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ABSTRACT

This dissertation presents a systematical study of the effects of an imperfect
inclusion/matrix interface on stress intensity factors (SIF) at a radial matrix crack in
a fiber composite under different mechanical loadings. Since the existing
dislocation-density method cannot be applied to an imperfect interface, a novel
power-series method is developed to obtain the deformation and stress fields in the
matrix and inclusion in the presence of the radial matrix crack. The interaction
between the radial matrix crack and the inclusion is demonstrated numerically for
different material geometrical parameters and the imperfect interface parameters.

The results indicate that the inclusion can either promote or retard crack
propagation in the matrix, depending not only on the ratio of the moduli, but also
on the interface imperfection. Some qualitatively new phenomena are predicted for
radial matrix cracking, specifically the influence of imperfect bonding at the
inclusion-matrix interface on the direction of crack growth. For example, in the
case of an circular inclusion perfectly bonded to the surrounding matrix, the SIF at
the nearby crack tip is greater than that at the distant crack tip only when the
inclusion is more compliant than the matrix. In contrast, the effects of imperfect
bonding at the inclusion-matrix interface allow for the SIF at the nearby crack tip to
be greater than that at the distant crack tip even when the inclusion is stiffer than
the matrix. In fact, for any given case when the circular inclusion is stiffer than the
matrix, we show that there is a corresponding critical value of the imperfect

interface parameter below which a radial matrix crack grows foward the interface



leading eventually to complete debonding. In particular, this critical value of the
imperfect interface parameter tends to a non-zero finite value when the stiffness of
the inclusion approaches infinity.

To our knowledge, these results provide, for the first time, a clear
quantitative description of the relationship between interface imperfections and the
direction of propagation of radial matrix cracks, as well as useful information for

the design of fiber-matrix interface of fiber composites against matrix cracking.
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CHAPTER 1

INTRODUCTION

1.1 FIBER COMPOSITES

The word *“composite™ means “consisting of two or more distinct parts.” Thus,
a material having two or more distinct constituent materials or phases may be
considered a composite material. Composites consist of one or more discontinuous
phases embedded in a continuous phase. The discontinuous phase is usually harder
and stronger than the continuous phase and is called the reinforcement or
reinforcing material, whereas the continuous phase is termed the matrix. When the
shape of the reinforcement is characterized by its length being much greater
compared to its cross-sectional dimensions, it is called a fiber. Composite materials
are ideal for structural applications where high strength-to weight and stiffness-to-
weight ratios are required. In total, there are three commonly accepted types of
composite materials: fibrous composites which consist of fibers in a matrix.
laminated composites which consist of layers of various materials, and particulate
composites which are composed of particles in a matrix.

Fibers, because of their small cross-sectional dimension, are not, in

themselves, suitable for engineering applications. They are, therefore, embedded in



matrix materials to form fibrous composites. The matrix serves to bind the fibers
together, transfers loads to the fibers and protects them against environmental
attack and damage due to handling. The high strength and modulus of fibers makes
them useful as a reinforcement for polymers, metals, carbons, and ceramics, even
though they are brittle.

Fibrous composites can be broadly classified as single-layer and multilayer
(angle-ply) composites on the basis of studying both their theoretical and
experimental properties. Single-layer composites may actually be made from
several distinct layers with each layer having the same orientation and properties,
and thus the entire laminate may be considered a “single-layer” composite. Most
composites used in structural applications are multilayered; that is, they consist of
several layers of fibrous composites. Each layer or lamina is a single-layer
composite, and orientation of the layers is varied according to design. Each layer of
the composite is usually very thin, typically of a thickness of 0.lmm, and hence
cannot be used directly. Several identical or different layers are bonded together to
form a multilayered composite suitable for engineering applications.

Reinforcing fibers in a single-layer composite may be short or long compared
to the overall dimensions of the composite. Composites with long fibers are called
continuous-fiber-reinforced composites, and those with short fibers are called
discontinuous-fiber reinforced composites or short-fiber composites. A further
distinction is that a discontinuous-fiber reinforced composite can be considered to
be one in which the fiber length affects the properties of the composite. In

continuous-fiber reinforced composites, it may be assumed that the load is directly

-~



applied to the fibers and that the fibers in the direction of the load are the principal
load-carrying constituent. The latter assumption is particularly valid when high-
modulus fibers are used in large concentrations. The orientation of short or
discontinuous fibers cannot be easily controlled in a composite material. For
example, in injection molding of a fiber-reinforced polymer, considerable
orientation can occur in the flow direction. However, in most cases, the fibers are
assumed to be randomly oriented in the composite. Therefore, properties of a short-
fiber composite can be isotropic; that is, they do not change with direction within
the plane of the sheet.

The two outstanding features of oriented fiber composites are their high
strength- to-weight ratio and controlled anisotropy. Fiber composites are generally
superior to metals with respect to specific strength and modulus (glass-fiber
composites, however, are superior to neither steel nor aluminum in specitic
stiffness). Furthermore, whether a comparison is made on the basis of actual
properties or “specific” properties depends on whether the weight of the structure is
a factor in the design. “‘Controlled anisotropy” means that the desired ratio of
property values in different directions can be easily varied. For example, in a
unidirectional composite, the ratio of longitudinal strength to transverse strength
can be easily changed by changing the volume fraction of fibers. Similarly, other
directional properties can also be altered by changing the material and
manufacturing variables. These two features make fiber composites extremely
attractive as structural materials. Other advantages of fiber composites include ease

of processing and their use in structural forms that are otherwise inconvenient or



impossible to manufacture. Their utilization, therefore, in aerospace and
transportation industries is continuously increasing.

Effective reinforcement requires good bonding between the fibers and the
matrix, especially for short fibers. For a unidirectional composite (i.e., one
containing continuous fibers all in the same direction), the longitudinal tensile
strength is quite independent of the fiber-matrix bonding, but the transverse tensile
strength and the flexural strength (for bending in longitudinal or transverse
directions) increase with increasing fiber-matrix bonding. On the other hand,
excessive fiber-matrix bonding can cause a composite with a brittle matrix (e.g.,
carbon or ceramic) to become more brittle, as the strong tiber-matrix bonding
causes cracks to propagate in a straight line, in the direction perpendicular to the
fiber-matrix interface without being deflected to propagate along this interface. In
the case of a composite with a ductile matrix (e.g., metal or polymer matrix), a
crack initiating in the brittle fiber tends to be blunted when it reaches the ductile
matrix, even when the fiber-matrix bonding is strong. Therefore, an optimum
degree of fiber-matrix bonding is needed for brittle- matrix composites, whereas a

high degree of fiber-matrix bonding is preferred for ductile-matrix composites.

1.2 MATRIX CRACKING IN FIBER COMPOSITES

The anisotropic characteristics of composite materials cause a complex failure

mechanism under static and fatigue loading and this is accompanied by extensive



damage to the composite. Unidirectional continuous fiber composites, on the other
hand, have excellent fatigue resistance and are essentially linear to failure. If,
however, the composite contains off-axes plies, various damage mechanisms can
occur under load, causing the composite to be redistributed and the stress-strain
response to become non-linear. In the four basic failure mechanisms, which are
matrix cracking, delamination, fiber breakage and interface debonding, matrix
cracking is usually the first damage mechanism in the off-axis plies. The density of
the cracks increases as the load increases until this process appears to stabilize at a
unique value for a given laminate. This state has been called a “characteristic
damage state” (see, for example, Reinfsnider and Talug, 1980).

In fracture studies of ceramics and other composite materials, it is generally
conjectured that the fracture of the solid will initiate at and will propagate from a
“dominant flaw.” This may be a manufacturing flaw, it may be caused by residual
stresses or some other type of loading before the part is put into use, or it may
result from the growth of a “micro flaw” due to cyclic nature of the operating
stresses. In some cases, it may be possible to detect such flaws by using
nondestructive testing techniques. More often, in studies relating to structural
integrity and reliability, one simply assumes their existence. Generally, the flaw is
assumed to be an internal crack the size of which is of the same order of magnitude
as that of the inclusion.

For example, thermal mismatch between the fibers (inclusions) and
surrounding matrix may lead to high residual stresses in the vicinity of the

inclusion-matrix interface. These stresses can be tensile in nature and lead to matrix



cracking or interface separation. Consequently, the study of matrix cracking in
fiber-reinforced composites has been an area of intense investigation in the
literature concerning mechanical failure of fiber-reinforced composite materials
(see, for example, Budiansky, et al., 1986; Achenbach and Zhu, 1989, 1990;
Hashin, 1990; Goto and Kagawa, 1994; Budiansky, et al., 1995; Ghosh, et al.,
2000; Lenci and Menditto, 2000; Liu, et al., 2000; Xiao and Chen, 2000; Liu, et al.,
2001).

As mentioned above, the strength of metals and toughness of ceramics, as well
as other mechanical properties of ductile or brittle materials, can be greatly
improved by fibrous reinforcements. It is known that the mechanical behavior of
fiber-reinforced composites is significantly affected by the nature of the bond
between fibers and the surrounding matrix material. In addition, the study of the
interaction between cracks in the surrounding matrix and any nearby fibers
(inclusions) is also extremely significant in attempting to understand and predict
the strengthening and hardening mechanisms of fiber-reinforced composites.

In the literature, one of the main results conceming an inclusion/crack
interaction, in the case of a perfect interface, is that the stress intensity factor at the
nearby tip of a radial matrix crack is greater (smaller) than the SIF at the distant
crack tip, it and only if the inclusion is more compliant (stiffer) than the matrix
(see, for example, Tamate, 1968; Atkinson, 1972 and Guo et al., 1998). This result
is of major importance since it determines whether the radial crack grows towards
or away from the inclusion. In this thesis, we show that this conclusion is

qualitatively invalid when imperfect bonding is present at the inclusion/matrix



interface. In fact, we show that the imperfect bonding allows for the SIF at the
nearby crack tip to be greater than the SIF at the distant crack tip even when the
inclusion is much stiffer than the matrix. Further, for any given case when the
inclusion is stiffer than the matrix, we show that there is a corresponding critical
value of the imperfect interface parameter below which the radial matrix crack will
grow toward the interface leading eventually to interface debonding.

There are also many problems concerning “matrix cracking” in the study of
bone-mechanics. In recent years, there has been an increasing amount of research
focused on bone tissue quality and fragility as a result of the need to understand
age-related bone fractures. Structural features, such as osteons and cement lines,
may dominate fracture mechanisms. In addition, the occurrence and mechanisms
associated with microdamage also have attracted great interest, due to its possible
relationship to bone fracture and remodeling. For example, microcracks have been
observed, both in human cadaveric materials, and following in vivo or in vitro
cyclic loading (Guo, et al., 1998). The microcrack density in human femoral
diaphyses has been shown to increase dramatically with aging. The significance of
these microcracks is unknown and the mechanical parameters that govern
microcrack propagation have not been quantified. From a microstructural and
mechanical behavior perspective, osteonal cortical bone shares several similarities
with fiber-ceramic matrix composites; osteons are analogous to fibers, interstitial
bone tissue is analogous to matrix material, and the cement line acts as a weak

interface.



1.3 IMPERFECT INTERFACE MODEL

Traditionally, the fiber (inclusion)-matrix interface is considered as a
surface across which both the displacements and tractions are continuous. This
assumption is commonly referred to as ‘the perfect bonding assumption® or the
‘perfect interface’ (Dundurs and Zienkiewicz, 1964; Benveniste et al.,, 1989;
Dundurs, 1989; Honein and Herrmann, 1990; Jasiuk et al., 1992; Jayaraman et al.,
1992; Ru and Schiavone, 1996). In many practical problems however, various
kinds of interfacial damage arising from, for example, microcracks or regions of
partial debonding, make the perfect bonding assumption inadequate when modeling
the inclusion-matrix interface. In these cases it becomes necessary to model the
interface as an imperfectly bonded interface incorporating the influence of interface
imperfections on the mechanical behavior of the composite. The same is true when
an interphase layer (i.e. a non-uniform, thin interfacial zone between the inclusion
and the matrix) is created either intentionally, by coating the individual fibers (for
example, to improve adhesion) or inadvertently, during the manufacturing process,
as a result of chemical reactions between the contacting fiber and surrounding
matrix materials. Although small in thickness, interphase layers can significantly
atfect local stress fields and the subsequent analysis of the mechanical failure of the
composite, (see, for example, Benveniste 1984; Aboudi, 1987; Achenbach and Zhu,
1989, 1990; Hashin, 1990, 1991; Gao, 1995; Tandon and Pagano, 1996; Ru and

Schiavone, 1997 and Ru, 1998b). Consequently, it becomes important to try to



understand and predict the influence of an imperfectly bonded interphase on the
mechanical failure of fiber-reinforced composites.

Many research efforts have been made to investigate the complex behavior
of the interphase. The following general observations were discussed in Jayaraman
et al., 1992: a) the interphase is responsible for transmitting any interaction
between the fiber and the matrix; b) interphasial degradation has a definite effect on
the global properties and response of the composite material; and c) interphasial
failure may often lead to global failure of composite materials. Given the nature of
the interphase and its effect on interfacial bonding, it is important to consider the
intertacial bonding stiffness together with the corresponding elastic fields. Thus.
incorporating the interphase properties into the analysis not only requires complete
knowledge about the interphase, but also demands a more complicated model. A
significant amount of research has been devoted to investigating the impact of the
interphase, or coating properties (Agarwal and Bansal, 1979; Benveniste et al.,
1989; Pagano and Tandon, 1990; Jayaraman et al., 1992) on the mechanical
properties of the composites. Recognizing the existence of an interphase implies
that the composite has to be regarded, at least, as a three-phase material. Such a
consideration requires complete knowledge of the physical properties of the
interphase, which is very difficult to measure.

On the other hand, in contrast to the interphase approach outlined above, the
concept of interface becomes a natural candidate to solve the complex problems
associated with an interphase. In three-dimensional problems, an interface is

defined as a two-dimensional imaginary entity, or border, that physically separates



distinct material phases such as fiber and matrix. Physically, it can be viewed as a
limiting case of an interphase layer with very thin (vanishing) thickness. This
imaginary boundary separates the bulk materials and, consequently, allows the
material properties to be changed abruptly across the interface. Therefore, unless
the actual bonding mechanism of the composite or the physical/chemical properties
of the interphase is of concern, this model provides a much-simplified way of
modeling the complex behavior of the interphase.

One of the widely used mechanical models in describing an impertect
bonding condition is based on the premise that the interphase layer has mechanical
properties different from those of either the inclusion or the matrix. The interphase
effect can then be described by continuous tractions but discontinuous
displacement across the interphase layer. One of the more useful assumptions is
that the displacement jumps are proportional, in terms of spring-factor type
parameters, to their respective traction components. This type of condition
corresponds to modeling the imperfectly bonded interphase layer by a linear spring-
layer of vanishing thickness (i.e. an imperfect interface, see, for example, Hashin,
1991; Gao, 1995). The usefulness of this particular model lies in the fact that it
allows the representation of intermediate states of bonding between the inclusion
and the matrix: from perfect bonding to complete debonding. Hashin (1991) used
the aforementioned interface model to examine the stress field inside a spherical
inclusion imperfectly bonded to a surrounding matrix. In contrast to the uniform

interior stress field associated with a perfectly bonded interface, he found that the
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stress field inside the inclusion was no longer uniform. The analogous problem in
plane elasticity has been examined by Gao (1995) and Bigoni, et al.(1998).

Most of the existing analytical models are based on the assumption that the
fiber-matrix interface has uniform properties, e.g., that the interphase layer has
uniform thickness and material properties. In this case, the interface is referred as a
homogeneously imperfect interface. In most cases of interest in composite
mechanics, the interphase layer can be considered to be equal thickness with
approximately uniform properties around the inclusion. Hence, the homogeneously
imperfect interface model, based on the assumption that normal and tangential
displacement discontinuities are proportional to the perspective traction
components by spring constant-type material parameters (see, for example, Hashin,
1991), provides an adequate approximation to the behavior of the actual interphase
layer between the matrix and inclusion. Therefore, in this thesis. we adopt this
assumption and base our analysis on the homogeneously imperfect interface model.

It will be shown later, that the infinite values of the interface parameters m and
n imply vanishing of displacement jumps and therefore correspond to perfect
interface conditions; while zero values of the interface parameters imply vanishing
of the corresponding interface tractions which corresponds to complete debonding.
Any finite positive values of the interface parameters define an imperfect interface.
At the same time, the imperfect interface parameters m and n will be characterized
for convenience by the new parameters M and N, defined by M = (m-n)/2 and N =
(m+n)/2. In addition, a dimensionless interface parameter N' is defined by N' =

N/(ui/R). Since we analyze three different cases: 1) m =n; 2) m = 3n; and 3) the

11



case of a sliding interface, N = (m+n)/2~n. Therefore, N' ~ N/(uw/R)~ n/(u/R)=

ni, and n~&-, here 4, and ¢ are the shear modulus and thickness of the

Ay 4
interphase layer, respectively; then, we have N'~ ?‘:‘l—’ . For example, if r=0.1R and
1
M=104, then, N'=].

It is well known that the single-inclusion problem is the fundamental
problem in a composite (Eshelby, 1957, 1959; Hashin, 1991). For example, Eshelby
considered one single inclusion and Eshelby’s tensor is a well-known solution in
composite mechanics. In addition, the single-inclusion model is suitable for
modeling composites with lower fiber volume fractions (Schmauder et al., 1992).
Under this condition, the interaction among neighboring fibers and its influence on
stress fields near the isolated fiber are small and therefore negligible. More
importantly, the interaction between neighboring fibers and its influence on the
fiber-matrix crack interaction can be described approximately using the effective
medium models in which the role of other fibers is represented by the effective
elastic constants. Hence, the study of the interaction between a single fiber and a
matrix crack is of fundamental significance to understand the major factors affecting
matrix cracking.

Furthermore, the single-inclusion model may be extended to the problem of
thermal stress analysis. It is well-known that thermal mismatch induced stresses are
considered as the main cause of failure in many materials and devices. such as

metal-ceramic composites and passivated interconnect lines in integrated circuits



(see, for example, Gouldstone et al., 1998; Gleixner et al., 1997; Ru, 1998a; Ru et
al., 1999; Wu, et al., 1996). Many practical problems require a systematical study of
the effects of interphase layers on thermal mismatch induced stresses in
inclusion/matrix systems. For example, the failure of interconnect lines due to
thermal stress-induced voiding has become a major issue in the design of reliable
integrated circuits (Gleixner et al., 1997; Gouldstone et al., 1998). In this case, the
line is subjected to large tensile stresses upon cooling from high passivation
deposition temperatures.

Several investigators have constructed composite models of osteonal cortical
bone to study its mechanical properties. For example, Katz (1981) considered the
anisotropy of cortical moduli using a hierarchical composite model of osteons made
of hollow, right circular cylinders of concentric lamellae. His model describes well
trends of elastic anisotropy. More recently, the finite element method has been used
to develop osteonal cortical bone models (Hogan, 1992; Crolet, et al., 1993). Hogan
studied the elastic moduli and their dependence on material properties of osteon,
interstitial bone, and cement lines and found reasonable agreement with
experimental data. Crolet et al. applied homogenization techniques to construct a
hierarchical osteonal cortical bone model consisting of various levels of
microstructure: osteons, interstitial bone, and layers of lamellae with collagen fibers
and hydroxyapatite. Their results demonstrate a good agreement with the
experimental data and, furthermore, using homogenization techniques allowed them
to determine and evaluate the contribution of microstructure at varying levels of

hierarchy and under different stress/strain environments.
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1.4 THE LIMITATIONS OF THE DISLOCATION-DENSITY

METHOD FOR CRACK-INCLUSION INTERACTION

A critical literature review shows that the solution of the interaction
between a circular inclusion and a radial matrix crack under the perfect interface
assumption, as in many crack problems, can be obtained through the superposition
of two solutions. The first refers to the simple problem of a circular elastic
inclusion inserted into a matrix without the crack. This problem can be easily
solved under the given system of external loads. In the second problem, only the
stress disturbance due to the existence of the crack in the matrix is considered. In
this problem, the only external loads are the crack surface tractions which are equal
in magnitude and opposite in sign to the stresses obtained in the first problem along
the line which is the presumed location of the crack. The nonhomogeneous medium
may be subjected to an arbitrary set of external loads (including quasi-static thermal
loads) applied to the matrix and the inclusion. However, it is assumed that the
dimensions of the matrix are sufficiently large so that in the second problem the
interaction between the outer boundary of the matrix and the crack-inclusion
combination may be neglected. Thus, in the second problem, which contains the
singular part of the solution, the matrix will be assumed as being infinite.

The existing most popular method (dislocation-density method) assumes

that the crack can be modeled as a distribution of dislocations with unknown
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density functions (see, for example, Dundurs and Mura, 1964; Atkinson, 1972;
Erdogan et al., 1974 and Guo et al., 1998). In this case, the derivation of the
governing integral equations for the unknown density functions is based on the
conditions that mechanical tractions vanish along the crack faces. Except for an
earlier study concerning a slipping interface (Dundurs and Gangadharan, 1969), to
our knowledge, the inclusion/crack interaction remains to be investigated in the
case of imperfect bonding between the inclusion and the matrix. This can be
attributed to the fact that the extension of the dislocation-density method to an
imperfect interface meets two major difficulties: 1) The fundamental solution for
the interaction between an isolated dislocation and a circular inclusion with a
generally impertect interface is not yet available; 2) Numerical solution of the
resulting singular integral equation for imperfect interfaces would be extremely
challenging.

In view of these two difticulties, the main objective of this project is to
develop a simple series method (which makes use of analytic continuation) to study
the interaction between a radial matrix crack and a circular inclusion under the
assumption of imperfect bonding at the inclusion-matrix interface. The results
obtained clearly demonstrate that the series method developed here is simple and
etfective in describing the influence of intertace imperfections on the radial matrix

crack in a range of different cases.
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1.5 OBJECTIVE OF THE PRESENT WORK

The present research emphasizes the interaction between a radial matrix crack
and a circular inclusion under the assumption of imperfect bonding at the inclusion-
matrix interface. Since the existing dislocation-density method is not suitable for
the study of an imperfect interface, our aim is to develop a simple series method to
study the effects of imperfect bonding on stress intensity factors (SIFs) calculated
at a radial matrix crack in a fiber (inclusion) composite subjected to various cases
of mechanical loading.

In the present study, complex variable techniques are used and existing series
methods are adapted and extended by analytic continuation to obtain series
representations of deformation and stress fields in both the inclusion and the
surrounding matrix in the presence of the crack. The interaction between the crack
and the inclusion is demonstrated numerically for different elastic materials,
geometries and varying degrees of bonding (represented by imperfect interface
parameters) at the interface.

In this thesis, three cases of remote mechanical loading are considered in the
absence of any eigenstrain inside the inclusion: 1) uniaxial loading normal to the
crack, which is of significant practical interest; 2) purely shear loading and 3)
uniaxial loading parallel to the crack.

The thesis is organized as follows: Chapter 2 develops the fundamental
formulation of a series method. Chapter 3 studies the effect of imperfect bonding

under uniaxial loading perpendicular to the crack. The conditions of uniaxial loading

16



parallel to the crack and pure shear loading are discussed in detail in Chapters 4 and
5, respectively. Chapter 6 provides some concluding remarks and suggestions for
future research.

The results indicate that the inclusion can either promote or retard crack
propagation in the matrix, depending not only on the ratio of the moduli, but also
on the interface imperfection (Liu, et al., 2001). Some qualitatively new
phenomena are predicted for radial matrix cracking, specifically the influence of
imperfect bonding at the inclusion-matrix interface on the direction of crack
growth. To the author’s knowledge, these results provide, for the first time, a clear
quantitative description ot the relationship between interface imperfections and the
direction of propagation of radial matrix cracks, and hence, useful information for

the design of fiber-matrix interface of fiber composites against matrix cracking.
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CHAPTER 2

FORMULATION OF A SERIES METHOD

2.1 INTRODUCTION

In Chapter 1, it was noted that the existing dislocation-density method is not
suitable for the study of inclusion-matrix crack interaction in the presence of an
imperfect interface. In this chapter, we will develop a simple series method (which
makes use of analytic continuation) to study the interaction between a radial matrix
crack and a circular inclusion under the assumption of imperfect bonding at the
inclusion-matrix interface. Four analytic (potential) functions will be obtained in
both the inclusion and the surrounding matrix in the presence of the matrix crack.
The results show that the series method developed here is simple and effective in
describing the influence of interface imperfections on the radial matrix crack in a

range of different cases.

2.2 COMPLEX VARIABLE METHOD

2.2.1 Problem Formulation

One of the most widely used models of an imperfect interface (see, for

example, Benveniste, 1984; Aboudi, 1987; Achenbach and Zhu, 1989, 1990;
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Hashin, 1990, 1991; Gao, 1995 and Ru and Schiavone, 1997) is based on the
assumption that tractions are continuous but displacements are discontinuous across
the interface. More precisely, jumps in the displacement components are assumed
to be proportional, in terms of ‘spring-factor-type’ interface parameters, to their
respective interface traction components. This model of an imperfect interface is
often referred to as a ‘spring-layer imperfect interface’.

Consider an infinite elastic plane (matrix) containing a circular inclusion
centered at the origin. The circular inclusion is of radius R with shear modulus &,
and Poisson’s ratio v.. The surrounding matrix is characterized by shear modulus M
and Poisson’s ratio v,. As illustrated in Figure 2.1, a finite radial matrix crack L =
[a. b] with length 2/ is located outside the inclusion at a distance d from the
inclusion-matrix interface. Let S, and S, be the regions occupied by the inclusion
and the cracked matrix (containing the crack L), respectively and I the circular
interface separating S, and S,. In what tollows, the subscripts 1 and 2 are used to
identify quantities in S, and S., respectively.

In the case of plane deformations, the corresponding displacement and
stress fields are given in terms of two complex potentials ¢(z)and w/(z) as follows

(England, 1971):

2u(ut iv) = x@(2)-z@'(z) -y (2),
Ot 0 =2[¢'(2) +9'(2) ], Q.1

O - [0y ='(2) +9'(2) - 20" () —Y'(2) .
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Here, z = x+iy is the complex coordinate, & = (3-4V) in the case of plane strain
(assumed henceforth in this paper) and (3-v)/(1+v) in the case of plane stress. If

polar coordinates are introduced so that == x+iv =re'? , (2.1) takes the form:

2u(uct iug) = e[ xp(2)-z¢'(2) -y (2) ],

o+ 0= 2[9'(2) +¢'(2) ], (2.2)

210[ :¢n(:)+wv(:)] .

Crr-i0G9= @'(2)+9'(2) -e

Hence, all stress and displacement fields can be found from (2.1) or (2.2) once the
complex potentials ¢(z) and y(-)are known. Of course, the determination of ¢(z)
and y(-)depends on the boundary and interface conditions.

Assume that the circular inclusion is imperfectly bonded to the matrix along
I"by such an interface. The boundary value problem for the displacements in both
the inclusion and the matrix can then be formulated in terms of the following

interface conditions (Ru, 1998b):

|G - G0l = O,

Or=mlull-mu?, Go=nlugl-nuj, zel, (2.3)

while the crack-face conditions are given by,



@ (2) +z¢', (2) + ¥, (2) =0, zel. (2.4)

Here, m and n are two imperfect interface parameters (which are non-negative and
constant along the entire interface), || * || =( * ), — ( * ).denotes the jump across I~

and yu° is the additional displacement induced by the uniform eigenstrains
{ &, &, &, } prescribed within the inclusion. The first condition of (2.3)

indicates that the normal and tangential tractions are continuous across the
interface. The second condition of (2.3) indicates that the jump of the
displacements across the interface. It is seen from (2.3) that infinite values of the
interface parameters m and n imply vanishing of displacement jumps and therefore
correspond to perfect interface conditions. On the other hand, zero values of the
interface parameters imply vanishing of the corresponding interface tractions which
corresponds to complete debonding. Any finite positive values of the interface
parameters define an imperfect interface. As noted in Chapter 1, such interface
imperfections may be due to the presence of an interphase layer or perhaps
interface bond deterioration caused by, for example, fatigue damage or
environmental and chemical effects.

The uniform remote loading is described by the conditions

@, (2)=Az+o(l), ¥, (2)=Bz+0(l), |7 >, (2.5)
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where 4 (a given real number) and B (a given complex number) are determined by

the uniform remote stresses. In the case of a uniaxial load o° normal to the crack

(see Figure 2.1), 4 and B are given by

_ (¢}
A=Z-, B=B=24=2-.

For purely shear loading o7, , we have 4=0, B =ig”" . Finally, for uniaxial loading

Q V]
o’ parallel to the crack (in the x-direction), we have A= GT’ B=-24= —GT.

2.2.2 Analytic Continuation Theory

In the case of the interaction between a circular inclusion and a radial
matrix crack under the perfect interface assumption, the existing most popular
method (dislocation-density method) assumes that the crack can be modeled as a
distribution of dislocations with unknown density functions (see, for example,
Dundurs and Mura, 1964; Atkinson, 1972; Erdogan et al., 1974 and Guo et al.,
1998), and the derivation of the governing integral equations for the unknown
density functions is based on the conditions that mechanical tractions vanish along
the crack faces. Except for an earlier study concerning a slipping interface
(Dundurs and Gangadharan, 1969), to the author’s knowledge, the inclusion/crack
interaction remains to be investigated in the case of imperfect bonding between the

inclusion and the matrix. This can be attributed to the fact that the extension of the



dislocation-density method to an imperfect interface meets two major difficulties:
1) The fundamental solution for the interaction between an isolated dislocation and
a circular inclusion with a generally imperfect interface is not yet available; 2)
Numerical solution of the resulting singular integral equation for imperfect
interfaces would be extremely challenging.

A convenient method used to analyze the case of circular boundaries is the
series method (England, 1971). However, in the case of the present problem, the

domain S, contains a crack L so that ¢,(z) and y,(z) are not analytic outside the
circle I” As a result, ¢,(z)and y,(z) cannot be expanded into standard Laurent

series in S;. To overcome this difficulty, a method based on analytic continuation

(Tamate, 1968; England, 1971) is employed below to express (ol(z)and v, (2) in

terms of two new tunctions which are analytic outside the circle /" where they can
thus be expanded into standard Laurent series. To this end, denote by D the domain
outside the circle /" minus the matrix crack L (namely, D consists of the complex
plane with the circular /ole S., but without the matrix crack L). Clearly, ¢,(z) and
¥,(2) are analytic in §,, but not in D. Thus, the crack-face conditions (2.4) along

the upper and lower faces of L given by:

9 (2) +z @\ (2) +p(z) =0, ze L™,

¢ ()" +z¢'(2)” +y, ()" =0. ze L™,

can be written into the equivalent form

~
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P (2) +[z0.(2) + w,(z)]" =0, :ze L,
(2.6)

0.(2) " +[z0.() + ¥ (z)]" =0. :ze L.

It thus follows that

P2 - 20" + ¥ ()] = Q) -[20(2) + W), ze L. (2.7)

Next, we define an analytic function ®(z) in S, by:
PE) = 9,(2) - [20'(2) + ¥, (2)] - (2.8)

(note that analytic continuation implies that both ®,(z) and Vl(:) are analytic in
$.). The above continuity condition (2.7) implies that d(z) is continuous across L.

Consequently, ®(z) is analytic in D and can then be expanded into a Laurent series

in D as

d(z)=-B:z+ iakz"‘ , z€ D, 2.9)
k=l

where a; (k=1,2...) are unknown complex coefficients.

Furthermore, the remaining crack-face condition (2.6) can be rewritten as

[9.(2) +20'.(2) + W, (2)] +[9,(2) +20,(2) + W, ()] =0, ze L. (2.10)
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We introduce another analytic function ¥(z) in S, as follows:

) [0,(2) +20,(2) + ¥,(2)]. Q2.11)

W(o) = JiE=a)z-b

Then, since (England, 1971)

\/(z—a)(z—b)' = —\/(z—a)(z—b)' , zelL=/a, b},
condition (2.11) can be written in terms of W(z) as
YY)  -W(E) =0, zel. 2.12)

It follows that W(z) is continuous across L and analytic in D and can therefore be

expanded into a Laurent series in D as follows:

W) =4+ B)z+ Ebt, (2.13)
=

where b; (k=1,2...) are unknown complex coefficients.

Now, ¢,(z) and ,(z) can be expressed in terms of ®(z) and ‘¥(z) as

v, () = 9,(z) - 29, (2) - D(2), (2.14)



2W(z) ®d(2)

)= . 2.15
?,(z) 5 (z—-a)(z—b)+ > ( )

On the other hand, ¢,(z) and ¥,(z) are analytic within the circular inclusion and

can then be expanded into their respective Maclaurin’s series in S.:
(oz(z)=2d,rzk, l//z(z)=2ekz" , (2.16)
k=0 k=0

where d, and e, are complex coefficients. Hence, the problem reduces to
determining the four sets of unknown coefficients a., b, d, and e, , such that the
two interface conditions (2.3) can be satisfied on /-
The traction continuity conditions (2.3) give:
(] (1] :: 1] —l R:
¢, (2)-z0", (2)-F¥'l (2)+ ¢\ ()=
2.17)
' " :: ' ) R:
9. (2)-ze", (2)—Fv/: (2)+¢'.(—)

On the other hand, the remaining two displacement interface conditions (2.3) can be
written in the complex form:

m-n

Orr - iG9= e, = i, || - |mae? —inu?).

u,+iua”+m:n

On using (2.2), the above displacement discontinuity conditions can be rewritten as

follows:
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R
2u

m

[Kz¢: (:) -

-n R _; R: . Rl
> { Iz[""’" (=20 (=¥ (-

g
- -

m+n z
>t 24,

L

zﬁ;(@)—l(@)} H+ =[50, ~20,() -y, (2)]-

< — R - m+n .
K.9.(—)-z2¢.(z)-y.(2)] ;—mRe, - £, —ig)z -
TR 920G -y ()] f-mRe - (N, —iey) .
- . " zl , — RZ
(”;’:”)R3(€:+183)=(p': (=20 () ==V () +' ()
EA? +E? el -¢g’ o
where ¢, = > &= - 5 and €, =g, (see, Ru, 1998). Hence, all

unknown coefficients a, , b,, d, and ¢, (k=1,2...) can be determined by the interface

conditions (2.17) and (2.18).

2.3 STRESS INTENSITY FACTOR

To derive the formulas for the stress intensity factor (SIF), it is noted from

(2.1) that the stresses in the matrix are given by:
Oy = Re[ @', () +¢, (2)+29", (2)+¥", (2) ],

O« =Re[ @', (2)+ ¢, (2)-2¢", (2)-¥", () ]

and

Gy =Im [@', (2)+ ¢, (2)-29", 2)-¥", () 1

On using



V,(2) = 9,(2) - 29, (2) - B(2),

the above expressions can be re-written as
Gy = Re[ @', (2)+ ', (2) +(z - 2) 9", (2)- ' (5) ],

T =Rel @', (2)-9', () 429, () +(z-2) 9", GI+ @' (2)],

~

Gy =Im [, (2)-9, ()42, () +(z- 2)@", (@' (2)],
where ¢, (z)is given by (2.15). Since the leading-order singularity is the inverse
square-root singularity, it follows that
¥(a) =\¥(b)=0.
As expected, these conditions are verified by our numerical results obtained later. In
tollowing Chapters 3, 4 and 5, the stresses in the neighborhood of the crack tipz =a

and z = b are given under different remote loading conditions, respectively.

2.4 CONCLUSIONS

To overcome the major difficulties of the existing dislocation-density
method, a novel series method is presented. In this method, we use analytic
continuation to obtain a representation (2.14) and (2.15) of the complex potentials
®,(z) and y,(z)in the matrix, in terms of two new functions ®(z) and ‘¥(z) which
are analytic outside the inclusion and can then be expanded into standard Laurent
series (2.9) and (2.13). It is stressed that the crack face conditions (2.4) or (2.6) are

automatically satisfied by (2.14) and (2.15), provided that ®(z) and ¥(z) are
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analytic outside the circular inclusion. On the other hand, because ¢,(z) and
¥,(z) are analytic inside the circular inclusion they can be expanded into Taylor

series (2.16) within the circular domain. Thus, four sets of the unknown
coefficients a, , b, , d. and e, will be determined by the remaining interface
conditions (2.17) and (2.18). In following chapters, these unknown coefficients will
be determined and the interaction between the crack and the inclusion will be
demonstrated numerically for different elastic materials, geometries and varying
degrees of bonding (represented by imperfect interface parameters) at the interface.
The effects of imperfect bonding on stress intensity factors (SIFs) calculated at a
radial matrix crack in a fiber (inclusion) composite subjected to various cases of

mechanical loading will be studied in Chapters 3, 4 and 5, respectively.



CHAPTER 3

EFFECT OF IMPERFECT BONDING ON RADIAL
MATRIX CRACKING --UNIAXIAL LOADING

NORMAL TO THE CRACK

3.1 DESCRIPTION OF THE PROBLEM

In the present chapter, we consider the problem of interaction between a
radial matrix crack and a circular inclusion under the uniaxial remote loading
perpendicular to the crack when the bonding at the inclusion-matrix interface is
homogeneously imperfect. By adapting the potential functions derived in Chapter
2, we obtain series representations of deformation and stress fields in both the
inclusion and the surrounding matrix in the presence of the crack. The interaction
between the crack and the inclusion is demonstrated numerically for different
elastic materials, geometries and varying degrees of bonding (represented by

imperfect interface parameters) at the interface.

3.2 PROBLEM SOLUTIONS

3.2.1 Problem Formulation
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Let us detine F(z)as:

F(z)= z

2J(z-a)z-b)

Because F(z)is analytic in S -7 it can be expanded into a Taylor series within a

circular domain of radius larger than R but smaller than a and valid at the circular

interface as:
F(z)= gck:‘ .

where c, are the known real coetficients. Here, we only give the first 1| coefficients

of ¢, as follows:

b
_(ab)”
! )

*

(ab)-;; (a+b)

C: S

2x2x1!
& ==l @) F(a+ b’ ~(ab) ]
¢, == (X35 T a+by ——(ab) (a+b)]

! 2x3 2°

I lx3x5x7 Ix3x5x%x3

c5=—2x4![ 5 (ab) ( +b)* ——-—(ab) (a+b)

+9(ab)_§]

¢, = 1 [lx3x>5x7x9(ab) (@ +b)’ _lx3x5x7x5( b) (a+b)"
2x5 2 2

+ lx3x5x5x3(ab)—;(a+b)]

2
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1 Ix3x5x7x9x%11 IX3xSxXTx9%x5x3

c, = 2)(6![ 5 (ab) (+b) >
__I_I
(ab)  (a+b)' + l><3><5>(?:’_XSX:’X:’(ab) (@ +b) ~1x3x5x3x(ab) 7]
I Ix3x5x7x9%11x13
c“-—‘)x?'[ > (ab) (a+b) -
1x3x5x7>;s9xllx7x3( b) (a+b) lx3x5x7;<39x5x3x7
4 2
(ab)  (a+b) - lx3x5><;7x5x3x7(ab) : (@ +b)]
I Ix3x5x7x9x11x13x15
Cy -—7X8'[ 2 (a b) (a+b) -
lx3x5x7x97>:llxl3x7x4(ab) S @+b)° + lx3x5x7><7£:xllx15x7
(ab) (a+b) lx3x5x7x9x15xl4(ab) S (@+b) +

2

lx3x5x7x15x7(ab)-:]

o =— l [lx3x5x7x9xllxl3x15xl7
P 2x9 2°
IX3x5x7Tx9Ix1ixI13xI5x9x4
>
IX3xX5x7x9x11x13x7x27
7-&
lx3x5x7x9’x-llxl3x15x3(ab) (@+b) + lx3x5x7>7<9x25x27

-~

(ab) (a+b) -

(ab) (a +b) +

(ab) (a+b) -

(ab) *(a +b))
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1 IX3xXSxTx9Ix1IxI3x15%17%19

_ o _
lx3x5x7x9xll;:l3x15xl7x9x5(ab) T (a+b) +
lx3x5x7x9xll;:l3x15x9x7x10(ab) T(a+b)° ~
lx3x5x7x9xl7:xl3x9xl7xlO(ab) Z(a+b) +
IX3xX5xTx9Ix11x5%x27x31

(ab) (a+b) ~-Ix3x5x%x

2-

11
Tx9%25x%27(ab) * ]

If we retain the first 8 terms of F(z) as an approximation to F(z) and retain
the first 4 terms (including = terms) for ®(z) and ‘¥(z), while ¢,(z) and ¥,(z) keep
five terms (including z* terms), then, ®(z), ¥(z), 9,(z) and y,(z) can be expressed
as:

®)=-B:z+az"+a,z7 +a,z7 va s

WE)=Q@A+ B)z+bz" +b,z7 +b27 +b,27

@.(z)=dy+d\z +d,z* +d,z’ +d z*;

V.(z)=e, +ez +e,z' +e,z’ +e,zt.

where a,, b, d,. e, are unknown coefficients.

Substitute F(z), ®(z) and ¥(z) into Eq. (2.15) in Chapter 2, we have
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P(2)
y)

4

@,(z)=F(2)¥(x)+

c,(24+ B)z’ +c,(24+ B)z* +[c,b, +¢c,(24+ B))z’ +[c.b. +
c,b, +c,(24 + B))z° +[esb, +c.b, +c,b, +c,(24+ B)]z* +[c,b, +
€:bs +,b, +¢.b, +¢,(2A+ B)|z* +[c.b, +c,b, +c,b, +c b, +

¢,(2A4+ B))z* +le,b, +c.b, +c,b, +c.b, +c,(24+ B))z* +(c,b, +

cb; +c.b. +c.b, —-i—;):—:-i-(c‘b4 +e.b, +c,b, +¢.b)+(c,b, +c.b, +

a -1 a, -2 a - a -4
c,b, +T')z +(c.b, +¢ b, +T‘)z +(c,b, +73-)z +T‘z

Vi(2)=9,(z) - z¢', ()~ D(z)=

[c24+ B) = 9¢,(24+ B))z" +[c.(2A4+ B)~8c.(24 + B)|=* +[c, b+
¢,(2A4+ B)~Tc, bi=Tc,(2A+ B)Iz" +[c, b:+c. bi+c,(24+ B)

6c, b:=6c. bi—6c, 24+ B)]z* +[c, br+c. bi+c, bi++c,(24+ B) —
Seybi=5c. bi=5c¢, bi=5¢,(24+ B))z* +[c, butc. byt +c, brtc, bi+
¢,(24+ B)—4c, b~ 4dc. by—4dc, b:—dc, bi—4c,2A+ B))=* +[c. b.+
¢, bt +e brtc, bi+c,(2A+ B)=3c. bu=3c, bs=3c, bi=3c, by—
3¢,(24+ B))z* +[c, b+ c, bs+ c, 5:+c3 5|+c‘(2A+ B)-2c, b.~

2, b1-2¢,b:-2¢, 51— 2,24+ B)2* +(c, bu+c, bs+c, bitc, b+

£—c‘b4—c‘b3—c.‘b.—c,b,~i-£)z-+-(c4l.h-i»c,l;s-f-c,b:-w:l51)-0-
2 T 2 N
(c,bit+c, b+, bz—7'+c3b‘ +c,b, +¢b, +?’)3 +(c,bi+c bi—

-4

a: -z M a; 3a - as:
T+2c:b4 +2c,b3 +a, )z +(c b;-7+3clb4 +—,3-)Z +(2a‘ —T)Z
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Hence, substituting ¢, (z), v, (z), ¢.,(z) and p.(z) into the traction

continuity condition [(2.16) of Chapter 2] yields:

{9c,24+ B)z* +8c.(24+ B)" +7[c, bi+ ¢, 24+ B))=* +6[c. bi+
¢ b:+c,(24+ b)]zs +5[c bs+c.b:+c bi+c,(24+ b)]z‘ +4c b+
c.by+c, bitc bi+c,(24+ B)J=* + Y. bivc, bi+c,b:+c, bi+

QA+ B +2c, bitc, byt c, bitc, bitc,(24+ B)Jz +(c, bt

c,bis+c b:+c, b;-g)—(c:} bi+c,bi+c, b4+%)z'1 -2, b+

¢, b;+%):" - (3¢, b4+3%):"—2@3"}—{72(:,(2‘4 +B)z* +

56¢.(24+ B)z™ +42[c, bi+c, (24 + B))=" +30[c. br+c, b+
c2d+ B)J* +20[c, b+ c. brtc, bitc,(24+ B)]z* +12[c, b+
cbite,brivc bitc,2A+B)z' +6[c. bitc, bytc, bitc, b+

c,(24+ b)]z’ +2[c, bitc bitc, bitc, bitc,(24+ b)]z +

2c,bit+c,bi+c, bz+a’—')z'z +6(c, bi+c, b_x+a71)z" +12(c, b+

%)z" +10a,z"* }—%{9[6‘3 24+ B)-9c,(24 + é)]:':lo +8c.(24+ B)-

8c.(24+ B)J=* +T[c, bi+c, 24+ B)—Tc, bi-Tc, (24 + B)Jz* +
6lc, b2+ c. bi+c,(2A+ B) —6c, b:~c. bi—6c,(24 + B)|z + S[c, bs+
c-bite, bitc,(24+ B) =S¢, bs~Sc. bi=Sc, bi~Sc,(24+ B)J=" +

4c, 54+c-l;_z+co 5:+65[_71+C3(2A+B)‘
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4cbi—dc. by=4c, b~ 4c, bi~4c,(24+ B))z* + 3c, butc by c, b+
¢, bi+c,(24+ B)~3c. bi=3c, bi=3c, bi=3c, bi-3c,(24+ B)]z* +
Ae, barc,bstc, brtc,bitc,(2A+B) =2, bi—2c, bi=2c, bi—

2c,bx—2c,(2A+b)]z’ +(c, l;4+c4!;;+csl;z+c15|+§—c, b.-

B ; : ;oa
c, bs-(.'3 bz—cl b1+'—’-)2' —(C3 b.z'{"C2 b3+(,"b:—Tl+Clbl +C:b5 +

a - - a, O - as
c,b, +-_,¢) -2(c,bs+c, b;—T'+ 2¢,b, +2¢,b, +a,)z  -3(c b4—7+

3c.b, +3—(:’)z © —4(2a, —aTJ): C 3 {9R"c, 24+ B)z +

8R"c.(2A+ B)z"" + TR"[c, bi+ ¢,(24+ B))=" +6R"[c, bi+c. b+
24+ B)" +5R[c, be+c. bt c, bitc,2A+ B)|z™ +4R°[c, b+
C. [73+C° [_):+C5 [_7|+C_§(2.4 + B)].':.'.t +3RJ[C- 54+Co 5\+CS 5:+C‘ bl+

QA+ BT + 2R, bit e, bt e, brt e, bitc,(2A+ BY" +(c. bu+
- N T T N
c3b;+c3b3+c:b,—7)———‘(c,b:+c:b3+—7-+c3b4)z -F(c'b}+

- 3 2 -
b+ Ly - Lo b4+3i)- -ras )=

d +2d.z +3d;z* +4d,z2° -2d.z -6d,z* -12d,z’ -Rl(el:' +2e,2’

+3e,z* +4e,2')+(d\+2d: R 2" +3d,R*z7 +4d. R°z™)

On the other hand, substituting 9.(2), ¥, (), 9.(2) and y.(z) into

displacement discontinuities condition [(2.17) of Chapter 2] gives:
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'”;” { %{ {x, [esb, +c.b, +¢,(24+ B))2* +k,[c,b, +c.b, +c,b, +c,(24+ B)]=*

trleb, +cby+eb, +cb +c,24+B)2’ +K,[c.h, +c,b, +c,b, +c,b +

¢;(24+B)Iz* +k,[c,b, +c,b, +c.b, +c,b, +c, A+ B)z + Kx,[cb, +c,b, +

c,b, +¢,b, —§)+ K, (c,b, +c¢,b, +c,b, +cb)z + K, (c.b, +c,b, +c,b, +

a, a,. . a, . a, _
)27 +K,(c,b, +cb, +)=7 + K (eb, +0z + K, =z }-

{SRs[cs b+ c. bz+co 5.+c,(2A +B))z™ +4R°[c, bitc. b+ c, b:+

c. 5|+c3(2A +B))z” +3R'[c. 54+c° l-73+c5 5:+c‘ 5|+cz(2A +B):" +

2R[c, 54+c, l;x+cJ b+ c, 5;+c,(2A+B)]:" + (¢ l-h+cl 53+c_,l;z+

;B | ; - a Dol 2 " . oa,
c, bx—'?)—'—k"—(cl bz+C: b_;+—‘)l+c‘ b.)z? ‘“—'R";"((.‘l b3+(.': b4+-_)4)z3 -

- y 7- —
—Rl—s-(B’cl b4+3—:’)z‘ --R—‘T;z’ }-{ R°[cb, +c.b, +cb, +cb +c,24+ B) -

3¢ bi=3c, bi=3c, b:=3c, bi-3c,(24+ B)j=~ + R'[c,b, +cb, +c,b, +cb, +

¢,(2A4+B)=2c, bi~2c, bi—2c, b:—2c, bi-2c,(2A4+ B)|z-' + Ri(c.b, +c,b, +

c.b, +c.b, ~l——f——c5 54-—c4 l-)_‘—c3 5:—c: [)ﬁg)z" +(c.b, +c,b, +¢,b)z7" +

1 a, " : ;ooa | a,
F(c}bJ +c,b, +¢b, —-2—-+-c3 bi+c,bi+c, bl"'?l)"’F("zb; +¢,b, —?-i-

: ;- 1 a, ; 3a, , 1 - oa,,
2c, b+ 2¢, bi+a:)z -4--R—o(c,b4—?'-+-3cl b4+7)z +F(2a4—?);. }}

__R
2u

L4y 2 2%

(. d,z" +x.d, +x,d,z +Kx,d,2* +x,d,2°)~(d,+ 2R dl 4

3R* d._, 2 +4R°d, 27 )~ (e, =" +R'e z + R e,z  +R°e,z" +R'e, =™ )] H+

[}
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m

;"{ Z#LR{ { KR [c,bs+c.bitc, bitc,QA+B)=™ +
1

K R'[c, bi+c. 53+c6 l;z+c5 5l+c,(2A +B))z7 + k,R[c. b+

col;3+c551+c45;+c2(2A+B)z'1+x,R*[c°l-);+c55;+c,5:+
; O S - -
Csb|+C,(2A+B)]Z +K‘,R (C5b4+CJb3+C3b:+C2bl—"7—)+

K, (c, 54+C3[;3+Cll;z+c, [3.).:4»%@3 l;;+c:53+cl5:+

J N K, y N a: K, - a a
=)+ = (c, bat ¢ bid =) + =L, bt =)z +k,—z2° }-
2 O 27 TR 2 2R

{6R"[cs b:+c.bi+c,(24+ B)]z* +5R’[c, bs+c. br+c, bi+

c,(24+ b)]z" +4R[c bs+c bitc brvc bitc,(QA+ l_?)]z" +

3R [c-batc,bi+c bitc,bivc,(24+ B)]z* + 2R ¢, batc, bs+

¢, br+cb +c,(24+ B)]z + Ri(c,bitc,bs+c, br+c, bl-g)—

Ri(c,bi+c, bite, b:+%)..-* —2R¥(c, bi+e, b;+a7—3)z" ~ R3¢, bu+

3%):" -2R%a,z" }-{lc bi+c. l;;+c° [;3+C5 5.+c3(2A +B)-

4c,bi—4dc. bi—4c, b:—4c, bi—-4c, (24 + B))z* +[c. 54-4~c6 b+
cobrtc, bitc,(2A+B)Y=3c. bi=3c, bs=3c, b:-3c, bi-3c,(24+ B))z*

+le, batc, bytc, brtc,bitc,(24+ B)=2c, ba—2c, bi—2c, b

2¢,bi—2c,(24+ B))z* +(c, [;;+c4 53+c,51+c2 &-f——?-—cs bi—c b:-
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c, b:—c:bl+g)z: +(c, 1;;+c:b:+c3 1-7:.).-':+(c3 I;4+c: l_);+cll;:—%+

a " . a: -
c;bitc.bi+c, b:+—2'-)+(c: bite, b;—7+2c, bi+2c,b:i+ax)z" +

3(13 -2 as -3 _ 1
> )z +(2a4—?)4 H}

2Uu.R

(e, bi=S 43, but [k, do 2+

KR d+KR d: 2" +K,Rds 27 + KR ds 27 )~ (R d+2R°d =+

3R°d, z° +4R° d, 2’)—(e,z+e, 2" +e, 2" +e, 2 +e, 2%)] }-

m+n N m-n_ . R _ 4e, o5 333 4
2R & T S IRE g ) = s -

7 y iy - .
(84, +%§)z" - (3d, +%):: +d, +d +2R d: 2" +3R d: =7 + 4R d =

mRe, —(

Comparing coetficients of powers of =, we can obtain coupled linear equations for
the unknown coefficients a,, b, (k=1, 2, 3,4) and d., e (k=0, 1, 2, 3, 4). The
detailed calculations can be found in Appendix 1.

Noting that the interface model [Eq. (2.3) of Chapter 2] can be used to
represent an adhesive layer, we remark that the two interface parameters m and n
depend on the thickness and modulus of the layer. If only a single adhesive material
is assumed to make up the layer, the ratio of m/n is usually taken to be a material
constant, independent of the thickness of the adhesive layer. For example, the ratio
m/n can take the (approximate) value / for a layer modeled by a series of distributed

springs (see, for example, Achenbach and Zhu, 1989, 1990), or the value 3 for an
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elastic interphase layer (see, for example, Hashin, 1991). Consequently, in this
chapter, we analyze three different cases:

1) m = n (the spring layer);

2) m = 3n (an elastic interphase layer)

and

3) m=oo and n=0 (the sliding interface, see Mura, et al., 1996). Here, the

Poisson’s ratios of both the inclusion and the matrix are held constant (V| = v, = 1/3).

3.2.2 The Spring-layer Interface (m=n)

First, consider the case of m=n. There are altogether 18 unknown coefficients
a.. b(k=1,2,3,4) and d,. e (k=0, 1, 2, 3, 4). As one of the e, and d, can be chosen
arbitrarily without changing the displacement field (Muskhelishvili, 1963), we
arbitrarily choose ¢,=0. So only 17 unknown coefficients remain to be solved. The
equations A.19 to A.35 in Appendix 1 give the final 17 coupled linear algebraic

equations.

3.2.3 The Elastic Interphase Layer (m=3n)
Second, consider the case of m=3n. As mentioned in 3.2.2, there are 17
unknown coefficients and equations A.36 to A.52 in Appendix 1 list all required

linear equations.

3.2.4 The Sliding Interface (m=, n=0)
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Finally, sliding interface (m =o0, n=0) is considered. Following the same
procedures as shown in Sections 3.2.2 and 3.2.3, equations A.53 to A.69 in Appendix 1

show the final 17 linear algebraic equations.

3.3 NUMERICAL RESULTS AND DISCUSSIONS

In the case of a uniaxial load o®normal to the crack, the stresses in the

neighborhood of the crack tip = = a are given by:

o, =Y o 22 sin &4 Lins by - .
2r, 14 2 4 2" 2a0

1

gkbk,,a""'”]-t-O(n"),

S

a5 .68, 1., _6 1 = e )
7 (Gsin - sinS [l -o—— 3k 1+ 0(),
> c [(4sm 5 350 2)[ SYP ; b,.,.a* "1+ 0(r’)

.

a1l 91 l al 1 - —tk+h) 0
c 7(4cos—2— 4c055?)[l ﬁgkbwa 1+0(),

Q
i
|

2

~

1

where z-a=re” (0<6, <2r). Similarly, the stress field around the crack tip

z=bis given by

Vi b3 6. 1 e | -
o= o, o —I—(Zcos?ﬁ-zcosb?')[l— YT gkb,‘,la “0]4+0(r?),
VI b5 6. 1 6, L & o .
g,= 2,.: o T(ZCOS?—ZCOSS?)[I— 250" kzﬂkb,‘,la ]+0(I': ),
c_=- VI 0’°b  gin Gz _ L o 1 S kb, a1+ 0(r?),

. —(—sin—= - —sin5—=)[1 - -
o2 142 4 T2 et
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where z~b=re™ (-2<6, <7x). In the above equations, the first term of each
equation represents the leading order singular stress near the crack tips, inversely
proportional to the square-root of the radial distance from the crack tip. The square-
bracketed terms represent the influence of the inclusion and the imperfect interface
on the SIF.

Figures 3.1 and 3.2 show, for the case of m = n and the fixed crack length 2/
(/=R), the SIF ratio ai the nearby and distant crack tips. This ratio is defined by
K/ Kk (where K; is the actual mode-I SIF and K’ =O'°\/’Ig is the mode-I SIF for the
same crack in a homogeneous matrix material without the inclusion). Clearly, the
inclusion has a significant effect on X (a) but not on K (b). On the other hand, the
effect of the inclusion decreases with d/R. For the case of an inclusion stitfer than
the surrounding matrix (Figure 3.1), Ki(a) increases as the imperfect interface
parameter V' decreases. It is clear that the presence of the inclusion with imperfect
interface can either increase the SIF at the nearby crack tip (for example, when
N'=0.01, 0.1 or 1), or reduce it significantly (for example, when N =10 or 100), as
compared to o’ . For the case of an inclusion softer than the surrounding matrix
(Figure 3.2), the SIF at the nearby crack tip increases sharply when the crack
approaches the inclusion. On the other hand, Ki(a) increases when the imperfect
interface parameter V' decreases and, most importantly, the SIF at the nearby crack
tip is always larger than that at the distant crack tip.

In particular, it is seen from Figure 3.1 that, for a stiffer inclusion, the SIF at
the nearby crack tip is smaller than that at the distant crack tip for a larger imperfect

interface parameter but larger than the SIF at the distant crack tip for smaller values
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of the imperfect interface parameter. Hence, for any given inclusion composed of
material stiffer than the surrounding matrix, there is a corresponding critical value of
the imperfect interface parameter at which Ky(a)=K(b). Clearly, this critical value of
the imperfect interface parameter depends on the ratio of shear moduli. For a fixed
value of d/R, Figures 3.3 and 3.4 illustrate the shear moduli ratios of inclusion to
matrix determined by the condition K/(a)=K(b) for different imperfect interface
parameters. In Figure 3.3, four curves are drawn for different ratios d/R. These
curves correspond to the fixed crack length //R = 1. Figure 3.4 deals with the case of
I/R = 0.1. These curves show that, for the fixed interface parameter N', the ratio of
42/u;, determined by the condition Ki(a)=K(b), increases as d/R becomes larger. On
the other hand, for the fixed ratio u>/u, the interface parameter V', determined by
the condition K(a)=K(b), becomes larger when d/R increases. In both Figures 3.3
and 3.4, each curve defines a minimum critical value of A", referred to as N*, below
which the condition K(a)=K(b) cannot be satisfied by any ratio uy/u; (more
precisely, below which K(a) is always larger than Ky(b) for any ratio u>/u;). For
example, the minimum critical values in Figure 3.3 are N*= 0.05, 0.1, 5.6 and 8.7
when d/R = 0.01, 0.05, 0.5 and 1, respectively. In Figure 3.4, the minimum critical
values are N*=0.01, 0.08, 5.2 and 6.9 when d/R = 0.01, 0.05, 0.5 and 1, respectively.
In any case, if the imperfect interface parameter is smaller than the corresponding
critical value N* we have K (a)>K(b) and the radial matrix crack will grow toward
the interface leading to interface debonding for any ratio My, It is therefore
possible to predict and control the direction of matrix cracking and therefore

interfacial debonding by designing the inclusion-matrix interface accordingly.
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In the case of m=3n, Figures 3.5 to 3.8 illustrate mode-I stress intensity
factor at the nearby and distant crack tips for both softer (u/u, =2) and stiffer
inclusion (&,/u,=0.5). It can be seen from our calculations that there is no significant
difference from the case m = n discussed above. This is probably due to the fact
that the shear imperfect interface parameter n has a minor effect on stress fields
subjected uniaxial loading.

It should be noted that a consequence of the imperfect interface model
employed in this paper is the prediction of possible overlapping of the two materials
at the interface (a negative normal displacement jump across the interface: see,
Achenbach and Zhu, 1989; Hashin, 1991). As explained by Hashin (1991), under
the assumptions of this interface model, the matrix or the inclusion can be moved
toward the interface by a small distance less than or equal to the initial interphase
thickness without any physical overlapping of materials. With this interpretation. a
small negative normal displacement jump is permissible so that the imperfect
interface model used here does not, in fact, lead to any physical contradiction, at
least for cases of relatively lower order remote loading.

An interesting special case of the imperfect interface is the so-called “sliding
interface” characterized by m=o0, n=0 (see, for example, Benveniste, 1984: Mura et
al., 1996). In Figure 3.9, the sliding interface is considered and the mode-I stress
intensity factor ratio (defined as for Figure 3.1) is drawn as a function of the
distance 4 for both a softer inclusion (4/1:=2) and a stiffer inclusion (u/4.=0.5).
For the softer inclusion, the SIF at the nearby crack tip increases when the distance d

becomes smaller. Figure 3.9 shows that the SIF at the nearby crack tip is always



larger than that at the distant crack tip, which implies that the crack grows towards
the inclusion. On the other hand, for the stiffer inclusion, the SIF at the nearby crack
tip increases monotonically if the distance d increases and the SIF at the nearby
crack tip is always smaller than that at the distant crack tip. This means that the
stiffer inclusion with sliding interface always resists crack propagation towards the
inclusion. Clearly, the SIF at the distant crack tip is not sensitive to the distance d/R
for both softer and stiffer inclusions.

As mentioned previously, the present imperfect interface model describes
perfect bonding when m=n=o and complete debonding when m=n=0. Hence,
for the sake of comparison, the SIFs calculated by the present method for very large
or very small interface parameters are compared with known results for the perfect
interface and traction-free holes, respectively. For example, the calculated SIF at the
nearby and distant crack tips under uniaxial loading normal to the crack (m=n) for
N'=100 are compared with SIFs corresponding to perfect bonding (see Tamate.,

1968; Guo, et al.1998). The results are shown in Tables 3.1 and 3.2, respectively.

Table 3.1. Comparison between the calculated nearby SIF with very large interface
parameter and the SIF corresponding to perfect bonding.

[35)

H/l,=0.5
wr=0.1 02 | o5 ! 0.1 02 | o5 I

N'=100(1.28761.2269( 1.1154 |1.0365 |0.7546]0.8483 | 0.9435 0.9708

Perfect
bond 1.30 1.23 1 1.12 .04 0.73 0.83 0.94 0.97
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Table 3.2. Comparison between the calculated distant SIF with very large interface
parameter and the SIF corresponding to perfect bonding.

H/U=05 2
[d/R=0.1 0.2 I 0.1 0.2 1
N'=100]1.0332 1.0267 1.0051 0.9402 0.9467 0.9801
Perfect
bond 1.035 1.028 1.005 0.93 0.94 0.98

Similarly, in Table 3.3, we compare the SIFs for near-by and distant crack

tips with very small interface parameter (N'=0.01) with the SIFs for the traction

free-hole (see, Sih, 1973).

Table 3.3. Comparison between the calculated nearby and distant SIF and
SIF corresponding to traction-free hole.

Nearby SIF Distant SIF
y77"
=0.5 /R=0.1] 0.2 0.5 l 0.1 0.2 1
N'=0.01|1.8624{ 1.724 | 1.3434 | 1.1434 1.2069 1.1667 1.0551
Traction | 1.893 | 1.74 | 1.35 [.145 1.22 1.18 1.055
frec hole

All comparisons show that the perfect interface can be described by very
large imperfect intertace parameters (for example N'>100). Similarly, traction-free

debonding can be described by very small interface parameters (for example
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N'<0.01). In particular, these results confirm the validity of the present series

method.

3.4 CONCLUSIONS

This chapter studies the effect of imperfect bonding on radial matrix
cracking under uniaxial loading normal to the crack. In the case of a perfect
interface, as we know, one of the main results concerning an inclusion/crack
interaction is that, the SIF at the nearby tip of a radial matrix crack is greater
(smaller) than the SIF at the distant crack tip, if and only if the inclusion is more
compliant (stiffer) than the matrix (see, for example, Tamate, 1968; Atkinson, 1972
and Guo et al., 1998). This result is of major importance since it determines
whether the radial crack grows towards or away from the inclusion. However, our
present study shows that this conclusion is qualitatively invalid when imperfect
bonding is present at the inclusion/matrix interface. In total, three cases of interface
conditions are considered in this chapter. The major conclusions are as follows:

1. In contrast to the case of a perfect interface for which the SIF at the nearby crack
tip is greater than the SIF at the distant crack tip only when the inclusion is more
compliant than the matrix, the imperfect bonding condition allows for the
possibility of a SIF at the nearby crack tip greater than that at the distant crack
tip even when the inclusion is stiffer than the matrix. In fact, for any given

inclusion stiffer than the surrounding matrix, there is a corresponding critical

47



!\)

value of the imperfect interface parameter below which a radial matrix crack
grows toward the interface leading to interface debonding. In particular, for
given crack length and distance from the interface, there is a minimum critical
value of the imperfect interface parameter (defined by N* in Section 3.1) below
which (that is, when N'< N*) the SIF in the nearby crack tip is always greater
than that at the distant crack tip for any shear modulus ratio of the inclusion and
the matrix.

For the special case of a perfectly bonded or entirely debonded interface, the
present results are consistent with the known results in the literature.

For the case of elastic interphase (m=3n), our results show that there is no
significant difference from the case m = n. This is probably due to the fact that
the shear imperfect interface parameter n has a minor effect on stress fields
subjected uniaxial loading.

For the case of sliding interface (m=co, n=0), our results indicate that for the
softer inclusion, the SIF at the nearby crack tip is always larger than that at the
distant crack tip, which implies that the crack grows towards the inclusion. On
the other hand, for the stiffer inclusion, the SIF at the nearby crack tip is always
smaller than that at the distant crack tip. This means that the stiffer inclusion
with sliding interface always resists crack propagation towards the inclusion.
The interface imperfection has significant effect on SIFs especially when the
crack is close to the inclusion. The results indicate inclusion can either promote
or retard crack propagation in matrix, depending not only on the ratio of the

modulus of inclusion to that of the matrix, but also on the interface imperfection.
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The present semi-analytic power-series method is effective to investigate the

inclusion-crack interaction with imperfect interface.
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CHAPTER 4

EFFECT OF IMPERFECT BONDING ON RADIAL
MATRIX CRACKING--UNIAXIAL LOADING

PARALLEL TO THE CRACK

4.1 DESCRIPTION OF THE PROBLEM

In this chapter, we will consider uniaxial loading parallel to the crack for the
case of m=3n, where uniaxial loading o' is in the x-direction. In this case, we have

Q 1]
A=L B=_24=_-2_
4 B

4.2 PROBLEM SOLUTIONS

4.2.1 The Elastic Interphase Layer (m=3n)

By adopting the same steps as described in Chapter 3, using the two interface
conditions in Chapter 2 and comparing the coefficients for like powers of z, we can
obtain coupled linear equations for the unknown coefficients a., b.(k=1,2,3,4) and

d, e (k=0, 1, 2, 3, 4). As one of the ¢, and d, can be chosen arbitrarily without
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changing the displacement field (Muskhelishvili, 1963), we arbitrarily choose e,=0.

The final equations for uniaxial loading parallel to the crack are given as:

1

“—; +(5¢,R" = 2¢,R*)B', +(5¢.R” = 2R*c,)b', +(5¢,R® - 2¢, R*)b', +

“.1)
(c,R=2c,R")b',-€'.=0,

@', HAc,R® —c,R°)b', H4c, R® —c,R*)', +(4c, R - ¢, R® +c,R)b' + @2
(4c,R* —c,R° +c,R)b',—4d', €', = 0, -
a'\+3¢,R°D' +¢,Rb',+(3¢,R® +¢,R* )b +(3c.R™ +¢,R' )b, -3d", e, 4.3)

-2R*4 =0, '
c.R°B' +(c,R’ +c,R)b', +(c,R* +C, R+ R° +c,R*)b', -d' + 4.4)
R*4=0, '
@', +R’c,b' +R'c b',+(R'c, +3Rc, )b, +(R°c, +3R’c,)b',~d', = 0, (4.5)

@'\ -a';—R’c,b', H(Re, - R’c,)b' . +(R’c, = R°c,)b',+(R’c, - Rc. - (4.6)

4Rc, )b, +d"', =0, '
3a, ; .

Vq4' 723 _ ps ' __po° ' o Y X ' YR, _ P§ U

2a', > R'eb' —R°c,b'.+(2Rc, = R'c.)b',+(2R’c, — R'c, )b, + @.7)

d,=0,
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a +(12R’c, —6R5c5)b'l+(1213&c8 —6R°c )b',—6Rc.b'. ~
6R"c,b',-2¢', =0,

(4.8)
/ .
Gl24x) (—R" 2R, + R, + L Rc, -
4 2 4
5 ? 5 1 8 5 8 ] ’ 3
-é-R c,+R cs)b:+(—c,R -ER ¢, +R°c )b, +(=Rc, + 4.9)
X Re, +R7c,)p, +(l B 3 2o,
2 N
Ma,—2 ' -l»(—R’cs +lec3 =2R’c,)b', +(£R°c +
2 : 2
-‘,-R‘c -2R%,)b', +( l Rc. +1Rc + X Rc -2Rc. +
l ! 4.10)
—R’c, )b';-f-(—'vR"c8 +<=Rc,+—R’c, -2R'c, +=R°c )b, +
2 2 ; 2 ) 2
B K,
p R Rt R e'. =0,
( 2 N') ( N) :
1/2
Wz+x) " -la',ﬂr-(ﬁ-i)R‘c‘b'l +(£R5c5 +1Rc +
2 2T 4
ﬁRc, -éRscs)b',+(£R°co +lR3c + 5 g -
2 2 2
3 [} ' l 3 3
;Rc)b+( Rc. +— Rc—Rc+—Rc—

@.11)
3R"c.)b'n»(iﬂ—ﬁ" )d' +(““ )e +R'A=0,
2 2u, 4y, 2 U,



—-l-a',+(£R3c3 +-’iRcl -R’c, —ch: ). +(£R‘c4 +
4% 2 2 4

LR, —R'c, —= Ric, )b, +(0 Réc, =3 Re, + KL Ric. -
2" & 2" Ty 4707

1 K, 3 K *.12)
Rc; ——R’c,)b', +(=-R°c, —=R’c, +—-R’c, -R°c, -
2 4 4 2
SR~ g KBy g
2 2 u, 4 u
(—R c, -—R c, + 5 > ~Rc, —lR ‘e, )b, +(—+ lR’c —%R’c -
%Rc + 'R’ -%—Rc,)b'ﬁ(—'k‘c‘-%R‘c,-lk=c:+
xl 4 RJ l 3 l 5 l 3 K.l 5 (4'13)
TR c, -—-—R c, )b, +( Rc, -—R c, ——R +TR ¢ -
5
Re, _ Rc)b', +(i— K, 3'i——)d', +(—L——)R‘A =0,
2 au, au, N 4 4
3 4
—la’,+(£RcI —R—c -ch +—= R3 c,)b', +(—R c, _R c, -
297 2 >
5
lR c. + 5 pe c )b, +H— lR3 -R—c —lec + 5 R’c, -
4 2 257 % 2
3 R" 1 K 3 (3.14)
—Rc,)b'3+(—'—R4 ——c,——R'c, +—XR°c, —-=R’c,)b',-
2 4 2 4 2 2
2
2 lul d'o (l&_if_l__;')dv-_ X
4 # 2”2 2 ﬂw N
/2
(H—’:—) l a',+( '-—)R‘ b H(— 'Rc +—R5c +
Lpeyw +Eree, —3R°cﬁ +5 Ree, +1R1c, W'+ Roc, -
2 T4 T4 2 2 4 4.15)
2R7c, +£R7c, +1R3c- —2Rc, )b'4+(§-&—fi&—i)d's+
2 2 20O du, 24 N
LA v Lpria=o,
4;1_ 2
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, 3, 1 K R
(1+x,/4)a =74 4+(ZR3c3 -R’c, +?‘R5c,)b : +(ZR c, -

R°c, +£‘—R°co )b',-i-(ﬂkcl +lR’c5 ~Rc.+2Rc +
2 T4 4 2

X 1 c (4.16)
Rc, )b'3+(T'R:c: +ZR606 -R’c, +?‘R'cg +Rc,)b' +

ﬂ‘__ﬁﬁ._i) ‘4+l fad e',=0,

M, 24, N du, -
and

(l+£)a'4+(—’€'— R'c.-3Rc, +—3—Rsc5 ', +(ﬂR”cg -

2" 4 4 2 4

4.17)

3R%c, +2R°c,, )b',+—3—R’c,b'3+3 Rscsb'4+(—l--&+—4—)e'4 =0.
2 T2 2 24, N

4.3 NUMERICAL RESULTS AND DISCUSSIONS

In the present case, the stresses in the neighborhood of the crack tip z = a are

given by:

\/7 0 Q 3. 0, | 0, 1 - ~tk+1) 0
c_= e c —I—(Zsm—2—+zsmS—é—)[aao Ekbk,,a 1+0(r)),

— . 01 1. -01 1 & 2 ~(kel) 0
0“).—2 2 c ] 4sm? Zsm: 2)[a0'° Elxb_wa 1+0("),

i o,a1l 6 1 0.1 =
0° 2 (—cos=t - —cos5—- kb, .a*"1+0(r’),
501Gy e g ZRbaTTIH 00
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where z-a=re® (0<6, <2x). Similarly, the stress field around the crack tip

z=bis given by
b3 6, 1

\/—1- - A l & -tk 0
o =- ——cos—z— ZcosS?)[ngbk.la ]+ 0(r)),

TR T

N A 6, 1 =
- 2 CcosZ =~ cossZy LS kb a1+ 00y,
T =T 0 10 Ty g BRI+ 00)
\/7 Qb I . 9-. 1 . 0-. l kad ~(kel) 0
Tn = 0 1@y Tl 2kba T OO,

where z~b=re” (-1<6,<nx).

Figures 4.1 to 4.4 illustrate mode-I stress intensity factor ratios at the nearby
crack tip for the case of m=3n, while Figures 4.5 to 4.8 show those at the distant

crack tip. This ratio is defined by K/ K? (where K is the actual mode-I SIF and

K’ =6y is the mode-I SIF for the same crack in a homogeneous matrix material
without the inclusion). It is seen from Figures 4.1 to 4.8 that imperfect bonding
could make the SIF at the nearby and distant tips significantly large as compared to
that corresponding to the perfect interface. Here, in order to have a clear idea of the
effect of the interface imperfections on the SIF, four different modulus ratios, u/u.
=10, 2, 0.5 and 0.1 are considered for both SiFs at the nearby and distant crack tips.

It is clear from our results that the imperfect interface parameter has a
significant effect on the SIF at the nearby crack tip. For stiffer inclusions as shown

in Figures 4.1 and 4.3, when the imperfect interface parameter N' varies from 1000

55



(approximately perfect bonding) to 0.01 (approximately complete debonding), there
is a significant increase in the SIF for the fixed length d/R. Considering the
influence of the distance d, if we fix the interface parameter A, the SIF will
decrease as d/R increases.

Comparing Figure 4.1 with Figure 4.3, when the modulus ratios u/u.
become smaller (from 0.5 to 0.1), that is, the inclusion becomes much stiffer, the
relevant SIF ratios increase for the fixed distance d and imperfect interface
parameter N'. On the other hand, for the softer inclusions shown in Figures 4.2 and
4.4, when the imperfect interface parameter N' varies from 1000 to 0.01, there is
also a significant increase in the SIF for the fixed length d/R. Considering the
influence of the distance d, if we fix the interface parameter N', the SIF will
decrease as d/R increases. Comparing Figure 4.2 with Figure 4.4, when the modulus
ratios u/u., become larger (from 2 to 10), that is, when the inclusion becomes much
softer, the relevant SIF ratios increase for the fixed distance 4 and impertect
interface parameter N'.

It can be seen from Figures 4.5 to 4.8 illustrating stress intensity factors at
the distant crack tip, for the fixed length d/R, when the imperfect interface parameter
N'varies from 1000 to 0, there is a significant increase in the SIF for both softer and
stiffer inclusions. Considering the influence of the distance d, if we fix the interface
parameter N', the SIF will decrease as d/R increases. Clearly, the stress intensity
factor at the nearby crack tip is larger than that at the distant crack tip for the same

imperfect interface parameter N' and geometrical parameters.
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4.4 CONCLUSIONS

This chapter presents a semi-analytic solution of the problem of uniaxial

loading parallel to the crack. The numerical computations and analysis of the

subsequent results have led to the following conclusions:

2

. The imperfect bonding makes the SIF at the nearby and distant crack tips

significantly large as compared to that corresponding to the perfect interface.
Considering the case of SIF at the nearby crack tip, for a stiffer inclusion, when
the imperfect interface parameter N’ varies from approximately perfect bonding
to approximately complete debonding, there is a significant increase in the SIF
for the fixed length d/R. For the fixed interface parameter N', the SIF will
decrease as d/R increases.

For a softer inclusion, when the imperfect interface parameter changes from
perfect bonding to complete debonding, there is a significant increase in the SIF
for fixed d/R. On the other hand, the SIF will decrease when d/R increases.
Considering the case of SIF at the distant crack tip, for both stiffer and softer
inclusions, when the imperfect interface parameter varies from approximately
perfect bonding to approximately complete debonding,

From all the aforementioned, it can be seen that the imperfect interface

parameter has a significant effect on the SIF.
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CHAPTER 5

EFFECT OF IMPERFECT BONDING ON RADIAL

MATRIX CRACKING--PURE SHEAR LOADING

5.1 DESCRIPTION OF THE PROBLEM

In this chapter, pure shear loading o, for the cases of sliding interface
(m =e0,n=0) and m=3n will be considered, respectively. For purely shear loading,

wehave 4=0, B=ic’.

5.2 PROBLEM SOLUTIONS

In this section, we will consider two cases of interface parameters: the

sliding interface and elastic interphase layer.

5.2.1 The Sliding Interface (m=occ, n=0)

As mentioned in Chapter 4, there are 17 unknown coefficients and equations

B.18 to B.34 in Appendix 2 give all the required final linear equations as follows:
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%+(4CJR“ =5¢,R°)b' +(4R°c, —5¢,R")b', +(4c, R —-Sc, R )b, +

5.1

(c.R+4c.R')b' +e',=(4R°c, -5R*c,)R"B,

a',+(3¢;R’ —4c,R°)b', +(3c,R* - 4c,R° )b, +(3¢, R’ —4c.R™ + 52)

e, R, +(3¢c,R® = 4c,R* +¢,R*)b', +4d" ,+¢', = (3c,R - 4c,R* A)R'B, =

@'\ +(3c,R* = 2¢,R*)b' +(3¢,R* - 2¢,R’ —¢,R)b', +(3¢,R* = 2¢,R* - (5.3)

;R +(3¢c.R" = 2¢,R* —c,R* W', -3d',~¢', = 3¢.R*R*B, '

a =0, (5.49)

3d'.-R’c.b' —=R'c,b,+(Re, - R°c,)b', +(Rc, - R°c, )b’ +d", (5.5)

=~Rc,R*B, '
@' =2a';~R’c,b', +(Re, = R'c,)b', +(R’c, ~ R°c,)b',+(R’c, - (5.6)
Rc. =2Rc,)b',+d', = -R*c,R*B, )
2a':-—5% +Rc b\ +R°c,b',+(2Rc, + Rc. )b, +(2R%c, + Ric,)b' .~ (5.7)
d',=Rc,R'B,

@', HI0R®c, —12R c.)b', H(10R"c, —12R*c, )b, +10R c.b' .+ 59

I0R*c,b',—2¢', = (10c,R’ —12¢,R°)R*B,
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_GB+x)

v K [ 5 6 3 ] K 7 5 7
2 a3+(7‘R c, -ER ¢, +2R cl)b,+(?'R c, —ER c, +

2R%c, )b+ e, R? ——;-Rscg +2R°, )b, +(2R ¢, -%Rc, —%Rc, W+ (5.9)

G 3, [('r =) pic. +2R%c.IR'B.
2u, N' .
R+x,)

a, +Ea'4 +(£Rscs +2R3c3 -2Rscs )b'l +(£Rcco +§RJC4 -
Ty 2 2 2 2

2R’c, )b'l-i-(é-R%7 +%RscS -2R’c. - Re, ——’g‘-Rcl )b'#(%R"c8 +

(5.10)
3R, = 2R%, - Ric. ——R e )b +QEL KM )d'
27 e : 4
< M, .u:
2
(l&+;)e', = (ﬂRsc3 -2R’c, +3Rcl )R'B,
2u, N2 2
(K, 7— l) " +a +( ud R’c, —ER‘C +R’c,)b', +(—R5
3 5 3 l ] -] 3 ]
—R’c; +R’c, -—Rc, ——R b, +(—Rc ~=R°c, +R’c, -
2 2 2 2
LY LI N TRPLIS —ER’ +R® —1R3 - 5.11)
> c, > c, )b’ 5 c. > c. C, c, (.

ﬁ 3 ( _3_&__&# v l#l Ny -
2 R ¢ +Rcl)b4+(2 A, 4 U, ) +( ,ll N.)el -

&R +3RC)RB,
2 TG
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2o+ R K pe —Re, + L Re HELRY e, - K g, -
277 2 2 2 2
Ric, +SRic, )b+ R, - X pic, — Rec, +1rc, + Lreyp +
2" T 2 2 2 512

(ﬁR"cls —ﬁ-R‘q —R°c, +lR‘c4 +lR2c, )b';i-ﬁﬂd’o-f-
2 2 2 27 BTy
_K

4

A-20E g = &R, —Re)RB,
M, -2

a,-Fixa =o, (5.13)

3 K s l K K .
—;a':+(T'Rc, +R'c; ~=Re, —T'Rsc3 )b, +(T‘R'c: +R'c, -

-

| K, K, l s K,
TR e, ——R'c,)b',+H(=Rc, + R°c, -~ R'c, ==L R’c, -
2 2 T2 ’ 2 2

l K, 1 K 1 (5.14)
SR\ H—="R'c, +R°c, ——R'c, -——-R°c, - —Rc.)b',~
2 2 2 2 2

2
.&ﬂd'o-(ﬂ_ﬂﬂ-;‘)d'z =(l-x,/2)Rc,R*B,
2 p, M; 24, N

(+x) ,
-_—a
)

] 3 < 2 K 4 ' K
,—a3+(ER c,-Rc, ——2'-R c,)b,+(?‘Rcl +
2R, ~Re, - KR, + L Re b (e, 2R -
2 2 2 -2 -2

RJC4 —%Roco +%R1C:)b'; +(%RSC3 +%R7c7 -Rscs - (5.15)

R +ipc —Rew, _(iﬂ_ﬂﬁ_i)dvs_i Ao
2 2 24, 24, N 2 u,

= (ERIC —£R2C~ )R'B,
2 -2 N
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(+x, /2)0'3-%a'4+(2Rscs —%RSCS —52’—R5c5 )b, +QRc, —

2R, ~Ki e )b+ Re, +2R . SR, -Kre s
2 2 T2 2 2

K, 3 K, (5.16)
Rc))b', +(?‘Rlc1 +2R’c, —ER"(:6 —#R“cg +Rc,)b', -
b Kb 3y, LK o (Re,-2Re -Kiric v,
M, 2 u, N 2u, - 2 2
and
0+ 5 R e C3R e 43 R W (KR
(l+4)a4+(2Rc., 3Rc7+2Rcs)bl+(2ch
IR, +2 R, b+ 2R+ Ricp +(2 8+ 2o o 5.17)
2 -2 2 2 N’

-~

(-"2'—'R5c5 ~3R’, +§R’c, )R*B.

5.2.2 The Elastic Interphase Layer (m=3n)

The relevant 17 final linear algebraic equations for the elastic interphase layer given

from B.35 to B.51 in Appendix B are shown as follows:

%+(4C4R‘ =5¢,R° ), +(4R°c, - 5¢.R")b' . +(4c,R® = 5c,R* )b, +

(5.18)
(c,R+4c.R7)b',+¢',=(4R°c, ~5R'c,)R"B,
a',+(3¢,R’ —4c,R*)B', +(3c,R* = 4c, R )b, +(3c,R* ~4c.R + (5.19)
¢, R)b';+(3c,R® —4c,R* +c,R* )b, +4d' , +¢', = (3¢,R — 4c,R* A)R*B. )
@', +(3c,R" = 2¢,R*)b' +(3¢,R® = 2¢,R* — ¢, R)b',+(3¢,R° - 2¢,R* - (5.20)

c:R*)b', +(3¢,R” —2¢,R* ~c,R*)b',~3d',~¢', = 3c.R*R*B,



a, =0, (5.21)

3a',~R’c,b", —R*c,b',+(Rc, = R°c,)b', +(R'c, — R°c,)b', +d'.

5.22)
=-Rc,R'B, ¢
a',=2a',—-R'c.b', +(Re, — R’c,)b' . +(R’c, — R°c,)b', +(R’c, - (5.23)
R'c,=2Rc))b' +d', = -R’c,R*B, -
Sa' ) .

' — 3 5 ' o ' o) 7 ' "R 8 v
2a', N +Rch' +R c,b' . +H(2Rc, + R'c. )b, +(2R ¢, + R'c,)b', (5.24)
d',=R'c,R'B,
a', H10Rc, —12R c.)b', +(10R"c, —12R"c,)b',+10R c.b' + )

- (5.25)

10R*c,b',=2¢', = (10c,R’ = 12¢,R*)R*B,

(3/2+x)) ,
-——a

;+(£R°c,, -§R°co +2R'c,)b', +(£R’C-, --S-R"C-, +
4 4 2 4 2

2R%c, )b':+(%c,]R8 —%R“cs +2R%,)b'.+(2Rc. -%RcI -%Rc, ) (5.26)

(x, —10)

(_l..'li -{y.i)e'3 = [—4— R"CJ + 2R:C: ]R‘Bs

2u, N
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KD o BB, + 3 R, —2Rc,)b, HEL RO, + SR, -
PR 4 2

2
2R%, )b'2+(%1e’c7 +§R5c5 ~2R’e. —%Rcl —ﬂRcl )b, wn(%ze“cs +
(5.27)
2R, ~ 2R, — LR, ~ KL gy s B Kol | )d'
2 2 ek u A
2 R
LA 2y KR, - 2R, +3 Re)R'B,
2u, N ° 4 2
-1/2 .
&2, 3 +(—R‘ “2 R, + R )b, +(5L Roc,
2 2 Ty
éR’cs +R’c, —ch, ——'-Rcl )b',-i-(i R°c, —§R°c° +R'c, -
3 2 % 2
l 5 ) 3 ba l 3
ZR'C: ——-R c,)b', +(-— ‘e, -ER c. +R’c, —ZR ¢, - (5.28)
ﬁRS ')b" (_%&-f_s,.&.+_§..)d'}+(_l_ﬁl.+_l_)e'l =
2 2u, du, N2 p TN
—(T'R:c: +%R:c: )R*B,
2R, ~Kipe —Ric + LR HL R, - K g
4717 2 2 4 2 &
Rc, + 2 Rc)b, +(L RS, - K e, — Roc, + L Roc. +LRreyw +
2" Ty 2 2 4
(5.29)
LR, B R, —Roc, + 1R, + LR b + K g o
4 2 2 4 - 2 u,
K. 4 K, 4
1-=2)E 2 = &R, —aRc)R*B,
( 2 )ﬂ: »=( 2 Re <)



a, | . K, . Lo o K, l

2 (4Rc +4R —?'RCZ-ERcz)bﬁ(—'—Rc}-f-
3 4

LI R VL S “Kpe, - R
2 T4 4 2

3

)b’ +

2
5

K R, —~ R, - Kipie, By 3i)d’,:

4 4 2 2 au, 4

K 1,
—+-)R’B,
(8 8)

R | s K R’

—Rc, -
4

--za',+(£Rcl +—c¢, -—Rc, -—R’c,)b' +(—-R’c, +—c, -
2 2 2 4 - 2

2 " 4
5
lR:c, _Kpe ‘e, )b, +( ol Ric, R —c, —lRSC. —ﬂkscs -
2 -2 2 2 T2
1 LY R° Lps  _Kipe, Lo
ERC')b3+(TR c, +TC6 —2R c, ——R C, -ER C:)b‘—

2
A LE KM 2, (oK), R*B,

/2 :
(+x/2) GRS R~ R 4 R, +
D) 4 2 4

3Rscs -lRSc3 ——K—‘Rscs +chl )b',+(—'R:c, +ER°c6 -
4 2 2 2 T ReFy

—;—R‘c‘ —%R"ca +—l-R:c:)b'§+(£R3c3 +2R7c, -%Rsc5 -
ﬁli’ c. +— L R’c; —Rc))b',- (3 £ _KH -i)d'B—l&e',
2 2 4 u, 2 u, N 4 u,

= (—R:c. ——‘R:c. )R'B,
g TG
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(+xk, /4)a':—-j—a'4+(Rscs —%RSQ -%R’c5 ' +(R°c, -
iR‘q —ﬁR"cé)b'ui-(ﬂRcl +R'c, -ERS(:5 —£R7c7 +

4 2 T4 4 2 (5.33)
Re)b', +(%R:c: +R’c, -%R"q —%R“cs +Rc,)b',—

(———:———)d'J-—;—e: =(R’c, -%Rcl —E_)'-RSC3 )R*B,
and
_(_l-...fL)'.,.(ﬂR’ -3R’ +§R’ )b' +(-'iR'l -

27 g TR G TR G+ I R H R

3R%, +§R°co )b':+§1e’c-bg+§k*’csbg A LAY (5.34)

2u, N

(%R’cs ~3R’, +§R3c., )R*B.

5.2 NUMERICAL RESULTS AND DISCUSSIONS

In the present case, the stresses acting in the neighborhood of the crack tip =

= aq are:

4

o’ g(;”-sinﬁ+lsin5ﬁ)[l +
2r, !l 4 2 4 2

Q
t

S kb0 400,

NI ,a5.60 1 ) 1 -
= 6. —(=sin—|t—-—sin5—~ 1+ kb Rl Py Te% R
» T O 1( 7510 2 Sin 2)[ 2ac” § @ 1+ 0r)
NI Lal 6 1 6 I -
o= O, —(—=cos——-—cos5-L)[1+ kb, .a*"1+0(r?),
i 2r,  °© 1(4 2 3¢ z)[ 2aaﬁ.t§ @1+ 00)
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where z~a=re? (0< 6, < 2r). The half length of crack b-a is denoted by /.

Similarly, the stress state around the crack tip z=bis given by

LRy
- ﬁ_z

N

O, =—-—7—0, —(2 Ose——LCOSS—)[l +
' V2.

% os&+lc055&)[l +

—tk+l)
5+ 3055 ,b - ZkbM 1+0(r)),

-(k=l)
>3 ,boZkb‘..a 1+00?),

VI o 2(ls:na——lSInS—)[l+
r, /4 2 4 2bo;

Zkb a-(kol)]_‘_o(rzo),

[

where z—b=re®™ (-r<6,<n).

First, we study the mode-II stress intensity factor ratio, which is defined by
K./ K, (where K, is the actual mode-II SIF and K,‘;=af‘,\/-7§ is the mode-II SIF for
the same crack in a homogeneous matrix material), at the nearby crack tip (Figure
5.1) for the case of a sliding interface (m=c0, n=0) under purely shear loading.
Compared with Figure 3.9 which corresponds to the sliding interface under uniaxial
loading, Figure 5.1 shows that the SIF at the nearby crack tip increases when the
distance d decreases for both softer and stiffer inclusions. As shown in Figure 5.1,

inclusions with sliding interfaces always have increasing SIFs at the nearby crack tip
as compared to O'f_‘.\/E - Apparently, the sliding interface has a significant effect on

the SIF at the nearby crack tip.
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Figures 5.2 and 5.3 show the influence of the interface parameters (m=3n)
on the behavior of mode-II stress intensity factor ratios under pure shear loading,
whereas Figures 5.4 and 5.5 show the influence on mode-I stress intensity factor
ratios under the same loading conditions. In Figures 5.2 and 5.3, the effects of the
imperfect interface parameter N' on Kj at the nearby crack tip are investigated for
softer and stiffer inclusions. For the softer inclusion, as shown in Figure 5.2, K,
increases monotonically for the fixed imperfect interface parameter N' when d/R
becomes smaller, while K, decreases with increasing N’ for the fixed distance. On
the other hand, for the stiffer inclusion, Kfa) decreases when d/R becomes larger,
while K,(a) increases as the imperfect interface parameter N'decreases. When
N'varies from 0.01 to 100, the inclusion with an imperfect interface (m=3n) can

lead to either an increase in the SIF at the nearby crack tip or a significant reduction
when compared to o, . Hence, in both cases, interface imperfections have a

significant effect on K, .

In particular, Figures 5.4 and 5.5 illustrate the effects of the imperfect
interface parameters on X at the nearby crack tip under pure shear loading. Owing
to the presence of the inclusion and the imperfect interface, K, is non-zero even
under pure shear loading and therefore cannot be ignored. It is clear that the curves
in Figures 5.4 and 5.5, for either softer or stiffer inclusions, are quite similar. For
example, when the imperfect interface parameter N'is fixed, K, increases
monotonically when d/R becomes smaller while the SIF decreases with increasing

N'when d/R is fixed.
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5.3 CONCLUSIONS

This Chapter presents a study of the effects of imperfect bonding for pure
shear loading. The numerical calculations and analysis of the subsequent results
have led to the following conclusions:

I. The sliding interface has a significant effect on mode-II SIF at the nearby crack
tip for pure shear loading.

2. The SIF at the nearby crack tip increases when the distance d decreases for both
softer and stiffer inclusions, and inclusions with sliding interfaces always have
increasing SIFs at the nearby crack tip.

3. For an elastic interphase layer (m=3n), the interface imperfections have
significant effects on both mode-I and mode-II SIFs.

4. For a softer inclusion, Kj; increases monotonically for the fixed imperfect
interface parameter N' when d/R becomes smaller, while K, decreases with
increasing N' for the fixed distance. For the stiffer inclusion, K,(a) decreases
when d/R becomes larger, while Ku(a) increases as the imperfect interface
parameter VN'decreases. When N'varies from 0.01 to 100, the inclusion with an
imperfect interface (m=3n) can lead to either an increase in the SIF at the nearby

crack tip or a significant reduction.
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5. The presence of imperfect interface makes the mode-I SIF significantly large at

the nearby crack tip and cannot be ignored.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this thesis, the problem of the interaction between a circular inclusion
with an imperfect interface and a radial matrix crack, subjected to several different
types of loading, is studied using a homogeneously imperfect intertace model. Such
an imperfect interface model allows displacement discontinuities across the
inclusion/matrix interface. Using analytic continuation, a novel series method is
developed to find the stress intensity factors (SIFs) at the tips of the radial matrix
crack. Numerical results show that the interface impertection has a significant effect
on the SIFs especially when the crack is close to the inclusion.

In the present research, the interphase is modeled by a distribution of
mechanical springs. The constants m and n are the coefficients of these springs.
Within this approach, the composite is modeled as a two-phase material with
imperfect interfacial conditions applied along the interface between the single
inclusion and its surrounding matrix. The single-inclusion model adopted in the
analysis is a much simpler model than other available multi-inclusion composite
models used by others. This model, as discussed by Schmauder et al., 1992, is
suitable for modeling composites with lower fiber volume fractions. Under this

condition, the interaction among neighboring fibers and its influence on the stress
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fields of the overall composite system can be neglected. Therefore, a single fiber
model should describe the stress and displacement fields inside and around the
inclusion reliably for lower fiber volume content composites.

It was noticed in Section 3.3 of Chapter 3, that a possible negative normal
displacement jump is an issue of major concern for the present imperfect interface
model. There are two different methods available to address this issue. The first one
is to modify the imperfect interface model by assuming the continuity of normal
displacement at all points where a compressive normal traction occurs (Achenbach
and Zhu, 1989, 1990). The second tolerates a limited negative normal displacement
Jump bounded by the original thickness of the interphase layer (Hashin, 1991). As
explained in Section 3.3 of Chapter 3, the interphase layer can sustain a tensile
normal traction as well as a compressive normal traction. Consequently, a negative
normal displacement jump is acceptable provided it is smaller than the original
interphase thickness.

In summary, the problem of the interaction between a circular inclusion and
a radial matrix crack with a homogeneously imperfect interface, subjected to several
different types of mechanical loading, is studied. A spring-type imperfect interface
model is proposed and complex variable techniques are used to obtain the analytic
potential functions. Numerical calculations are presented and the major conclusions

can be drawn from these results studied in this research:



For inclusions softer than the matrix, the radial matrix crack always propagates
towards the inclusion regardless of the values of the imperfect interface
parameters.

However, for inclusions stiffer than matrix, the radial matrix crack can
propagate either toward or away from the inclusion, depending on the values of
the imperfect interface parameters. It is therefore crucial to quantify the effect of
interface imperfection on the interaction between a circular inclusion and a
radial matrix crack.

Remarkably, in contrast to the case of a perfect interface for which the SIF at
the nearby crack tip is greater than the SIF at the distant crack tip only when the
inclusion is more compliant than the matrix, the imperfect bonding condition
allows for the possibility of a SIF at the nearby crack tip greater than that at the
distant crack tip even when the inclusion is stiffer than the matrix. In fact, for
any given inclusion stiffer than the surrounding matrix, there is a corresponding
critical value of the imperfect interface parameter below which a radial matrix
crack grows toward the interface leading to interface debonding.

In particular, for given crack length and distance from the interface, there is a
minimum critical value of the imperfect interface parameter (defined by N*in
Section 3.1) below which (that is, when N'< N *) the SIF in the nearby crack tip
is always greater than that at the distant crack tip for any shear modulus ratio of
the inclusion and the matrix.

All these results provide, for the first time, a clear quantitative relation between

interface imperfection and the direction of growth of radial matrix cracks. It is
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therefore possible to predict and control the direction of matrix cracking and
therefore interfacial debonding by designing the inclusion-matrix interface
accordingly.

¢ In particular, for the special case of a perfectly bonded or entirely debonded
interface, the present results are consistent with the known results for a radial
matrix crack near a circular inclusion or a circular hole, available in the
literature.

® All of the aforementioned results show that the present series method provides
a simple and effective way of investigating an inclusion-crack interaction

involving an imperfect interface.

6.2 THE FUTURE WORK

In the present study, only simpler mechanical loading conditions are
considered for a two-phase composite material. The further possible development of
the research might include the following aspects:

1) To experimentally determine the values of two imperfect interface parameters m
and n for the applications of the model to practical problems.

2) Three-phase circular inclusion with an interior, intermediate or exterior radial
crack.

3) Void or rigid inclusion/matrix, as simpler cases, in order to simplify the analysis.

4) Thermal loading due to thermal mismatch or some eigenstrains.
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5) Avradial crack in rouch with the interface, from the inside or outside.

6) Other radial line defect (e.g. rigid-line inclusion, or radial crack with partial

closure or friction).
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Figure 5.1 The mode-ii nearby SIFs via the distance a/R
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APPENDIX 1

For the interface condition (2.16), we obtain the following 9 equations:

Coefficients of ' term, equation (A.1):

—24c.b, +c,b, +c,(24+ B)] -%mg bi+4c. bi+4c, b:+

dc, bi+4c,(24+ B) - 16¢, bu—16¢. bs—16c, b 16¢, bi— (A.1)
- 9y -

16¢,(24 + B) - 4e4]—ﬁa4 =0,

Coefficients of z* term, equation (A.2):

~15[c,b, +c-b, +c,b, +¢,(24+ é)]—%[c- bitc,bitc, b+
¢, bi+c,24+ B) -3¢, b.—3c, bi=3c. b:=3c, bi=3c,(24 + B)] - (A2)
3a; 3c,l-h 3e

P =
2R R R

Coefficients of = term, equation (A.3):
- 2 - -
—8c,batc. bit+c, br+c, b'+c3(2A+B)—F[ca bit+c,b;+

c.bi+e, bitc,(24+B)-2c, b.~2c, by-2c, b:-2c, b - (A.3)

- - - - Yo,
2r:l(2A+B)]—RL0(2cl bi+2c, b4+a:)+°Ri:“+8d4 =0,
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Coefficients of =” term, equation (A.4):

=3c.bs+c bs+c b:+c, bl+c1(2A+§)]—R—ll(c5 l-h+c‘ bs+

0352+c1 l;x+§—c5 bi—c,bs~c,b:—c, bﬁ-g)—%(c3 b+ (A.4)

e bitc brt )+ L 434, =0,
- 2 R-
Coefficients of = term, equation (A.5):

Ac, bs+cibs+c, b:+c, b|+c,(2A+b)]—2[c° bi+c, b+ (A.S)

¢ b:+c,bi+c,(24+ B)] =0,

(The left-hand side of equation is identical to zero).

Coefficients of z” term, equation (A.6):

(ccbitce, bitc, bate, bl—g)i»%(c‘l‘);-#cz bs+c, b:-

a7‘+c, bi+c,bi+c, b:~l~a—2‘)+(c5 l;4+c, 1;_x+c,5:+c2 bi— (A.6)

-

E)—él—d, =O,
2

Coefficients of =/ term, equation (A.7):

L,(?.c, 54'1’ ?.Cl 53—&:*’46‘, b4+4C, bi+ 20,)*‘ 2RI[C° 54‘*’
R - ) ) (A.7)

¢ bitc, brtc, bi+c,(24+B)]-2R d: =0,

Coefficients of = term, equation (A.8):
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a, 3 . a: 3a;
-3(c,bst+c, bs+c, b:+7)+F(c, b4—7+3c, b4+—_,')+ (A.8)

- -

3R'[c, bitc, bs+c,brtc, bitc,RA+B)]-3R" ds =0,

Coefficients of =/ term, equation (A.9):

—8¢, b:—8¢c, bi—4a, +4R°[c, l;4+c, 5;+co b.+ c, bi+
(A.9)

c,(24+ B)] - 4R" ¢}4+%(8a‘ -24.)=0.

m-n m+n
If we represent > 5

r4

by M and N respectively, then, for the interface

condition (2.17), we obtain the following 9 equations:

Coefficients of =’ term, equation (A.10):

M. _ 2. NK, a.
Rx, [c, b:+c,bl+c5(2A+B)]+Maq + K aq —3NR[csb:+
2u, MR 4uR M,
. bitc, 24+ B)-—Y [e, bt c.bs+c, brtc, bi+c,(24+B) - (A.10)
2u,R ’ )
; _ 4
4Csb4-4C,b3—4cob.'-4C‘bl—4C,(2A+B)]+&+ij=O,
: : 2uR R

Coefficients of =*term, equation (A.11):
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MR
2u

{ Kle,bs+c,b:tc, bi+c,(24 +B)]+%—(cl 134+2153) }+

le > (C, l-)-t'i"—a—s) -
2UuR 2

5NR
2u

[Cs bs'l'(.‘7 b:+cb b;+c4(2A+é)]-
| (A.11)

[c, l;4+c6 l-)3+c5 l;:+(:4 l;;+c:(2A+B)-3c, bi-3c, b:-

[

2uR

3¢, b:=3c, bi—3c,(2A4+ B))+ —&: $3
. 2u.R R

=0,

Coefficients of =’ term, equation (A.12):

- 2 - -
MR K le,bitc. bitc, b:+c, b,+c3(2A+B)]+?(cl bi+c, b+

indad!

s QaTh e NK, - o
—)- —— = xd, +——(c, bs+c. b+ 2 -
2 R 2w, T U R 2T

2 _ -
'NR[cS bitc.bs+c, b:+c bi+c,(24+ B)]- N [c, bs+ (A.12)
H, 2u,R

c, 1_7;+c4 b:+c,‘ [;n+c,(2A+B)—2ch bi=2c bi—2c, b:~2c, b~

2 2
2NR d, + Ne, +8d, +i=0,
U, 2u.R R

2c,(24+ B)}+

Coefficients of =" term, equation (A.13):
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MRk, “[c, bs+c, b; +c,b:+c, bi+c, (2A+B)]+ M ~(c, b+
24, 2u,R
c, b3+c b: +—)— —(c, bs— +3c [;4+3a3)—MR X d, +
2u.R 2 24,
Nk, —(c, b: +c, b+l 4 ¢ bJ)—?’NR[c,bwc6 bi+c,b:+c, b+ (A.13)

2u,R? 2 2u

c.(2A+ B)]- N (c [;4+c41-73+c.5:+c.l;l+—B-—c5b4-c4b3—c3b:—
: 2uR"° ’ 2

c~bl+£)+3NR d, + Ne, —ﬁ(e iel)+3d,+e—‘,=0,
- 2 2u, ° 2u.R R - R°

Coefficients of = term, equation (A. 14):

A/:RK‘ le.b, +c,b, +c.,b, +c.b, +c,(24+ B)] - > MR’ (c.b:+
<p, it aad |
c, b;-%+2c,53+2c1 134+¢}:)-M7R Nod. + 7N" (c,bi+
< <M, 2u,R (A.14)

c, I;;+c: [;;+c, [;l)—ﬂ[cclg +eb, +c¢.b, +c,b, +¢,(24+ B)]-
u,
- - - - - N
(c,bi+c,bs+c.b:+c b))~ NK; do+NR d. + %
2u,R “ ) 2u.R M, ° 2u.R

*

Coefficients of z’term, equation (A.15):
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MRx MR

~(csbitc, bi+c, b+, bl-—)——(c bi+c, bi+
2/1, i 2#1
c, 5:+C,I;|-£)- M (c, b:+c, [)3"'63 b;—ﬂﬁ-c‘l—):*-
i - 2" 2uR . 2

MRk, MR d, NRK "

C, 53+C3£4+ﬂ)- dl + l(C b.x+C bx+

] 2 2 2w, 2p,

c, b +c, b.——)-—ﬂ(c bi+c,bs+c, b +c, b;——-)-—L
..[l, 2 2.”1

- - g NRx.d
(c,b:+c,bs+c, b;—ﬂ-b-cl b:+c, bs+c, b4+ﬂ)-#+
: ’ 2 N ’ 2 2u,

NRd, -mRe, ~(d, +d\) =0,

2

- -

Coefficients of =/ term, equation (A.16):

3 - - -
MRx, ~(c.b, +¢.,b, +c.b, +cb)—MR ——[c, bs+c bi+c, b+
U

"’ ! !

Mth'd+

Q

c, 51+c1(2A+ B)]—-’Aﬂ((.;b4 +cb, +c.b, +c¢b)-
u

<M, ...:

3 _ 3 - - - -
MR d:+ MR e+t MR x, [e,bi+cbstc, b:+c, bi+c,(24+ B)] -
M. 2u, 24,

MRk, -

; . a:
(c,bs+c.bi=—+2cb, +2c,b, +a.)—
2u R - 2 ; - -

=M it 2

Coefficients of =~ term, equation (A.17):
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(A.16)



SMR [c, l_h+c6 5;+

MRx, (c;bs+c,bitc bavdly -
2#1 B 2 2#

- - 3
¢ b4, bit+c,(24+ B)]- MR
- 2

(c;bs+c, bs+c b+

- - - - s -
c, bﬁg-cs bi-c, bs—csb:—c:b.-f-g)-i- 3;‘/IR d;+

< < <M,
3 _ 5 - - - -
MR e+ NR &, [c.bi+c bi+c,b:+c, bi+c,(24+ B))+
2u, 2u, : i

NR (clb:+c,b3+csb4+ﬂ)— N
2u, i} 2" 2uR

3a,, Nk’ d;

2 2u

(A.17)

(Cl 54-a—3+3cl b.+
2

—~MR*(e, +i€,)-3R* d; =0,

Coefficients of = term, equation (A.18):

MRk 2MR’

1

[c, 54+c., 5s+co l;:+c5 bi+

(c,bs+c, b4+—a-7i)—
2u, 2

5
c,(24+ B)]- MR
2u

="

[e,bs+c bitc, b:+c, bx+c,(2A+é)—2c5 b.-

- - - ) 7o 5 _
2¢,b:=2¢,b:-2c, bl-2c,(2A+B)]+"MR d.+ A;IR e+ (A.18)

M, 2u,

ALY fc, 54+c7l;3+c6 5:-l~c5 l_7|+c3(2A+B)]+ NR

((.‘l b:+

as
) .. . NQa, -2 )
e b+ 3y MRK 5 _ 2 _4R°d.=0.
2 24, 2u,R
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As one of the ¢, and d, can be chosen arbitrarily without changing the displacement
field (Muskhelishvili, 1963), we arbitrarily choose e,=0. For the case of m=n, as

m-n m+n
M= 5 N=

, hence, we have M=0, N=m=n. First, we substitute

interface parameter N by the dimensionless N’, where N =% N', and second, make

the following replacements:

' Ra- ' ] al
a, ~ a,~—, a.~a,, a,~—,;
2 2 R
) b
b, ~R°b,, b,~Rb,, b,~b, b ,~—;
i - o R

d,~Rd,,d' ~R'd,, d'.~R'd,, d',~Rd,, d',~R°d,:

' 4 ' 5 ' o ' 7
€ ~Re, €,~Re, ¢€,~R%, e ,~Re,.

Simplifying the above 17 equations, we get the final equations as follow:

a .
as * _2¢. R "=2R’c)b =2, R
5t R =2¢, R +(5¢,R” = 2R’c )b’ +(5c,R* = 2¢,R°)b', + (A.19)
(c,R=2c.R" )b -e'.+(20R"¢, -8R%c,)R*'A=0,
a',+H4c,R’ —c, R°)b', +(4c,R° ~c,R)b', +H4c.R" —c R’ +e,R)b' + (A.20)

(4c,R* —¢,R* +¢,R*)b' —4d' ~¢'. +(16¢,R° A— 4c R)R* A = 0,
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@' +3¢,R'D' +¢,Rb',+(3¢,R® +¢,R*)b' . +(3¢,R’ +c,R*)b', -3d',—¢' +
(12¢,R*A+2)R* A =0,

e, R*D' +(e, R +¢,R)b',+(c,R* +¢c,R)b, +Hc, R +c,RP)b ,—d",
-R'A=0,

@', +R’c,b' +R'c,b', +(R’c, + 3Rc,)b', +(R°c, + 3R’c,)b', -
d'.+4Rc,R* A =0,

@'\ =a';—=Rc,b', H(Re, = RPc,)b' . +(R’c, = R°c,)b', +(R’c, -
R'c. —=4Rc,)b' +d',—4R*c,R* A =0,

2a':—3aT‘ —R’cb' —R°c,b', +(2Rc, - R'c.)b',+(2R’c, - R’c,)b',+

d',~4R'c,R* A =0,

a', +(12R'c. =6R*c,)b', +(12Rc, — 6R"c, )b',~6Rc.b',~6R"c,b', -
2¢',+(48¢,R* - 24c,R)R* A =0,

K,

4

ERe +R e+l 300 _lor' R A=0,
2 w2 N
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—ta' +(—§R°c6 +R'c,)b', +(-§R’c7 + Rc, )b':+(-§R’cg +R°c )b+

(A.21)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



%a':-i-(%Rsc3 -2R%c,)b', +(%R“c4 —2R%c,)b', +(ﬁcl -2R’c,

LR+ K

¢, =2R%c, +%R°c6 W+ A )d' +(—-—+
2 7

- s -

,
)€ +H2Re A-8R°c, )R 4 =0,

-’ia'l -%R‘qb’, +(ﬂcI —ER’c5 )b':+(ﬁc: -%R"cb )b+

2
Ex e, +H SH )d' sl e
2 2 20, " u2 N
(1+6R*c,)R* A =0,
(gc, — R, ——l-Rcl b+ K R, —%R:c:)b':+(R—:‘—cs -
Réc, ——l-R c )b, ¢, =R, ~~Ric, b - K g o H e
2 M. 2 M,
—2Rc,R*A=0,
R’k 1. .., Rk Rc, . Rk, Ric,
(—Z—C:—ER c.)b' +( 3 c, - 3 = Rc))b', +( > c, - 5
5 5 9
~Rec b w2 R g I e B R R R W
A 2 2, u. 2 NF
LI S
2 2
3 4 5
—%a'_-f-R K e b',+R d c4b',+(R ud c, —%Rc, W'+
Ao R - &—:-—)d' +2K,Re,R* A =0,
2 2 a2
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(A.29)

(A.30)

(A.31)

(A.32)



la'I ——l—a'3+—R X c.b', +( X c, -i-chl )b’,+(R X c, +

2 2 2 2 '

%Rlc:)b'3+(k 5., +%R3 ~2Rc,)b, —(—j——)d' (A.33)
2K,R’c,R*A=0,

s o
a':-%a',-b R: b +R7x b, +( c, +Re))b', +
Rx - < (A.34)
( ~c, + Rc,)b',— ( 2~+—)d' +2K,R°c,R*A=0,
%—a'4 +(%R’cs -3R’c.)b', +(% R°c, -3R’c, )b':+%R’c,b'3+
- - (A.39)

2R N +(—-;+ ')e'J +6R’c, ~12R’¢c,)R* A= 0.

For the case of m=3n, similarly, we can obtain the final 17 equations in

Section 3.2.3. as:

a .
3 6 _ 19 LX) T _pS ' S
5 TR =2¢, R, +(5¢,R” = 2R’c,)b', +(5¢,R (A.36)

2¢,R°)b' +(c,R-2¢,R")b' ,—¢', #(20R"c, ~8R*c,)R* A = 0,

@', +4c, R’ —c. R’ +(4c,R° —c,R* D', +(4c.R -
c;R* +c, R, +(4c,R* —c,R® +c.R*)b', -4d' -¢'.+ (A.37)
(16¢c,R°A—4c R)R*A =0,

@'\ +3¢,R°b' +c,Rb', +(3¢c,R® +¢,R*)b', +(3¢,R” +¢,R*)b',—

A (A.38)
3d',—e', +(12c,R* A+ 2)R* 4 = 0,

104



R+, R’ +¢,R)B' . +(c,R* +c,R* )b, +(c,R® +

. ) (A.39)
¢,R*)b',~d' ~R* A =0,
@', +R’c.b' +R'c b, +(R’c, +3Rc,)b, +(R°c, +
276 : (A.40)
35R°c,)b',~d'.+4Rc,R* 4 =0,
@'\ =a',=R'c,b' +(Re, = R°c,)b', +(R*¢c, - R°c,)b', + (A1)

(RPc, = R’c, —4Rc,)b', +d',~4R’c.R* A = 0,

3a 7
2a',~224 _R'c b —R°c.b' +Q2Rc. — R'c. )b’
2= Rcb' =R°c,b'.+(2Rc, —R'c.)b' .+ (A.42)

(2R%c, = Rc,)b' . +d',—4R’c,R* A =0,

@', +H(12R'c. —6R’c, )b, +(12R%c, —6R°c, )b’ -

- ‘ (A.43)
6R’ C-,b’3 ‘6Rscgb'4 -2e', +(48C5R5 - 24C3R’ )R" 4=0,
OR2EE) o v B ke, -2 Roe, + R e +(5 R
4 3 4 2 4
2R'c, + Roc, )b, e R -2 R0, + R, )b',+
> H R - (A44)

3 X, , | 3., s
(GRei+ 5 Re +Rc. )bﬁ(;%-i-—ﬁ)e#[(x’l ~10)R'c,

-

+4Rc,]R*A=0,

105



(l-+2-x| ) a':‘éa',, +(% Rscs +%R3C3 - 2R5c5 )b'l +

CLRc, +2 R'c, ~2R*c, b+ Ric. + L Re. +

3 2 Y 2

TLRe = 2R'c, + S Roc, b+ R, + L Roc. +

2 2 4 2" ¢
TR, 2R, +2 Roc, )b 4@ P Kt B |
2 2 M, 4u, N

(li.,. ')e': +(2Rc, + k,Rc, -8R°c;)R*4=0,
2u

N

2
“(l/ ~: Kl ) a'l -%a'z +(%-%)R4c4b'l +(%RSC5 +%RCl *
K,

ﬁRcl —ERSCS )b',+(£R°c° +—l-Rlc, +—=R’c, —ER"CO )b,
2 2 T4 4 2 i ’

LTS -4-1Rsc3 —Re, +K pic, -2R7C-)b'4 2 &‘
4 4 2 2

Ks 3
4 /‘2 N' #Z

B YL DAL T ~LRew +( Ric, +
4727 2 2
X R, -R’c, ——l-Rlc, )b'.+(—'R’c5 —ch, -+-—'R’c3 -
2 2" Ty 4 2

R’c, —%ch )b, +( R°c, —ER c, +— 5 R‘ ~R°c, -

—R'c,)b', -—lﬂd'o +(1-Er 4 +(k,Re, —4Re,)R* 4 =0,
2 u, 4y,
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=)' +(l & T\I/T)e', +HK& R'c, —1-6R’c,)R* 4 =0,

(A.45)

(A.46)

(A.47)



(5—‘-R1c: —lec: + 5 R, -—l-R:c, )b', +(£R3(:3 -
4 4 2 -2 - 4
3
lR c, —-l—Rc +—L R3 -Ei—Rcl)b',-i-(ﬂR‘c4 -
4 2 2 B

4

l l K. 4 2 ' Kl 5
4Rc —ERC +— 3 ~R'c -R C:)b3+(4 Rcs (A.48)
5
Lpoe,-Llpe +£R5cs -ﬁ—mq o+ -
4 2 2 2 4y,
o B2 33 )R A=0,
T4y, N 4

l ' K, Rs l K, ' x[ 2

—Ea :+(Tchl —?C} "ZRCl +TlR3c3)bl+(TR Cc, -
4 s

R c, —lR c, + 5 R‘c )b', +(—R’ —R—c —lR’c +

2 <7y 2573

X —R’c, —-:ch )b, +(—R4 _RTCo —iR‘cJ +%R°co - (A.49)

R C,)b" #l d! .
) 0 A, 2u, 2up NG

2(1-K,)Rc,R*A=0,

2
3
2

(l+x,/2) l
2 H

-~

—a' +(——%)R4 b +—= 'Rc +— Rsc +

LR+ LR, -3 e, +L Roe, +lR’c, b, +(£R’c3 -
2 TG TY 2 2" 4

(A.50)
§R7C- + X e +1RSC3 =2Rc))b', +(2&"&&'-i)d"+
4 2 2 4 2 2 H, N

—&e' ~(3R’c, - 2R’k c, +l)R‘A =0,
4 u } -2
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(+x, /4)a'z-%ag +(%R3c3 ~Roc, +%R5cs W'+

(lR‘c4 -R'c, +£R°cé )b',-&-(ﬂRcl +lR5cs -
4 2 T4 4

Rc. +%R’c, +Re,)b, +(ﬂR3c: +£R°ce - (A51)
Rc, + R, + Rc,)b +(2 -t _ 4,30
M, 2 u, N

%&e’:HRcl —4R’c; +2K,R°c,)R* A =0,
u

(l .,.ﬂ)a'4 +(ﬂ R'c,-3Rc. +2R5c5 )b'l +(ﬂ RBC,,

3R, +2 R"c W', +3 Ricb, +3 R'c,b' +(i&+7)e + (A.52)
2u,

(x,R’c, --12R’c5 +6R’c,)R*A=0.

For the case of sliding interface (m = < , n=0), similarly, we can obtain the

final 17 equations in Section 3.2.4. as:

&+(sc R® =2¢,R')B, +(5¢,R™ = 2R’c,)b', +(5¢,R® = 2¢,R*)b' ,+

(A.53)
(c,R—=2c,R")b',~e, +(20R*c, —8R%c, JOR*A=0,
a',+(4c,R’ —c,R*)B' +(4c,R° —c,R*)b', +(4c.R’ -c, R’ +c, R+ (A54)
(4c,R" —c R® +¢,R*)b',—4d',—¢', +(16¢,R’ A— 4c, R)R* 4 = 0, '
@', +3¢,R'D +3¢,Rb', +(3¢,R* + ¢, RO +Gc, R +¢,R*)b',=3d',—¢' + A55)

(12¢,R°A+2)R*A=0,
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C. R, Hc; R +¢,R)b' ., +(c,R* +¢,R*)b, +(c,R® +c, R -d",

(A.56)
~R'4=0,
@' +Rcb +R'c.b' +(R'c, +3Rc, )b, +(R°c, +3Rc,)b', - (A.57)
d',+4Rc,R* A =0, |
a'\=a',~R'c,b', +(Rc, - R’c,)b', +(R°c, - R°c, W', +HR'c, - (A.58)

R'c.—4Rc)b' +d',~4R*c.R* A =0,

' 3a N ' ° ' b ' 2 '
2a :-T—R’csb,—R ¢,b',+(2Rc, = R'c.)b',+(2R%c, ~ R'c,)b' ,+ (A.59)

d'.~4R°c,R'A =0,

a' . +(12Rc, =6R’c,)b', +(12R*c, — 6R°c, )b, -6R’c.b' .-

(A.60)
6R"c,b', —2¢' +(48¢,R° - 24¢,R))R*A =0,
/2 .
(3—+K‘)a’3+(ﬁR°CQ --ER"co +R'c,)b +(£R7c- —ZR'C, +
4 4 2 4 2
b [ Kl 8 5 8 6 t 3 Kl 7 v
R'c,)b :+(TCSR _ER c, +R°c, )b 3+(2Rc, ~f--2—Rcl +R'c.)b,+ (A.61)

li+i)e'3+[(rcI —-10)R*c, +4R°c.]JR*4 =0,
2u. N )
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(I+x,) , 3
—a
2

lR'c4 —-2R’c, )b',-i-(—‘R’c7 +ch, -i-i‘chl -2R’c, +
2 T4 2 2

+(—R5 +%R3c} ~2R%c,)b' +(% Roc, +

~R’c, )b'3+(£R“cg +%R:c: +%R:c: —2R’, +%R°'c6 ), + (A.62)

2
(2%-% )d' +(l £ ﬁ)e': +(2Rcl +K',R363 -

8R’c,)R*A=0,

/
A2+k), L +(ﬁ——)R b, +(—R’c +Lpe + X0 - Re, -
2 IR 2
—R’c, )b':+(—‘ R°c, +lRlc, + 5 R, —2R°c )b',+(—'R'c- +
2 4 g T eTRG a3
lksc; -RC, "'-"lRSC3 -éRfc, )b'.‘-{-(iﬂ_&‘u _)dv
4 2 2 2u, 4 u,
LA e kR, ~1-6Rc.)R* A =0
2#: N, el ( 1 c! c: = Vs
—la +( X Rc, +—- X ~Rc, - R’c, -qu )b’ +(ﬂR‘c4 + X R, -
4 2 73 4 2 e
Rc, ——-ch:)b'1+(%R5c5 -%RC, +£,)'-R3c3 ~R’c, —%R’c3 )b, +
) ) (A.64)

( R°c, —ER c.+— d Ric,-R°c, —lR‘c,)b"—ﬁﬁ-d'o-&
4 4 2 2 2 4

a -%)%d;+(x, Re, —4Rc,)R* A =0,
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ERre, — LR, + 5 pre, ~Lpic gy SR, ~Lpc, -
4= g TR e TR el Yy 3

Lpe +Kpe, R g, W+ pie, ~Lrie _Lpee o
2 2 2 T 3 2" ©
LIl DAL S NTL I Lree, Lpe, + LR, -
2 2 27T 4 2

5
R ey o SH o 32
2 du, Cap, N

(A.65)

) (—T+ )R‘A O

3 4
——l-a'wi-(ﬁRcl -R—c. —ch, + 5 R, )b, + &R, —R—c4 -
2475 2573 2 G s T
5
lR’c,-f-ﬂR‘c4)b',+(£R3 —R—c -lR’c +—+ lli”cs—
a7 : 2573

] (A.66)
ERc,)b'3-+-(-’iR4 --R—c ——R‘c + 5 R"co —-ERZC,)b'J—
2 4 2 2"

2
LAWY LS “—-L)d', ~2(1-K,)Re,R* 4 =0,
4 u, 2u, 2u N

/2
Md'l —la's +(£-2)R4C4b'l +(£Rcl +£R5c5 +
2 2 4
l ' 3 o ] l v 3
—Re))b', +(—Rc —ch + Rc +—Rc)b +( R'c, -

2
(A.67)

3R +Xpe 4L 3 Roe,~2Re), +(3ﬂ-i&-i)dg+

4 2 4u, u. N

lu

—e€' —=(3R’c, - 2R’k c, +—)R‘A=O,
4,u T2

v 3, 1 K S B
(1+x,/4a 278 4+(ZR3C3 - R’c, +?‘R5c5)b , +(ZR c, -
Roc, + 2L R )b +(E Re, + LR, R + B pic. +

2 A 3 2
K, 1 K (A-68)
Re)b', +(—4—'R:c: +—R"c6 -R’c, +—‘)'—R8c8 +Rc,)b' +

1A ke —4Rc, + 2K RPc,)R* A =0,
A,
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l K, ' K, 7 7 3 1 xl
(§+T‘)a ;i'(jR c.—-3R C, +5R5c5)b1+(TRscs -
8 2 L} ' 2 7 U i 8 U l ﬂl 4 !
3R’c, + 5 R c,,)b:«l»2 R c.,b3+2 R c8b4+(5#: +F)e4+ (A.69)
(x,R°c; ~12R’°c, +6R’c,)R* 4 = 0.
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APPENDIX 2

For the case of the sliding interface (m= e, n~=0) under pure shear loading,

the relevant equations are derived as follows:

A& s, +(—-5 )b, +(—-5c )b+ (2 &
2R* R B.1)
2 yb, +Et (5c B—“CB)-o,
R: R’ R:
T3 ; B (B.2)
4c, +——)b +4d, +R—+(4 c,B-222) =0,
% %

TS ) (B.3)
Be. -5 )b, = 3d, -2 _3¢,B=0,

R: RT
a, =0, (B.4)

3a, 2 ¢ : c. 2
ﬁ—-‘R C, b -R c, b -(R Cs —-E;)b:y -(R C, -F)b‘ +R d: + (B.5)

R’¢,B=0,

I3



a,

2

29 _Ricb +(c
R-

26 . 4 R'd, +R'c.B =0,
e A

\—Rc)b, +(c, - R'c,)b, +(c, - R'c, -

a, -#*”R"csb, +R°C(,b: +(2¢,+R°c, )b, +(2c, + Rbcs )b, —
R°d, -R°c,A=0,

a, 10c 10c, 10c, 10c
R +( R:S ~12¢.)b, +(—RT'-126‘,, )b, + R’ b + R:B b, -
2ej 2,8 - 10c, s B) =0,
: R*
' 2
-Ma (=c —ico +——=c,)N'b, +(£—c, -EC, +
4R’ 2t 2 R’ 2 2
2 . K 5 2 , 2 3 K
FCS)N b, +(?'cs -Ec" +— FE IN'b, +(—C -Wcl 2R C
IN'b, +(ﬁ--L,+i,)e3 —( Kic, 3¢, + 5)N'B=O,
M. 2R° R° 2 2 KR
Al ‘) L
_N@+x) N a‘+(ﬁcs+—37c.—2cs)N'bl+(ﬁc6+
2R° ° 4R? 2 2R 2
—c, —2¢,)N'b, +(£c, +—37c5 —L c, K ¢, —2c.)N'b, +
2R: - 2R R° 2R°
Eeprde ~te ~ Ko ae Wb, + @B N Kt
2 2R° R® ° 2R° M, 2u,
2
8)d, +( 7R St R -(ic + 5% 2 )N'B =0,

2
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(B.7)

(B.8)

(B.9)

(B.10)



il - D a, -i-la3 +(ﬁc4 -Eq +L,C~ )N'b| "’(ﬁcs

4R R 2 2 R 2
3 +L,c3 -%Cl x.sc)N'b +(—C 3C +L’C"-

2R*"' 2R 2" K

1 K 3 1 1

. N,b+_ SR I o B.11
2R o Vb Gre et e e e

N'

K )N, +(—£¢N'—-&£LN'+3)¢13 + A
2R TR 24 24, 4, 2R

B =0,

' (B.12)

AKX SN, ’; ¢, -c,)N'B=0,

Y r4

N K I K l K I 'y
—a, +(—c¢. +—c,-—c, -—c. IN'b, + (¢, +—¢, ——¢, -
2R 2 - 2" 2 2 2 2 2

S )Nb, +(-§-c4 +%c4 -%q ~Z)Nb, + (e, +—;-c, ~Sie, - (B.13)
Sy, -Brenvg s Kl KL )N'B =0,
2 M. 4

-3—N—a +(—c +Rc, lc BELY c,)N'b, +(£’—c, +Rc, -
4R’ 2 ’ 2
1 R X, l _Rx, 1

—_ ' bt I} i _
2c: c)Nb+( c,+R’c, - 2 > Cs

(—'c4 +R’c, -lq - R-K‘ c, — ¢, )N'b, - £ X —~—=N'd, +
2 257 7R i, 2

—c, )N'b, +
2R

(B.14)

(z‘ R°N'- z -N'+2R )d, -(l——)R cN'B=0,

115



Ma Al a, -4»(-3i-c4 -R’c, —%R‘q )N'b, -4-(%(:l +

4 R 2
3R ¢, —R’c, -ﬁ-R‘cs +lc,)N'b, +(ﬁc, L3R ¢, —Rc, -
2 2 2 272
iR‘c6 +lc,)N'b3 -0-(£c3 + 3R ¢, - R’c, --ﬁR‘c7 -+-lc3 - (B.15)
2 2 - 2 2 2 2

_lTC,)N'b¢-(&3R Nv #l R
R M, 2 M, 2

1

: N-3RY)d, - R AL
., 2

CRc. - pc)NB=0,
2 TG

/2 J ] < ]
(+K /2N a, - SN a, +(2R’c, _3R c, ——R JN'b +
2 © 4R° 2 2
(2R°c°-3§ c, - R'K, ~c,)N'b, +(—c +2R%c. - 3? cs —
R'x, c. +¢ )N'b, +(7’c: +2R°c, - 31; c, — R:" c, + (B.16)

eINb, + (B o B pepapeya, - R e
u

r4 - -

(R°c3-%R‘c ——R° ¢,)N'B=0,

24K /2)N'
-(+2+0)a4 +(%C, —36‘7 +;;—:CS)N'bl +(%cs —3Cs +

2 )N, 4= N, +ic N+ Bl oy 2 (B.17)
2R 2R’ 2R’ 4. 2R R

(%—c5 -3¢, +7_15€;C3)N'B=0'
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[f we make the following replacements:

' R:al ' Ra’ 1 ' a-l
al~ R a ~_” a3 a“’ a"-..—;
2 il 2 ’ R
] 2 * ' { bl
b,~Rb, b,~Rb,, b .~b,, b~

d',~R'd,,d' ~R'd,d,~Rd,, d',~Rd,, d' ,~Rd,;

U 4 ' 5 ' 6 (] 7
e, ~R'e, e,~Re,, e,~R°%, e ,~Re,.

Then, the final 17 equations are given by:

“—;—+(4c4R‘ = 5c,R°)b', +(4R%c, —5¢,R7)b', +(4c, R® — 5¢, R* )b +

(B.18)
(c,R+4c.R")b' +¢',=(4R°c, -5R'c,)R*B,
a'.+(3¢,R’ —4c,R*)b', +(3c,R* —4c,R°)'.+(3c,R’ —4c.R™ + (B.19)
¢, R, +(3c,R° —4c,R" +¢,R* )b’ +4d"  +¢', = (3c,R—4c,R’ A)R* B, .
a',+(3¢,R" = 2¢,R*)b' +(3c,R* - 2¢,R* ~c,R)b', +(3¢,R* = 2¢,R* - (B.20)
¢, RO +(3c.R” = 2¢,R* —¢c,R°)b',-3d',—¢', = 3¢ .R*R"* B, N
a', =0, (B.21)
3a',-R’c,b' —R'c,b',+(Rc, ~ R°c,)b', +(R°c, — R°c,)b', +d", (B22)

=—Rc,R*B,
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a'\=2a',-R’c,b', +(Rc, ~ R°c,)b', +(R’c, — R°c,)b', +(R’c, —

- \ (B.23)
R'c, =2Rc,)b',+d', = —R*c,R"B,

S5a’ 7
b P 3 5 ' 6 U o] ! ! : $ -
2a' == +Rc,b' +R°c,b',+(2Rc, + R'c,)b' . +(2R’c, + R’c, )b, (B.24)
d',=R’c,R'B,
a' . +(10R’c, =12R’c,)b', +(10R°¢c, ~12R*c,)b',+10Rc.b', + (B.25)

10R"c,b',-2¢', = (10c,R’ —12¢,R*)R* B,

—(3+Kl)a’3+(ﬂR°Cb _2R0C0+2R4c‘)b'l+(_&k7c. —ER’C_+
4 2 2 2 2

2R’c, )b',+(ﬁc R’ -ERKC +2R° )b +(2R c. —ERc —ﬂRcI o', + (B.26)
2 7 ] 4) 8 ) 3 4 1 7

l#| 3 'y (K,—S) 3
(EI-*-F)‘?’-[_R

¢, +2Rc.]R’B,

—(2+K’)a',+§a',+(ﬁR5C +}-R3C. -2R5c5)b',+(ﬂR°c +2R4c4_
2 T TS 2 "2

2R°, )b+ Re. +%R’c, —2R’c. -Re, —%Rc, ', +(§ R'c, +
- - - - (B.27)

3R, 2R, —Ric, - S Ric b @B Kbt 8

2 2 M, 4y, N

2 . s
(lﬂ+;)e', = (E'—R’c. -2R%c. +2RCI )R'B,
2u, N 207 S22
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-1 \
(K—'—)a'l +a'3+(%R‘c‘ —%R‘q +R’c,)b' +(%R5cs -

%R’cs +R’c, -%Rc, —%Rc, )b':+(%R°c6 --%R°c6 +R'c, -

l 2 _ﬁ 2 ' i 7 _3 7 5 _l 3 -

2R c, 2Rc:)b3+(2Rc, 2R c,+Rc, 2R c, (B.28)
KR, +Repp +O B B 3 cA A e o

2 2p, Ap, N2 p TN

R +2R%CHRB,
y 1T

3@+ R, ~Eipe —Roc, + LRe o 45 R, KR, -
2975 2 2 2 2"

Ric, '*"I'R:C» )b'»“'(ﬁR’cs —-ﬂRsc, -R’c, -&-lec3 +1Rcl )b’ +
2 T2 2 2 2

(B.29)
Epoc, ~Bigic, —Ree, + LR, + LR + B 4
2 2 2 2" P
a -%)%d': = (%L Re, ~ Re)R'B,
a-Eixa =0, (B.30)
u,
—%a':-i-(%Rcl +Rc, —%Rc, -—’;—‘R’q ) +(%R:c: +R'c, -

LRie, K pic o+ e, + Re, -2 Roc, - K poc, -
2" 27T T 2 2
(B.31)

chl )b'}+(i Ric, + R°c, —-lR‘c4 -ﬂR"c6 -lR:c, )b~
2 2 2 2 2 )

_K‘_zﬂdvo_ ﬂ-.’iﬂ-_z_)d" =(l-x,/2)Rc,R*B,
2 u, M, 2 u, N
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(I+x,) ,

E— ]
2

3

2R —Roe. X pic + LRew +(" LR e, + 3 Roc. —
2Rc5 R'c, 2R05+2Rc,)b:+(2Rc:+2Rc6

,—a', +(E R'c, - R°c, —ﬁR‘q )b, ~4-(£‘-Rcl +
2 -2 2

K 1, K, 3
Ric, ==L Roc, +=Rc,)b',+( R'c, +2R'¢, - Rc, - 32
LR, +2 e )b, HELR'e, + S Rie, - Ree, ®.32)
KR, +LiRc —Rep ~CH KB
2 2 2

=GR, -5 pc)r'B,
2T

(1+x, /2)a':-§a'4+(2R"cs —%R’q —%R’cs ', +2R°c, -
%R*q ——’;—'R"cﬁ )b':+(%1ecl +2Rc, —%R’cs ~ZRc, +

- . 3 c B (B.33)
Re)b', +(Tl Rc, +2R%c, —;R°co —#R”c, +Rc,)b',~

. 2u 2 U, < <

- +.:_‘)a"+(%R"c- -3R'c, +%R5c5 )b, +(%R"c8 -

3R’c, +-§R"c6 )b',+§R’c-b'3+§ R‘c,b"+(li+i)e'4 = (B.34)
2 22 2 2u, N

(% Rc, -3R’c, +-§-R3c3)R‘B.

For the case of elastic interphase layer (m=3n) under pure shear loading, the

final equations are given by:



"2—’+(4c4R‘ —5c,R°)b', +(4R%c, —5¢,R")b', +(4c,R® = 5c,R*)b', +

(B.35)
(c.R+ 4(—'-,R7 W', +e' = (4R:C: - SRJCJ )R*B,
a',+(3c; R’ —4c,R)B' +(3¢,R* —4c, R°)b',+(3¢,R° —4c,R™ + (B.36)
¢, R +(3c,R° —4c,R" +c,R*)b' ,+4d' , +€',= (3c,R-4c,R* A)R'B, '
a',+(3c,R* = 2c,R*)b', +(3¢,R’ - 2¢, R’ -, R, +(3¢,R® = 2¢,R" - (B.37)
R’ +(3¢.R" = 2¢,R* —c,R')b',-3d',~¢', = 3c,R°R'B, '
o =0, (B.38)
30':_RBC;b'; —RJCJb':‘*‘(RCl - Rsc5 w', +(R:C: —R’c)b' +d', (B.39)
=-Rc,R*B,
a".-za'3 -R'c,b', +(Rc, - {e’cs W' +(Rc, = R°c, )b, +H(R’c, - (B.40)
R'c.=2Rc)b' ,+d',=-R*c,R*B,
Sa' 7
YV 8 Ly X °n b +(2 ’ ' +(2R* ’ -
24'-= +Rc.b' +R°c,b'.+(2Rc, + R'c,)b' ., +(2R’c, + R'c,)b', (B.41)
d',=Rc.R'B,
a' +(10R°c, —12Rc,)b', +(10R°c, —~12R*c, )b’ . +10R c.b', + (B.42)

L0R’c,b',-2¢', = (10c,R’ —12¢,R*)R"B,
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(3/2+x)

-, ( e, =2 R, +2R'c,)b, + &g

S —§R7c7 +
2
Ric, )b':+(—‘c8R” -ER‘cs +2R°c,)b',+QRc, —%Rcl —%Rcl W'+ (B43)
(l” ‘ —3- [ ) c, +2Rc,]R*B,
2u, N'
M—K)a,-i- '“H—Rc, +3R c, 2R5c5)b'l+(ﬁR°c6+3R'c -
2 gy 2 4
2R°c, )b'2+(% Ric, +2Rc, ~2R’c. -1 Re, —%Rc, B, +HEL R, +
(B.44)
Roc, —2R'c, —~ Ric, - X poc o s B Kt 8 )0 |
2 2 C 2 H, 4, N
LA 2 = BiRc, 2R, + 2 Re \R*B,
2u, N4 2
1/
(x, -1 2)a.+ (
2 24

R'c, - ; Ric, + Ric,)b' +(21 Réc

lR:c, “Spee, W', +H—+R'c, —;‘;-R%7 +R’c, —lR’c -
3 TN 4 2
%RSCS +%)bv‘+(3 ”l K, #l

R'c,+R’c, -ZRcx —T'Rcl )b':+(%R°c6 —ER"C +R’c, -

(B.45)

+i)d' (l:ul
2u, 4u N

u, N') L=
1 2 3 2 <+

—(—-R’c, +=Rc.)R'B
g ety ke



ia',-f-(f'—R}c} —ﬁRcl —R’c, -i-chl ). +(£R‘c4 “Lip, -
2475 2 2 4 2 @

RJC; +‘1-R:C: o', +('ﬂRSC5 -ﬁRSC‘; —RSCs "'lRSC3 'f'lR(.‘l )b'3+
2 T4 2 2 4

(B.46)

(LR, ~EL R, —Roc, 4+~ Re, + L Ric o + K B g

a 2 2 3" TRy

K, . K .

(1-7)2‘—:(1 += (- Re,~4Re)R'B,
a', | | v K s l .,
—+( Rc+ Rc——Rc—-—Rc)b+( R'c;+—R'c, -

2 4 2 4
E‘-R’q —L)b',-i-(—'R‘q -—lR‘q —-K:'—R‘c R L)b' +

2 2 T4 4 2

K 1 K R’c u 3u (B.47)
(CLRc, ~—Ric, - Roe, - Z Sy p(Fh e Sy o

4 4 2 2 4u, " 4u,

Kt )R B,

8
—za',+(£Rcl +R—c3 —chl —£‘-R3c3 )b', +(£R3c, +R—c4 -

2 4 2 2 2 4 -2

5
lR:c. 5 ‘e, )b'.-i-(ﬂR’c3 +R—c5 —lRSc3 —f'-Rscs -
27T T 2 473 2 B.45)
-l—Rc W', +( Ric, +— R c, -lR‘cJ —ﬁR"co -lR:c,)b"-
2 2 2 2 )
2 -

ﬁ.ﬂd'o_(lﬂ_ﬂﬂ_;)d', a K)R R*B,

4 u, 2u, 24, N 2
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a+x72) .. +(——R‘c LR CEreon +ERe +
2 2 2 4
3

=R’c, —-l-Rsc3 -—'-Rscs -+-—Rcl )b',+(—‘R:c, +2R°c° -

4 2 2 2 T4 T4

| R K .. 1, v K s 3., 1

ER c, —?‘R c, +5R cl)b3+(T‘R c, +ZR c, "ERSCs - (B.49)

El-R’c, +lR3c3 - Rc)b', -(zi——:-———)d's—
2 M,

~
I
(8]

RS
2
|-

(1+k, /4)a':-—i-a" +(R’c, —%Rsc3 —%Rsc5 W', +(R°c, -

3R‘c,-—£R°co)b'z+(—§—'Rcl +R’c--%R’c -ZRc.+

9
4 2 ; 3 (B.50)
Re)b',+(—R°c. +R'c, —=R°c, ——LR’c, + R’c,)b', -
g 4" 7
s A VB (R 3R - Re)R'B,
., 24, N ap S 4
l 1 5 s [ l 8
—(5 ) +( Rc—3Rc-+2Rc)b +( R'c, -
3R, +> 5 R°c,)b', +§R b+ R, +(l “‘ e = (B.51)
2 2 YREG

S b3 \p
(TlRSCs -3R’c, +5R ¢, )R'B.
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