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Abstract

We study penalized fitting strategies aimed at sparse model selection of models satisfying

certain hierarchical restrictions, in linear models arising from factorial experiments. After

discussing various merits of existing approaches, we propose a modification and general-

ization of the approach of Bien, Taylor and Tibshirani, capable of handling also models

with factors with possibly more than two levels. The approach is based on the modified

constraint used in conjunction with the group LASSO. The effect of the modified constraint

on the selection of main effects and pair interactions is explored. We characterize the so-

lution for both quadratic and logistic loss and give an unbiased Stein-type estimate for the

degrees of freedom, the quantity required as the key component for the selection among

competing models in regularization. We compare the derived estimates of the degrees of

freedom with the existing ones from the literature.

We also study properties of certain alternative approaches: for the so-called standardized

group LASSO of Simon and Tibshirani, we show first that it remains unchanged under the

transformation of Zhao et al., aimed at unifying group weights, and then we characterize

the solution of the newly standardized group LASSO. Based on this characterization, we

again derive the unbiased estimate of the degrees of freedom. We establish such an estimate

of the degrees of freedom also for the overlapped group LASSO of Obozinski et al.

We after show that the derived estimates of the degrees of freedom converge, when the

tuning parameter converges to zero, to the (true) degrees of freedom of the corresponding

ii



constrained least-squares estimator. We investigate certain particular properties of sparse

fitting procedures in factorial designs. We establish the connection, for balanced designs,

between penalized estimation and traditional constrained least-squares estimators. We also

propose methods of selecting the regularization parameter selection based on AIC and BIC.

Finally, we show how replications in factorial designs affect the selection process of stan-

dardized group LASSO.
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Chapter 1

Introduction

1.1 Introduction

New scientific problems arising in recent decades brought a need for the analysis of so-

called high-dimensional data sets. They are called so because in those data sets the number

of predictors p is large and often exceeds the sample size n. For instance, the DNA micro-

array data set, analyzed by Hastie et al. [9], consists of 6830 genes of human tumours of

64 patients; that is n = 64 and p = 6830. In such a situation, the columns of the design

matrix X are not independent, and XTX is singular. Therefore, the traditional theory of

least squares regression is not applicable; among other things, it is not possible to calculate

p-values and select predictors. Even if p does not exceed n, but is large, using least squares

regression and calculating all p-values can be problematic.

High-dimensional data are often analyzed by penalization. The general scheme of penal-

ized regression is

β̂ = argmin
β

(Loss + λ Penalty) ,

where Loss quantifies the prediction error, Penalty expresses the desired condition on the

fit, and λ determines the weight or importance of the penalty term.

One of the first penalized regression models was ridge regression. Consider a regression
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model with an outcome Y and design matrix Xn×p, where n is the number of observations

and p is the number of predictors. For the regression model,

Y =Xβ + ε,

the ridge regression estimate β̂ is

β̂ = argmin
β

1

2
∥Y −Xβ∥

2
2 + λ

p

∑
i=1

β2
i ,

where λ > 0. Solving this problem yields β̂ = (XTX + λI)
−1
XTY . Now, even if XTX is

singular, XTX + λI is invertible.

Ridge regression solves the collinearity problem among predictors, but it has a tendency

to result in small nonzero estimates for the components of β with true values equal to zero.

Tibshirani [29] proposed LASSO to shrink and select variables in high-dimensional data

sets. The LASSO estimate is defined as

β̂ = argmin
β

1

2
∥Y −Xβ∥

2
2 + λ

p

∑
i=1

∣βi∣.

LASSO typically produces a vector of coefficients β with many zero components. It not

only addresses collinearity as the ridge regression does, but also selects variables by assign-

ing zero to predictors with little or no importance; the nonzero components yield the model

with relatively few nonzero parameters. Such models are called sparse.

LASSO provides a good statistical interpretation when the number of levels of existing fac-

tors is no more than two. Consider a factorial design with two categorical factors each with

three levels. The linear model consists of six dummy variables with coefficients (β1, β2, β3)

for the first factor and (β4, β5, β6) for the second factor. It is possible that it selects only

levels corresponding to β2 and β6 because LASSO treats all dummy variables equally.
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Yuan and Lin [18] proposed group LASSO for linear models with factors or group-wise

predictors. The group LASSO estimate is defined as

β̂ = argmin
β

1

2
∥Y −Xβ∥

2
2 + λ

p

∑
g=1

⎛
⎜
⎝

¿
Á
ÁÀlg

lg

∑
i=1

β2
i

⎞
⎟
⎠
,

where g = 1, . . . , p refers to factor indices, and lg determines the number of levels of g-

th factor. Group LASSO works well for disjoint grouped parameters because it selects or

drops out groups of variables properly. However, it fails for overlapped groups, which ap-

pear in the penalty term when the model includes interactions and obeys hierarchy rules.

In the statistical literature, the fitted models often follow some hierarchical principles.

Peixoto [21] used hierarchy in polynomial regressions in such a way that a higher order

term is in the model only when lower order terms are in the model. Hamada [35] discussed

hierarchy as a heredity principle. Nelder [19] called hierarchy as marginality. Heredity

or marginality states that the presence of an interaction in the model is allowed only by

presence of, some or all, related main effects. In this thesis we focus on hierarchical linear

models applicable to high-dimensional factorial designs.

1.2 Overview of the thesis

There are two main approaches to guarantee hierarchy in fitted linear models: grouping of

main effects and interactions in the penalty term; or using a hierarchy constraint.

The first approach makes a proper grouping or a set of groups of main effects and inter-

actions in the penalty term. Consider a two way factorial design with factors A and B, each
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with 3 levels, and interaction AB. The linear model is

y
abk

= µ + αa + βb + (αβ)ab + εabk ,

where a = 1,2,3 and b = 1,2,3. The proper grouping for satisfying hierarchy in the fitting

of this linear model is {{A} ,{B} ,{A,B,AB}}; see Chapter 2 for more details. Therefore,

the corresponding group LASSO penalty is

√
3∑

a

α2
a +

√
3∑

b

β2
b +

¿
Á
ÁÀ15(∑

a

α2
a +∑

b

β2
b +∑

a
∑
b

(αβ)2
ab).

Suppose the first and second group of coefficients overlap with the third group; In such a

situation, group LASSO could fail to select groups properly. The overlapped group LASSO

proposed by Obozinsky et al. [34] is capable of yielding a hierarchical linear model for this

case.

The second approach uses a new constraint rather than grouping of main effects and in-

teractions in the penalty term. Its idea is derived from Cox [3], who stipulated that large

main effects are more likely to lead to appreciable interactions. Based on this principle,

Bien, Taylor, and Tibshirani [27] proposed a constraint to induce hierarchy in linear mod-

els. Consider a linear model with two factorsA andB, each with two levels, and interaction

AB. The linear model by baseline constraint and related dummy variables is as follows

yi = µ + βADAi + βBDBi + βABDABi + ε,

where DAi = DA(yi) = I(yi ∈ 2nd level of A) and DABi = DAi ∗ DBi. The hierarchy

constraints are then

∣βAB ∣ ≤ ∣βA∣ and ∣βAB ∣ ≤ ∣βB ∣. (1.2.1)
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These constraints together with LASSO results in a hierarchical sparse model.

The advantages and disadvantages of both approaches are discussed in Chapter 2, which

reviews and compares the existing proposals, to justify our preferred choice between them.

In Section 2.2, we provide high-dimensional factorial examples to motivate and illustrate

the application of our results.

The main results of this thesis are given in Chapter 3. We focus on the second approach,

the approach based on constraints. We propose a modified generalized version of (2.5.7),

to satisfy hierarchy in high-dimensional factorial designs. We investigate the effect of this

constraint on estimates in Theorem 1. The proposed procedure combines group LASSO

and LASSO penalties. Therefore, the solution lies in the set of SLASSO ∩ Sgroup LASSO where S is

the support of the related procedure. We characterize the solution in Theorem 2; and based

on this characterization, we calculate the degrees of freedom for the proposed procedure in

Theorem 3.

Chapter 4 is devoted to alternative approaches: the standardized group LASSO [28] and the

overlapped group LASSO. Standardized group LASSO is a specific case of group LASSO

with an orthonormalized design matrix. At first, we propose a normalization to unify group

weights, which is investigated in Theorem 4. Then, we characterize the solution in Theo-

rem 5; and calculate the unbiased estimate of degrees of freedom in Theorem 6. Finally,

the unbiased estimate of degrees of freedom for the overlapped group LASSO is calculated

in Corollary 1.

We apply the modified hierarchy constraint on generalized linear models with a binary

response in Chapter 5. The solution is characterized in Theorem 7. The model selection

5



process of the proposed procedures are investigated in Section 5.5. The calculated esti-

mates of degrees of freedom in this thesis are compared with other known estimates of the

degrees of freedom in Section 5.5. Also, we compare the calculated degrees of freedom

with the degrees of freedom of the corresponding ANOVA in the extreme case where the

tuning parameter λ→ 0. We show in Theorem 8 and Corollary 2 that they are equivalent.

It seems the only connection investigated so far between classical ANOVA methodology

and group LASSO is Lim’s [17]. To establish such a connection, we need to make a con-

nection between group LASSO with classical ANOVA concepts, such as factors, balanced

design and replication. The parameters in classical ANOVA models are estimated by a

constrained least-squares estimator, hereafter called constrained LSE. Chapter 6 further de-

velops Lim’s idea [17]; and shows a connection between group LASSO and constrained

LSE in Theorem 9. It shows that group LASSO, in the case of balanced design, satisfies

sum-to-zero constraints. Section 6.5 investigates the selection process of group LASSO;

and shows how replication affects the selection process specifically in the case of balanced

designs. Section 6.3 is devoted to the selection of λ. The usual methods for selection of

λ are cross-validation, AIC and BIC. However, the calculation of AIC and BIC requires

determining the quantity of the degrees of freedom, which are calculated in this thesis.

1.3 Basic concepts and definitions

1.3.1 Norm

A norm on a vector space V is a function ∥ ⋅ ∥ ∶ V Ð→ R such that for all a ∈ R and u, v ∈ V

has the following three properties

(i) absolute homogeneity: ∥av∥ = ∣a∣∥v∥

6



(ii) subadditivity: ∥u + v∥ ≤ ∥u∥ + ∥v∥

(iii) zero vector: ∥v∥ = 0⇒ v = 0.

The following norms are used throughout the thesis. Define β = (β1, . . . , βp) then

• l1-norm: ∥β∥1 = ∑
p
i=1 ∣βi∣.

• l2-norm: ∥β∥2 =
√
∑
p
i=1 β

2
i .

• lp-norm: ∥β∥p = [∑
p
i=1 ∣βi∣

p]
1
p and p > 1.

• l1/l2-norms: Suppose g1 ,⋯, gp be the corresponding group of parameters each with

size lgi and dgi > 0 be the weight of group g
i
. The corresponding l1/l2-norm of

β = (βg1
,⋯, βgp) is defined as

∥β∥1/2 =

p

∑
i=1

⎛
⎜
⎜
⎝

dgi

¿
Á
Á
ÁÀ

lgi

∑
j=1

β2
j

⎞
⎟
⎟
⎠

.

• Induced matrix norm: Suppose ∥ ⋅ ∥∗ is a vector norm; then, its induced matrix norm

is defined as (Atkinson and Han [12], page 57)

∥A∥∗ = sup{∥Ax∥∗ ∣ x ∈ Rn, ∥x∥∗ ≤ 1} = sup
x∈Rn, ∥x∥∗≤1

∥Ax∥∗.

Note that ∥A∥2 =
√
λmax(ATA) = σmax(A) i.e. the induced l2-norm of matrix A is

its largest singular value or is the square root of the largest eigenvalue of ATA.

1.3.2 Convex optimization

A set C is convex if the line segment between any two points in C lies in C, i.e., for any

x1, x2 ∈ C and any θ ∈ [0,1]

θx1 + (1 − θ)x2 ∈ C.

7



A set C is called a cone, if for every x ∈ C and θ ≥ 0, we have θx ∈ C. A set C is convex

cone, if for any x1, x2 ∈ C and θ1, θ2 ≥ 0 we have

θ1x1 + θ2x2 ∈ C.

A cone K ⊆ Rn is called a proper cone if it satisfies the following:

• K is convex.

• K is closed.

• K has nonempty interior.

• K contains no line (equivalently x ∈K and −x ∈K ⇒ x = 0).

Suppose K ⊆ Rn be a proper cone then, the partial ordering in Rn is defined as

x ⪯K y⇐⇒ y − x ∈K.

A function f ∶ Rn Ð→ R is convex, if domf is a convex set; and if for all x, y ∈ domf , and

θ ∈ [0,1], we have

f(θx + (1 − θ)y)) ≤ θf(x) + (1 − θ)f(y).

Consider the optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p, (1.3.1)

with variable x ∈ Rn. Assume the domain D = ⋂
m
i=0 domfi ∩ ⋂

p
i=1 domhi is nonempty, and

denote the optimal value of (1.3.1) by p∗. The Lagrangian L ∶ Rn ×Rm ×Rp → R is

L(x,λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x),
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with domL =D ×Rm ×Rp. The Lagrange dual function g ∶ Rm ×Rp → R is defined as

g(λ, ν) = inf
x∈D

L(x,λ, ν) = inf
x∈D

(f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x)) .

Note that the dual function yields lower bounds on the optimal value p∗:

g(λ, ν) ≤ p∗.

The dual function is concave, as it is the pointwise infimum of a family of affine functions

of (λ, ν). The Lagrange dual problem is

maximize g(λ, ν)

subject to λ ⪰ 0,

and the optimal value of the problem is denoted by d∗; therefore d∗ ≤ p∗. If strong duality

holds, i.e., if d∗ = p∗, then the optimal dual gap is zero. Slater’s theorem states that if the

problem is convex and there exists a strictly feasible point, i.e., ∃x ∈D such that

fi(x) < 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p,

then strong duality holds. Note that strong duality holds even with weaker condition, i.e.,

only some of inequality constraints are strict.

Suppose strong duality holds. Let x∗ and (λ∗, ν∗) be the primal and dual optimal point.

Then

f0(x
∗) = g(λ∗, ν∗)

= inf
x

[f0(x) +
m

∑
i=1

λ∗fi(x) +
p

∑
i=1

ν∗i hi(x)]

≤ f0(x
∗) +

m

∑
i=1

λ∗fi(x
∗) +

p

∑
i=1

ν∗i hi(x
∗) ≤ f0(x

∗).
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This shows that
m

∑
i=1

λ∗fi(x
∗) = 0,

the condition called complementary slackness.

Suppose fi, i = 1, . . . ,m, are convex; hi, = 1, . . . , p, are affine, and x∗, λ∗, ν∗ be any

points that satisfy the KKT conditions

fi(x
∗) ≤ 0, i = 1, . . . ,m

hi(x
∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi(x
∗) = 0, i = 1, . . . ,m

∇f0(x
∗) +

m

∑
i=1

λ∗i∇f(x
∗) +

p

∑
i=1

ν∗i ∇hi(x
∗) = 0.

Then x∗ and (λ∗, ν∗) are primal and dual optimal, with zero duality gap.

1.3.3 Subdifferential

Let f ∶ Rn Ð→ R, be a convex function. Then υ ∈ Rn is a subgradient of f at point

x0 ∈ domf if

f(x) ≥ f(x0) + υ
T (x − x0) ∀x ∈ domf.

The subdifferential ∂f(x0) of f at x0 is the set of all subgradients

∂f(x0) = {υ ∈ Rn ∣ υT (x − x0) ≤ f(x) − f(x0), ∀x ∈ domf} .

Suppose that f(x) = ∣x∣, x ∈ R, then

∂f(x) =
x

∣x∣
if x ≠ 0, ∂f(x) = {υ ∈ R ∣ ∣υ∣ ≤ 1} = [−1,1] if x = 0.
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Let f be the Euclidean norm f(x) = ∥x∥2 where x ∈ Rn then

∂f(x) =
x

∥x∥2

if x ≠ 0, ∂f(x) = {υ ∈ Rn ∣ ∥υ∥2 ≤ 1} if x = 0.

1.3.4 The degrees of freedom

In elementary textbooks, degrees of freedom refer to particular parameters in some distri-

butions such as t, F and chi-square. In the classical ANOVA, the degrees of freedom of

sum of squares of treatments and error are needed for calculating F-statistics. This leads to

the definition of degrees of freedom for sum of squares; the definition which is a specific

number of levels of factors. This concept generalizes to multiple regression involving p

covariates; in such a case, the degrees of freedom of fit is p.

Suppose the vector of response Y ∈ Rn is normally distributed. Let g ∶ Rn
→ Rn be

the prediction rule, Ŷ = g(Y ); the risk of g is then, Efron [6],

Risk(g) = E ∥g(Y ) − µ∥
2
2 = E ∥g(Y ) − Y ∥

2
2 − nσ

2 + 2
n

∑
i=1

cov(gi(Y ), Yi).

The last term in the right side of the equation can be taken for the following definition of

degrees of freedom of g, suggested by Efron [6]:

df(g) =
1

σ2

n

∑
i=1

cov(gi(Y ), Yi). (1.3.2)
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We need µ for calculating of cov(gi(Y ), Yi) which is the parameter of interest in regression

analysis. Also note that E [g(Y )] depends on µ [30]. Therefore, this definition may not be

suitable for practical calculations. Stein [24] proposed an unbiased estimate for df(g) as

df(g) = E [(▽.g)(Y )] Ô⇒ d̂f(g) = (▽.g)(Y ) =
n

∑
i=1

∂gi(Y )

∂Yi
(1.3.3)

where g is continuous and almost everywhere differentiable. Based on this definition the

Stein’s unbiased risk estimation, SURE, is

R̂isk(g) = ∥g(Y ) − Y ∥
2
2 − nσ

2 + 2σ2d̂f(g). (1.3.4)

The prediction rule in multiple regression is g(Y ) =Xβ̂(Y ) therefore

∂g(Y )

∂Y
=X

∂β̂(Y )

∂Y
=X

∂ (XTX)
−1
XTY

∂Y
=X (XTX)

−1
XT .

This implies that

d̂f(g) = (▽.g)(Y ) = tr(X (XTX)
−1
XT ) = tr(Ip) = p.

It shows that the degrees of freedom in least squares regression are equal to the number of

predictors in the model.

1.3.5 The implicit function theorem

The following statement of implicit function theorem can be found in Yu [37].

Let f ∶ Rn
Ð→ Rm with n >m. We decompose

Rn

= Rn−m
×Rm

and denote the first n−m coordinates by vector x and the rest m coordinates by y. Assume

12



• f is differentiable and has continuous partial derivatives, (it can be considered in an

interval);

• f(x0, y0) = 0;

• Jacobian ∂f
∂y (x0, y0) is invertible.

Then, there are open sets U ⊆ Rn−m , V ⊆ Rm satisfying x0 ⊆ U, y0 ⊆ V and

• For every x ∈ U the equation f(x, y) = 0 has one unique solution y = g(x) ∈ V ;

• g(x0) = y0;

• g is differentiable with continuous partial derivatives;

• For x ∈ U ,
∂g

∂x
= −(

∂f

∂y
)

−1

(
∂f

∂x
) .
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Chapter 2

Hierarchy in Linear Models

2.1 Introduction

This chapter reviews existing approaches in groupwise regularization and their properties,

to justify the preferred choice for constructing hierarchical sparse models. Unlike the fol-

lowing chapters, this chapter contains no technical results. However, we believe that it is

important for understanding certain motivations, which determine our subsequent focus in

this thesis.

There are two forms of hierarchy in linear models, weak and strong. Strong hierarchy

refers to a rule in which the presence of an interaction is allowed only by presence of all

related main effects. Weak hierarchy, on the other hand, requires only one of the related

main effects. There are different opinions in this regard: Hamada et al. [35] suggest both

weak and strong hierarchy for linear models; Nelder [19], on the contrary, suggests strong

hierarchy as a default rule. Fitting linear models satisfying such rules is of interest in high-

dimensional data sets [17], [36], [27] and [1].

As already mentioned in the previous chapter, there are two main approaches to achieve

hierarchy in fitted linear models. The first approach (Zhao et al. [36] and Lim [17]) uses a

specific geometric property of l1/l2-norms to satisfy hierarchy. The second approach uses
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a constraint to achieve hierarchy which is inspired by Cox [3]. Bien, Taylor and Tibshi-

rani [27] proposed a constraint, which together with LASSO results in a hierarchical sparse

model. However, this constraint is restricted to factors at most with two levels.

This chapter starts with two real-data examples in section 2.2 and it is followed in Sec-

tion 2.3 by definition of interaction in factorial designs. Section 2.4 establishes strong

hierarchy as a default rule in this thesis by Nelder’s argument. Section 2.5 reviews exist-

ing approaches, downward and upward grouping structures, Lim’s theorem and the con-

straint of Bien et al. [27]. The modification of the constraint of Bien et al. [27] is given

in Section 2.6; and we justify our preferred choice between two approaches for achieving

hierarchy in Section 2.7.

2.2 Examples

2.2.1 A high-dimensional example

The data set of the genome-wide association study [17] deals with 26797 Single Nucleotide

Polymorphism (SNP) markers. Each of those markers can be interpreted as 3-level categor-

ical random variables. The data set contains 3500 training examples; apparently n << p in

this case. Even if we consider only main effects, classical ANOVA would not be applica-

ble here. If we consider also pair interactions, the model would contain around 3.23 × 109

parameters. It is clear that working with such huge data requires its own method.

The number of sum-to-zero constraints for model with pair interactions are around 2.15 ×

109. Fortunately, based on Theorem 9 and related results, the sum-to-zero constraints

would be dropped out from group LASSO. Lim [17] designed the R package GLINTER-

NET to apply group LASSO on this data set with pair interactions. It selects the main

15



effects called SNP6-305 and denseSNP6-6873 together with pair interaction denseSNP6-

6881 × denseSNP6-6882. The selected model is clearly not hierarchical. It is similar to our

result in Table 6.4, where we will see that the standardized group LASSO drops out one of

the effective main effects while it picks up the related pair interaction. In the genome-wide

association study, Lim [17] showed with an F-test that the main effect denseSNP6-6882

is significant while it is not picked up by GLINTERNET. Thus, we still appear to need a

method picking up a model satisfying the hierarchy principle automatically.

2.2.2 A toy example

We consider a two-factor layout from [35] and [11], in which the main effects and the in-

teraction are statistically significant at the 95% confidence level. The design is balanced in

order to facilitate the comparison of the group LASSO estimate with the constrained LSE.

A manufacturer found unwanted differences in the torque values of a lock nut that it made.

Torque is the work, force×distance, required to tighten the nut. Consequently, the manufac-

turer conducted an experiment to determine which factors affected the torque values. The

type of plating process was isolated as the most probable factor to impact torque, especially

using no plating versus using plating. Another factor is the test medium, that is, whether

the locknut is threaded onto a bolt or a mandrel. A mandrel is like a bolt but harder. Thus,

the two experimental factors were

• type of plating, whose three levels were Cadmium and Wax denoted as C&W, Heat

Threaded or no plating denoted as HT, and Phosphate and Oil denoted as P&O

• test medium, whose levels were mandrel and bolt.
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The industry standard is 45-foot-pound maximum when the locknut is first threaded onto

its mating partner as measured by a manual torque wrench. Table 2.1 shows torque data for

the bolt experiment.

C&W HT P&O

Bolt 20,16,17,18,15, 26,40,28,38,38, 25,40,30,17,16,
16,19,14,15,24 30,26,38,45,38 45,49,33,30,20

Mandrel 24,18,17,17,15, 32,22,30,35,32, 10,13,17,16,15,
23,14,18,12,11 28,27,28,30,30 14,11,14,15,16

Table 2.1: Torque data, bolt experiment, Wu [11].

2.3 Interactions in ANOVA models

It is common in additive models that main effects are inadequate for predicting the response

variable. For instance, consider a two-factor layout where the effect of a factor on the re-

sponse variable is associated with the levels of the other factor. In such a situation, the

additive model cannot explain the response variable properly and we expect the presence of

an interaction in the model. The other names for interaction in statistical literature are joint

effect, cross-term, and compound term.

We consider pair interactions as the componentwise product of two factors, in the same

way as Bien et al. [27], and Lim [17]. Let Xg denote the submatrix corresponding to the

g-th factor with each row containing only a single 1 and other components are zero; such a

matrix is called an indicator matrix (Lim [17]). We use indices g ∈ G = {1, . . . , p} to refer to

factors, where p is the number of factors. The cross-term matrix Xg∶h is the componentwise

product of Xg and Xh, and corresponds to the interaction of the factors g and h.
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For instance, consider two factors with two and three levels, respectively. A generic row of

the matrix Xg∶h is given by

(a b) ∗ (c d e) = (ac ad ae bc bd be), (2.3.1)

where (a, b) and (c, d, e) are the corresponding generic rows of Xg and Xh.

Study of pair interactions in the case of high-dimensional data, p >> n, is challenging

since there are (
p
2) pair interactions, the number that increases dramatically with p.

2.4 Hierarchy principles

“Hierarchy” in model construction and fitting means that only certain models are consid-

ered acceptable from the statistical point of view. In ANOVA this requirement may lead to

quite complex conditions; in this thesis, we adopt a somewhat simplified view.

If a model with interaction is accompanied by all related main effects then we call it a

model with strong hierarchy. We speak about weak hierarchy if it contains only one of the

related main effects. Consider a model

η = β0 + β1x1 + β2x2 + β12x1x2. (2.4.1)

The hierarchy rules for this model are as follows:

Strong hierarchy ∶ β12 ≠ 0 Ô⇒ β1 ≠ 0 and β2 ≠ 0

Weak hierarchy ∶ β12 ≠ 0 Ô⇒ β1 ≠ 0 or β2 ≠ 0.

Hierarchy is investigated by Hamada [35] and Chipman [2] who call it the heredity princi-

ple. Nelder [19], when studying strong hierarchy, speaks about the marginality principle. In

the marginality principle, strong hierarchy is the default rule, since weak hierarchy occurs
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actually in the so-called slope-ratio assays and the pure interaction model shows a surface

with a saddle point at the origin. With this reasoning, pure interaction is too restrictive to

be used practically; this establishes the hierarchy principle. However, the restrictive condi-

tions for implication of weak hierarchy in practical situations lead us to consider the strong

hierarchy as a default rule.

2.5 Existing approaches in hierarchical fitting

2.5.1 Group LASSO

In a factorial design, each factor in the related linear model corresponds to a group of

dummy variables representing its levels. In such models, it is of interest to select or drop

an entire factor instead of its particular level or levels. LASSO may not do it since LASSO

treats all regressors equally. It may select only one level of a factor and drop other levels of

that factor. Group LASSO is a solution to this problem.

The essence of the LASSO penalty is the use of the l1-norm. The right panel of Figure 2.1

shows the unit ball of this penalty. When the surface of loss intersects with the surface of

this ball, it is typically in the extreme points; the vector of parameter estimates thus gets

many zeros, resulting in a sparse model. Ridge regression uses the l2-norm penalty and

the unit ball of this penalty is the standard Euclidean, round ball. It yields typically a full

regression model; that is, all components of the vector of parameter estimates are nonzero.

Yuan and Lin [18] used these two properties of l1 and l2-norms and proposed the group

LASSO penalty,

Ωgroup LASSO(β) =∑
g∈G

dg∥βg∥2,
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where dg is a groupwise weight. This penalty uses an l1/l2-norm where the l1-norm favours

sparsity while the l2-norm favours the groupwise structure. For instance, consider β =

(β1, β2, β3) with groups {β1, β2} and {β3}; then

ΩLASSO(β) =
3

∑
i=1

∣βi∣ and Ωgroup LASSO(β) = ∥(β1, β2)∥2 + ∣β3∣.

The unit ball for this penalty is illustrated in the left panel of Figure 2.1. Compared to

LASSO, the shape of the unit ball of group LASSO is in favour of selecting only {β3} on

top (bottom) of the ball or selecting group {β1, β2} as the circle in the middle of the ball.

Note that groups {β1, β2} and {β3} are disjoint and group LASSO works well for disjoint

groups.

Figure 2.1: The unit balls for group LASSO and LASSO penalties.

2.5.2 CAP

As already mentioned, group LASSO uses the l2-norm to encourage group structure in the

model. The lp-norm, where p > 1, can be used for the same purpose. Fu [10] penalized the

negative log-likelihood by an lp-norm and showed that by choosing a proper data specific
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p, prediction is better in the sense of the MSE, the mean squared error.

Zhao et al. [36] used this fact and generalized group LASSO by using l1/lp-norms in or-

der to get a better prediction in the sense of the MSE. They called it Composite Absolute

Penalty, CAP. The penalty in this procedure is as follows:

ΩCAP (β) =∑
g∈G

dg∥βg∥p,

where p > 1. Therefore, the l1-norm promotes sparsity while the lp-norm encourages group

structure in the model, and at the same time improves prediction error. Like group LASSO,

CAP works well for disjoint groups.

Zhao et al. [36] used BLASSO algorithm to trace the solution path in the case of disjoint

groups. They also tried, for the first time in statistical literature, to achieve hierarchy in

linear models by designing a specific penalty. For this purpose, they illustrated hierarchical

structure of parameters as a directed graph and tried to represent it as a set of groups. By

designing directed graphs, they [36] argued that,

“[E]ach node corresponds to a group of variables g
k

and set its descendants to

be the groups that should only be added to the model after g
k
.”

To understand the aforementioned quote, consider the main effects A and B and interaction

AB with a hierarchy such that AB is a descendant of A and B. Therefore, the descendant

AB “should only be added to the model after” A. With this definition, since there is no

descendant for AB, then ∅ “should only be added to the model after” AB. This gives

the grand set G = {{A,AB},{B,AB},{AB}} which defines a downward algorithm in
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grouping. They proposed the following penalty

ΩCAP (β) =∑
g∈G

dg∥(βg, βall descendants of g)∥p. (2.5.1)

In this penalty, groups overlap since the descendants appear at least in three different

groups. This penalty improves hierarchy in the fit but it does not result in a strong hier-

archy. This means that some of interactions appear in the model without their main effects.

Zhao et al. [36] used the term “hierarchy gap” to determine the number of variables that are

missing to achieve a strong hierarchy.

2.5.3 Overlapped group LASSO

Group LASSO or CAP work well when the groups form a partition; if they do not, the

problem with the “hierarchy gap”, as observed by Zhao et al. [36], occurs.

Consider three overlapped groups in such a way that the first and third groups get zero

coefficients by group LASSO. What remains, is not the second group, but rather the co-

variates in the second group which are not in the first or third groups. Therefore, we are

looking for a penalty that selects groups entirely; that is, the support (the indices of nonzero

components) of the solution β̂ is a union of groups.

For this purpose, Obozinski et al. [34] proposed the following penalty

Ωoverlap(β) = inf
v∈VG,∑g∈G vg=β

∑
g∈G

dg∥vg∥2,

where vg, g ∈ G are auxiliary variables; they represent a decomposition of β as their sum.

Let us write this penalty in a simple example. Consider main effects A and B each with

three levels and pair interaction AB. Also consider the three overlapped groups g1 = {A},
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g2 = {B}, and g3 = {A,B,AB}, then G = {{A},{B},{A,B,AB}}, hereafter called grand

set. Therefore,

Ωoverlap(β) =
√

3∥α
A
∥2 +

√
3∥α

B
∥2 +

√
15

√
∥α̃

A
∥2

2 + ∥α̃
B
∥2

2 + ∥α
AB

∥2
2,

where β
A
= α

A
+ α̃

A
, β

B
= α

B
+ α̃

B
, β

AB
= α

AB
, and β =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β
A

β
B

β
AB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. That is, vg1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
A

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

vg2
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

α
B

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, vg3
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̃
A

α̃
B

α
AB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and β = ∑
3
i=1 vgi .

By applying an l1/l2 penalty to the vectors vg, some of vg shrink to zero, while the nonzero

vectors satisfy ∑g∈G vg = β. Therefore βi ≠ 0 as long as i belongs to at least one nonzero

group. This shows that if a group is not dropped then all of its covariates have nonzero

coefficients. In such a situation, overlapped group LASSO selects the groups.

Overlapped group LASSO can be used for achieving strong hierarchy. First, we review

its mechanism in estimating parameters; then, with a simple example, we show how to

achieve strong hierarchy with overlapped group LASSO. Consider three overlapping groups

g1 , g2 , g3 and let the overlapped group LASSO lead to an estimate such that βg1
= βg2

= 0.

As mentioned above, in group LASSO the components of g2 that are in g1 or g3 will get

zero coefficients. However, in overlapped group LASSO all the components of g2 will have

nonzero coefficients. With this principle in mind about overlapped group LASSO, we want

to design a penalty in such a way that strong hierarchy is guaranteed.

Example 1. Consider main effectsA andB with pair interactionAB. For observing strong

hierarchy, if interaction AB is selected, then the main effects A and B should be selected
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too. This states that all these three effects are in a group, i.e. {A,B,AB}. Therefore, the

grand set G = {{A},{B},{A,B,AB}} = {g1 , g2 , g3} will result in an additive model or

a model with strong hierarchy. To observe this, suppose overlapped group LASSO leads

to α
A
= 0; then βA = α

A
+ α̃

A
≠ 0, βB = α

B
+ α̃

B
≠ 0, and βAB = α

AB
≠ 0 which is a

model with strong hierarchy. The model is additive when the estimated coefficients of group

g3 = {A,B,AB} are zero.

This form of grouping shows an upward grouping, which opposes to the downward group-

ing. In fact, main effects are in the first line of hierarchy graph and pair interactions are in

the second line. Similar to the equation (2.5.1), we define the penalty of overlapped group

LASSO with strong hierarchy as follows

Ωoverlap(β) = inf
v∈VG,∑g∈G vg=β

∑
g∈G

dg∥(vg, vall parents of g)∥2, (2.5.2)

where group g refers to the levels of main effects or interactions.

2.5.4 Upward and downward grouping

Zhao et al. [36] used a downward grouping in order to represent a hierarchy. Let us illustrate

the effect of downward grouping in a simple example.

Example 2. Consider main effectsA andB with interactionAB. By a downward grouping,

the grand set is G = {{A,AB},{B,AB},{AB}} and clearly the groups overlap. CAP uses

a similar mechanism of group LASSO to deal with overlapping groups. If the estimate of

group LASSO leads to β{A,AB} = 0, then βAB = 0, βA = 0, and βB ≠ 0. This gives an

additive model. The same is the case for the second group. Now, if β{AB} = 0, then βA ≠ 0

and βB ≠ 0 which is again an additive model. The same is the case when two groups are

zero.
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This states that if at least one of the groups gets zero estimate, then the model is additive.

Note that the interaction is penalized three times in this grouping and, therefore, it is more

likely to be dropped from the model. It shows that the model is always additive when a

group is dropped. The behaviour of CAP and group LASSO in case of overlapped groups

gets more complicated when the number of groups p increases. The simulations of Zhao et

al. [36] showed that downward grouping does not guarantee strong hierarchy. Also down-

ward grouping with overlapped group LASSO does not satisfy strong hierarchy. We check

this fact by a simple example.

Example 3. Consider main effectsA andB with interactionAB. By a downward grouping,

the grand set is G = {{A,AB},{B,AB},{AB}}. If the estimate of overlapped group

LASSO leads to v{A,AB} = 0, then βB ≠ 0 and βAB ≠ 0 which is a model with a weak

hierarchy rule. The same is the case for the second group. Now, if v{AB} = 0, then βA ≠ 0,

βB ≠ 0, and βAB ≠ 0. This satisfies the strong hierarchy rule. Now, if v{A,AB} = 0 and

v{B,AB} = 0, then βAB ≠ 0 which is a pure interaction. This contradicts hierarchy.

Two conclusions can be drawn from this example. Firstly, an overlapped group LASSO

with a downward grouping penalty does not achieve hierarchy; secondly, if we penalize a

group more, then it is more likely to appear in the model.

Now consider overlapped group LASSO with upward grouping, the same as (2.5.2).

Example 4. Consider main effects A and B with interaction AB. By an upward grouping,

the grand set is G = {{A},{B},{A,B,AB}}. In this setting, the main effects are penalized

two times while interaction is penalized one time. Therefore, the main effects are more likely

to be in the model than the interaction. If the estimate of overlapped group LASSO leads to

v{A} = 0, then βA ≠ 0, βB ≠ 0, and βAB ≠ 0 which is a model with a strong hierarchy rule.

The same is the case for the second group. Now, if v{A,B,AB} = 0, then βA ≠ 0 and βB ≠ 0
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which is an additive model. If two groups get zero estimates, then again the final model

preserves additivity or strong hierarchy.

In conclusion, downward grouping together with CAP or overlapped group LASSO do not

satisfy strong hierarchy. Also upward grouping with CAP or group LASSO do not achieve

strong hierarchy rule. Only upward grouping together with overlapped group LASSO re-

sults in a model with strong hierarchy or an additive model. There is no weak hierarchy for

this case. Therefore upward grouping is the desirable grouping algorithm for the penalty

of overlapped group LASSO. Also, we found that if we penalize a group more in group

LASSO or CAP, it is more likely to be dropped out from the model. However, if we penal-

ize a group more in overlapped group LASSO, it is more likely to appear in the model. We

summarize this conclusion in the following proposition.

Proposition 1. Overlapped group LASSO with upward grouping results in strong hierarchy.

Also when a group is penalized more in overlapped group LASSO, it is more likely to be in

the model.

√

α2
1 + α2

1∶2 +
√

α2
2 + α̃2

1∶2 + ∣ᾰ1∶2∣ ∣α1∣ + ∣α2∣ +
√

α̃2
1 + α̃2

2 + α2
1∶2

β1 = α1 β1 = α1 + α̃1

β2 = α2 β2 = α2 + α̃2

β1∶2 = α1∶2 + α̃1∶2 + ᾰ1∶2 β1∶2 = α1∶2

Figure 1.2: Downward and upward overlapped group LASSO penalty.

Now consider overlapped group LASSO with upward grouping where each group consists

of only one variable. Let us investigate this case in high-dimensional data by an example.

Example 5. Consider a linear model with X1 and X2 as continuous predictors. By upward

grouping, the grand set is G = {{X1},{X2},{X1,X2,X1∶2}} where X1∶2 = X1X2. This
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leads us to the following overlapped group LASSO penalty with upward grouping of

Ωoverlapped(β) = ∣α1∣ + ∣α2∣ +
√
α̃2

1 + α̃
2
2 + α

2
1∶2,

where β1 = α1+ α̃1, β2 = α2+ α̃2, and β1∶2 = α1∶2. Note that the main effects are decomposed

into two components and each component is penalized separately. If one of these compo-

nents is not zero then the related main effect will have a nonzero coefficient. If we consider

a model with p covariates, then each main effect decomposes into p components and each

component is penalized separately.

The results show that each main effect decomposes into p components and each component

is penalized separately. Now, if a main effect is zero, then that means all of the p related

components are zero. As a heuristic reason, suppose that P ({Ci = 0}) is the probability

of when the component Ci of a particular main effect is zero. Then, P (
p

⋂
i=1

{Ci = 0}) is

the probability of when all related components are zero. It gets smaller by increasing the

dimension p of data set. Therefore, main effects are more likely to be in the model by

increasing p. But, each interaction is penalized only one time and then it is less likely

to be in the model. This reveals the weak side of overlapped group LASSO with upward

grouping. All in all, representing a hierarchy rule by upward grouping in the case of high-

dimensional data may result in misleading models.

2.5.5 Lim’s theorem

Lim [17] investigated the overlapped group LASSO in order to induce a strong hierarchy

rule in high-dimensional factorial designs. He considered full design matrix with sum-

to-zero constraints in an overlapped group LASSO. By adding sum-to-zero constraints to

overlapped group LASSO, the optimization problem becomes cumbersome. He simplified

this problem to a group LASSO. He showed that a specific form of constrained overlapped
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group LASSO is equivalent to a group LASSO. He considered a linear mode with factors

X1 and X2 with corresponding number of levels L1 and L2, respectively, and quantitative

response Y . The first order interaction model is

Y = β0 + β1X1 + β2X2 + β1∶2X1∶2 + ε, (2.5.3)

where β1 = (β11,⋯, β1L1)
T , β2 = (β21,⋯, β2L2)

T , β1∶2 = (β1∶2,1,⋯, β1∶2,L1L2)
T , ε ∼ N(0, σ2)

and interactionX1∶2 is the componentwise product ofX1 andX2, similar to equation (2.3.1).

He defined the constrained overlapped group LASSO as follows:

1

2

XXXXXXXXXXXXXXXXXXXXXXX

Y − α0 ⋅ 1 −X1α1 −X2α2 − [ X1 X2 X1∶2 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̃1

α̃2

α1∶2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXXXXXXXXXXX

2

2

+λ (∥α1∥2 + ∥α2∥2 +
√
L2∥α̃1∥

2
2 +L1∥α̃2∥

2
2 + ∥α1∶2∥

2
2)

subject to:
L1

∑
i=1

αi1 = 0,
L2

∑
j=1

αj2 = 0,
L1

∑
i=1

α̃i1 = 0,
L2

∑
j=1

α̃j2 = 0

L1

∑
i=1

αij1∶2 = 0 for fixed j,
L2

∑
j=1

αij1∶2 = 0 for fixed i, (2.5.4)

where β0 = α0, β1 = α1 + α̃1, β2 = α2 + α̃2, and β1∶2 = α1∶2. First, he showed that ¯̂α1 = ¯̂α2 = 0

in the overlapped group LASSO without constraints; therefore, the first two constraints are

satisfied in the estimates of effects α̂1 and α̂2. In the second step, he proved that by adding

the second intercept α̃0 to the convex problem (2.5.4), the problem would not change since

its estimate would be ˆ̃α0 = 0. Finally, he considered the following interaction decomposition

βij1∶2 = β
⋅⋅
1∶2 + (βi⋅1∶2 − β

⋅⋅
1∶2) + (β ⋅j1∶2 − β

⋅⋅
1∶2) + (βij1∶2 − β

i⋅
1∶2 − β

⋅j
1∶2 + β

⋅⋅
1∶2)

≡ α̃0 + α̃
i
1 + α̃

j
1 + α̃

ij
1∶2 (2.5.5)
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and showed that

∥β1∶2∥
2
2 = L1L2∥α̃0∥

2
2 +L2∥α̃1∥

2
2 +L1∥α̃2∥

2
2 + ∥α1∶2∥

2
2.

This reduces the above constrained overlapped group LASSO to the following uncon-

strained optimization problem

1

2
∥Y − α0 ⋅ 1 −X1α1 −X2α2 −X1∶2β1∶2∥

2
2 + λ (∥α1∥2 + ∥α2∥2 + ∥β1∶2∥2) ,

which is a group LASSO. In fact Lim’s theorem says that we can use a group LASSO to

obtain some fits that obey strong hierarchy. Group LASSO can estimate α̂0, α̂1, α̂2 and α̂1∶2,

but ˆ̃α1 and ˆ̃α2 cannot be estimated directly by a group LASSO and note that the overlapped

group LASSO estimates are

β̂0 = α̂0,

β̂1 = α̂1 + ˆ̃α1,

β̂2 = α̂2 + ˆ̃α2,

β̂1∶2 = α̂1∶2.

It is not completely clear how to estimate ˆ̃α1 and ˆ̃α2. Note that if we consider ˆ̃α1 = β̂i⋅1∶2−β̂
⋅⋅
1∶2

from the decomposition of interaction (2.5.5), then βi⋅1∶2 and β ⋅⋅1∶2 have to be zero by assumed

constraints. Then, ˆ̃α1 = 0 and with the same reason, ˆ̃α2 = 0. In this situation, the group

LASSO may result in pure interaction and this contradicts a strong hierarchy rule. Note

that the group LASSO does not satisfy a strong hierarchy rule and so the nonzero estimates

of ˆ̃α1 and ˆ̃α2 are needed.

In the proof of this theorem, each sum-to-zero constraint is decomposed to latent vari-

ables. For instance, consider the first constraint on parameters for full design model (2.5.3),
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∑
L1
i=1 β

i
1 = 0. From (2.5.4), β1 = α1 + α̃1, which gives∑L1

i=1 β
i
1 = ∑

L1
i=1(α

i
1 + α̃

i
1) = 0. However,

this constraint is decomposed to two constraints ∑L1
i=1α

i
1 = 0 and ∑L1

i=1 α̃
i
1 = 0. Now, if we

consider a high-dimensional data set with p factors, then this constraint will extend to p

constraints. This theorem extends the sum-to-zero constraints wherever they are needed.

Nelder [20] believes that putting constraints on parameters in linear models is unnecessary

because these constraints are on the estimates of parameters not on the parameters them-

selves. He argues:

“It is tempting to match the symmetric constraints, say, on the parameter esti-

mates with corresponding constraints α⋅ = β⋅ = γi⋅ = γ⋅j = 0 on the parameters

themselves. This temptation should be resisted, ...”

But this temptation is usually not resisted by statisticians and constraints are used for identi-

fiability. Note that these constraints on estimates of parameters are correct only on balanced

designs.

Lim’s theorem reveals an inside group balancing in the penalty term. Consider the lin-

ear model (2.5.3). The penalty of an overlapped group LASSO with upward grouping is
√

∥α̃1∥
2
2 + ∥α̃2∥

2
2 + ∥α1∶2∥

2
2. This penalty is replaced with

√
L2∥α̃1∥

2
2 +L1∥α̃2∥

2
2 + ∥α1∶2∥

2
2 in

Lim’s theorem. The coefficientsL1 andL2 appear in the penalty term because of the number

of components in each effect. It represents an inside group balancing. In other words, α̃1∶2

has L1L2 components while α̃1 and α̃2 have L1 and L2 components, respectively. There-

fore, coefficients L1 and L2 make a balance between main effects and interaction in the

group. Usually, groupwise weights dg are used for balancing among groups not inside

groups. This is an interesting form of group weights.
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2.5.6 The constraint of Bien et al.

Bien, Taylor and Tibshirani [27] interpreted the hierarchy structure of a linear model as a

constraint. The idea is inspired by Cox [3]:

“[L]arge component main effects are more likely to lead to appreciable inter-

actions than small components. Also, the interactions corresponding to larger

main effects may be in some sense of more practical importance.”

That means, the interactions related to larger main effects are more likely to be included

in the model. Hence, the model focuses on investigating of the interactions with larger

main effects. In other words, if a main effect is zero then all related interactions will be

zero. In hierarchical LASSO [27], the LASSO penalty promotes sparsity and hierarchy

is guaranteed by a constraint, which relies on a statistical principle rather than geometric

interpretation of upward grouping.

Bien et al. [27] consider a regression model with continuous outcome Y , predictorsX1, . . . ,Xp

and pairwise interactions among predictors. Afterwards, they define the following model

Y = β0 +∑
j

βjXj +
1

2
∑
j≠k

ΘjkXjXk + ε, (2.5.6)

where ε ∼ N(0, σ2), β ∈ Rp and Θ ∈ Rp×p where Θjj = 0. Note that Θ is a matrix which

contains the coefficient of interactions. The coefficient of one half, before the interaction

terms, is used because of the notation of interactions as a matrix rather than a vector of

length p(p − 1). The proposed optimization problem to satisfy the strong hierarchy rule is

as follows:

min
β0∈R,β∈Rp,Θ∈Rp×p

L(β0, β,Θ) + λ∥β∥1 +
λ

2
∥Θ∥1
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s.t. Θ = ΘT , ∥Θj∥1 ≤ ∣βj ∣ for j = 1, . . . , p, (2.5.7)

where ∥Θj∥1 = ∑
p
k=1 ∥Θjk∥1. Note that the objective function is an all pairs LASSO [27].

Now, if βj = 0, then ∥Θj∥1 = 0. This makes all those interactions zero that are related to the

jth main effect. The constraint ∥Θj∥1 − ∣βj ∣ is not convex and, therefore, it may need to be

changed to ∥Θj∥1 ≤ β+ + β−. One may ask why not to use constraint ∣Θjk∣ ≤ β+j + β
−
j ? Bien

et al. [27] answer:

“[This] can lead to an overabundance of interactions relative to main effects.”

The constraint Θ = ΘT means Θjk = Θkj which results in a strong hierarchy rule, because

if Θjk ≠ 0, then βj ≠ 0 and since Θjk = Θkj ≠ 0, then βk ≠ 0.

The methodology, as proposed, is applicable on linear models with factors having only

two levels; the latter become a univariate predictor by dropping out one level.

2.6 Modifying the constraint of Bien et al.

Based on Cox [3], interactions related to larger main effects are more likely to be included

in the model. In a radical interpretation, interactions related to smaller main effects are less

likely to be in the model. Thus, when a main effect has a zero coefficient, then all related

interactions have zero coefficients, i.e., βj = 0 ⇒ Θjk = 0 for k = 1,⋯, p. This leads to the

strong hierarchy rule. In a moderate interpretation, a pair interaction with only one large

main effect is likely to be included in the model which leads to weak hierarchy rule. For

the principle “if a main effect is zero then its related interactions are zero”; the constraint

∣Θjk∣ ≤ ∣βj ∣ is the most simple one to represent it. Bien et al. [27] argue that using this con-

straint results in “overabundance of interactions relative to main effects”. Therefore they

proposed ∥Θj∥1 ≤ ∣βj ∣ which represents exactly the radical interpretation.
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In high-dimensional data sets, it is common to face factors which have more than two

levels [17]. To deal with such a situation, we consider each factor as a group of its

levels in the model and pair interactions are componentwise products of levels of two

related factors as defined in (2.3.1). To guarantee hierarchy, we propose the constraint

∥Θg∥1 ≤ ∥βg∥1 for g = 1, . . . , p, where Θ is the matrix of interaction coefficient (3.2.1),

Θg is the g-th rows of Θ; and ∥Θg∥1 = ∑
p
h=1∑i∈g,j∈h ∣Θ

ij
g∶h∣. It reduces to the constraint of

Bien et al. [27] in the case of lg = 1, for all g ∈ G. It follows a similar structure and sat-

isfies the radical interpretation of Cox’s inspiration. Note that (βg = 0 ⇔ ∥βg∥1 = 0) and

(Θg = 0⇔ ∥Θg∥1 = 0). Hence, the modified constraint gives (∥βg∥1 = 0⇒ ∥Θg∥1 = 0). On

the other side, when Θ̂g∶h ≠ 0 then ∥Θ̂g∥1 > 0 and ∥Θ̂h∥1 > 0 therefore it gives β̂g ≠ 0 and

β̂h ≠ 0.

The modified constraint ∥Θg∥1 ≤ ∥βg∥1 leads the group LASSO to select groups based on

the strong hierarchy rule. But in the selected groups, a further inside group selection may

occur; this is discussed in Theorem 1. So we change the base inequality to ∥Θg∥2 ≤ ∥βg∥2

to keep the group structure. Note that ∥Θg∥2 is not separable for all Θg∶h, h ∈ G. Fortunately

∥Θg∥2 ≤ ∑h∈G ∥Θg∶h∥2 and by considering ∑h∈G ∥Θg∶h∥2 ≤ ∥βg∥2, the hierarchy constraint

changed to a stronger constraint. By this argument, the following two constraints are avail-

able,

• ∑h∈G ∥Θg∶h∥2 ≤ ∥βg∥2

• ∥Θg∥1 ≤ ∥βg∥1.

The first constraint induces hierarchy, but it is not convex. The second constraint achieves

hierarchy; and by a relaxation, it can be made convex. However, it reveals some inside

group selection. We adopt the second constraint and develop it in Section 3.2.
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2.7 Justifying the choice: discussion

We introduced two frameworks for inducing strong hierarchy in linear models.

(i) upward grouping;

(ii) constraint.

Upward grouping together with the overlapped group LASSO is used to construct hierar-

chical linear models for factorial designs. Lim [17] used this idea and showed that a specific

constrained overlapped group LASSO reduces to a group LASSO. Lim’s theorem [17] uses

sum-to-zero constraints. They are zero only in the case of balanced designs. There is

no balanced design in high-dimensional data and assuming such perfect condition on high-

dimensional data requires a clear discussion. The other problem is that Lim’s theorem needs

to extend these constraints on latent variables. This problem is discussed in Section 2.5. If

there are p factors or main effects, then a sum-to-zero constraint on a specific main effect

will decomposed into p constraints on p related latent variables.

Lim’s approach has some merit, but we will not use upward grouping with overlapped

group LASSO because of the three disadvantages outlined below:

• Upward grouping directly relies on a geometric interpretation of the l1-norm for satis-

fying hierarchy. Note that hierarchy and sparsity are different concepts with different

solutions. For sparsity we minimize ∑i f(βi) and drop small coefficients. In such

a situation, the small coefficients will have a zero value by using the l1-norm. This

is an indirect usage of the l1-norm. This idea is generalized for group LASSO. It

minimizes ∑g f(βg) and drops groups with small coefficients. In fact, an l1/l2-norm

is used to drop groups with small coefficients. Again, this is an indirect usage of
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the l1-norm. For achieving hierarchy, we try to make groups of parameters in such a

way that if a group gets zero estimate, then the other nonzero groups satisfy strong

hierarchy or additivity. Note that we do not minimize Loss + ∑g f(βg) to get hier-

archy; we minimize it for sparsity. Then, hierarchy relies directly on the geometric

interpretation of the l1/l2-norms.

• Main effects and interactions are not treated equally in an overlapped group LASSO

with upward grouping. Each main effect is penalized p times while each pair interac-

tion is penalized only one time. Therefore, main effects are more likely to be selected

and interactions are less likely to be in the model. Therefore, it is more likely to lead

to additive models.

• Upward grouping with an overlapped group LASSO increases the number of columns

in the design matrix. Consider 50 factors each with three levels, together with pair

interactions; then, the design matrix has 11175 columns. Now, considering the over-

lapped group LASSO with upward grouping, the related design matrix has 18525

columns.

On the other hand, as explained in Section 2.4, weak hierarchy is restricted to slope-ratio

assays, and such experiments are rare in statistical literature. Therefore strong hierarchy

is the default rule. All in all, we adopt and develop the constraint of Bien et al. [27] for

factorial designs with a strong hierarchy rule.
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Chapter 3

Hierarchical Group LASSO with

Quadratic Loss

3.1 Introduction

In this chapter, we study the modification and generalization of the hierarchy constraint of

Bien, Taylor, and Tibshirani [27], aimed at achieving hierarchical LASSO fits applicable to

factorial designs with factors having possibly more than two levels. Based on the discussion

in the previous chapter, we are interested in linear models obeying the strong hierarchy rule.

The effect of the constraint on the main effects and interactions is studied in Theorem 1.

The solution of the proposed convex problem is characterized in Theorem 2. The unbiased

estimate of degrees of freedom is given in Theorem 3.

3.2 The proposed method

Let us define the linear model with pair interactions for response variable Y and factors

X1, . . . ,Xg, . . . ,Xp as follows:

Y = β0 +

p

∑
g=1

Xgβg +
1

2
∑
g≠h

Xg∶h vec(Θg∶h) + ε, (3.2.1)
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where ε ∼ N(0, σ2I) and Θg∶h is the interaction coefficient matrix

Θg∶h =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θ11 . . . Θ1lh

⋮ ⋱ ⋮

Θlg1 ⋯ Θlglh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦lg×lh

,

where βT = (βT1 , . . . , β
T
p ), Θ = (Θg∶h)L×L, Θg∶g = 0, L = ∑g lg, and Xg∶h is defined

by (2.3.1). The coefficient of one half is the result of our notation for interaction coeffi-

cients as a symmetric matrix. In the model (3.2.1) each factor Xg is considered as a group

of lg dummy variables. We want a sparse model such that if a factor is not in the model, then

βg = 0 and if an interaction is not in the model, then Θg∶h = 0 and Θh∶g = 0. Constructing

such sparse models leads us to group LASSO which we define for the model (3.2.1) as

min
β0∈R,β∈RL,Θ∈RL×L

L(β0, β,Θ) + λ∑
g

∥βg∥2 +
λ

2
∑
g≠h

∥Θg∶h∥F , (3.2.2)

where L(⋅) is the quadratic loss. This model only includes main effects and interactions

as groups, and hierarchy is not considered yet. To guarantee hierarchy, we propose the

constraint ∥Θg∥1 ≤ ∥βg∥1 for g = 1, . . . , p, where Θg is the g-th rows of Θ and ∥Θg∥1 =

∑
p
h=1∑i∈g,j∈h ∣Θ

ij
g∶h∣. The resulting optimization problem is

min
β0∈R,β∈RL,Θ∈RL×L

L(β0, β,Θ) + λ∑
g

∥βg∥2 +
λ

2
∑
g≠h

∥Θg∶h∥F

Θ = ΘT , ∥Θg∥1 ≤ ∥βg∥1 for all g ∈ G. (3.2.3)

The added constraint ∥Θg∥1 − ∥βg∥1 is not convex because of the negative coefficient of

∥βg∥1. Note that ∥βg∥1 is equivalent to β+g + β−g where β+g ⪰ 0, β−g ⪰ 0 and β+g ∗ β−g = 0. By

relaxing β+g ∗ β−g = 0, the constraint becomes convex and we have

min
β0∈R,β±∈RL,Θ∈RL×L

L(β0, β
+ − β−,Θ) + λ∑

g

∥β+g − β
−
g ∥2 +

λ

2
∑
g≠h

∥Θg∶h∥F ,
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∥Θg∥1 ≤ 1T (β+g + β
−
g )

β+g ⪰ 0, β−g ⪰ 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

for all g ∈ G, (3.2.4)

Θ = ΘT ,

where βg ∈ Rlg and βg is the difference of the two vectors β+g , β−g ∈ Rlg , i.e. βg = β+g − β−g .

This relaxation has a specific effect on the hierarchy constraint. In fact, it is possible to have

solutions in (3.2.4) such that both β̂+g and β̂−g are strictly positive. Hence, this constraint can

cover larger interactions than the main effects, in which case both β̂+g and β̂−g can be taken

to be large.

If we add up the constraint used in (3.2.3) for all groups, we will have ∑g∈G ∥Θg∥1 ≤

∑g∈G ∥βg∥1. In this situation, interactions are considered two times. Hence, we propose

the new constraint as 1
2∥Θg∥1 ≤ ∥βg∥1. That is, the main effect βg is greater than half of

the total of the interactions of factor g with the other factors. However, this constraint will

result in the lack of interactions. Note that Θg has lg rows and βg has lg components which

shows a balance. Note that Θg has L = ∑
p
g=1 lg columns. If βg = 0, then p − 1 interaction

matrices Θg∶h have to be zero that is, βg = 0 results in lgL zero components which shows

an imbalance. Then, we propose a normalization in each interaction. Suppose wg to be a

vector of lg repeated lg times and w = (wg)g∈G. We propose 1
2∥Θgdiag( 1

w)∥1 ≤ ∥βg∥1.

We can see that problem (3.2.4) is feasible, since at least zero is a feasible point. Any

l1/l2-norm is a convex function by definition and since the objective is a positive linear

combination of norms, it is convex. The equality and positivity inequality constraints are

convex. Finally, we need to show that 1
2∥Θgdiag( 1

w)∥1 − 1T (β+g + β
−
g ) is convex. Suppose

(Θ1, β+1 , β
−
1 ) and (Θ2, β+2 , β

−
2 ) are two points such that they satisfy the inequality and let
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α ∈ [0,1]. We have

1

2
∥αΘ1diag(

1

w
) + (1 − α)Θ2diag(

1

w
)∥1 − 1T [α(β+1 + β

−
1 ) + (1 − α)(β+2 + β

−
2 )] ≤

α [
1

2
∥Θ1diag(

1

w
)∥1 − 1T (β+1 + β

−
1 )]+(1−α) [

1

2
∥Θ2diag(

1

w
)∥1 − 1T (β+1 + β

−
1 )] .

Therefore, the problem (3.2.4) is a convex optimization problem. For ease of computation,

we write ∣Θ∣ in terms of Θ+ and Θ−. For notational simplicity, let φ = (β+, β−,vec(Θ+),

vec(Θ−)) where Θg∶g = 0 and suppose X̃ = (X;−X;Z;−Z) where Z is the related matrix

of interactions. Then, the strong hierarchical group LASSO can be written as

min
β0∈R,β±∈RL,Θ±∈RL×L

1

2
∥Y − X̃φ∥

2

2
+ λ∑

g

∥β+g − β
−
g ∥2 + λ∑

g≠h

∥Θ+
g∶h −Θ−

g∶h∥F ,

1Tvec((Θ+
g +Θ−

g)diag( 1
w)) ≤ 1T (β+g + β

−
g )

β±g ⪰ 0, Θ±
g ⪰ 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

for all g ∈ G, (3.2.5)

Θ+ −Θ− = Θ+T −Θ−T .

Note that here Θg
2 is considered as a new parameter of Θg. By decomposing ∥Θ∥1 into Θ+

and Θ−, the problem is not changed since ∥Θ∥1 appears in the objective function with a

positive coefficient. Therefore Θ̂± = max{±Θ̂,0}.

Problem (3.2.5) is a convex problem, but it is not strictly convex to guarantee uniqueness

of solution. Tibshirani [30] discussed the case when the number of predictors p exceeds

the number of observations; then rank(X) < p and, thus, there can be multiple minimizers

for the LASSO problem. He discussed the conditions which result in a unique solution,

specifically when X has entries drawn from a continuous probability distribution. Roth and

Fischer [8] studied non-uniqueness in group LASSO and proposed an algorithm to guaran-

tee uniqueness of the solution.
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Zou and Hastie [13] found that the LASSO problem gets a unique solution by adding the

elastic net term to a LASSO penalty. At first note that the l2-norm, ∥ ⋅ ∥2
2, is strictly convex.

Hence, penalizing a group LASSO problem with a tiny fraction of such norm will ensure

the uniqueness of the solution. We consider the elastic net penalty ε
2(∥β

+∥2
2+∥β

−∥2
2+∥Θ∥2

F ),

similar to Bien et al. [27], where ε is a fixed tiny fraction of λ, say, 10−8λ. Note that the

case Θ̂+ > 0 and Θ̂− > 0 cannot happen. Hence, at least one of the estimates Θ̂+ and Θ̂−

must be zero and, therefore, ∥Θ+∥2
F + ∥Θ−∥2

F = ∥Θ∥2
F . The loss function in problem (3.2.5)

together with the elastic net penalty, ε2(∥β
+∥2

2 + ∥β−∥2
2 + ∥Θ∥2

F ), is equivalent to replacing X̃

and Y by

X̃ε =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X −X Z −Z

√
εI∣X ∣ 0 0 0

0
√
εI∣X ∣ 0 0

0 0
√
εI∣Z∣ −

√
εI∣Z∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Yε =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y

0(2∣X ∣+∣Z∣)×1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where ∣ ⋅ ∣ refers to cardinality. Therefore, the proposed procedure for the hierarchical group

LASSO with a quadratic loss is the problem (3.2.5) where Y and X̃ are replaced with Yε

and X̃ε.

3.3 The effect of the hierarchy constraint

In this section, we investigate the effect of hierarchy constraint on the estimates of main

effects β and interactions Θ; we want to see how this constraint affects the selection process

of main effects and interactions. We need to find the solution to the convex problem (3.2.5).

Theorem 1. The solution of the convex problem (3.2.5) satisfies

• main effects

λ
β̂+j − β̂

−
j

∥β̂+g − β̂
−
g ∥2

= S (−XT
j (Y − X̃φ̂),−α̂g) if β̂+g − β̂

−
g ≠ 0 and j ∈ g,
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∥XT
g (Y − X̃φ̂) − sgn(XT

g (Y − X̃φ̂))α̂g∥2
≤ λ if β̂+g − β̂

−
g = 0. (3.3.1)

• interactions

λ
Θ̂+
jk − Θ̂−

jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

= T (XT
jk(Y − X̃φ̂),

1

2
(
α̂g
lh

+
α̂h
lg

)) if Θ̂+
g∶h − Θ̂−

g∶h ≠ 0

and j ∈ g, k ∈ h,

∥XT
g∶h(Y − X̃φ̂) + sgn(XT

g∶h(Y − X̃φ̂))
1

2
(
α̂g
lh

+
α̂h
lg

)∥
2

≤ λ if Θ̂+
gh − Θ̂−

gh = 0.

(3.3.2)

where S and T are thresholding operators as

S (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a − b a > b

0 −∣a∣ ≤ b

a + b a < −b

and

T (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a + b a > b

0 ∣a∣ ≤ b

−a − b a < −b.

Proof.

Consider the proposed optimization problem (3.2.5). The Lagrangian is

1

2
∥Y − X̃φ∥

2

2
+λ∑

g

∥β+g −β
−
g ∥2+λ∑

g≠h

∥Θ+
g∶h−Θ−

g∶h∥F+∑
g

αg [1
T
g⋅(Θ

+
g +Θ−

g)diag(
1

w
) − 1Tg (β

+
g + β

−
g )]

−∑
g

[γ+Tg β+g + γ
−T
g β−g + µ

+T
g Θ+

g + µ
−T
g Θ−

g ] + ⟨S,Θ+ −Θ− −Θ+T +Θ−T ⟩

where α, γ±, µ±, and S are dual variables. The KKT conditions for the primal-dual optimal
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variable (φ̂, α̂, γ̂±, µ̂±, Ŝ) are

±XT
g (Y − X̃φ̂) = ±λ

β̂+g − β̂
−
g

∥β̂+g − β̂
−
g ∥2

− α̂g1g − γ̂
±
g

±XT
g∶h(Y − X̃φ̂) = ±λ

Θ̂+
g∶h − Θ̂−

g∶h

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

+
α̂g
wg

1g − µ̂
±
gh + (Ŝgh − Ŝ

T
hg) sgn(Θ̂+

g∶h − Θ̂−
g∶h)

γ̂±T β̂±T = 0, µ̂±T Θ̂±T = 0, α̂g [1
T
g⋅(Θ̂

+
g + Θ̂−

g)diag(
1

w
) − 1Tg (β̂

+
g + β̂

−
g )] = 0

α̂ ⪰ 0, γ̂± ⪰ 0, µ̂± ⪰ 0, β̂± ⪰ 0, Θ̂± ⪰ 0, 1Tg⋅(Θ
+
g +Θ−

g)diag(
1

w
) ≤ 1Tg (β

+
g + β

−
g ), Θ̂ = Θ̂T .

First note that α̂g is a real value, however, γ̂g and µ̂g are vectors with the size equal to

the number of levels in the group g. We will now investigate the vector β̂g component by

component since it is possible that some components are positive and some are negative.

There are three cases for main effects:

(i) β̂+j ≥ 0, β̂−j = 0 (⇒ γ̂+j = 0) for j ∈ g

−XT
j (Y − X̃φ̂) = λ

β̂+j − β̂
−
j

∥β̂+g − β̂
−
g ∥2

− α̂g − γ̂
+
j = λ

β̂+j

∥β̂+g − β̂
−
g ∥2

− α̂g

in this case, if −XT
j (Y − X̃φ̂) ≤ −α̂g, then β̂+j = 0; hence

λ
β̂+j − β̂

−
j

∥β̂+g − β̂
−
g ∥2

= [−XT
j (Y − X̃φ̂) + α̂g]+ = S (−XT

j (Y − X̃φ̂),−α̂g) .

(ii) β̂+j = 0, β̂−j ⪰ 0 (⇒ γ̂−j = 0) for j ∈ g

XT
j (Y − X̃φ̂) = −λ

β̂+j − β̂
−
j

∥β̂+g − β̂
−
g ∥2

− α̂g − γ̂
−
j = λ

β̂−j

∥β̂+g − β̂
−
g ∥2

− α̂g

in this case, if XT
j (Y − X̃φ̂) ≤ −α̂g, then β̂−j = 0; hence

λ
β̂+j − β̂

−
j

∥β̂+g − β̂
−
g ∥2

= [−XT
j (Y − X̃φ̂) − α̂g]− = S (−XT

j (Y − X̃φ̂),−α̂g) .
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(iii) β̂+j ≻ 0, β̂−j ≻ 0 (⇒ γ̂±j = 0) for j ∈ g

∓XT
j (Y − X̃φ̂) = ±λ

β̂+j − β̂
−
j

∥β̂+g − β̂
−
g ∥2

− α̂g − γ̂
±
j = ±λ

β̂+j − β̂
−
j

∥β̂+g − β̂
−
g ∥2

− α̂g Ô⇒ α̂g = 0

thus, in this case we can write

λ
β̂+j − β̂

−
j

∥β̂+g − β̂
−
g ∥2

= −XT
j (Y − X̃φ̂) = S (−XT

j (Y − X̃φ̂),−α̂g) .

In the first case, β̂+j = 0 when −XT
j (Y −X̃φ̂) ≤ −α̂g < 0; it means β̂+j = 0 when the correlation

XT
j (Y −X̃φ̂) is positive. In the second case, β̂−j = 0 whenXT

j (Y −X̃φ̂) ≤ −α̂g < 0; it means

β̂−j = 0 when the correlation XT
j (Y − X̃φ̂) is negative. Hence, for the main effects one can

say that

λ
β̂+j − β̂

−
j

∥β̂+g − β̂
−
g ∥2

= S (−XT
j (Y − X̃φ̂),−α̂g) if β̂+g − β̂

−
g ≠ 0 and j ∈ g,

∥XT
g (Y − X̃φ̂) − sgn(XT

g (Y − X̃φ̂))α̂g∥2
≤ λ if β̂+g − β̂

−
g = 0.

In the previous section, it was explained that Θ̂±
g = {±Θ̂g,0}, because ∥Θ̂g∥1 has a positive

coefficient in the Lagrangian. If a component of interaction effect Θ̂gh satisfies Θ̂+
jk > 0 and

Θ̂−
jk > 0, then by subtracting both of them by a constant value, the loss function will not

change. However, the penalty term will result in a strictly lower value. Thus, there are two

cases for the interaction effects:

(i) Θ̂+
jk ≥ 0, Θ̂−

jk = 0 (⇒ µ̂+jk = 0) for j ∈ g, k ∈ h,

Θ̂±
kj = max{±Θ̂kj,0} and Θ̂+

kj − Θ̂−
kj = Θ̂+

jk − Θ̂−
jk = Θ̂+

jk Ô⇒ Θ̂−
kj = 0, Θ̂+

kj = Θ̂+
jk,

−XT
jk(Y − X̃φ̂) = λ

Θ̂+
jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

+
α̂g
lh

+ (Ŝjk − Ŝkj),
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−XT
kj(Y − X̃φ̂) = λ

Θ̂+
kj

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

+
α̂h
lg

+ (Ŝkj − Ŝjk).

By summation of the both sides of equations we have

λ
Θ̂+
jk − Θ̂−

jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

= [−XT
jk(Y − X̃φ̂) −

1

2
(
α̂g
lh

+
α̂h
lg

)]
+

= T (XT
jk(Y − X̃φ̂),

1

2
(
α̂g
lh

+
α̂h
lg

)) .

(ii) Θ̂+
jk = 0, Θ̂−

jk ≥ 0 (⇒ µ̂−jk = 0) for j ∈ g, k ∈ h,

in the same way Θ̂+
kj = 0, Θ̂−

kj = Θ̂−
jk and

XT
jk(Y − X̃φ̂) = −λ

Θ̂+
jk − Θ̂−

jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

+
α̂g
lh

+ (Ŝjk − Ŝkj),

XT
kj(Y − X̃φ̂) = −λ

Θ̂+
kj − Θ̂−

kj

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

+
α̂h
lg

+ (Ŝkj − Ŝjk).

By summation of the both sides of equations we have

λ
Θ̂+
jk − Θ̂−

jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

= [−XT
jk(Y − X̃φ̂) +

1

2
(
α̂g
lh

+
α̂h
lg

)]
−

= T (XT
jk(Y − X̃φ̂),

1

2
(
α̂g
lh

+
α̂h
lg

)) .

Note that µ̂± ⪰ 0, thus, for the interaction effects one can say that

λ
Θ̂+
jk − Θ̂−

jk

∥Θ̂+
g∶h − Θ̂−

g∶h∥2

= T (XT
jk(Y − X̃φ̂),

1

2
(
α̂g
lh

+
α̂h
lg

)) if Θ̂+
g∶h − Θ̂−

g∶h ≠ 0

and j ∈ g, k ∈ h,

∥XT
g∶h(Y − X̃φ̂) + sgn(XT

g∶h(Y − X̃φ̂))
1

2
(
α̂g
lh

+
α̂h
lg

)∥
2

≤ λ if Θ̂+
gh − Θ̂−

gh = 0.
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The form of the solution derived in Theorem 1 suggests that one additional model selection

takes place within groups because of the l1-norm in the hierarchy constraint. The hierarchy

constraint has an increasing effect on the selection of main effects and a decreasing effect

on the selection of interactions.

3.4 Characterization of the solution

Theorem 1 characterizes the solution for main effects and interactions separately, to see how

the hierarchy constraint affects the estimates of the main effects and interactions. In fact,

main effects are more likely to be included in the fitted model than interactions based on

the effect of the hierarchy constraints. To calculate the unbiased estimate of the degrees of

freedom, we need to characterize the solution in a different way. The Lagrangian of (3.2.5)

based on this new formulation is then

1

2
∥Yε − X̃εφ∥

2
2 + λ∑

g

∥Dgφg∥2 + λ∑
g≠h

∥Dg∶hφg∶h∥2 − µ
TAφ + υTEφ. (3.4.1)

In the Lagrangian, Aφ and Eφ represent the inequality and equality constraints, respec-

tively. We rewrite the optimization problem with Lagrangian (3.4.1) in the form

min
φ,u

1

2
∥Yε − X̃εφ∥

2
2 + λ∑

g

ug + λ∑
g≠h

ug∶h − µ
TAφ + υTEφ

where

∥Dgφg∥2 ≤ ug and ∥Dg∶hφg∶h∥2 ≤ ug∶h. (3.4.2)

We define H as the new grand set containing all factors and interactions groups. By second-

order cone programming or “Lorentz cone” [33]

∥Dhφh∥2 ≤ uh⇐⇒

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dhφh

uh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Clh+1 ⇐⇒ −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dhφh

uh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪯Clh+1
0,
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where

Clh+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∣ x ∈ Rlh , t ∈ R, ∥x∥2 ≤ t

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

For ease of notation define Y ∶= Yε and X̃ ∶= X̃ε. The Lagrangian with the dual variables

(γh, δh) ∈ Rlh ×R, where ∥γh∥2 ≤ δh, is

L(φ,u,µ, υ, γ, δ) =
1

2
∥Y − X̃φ∥2

2 + λ∑
h∈H

uh − µ
TAφ + υTEφ − ∑

h∈H

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dhφh

uh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γh

δh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the primal variables are (φ,u). Derivatives with respect to the primal variables are

∇φL(φ,u,µ, υ, γ, δ) = −X̃T (Y − X̃φ) −ATµ +ETυ −DTγ

∇uL(φ,u,µ, υ, γ, δ) = λ1 − δ. (3.4.3)

From the second derivative, we have λ = δh, thus, ∥γh∥2 ≤ λ. Based on Slater’s theo-

rem, strong duality holds if there exists a strictly feasible point. In inequality constraints

of (3.2.5) the strict inequality holds when β± ≻ 0. It holds with respect to relaxation to the

l1-norm penalty and, therefore, strong duality holds. Hence, the complementary slackness

holds and

γThDhφh + δhuh = 0.

Note that ∥Dhφh∥2 ≤ uh, ∥γh∥2 ≤ δh and by Cauchy-Schwartz inequality ∣γThDhφh∣ ≤

∥γh∥2∥Dhφh∥2. Therefore

γThDhφh + δhuh ≥ −∥γh∥2∥Dhφh∥2 + δhuh ≥ 0.

Hence, the complementary slackness holds if and only if the following conditions hold [16]

• ∥γh∥2 < δh ⇒ ∥Dhφh∥2 = uh = 0

• ∥Dhφh∥2 < uh ⇒ ∥γh∥2 = δh = 0
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• ∥Dhφh∥2 = uh, ∥γh∥2 = δh ⇒ γThDhφh = −δhuh.

The third condition with respect to (3.4.3) can be rewritten as

γThDhφh + λ∥Dhφh∥2 = 0. (3.4.4)

The complementary slackness (3.4.4) holds if and only if [33]

• Dhφh = 0

• Dhφh ≠ 0, ∥γh∥2 = λ and γh = −λ Dhφh
∥Dhφh∥2

.

The KKT conditions for (φ̂(y), (µ̂(y), υ̂(y), γ̂(y))) to be an optimal primal-dual pair are

as follows:

X̃T (Y − X̃φ̂) = −AT µ̂ +ET υ̂ −DT γ̂,

µ̂Ti (Aφ̂)i = 0,

γ̂ThDhφ̂h + λ∥Dhφ̂h∥2 = 0,

µ̂ ⪰ 0,

Aφ̂ ⪰ 0,

Eφ̂ = 0,

∥γ̂h∥2 ≤ λ. (3.4.5)

Let us define the boundary set A(φ̂) as

A(φ̂) = {i ∶ Aiφ̂ = 0} . (3.4.6)

By the KKT condition, µ̂Ti (Aφ̂)i = 0, we have µ̂i = 0 iff (Aφ̂)i ≻ 0 and µ̂i > 0 iff (Aφ̂)i = 0

because µ̂ ≥ 0 and Aφ̂ ≥ 0. In terms of the boundary set A(φ̂), the first KKT condition
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becomes

X̃T (Y − X̃φ̂) = − (AA(φ̂))
T
µ̂A(φ̂) +E

T υ̂ −DT γ̂. (3.4.7)

The number of inequality constraints is 3p+2p2, thus µ̂ ∈ R3p+2p2 and the set of A(φ̂) refers

to constraints with the values of zero. The matrix A has 3p + 2p2 rows as the number of

inequality constraints and 2p+2p2 columns as the dimension of parameter of interest φ̂. The

matrix AA(φ̂) refers to rows, or inequality constraints, of A where Aiφ̂ = 0; the subscript

is used to refer to corresponding rows. We need to use brackets for distinct matrices, A or

AT . Hence, (Ai)T means that we first select rows and then we transpose the new matrix,

but (AT )i means that at first the matrix is transposed and then the rows are selected. This

means that, the columns of A are selected.

Let us define the support of φ̂ as

S(φ̂) = {h ∈H ∶Dhφ̂h ≠ 0} . (3.4.8)

Note that X̃Sφ̂S = X̃φ̂ sinceDhφ̂h = 0 for h ∉ S. The equation (3.4.7) in terms of the support

S is

(X̃T )
S
(Y − X̃Sφ̂S) = −((AA(φ̂))

T
)
S

µ̂A(φ̂) + (ET )
S
υ̂ − (DS)

T
γ̂

S
. (3.4.9)

It is easier notionally and computationally to refer S as a subset of parameters in vector

(β̂, Θ̂). Then one can define the operator O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O+

O−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

such that

O+ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I∣X ∣ 0∣X ∣ 0 0∣Z∣

0 0 I∣Z∣ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and O− =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0∣X ∣ I∣X ∣ 0∣Z∣ 0

0 0 0 I∣Z∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and, therefore, OSφ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O+
S

O−
S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ̂ = φ̂S will refer to the corresponding subset of the vector

φ̂. By this definition, one can write the equation (3.4.9) from the equation (3.4.7); we only

need to show that (DT )S γ̂ = (DS)
T
γ̂

S
. In order to show this equality, define the matrix D

as

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I∣β∣ −I∣β∣ 0 0

0 0 I∣Θ∣ −I∣Θ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Vector γ̂ is in Rp+p2 and it can be shown as two parts of main effects and interactions as

γ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂
β

γ̂
Θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Therefore,

OSD
T γ̂ = OS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂
β

−γ̂
β

γ̂
Θ

−γ̂
Θ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂
S(β)

−γ̂
S(β)

γ̂
S(Θ)

−γ̂
S(Θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (DS)
T

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂
S(β)

γ̂
S(Θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (DS)
T
γ̂

S
,

where

DS =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IβS −IβS 0 0

0 0 IΘS
−IΘS

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.4.10)

Define the set AS(φ̂) as

AS(φ̂) = {(i, h) ∣ Aiφ̂ = 0; Dhφ̂h ≠ 0} , (3.4.11)

where i refers to rows of matrix A and h refers to the columns of A. This means that A(φ̂)

refers to a subset of inequality constraints while S(φ̂) refers to a subset of parameters of

interest in the vector φ̂; therefore, the intersection of these two subsets is meaningless. In

fact AAS(φ̂)
refers to a submatrix of A with rows of i ∈ A(φ̂) and columns of h ∈ S(φ̂).
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Then, with some neglect in notation, one can write the equation (3.4.9) as

X̃T
S (Y − X̃Sφ̂S) = −A

T
AS(φ̂)

µ̂A(φ̂) +E
T
S υ̂ −D

T
S γ̂S

. (3.4.12)

It is important to note that when h ∈ S, γ̂
h
= −λ Dhφ̂h

∥Dhφ̂h∥2
; however, in the case h ∉ S, one can

say that γ̂h is a vector in the subdifferential containing all the vectors γ̂
h

such that ∥ γ̂hλ ∥
2
≤

1. Theorem 2 investigates these two cases. Let us define the subdifferential of ∥Dhφh∥2

before stating Theorem 2. In the equation (3.4.1), the term Ω(φ) = λ∑h ∥Dhφh∥2 is not

differentiable at Dhφh = 0. We state the following lemma to investigate the subdifferential

of Ω(φ).

Lemma 1. Let x be a vector in R2p andDp×2p be a matrix, then the subdifferential of ∥Dx∥2

is

∂∥Dx∥2 = {DTu ∶ u ∈ Rp, ∥u∥2 ≤ 1} .

Proof.

Let f ∶ Rp → R be a convex function. Then the subdifferential ∂f(y0) is given by

u ∈ ∂f(y0)⇐⇒ f(y) − f(y0) ≥ u ⋅ (y − y0) for all y ∈ Rp

where ⋅ is inner product. Let g(x) = f(Dx) then

w ∈ ∂g(x0)⇐⇒ g(x) − g(x0) ≥ w ⋅ (x − x0) for all x ∈ R2p

⇐⇒ f(Dx) − f(Dx0) ≥ w ⋅ (x − x0) for all x ∈ R2p.

Now, suppose that w =DTυ, then f(Dx) − f(Dx0) ≥ υ ⋅ (Dx −Dx0); hence,

∂g(x0) =D
T∂f(y0),

where y0 = Dx0. This means that for the subdifferential of g(x) = f(Dx), we can just

calculate the subdifferential of f , evaluate it at Dx0 and multiply the set by DT from the
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left.

In the case that f(y) = ∥y∥2, x0 = 0 ∈ R2p and y0 = 0 ∈ Rp we get

∂f(y0) = {u ∈ Rp ∶ ∥u∥ ≤ 1} .

Therefore,

∂g(x0) =D
T {u ∈ Rp ∶ ∥u∥ ≤ 1}

= {DTu ∶ u ∈ Rp, ∥u∥ ≤ 1} .

Thus, for the case Dhφh = 0,

∂φhΩ(φ) = {λDT
hwh ∈ R∣h∣ ∶ ∥wh∥2 ≤ 1} .

Now, let vh = λwh; hence,

∂φhΩ(φ) = {DT
h vh ∈ R∣h∣ ∶ ∥

vh
λ

∥2 ≤ 1} .

Note that ∥γ
h
∥2 ≤ λ, i.e. ∥

γ
h

λ ∥2 ≤ 1 and γ
h
, vh ∈ R∣h∣, then the above subdifferential is

equivalent to

∂φhΩ(φ) = {DT
h γh ∈ R∣h∣ ∶ ∥

γ
h

λ
∥2 ≤ 1} .

Theorem 2. Let the support S(φ̂) be defined as in (3.4.8). Therefore, the optimal solution

of (3.2.5), φ̂, satisfies

PSX̃
T
S (Y − X̃SPSφ̂S) = λD

T
S N(φ̂S) where h ∈ S(φ̂),

∥PhX
T

h (Y −XSb̂S)∥
2
≤ λ where h ∉ S(φ̂).

Proof.

1. In the case where h ∈ S:
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In the equation (3.4.12) for solution φ̂S(y), we have AAS(φ̂)
φ̂S = 0 and ESφ̂S = 0 because

φ̂−S = 0. This means that φ̂S ∈ null(AAS(φ̂)
)⋂null(ES). Suppose that ÃS =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−AAS(φ̂)

ES

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

define the projection matrix PS = IS − ÃTS (ÃSÃTS )
+ÃS, where A+ stands for Moore-Penrose

pseudo-inverse of A; thus, PSÃTS = 0 and PSφ̂S = φ̂S because ÃSφ̂S = 0. By multiplying the

projection matrix PS from the left side into the equation (3.4.12), we have

(X̃SPS)
T (Y − X̃SPSφ̂S) = −PSD

T
S γ̂S

. (3.4.13)

This equation deals with X̃P instead of X̃ and it is similar to the result of Tibshirani et

al. [30] and Bien et al. [27]. We know that when Dhφ̂h ≠ 0, γ̂
h
= −λ Dhφ̂h

∥Dhφ̂h∥2
and, therefore,

PSX̃
T
S (Y − X̃SPSφ̂S) = λPSD

T
S N(φ̂S),

where N(φ) is a normalization operator such that

N(φ) = u where uh =
Dhφh

∥Dhφh∥2

.

It is easy to verify that λPSDT
S N(φ̂S) = λDT

S N(φ̂S) because by considering (3.4.10) we

have

PSD
T
SDSφ̂S = PS

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 IβS 0 0

IβS 0 0 0

0 0 0 IΘS

0 0 IΘS
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

φ̂S = PSφ̂S−PS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂−S

β̂+S

Θ̂−
S

Θ̂+
S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= φ̂S−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂−S

β̂+S

Θ̂−
S

Θ̂+
S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=DT
SDSφ̂S.
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Note that

PS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂−S

β̂+S

Θ̂−
S

Θ̂+
S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∶= PSφ̂
∗
S = φ̂

∗
S − Ã

T
S (ÃSÃ

T
S )

+ÃSφ̂
∗
S = φ̂

∗
S,

because ÃSφ̂∗S = 0 since ÃSφ̂S = 0. This means that the constraints of ÃS are satisfied with

respect to φ̂∗S since the inequality and equality constraints do not change by changing the

order of the positive and negative parts of the estimate, i.e. β̂+, β̂−, Θ̂+, and Θ̂−. Therefore,

PSX̃
T
S (Y − X̃SPSφ̂S) = λD

T
S N(φ̂S). (3.4.14)

2. In the case where h ∉ S:

We know that DDT = 2I . Let X = (X,Z) and b = (β,Θ), thus, X̃ = XD. One can

write (3.4.7) as

X
T
(Y −Xb̂) = −

1

2
DAT

A(φ̂)
µ̂A(φ̂) +

1

2
DET υ̂ − γ̂.

Both sides of the equality are vectors and, therefore, they are componentwise equal and

equality holds for each group as follows:

X
T

h (Y −Xb̂) = −
1

2
DhA

T
A(φ̂)

µ̂A(φ̂) +
1

2
DhE

T υ̂ − γ̂h

where the index h stands for rows of the related matrix. Suppose that Ãh =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AA(φ̂)D
T
h

EDT
h

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and similar as before, define Ph = I − ÃTh (ÃhÃ
T
h )

−1Ãh and

PhX
T

h (Y −XSb̂S) = −Phγ̂h.
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Note that γ̂h is the vector in the subdifferential which contains all the vectors in Rlh such

that ∥ γ̂hλ ∥2 ≤ 1. Therefore,

∥PhX
T

h (Y −XSb̂S)∥2 ≤ λ sup
∥
γ̂h
λ
∥2≤1

∥Ph
γ̂h
λ

∥
2

= λ ∥Ph∥2 ,

where ∥Ph∥2 is the induced l2-norm of matrix Ph. Let δ be eigenvalue and υ the eigenvector

of Ph. Then Phυ = δυ and Ph(Phυ) = Ph(δυ) = δ(δυ) = δ2υ and Ph(Phυ) = Phυ = δυ;

thus, δ2 = δ and δ = {0,1}. This means that ∥Ph∥2 =
√

max{0,1} = 1, and, therefore,

∥PhX
T

h (Y −XSb̂S)∥2 ≤ λ.

Theorem 2 provides the characterization for nonzero groups which will be used for calcu-

lating of the degrees of freedom. Also it provides a selection process as a mechanism to

drop out zero groups which is useful for the computational algorithm.

3.5 The matrix Ã

First note that ÃS =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AAS(φ̂)

ES

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where A is the matrix which refers to the inequality con-

straintsAφ ≥ 0 in (3.2.5) andE is the matrix which refers to the equality constraintsEφ = 0

in (3.2.5). The matrix A in (3.4.1) has a negative sign that means Ax > 0 so all inequalities

in matrix Ã will be greater than zero. Each row of matrix Ã corresponds to a constraint and

its columns corresponds to (β+, β−,Θ+,Θ−). The inequality constraints in (3.2.5) are

C1: ∥Θ̂g∥1 ≤ 1T (β̂+g + β̂
−
g ),

C2: β̂+j > 0,

C3: β̂−j > 0,

C4: Θ̂+
jk > 0,

C5: Θ̂−
jk0,

the equality constraints are
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C6: Θ̂+
g∶g = 0,

C7: Θ̂−
g∶g = 0,

C8: Θ̂+
jk − Θ̂−

jk = Θ̂+
kj − Θ̂−

kj .

Note that the number of constraints depends on the subscripts of groups or components. The

first constraint is applied on group g which results in a single constraint. The constraints C6

and C7 are applied on the matrix Θ̂±
g∶g = 0 which results in a number of constraints equals

to the number of components of the matrix Θ̂±
g∶g. Let 1p be the row vector of ones, and ej

be the row vector of zeros with a single 1 in j-th position. The vector eg is constructed

similarly. Similarly to matrix D̃ in [27], we define the matrix Ã as follows:

R1. For all factors g (eg eg −eg⊗1p −eg⊗1p )

R2. For all levels j of factors g (ej 0 0 0 )

R3. For all levels j of factors (0 ej 0 0 )

R4. For all levels jk of interactions (0 0 ej⊗ ek 0 )

R5. For all levels jk of interactions (0 0 0 ej⊗ ek )

R6. For all levels j of factors (0 0 ej⊗ ek 0 )

R7. For all levels j of factors (0 0 0 ej⊗ ek )

R8. For all levels j < k (0 0 ej⊗ ek − ek⊗ ej −ej⊗ ek + ek⊗ ej ).

3.6 The degrees of freedom

In Chapter 1, we discussed the definition of degrees of freedom from Efron [6] and the

unbiased estimate of degrees of freedom of Stein [24]. The definition of Efron [6] may not

be applicable in practical situations since it depends on µ, the parameter of interest of re-

gression analysis. Stein’s unbiased estimate of degrees of freedom (1.3.3) does not depend

on µ and is computationally efficient. It states that the estimate of degrees of freedom is the
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divergence of the fit; thus, we need to calculate ∂φ̂
∂y (Y ) from the equation (3.4.7). To this

end, we need to determine the function φ̂(y) implicitly from the KKT condition (3.4.7).

The use of the implicit function theorem for this task is hampered by the fact that the KKT

condition (3.4.7) is not everywhere differentiable. We follow the notation of Vaiter et al. [4].

Let S̄ be the support of a vector φ. For any group h ∉ S̄, define the boundary as

BS̄,h = {y ∈ Rn

∣ ∃φ ∶
∥PhX̄

T

h r∥2

∥Ph∥2

= λ and PS̄X̃S̄r = λD
TN(φS̄)} ,

where r = y − X̃φ = y − X̄β and let

B = ⋃
S̄∈H

⋃
h∉S̄

BS̄,h. (3.6.1)

Vaiter et al. [4] showed that the Lebesgue measure of the boundary B is zero on Rn . Let

Y ∉ BS and S be the support of φ̂ as defined in (3.4.8); then define the following mapping

Γ(φS(y), y) = PSX̃
T
S X̃SPSφS − PSX̃

T
S y + λD

T
S N(φS) (3.6.2)

Note that based on Theorem 2 the optimal solution satisfies Γ(φ̂S(Y ), Y ) = 0. The im-

plicit function theorem requires the invertibility of the Jacobian of the KKT condition. The

following assumption on XS is needed for this purpose.

Assumption 1. Suppose that S is the support. We assume that for all solutions bS, the fit

Ŷ =XSbS ≠ 0.

This assumption is feasible since in a typical case, the fit cannot be constant zero. It is

needed for the following lemma which investigates invertibility of the Jacobian.

Lemma 2. Suppose that φS ∈ R∣S∣, λ > 0 and Assumption 1 holds. Thus ∂φSΓ(φS(y), y) is

invertible.

Proof.
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First, note that ∀h ∈ S, Dhφ̂h ≠ 0, therefore,

∂φSΓ(φS(y), y) = PSX̃
T
S X̃SPS + λdiag

⎛
⎜
⎝
DT
h

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I −
Dhφhφ

T
hD

T
h

∥Dhφh∥
2
2

∥Dhφh∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Dh

⎞
⎟
⎠
h∈S

. (3.6.3)

We know that PS = P T
S so PSX̃T

S X̃SPS is symmetric positive semi-definite because xTPSX̃T
S

X̃SPSx = (X̃SPSx)T (X̃SPSx) = ∥X̃SPSx∥2
2 ≥ 0. On the other hand, I − Dhφhφ

T
hD

T
h

∥Dhφh∥
2
2

= I −

βh(βTh βh)
−1βTh = Projβ�

h
. Therefore, Bh =

I−
Dhφhφ

T
hD

T
h

∥Dhφh∥22
∥Dhφh∥2

=
Proj(Dhφh)�
∥Dhφh∥2

is symmetric positive

semi-definite because

⟨x,Proj(Dhφh)�x⟩ = ∥Proj(Dhφh)�x∥
2
2 ≥ 0

Hence, diag (DT
hBhDh)h∈S is symmetric positive semi-definite. Note that ∥Proj(Dhφh)�x∥

2
2 =

0 if and only if x =Dhφh. It means ker(BS) = {DSφS}, hence, ker(DT
SBSDS) = {DT

SDSφS}

since DSDT
S = 2I . If DT

SDSφS ∈ ker(PSX̃T
S X̃SPS) then

⟨DT
SDSφS, PSX̃

T
S X̃SPSD

T
SDSφS⟩ = ∥X̃SPSD

T
SDSφS∥

2
2 = 0

and

X̃SPSD
T
SDSφS = 2XSbS = 0

which contradicts Assumption 1. Therefore, ker(DT
SBSDS)⋂ker(PSX̃T

S X̃SPS) = {0} and

∂φSΓ(φS(y), y) is invertible.

Lemma 3. Let φ̂(Y ) be the solution of the convex problem (3.2.5) with support S, defined

in (3.4.8); then there exists unique function φ̂(y) in a neighbourhood Õ of Y such that

∀h ∉ S, ∂yφ̂h(Y ) = 0 and ∂yφ̂S(Y ) = (∂φ̂SΓ(φ̂S(Y ), Y ))
−1
PSX̃

T
S .

Proof.

Let Γ(φS(y), y) be the mapping defined in (3.6.2) reads on (R∣S∣
/ U) × Rn where U =
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{u ∈ R∣S∣
∣ ∃h ∈ S ∶ uh = 0}. Note that Γ(φ̂S(Y ), Y ) = 0 according to Theorem 2 and ∂φSΓ(

φS(Y ), Y ) is invertible according to Lemma 2. By the implicit function theorem, there

exists a neighborhood O of Y such that

∀y ∈ O Γ(φS(y), y) = 0 and φS(Y ) = [φ̂(Y )]
S

and we extend φS(y) on Sc as φS
c(y) = 0. We assumed in definition (3.6.2) that Y ∉ BS.

For φ̂(Y ), we have

∀h ∉ S, ∥PhX̄
T
h (Y − X̃S [φ̂(Y )]

S
)∥

2
≤ λ ∥Ph∥2

where X̃S [φ̂(Y )]
S
= X̄S [b̂(Y )]

S
. If there exists h ∉ S such that

∥PhX̄
T
h (Y − X̃S [φ̂(Y )]

S
)∥

2
= λ ∥Ph∥2

then Y ∈ BS which contradicts the assumption of Y ∉ BS. Hence

∀h ∉ S, ∥PhX̄
T
h (Y − X̃S [φ̂(Y )]

S
)∥

2
< λ ∥Ph∥2 .

We know that φS(Y ) = [φ̂(Y )]
S

and φS(y) is continuous for every y ∈ O. Then we can find

Õ ⊆ O including Y such that for every y ∈ Õ, we have

∀h ∉ S, ∥PhX̄
T
h (y − X̃SφS(y))∥2

≤ λ ∥Ph∥2 .

On the other hand by the definition of the mapping φS(y) for every y ∈ Õ, we have

PSX̃
T
S (y −XSφS(y)) = λD

T
S N(φS(y)) and supp(φS(y)) = S.

Then, from Theorem 2, φ(y) is a solution for (3.2.3). The solution of (3.2.3) is unique and,

therefore, for every y ∈ Õ, φ(y) = φ̂(y). This result states that the derived implicit function

58



equals to the minimizer of the convex problem (3.2.3). Therefore

∀h ∉ S, ∀y ∈ Õ, [φ̂(y)]
h
= φh(y) = 0 Ô⇒ ∀h ∉ S, ∂yφ̂h(Y ) = 0

and with respect to the implicit function theorem

∂yφ̂S(Y ) = − (∂φ̂SΓ(φ̂S(Y ), Y ))
−1
∂yΓ(φ̂S(Y ), Y ) = (∂φ̂SΓ(φ̂S(Y ), Y ))

−1
PSX̃

T
S .

Theorem 3. The unbiased estimate of the degrees of freedom of the hierarchical group

LASSO (3.2.5) is

d̂fλ(X̃φ̂(Y )) = tr (X̃SPS (PSX̃
T
S X̃SPS + λU)

−1
PSX̃

T
S ) , (3.6.4)

where

U = diag
⎛
⎜
⎜
⎝

DT
h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −
Dhφ̂hφ̂

T
hD

T
h

∥Dhφ̂h∥
2
2

∥Dhφ̂h∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Dh

⎞
⎟
⎟
⎠
h∈S

. (3.6.5)

Proof.

By decomposing X̃ = (X̃S, X̃Sc), the degrees of freedom with respect to Stein’s formula

are

dfλ(X̃φ̂(Y )) = E [(∇ ⋅ X̃φ̂) (Y )]

= EB [(∇ ⋅ X̃φ̂) (Y )] +EBc [(∇ ⋅ X̃φ̂) (Y )]

= 0 +EBc [(∇ ⋅ X̃φ̂) (Y )]

= EBc [tr (X̃SPS (∂φ̂SΓ(φ̂S(Y ), Y ))
−1
PSX̃

T
S + X̃Sc0)] ,

where ∂φ̂SΓ(φ̂S(y), y) is defined by (3.6.3). Note that the Lebesgue measure of B is zero

and φ̂S = PSφ̂S. The trace operator is invariant under the transpose; hence,

d̂fλ(X̃φ̂(Y )) = tr (X̃SPS (∂φ̂SΓ(φ̂S(Y ), Y ))
−1
PSX̃

T
S ) .
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Note that by Stein’s formula the divergence of fit is an unbiased estimator of degrees of

freedom i.e. E [d̂f] = df . Therefore,

d̂fλ(X̃φ̂(Y )) = tr (X̃SPS (PSX̃
T
S X̃SPS + λU)

−1
PSX̃

T
S ) (3.6.6)

where U is defined in (3.6.3).

This is similar to the degrees of freedom of group LASSO derived by Vaiter et al. [4],

equal to

tr (X̃S (∂φ̂SΓ(φ̂S(Y ), Y ))
−1
X̃T

S ) .

The estimate of degrees of freedom for hierarchical LASSO derived by Bien et al. [27] is

equal to

tr ((X̃P )(X̃P )+) (3.6.7)

where (⋅)+ refers to Moore-Penrose pseudo inverse. In our case, (X̃P )+ is replaced with a

more complicated matrix of (∂φ̂SΓ(φ̂S(y), y))
−1
X̃T

S because instead of the LASSO penalty

in the hierarchical LASSO, the group LASSO penalty is used in our case.

This is also comparable to the degrees of freedom of elastic net regularization [13]:

d̂fλ(elastic net) = tr (XA (XT
AXA + λ2I)

−1
XT

A) , (3.6.8)

where A is the active set. It carries some characteristics from each regularization; for

instance, the projection matrix PS is analogous to the hierarchical LASSO (3.6.7) and the

general form is analogous to elastic net regularization.
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Chapter 4

Group LASSO with Quadratic Loss:

Further Theory

4.1 Introduction

In this chapter, we study a standardized group LASSO as a specific version of group

LASSO. We use the transformation Xg
√
lg

of Zhao et al. [36] to unify group weights. Our

Theorem 4 shows that by using this transformation, the estimate of the standardized group

LASSO does not change. The solution of the standardized group LASSO with this transfor-

mation is characterized in Theorem 5, and the unbiased estimate of the degrees of freedom

is given by Theorem 6. Finally, we calculate the degrees of freedom for the overlapped

group LASSO in Corollary 1.

The standard algorithm for group LASSO, proposed by Yuan and Lin [18], assumes that

the design matrix in each group is orthonormal, i.e. XT
g Xg = Ig. Simon and Tibshirani [28]

noticed that this orthonormalization is neglected in the statistical literature. They showed

that by orthonormalizing the design matrix in group LASSO, the problem changes into a

new problem. In fact, by orthonormalizing the design matrix of each group, group LASSO

penalizes the fit instead of the coefficients. They also showed that the new problem selects

groups roughly according to a UMP test.

61



4.2 Group weights and normalization

Yuan and Lin [18] proposed the group weights dg =
√
lg, for the group LASSO penalty.

Lim [17] considered dg = 1 for all groups g. Zhao et al. [36] used the transformation

Xg/
√
lg for making unit group weights. Vaiter et al. [4] used the group LASSO penalty

with the unit group weights in order to get rid of some technical difficulties in the calcu-

lation of the degrees of freedom; for the same reason, we need a penalty with unit group

weights.

Lim [17] argued that the quantity ∥XT
g (Y −Ŷ )∥2 in the KKT conditions determines whether

group g gets zero coefficients or not. He considered Y − Ŷ = ε where ε ∼ N(0, I). In fact,

the tuning parameter λ encourages considering such a null model. As a heuristic reason for

this null model, note that in the KKT conditions ∥XT
g (Y − Ŷ )∥2 ≤ λdg for all g. One can

say that dg is related to Xg and λ is related to Y − Ŷ ; thus, one may consider ∥Y − Ŷ ∥2 ∝ λ

which leads to the above null model. Hence,

d2
g = E∥XT

g ε∥
2
2 = E [tr(εTXgX

T
g ε)] = tr(XT

g Xg) = ∥Xg∥
2
F .

Therefore, Lim [17] picked dg = ∥Xg∥F , the Frobenius norm of the matrix Xg. In the case

of orthonormal Xg, we have XT
g Xg = Ig, thus dg =

√
lg which is proposed by [18]. How-

ever, in Lim’s case [17], Xg is an indicator matrix where each row contains a single 1 with

zero other components. Therefore, all groups have a Frobenius norm equal to
√
n and, thus,

he considered dg = 1.

We noticed that the transformation Xg/
√
lg can be used in a standardized group LASSO.

In this section, we will show that by using this transformation in a standardized group

LASSO, the estimate of coefficients will not change. In fact, the group weights move from
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the penalty term into the loss function.

As already mentioned, group LASSO assumes orthonormality within each group of co-

variates [18], i.e. XT
g Xg = Ig. This orthonormalization changes group LASSO to a new

problem

min
β

1

2
∥Y −∑

g

Xgβg∥

2

2

+ λ∑
g

√
lg∥Xgβg∥2. (4.2.1)

This new problem penalizes the loss function with the fit of each group Xgβg instead of

group coefficients βg. Our goal is to normalize Xg in such a way that the penalty weights

change to dg = 1. If Xg is full column rank, then it can be decomposed by QR factorization

intoXg = UgRg where UT
g Ug = I andRg is an invertible upper triangular square matrix. We

rewrite (4.2.1) as

min
β

1

2

XXXXXXXXXXX

Y −∑
g

Ug
√
lg
β̃g

XXXXXXXXXXX

2

2

+ λ∑
g

∥Ugβ̃g∥2, (4.2.2)

where

β̂g =
1

√
lg
R−1
g

ˆ̃βg.

In this reformulation, we see that the penalty weight
√
lg is transferred from the penalty

term into the loss function. This new problem (4.2.2) is equivalent to (4.2.1). To prove this

equivalency, define X̃g =
Ug
√
lg

thus, it simplifies to

min
β

1

2
∥Y −∑

g

X̃gβ̃g∥

2

2

+ λ∑
g

∥β̃g∥2, (4.2.3)

because ∥Ugβ̃g∥2 = ∥β̃g∥2. Note that the group weights are dg = ∥X̃g∥F = ∥
Ug
√
lg
∥
F

= 1. This

means that we can normalize each group of covariates as X̃g =
Ug
√
lg

and run a group LASSO

without penalty weights. We show that the solution of (4.2.3) is equal to the solution of

Simon and Tibshirani [28]; thus, it benefits from all of the advantages of the standardized

63



group LASSO as established by Simon and Tibshirani [28].

Theorem 4. The convex problems (4.2.1) and (4.2.3) are equivalent.

Proof.

The characterization of solution for (4.2.3) is

X̃T
g (y − X̃

ˆ̃β) = λ
ˆ̃βg

∥
ˆ̃βg∥2

for ˆ̃βg ≠ 0,

X̃T
g (y − X̃

ˆ̃β) = λvg where vg ∈ R∣g∣, ∥vg∥2 ≤ 1 for ˆ̃βg = 0.

Note that vg is in the subdifferential. The first condition can be written as

Sg =
ˆ̃βg

⎛

⎝

1

lg
+

λ

∥
ˆ̃βg∥2

⎞

⎠
,

where Sg = X̃T
g (y − X̃

ˆ̃β−g) and ˆ̃β−g = (
ˆ̃βT1 ,⋯,

ˆ̃βTg−1,0
T ,⋯, ˆ̃βTp ). Therefore, Sg

∥Sg∥2
=

ˆ̃
βg

∥
ˆ̃
βg∥2

and this gives

1

lg

ˆ̃βg = (1 −
λ

∥Sg∥2

)Sg. (4.2.4)

From second condition, −Sg + 1
lg

ˆ̃βg = λvg where ∥vg∥2 ≤ 1. Note that ˆ̃βg = 0 and, therefore,

∥Sg∥2 ≤ λ which gives

(1 −
λ

∥Sg∥2

) ≤ 0. (4.2.5)

With respect to (4.2.4) and (4.2.5) one can write

1

lg

ˆ̃βg = (1 −
λ

∥Sg∥2

)
+

Sg.

By considering β̂g = 1√
lg
R−1
g

ˆ̃βg, Xg = UgRg, and UT
g Ug = I , we have

β̂g =
⎛

⎝
1 −

λ
√
lg

∥UT
g r−g∥2

⎞

⎠
+

(XT
g Xg)

−1XT
g r−g,
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which is equal to the equation 11 in Simon and Tibshirani [28]. This shows that the prob-

lem (4.2.3) is equivalent to

min
β

1

2
∥Y −∑

g

Xgβg∥

2

2

+ λ∑
g

√
lg∥Xgβg∥2. (4.2.6)

It is worth to mention that we proved this result only for the standardized group LASSO. We

are cautious in using it in group LASSO because dg = ∥
Xg
√
lg
∥
F

≠ 1. Breheny and Huang [15]

implemented the Simon and Tibshirani standardization [28] in the R package grpreg. Here,

we follow the basic steps from their work. They considered eigendecomposition of covari-

ance matrix of a group g as
1

n
XT
g Xg = QgΛgQ

T
g ,

where QT
gQg = I and Λg is a diagonal matrix of eigenvalues of 1

nX
T
g Xg. We define X̃g

in (4.2.3) as

X̃g =
1

√
lg
XgQgΛ

− 1
2

g .

Hence, the original coefficient is

β̂g =
1

√
lg
QgΛ

− 1
2

g β̃g.

4.3 The characterization of the solution

Consider a group LASSO formulation

min
β

1

2

XXXXXXXXXXX

Y −∑
g

Xg
√
lg
β∗g

XXXXXXXXXXX

2

2

+ λ∑
g

∥Xgβ
∗
g ∥2.

We rewrite this optimization problem in the form

min
β

1

2

XXXXXXXXXXX

Y −∑
g

Xg
√
lg
β∗g

XXXXXXXXXXX

2

2

+ λ∑
g

ug, (4.3.1)
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where

∥Xgβ
∗
g ∥2 ≤ ug.

By second order cone programming theory

∥Xgβ
∗
g ∥2 ≤ ug ⇐⇒

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xgβ∗g

ug

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Cn+1 ⇐⇒ −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xgβ∗g

ug

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⪯Cn+1 0,

where

Cn+1 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∣ x ∈ Rn, t ∈ R, ∥x∥2 ≤ t

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

The Lagrangian with the dual variables (γg, δg) ∈ Rn ×R where ∥γg∥2 ≤ δg is

L(β∗, u, γ, δ) =
1

2
∥Y −∑

g∈G

Xg
√
lg
β∗g ∥

2
2 + λ∑

g∈G

ug −∑
g∈G

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xgβ∗g

ug

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γg

δg

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the primal variables are (β∗, u). Derivatives with respect to the primal variables are

as follows:

∇β∗gL(β∗, u, γ, δ) = −
XT
g

√
lg
(Y −∑

g∈G

Xg
√
lg
β∗g ) −X

T
g γg,

∇ugL(β∗, u, γ, δ) = λ − δg. (4.3.2)

Equating the second derivative to zero gives λ = δg; thus ∥γg∥2 ≤ λ. Suppose that βg = 0 and

ug = ε for all g ∈ G; therefore, the strict inequality in (4.3.1) holds. Hence, strong duality

holds and the complementary slackness is

γTg Xgβ∗g + δgug = 0.

Note that ∥Xgβ∗g ∥2 ≤ ug and ∥γg∥2 ≤ δg. On the other hand, by the Cauchy-Schwartz
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inequality, ∣γTg Xgβ∗g ∣ ≤ ∥γg∥2∥Xgβ∗g ∥2. Hence,

γTg Xgβ
∗
g + δgug ≥ −∥γg∥2∥Xgβ

∗
g ∥2 + δgug ≥ 0.

Therefore, complementary slackness holds if and only if the following conditions hold [16]:

• ∥γg∥2 < δg ⇒ ∥Xgβ∗g ∥2 = ug = 0,

• ∥Xgβ∗g ∥2 < ug ⇒ ∥γg∥2 = δg = 0,

• ∥Xgβ∗g ∥2 = ug, ∥γg∥2 = δg ⇒ γTg Xgβ∗g = −δgug.

The third condition with respect to (4.3.2) is

γTg Xgβ
∗
g + λ∥Xgβ

∗
g ∥2 = 0. (4.3.3)

The complementary slackness condition for the second order cone (4.3.3) holds if and only

if [33]

• Xgβ∗g = 0,

• Xgβ∗g ≠ 0, ∥γg∥2 = λ and γg = −λ
Xgβ∗g

∥Xgβ∗g ∥2
.

The KKT conditions for (β̂∗(y), γ̂(y)) are as follows:

XT
g

√
lg
(Y −∑

g∈G

Xg
√
lg
β̂∗g ) = −X

T
g γ̂g,

γ̂Tg Xgβ̂
∗
g + λ∥Xgβ̂

∗
g ∥2 = 0,

∥γ̂g∥2 ≤ λ. (4.3.4)

Let us define the support of β̂∗ as follows:

S(β̂∗) = {g ∈ G ∶Xgβ̂
∗
g ≠ 0} . (4.3.5)
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Theorem 5. Let us define the support S(β̂∗) as (4.3.5). The optimal solution of (4.2.6), β̂∗,

satisfies

XT
g

√
lg
(Y −∑

g∈S

Xg
√
lg
β̂∗g ) = λ

XT
g Xgβ̂∗g

∥Xgβ̂∗g ∥2

where g ∈ S(β̂∗),

XXXXXXXXXXX

XT
g

√
lg
(Y −∑

g∈S

Xg
√
lg
β̂∗g )

XXXXXXXXXXX2

≤ λ ∥Xg∥2 where g ∉ S(β̂∗),

and ∥Xg∥2 is the induced l2-norm of Xg.

Proof.

1. In the case where g ∈ S,

Note that ∑g∈G
Xg
√
lg
β̂∗g = ∑g∈S

Xg
√
lg
β̂∗g and, when Xgβ∗g ≠ 0, then γg = −λ

Xgβ∗g
∥Xgβ∗g ∥2

. Therefore,

the KKT condition in terms of S is

XT
g

√
lg
(Y −∑

g∈S

Xg
√
lg
β̂∗g ) = λ

XT
g Xgβ̂∗g

∥Xgβ̂∗g ∥2

where g ∈ S(β̂∗).

2. In the case where g ∉ S,

Suppose that Ω(β∗) = λ∑g∈G ∥Xgβ∗g ∥2
. By Lemma 1 for case Xgβ∗g = 0, we have

∂β∗gΩ(β∗) = {λXT
g ωg ∶ ωg ∈ Rn, ∥ωg∥2 ≤ 1} .

Let vh = λwh; then

∂β∗gΩ(β∗) = {XT
g vg ∶ vg ∈ Rn, ∥

vg
λ
∥2 ≤ 1} .

Note that ∥γg∥2 ≤ λ, i.e. ∥
γg
λ ∥2 ≤ 1 and γg , vg ∈ Rn; therefore, the above subdifferential is

equivalent to

∂β∗gΩ(β∗) = {XT
g γg ∶ γg ∈ Rn, ∥

γg
λ

∥2 ≤ 1} .

Now, consider the KKT condition

XT
g

√
lg
(Y −∑

g∈S

Xg
√
lg
β̂∗g ) = −X

T
g γ̂g ,
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and note that γg is in the subdifferential; therefore,

XXXXXXXXXXX

XT
g

√
lg
(Y −∑

g∈S

Xg
√
lg
β̂∗g )

XXXXXXXXXXX2

≤ λ sup
∥
γg
λ
∥2≤1

∥Xg

γg
λ

∥
2

= λ ∥Xg∥2 ,

where ∥Xg∥2 is the induced l2-norm of matrix Xg.

4.4 The degrees of freedom

In this section, we will calculate the degrees of freedom for the standardized group LASSO.

Theorem 6. The unbiased estimate of the degrees of freedom for the standardized group

LASSO is

d̂fλ(X̃Sβ̂
∗(y)) = tr (X̃T

S (X̃T
S X̃S + λU)

−1
X̃S) , (4.4.1)

where

U = diag

⎛
⎜
⎜
⎜
⎝

XT
g

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −
Xg β̂∗g β̂∗

T

g X
T

g

∥Xgβ̂∗g∥
2

2

∥Xgβ̂∗g ∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XT
g

⎞
⎟
⎟
⎟
⎠
g∈S

. (4.4.2)

Proof.

Suppose S be the support of β̂∗ defined in (4.3.5) and define X̃S = (
Xg
√
lg
)
g∈S

. Therefore, the

first KKT condition in Theorem 5 can be written as follows:

X̃T
S (Y − X̃Sβ̂

∗
S) = λX

T
S N(β̂∗S),

where N(β̂∗S) is a normalization operator where

Ng(β) =
Xgβg

∥Xgβg∥2

.

Define the mapping

Γ (β̂∗(y), y) = X̃T
S X̃Sβ̂

∗
S − X̃

T
S Y + λXT

S N(β̂∗S);
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then

∂yβ̂
∗(y) = (∂β̂∗Γ (β̂∗(y), y))

−1
X̃T

S ,

and thus

d̂fλ(X̃Sβ̂
∗(y)) = tr (X̃T

S (X̃T
S X̃S + λU)

−1
X̃S) , (4.4.3)

where U is defined in (4.4.2).

Note that the matrix U involves Xg instead of X̃g because the penalty weight
√
lg is trans-

ferred from the penalty into the loss function. In Figure 4.1, the unbiased estimate of the

degrees of freedom for the standardized group LASSO is compared with the actual degrees

of freedom

df(f) =
1

σ2

n

∑
i=1

Cov (Yi, f(Yi)) . (4.4.4)

For this comparison, suppose X ∈ R100×75 and β ∈ R75 are fixed for 25 groups, each with 3

levels. Then, we generate B = 1000 Monte Carlo replicates of y(b) = Xβ + N(0,1). The

Monte Carlo estimate of E [d̂fλ] and actual dfλ are computed from the generated values of

y by using formulas (4.4.3) and (4.4.4). Figure 4.1 shows that the actual degrees of freedom

and the Monte Carlo estimate coincide, i.e. E [d̂fλ] = dfλ. It means that the estimate 4.1 is

unbiased, which is the main property of SURE theory.

The error bars in Figure 4.1 are smaller for larger values of tuning parameter λ. The error

bars get larger specifically for models that have more than 16 predictors. These large error

bars happen because the interval of tuning parameters for these models are very small. The

grpreg algorithm selects groups based on the value of the tuning parameter λ. First, the

algorithm estimates the largest value of λ, then it makes a grid of m points between zero

and the estimated λ. The set of grid points gives the solution path. If the number of grid
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Figure 4.1: Comparing the unbiased estimate of degrees of freedom with the actual degrees of
freedom for the standardized group LASSO.

points m is small, then it is possible that the number of selected groups shows a big jump

from a point to another point in the solution path. For instance, the model selects 14 groups

in one point and in the next point, the model contains 18 groups. It shows that algorithm

missed the small jumps of λ that selects 15, 16 and 17 groups. This can be solved by taking

a large number of grid points, but this solution is expensive computationally. The alternative

is to consider an algorithm similar to LARS. Consider a case that q groups are selected in

a very small interval of λ; thus, the degrees of freedom are sensitive to a small change of

value in λ, which makes the error bars large. We believe that a LARS type algorithm for

group LASSO is useful to make the error bars smaller because it will find the break points

in the solution path easier and cheaper. For this simulation, we used grpreg algorithm with

a grid of 10000 points for the tuning parameter λ. The full model with 25 groups shows

a very small error bar because of the large interval of λ for this full model. Also the full

model takes a very small λ close to zero and we will discuss the property of degrees of

freedom for this point in Section 5.5.
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4.5 The degrees of freedom for overlapped group LASSO

As a corollary of Vaiter et al. result [4], we calculate the degrees of freedom for an over-

lapped group LASSO.

Corollary 1. The unbiased estimate of degrees of freedom for overlapped group LASSO is

d̂fλ(overlapped group LASSO) = tr (X∗
S (X∗T

S X∗
S + λU)

−1
X∗T

S ) , (4.5.1)

where

U = diag

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −
β̂∗g β̂∗Tg
∥β̂∗g ∥22

∥β̂∗g ∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦g∈S

. (4.5.2)

Proof.

Consider the problem

∥Y −Xβ∥
2
2 + λ∑

g∈G

∥βg∥2, (4.5.3)

where the groups g ∈ G overlap. Obozinski [34] implemented this problem as group LASSO

by duplicating the covariate matrix X as X∗, where

X Ð→X∗ =⊕
g∈G

(xi)i∈g,

and ⊕ ∶ RP Ð→ R∑g∈G ∣g∣ is the duplication operator. Thus, the problem (4.5.3) can be

written as

∥Y −X∗β∗∥
2
2 + λ∑

g∈G

∥β∗g ∥2,

where β∗ refers to the coefficients with respect to the coordinates of groups g. Note that

Xβ̂ =X∗β̂∗ and by the result of Vaiter et al. [4], the degrees of freedom are as follows:

dfλ(X
∗
S β̂

∗
S(y)) = E [∇ ⋅X∗

S β̂
∗
S ]
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= E [tr(X∗
S [∂β̂∗

S
Γ(β̂∗S(y), y)]

−1
X∗T

S )] ,

where ∂β̂∗
S
Γ(β̂∗S(y), y) =X

∗T
S X∗

S +λdiag

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I−
β̂∗g β̂∗Tg
∥β̂∗g ∥22

∥β̂∗g ∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎦g∈S

and S = {g ∈ G ∶ β̂∗g ≠ 0}. This results

in

d̂fλ(overlapped group LASSO) = tr (X∗
S (X∗T

S X∗
S + λU)

−1
X∗T

S ) , (4.5.4)

where U is defined in (4.5.2).
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Chapter 5

Hierarchical Group LASSO with the

Logistic Loss

5.1 Introduction

In this chapter, we apply the hierarchy constraint on group LASSO with logistic loss. The

solution of the proposed convex problem is characterized in Theorem 7. The derived unbi-

ased estimates of the degrees of freedom in the current work are compared with the known

unbiased estimates of the degrees of freedom. We show in Theorem 8 that our estimates of

the degrees of freedom converge to the rank of the design matrix of selected variables when

λ↘ 0. Finally, we study the selection process of the proposed procedures.

Meier et al. [32] proposed an algorithm, implemented in the R-package grplasso, for group

LASSO with the logistic loss and they showed that the group LASSO estimator is statisti-

cally consistent. They tried to produce a hierarchical model by a two-stage algorithm. In

the first stage, they used a group LASSO penalty for all main effects, and after that they pe-

nalized all the main effects and related interactions with ridge penalty in the second stage.

Ridge penalty shrinks all effects but prevents selection. It means that a hierarchical model is

made only by selecting main effects. There is an issue here. To explain this issue, consider

that a group LASSO selects 6 main effects in the first stage; hence, there are 15 interactions.
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The ridge penalty produces a model with 6+15=21 effects. Someone may ask: do all of the

15 interactions have to be selected?

5.2 Logistic regression

Consider a dichotomous response variable Y , which divides the population under question

into two classes. That is, Y is an indicator variable such that if the response is in the first

class, then Y = 1; otherwise Y = 0. Let X be the matrix of predictors, continuous or

discrete. First, note that P (Y = 1∣X = x) = E[Y = 1∣X = x] and assume that there is a

relation through a function p and a parameter β as P (Y = 1∣X = x) = p(x,β). Thus, the

likelihood function is

n

∏
i=1

P (Y = yi∣X = xi) =
n

∏
i=1

p(xi, β)
yi(1 − p(xi, β))

1−yi .

The function p cannot be represented by linear regression since p ∈ (0,1) and linear func-

tions are unbounded in both directions. The term log(p) appears in the log-likelihood,

which cannot be represented by linear models, because log(p) is unbounded in one direc-

tion. The logistic function log( p
1−p) is the proper function for this purpose; therefore,

log [
p(x)

1 − p(x)
] = β0 + xβ,

and the log-likelihood is

L(β0, β) = Y
T (β01 +Xβ) − 1T (log(1 + eβ01+Xβ)) ,

where log and exp are taken component-wise.

5.3 The proposed method

For the logistic loss, we will use the same modification and generalization of the constraint

of Bien et al. [27] as for the quadratic loss in Chapter 3. The objective is again to make
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models which satisfy the strong hierarchy rule. Let us write the linear model with pair

interactions

log [
P (Y = 1∣X)

1 − P (Y = 1∣X)
] = β0 +

p

∑
g=1

Xgβg +
1

2
∑
g≠h

Xg∶h vec(Θg∶h)

where Θg∶h is the matrix of coefficients of pair interactions, same as the parameter in the

equation (3.2.1). The negative log-likelihood is considered as the loss function; thus

min
β0∈R,β∈RL,Θ∈RL×L

−

⎡
⎢
⎢
⎢
⎢
⎣

Y T
⎛

⎝
β01 +

p

∑
g=1

Xgβg +
1

2
∑
g≠h

Xg∶h vec(Θg∶h)
⎞

⎠

−1T (log(1 + eβ01+∑
p
g=1Xgβg+

1
2 ∑g≠hXg∶h vec(Θg∶h)))

⎤
⎥
⎥
⎥
⎥
⎦

+ λ∑
g

∥βg∥2 +
λ

2
∑
g≠h

∥Θg∶h∥F .

The above group LASSO considers main effects and interactions as groups and the induced

model will include some main effects and interactions without a hierarchy structure. To

guarantee hierarchy, we will use the constraint as constructed in Section 3.2. Hence, we

take 1Tvec((Θ+
g − Θ−

g)diag( 1
w)) ≤ 1T (β+g + β

−
g ) as the modified version of the constraint

of Bien et al. [27], where Θ is a symmetric matrix and w is the weight vector defined in

Section 3.2. For the simplicity of notation, let φ = (β0, β+, β−,vec(Θ+),vec(Θ−)) where

Θg∶g = 0 ∉ vec(Θ) and suppose that X̃ = (1;X;−X;Z;−Z), where Z is the matrix of

interactions defined in (2.3.1). Hence, the hierarchical group LASSO with logistic loss is

min
β0∈R,β±∈RL,Θ±∈RL×L

− [Y T X̃φ − 1T (log(1 + eX̃φ))] + λ∑
g

∥β+g − β
−
g ∥2 + λ∑

g≠h

∥Θ+
g∶h −Θ−

g∶h∥F ,

1Tvec((Θ+
g −Θ−

g)diag( 1
w)) ≤ 1T (β+g + β

−
g )

β±g ⪰ 0, Θ±
g ⪰ 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

for all g ∈ G, (5.3.1)

Θ+ −Θ− = Θ+T −Θ−T .

Note that here Θg
2 is considered as a new parameter instead of Θg. We know that the

uniqueness of the solution is guaranteed if the problem is strictly convex. Note that the sec-
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ond derivative of the logistic loss is X̃T diag( eX̃iφ

(1+eX̃iφ)2
)
n

i=1

X̃ = X̃TV X̃ = X̃TV
1
2V

1
2 X̃ =

UTU ≥ 0; thus the loss function is convex, and it would be strictly convex if and only if X̃

is full column rank. If X̃ is not full column rank, then there exists vector x such that X̃x = 0

and, therefore, xT X̃TV X̃x = 0. As a result, in the high-dimensional case with n << p, the

solution of (5.3.1) may not be unique.

In Chapter 4, a tiny fraction of an elastic net term made the problem strictly convex. This

tiny fraction, ε, controls the effect of the elastic net term. The elastic net term is transferred

into the design matrix X which simplifies the optimization problem. The form of the lo-

gistic loss prevents the transferring of the elastic net term into the design matrix. There is

another approach for uniqueness in which every submatrix Xa, where ∣a∣ ≤ n, is assumed

to have full column rank. Therefore, the active set is chosen in such a way that ∣A∣ ≤ n.

For instance [8], [7] and [22] proposed different constraints in view of this approach. Roth

and Fischer [8] proposed a simpler constraint and algorithm for group LASSO. We will use

and describe this algorithm since it adds only a fixed parameter κ as constraint to the group

LASSO penalty and this simplifies the algorithm mathematically and computationally.

In logistic regression, when the dimensionality exceeds the number of observations, the

uniqueness of the solution is not guaranteed. In this situation, every β∗ = β0 + ξ is also a

solution where ξ ∈ ker(X). Therefore, Roth and Fischer [8] defined the group LASSO as

minimize L(β0, β) s.t. g(β) ≥ 0

where g(β) = κ −∑
g

∥βg∥2, (5.3.2)

where active constraint is required, i.e. κ < κ0 and κ0 ∶= minξ∈ker(X)∑g ∥β
0
g + ξg∥2. It is

worth noting that κ0 is unique even with several vectors ξ ∈ ker(X). Roth and Fischer [8]

proved that the solution of (5.3.2) is unique and proposed the following algorithm. Define
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hj =XT
j (Y − eXβ

1+eXβ
).

A: Initialize set A = {j0}, βj0 arbitrary with ∥βj0∥2 = κ.

B: Optimize over the current active set A. Define set A+ = {j ∈ A ∶ ∥βj∥2 > 0}. Define

λ = maxj∈A+ ∥hj∥2. Adjust the active set A = A+.

C: Lagrangian violation. For all j ∉ A, check if ∥hj∥2 ≤ λ. If this is the case, we have

found a global solution. Otherwise, include the group with the largest violation to A

and go to B.

D: Completeness and uniqueness. For all j ∉ A, check if ∥hj∥2 = λ. If so, there might

exist other solutions with identical costs that include these groups in the active set.

Otherwise, the active set is complete in the sense that it contains all relevant groups.

If ∣A∣ ≤ n, then the solution is unique.

5.4 Characterization of the solution

We need to rewrite problem (5.3.1) with respect to the uniqueness algorithm of Roth and

Fischer [8]. Note that the Lagrangian for group LASSO defined in (5.3.2) is

L(β0, β) − λ(κ −∑
g

∥βg∥2).

Therefore, the convex problem (5.3.1) with respect to this new definition of group LASSO

changes to

min
β0∈R,β±∈RL,Θ±∈RL×L

− [Y T X̃φ − 1T (log(1 + eX̃φ))]−λ
⎡
⎢
⎢
⎢
⎣
κ −∑

g

∥β+g − β
−
g ∥2 −∑

g≠h

∥Θ+
g∶h −Θ−

g∶h∥F

⎤
⎥
⎥
⎥
⎦

1Tvec((Θ+
g −Θ−

g)diag( 1
w)) ≤ 1T (β+g + β

−
g )

β±g ⪰ 0, Θ±
g ⪰ 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

for all g ∈ G, (5.4.1)
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Θ+ −Θ− = Θ+T −Θ−T .

Similar to the equation (3.4.1), this convex problem can be rewritten as the minimization of

− [Y T X̃φ − 1T (log(1 + eX̃φ))] − λ
⎡
⎢
⎢
⎢
⎣
κ −∑

g

∥Dgφg∥2 −∑
g≠h

∥Dg∶hφg∶h∥2

⎤
⎥
⎥
⎥
⎦
− µTAφ + υTEφ.

The KKT conditions are the same as (3.4.5) except the first condition which changes to

X̃T (Y −
eX̃φ̂

1 + eX̃φ̂
) = −AT µ̂ +ET υ̂ −DT γ̂. (5.4.2)

The boundary set A(φ̂) and the support S(φ̂) are similar to (3.4.6) and (3.4.8). Now, we

are equipped to write the following theorem.

Theorem 7. Define the support S(φ̂) as (3.4.8). Therefore, the optimal solution φ̂ of the

convex problem (5.4.1) satisfies

PSX̃
T
S (Y −

eX̃Sφ̂S

1 + eX̃Sφ̂S
) = λDT

S N(φ̂S) where g ∈ S(φ̂),

∥PgX
T

g (Y −
eXSb̂S

1 + eXSb̂S
)∥

2

≤ λ where g ∉ S(φ̂).

Proof.

The proof is analogous to the proof of Theorem 2.

5.5 Discussion

5.5.1 Selection process

We rewrite the UMP test given in Simon and Tibshirani [28]. Suppose that a least squares

linear regression model has fitted on X = (X1 X2⋯Xh−1) and we are deciding whether or

not to add a new group of variables Xh. Suppose that the variance σ2 is known and, thus,
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the uniformly most powerful test of H0 ∶ βh = 0 is rejected at level α if

∥ŷh − ŷh−1∥
2
2 ≥ σ

2χ2
lh
(1 − α), (5.5.1)

where ŷi is the prediction for the linear model onX = (X1 X2⋯Xi) [28]. Now consider the

characterization of solution for the standardized group LASSO in Theorem 5. The decision

for the inclusion of a group Xh is based on the magnitude of

XXXXXXXXXXX

XT
h

⎛

⎝
Y −∑

g∈S

Xg
√
lg
β̂∗g

⎞

⎠

XXXXXXXXXXX2

. (5.5.2)

The decision in (5.5.1) is based on the deviation between two fits, but in Theorem 5 it is

based on a covariance and they look different. Note that if we consider β̃ instead of β∗, as

explained in Section 4.1, then the magnitude (5.5.2) will change to

XXXXXXXXXXX

UT
h

⎛

⎝
Y −∑

g∈S

Ug
√
lg

ˆ̃βg
⎞

⎠

XXXXXXXXXXX2

= ∥Y − ŶS∥2

which is comparable with the left side of (5.5.1). This result is mentioned in Simon and

Tibshirani [28]. Suppose that

Y = ŶS + ε where ε ∼ N(0, σ2I),

hence, for selection process in the standardized group LASSO, derived in Theorem 5, we

will have

1

lh∥Xh∥
2
2

∥XT
h ε∥

2
2 =

1

lh∥Xh∥
2
2

εTXhX
T
h ε

=
1

lh maxi(δh,i)

lh

∑
i=1

δh,iε
Tυh,iυ

T
h,iε

=
1

lh maxi(δh,i)

lh

∑
i=1

δh,i < υh,i, ε >
2

∼
1

lh

lh

∑
i=1

δh,i
maxi(δh,i)

σ2 [N(0, σ2)]
2

σ2
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∼
σ2

lh

lh

∑
i=1

δ∗h,iχ
2
1, (5.5.3)

where δh,i, υh,i are eigenvalues and eigenvectors of XT
hXh. Standardized group LASSO

uses 1
lh
∑
lh
i=1 δ

∗
h,iχ

2
1 instead of χ2

lh
in the above UMP test. This result is analogous to the

result of Simon and Tibshirani [28]. Note that we worked with β̂∗ directly instead of ˆ̃β and

this gives the authority to show interesting properties in balanced layouts, which will be

discussed in Chapter 6. Let us check this for hierarchical group LASSO. Its characterization

of the solution is provided in Theorem 2 and we have

∥PhX
T
h ε∥

2
2 = εTXhP

T
h PhX

T
h ε

= ∑
i

δh,iε
TυTh,iυh,iε

∼ σ2
∑
i

δh,iχ
2
1, (5.5.4)

where δh,i, υh,i are eigenvalues and eigenvectors of (PhXT
h )

T
(PhXT

h ).

5.5.2 The degrees of freedom

Stein’s Unbiased Risk Estimation, SURE, theory requires normal response Y and, in logis-

tic regression, the response Y is binary. Therefore, it is not possible to compute the degrees

of freedom for the hierarchical logistic group LASSO. In Table 5.1, the forms of known

estimates of degrees of freedom with the computed estimates of degrees of freedom are

compared. This table shows how the degrees of freedom gradually change from simpler

formulas to more complex formulas. In Section 1.3, we saw that the degrees of freedom of

linear multiple regression are

d̂f = tr ((XTX)(XTX)−1) = rank(X).
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Known unbiased estimates of degrees of freedom

LASSO tr (XS(XS)
+) = rank(XS)

Hierarchical LASSO tr ((X̃SPS)(X̃SPS)
+) = rank(X̃SPS)

Elastic net tr (XS(X
T
S
XS + λ2I)

−1XT
S
)

Group LASSO tr (XS(X
T
S
XS + λU)

−1XT
S
) where U = diag

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I− β̂gβ̂
T
g

∥β̂g∥
2
2

∥β̂g∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦g∈S

Calculated unbiased estimates of degrees of freedom

tr (X̃S(X̃
T
S
X̃S + λU)

−1X̃T
S
) where U = diag

⎛
⎜
⎜
⎜
⎜
⎝

XT
g

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I−Xgβ̂
∗
gβ̂

∗
T

g X
T

g

∥Xgβ̂
∗
g∥

2

2

∥Xg β̂∗g∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XT
g

⎞
⎟
⎟
⎟
⎟
⎠
g∈S

Standardized
group LASSO

tr (X∗
S
(X∗T

S
X∗

S
+ λU)−1X∗T

S
) where U = diag

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I− β̂
∗
gβ̂

∗
T

g

∥β̂∗g∥
2
2

∥β̂∗g∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦g∈S

Overlapped group LASSO

tr (X̃SPS(PSX̃
T
S
X̃SPS + λU)

−1PSX̃
T
S
) where U = diag

⎛
⎜
⎜
⎜
⎜
⎝

DTg

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I−Dgφ̂gφ̂
T
g D

T

g

∥Dgφ̂g∥
2

2

∥Dg φ̂g∥
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DTg

⎞
⎟
⎟
⎟
⎟
⎠
g∈S

Hierarchical
group LASSO

Table 5.1: Comparing the known unbiased estimates of degrees of freedom with the results of this
thesis.

Tibshirani et al. [25] showed that the degrees of freedom for LASSO are tr ((XS)(XS)
+) =

rank(XS). Also Bien et al. [27] showed the same property for hierarchical LASSO, which

is tr ((X̃SPS)(X̃SPS)
+) = rank(X̃SPS). Here we see that linear regression takes the rank of

X , which is the complete design matrix. However, LASSO represents the rank of a design

matrix which contains only selected variables. Hierarchical LASSO takes the rank of the

projected design matrix for selected variables. This projection matrix reflects the hierarchy

conditions.

For elastic net, when λ1, λ2 Ð→ 0+, the degrees of freedom converge to those of the least

squares regression and, therefore, its degrees of freedom should converge to the degrees of

82



freedom of linear regression. Hence,

lim
λ1,λ2↘0

tr (XS(X
T
S XS + λ2I)

−1XT
S ) = tr(XS lim

λ2↘0
[(XT

S XS + λ2I)
−1XT

S ])

= tr (XS(XS)
+)

= rank (XS) . (5.5.5)

Note that limε↘0 [(ATA + εI)−1AT ] = A+, where A+ is the Moore-Penrose pseudo inverse.

This property shows that the formula works well in the extreme case. However, does this

property hold for group LASSO type procedures as well? Note that the estimate of the

degrees of freedom in groupwise regularization contains matrix U instead of identity matrix

I in elastic net regularization. First, we give the following lemma and then we will show

this property for estimates of degrees of freedom in groupwise regularized procedures.

Lemma 4. Suppose that U is a symmetric positive definite matrix. Then

lim
ε↘0

[(ATA + εU)−1AT ] = V −1(AV −1)+

where U = V TV .

Proof.

The matrix U is symmetric positive definite. Therefore U = V TV where V is invertible and

lim
ε↘0

[(ATA + εU)−1AT ] = lim
ε↘0

[(ATA + εV TV )−1AT ]

= lim
ε↘0

[[V T (V −TATAV −1 + εI)V ]
−1
AT ]

= lim
ε↘0

[V −1((AV −1)T (AV −1) + εI)−1(AV −1)T ]

= V −1 lim
ε↘0

[((AV −1)T (AV −1) + εI)
−1

(AV −1)T ]

= V −1(AV −1)+.

Note that the matrix U is a function of β̂ and, thus, it depends on λ. Note that in the case of
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balanced design, when λ ↘ 0, then β̂GL → β̂LSE , thus, we can take β̂LSE and construct U .

This gives a constant matrix U .

Theorem 8. The unbiased estimate of degrees of freedom of group LASSO in the extreme

case of λ↘ 0 is

lim
λ↘0

dfλ (group LASSO) = rank (XS) .

Proof.

The matrix U is symmetric positive semi-definite for group LASSO [4]. By some neglect,

we can consider it as a symmetric positive definite matrix since U +εI is symmetric positive

definite for a positive small value of ε. Then, U = V TV where V is invertible. Later on, we

will see that the final answer is independent of the matrix V . We know that β̂g ≠ 0 for all

g ∈ S then U is symmetric positive definite and we have

lim
λ↘0

tr (XS(X
T
S XS + λU)−1XT

S ) = tr(XS lim
λ↘0

[(XT
S XS + λU)−1XT

S ])

= tr ((XSV
−1)(XSV

−1)+)

= rank (XSV
−1)

= rank (XS) , (5.5.6)

because V −1 is full rank.

Corollary 2. The unbiased estimates of the degrees of freedom in the extreme case of λ↘ 0,

are

• Standardized group LASSO: rank (X̃S) = rank (XS),

• Overlapped group LASSO: rank (X∗
S
),

• Hierarchical group LASSO: rank (X̃SPS).
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In fact, when the tuning parameter λ converges to zero, the degrees of freedom in the men-

tioned procedures converge to the degrees of freedom of the related least squares estimate.
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Chapter 6

Some Additional Aspects of Group LASSO

in Fixed Effects Factorial Designs

6.1 Introduction

In this chapter, we show in Theorem 9 that in the case of balanced designs, sum-to-zero

constraints are satisfied in each group of estimates of group LASSO. Hence, for small val-

ues of λ, estimates of group LASSO match with constrained LSE. We provide a selection

method for λ based on AIC and BIC in Section 6.3. Group LASSO and constrained LSE are

compared via a toy example in Section 6.4. We study the selection process of a standardized

group LASSO and show how replication affects the selection process in the standardized

group LASSO.

In the classical ANOVA, parameters of a model are estimated by minimizing quadratic

loss. However, by considering all levels of a factor in the model, the LSE is not identifiable.

There are two frameworks to overcome this problem. The first one drops out one level from

each factor, which is known as baseline constraint. The second one considers all levels of

each factor, and adds sum-to-zero constraints for identifiability, which we call a constrained

LSE.
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The question is which one of the baseline constraints or the sum-to-zero constraints should

be used in group LASSO. To answer this question, suppose that X be the full design matrix

of a one factor layout with three levels. Therefore, X3 = 1 −X1 −X2 and

µ + β1X1 + β2X2 + β3X3 = µ + β1X1 + β2X2 + β3(1 −X1 −X2)

= µ + β3 + (β1 − β3)X1 + (β2 − β3)X2

= µ′ + β′1X1 + β
′
2X2,

which leads to baseline constrained design in ANOVA models. Note that the group LASSO

of these two designs lead to different Lagrangians:

∥Y − [µ + β1X1 + β2X2 + β3X3] ∥
2
2 + λ∥(β1, β2, β3)∥2

and

∥Y − [µ + β3 + (β1 − β3)X1 + (β2 − β3)X2] ∥
2
2 + λ∥(β1 − β3, β2 − β3)∥2,

especially when λ is far from zero. This shows that we should consider full design matrix

with sum-to-zero constraints in group LASSO.

Another question raised here is whether the sum-to-zero constraints in group LASSO shall

be considered when there is a consideration of full design matrix. Group LASSO with full

design matrix and sum-to-zero constraints is a convex optimization problem; however, the

number of sum-to-zero constraints increases dramatically in high-dimensional data sets as

is shown in Section 2.2. Lim [17] showed that overlapped group LASSO with sum-to-zero

constraints is equivalent to group LASSO. Nonetheless, we are thinking more simply and

we show in Theorem 9 that sum-to-zero constraints are satisfied in group LASSO in the

case of balanced designs. Note that sum-to-zero constraints are used in constrained LSE

for identifiability and could be replaced with other identifiability constraints or penalties
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such as the group LASSO penalty.

6.2 A connection between constrained LSE and group LASSO

Is there any connection between the estimate of a group LASSO and constrained LSE?

Suppose that X be the design matrix with groups g ∈ G as factors. We consider a group

LASSO with full designX , where all levels of a factor are in the model without sum-to-zero

constraints. Therefore, the group LASSO problem is

argmin
(µ.β)

∥Y − µ1 −Xβ∥
2
2 + λ∑

g∈G

∥βg∥2 .

Yuan and Lin [18] showed that if XT
X = I then

β̂
GL

g =
⎛

⎝
1 −

λ
√
lg

∥β̂LSEg ∥2

⎞

⎠
+

β̂
LSE

g , (6.2.1)

where β̂
LSE is the least squares regression estimate. It means that when λ ↘ 0 then

β̂
GL
→ β̂

LSE . This equality is correct when X is orthonormal but this assumption is rarely

satisfied in actual situations. We will investigate this fact in detail.

By definition, full design matrix refers to a design in which all levels of a factor are consid-

ered and none of them is dropped out. Now consider a two-factor layout with full design

matrix. The least squares estimate, β̂LSE , exists when sum-to-zero constraints are applied.

In fact, sum-to-zero constraints are used for identifiability. However, the group LASSO

penalty preserves the sum-to-zero property under a specific condition. Therefore, instead

of using sum-to-zero constraints, we can use the group LASSO penalty for identifiability.

Also in the case of high-dimensional data, even by using sum-to-zero constraints, there is

no constrained LSE. After all, simply by using the group LASSO penalty, we will get a
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sparse solution path. In the following theorem we show that sum-to-zero constraints are

satisfied for a group LASSO estimate in each group when the design is balanced and it is

independent of the value of tuning parameter λ.

Theorem 9. Suppose X to be a full balanced design matrix in such a way that each group

Xg, g ∈ G is an indicator matrix, i.e. each row consists of exactly a single 1. Thus, the

solution β̂ of

argmin
µ,β

∥Y − µ.1 −Xβ∥
2
2 + λ∑

g

∥βg∥2 ,

satisfies
¯̂
βg = 0.

Proof.

Note thatXg.c1g = c1n for any constant c sinceXg contains a single 1 in each row. Suppose

that there are 2 groups, hence it follows that if µ̂ and β̂ are solutions, then

∥Y − µ̂.1 −Xβ̂∥
2

2
= ∥Y − µ̂.1 − c11n − c21n −Xβ̂ + c11n + c21n∥

2

2

= ∥Y − (µ̂.1 + c11n + c21n) −Xg1
(β̂g1

− c11g1
) −Xg2

(β̂g2
− c21g2

)∥
2

2

Therefore, µ̂+(c1+c2)1n and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂g1
− c11g1

β̂g2
− c21g2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

minimize the loss function, while the penalty

∥β̂g1
− c1g1

∥
2

2
+ ∥β̂g2

− c1g2
∥

2

2
= (β̂Tg1

β̂g1
− 2c11Tg1

β̂g1
+ c2

11Tg1
1g1

) + (β̂Tg2
β̂g2

− 2c21Tg2
β̂g2

+ c2
21Tg2

1g2
)

=
⎛

⎝
β̂Tg1

β̂g1
− 2c1

lg1

∑
i=1

β̂i + nc
2
1

⎞

⎠
+
⎛

⎝
β̂Tg2

β̂g2
− 2c2

lg2

∑
i=lg1+1

β̂i + nc
2
2

⎞

⎠

is minimized for c1 =
¯̂
βg1

and c2 =
¯̂
βg2

. The intercept µ is not penalized and its estimate µ̂

minimizes only the loss function. Let us find µ̂:

∂ ∥Y − µ.1n −Xβ∥
2
2

∂µ
= −2.1Tn (Y − µ.1n −Xβ) = 0,
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then

µ̂ = Y −
1

n
1Tn . [Xg1

Xg2
]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β̂g1

β̂g2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Y −
r∑

lg1
i=1 β̂i

rlg1
lg2

−
r∑

lg2
i=lg1+1 β̂i

rlg1
lg2

= Y −
c1

lg2

−
c2

lg1

,

where r is the number of repetition in each treatment of full balanced design X . On the

other side,

∂ ∥Y − (µ.1n + c11n + c21n) −Xg1
(βg1

− c11g1
) −Xg2

(βg2
− c21g2

)∥
2

2

∂µ
=

−2.1Tn (Y − (µ.1n + c11n + c21n) −Xg1
(βg1

− c11g1
) −Xg2

(βg2
− c21g2

)) .

Therefore,

µ̂ = Y − c1 − c2 −
1

n
1TnXg1

(βg1
− c11g1

) −
1

n
1TnXg2

(βg2
− c21g2

)

= Y − c1 − c2 −
1

n
r1Tg1

(βg1
− c11g1

) −
1

n
r1Tg2

(βg2
− c21g2

)

= Y − c1 − c2 −
r

n
(lg1

c1 − lg1
c1) −

r

n
(lg2

c2 − lg2
c2)

= Y − c1 − c2.

Hence,

Y − c1 − c2 = Y −
c1

lg2

−
c2

lg1

⇒ c1 + c2 =
c1

lg2

+
c2

lg1

⇒ c1 = c2 = 0.

Note that lg1
, lg2

≥ 2.

The theorem states that the summation of coefficients of each group is zero for group

LASSO estimates when the design is balanced. In other words, the sum-to-zero constraint
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is satisfied for each group in a group LASSO with balanced design, and this is independent

of the value of tuning parameter λ. There are lg + lh sum-to-zero constraints for each inter-

action of two main effects with lg and lh levels respectively. While based on the theorem,

there is only one sum-to-zero constraint for each interaction. In fact, group LASSO with

only main effects satisfies all sum-to-zero constraints which are needed in constrained LSE.

This leads to the conjecture that the estimate of a group LASSO converges to the estimate

of a constrained LSE when the tuning parameter λ converges to zero. However, it is not

correct when interactions are in the model. The conjecture will be illustrated in Table 6.2

in Section 6.4.

The group LASSO estimate depends on the value of the tuning parameter λ. There are

two extreme cases for λ in a group LASSO when it is large or small.

• λÐ→∞ ⇒ β̂
GL
Ð→ 0 and SSE

GL
Ð→ ∥Y − Y ∥

2

2
,

• λÐ→ 0 ⇒ SSE
GL
Ð→ SSE

LSE ,

where SSE stands for sum of squared errors. In fact, when λ is fixed with a large value,

the penalty gets a huge weight and all efforts are focused on minimization of penalty which

leads to β̂GL = 0 as the optimal estimation. When λ is fixed with a small value, the loss

function gets the main weight in optimization and group LASSO penalty works instead of

sum-to-zero constraints for identifiability; therefore, it leads to an SSE equal to constrained

LSE. This is reflected in Tables 6.2 and 6.4.

6.3 The selection of the regularization parameter λ

The tuning parameter λ in regularization methods is selected in such a way that the cor-

responding model is optimal according to some criteria, such as AIC, BIC, or Mallow’s
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Cp. The spirit of these criteria is based on the prediction risk, Risk(f). Suppose f to be a

continuous prediction rule. Thus according to [6],

Risk(f) = E [∥µ − f(Y )∥
2
2] = E [∥Y − f(Y )∥

2
2] − nσ

2 + 2
n

∑
i=1

Cov (Yi, f(Yi))

= E [∥Y − f(Y )∥
2
2] − nσ

2 + 2σ2df(f). (6.3.1)

The Stein’s Unbiased Risk Estimate is

R̂isk(f) = ∥Y − f(Y )∥
2
2 − nσ

2 + 2σ2d̂f(f),

where the unbiased estimate of df(f) is

d̂f(f) =
n

∑
i=1

∂fi(Y )

∂Yi
.

It means that an unbiased estimate of df(f) suffices to provide an unbiased estimate for

Risk(f), where σ2 is unknown and usually replaced with an estimate based on the largest

model [26]. The largest model corresponds to the smallest λ and, when λÐ→ 0, then

σ̂2 =MSE
GL

Ð→MSE
LSE

,

where MSE
GL

= SSE
GL

n−d̂f
, and MSE refers to mean squared error. It means that minimiza-

tion of prediction risk is involved with MSE
LSE .

Yuan and Lin [18] used Mallow’s Cp for the selection of λ, which is

Cp (µ̂) =
∥Y − µ̂∥

2
2

n
+

2

n
d̂fλ(µ̂)σ2.

They considered β̂GL from (6.2.1) and derived d̂fλ(µ̂) by

tr
⎛

⎝

∂ (Xβ̂)

∂Y

⎞

⎠
= tr

⎛

⎝

∂ (Xβ̂)

∂β̂LS
∂β̂

LS

∂Y

⎞

⎠
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=∑
g

I (∥β̂g∥2 > 0) +∑
g

∥β̂g∥2

∥β̂LSg ∥2

(lg − 1) . (6.3.2)

However, this is correct under the assumption that XT
X = I , which is rarely satisfied in

practical situations. They considered (6.3.2) as an approximation for the unbiased estimate

of df(f).

Breheny and Huang [14] proposed an intuitive formulation for degrees of freedom in group

LASSO by

d̂fλ(µ̂) =∑
g∈G

lg

∑
k=1

β̂gk

β̂∗gk
,

where β̂∗gk is the unpenalized fit for partial residuals, β̂∗gk = X
T

gkỸ /n and Ỹ is the current

update of residuals in the proposed algorithm in [14]. This formula is justified intuitively.

We propose Stein’s unbiased estimate for degrees of freedom of a group LASSO, which

is derived by Vaiter et al. [4]. A simplified version of the estimate of the degrees of freedom

is

d̂fλ(µ̂) = tr (XS (X
T
S XS + λU)

−1
XT

S ) , (6.3.3)

where U = diag

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I−
β̂gβ̂

T
g

∥β̂g∥22
∥β̂g∥2

⎤
⎥
⎥
⎥
⎥
⎥
⎦g∈S

and diag is a blockwise diagonal operator. This formulation

of degrees of freedom is justified in Figure 6.1 where the estimated degrees of freedom of

group LASSO from (6.3.3) are compared with the actual degrees of freedom from

df(f) =
1

σ2

n

∑
i=1

Cov (Yi, f(Yi)) . (6.3.4)

Figure 6.1 shows the Monte Carlo estimate of E [d̂fλ] on the y-axis versus the Monte Carlo

estimate of the actual dfλ, given by 6.3.4, for a sequence of λ (circular) with one standard

error bar. In this simulation, X ∈ R100×75 and β ∈ R75 are fixed for 25 groups, each with 3
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levels and, therefore, B = 1000 Monte Carlo replicates of y(b) are generated. The Monte

Carlo estimate of E [d̂fλ] and the actual dfλ are computed from the generated values of y.

For group LASSO we used gglasso package in R.

Figure 6.1: Comparing the unbiased estimate of degrees of freedom with the actual degrees of
freedom for group LASSO.

We will assess the effect of proposed degrees of freedom on the selection of λ with widely

used model selection criteria

AIC (µ̂) =
∥Y − µ̂∥

2
2

nσ2
+

2

n
d̂fλ(µ̂)

and

BIC (µ̂) =
∥Y − µ̂∥

2
2

nσ2
+

log(n)

n
d̂fλ(µ̂).

AIC and BIC have different properties in regression. BIC is consistent in model selection if

the true model is among candidates [23]. It means that if the true model is in the candidates

list, then the probability that BIC selects the true model converges to 1 as n→∞. AIC tends
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to overestimate the true model and asymptotically selects the smallest average squared error

when the true model is not among candidates. Zou, Hastie and Tibshirani [26] demonstrated

these facts for a LASSO by a simulation study. Their simulation shows that BIC has a much

higher probability than AIC to identify the true model in a LASSO. Also it shows that AIC

is conservative in variable selection and it tends to overfit in LASSO, but BIC tends to find

models with the right size. The following simulation experiment is analogous to that of

Zou, Hastie and Tibshirani [26]: it illustrates analogous facts for AIC and BIC, this time

for a group LASSO.

Simulation 1.

Consider a linear model with three factors. We will generate eight factors each with three

levels, but the response depends on only three factors. Consider Z1,⋯, Z8 be random vari-

ables from a multivariate normal distribution with covariance between Zi and Zj being

0.1∣i−j∣ and a mean of zero. The three levels of each factor are 0,1, and 2 if smaller than

Φ−1(1
3), between Φ−1(1

3) and Φ−1(2
3), and greater than Φ−1(2

3), respectively. The response

Y is generated by Y =Xβ +N(0,1) where

β
T

= (7,−6.7,8.2,−1.5,4,−2.5,−1.7,0,0,0,0,0,0,−2.7,1.8,1.2,0,0,0,0,0,0,0,0,0).

The number of observations in each run is n ∈ {100,500,1000,2000} and the number of

replication is 2000. The results are shown in Table 6.1.

n
median proportion

AIC BIC AIC BIC
100 5 3 0.158 0.526
500 5 3 0.168 0.718

1000 5 3 0.183 0.764
2000 5 3 0.180 0.797

Table 6.1: Comparing the median number of selected nonzero factors and the probability of discov-
ering the exact true model by AIC and BIC in group LASSO.

The exact true model is the model that has no-zero coefficients for factors of {1,2,5} and
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has zero coefficients for other factors. In this simulation both AIC and BIC select the

true factors {1,2,5} in all 2000 replications, but BIC tends to select more sparse models

than AIC. AIC is more conservative than BIC in shrinking of factors while BIC has higher

probability than AIC in identifying the true model. This fact is shown in Figure 6.2.

Figure 6.2: The left histogram shows the distribution of λAIC and the right one is for λBIC for the
simulation in the first row of Table 6.1.

The results of Simulation 1 is comparable to the results of LASSO in Zou, Hastie and Tib-

shirani [26]. We will use BIC criterion with proposed degrees of freedom for the selection

of λ, but AIC could be used for a conservative purpose.

6.4 The toy example revisited

In the toy example, given in Section 2.2, we compare the results of this thesis with the con-

strained LSE. These two should be compared on low dimensional factorial designs since

classical ANOVA is not applicable on high-dimensional factorial designs. Also, this com-

parison is needed to find out the missed points when we apply regularization methods. First,

we consider a model with two main effects in order to compare the constrained LSE with

different estimates in a group LASSO. We consider the pair interaction in the model and

repeat the above comparison; finally, we will consider a hierarchal model.
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6.4.1 Two-factor layout without interaction

Consider the linear model for the two-factor layout without interaction:

yijk = µ + αi + τj + εijk, (6.4.1)

where i = 1,2, j = 1,2,3, k = 1,⋯,10, ∑iαi = 0, ∑j τj = 0, and εijk ∼ N(0, σ2).

Now, if we consider ∑iαi = 0 and ∑j τj = 0, then µ̂ = ȳ⋅⋅⋅. Sum-to-zero constraints are

necessary for identifiability of estimates. The model (6.4.1) can be represented in the form

of regression model by using dummy variables X; therefore,

Y = µ +Xβ + ε,

where X = [X1;X2;X3;X4;X5], β = [α1, α2, τ1, τ2, τ3], Y is the dependent variable,

∑iαi = 0, ∑j τj = 0, and ε ∼ N(0, σ2I). The constrained LSE of (µ,β) is given by

minimizing

(µ̂, β̂) = argmin
µ,β

1

2
∥Y − µ.1 −Xβ∥

2
2 ,

where sum-to-zero constraints are on parameters themselves. Here, we compare the con-

strained LSE with the group LASSO and the standardized group LASSO. Cross-validation

tends to select small tuning parameter λ. This means that cross-validated results of group

LASSO and standardized group LASSO should be close to the constrained LSE. In Ta-

ble 6.2, cross- validated results of both group LASSO and standardized group LASSO co-

incide with the result of constrained LSE. In fact when λ converges to zero, group LASSO

estimate tend to constrained LSE.

In Table 6.2, the cross-validated group LASSO, standardized group LASSO, and con-

strained LSE have the same SSE. Their coefficients are computationally equal. Also, sum-

to-zero constraints are satisfied for all three models as a result of Theorem 9. The degrees
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β SSE d.fmodel ∑i∈g βi ∑g ∥βg∥2

Constrained LSE (3.7, -3.7, -6.683, 8.216, -1.533) 2640.3 3 (0,0) 15.935

gr
ou

p
L

A
SS

O C-V (3.7, -3.7,-6.677,8.208,-1.532) 2640.3 3.998 (0,0) 15.935
AIC (3.595,-3.595,-6.512,8.006,-1.494) 2642.5 3.961 (0,0) 15.511
BIC (3.487,-3.487,-6.337,7.791,-1.454) 2649.2 3.92 (0,0) 15.079

st
an

da
rd

iz
ed

gr
ou

p
L

A
SS

O C-V (3.699, -3.699, -6.683,8.216, -1.533) 2640.3 3.997 (0,0) 15.932
AIC (3.262,-3.262,-6.103,7.503,-1.4) 2669.1 2.904 (0,0) 14.385
BIC ( 3.062,-3.062,-5.838,7.177,-1.339) 2701.4 2.701 (0,0) 13.678

Table 6.2: Comparison of the estimates of constrained LSE, group LASSO and standardized group
LASSO for the two-factor layout without interaction.

of freedom for constrained LSE are around 1 unit smaller than the two cross-validated mod-

els. However, we expect to have the same degrees of freedom as constrained LSE by taking

small values for tuning parameter λ. We will discuss this difference in more detail in Sec-

tion 6.5.

The preferred model is determined by comparing AIC and BIC in both procedures. In

Tabel 6.3, standardized group LASSO shows better values for AIC and BIC criteria com-

pared to group LASSO, which was an expected result. We suggest to use the estimate of

the standardized group LASSO with AIC criterion in this case.

AIC BIC
group

1.0661 1.2040
LASSO

Standardized
1.0404 1.1393

group LASSO
Table 6.3: Comparison of AIC and BIC criteria of group LASSO and standardized group LASSO
for the two-factor layout without interaction.

Figure 6.3 illustrates the behaviour of AIC and BIC in standardized group LASSO.
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Figure 6.3: The left panel illustrates the degrees of freedom and the right one illustrates the smooth
behaviour of AIC and BIC in the standardized group LASSO for the two-factor layout without
interaction.

6.4.2 Two-factor layout with interaction

Consider the linear model for the two-factor layout with interaction:

yijk = µ + αi + τj + ωij + εijk, (6.4.2)

where i = 1,2, j = 1,2,3, k = 1,⋯,10, ∑iαi = 0, ∑j τj = 0, ∑j ωij = 0, ∑i ωij = 0,

and εijk ∼ N(0, σ2). The results of constrained LSE, group LASSO, and standardized

group LASSO are compared in Table 6.4.

In the two-factor layout the first two main effects require two sum-to-zero constraints, but

the interaction requires five sum-to-zero interaction. Note that according to Theorem 9,

there would be only one sum-to-zero constraint for interaction. Therefore, the coefficients

in constrained LSE, group LASSO, and standardized group LASSO would be different.

This fact is reflected in Table 6.4. We mentioned that when the tuning parameter λ con-

verges to zero, group LASSO and constrained LSE would have the same SSE. In fact, con-
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β SSE d.fmodel ∑i∈g βi ∑g ∥βg∥g

Constrained LSE
(3.7,-3.7,-6.683,8.217,-1.533,

1975.2 5 (0,0,0,0,0,0,0) 24.09
-3.45,-1.05,4.5,3.45,1.05,-4.05)

gr
ou

p
L

A
SS

O

C-V
(2.333,-2.333,-4.465,5.489,-1.024,

1975.2 5.997 (0,0,0) 20.566
-4.288,3.035, 5.342,-0.135,2.403,-6.357)

AIC
(2.314,-2.314,-4.435,5.453,-1.018,

1977.776 5.941 (0,0,0) 20.063
-4.098,2.945,5.103,-0.175,2.308,-6.083)

BIC
( 2.313,-2.313,-4.432,5.449,-1.017,

1989.186 5.861 (0,0,0) 19.386
-3.813,2.745,4.748,-0.166,2.148,-5.661)

st
an

da
rd

iz
ed

gr
ou

p
L

A
SS

O C-V
(0.005, -0.005, -1.506, 1.851, -0.345,

1975.2 5.992 (0,0,0) 19.325
-4.932, 9.009, 7.006, -5.422, 3.720, -9.382)

AIC
(0,0,-1.329, 1.634, -0.3049,

1998.9 3.856 (0,0,0) 17.78
-4.647, 8.406, 6.347, -5.102, 3.581, -8.584)

BIC
(0,0,-1.319, 1.622, -0.303,

2025.5 3.629 (0,0,0) 17.08
-4.447, 8.040, 6.061, -4.882, 3.431, -8.201)

hi
er

ar
ch

ic
al

st
an

da
rd

iz
ed

gr
ou

p
L

A
SS

O C-V
(3.016, -3.016, -5.609, 6.896, -1.287,

1975.2 5.998 (0,0,0) 21.918
-3.839, 0.953, 4.936, 1.692, 1.686,-5.429)

AIC
(2.856, -2.856, -5.409, 6.650, -1.241,

1989.3 5.484 (0,0,0) 20.481
-3.442, 0.933, 4.423, 1.438, 1.530, -4.882)

BIC
(2.829, -2.829, -5.376, 6.610, -1.233,

1995.7 5.435 (0,0,0) 20.197
-3.356, 0.912, 4.313, 1.400, 1.493, -4.762)

Table 6.4: Comparison of the estimates of constrained LSE, group LASSO and standardized group
LASSO for the two-factor layout with interaction.

strained LSE and all cross-validated models have the same SSE, in Table 6.4. The degrees

of freedom for constrained LSE are again 1 unit less than for all cross-validated models.

We will explain this difference in detail in Section 6.5.

Standardized group LASSO drops the first main effect with AIC and BIC criteria. However,

we know that main effects and interaction are statistically significant at the 0.05 confidence

level by classical ANOVA. This leads to hierarchical standardized group LASSO. That

means if an interaction is in the model, then all related main effects are in the model. Let

us denote the main effects with F1 and F2 and the pair interaction with F1∶2. We consider

overlapped group LASSO with upward grouping for hierarchy and, therefore, the grand set

is G = {F1, F2,{F1, F2, F1∶2}}. The result is provided in Table 6.4, which shows that the
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first main effect enters the model with all criteria.

Figure 6.4: The left panel illustrates the degrees of freedom and the right one illustrates the smooth
behaviour of AIC and BIC in the standardized group LASSO for the two-factor layout with interac-
tion.

The preferred procedure is determined by comparing AIC and BIC of all models. The

hierarchical standardized group LASSO is a compromise between the standardized group

LASSO and the group LASSO based on AIC and BIC in Table 6.5 which also satisfies

strong hierarchy. Therefore, we suggest the hierarchical standardized group LASSO with

AIC.

AIC BIC
group

0.932 1.139
LASSO

Standardized
0.871 0.999

group LASSO
Hierarchical

0.921 1.112
Standardized group LASSO

Table 6.5: Comparison of AIC and BIC criteria of group LASSO and standardized group LASSO
for the two-factor layout with interaction.
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6.5 Discussion

6.5.1 Selection process

The selection process in standardized group LASSO is given in Theorem 5 as

1

∥Xg∥2

∥XT
g rS∥2

≤ λ
√
lg.

Also, in Section 5.5 we showed that

1

∥Xg∥
2
2

∥XT
g ε∥

2

2
∼ σ2

lg

∑
i=1

δg,i
maxi(δg,i)

χ2
1,

where each δg,i is an eigenvalue of XT
g Xg. We know that Xg is an indicator matrix; thus,

XT
g Xg = diag ((ng,i)i∈g) where ng,i is the replication in level i ∈ g. In fact, ng,i, i ∈ g

are eigenvalues of XT
g Xg i.e., δg,i = ng,i for all i ∈ g. If the design is balanced, then all

replications are equal and we have

1

∥Xg∥2

∥XT
g ε∥

2

2
∼ σ2

lg

∑
i=1

χ2
1 = σ2χ2

lg
.

Now, if we use β̃g instead of β∗g , then

∥Y − ŶS∥
2

2
∼ σ2χ2

lg
.

This is analogous to the UMP test (5.5.1). That means Xg is selected by a UMP test to be

in the model if

∥Y − ŶS∥
2
2 ≥ σ2χ2

lg
(1 − α).

However, standardized group LASSO [28] selects Xg to be in the model if

∥Y − ŶS∥
2

2
≥ lgλ

2,
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where ∥Y − ŶS∥
2

2
∼ σ2χ2

lg
. In this way, the selection process in standardized group LASSO

is roughly based on a UMP test. Now, if the approximation lgλ2 ≈ σ2χ2
lg
(1−α) holds, then

the selection process in standardized group LASSO will be exactly according to a UMP

test.

6.5.2 Degrees of freedom

The degrees of freedom of constrained LSE are always one unit smaller than that of the

cross-validated group LASSO estimates. Consider the two-factor layout in Section 6.4.1.

We will calculate its degrees of freedom in two different frameworks and, afterwards, it

will be compared with the degrees of freedom of group LASSO. The first framework in

Classical ANOVA considers baseline constraints and drops out one level from each factor.

Denote the design of the first factor with X1 = [X11;X12]. The design X1 is an indicator

matrix, i.e. there exists only a single 1 in each row and X11 +X12 = 1. Therefore,

∥Y −Xβ∥
2
2 =

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Y − [1 X11 X21 X22]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ + β12 + β23

β11 − β12

β21 − β23

β22 − β23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2

2

=

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Y − [1 X11 X21 X22]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ∗

β∗11

β∗21

β∗22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2

2

.

Hence

df = rank([X11 X21 X22]) = 3.
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The second framework applies sum-to-zero constraints on parameters themselves; thus, we

have

β11 + β12 = 0 Ô⇒ β12 = −β11,

β21 + β22 + β23 = 0 Ô⇒ β23 = −β21 − β22.

Therefore, the constrained LSE is

∥Y −Xβ∥
2
2 =

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Y − [1 (X11 −X12) (X21 −X23) (X22 −X23)]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

µ

β11

β21

β22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

2

2

.

Hence, the degrees of freedom are

df = rank([(X11 −X12) (X21 −X23) (X22 −X23)]) = 3.

Consider the two-factor layout with standardized group LASSO penalty. Group LASSO

uses a full design matrix and we have

min
β

∥Y −
2

∑
g=1

Xg
√
lg
β∗g ∥

2
2 + λ

2

∑
g=1

∥Xgβ
∗
g ∥.

We know that if λ↘ 0, then the degrees of freedom in standardized group LASSO are

df = rank (X) = 4.

This is consistent with the cross-validated result of standardized group LASSO in Table 6.2.

Note that rank ([X11 X12]) = 2 and rank ([X21 X22 X23]) = 3; however, rank ([X1 X2]) =

4. Since X11 +X12 = 1, then in matrix X we will have X23 =X11 +X12 −X21 −X22.
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Chapter 7

Conclusion
In many situations, additive models are insufficient for predicting an outcome in factorial

experiments, and pair interactions are useful for this purpose. However, considering models

with pair interactions in the case of high-dimensional data sets, adds a huge number of

parameters to the model. In this thesis, we studied methods fitting interaction that are

applicable to the high-dimensional data sets. They produce groupwise sparse fits, which

obey strong hierarchy rules. Here, we address some questions about the significance of the

studied methods and their applications.

7.1 What is the significance of the new methods?

Lim [17] and Yan et al. [1] used the overlapped group LASSO with an upward grouping

penalty to produce a hierarchical fit in the case of factorial experiments. In Section 2.7,

we pointed out three disadvantages for this method. The hierarchical LASSO [27] solves

these issues, but it may not be applicable to linear models having factors with more than

two levels. The hierarchical group LASSO fixes this particular problem; it is useful to study

factorial experiments having factors with more than two levels.

The overlapped group LASSO selects the tuning parameter λ by cross-validation. How-

ever, the degrees of freedom are derived for the hierarchical group LASSO, which allow us

to select the tuning parameter λ based on the criteria such as Mallows’s Cp, AIC and BIC.
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The overlapped group LASSO achieves hierarchy based on a geometric interpretation of

the l1-norm. At the same time, the hierarchical group LASSO enjoys a statistical principle

for achieving hierarchical fits.

The hierarchical overlapped group LASSO gets more aggressive in eliminating interactions

by increasing the number of factors p and, in fact, it is more likely to lead to additive models

for large values of p. This fact is explained in Proposition 1 and Yan et al. [1]. However,

the hierarchical group LASSO selects interactions based on their statistical power [27] and

the selection process does not relate to the value of p.

In this thesis, we investigate further the standardized group LASSO and the overlapped

group LASSO. We provide unit group weights in the standardized group LASSO by using

Zhao’s transformation [36]. Also, we derive the degrees of freedom for this method, which

enables us to select the tuning parameter λ properly. Finally, the degrees of freedom of the

overlapped group LASSO are derived.

7.2 What data can be analyzed?

The methods studied in this thesis are applicable to the factorial experiments for both de-

signed experiments and observational studies. They are proposed for the particular case of

high-dimensional data sets; however, they are also applicable on data sets with p < n as

well. The predictors in the data sets could be continuous, discrete, and also factors. There

is no specific limitation for the number of levels of factors in the data sets. Finally, these

methods could deal with continuous or binary responses.

Yang and Zou [38] provide 8 real data sets for testing their group LASSO algorithm with
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different number of p and n for 4 continuous and 4 binary responses. The data set bardet

is the most simple one. The data set is a gene expression data from the microarray experi-

ments of mammalian eye tissue samples. It contains 120 samples with 20 factors each with

5 levels. The response is a continuous random variable giving the log transform of expres-

sion level of gene TRIM32, which causes Bardet-Biedl syndrome. It is a genetic disorder

with many effects on a body system. Note that the design matrix including pair interactions

contains 4850 columns.

7.3 What are the next steps toward applications?

In factorial experiments, the issue of identifiability arises in the first step of computation.

There are two frameworks to solve this issue: baseline constraint, and full design matrix

with sum-to-zero constraints.

In Chapter 6, we showed that the group LASSO estimate changes by dropping one level

from each group or by considering the baseline constraint. In fact, the fit will be changed

by changing the base level. Based on this issue, Lim [17] considered full design matrix

with sum-to-zero constraints and proposed his theorem for reducing an overlapped group

LASSO with sum-to-zero constraints to a group LASSO. We provide a simpler approach for

this issue. At first, we showed that sum-to-zero constraints are satisfied in a group LASSO

estimate when the design matrix is balanced, and this fact is similar to the case of LSE.

Also we noticed that the group LASSO penalty itself can be used for identifiability. Based

on these two reasons, we propose a full design matrix without sum-to-zero constraints for

studied methods. In order to see the priority of this issue, recall that 2000 sum-to-zero con-

straints are needed for the bardet data set or in a larger sale, around 2.15 × 109 sum-to-zero

constraints for the motivational example, Section 2.2.1.
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The other issue in computation is the uniqueness of the solution. This problem is addressed

in Chapters 3 and 5 for a hierarchical group LASSO with quadratic and logistic loss. In the

case of quadratic loss, we suggested to add a tiny factor of elastic net term to the objective

function. In this situation, the loss function with the elastic net term can be rewritten as a

new loss function with a new augmented design matrix. For the case of logistic loss, we

suggested Roth and Fischer’s [8] constraint and algorithm.

For the data set bardet, the response is Y120×1, the design matrix is X120×4850, and the group

indices are g = 1,⋯,210. There are 20 main effects each with 5 levels and 190 pair interac-

tions each with 25 levels. To guarantee the uniqueness of the solution, we need to construct

the augmented design matrix, which is explained in Section 3.2. The augmented design

matrix is X̃ε5070×9700
and the new response is Y T

ε = [Y
T

01×4950]. The matrix X̃ε in the

bardet example contains 2.87× 106 zero components. In such a case, memory consumption

can be reduced by using a specialized representation storing, which is called a sparse ma-

trix. A user friendly construction of a sparse matrix in R is spMatrix. The Lagrangian for

this example is

1

2
∥Yε − X̃εφ∥

2
2 + λ

210

∑
g=1

∥Dgφg∥2 + λ∑
g≠h

∥Dg∶hφg∶h∥2 − µ
TAφ + υTEφ, (7.3.1)

where φ and D are defined in Section 3.4; Aφ and Eφ represent the hierarchy constraints

1
2∥Θgdiag( 1

w)∥1 ≤ ∥βg∥1 and the symmetry constraints Θ = ΘT , respectively.

7.4 What numerical problems may arise and how these

can be addressed?

Here, we give an outline to shed a light on the computational algorithm. Coordinate de-

scent is a derivative-free optimization algorithm. It minimizes a multivariate function along
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one direction each time and iteratively minimizes it for each direction. Coordinate descent

has issues with non-differentiable functions. Note that group LASSO is non-differentiable,

but the non-differentiable part is blockwise separable. Tseng [31] showed that blockwise

coordinate descent converges to the global minimum for a strictly convex problem when

the non-differentiable part is separable. However, hierarchical group LASSO is not separa-

ble because of the symmetry constraint Θ = ΘT . In fact, the symmetry constraint ties and

couples all of the parameters together, for instance Θg∶h = ΘT
h∶g appears in two hierarchy

constraints of ∥Θg∶h∥1 ≤ ∥β+g − β
−
g ∥1 and ∥Θh∶g∥1 ≤ ∥β+h − β

−
h∥1.

In order to solve this issue, we propose to use the Alternating Direction Method of Mul-

tipliers (ADMM) [5]. The ADMM splits a convex problem into separate easier subprob-

lems [5]. Consider a convex problem of the form minφ g(φ)+h(φ), then it can be rewritten

as minβ,γ g(φ) + h(γ) s.t. β = γ. Note that, in the Lagrangian 7.3.1:

g(φ) =
1

2
∥Yε − X̃εφ∥

2
2 + λ

210

∑
g=1

∥Dgφg∥2 + λ∑
g≠h

∥Dg∶hφg∶h∥2 − µ
TAφ

and

h(φ) = Eφ

Therefore, the ADMM algorithm repeats the following three steps until convergence:

(i) φ̂ = argminφ [g(φ) + (
ρ
2) ∥φ − γ̂ +

û
ρ∥

2

2
].

(ii) γ̂ = argminγ [h(γ) + (
ρ
2) ∥γ − φ̂ +

û
ρ∥

2

2
].

(iii) û← û + ρ(φ̂ − γ̂).

The dual variable u pulls these two subproblems together and ρ > 0 is the penalty param-

eter [5]. Note that g(φ) is a blockwise separable strictly convex problem. For minimiz-

ing g(β), we can use one of the generalized gradient descent solvers such as FISTA [17].

109



Lim [17] used FISTA to solve a group LASSO. This algorithm with some modification is

useful to minimize g(φ).

A full hierarchical group LASSO analysis for the above mentioned data is quite involved

and exceeds the purpose of this thesis. Here, we laid the theoretical foundation and devel-

oped new methods. Specific applications of those will be topics for future research.
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