considering the application of mobile LiDAR mapping for 

transportation asset management, also recommends the application of image from traffic signs as 

they provide additional context as to the placement and surroundings of each traffic sign [22]. 

However, the computational determination of what objects make up an image is not a simple 

task. To this end, the CNN structure is commonly used in image processing due to the similarity 

between convolutional kernels and the human brain’s natural visual cortex [65].  

A neural network structure is typically described by a directed acyclic graph, where the 

neurons of the neural network are represented by the nodes within the graph. The simplest form 

of this neuron arrangement is given in Figure 3.11, where a series of inputs and weights are 

combined in a hidden layer before being passed to the output. A series of inputs are defined, 

weights are applied, and the result is summed to determine the value of this neuron. Before being 

output, the value is passed through an activation function to align the neuron value within an 

expected range (0-1) and determine whether this neuron “fires” to the output.  

 

 

Figure 3.11 – Neuron Structure for Neural Networks [66] 

  

The neural network structure can then be expanded with additional hidden layers or 

different activation functions to change the response to the input data. The CNN structure, which 

is based on the concept of image convolution, is commonly used in applications for image 

processing. A simple CNN consists of an input layer, an output layer, and multiple hidden layers 



49 
 

– with the hidden layers commonly consisting of convolutional, pooling, normalization, and fully 

connected layers [67]. Before describing those common neural network layers, the definitions of 

stride and padding serve to describe the details of the convolutions that occur in different CNN 

layers. Stride is the pixel-wise distance between adjacent convolutional kernels. For example, if a 

convolution layer is being applied with stride 2, the first and second convolutional kernels will 

be centred on pixels 1 and 3, respectively. This is illustrated in Figure 3.12 (a). Additionally, 

padding is used to broaden the extents of an input image to which a kernel will be applied. If a 

kernel is to be applied to all individual pixels in an image, the padding assigns a value to the p 

padding pixels outside of the extents of the input image to ensure that the values outside of the 

input image still exist. Figure 3.12 (b) shows an image with padding of 1 with a convolutional 

region centred on the first true pixel in the image.  

 

  

(a) (b) 

Figure 3.12 – Examples of (a) Stride and (b) Padding within a Neural Network 

  

Convolution is the basis of the CNN structure and used to detect local and global features, 

including contrast, edges, and other geometric properties of the image.  Each convolutional layer 

convolves a filter of size 𝑁𝑥 x 𝑁𝑦 across the extents of an input image, performing a dot product 

combination during convolution, which is carried forward through the neural network. Each 

convolution kernel contains a set of 𝑁2 neurons, which contain trainable biases and weights. 

Figure 3.13 shows an example of convolution, with an input map of size 𝑚 x 𝑛, a convolutional 

kernel of size 3 x 3, and a padding size of zero. The output map after convolution will be of size 

𝑚 − 1 x 𝑛 − 1, where the value of each entry in the output map is the dot product of the input 

map and the kernel matrix. 

 

1 3 2 4 12 5 …

4 2 4 1 10 15 …

5 1 7 6 5 5 …

1 3 4 8 1 1 …

… … … … … … …

0 0 0 0 …

0 1 3 2 …

0 4 2 4 …

0 5 1 7 …

… … … … …
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Figure 3.13 – Image Convolution 

 

Activation functions are used to normalize the neural output of the hidden layers prior to 

being output, taking input values from a previous layer to determine if the neuron is activated 

(i.e. fired). Rectified Linear Units (ReLU) is the most common activation function, where values 

< 0 are set to zero, and values > 0 follow the linear function 𝑦 =  𝑐𝑥. More formally, this is 

conducted by applying the function 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥), where 𝑥 is the neuron input from the 

previous layer. The application of a non-linear activation function enhances a network’s 

decision-making capabilities without affecting the trainable parameters of previous convolutional 

layers [27]. An example is provided in Figure 3.14, where the application of the ReLU layer to 

an input feature map retains only the features which are positive. 

 

 

Figure 3.14 – Rectified Linear Unit Layer 

 

The pooling layers apply a discretization function, which passes a kernel across an input 

image in non-overlapping regions. This calculates the maximum or average value to retain the 

3 -4 -8 -3 -5 3 0 0 0 0

4 0 -10 0 0 4 0 0 0 0

7 0 -9 1 0 7 0 0 1 0

4 0 1 3 0 4 0 1 3 0

0 2 0 1 0 0 2 0 1 0

-1 3 2 0 0 0 3 2 0 0

Apply

ReLU
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significant details while minimizing the complexity of the following layer and the number of 

trainable parameters. The application of pooling layers improves network generalization and 

controls overfitting by reducing input maps to its invariant features. By applying a non-

overlapping pooling kernel of size 𝑃𝑥 x 𝑃𝑦 to an input map of size 𝑚 x 𝑛, the output map is 

down-sampled to a size of 𝑚/𝑃𝑥 x 𝑛/𝑃𝑦 but retains the depth of the input map. Figure 3.15 

shows the application of 2 x 2 maximum and average pooling layers to a 4 x 4 input map. The 

maximum and average values of the non-overlapping regions are assigned to the new pooling 

layer which is of size 𝑚/𝑃𝑥 x 𝑛/𝑃𝑦. 

 

 

Figure 3.15 – Pooling Layers 

 

Drop-out layers are used to prevent over-fitting in neural network training by randomly 

“dropping out” (i.e. turning off) neurons in a neural network, by setting the drop-out of a 

network to 0.5; during each iteration a random sample of 50% of the network’s neurons are 

turned off. This is illustrated in Figure 3.16 through the connections in a simple neural network 

before and after dropout is applied. Just under half of the neurons in this network are turned off 

during drop-out but retaining their connections further into the network.  
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Figure 3.16 – Neural Network Dropout 

 

Finally, the fully connected layer connects every neuron from previous layer to every 

neuron in another layer. The convolutional layers previously in the network discern specific 

features about the image, and the fully connected layer serves to aggregate the features into a 

one-dimensional feature vector – commonly used at the end of a network to classify the input 

image based on the network’s activations.  

To combine these layers into a functional image processing network, LeCun et al. [68] 

pioneered an image processing CNN structure of stacked convolutional layers followed by at 

least one fully-connected layer. LeCun et al.’s CNN requires 32x32 pixel images as input, which 

are then fed through a 7-layer network, as shown in Figure 3.17, for the purpose of classifying 

hand-written text. 

 

 

Figure 3.17 – LeNet-5 CNN Structure [68] 
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The layers within Figure 3.17 show the series of convolutional (C#), subsampling (S#), 

and fully-connected (F#) layers used to extract low, mid, and high-level features within the input 

image. The layers between the input and output layers are stacked such that each layer calculates 

features based on the result of the previous layer. The layers utilize 5x5 and 2x2 neighborhood 

regions to discretize the previous layer’s result, occasionally applying trainable bias coefficients 

and activation functions to determine the effect that each neuron has on the network’s overall 

feature extraction [68]. 

Reminiscent of the LeCun et al. [68] CNN structure, the GoogLeNet network (also 

known as Inception V1) builds upon the LeNet-5 structure of convolutions and connections with 

depth and varied kernel and regularization structures. GoogLeNet represents Google’s winning 

entry into the ImageNet Large Scale Visual Recognition Competition in 2014, classifying images 

from the ImageNet database with a Top-5 error of 6.67% [67]. The predictive power and speed 

of the Inception structure comes from the use of dimension reduction, where 1x1 convolutions 

are applied to reduce the complexity of the input before continuing onto the more 

computationally expensive 3x3 or 5x5 convolutions [67]. A single Inception module is illustrated 

in Figure 3.18 to highlight the dimensionality reduction previously mentioned. Figure 3.19 

illustrates the entire GoogLeNet structure created with stacked Inception modules. 

 

 

Figure 3.18 – GoogLeNet Inception Module [67] 
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Figure 3.19 – GoogLeNet Convolutional Neural Network Model, Adapted from [67] 
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3.5.2 IMAGE CLASSIFIER TRAINING DATA 

Critical to the success of any neural network classifier is the availability of a thorough training 

dataset. Alberta Transportation publishes a traffic sign database for all of the traffic signs placed 

in Alberta, including their panel message, size, color, and letter type/sizing [69]. The sign panels 

are collected as individual images of the “perfect” traffic sign and describe the design parameters 

of the traffic sign panels. Although descriptive, these images are not representative of traffic 

signs placed on real highways. True traffic signs may be weathered and exist in variable lighting, 

weather, and placement conditions. Therefore, a dataset representative of the effects of real-

world placement conditions on traffic signs needed to be created. To this end, video-log images 

collected during LiDAR scanning in other parts of Alberta were manually cropped into training 

images of size 224 x 224. To ensure diversity in condition, lighting, and location of the traffic 

signs cropped from video-log images, multiple segments from different divided and undivided 

highways in Alberta were used. The ambient lighting based on time of day and season, condition 

based on regional weather patterns and traffic sign age, and overall traffic environment all factor 

into the condition and conspicuity of the traffic signs within the images. The variability in 

ambient lighting, placement, and traffic sign condition are illustrated through different examples 

of a curve left warning sign (WA-3-L) in Figure 3.20. The random cropping of the traffic signs 

ensures the neural network trained for traffic sign classification is not over-trained to “perfect” 

representations of the traffic sign. 

 

    

(a) (b) (c) (d) 

Figure 3.20 – Classifier Training Image Variation 

  

Within Alberta, traffic signs fall into one of three categories: Regulatory (RA, RB, RC), 

Warning (WA, WB, WC, WD), and Guide and Information (IA, IB, IC, ID, IF) signs [69]. In 

total, 155 classes of traffic signs along Albertan highways were collected resulting in 12,315 
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total images. Additionally, 1,289 images across 10 classes of false positives were. The false 

positives were added to the dataset to ensure the neural network accurately recognizes non-traffic 

sign objects rather than mistaking them for different traffic signs. Given the variable condition 

and placement of traffic signs along any given highway network, the collection of traffic sign 

samples provides an array of different placement conditions within the collected 224 x 224 sized 

sample images. Of the 13,604 available images, 70% were used for training and 30% were used 

for validation. The mean sample size across all classes was 57.74 images per class for the 

training dataset. The images were collected based on their real-world placement along a random 

selection of major and minor Albertan rural highways, thereby creating an uneven collection of 

samples for each of the traffic sign classes. Figure 3.21 shows the number of collected samples 

for each traffic sign class.  

 

 
Figure 3.21 – Classifier Training Image Count 

  

The maximum speed signs (RB-1) were split into their respective speeds (i.e. 70 km/h 

sign is labelled RB-1-70). Although they are technically grouped into one variable traffic sign 

structure (where the speed changes on the sign but the lettering and sign sizing options stay the 

same), the unique classification of different speed signs was deemed a useful addition for future 

use. 

With the image classifier trained, the traditional TSI structure of traffic sign location, 

classification, and placement measurements are completed. However, this research serves to 

contribute an additional measure of traffic sign placement efficacy, namely a traffic sign’s 

visibility. 
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3.6 TRAFFIC SIGN VISIBILITY ANALYSIS 

3.6.1 TRAFFIC SIGN VISIBILITY MEASUREMENT 

Historically, the process of traffic sign visibility measurement has been conducted manually with 

in-vehicle observers [41] or with optical laser measurements [46]. However, given the high detail 

of LiDAR scans, these scans were utilized to efficiently assess traffic sign visibility in this paper. 

A critical difficulty with the application of LiDAR data to a visibility assessment is LiDAR’s 

susceptibility to noise. If the scanning was conducted in heavier traffic, the LiDAR scans often 

contain points detailing the vehicles the scanner passes and is passed by during scanning. To 

ensure the visibility assessment, which determines the maximum unobstructed distance at which 

a traffic sign is visible, is not impacted by the points comprising of passing vehicles, the vehicles 

travelling in the same direction (i.e. Eastbound) as the scanning vehicle are removed from the 

dataset. For the Eastbound (i.e. scanning direction) vehicles from the point cloud, the road 

surface is used to localize the region in which the scanning direction vehicles can exist. The 

point cloud is segmented to remove the voxels that exist above the road surface and applies a 

vertical filter of four metres, a conservative height based on the minimum bridge clearance 

standard in Alberta [70]. This ensures that points are only segmented along the section and do 

not remove overhead structures like bridges and powerlines. These points are then grouped based 

on local connectivity, and segmented if they contain an above average number of points. This 

ensures that other objects key to the surrounding roadway (i.e. highway markers, overhanging 

traffic signs, small barriers, etc.) remain a part of the point cloud. Although LiDAR datasets have 

been used to assess stopping and passing sight distance for drivers [71], [72], limited work exists 

that extrapolates LiDAR-based sight distance assessments to roadside assets. Therefore, this 

thesis develops a novel voxel-based procedure to automatically assess maximum visibility for all 

traffic signs along a road segment.  

For an observer-target pair, the sightline connecting their voxel coordinates is connected 

and assessed for the existence of potential occlusions. If an occluding voxel is located along this 

specific sightline, the sightline is considered obstructed. Sightlines are created through a 

parametric representation wherein all voxels along a sightline are enumerated. For the observer 

voxel 𝑉𝑂 = 𝑖𝑂 , 𝑗𝑂 , 𝑘𝑂 and the target voxel 𝑉𝑇 = 𝑖𝑇 , 𝑗𝑇 , 𝑘𝑇, the points P along a sightline are 

defined by: 

P = VO + t(VT − VO) ∈ t = 0: step: 1 35 
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The level of detail extracted along the sightline is determined by the “step”, which 

determines the number of increments of the parameter 𝑡 analyzed along the sightline. Therefore, 

for a maximum distance of 4 km along a segment and a voxel size of 0.2 metres, a step size of 

0.00005 (4000m/0.2m) is used to extract one voxel per step. This will create duplicate voxel 

enumerations at closer distances but ensures no voxels are missed along the sightline at larger 

distances. 

For this study, the observers for the visibility assessment are the traffic signs extracted 

according to Section 3.1. Since, the aim of this assessment is to extract the furthest distance from 

which each traffic sign is visible, the centroids of signs are used as observer points. The target 

points are a set of trajectory points that run parallel to the road’s profile and that are spaced at 

10-metre increments along the segment and which are located upstream of the sign of interest. 

To account for American Association of State Highway and Transportation Officials (AASHTO) 

eye-height requirements [16] for the average driver in a travelling vehicle, the trajectory points 

were elevated by 1.05 metres. 

Figure 3.22 shows the sightlines and the visibility distance as they are measured from the 

observers to the targets. Voxels along the sightlines were enumerated from each observer to all 

targets. These sightlines are then assessed for visibility by comparing the set of enumerated 

sightline voxels with the entire set of data, defining any sightline voxel that contains points as 

being occluded. Finally, the maximum visibility of a traffic sign can be measured considering the 

number of trajectory points visible upstream from each traffic sign. The available visibility 

distance for a traffic sign will be considered as the first break in visible trajectory points, as 

shown by the red pins in Figure 3.22 (a) and (b). 
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(a) (b) 

Figure 3.22 – Legibility Distance Measurement 

3.6.2 MINIMUM LEGIBILITY DISTANCE MEASUREMENT 

The minimum legibility distance (MLD) for each traffic sign was determined for each 

extracted traffic sign through a comparison against the Alberta Traffic Sign Catalogue for traffic 

sign panel types [69]. In this database, the smallest detail present on the traffic sign governs the 

MLD, where 1 cm of letter height equals 3.6 metres of legibility distance [4], and 1 cm of 

symbol height equals 6.9 metres of legibility distance [18]. Examples of MLD presented in the 

catalogue are shown in Table 3.3. The addition of the visibility completes the TSI conducted 

within this thesis. Traffic signs along each segment can now be defined by their global position, 

relative placement and orientation measurements, classification, and upstream visibility. To 

determine the efficacy of the application of LiDAR and video-log data for the extraction of a 

TSI, the following section calculates and discusses the accuracy of these extractions and 

measurements. 
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Table 3.3 – Minimum Legibility Distance 

Classification Image [69] 

Letter 

Height 

(mm) 

Symbol 

Height 

(mm) 

Legibility 

Index 

(m/cm) 

Daytime 

Legibility 

Distance (m) 

IA-201 

 

203 - 3.6 73.08 

WA-3-L 

 

- 600 6.9 414 
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4 RESULTS AND DISCUSSION 

4.1 TRAFFIC SIGN EXTRACTION 

A summary of the traffic sign inventory is available by applying the procedures in Chapter 3, 

with the completed inventory outlined in the Appendix. To assess the accuracy of this inventory, 

a comparison was conducted against available traffic sign information. An inventory of traffic 

signs with lateral placement, orientation, and classification is not available, so there is no 

immediate point of comparison for the measured attributes. However, the extraction of traffic 

sign locations was verified through a visual comparison against the objects located at the 

potential traffic sign coordinates on Google Earth [58]. 

 

 

 

(a) (b) 

Figure 4.1 – Histogram with Gaussian Mixture Model Overlay 

 

For the test segment, the retention of points within a standard deviation of the higher 

gaussian curve’s mean, as illustrated in Figure 4.1 (a) and (b), resulted in 17,443 points 

belonging to traffic signs, passing vehicles, and roadway markers being collected. The DBSCAN 

clustering process is then applied where clusters have a maximum interpoint spacing of one 

metre and clusters must contain at least 17 points. After clustering the number of candidate 

traffic sign points (CTSP) reduces to 16,473, retaining all CTSPs and the sides of commercial 
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trucks - a common occurrence along highways that were collected during scanning. The CTSPs 

are reduced to 73 clusters, which after the application of flatness filtering is reduced to 59 traffic 

sign objects. Figure 4.2  highlights the traffic sign extraction results on the LiDAR segment.  

 

 

Figure 4.2 – LiDAR Point-of-View Traffic Sign Extraction 

  

For the test segment, Table 4.1 details the extraction accuracy for the traffic signs along 

the test segment. The confusion matrix outlines the different types of correct and incorrect traffic 

sign classifications, where true positives (TP) constitute traffic signs that were classified as 

traffic signs, and false positives (FP) constitute non-traffic sign objects that were falsely 

classified as traffic signs. Similarly, false negatives (FN) constitute traffic signs that were falsely 

classified as non-traffic sign objects, and true negatives (TN) are not traffic signs that were 

correctly classified as not traffic signs. The number of TPs. FPs, and FNs is determined through 

a comparison against existing knowledge of traffic sign assets. For this thesis, as surveyed traffic 

sign information was unavailable, the locations of extracted traffic sign were verified visually 

from the LiDAR scans and through a comparison to Google images. 

The confusion matrix results are then expanded to assess the overall extraction results 

using Equations 36 - 38. The Precision outlines a method’s positive predictive rate, determining 
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the proportion of the extracted positives represent true positive extractions. The Recall outlines a 

method’s sensitivity, determining the proportion of false negatives that occur alongside the 

number of extracted true positives. Finally, the F1–Score calculates the harmonic mean of the 

Precision and Recall to describe the overall predictive power of the proposed method. This can 

be utilized in the future as a comparison metric for predictive power against other proposed 

methods. 

 

Table 4.1 – Confusion Matrix for Extraction Accuracy 

N = # 
Predicted Class 

Not Traffic Sign Traffic Sign 

Actual Class 
Not Traffic Sign - 1 (FP) 

Traffic Sign 5 (FN) 58 (TP) 

 

Precision =
tp

tp + fp
 36 

Recall =
tp

tp + fn
 37 

F1 − Score = 2 ∗
Precision ∗ Recall

Precision + Recall
 38 

 

The precision, recall, and accuracy of the traffic sign detection are 98.3%, 92.06%, and 

95.08%, respectively. In other words, this procedure has false negative and false positive rates of 

0.5 and 0.25 traffic signs per kilometre, respectively. 

 The single false positive, illustrated in Figure 4.3, is the metallic-sided trailer attached to 

a semi-truck. This type of noise is common along segments in Alberta with commercial vehicle 

traffic present at all hours of the day. Unfortunately, the high scanning density of the VMX-450 

still provides a large quantity of points detailing the high-intensity trailer, and the side of the 

trailer is flat enough to pass through the filtering process. This risk of collecting commercial 

vehicles in LiDAR scans can be somewhat alleviated by scanning during night-time hours; 

however, the video-log camera array will not be useful in that scenario. 
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Figure 4.3 – False Positive Traffic Sign 

  

The five false negatives are due to the reduction in point density at greater distances, with 

examples illustrated in Figure 4.4. The false negatives were traffic signs along the segment and 

not signs placed for advertising or other non-transportation purposes. As Highway 1 is divided 

along the analyzed segment, the East and Westbound traffic lanes are separated by a large grass 

median shown in Figure 4.4 (a). If only the traffic signs in the scanning direction (Eastbound) are 

considered, as this is the direction with the highest point density and the traffic signs pertinent to 

traffic in that direction, the precision, recall, and F1–Score are 98.3%, 100%, and 99.14%, 

respectively. 
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(a) (b) 

Figure 4.4 – Examples of Missed Traffic Signs 

  

The Gaussian Mixture Model extraction of traffic signs from a LiDAR point cloud relies 

on their reflective nature, which causes high-intensity return values. If all traffic signs retain the 

maximum retro-reflectivity they have when they are new, then they will remain within one 

standard deviation of the higher Gaussian curve. However, if traffic signs are aged (i.e. faded) or 

dirty, the retro-reflectivity may fall outside of the Gaussian curve. Ai and Tsai [24] encountered 

this during their study, with investigation revealing that these signs displayed intensity values of 

29,490 (converted from 0.45, the normalized value original provided in the study). The lower 

intensity values were due to an aged parking sign with a deteriorated panel.  

The next stage in the extracted TSI is an assessment of compliance of the measured 

traffic sign orientation to the angular placement standards. As per Section 1.2, the orientation of 

the traffic sign should be 3° down and away from the travel direction. The negative angles of 

horizontal orientation correspond to signs that are turned towards from the travel direction, and 

vice-versa for positive angles. Similarly, the vertical orientation of each traffic sign is calculated, 

where the negative angles correspond to signs that are tilted backwards (i.e. top side away from 

traffic), and vice-versa for the positive angles.  

 

Table 4.2 – Traffic Sign Orientation 

Traffic Sign ID 
Horizontal 

Orientation (°) 

Vertical 

Orientation (°) 
Traffic Sign ID 

Horizontal 

Orientation (°) 

Vertical 

Orientation (°) 

2 -5.36 -3.84 27 -2.72 -0.88 

3 -8.53 -1.87 29 -8.52 -1.53 
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Traffic Sign ID 
Horizontal 

Orientation (°) 

Vertical 

Orientation (°) 
Traffic Sign ID 

Horizontal 

Orientation (°) 

Vertical 

Orientation (°) 

5 -0.64 -12.07 30 -8.60 -0.35 

8 -8.51 -0.47 32 -56.66 -1.30 

9 0.23 -2.06 34 0.69 -0.01 

10 -7.94 -0.61 35 -8.61 -2.43 

11 -5.77 -3.75 37 -11.71 -1.50 

12 -5.98 -0.41 38 4.07 -4.15 

13 -8.93 -2.08 45 -19.36 -0.51 

14 -9.01 -8.41 47 -1.11 -3.00 

15 -6.47 -3.56 49 3.47 -1.83 

16 -12.21 -5.75 51 1.42 -2.52 

20 -0.77 -1.20 57 5.02 -3.16 

23 -3.15 -0.48 58 -0.40 -5.81 

24 1.48 -0.06 59 2.20 -4.75 

 

In practice, placing traffic signs at an exact angle orientation is difficult to accomplish. 

Therefore, it is expected that there will be some variation from the design standard and signs will 

not be exactly oriented vertically and horizontally at 3°. Nonetheless, only eight signs were faced 

away from traffic, with all other signs faced towards the travel lane. Additionally, all signs were 

tilted away from the travel lane, deviating from the standard of a 3° tilt towards traffic.  

This is critical because the conspicuity of traffic signs during nighttime conditions is 

dependent on their placement and orientation relative to the traffic lane. The angle formed 

between the traffic sign and an approaching vehicle’s headlights dictates the conspicuity of the 

traffic sign. Under normal orientation conditions, the angle between a vehicle’s headlights and 

the traffic sign panel is small enough such that light is reflected back to the driver to illuminate 

the sign compared to the surrounding environment, making the traffic sign and it’s details 

conspicuous and legible [73]. However, if the headlight beam and traffic sign are perpendicularly 

oriented, the sign is at its brightest. In some cases so bright that the details of sign cannot be 

distinguished from the rest of the traffic sign (i.e., specular reflection) [73] or even blinding.  

Similarly, the vertical orientation of traffic signs plays an equal role in maintaining a 

traffic sign’s conspicuity. Sign 5 shows the greatest vertical deflection away from the direction 

of travel as shown by the side view in Figure 4.5. Although the reason for this sign’s condition is 

unclear, the placement of this traffic may jeopardize its conspicuity, particularly in nighttime 
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conditions. The light from travelling vehicles would reflect upwards off the traffic sign panel 

instead of back towards the vehicle to make the sign visible. Therefore, drivers may not be able 

to read the sign until they are too close, possibly resulting in missing or only partially reading or 

understanding the sign’s message. The remaining signs are all pitched backwards as well, which 

should aid to maintain sign conspicuity by ensuring drivers are not blinded by their headlights. 

However, Signs 8, 10, 12, 23, 24, 27, 30, 34, and 45 are all within a degree of horizontal and 

may contribute to specular reflection from the traffic signs.  

 

 

Figure 4.5 – Vertical Orientation of Traffic Sign 5 

 

However, not all non-compliant traffic signs are truly non-compliant. Sign 32 is severely 

horizontally deflected from the travel direction but is a compliant traffic sign. This sign 

represents a special case, where this No U-Turn (RB-16) sign is used to warn traffic that the 

median turnaround cannot be used by local traffic to turn around. Therefore, although the 

proposed procedure provides a means with which to measure traffic sign orientation, the ultimate 

decision still requires a level of manual intervention by a trained professional as to the 

compliance of these measurements to sign placement standards. 
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Traffic sign orientation is fundamental to assessing and maintaining traffic sign 

conspicuity, but orientation is only part of the necessary inventory. Therefore, the next section 

will discuss sign placement measurements and the impact on the conspicuity of traffic signs. 

4.2 LANE MARKING EXTRACTION 

The lane marking extraction procedure for the measurement of lateral and vertical placement 

measurements is considered in stages within this research. Starting with the segmentation of the 

point cloud into ground and non-ground voxel classifications, the ground voxels are then further 

segmented to retain only the road surface voxels. This is once more segmented, resulting in cross 

sections that contain only road surface information and allow for future intensity-based 

procedures to locate lane markings. The discretization of the point cloud through multiple 

segmentation stages ensures the higher intensity surrounding vegetation and traffic signs do not 

interfere with the intensity adjustments used to extract the lane markings. The example in Figure 

4.6 highlights the clear divide in the ground and non-ground segments of the point cloud.   

 

 

Figure 4.6 – Example of Ground and Non-Ground Segmentation 

 

As this process was conducted in voxel space, the segmentation of non-ground objects 

from the remainder of the point cloud is at the edges between these voxels. The highlighted non-

ground points within the image include traffic signs and highway markers in the foreground and 

trees bounding the segment in the background – all objects that could be considered non-ground 

objects. The extraction of ground points is critical to the contrast enhancements utilized in lane 
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marking extraction later. However, before the lane marking extraction can begin, an additional 

road surface extraction step is necessary to reduce the point cloud to road surface points only. 

This reduces intensity noise like low-lying foliage within the cross sections used for lane 

marking extraction. An example of this extraction is shown in Figure 4.7 for the current test 

segment. The results show the road surface is under-segmented, creating artifacts at the road 

edges. This results in additional ground surface being included as part of the road surface, but 

due to their small size, this does not negatively impact the creation of cross sections that follows. 

 

 

Figure 4.7 – Road Surface Extraction Results 

 

Finally, the voxels that define the road surface are segmented into cross sections nearest 

each traffic sign. This is conducted to reduce overall processing time, applying the lane marking 

extraction procedure only to critical cross sections rather than to all the cross sections along the 

segment. The ACGWD is dependent on the assigned weighting parameter used to smooth a cross 

section raster’s probability density function, which was determined experimentally as 0.8 using 

PCQI [62]. The PCQI heatmap is also provided in Figure 4.8, which illustrates the intensity 
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reduction of the brighter lane marking and the intensity enhancement of the dimmer lane 

marking to improve the overall contrast of the lane markings within the entire image. 

 

 

Figure 4.8 – Patch-based Contrast Quality Index of Cross Section 

 

 Finally, the aliasing artifacts caused by the rasterization process are smoothed through the 

application of a Gaussian filter with 0.5 standard deviation. An example of the contrast enhanced 

and smoothed cross section is illustrated in Figure 4.9 (a) and (b), respectively, effectively 

increasing the local contrast of the lane markings relative to the road surface. 

 

  

(a) (b) 

Figure 4.9 – Contrast Enhanced Lane Markings 

  

The Canny edge detection is then applied to the raster image to determine the position of 

the lane markings. The Canny detector requires that the edge threshold be defined, which was 
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empirically chosen as 0.15. An example of the edge detection result is illustrated in Figure 4.10, 

with the colored line segments showing the result of the Hough transform used to locate the 

linear edges within the raster. 

 

 

Figure 4.10 – Lane Marking Edge Detection 

  

With the lane marking extraction process complete, the results were manually assessed 

for completeness. For each extracted cross section, a lane marking extraction is considered 

complete if the left solid edge and right solid edge are all extracted, because only the left and 

right edge markings are required for the lateral and vertical placement measurements. The 

completeness of the lane marking extraction was measured for the same segment along which the 

traffic signs were extracted, with results in the confusion matrix in Table 4.3. There should be an 

equal number of left and right lane marking extractions, with the total number of lane markings 

less than or equal to the number of traffic signs. There may be fewer cross sections than there are 

traffic signs if two traffic signs exist on opposite sides of the travel lane, thereby measuring 

placement to the same cross section. 

 

Table 4.3 – Lane Marking Extraction Confusion Matrix 

N = # 

Predicted Class (Left) Predicted Class (Right) 

Not Lane 

Marking 

Lane 

Marking 

Not Lane 

Marking 

Lane 

Marking 

Actual Class 
Not Lane Marking - 0 (FP) - 3 (FP) 

Lane Marking 5 (FN) 42 (TP) 4 (FN) 43 (TP) 

Precision (%) 100.00 93.47 

Recall (%) 89.36 86.00 

F1–Score (%) 94.38 89.58 
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The primary causes of false negatives within the lane marking extractions include lower 

density within the point cloud and faded lane markings. Additionally, the point cloud density in 

adjacent travel lanes can be occluded or missing if a vehicle passes during scanning. The 

reduction of point cloud density along the right-hand side is illustrated by the voxel point density 

heat-map in Figure 4.11. The point cloud appears to be segmented along the trajectory of the 

scanning vehicle (i.e., the bright colored strip in middle), with a higher voxel point density along 

the left side and lower on the right side. The reduced point density causes segmentation in the 

lane markings on the right side, thus reducing the accuracy of the lane marking extractions. 

 

 

Figure 4.11 – Voxel Point Density Heatmap 

 

The addition of lane markings allows for the completion of the traffic sign placement 

assessment. The lateral and vertical placement is measured from the nearest lane marking as 

dictated by the Alberta Highway Guide and Information Sign Manual [14]. For rural highways, a 

traffic sign is typically laterally placed 6.0 metres and vertically placed between 1.5 and 2.5 

metres (2.0 metres ideal) from the nearest lane marking [14]. As the lane markings can only be 

assessed in the scanner’s direction of travel, only the traffic signs in that direction are assessed 

for compliance with these placement standards in Table 4.4. Traffic signs are considered non-
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compliant if their lateral placement is below 6.0 metres or if the vertical placement is outside of 

the defined compliant range. 

 

Table 4.4 – Compliance with Traffic Sign Placement Standards 
Traffic Sign 

ID 

Lateral 

Placement 

Vertical 

Placement 

Traffic Sign 

ID 

Lateral 

Placement 

Vertical 

Placement 

2 5.40 1.56 27 6.08 1.80 

3 5.16 1.37 29 5.17 2.09 

5 3.87 1.51 30 3.16 2.05 

8 5.72 1.70 32 4.47 0.73 

9 2.50 2.04 34 6.06 2.78 

10 13.55 2.08 35 4.70 1.74 

11 6.79 1.56 37 19.66 1.26 

12 10.14 1.53 38 2.18 1.36 

13 2.01 1.44 45 0.57 6.21 

14 1.51 1.62 47 5.22 1.71 

15 9.66 1.48 49 2.56 2.11 

16 6.98 1.80 51 -999 -999 

20 5.71 2.16 57 4.70 1.58 

23 4.10 1.67 58 4.68 1.16 

24 0.86 2.02 59 5.01 1.27 

 

Similar to the orientation of traffic signs, when mounting traffic signs on their respective 

poles a level of error is expected due to the manual process of installing these signs. Therefore, 

traffic signs are not expected to have an exact lateral placement of six metres or vertical 

placement at the ideal values. Nonetheless, 60% of the Eastbound traffic signs were placed too 

close to the travel lane, 6.67% were placed too high, and 23.3% were placed too low. 

The lateral and vertical placement of traffic signs is critical as these factors directly relate 

to the visual angle between signs and drivers along the roadway, thereby affecting the sign’s 

conspicuity. Under nighttime conditions, Zwahlen [74] found that for a 10°, 20°, and 30° visual 

angle from the central visual area, the upstream distance a retroreflective object is detected at 

decreases to approximately half, one-third, and one-quarter, respectively. Therefore, a traffic sign 

placed laterally and vertically further away from the central visual area requires drivers to be 

much closer to the sign before they can detect it. The conspicuity of the traffic sign decreases 

with distance, reducing the time available for drivers to read and react to the traffic sign. 

Although the reflectivity of traffic signs cannot be directly assessed from the LiDAR data 

[22], the assessment of placement conditions allows for the identification of deviations from 
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design conditions. Traffic signs that deviate from design conditions should be under scrutiny to 

ensure they meet reflectivity requirements. Previously, the assessment of placement was tedious, 

but the addition of this method allows us to determine compliant and non-compliant signs and 

streamline additional traffic sign maintenance. 

The eight traffic signs that are placed too close to the travel lane represent conditions 

wherein traffic signs may run into the problem of specular reflection [73], which could result in 

illegible traffic sign details or the blinding of drivers. In contrast, Signs 10, 12, and 37 represent 

conditions where the lateral placement may reduce the traffic sign’s conspicuity due to the 

reduction of reflected light caused by further placement. However, Signs 12 and 37 belong to 

exit lanes and their placement is thereby directed at exiting traffic – not directly impacting 

eastbound through traffic.  

The mounting height of traffic signs have similar impacts, wherein a high mounted sign 

may be too far outside a driver’s peripheral field-of-view to be noticed. Vice-versa, mounting a 

sign too low may cause it to be missed by commercial vehicle drivers or increase the visual 

workload on the regular driving population. Sign 34 was mounted higher than the design 

specification, but this may be due to the design engineer’s judgement. This exit sign relays 

information about the exit lane immediately followed by the sign. Therefore, the sign may be 

mounted higher to accommodate its visibility at a larger distance upstream in both travel lanes.  

 Additionally, some special placement conditions were noted within the set of traffic 

signs. The cross section at Sign 37 did not successfully extract the lane marking closest to the 

sign, thereby making this calculation potentially inaccurate. Sign 45 is a bridge-mounted 

clearance sign, therefore the lateral and vertical placement criterial do not apply. Signs 13 and 38 

are exit signs within the gore area and have lowered than required lateral placement 

measurements. However, the gore area can be space limited, thereby limiting the possibility of 

compliance to these placement standards. Signs 12 and 37 are signs of concern for already exited 

traffic. Their placement measures are based on the lane marking within the through travel lane, 

meaning that these placements are potentially incorrect. Visually however it can confirm that 

their placement serves traffic that has taken the exit. Finally, the lane markings at the cross 

section for Sign 51 were missed altogether, thereby having no points from which to measure. 

The placeholder values of -999 were used to indicate that these values will need to be measured 

through a different process. 
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The placement and orientation work in unison to create traffic sign placements that 

ensure the greatest conspicuity. Especially during nighttime conditions when overall visibility is 

decreased, traffic signs serve to inform and guide the driving population [73]. If the placement of 

traffic sign is non-compliant with design standards, the traffic signs may hinder rather than help 

drivers if they are blinding, attribute to high visual workload, or if they are not visible at all. 

4.3 TRAFFIC SIGN CLASSIFICATION 

The collection of a traffic sign database for the purpose of neural network image classification, 

like those found in the GTSRB and BTSC, is the first of its kind in the Canadian context. This 

work represents a sample of natural traffic sign placement in the Albertan context, key to the 

classification of traffic sign conditions experienced by Canadian drivers.  

The increased capabilities of computer hardware in recent decades initiated the 

resurgence of neural network models for classification as the neural network training times 

significantly decreased. Therefore, the training time for the Inception neural network structure is 

of utmost importance for the assessment of the compatibility of current neural network structures 

to other image classification procedures. Including pooling layers, the GoogLeNet network 

contains 27 layers in total [67]. The network was trained with stochastic gradient descent with 

momentum across eight epochs, a mini-batch size of 128 images, and a learning rate of 0.001. 

Dropout was also utilized, where a random 40% of the neurons are dropped within each iteration 

to attempt to reduce overfitting. The initial weights of the convolutional and fully connected 

layers are randomly generated from a Gaussian distribution with mean 0 and standard deviation 

of 0.01. 

The network training times are summarized in Table 4.5. Training of the CNN structure 

was conducted on two platforms: a 4-core Intel i7-7700 at 4.2 MHz with 16GB DDR4 RAM and 

a Nvidia GTX 1070 GPU with 8GB video RAM, and an 4-core Intel i7-4790 CPU at 3.6 GHz 

with 32 GB DDR4 RAM. The two PCs are used for GPU-based and CPU-based training of the 

CNN respectively. The results indicate the direct advantage of having a GPU available for 

network training, with the GPU requiring 16.45 times less training time. This improves the 

overall workflow when training a neural network for any application, allowing for faster 

responses by the user to original network structure when making improvements. Although this is 

still manageable with CPU training, the time in-between training attempts greatly decreases the 

efficiency of training and adjusting a classifier. The five GPU trained classifiers were randomly 
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initialized, resulting in an average training time and mean average precision of roughly 29 

minutes and 83.39% respectively. 

 

Table 4.5 – Comparison of Neural Network Model Training 

Iteration Training Time (s) Accuracy 

1 00:29:12 84.16 

2 00:28:57 83.33 

3 00:29:09 82.96 

4 00:29:11 83.06 

5 00:29:13 83.45 

Mean 00:29:10 83.39 

CPU 08:00:00 83.60 

 

The classification capability of the trained network was determined through two 

conditions i) based on a test set from the manually classified Alberta traffic sign database, and ii) 

based on the results of the classification results along the test segment video-log images. The two 

test sets are differentiated because the lower sample size of traffic signs along the segment does 

not completely describe the accuracy of the classifier, but it does allow for the assessment of 

missed classifications. Furthermore, the training dataset is only partial and there might be traffic 

signs placed along the test segment that were not trained in the image classifier. This allows for a 

comprehensive assessment of accuracy and the continued expansion of the training dataset. 

Figure 4.12 provides the confusion matrix for the classification of the validation images.  

 

 

Figure 4.12 – Confusion Matrix for Classification 
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The confusion matrix visually describes any “confusion” in the classification attempts, 

where a perfect classifier would show 100% of the classifications along the diagonal (i.e., all the 

images were correctly classified as its class). Any “confusion” that occurs when classifying 

images is colorized in the off-diagonal entries, where pixel brightness corresponds to the number 

of classifications within that pair of Validation and Actual classes. 

The network resulted in a Top-1 error rate of 10.35% and a Top-2 error rate of 3.24%. Of 

the 165 total classes, five classes were not identified in the Top-1 classifications, but only two 

were not identified in the Top-2 classifications. Therefore, 163 of the 165 classes of true 

positives and false positives were correctly identified in the first two predictions by the classifier. 

The two classes that were not included in the Top-2 were “Disability Access” (IC-14) and 

“Museum-Tab” (IC-20-T). These misclassifications are largely due to their similarity to other 

“information” traffic signs classes with which they are typically mounted. The “Take a Rest” 

(IC-241) and other information signs (IC-#) are commonly combined on the same sign panel 

near exits, reducing the uniqueness between instances of training images and furthering the 

possibility of misclassification. As the training dataset only represents a small sample of traffic 

signs in Alberta this is not unexpected and strengthens the need for additional training samples, 

especially for the classes with sample sizes much lower than the mean sample size.  

The GoogLeNet structure provides the depth needed to conduct accurate classifications 

across many classes. The network structure attempts to reduce overfitting by utilizing dropout, 

but for the entire test set, IA-201 was the Top-2 classification 54.5% of the time, and IA-201 and 

IA-202 were the Top-3 classification 18.7% and 53.3% of the time for all classes, respectively. 

This is a side-effect of the small training sample size in total and the variety available in the two 

classes. More specifically, the two classes exhibit large variation in their backgrounds, causing 

the tree-lines and general foliage present within these classes to be a common classification 

outcome of the network whenever faced with these features in an image. The image classifier 

was also applied to the nearest video-log images to each traffic sign, as presented in Section 

3.3.3. The classifier’s accuracy is analyzed based on a manual classification of the traffic signs 

that exist in the same direction of travel. The image classifications are provided in Table 4.6. 
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Table 4.6 – Traffic Sign Classification from Video-log Images 
Traffic Sign ID Predicted Classification Actual Classification 

2 IA-210 (quadruple-direction) ID-204 (First Nation) 

3 RB-35 (info-slow-traffic-keep-right) RB-35 (info-slow-traffic-keep-right) 

5 WA-10B (ramp ahead advisory speed) * 

8 WA-10B (ramp ahead advisory speed) WC-2A (watch-for-pedestrians-on- highway) 

9 WA-10B (ramp ahead advisory speed) WC-2A (watch-for-pedestrians-on- highway) 

10 RB-1-100 IF-203 (next-exit) 

11 RB-1-110 ** 

12 RB-1-110 * 

13 RB-1-110 * 

14 RB-1-110 * 

15 RB-1-110 RC-104 (do-not-cross-median) 

16 RB-35 (info-slow-traffic-keep-right) RC-104 (do-not-cross-median) 

20 IF-203 (next-exit) IF-203 (next-exit) 

23 IC-5 (picnic-table) IC-216A 

24 RB-1-110 IF-203 and IC-212 

27 IC-57 (trailer and tent) 
IC-216A (major-attraction-for-conventional-

highway) 

29 WA-26 (bridge) WA-26 (bridge) 

30 WA-26 (bridge) WA-26 (bridge) 

32 IC-5 (picnic-table) RB-16 (no-u-turn) 

34 WA-10B (ramp ahead advisory speed) IF-203 and IC-212 

35 WA-10B (ramp ahead advisory speed) WA-10B (ramp ahead advisory speed) 

37 IF-205 (exit with number) WA-10A (ramp-advisory-speed) 

38 IF-205 (exit with number) IF-205 (exit with number) 

45 WA-27 (bridge clearance) WA-27 (bridge clearance) 

47 WA-10B (ramp ahead advisory speed) WC-111 (caution-logging-trucks-next-x-km) 

49 WA-16-R (merge-right-arrow) WA-16-R (merge-right-arrow) 

51 WD-101 (construction-with-arrow) ID-411 (caring-for-alberta's-highways) 

57 RB-1-100 IA-205 (double-distance) 

58 IA-203 (single-distance-and-arrow) IB-1 (transcanada-highway-1-marker) 

59 RB-1-100 * 

* Traffic sign does not exist in video-log or on Google Earth 

** Sign post visible but panel missing in video-log and Google Earth 
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For the thirty eastbound traffic signs, considering only the signs that were classes 

available in the classifier to begin with, the precision and recall were 53.3% and 100%, 

respectively. Six of eighteen classes were new to the classifier, solidifying the need for continued 

development of the training dataset. This is primarily due to the sliding window used to scan the 

input images for traffic signs and scans the surrounding area. Examples are provided in Figure 

4.13. The sliding window passes over sequences in the image that mimic background commonly 

seen in other traffic sign classes, resulting in the network relying on these features rather than the 

traffic sign’s features to conduct the classification. This suggests that additional work is needed 

in defining additional false positive classes like skylines and tree-lines. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.13 – Sliding Window Misclassifications 
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 In the absence of the traffic sign within the image, as in the case of Signs 12-14 and 59, 

the lane markings present across most of the video-log images are typically confused with the 

RB-1-100 and RB-1-110 (i.e., maximum speed of 100 or 110 km/h; black and white signs) 

classifications. This misclassification also occurred for Signs 10, 24, and 57. For the application 

of the classifier to the segment’s video-log images, the RB-1-110 and RB-1-100 signs appeared 

most often as false classifications. The bounding-box examples provided in Figure 4.13 show 

that when the classifier is passed over areas with heavy trees, skylines, and powerlines, the RB-

1-# signs were still obtained with high accuracy. This may be explained by their respective 

sample sizes of 307 and 195, which is well above the average for all classes and may have 

attributed to over-training. Additionally, the RB-1-# signs feature a prominent white linear edge 

around its borders that could be visually confused with a white lane marking. 

The remaining traffic signs were misclassified under other circumstances. The true 

classification of Signs 8 and 9 were unavailable within the training data. However, these traffic 

signs were mis-classified as a similarly colored traffic sign. Sign 5 did not exist within the video-

log images, but the following downstream traffic sign was present and correctly classified. 

Therefore, although the downstream sign was correctly classified, the traffic sign of interest was 

missing and thereby misclassified.  

As previously discussed, the training image dataset used to train the image classifier does 

not encompass all the traffic sign classes used by Alberta Transportation. Recognized as 

confused classifications, the following represents traffic sign classes that are located on the test 

segment(s) that were not included in the training dataset: 

• First Nations (ID-204) 

• Do Not Cross Median (RC-104) 

• Trans-Canada Highway 1 Marker (IB-1) 

• Caution Logging Trucks Next ‘X’ KM (WC-111) 

• Major Attraction for Conventional Highway (IC-216A) 

• Tourist Attraction (IC-212) 

 

Compared to the 50,000 traffic sign samples found in the GTSRB, this work is still in 

progress and only represents a proportion of the traffic sign samples in Alberta. However, the 
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classifier made accurate predictions on the validation dataset and provided valuable 

classifications when compared to the video-log images. This dataset was collected to make 

image-based traffic sign classification more accessible to municipalities, industry professionals, 

and researchers. The assessment of the image-based traffic sign classification highlights its 

application to the creation of a traffic sign inventory. The final contribution of this thesis is 

presented in the following section, utilizing the depth of LiDAR scans for the extension of a 

traffic sign inventory to include measurements of traffic sign visibility.  

4.4 VISIBILITY ASSESSMENT 

The extracted inventory of traffic signs is extended to determine their visibility along the 

segment. Fundamental to the legibility of traffic signs, this assessment serves to discuss the 

application of LiDAR to visibility assessment and the impacts of traffic signs with limited 

visibility. For this assessment the eastbound traffic signs described in Sections 4.1 and 4.2 will 

be used. The test segment has 16 vehicles along the eastbound approach that could potentially 

occlude visibility measurements. The proposed method successfully removed vehicles with 

precision and recall of 93.75% and 100%, respectively, with an example of the removed vehicles 

shown in Figure 4.14 as brightened points. The rear-end of one vehicle along the segment 

remained within the point cloud due to its segmentation from the rest of the vehicle. 

  



82 
 

 

Figure 4.14 – Vehicle Removal from Scanner Travel Lane 

  

Table 4.7 shows the results of the traffic sign visibility assessment using the proposed 

method, where traffic sign legibility was manually calculated by considering the smallest detail 

on the sign provided by the Alberta Traffic Sign Catalogue [69]. It should be noted that the signs 

that could not be classified in the previous section due to missing validation information were 

not assigned legibility values.  

 

Table 4.7 – Visibility Measurements of Segment Traffic Signs 

Sign Lat Long 

Visibility (m) 

Class 
Legibility 

(m) 

Speed 

Limit 

(km/h) 

Time (s) 

Day Night Day Night 

2 51.08604 -115.054 75.369 41.871 ID-204 135.00 110 2.466 1.370 

3 51.08604 -115.054 159.022 88.345 RB-35 54.72 110 5.204 2.891 

5 51.08604 -115.054 296.191 164.550 * 0.00 110 9.693 5.385 

8 51.08801 -115.054 130.976 72.764 WC-2A 72.00 110 4.286 2.381 

9 51.08604 -115.054 353.973 196.651 WC-2A 72.00 110 11.584 6.435 

10 51.08862 -115.053 223.414 124.119 IF-203 73.08 110 7.311 4.062 

11 51.08879 -115.053 360.103 200.057 ** 0.00 110 11.785 6.547 

12 51.08993 -115.052 380.123 211.179 * 0.00 110 12.440 6.911 

13 51.08961 -115.053 421.375 234.097 * 0.00 110 13.790 7.661 

14 51.09202 -115.050 188.881 104.933 * 0.00 110 6.181 3.434 
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Sign Lat Long 

Visibility (m) 

Class 
Legibility 

(m) 

Speed 

Limit 

(km/h) 

Time (s) 

Day Night Day Night 

15 51.09091 -115.051 501.102 278.390 RC-104 54.72 110 16.399 9.110 

16 51.09047 -115.052 563.033 312.796 RC-104 54.72 110 18.426 10.236 

20 51.09145 -115.051 1046.719 581.510 IF-203 91.44 110 34.256 19.031 

23 51.09276 -115.048 1070.031 594.461 IC-216A 91.44 110 35.019 19.455 

24 51.09251 -115.049 1226.438 681.354 IF-203 & IC-212 91.44 110 40.137 22.298 

27 51.09359 -115.046 1168.379 649.099 IC-216A 91.44 110 38.237 21.243 

29 51.09407 -115.045 1243.076 690.597 WA-26 90.00 110 40.682 22.601 

30 51.09436 -115.044 1182.589 656.994 WA-26 90.00 110 38.702 21.501 

32 51.09431 -115.044 1270.806 706.003 RB-16 414.00 110 41.590 23.105 

34 51.09335 -115.047 1536.846 853.803 IF-203 & IC-212 91.44 110 50.296 27.942 

35 51.09451 -115.044 1332.847 740.470 WA-10B 64.08 110 43.620 24.233 

37 51.09978 -115.030 464.937 258.298 WA-10A 64.08 110 15.216 8.453 

38 51.09490 -115.043 1487.700 826.500 IF-205 109.80 110 48.688 27.049 

45 51.09301 -115.047 2231.838 1239.910 WA-27 72.00 110 73.041 40.578 

47 51.09412 -115.045 2108.632 1171.462 WC-111 72.00 110 69.009 38.338 

49 51.09402 -115.045 2306.068 1281.149 WA-16-R 465.75 110 75.471 41.928 

51 51.09412 -115.045 2380.262 1322.368 ID-411 45.00 110 77.899 43.277 

57 51.09596 -115.040 2319.960 1288.866 IA-205 73.08 110 75.925 42.181 

58 51.10269 -115.023 984.414 546.897 IB-1 207.00 110 32.217 17.898 

59 51.09407 -115.045 2784.057 1546.699 * 0.00 110 91.114 50.619 

NOTE: Visibility is the distance at which a driver can first see a traffic sign; Legibility is the distance at which a 

driver can first read a traffic sign. 

 

The assessment of visibility can be used to highlight locations at which the theoretical 

legibility distance (i.e., the distance at which a driver can first read a sign) greatly exceeds the 

available visibility (i.e., the distance at which a driver can first see a sign). These locations are of 

interest because, although the traffic signs are still visible in advance, the distance at which they 

are visible may not be enough for the average driver to perceive them since they are not visible 

for the entirety of the legibility distance. 

 The last column of Table 4.7 converts the available visibility measurements into 

available time based on the posted speed limits. For instance, the daytime legibility for Sign 5 

was determined by dividing the visibility (196.65 metres) by the segment’s posted speed limit 

(110 km/h, or 30.56 m/s) to convert the visibility into an available time of 11.58 seconds. This 

means that the traffic sign is only visible for 11.58 seconds. In that time, a driver is expected to 

perceive and read the sign. However, traffic signs are less visible during nighttime conditions, 
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with the lighting to see a sign reduced to only what is visible within a vehicle’s headlights [16]. 

Zwahlen and Schnell [18] determined that nighttime legibility distances decreased by 1.8 times 

compared to daytime conditions. Therefore, the 5th column in Table 4.7 assumes a reduction in 

the available visibility distances for comparison against the legibility distances in nighttime 

conditions. This is critical as any traffic signs that are already limited in visibility during the 

daytime are even less effective during nighttime conditions. If the available time to perceive a 

traffic sign is less than what is required for the average population, this increases the risk of only 

partially recognizing the sign or missing it altogether. 

During daytime conditions Sign 2 has low visibility due to its placement towards the start 

of the segment. As the LiDAR data does not extend further upstream of this sign, its visibility is 

prematurely cut off by the edge of the segment within the LiDAR scan. Otherwise, the remainder 

of the traffic signs along the segment post high visibility, which is expected of signs posted along 

high-speed, high-volume highway segments. This is based on a comparison to the AASHTO 

standard of 2.5 seconds for preception reaction time (PRT) [16], with all of the traffic signs in 

Table 4.7 displaying visibility measures exceeding the minimum time required by the driver to 

perceive the traffic sign. 

Notably Signs 3, 8, 10, and 14 all have visibility times below five seconds during 

nighttime conditions. This is important because, with an aging population, the visual acuity of 

the average driver typically decreases [17] and PRT of the average driver will increase. Hence, 

for the same traffic signs, the required visibility of older drivers increases compared to younger 

drivers because they are slower to perceive, read, and react to traffic signs in their periphery [75]. 

These characteristics are worsened in complex scenarios, either through visual complexity, 

decreased sign luminance, or small letter or symbol size [75]. Therefore, when considering a 

PRT of 5.0 seconds for an aged population, Signs 3, 8, 10, and 14 fail to provide enough 

perception time.  

This is particularly important when considering the types of signs which were not visible 

within the required PRT. During daytime conditions, a “Watch for Pedestrians on Highway” sign 

(WC-2A) has the least available perception time. During nighttime conditions, a “Slow Traffic 

Keep Right” (RB-35) and a “Watch for Pedestrians on Highway” (WC-2A) sign have available 

perception times less than 2.5 seconds. If a driver is distracted, or if their perception reaction 
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time falls significantly above the average of 2.5 seconds, drivers could impede traffic in the left 

lane or be less attentive to hitchhiking pedestrians along the highway’s shoulders. 

The visibility measurements provide the absolute maximum visibility distance and time 

available for the traffic signs along this segment. However, just because a traffic sign is visible 

does not mean it has a driver’s attention. To further this discussion, each target point along the 

roadway is analyzed to determine which traffic sign is the nearest to the driver. It is assumed that 

the traffic sign nearest to each driver will be the sign of focus for the driver. Therefore, Table 4.8 

highlights the decreased visibility of each traffic sign assuming they can only be visible 

consecutively along the highway. It should be noted that if traffic signs are located side-by-side 

across the travel lanes, the consecutive placement only illustrates one of the two signs. This is the 

case for Signs 9, 13, 16, 30, 38, and 59, all of which were present adjacent to another sign and 

are not included in Table 4.8. 

 

Table 4.8 – Visibility Measurements of Signs based on Consecutive Placement  

Sign 
Visibility (m) 

Legibility (m) 
Time (s) 

Day Night Day Night 

2 75.369 41.871 135.00 2.466 1.370 

3 108.962 60.534 54.72 3.566 1.981 

5 155.969 86.649 0.00 5.104 2.835 

8 71.488 39.715 72.00 2.339 1.299 

10 184.099 102.277 73.08 6.025 3.347 

11 182.107 101.170 0.00 5.959 3.311 

12 183.896 102.164 0.00 6.018 3.343 

14 128.881 71.600 0.00 4.217 2.343 

15 162.483 90.268 54.72 5.317 2.954 

20 492.891 273.828 91.44 16.130 8.961 

23 270.947 150.526 91.44 8.867 4.926 

24 124.850 69.361 91.44 4.086 2.270 

27 188.368 104.649 91.44 6.164 3.424 

29 191.613 106.452 90.00 6.270 3.483 

32 98.085 54.491 414.00 3.210 1.783 

34 82.672 45.928 91.44 2.705 1.503 

35 59.697 33.165 64.08 1.953 1.085 

37 253.539 140.855 64.08 8.297 4.609 

45 371.609 206.449 72.00 12.161 6.756 

47 126.683 70.379 72.00 4.145 2.303 
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Sign 
Visibility (m) 

Legibility (m) 
Time (s) 

Day Night Day Night 

49 203.029 112.794 465.75 6.644 3.691 

51 115.761 64.312 45.00 3.788 2.104 

57 349.139 193.966 73.08 11.426 6.347 

58 96.155 53.419 207.00 3.146 1.748 

 

When considering the consecutive placement of traffic signs, their available visibility 

distances and times decrease substantially. Three signs do not meet the 2.5 second average PRT 

under consecutive placement conditions during the daytime, and eleven signs do not meet the 2.5 

second average PRT under consecutive placement conditions during the nighttime. Therefore, if 

a driver suffers from higher than average PRT due to aging, or is driving distracted or fatigued, a 

series of signs along the segment may be missed or only partially recognized. To avoid 

overloading drivers with a limited amount of time dedicated to each individual sign, agencies 

need to perform traffic sign visibility assessments to ensure that all essential signs are visible, 

and sign placement overlaps are limited to scenarios with low complexity and high visibility. 

Canada’s median population age is expected to continue increasing, creating the 

possibility that inadequate placement of traffic signs may result in increased frequency of 

emergency braking and maneuvering scenarios, wherein drivers have to react to scenarios later 

than usual (due to limited time to read, perceive, and react to traffic signs). Similar concerns can 

be applied to the heavy tourist population in Alberta. A large proportion of Alberta tourism is 

focused on the Rocky Mountain Range on the west border of the province, both during summer 

and winter months. With drivers from all parts of the world and with different language 

backgrounds, the efficacy of a traffic sign network determines the ease with which the tourist 

population can safely navigate Alberta’s highway networks. As they are likely unfamiliar with 

Alberta’s highways, the guide and warning signs are the most important for ensuring a tourist’s 

safe travel. As an additional measure of traffic sign efficacy, the visibility measurement from 

LiDAR data allows for additional validation to confirm that traffic signs placed based on 

historical design standards do not meet the needs of current and future driving populations. 

Although this thesis presents progress towards the extraction of a complete TSI, the 

implementation is based on the efficiency of the proposed process as compared to other methods. 
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Therefore, the next section serves to discuss the processing time needed for the proposed method 

to extract the TSI. 

4.5 PROCESSING TIME 

With the introduction of large-scale data processing, a discussion of the time required to 

implement the process is important before being implemented within the industry. Table 4.9 

summarizes the processing time from an average of three runs of the different procedural stages 

in this thesis. 

Table 4.9 – Processing Time for Procedural Stages 

Procedure Stage 
Processing Time (seconds/km) 

1 2 3 Mean 

LiDAR Preprocessing 15.98 16.80 16.83 16.53 

Ground/Non-ground and Vehicle Removal 18.21 18.40 18.36 18.32 

Traffic Sign Extraction with Orientation 46.56 45.96 46.14 46.22 

Lane Marking Extraction with Placement 3.58 3.40 3.44 3.47 

Visibility 24.30 18.79 18.78 20.62 

Image Classification 780.16 795.00 804.60 793.25 

Total 888.79 898.37 908.14 898.43 

 

The unit processing time measurements were calculated considering the 4-km highway 

test segment, containing approximately 26 million points. If this process is to be scaled across a 

series of segments for the assessment of the entirety of an Alberta highway section, the proposed 

method posted a data collection rate of 15 minutes per kilometre. It should be noted that although 

this does not include the time required to determine the directionality of the signs and determine 

the legibility distances, this still represents an improvement over manual or field processing 

techniques. 

However, Mobile LiDAR technology is seen as unattainable to certain municipalities or 

contractors due to its capital cost, operational cost, and the required workflow changes to 

incorporate the new technology into their everyday decision-making. To shed light on the 

possible cost savings associated with utilizing a LiDAR scanner, Yen et al. [76] conducted a 

detailed cost-benefit analysis of the application of mobile LiDAR scanning to highway 

infrastructure. Several options of contracting, renting, and ownership of mapping and survey-

grade LiDAR systems were considered and compared against the local department of 

transportation TAM inventory annual average cost. Depending on the desired ownership, overall 

cost savings were between 1.3 – 6.1 million of three data collection cycles over a six-year 
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lifecycle. Therefore, although the initial cost of contracting, renting, or owning a mobile LiDAR 

scanner is daunting, the benefits of utilizing this technology for TAM are easily realized.  

Additionally, Ai and Tsai [24] conducted a productivity assessment to determine the time 

saved through the application of a LiDAR-based methodology to traffic sign extraction. A 

manual processing of traffic sign inventory was conducted in 12.8 hours, or 34 minutes per 

kilometre. In comparison, the LiDAR-based methodology achieved the same results at a rate of 

8.1 minutes per kilometre, representing a 76% difference as time saved. However, some 

additional information was collected in their manual field survey, such as traffic sign panel 

classification and text, suggesting that the true time-savings may be slightly lower. In 

comparison, the proposed method is slower than that of Ai and Tsai but also includes additional 

lane marking placement, classification, and visibility assessments. Additionally, the proposed 

method still shows a 50% improvement in time spent compared to the manual method. The bulk 

of the time spent in the proposed method was during the sliding window implementation of the 

image classifier, accounting for 87% of the total time needed.  
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5 CONCLUSIONS 

Traffic signs are a fundamental component to any roadway environment, providing critical 

driving information to the surrounding traffic. To ensure traffic signs are placed correctly, 

industry practitioners rely on inventories of transportation assets to understand information about 

transportation networks. However, the vast networks of roadways in Canada contain a significant 

quantity of transportation assets, requiring a thorough collection of transportation assets to 

quantify the placed infrastructure. Therefore, the collection of a complete traffic sign inventory 

(TSI) is needed to ensure traffic signs meet the needs of current and future driving populations. 

However, the size of current global traffic sign networks makes applying traditional survey 

methods to the collection of a TSI difficult, if not economically infeasible. There is room for 

technological and methodological improvement towards the creation of an efficient TSI 

extraction process. This problem has been longstanding, with efforts focused on image-based 

TSI approaches. Although these approaches provide approximate sign location, no other 

information about the sign placement, orientation, or condition is present. In an effort to update 

the TSI extraction process, this research proposes the application of Light Detection and Ranging 

(LiDAR), coupled with video-log images, to create a complete TSI. The contributions in this 

thesis represent progress towards an automated TSI but contain limitations in their 

implementation. The limitations of the TSI methods outlined in this thesis will be discussed in 

the following section. 

5.1 RESEARCH SUMMARY 

This research proposes a LiDAR-based framework and discusses the successes and limitations of 

the application of such a process. The TSI framework is analyzed along a segment of Highway 1 

in Alberta, Canada, with the four main components of this thesis: (i) the LiDAR-based extraction 

of traffic signs, determining their georeferenced location and local orientation, (ii) the LiDAR-

based extraction of lane markings for placement measurements for each traffic sign, (iii) the 

classification of traffic signs from video-log images, utilizing the first traffic sign inventory in 

Canada to classify signs, and (iv) the measurement of the maximum traffic sign visibility. As 

mentioned, the LiDAR data utilized in this research is collected by the high-density REIGL 

VMX-450, which creates detailed point clouds of the scanning environment. To assess its 

application, the four stages of this thesis are individually assessed for extraction accuracy.  
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The difficulty with the accuracy assessments is that they are largely manual and that there 

is no set of reference data for traffic sign location, placement, or classification. The sign location 

and classification can be assessed using publicly available mapping [58] and the Alberta Traffic 

Sign Dataset [69]. The placement conditions can still be assessed for compliance to traffic sign 

placement standards published for Alberta [14]. For all traffic signs along the test segment, the 

intensity-based extraction of traffic signs had a precision, accuracy, and recall of 98.3%, 92.06%, 

and 95.08%, respectively. There were five false negatives caused by traffic signs across the 

divided highway. These signs had lower point density due to their distance from the scanner and 

were missed through the intensity extraction and clustering processes. Therefore, only signs 

relevant to the scanning direction (i.e., eastbound) were assessed for accuracy. In the eastbound 

direction along Highway 1 in Alberta, Canada, the intensity-based extraction of traffic signs had 

a precision, accuracy, and recall of 98.3%, 100%, and 99.14%, respectively. These signs were 

then assessed for their orientation compared to the placement standards. Certain signs were 

found to severely deviate from the horizontal and vertical orientation standards, providing the 

discussion of the potential effects this has on traffic sign conspicuity. This is especially important 

at night as too little or too much orientation can result in reduced sign conspicuity, causing the 

sign to be illegible from poor lighting or from specular reflection from driving vehicle’s 

headlights. 

The assessment moved to measure the lateral and vertical placement of the extracted 

traffic signs. As required in the Highway Guide and Information Sign Manual [14], the 

placements are measured from the nearest lane markings for highway segments. The extraction 

of lane markings was assessed by precision, recall, and accuracy for the left- and right-lane 

markings as 100%, 89.36%, and 94.38%, respectively and 93.47%, 86%, and 89.58%, 

respectively. The placement measurements combined with the orientation measurements from 

the traffic sign extraction, serve to complete the discussion of traffic sign conspicuity. Following 

the previous discussion, the lateral and vertical placement play equally important roles in best 

utilizing the available retro-reflectivity of placed traffic signs. Signs placed too far outside a 

driver’s field of view reduce their conspicuity, creating the possibility that older drivers or 

distracted drivers cannot read or miss the traffic signs altogether. 

As per the recommendations of NCHRP 748 Section 9.1.5. [22], the assessment of traffic 

sign classification is assisted by the addition of video-log images along the test segment(s). To 
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this end, a training set of traffic sign classes in Alberta were manually collected to train an image 

classifier. A total of 13,604 images are collected spanning 155 traffic sign classes and 10 false 

positive classes. To determine the applicability of a traffic sign classifier, the industry-recognized 

GoogLeNet structure is used to conduct image classification. The structure is trained within a 

half hour on a graphical processing unit (GPU) and ~8 hours on the central processing unit 

(CPU) and produces 83.39% accuracy on the validation set. This translates to a Top-1 and Top-2 

classification error of 10.35% and 3.24%, respectively. Two traffic sign classes were not 

correctly classified within their Top-2 classifications. 

When applied to the original video-log images, the sliding window procedure used to 

apply the trained classifier to cropped image samples creates the opportunity for 

misclassifications across the input image. This reduces the accuracy of the classifier to 53.3%. 

However, the results still indicate that the GoogLeNet structure is applicable to the classification 

of the traffic signs from images and completes the extraction of a traditional TSI. When applied 

to the video-log images, six new traffic sign classes were discovered. This reinforces the need for 

the expansion of the training dataset to ensure the image classifier can adequately classify all 

traffic signs along Canadian roadways. 

The detail provided by LiDAR scans is also used to extend the TSI to consider the 

upstream visibility of extracted traffic signs. This allows for the determination of maximum 

visibility of traffic signs and the assessment of the efficacy of current traffic sign placements. In 

daytime conditions, the traffic signs along the segment all met the average perception reaction 

time (PRT) of 2.5 seconds as set by AASHTO [16]. However, one of the traffic signs had 

available visibility times below five seconds, creating the possibility for this sign to be only 

partially read or missed by an older or distracted driving population. The visibility of traffic signs 

was also assessed during nighttime conditions, where the available visibility is decreased 1.8 

times. In this context, two signs had visibility times below 2.5 seconds of PRT and four signs had 

visibility times below five seconds of PRT. The two signs below 2.5 seconds of PRT are “Slow 

Traffic Keep Right” (RB-35) and “Watch for Pedestrians on Highway” (WC-2A). Therefore, if a 

driver is distracted, or if their perception reaction time falls significantly above the average of 2.5 

seconds, drivers could impede traffic in the left lane or be less attentive to hitchhiking 

pedestrians along the highway’s shoulders. 
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Additionally, the visibility of traffic signs was considered given that, although a traffic 

sign might be visible if not the most immediate object in view, this sign may not be noticed until 

further downstream. Traffic signs were assessed for consecutive placement and three signs do 

not meet the 2.5 second average PRT during the daytime, while eleven signs do not meet the 2.5 

second average PRT at night. Therefore, if a driver suffers from higher than average PRT due to 

aging or is driving distracted or fatigued, a series of signs along the segment may be missed or 

only partially recognized by a driver. To avoid overloading drivers with a limited amount of time 

dedicated to each individual sign, agencies need to perform traffic sign visibility assessments to 

ensure that all essential signs are visible, and sign placement overlaps are limited to scenarios 

with low complexity and high visibility. 

The traffic sign visibility assessment serves to outline signs of concern which may not 

appropriately serve the driving population. Older drivers, distracted drivers, tourist populations, 

and nighttime conditions create different requirements of traffic signs and the visibility 

assessment serves to determine signs that do not meet the needs of current or future driving 

populations.  

This thesis set out to create a complete TSI. As this process is historically manual or 

partial, the breadth of information available from the combination of LiDAR data and video-log 

images is utilized to detail the tested roadway. The four-primary tasks of traffic sign extraction, 

lane marking extraction, image-based traffic sign classification, and traffic sign visibility 

measurement. With a review of the current state of research literature, this thesis proposes a 

LiDAR and video-log based method with which to complete a TSI. The contributions of this 

thesis are outlined in the following section of this thesis. 

5.2 RESEARCH CONTRIBUTIONS 

The contributions in this research create a framework for the extraction of a TSI based on the 

understanding that the traffic sign is a key component along any highway network. There have 

been previous attempts to streamline the TSI extraction process through image-based and manual 

inventory counts. Although these methods can be accurate, they are also incredibly time 

consuming and thereby inefficient to implement. Additionally, these methods are limited in that 

they only allow for the extraction of some of the attributes, and the measurement of traffic sign 

characteristics (i.e., size, placement, and visibility) are very unsafe if not impossible. Therefore, 

LiDAR is suggested as a method to build traffic sign inventory, allowing for the extraction, 
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measurement, and assessment of traffic signs along the segment. The density and accuracy of 

LiDAR data allow for the accurate survey of highway segments at highway speed, resulting in 

reduced impact on the transportation network and keeping survey staff and the public safe. The 

following sections will discuss the contributions of this thesis, separated into academic and 

practical contributions. 

The contributions of interest to the academic community include the proposed method for 

the extraction of a complete TSI, the assessment of traffic sign visibility, and the creation of a 

Canadian traffic sign image database. The complete TSI provides the addition of orientation and 

placement to the traffic sign extractions found in the literature. The utilization of intensity-based 

methods for traffic sign and lane marking extraction further solidify their use in future extraction 

efforts. Additionally, the raster format used to locate the lane markings also proved successful 

and was very time efficient, thereby further solidifying its future use as well. The local 

orientation and the lateral and vertical placement allow for the comparison to design standards 

for traffic sign placement. If design standards or placement conditions are to be assessed 

individually, the proposed method allows for the large-scale measurement of these attributes 

quickly and efficiently. 

The visibility assessment is a new addition to the literature, measuring the maximum 

distance at which traffic signs are visible. This highlights an additional use for the LiDAR data 

which was previously unexplored and creates the opportunity for continued research into the 

time available for drivers to read signs. This can be extended to consider different traffic sign 

placement conditions and their potential effects on the workload of drivers along any given 

segment. 

Finally, this research creates a Canadian image database of traffic signs, which can be 

utilized for continued research into image-based traffic signs applications. The database was 

used to successfully classify signs within the video-log images and creates an inventory of varied 

placement conditions within Alberta. This allows the academic field to continue research into the 

creation of TSIs, autonomous vehicles research, or as an additional benchmark for image 

classifiers. 

The practical contributions in this thesis of interest for industry applications revolve 

around the accuracy, time, and cost savings of the proposed method for the creation of a TSI. 

This thesis highlights that the creation of a TSI in a timely manner is possible utilizing only 
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LiDAR scans. The extraction of a TSI was completed accurately and provides relevant 

discussions of the challenges associated with this work. Industry professionals may have their 

own LiDAR or image databases already created with no means of automatically assessing them. 

The methods proposed in this research allow practitioners to create additional value from their 

previously collected data. Additionally, for professionals considering its industry application, the 

discussions within this thesis assist in guiding practitioners through potential limitations and 

concerns. 

The implementation of a TSI extraction method is largely dependent on the time and cost 

savings associated with the use of the new method. Overall, the complete assessment of a TSI 

requires 15 minutes per kilometre of LiDAR roadway. The greatest bottleneck within the 

proposed procedures is in the sliding window procedure used to create potential traffic sign 

regions-of-interest within the video-log images. The proposed procedure still provides an 

accurate extraction of a complete TSI with significant time savings and completeness compared 

to other manual and image-only based processes. Therefore, the LiDAR and video-log based 

procedure proposed in this research is applicable to the collection of a complete TSI.  

The image database created for the Canadian context can also be utilized by industry 

professionals to build their own traffic sign inventory applications. The database provides 

practitioners with information on the placement conditions commonly seen by signs and allows 

for additional development of industry professional’s in-house image processing models. The 

GoogLeNet model used in this thesis is readily available and could be replicated by professionals 

for future use. 

It is understood that the initial cost of LiDAR can be an inhibiting factor for industry 

professionals and municipalities considering its application. However, the assessment of 

different LiDAR ownership strategies by the NCHRP suggest that direct ownership of a LiDAR 

scanner lead to the highest cost savings for infrastructure assessments like the TSI [22]. 

Therefore, the contributions carried out in this thesis exist as a candidate for future 

implementations of a TSI extraction process. It should also be noted that the LiDAR data used 

within this study is not limited only to TSI-based analyses, including applications to other 

transportation inventory [34], [72], [77] and safety assessments [55], [71]. The case study within 

this thesis was applied to rural highway segments, but similar analyses could be conducted in an 

urban setting or for the assessment of transport signs within the aviation and rail industries [17].  
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In the North American context, LiDAR scanning is still a juvenile technology for 

industry applications, but the application of LiDAR complements an effective data management 

strategy for transportation asset management. As described by Hessle [2]:  

“Effective Data Management will result in the availability of a stable, high 

quality information resource across the whole organisation, and in more 

reliable, better-understood data. This, in turn, will provide hard financial 

benefits and quantifiable improvements in service delivery, as well as soft 

benefits, which although less easy to quantify and to cost, are an important 

part of the value of Data Management. Public organisations are accountable 

for their decisions, and good Data Management provides the necessary audit 

path to demonstrate the basis for decision-making. Data that are meaningful 

and relevant can form the basis of sound decision making. This can lead to cost 

savings. Good Data Management reduces Data Duplication and Data 

Redundancy, which again saves money. Well-managed data may also have 

commercial value - something that many Road Administrations have yet to 

fully appreciate and capitalise on.” 

 Ultimately, the design of roadways is based on standards created in a historical context, 

and these designs may no longer apply to the current driving population as they once did. 

Therefore, it is the job of current engineers to assess the efficacy of traffic sign placements to 

ensure they meet the needs of the driving population. The completion of a traffic sign inventory 

as part of a transportation asset management strategy provides the data needed to conduct 

assessments of traffic sign placement standards. As the industry is moving towards more 

responsible design environments, where collisions on a roadway are attributed to a failure of the 

design to accommodate the driver rather than a failure of the driver, the contributions of this 

thesis propose a framework for the assessment of traffic sign installations to meet the needs of 

current and future driving populations. 

5.3 LIMITATIONS 

Each section will discuss both the limitations regarding the application of LiDAR or video-logs 

to the problem of TSI and the limitations of the methods chosen to extract these features from the 

data. This includes limitations associated with the accuracy of the chosen methods and potential 

limitations of their reimplementation in other settings. 
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5.3.1 TRAFFIC SIGN EXTRACTION 

Fundamental to the extraction of traffic signs from the LiDAR data is their high intensity relative 

to the rest of the data collected within each scan. Gaussian curves were fit to segment the LiDAR 

data, and the extraction of a correct Gaussian curve is directly impacted by the surroundings 

collected in a LiDAR scan. This work has been conducted on highway segments, where high 

intensity noise is limited to the surrounding roadway and vegetation. However, in urban 

environments with higher traffic volumes and higher infrastructure density, the high intensity 

Gaussian curve may be skewed to include a larger proportion of noise versus the traffic sign 

points. Therefore, when extracting the candidate traffic sign points the sample that needs to be 

clustered and filtered increases. This increases the chance of false positive extractions within the 

dataset and increases the computational load required when clustering the candidate traffic sign 

points. However, this could be alleviated by applying an additional Gaussian Mixture Model, 

additionally segmenting high intensity points to remove only traffic sign panels. 

 Once the candidate traffic sign points have been extracted from the LiDAR data, a key 

step to extracting candidate traffic signs is through clustering the candidate points into sets of 

candidate traffic sign clusters. The DBSCAN attributes for clustering must be manually set and 

may not translate to a different dataset collected by the same scanner. DBSCAN attributes will 

likely change even further using a different mobile scanner or a lower scan rate terrestrial 

scanner (e.g. Velodyne VLP-16 [78]). It is recommended to verify the applicability of the chosen 

parameters to any new dataset, and if necessary, update these parameters to better suit the 

available data.  

Additionally, the process of principal component analysis (PCA) is limited in that it is 

indiscriminate to the set of input data. If the result of the clustering process contains noise (e.g., a 

traffic sign is clustered with another traffic sign or with a metallic post), PCA will determine the 

principal axes with the additional noise included in the calculation. Therefore, the calculated 

principal axes will include the noise and there is no indication that this has occurred. It is 

imperative that the DBSCAN attributes are appropriately tuned to the input dataset to avoid 

errors in the principal axes and volume calculations. 

If the segment is too long or contains too many high-intensity points the proposed 

procedure is limited by the available computer hardware. As DBSCAN clustering with a distance 

matrix is an 𝑂(𝑛2) complex problem, a larger dataset demands higher available computational 
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power (i.e., RAM). For the hardware available described in Section 4.3, the maximum allowable 

pre-clustering data size is approximately 65,000 points. 

The vertical angle of the traffic signs is measured based on the normal vector from the 

road surface, which makes this measurement dependent on the quality of the road surface. If 

there are any inundations or pot holes along the road surface, the accuracy of this measurement 

may be affected. 

Once the traffic signs have been extracted, the accuracy of each determines the 

applicability of the proposed methodology to real-world scenarios. However, there are currently 

limitations in the verification of traffic sign position. No traffic sign database is available to 

assess the accuracy of the extracted traffic signs. However, visual inspection using Google Maps 

or Earth applications allow for validation from a trusted third-party source. In the future, these 

extractions should be further verified with manually surveyed traffic sign locations. However, 

the traffic sign extractions could be used to create the missing inventory of traffic signs. Any 

extractions thereafter of either traffic signs or other assets along a segment can then be verified 

using the same LiDAR scan. 

Mentioned throughout this thesis is the focus on the only the traffic signs in the direction 

of the scanning vehicle. Due to the density of the point cloud closer to the scanner, objects along 

the segment are best described when immediately adjacent to the scanner. Therefore, the 

proposed procedures are best suited for applications per scanning direction. To ensure the TSI 

extraction encompasses all traffic signs in both directions, this process should be repeated for the 

other travel direction as well to complete the TSI along this segment. 

Finally, there is a limitation associated with the application of LiDAR to traffic sign 

extraction which is present across all field-based inventory processes. If traffic signs are broken 

or missing from the LiDAR data, they cannot be extracted. This may be beneficial if one has 

multiple scans of the same location from different times, as this would allow for the detection of 

missing traffic signs. However, for the extraction of the initial inventory, signs missing from the 

LiDAR data will result in an incomplete traffic sign inventory. 

5.3.2 LANE MARKING EXTRACTION 

The proposed procedure is based on the voxel discretization structure to conduct ground and 

non-ground segmentation, and road surface extraction for the purpose of lane marking extraction. 

The ground extraction procedure uses the lowest voxels along the segment to separate ground 
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and nonground objects. In the presence of shadows within the point cloud, the ground 

segmentation may include portions of the non-ground segment. Additionally, the sizing of the 

voxels may cause under-segmentation of the non-ground objects, resulting in non-ground points 

being present in the set of ground-segmented points. With increased voxel size, the under-

segmentation of ground objects worsens as more points are included per voxel. A decrease in 

voxel size can also attribute to under-segmentation of the ground objects as the likelihood 

decreases of a non-ground object’s voxels being stacked atop one another. 

The effectiveness of the road-surface extraction voxel parameter is dependent on the 

voxel size. To understand the sensitivity of the road surface extraction, the voxel size was altered 

while retaining the same road surface extraction parameter. For a larger voxel size, the chosen 

filtering parameter is less effective along the vertical curved sections of roadway. Due to the 

higher number of points within each voxel at a larger voxel size, the increased voxel size has a 

higher standard deviation of elevation for voxels along the vertical curve. Therefore, if the voxel 

size is to be changed, the heuristic parameter to extract the road surface should be adjusted. 

To utilize the intensity difference between the lane markings and the road surface for the 

purpose of lane marking extraction, the raster image provides a convenient format with which to 

analyze the lane markings. However, the raster format discretizes points thereby sacrificing some 

of the “uniqueness” associated with having point-scale measurements of intensity for processing 

simplicity. Additionally, the raster format and the closing operation cause aliasing, which 

introduces additional edge noises. The closing operation is required to create a complete raster 

image, as parts of the cross section contain holes due to the point spacing on the roadway. 

However, the closing operation creates intensity edges when it determines the values of the 

missing pixels. To utilize the predictive power of the image processing methods currently 

available, the individuality of the points was sacrificed to allow for the classification of lane 

markings. 

The primary focus was the lane markings neighboring the shoulders of the test segment 

as these markings are critical to the assessment of traffic sign placement. The cross sections are 

chosen based on their proximity to the traffic signs along the segment. The size of each cross 

section is fixed, and if part is segmented by the cross section then these may not be adequately 

located. This is of concern at accesses and egresses, where the markings may already be 

segmented due to changes in the roadway geometry. 
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The placement of the traffic signs is determined relative to the lane markings. Therefore, 

if a lane marking is missing the measurement of the traffic sign placement cannot be completed. 

This was the case for Sign 51, where the missing lane markings resulted in incomplete placement 

measurements for that sign. 

Furthermore, the determination of the exact location of the markings is conducted based 

on the Canny edge detection procedure, which uses a visually chosen parameter to determine the 

locations of valuable edges within images. The application of this procedure to different LiDAR 

segments would require this parameter to be visually re-tuned to maintain the accuracy of the 

assessment.  

Like the traffic signs, the lane markings have a higher probability of being extracted in 

the travel direction of the scanning vehicle, and it is suggested that on and off ramps are also 

scanned to improve the detection of both traffic sign and lane marking assets along the ramps. 

Additionally, the road surface and lane markings may be segmented due to occlusion cause by 

the scanning vehicle passing or being passed by another vehicle. These shadows cause a lower 

density of points where the pavement surface was occluded by the other vehicle, reducing the 

points available to determine the edge of the lane markings. This may result in the Hough 

transform occasionally missing the linear lane marking edges. Therefore, it is recommended that 

LiDAR scanning be conducted with as little surrounding traffic as possible to reduce the chance 

of occlusions along the segment. 

Finally, a limitation within the LiDAR data itself is regarding the condition of the lane 

markings along the scanned road segments. If lane markings are faded or missing, they may not 

be discernible as lane markings within the LiDAR. The edge detection scheme is less effective if 

the intensity of the lane markings is too close to the pavement surface, resulting in unclear edges 

from which to extract the lane markings. The placement measurements are directly dependent on 

the completeness of the lane marking extraction. In comparison, this lane marking extraction 

method is less accurate than those presented in previous literature. However, the location in 

which the LiDAR scanning takes place plays a large role in the success of the lane marking 

extraction. Alberta, Canada is known for its harsh winters, which take a toll on the quality of the 

lane markings in the province. Not only does the ice, snow, and hail wear away at the markings, 

the province of Alberta uses fleets of snow plow trucks to clear highways of snow and ice. This 

causes further forced degradation of the lane markings [79]. In comparison to Spain [77] and 
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Coastal China [30], the general conditions experienced by Canadian lane marking infrastructure 

are much harsher and can result in a higher percentage of incomplete lane markings.  

5.3.3 TRAFFIC SIGN CLASSIFICATION 

The procedure for the classification of traffic signs from the video-log images is built upon the 

success of the GoogLeNet convolutional neural network. However, a neural network is only ever 

as good as it’s training data, with a high accuracy neural network requiring a breadth of training 

examples to ensure it learns as many real-life scenarios as possible. In comparison to other neural 

network training databases [38], [39], the volume of training data used in this research can be 

improved. However, even given the limited sample of training images available, this sample still 

demonstrates the power of neural network-based image classification in the Albertan context. 

Additional collection of traffic sign images should be conducted to collect the remaining traffic 

sign classification types and to make the samples that describe each traffic sign class as more 

robust. Given that Alberta experiences drastically varied weather conditions year-round, the 

dataset could also be improved to include different lighting and weather conditions. LiDAR 

scanning is only conducted during dry conditions, but images of the roadway network in varied 

conditions could still be collected by other cameras to be added to the training dataset. 

The immediate implementation of a neural network-based image classifier may be 

limited depending on the available computational hardware. The network was trained on a stand-

alone CPU requiring approximately eight hours to complete training. This is greatly dependent 

on the complexity of the network and the size of the training sample, but if there is to be 

continued development on the training dataset then the training time will only increase. If an 

industry professional or municipality is seriously considering training their own neural network-

based image classifier, the use of graphical processing units (GPUs) should be under immediate 

consideration given their improved processing speed and efficiency during training. However, 

training using only a CPU shows that, with limited resources, accurate neural network 

classification is still a possibility. 

Additionally, the application of this neural network is location dependent. The training 

images used in this network consider a sample of the contrast, intensity, and placement 

conditions relevant to the lighting and weather conditions present in Alberta. Although the 

network model can still be applied to other traffic sign classification scenarios within Canada and 

the United States, the set of training images will need to be adjusted to add or replace relevant 
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traffic signs used in the new study region. For example, any application of traffic sign 

classification in the United States will need to replace the maximum speed (Alberta Traffic Sign 

class RB-1) with maximum mile-per-hour speed signs. 

Finally, although the classifier was accurate on the validation dataset, the sliding window 

procedure severely reduced the accuracy of the classifier when applied to the full-sized video-log 

images. The sliding window travels across the entire image input image, requiring valuable time 

during the TSI extraction process. The misclassifications decrease the accuracy of the assessment 

due to surrounding objects in the sliding window, however this can be improved upon with 

additional positive and negative training samples. Additionally, the final traffic sign 

classification is assigned based on the highest classification in the video-log image. Therefore, if 

multiple signs are present in one image the actual traffic sign may be misclassified for a different 

traffic sign. 

5.3.4 VISIBILITY ASSESSMENT 

To ensure the visibility assessment would comprise of only pertinent ground and non-ground 

objects along the road segment, a vehicle removal process based on the existence of road-surface 

segmentation was utilized to clean the dataset prior to analysis. However, if the road surface 

extraction is incomplete, then the vehicles may be improperly or incompletely removed. 

Additionally, if there are non-ground or noise artifacts within the set of ground points these may 

result in incomplete vehicle removals. 

Fundamentally, the greatest limitation in the visibility assessment is that a manual 

process is still required to determine the direction traffic signs face (i.e., which direction of travel 

the traffic signs are serving). Although the assessment could be completed including the traffic 

signs along the segment, the visibility measurements for signs belonging to the other direction of 

travel would be inaccurate and waste valuable computational resources to do so. Currently the 

distinction between traffic signs mounted for the east and westbound directions can only be 

determined through a manual assessment of extracted traffic signs. 

A limitation of the visibility assessment is in the determination of occluding objects, in 

that any obstructing voxel along the sightline is considered an occlusion without consideration 

for what kind of object caused the occlusion. This could cause smaller objects to be considered 

an occlusion, resulting in an inaccurate measurement of visibility. Additionally, manual 

processing is required to calculate the legibility distance of traffic signs by determining which 
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symbol and letter sizes correspond with each of the traffic signs. This information does not exist 

otherwise, further necessitating the collection of a traffic sign inventory. The assessment of 

legibility distance is also based on the values determined by fundamental transportation literature 

which previously determined the legibility requirements of a driving population. These values 

may no longer be entirely representative of the driving population as current legibility standards 

were researched in the 1960’s and 1970’s [64]. Therefore, the accurate implementation of these 

processes to measure traffic sign legibility would benefit from an additional study verifying or 

updating the legibility requirements of today’s driving population. 

Additionally, the visibility assessment is limited at the start of each LiDAR segment. As 

shown by Signs 1 and 2 in the visibility assessment, their placement close to the beginning of the 

segment prematurely limits their visibility to what is available within the LiDAR scan. This 

could be alleviated by considering multiple segments along the same highway, providing a 

complete assessment of those signs at the start of the segment. 

Finally, an important factor that could have significant impacts on traffic sign visibility, 

but is not considered in the visibility analysis, is the condition of the traffic sign. The prior 

assessments were conducted assuming traffic signs that were in good condition. However, even 

signs placed in compliance with the MUTCD can be obscured due to (i) low contrast between a 

traffic sign and the background, (ii) too much information on one sign or a high density of signs 

in a limited area, (iii) dirty signs, (iv) poorly placed or obscured signs, and (v) missing 

information [17]. Figure 5.1 (a) and (b) are examples of traffic signs posted along other 

highways in Alberta, which in clear daylight are already difficult to read due to severe wear. This 

would be exacerbated in nighttime conditions, becoming more difficult for older drivers to 

locate. 
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(a) (b) 

Figure 5.1 – Traffic Signs in Poor Condition [58] 

 

Although this procedure is currently limited by the manual component required to 

complete the visibility assessment, the lack of additional TSI information makes this a required 

process within the initial adoption of this procedure. Therefore, although this currently stands as 

a limitation, with the collection of initial TSIs, this component would become obsolete. 

The proposed method does contain some limitations, as listed within this section. 

However, through continued research towards the advancement of TSI extraction processes, 

these limitations can be mitigated or eliminated. The following section serves to outline areas of 

future research towards the proposed TSI extraction process. 

5.4 FUTURE RESEARCH 

The discussion of future research topics is introduced with general research which could improve 

the TSI extraction process. These topics are general extensions or substitutions to the proposed 

methodology and are discussed separately from future research into individual components of the 

methodology. Thereafter, the four components of traffic sign extraction, lane marking extraction, 

traffic sign classification, and sign visibility are individually discussed for future research 

contributions. 

First and foremost, a topic of future research of interest to municipalities is the 

application of 3D representations of regions based on images – an alternative method to creating 

point clouds. The comparison of an image-based and LiDAR-based point cloud for the purpose 

of conducting a TSI would provide an interesting assessment of the trade-offs of cost, efficiency, 

and accuracy from both methods. Research has been conducted for the location of traffic signs 
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but a comparison of both methods at the same locations would be needed for a thorough 

comparison of the two methods. 

Specific to the extraction pipeline presented in this research, extracting a TSI from 

LiDAR can benefit from assessing the impact of point density on the TSI. As high-end dual 

scanners are not immediately feasible acquisitions by all municipalities and industry 

professionals, an assessment of how a reduced point density affects extracting a TSI would 

provide practitioners with an understanding of the expected accuracy of the assessment when 

using different scanners. For example, Figure 5.2 displays a scan collected by a Velodyne VLP-

16 [78]. The VLP-16 can collect roughly 300,000 points per second, but with a reduced range of 

100 metres and a scan rate of 5-20 Hz, the collection of points at speed results in an increased 

scan-line spacing (i.e., the spacing between points collected in a single rotation of the scanner, 

resulting in separated lines). However, details regarding the surrounding environment are still 

visible within the scan making this application a potentially cost-effective means of collecting a 

partial TSI. 

 

 

Figure 5.2 – Sample of LiDAR Data - Low Speed Velodyne VLP-16 Sample [80] 

 

Ai and Tsai [24] studied LiDAR-based traffic sign extraction using a scanner with a scan 

rate of 10,000 points per second, significantly lower than the RIEGL VMX-450. They still report 

accurate traffic sign extraction, thereby begging the question of whether lower scan rates or 

lower scan rate scanners could be used to conduct the inventory in a more cost-effective manner. 
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Finally, the contributions of this research present the entire TSI extraction effort as 

individual processing pipelines. Future research could consider the classification of all LiDAR 

data rather than through individual efforts, like the pixel-wise classification research currently 

taking place for image segmentation. Instead of analyzing the LiDAR for individual features, a 

point-based classifier could look at providing a classification value to each LiDAR point. Work 

in this field would apply not only to conducting a TSI and would extend to a full-scale 

infrastructure inventory.  

The extraction pipelines for each step in the TSI outlined in this thesis were discussed 

based on their limitations, showing room for improvement either methodologically or 

ideologically. The individual extraction pipelines are further discussed in this section to 

recognize areas of future research. 

5.4.1 TRAFFIC SIGN EXTRACTION 

Although some of the procedures within this research have been adapted from previous work, the 

additional contributions of this research are as follows: complete inventory of traffic signs, 

including the location of the sign panels, their placement, and their visibility analysis within the 

Albertan context. This allows for a two-part assessment of any highway network: (i) the 

collection of traffic sign inventory to update a transportation infrastructure inventory, and (ii) the 

assessment of traffic sign efficacy. 

The collection of traffic sign points is fundamentally based on the DBSCAN clustering 

process. The DBSCAN parameters used in this research are based on the analysis from a 

previous study using the same dataset. However, there is still the possibility of random variation 

within datasets, which may reduce the completeness of the potential traffic sign points with the 

current DBSCAN attributes. Therefore, a sensitivity assessment of both DBSCAN parameters 

would further tune the clustering algorithm to the input dataset, ensuring the potential traffic sign 

clusters are as complete as possible. This is likely only required under certain scanning 

conditions (i.e., using a specific scanner or collecting scans at a specific travel speed) and once 

verified can be applied to other scans collected under similar conditions. 

To improve the false positive filtering process outlined in this research and to expand the 

details extracted in a TSI, this research could be expanded to include the mounting conditions for 

each traffic sign. This would provide practitioners with additional information on the placement 

conditions of traffic signs and allow for a better understanding of how the sign is mounted 
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relative to rest of the objects in the LiDAR scan. Additionally, the application of breakaway 

posts and overall post size or radius contribute to traffic safety and their extraction may be 

beneficial in the assessment of the potential likelihood and severity associated with colliding 

with different traffic signs. However, LiDAR scanning passes may need to be conducted at lower 

speed to ensure a higher point density is collected along the traffic sign posts.  

Finally, although traffic sign retro-reflectivity cannot be determined from LiDAR scans as 

per NCHRP 748 Section 9.1.1 [22], the relative intensity can be compared within single LiDAR 

scans. Therefore, future research could explore the relative differences between traffic signs 

within a scan. If a traffic sign exhibits lower intensity than the other traffic signs within a LiDAR 

segment it can be flagged as potentially dirty or aged. 

5.4.2 LANE MARKING EXTRACTION 

The lane marking extraction is conducted using a voxel-based approach, determining ground and 

road-surface points prior to extracting cross sections at which to determine the position of the 

lane markings. Therefore, improvements to this process should start with the underlying ground 

and road-surface segmentations. The ground extraction procedure could be expanded to consider 

additional or alternative measures of voxel attributes as they belong to the ground surface. By 

considering the regions around the currently extracted ground points, the process could consider 

the properties of points relative to other ground points for verification purposes. This serves to 

improve the ground extraction to reduce the under-segmented non-ground points that exist in the 

ground point set. This would reduce the possibility of noise being present in the cross sections 

and improve the vehicle removal process used in the visibility analysis. Similarly, the 

improvement of the road-surface extraction could consider local regions of change rather than 

considering the global standard deviation of elevation parameters. This guarantees the 

completeness of the cross sections used in the lane marking extraction. 

When detecting the lane markings, the proposed procedure depends on the development 

of raster images and the detection of the lane marking intensity edges within those images. 

Further research could consider alternative pixel processing algorithms to maintain and enhance 

the intensity on the lane markings whilst reducing the noise specific to the road surface. 

Additionally, the Canny edge detector requires defining the desired edge strength, which is 

currently determined visually. Future research could consider the quantitative sensitivity of this 
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parameter, perhaps through the application of reference values of the correct edges within the 

raster images. 

As previously mentioned, the point-based classification would be a strong substitute for 

future research into the extraction of lane markings. Lane markings exist in varied conditions, 

sizes, and shapes, and training a point-based classifier to determine local and global differences 

between the lane markings and other points along the segment would improve the completeness 

of the lane markings. 

5.4.3 TRAFFIC SIGN CLASSIFICATION 

The process of image-based traffic sign classification hinges on the quality and completeness of 

the training dataset and the capabilities of the image classifier. Fundamentally, the accuracy of 

the image classifier can be improved by one of two changes: increase the amount of training data 

available or improve upon the neural network model.  

Improvements to the neural network classification can come from one of two areas: 

change the overall structure of the model or fine-tune the individual components of the model. 

Although the GoogLeNet model performed well, filter sizes for the convolutional and pooling 

layers or the weight and bias parameter initializations could be altered to improve the 

performance of the model. Additional changes could also be made to the network structure, with 

the simplest change being the additional model depth. Alternatively, different model structures 

could also be considered, including residual networks [81] or multi-column networks (where 

multiple neural network structures under different training conditions are combined to conduct 

classification [40]). 

The second change to the image classifier is in the increase in the number of training 

samples to increase provincial and federal coverage to provide additional samples of roadways in 

the Canadian driving context. The training dataset is based on a set of the available video-log 

images in Alberta, and with continued LiDAR scanning in different regions, under different 

conditions, and at different times, the training dataset could be updated.  

The primary point of concern for the expansion of this dataset would be to ensure each 

class has roughly the same number of training image and that they contain reasonable 

environmental variety. There should be enough samples within each class to reduce the variance 

between class sample sizes and there should be additional focus on more false positive classes. 

Tree-lines and skylines were commonly mis-classified and these need to be added to the training 



108 
 

data. If more video-log images are not available, traffic sign samples could be partially inflated 

with image augmentation. This will increase the variation in the input dataset and provide 

additional training samples, but it is still dependent on the original input images.  

Traffic signs mounted in Alberta are still occasionally proprietary and the guaranteed 

application of this dataset to traffic signs across Canada requires samples from each province. 

This ensures the database contains samples from these provinces, both to include the different 

proprietary traffic signs and to ensure the surrounding environmental characteristics are trained 

into any new classifier.  

To avoid the issues caused by the sliding window detection process, a traffic sign detection 

procedure could be included in this processing pipeline in the future. By training a traffic sign 

detector with the bounding boxes of traffic signs in an image, the detector can feed the classifier 

only with traffic sign images to better utilize the accuracy possible from the classifier. 

5.4.4 VISIBILITY ASSESSMENT 

The environmental detail provided in a LiDAR survey supplements the traditional TSI with an 

additional traffic sign efficacy metric – the visibility measurement of each traffic sign. The first 

change to the visibility assessment would be to expand the line-based visibility assessment to 

consider the driver’s viewshed for any given trajectory point. This could be improved upon in 

further research by applying a viewshed to the traffic sign panel to determine what percentage of 

the traffic sign is occluded.  

The assessment of visibility could be extended to consider the different kinds of 

occluding objects along the highway segments. The occlusion by different objects and roadway 

geometry may signal issues with the highway design or use of a transportation asset, creating the 

need for additional assessment. This assessment could also be extended to allow for the 

assessment of general visibility for any asset. 

The determination of traffic sign directionality is currently manual. The TSI could be 

expanded to include the mounting conditions as mentioned in the Future Research for the traffic 

sign extraction. If the mounting conditions of each traffic sign exists, the post will always be 

facing away from the direction of travel, thereby definition the direction of the traffic sign. 

Already noted as a limitation, the placement of traffic signs towards the start of the 

segment prematurely limits the measurement of visibility of those signs. Future research could 

consider the combination of multiple segments to ensure the visibility for traffic signs at the 
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beginning of the segment are correct. However, this research should consider the computational 

expense of combining multiple LiDAR segments, as each segment contains 30 million points on 

average. 

Although this thesis provides a discussion on the consequences of occlusions on traffic 

sign visibility, no suggestion is made on how the traffic sign placement should change in order to 

circumvent the occlusion. Future research should investigate recommendations to change 

highway designs or to change traffic sign placement when occlusions are detected. 

Finally, the assessment of traffic sign visibility can be applied to a discussion of changes 

to the traffic sign placement conditions for an aging driving population. Within the three-

dimensional context of the point clouds, traffic signs placements could be altered, and signs 

could be resized and reassessed for visibility. This would better inform the use and design of 

more effective traffic control devices [17]. For example, Dissanayke and Lu [82] increased the 

size of stop signs and noted an increase in sign legibility for older drivers, allowing them to 

begin their deceleration at further, safer distances. Furthermore, Campbell et al. [83] 

recommended the standardizations of traffic sign symbols to improve sign legibility. These 

include (i) minimizing symbol complexity; (ii) maximizing distance between sign elements; (iii) 

using representational symbols; (iv) using solid figures; (v) standardizing the design of 

arrowheads, human figures, and vehicles; (vi) providing maximum contrast for symbols on signs; 

and (vii) using large font as often as possible [83]. Although some of these recommendations 

already exist in signs placed by MUTCD standards [4], making compensatory changes such as 

maintaining traffic sign contrast and increasing letter/symbol size comes at an increased cost per 

traffic sign. However, Castro and Horberry [17] note a lack of research into the cost-benefit 

relationship of these changes, how they might be utilized by other drivers, and how this might 

better inform future traffic sign installations. This should be included in the assessment of sign 

panel changes as well. 
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APPENDIX 

The Segment Traffic Sign Measures serves to detail the entire segment’s traffic sign 

measurements, including the lateral placement, vertical placement, horizontal orientation, 

vertical orientation, and direction. Direction includes the cardinal directions and, if applicable, 

the designation “R” for signs related to on or off ramps. This is to detail the traffic signs which 

existed along the segment. It should be noted that the placement and orientation measures are 

taken from the Eastbound lanes and may not be correct for Westbound signs. 

The Training Dataset Image Classes outlines the training dataset image classes, including 

the full number of images, also split into the number of training and testing images. These are 

utilized in the GoogLeNet convolutional neural network for image classification. 

SEGMENT TRAFFIC SIGN MEASURES 

Sign ID Lateral 

Placement 

Vertical 

Placement 

Horizontal 

Orientation 

Vertical 

Orientation 

Direction 

1 31.46 0.49 11.38 -0.88 W 

2 5.40 1.56 -5.36 -3.84 E 

3 5.16 1.37 -8.53 -1.87 E 

4 15.62 2.06 -3.64 -3.55 W 

5 3.87 1.51 -0.64 -12.07 E 

6 38.17 3.66 10.72 -1.61 W 

7 45.00 3.53 4.11 -0.58 W 

8 5.72 1.70 -8.51 -0.47 E 

9 2.50 2.04 0.23 -2.06 E 

10 13.55 2.08 -7.94 -0.61 E 

11 6.79 1.56 -5.77 -3.75 E 

12 10.14 1.53 -5.98 -0.41 E 

13 2.01 1.44 -8.93 -2.08 E 

14 1.51 1.62 -9.01 -8.41 E 

15 9.66 1.48 -6.47 -3.56 E 

16 6.98 1.80 -12.21 -5.75 E 

17 12.69 1.97 4.58 -0.41 W 

18 15.19 2.04 -2.09 -1.38 W 

19 36.14 1.79 -4.23 -4.47 W 

20 5.71 2.16 -0.77 -1.20 E 

21 12.04 2.23 -0.81 -3.66 W 

22 31.26 2.11 19.37 -1.84 W 

23 4.10 1.68 -3.15 -0.48 E 

24 0.86 2.02 1.48 -0.06 E 
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Sign ID Lateral 

Placement 

Vertical 

Placement 

Horizontal 

Orientation 

Vertical 

Orientation 

Direction 

25 15.66 2.02 5.74 -1.81 W 

26 34.38 2.67 4.79 -0.82 W 

27 6.08 1.80 -2.72 -0.88 E 

28 14.16 1.79 -8.64 -1.43 W 

29 5.17 2.09 -8.52 -1.53 E 

30 3.16 2.05 -8.60 -0.35 E 

31 28.55 1.97 18.70 -0.63 E 

32 4.47 0.73 -56.66 -1.30 W 

33 34.48 1.65 0.85 -0.31 E 

34 6.06 2.78 0.69 -0.01 E 

35 4.70 1.74 -8.61 -2.43 E 

36 24.95 2.87 -22.99 -11.53 F 

37 19.66 1.26 -11.71 -1.50 E 

38 2.18 1.36 4.07 -4.15 E 

39 53.40 2.46 -2.57 -2.10 R 

40 39.26 2.68 -19.48 -2.37 R 

41 35.03 2.40 8.96 -1.52 W 

42 81.71 7.43 -7.95 -2.66 R 

43 92.56 6.66 -29.32 -10.14 R 

44 23.55 8.71 37.56 -0.39 R 

45 0.57 6.21 -19.36 -0.51 E 

46 20.88 6.51 0.91 -0.41 W 

47 5.22 1.71 1.11 -3.00 E 

48 123.47 8.03 27.85 -5.56 R 

49 2.56 2.11 3.47 -1.83 E 

50 71.01 3.61 15.96 -2.32 R 

51 -999.00 -999.00 1.42 -2.52 E 

52 14.87 1.85 -15.17 -11.94 R 

53 -999.00 -999.00 3.88 -4.28 W 

54 -999.00 -999.00 7.90 -2.86 R 

55 40.17 2.00 9.33 -3.57 W 

56 30.08 3.64 0.71 -2.57 W 

57 4.70 1.57 5.02 -3.16 E 

58 4.68 1.22 -0.40 -5.81 E 

59 5.01 1.27 2.20 -4.75 E 
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TRAINING DATASET IMAGE CLASSES 

Label Full Training Validate Label Full Training Validate 

IA-201 (single-item) 261 183 78 
WA-10A (ramp-advisory-

speed) 
214 150 64 

IA-202 (single-distance) 143 100 43 
WA-10B (ramp-ahead-

advisory-speed) 
240 168 72 

IA-203 (single-distance-
and-arrow) 

57 40 17 WA-112-R (free-flow-right) 68 48 20 

IA-204 (double-direction) 72 50 22 WA-113 (high-loads-exit) 104 73 31 

IA-205 (double-distance) 55 39 16 WA-14 (t-intersection) 23 16 7 

IA-207 (triple-direction) 62 43 19 
WA-16-R (merge-right-

arrow) 
204 143 61 

IA-208 (triple distance) 45 31 14 WA-16X-O (merge) 88 62 26 

IA-210 (quadruple-
direction) 

63 44 19 WA-17 (barrier) 127 89 38 

IB-119 (cowboy trail) 10 7 3 WA-21 (downgrade) 12 8 4 

IB-121 (caring-for-albertas-
highways) 

32 22 10 WA-26 (bridge) 185 130 55 

IB-1B (transcanada-
highway-16-marker) 

63 44 19 WA-26B 20 14 6 

IB-2 (highway-marker) 77 54 23 WA-27 (bridge clearance) 54 38 16 

IB-2 (highway-direction) 182 127 55 WA-3-L (curve-left) 235 165 70 

IC-1 (gas) 30 21 9 WA-3-R (curve-right) 290 203 87 

IC-10 (hospital) 80 56 24 
WA-33-L (lane-ends-left-

single) 
29 20 9 

IC-14 (disability-access) 46 32 14 
WA-33-R (lane-ends-right-

single) 
13 9 4 

IC-2 (food) 36 25 11 
WA-33X-R (lane-ends-right-

double) 
102 71 31 

IC-20-T (museum-tab) 13 9 4 WA-36 (chevron-barrier) 209 146 63 

IC-213A 204 143 61 WA-36-L (object-on-left) 13 9 4 

IC-241 (rest-area-next-exit) 147 103 44 
WA-5-R (right-reverse-

curve) 
24 17 7 

IC-251 (roadside-turnout-1-
km) 

14 10 4 WA-7 (advisory-speed) 41 29 12 

IC-255 (historical-point-of-
interest) 

36 25 11 
WA-8A (bidirectional-

checkers) 
20 14 6 

IC-5 (picnic-table) 120 84 36 WA-9 (chevron-curve) 33 23 10 

IC-57 (trailer-and-tent) 99 69 30 WB-1 (stop-ahead) 40 28 12 

IC-64 (day-hiking) 27 19 8 WB-4 (signal-ahead) 17 12 5 

IC-67 (fishing) 34 24 10 
WB-5A (signal-ahead-

flashing) 
152 106 46 

IC-7 (lodging) 52 36 16 
WC-10 (snowmobile-

crossing) 
18 13 5 

IC-73 (garbage-disposal) 102 71 31 
WC-109 (logging-trucks-

turning) 
29 20 9 

IC-74 (washrooms) 105 74 31 WC-112 (wind-gusts) 22 15 7 

IC-76 (equestrian) 45 31 14 WC-13 (deer) 50 35 15 

IC-82 (shooting-range) 24 17 7 
WC-23 (slippery-when-

cold) 
53 37 16 
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IC-85-T (ecostation) 19 13 6 
WC-314-L (logs-may-swing-

into-lane-left) 
14 10 4 

IC-9 (viewpoint) 45 31 14 
WC-8-L (heavy-vehicle-

traffic) 
47 33 14 

IC-D-T (distance-km-or-m) 13 9 4 
WC-9-O (school-bus-stop-

ahead) 
14 10 4 

ID-33 (photo-radar) 346 242 104 
WD-101 (construction-

with-arrow) 
108 76 32 

ID-33A (red-light) 25 18 7 WD-102 (begin-detour) 25 18 7 

ID-33B-T (speed) 11 8 3 WD-104 (barricade-ahead) 35 25 10 

ID-502 (speed-fine-
doubles) 

33 23 10 
WD-111 (be-prepared-to-

stop) 
28 20 8 

ID-503 (speed-fines-
double) 

13 9 4 WD-154 (end-construction) 30 21 9 

ID-504 (speed-fine-
doubles) 

23 16 7 
WD-192 (construction-

next-x-km) 
15 11 4 

IF-201 (next-exits) 285 200 85 
WD-A-22 (bump-ahead-

symbol) 
30 21 9 

IF-202 (advance guide sign) 182 127 55 
WD-A-23-R (road-narrows-

right) 
12 8 4 

IF-203 (next-exit) 157 110 47 
WD-A-33-L (road-narrows-

lane-ends) 
14 10 4 

IF-204 (exit-single-arrow) 313 219 94 WD-A-41 (shovel-worker) 37 26 11 

IF-204A (exit-direction-
guide) 

86 60 26 
WD-A-48-R (truck-

entrance-right) 
47 33 14 

IF-205 (exit without 
number) 

39 27 12 
WD-A-51-L (diversion-two-

lanes-left) 
16 11 5 

IF-205A (exit with number) 321 225 96 access-distance 73 51 22 

IF-207 (overhead-lane-one-
arrow) 

120 84 36 advance-exit-lanes 59 41 18 

IF-207A (overhead-lane-
two-arrow) 

282 197 85 advertising 164 115 49 

IF-207B (overhead guide 
exit only) 

102 71 31 building-a-better-alberta 21 15 6 

IF-208 (diagrammatic) 45 31 14 city-of-calgary-welcome 32 22 10 

LED 27 19 8 dangerous-goods-info 108 76 32 

RA-1 (reg-stop-sign) 84 59 25 exit-backwards-arrow 14 10 4 

RA-102 (ped-crossing-
flashing) 

75 53 22 exit-bypass 16 11 5 

RA-2 (yield) 12 8 4 exit-junction-distance 130 91 39 

RA-4-L (ped-crossing-
symbol) 

35 25 10 guide-lane-ends-arrow 20 14 6 

RA-6 (railway) 13 9 4 guide-lane-ends-diagram 126 88 38 

RB-1-100 438 307 131 high collision location 37 26 11 

RB-1-110 278 195 83 highway marker obsolete 81 57 24 

RB-1-50 13 9 4 highway-marker 67 47 20 

RB-1-60 55 39 16 impaired-driver 60 42 18 

RB-1-70 248 174 74 info-city-centre 11 8 3 

RB-1-80 196 137 59 junction-direction 88 62 26 

RB-1-90 27 19 8 lane-ends-distance 20 14 6 

RB-11-L (no-left-turn) 184 129 55 lane-marking 440 308 132 
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RB-11-R (info-no-right-
turn) 

10 7 3 max-speed-fines-double 36 25 11 

RB-16 (no-u-turn) 12 8 4 no-slow-moving-vehicles 65 46 19 

RB-209 (engine-retarder-
brakes) 

44 31 13 no-slow-vehicles-with-exit 11 8 3 

RB-21-L (one-way-left-
arrow) 

29 20 9 pole 253 177 76 

RB-23 (no-entry) 23 16 7 ramp-speed-truck-tipping 14 10 4 

RB-24 (two-way-traffic) 25 18 7 right-lane-must-exit 19 13 6 

RB-25 (keep-right) 102 71 31 sign-post 93 65 28 

RB-31 (do-not-pass) 12 8 4 sky 12 8 4 

RB-35 (slow-traffic-keep-
right) 

73 51 22 slow-down-now 11 8 3 

RB-41-R (right-turn-only) 263 184 79 street-sign 70 49 21 

RB-45 (through-only) 17 12 5 through-lane 17 12 5 

RB-46-L (double-left-turn) 40 28 12 to-location-of-interest 158 111 47 

RB-5 (maximum speed 
ahead) 

195 137 58 traffic-light 93 65 28 

RB-55 (no-stopping) 18 13 5 tree 61 43 18 

RB-61 (dangerous-goods) 156 109 47 vehicle 82 57 25 

RB-69 (dangerous goods 
route) 

153 107 46 warning-road-may-flood 63 44 19 

RB-75 (vehicle-inspection-
station) 

64 45 19     

RC-4-R (signal-stop-line) 36 25 11     

WA-106 (rumble-strips) 25 18 7     

 


