
Master of Science in Internetworking

Capstone Project Report

Work on ODL SDN controller to create PCEP / SR based

tunnels and monitoring PCEP

Mostafa Safari

Supervisor

Prof. Ali Tizghadam

Winter 2022

Abstract

Segment Routing is a technology that is gaining traction to make the Multi-Protocol Label

Switching network easier to manage. It has the benefit of being able to connect to a software-

defined network. SDN is a well-established paradigm in the industry that makes network

management simpler. Also, to boost network performance, SDN and SR are utilized.

Segment Routing is a source routing paradigm that addresses the MPLS network's shortcomings

in simplicity and scalability. As the number of customers grows, scalability difficulties occur,

limiting a network's performance. In the SDN era, segment routing was used to tackle these

challenges and evolve a system.

In this project, we used OpenDaylight as an open-source SDN controller and its PCEP plugin to

manage SR-TE tunnels in our network. Since other network controllers are also available, to hide

this layer from higher system levels, we wrote a simple software that utilizes the ODL REST APIs

to manage the SR-TE tunnels and provide simple APIs to this application’s user.

Table of Contents
1 Introduction ... 1

2 Segment Routing ... 1

2.1 Segment Routing Introduction ... 1

2.2 Segment Routing Concepts .. 4

2.2.1 Segment... 4

2.2.2 Segment Advertising ... 4

2.2.3 Global and Local Segments .. 5

2.2.4 IGP Segment Identifiers – IGP-SIDs .. 5

2.2.5 Prefix-SID ... 5

2.2.6 Adjacency-SID .. 6

2.2.7 Routing Operations ... 7

2.3 Segment Routing Use Cases .. 8

2.3.1 Simplified transport of MPLS services ... 8

2.3.2 Segment Routing and LDP coexistence .. 8

2.3.3 Traffic Engineering ... 8

2.4 Multi-Protocol Label Switching ... 10

2.5 Segment Routing vs. MPLS ... 11

3 Path Computation Element Protocol ... 14

3.1 PCE Introduction .. 14

3.1.1 Traffic Engineering Database (TED) .. 14

3.1.2 Path Computation Element: .. 14

3.1.3 Path Computation Client: .. 14

3.2 Types of PCE ... 15

3.2.1 Stateless PCE .. 15

3.2.2 Stateful PCE .. 15

3.2.3 Passive Stateful PCE ... 15

3.2.4 Active Stateful PCE .. 16

3.3 PCEP .. 16

3.4 Active Stateful PCE with SR ... 19

4 Software-Defined Networking .. 21

4.1 Introduction .. 21

4.2 The SDN architecture ... 22

4.3 Advantages of SDN .. 23

4.4 Segment routing and SDN.. 24

4.5 OpenDaylight ... 25

4.5.1 ODL Architecture ... 26

5 Implementation and Tests ... 29

5.1 Overview .. 29

5.2 GNS3 Model .. 31

5.2.1 Core Routers Configuration .. 33

5.2.2 Edge Routers Configuration ... 35

5.3 Opendaylight Installation ... 45

5.4 ODL on a Docker Container .. 47

5.5 NorthBound Interface - RestConf/Rest API .. 47

5.6 OpenDaylight PCEP plugin ... 48

5.6.1 LSP-DB API ... 50

5.6.2 PCEP Extensions for Segment Routing .. 52

5.6.3 LSP Operations for PCEP SR ... 55

5.7 Application ... 61

5.7.1 odl_api_control Module .. 61

5.7.2 get_url(url, headers, odl_settings)... 62

5.7.3 post_url(url, data, odl_settings) .. 62

5.7.4 get_pcep_nodes(odl_settings) ... 62

5.7.5 get_pcc_nodes(odl_settings) ... 63

5.7.6 get_pcc_node(odl_settings, node_id) ... 64

5.7.7 get_reported_lsp(odl_settings, node_id) ... 64

5.7.8 get_lsp_names(reported_lsp) .. 64

5.7.9 get_lsp(odl_settings, node_id, lsp_name) ... 64

5.7.10 get_lsp_path(odl_settings, node_id, lsp_name) .. 65

5.7.11 get_lsp_status(odl_settings, node_id, lsp_name, key) .. 66

5.7.12 create_json_sr_lsp(src, dst, name_of_lsp , pcc, sr_path) .. 67

5.7.13 create_sr_lsp(odl_settings, src, dst, name_of_lsp , pcc, sr_path) 67

5.7.14 create_json_update_sr_lsp(name_of_lsp , pcc, sr_new_path) 67

5.7.15 update_sr_lsp(odl_settings, name_of_lsp , pcc, sr_new_path) 68

5.7.16 get_sid_ip_mappig(odl_settings) .. 68

5.7.17 covert_ip_path_to_sr_path(odl_settings, ip_path) .. 68

5.7.18 convert_nsid_path_to_sr_path(odl_settings, nsid_path)... 69

5.7.19 Application APIs ... 69

5.8 Testing the Application .. 73

6 Conclusion .. 79

7 References ... 80

1

1 Introduction

SDN (Software-Defined Networking) is a network architecture technique that allows networks to

be intelligently and centrally controlled, or 'programmed,' using software applications. Regardless

of the underlying network technology, this allows operators to manage the entire network

consistently and holistically. [1]

A variety of competing factors surround enterprises, carriers, and service providers. Traditional

business models are being devastated by the massive growth in multimedia content, the explosion

of cloud computing, the impact of rising mobile usage, and continued commercial pressures to

reduce cost while revenues remain static.

SDN allows software applications to program network behavior in a centrally controlled manner

utilizing open APIs. Operators can manage the entire network and its devices consistently despite

the complexity of the underlying network technology by opening up traditionally closed network

platforms and creating a single SDN control layer. Services and applications running on SDN

technology are abstracted from the underlying technologies and hardware that provide physical

connectivity from network control. Instead of closely connected management interfaces,

applications will interact with the network through APIs.

SDN promotes a vendor-neutral ecosystem while enabling multi-vendor interoperability. With

open programmatic interfaces like OpenFlow, intelligent software can control hardware from

different vendors. Intelligent network services and applications can also run in a common software

environment from within the SDN. The ability for network operators to develop programs

using SDN APIs and provide applications control over network behavior is a fundamental benefit

of SDN technology. SDN enables users to create network-aware applications, monitor network

conditions intelligently, and dynamically adjust network configuration as needed. [1]

There are many different SDN controllers available in the market, open-source SDN controllers

like OpenDaylight and also controllers from vendors like Nokia and Cisco. For a large service

provider like TELUS, it is not possible to rely on just one resource for its infrastructure. Also, it is

necessary to test the solutions provided by vendors in practice and compare their performance with

that of open-source controllers.

2

This project will be carried out as part of the TINAA program (TELUS Intelligent Network

Analytics & Automation), and the main goal of this project is to be able to use different controllers

so that the northbound does not notice any difference in connection to the different controllers,

their use and their performance.

There are several items and topics that need to be learned prior to undertaking this project,

including understanding the Segment-Routing and Path Computation Element Protocol,

programming for OpenDaylight controller, understanding the structure of TINAA’s entities and

their interfaces.

The main objective of this project is to investigate SDN controllers' capability to create paths for

traffic engineering and dynamically manage them in real-time. To that purpose, we'll use an open-

source controller to create a proof-of-concept application that will dynamically establish and

manage segment-routing oriented paths utilizing industry standard protocols. We also establish an

abstraction layer with generic APIs exposed to northbound as part of the objective so that if the

controller is altered, the northbound application is unaffected.

1

2 Segment Routing

This chapter delves deeper into the concepts and applications of Segment Routing. In addition, an

examination of all protocols and technologies required for Segment Routing deployment may be

found.

2.1 Segment Routing Introduction

Many MPLS networks today include Traffic Engineering (TE) features. A network operator can

improve and make better use of its IP/MPLS network infrastructure via MPLS Traffic Engineering.

Congestion avoidance is aided by TE, which also offers Fast Reroute (FRR) in the event of a link

failure and allows a head-end router to re-optimize an existing TE tunnel path by utilizing newly

available resources. All of this contributes to an MPLS label switched path's improved

performance (LSP).

Currently, the go-to technology for network operators to build traffic engineered MPLS networks

is RSVP-TE. But today, we are seeing the adoption of another protocol that not only helps enable

traffic engineering but can also be used by software-defined networking (SDN) applications to

automatically provision new paths.

MPLS-TE already exists as a traffic engineering solution. However, it has drawbacks in terms of

scalability, manageability, and uses heavy signaling protocols such as RSVP-TE and LDP.

Segment Routing overcomes these drawbacks and enables network service providers to change

network behavior dynamically.

Segment Routing (SR) is a new source routing paradigm. It is a network technology that wants to

address several drawbacks of existing IP/MPLS networks in terms of scalability, simplicity, and

ease of operation [2]. Segment Routing is the basis of application engineered routing. Application

engineered routing is a new business model that can enable applications to direct the behavior of

the network. It is a paradigm designed and built for the SDN era.

Segment Routing is being standardized by Internet Engineering Task Force under Source Packet

Routing in Networking (SPRING) group [2].

2

Segment Routing enhances packet-forwarding behavior. It allows the network to carry packets via

a specific forwarding path. This path can be different from the natural shortest path that packet

usually takes inside the network. Having the control to set up custom forwarding paths opens up

many use case scenarios that certain applications can benefit from.

Source-based routing is not a brand-new idea in the world of networking, but it has not seen

widespread adoption. A node (usually a router or a switch), which steers packets using a list of

ordered instructions, is called a segment.

Today’s traffic engineering solutions, such as Resource Reservation Protocol-Traffic Engineering

(RSVP-TE), requires signaling for each path, and the state of each path needs to be present on each

node that traffic traverses. Segment Routing can implement all these without the need for signaling

protocol, making its architecture simpler and more scalable.

Segment Routing, using MPLS data plane, does not require Label Distribution Protocol (LDP) or

RSVP-TE. Labels are distributed using Interior Gateway Protocol, either Intermediate System-to-

Intermediate System (ISIS) or Open Shortest Path First (OSPF) and BGP. Running fewer protocols

inside the network already makes the network more stable and scalable. Segment Routing paths

are protected with Fast Reroute (FRR) capability, which allows rerouting of traffic in under 50

milliseconds in case of link or node failure.

Traditionally routers guide traffic inside the network primarily based on destination IP. Underlying

Interior Gateway Protocol (IGP) was used to distribute network topology and compute the shortest

path from ingress to the egress node. However, nowadays, packet loss, jitter, delay, and available

bandwidth have become a major business differentiators when creating service-level agreements

(SLAs). Therefore, these new business requirements are pushing networks to evolve towards more

agility and flexibility.

Multiprotocol Label Switching (MPLS) introduced tunneling mechanisms and traffic steering

functions. These were the main reasons behind the success of the MPLS technology. MPLS

introduced MPLS-based Virtual Private Networks (VPN).

However, Resource Reservation Protocol-Traffic Engineering (RSVP-TE) did not have the same

popularity as MPLS VPN. One of the main reasons of this was having poor load balancing

characteristics. Another reason was that it was not very scalable. The final reason was that

3

computation was distributed, and this was causing some unpredictable traffic patterns and not the

optimal use of resources.

The target audience for Segment routing is mainly Internet Service Providers (ISP), content

providers, over-the-top (OTT) providers, large enterprises, data centers, and others.

However, to achieve this, some tools and protocols need to be present and enabled inside the

network. In particular: SDN controller and protocols such as BGP, BGP-LS, IGP (IS-IS), PCEP,

MPLS with Segment Routing.

SDN controller is needed to have a global view of the network communicating messages and

commands back and forth with network devices. It acts as a medium between high-level

applications and network devices.

BGP-LS and IGP protocols are needed to extract link-state information from the network. This

data includes link bandwidth, metric, delay, and more. This data is readily accessible by the SDN

controller and, therefore, by high-level application.

Path Computation Element (PCEP) needs to be present in the network in order to calculate suitable

paths and then push the path onto the network node using the SDN controller.

Segment Routing can enable traffic engineering in three possible ways:

 By manually creating Segment Routing Label Switched Paths and explicitly defining

routes inside the network. This equivalent of MPLS-TE but without extra protocols

 By manually creating Segment Routing tunnels. The path is calculated by Path

Computation Element (PCE) and later pushed by SDN Controller onto the network

 Dynamically create Segment Routing tunnels. The path is calculated by PCE using existing

network information or SLA, such as delay, bandwidth, metric, etc.

Segment Routing (SR) is not a new technology, but only recently has it been embraced by all the

major network equipment vendors. It is a packet-forwarding technology where the source node

defines the path for traffic, which is then sent through specific nodes and forwarding paths called

segments. An SR path is not dependent on hop-by-hop signaling, Label Distribution Protocol

(LDP) or RSVP. Instead, it uses segments for forwarding.

4

2.2 Segment Routing Concepts

This section discusses the main Segment Routing concepts. Firstly, a concept of a segment will be

explained. After, the classification of segments will be represented with related examples.

2.2.1 Segment

According to the IETF, a segment is an instruction that the node executes on the incoming packet.

This instruction could be, for instance, forward the packet to a specific network node according to

the shortest path, or forward packet through a specific interface or deliver the packet to a given

application or service.

A segment is identified with Segment Identifier (SID), and in the MPLS environment, it is encoded

in 32 bits MPLS label [3].

2.2.2 Segment Advertising

Segments are advertised using IGP and BGP routing protocols. For both protocol types, Segment

Routing extensions are defined to include Segment Routing information. In other words, routing

protocols enable segments’ signaling through the network. Let us now consider an autonomous

system consisting of multiple IGP areas. Within each IGP area either IS-IS or OSPF is running.

They are responsible for advertising segments within an IGP domain. However, in order to

implement traffic engineering between an AS, segment exchanging between BGP peers must be

enabled. BGP is extended to advertise the segments related to the BGP prefix.

Segment routing is constructed with SDN in mind. In software defined network it is assumed that

SDN controller is in charge of determining end-to-end paths throughout a network. SDN has

information on underlying network topology provided by BGP-LS protocol. In a software defined

network that implements Segment Routing, BGP-LS is responsible to advertise SDN controller

about segment identifiers. The topological path calculated by a SDN controller is pushed down to

the source node in a form of the list of segments. Calculated path is carried by PCEP protocol. In

SDN environment both PCEP and BGPLS extensions are necessary to support Segment Routing.

5

2.2.3 Global and Local Segments

According to its significance in the network all the segments can be divided on global and local.

For now, the term network will be related to an IGP area. Global segment is related to the

instruction that is supported by all nodes in an IGP domain. A global segment must be unique

within a domain. Any node in an IGP domain must have all global segments in its Forwarding

Information Base (FIB). The value of global segment identifiers is taken from the Segment Routing

Global Block (SRGB). SRGB is a subspace of a 32bit SID space, and it takes values from 16000

up to 23999 [4].

Local segment is an instruction that is supported by the node originating it. Local segments take a

value outside of SRGB range. Since it has only local significance, its value is related only to local

router FIB. A router is not aware of local segments of the other routers in a domain. Moreover, the

local SID values could be reused within an IGP domain, since a local SID value has local meaning

for each single router.

2.2.4 IGP Segment Identifiers – IGP-SIDs

Link state protocols have an important role in Segment Routing. Global and local segments are

distributed throughout the domain using IGP [3]. Both Open Shortest Path First (OSPF) and

Intermediate System to Intermediate System (IS-IS) support Segment Routing thanks to well-

defined protocol extensions. Segment Identifiers distributed by an IGP can be classified as it is

shown in the following figure:

Figure 2-1 Types of SID

2.2.5 Prefix-SID

In general, Prefix-SID is a segment that refers to a specific network prefix. Prefix-SID is always

global within an IGP domain and it refers to the shortest path computed by IGP to the related

prefix. A packet that enters an IGP area with an active Prefix-SID will be forwarded along the

6

ECMP-aware shortest path to the prefix. Since a prefix could represent a node or a group of nodes

within an IGP domain, Prefix-SIDs are further divided into Node-SIDs and Anycast-SIDs:

 Node-SID is a Prefix-SID and it refers to a specific node. A Node-SID has a global

significance and it identifies exactly the prefix of the node’s loopback interface. For

instance, let’s observe the following figure. 16004 is a Node-SID of the R4. The R1 wants

to send a packet to R4 and it pushes the Node-SID on top of the packet’s header. Since the

shortest path to the R4 is through R2 and R3, R4 forwards packet to R2. When the packet

arrives to R2, the router checks its FIB and passes the packet towards R3. Since R3 is not

the destination of the label 16004, R2 does not remove the label. Since R3 is the last router

towards destination it passes the packet to R4 and remove the label out of stack.

 Anycast-SID identifies a set of routers. A packet with Anycast-SID will be forwarded

towards the closest node of anycast set. The Anycast-SID is an interesting tool for traffic

engineering because it makes it easy to express macro traffic-engineering policies.

Figure 2-2

2.2.6 Adjacency-SID

The Adj-SID is IGP-SID that points on a specific link that belongs to the same IGP domain. Adj-

SID has local significance, which means that a router maintains Adj-SIDs only for its neighbors.

Adjacency segments must take a value that is outside of SRGB range. Usually a router allocates

them dynamically. Since Adjacency SID’s has local significance they don’t have to be unique in

the SR domain. Adj-SID is very useful if u want to steer traffic flow through a specific interface.

The following figure illustrates how it works. Let's observe the R4. Adj-SIDs are assigned

automatically for its three interfaces 24001, 24002 and 24003 (note that values are out of SRGB).

7

If one wants to use a link between R4 and R5 it is enough just to push the local label (24002) and

packet will be forwarded to the next hop.

Figure 2-3

2.2.7 Routing Operations

Source node steers the incoming traffic flow by attaching an ordered list of SIDs to a packet header.

The top segment is the first one that will be executed. Once the segment is executed (packet reaches

an intermediate destination), next segment is going to be processed and so on. When last segment

is executed, a flow either reaches its destination, or it just exits a SR domain and continues to be

routed according to destination IP address. There are three actions that could be performed on

segments by SR-capable nodes [5]. However, they are closely related to operations performed on

MPLS labels in MPLS networks. Segment Routing operations are:

1. PUSH (MPLS PUSH) – a segment is pushed on the top of segment stack

2. NEXT (MPLS POP) – an active segment is completed, and it is removed from the stack

3. CONTINUE (MPLS SWAP) – active segment is not completed yet and it remains active.

Naturally, this operation exists only for global segments, since their execution could include multi-

hops. Local segments (adjacencies) are executed in a single hop

The below figure explains how a packet is forwarded through a SR domain.

8

Figure 2-4 PUSH, CONTINUE, NEXT

2.3 Segment Routing Use Cases

2.3.1 Simplified transport of MPLS services

Segment Routing can offer the same tunneling service as MPLS in simplified manner using just

IS-IS or OSPF. Service provider can easily enable services like L3VPN, VPLS and VPWS by

setting up a Node-SID per network edge and ECMP tunnels will be created automatically from

any ingress to any egress edge . LDP and RSVP are no more required, and that leads to following

benefits:

 Simpler operation – less signaling in the network meaning the gain in terms of bandwidth

and operation complexity

 Scaling – only one label for each node, reducing number of LSDB entries

2.3.2 Segment Routing and LDP coexistence

Inside MPLS Architecture, Segment Routing can coexist with LDP and RSVPTE [6]. Segment

Routing Global Block assures that labels used for Segment Routing and LDP are allocated from

different blocks of label. If both Segment Routing and LDP are enabled on the same router, LDP

is given priority by default, but this can be changed using CLI configuration.

2.3.3 Traffic Engineering

Segment Routing can create tunnels according to customers’ needs. SR enables traffic steering

through any desired network path. By employing different SIDs, tunnels can be constructed in a

smart way, which will result in increased network performance and throughput. Also, tunnels can

9

be designed by considering customers’ SLAs. The most significant TE use cases are presented

below.

Deterministic path or path avoidance is for sure the most useful tool in traffic engineering [7]. By

exploiting adjacency SIDs, one can specify a path as path which flow will take through the

network. Typical use case is presented on the below picture.

Figure 2-5 Segments determined by controller

R1 wants to send the traffic to R6 (Node-SID 16006). The easiest way to it is to push node segment

on top of the packet and it will be forwarded according to the shortest path. However, Node-SID

represents the instruction for ECMP-aware shortest path to R6, meaning that flow will take either

R1-R2-R4-R6 or R1-R3-R5-R6. In the case the link R1-R2 becomes overloaded and the QoS drops

down, a controller can dynamically push the traffic to R3 and avoid a busy link. Traffic will arrive

at R3 and then it will continue to R6 according to the shortest path.

By assigning anycast SIDs, one can define a group of routers which flow will take on its way to

the destination. For service providers this is very interesting tool because it can express macro

policies such as “go via plane one of dual plane network” or “go via European Region” [8]. As an

example, let’s observe the following figure. The network can be described as a dual plane. One

can steer the traffic only through yellow or blue nodes to the final destination by assigning labels

{16001, 16005} or {16002, 16005}. ECMP is supported within a plain, meaning if there are

disjoint paths, the load will be balanced (per flow).The main benefits are tunneling without RSVP

10

and LDP signaling, ECMP-aware routing and zero per-flow state on transient routers. Only

additional anycast SID have to be configured (one per network plane).

Figure 2-6

2.4 Multi-Protocol Label Switching

MPLS is a technology for data tunneling service build for high-performance telecommunication

networks. MPLS operates on the so called 2.5 Layer and it is compatible with any network protocol

of which IP is the most popular. MPLS has brought performance enhancements and new service

creation capabilities in connectionless IP world. MPLS has introduced Virtual Private Network

(VPN) services and QoS across the network [9].

In MPLS networks, packets are routed from one network node to the next based on 32-bit MPLS

labels. In that way, a packet does not experience a delay caused by complex IP lookups in routing

table, which can be especially crucial for high priority traffic such as voice, video and similar.

MPLS tunnels are setup based on Forwarding Equivalence Criteria (FEC) [9]. When a tunnel is

engineered by path calculation module, it is established using signaling protocols: Resource

Reservation Protocol (RSVP) and/or Label Distribution Protocol (LDP) protocol. According to

signaled information, each node on the route fills up MPLS routing table and reserve resources for

a specific tunnel. Once the packet comes to ingress of MPLS area, it is processed by Label Edge

Router (LER). According to the predefined policies, edge router attaches a designated label to the

packet and passes it inside the MPLS network. When packet is received, transit or Label Switch

Router (LSR), checks the MPLS label and according to the MPLS table, swaps the old label with

11

a new one, and passes the packet to the next router. When it comes to the end of the tunnel, egress

LER, last label is removed and packet continuous with IP routing towards the final destination.

2.5 Segment Routing vs. MPLS

The following table presents the short comparison between Segment Routing and MPLS [10].

Figure 2-7 Segment Routing vs MPLS

In MPLS network label signaling and resource reservation are done by implementing signaling

protocols, LDP and RSVP-TE. As it was discussed before, in Segment Routing network it is

enough to have an IGP protocol and once Segment Routing is configured, IGP will take labels and

redistribute them within domain. There is no need to implement any other signaling protocol that

is major benefit in terms of bandwidth and simplicity. Moreover, LDP has lot of drawbacks

regarding synchronization after a link failure. In fact, after a failure LDP must synchronize with

IGP that calculates the new set of shortest paths within the network. Since there is a time gap while

LSPs become stable again, in some cases it may cause the loss of packets because core routers do

not know how to forward packets that are addressed to external network. In Segment Routing only

IGP is used and there is no need for synchronization with other protocols [11].

Having a good path protection is crucial for sensitive applications. In MPLS in some cases it is

possible to have end-to-end path protection by calculating both primary and secondary path. For

12

both paths resources must be reserved using RSVP-TE protocol [12]. All routers that are included

in primary and secondary path must maintain the state of tunnels. This guarantees QoS and no

traffic loss in case of failure - the path is fully protected and reroute can be perform in very fast

manner <50ms (FRR). However, double resource reservation is not efficient in terms of network

resource utilization, especially in busy core networks. On the other hand, Segment Routing uses

post-convergent path that is automatically calculated by IGP upon link failure and guarantees

optimal path in new situation. There are no extra states that should be maintained to protect the

path. The FRR mechanism in Segment Routing is called Topology Independent Loop-Free

Alternate (TI-LFA) and it guarantees <50ms convergence [13].

Equal Cost Multipath enables traffic balancing among equal cost paths between source and

destination [14]. In Segment Routing it is inbuilt - if there are two flows between the same source

and destination (the same Prefix-SID) they will take different paths. This property supports

network stability. In MPLS tunnels are determined strictly hop-by-hop meaning that ECMP is not

supported.

In Segment Routing source routing paradigm is used, while in MPLS packets are tunneled by

pushing the labels according their destination IP address. In Segment Routing network paths are

determined by Constrained Shortest Path First (CSPF) algorithm. CSPF is extension of SPF

algorithm. First, the shortest path algorithm is run, after which constrains are applied (available

bandwidth, latency etc.) [15]. Path computation is usually done by an external entity such as SDN

or PCEP. In MPLS paths are setup by combining IGP and RSVP-TE protocols.

Segment Routing was built for centralized data-plane network in mind. Even though, in theory,

tunnels can be built manually, Segment Routing is fully supported by SDN paradigm. MPLS has

a different technology approach -control plane is distributed and paths can be setup and maintained

by utilizing distributed protocols. In such distributed environment it is very difficult to apply

centralized control.

Segment Routing is highly scalable compared to MPLS. First of all, it eliminates need for signaling

protocols which simplifies overall architecture and leads to simplified and cheaper hardware.

Moreover, number of FIB entries is highly reduced by applying Segment Routing - each node

should have approximately N-1+number_of_interfaces. In MPLS each intermediate router has

13

N^2 entries [16], which can create scalability problems in huge networks (e.g. Tier 1 core

network).

At the end, Segment Routing simplifies overall operation and reduces need for network

maintenance. Data plane is highly simplified since there are no signaling protocols. Furthermore,

it enables easy operation by making labels constant over the network.

14

3 Path Computation Element Protocol

3.1 PCE Introduction

A Path Computation Element (PCE) is an element (most likely residing on a server) that specializes

in complex path computation on behalf of its Path computation client (PCC). A PCE can be a

router or a Server. In this project we would be focusing on PCE on a server.

Official definition of PCE is:

“A Path Computation Element (PCE) is an entity (component, application, or network node) that

is capable of computing a network path or route based on a network graph and applying

computational constraints.” [17]

A Typical PCE Architecture consists of items that are introduced below.

3.1.1 Traffic Engineering Database (TED)

A PCE needs network resource information like topology, bandwidth, link costs, existing LSPs

etc., which is stored in Traffic Engineering Database (TED). This information can be collected via

peering with IGPs (OSPF, IS-IS) or BGP-LS which is the most used.

3.1.2 Path Computation Element:

PCE is responsible for doing the actual path computation based on the constraints provided and

signaling that to the Path Computation Client (PCC). PCE specializes in complex path computation

across various domains on behalf of its path computation client (PCC) with enhanced scalability.

3.1.3 Path Computation Client:

A Path Computation Client (PCC) is an element requesting PCE for path computation.

15

Figure 3-1 https://packetpushers.net/pce-pcep-overview/ Fig.8 [17]

3.2 Types of PCE

3.2.1 Stateless PCE

In the case of stateless PCE, it doesn’t have knowledge of previously established LSPs. This

severely limits a PCE capability to optimize the network resources.

Stateless PCE provides mechanisms to perform path computations in response to PCC requests. It

utilizes only the Traffic Engineering database (TED DB) to do this computation.

3.2.2 Stateful PCE

In the case of stateful PCE, It keeps tracks of all the previously established LSPs (in LSP DB) and

the available resources. Keeping a synchronized database with network state allows stateful PCE

to make more optimal path computation decisions. So basically, it has LSPDB+TEDB+PCE in

comparison to stateless PCE, which has only TEDB+PCE.

3.2.3 Passive Stateful PCE

In the case of a Passive Stateful PCE, PCC (router) is responsible for initiating path setup and

retains the control on path updates. PCE receives the path request from the PCC, does the path

computation and send it back to the PCC.

16

Figure 3-2Types of PCE [17]

3.2.4 Active Stateful PCE

In this case, a PCC allows the LSP to be delegated to PCE or a PCE can initiate an LSP as well.

Basically, PCE can initiate LSP path setup and hence the term “Active” stateful PCE. Most of the

work is being done in this area.

PCE Initiated: In this case an Active stateful PCE initiates an LSP and maintains the responsibility

of updating the LSP.

PCC Initiated: In this case a PCC initiates the LSP and may delegate the control later to the Active

stateful PCE. A PCC can hand over the control to PCE and decided later to take it back. This back

and forth switching happens with Delegated bit set during PCEP message exchanges.

3.3 PCEP

The first IETF draft describing PCEP was published in November 2005. The main protocol

structure is specified in [18], and consists of a client-server interaction between PCC and PCE.

Interaction is achieved through the exchange of PCEP messages running over TCP/IP, to exploit

its reliability. Messages are defined to initiate, maintain and terminate a PCEP session. To perform

path computations, PCC and PCE first open a PCEP session within a TCP session. The PCEP

17

session establishment includes the exchange of Open and Keepalive messages in order to agree on

session parameters, such as timers and session refresh messages.

18

19

3.4 Active Stateful PCE with SR

PCE is the brain for doing traffic engineering in the Segment Routing (SR-TE). It is responsible

for doing the path computation and then sending appropriate label-stack (comprised of Node and

Adjacency labels) to the Head end node. Then the headend node pushes those segments-list labels

on the packets.

PCEP was also extended to support SR between PCE and PCC. Essentially few ERO Sub-objects

were extended to support Node and Adjacency labels.

Figure 3-3Active Stateful PCE with SR [17]

20

21

4 Software-Defined Networking

4.1 Introduction

IP networks recorded the rapid growth in past decades, which made them more complex and

consequently difficult to manage. The main limitation comes from the fact that today’s networks

are built of switches, routers and other devices that became complex because they must implement

a number of distributed protocols and they use closed and proprietary interfaces. In this

environment it is difficult and sometimes almost impossible for network operators, third parties

and vendors to innovate [19].

Traditional IP networks consider the control and data plane tightly coupled and embedded in the

same network node. In other words, control function is distributed over network devices meaning

that each device is responsible to make a forwarding decision autonomously. In early stage of IP

networks development this was considered a good aspect because it guaranteed network resilience.

However, any change on decentralized control plane requires changes on all network devices

manually. Lack of automation in network managing makes today’s networks static and unable to

adapt for real time demands [20].

To overcome such limitations, new networking paradigm has been proposed Software Defined

Networking (SDN). In short, SDN can be defined as “an merging networking architecture where

network control is decoupled and separated from forwarding mechanism and is directly

programmable”. In SDN architecture brings logically centralized control named SDN controller,

which has a global view on underlying network. Low-level devices become strictly forwarding

elements without any control function. All the instructions they receive from controller through

specialized interface. The new protocols are defined for communication between controller and

configurable switches. One of the most well-known protocols used by SDN controllers is

OpenFlow. The main pillars of Software Defined Networks are:

 Separated data and control plane – control plane is removed from network devices and they

became simplified forwarding elements

 Control functionality is placed on a dedicated entity called SDN controller

22

 Forwarding decisions are flow based. A flow could be defined as a packet stream between

a source and destination that receive the same forwarding service.

 The network is programmable through software applications running on the top of

controller

4.2 The SDN architecture

The SDN architecture generally has three functional groups [20], as it’s depicted below:

Figure 4-1SDN architecture [20]

Forwarding or data plane layer is placed on the bottom of SDN architecture. Data plane layer

consists of switching devices connected in wired or wireless manner. Network devices perform set

of elementary forwarding operations. They are programmable devices and they behave according

to the instructions sent by controller.

The communication between SDN controller and programmable switches is enabled by

southbound application program interfaces (southbound APIs). Southbound APIs facilitate

23

efficient network control and enable SDN controller to dynamically make changes in forwarding

plane in real time. For example, SDN controller can add or remove an entry in forwarding table

through southbound interface.

SDN controller is the “brain” of the network. It is centralized control point which manages flow

control to the network devices below and the applications logic above. SDN controller makes

abstraction view of the network, including statistics and the state of the network and sends it to the

application level. Data plane could be controlled from the application level. Once instruction from

the upper level is sent, controller takes it and forwards it to the lower level devices. The northbound

API presents a network abstraction interface to the applications that sit on the top of SDN stack.

This interface enables network programmability from application level. The northbound API is

certainly the most critical part of SDN architecture. SDN controller is valued by innovative

applications it can support, and northbound API must follow application requirements.

Northbound APIs are used as well to connect SDN controller to automation stack and to

orchestration platforms.

Application layer accommodate the set of applications that leverage functions offered by

northbound API to implement operational logic and network control. From application level one

can monitor physical network and control routing, firewalls, load balancers etc. All the commands

coming from application layer are translated to southbound instructions that program behavior of

forwarding devices.

4.3 Advantages of SDN

1. Better network control - SDN promotes a central point of control to distribute provider’s

policies and configuration consistently throughout the network. SDN controllers provides

complete visibility and control over network ensuring proper access control and traffic

engineering

2. Orchestration of multi-vendor environments – SDN controller can configure and manage

any SDN capable device. A single protocol is used for communication between a controller

and devices of any vendor

24

3. Induces innovation – SDN gives possibilities to vendors, operators or a third party to

develop applications, services and business models and trigger the revenue streams and

more value from the network

4. Reduces operational expenditures - network hardware is simplified by removing control

function. Overall operation costs are reduced by easier network control and better network

utilization

5. Enhances network efficiency – centralized control and management increase automation

and network orchestration. No need to configure individual network devices in forwarding

plane to meet business policy changing. Network is directly programmable by a proprietary

software or an open-source automation tool

4.4 Segment routing and SDN

Segment Routing was designed for SDN era. Segment Routing and SDN (SDN-SR) is very

powerful combination and present a winning proposal for service providers. A SDN controller

with a global view of the network it is capable to process business requirements and policies and

translate them in Segment Routing paths. This leaves to service providers a huge number of

possibilities to provide differentiated services and optimize their network.

SDN-SR is the perfect platform for application engineered routing. It gives possibility to an

application to require specific path (in terms of latency, bandwidth, SLA) parameters and to push

the packets through that specific path, without having to inform the network about it. That has

reciprocal benefit for both application and network operation. Application can directly specify its

requirements and push the traffic on optimal path. On the other hand, data layer is light-weighted

because it doesn’t have to maintain the traffic paths – they are directly specified from application

[21].

In SDN-SR environment the network intelligence is combined [22]. Segments, as instructions, are

designed in a smart and simple way to enable efficient traffic steering through the network.

Segments give lot of possibilities to SDN controller how to express a wanted path. SDN controller

intelligence is used to map the optimal path onto segments.

The key benefit of SDN-SR architecture is simplified control plane. Signaling protocols such as

LDP and RSVP-TE are not necessary for SR functioning, which is direct benefit in terms of

25

simplicity and bandwidth relaxation. State is maintained only at the head-end router. Intermediate

nodes do not have to maintain tunnel information that leads to improved scalability. Explicit

routing is possible with or without ECMP – a controller can decide but stating proper SIDs.

Automated FFR is guaranteed for any topology.

In reality, SDN controller should support the protocols that are essential for SR, PCEP and BGP-

LS. SDN controller behaves as stateful PCE and can compute path in terms of segments and push

it back to the PCC. As a property of stateful PCE, SDN controller can initiate PCEP session and

perform flow optimization, if necessary. Topology information is obtained by configuring BGP-

LS peering with BGP speakers. Each IGP domain must have at least one BGP speaker that will

redistribute LSDB to SDN controller.

4.5 OpenDaylight

OpenDaylight project (OpenDaylight controller, ODL) is an open source SDN project governed

by Linux Foundation [23]. Open source SDN controllers enable easy network testing and support

network virtualization. Architecture of open-source solutions is typically modular meaning that

controller consists of pluggable modules that perform different network functions. Open-source

projects give possibility for development and customization. Today, there are many open-source

projects launched for further development such as ONOS, OpenContrail, Pox, Ryu etc.

OpenDaylight project was announced back in 2013 with an aim to accelerate SDN development

and industry adoption. ODL is based on Java programming language and supports OpenFlow

standard [24]. Some of the companies that contribute ODL development are Cisco, Juniper

Networks, VMware, Microsoft, Ericsson etc. Now fifteen releases are available:

Release Name Release Date Release Name Release Date

Phosphorus (15) September 2021 Oxygen (8) March 2018

Silicon (14) March 2021 Nitrogen (7) September 2017

Aluminum (13) September 2020 Carbon (6) June 2017

Magnesium (12) March 2020 Boron (5) November 2016

Sodium (11) September 2019 Beryllium (4) February 2016

Neon (10) March 2019 Lithium (3) June 2015

Fluorine (9) August 2018 Helium (2) October 2014

26

4.5.1 ODL Architecture

Detailed OpenDaylight architecture diverse among releases [25]. Simplified ODL architecture

presented below is common for all releases:

Figure 4-2Simplified ODL Architecture [25]

The controller acts like middleware in the OpenDaylight ecosystem. It is the framework that glues

together the applications requiring services of the network devices and the protocols that talk to

the network devices for extracting services. The controller allows the applications to be agnostic

about the network device specifications, thereby allowing the application developers to

concentrate on the development of application functionality rather than writing device-specific

drivers.

As all SDN controllers, ODL consists of three main parts:

 Southbound APIs

 Control function layer

 Northbound APIs

Southbound Protocols

The southbound interface is capable of supporting multiple protocols (as separate plugins), e.g.

OpenFlow, BGP-LS, LISP, SNMP, etc. These modules are dynamically linked to a service

27

abstraction layer (SAL), which determines how to fulfill the service requested (by applications)

irrespective of the underlying protocol used between the controller and the network devices.

For example, an OpenFlow plugin will include the following: (a) connection, session, and state

managers to manage the connection with the switches, (b) an error handing mechanism, (c) a

packet handler to handle incoming packets from the switches, and (d) a set of basic services such

as flow, stats, and topology.

Control Layer

The main components of ODL are service layer abstraction, service functions and pluggable

modules. Service Layer Abstraction (SAL) represents a key bundle between service producers and

consumers. Modules that provide services must register their APIs to the SAL registry. Whenever

a request from service consumer comes, SAL binds them into ‘contract’. There are two SAL

architecture: application driven SAL and module driven SAL. As was mentioned before, an open-

source project has pluggable module that enable particular function. However, there are some basic

network functions that come as preconfigured part of controller. Some base network functions that

come shipped with ODL are:

 Topology functions – a service for discovering network layout by subscribing to processes

of network-link discovery

 Statistics services – for managing state of counters across the nodes, flows and queues

 Switch manager – stores discovered nodes

 Forwarding services – manage network flow state and forwarding rules

Platform services modules or vendor components enhance SDN controller functionality. Some of

platform-oriented services are BGP-LS/PCEP that support traffic engineering, VTN (Virtual

Tenant Network) component that enables network virtualization using OpenFlow, service function

chaining that enables forming a ordered list of services, and etc.

Northbound Interface

ODL Controller exposes northbound APIs to the upper layer applications using OSGi framework

or bidirectional REST APIs. REST APIs can be used by application that runs on the same computer

as the controller or it can be totally different or remote machine.

28

REST is based on popular technologies such as HTML, JSON and XML that enables

straightforward combining with programming language as Python, Java, C. Interaction with top

level application is done through HTTP basic operations GET, POST, PUT and

DELETE. Data transmitted via REST API can be used on higher level to make higher-level

business decisions, run algorithms, analytics etc. And results of this analytics can be channeled

back to ODL Controller to for instance, create new rules in the network.

29

5 Implementation and Tests

5.1 Overview

The test environment in this project consists of a GNS3 model, which is part of a more extensive

network, our Opendaylight controller, and a simple application above all others for managing SR-

TE tunnels. In general, our environment is similar to the below diagram.

Figure 5-1 Network topology

30

In our GNS3 model, we have three edge routers: our PCC nodes. All routers are configured to use

ISIS as the primary IGP routing protocol and support MPLS. Also, we configured all routers to

enable segment routing, but only edge routers run PCEP, and core routers do not connect to the

PCE, which is ODL in our case. Edge routers also use BGP-LS to redistribute the link-state

information to the ODL. Edge routers are not directly connected to the ODL but through a route

reflector.

Our application uses REST APIs to communicate with ODL and gets the link-state information

and PCEP topology information. For now, this application can extract segments, links, and nodes

information. Also, it can determine the available LSPs for each PCC node and their operational

status in addition to their hops to the destination. We provided many functions which can be used

to extract information and work with this system. Especially, we have two functions for creating

and modifying the SR-TE tunnels, which we will discuss later.

31

5.2 GNS3 Model

Figure 5-2GNS3 Network Model

The above figure shows the GNS3 model of our network. This is a section of a more extensive

TINAA network, and we can see that the SRBHONTFRE29 router connects this model to the rest

of the network through the cloud element in the GNS3. Management ports of the routers are

connected to the switches and from there to the Lab network, where our ODL resides.

In our model, we have five core routers that only provide MPLS and Segment Routing, and they

do not participate in BGP or PCEP. These core routers are Cisco IOS XRv 9000 7.2.2, which are

named as:

 tinaa-vlab-gw-01

 tinaa-vlab-ls-01~04

32

Our edge routers have BGP neighborship with the route-reflector, and therefore ODL can have

their link-state information. All three edge routers are configured as PCC nodes and peer with the

ODL as our PCE. These routers are Nokia SROS-21.10.R2 and named as:

 tinaa-vlab-se-01~03

The below diagram shows the details of our network and IP addresses in it.

Figure 5-3 Network IP and SID details

Table 5-1 Routers' details

Router Type Loopback IP Node SID

GW1 Core 172.25.15.1 21011

LS1 Core 172.25.15.3 21013

LS2 Core 172.25.15.4 21014

LS3 Core 172.25.15.5 21015

LS4 Core 172.25.15.6 21016

SE1 Edge 172.25.15.2 21012

SE2 Edge 172.25.15.7 21017

SE3 Edge 172.25.15.8 21018

33

In following subsections, we review the configuration of routers. For brevity, we only review the

essential parts of the configurations.

5.2.1 Core Routers Configuration

Here we review the configuration for LS1. Other routers have the same configuration only with

different IP addresses.

LS1 Configuration:

hostname tinaa-vlab-ls-01
!
vrf MGMT
 address-family ipv4 unicast
!
interface Loopback0
 ipv4 address 172.25.15.3 255.255.255.255
!
router static
 vrf MGMT
 address-family ipv4 unicast
 0.0.0.0/0 10.17.111.1
 !
 !
!
router isis LABCORE
 is-type level-2-only
 net 47.0416.1720.2501.5003.00
 segment-routing global-block 21011 199999
 log adjacency changes
 address-family ipv4 unicast
 metric-style wide
 advertise passive-only
 mpls traffic-eng level-2-only
 mpls traffic-eng router-id Loopback0
 mpls traffic-eng multicast-intact
 router-id Loopback0
 segment-routing mpls
 !
 interface Loopback0
 passive
 circuit-type level-2-only
 address-family ipv4 unicast
 prefix-sid index 2
 !
 !
 interface GigabitEthernet0/0/0/0.100
 circuit-type level-2-only
 point-to-point

34

 hello-password hmac-md5 encrypted 15060202052B
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 1000
 mpls ldp sync
 !
 !
 interface GigabitEthernet0/0/0/1.100
 circuit-type level-2-only
 point-to-point
 hello-password hmac-md5 encrypted 111D100B1613
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 1000
 mpls ldp sync
 !
 !
 interface GigabitEthernet0/0/0/2.100
 circuit-type level-2-only
 point-to-point
 hello-password hmac-md5 encrypted 02120D550A07
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 1000
 mpls ldp sync
 !
 !
 interface GigabitEthernet0/0/0/3.100
 circuit-type level-2-only
 point-to-point
 hello-password hmac-md5 encrypted 03105205070E
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 1000
 mpls ldp sync
 !
 !
 interface GigabitEthernet0/0/0/4.100
 circuit-type level-2-only
 point-to-point
 hello-password hmac-md5 encrypted 13111E1C0A0D
 address-family ipv4 unicast
 fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
 metric 1000
 mpls ldp sync
 !
 !

35

!
mpls oam
!
mpls traffic-eng
 interface GigabitEthernet0/0/0/0.100
 !
 interface GigabitEthernet0/0/0/1.100
 !
 interface GigabitEthernet0/0/0/2.100
 !
 interface GigabitEthernet0/0/0/3.100
 !
 interface GigabitEthernet0/0/0/4.100
 !
!

Obviously, nothing special is going here. Interfaces are configured with proper IP addresses and

we configured the ISIS routing. In the ISIS section, we shall determine the SRGB which is 21011

to 199999 for our case. This range is the same for whole network.

segment-routing global-block 21011 199999

Also, we need to enable the segment routing for MPLS by using below command:

segment-routing mpls

We use the loopback0 as the router ID and we need to assign it a Node SID. We assign it by index

which means we determine the index of the Node SID in the range of SRGB. For LS1 we assigned

the index of 2. Therefore, the Node SID for this router would be 21013. In the Table 5-1 you can

find the same details for other routers.

The last main part is to enable MPLS Traffic Engineering for the interfaces.

5.2.2 Edge Routers Configuration

For edge routers we use Nokia SROS-21.10.R2 as SE1, SE2, ad SE3.

36

SE1 Configuration:

#--
echo "Router (Network Side) Configuration"
#--
 router Base
 interface "system"
 address 172.25.15.2/32
 description "Loopback"
 icmp
 no mask-reply
 no redirects
 exit
 no shutdown
 exit
 interface "tinna-vlab-ls-01"
 address 172.25.138.11/31
 description "<< tinna-vlab-ls-01 | Gi0/0/0/3 | VLAN 100 >>"
 enable-ingress-stats
 ldp-sync-timer 15
 port 1/1/c1/1:100
 icmp
 no mask-reply
 no redirects
 exit
 no shutdown
 exit
 interface "tinna-vlab-ls-02"
 address 172.25.138.13/31
 description "<< tinna-vlab-ls-02 | Gi0/0/0/3 | VLAN 100 >>"
 enable-ingress-stats
 ldp-sync-timer 15
 port 1/1/c2/1:100
 icmp
 no mask-reply
 no redirects
 exit
 no shutdown
 exit
 interface "tinna-vlab-se-02"
 address 172.25.138.20/31
 description "<< tinna-vlab-se-02 | 1/1/c3/1 | VLAN 100 >>"
 enable-ingress-stats
 ldp-sync-timer 15
 port 1/1/c3/1:100
 icmp
 no mask-reply
 no redirects
 exit
 no shutdown
 exit
#--

37

echo "MPLS Label Range Configuration"
#--
 mpls-labels
 sr-labels start 21011 end 199999
 exit
#--
echo "ISIS Configuration"
#--
 isis 0
 level-capability level-2
 area-id 49.0416
 lsp-lifetime 65535
 lsp-refresh-interval 32767 half-lifetime enable
 overload-on-boot timeout 260
 traffic-engineering
 advertise-passive-only
 advertise-router-capability as
 loopfree-alternates
 ti-lfa
 exit
 exit
 timers
 spf-wait 1000 spf-initial-wait 10 spf-second-wait 50
 exit
 level 2
 wide-metrics-only
 exit
 segment-routing
 prefix-sid-range global
 tunnel-table-pref 8
 no shutdown
 exit
 interface "system"
 level-capability level-2
 ipv4-node-sid index 1
 passive
 no shutdown
 exit
 interface "tinna-vlab-ls-01"
 level-capability level-2
 interface-type point-to-point
 level 2
 hello-authentication-key "pI1XgPvzajgvVGC0LY4G0b7p08fZ" hash2
 hello-authentication-type message-digest
 hello-interval 5
 metric 1000
 exit
 no shutdown
 exit
 interface "tinna-vlab-ls-02"
 level-capability level-2
 interface-type point-to-point

38

 level 2
 hello-authentication-key "pI1XgPvzajgvVGC0LY4G0czp1wAf" hash2
 hello-authentication-type message-digest
 hello-interval 5
 metric 1000
 exit
 no shutdown
 exit
 interface "tinna-vlab-se-02"
 level-capability level-2
 interface-type point-to-point
 level 2
 hello-authentication-key "pI1XgPvzajgvVGC0LY4G0S3uREdi" hash2
 hello-authentication-type message-digest
 hello-interval 5
 metric 1000
 exit
 no shutdown
 exit
 no shutdown
 exit
#--
echo "Pcep Configuration"
#--
 pcep
 pcc
 local-address 10.17.111.3
 peer 10.16.6.11
 no shutdown
 exit
 no shutdown
 exit
 exit
#--
echo "MPLS Configuration"
#--
 mpls
 interface "system"
 no shutdown
 exit
 interface "tinna-vlab-ls-01"
 no shutdown
 exit
 interface "tinna-vlab-ls-02"
 no shutdown
 exit
 interface "tinna-vlab-se-02"
 no shutdown
 exit
 exit
#--
echo "RSVP Configuration"

39

#--
 rsvp
 interface "system"
 no shutdown
 exit
 interface "tinna-vlab-ls-01"
 refresh-reduction
 reliable-delivery
 exit
 no shutdown
 exit
 interface "tinna-vlab-ls-02"
 refresh-reduction
 reliable-delivery
 exit
 no shutdown
 exit
 interface "tinna-vlab-se-02"
 refresh-reduction
 reliable-delivery
 exit
 no shutdown
 exit
 no shutdown
 exit
#--
echo "MPLS LSP Configuration"
#--
 mpls
 path "DYNAMIC-CSPF"
 no shutdown
 exit
 path "pce-init"
 no shutdown
 exit
 path "my-ip-path"
 hop 1 172.25.15.4 strict
 hop 2 172.25.15.3 strict
 hop 3 172.25.15.7 strict
 no shutdown
 exit
 path "my-sid-path"
 hop 1 sid-label 21014
 hop 2 sid-label 21013
 hop 3 sid-label 21017
 no shutdown
 exit
 lsp-template "pce-init-template" pce-init-p2p-srte template-id default
 default-path "pce-init"
 max-sr-labels 7 additional-frr-labels 2
 pce-report enable
 no shutdown

40

 exit
 lsp "se01-se03-sr" sr-te
 to 172.25.15.8
 max-sr-labels 6 additional-frr-labels 2
 pce-report enable
 pce-control
 primary "DYNAMIC-CSPF"
 exit
 no shutdown
 exit
 pce-initiated-lsp
 sr-te
 no shutdown
 exit
 exit
 no shutdown
 exit
#--
echo "LDP Configuration"
#--
 ldp
 fast-reroute
 no shortcut-transit-ttl-propagate
 import-pmsi-routes
 exit
 session-parameters
 peer 172.25.15.3
 exit
 peer 172.25.15.4
 exit
 peer 172.25.15.7
 exit
 exit
 tcp-session-parameters
 peer-transport 172.25.15.3
 authentication-key "pI1XgPvzajgvVGC0LY4G0YGNLngu" hash2
 exit
 peer-transport 172.25.15.4
 authentication-key "pI1XgPvzajgvVGC0LY4G0WXNChwr" hash2
 exit
 peer-transport 172.25.15.7
 authentication-key "pI1XgPvzajgvVGC0LY4G0a56htJg" hash2
 exit
 exit
 interface-parameters
 interface "tinna-vlab-ls-01" dual-stack
 ipv4
 no shutdown
 exit
 no shutdown
 exit
 interface "tinna-vlab-ls-02" dual-stack

41

 ipv4
 no shutdown
 exit
 no shutdown
 exit
 interface "tinna-vlab-se-02" dual-stack
 ipv4
 no shutdown
 exit
 no shutdown
 exit
 exit
 targeted-session
 exit
 no shutdown
 exit
 exit

#--
echo "BGP Configuration"
#--
 bgp
 multi-path
 maximum-paths 2
 exit
 ibgp-multipath
 enable-inter-as-vpn
 local-as 65038
 router-id 172.25.15.2
 enable-peer-tracking
 rapid-withdrawal
 rapid-update l2-vpn mvpn-ipv4
 best-path-selection
 origin-invalid-unusable
 exit
 next-hop-resolution
 shortcut-tunnel
 family ipv4
 resolution-filter
 ldp
 rsvp
 exit
 resolution filter
 exit
 exit
 labeled-routes
 transport-tunnel
 family label-ipv6
 resolution-filter
 ldp
 rsvp
 bgp

42

 exit
 resolution any
 exit
 exit
 exit
 exit
 rib-management
 ipv6
 route-table-import "SE-EXPORT-IPV6-VLAB-SE-01"
 exit
 label-ipv6
 route-table-import "SE-EXPORT-IPV6-VLAB-SE-01"
 exit
 exit
 group "ROUTE-REFLECTOR-VPN"
 description "<< Appliance Route Reflectors | VPN >>"
 min-route-advertisement 5
 next-hop-self
 peer-as 65038
 neighbor 172.25.212.13
 description "<< EDTNABTFRR43-ARR | AS65038 | ROUTE-REFLECTOR-VPN >>"
 family vpn-ipv4 vpn-ipv6 l2-vpn mvpn-ipv4 evpn
 authentication-key "pI1XgPvzajgvVGC0LY4G0X2yJhST" hash2
 keepalive 30
 hold-time 90
 exit
 neighbor 172.25.212.118
 description "<< EDTNABTFRR42-ARR | AS65038 | ROUTE-REFLECTOR-VPN >>"
 family vpn-ipv4 vpn-ipv6 l2-vpn mvpn-ipv4 evpn
 authentication-key "pI1XgPvzajgvVGC0LY4G0bNGjDbE" hash2
 keepalive 30
 hold-time 90
 exit
 exit
 no shutdown
 exit
 exit

First, normal interface configuration and IP address assignment has been done. Then we

determined the SRGB range for here too.

In the ISIS configuration, besides the usual configuration we need to enable traffic engineering,

and segment routing. We tell the router to use the global range of prefix SIDs. For the loopback

which is “system” interface here we assigned the index 1 for ipv4-node-sid which results to 21012.

43

Unlike core routers, edge routers are PCC nodes and they should be configured for it. In the PCEP

section, we configured the router as a PCC and gave it a unique IP address for communication

with PCE peer which is the Opendaylight controller. The IP address of ODL in 10.16.6.11.

The MPLS interface configuration is normal and nothing especial is going on here.

Then we reach to the “MPLS LSP CONFIGURATION” where we need to prepare the router for

accepting the PCE Initiated LSPs.

First, we need to prepare a template for PCE initiated LSPs. The only supported type is pce-init-

p2p-srte. We configure a default template while it is possible to have different templates by using

different template IDs. We use a default path named "pce-init" just to satisfy the formalities. This

path is just an empty path. For this template we enabled the reporting to PCE feature so we can

monitor the status of the LSP.

In the pce-initiated-lsp we need to enable the SR-TE by using no shutdown command.

The following is the procedure for configuring and programming a PCE-initiated SR-TE LSP [26].

5.2.2.1 PCE-Initiated LSPs

1. The user must enable pce-initiated-lsp sr-te using the CLI.The user can also optionally

configure a limit to the number of PCE-Initiated LSPs that the PCE can instantiate on a

node using the max-srte-pce-init-lsps command in the CLI.

2. The user must configure at least one LSP template of type pce-init-p2p-srte to select the

value of the LSP parameters that remain under the control of the PCC.

At a minimum, a default template should be configured (type pce-init-p2p-srte default). In

addition, LSP templates with a defined template ID can be configured. The template ID can be

included in the path profile of the PCInitiate message to indicate which non-default template to

use for a particular LSP. If the PCInitiate message does not include the PCE path profile, MPLS

uses the default PCE-initiated LSP template.

5.2.2.2 Application Generation of PCInitiate

Below is the procedure that Nokia is defined when an application, in our case ODL, wants to

initiate an LSP:

44

1. When the PCEP session is established from the PCC to PCE, the PCC and PCE exchange

the Open object and both set the new ‟I flag, LSP-INSTANTIATION CAPABILITY” flag,

in the STATEFUL-PCE-CAPABILITY TLV flag field.

2. The operator, using the north-bound REST interface, makes a request to the ODL to initiate

an LSP. The following parameters are specified:

a. source address

b. destination address

c. LSP type (SR-TE)

d. bandwidth value

e. include/exclude admin-group constraints

f. optional PCE path profile ID for the path computation at the PCE

g. optional PCE-initiated LSP template ID for use by the PCC to complete the

instantiation of the LSP

3. The ODL crafts the PCInitiate message and sends it to the PCC using PCEP. The message

contains the LSP object with PLSP-ID=0, the SRP object, the ENDPOINTS object, the

computed SR-ERO (SR-TE) object, and the list of LSP attributes (bandwidth object, one

or more metric objects, and the LSPA object). The LSP path name is inserted into the

Symbolic Path Name TLV in the LSP object.

4. The PCE-initiated LSP template ID to be used at the PCC, if any, is included in the PATH-

PROFILE-ID TLV of the Path Profile object. The Profile ID matches the PCE-initiated

LSP template ID at the PCC and is not the same as The Path Profile ID is used on the PCE

to compute the path of this PCE-initiated LSP.

5. The Path Profile ID is used on the PCE to compute the path of this PCE-initiated LSP.

5.2.2.3 SR OS Router Procedures on Receiving a PCInitiate Message

1. If a PCInitiate message includes a name that is a duplicate of an existing LSP on the router,

the system generates an error.

2. The router assigns a PLSP-ID and looks up the specified PCE-initiated LSP template ID,

if any, or the default PCE-initiated LSP template, to retrieve the local parameters, and

instantiates the SR-TE LSP.

45

3. The instantiated LSP is added to the database and is used by all applications that look up a

tunnel in the database.

4. The router crafts a PCRpt message with the Tunnel-ID, LSP-ID, and the RRO and passes

it along with the PLSP-ID set to the assigned value and the delegation bit set in the LSP

object to the PCE.

5.3 Opendaylight Installation

We use the OpenDayLight Silicon-SR2 version. For complete guide you can refer to [27].

The default distribution can be found on the OpenDaylight software download page:

https://docs.opendaylight.org/en/latest/downloads.html

Before using ODL, we need to install JAVA OpenDaylight requires a Java runtime environment

(JRE) to run. OpenDaylight can leverage either a stand-alone JRE on the JRE bundled in a Java

Software Development Kit.

The following command installs the JAVA 11 JRE.

$ sudo apt-get -y install openjdk-8-jre

Then we need to retrieve the full path to JAVA executable:

$ ls -l /etc/alternatives/java
lrwxrwxrwx 1 root root 43 Nov 22 20:48 /etc/alternatives/java -> /usr/lib/jvm/java-11
-openjdk-amd64/bin/java

Then we set JAVA_HOME by running the next command:

$ export JAVA_HOME= /usr/lib/jvm/java-11-openjdk-amd64

The Karaf distribution has no features enabled by default. However, all of the features are available

to be installed.

To run the Karaf distribution:

https://docs.opendaylight.org/en/latest/downloads.html

46

1. Unzip the zip file.

2. Navigate to the directory.

3. run ./bin/karaf.

Figure 5-4 First run of ODL

* Although, above picture is just to show the ODL command line environment and we use a docker

container for ODL. This way every time we run the container, we can have a clear system with

basic configurations already done.

 Press tab for a list of available commands

 Typing [cmd] --help will show help for a specific command.

 Press ctrl-d or type system:shutdown or logout to shutdown OpenDaylight.

For installing the Karaf features:

feature:install <feature1>

You can install multiple features using the following command:

feature:install <feature1> <feature2> ... <featureN-name>

For listing available features:

feature:list Lists all existing features available from the defined repositories.

feature:list -i List only installed features

47

feature:list -i | grep List the installed features and grep with specific name.

Now its time to install the required features for our work.

 feature:install odl-mdsal-apidocs

 feature:install odl-restconf

 feature:install odl-bgpcep-bgp

 feature:install odl-bgpcep-pcep

with above feature installed we have all we need to start working with ODL.

5.4 ODL on a Docker Container

All said above and required configurations already done and packed as a docker container. Our

ODL container is running a lab server and in below figure you can see the port mapping of for our

container.

Figure 5-5 ODL running docker container

5.5 NorthBound Interface - RestConf/Rest API

Standard mechanisms to allow Web applications to access the configuration data, state data, data-

model-specific Remote Procedure Call (RPC) operations, and event notifications within a

networking device, in a modular and extensible manner.

RESTCONF uses HTTP methods to provide CRUD operations on a conceptual datastore

containing YANG-defined data, which is compatible with a server that implements NETCONF

datastores.

The RESTCONF protocol uses HTTP methods to identify the CRUD operations requested for a

particular resource.

48

Following are the widely used methods:

GET:

The GET method is sent by the client to retrieve data and metadata for a resource. It is supported

for all resource types, except operation resources.

If the user is not authorized to read the target resource, an error response containing a "401

Unauthorized" status-line SHOULD be returned.

PUT:

The PUT method is sent by the client to create or replace the target data resource. A request

message-body MUST be present, representing the new data resource.

The "insert" and "point" query parameters MUST be supported by the PUT method for data

resources.

If the PUT request creates a new resource, a "201 Created" status-line is returned. If an existing

resource is modified, a "204 No Content" status-line is returned.

DELETE:

The DELETE method is used to delete the target resource. If the DELETE request succeeds, a

"204 No Content" status-line is returned. If the user is not authorized to delete the target resource,

then an error response containing a "403 Forbidden" status-line SHOULD be returned.

POST:

The POST method is sent by the client to create a data resource or invoke an operation resource.

5.6 OpenDaylight PCEP plugin

The OpenDaylight PCEP plugin provides all basic service units necessary to build-up a PCE-based

controller. In addition, it offers LSP management functionality for Active Stateful PCE - the

cornerstone for majority of PCE-enabled SDN solutions. It consists of the following components:

49

 Protocol library

 PCEP session handling

 Stateful PCE LSP-DB

 Active Stateful PCE LSP Operations

Figure 5-6 OpenDaylight PCEP plugin overview

As mentioned before to use the PCEP with ODL we need to install the odl-bgpcep-pcep feature:

feature:install odl-restconf odl-bgpcep-pcep

The PCEP plugin contains a default configuration, which is applied after the feature starts up. One

instance of PCEP plugin is created (named pcep-topology), and its presence can be verified via

REST:

URL: restconf/operational/network-topology:network-topology/topology/pcep-topology

Method: GET

Actually, above API returns the pcep-topology of the network.

50

Figure 5-7 Sample result of getting pcep-topology from the ODL

Please note that this capability is enabled by default. No additional configuration is required.

The LSP State Database (LSP-DB) contains an information about all LSPs and their attributes.

The LSP state is synchronized between the PCC and PCE. First, initial LSP state synchronization

is performed once the session between PCC and PCE is established in order to learn PCC’s LPSs.

This step is a prerequisite to following LSPs manipulation operations.

Figure 5-8 LSP State Synchronization.

5.6.1 LSP-DB API

Below figure shows a part of LSP-DB, since it’s a large structure, for complete structure please

refer to [28].

51

Figure 5-9 PCC in LSP-DB [28]

The LSP-DB is accessible via RESTCONF. The PCC’s LSPs are stored in the pcep-topology while

the session is active. In a next example, there is one PCEP session with PCC identified by its IP

address (10.17.111.3) and one reported LSP ("se01-se03-sr::DYNAMIC-CSPF").

URL: /restconf/operational/network-topology:network-topology/topology/pcep-

topology/node/pcc:%2F%2F10.17.111.3

Method: GET

Figure 5-10 Part of pcep-topology for node SE1

52

5.6.2 PCEP Extensions for Segment Routing

The PCEP Extensions for Segment Routing (SR) allow a stateful PCE to compute and initiate TE

paths in SR networks. The SR path is defined as an order list of segments. Segment Routing

architecture can be directly applied to the MPLS forwarding plane without changes. Segment

Identifier (SID) is encoded as a MPLS label.

This capability is enabled by default.

The PCEP SR extension defines new ERO subobject - SR-ERO subobject capable of carrying a

SID.

Figure 5-11 SR-ERO Subobject Format - RFC 8664

Based of the RFC 8664, the fields in the SR-ERO subobject are as follows:

53

L-Flag:

Indicates whether the subobject represents a loose hop in the LSP [RFC3209]. If this flag is set to

zero, a PCC MUST NOT overwrite the SID value present in the SR-ERO subobject. Otherwise, a

PCC MAY expand or replace one or more SID values in the received SR-ERO based on its local

policy.

Type:

Set to 36.

Length:

Contains the total length of the subobject in octets. The Length MUST be at least 8 and MUST be

a multiple of 4. An SR-ERO subobject MUST contain at least one SID or NAI. The flags

described below indicate whether the SID or NAI fields are absent.

NAI Type (NT):

Indicates the type and format of the NAI contained in the object body, if any is present. If the F

bit is set to zero (see below), then the NT field has no meaning and MUST be ignored by the

receiver. This document describes the following NT values:

 NT=0 The NAI is absent.

 NT=1 The NAI is an IPv4 node ID.

 NT=2 The NAI is an IPv6 node ID.

 NT=3 The NAI is an IPv4 adjacency.

 NT=4 The NAI is an IPv6 adjacency with global IPv6 addresses.

 NT=5 The NAI is an unnumbered adjacency with IPv4 node IDs.

 NT=6 The NAI is an IPv6 adjacency with link-local IPv6 addresses.

Flags:

Used to carry additional information pertaining to the SID. This document defines the following

flag bits. The other bits MUST be set to zero by the sender and MUST be ignored by the receiver.

M:

54

If this bit is set to 1, the SID value represents an MPLS label stack entry as specified in [RFC3032].

Otherwise, the SID value is an administratively configured value that represents an index into an

MPLS label space (either SRGB or SRLB) per [RFC8402].

C:

If the M bit and the C bit are both set to 1, then the TC, S, and TTL fields in the MPLS label stack

entry are specified by the PCE. However, a PCC MAY choose to override these values according

to its local policy and MPLS forwarding rules. If the M bit is set to 1 but the C bit is set to zero,

then the TC, S, and TTL fields MUST be ignored by the PCC. The PCC MUST set these fields

according to its local policy and MPLS forwarding rules. If the M bit is set to zero, then the C bit

MUST be set to zero.

S:

When this bit is set to 1, the SID value in the subobject body is absent. In this case, the PCC is

responsible for choosing the SID value, e.g., by looking it up in the SR-DB using the NAI that, in

this case, MUST be present in the subobject. If the S bit is set to 1, then the M and C bits MUST

be set to zero.

F:

When this bit is set to 1, the NAI value in the subobject body is absent. The F bit MUST be set to

1 if NT=0; otherwise, it MUST be set to zero. The S and F bits MUST NOT both be set to 1.

SID:

The Segment Identifier. Depending on the M bit, it contains either:

* A 4-octet index defining the offset into an MPLS label space per [RFC8402] or

* A 4-octet MPLS label stack entry, where the 20 most significant bits encode the label value per

[RFC3032].

NAI:

The NAI associated with the SID. The NAI's format depends on the value in the NT field and is

described in the following section.

55

At least one SID and NAI MUST be included in the SR-ERO subobject, and both MAY be

included.

The RFC 8664 document defines the following NAIs:

IPv4 Node ID:

Specified as an IPv4 address. In this case, the NT value is 1, and the NAI field length is 4 octets.

IPv4 Adjacency:

Specified as a pair of IPv4 addresses. In this case, the NT value is 3, and the NAI field length is 8

octets. The format of the NAI is shown in the following figure:

Figure 5-12 NAI for IPv4 Adjacency

Considering all above, we have three main actions on PCE Initiated LSPs: Add LSP, Update

LSP, and Remove LSP

5.6.3 LSP Operations for PCEP SR

5.6.3.1 Add LSP

Following RPC example illustrates a request for the SR-TE LSP creation:

URL: /restconf/operations/network-topology-pcep:add-lsp

Method: POST

Below example shows the body of our request to create a LSP from SE1 PCC named "PCE-Init-

LSP-01" to the SE2 router. As you can see the "path-setup-type" is equal to 1 to select the segment

routing.

Please notice that "m-flag" value is False so we use SID not MPLS labels.

56

{

 "input": {

 "node": "pcc://{{SE1-pcep-id}}",

 "name": "PCE-Init-LSP-01",

 "arguments": {

 "lsp": {

 "delegate": true,

 "administrative": true

 },

 "endpoints-obj": {

 "ipv4": {

 "source-ipv4-address": "{{SE1-ip}}",

 "destination-ipv4-address": "{{SE2-ip}}"

 }

 },

 "path-setup-type": {

 "pst": 1

 },

 "ero": {

 "subobject": {

 "loose": false,

 "nai-type": "ipv4-node-id",

 "m-flag": false,

 "sid": {{LS3-sid}},

 "ip-address": "{{LS3-ip}}"

 }

 }

 },

 "network-topology-ref": "/network-topology:network-topology/network-

topology:topology[network-topology:topology-id=\"pcep-topology\"]"

 }

}

5.6.3.2 Update LSP

Following RPC example illustrates a request for the LSP update:

URL: /restconf/operations/network-topology-pcep:update-lsp

Method: POST

Below example shows the json data as the body of our request to update the previous LSP.

57

Since the endpoints of the LSP are the same, normally we don’t have them in them in the body for

update request.

As you can see, everything is them same except for ero, which is changed.

{

 "input": {

 "node": "pcc://{{SE1-pcep-id}}",

 "name": "PCE-Init-LSP-01",

 "arguments": {

 "lsp": {

 "delegate": true,

 "administrative": true

 },

 "path-setup-type": {

 "pst": 1

 },

 "ero": {

 "subobject": [

 {

 "loose": false,

 "nai-type": "ipv4-node-id",

 "m-flag" : false,

 "sid": {{LS1-sid}},

 "ip-address": "{{LS1-ip}}"

 },

 {

 "loose": false,

 "nai-type": "ipv4-node-id",

 "m-flag" : false,

 "sid": {{LS2-sid}},

 "ip-address": "{{LS2-ip}}"

 }

]

 }

 },

 "network-topology-ref": "/network-topology:network-topology/network-

topology:topology[network-topology:topology-id=\"pcep-topology\"]"

 }

}

58

5.6.3.3 Remove LSP

To remove an LSP below RPC is used.

URL: /restconf/operations/network-topology-pcep:remove-lsp

Method: POST

Below json data shows the body of our request to delete the LSP named " API-SE1-SE2-LSP-01

" from the SE1.

{

 “input”: {

 “node”: “pcc://{{SE1-node-id}}”,

 “name”: “API-SE1-SE2-LSP-01”,

 “network-topology-ref”: “/network-topology:network-topology/network-

topology:topology[network-topology:topology-id=\”pcep-topology\”]”

 }

}

Unfortunately, this option is not working in our experiment. Although everything has been

checked till now, we couldn’t solve this issue!

As per the OpenDayLight documentation [29] above request is all we need to use for deletion of

an LSP in the PCC. Also, in [30] the procedures for deleting a PCE initiated LSP has been defined.

Nokia uses its own controller named NSP. To delete the LSP, the NSP (in our case Opendaylight)

crafts a PCInitiate message for the corresponding PLSP-ID and sets the R-bit in the SRP object

flags to indicate to the PCC that it must delete the LSP. The NSP sends the message to the PCC

using PCEP.

Opendaylight should do the same. To check we use Wireshark to examine the packets:

59

Figure 5-13Captured PCEP messages between ODL and SE1 (PCC)

Figure 5-14 PCEP PCInitiate message from ODL to PCC

60

Figure 5-15 PCEPPCErr message from PCC to ODL

To make sure that ODL has sent the correct PLSP-ID we check the LSP-db by using below

command:

show router pcep pcc lsp-db

Figure 5-16 LSP Details in LSP-db on the SE1 Router (PCC)

Above image shows the part of the command result and obviously the PLSP-ID is 3.

The error ODL returns is:

{

 "output": {

 "error": [

 {

 "error-object": {

 "processing-rule": false,

 "ignore": false,

 "value": 1,

 "type": 24

 }

61

 }

],

 "failure": "failed"

 }

}

Checking the [31] we can find the error:

Figure 5-17 Error type for LSP deletion request

5.7 Application

Before writing our simple program, we used Postman to get data and post our requests to the ODL.

With using Postman, we can easily see the results of the requests and manage writing our program.

After ensuring that we can move to writing our program.

Actually, this program consists of different functions which can be used for different creation,

modification and monitoring proposes.

Using Flask, we added different routes to our program so it can be accessed through simple APIs

and the ODL layer is hidden from the user.

Here, we explain all the functions from the low-level functions to perform the basic tasks to the

higher-level functions.

5.7.1 odl_api_control Module

This module contains definition of all the constant variables, functions and customizable strings

as URLs to build required requests.

By using this module, we can utilize our functions to perform different tasks.

As mentioned before, we use a docker container for our ODL and we showed how the ports are

mapped to each other. To make it easier to pass the required ODL information, we defined them

in a simple dictionary named odl_settings. It consists of required information to set the parameters

to make a request to ODL.

62

Also, to create, update, and delete the LSPs we need to use below URLs when we make the

requests:

For ease of working, we added our routers loopback IP address, Node-SID and PCC ID to this

module.

5.7.2 get_url(url, headers, odl_settings)

The name of function is self-explanatory. We just pass the url, headers, and required settings to

it and it gets the response. If the response is Ok then it returns it. Otherwise, it generates an error

and print out the error.

This function checks the timeout exceptions as well as connection errors.

5.7.3 post_url(url, data, odl_settings)

5.7.4 get_pcep_nodes(odl_settings)

There are two topologies available in our case:

63

- Network topology build upon BGP-LS information which consists of a list of Links and a

list of Nodes

- PCEP topology that consists of PCC Nodes and their Reported LSPs.

This function gets the pcep topology and extract the list of nodes from it.

Elements of the node list are dictionaries and each one at least has a “node-id” key. For example:

"node-id": "pcc://10.17.111.8"

Or

"node-id": "10.17.111.3"

5.7.5 get_pcc_nodes(odl_settings)

To extract only PCC nodes we use this function. The get_pcep_nodes returns all nodes while we

may need only PCC nodes. This function gets the nodes from previous one and extract those that

have “pcc” in their node-id.

64

5.7.6 get_pcc_node(odl_settings, node_id)

by passing the specific node-id, this function gets that PCC information.

If it is not available the result will be null.

5.7.7 get_reported_lsp(odl_settings, node_id)

This function returns the reported LSPs of a specific PCC.

5.7.8 get_lsp_names(reported_lsp)

This function accepts a list of reported_lsp and extract the LSP names from it and return them as

a list.

5.7.9 get_lsp(odl_settings, node_id, lsp_name)

Having the name of an LSP from a PCC we can get the information of that LSP by using this

function.

65

5.7.10 get_lsp_path(odl_settings, node_id, lsp_name)

This function extracts the path from a reported LSP.

Below code is a piece of json data from an LSP

One of the keys in a reported is the “path” which is a list, usually with one element.

This element itself is a dictionary and one of its keys is “ero” which is a dictionary too and includes

a list of subobjects. Actually, each element of subobject is a hop of the path.

The keys for SID and IP address of each hop are:

- "odl-pcep-segment-routing:sid"

- "odl-pcep-segment-routing:ip-address"

And if it is just an IP prefix:

- "ip-prefix"

By checking above keys it builds a path as a list with each item is a dictionary with two keys: 'ip-

address' and 'sid'.

66

5.7.11 get_lsp_status(odl_settings, node_id, lsp_name, key)

To get the status of an LSP, this function returns the value for the passed key.

Each LSP has a “path” key and usually it is a one item list which is a dict.

This dictionary has a “odl-pcep-ietf-stateful:lsp” key which contains the status information we

need.

67

5.7.12 create_json_sr_lsp(src, dst, name_of_lsp , pcc, sr_path)

This function gets the required information of an LSP and generates a json structure ready for

creating a LSP in the routers.

The main part is putting the hops from the sr_path list into the json structure.

We define an empty list named explicit and put each hop in it then we put this list into our lsp_dict

and return it as our data to pass to ODL.

5.7.13 create_sr_lsp(odl_settings, src, dst, name_of_lsp , pcc, sr_path)

This function actually creates the LSP into our network.

We use a/m function to create proper SR-LSP structure then we pass it to the post_url function

with create_lsp_url.

5.7.14 create_json_update_sr_lsp(name_of_lsp , pcc, sr_new_path)

This function acts like create_json_sr_lsp() but doesn’t have the lsp endpoints because they are

already set and we just need to update the path.

68

5.7.15 update_sr_lsp(odl_settings, name_of_lsp , pcc, sr_new_path)

Using above function this one update the LSP.

5.7.16 get_sid_ip_mappig(odl_settings)

Sometimes we may have a path just by IP addresses and may be only node SIDs.

This function use the topology information ODL gathered through the BGP-LS and returns two

dictionary:

Node_sid_to_ip and ip_to_sid which are self-explanatory by their names.

Above piece of code gets the BGP-LS topology information from the ODL.

Using above information, we check all nodes and extract the node SID and IP addresses from it.

5.7.17 covert_ip_path_to_sr_path(odl_settings, ip_path)

If we have an LSP consists of only IP addresses, this function using the above mentioned

dictionaries, converts it to a proper SR-Path.

69

5.7.18 convert_nsid_path_to_sr_path(odl_settings, nsid_path)

This function do the same for a path consisting only SIDs.

5.7.19 Application APIs

URL: /NodeSID_to_IP

Method: GET

@app.route("/NodeSID_to_IP", methods=["GET"])

def get_NodeSID_to_IP():

 Dict_Nsid_ip, Dict_ip_sid = get_sid_ip_mappig(odl_settings)

 return jsonify({'NodeSID_to_IP':Dict_Nsid_ip})

70

URL: / IP_to_SID

Method: GET

@app.route("/IP_to_SID", methods=["GET"])

def get_IP_to_SID():

 Dict_Nsid_ip, Dict_ip_sid = get_sid_ip_mappig(odl_settings)

 return jsonify({'IP_to_SID':Dict_ip_sid})

URL: / pcc_nodes

Method: GET

@app.route("/pcc_nodes", methods=["GET"])

def get_pccnodes():

 pcc_nodes = get_pcc_nodes(odl_settings)

 return jsonify(pcc_nodes)

URL: /pcc_nodes/node_ids

Method: GET

@app.route("/pcc_nodes/node_ids", methods=["GET"])

def get_pcc_node_ids():

 pcc_nodes = get_pcc_nodes(odl_settings)

 pcc_node_ids = []

 for node in pcc_nodes:

 pcc_node_ids.append(node['node-id'])

 return jsonify(pcc_node_ids)

URL: /pcc/<id>

Method: GET

@app.route("/pcc/<id>", methods=["GET"])

def get_pcc_by_node_id(id):

 node_id = "pcc://" + str(id)

 node = get_pcc_node(odl_settings, node_id)

 return jsonify(node)

71

URL: /pcc/<id>/reported_lsps

Method: GET

@app.route("/pcc/<id>/reported_lsps", methods=["GET"])

def get_pcc_reported_lsps(id):

 node_id = "pcc://" + str(id)

 reported_lsps = get_reported_lsp(odl_settings, node_id)

 return jsonify(reported_lsps)

URL: /pcc/<id>/reported_lsps/lsp_names

Method: GET

@app.route("/pcc/<id>/reported_lsps/lsp_names", methods=["GET"])

def get_pcc_reported_lsps_names(id):

 node_id = "pcc://" + str(id)

 reported_lsps = get_reported_lsp(odl_settings, node_id)

 lsp_names = get_lsp_names(reported_lsps)

 return jsonify(lsp_names)

URL: /pcc/<id>/reported_lsps/<lsp_name>

Method: GET

@app.route("/pcc/<id>/reported_lsps/<lsp_name>", methods=["GET"])

def get_pcc_reported_lsp(id, lsp_name):

 node_id = "pcc://" + str(id)

 lsp = get_lsp(odl_settings, node_id, lsp_name)

 return jsonify(lsp)

URL: /pcc/<id>/reported_lsps/<lsp_name>/path

Method: GET

@app.route("/pcc/<id>/reported_lsps/<lsp_name>/path", methods=["GET"])

def get_pcc_reported_lsp_path(id, lsp_name):

 node_id = "pcc://" + str(id)

 lsp_path = get_lsp_path(odl_settings, node_id, lsp_name)

 return jsonify(lsp_path)

72

URL: /pcc/<id>/reported_lsps/<lsp_name>/status

Method: GET

@app.route("/pcc/<id>/reported_lsps/<lsp_name>/status", methods=["GET"])

def get_pcc_reported_lsp_status_all(id, lsp_name):

 node_id = "pcc://" + str(id)

 status_keys = [

 "processing-rule",

 "remove",

 "sync",

 "administrative",

 "ignore",

 "plsp-id",

 "operational",

 "delegate"

]

 lsp_status ={}

 lsp = get_lsp(odl_settings, node_id, lsp_name)

 for key in status_keys:

 lsp_status.update({key : lsp["path"][0]["odl-pcep-ietf-stateful:lsp"][key]})

 return jsonify(lsp_status)

URL: /add-lsp

Method: POST

Content-Type: json

@app.route('/add-lsp', methods=['POST'])

def add_lsp():

 node_sid_to_ip, ip_to_sid = get_sid_ip_mappig(odl_settings)

 request_data = request.get_json()

 pcc = request_data['pcc']

 src = request_data['source-ipv4-address']

 dst = request_data['destination-ipv4-address']

 name_of_lsp = request_data['name']

 path = request_data['path']

 sr_path = []

 for hop in path:

 sr_hop ={ 'nai-type': 'ipv4-node-id'}

 if "sid" in hop.keys():

 sid = hop["sid"]

 else:

 sid = None

 if "ip-address" in hop.keys():

 ip = hop["ip-address"]

 else:

 ip = None

 # ==

 if ip:

 sr_hop.update({"ip-address": ip})

 else:

73

 if sid:

 if sid in node_sid_to_ip.keys():

 ip = node_sid_to_ip[sid]

 else:

 ip = None

 if ip:

 sr_hop.update({"ip-address": ip})

 sr_hop.update({"sid":sid})

 else:

 return jsonify({"error":{"bad_hop": hop}})

 else:

 return jsonify({"error":{"bad_hop": hop}})

 # ==

 if sid:

 sr_hop.update({"sid":sid})

 else:

 if ip:

 if ip in ip_to_sid.keys():

 sid = ip_to_sid[ip]

 else:

 sid = None

 if sid!=None:

 sr_hop.update({"sid":sid})

 sr_hop.update({"ip-address": ip})

 else:

 return jsonify({"error":{"bad_hop": hop}})

 else:

 return jsonify({"error":{"bad_hop": hop}})

 sr_path.append(sr_hop)

 if create_sr_lsp_ver2(odl_settings, src, dst, name_of_lsp , pcc, sr_path):

 return jsonify({})

 else:

 return jsonify({"error": "lsp creation faild!"})

5.8 Testing the Application

For testing our application, we build our code into a docker image and we used it to get the client

commands through the APIs and perform the tasks. The container gets the requests and sends

proper requests to the ODL subsequently.

Figure 5-18 The dockerfile content

To send our request we use Postman.

74

Our image is named flask-app and it uses port 5000.

Above is the result of sending request to get the available LSPs on the SE1.

Now, we generate a new LSP named API-SE1-SE2-LSP-04 from SE1 to SE2.

For our hops we use:

- LS1 SID

- GW1 IP Adr

- LS3 SID and IP Adr

- LS4 IP

- SE2 IP

We choose these hops to check if our function can find the counterpart IP or SID from the

network topology and generate proper SR-Path. Below, you can see the json data we pass to our

application using add-lsp api.

{

 "pcc": "pcc://{{SE1-pcep-id}}",

 "name": "API-SE1-SE2-LSP-04",

 "source-ipv4-address": "{{SE1-ip}}",

 "destination-ipv4-address": "{{SE2-ip}}",

 "path": [

 {

 "sid": {{LS1-sid}}

 },

 {

 "ip-address": "{{GW1-ip}}"

 },

 {

 "sid": {{LS3-sid}},

75

 "ip-address": "{{LS3-ip}}"

 },

 {

 "sid": {{LS4-sid}},

 "ip-address": "{{LS4-ip}}"

 },

 {

 "ip-address": "{{LS2-ip}}"

 },

 {

 "ip-address": "{{SE2-ip}}"

 }

]

}

Now we use /pcc/{{SE1-pcep-id}}/reported_lsps/lsp_names to check if our LSP is generated.

[

 "se01-se03-sr::DYNAMIC-CSPF",

 "test::my-ip-path",

 "API-Add-LSP-02",

 "API-Add-LSP-01",

 "API-SE1-SE2-LSP-03",

 "API-SE1-SE2-LSP-04",

 "SE1-SE3-PCEP-SR-1"

]

Now, by using the /pcc/{{SE1-pcep-id}}/reported_lsps/API-SE1-SE2-LSP-04/status we get the status for this

LSP:

Our LSP is active and delegated to the PCE.

Now we update our LSP. Our path has hops as below:

76

- LS2

- LS1

- SE2

But before updating let’s get the current path.

The complete path doesn’t fit in the above image. Below you can find the complete path:

[

 {

 "ip-address": "172.25.15.3",

 "sid": 21013

 },

 {

 "ip-address": "172.25.15.1",

 "sid": 21011

 },

 {

 "ip-address": "172.25.15.5",

 "sid": 21015

 },

 {

 "ip-address": "172.25.15.6",

 "sid": 21016

 },

 {

 "ip-address": "172.25.15.4",

 "sid": 21014

 },

 {

 "ip-address": "172.25.15.7",

77

 "sid": 21017

 }

]

You can see that all hops have their SID and IP Adr.

New we update the LSP.

And we check the path again:

78

Which is what we passed to the application.

79

6 Conclusion

We started with a general overview of segment routing and its merits in the context of Software

Defined Networking. The implementation included the creation of MPLS-TE and Segment

Routing tunnels within the network utilizing the SDN controller, as well as the setup of the SDN

controller and its connection to the network.

Then we discussed the PCEP protocol and how it can be utilized by a network controller to create,

update and monitor SR-TE tunnels in the network. The controller we used, OpenDayLight, gives

this advantage to the network administrator to have a complete network status and control by

providing the link-state information gathered through the BGP-LS.

Opendaylight provides many APIs for the client to perform the required tasks. We wrote an

application consisting of many functions to utilize these APIs and get the required information

about our SR-TE LSPs, in addition to creating and updating them.

By adding our own APIs to the application, we added a higher layer that hides the ODL from the

user. This application is what the user interface with. If there is another controller, the APIs for the

user will remain the same, and just our code inside needs to be modified.

Adding another controller and providing adaptability to our application would be the next step.

80

7 References

[1] Ciena, "What is SDN?," Ciena, [Online]. Available: https://www.ciena.com/insights/what-

is/What-Is-SDN.html. [Accessed 13 09 2021].

[2] C. Filsfils, S. Previdi, "SPRING Problem Statement and Requirements," IETF draft-ietf-

spring-problem-statement-07, March 2016.

[3] S. Previdi, C. Filsfils, "Segment Routing with MPLS data plane," IETF draft-ietf-spring-

segment-routing-mpls-03, February 2016.

[4] S. Previdi, A. Bashandy, C. Filsfils, "Segment Routing Architecture," IETF draft-filsfils-

rtgwg-segment-routing-00, June 2013.

[5] S. Previdi, C. Filsfils, "Segment Routing Architecture," IETF draft-ietfspring-, December

2015.

[6] S. Previdi, C. Filsfils, "Segment Routing interoperability with LDP," IETF draft-ietf-spring-

segment-routing-ldp-interop, October 2015.

[7] P. Francois, C. Filsfils, "Segment Routing Use Cases," IETF draft-filsfilsrtgwg-segment-

routing-use-cases-02, October 2013.

[8] H. Gredler, P. Sarkar, "Anycast Segments in MPLS based Segment Routing," IETF draft-

psarkar-spring-mpls-anycast-segments-01, October 2015.

[9] X. Xiao, "Traffic Engineering with MPLS in the Internet.," Network, IEEE, no. 14.2, pp.

28-33, 2000.

[10] [Online]. Available: http://www.mplsvpn.info/2015/07/segment-routing-based-mpls-

vsclassic.html. [Accessed 8 Feb 2022].

81

[11] [Online]. Available: http://blog.ipspace.net/2011/11/ldp-igp-synchronization-in-mpls.html.

[Accessed 8 Feb 2022].

[12] [Online]. Available: https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/mp_te_path_protect/configuration/xe-16-11/mp-te-path-protect-xe-16-11-

book/mpls-traffic-engineering-fast-reroute-link-and-node-protection.html. [Accessed 8

Feb 2022].

[13] "Loop-Free Alternate (LFA) Applicability in Service Provider (SP) Networks," [Online].

Available: https://datatracker.ietf.org/doc/html/rfc6571. [Accessed 4 Jan 2022].

[14] C. E. Hopps, "Analysis of an equal-cost multi-path algorithm," 2000.

[15] "Constrained Shortest Path First," [Online]. Available:

https://www.metaswitch.com/knowledge-center/reference/constrained-shortest-path-first-

cspf.

[16] "Segment Routing: Cutting Through the Hype," [Online]. Available: Segment Routing:

Cutting Through the Hype and Finding the IETF’s Innovative Nugget of Gold. [Accessed 5

Jan 2022].

[17] D. Singh, "PCE and PCEP Overview," [Online]. Available: https://packetpushers.net/pce-

pcep-overview/. [Accessed 19 2 2022].

[18] J. P. Vasseur, J. L. Roux, "Path Computation Element (PCE) Communication," IETF, RFC

5440, Mar 2009.

[19] F. M. V. Ramos, E. Verissimo, D. Kreutz, "Software-Defined Networking: A

Comprehensive Survey," Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[20] "What Is Software Defined Networking (SDN)? Definition," [Online]. Available:

https://www.sdxcentral.com/resources/sdn/what-the-definition-ofsoftware-defined-

networking-sdn/.

82

[21] S. Liu, "Segment Routing: Impact on Software Defined Networks," 27 March 2013.

[Online]. Available: https://blogs.cisco.com/sp/segment-routing-impact-on-software-

defined-networks.

[22] D. Jaksic, "Segment Routing in Service Provider networks," Cisco, Rovij, Croatia, 2018.

[23] "OpenDaylight Project, Donate Key Technologies to Accelerate Software-Defined

Networking," [Online]. Available: https://www.linuxfoundation.org/press-release/industry-

leaders-collaborate-on-opendaylight-project-donate-key-technologies-to-accelerate-

software-defined-networking/.

[24] Z. K. Khattak, M. Awais, A. Iqbal, "Performance evaluation of OpenDaylight SDN

controller," in Parallel and Distributed Systems (ICPADS), 2014.

[25] "OpenDaylight, the Most Documented Controller," [Online]. Available:

https://thenewstack.io/sdn-series-part-vi-opendaylight/.

[26] "PCE-Initiated LSPs," [Online]. Available:

https://infocenter.nokia.com/public/7750SR217R1A/index.jsp?topic=%2Fcom.nokia.Seg

ment_Routing_and_PCE_User_Guide_21.7.R1%2Fpcc-initiated_a-ai9ekdb667.html.

[27] "Getting Started Guide," Opendaylight, [Online]. Available:

https://docs.opendaylight.org/en/stable-silicon/getting-started-guide/index.html.

[28] "PCEP LSP-DB API," [Online]. Available:

https://docs.opendaylight.org/projects/bgpcep/en/latest/pcep/pcep-user-guide-active-

stateful-pce.html#lsp-db-api.

[29] "LSP Deletion," [Online]. Available:

https://docs.opendaylight.org/projects/bgpcep/en/latest/pcep/pcep-user-guide-active-

stateful-pce.html?highlight=ipv4-adjacency#lsp-deletion.

83

[30] "LSP Deletion Using PCEP," [Online]. Available:

https://infocenter.nokia.com/public/7750SR217R1A/index.jsp?topic=%2Fcom.nokia.Seg

ment_Routing_and_PCE_User_Guide_21.7.R1%2Fpce-initiated_l-ai9ekdb7bn.html.

[31] "PCEP-ERROR Object Error Types and Values," [Online]. Available:

https://www.iana.org/assignments/pcep/pcep.xhtml#pcep-error-object.

[32] R. Toghraee, Learning OpenDaylight, Birmingham: Packt Publishing Ltd, 2017.

[33] P. L. Ventre, S. Salsano, M. Polverini, "Segment Routing: A Comprehensive Survey of

Research Activities, Standardization Efforts, and Implementation Results," IEEE

Communications Surveys & Tutorials, vol. 23, no. 1, pp. 182-221, 2021.

[34] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo and P. Castoldi, "A Survey on the Path

Computation Element (PCE) Architecture," IEEE Communications Surveys & Tutorials,

vol. 15, no. 4, pp. 1819-1841, 2013.

[35] Cisco, "Configure Segment Routing Path Computation," 18 8 2021. [Online]. Available:

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5xx/segment-routing/66x/b-segment-

routing-cg-66x-ncs560.html. [Accessed 13 9 2021].

[36] "Segment Routing With Traffic Engineering (SR-TE)," Nokia, [Online]. Available:

https://infocenter.nokia.com/public/7750SR217R1A/index.jsp?topic=%2Fcom.nokia.Seg

ment_Routing_and_PCE_User_Guide_21.7.R1%2Fpcc-initiated_a-ai9ekdb667.html.

