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Abstract

Scoliosis is a complex three-dimensional deformation of the spine and thoracic cage for 

which surgery is used in severe cases to straighten the spine. A patient specific finite 

element model of the scoliotic spine would enable surgeons to test different surgical 

procedures, thereby optimizing correction of the spine.

A two-dimensional model of the scoliotic spine and thoracic cage was created. The model 

incorporates nonlinear features, including contact elements, nonlinear geometry, and 

nonlinear material properties. In addition, several time saving features such as 

condensation and sparse matrix storage have been utilized. The material properties o f the 

intervertebral discs were found to have the greatest effect on the spinal correction, while 

the vertebral bodies, sternum and intertransverse ligaments were found to have little to no 

effect. Further testing on the articular facets and thoracic cage will be required once the 

model is upgraded to a complete three-dimensional pre-surgical tool.
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Chapter 1 

Introduction

Scoliosis is a complex three-dimensional deformation of the spine and thoracic cage. 
The majority of scoliosis cases are known as Adolescent Idiopathic Scoliosis, AIS, 
meaning that the deformity begins in adolescence and that the cause is unknown. 
Oftentimes, the deformity is minimal and can be corrected with exercises and/or 
bracing. However, the deformity can become quite large, at which point surgery is 
recommended. This highly invasive surgery involves instrumenting the vertebrae with 
hooks and screws and then attaching metal rods to straighten the spine. Currently, 
each surgeon performing the correction has his own favorite method and instruments 
to correct the spine. As a result, the surgical method used is more dependent on the 
surgeon performing the procedure than on the scoliotic deformity itself.

To reduce this effect and to further understand the mechanics of the scoliotic spine, 
several models of the spine have been created [2] [27] [31] [33] [35] [36]. Ideally, the 
models could be used by surgeons to test different surgical procedures to determine the 
ideal method for each individual patient. However, these models are not appropriate 
for this use for several reasons. Most of the current models were created using 
a commercial finite element analysis package [2] [31] [33] [35] [36], which is unable 
to account for all of the nonlinear properties inherent to the surgical procedure, is 
too complex for an untrained surgeon to use, and is too general to enable real time 
processing. In addition, some of the models were based on normal spinal motions 
and articulations and do not account for scoliotic deformities [35] [36]. Additionally, 
due to  the large variation in scoliotic deformities between patients, it is imperative to

1
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1. Introduction 2

use patient specific geometry and material properties to obtain accurate results for 
each patient. Furthermore, not all of the models allow for large deformations which 
occur during scoliosis surgery [36].

Based on these deficiencies of the current models, there is a need to create a 
pre-surgical tool that is patient specific in terms of geometry and material properties, 
incorporates large deflections, enables real time processing and includes a user friendly 
interface that surgeons will use.

1.1 Objectives

The long term objective of this study is to develop a three-dimensional model of the 
scoliotic vertebral column and thoracic cage for use as a pre-operative tool by the 
surgeon. Such a tool will enable testing of the various surgical procedures currently 
used to determine the ideal method for each individual patient.

The first step towards this goal was to create and validate a two-dimensional pro­
totype of the computer model which incorporates all of the necessary features of the 
final model including nonlinear geometry capabilities to account for large deflection, 
nonlinear material properties to properly model components of the spine, and contact 
elements to represent the articular facets. This model was then evaluated using con­
vergence testing, a sensitivity analysis, and spinal unit comparison tests to determine 
the feasibility of achieving a pre-surgical tool. This first step is the basis for the 
current work presented.

1.2 Thesis Outline

An introduction to the anatomy of the normal vertebral column and thoracic cage 
will be covered in Chapter 2 before getting into a detailed description of scoliosis 
in Chapter 3. Some basic concepts of finite element modeling will be reviewed in 
Chapter 4 in addition to a description of several advanced techniques required for 
the model. Chapter 5 will consist of a detailed description of the advantages and 
limitations of several finite element models of the spine currently available.

W ith the problem outlined and the required principles understood, a detailed 
account of the model is included in Chapter 6. Chapter 7 contains several validation
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tests, sensitivity analyses and real time comparison testing of the current model. A 
discussion regarding the potential of the model and the future work required to attain  
the final goal of a pre-surgical tool for scoliosis surgery is included in Chapter 8.
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Chapter 2 

Anatomy and Biomechanics of the 
Vertebral Column and Ribcage

This chapter will describe the basic anatomy and biomechanics of the human spine 
and thorax necessary for a complete understanding of the deformations involved in 
scoliosis.

Before beginning an in depth discussion of the anatomy of the spine and thorax, 
a basic understanding of planes of the body and terms of movement is required. As 
shown in Figure 2.1, the sections of the body can be separated by three planes. The 
sagittal plane and the frontal, or coronal plane are both parallel to the long axis of 
the body and divide the body into right and left, and anterior (front) and posterior 
(back) sections, respectively. The transverse plane lies at a right angle to both the 
sagittal and frontal plane, dividing the body into superior (upper) and inferior (lower) 
sections.

Movements of the spine can be described in relation to these planes. As shown in 
Figure 2.2, flexion and extension are anterior and posterior motions of the trunk in 
the sagittal plane respectively. Lateral bending is a left or right motion of the upper 
body in the frontal plane. The third type of motion is axial rotation, a rotation 
of the spine about the long axis of the body. In normal human motion, several 
of these motions can be combined, resulting in highly complicated vertebral column 
kinematics. These planes and terms of motion will be used extensively to describe 
spinal anatomy, scoliosis, and the finite element model of the scoliotic spine.

4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2. Anatom y and Biom echanics o f  th e  Vertebral C olum n and R ibcage 5

Figure 2.1: Schematic of the sectional planes used to describe anatomical features. 
Modified from Integrated Publishing[14].
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Y

Figure 2.2: Flexion, extension, lateral bending and axial rotation of the spine. Mod­
ified from Kapandji[15].
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In this chapter, the anatomy of the vertebral column and thoracic cage will be 
discussed. Please note that muscles are absent from this discussion because while 
they do play a significant role in stability and function, the anaesthetic routinely used 
during scoliosis surgery causes muscles to become flaccid. Therefore, all supporting 
muscles and tendons are neglected in the scoliotic model.

2.1 The Vertebral Column

The human vertebral column, depicted in Figure 2.3, consists of 26 articulating ver­
tebrae which transfer loads from the head and trunk to the pelvis while allowing 
sufficient motion of the body core. The column also creates a support structure 
for the spinal cord. There are five distinct regions of the spine: cervical, thoracic, 
lumbar, sacral and coccygeal. Note that in the sagittal view of the normal spine, 
four spinal curves exist to allow the weight of the body to be transm itted to the lower 
limbs. Typically, adolescent idiopathic scoliosis affects only the thoracic and lumbar 
regions of the spine. Therefore, further discussion will be limited to these regions.

The thoracic spine consists of twelve vertebrae: the most superior is labelled 
Thoracic 1(T1) and the most inferior Thoracic 12 (T12). Each vertebra in the 
thoracic region articulates with a pair of ribs, discussed in greater detail later in this 
chapter.

The lumbar spine consists of five large vertebrae, labeled Lumbar 1 to Lumbar 5 
(L1-L5) from top to bottom. The lumbar vertebrae are typically large as they must 
support the weight of the head, neck, upper limbs, and trunk of the body.

2.1.1 Vertebra

The typical human vertebra, illustrated in Figure 2.4, can be separated into the 
vertebral arch and the vertebral body. Both components are composed of a cortical 
bone shell with a cancellous (or spongy) bone core. Cortical bone is a solid, strong 
material which is resistant to bending while cancellous bone is lightweight and known 
to be highly resistive to compressive loading.

The vertebral body is the large anterior portion of the vertebrae which allows 
the transfer of weight along the vertebral column. The body is attached to an
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Figure 2.3: Sagittal view of the human vertebral column. Modified from Netter[22]

intervertebral disc on the superior and inferior side.
The spinal cord, located posterior to the vertebral body is enclosed in the canal, 

known as the vertebral foramen, outlined by the vertebral arch. The arch is composed 
of pedicles, which attach to the vertebral body and form the base of the vertebral arch 
and laminae which complete the enclosure of the arch. The vertebral arch also serves 
to control the range of motion in the spinal column through the spinous, transverse 
and articular processes. The spinous process projects posteriorly from the laminae 
while the transverse processes extend laterally off the junction of the laminae and 
pedicles. The articular processes also arise at the laminae-pedicle junction, extending
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in both the inferior and superior direction at each side of the vertebrae. At the ends 
of the articular processes are the articular facets, which articulate with the adjacent 
vertebral facets to restrict motion of the spine.

A natom ical Differences B etw een Thoracic and Lumbar Vertebrae

As shown in Figure 2.5, although the features are similar between the lumbar and 
thoracic vertebrae, several anatomical differences do exist. Of these, the following 
differences are most pertinent to the present work:

• Lumbar vertebrae are usually wider but shorter than thoracic vertebrae, allow­
ing the lumbar region to carry larger loads.

• Thoracic vertebrae have costal articular facets, the attachment points for the 
ribs.

•  Orientation of the articular facets change between the regions to resist axial 
rotation in the lumbar spine while resisting extension and lateral bending in 
the thoracic region.

This last point is further illustrated in Figure 2.6. In the thoracic region, the facets 
joints lie in a coronal plane tha t is tilted forward, thus allowing flexion, extension and 
rotation but restricting lateral bending. However, in the lumbar region the facets are 
oriented in the sagittal plane, thereby allowing flexion, extension and lateral bending 
while limiting rotation.

As shown in Figure 2.7, facet orientation can be described in terms of a  and (3 
card angles, described by Panjabi[24]. Panjabi recorded these angles from several 
cadavers to determine if significant differences existed between the vertebrae. His 
data was modified and is shown in Figure 2.8. Note the trend for a  to increase 
further down the spine and the large discontinuity in /3 values between the thoracic 
and lumbar spines. This explains the differences in resistance to axial motion in 
Figure 2.6.
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Figure 2.4: Lateral view and inferior view of a typical vertebra. Modified from 
Martini [19].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2. Anatom y and Biom echanics o f the Vertebral C olum n and R ibcage 10

urn  b a r

Figure 2.5: Posterior oblique view of a typical thoracic and a typical lumbar vertebra. 
Modified from Kapandiji[15].
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Figure 2.6: The role of the facet joints in the thoracic and lumbar spine when subject 
to an axial torque. Modified from White & Panjabi[37].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2. A natom y and Biom echanics o f  th e  Vertebral Colum n and R ibcage 11

Figure 2.7: Orientation of the facet joints. Card angle measurements are taken by 
first rotating the card angle from the transverse plane by an amount a  followed by 
an amount 13. Modified from Panjabi[24].

Figure 2.8: Facet orientation of the vertebrae. Modified from Panjabi[24].
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2.1.2 Intervertebral Discs

The intervertebral discs, as the name suggests, are located in between adjacent verte­
bral bodies and account for 20 to 30% of the total height of the vertebral column[37]. 
The disc is generally found to increase in thickness from the thoracic region to the 
lumbar region; with averages of 5 mm in the thoracic region and 9 mm in the lumbar 
region[15].

Each intervertebral disc is composed of three distinct parts: the nucleus pulposes, 
the annulus fibrosis, and the cartilaginous end-plates. Filling 30 to 50% of the 
total disc area is the nucleus pulposes. This structure is a high water content body 
composed of a translucent network of fibrous strands in a gel like substance. Enclosing 
the nucleus is the annulus fibrosis, made up of concentric laminated bands of annular 
fibers. As illustrated in Figure 2.9, any two adjacent annular bands are oriented 
in opposite directions. Separating the disc from the vertebral body are the hyaline 
cartilage end plates.

Figure 2.9: Depiction of the intervertebral discs. Cutaway of laminated bands of 
annular fibers to show that adjacent bands of the fibers are oriented in opposite 
directions. Modifies from White & Panjabi[37].

Motion of the vertebral bodies about the intervertebral disc is often likened to a 
swivel [15]. The nucleus pulposes acts as a ball held in between two planes while the 
surrounding annulus acts in compression or tension depending on the physiological 
motion. Figure 2.10 depicts the internal forces acting within the disc during com-

/
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\  Annulus 
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pression and tension. The intervertebral disc is often held in compression due to the 
mass of the torso. In this state the nucleus is flattened and subject to an increase in 
internal pressure. The resulting widening of the nucleus causes the annulus fibers to 
bulge and thus be subject to tensile forces. Axial tension within the spinal column 
can be created through spinal traction. In this state the annulus fibers are placed in 
tension while the internal pressure of the nucleus is reduced.

I
h ,!K , *■ t > ̂  J  jU *s

t
Figure 2.10: Internal forces acting withing the intervertebral disc during compression 
and tension. Modified from [15].

Extension, flexion, and lateral bending of the spinal column shown in Figure 2.11, 
cause the nucleus to move away from the side being compressed. This causes the 
annulus to bulge away from the motion, creating tension in the fibers. The remaining 
annulus is subject to a compression loading.

During axial rotation of the spine, shown in Figure 2.12, because adjacent annular 
bands are oriented in opposite directions, only half of the bands act in tension (while 
the other half will act in tension if the spine is rotated in the other direction). This 
tension in the annulus increases the pressure of the nucleus in proportion to the angle 
of rotation.

To protect the spine, intervertebral discs are viscoelastic and nonlinear in nature. 
Since scoliotic surgery does not impose fast rate loading, the viscoelasticity of the discs 
can be neglected for the purpose of this model. The nonlinear material properties of 
the disc have been found to be similar to those of the spinal ligaments.
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Figure 2.11: Depiction of the movement of the intervertebral disc nucleus during 
extension, flexion, and lateral bending. Modified from [15].

Figure 2.12: Illustration of the forces exerted on the intervertebral disc during axial 
rotation of the spine. Modified from [15].
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2.1.3 Ligaments

Spinal ligaments are important as they allow motion between vertebrae, protect the 
spinal cord by restricting motion, and provide stability to the spine. As shown in 
Figure 2.13, there are seven ligaments connecting adjacent vertebrae; the anterior 
and posterior longitudinal ligament, the intertransverse ligaments, the facet capsular 
ligaments, the interspinous ligaments and the supraspinous ligament.

The anterior longitudinal ligament runs the length of the vertebral column and is 
attached firmly to the vertebral bodies but not as firmly to the intervertebral discs. 
The width is generally narrower in the thoracic region where the ligament is also 
often thicker. The anterior longitudinal ligament primarily resists extension, but 
also resists lateral bending.

..i! ' i.J' I

I

V  
1 .

Figure 2.13: Ligaments of the Vertebral Column. Modified from White and 
Panjabi [37].

The posterior longitudinal ligament parallels the anterior longitudinal ligament 
but does not attach to the surface of the vertebral body, inserting only at the superior 
and inferior edges. This ligament has been shown to limit flexion, bending and to 
slightly affect axial rotation of the spine.

The intertransverse ligaments connect transverse processes of adjacent vertebrae. 
As such, they are responsible for additional stiffness against lateral bending and
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extension. The effects of this ligament are negligible in the lumbar region because of 
their negligible cross-sectional size [37].

The capsular ligaments join adjacent superior and inferior articular process sur­
faces, providing additional support to  the articular facets. As such, their function in 
the spine is dependent on the orientation of these facets discussed previously. These 
ligaments also allow gliding movements to occur between facet surfaces.

The ligamentum flavum is a highly elastic ligament connecting the laminae of 
adjacent vertebrae. It is important in protecting the spine and spinal cord against 
hyperflexion.

The interspinous and supraspinous ligaments connect adjacent spinous processes 
together and are also imperative in preventing hyperflexion of the spine.

Ligaments behave like cable structures in that they resist tensile forces but buckle 
when subjected to compression loads and are therefore unable to provide stiffness in 
compression. As shown in Figure 2.14, ligaments act in a nonlinear fashion when 
subjected to tensile forces. This property allows small strains, but the ligament 
stiffens with increasing strain, thereby protecting the spinal column.

strain let-

Figure 2.14: Stress-strain curve of a typical ligament in tension. Modified from 
Myklebust[21].

2.2 Thoracic Cage

The thoracic cage, shown in Figure 2.15, articulates with the thoracic region of the 
spine and serves to protect vital organs of the body while stiffening the spine. Each
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thoracic vertebra articulates with a similarly named rib pair. For example, Rib Pair 
1 articulates with T l. Note that ribs 1 through 7 are true ribs, meaning that they 
are attached directly to the sternum by means of individual costal cartilage. Ribs 8  

through 1 0  are termed false ribs because they attach to the sternum via fused costal 
cartilage while the remaining two rib pairs are floating ribs as they do not attach 
directly to the sternum.

• it:;.

Figure 2.15: Components of the thoracic cage. Modified from Netter[22].

Rib articulation with the vertebral column is depicted in Figure 2.16. As shown 
the ribs articulate both with the transverse process, termed the costo-transverse joint, 
and the vertebral body, the costo-vertebral joint

Several ligaments control the articulations at the costo-vertebral and costo-transverse 
joints as shown in Figure 2.17. The costo-vertebral joint is limited to small gliding 
motions due to the radiate ligament and as such significantly increases the stiffness 
of the spine. The costo-transverse joint is somewhat weaker, but is strengthened by 
three ligaments: the superior costo-transverse ligament, the lateral costo-transverse 
ligament, and the inferior costo-transverse ligament. This joint permits a larger 
amount of motion than the costo-vertebral joint.
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Figure 2.16: Superior view of the costovertebral articulation. Modified from
Kapandji[15].

COSUi: ■it'UA

ir 'ft.'i.O ! r o s U .3 
anicij'ar face:

:c5’c:^ansvc;'se
3ca:T;C/J'!

y.rsvsHsv' 
‘ ■■jvrf.ia;

S .a :i3r

!■■■?,fv.iy-.t

Figure 2.17: Left lateral view of the costovertebral joint. Modified from Netter[22].

2.3 Material Properties

Due to the large variability in mechanical testing and the viscoelastic properties of 
tissue, material properties of the vertebrae and intervertebral discs found in the lit­
erature are often widely scattered. Ultimately, mechanical personalization should 
be performed to obtain material properties specific to each patient. Research is 
currently underway to determine the feasibility and accuracy of obtaining this in­
formation. Currently, the values shown in Table 2.1, obtained from Skalli[29], are 
widely used and will therefore be used for the purpose of this project. However, the 
ability to change these values will be built into the model.
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Table 2.1: Material Properties of the Vertebral Column and Thoracic Cage
Part Y oung’s M odulus (N /m m 2) Poissons’ R atio
Cortical B one 1 2 0 0 0 0.3
Cancellous Bone 1 0 0 0.3
Intervertebral D isc 2 0.41
Spinal Ligam ents 1 0 0.3

This basic anatomy and biomechanical description of the normal human spine and 
thorax will aid in the understanding the scoliotic deformity, discussed in the following 
chapter.
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Chapter 3 

Adolescent Idiopathic Scoliosis

This chapter provides a general description of scoliosis, focussing on Adolescent Idio­
pathic Scoliosis (AIS), in addition to treatments used to prevent further progression.

3.1 Characteristics

Scoliosis, depicted in Figure 3.1, is defined as a complex three-dimensional deformity 
of the torso, characterized by a lateral deviation and axial rotation of the spine, 
accompanied by ribcage deformity. There are several known causes of scoliosis, 
from neuromuscular disorders to congenital defects during formation of the spine. 
However, approximately 80% of scoliosis cases are idiopathic, meaning they have no 
identifiable cause. Idiopathic scoliosis can be further categorized depending on the 
age of presentation: infancy, childhood, and adolescence. The latter, adolescent 
idiopathic scoliosis is recognized as the most prevalent form and the focus for this 
study.

3.1.1 Lateral D eviation

The lateral deviation of the spine can be described through several techniques and 
measurements. King et al.[17] presented a classification system for lateral spinal 
curve patterns used primarily to select an appropriate surgical method. This classifi­
cation system is depicted in Figure 3.2. Type I and II are defined as s-shaped curves 
dominant in the lumbar and thoracic regions respectively. Type III is a single thoro-

20
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Figure 3.1: Depiction of a scoliotic curve. Modified from Keim[16].

columbar curve while Type IV is a long thoracic curve. Type V can be defined as 
a double thoracic curve. Note that other classification systems have been proposed, 
however, the King classification is still the most widely used today.
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Figure 3.2: King Classification of scoliotic curves. Modified from King et al.[17].

Several parameters, depicted in Figure 3.3, can be used to describe the severity 
of the lateral deformity of scoliosis curvatures. Cobb Angles are measured by first 
identifying the end vertebrae of the curve then lines are drawn parallel to the end

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3. A dolescent Idiopathic Scoliosis 22

vertebrae and the angle between them is measured[7]. For a double curve, the 
curvature of the upper curve is denoted Cobb Angle a  while the lower curve is labelled 
Cobb Angle /3. Decompensation is the lateral shift of the spine between T1 and 
the sacrum. An obliquity may also exist at the base of L5, termed the "Lumbar 
Obliquity".

Cobb .Angle Decom pensation ‘

Figure 3.3: Measurement of the Scoliotic curve. Modified from Pope et al.([28]), 
Keim[16], White & Panjabi[37].

The lateral curvature of the scoliotic spine is a result of both vertebral and inter­
vertebral disc wedging shown in Figure 3.4. When vertebral deformation is present, 
the curve is termed structural scoliosis, whereas when only disc wedging is the in­
volved, the curve is termed a functional or compensatory curve. Figure 3.5 depicts 
the lateral bending test which is typically performed to differentiate between struc­
tural and functional curves. Since the deformation of a functional curve is due to 
disc wedging only, as the patient bends in the direction opposite to the curve, the 
curve will correct. However, a structural curve will not correct completely during 
the lateral bending test. Shown here is a typical double curve with a structural
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thoracic curve and a functional lumbar curve. The functional curve typically arises 
secondarily to align the torso laterally with the pelvis, decreasing decompensation. 
In a study performed to further define structural curves, Stokes et al. [31] found tha t 
the mean wedging angle of the apical vertebra was 17% of the measured Cobb angle 
while the average vertebral wedging of the ± 1  and ± 2  positioned vertebrae was 1 2 % 
and 5% of the Cobb angle respectively.

Figure 3.4: Vertebral and intervertebral disc wedge angles. Modified from Stokes et 
al. [31].

3.1.2 Axial Rotation

In the sagittal plane of a scoliosis patient, one will generally observe a flattening of 
the back due to the axial rotation of the vertebrae which causes the normal curves of 
the back to rotate into the frontal plane. As shown in Figure 3.6, axial rotation can 
be measured by the location of the spinous process in relation to the vertebral body 
from a posterior x-ray. The amount of rotation of the curve can be graded at the 
apical vertebra using a zero to IV rating described by Nash and Moe[7] where zero is 
symmetric and grade IV is when the pedicle is past the center of the vertebral body. 
Similar to wedging in the lateral plane, the vertebra can also deform axially as shown 
in Figure 3.7.
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Figure 3.5: Lateral bending tests performed to differentiate between structural curves 
and functional curves. As shown here, the lumbar curve is functional while the 
thoracic curve is structural. Modified from Keim[16].

Figure 3.6: Axial rotation of the scoliotic spine. Modified from White et al.[37].
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Figure 3.7: Axial deformation of the vertebrae typical in scoliosis patients, 
from White et al.[37].

Figure 3.8: Typical deformation of the thoracic cage in scoliosis patients, 
from Keim[16].

Modified

Modified
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3.1.3 Ribcage Deform ity

In conjunction with the three-dimensional deformity of the vertebral column, the 
ribcage will often deform as depicted in Figure 3.8. This deformation is often de­
scribed as a rib hump most noticeable from a posterior view during flexion of the 
spine.

3.2 Treatment

Treatment of scoliosis is dependent on many factors including the physical m aturity 
of the patient and the severity of the curve. Note that scoliosis will typically only 
progress rapidly during growth phases. Standard treatments involve observation, 
bracing or surgical fusion. Note that there are alternative techniques such as electrical 
stimulation, exercise, and manipulation which currently have not been proven to alter 
the progression of adolescent idiopathic scoliosis.

3.2.1 Observation

Typically in patients with a curve with a Cobb Angle less than 20° the curve is simply 
observed over set intervals. In most cases the curve will not progress further.

3.2.2 Bracing

Should the curve progress to 20°, a specialized brace is constructed to apply pressure 
to specific regions of the ribcage to prevent further progression of the curve. The 
patient will typically be instructed to wear the brace for approximately 2 2  hours a 
day and will also be given a set of exercises to perform. Again, the curve is monitored 
for progression over set intervals. The effectiveness of bracing is often compromised 
due to patients not wearing the brace for the specified amount of time and/or not 
wearing the brace at the prescribed tightness. Research is currently being performed 
to monitor the correlation between brace effectiveness and patient compliance.
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3.2.3 Surgery

If the curve reaches 45° and the patient is still growing, surgical fusion is prescribed 
to prevent further deformity which may compromise respiratory or cardiopulmonary 
systems. Surgical methods vary between surgeons and individual patients, however, 
a typical surgery follows these steps:

•  The patient is placed face down (prone) on the operating table and anesthetized.

• An incision is made down centre of patient’s back and the muscles posteriorly 
attached to the vertebra are removed.

•  Hooks and screws, depicted in Figures 3.9 and 3.10, are placed at predefined 
locations on the spine. These locations are dependent not only on the scoliotic 
deformation, but on the surgeon performing the procedure. A sample placement 
is illustrated in Figure 3.11.

Figure 3.9: Sample hook typically used for scoliosis surgery. Modified from Zeller 
and Dubousset[39].

•  The correcting and fixation rods are shaped by the surgeon.

•  The correcting rod is placed on the concave side of the curve and is inserted at
either end of the instrumentation, wherever it fits best.

•  Each hook and screw is attached separately to the rod. Note that each surgeon
has a preferred sequence and that sequence also depends on type of scoliotic 
curve and length of instrumentation.
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Figure 3.10: Superior view of the insertion of pedicles screws into a vertebra. Modi­
fied from Spine-Health[30].

• The rod is then rotated to move the spinal curvature into the sagittal plane. 
In some cases, the spinal curve is corrected by translation instead of rotation. 
Again, this depends on the scoliotic curve and the surgeon’s discretion.

•  The fixation rod is placed on the convex side of the curve and hooks and screws 
are attached sequentially.

• Decortication, or removal of exterior surface of vertebrae, and grafting axe per­
formed to fuse the spine.

Currently, force data is being obtained in surgery through the use of instrumented 
screws and hooks. Forces in all three anatomical planes can be obtained, however, 
individual screws can only obtain data in two directions. In addition, forces are 
obtained from the rod rotation device during the rotation of the spine. Displacement 
measurements are also taken using active markers in surgery. Ultimately, a pre- 
surgical tool could be validated using the force and displacement data from previous 
surgeries.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3. A dolescent Idiopathic Scoliosis 29

Figure 3.11: Posterior View of sample instrument placement for a scoliotic curve. 
Note that only hooks are used in this example. Modified from Zeller and 
Dubousset[39].
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Chapter 4 

Finite Element Analysis

This chapter will review the basics of the finite element method before explaining some 
advanced techniques required to create the real-time simulation of scoliosis surgery.

4.1 Overview of the Finite Element M ethod

The basic finite element method can be summarized as shown in Figure 4.1. First the 
problem data is input into the model. This can be done either by Direct Generation, 
where the user manually defines the coordinates for each node and the connectivity 
between them, or Solid Modeling, whereby the user specifies the geometric boundaries 
of the solids then a mesh is automatically generated to create the nodes and elements. 
The element stiffness matrix, [ke\ is then formed for each element. The global stiffness 
matrix, [kg] is assembled using the individual element stiffness matrices. Loads and 
constraints are applied to the mathematical model by creating the force matrix, { /}  
and modifying the global stiffness matrix respectively. Displacements, {q} can then 
be solved for. Further postprocessing can be performed to obtain other results such 
as internal forces { /e}, stresses and strains.

4.2 Derivation of the Finite Element Equations

In finite element analysis, it is assumed that a system will always deform to a config­
uration where the total system energy is a minimum. The total potential energy, II,

30
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Solve [K J{q}={f)for{q}

Apply constraints (form [K,])

Mesh

Apply bads (form {f})

Form [kj

Assemble [K(j|

Form [kj
Calculate {ri }=[kj{qi }

Input Data
Geometry
Properties

Figure 4.1: Flowchart of the basic steps involved in finite element analysis. Modified
from Fyfe[ll].

is comprised of the strain energy or internal work stored in the material, U, and the 
potential energy due to the applied loads, f1 where

n  = U + tt (4.1)

For a linear elastic system, the strain energy can be written as:

v =  i  M T [K g ] {?} (4.2)

while the potential energy can be calculated from

V = - { q } T { f }  (4.3)
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Therefore, the total potential energy in the system can be written as:

n  =  \  {< jf  [Ka ] {</} -  {q]T { / } (4.4)

As previously stated, the system is assumed to deform to a configuration where the 
total potential energy is a minimum. Therefore,

4.3 Element Derivations

Four different element types will be used to create the two-dimensional model of 
the scoliotic spine; the elastic truss element, the nonlinear strain truss element, the 
Triangular Element and the Quadrilateral Element. The selection of these particular 
elements to model the spine will be described in detail in Chapter 6 . Energy methods 
are used to outline the stiffness matrix derivations for these elements.

4.3.1 Elastic Truss Element

Assuming small deformations, the element stiffness matrix for the two-dimensional 
truss element shown in Figure 4.2 can be written[ll]:

where [R] is the transformation matrix,

r cos 9 sin 9 0 0 .,
R =  n n o ■ o (4’7)0 0 cos 9 sm 9

4.3.2 Nonlinear Strain Truss Element

To account for large deflections, the nonlinear strain-displacement equation for a truss 
should be used:

dq [Ka] {«} -  { / }  =  0 

[Ko] {?} =  { / } (4.5)

(4.6)

(4.8)
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\  ft
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   .     .     —  ►

X

Figure 4.2: Illustration of a two-dimensional truss element. 

The resulting stiffness matrix is [10]:

k =  [R]t
’ AE 1 - 1  " 2 A E 1 - 1  ' 3A E  o 1 - 1

t - 1 1 1 U'n - 1 1
+ 2 £3 “ 21

- 1  1

where «2i is a shorthand notation for the element deflection, u-i — u\. 
derivation of the stiffness matrix is shown in Appendix A.

[R]

(4.9) 
A full

4.3.3 Triangular Element

Consider a triangular plane stress element with thickness t as shown in Figure 4.3. 
The element stiffness matrix, k, can be shown to be:

k = t [ H f  [G]t  [D\ {G} [H] A (4.10)
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34

1

Figure 4.3: Illustration of a typical two-dimensional triangular element.

where:

[ H ]

[G] =

1 Xi Vi 0 0 0

0 0 0 1 Xl 2/i
1 2/2 0 0 0

0 0 0 1 X2 2/2
1 xz 2/3 0 0 0

0 0 0 1 Xz 2/3 .

the element coordinates

0 1 0 0 0 0
0 0 0 0 0 1
0  0  1 0  1 0

derivative of the displacement functions

1 v 0

v 1 0

0  0

[D} =
E

v* 1—V
2

the elasticity matrix

and A  is the area of the triangle[ll].
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V .t A
4

4

1 I
x

Figure 4.4: Transformation of a two-dimensional isoparametric element from the x-y 
plane into a unit element in the plane.

4.3.4 Quadrilateral Element

Using isoparametric elements, the coordinates of a quadrilateral element in the x- 
y plane are transformed into a unit element in the r/-£ plane as shown in Figure 
4.4. The derivation for this element, found in Chandrupatla[8 ], yields the following 
stiffness matrix:

In most finite element problems, the global stiffness matrix is sparsely populated, 
meaning that it contains a large number of zero-valued members. An illustration of 
such a matrix could appear as shown in Figure 4.5. For small finite element problems, 
full matrix storage is suitable. However, with large problems, the computational 
time and storage requirements can become onerous. By storing only the required 
matrix members, one can substantially decrease the required computational memory. 
In addition, one can reduce computational time by eliminating operations on zero 
members. Two methods that deal with this are sparse storage and banded storage. 
Using sparse matrix storage, only the non-zero values and their indices are stored.

l l

j  j  A m m A t e M * , (4.11)
- 1  - 1

4.4 M atrix Storage
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Specialized solvers within M atlab® have been created to effectively manipulate sparse 
matrices. Banded storage can be used with matrices where all members outside of 
a band centered on the diagonal are nonzero. Since the efficiency of banded solvers 
decreases as the band width increases, it is preferred to create a narrow bandwidth. 
To minimize the bandwidth, it is necessary to keep the difference in node numbers 
of each element as small as possible. Due to the nature of this problem, specifically 
the modeling of the sternum, a tight bandwidth structure is not possible. Therefore, 
sparse matrix storage was selected.

Using the built in sparse matrix storage in M atlab® , a sparse matrix will require 
less computational memory as long as the density of the matrix is less than two- 
thirds[18]. However, one should also consider that operations on sparse matrices 
require more execution time per element compared to full matrices. The efficiency 
of the M atlab® sparse matrix capabilities will be tested for the current application.

m ii vr

** ,
in  W
***
r*VH i % *

*  .  *

* r. . ** • ►*♦*♦*«• • «*+» * • *.8 :U # *I
.  * .  *^n s

.M *- *■+ • * »•*i

Figure 4.5: Representation of a typical global stiffness matrix. The markers represent 
the non-zero members.

4.5 Condensation

Condensation is a procedure that decreases the number of degrees of freedom (DOFs) 
in a system without compromising accuracy. An illustration of this is shown in Figure
4.6. This method is beneficial because reducing the number of DOFs decreases 
computational time. However, immediate access to the results from the eliminated 
degrees of freedom is not available.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4. F inite Elem ent A nalysis 37

7

Figure 4.6: Illustraion of condensation, a procedure used to decrease the number of 
degrees of freedom in a system without compromising accuracy.

To perform condensation, the stiffness matrix must be manipulated to account 
for the new "super-element". The required modification is shown in the derivation 
below, modified from Fyfe [11].

Beginning with Equation 4.5, the matrices are rearranged as shown below.

For our case, the nodes being eliminated will not have any loads applied to them, 
therefore

{Qr}
{Qc}

{ f r }

{fc}
(4.12)

where: r  =  the DOF to be retained

c =  the DOF that are condensed out

Expanding out the sub-matrices,

[fcrr] {^r} T [AVc] {9c} { }

[fccr] {9r} 4” [kcc\ {9c} {fc}

(4.13)

(4.14)

Solving 4.14 for ryc,

Qc — %,] {fc} [kcc] [k'cr] {9r} (4.15)

then substituting back into 4.13 results in:

([Ayr] -  [krc] [ k c c ]  1 [kcr]) { 9 r}  =  {fr} ~  [Kc] [Kc] 1 {fc} (4.16)
v .     ' s ■■ ................

{/*}

[k*] {qr} = { f r}
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where: [k*] =  [krr] -  [krc] [kee] 1 [fccr] (4.17)

While this operation is time consuming, it will be evident from later sections that 
this method is good for nonlinear problems where the matrices do not need to be 
updated after every load step. Such is the case for the elements representing the 
vertebral bodies.

4.6 Constraint Application

There are many different ways to apply constraints in Finite Element Analysis. As 
each method has different strengths and weaknesses, three different methods will be 
employed in this model. Note that only rigid constraints will be addressed in this 
section as there is no use for prescribed boundary conditions in the model. For each 
of the methods, the following set of equations will be constrained:

(4.18)

4.6.1 Allaire’s M ethod

Allaire’s method to apply rigid constraints to the finite element model is fast and 
easy to program, with little need for additional bookkeeping[ll]. To constrain <73, 
simply make the equivalent row and column terms equal to zero except the diagonal 
term as shown below:

fell k n k i 3
f \

9 i
f  \

P i

h i h z h z h i <72 P z
< > =  <

h i h z h z kzA 93 P z

h i A4 2 h z k u 94V. P a \  /

feu h2 0

1 /  \
9 i

/ \
Pi

h i hz 0 hA 92 Pz
< > =  <

0 0 hz 0 93 0

h i hz 0 A4 4
. q * > Pa\  y

(4.19)

4.6.2 Elim ination M ethod

The elimination method simply involves removing the equivalent rows and columns 
as shown in the equations below. While more bookkeeping is required to keep track 
of the deleted degrees of freedom, the time savings may be worthwhile.
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Figure 4.7: Depiction of the penalty approach applied to a beam element.

kn  ki2 

^21 &22 

k&i k±2

feu
k>24
ku

(4.20)

The elimination method and Allaire’s method will be tested to determine which 
approach requires less computational time and memory. The selected method will 
then be used to apply all single degree of freedom constraints.

4.6.3 Penalty Approach

The penalty approach is an approximate method of applying boundary conditions 
to the model [8 ]. It is best explained using the example of a beam shown in Figure
4.7. Using Allaire’s method, we would simply zero out the fourth column and row 
of the stiffness matrix and force vector. Instead, think of the roller support as a one 
dimensional spring. The modified total potential energy expression becomes:

n = \  { ' i f  [*J i 'i )  +  -  W f  {/} (4.21)

The resulting set of equations are therefore:

kn kn fcl3 ku
f N

Qi
f \

Pi
2̂1 kyi &23 &24 92 P 2

< > =  <
^31 kz2 ^33 k-34 93 Pz

1—11 k±2 I*
"

CO 1

+

94 \  > PiV /

(4.22)

Obviously the choice of ks will affect the accuracy results If ks is too small, the model 
will no longer approximate the original problem and if ks is too large we may obtain
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an ill conditioned matrix. As shown by Chandrupatla[8 ] the following equation can 
serve as a guideline:

ks = max \Kij\ * 104 for 1 ^  i ^  N , 1 ^  j  ^  N  (4-23)

While this method will not be used by itself (since the elimination method is much 
quicker and easier to program), it is the basis for constraint equations.

4.6.4 Constraint Equations

Sometimes it is necessary to constrain one degree of freedom relative to another. An 
example of this would be modeling the deflection for an inclined roller as shown in 
Figure 4.8. In this example the deflection in the y direction would be dependent 
on the deflection in the x  direction. A modified penalty method is necessary in 
situations such as these to avoid an iterative solution.

Figure 4.8: Illustration of an angled roller constraint. A constraint equation can be 
used to constrain the x  and y deflection.

Consider the following boundary condition:

PiQi +  P2Q2 = Po (4.24)

where f30,f31,f32 are constants.
Now, consider the modified total potential energy expression:

n  =  ^ {q}T [fee] {q} +  ^fes (0i9i +  P2 Q2 ~  P o f ~  {q}T { /}  (4.25)

This translates into:
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kn  +  h/3\ k n  + h(3x/32 h z ku
/ >

Qi Pi + ks/30Pi
h i  +  h/3 2/3x h 2 +  ksj32 h z h i > <12 > — 4

P2 + ks(30/32
h i h 2 h z h i

s
qz

f — 1
Pz

h i h 2 h z ku q4 v > Pa\ /

(4.26)

For an inclined roller connection, we can say that f3xqx — /32q2 — 0 where j3x and 
P2 are dependant on the angle of the incline. For example, at a 45° angle, (3X — f32. 
One could also relate two degrees of freedom from different nodes, a method th a t is 
useful in modeling the sternum.

Sometimes, a relation exists between more than two degrees of freedom. The 
above equations can simply be expanded. For example, consider the relation:

PiQi +  /3202 =  Ptfz  +  /3494 (4.27)

This translates into:

h i  +  h P l h 2 + ks/3x/32 h z  ~  h /3xfiz k u  -  ksp x/34 qi
f \

Pi
h i  + h/3 2f3x k22 +  ks(3 2 h z  — ks/3z(3z k2A ~  ks/32(34 > q2 > — 4 P2 \
h i  +  ks(33(3x h 2 +  ks/33(32 h z  +  ks(3z h i  -  h(32/3i qz

t — 1
Pz

h i  +  ksP^/3 x h 2 + ksf3Af32 h z  -  h(34(33 h i  +  ks/3i qA\ J PaV /
(4.28)

This type of constraint equation becomes necessary for modeling contact between a 
point and a surface where the surface is inclined. For example, assume the surface is 
inclined by 9 and that qi and <72 are the x  and y degrees of freedom respectively for 
the point, and q3 and <74 are the x  and y degrees of freedom respectively for a node 
on the surface. The equation would then be written:

-<71 sin 6 +  (/2 cos 9 =  — <73 sin 9 +  g4 cos 9 (4.29)

As with the penalty approach, an appropriate value of ks must be used to obtain 
accurate results and avoid an ill-conditioned matrix.

4.7 Nonlinearities

Nonlinearities arise in structural problems when the stiffness matrix and/or the force 
vector become dependent on the displacement. As such, the load must be applied
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incrementally and the stiffness matrix and/or the force vector updated before the 
load is incremented. Examples of structural nonlinearities can typically be classified 
into material nonlinearities, geometric nonlinearities, and contact problems. These 
classes will be described in more detail in the section that follows. Implementing 
nonlinear code into FEA is very straight forward and follows the same general pro­
cedure regardless of the class of nonlinearity present. The following procedure is a 
modification of that found in Bathe[3].

The load is first broken up and applied incrementally, with each increment defined 
as a time step. Note that since we are dealing with a static analysis, time is only 
used as a convenient variable to denote the load level. The load at time, t  +  At, can 
then be written as:

‘+a‘ { /}  = ' { / }  +  {A /}  (4.30)

where: {A /} is the incremental force vector and * { /}  is the external force vector for 
the previous step.

Assuming equilibrium, the applied load should be equivalent to the internal force 
vector, {It}, after each load step, i.e. * { /}  — * {R } — 0. Therefore, from Equation 
4.30:

<+a< { /}  _  ‘ { R }  =  {A /}  (4.31)

The general FEA Equation, 4.5, when changed to an incremental loading situation 
becomes 1 [k] {Aq} =  {A /}, where {A<j} is the incremental displacement for the 
current load. This can now be written as:

* Ik] {A,} =  t+A< { /}  -  ‘ { R }  (4.32)

and the total deflection can be determined from:

, + M  {«} = ' { « }  + {A?} (4.33)

The change in deflections, stresses, strains and contact status may require the re­
calculation of the stiffness matrix prior to applying the next load step. The procedure 
is repeated until the full load is applied.

Note that because the stiffness matrix used is a tangential matrix used from the 
previous loading condition, that the resulting solution is only an approximation. This 
may result in a significant error in the final solution as shown in Figure 4.9A. There­
fore, we must use an iterative technique to obtain sufficient accuracy. Figure 4.9B
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illustrates the use of the Newton-Raphson iterative technique to achieve convergence.

*

\ 4f 
/

i

\  -B

Figure 4.9: Illustration of a nonlinear solution not using iterations (A) and using the 
Newton-Raphson iterative technique (B). Modified from ANSYS[1].

Using this method, Equations 4.32 and 4.33 become:

t+At [ k f-V  {A<z}(i) =  t+At { /}  -  t+At (4.34)
t + A t { 5 } ( 0  =  t+ A t  +  ^A q y(i )  ( 4 > 3 5 )

where the initial conditions are t+At {9 } ^  =  1 {q } , t+At [A:]1'0'1 =  1 [fc] , t+At {/}^°') =
t {/}• Note that a modified Newton-Raphson technique could also be applied in
which the stiffness matrix is not updated after each iteration. This generally results 
in decreased computational time, however, it can be less stable.

As stated previously, there are three common classes arising in structural prob­
lems; material nonlinearities, geometric nonlinearities, and contact. All three of 
which must be accounted for when modeling the spine for scoliosis surgery. These 
classes will now be discussed in detail.
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4.7.1 M aterial Nonlinearities

Material nonlinearities arise when the stress-strain relationship is nonlinear, a con­
dition exhibited in both spinal ligaments and intervertebral discs (see Figure 2.14). 
As shown in Figure 4.10, the typical sigmoid shape of the stress-strain curve for a 
ligament placed in tension can be represented as a multilinear model. To account for

—  m u ltil in e a r  a p p r o x .  
L» FEA  m o d e l

s t r a i n  u : i

Figure 4.10: Modeling of a ligament placed in tension. For clarity, Newton Raphson 
iterative steps were not displayed in this figure.

material nonlinearities, the element strain must be determined following each load 
step. The stress-strain graph is then used to determine the appropriate Young’s 
Modulus. The stiffness matrix is then updated to reflect any changes in mater­
ial properties. Figure 4.10 displays a typical finite element run for a single spinal 
ligament. In addition, we want to account for the inability of ligaments to act in 
compression. Therefore, a negative strain would result in no stress on the ligament. 
In addition, most ligaments begin in a state of prestress, therefore we must also be 
able to account for this.

4.7.2 Geometric Nonlinearities

There are several situations, including the spine during scoliosis surgery, where the 
geometry of a structure is significantly altered by the loads applied to it. When this 
is the case, the element stiffness matrices cannot be assumed to remain constant as
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is done in linear finite element analysis. Instead, the stiffness matrices are assumed 
to be a function of the deflections, thereby making the problem nonlinear. These 
nonlinearities, known as geometric nonlinearities, can be further classified into two 
categories: (i) large displacement, large rotations, but small strains and (ii) large dis­
placements, large rotations, and large strains [3]. For the model of the scoliotic spine, 
both types of geometric nonlinearities are present. For example, the vertebral bodies 
will undergo large displacement and large rotations, however, the strains within the 
vertebrae will be small. In contrast, the intervertebral discs will deform significantly, 
thereby falling into the latter category.

To illustrate geometric nonlinearities, consider a beam fixed at one end with a 
moment applied to the free end (as shown in Figure.4.11). In the linear range,

Figure 4.11: Sample loading of a beam used to illustrate geometric nonlinearities.

the deflection of the free end of the beam increases linearly with increased loading 
according to Equation 4.36[4].

, - i g  w ,

However, the true deflection of the free end of the beam follows Equation 4.37[9].
Note that for small deflections these equations are in agreement with each other.

E l  f  M L \

m ( 1 _ cos £ / )  (4 '37)

In this case, the geometric nonlinearity is caused by large deflection and large strain. 
The large deflection is accounted for by updating the stiffness matrix with the new 
geometry. However, the large strain indicates that the strain equations based on
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small-displacement theory should not be used [6 ]:

du  
dx  
dv  
dy  

du  i dv_ 
dy  dv

(4.38)

Instead, one of the strain measures used in large deformation analysis should be used. 
Green strain should be used for problems such as this, involving large displacements, 
large rotations and large strain[3]. The equations for Green strain can be written 
as [6 ], [1 0 ]:

&XX
£xy

I x y

du
dx
dv
dy

du  I dv  
dy dv

+

(i)2+(S)2 
(g);+ (4.39)

(  d u \  (  I (  9 v \  (  d v \
\ d x )  \ d y )  ~r  \ d x )  \ d y )

Since the derivation of the stiffness matrix for the beam is based on the small strain 
equations, the original derivation should be modified. Adding in the additional strain 
equation terms, the stiffness matrix becomes (See Appendix A for the full derivation):

[k] =

'  £2 0 0 —£2 0 0

0 1 2 6£ 0 - 1 2 u
E A 0 6£ 4£2 0 - U 2£2
£* - £ 2 0 0 £2 0 0

0 - 1 2 - U 0 1 2 - u
0 Q£ 2£2 0 - U 4£2

linear stiffness matrix

+
E A
3QP « 2 1

0

0

0

0

0

0

0

36
u
0

-3 6
U

0

u
4£2

0

0

0

0

0

-3£ 0 
-£2 0

0

-3 6
—3£

0
36

—3£

0

3£
- £ 2

0

-3£
4£2

(4.40)

nonlinear component

As shown, the new stiffness matrix is a collection of the linear stiffness matrix 
and a nonlinear term which is dependent on the displacement in the beam. Now,
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the stiffness can be updated after each iteration. Assuming tha t the elements do 
not change significantly in size and shape, i.e. small strain, the nonlinear portion 
of the stiffness matrix will be small compared to the linear portion. As such, one 
can eliminate the nonlinear portion, thereby speeding up processing time and slightly 
decreasing the accuracy of the system. In doing so, the geometric nonlinearity of the 
beam is assumed to be one of large deflection, large rotation, and small strain.

For the current cantilever beam, consider the beam divided into 5 elements. The 
deflection of the free end of the beam was then compared against the linear and non­
linear deflection equations as shown in Figure 4.12. One can see that the theoretical 
solution for the deflection of the beam was followed relatively closely by the nonlin­
ear solver. While a large number of load steps were required to obtain sufficient 
accuracy, it is estimated that a large number of load steps will be required for the 
spinal model to account for other nonlinearities such as contact between the articular 
facets (discussed in detail in the Section 4.7.3). Therefore, it was assumed that for 
the scoliotic spine, it is most likely unnecessary to add the nonlinear component of 
the stiffness matrix. The effect of this simplification will be determined in the final 
model.

theoretical

u o r s l i o e . H  s o l v e s
V

I ^o i
J  !f

/  l i ne a r  s o l v e r

Deflection

Figure 4.12: Nonlinear and linear deflection of the free end of a cantilever beam. 
Several load steps were required to obtain sufficient accuracy of the nonlinear solver.
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In addition to accounting for large strains, large displacements and large rotations 
in the stiffness matrices, one must also consider the force vector. During surgery, the 
hooks inserted onto the transverse processes of the vertebrae are only able to apply a 
force perpendicular to the surface. Therefore, the direction of this force is dependent 
on the orientation of the surface of the transverse process, which can change during 
surgery. Therefore, after each load step, the direction of these surfaces must be 
determined and the force vector changed appropriately.

4.7.3 Contact Elements

Contact elements must be used when two bodies come into contact during the analysis. 
Since we cannot accurately predict which elements may come into contact and which 
may not during a set configuration, the ability to check for contact during the analysis 
must be included in the model. New constraints or for contact forces can then be 
applied once contact has occurred.

There are several types of contact that can be modeled using finite element analy­
sis. Of these, the point to surface contact will be focused on, as it is the type of 
contact used to model the articular facets.

Several geometrical methods can be used to determine if contact has occurred. 
One common method is the Pinball algorithm, a common method used in ANSYS[1] 
to check for point to surface contact. This method, illustrated in Figure 4.13, involves 
the creation of a circle, or pinball, around the contact surface. Should the point (K) 
intersects with the area of the ball, then contact is considered. The Pseudo element 
algorithm is then used to determine if the point K has actually penetrated the surface. 
Several problems exist with this method. If the load step was so large that the point 
has contacted and gone through the surface then contact does not occur within the 
model. In addition, considering the geometry involved with the articular facets, 
these points would likely always be in the pinball region, therefore the time used to 
perform this algorithm for each contact location would be unnecessary. Furthermore, 
the Pseudo element algorithm and constraint application method are time consuming 
procedures which are more complex than desired for the current model.

Instead, a simple geometrical check will be used in the current model. Note 
that while this method cannot be applied to any problem, we are using this method
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•  K (open)

•K  (near contact:

Target Surface

•  K (in contact)

•  K (open)

Figure 4.13: Illustration of the Pinball algorithm to check for contact. Modified from 
ANSYSfl].

for a known geometry and as such we can infer additional information. Using the 
geometrical check, a vector is created from the new location of the first surface node 
to the point K as shown in Figure 4.14. A cross product is then performed with the 
new vector and a vector parallel to the target surface. Should the resulting product 
be into the page, contact has not yet occurred. Otherwise, should the result be 
positive (out of the page), then contact has occurred. This method assumes that if 
the point is on the other side of the surface, then contact has occurred. This is a 
valid assumption for the articular facets.

Once contact has occurred, the model must be changed to account for this. This 
involves the application of new constraints. Of the constraint methods discussed, 
constraint equations using a relation between four degrees of freedom as discussed in 
Section 4.6.4, will be used to allow the point to slide along the surface but not pass
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K

Target Surface

Figure 4.14: Illustration of vector used to check for contact between point K and the 
target surface.

through it. Note that there is no need to model frictional forces between the facets 
as the synovial fluid present within the articular capsules minimizes friction.
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Chapter 5

Existing Finite Element M odels of 
the Spine

Several finite element models of the spine have been created, however, limitations 
of these models do exist for the goal of a real time pre-surgical tool. Note that 
these models were created with different goals in mind, including improving bracing 
and detailed mechanical analyses of the spine. A brief overview of these models are 
discussed below.

5.1 A Mechanical M odel of the Normal Human 
Spine

Tong [36] created a three-dimensional linear model of the normal thoracolumbar spine 
using the commercial finite element package ANSYS. Experimental data from pub­
lished literature was used to define the geometry and material properties of the normal 
spine and components. Each of the 17 vertebrae were composed of 182 brick elements 
while the intervertebral discs were each composed of 49 spring elements. The spinal 
ligaments were also modeled using linearly elastic spring elements. The need to use 
contact elements to model the articulations between the facets was avoided through 
the creation of a "tree suspension" system. Using this system, Tong was able to 
simulate the gliding motion between the facet surfaces while preventing the surfaces 
to pass through each other. The model was validated in extension, flexion, lateral

51

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5. Existing F in ite Elem ent M odels o f th e  Spine 52

bending and axial rotation by using functional units and comparing the stiffnesses 
to those found in the literature. Most of the results were found to agree within an 
acceptable range.

This model was intended to set the groundwork for the creation of a scoliotic spine 
model. While several features of this model were well thought out, such as the use of 
the facet suspension system to avoid the use of contact elements, limitations do exist. 
Obvious limitations of the model are the inability to model scoliotic deformities and 
the exclusion of the thoracic cage. However, the more challenging limitations are the 
inability to account for nonlinearities and the ability of a surgeon to use the model.

As described in the previous chapter, several nonlinearities need to be accounted 
for to accurately model surgery on the scoliotic spine. While this model does ac­
count for contact between the articular facets, material and geometric nonlinearities 
are not accounted for. Since the model was only validated for normal physiological 
movements, this limitation would not have affected those results. However, non- 
linearities must be accounted for to model the large deformations associated with 
scoliosis surgery.

The second limitation, the inability of the surgeon to use the computer model 
directly, extends from the model being created using a commercial package. ANSYS 
is a widely recognized commercial finite element package as it has extensive modeling 
abilities including, but not limited to structural, dynamics, fluids and electromag­
netism. As such, the menu structures and command language are complicated, 
demanding a user who is not only familiar with the theoretical limitations to finite 
element analysis, but who is also familiar with using ANSYS. It is simply not feasible 
to have the surgeons commit to the required training.

5.2 A Finite Element M odel of the Ribcage

A three-dimensional finite element model was created by Thompson[35] to explore 
the articulations between the ribs and the vertebral column in orthopedic bracing. 
The model was comprised of the vertebral segment from T5 to T7 including the 
intervertebral discs, ribs 6  and 7, the corresponding portion of the sternum and all 
associated ligaments. The ribs were modeled using beam elements while the ligaments 
and intervertebral discs were modeled using truss elements.
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This model does appear to accurately account for the geometrical structure of 
the undeformed ribcage, however there are again several limitations restricting usage. 
First of all, this model only accounts for a small portion of the ribcage and needs to 
be expanded to account for the entire thorax. Similar to Tong’s model, this model 
assumes normal geometry and does not account for scoliotic deformations, nor does 
it account for nonlinearities present in the model. Contact elements were not even 
considered as articulation of the ribs with the vertebrae and sternum were either 
modeled using a series of trusses or held fixed. To model the inability of ligaments 
to exert compressive forces, results were verified after each run and those ligaments 
found to be in compression were eliminated. This is not the optimal way to account 
for this, as throughout the loading an individual ligament may exert tension for a 
portion of the analysis and compression for the remaining portion.

Again, this model uses a commercial finite element package and therefore has the 
same limitations described above.

5.3 Simulation of Scoliosis D erotation Maneuver

Mack and Stokes[31] utilized ANSYS to create a model of the thoracic spine to sim­
ulate the rod rotation maneuver in scoliosis surgery. The model consisted of seven 
equally spaced vertebrae in an idealized planar geometry. The six motion segments 
were modeled as three-dimensional beam elements matched to experimentally deter­
mined normal thoracic spine stiffnesses. A feature of this model is that it simulates 
three stages of surgery: fitting the curved rod to the hooks, the rod rotation maneuver, 
and locking the hooks to the rod. However, this model also has several limitations. 
The model does not account for patient specific geometry or material properties, the 
ribcage and remaining spinal units, material nonlinearities, or contact between the 
articular facets. Furthermore, as previously discussed, several limitations exist on 
this model due to the use of a commercial finite element package.

5.4 Simulation of Scoliosis Surgery using FEM

Using ANSYS, Tamaki et al.[33],[34] developed a nonlinear three-dimensional model 
of the vertebral column, thorax, and pelvis. Similar to the model presented by Tong,
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solid brick elements were used to model the vertebra, but nonlinear spring elements 
were used to model the intervertebral discs and ligaments. The tension only capa­
bilities of the ligaments were also accounted for in this model. Contact between the 
articular facets is modeled through the use of springs with the stiffness being propor­
tional to the displacement of the facet. This eliminates the use of contact elements 
which can have convergence problems. While nonlinear material properties and con­
tact has been addressed with this model, the author does not discuss the geometric 
nonlinearities within the model. Geometry was imported for each patient from CT 
images and loads were obtained from surgery. While a quantitative comparison of the 
results has not yet been completed, the resulting morphology of the model appears 
to correlate well with the final patient x-rays. Further studies are being performed 
to obtain more accurate geometrical representation and material properties.

The use of a commercial finite element tool, as stated previously has several lim­
itations. In addition to those mentioned previously, the computational times are 
generally quite large. Using this model, anywhere from 5 to 30 minutes are required 
for each load case. This can be attributed to several factors including using an ineffi­
cient solver for the specific geometry and the high tolerances implemented in ANSYS. 
Data input into the model from the CT scans has a much lower precision than the 
results being obtained. While we can simply ignore the additional significant digits, 
perhaps there are some simplifications that can be made to the solver which would 
decrease the computational times involved in each run.

5.5 M odeling of the Spine and Thorax for the Analy­
sis of Scoliotic Deformities Using FEM

Perhaps the most widely used and praised finite element model of the scoliotic spine 
and thorax is that developed in collaboration between researchers at L’Ecole Polytech­
nique in Montreal and L’Ecole Nationale Superieure des Arts & Metiers in France[2]. 
The main focus of the research was to create a personalized finite element model to 
study the biomechanical behavior of the spine and thorax including details such as the 
articular facets This model was developed using ANSYS and consists of 1356 nodes 
and 2807 elements and makes use of geometric, material and contact nonlinearities.
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However, the authors have indicated that both constraint equations and geometric 
nonlinear properties are accounted for using ANSYS. ANSYS does not recommend 
the use of constraint equations with nonlinear geometry [1 ]. One should note how­
ever, that this model has been used primarily to study the use of bracing, which does 
not involve the same level of geometric nonlinearity, therefore the limitations of the 
constraint equations may not be as critical.

While this model does include an advanced geometrical representation of the sco­
liotic spine and thorax, it does utilize a commercial product which has several draw­
backs, discussed previously. This model can also take up to 30 minutes to run 
depending on the complexity of the loading situation.

5.6 Virtual Reality Scoliosis Surgery Simulator

Plouznikoff et al.[27] have developed a virtual reality simulator of the spine to enable 
surgeons to practice a scoliosis instrumentation surgery. This simulator includes 
not only a geometric reconstruction of the spine but a full reconstruction of the 
operating room complete with the operating table, cupboards and lights to immerse 
the surgeon in a familiar location. The surgeon interacts with the finite element 
model which includes a rigid body model of the vertebrae and an elastic beam model 
of the intervertebral discs. All other structures have been neglected in order to 
allow for real time processing (0.6 seconds). Forces are applied to the model using a 
proportionality factor that translates the surgeons movements.

While this model should be useful in training new surgeons, it is not feasible for a 
surgeon wanting to try  several different loading configurations for each patient. Each 
trial would involve starting from the beginning and repeating the surgery with minor 
adjustments to the applied forces and insertion locations. Repeatability error would 
play a role as the surgeon may not be able to replicate the exact motion between 
trials.

The model itself is also limited as the vertebrae are currently represented as rigid 
bodies. A study performed by Aubin et al[2] found that the Young’s Modulus of the 
vertebrae is significant in scoliosis surgery. This may be because while the vertebral 
body is rigid in comparison with the other spinal components, the vertebral arch is 
more flexible. The model also neglects several key anatomical structures such as the
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ribcage and ligaments.

5.7 Conclusions

Based on the above literature survey, several limitations exist with the current mod­
els in terms of creating a real time scoliotic tool that surgeons can use. These 
limitations include, the inability to account for scoliotic deformations, the inability 
to model patient specific geometry and material properties, the inability to use con­
straint equations and geometric nonlinearities together, the large computational time 
requirements and the difficult menu structures and command languages used to ma­
nipulate the models. Therefore, a pre-surgical finite element model of the spine 
must incorporate the following abilities:

•  Create a model that not only accounts for scoliotic deformities but is patient 
specific in terms of geometry and material properties.

• Incorporate material nonlinearities, geometric nonlinearities and contact ele­
ments.

•  Allow for real time processing through the use of condensation, sparse element 
storage and other time saving simplifications.

• Include a user friendly interface that surgeons will use.
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Chapter 6 

The Scoliotic Spine M odel

The ultimate goal of this work is to create a real-time three-dimensional finite element 
model of the scoliotic spine and ribcage to be used by the surgeon to test surgical 
procedures. To provide a foundation from which the final model will be created, 
a two-dimensional prototype of the computer model which incorporates all of the 
necessary features of the final model was first required. This is the basis for the 
current work.

The two-dimensional prototype model, known as femSpine, was created in M atlab®  
and includes the thoracic and lumbar vertebrae. The respective intervertebral discs 
and ligaments in addition to a simplified model of the ribcage is incorporated in this 
prototype. Details of this model are discussed further in this chapter.

6.1 Graphical User Interface

As shown in Figure 6.1, the graphical user interface, or GUI, is comprised of four 
main components; the Menu Bar, the Control Window, the Dialog Box and the Visual 
Display Window. The Menu Bar offers several additional program features which 
will be discussed further at the end of this chapter. The Control Window consists of 
a series of subwindows which guide the user through the creation and analysis of the 
scoliotic spine model. These steps consist of: creating the scoliotic geometry, adding 
constraints, defining loads, solving the test case, and viewing the results. Should the 
user decide to change a parameter in an earlier step, the program will automatically
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return to that step without having to start all over again. The Dialog Box is used 
to give instructions or prompt the user when required. Throughout the analysis, the 
model is illustrated in the Visual Display Window.

■ Men;

Dia log  Box

\OnN

Figure 6.1: Graphical user interface of the current finite element model.

6.2 Creating the Geom etry

6.2.1 Vertebrae and Intervertebral Discs

Personalized geometric data of the spine can be input into the model using data from 
x-rays or using scoliotic parameters defined earlier. Both methods are discussed in 
detail.

Scoliotic Param eters

Using the scoliotic parameters previously defined: a  and /? Cobb Angles, Decompen­
sation and Lumbar Obliquity, a scoliotic curve can be approximated. As this code is
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only two-dimensional, axial rotation is not accounted for. Presently, the model only 
accounts for double curves - KING Types I, II, or V as these are most prevalent in 
adolescent idiopathic scoliosis. However, single curves can be input using the X-ray 
Data File method described in the following subsection.

The user is able to select a variable number of vertebrae from Thoracic 1 (T l) to 
Lumbar 5 (L5). This allows the user to minimize the complexity of the model by 
limiting it to the required spinal units. The user must then specify the a  and (3 Cobb 
Angles in addition to the vertebrae span over which they occur. Note that a positive 
a  angle indicates a right curve while a positive 6 angle depicts a left curve. Lumbar 
Obliquity must also be specified by the user, positive indicating a counterclockwise 
rotation. Note that all angles are measured in degrees.

Vertebral geometry is approximated using data from Panjabi et al.[23] and [25], 
shown in Figure 6.2. Note that these measurements were averaged from 60 subjects 
with an average age of 46 years. While this data set may not accurately represent 
the typical adolescent with scoliosis, it was deemed an adequate for initial testing.

!'-«® • .....            f f * \S --------    '

i - * — ......... - I.PW ii  -...’

Figure 6.2: Anterior view of the vertebral body measurements obtained from Panjabi 
et al. Dimension notations shown in Table 6.1. Modified from Panjabi[24].

The average between the upper and lower end-plate is used to describe the width of 
each vertebra (E P W a vg ), while V B H  is used to describe the height of each vertebra. 
The Transverse process width (T P W ) was also obtained from Panjabi et al., while
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Table 6.1: Vertebral Body Dimension Notations
D im ension D escription

EPWu End-plate width (upper)
EPW1 End-plate width (lower)
TPW Transverse process width
VBH Vertebral body height

the Transverse process height (T P H ) and the intervertebral disc height (I D H ) was 
estimated from a spinal model.

For illustration purposes, the spinal geometry, shown in Figure 6.3, will be created 
for a fictional patient with an a  Cobb Angle of 60° from T4 to T9, a (3 Cobb Angle 
of 50° from T9 to T3, and a Lumbar Obliquity of 10°.

The user first enters the scoliotic curve parameters using the graphical user inter­
face (GUI) as shown in Figure 6.4. The user will then press the "Create Geometry" 
button to start the function. Note that the scoliotic curve cannot extend past L3 for 
the purpose of this model. This is due to the assumption that the sacrum is oriented 
horizontally.

Using (0,0) as a starting location, the function first locates the bottom of T5, (b) 
using the height of the intervertebral disc, ( ID H L5), as shown in Figure 6.5. Note 
that the final geometry is shown for clarification purposes. The top of Lb, (a), is 
then defined at an angle of LO° and the predefined height of V B H L5. LA is also 
assumed to be rotated by LO°, and ID H jA is then used to determine the bottom of 
LA

The geometry is created in a similar fashion until the bottom of the Beta curve 
is reached. In this case, this is the top of L4. As shown in Figure 6 .6 , the bottom 
vertebra in the curve is then assumed to be rotated at a degree of defined as:

R 5 f ) °
= LO + ^  = 10° +  —  =  16.3° (6.1)

8 8

This was determined to be a reasonable approximation after visual tests with several 
scoliotic x-rays. Note that this is only an approximation and does vary from patient 
to patient. Using IB H lz  and (j>\, the location of can be determined. The curve 
length, £ t9- l 3 , is then calculated as the sum of the V B H  and ID H  for the vertebrae 
included in the curve. This is used to determine the origin of the circle, O3 :
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Figure 6.3: Posterior view of the Spinal Model for Cobb angles a  = 60°, /3 =  50°, 
and Lumbar Obliquity, LO  =  10°.

Op =  bL3 +  — |  c o s ^  sin fa |  (6 .2 )

where is the point at the bottom of L3 and is the Cobb angle measured in
radians. The top and bottom points of the vertebrae on the curve are then located
using the origin of the curve and summing the vertebral and intervertebral heights. 
Note that the top vertebra on the curve will now be rotated by (f)2 which is defined 
as:

0 2  =  ^ - / ?  =  1 6 .3 ° -5 0 °  = -3 3 .8 °  (6.3)

Similarly, the a  curve is created by first determining the origin of the circle from
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Create Geometry

Lumbar Obliquity D ecom pensation  
| 10 |

nN ode nElem nHpt

Create geometry from: 
datafile  

S' parameters

Alpha Cobb Angle j § 0  

B eta Cobb Angle j 50

Include vertebrae:
Top Vertebra jx 4  3

!T1 3  to j L5 3 Middle Vertebra [ i  s  " " 3  

Bottom Vertebra j|_3 ▼]

Create Geometry

Figure 6.4: Graphical user interface of the ’Create Geometry’ section of the Control 
Window. The entries for the test geometry are shown.

the sum of the respective intervertebral and vertebral heights and then locating the 
top and bottom vertebral points. The top vertebra on the a  Cobb angle will be 
rotated by <f>3, where <p3 = (p2 +  a. In this case, </>3 =  26.3 °.

The top vertebra is assumed to be oriented horizontally, therefore the rotation the 
remaining vertebrae are decreased by 50% from the rotation of the vertebra inferior 
to it. In this case, T3 is rotated by c/>3 * 50% =  13.1 degrees, while T2 is rotated by 
(13.1) * 50% =  6 . 6  degrees.

Now that the vertebral points have been located as shown in Figure 6.9, the 
vertebrae and intervertebral discs can be created.

For clarification, this will be illustrated for the creation of Vertebra L5. First, a 
third point, c, is added to the vertebra, shown in Figure 6.10 This point defines the 
height of the transverse process and is thus located at a distance of T P H  from point 
a. Then the outline of each vertebra is created using 10 key points, 1 - 10 as shown 
in Figure 6.10. Keypoints 1-2, 5-6, and 9-10 are located at a distance of /';/>12*-<!£a 
from points b, c, and a respectively. Keypoints 3-4 and 7-8 are defined at a distance 
of from points c and a respectively. The intervertebral discs are created from 
keypoints 9 to 10 from the Inferior vertebra and keypoints 1 to 2 from the superior
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Figure 6.5: The top (a) and bottom  (b) points are located for L4 and L5 using the 
geometric data from Panjabi et al. and the scoliotic parameters.
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Figure 6 .6 : The beta curve is created by locating a geometric center, determining the 
curve length and assuming a starting angle of rotation of L3.
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Figure 6.7: The alpha curve is created by locating the geometric center and deter­
mining the required curve length.

Figure 6 .8 : The remaining vertebral superior to the alpha curve are created by assum­
ing the vertebral body rotation decreases by 50% compared to the vertebra inferior 
to it.
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Figure 6.9: The vertebral points for the defined scoliotic curve.

Figure 6.10: Location of the keypoints, numbered 1-10, from the data points previ­
ously described.
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vertebra.
The model is also capable of accounting for the wedging previously described in 

Section 3.1.1 by using wedge ratios. The ratios are currently set to those described 
by Stokes et al.[31], but can easily be changed to accommodate other ratios. This is 
shown in Figure 6.11.

—f
Vvtedae
a n g l e s
— i

Figure 6.11: Vertebral body wedge angles described by Stokes et al. [31].

Obviously, there were several assumptions made to create the scoliotic curve above. 
Due to these large variations, patient specific geometry is important in the creation 
of the model. Therefore, the option to create the model based on x-ray data is also 
available.

X-ray D ata File

It is anticipated that within the next year, digital x-rays will be taken for patients 
prior to surgery. This data will be transm itted into the model, and will thereby 
enable the creation of a geometry specific model. However, for this work, digitized 
x-ray data was obtained by manually selecting points from x-rays. This data can 
then be read in to the finite element model.

For the purpose of this model, only the four points per vertebra, illustrated in 
Figure 6.12, were recorded. The relative sizes of the vertebra were then estimated 
based on the geometrical data from Panjabi et al. [24] [23], [25]. To create the remaining 
vertebral keypoints, shown in Figure 6.13, the Transverse Process Height (T P H )
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was estimated from a spinal model and the Transverse Process Width (T P W ) was 
obtained from Panjabi et al.

Figure 6 .1 2 : Anterior view of the four locations recorded to be read into the finite 
element model.

Figure 6.13: Creation of the vertebral body keypoints from the recorded x-ray data.

While this method allows for the creation of an improved geometric representa­
tion of the scoliotic curve, it is not feasible for widescale use due the large error in 
accurately manually locating each point and the time investment required for data 
collection. However, once digitized x-rays become available, this time consuming and 
error laden process will be eliminated.
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D iscretization

The vertebrae and intervertebral discs are then meshed using two-dimensional isopara­
metric elements. The four noded isoparametric element was chosen to simplify mesh­
ing of the asymmetrical scoliotic discs and vertebrae. While triangular elements could 
also be used to simplify meshing, the constant stress and strain of triangular elements 
was undesirable.

To start the meshing, the vertebral bodies are first segregated into the upper (a) 
and lower (b) segment as shown in Figure 6.14.

{>

Figure 6.14: Segregation of the vertebral body into 2 mesh areas.

The discretization of part a can be modified by changing the number of nodes 
over the width (naw) and the number of nodes over the height (nah). Similarly, the 
discretization of part b is dictated by the number of nodes over the width (nbw) and 
the number of nodes over the height (nbh). A sample mesh is shown in Figure 6.15.

The intervertebral disc is meshed in a similar way, using the number of nodes over 
the disc height (ndh), and the number of nodes over the disc width (ndw). Note that 
for the nodes to match up at the disc-vertebra interface, ndw must be equal to nbw.

Hardpoints

When using finite elements, loads and constraints can only be applied directly to the 
nodes. It is therefore often necessary to relocate nodes to potential loading locations, 
often termed hardpoints. In this model, the hardpoints represent the locations the 
surgeons are likely to place screws and hooks during the surgery. Top hooks can be 
placed on the transverse processes of vertebrae T 1 - T3, while vertebrae T 1 - T 12

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6. The Scoliotic Spine M odel 69

nb:

nhu

Figure 6.15: Sample discretization of the vertebral bodies.

can have lower hooks applied. The top hooks locations are centered along the upper 
edge of the transverse process as shown in Figure 6.16. The lower hooks positions 
are at one-quarter and three-quarters along the inferior edge of the vertebral body. 
Note that while the hook itself is applied to the transverse process, this is the best 
representation for the hook location with the two-dimensional model. Once the 
model is expanded to a three-dimensional model, the location of the lower hooks 
will be better represented. The screws can be applied to vertebrae T'10 - T5, also 
shown in Figure 6.16. The screw locations are midway between the upper edge of 
the vertebra and the bottom edge of the transverse process in the transverse plane, 
and one-twelfth of the width of the vertebral body from either edge in the sagittal 
plane.

Once meshing is complete, the closest nodes are relocated to these hardpoints. 
The stiffness matrices are then assembled for each vertebrae.

Super-elem ents

The assembled stiffness matrices of each vertebra are then condensed to create super­
elements. These super-elements only include the nodes along the upper and lower 
vertebral body edges, in addition to the hardpoints and the inferior corners of the 
transverse process. For example, vertebra T i l  shown below in Figure 6.17 is con­
densed from 32 nodes down to 18 nodes. Note that the final number of nodes is
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Figure 6.16: Location of the screw and hook hardpoints for the spinal model.

dependent on the mesh size chosen.
Using Equation 4.17, the stiffness matrix for each vertebra is modified. In this 

case, k m  was a 64 x 64 matrix, becoming k*r i l , a 36 x 36 matrix. This accounts for 
a storage reduction of 62% (8720 kilobytes) for the entire system. Recall however 
that this problem requires a nonlinear solver and as such, the stiffness matrix must be 
recalculated after each load step. However, if the vertebral body can be considered 
rigid compared to the remaining model, the stiffness will remain relatively constant. 
Therefore, only the rotation of the body will change the stiffness matrix. Therefore, 
the original stiffness matrix and the angle of each vertebra is calculated. Following 
each load step, a rotation matrix, [R\ , is used to recalculate the vertebral body stiffness 
matrix as shown in equation 6.4.

[ R f  M  [R] {<7} =  { /}  (6-4)
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Figure 6.17: Condensation of a vertebral body from 32 nodes to 18 nodes. 

Facets

Articular facet joints are added to the thoracic vertebrae using triangular elements 
as shown in Figure 6.18. Each facet is modeled as one single triangular element 
with nodes at the outer edge of the vertebral body, on the first interior node on the 
vertebral body and 3/4 of the way between the vertebrae, along the intervertebral 
disc edge. The model uses a node to surface contact with the latter node being the 
contact node the top of the inferior vertebral body being the target surface. This 
contact method, discussed in Section 4.7.3, assumes that if the node is on the other 
side of the surface, then contact has occurred.

i

Figure 6.18: Articular facets are modeled as triangular elements on the superior 
vertebra which can contact the top of the inferior vertebra.

Due to the severity of many scoliotic curves, the space between vertebrae can be
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Figure 6.19: Facet height restrictions are placed on intervertebral spaces that are too 
large or too small as shown on the left side and right side of this model respectively.

quite large. Since this does not correlate with a larger facet joint, an upper limit 
of 5.0 cm is placed on the height of the triangular element. This is illustrated in 
Figure 6.19 where for the triangular element height on the left hand side is limited 
to 5.0 cm. Similarly, the intervertebral space can be quite small and therefore a 
lower limit of 3.0 cm exists. However, in severe cases as shown in Figure 6.19 where 
the intervertebral space on the right is less than 3.0 cm, the articular facet height 
is equivalent to the intervertebral space and it is assumed that contact has already 
occurred.

Currently, constraint equations are written to stop the articular facet point from 
going through the surface of the inferior vertebrae, while allowing the facet point to 
slide along the surface. The resulting equation can be written as:

—qi sin 6 + q2 cos 9 = —q% sin 6 +  q± cos 6 (6.5)

where 6 is the incline of the inferior vertebral surface, q\ and <72 are the x  and y degrees 
of freedom respectively for the facet point and q$ and <74 are the x  and y degrees 
of freedom respectively for a node on the vertebral surface. Following each load 
step, the geometrical check discussed in Section 4.7.3 is used to determine if contact 
has occurred for any facet joints that are not already in contact. If so, additional 
constraint equations are added. Internal forces are checked after each load step to 
ensure that facet joints that are in contact should remain in contact. The constraint 
equations are eliminated should they no longer be required. This process will be 
discussed further in the Solver Section below.
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M aterial Properties

At this time, the vertebral body is not segmented into cortical bone and cancellous 
bone. Assigning appropriate material properties to the vertebral body elements is 
therefore somewhat difficult. However, because the vertebral body is much stiffer 
than the intervertebral discs, it is hypothesized that the discs will incur most of the 
deflection. Testing will be performed to verify this using a range of stiffnesses between 
100 and 12000 MPa. A Poisson’s ratio of 0.3 and a thickness of 30 mm was used for 
the vertebral bodies. The material properties used for the intervertebral discs were: 
Modulus of Elasticity of 2.0 MPa, Poisson’s Ratio of 0.47, and a thickness of 30 mm.

6.2.2 Ligaments

Currently, only the intertransverse ligaments are included in this model as they are the 
only ligaments which contribute significantly to spinal stiffness in the frontal plane. 
These ligaments are modeled as nonlinear two-dimensional truss elements connecting 
the transverse processes of adjacent vertebra as shown in Figure 6.20.

Figure 6.20: Intertransverse ligaments are modeled as nonlinear two-dimensional cable 
elements connecting the transverse processes of adjacent vertebrae.

Again, material properties are highly variable and studies have shown a large range
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*
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of values. Currently, the stress-strain curve used for the intertransverse ligaments is 
a multilinear curve shown in Figure 6.21. The cross sectional area each ligament is 
assumed to be 2  mm2.
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Figure 6.21: Mulitlinear material properties used for the intertransverse ligaments.

As stated previously, many ligaments start out in a state of prestress. Currently, 
all of the intervertebral ligaments are prestressed to 0.2 MPa. However, this is only 
an estimate based on the normal spine and does not account for scoliotic deformities. 
Ultimately, this value will differ for each ligament dependent on the patient geometry 
and ligament strength.

6.2.3 Thoracic Cage

Currently, a simplified representation of the ribcage is included in the model to in­
crease the lateral stiffness of the thoracic spine. As depicted in Figure 6.22, this 
model is comprised of 10 rib pairs and sternum. Each rib is modeled as a two­
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dimensional truss element pinned to the superior point of the respective transverse 
process. The truss element was selected due to the simplicity of this element. Ribs 
1 through 7 attach to separate points on the sternum, at vertical locations equivalent 
to the average height of the left and right transverse process nodes. Ribs 8  through 
10 are attached to the same node as Rib 7 to represent the corresponding anatom­
ical attachment. The false ribs, attached to Thoracic vertebrae 11 and 12 are not 
included as they do not provide stiffness to the spine. Note that the sternum was 
modeled using one-dimensional truss elements and therefore only add y-directional 
stiffnesses to the problem. This accounts for the vertical orientation of the sternum.

*

. * * :

- . . . i
• t - -4 . .

.. u c r m s m

erinifk!
n u d e

Figure 6.22: Thoracic model of the scoliotic spine. The thoracic cage is shown here 
comprised of 1 0  rib pairs and a sternum.

The length of the ribs were obtained using crude measurements from a normal 
thoracic model as measured from the midline. Note that the rib lengths are therefore 
shorter on the convex side of the curve to represent the rib hump present in most 
patients. The sternum was modeled using truss elements pinned to adjacent ribs. 
While these elements appear to be two-dimensional, only the y directional stiffness is
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accounted for as the sternum should not provide stiffness in the x  direction.
Constraints, shown here as triangles, were placed on the sternum in the .x-direction 

at each rib intersection, while constraint equations, not shown, were used to pin the 
end points of each rib pair together in the y-direction. Note that similar constraint 
equations could have been used for the x-direction, however, applying constraints is 
faster and more stable. The sternum was then constrained to a ground node via a 
two-dimensional truss element. This element represents other objects which would 
restrict the sternum from displacing vertically.

Again, patient specific material properties are not available, therefore, testing will 
be carried out to  determine acceptable material property values.

6.3 Applying Boundary Conditions

Once the geometry has been created, the constraint application section is enabled as 
shown in Figure 6.23.

Constraints
Add Constraints

.................................................................................. .... 1

Figure 6.23: Constraint section of the graphical user interface.

As further testing is still required to determine the ideal boundary conditions, the 
user is prompted to select constraints for each spinal model. The options currently 
available to the user are constraining the top and/or bottom  vertebra in the x  and/or 
y direction or in rotation. The latter constraint is achieved through the use of 
constraint equations, specifically by setting the displacement in the x  direction of the 
right hand node to be equal to the displacement in the x  direction of left hand node.

For illustration purposes, constraints will be added to the previously created spinal 
geometry. First, click "Add Constraints" button. Pink lines will appear on the 
inferior surface of the bottom vertebra, and the superior surface of the top vertebra. 
The user is prompted, via the dialog box, to select one of the lines to apply constraints 
to. In this example, the bottom vertebra will be fixed in both the y direction. When 
the user clicks on the bottom pink line, a dialog box, shown in Figure 6.24 will appear.
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The user must then select between UX, UY or RZ to apply x and y constraints or 
a rotation constraint, respectively. Once the user selects UY and clicks ’OK’, the 
constraints will be added as shown in Figure 6.25. Additional boundary conditions 
can be added to the system by following the same steps.

Or _ j CukH | {

Figure 6.24: Dialog box prompting the user to select the degree of freedom to be 
constrained.

Figure 6.25: Depiction of y-direction constraints applied to the bottom vertebra.

If desired, the user can clear constraints using "Clear Constraints" button. A 
dialog box will appear to double check that you do want to clear all constraints.
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6.4 Creating Loads

After the user has defined constraints, the load application section in the GUI will be 
enabled. Ultimately, this section will allow the surgeon to select the rod parameters in 
addition to which hook and screw locations to use and the chosen order of attachment. 
However, this section is currently limited to creating each load separately at the 
desired hook or screw location.

To illustrate this feature, the steps will be shown to add a load of 200 N to the 
left screw location on vertebra L I at an angle of 45 degrees. The user will first press 
’Create Load’ Button. He will then be prompted to create load by clicking on one 
of the predefined hardpoints and, without releasing the mouse button, dragging the 
mouse in the direction of the desired load. Note that the program will automatically 
locate the nearest hardpoint to the location selected by the user. A pink line depicting 
the load will appear as the user drags the mouse. Once the user releases the mouse 
button, the pink line will remain and the load values will appear in the "Loads" 
window as shown in Figure 6.26.

Loads
Load N ode  

Angle 

Load Value

Create Load
Number of L oads

110

~TT + 
"TiT Enter

Figure 6.26: Load application section withing the Control Window of the GUI. Loads 
must be applied one at a time.

The load parameters can then be edited to define the desired load. By changing 
the angle to 45 and the Load Value to 200, the pink line will change to display the 
new parameters. Once the user clicks ’Enter’, the load will be created as shown in 
Figure 6.27 by a thicker pink line with an arrow and a force written in pink beside 
the line. The load parameters will then default back to allow the user to enter more 
loads if desired.

Due to the nature of the hook attachment on the transverse process, loads can 
only be applied in a perpendicular direction. Therefore, loads placed on hooks are
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Figure 6.27: Graphical depiction of a 200 N load applied to the left screw of LI.

automatically re-orientated to reflect this. The angle text box is also made inactive 
so that this orientation can not be changed.

Should the user wish to change previously defined loads, the ’Clear Loads’ button 
can be used to clear all loads.

6.5 Nonlinear Solver

Once loads have been added to the system, the Nonlinear Solver section is enabled. 
As stated previously, due to the many nonlinearities present in modeling scoliosis 
surgery, a nonlinear solver must be used. Currently, the user is able to define the 
number of load steps in addition to the maximum error and maximum number of 
iterations as shown in Figure 6.28. However, this is option should not be available 
once enough testing is performed to determine appropriate values for most cases.

The flowchart shown in Figure 6.29 outlines the basic procedure of the modified 
Newton-Raphson nonlinear solver.
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Nonlinear Solver
number of load steps io ______________
max error 

max iterations
10e-4 H B H HP _ “ ”

Figure 6.28: Control section for the nonlinear solver. The user can change the default 
number of load steps, the maximum allowable error, and the maximum number of 
iterations.

6.6 Results

Once a solution is determined, the corrected spinal geometry is illustrated in the 
visual display window as shown in Figure 6.30.

The maximum displacement and corrected Cobb Angles are calculated and shown 
in the results section of the Control Window illustrated in Figure 6.31.

Other results are available and will be discussed in the following section.

6.7 Additional Features

Several additional features are available to aid in viewing the scoliotic geometry and 
evaluating the model. These features are described below.

6.7.1 Create ANSY S file

To facilitate validation tests with ANSYS, a function has been created to write AN­
SYS code for any test case. After defining the test run, select Menu Bar > File > 
Create ANSYS File as shown in Figure 6.32. A file, ’ANSYS.dat’ is then created 
representing the current spinal model in the graphical user interface. Note that this 
file creates the nodes, elements, boundary conditions, and loading conditions, but 
does not account for condensation or any nonlinearities present in the model. The 
file will automatically open once it has been written.
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Repeat
until
full
load

applied Iterate until 
internal 

forces equal 
external 
forces

Calculate new coordinates

Calculate internal forces

Solve system of equations

Calculate initial internal forces

Divide loads into equal steps

Apply constraints

Apply loads

Calculate vertebral body angles

Check contact status of articular facets 
Add or delete constraints as necessary

Determine global stiffness matrix based on 
current geometry and material properties

Calculate hook loads based 
on vertebrae orientation

Determine ligament strain to 
update material properties

Calculate vertebral body stiffness matrices 
based on vertebral body angles

Figure 6.29: Flowchart illustrating the procedure for the nonlinear solver. Note that 
the dark grey boxes are part of the Newton-Raphson iteration, while the lighter grey 
boxes are indicate the steps within each load step.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6. The Scoliotic Spine M odel 82

or

Figure 6.30: Visual display of the corrected scoliotic geometry. The dark grey verte­
bral bodies show the initial geometry.

Results

Alpha Cobb | 51 ~  B eta C obb( 37  Max Defl f  14 mm

Figure 6.31: Results section of the graphical user interface.
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+) Finite Element Analysis of the Scoliotic Spine
File Properties List Plot Crt 

C reate  ANSYS File I_____

!!« : xjt

Figure 6.32: File menu options available.

*)  Finite Element Analysis of the Scoliotic Spine
File Properties List Plot o t l s

v  Condensation

I :'LI XI

Figure 6.33: Drop down menu selection to toggle condensation on and off.
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6.7.2 Condensation Optional

The user is currently able to disable condensation of the vertebral body elements. 
This function is to enable testing to determine the computation times with and with­
out condensation. Once the three-dimensional model has been created and tested, 
this option should be omitted. The user can turn this function on and off through the 
following menu options shown in Figure 6.33: Menu Bar > Properties >  Condensation 
(checked =  on).

Note that if condensation is on, each vertebral body will then be shown as one 
super-element as illustrated in Figure 6.34. Note that the hardpoints are not con­
densed as to permit loads to be applied.

✓ C ondensation j C ondensation !

*

Figure 6.34: Illustration of the model with and without condensation used.

6.7.3 List Options

Several parameters of the model can be displayed in a file format through the List 
Menu as shown in Figure 6.35.

Loads

The loading conditions can be displayed as shown in Figure 6.36. The load number, 
node number to which the load is applied, value of the load, angle of rotation measured 
counterclockwise from horizontal and type of instrument bearing the load is shown. 
Note that for loads placed on hooks, the angle of rotation is the initial loading angle.
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*)  Finite Element Analysis of the Scoliotic Spine
File Pr operties list Plot Otis

S
_ _ _ _ _ _  Loads l_

Create Geoil Results ►

Ireate geometry trorn
5 data  file 

f* parameters
Beta Cobb Anole

- 1 c lx f

DOF Solution 

USUM Solution 

Midline D iscrepancy

Figure 6.35: List menu options.

Disp_Loa(j.dat - Notepa
File Edit Format View Help

< ■: < ------- -  L o a d i n g C o n d i  t  i  o n s ---------- > > > >

1 O d d # n o d e v a l u e ( M ) a n q l e t r a d i t y p e
1 1 1 0 2 0 0 6 .  5 2 4 s  c r  e w
,0 1 5  7 1 5 0 2 .  0 9 s  c  r  e w
3 5 0 1 1 0 0 l !  9 7 l o w e r  h o o t
4 3 5 6 5 0 - 1 . 4  5 u p p e r  h o o t '
C 1 1 1 1 5  0 0 .  8 7 3 s  c r  e w
6 8 7 1 0 0 6 .  2 8 s  c r  e w
’7 0 4 1 5 0 u . 7 8 5 s  c  r

.!□! xjj

Figure 6.36: Sample list of loading conditions.

R esults

Various results can be listed to aid in clarifying the solution. These include the 
displacement at each degree of freedom (DOF) solution and the nodal sum (USUM) 
solution. The DOF solution is arranged in increasing nodal value, in the x  direction, 
and y  direction. For example, DOF solution 3 and 4 would be the x  and y  displace­
ment respectively, for node 2. The USUM solution is arranged in ascending nodal 
value.

As shown in Figure 6.37, the midline discrepancy lists the x  offset for each vertebra 
from the midline (x =  0). The offset is determined at the top and bottom of the
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vertebra, value for each vertebral body. Note that a positive value indicates an offset 
in the positive x  direction.

File Edit Form at View Help

-■■I

----------t t i  d l  i  n e o i  s o r e p a n c y ------ > > >

v e r t  e h r  a D i s t  a n e e (m m )
N u m b e r T o p B o t t o m a  v e r a  q e

T 1 9 . 1 2 9 . 4 6 9 . 2 9
T 2 9 .  5 3 1 1 .  7 1 1 0 .  6  5
T 3 1 2 . 4 1 1 6 .  2 6 1 4 .  3  3
T 4 1 7 . 4 9 2 3 .  8 8 2 0 .  6 9
i J 2 5 . 4 5 2 9 . 4 4 2 7 . 4  5

T 6 3 0 .  3  9 3 2 . 1 1 3 1 .  2 5
T 7 3 2 . 4 7 3 1 .  8 8 3 2 . 1 8
T S 3 1 .  7 0 2 8 .  8 4 3 0 .  2 7
T 9 2  3 .  6  0 2  2 . u  8 2 5 .  3 4

T 1 0 2 1 .1 1 1 6 .  5 4 1 8 .  8 2
T i l 1 6 .  2  0 1 3  . 0 2 1 4 .  6 1
T 1 2 1 3 .  3 0 1 0 . 1 8 1 1 .  7 4

L l 1 0 . 4  7 7 . 7 8 9 . 1 3
L 2 6 .  8 1  

3 .  3 1  
2 . 0 4

4  . 5 6 5 .  6 8
T< -i c

L 3 
L.4 1 . 2 1 1 . 6 2
L 5 - 0 . 1 5 1 . 3 5 0 .  6 0

Figure 6.37: Sample midline discrepancy results for a test run.

6.T.4 Display Options

Several display options are available to enhance clarity of the scoliotic geometry. 
These options are available by selecting Menu Bar > Plot Controls as shown in Figure 
6.38, or alternatively by right clicking the mouse in the display menu. These options 
are discussed further below.
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«) Finite Element Analysis of the Scoliotic Spine
File P roperties List Plot Controls 

_ _ _ _ _ _ _ _ _ _ _ _  Modes

n ~ fx i

Create Geometr Elements
e rte b ra  Number

m
Midline

C reate geometry if or ■ 

C  da ta  file 

{* parameter:;. ~

Cobb Angles ngle j f,r

Figure 6.38: Plot control options available. These options can also be accessed in 
the visual display window.

N ode Num bers

The user can select to display the node numbers. This could be used to ensure that 
loads are being applied to the correct node for different trial runs. Note that, as 
shown in Figure 6.39, when condensation is used, the numbering reflects only the 
remaining nodes.

C ondensation 'Condensation

Figure 6.39: Discretization of vertebral bodies with and without condensation. 

Elem ents Num bers

Element numbers can also be displayed within the vertebral bodies and intervertebral 
discs as illustrated in Figure 6.40. Note that for visual clarity, the element numbers 
are not shown for other element types.
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t "■ . *....... * ,..............i

Figure 6.40: Display of element numbers for vertebrae and intervertebral disc ele­
ments.

Vertebrae numbers

The user may select to display vertebral body names to ensure proper load placement 
or enhance understanding of the geometry as shown in Figure 6.41.

Figure 6.41: Plotting control option to display the vertebra names.

D isplay Cobb Angles

The Cobb Angles can also be shown for geometry input using the scoliotic parameters 
as shown in Figure.6.42
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Figure 6.42: Option to display a  and d Cobb angles.

M idline

The midline {x =  0) can be displayed at any point in the analysis to enhance visu­
alization of the scoliotic deformity, or the corrected spine. This is shown in Figure 
6.43.

6.7.5 Print to  Screen

The user can select to print the current geometry to an independent screen to save 
or print the model for comparison purposes. This also allows the user to use the
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Figure 6.43: Display of the geometric midline (x = 0) to enhance visualization of the 
geometric deformity.

editing features to change figure properties, such as zoom. The user simply needs to

press the i  ■  I button on the upper right corner of the visual display in the 
graphical user interface. Note that this feature can be used at anytime throughout 
the analysis.
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Chapter 7

R esults

Prior to developing a three-dimensional model, the two-dimensional model must first 
be verified. Analytical comparisons were performed to  validate the program. A 
sensitivity analysis was then performed to determine the impact of Young’s Modulus 
on several anatomical features in addition to the effect of contact elements. The real 
time capabilities of this model were assessed.

7.1 Linear Validation of the M odel

To perform an initial verification of the model, a single motion unit without the 
intertransverse ligaments was analyzed. These tests were performed using vertebra 
Z/5, fixed at the base of the intervertebral disc with a lateral load of 100 N applied to 
the "screw" fixation point as shown in Figure 7.1.

Figure 7.1: Validation test case on a single vertebral motion unit.

91
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7.1.1 Hand Calculation

The single spinal unit was first compared to  a  cantilever beam with uniform material 
properties. However, due to the large depth to width ratio of this "beam", the 
transverse shear is large and the deflection due to shear could not be considered 
negligible. Therefore, the following equation for beams of relatively great depth[38] 
was used.

P£
v  =  f a g  { Z1 )

where F  =  |  for a rectangular cross section and G is the modulus of rigidity. This 
equation assumes a homogeneous modulus of rigidity therefore, a constant modulus 
of elasticity, E  =  5.0 MPa was used for the entire motion unit. Using Equation 7.1 
a theoretical deflection of 0.524 mm was calculated. The resulting deflection using 
femSpine and ANSYS was 0.544 mm, an error of only 4% from the theoretical value. 
This error was deemed acceptable.

7.1.2 ANSY S

The single motion unit model was then verified with ANSYS using the non-uniform 
vertebrae and intervertebral disc material properties. The resulting deflection, y  =  
0.849 mm, was found using both ANSYS and femSpine.

7.2 Nonlinear Validation of the M odel

7.2.1 Test Case

A test case, shown in Figure 7.2, was created using the same geometry used to illus­
tra te  the model in previous chapter. This model shows an a  Cobb Angle of 60 ° from 
T4 to T9, a /3 Cobb Angle of 50° from T9 to  L3, a Lumbar Obliquity of 10° and x  
and y  constraints at T5.

Forces were then applied along the left side of the model to replicate the insertion 
of the correction rod during surgery. Peak forces measured in surgery are typically 
145 N for the x  directional screw (caudal-cranial direction, along the rod) and 195 N 
in the y  direction[20]. Therefore, a load of 250 N, 40° counterclockwise from the 
horizontal, was applied to the screw hardpoint on the apex vertebra (Tl) of the
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Figure 7.2: Illustration of the test case used for the sensitivity analysis.

lumbar curve. Several additional forces were applied along the left side of the model 
to optimize correction of the spine. The load values were varied in an attem pt to 
obtain an overall spinal length correction of approximately 25 mm to reproduce results 
obtained by Papin, Labelle, Delorme, Aubin, deGuise and Dansereau[26]. In this 
study, the spinal height of 30 AIS patients was measured three days pre-operative 
and again two months post operative and an average increase in height of 25 mm was 
measured.

The chosen loading case for the test run is listed in Table 7.1. Six loads were 
applied to the left side of the spine, with two of those loads applied to screws and the 
remaining four loads applied to hooks. Recall that the loads applied to hooks are
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applied perpendicular to the surface of the vertebral body, therefore the angle shown 
in the table is the initial angle. After each load step, the angle is recalculated.

Table 7.1: Loading conditions for the sensitivity analysis
load # node # condensed  

node #
value

(N)
angle
(rads)

type

1 175 1 1 0 250 0.698 screw
2 249 179 150 2.618 screw
3 567 364 1 0 0 1.693 lower hook
4 530 343 150 1.798 lower hook
5 493 322 150 1.972 lower hook
6 456 301 150 1.798 lower hook

The resulting correction, shown in Figure 7.3, was measured as an a  Cobb Angle 
correction of 16°, a (5 Cobb Angle correction of 17°, and an increase in spinal height of 
26.4 mm. To further illustrate the resulting displacement of the spine, the deflection 
all of the center nodes of the vertebral body and intervertebral discs from L5 through 
T1 were plotted as shown in Figure 7.4. As expected, the x  deflection of the lumbar 
spine is much greater than the x  deflection of the thoracic spine. This is due to the 
added stiffness of the ribcage. The y  deflection increases somewhat linearly from L5 
to LI with the majority of the deflection occurring within the intervertebral discs.

Note the highlighted nodes: 182, 412, and 634 in Figure 7.5. These nodes will be 
used to examine correction of the spine for differing material properties as they are 
located at peak displacement values.

7.2.2 Convergence Testing

As the finite element method is merely a numerical approximation, convergence test­
ing must be carried out to ensure that the solution is valid. Due to the relatively 
low stiffness of the intervertebral discs, mesh refinement was primarily limited to the 
discs. For illustration purposes, the x  and y deflections at nodes 182 and 634 respec­
tively were noted for the differing mesh sizes of the test case as shown in Figure 7.6. 
As shown, the solution does converge by increasing the discretization of the model.

Due to the objectives of this project: to obtain a real time pre-surgical tool, the 
solver time and accuracy were both considered in selecting an appropriate mesh size.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7. Results 95

original

corrected

Figure 7.3: Resulting correction of the test case scoliotic spine. Note the original 
geometry in the background.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7. Results 96

30

25

£
§ 1 5
Coi
£ai
« 10 
CL

-5

* A x
*  A y

Hi-

*• • T

'
** J 5-

*
•

-3fc- *inloloir *
•** *

■i

. 1.......1......

#.**^#******

i i i i i i i i i i i i i i i
'■15 L4 L3 L2 L1 T12T11 T10 T9 IB  17 TB T5 T4 T3 12  T1
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discs using the original material properties.
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node 634
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Figure 7.5: Locations of nodes 182, 412, and 634. The displacements of these nodes 
will be used to examine the effects of different parameters.
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Figure 7.6: Convergence testing of the test model.
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Prom the graph, the accuracy of the system is compromised only slightly, roughly 
0.4 mm over the full range of the number of elements, while the time savings were 
significant, ranging from 10 seconds to 5 minutes. Therefore, a mesh size of 673 
elements was selected to obtain a fast and sufficiently accurate solver.

7.2.3 Nonlinear Verification

A full nonlinear numerical validation of the model was desired, however, due to large 
differences between this femSpine and ANSYS, this was not feasible. These differ­
ences include:

• the inability to model ligaments with both nonlinear material properties and 
tension only elements in ANSYS.

•  the inability to model contact elements in conjunction with nonlinear geometry 
using ANSYS.

•  the inability to control the number of load steps using ANSYS. Note that 
ANSYS uses a more accurate approach, whereby the load steps are dynamically 
sized depending on the rate of change to the resulting solution.

However, the components were tested separately as discussed in the sections that 
follow.

Nonlinear G eom etry

To test the large deflection capabilities of the femSpine solver, the solution from 
a modified version of the test case was compared with the results from ANSYS. 
The vertebrae that articulate with the ribcage (T1 through T10) were omitted from 
the modified test case to increase overall deflection of the model. The remaining 
nonlinear effects of the model were held constant: contact elements were eliminated 
and the modulus of elasticity of intertransverse ligaments was held constant at E  =
2.0 MPa. The solution from both femSpine and ANSYS are illustrated in Figure 
7.7. As shown, the solutions are similar, however the deflection of the intervertebral 
discs is larger in ANSYS. The maximum error was 6.9 mm or 17%, located near 
the applied load and the median error was 4.8 mm or 10%. The majority of this
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error is attributed assuming a linear strain-deflection relationship in the isoparametric 
elements used to model the intervertebral discs in femSpine, while ANSYS uses a 
nonlinear relationship. Additional error may also exist due to the different solvers 
used and different convergence tolerances.

For the purpose of this model, the error is deemed acceptable as the intervertebral 
discs will typically be exposed to somewhat smaller stresses compared to  those present 
for this test case. This is due to the stiffness of the ribcage and the nonlinear stress- 
strain behavior of the ligaments not accounted for here.

For interest, the linear solution (from both ANSYS and femSpine) is illustrated 
in Figure 7.7 to stress the importance of using nonlinear geometry for the current 
application. Note that the volumes of vertebrae and intervertebral discs appear to 
increase using the linear solver. While the reason for this is unknown, this solution 
is not valid because the strains are too large, e > 0.04, to be considered linear[3].

Nonlinear M aterial Properties

The nonlinear material properties were validated by following intertransverse liga­
ments #21, shown in Figure 7.8, and #11, shown in Figure 7.9, throughout the 
analysis.

Intertransverse ligament #21, was selected as it undergoes the largest strain 
throughout the test case. A plot of the strain, length and modulus of elasticity 
of this ligament is shown for each load step in Figure 7.10. The ligament begins in a 
state of prestress, with a strain of 10% and a length of 10.1 mm. In accordance with 
the stress-strain relationship shown in Figure 6.21, the modulus of elasticity is initially
2.0 MPa. After the second load step, the strain reaches 16%, and, as expected from 
the stress-strain relationship, the modulus of elasticity changes to E  = 12.7 MPa. 
Due to this increase in stiffness, the strain and change in length curves begin to flat­
ten out. After the eighth load step, the strain crosses 30% and therefore the modulus 
of elasticity drops to E  = 1.5 MPa. Note that the strain curve does not appear to 
increase significantly with this change in stiffness. This is because the length of the 
ligament has been increasing, thus decreasing the overall stiffness of the element. In 
addition, the strain calculation is also using this new element length, again causing a 
reduction in the % strain.

Intertransverse ligament #11 was also selected for observation as it is subjected
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ANSYS
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Linear

Figure 7.7: Verification testing comparing the results from ANSYS and femSpine. 
Note that the intertransverse ligaments were omitted from the figure for clarity.
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Ligament #21

Figure 7.8: Location of intertransverse ligament #21. This ligament is subjected to 
the largest strain compared to the remaining 33 ligaments following the test run.

Ligament #11

Figure 7.9: Location of intertransverse ligament #11. This ligament is subjected to 
the smallest strain compared to the remaining 33 ligaments following the test run.
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Figure 7.10: Change in strain, modulus of elasticity, and length of intertransverse 
ligament # 2 1  following each load step of the test run.
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Figure 7.11: Change in strain, modulus of elasticity, and length of intertransverse 
ligament # 1 1  following each load step of the test run.
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to compressive loading throughout the test case. A plot of the strain, length and 
modulus of elasticity of this ligament is shown for each load step in Figure 7.11. 
Ligament #11 begins in a state of prestress, with a strain of 10% and an initial 
length of 26.4 mm. Again, due to the prestress, the modulus of elasticity is initially
2.0 MPa. After the seventh load step, the strain reaches —0.2%, and is therefore 
into the next stress-strain range. The modulus of elasticity changes accordingly to 
E  = 0 MPa. Due to this decrease in stiffness, the strain and length curves flatten 
out for the remaining load steps. Note that the discontinuities in strain and length 
over load steps five and six are attributed to other nonlinear influences.

From these example ligaments, one can conclude that the material nonlinearity of 
the ligaments is accounted for in the model.

Contact E lem ents

The contact between the articular facets was validated by examining the contact 
status of the three articular facet joints where contact occurs during the test case. 
Initially, the facet joints between vertebrae T3 - T4 and vertebrae T 8  - T9 show in 
in Figure 7.12 are in contact.

Figure 7.12: Initial articular facet contact locations. Note that the contact status of 
these locations changed after the first load step as the resulting internal forces were 
pulling the joint apart.

The internal forces acting on the facet joints are shown in Figure 7.13. As shown, 
after the first load step, a small force on the facet joint between vertebrae T3 - T4 
indicates that the contact surface and node should remain in contact. The force 
vector was verified to ensure that it was perpendicular to the surface of vertebrae T4, 
to verify the constraint equations. The force gradually increases after the second
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Figure 7.13: Internal forces on the articular facet joints between vertebrae T3 - T4 
and vertebrae T 8  - T9.

load step, but then decreases during the third load step until after load step four 
the interior force indicates the joint is pulling apart. The contact status report 
indicates that, as expected, the respective constraint equations were not applied for 
the remaining six load steps. Similarly, a small force on the facet joint between 
vertebrae T 8  - T9 after the first load step dictates that the joint should remain in 
contact. The force increases to 7* 1CT4 N after the second load step but then decreases 
after the third load step. After the fourth load step the contact status was changed 
because the internal forces indicated that the joints were being pulled apart. As 
such, the respective constraint equations were not applied for load steps five through 
ten.

The third joint where articular facet contact occurs, is the left articular facet

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7. R esults 107

I n i f i . i l  1 M i l l

Figure 7.14: Illustration of the initial geometry and the final geometry of the articular 
facets between T 1 2  and LI. Contact occurs following load step #7 .

between vertebrae T 1 2  and LI, illustrated in Figure 7.14.
The geometry of the joint was plotted after each load step, and contact was first 

observed following load step seven. Accordingly, the contact status of this joint was 
turned on at the same time. The constraints equations are applied in load step eight, 
and the resulting internal forces are plotted in Figure 7.15. The internal force vectors 
were, as expected, found to be oriented perpendicularly to the surface of vertebrae 
LI.

In agreement with the contact status report, contact was not observed at the 
remaining facet joints initially or following the analysis.

In conclusion, the code used to detect contact, to apply the constraint equations, 
and to remove contact, are all functioning properly.

7.3 Sensitivity Analysis

A comprehensive sensitivity analysis was performed to understand the effect of al­
tering various properties including the material properties, contact elements, and the 
number of load steps.
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Figure 7.15: Internal force acting on the left articular facet joint between vertebrae 
T12 - L l due to contact.
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7.3.1 M aterial Properties

The starting material properties are shown in Table 7.2. These properties were 
primarily obtained from Skalli[29], but can be easily changed to accommodate other 
values.

__________________ Table 7.2: Original Material Properties__________________
Vertebra
Intervertebral Discs 
Intertransverse ligaments 
Sternum
sternum to ground
Ribs (accounts for costal cartilage)

£ '=  12000 MPa u =  0.3 t = 30 mm 
£  =  2.0 MPa v — 0.41 i =  -30 mm 
nonlinear, prestress =  1 0 %
£  =  12000 MPa A  =  100 m m2 

£  =  2.0MPa A  — 1.0mm 2 

£  =  100 MPa A  =  60 m m2

Vertebrae

As discussed in Chapter 2 , the interior of the vertebral bodies are made up of can­
cellous bone, while the exterior shell is made up of the harder cortical bone. The 
modulus of elasticity found in the literature is typically 100 MPa for cancellous bone 
and 12000 MPa for cortical bone. While these values differ tremendously, they are 
both much greater than the stiffnesses of the remaining components in the model. As 
an extreme test, these two stiffnesses were used to test the sensitivity of the system. 
As shown in Figure 7.16, the overall correction of the spine is similar, with only a 
small increase in correction of the spine using the smaller stiffness value.

To further illustrate the effect of changing the modulus of elasticity, £ ,  of the 
vertebral bodies, the y displacement for node 634, and the x  displacement for node 
182, were plotted for values of £  ranging from 50 MPa to 15000 MPa. As shown in 
Figure 7.17, the the change in correction is negligible for values of £  above 1000 MPa. 
For vertebral body stiffnesses as low as £  =  100 MPa, the y displacement only in­
creases by 4.1 mm (or 15%) while the x  deflection increases by just 2.1 mm (or 12%) 
compared to the deflections at £  =  12000 MPa.

Overall, the modulus of elasticity of the vertebrae for this two-dimensional model 
was observed to be insignificant to the overall deflection. However, it has been 
suggested in a previous study that the vertebral stiffness is significant [2]. This may 
be because while the vertebral body is rigid in comparison with the other spinal
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Figure 7.16: Resulting displacement of the spine using E  =  100 MPa and E  =  
12000 MPa for the vertebral bodies.

components, the vertebral arch is more flexible. Since the vertebral arch is omitted 
from this two-dimensional model, the influence of the modulus of elasticity is unseen. 
Therefore, the significance should be verified again once the three-dimensional model 
is constructed.

Intervertebral D iscs

To visualize the effect of changing the modulus of elasticity of the intervertebral 
discs, the x  and y displacements of the centerline nodes from L5 to  T 1 are shown in 
Figures 7.18 and 7.19, respectively, for E  =  1, 2, and 10 MPa. As the disc becomes 
stiffer, the correction decreases significantly to E  = 10 MPa where the correction is 
almost negligible. Values in the literature are typically around the 2.0 MPa - 2.5 MPa 
range, however, Sundaram & Feng[32] reported a value of 10.3 MPa. From this two-
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Figure 7.17: Deflection of nodes 634 (top graph) and 182 (bottom graph) using ver­
tebral body stiffnesses ranging from E  = 50 MPa to E  — 15000 MPa.

dimensional model, this value does not seem plausible given the force data obtained 
in surgery and the typical surgical correction.

To further understand the significance of the modulus of elasticity of the interver- 
tebral discs, the y deflection of node 634 and the x  deflection of node 182 was plotted 
for values of E  ranging from 1 MPa to 10 MPa. As shown in Figure 7.20 for larger 
values of Young’s Modulus (i.e. E  > 4 MPa) the model was only marginally sensitive, 
however, at lower values of E  the spinal correction was observed to be highly sensitive 
Clearly, it is crucial that the stiffness properties of the intervertebral discs be known 
for each patient for pre-operative testing to be viable.
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Figure 7.18: x  deflection of the centerline nodes of the spine using a varying modulus 
of elasticity for the intervertebral discs.

Intertransverse Ligam ents

Due to the nonlinear nature of the intertransverse ligaments, several tests were re­
quired to determine necessity of the nonlinear assumptions in addition to the sensi­
tivity of the chosen material properties.

The first question regarding the intertransverse ligaments was whether the de­
flection was large enough to necessitate the use of the nonlinear strain equation. 
Typically, for changes in strain above 10%, the nonlinear element should be used. 
A histogram depicting the change in strain for the 34 intertransverse ligaments was 
created as shown in Figure 7.21. Nine of the ligaments are into the nonlinear strain 
range, therefore, the nonlinear strain should be accounted for.
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Figure 7.19: y  deflection of the centerline nodes of the spine using a varying modulus 
of elasticity for the intervertebral discs.

Comparing the results for the nonlinear strain/nonlinear material property truss 
element and the elastic nonlinear material property truss element, the change in 
deflection of the spine was minimal as shown in Figure 7.22. The maximum change 
in element strain was a 4% increase with a median change of 0.2% and a mean 
change of 0.8%. While this is considered a negligible change, the computational 
time was unchanged. Therefore, the ligaments are currently modeled using the 
nonlinear strain/nonlinear material property truss element. Note that, as expected, 
the peak changes occur near the ligaments which undergo the largest strain during 
the correction.

Going back to Figure 7.21, eight of the 34 ligaments are in the negative strain 
region, meaning that the modulus of elasticity for these ligaments is 0 MPa. It is
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Figure 7.20: Deflection of nodes 634 (top graph) and 182 (bottom graph) using in- 
tervertebral disc stiffnesses ranging from E  — 1 MPa to E  — 10 MPa.

therefore also important that we include the negative strain material properties for 
ligaments.

To understand the importance of the multilinear material properties, the test case 
was run again where the modulus of elasticity for ligament #21, shown in Figure 7.8 
was maintained at E  — 2.0 MPa. A negligible change in the spinal geometry was 
observed, with only a 0.1mm increase in the final length of the ligament. It can 
therefore be concluded that the effect of the material nonlinearities for the ligaments 
are negligible. However, further testing should be executed for all of the spinal 
ligaments once the three-dimensional model is constructed.

The next step in the analysis of the intertransverse ligaments was to examine the 
effect of using an initial prestress. As shown in Figure 7.23, the difference between
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Figure 7.21: Histogram illustrating the final change in strain of the intertransverse 
ligaments using the test run.

a prestress of 1 0 % and no prestress, is not large, with a maximum increase in spinal 
displacement of 0 . 1 1  mm for the test case without prestress.

Finally, the effect of the stiffness of the intertransverse ligaments should be exam­
ined. The literature contains a large range of material property values for ligaments, 
it is therefore difficult to determine a suitable range over which to  vary the stiffness. 
Therefore, as shown in Figure 7.24, test cases were performed for E  =  10E ^ g  and 
E  =  - ^ p .  Note that the shape of the stress-strain graph was kept constant. As 
expected, the overall shape of the spinal correction remains the same with an increase 
in spinal flexibility as the stiffness of the intertransverse ligaments is reduced.

The effect of the ligament stiffness was also observed for a range of ligament 
stiffnesses, from ■— to 10E  as shown in Figure 7.25. The y displacement remains about 
the same for smaller stiffnesses, but drops off relatively quickly for larger ligament 
stiffnesses. Note that the overall change in displacement is small, resulting in less 
than a 1 % change in deflection in either x  or y, with a tenfold increase or decrease in
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Figure 7.22: Change in displacement of the centerline nodes of the spine due to 
using the nonlinear strain-displacement truss element to model the intertransverse 
ligaments instead of the linear strain-displacement truss element.

ligament stiffness.
In conclusion, the intertransverse ligaments do not have a significant effect on the 

spinal correction. However, it is anticipated that other spinal ligaments which cannot 
be included in this two-dimensional model will have greater effects.

Thoracic Cage

A sensitivity analysis was then completed for the simplified thoracic cage. The 
sensitivity of the ribs and the sternum were examined separately.

Since the ribs are primarily composed of cortical bone, the upper testing range
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Figure 7.23: Effect of prestress on the spinal deflection. Note that a positive change 
in displacement indicates a larger deflection for the test case without prestress.

was set at E  = 12000 MPa. However, since the ribs attach to the sternum with costal 
cartilage, for which a value of E  = 275 MPa[35] has been previously used, the overall 
stiffness should be somewhere between the two values. However, because this model 
does not account for the three-dimensional geometry of the ribcage, an even lower 
modulus of elasticity was used, with the original value set at E  = 100 MPa. Figure 
7.26 illustrates the effect of the ribs on the spinal correction. As would be expected, 
as the stiffness of the ribcage is increased, the spinal correction decreases. Even for 
values as low as E  =  100 MPa, the correction of the thoracic spine is relatively small. 
The correction of the lumbar spine also decreases as the stiffness of the thoracic cage 
increases. This is because the top two vertebrae making up the beta curve are T9 
and T10, which articulate with the thoracic cage. As expected, the y  deflection
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Figure 7.24: Resulting displacement of the spine for different values of the modulus 
of elasticity for the intertransverse ligaments.

decreases as a result of the increased stiffness in the x  direction.
A closer look at the resulting y deflection of node 634, and the resulting x deflec­

tions of nodes 182 and 412 is shown in Figure 7.27. The y  displacement decreases 
logarithmically as the stiffness increases except for modulus of elasticity values below 
25 MPa. Below this value, the applied forces are causing the spine to overcorrect, re­
sulting in a decrease in the maximum y displacement. As mentioned in the previous 
paragraph, the x  directional correction of the lumbar curve decreases with increased 
stiffness of the ribs. This change is quite large, a 7 mm change over the full range of 
stiffness values. The x  directional correction of the thoracic curve is directly com­
promised by an increase in rib stiffness, though the range is much less sensitive above 
E  = 100 MPa.
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Figure 7.25: Deflection of nodes 634 (top graph) and 182 (bottom graph) with varying 
stiffnesses of the intertransverse ligaments.

Clearly, the stiffness of the ribs does play a role in the spinal correction. However, 
the three-dimensional model will allow the costal cartilage to be modeled separately, 
and the true rib shape to be modeled. This may decrease the sensitivity of the 
deflection on the rib stiffness.

The effect of altering the stiffness of the sternum was then considered. However, 
because the ribs are modeled as truss elements, perpendicular forces do not pass 
through them. Therefore, due to the orientation of the rib elements, minimal y 
directional forces are placed on the sternum. As a result there is minimal change 
to the solution due to variations in the stiffness of the sternum. Ideally, the ribs 
should be modeled as beam elements since they are able to resist bending moments in 
addition to axial and shear forces. As such, they would transfer bending and shear 
loads to  the sternum. However, the articulations between the ribs and vertebrae
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Figure 7.26: Resulting displacement of the spine using E  =  10 MPa, E  =  100 MPa, 
and E  — 12000 MPa for the ribs.

are such that minimal bending and shear loads would transfer into the sternum. 
Therefore, the stiffness of the sternum should not have a substantial effect on the 
spinal correction.

Sternum  to  "Ground" Stiffness

The effect of changing the stiffness of the element attaching the sternum to a ground­
ing point was also examined. This element takes into account the stiffness added to 
the model from all remaining components such as the muscle and skin. Note that the 
stiffness value is purely experimental and as such a wide variety of values were tested. 
As shown in Figure 7.28, the shape of the spinal correction is similar regardless of the 
stiffness of the ground element.

As shown in Figure 7.29, a minimal change for both the x  and y deflection was
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noted using modulus of elasticity values less than 100 MPa. Even for values over 
100 MPa the change in displacement is minimal. Therefore, it can be concluded that 
the value of this experimental stiffness is not significant to the resulting correction of 
the spine.

7.3.2 Facet Contact Elem ents

The overall effect of the articular facets was examined by comparing the displacements 
of the centerline nodes for the test case with and without contact elements as shown in 
Figure 7.30. The largest change occurs at the LI to T12 junction, with an decrease 
in y of 0.05 mm and a peak change in x  of 0.49 mm without contact. From the 
contact element validation discussed in Section 7.2.3, the contact status for this joint 
indicates that the left side, shown in Figure 7.14, came into contact after the seventh 
load step and remained in contact throughout the remaining three load steps. The 
internal force due to the constraint application after the last load step was 63 N, Z82°.

Recall that the contact status report also indicated that the facet joints between 
Vertebrae T3 - T4 and vertebrae T 8  - T9  shown in Figure 7.12 started in contact. 
As the internal forces were very small, no noticeable effect of this was noted in Figure 
7.30.

After reviewing these results, the impact of the contact elements are minimal. 
However, using patient specific geometry in addition to the full three-dimensional 
model which will account for additional contact locations in the lumbar spine, may 
increase the influence of the facets on the spinal correction.

7.3.3 Load steps

For nonlinear models, the more load steps used in the analysis, the higher the accuracy 
of the system. However, the cost of obtaining a high accuracy comes with increased 
computational time requirements. A sensitivity analysis was performed to determine 
the number of load steps required to achieve a satisfactory accuracy level. Figure 7.31 
illustrates the displacement of the spine for 1 load step, which is essentially linear, 
and 100 load steps. As expected, a large discrepancy between the two test runs 
exists. The linear model omits all of the nonlinear components: contact elements, the
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Figure 7.27: Deflection of nodes 634 (top graph), 412 (middle graph) and 182 (bottom 
graph) using rib stiffnesses ranging from E  =  10 MPa to E  = 12000 MPa.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7. R esults 123

30 r

25

20

15C
CD

<X>
Js 10
Q-CO

-5

x E = 2MPa 
.  E = 1000MPa

JOOOC 
X  «

xxxx

x'
xxW **••*X • Ay

< *
•K&X* >4** 
x*

>£$•* xx 
i  ••>

r + r  ••v If* X.* *J «x

X'
:X*

x>i5#<
■=v~*

,•**** ■»
A x

I I I I I I I 1_____ 1_____ I_____ I_____ I_____ I_____ L J  L

!L5 L4 L3 L2 L1 T12T11 T10 TB 78 77 76 T5 T4 T3 72 T1
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Figure 7.30: Change in deflection of the spine with and without contact elements (No 
Contact—Contact).
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Figure 7.31: Centerline node deflections of the spine for 1 load step and 10 load steps.
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nonlinear material properties of the ligaments, large deflection, and nonlinear force 
application.

In order to find an acceptable medium between the two values, the x and y dis­
placements at nodes 182 and 634, respectively, were compared for differing numbers 
of load steps. The results are shown in Figure 7.32. Close inspection of both graphs 
revealed that little change in x  or y occurred for a number of load steps greater than 
10. Therefore, 10 load steps was deemed appropriate for this two-dimensional model.

d
£
CDO

_C0
Q_
CO

Number of Load Steps

Figure 7.32: Calculated displacement of node 634 and 182 in the y  and x  directions 
respectively for a varying number of load steps.
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7.4 Real Time Capabilities

Several methods, including condensation, sparse matrix storage, and boundary condi­
tion application were tested to try  to decrease the computational requirements of the 
system. For these tests, the full model (T1 -L5) was used, with boundary constraints 
applied in x  and y at the bottom of L5 for a total of 26 constraints. A single load of 
200 N was applied to the left screw position on LI over 10 load steps. The results of 
these tests are discussed below.

7.4.1 Condensation

While condensation itself does not affect the accuracy of a linear system, using con­
densation in conjunction with a nonlinear solver can. Using a Newton-Raphson 
solver, the element stiffness matrices are recalculated and reassembled following each 
load step. Due to time constraints, it would not make sense to  recalculate the ver­
tebrae stiffness matrices, then recondense them before assembling the global stiffness 
matrix and solving the model. However, because the vertebrae are relatively stiff 
compared to the remaining components of the spine, it was suggested that rotation 
matrices be used to update the super-element stiffness matrices following each load 
step. Contrary to using constraint equations to model the vertebral bodies (which 
would use this same assumption), this method does allow deflection of the vertebral 
bodies to be accounted for. The advantage of using this method is that the global 
stiffness matrix for the vertebrae do not need to be re-assembled after each load step. 
When used in conjunction with condensation, the time savings are significant.

Solving the test case, the femSpine solver time decreased by 57%, from 26.3 s to 
11.3 s when condensation was used. The difference in displacement is illustrated in 
Figure 7.33. This error was found to be a maximum of 0.9 mm, or 5% located near the 
load application site and a median error of 0.06 mm. Note that while some of the error 
was a direct result of the error involved with updating the stiffness matrices, some 
secondary error occurred due to other nonlinear components, for instance, contact 
did not occur until after load step 9 using condensation as opposed to load step 7 
without condensation.

The resulting condensation error is deemed acceptable for the resulting time sav­
ings, however, this test should be performed using the three-dimensional model to
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Figure 7.33: Plot of the spinal displacement with and without using condensed ver­
tebrae stiffness matrices.

ensure the error is within an acceptable range. Note that condensation should only 
be used on the vertebral body and not the arch as studies have shown that the arch 
is not rigid in comparison to the remaining components of the spine.

7.4.2 Sparse M atrix Storage

Recall from Chapter 4 that a matrix stored using the built-in sparse matrix capabil­
ities in Matlab will require less computational memory as long as the density of the 
matrix is less than two-thirds. Also recall that operations on sparse matrices require 
more computational time per element than full matrices. The unconstrained global 
stiffness matrix for the test run appears as shown in Figure 7.34. Note that the 17 
black squares represent the condensed stiffness matrices for the vertebrae, the arrow 
head shaped nonzero elements at the bottom right represent the triangular articular
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facets and the ribcage, the bottom right diagonal elements represent the sternum, 
while the remaining elements joining the vertebra represent the intervertebral discs 
and intertransverse ligaments. The density of the 834 row by 834 column global 
stiffness matrix is 0.0361, which is well below the upper storage limit of two-thirds. 
Therefore, it is not surprising that the storage space for this sparse matrix is a  mere 
6 % of the 5.3 megabytes of the storage space required for the full matrix. It also 
comes as no surprise that the computational requirements to solve the model decrease 
by almost 50% (from 21.8 s to 11.4 s) when using the sparse matrix storage for the 
global stiffness matrix. The final solution was verified to ensure that no error was 
added into the system using this storage method.

Figure 7.34: Illustration of the unconstrained global stiffness matrix for the test case.

On an interesting note, if the condensed vertebrae stiffness matrices are stored as 
sparse matrices (which, with a density of 1 .0 , they should not be), the total solution 
time increases by almost 40%. While an increase in operation time is expected 
due to the inefficiency of the sparse matrix operations in dealing with high density 
matrices, it was alarming at just how much extra time was required. This illustrates
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how important it is to ensure that the sparse matrix functions are only used where 
appropriate.

7.4.3 Application o f Boundary Conditions

Upon observation of the femSpine solver report shown in Figure 7.35, it was observed 
that a relatively large amount of time was spend using Allaire’s Method, discussed 
in Section 4.6.1, to apply the constraints to the model. Note that constraints are 
applied once for each load step, in addition to once for each Newton-Raphson iteration 
within each load step to clear the internal force vector at the boundary locations. This 
resulted in 780 calls (30 rounds of 26 constraints) to the constraints function, for a 
total time of 5.112 s, or 31% of the total solver time for the test case.

In an attem pt to decrease the solver time, the test run was performed using the 
elimination method of applying constraints. The advantage of using this method 
is that it can be vectorized so that one command can eliminate all of the necessary 
rows or columns from the global stiffness matrix and then another line to eliminate 
the rows in the force vector. In addition, this method doesn’t  add any additional 
error into the system. Using the elimination method, the total time for constraint 
application decreased from 5.112s to 0.1s, resulting in a new solver time of 11.61s, 
a 30% time savings! Note that the time to solve the global stiffness matrix did not 
change considerably by eliminating the 26 rows and columns (from 834 DOF to 808 
DOF) so the time savings within the solve_equations function was negligible (0.65 s 
to 0.60 s).
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MATLAB Profile Report: Summary
Report generated 08-Nov-2005 1 4:52:52

Total recorded time: 
Number of M-functions: 
Number of M-subfunctions: 
Clock precision:
Clock Speed:

Function List

16.69 s 
17 

1

0.00000006 s 
1550 Mhz

Name
stiffmat
assemble

Time

8.55100000 51.2%

6.04800000 36.2%

Calls Time/call

10 0.855099999998 

2380 0.002541176471

Self time

0.75000000 4.5%

6.04800000 36.2%

constraints 5.11200000 30.6%  780 0.006553846154 5.1120Q000 30.6%

isostress elan 
solve equations 
rotatesuperelements 
constraintecr

2.81100000 16.8% 

0.65000000 3.9%  

0.62100000 3.7%  

0.17000000 1.0%

4080 0.000688970588 

698 0.000931232092 

10 0.062100000010 

84  0,002023809524
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0.65000000 3.9%  

0.62100000 3.7%  

0.17000000 1.0%

Figure 7.35: Modified profile report from Matlab.
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Chapter 8 

Discussion

8.1 Overview

A two-dimensional model of the scoliotic spine has been presented and provides the 
framework from which a complete three-dimensional pre-surgical tool can be built. 
Essential nonlinearities, including contact elements, nonlinear load application, non­
linear material properties, large deflection capabilities and nonlinear strain are all 
accounted for. In addition, several time saving features such as condensation and 
sparse matrix storage have been utilized. The code has been streamlined and vec­
torized where possible to create a fast and accurate solver. A user friendly interface 
allows loads and constraints to be manipulated easily, and access to several features 
to aid in viewing the scoliotic geometry and evaluating the model.

8.2 Conclusions

From the sensitivity analysis several conclusions can be made:

•  The material properties of the vertebral bodies were not found to significantly 
affect spinal correction. Note that this model assumed uniform material prop­
erties while a more accurate model would include the ability to model cancellous 
bone for the center of the vertebrae. However, it is anticipated that, due to the 
relatively low sensitivity of the spinal deflection to the vertebral body material 
properties, that the differences in these models would be minimal. Therefore,

133
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at this time it can be concluded that patient specific material properties for the 
vertebral bodies do not need to be considered. However, testing will be required 
to determine if the same is true for the vertebral arch once the three-dimensional 
model is complete.

•  The stiffness of the intervertebral discs was determined to be the most sensitive 
parameter tested. As such, enhanced modeling of the discs by including the 
nucleus pulposes is recommended. In addition, patient specific stiffness values 
may be required. Further studies should be completed to  determine if these 
values can be obtained from the right and left bending test x-rays.

•  The stiffness, prestress, and nonlinear strain of the intertransverse ligaments 
were insignificant to the spinal correction. However, these tests will need to be 
performed for the remaining six ligaments in the three-dimensional model before 
making a conclusion regarding the importance of patient specific properties. 
Note that accounting for prestress and nonlinear strain do not require significant 
time or memory storage and should therefore be accounted for regardless of the 
sensitivity of these components.

•  The stiffness of the thoracic cage was found to affect spinal correction, partic­
ularly in the thoracic region. Due to the simplified model of the ribcage used 
in femSpine, further testing of the thoracic cage will also be required once the 
three-dimensional model is complete. A more complete understanding of the 
mechanics of the rib hump present in scoliotic patients is required to determine 
if patient specific geometry and material properties are required.

•  The material properties of the sternum were not significant to spinal correction. 
This is due to the mechanics of the costo-vertebral and costo-transverse joints. 
As such, patient specific material properties of the sternum will not be required 
in the final model.

•  The stiffness of the sternum to ground node does not appear to  affect the spinal 
correction and therefore patient specific values should not be required.

• The contact elements were not found to contribute significantly to surgical cor­
rection in this model. However, the increased geometrical complexity of the
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three-dimensional facet articulations may have a greater influence. In addition, 
articular facet geometry specific to scoliotic patients should be studied further 
and implemented in the model prior to further sensitivity analyses.

8.3 Future Work

While this project has been a huge step towards the final goal of creating preoper­
ative tool for scoliosis surgery, many more advancements are required to meet that 
goal. The remaining work can be subdivided into four areas: expansion to a three- 
dimensional model of the spine, improving the model to better represent the scoliotic 
surgery, further increasing real time capabilities of the model, and modifying the pro­
gram such that it can be used by surgeons. These areas will be discussed in detail 
in the following sections.

8.3.1 Expansion to a Three-dimensional M odel

Using the existing two-dimensional finite element framework, the conversion into a 
three-dimensional model will require creating the three-dimensional spinal geome­
try, defining the corresponding discretization, and developing code for the three- 
dimensional elements. The spinal geometry should include three-dimensional verte­
bral bodies with a separate vertebral arch, all spinal ligaments, and a complex ribcage 
model complete with the ability to represent the rib hump. Axial rotation and axial 
deformation of the spine must also be built in to the model.

Some minor changes will also be required in the program to allow for the advance­
ment to three dimensions. These improvements include improving the graphical 
representation of the model, enabling three-dimensional forces to be created, and en­
abling boundary conditions in the new plane. These changes should be relatively 
easy to implement as the code was created with the intent of eventually allow three- 
dimensional analysis.

In addition, it is strongly suggested that the constraint equations be updated 
to implement the augmented Lagrangian method [3], which is a combination of the 
currently used penalty method and Lagrangian multipliers. This method is preferred 
for use with an iterative solver as it is more stable.
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8.3.2 Improved M odeling o f Scoliotic Surgery

Further enhancement will then be necessary to improve the model’s representation 
of the scoliotic surgery. These improvements can be further divided into improving 
the scoliotic geometry and improved representation of the surgical procedures. Once 
these improvements, discussed in detail below, have been made, further sensitivity 
analyses should be conducted.

Scoliotic G eom etry

The results obtained from the pre-operative tool are only as useful as the information 
put into it. It is therefore imperative that patient specific geometry and material 
properties be used to create each model. It is anticipated that digital x-rays will 
enable the creation of patient specific geometry in the near future. However, this 
may not provide the initial geometry required by the pre-operative tool. In a recent 
study, partial correction of the scoliotic deformity was shown prior to instrumentation 
of the spine[5]. This correction, measured to be a mean of 10 degrees, is due to 
the patient’s positioning during the surgery and the muscle stripping to expose the 
spine. Obviously, this change in geometry will also need to be estimated for each 
patient. Further analysis and study may be required to adequately account for this 
occurrence. Patient specific material properties will also be difficult to obtain. Once 
a three-dimensional prototype has been created, sensitivity testing should enable one 
to determine which material properties play a significant role in the surgical outcome. 
This will hopefully shape future research into determining those unknown properties.

An improved representation of the articular facets is also required to improve 
the scoliotic model. The anatomical facet orientation should be accounted for and 
constraints should be created to allow slipping movement within the articular joint, 
instead of just gluing nodes together. Note that a frictional force is not necessary as 
the synovial fluid within the joint is known to minimize frictional forces [36].

The anatomy of the intervertebral discs should also be better modeled, perhaps 
through the use of a compression only spring in center to model nucleus.

Finally, a mesh which allows for the differentiation of cortical and cancellous 
bone may be necessary for the vertebrae and ribcage. Three-dimensional sensitivity 
analyses should determine whether this step is crucial to achieving accurate results.
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Surgical Procedures

Several steps need to be taken to better account for the surgical procedures. The 
patient specific geometry and material properties used must account for the patient 
lying down and the effect of the anaesthetic during surgery. More appropriate bound­
ary conditions should be explored due to patient loading and traction on operating 
table. In addition, the forces on the spine should be added one after another in the 
order they are applied during surgery.

Further Tests

Sensitivity tests will be necessary to determine future modifications to the model. For 
example, a sensitivity analysis on the impact of the articular facets could determine 
if they can be simplified or omitted to decrease computational time and memory. 
Further tests will also be required to determine if more load steps will be required to 
accurately solve the three-dimensional model.

In addition, once a three-dimensional model has been created, tests should be 
performed to compare the model with surgical data currently being obtained.

8.3.3 Real Tim e Capabilities

The main purpose of the finished pre-surgical tool is to allow the surgeon to  test 
multiple loading configurations for each patient. As such, a faster solver will allow the 
surgeon to perform a greater number of test runs. To estimate the time requirements 
for the final model, the number of elements required for the model was estimated as 
shown in Table 8.1. Two methods, discussed below, were used to approximate the 
time requirements for the three-dimensional model.

The first estimate is a crude approximation based on the increase in the fern Spine 
solver time by increasing the number of spinal units. As shown in Figure 8.1, for a 
number of elements greater than 150, a linear relationship appears between the solver 
time and number of elements. Extrapolating this relationship to the estimated 1100 
elements required for the three-dimensional model results in a solver time of 67 s.The 
second estimate is based on the current profile report generated in M atlab® and ex­
trapolating these values. For the current two-dimensional model with condensation, 
the assembly of the global stiffness matrix takes up 53% of the 11.3 s required to solve
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Table 8.1: Number of Elements Required for Three-dimensional Model
E lem en ts/U n it U nits Total E lem ents

Vertebral B ody 1 17 17
Vertebral Arch 10 17 170
Articular Facets 1 17 x 2 34
Intervertebral D iscs 32 17 544
Spinal Ligaments 1 7 x 17 x 2 238
Ribs 1 10 x 2 20
Costal Ligaments 1 10 x 2 x 3 60
Sternum 1 6 6
Total 1089

the model. There are 2380 calls to the assemble, m  subprogram, one for each element 
per load step (238 elements and 10 load steps). W ith the total number of elements 
estimated to be approximately 1 1 0 0 , this would require 1 1 0 0 0  calls to the assemble.m 
program, for a total time requirement of 27.9 s. In addition, a total of 3.73 s was 
used to create the elemental stiffness matrices, therefore, assuming 1 1 0 0  elements, 
the new estimate would be 17.3 s. The total time required to solve the finite element 
equations was extrapolated linearly to 1.2 s. The remaining components, accounting 
for 1 . 0  s are not expected to increase significantly for the three-dimensional model. 
However, because the model is becoming larger and more complex, the model may 
require more iterations to satisfy the error tolerances. Therefore, the estimated time 
requirement for the three-dimensional M atlab® model is approximately 50 s.

Once the three-dimensional Matlab model is complete, the code should be refor­
matted into a stand alone executable program. Since this program will not require 
M atlab® to be running in the background, additional time savings are expected. In 
addition, the current model is being run on a four year old computer with a 1.54 GHz 
processor and 512MB of RAM. It is expected that the final model will be run on 
a much faster computer which will allow for an even better processing time. It is 
hoped that the final model will be solved easily in under 30 s. This should allow the 
surgeon to perform multiple tests in just a few minutes time.
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Figure 8.1: Current time requirements to solve femSpine for an increasing number of 
elements.

8.3.4 Improve ease o f use by Surgeons

Ultimately, the model must be user friendly so that the surgeons will use it. While this 
will mainly involve creating a graphical user interface that is straight forward, several 
other tools will also make the program easier to use. The creation of a software tool 
to define the size and shape of the surgical rod in addition to the contact points with 
the spine and the order of attachment will increase the surgeon’s ability to manipulate 
the spine without knowledge of the exact forces being applied. A database storing all 
of the previous tests and results could help the user to look up similar test cases and 
the optimal method of correction. Ultimately, an optimization that would determine 
the best hook and screw placement to minimize forces and stresses while maximizing 
correction would be quite effective.
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While a considerable amount of work remains, the final goal of a pre-surgical 
tool is well within reach. This tool will not only eliminate the dependence on the 
surgeon’s experience, but will allow the testing of several different surgical procedures 
for individual cases. This will ultimately benefit those individuals suffering from 
scoliosis.
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Appendix A  

Element Derivations

A .l Nonlinear Strain-Displacement Truss Element
To account for large deflection, the nonlinear strain-displacement equation for a truss 
should be used [6 ]:

du 1 / d u \ 2

£xx= d i  + 2 \ f a )

Therefore, strain energy equation is now written as

U =
A E

A E

2 \ S )  1 d x

J !  ( ! H ! H  (£)'■*

(A.1)

(A.2)

(A.3)

Evaluation of the strain energy equation results in the following stiffness matrix[10]:

k =
AE \ 1 _ 1  1

2 A E r 1 - i  i 3A E  2 [ 1 1
I - 1  1 +  £2 “ 21 - i i 1 - 1  1

(A.4)

where u2i is a shorthand notation for the element deflection, — iq
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A. 2 Nonlinear Strain-Displacement Beam  Element
Assuming a uniform elastic beam, one can show that

e i %  = m
Moment

(fii j 
E I ^  -

shear force

E I 3 ?  =  2 $
distributed load

We also know that

M y
& bending j

dx2 I

Since, for elastic deflections cr =  Ee,

d2v
£ bending dx2^

The nonlinear strain-displacement equation for an axially loaded beam can be written 
as

du 1 

dx + 2
d u \ 2 f  dv V  
d x )  ^  yc tr)

Therefore,
du 1 ( d u \ 2 1 /  d v \ 2 d2v 

£ d x ^  2 \ d x )  ^  2 \ d x )  dx2 ̂
The strain energy can be written as

dU — -  aedA 
2 J a

=  i I / dA
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Therefore,

Noting that f A y2dA  =  I  and that JA ydA  =  0 (because y is measured from the 
neutral axis)

dU  =
2  \ d x J  2  \ d x 2J  2  \ o x J  2  \ o x J  \ a x J
E A ( d v \ A E A  f d v V  E A  ( d u \ 2 ( d v \ 2 

+  8  8  \<TcJ 4 \c try

When we include the entire length of the beam,

We require the displacements, u = u(x),  v =  v (x), 0 =  0 (x) =  Using a linear
function to solve for u  and a cubic function to solve for v and 0

u {x) =  «x +  a2

v(x)  = (31 +  p2 ( | )  +  0 3  ( I )  + ^ 4  ( I )

=  0 , 1 + 2 ^ + 3 1 3 ^
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Or,

u (x )

" W  =  1 f  ( t ) 2 ( !)

{s?/}

Using the end conditions, we can solve for a*, 

@ x =  0 , u =  v = Vit <f> = (f>i ==>

@ X  — £ ,  U  — U2,  V =  V2,  4> =  <j)2

U \  =  O i

Ml =  ^ i

<t>l~ £
M2 =  Cti +  Q!2

^2 =  /^ i +  f32 +  /^3 +  /^4

4*2 =  P21 +  W$-„ +  3^ 4 -

Or,
Ml
M2

1 0  

1 1

Hi
{«}

V1 )
'  1 0 0 0 /

I 0 l /£ 0 0
J

V2 [ 1 1 1 1 \

02 J 0 l /£ 2/e 1

CO

V
“ V *

h 2

Solving for {a} and {5}

Ot\
0-2

1 0  

- 1  1

Mi
U2
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01} 1 0 0 0

« M - 0 0 0

1 03 ( - 3 - 2 £ 3 - e
I 04 J 2 £ - 2 £

We need to  determine

du
dx

=  { 0  1 }{«} 

= { « • ! }

-1  1

1 0  

- 1  1

f Ml 
1 « 2

Wl
« 2

1

= 7

|  =  { « 1  ^ 2  } 

{ Ml U2 }

1

0

- 1

1

- 1

1

0

I  -

9

1 0 0 o
1 /

1 2x 3x2 \
i  W  ~W  J

0 0 0

1

- 2 £ 3
- 2 £

<

V.

= { Vi V2 0 2 }

1 0 - 3 2
0 £ -2JL £ 
0 0 3 - 2
0  0 - ^ ^

Vl
0 i
v%

— { — Qx£ +  6 .x2 1 — 4x£2 +  3x2£ 6x,£ — 6 x2 —2x£2 +  3x2̂  }

= p  { 0i ^  02 }

—6 x£ +  6 x 2 

1 — 4x£2 + 3 x 2£ 

6x£ — 6x2 
-2 x£ 2 +  3x2£
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cPv
dx2 dx 2 ( { a } T)  { «

{ 0  0  I  }

= { Vi 0j V2 02 }

1

0

1 0 - 3  
0 £ - 2£
0 0 3 - 2
0 0  - g  £

=  - 6 ^ + 1 2 x  - 4 P  +  6x£ 6 £ - 1 2 x  - 2 £ 2 +  Qx£
£A 1

£A
{ Vi 0 ! V2 0 2 }

-6 £  +  1 2 a: 
—4£2 +  6x£ 

6£ -  12x  
—2 £ 2 +  6 x£

Putting this all together, 

E A
U dx +

+

E A
~ Y
E A

m

f < ~ ) ,  , ,  ,J0 \ d x J  \ d x J  8  J0 \ d x J
r* f d v \ A E A  f e ( d u V  f d v V  

Jo X+ 4 I  V&rJ

r f d p v y ,  e ,
i  U*J ‘f a + - 2

p ' \  dx
dx

' d v \ 2 J E j 
d x )  dx + ~s

dx
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U
EA
~ T

E I  
' ~ 2 ~

E A

P

EA

Ul \  1 J  { _ 1  1 ^ Ul J  d x

J q (JfiU2{al}{a!}uf^dx

~i } ^ i {  } {  - i  1 } u \

U2 {al}  {a2} U ' f  \ dx

2 /„ \ P Ul
dx

- 1

1 P
EA  

'  8 J o  

EA
P U, |  /  } {  - 1  1 }vf) *

8
EA

JQ ( jQ Uz { a2 } { a2}Ul

{ “i 1 } { - 1 dx
1_
p '

EA
~3M

C/n U2

36 u -3 6 3£
3£ A£2 - U - £ 2

-3 6 -3£ 36 -3£
3£ - £ 2 —3£ A£2

U l

where:

lh  =  { Ui u2 ) 
U2 ■■
ai
a2

{  V i  (j)x V2 </>2 }

{ - U  +  1 2 a: - U 2 +  6x£ 6£ -  12x - 2 P  + 6x£ }
{ — 6x£ + 6x2 1 — 4xP  +  3x2£ 6x£ — 6x2 —2 x£2 + 3x2£ }
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U
EA
~2t U3

E l  T,
+ w v *

1 0  0 - 1 0 0

0 0  0 0 0 0

0

- 1

0  0  

0  0

0

1

0

0

0

0
I tT

3

0 0  0 0 0 0

0 0  0 0 0 0

'  0 0 0 0 0 0

0 1 2 u 0 - 1 2 u
0 u 4£2 0 - 6 £
0 0 0 0 0 0

0 - 1 2 - a 0 1 2 - u
0 u 2 t2 0 - 6 £ M2

u.

EA
U21U3

where:

Using Castigliano’s Theorem:

0 0 0 0 0 0

0 36 u 0 -3 6 u
0 U A£2 0 - U ~ e
0 0 0 0 0 0

0  --36 -3 £ 0 36 -3 £
0 U —£2 0 -3£ 4£ 2

Vl 4>i U2 v2 0 2  }

u l

„  dU
Pi = —  t = 1,2,..., n  

dqi
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k
E A

1 0 0 - 1 0 0  '
(  \

Ul

0 0 0 0 0 0 Vi

0

- 1

0

0

0

0

0

1

0

0

0

0
< 0 1

U2

0 0 0 0 0 0 V2

0 0 0 0 0 0 „ 0 2  ,

' 0 0 0 0 0 0
/ ux \

0 12 u 0 - 1 2 u V i

E l| 0 6£ 4£ 2 0 —6£ 2£2 0 i
£* 0 0 0 0 0 0

<
« 2

>

0 - 1 2 - u 0 12 - u V2

_  0 6£ 2£2 0 -6 £ M2 02

'  0 0 0 0 0 0 '
f

U i

0 36 3£ 0 - 3 6 3£ V i

E A 0 3£ A£2 0 —3£ -£2 0 i1
1 30£2U21

0 0 0 0 0 0
<

U2

0 - 3 6 -3 £ 0 36 -3£ V2

0 3£ - £ 2 0 —3£ A£2 S. 02 ,
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