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Abstract

Answering information-seeking question involves retrieving relevant documents from

a massive haystack of unstructured text corpora. This dissertation aims at building

question answering (QA) systems that can be deployed in the wild where incom-

ing questions may be noisy and their distribution inevitably shifts from that of the

training data. At a high level, we attempt to tackle three distinct problems arising in

real-world scenarios: from the modelling perspective, how to build robust and scalable

QA models, and how to acquire knowledge that is useful for fulfilling questions from

text, and from the evaluation perspective, how to reliably evaluate retrieval-based

QA models.

Towards this goal, we first study the problem of adapting classical IR models for

QA tasks. For this purpose, we investigate one of the basic and salient linguistic

features in text, the relationship between the ordering of words in an answer passage

and that of a question. In particular, we present a sparse retrieval model that treats

n-grams as single compound terms to represent local word order. Second, our focus

shifts to the generalizability of QA models via data augmentation. To this end, we

design a sample-efficient data augmentation framework, inspired by adversarial train-

ing methods, that makes QA models robust to distribution shift. Third, we present

a novel knowledge acquisition method that can be helpful in addressing ambiguity in

questions. In particular, we aim at automatically deriving meta-information about

the spatial grounding of location mentions in text. Our method does not require any

supervision and leverages the structural interactions between the mentions in a doc-

ument. Finally, we focus on the reliability of evaluation benchmarks in information-
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seeking QA. Specifically, we highlight that existing benchmarks are heavily skewed

toward passage-level information. Our analysis paves the way for designing future

benchmarks that can better reflect the true performance of QA models.

Overall, in pursuit of achieving genuine human-level QA systems that can be read-

ily used in real-world applications, the present thesis highlights the key requirements

of knowledge acquisition, robustness to distribution shift, scalability, and reliable

evaluation.
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The central chapters of this thesis are based on papers that are either published or

that is currently under review. In particular, Chapter 3 and Chapter 4 are written

based on papers that are published in conference proceedings [1, 2, 3]. Chapter 5 is

based on a paper that is currently under review [4]. Finally, Chapter 2 is an original
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Chapter 1

Introduction

What makes humans special? “We are ‘rational animals’ pursuing knowledge for its

own sake. We live by art and reasoning.” Aristotle answers. We, humans, have an

intrinsic desire to know more. Our epistemic curiosity motivates us to ask questions

about the world. It is not surprising that shortly after the invention of general-

purpose digital computers, researchers sought to build machines that are capable

of automatically answering our questions. In the early days of Question Answering

(QA), models hinged on determining alignments between questions and potential

answers [67, 169, 168, 160, 189]. Over the years, the proliferation of Web and the

abundance of text data triggered a growing interest in QA. In 1999, TREC added the

seminal QA track that spurred development of practical QA systems. Traditionally,

QA models were complex pipelines, composed of carefully crafted components that

could be broadly categorized into: question processing, finding candidate answer

documents, and answer selection [86]. Candidate answers were retrieved from a large-

scale knowledge source that could be either a text collection or a Knowledge Base

(KB). In 2011, IBM’s Watson DeepQA, devising a similar multi-faceted complex

pipeline, marked a major milestone in QA by beating human champions in the trivia

quiz show, Jeopardy!1.

Retrieval has invariably been ingrained at the heart of QA. The community has

come a long way, especially in the deep learning era and after the ubiquity of large

1https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html

1

https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html


Pre-trained Language Models (PLM). Nowadays, modern QA models unequivocally

rely on “retrieval”, although not necessarily analogous to traditional IR where actual

documents are fetched [101, 70, 90, 192, 170]. Retrieval may be done as a kind of

inductive bias during training [103, 21], or implicitly over a vast parameter space

[153, 22, 32].

Notwithstanding the successful reign of modern neural models and the presence

of plentiful resources, the task of QA still remains an open problem and a handful

of major challenges yet to be tackled. Different questions may require different rea-

soning skills [34] for answering them because “the process of drawing conclusions”

[156] to find an answer is not necessarily the same. Some questions require complex

reasoning such as multi-hop reasoning [195], discrete reasoning [5, 47], coreferential

reasoning [40], and spatial reasoning [133], whereas others do not. Unfortunately, the

gap between the state-of-the-art models and human performance in many complex

reasoning benchmarks highlights that there is room for improvement. Despite some

recent efforts [93, 113], it is also not clear how to integrate the reasoning capabilities

to build an intelligent unified QA system. Moreover, numerous studies have revealed

the brittleness of the state-of-the-art QA models under a variety of realistic scenar-

ios. QA models undesirably learn spurious patterns such as matching local textual

patterns [82] or notoriously fail to generalize to new domains [130, 163].

1.1 Thesis Statement

In this thesis, I argue that robust and scalable QA systems can be built using

knowledge acquisition methods. The novelty of this statement is embedded in

the simultaneous attention to robustness and scalability. This dissertation aims at

introducing principled practices towards this goal. To this end, I first explain the key

aspects of the problem in this section.

2



1.1.1 Answering Information-seeking Questions

Questions can be framed in a myriad of ways, depending on the intent of the inquirer.

In this dissertation, we focus on one particular type of questions, called information-

seeking questions. This type of questions are typically asked when a person seeks

information that they do not have [156] (e.g. Who did Bette Midler portray in the

Rose? or What’s the dog’s name on Tom and Jerry? ). Information-seeking questions

are often acontextual, as opposed to questions in reading comprehension tasks where

a question should be answered within a given context. In real-world, questions are not

always perfectly formulated and may be rife with ambiguity [132] and presupposition

[98], thus posing yet more challenges for answering such questions. A crucial challenge

in QA is that users who write questions do not know the answer, and thus the

likelihood of using question words that are likely to appear in answer documents

diminishes, unlike in IR where users use words that are expected to be present in

relevant documents. This problem is known as lexical chasm [20].

My main focus in this dissertation is on factoid questions whose answers are mostly

short and extractive. Factoid questions often target specific factual statements,

whereas non-factoid questions, usually starting with “why” or “how”, demand ex-

planatory answers that are long and may span several paragraphs. Focusing on factoid

questions allows us to account for the most common scenarios in knowledge-intensive

user activities.

The task of automatically answering information-seeking questions, also referred

to as open-domain question answering [180], involves sifting through a massive knowl-

edge source. The knowledge source (e.g. CommonCrawl, and IR document collections

such as ClueWeb or Robust) consists of documents, written in natural language text,

spanning a wide variety of subjects.

Traditionally, IR models and search engines were part of a rather complex pipeline

to narrow down the search space. With the rise of deep neural networks, open-domain
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QA models are reduced to only two components: a traditional bag-of-words retriever

along with a deep neural model that finds the answer given the retriever output [26].

However, bag-of-words models loudly fail when a match can only be found based

on the meaning rather than the surface form. The dominance of Transfomer-based

LMs [43, 147] that are pre-trained on a colossal volume of unlabelled text, combined

with transfer learning, has paved the way for effective dense retrievers [101, 90] that

surpass traditional IR retrievers. More recently, retrieval-augmented models [103, 21,

11] that perform a non-parameteric nearest neighbours search over a massive scale

memory are shown to work well for knowledge-intensive NLP tasks.

1.1.2 Knowledge Acquisition

Acquiring knowledge from unstructured text endows machines with problem-solving

capabilities that is often warranted to tackle real-world language tasks. Machines

broadly manifest acquired knowledge in various forms, ranging from explicit symbolic

forms to implicit memories under the guise of weight matrices in neural networks. To

tell if a system has actually acquired knowledge, one generally needs a verification

mechanism. Specifically, the system is expected to lose its ability to solve the problem

at hand, had the underlying knowledge not been presented to it.

In this dissertation, we leverage knowledge acquisition to tackle open-domain QA,

a long-standing problem in natural language processing and information retrieval

communities. The ability to successfully answer questions offers strong versatility to

fulfill the information need of users since users can formulate nearly all their infor-

mation need in the form of questions. More importantly, the proliferation of textual

content expressing factual statements serves as a valuable resource that can be used

to acquire knowledge from.
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1.1.3 Robustness

In the deep learning era, QA models have achieved impressive performance in both

reading comprehension (closed-domain) and open-domain QA. On some benchmarks

like SQuAD [149, 148], QA models have actually surpassed human performance.

Despite the substantial progress in QA, these models are repeatedly shown to be

fitful [82, 130, 15] when the test distribution differs from the training distribution

[97] that often arises in practice. The fragility of models under distribution shift

impedes their deployment and limits their trustworthiness in real-world applications.

We say a model is robust when its performance does not substantially degrade under

distribution shifts. Robust models avoid shortcuts [63] and spurious patterns [126,

140], and instead, learn invariances across environments [9]. Two common causes of

distribution shift are:

1. Adversarial attacks [66, 82, 15] where the input is synthetically perturbed to

deceive the model into wrong predictions.

2. Domain shift where the test data is drawn from related but distinct domains,

compared to the training set [97]. In this sense, the concept of domain gener-

alization is synonymous with robustness under domain shift.

In this dissertation, my main focus is on out-of-domain generalization that is more

likely to naturally occur in real-world scenarios. Here, a domain is a manifold that

spans a variety of dimensions including genre, scope, stylistic conventions, etc. [156].

1.2 Key Contributions

The main claim of this dissertation revolves around building QA systems that acquire

knowledge from unstructured text and are capable of using the knowledge to answer

information-seeking questions. Our proposed techniques are designed to make QA

systems safer to be used in the wild in that they are shown to be robust enough
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under domain shift. Overall, the desiderata for building such QA systems can be

summarized as follows:

D1: Knowledge acquisition from unstructured text, either explicitly or implicitly,

because the underlying knowledge may serve as a kind of inductive bias or a

prerequisite.

D2: Robustness when test distribution differs from training distribution because

distribution shifts imminently occur in most real-world scenarios.

D3: Scalability in building models that can scale up to large collections, thereby

fostering efficiency that saves compute and energy.

D4: Reliable evaluation tools, including annotated datasets and metrics, to accu-

rately gauge the performance of systems and to offer ample diagnostic tools

when issues arise.

I tackle this problem from four different perspectives: retrieval, QA machine reader,

meta information, and evaluation. My contributions mainly encompass modelling,

data-centricity, and evaluation; all constitute necessary steps for building systems

that befit real-world scenarios and do not easily break when data distribution shifts.

In summary, the key contributions of the present work are:

• Local Word Order in Sparse Retrieval: Traditional sparse retrieval has

been popular in open-domain QA and is still considered as a strong baseline.

In fact, a winning recipe is to combine sparse retrievers with dense retrievers.

However, sparse retrievers ignore salient syntactic cues such as word order that

offer useful hints for retrieval, especially in knowledge-intensive NLP tasks such

as open-domain QA where localized context is crucial. To this end, I introduce

a simple and yet, effective retrieval method that addresses mismatches, rooted

in syntactical discrepancies (Chapter 2). My proposed model is contingent on

the word order by leveraging n-grams in retrieval and is reminiscent of term

dependence in IR models.

6



• Data Augmentation and Robustness: Data Augmentation (DA) is a tried-

and-true technique to overcome the scarcity of training data. It is also well-

documented that DA can make models more robust [72, 73, 151]. To this end,

I present a novel taxonomy of DA techniques based on the training strategies

(Chapter 3). Further, I provide an empirical analysis that corroborates the

improvements in out-of-domain generalization using DA across a variety of lan-

guage understanding tasks including reading comprehension (Chapter 3).

• Sample Efficiency and Data Augmentation: Despite its advantages, DA

substantially slows down the training. As a remedy, I devise a general frame-

work, inspired by adversarial training, that can accelerate training on aug-

mented data and can be plugged into any DA method (Chapter 3). I empiri-

cally show that our sample-efficient DA method retains the effectiveness while

substantially speeding up the training.

• Leveraging Meta Information: The content-rich textual data in Web is often

accompanied by some auxiliary data, known as meta information (e.g. docu-

ment timestamp and location tags in Wikipedia). This supplementary data,

when present, offers useful signals that can aid QA models in resolving ambi-

guity or more generally, in pinpointing answers. However, meta information is

not always present. Thus, the initial step is to find ways to generate viable

meta information. To this end, I aim at generating spatial auxiliary data, and

develop an unsupervised algorithm that grounds location mentions in text to

their corresponding geographic footprints; the task is known as toponym resolu-

tion (Chapter 4). An unsupervised method is a reasonable choice here because

of the lack of sufficiently large annotated data.

• Document-level Reasoning Benchmark: Open-domain QA models invari-

ably perform retrieval at the passage level mainly because passage retrieval is

able to capture localized contexts. However, I identify a small set of questions
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in well-known open-domain QA benchmarks that are impossible to be answered

using passage retrieval (Chapter 5). Answering these questions require a larger

context because they are reliant on the document narrative or the document

structure. Interestingly, these questions are overshadowed by passage retrieval-

based questions in existing datasets. Thus, I curate a novel benchmark from

widely adopted benchmarks in which document-level evidence is critical in an-

swering questions.

1.3 Dissertation Layout

This dissertation is organized into 6 chapters. Each chapter can be viewed as a piece

of a puzzle and covers one aspect of my ultimate goal — building robust knowledge

acquisition techniques for open-domain QA. Putting all these pieces together shapes

my recommended principles towards robust open-domain QA models. After the in-

troduction in Chapter 1, the question of building a robust information-seeking QA

system is contemplated in the succeeding chapters. Chapter 2 concerns retrieval mod-

els that are well suited for open-domain QA where compositionality of meaning has

a profound role in retrieving relevant documents. Chapter 3 studies the role of DA

and sample efficiency in model robustness and presents a taxonomy of DA methods.

Chapter 4 introduces an unsupervised toponym resolution method as a step towards

creating rich content that will further be helpful in QA. Chapter 5 highlights an

unheeded challenge in existing open-domain QA benchmarks where document-level

reasoning is often overlooked. Finally, Chapter 6 summarizes the contributions and

discusses potential future research avenues.
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Chapter 2

Revisiting Local Word Order in
Retrieval

In this chapter, I present a simple model that equips sparse IR models with syntactical

cues in text that are paramount in QA. Specifically, the proposed retrieval model

fulfills two desiderata, specified in Section 1.2: knowledge acquisition (D1) in that it

leverages local word order from text, and scalability (D3) in that sparse retrievers are

easy-to-implement and scale well to large document collections.

2.1 Introduction

The task of open-domain Question Answering (QA) involves answering questions

over a massive collection of documents. Classical IR models (e.g. BM25 [154]) have

been particularly popular as a retriever in this task [26, 184, 33, 185, 194] thanks

to their simplicity and their scalability. While suitable for modelling coarser levels

of relevance [122], sparse retrievers are not designed for NLP tasks where under-

standing the intricacies of human-written text is paramount [69, 52]. In QA, in

particular, matching questions with documents via only lexical information ignores

salient syntactic cues such as word order that offer useful hints for retrieval. Such mis-

matches propagate undesirable noise to the reader, curtailing the overall effectiveness

of retriever-reader pipelines.

The shortcomings of sparse retrievers heralded the emergence of dense retrieval
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models. By performing matching in an embedding space, dense retrievers [101, 70,

90, 192, 146] are capable of finding documents that are semantically close to ques-

tions, thereby mitigating vocabulary mismatch. However, they still rely on sparse

retrieval as a first-stage retriever to construct an initial candidate pool [184], or as

a complementary retriever with which their retrieval output is combined [90]. Also,

despite their advantages, dense retrievers are no panacea. Compressing a question/-

passage into a low-dimensional space cannot accommodate all intricate information,

conveyed in text [94], especially for entity-centric questions [13]. Moreover, if the

distribution of the test data shifts from training data, their matching effectiveness

deteriorates [104, 177].

In this chapter, we study the role of word order in tackling mismatches, rooted

in syntactical discrepancies, to adapt sparse retrievers for QA. We hypothesize that

there is a direct relationship between the ordering of words in an answer passage and

that of the question and that this relationship provides hints that can improve the

retrieval. This is in large part because word order organically carries some semantic

weight, which is often transferred from questions to answer passages. We introduce a

frustratingly simple retriever model, based on the well-known query likelihood frame-

work [144], that is aware of the local word order. In particular, our model is built

atop BM25 via: (1) treating bigrams as the smallest unit for local word order, and

(2) adding bigrams as a single compound term to the vocabulary. We also prescribe

pre-processing strategies to find impactful bigrams. Our experiments on two standard

open-domain QA benchmarks reveal that local word order-aware retrieval consistently

outperforms BM25 and when combined with a dense retriever improves upon several

strong dense retrievers.

Our contributions can be summarized as follows:

1. We propose a local word order-aware retrieval model that can be plugged into

BM25 or other sparse retrievers;
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2. We provide analysis on how impactful bigrams can be selected in retrieval,

analogous to the common practice of stopword removal in IR; and

3. We demonstrate that large performance gains can be achieved in open-domain

QA pipelines when local word order is incorporated.

2.2 Related Work

Traditional retrieval-based pipelines. Early open-domain QAmodels often con-

sist of several carefully designed stages [99, 48, 14], their components can be summa-

rized as follows: (1) question processing: extracts useful information such as expected

answer type, (2) question reformulation: rewrites questions into search queries, and

(3) search engine: finds relevant documents, (4) post-processing: pinpoints the exact

answer from the relevant documents.

Retriever-reader models. Traditional IR models are frequently used in open-

domain QA pipelines thanks to their simplicity and efficiency. Several retriever-reader

pipelines [26, 33, 194, 131, 185] use sparse retrieval models to retrieve documents.

However, sparse retrieval models struggle when vocabulary mismatch occurs, which

is often tackled via: (1) Document/Question expansion: doc2query [141], and GAR

[123], (2) Re-ranking [184, 100, 138], (3) Dense retrieval using a two-tower bi-encoder

architecture [162, 101, 90, 192, 146, 94, 59].

Massive-scale monolithic models. Recently, massive-scale language models—

e.g., GPT-3 [22], and T5 [153]—have shown incredible generalization capabilities on

downstream NLP tasks including QA.

Incorporating word order in IR Traditionally, IR systems may incorporate n-

grams and phrases as a form of term dependency to model natural language [175,

167, 50]. Moreover, the dependency between n-grams and their co-occurring terms
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is shown to be a useful signal to determine the importance of n-grams [166]. More

recently, in neural IR, n-grams are projected to an embedding space, allowing for a

semantic matching [38]. Term dependence may also be modelled by adding features

related to contiguous term spans into the ranking function [129, 18, 39].

2.3 Local Word Order-Aware Retrieval

The bag-of-word model is at the center of sparse retrievals in open-domain QA, but

this model overlooks the underlying word order in questions and answer passages.

The ordering of words in natural language text carries some meaning, which is often

transferred from questions to answer passages. For this purpose, we draw a connection

between word order and the well-known query likelihood model [144] in IR. According

to the query likelihood model, the probability of a document D is gauged via its

relevance to a query Q, denoted as p(D|Q), which is proportional to p(Q|D) based

on Bayes’ rule. To account for term dependence, Metzler and Croft expand p(Q|D)

over query constituents C(Q):

p(Q|D)
rank
=

∑︂
c∈C(Q)

λcf(c) (2.1)

BM25 can be written based on Eq. (2.1) where query terms form C(Q) and f(c)

refers to the scoring function. In SDM [129], term dependence is modelled via relative

frequency of contiguous text spans and thus, C(Q) represents all text spans of a fixed-

length within the query. Inspired by this formulation, we build a scoring function atop

BM25 by two modifications: (1) we employ only bigrams–pairs of words (w1, w2)

where w2 immediately follows w1–because longer text spans become highly sparse;

(2) treating bigrams as a single compound term that can be seamlessly integrated

into any scoring mechanism, analogous to DrQA [26].

A blind integration of bigrams is less helpful due to dependency relationships be-

tween their constituent unigrams and a likely presence of unnecessary bigrams. We
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need a strategy to detect such bigrams and discard them. This practice actually exists

in IR where eliminating stopwords from the vocabulary is a standard routine.

Which bigrams are impactful? Intuitively, bigrams are expected to carry more

information than their subsuming unigrams to improve retrieval. Specifically, we

compute mutual information between a bigram b and its constituent unigrams (w1, w2)

where the amount of information is gauged via IDF:

ψ(b) = max(MI(b;w1),MI(b;w2))

=
IDFb

max(IDFw1 , IDFw2)

(2.2)

The effect of ψ, namely selectivity, is anchored in the frequency of bigrams with re-

spect to their most rare word. In particular, if the frequency of a bigram remains close

to its unigrams, adding this bigram to scoring is not expected to bring improvements.

We empirically found that a minimum ψ of 1.2 works best in our experiments.

Importance of stopwords Unlike ad hoc IR where stopwords are removed, retain-

ing stopwords within bigrams interestingly reduces the ambiguity, hence improving

the retriever effectiveness in open-domain QA. This is simply because stopwords in-

side bigrams represent localized contexts, which may be important in finding answer

passages.

For example, for the TV show “Who Wants to Be a Millionaire,” no bigrams

will be selected if stopwords are discarded. Nonetheless, the co-occurrence of the

bigrams “who wants” and “a millionaire” are strong evidence to assign higher scores

to relevant documents about the show than other documents.

Word order reversal The ordering relationship in a question is sometimes reversed

when it is transferred to an answer passage because of the interrogative mood of

questions. Since we seek to retain only the components that are expected to transfer
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to answer passages, we transform questions into their corresponding declarative form

before extracting n-grams. We use a rule-based tool, namely QA2D1 [42], for this

purpose. Because QA2D requires an answer to generate a sentence, we define a special

token as the potential answer and pass it to the tool.

2.4 Experiments

2.4.1 Experimental Setup

Datasets: We adopt two well-known information-seeking QA benchmarks in which

questions are written independent of answer passages. The details of these datasets

are provided in Table 2.1.

• Natural Questions-open (NQ-open) [101]: Originally derived from Natural

Questions (NQ) [98], this dataset serves as an established benchmark for fac-

tual question answering. NQ is curated from Google search queries for which

answers can be found in Wikipedia. Questions in NQ are often written in spoken

language and sometimes are framed in imperative mood (e.g.list all the planet

of the ape movies). For open-domain QA, a subset of NQ whose answers are

not longer than 5 tokens were selected [101].

• TriviaQA (TQA) [85]: TQA questions are written by trivia enthusiasts who

tend to formulate long and well-formed questions. It is comprised of trivia

questions mined from a variety of quiz-league websites.

Since the original test sets are hidden in both datasets, the original dev sets are

used as an unseen test set [101, 90].

Evaluation Metrics: We report standard IR metrics, hits ratio (hits@k) and mean

reciprocal rank (MRR@k), for retrieval. The end-to-end effectiveness of the pipeline is

measured using exact-match (EM) accuracy and macro-averaged F1-score (F1) [149].

1https://github.com/kelvinguu/qanli
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Table 2.1: Statistics of QA benchmarks. |Q| denotes the average number of words in
questions.

Dataset #train #dev #test |Q|

NQ-open 79.2K 8.8K 3.6K 12.5

TQA 78.8K 8.8K 11.3K 20.2

Sparse retrieval: Our knowledge source is Wikipedia that is released in DPR2

[90]. The knowledge source consists of roughly 3.2M Wikipedia articles, equated to

21M passages of 100 words, and is composed of 6.9M and 110.6M unique case-folded

unigrams and bigrams. We implement our sparse retrievers using Pyserini [111].

2.4.2 Passage Ranking

We compare our retriever, BM25Ours, with other prominent passage ranking models in

open-domain QA. Our baselines are categorized into three groups: sparse, dense, and

hybrid. In sparse retrieval, BM25 results are taken from DPR [90]. In addition, Ma

et al. [120] replicated the experiments in DPR whose results are shown as BM25Repl.

and DPRRepl.. For hybrid retrievers, we combine dense retrievers with our sparse

retrievers, as done in DPR, where a hybrid score is calculated by linear interpolation:

BM25(q, p) + λ · sim(q, p). We follow DPR [90] and set λ to 1.1 in our experiments.

Table 2.2 presents the passage ranking results. Among sparse retrievers, BM25Ours

outperforms unigram BM25Repl. retrieval models by 2.1% and 1.0% in terms of hits@100

on NQ-open and TQA, respectively. Moreover, BM25Ours outperforms sequential de-

pendence model3 (SDM) [129] where term dependence is modelled via the frequency

of contingent term spans by around +0.5% in terms of hits@100 on both datasets.

When combined with DPR, our simple hybrid retriever outperforms GAR [123], the

state-of-the-art retrieval model (i.e. +0.2% and +0.5% hits@100 gains on NQ-open

and TQA, respectively). Our results highlight that (1) local word order plays a pro-

2https://github.com/facebookresearch/DPR
3We used the implementation provided in the Anserini toolkit [111].
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found role in sparse retrieval, and (2) combining a dense and a sparse retriever is an

effective recipe for retrieval.

Table 2.2: Hits ratio at top-k passages for various retrievers.

Model
NQ-open TQA

hits@20 hits@100 hits@20 hits@100

D
en

se

DPR [90] 79.4 86.0 78.8 84.7

DPRRepl. [120] 79.5 86.1 78.9 84.8

ANCE [192] 82.1 87.9 80.3 85.2

RocketQA [146] 82.7 88.5 - -

DPR+GAR [123] 81.6 88.9 82.1 86.6

S
pa
rs
e

BM25 [90] 59.1 73.7 66.9 76.7

BM25Repl. [120] 62.9 78.3 76.4 83.2

SDM 60.2 74.4 68.2 79.6

BM25Ours 66.1 80.4 78.7 84.2

H
yb
ri
d

DPR + BM25 [90] 78.0 83.9 79.9 84.4

DPR + BM25Repl. [120] 82.7 88.1 82.6 86.5

DPR + BM25Ours 83.2 89.1 83.5 87.1

2.4.3 End-to-End Results

We evaluate the effectiveness of the overall pipeline by plugging two well-known read-

ers into our retrieval model: DPR [90] (i.e. DPRMulti) as an extractive reader, and

Fusion-In-Decoder (FiD) [81] as a generative reader. The readers here are based on

BERTbase, so all models have roughly similar number of parameters. Following DPR,

we retrieve the top-100 passages and feed them into the reader to obtain the final

answer. We test the pipeline using two retrievers: BM25Ours, and a hybrid retriever

(i.e. DPR+BM25Ours = HybridOurs).

The results are reported in Table 2.3. Among extractive readers, our pipeline
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with BM25Ours outperforms other baselines with sparse retrievers by around 4.3%

and 0.9% on NQ and TQA, respectively. Furthermore, our hybrid retriever brings

additional 2.8% gains on average and surpasses DPRRepl. + Hybrid [120] by around

1.8% margin on average. Similarly, for generative readers, we observe more than 2%

gains on both datasets when using our hybrid retriever.

Table 2.3: Exact-Match (EM) accuracy of various open-domain QA pipelines.

Model NQ-open TQA

E
xt
ra
ct
iv
e
re
ad

er
s

ORQA [101] 31.3 45.1

DPR [90] 41.5 56.8

DPR+BM25 [90] 32.6 52.4

DPR+Hybrid [90] 38.8 57.9

DPRRepl. [120] 42.5 58.3

DPRRepl.+BM25 [120] 37.0 59.2

DPRRepl.+Hybrid [120] 43.2 60.0

DPR+RocketQA [146] 42.8 -

ANCE pipeline [192] 46.0 57.5

DPR+GAR [123] 41.8 62.7

DPR+BM25Ours 41.3 60.1

DPR+HybridOurs 44.9 61.9

G
en

er
a
ti
ve

re
a
d
er
s

RAG [103] 44.5 56.8

FiDBase [81] 48.2 65.0

FiD-KDBase [80] 49.6 68.8

FiDBase+HybridOurs 50.4 67.7

2.4.4 Ablation Study

We study different versions of our model by including and excluding different classes

of question unigrams u and bigrams b in BM25:
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Figure 2.1: MRR@k on NQ-open for 5 variants of our proposed models using BM25.
u−⇝ + b∗+⇝ leads other models.

(i) n-grams in which stopwords are absent (−),

(ii) n-grams containing at most one stopword (+); for unigrams, this set is empty,

(iii) Before extracting n-grams, questions are transformed into a declarative form,

as explained in Section 2.3 (⇝),

(iv) All bigrams except non-selective ones are considered, as discussed in Section 2.3

(b∗).

The results are showcased in Table 2.4. For unigram retrieval, we observe that

dropping stopwords yields better performance, whereas applying question transfor-

mation leaves the results almost unchanged. Finally, by putting all pieces together,

u−⇝ + b∗+⇝ on average yields 1.1% gains for BM25 in terms of hits@100, compared to

unigram retrieval. Furthermore, we plot MRR@k by varying k for several variants

of our proposed retriever on NQ (a subset of models were selected to make the plot

easier to read), as depicted in Figure 2.1. Similar to previous results, u−⇝+ b∗+⇝ easily

surpasses all the variants.
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Table 2.4: Hits ratio and MRR at top-100 passages for all variants of our sparse
retriever. † and ‡ indicate statistical significance (p-value < 0.05) over u− (row 2),
unigram retrieval that is a widely-adopted retriever in open-domain QA, and over
u− + b− (row 5), a DrQA-inspired retriever, respectively.

Model Description
NQ-open TQA

hits@100 MRR hits@100 MRR

1 u Unigrams 75.4 0.318 77.5 0.404

2 u− Unigrams excluding stopwords 78.6 0.336 83.8 0.568

3 u−⇝ Row 2 with question transformation 78.7 0.338 83.7 0.572

4 u+ b (Uni+Bi)-grams 78.1 0.328 80.5 0.436

5 u− + b− (Uni+Bi)-grams excluding stopwords 78.6 0.334 83.9 0.573

6 u− + b+ Unigrams+Bigrams with ≤ 1 stopword 79.9†‡ 0.361†‡ 84.1 0.594†‡

7 u−⇝ + b+⇝ Row 6 with question transformation 80.4†‡ 0.375†‡ 84.1 0.597†‡

8 u− + b∗+ Row 6, but Bigrams chosen via Eq. (2.2) 79.8†‡ 0.366†‡ 84.0 0.590†‡

9 u−⇝ + b∗+⇝ All together, BM25Ours 80.4†‡ 0.384†‡ 84.2 0.608†‡

2.4.5 Document Ranking

In open-domain QA, passage retrieval is shown to be most effective [185, 194], but

here, we conduct a document-level retrieval experiment to demonstrate the effective-

ness of our proposed retriever at various granularity levels. At document-level, the

retriever ranks Wikipedia articles. The effectiveness of retriever models are evaluated

at top 10 documents—i.e., roughly equivalent to 100 passages. Based on our obser-

vation in passage ranking, we selected only effective models from the variants of our

retriever. We compare the results with the following baselines:

• DrQA4 [26]: Analogous to TF-IDF with u−+ b−, albeit with a difference that

n-grams are mapped into 224 bins using an unsigned murmur3 hash.

• Extended DPR [90]: We take the ordered list of passages, acquired by DPR

4https://github.com/facebookresearch/DrQA
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and rank their subsuming documents, following [37]. More precisely, documents

are ranked based on the maximum score of their passages (DPR-MaxP).

• Hybrid: Similar to passage ranking, the results of a dense retriever and a

sparse retriever are consolidated by linearly interpolating their retrieval scores.

Our document ranking results, reported in Table 2.5, are consistent with passage

ranking results. The full retriever—BM25 with u−⇝+b∗+⇝—achieves the best hits ratio

and MRR among sparse retrievers and improves upon DPR-MaxP by a 1.9% and

0.8% margin on NQ-open, and TQA, respectively.

Table 2.5: Hits ratio and MRR at top-10 documents for various retrieval models.
BM25 retrievers were run with different sets of unigrams and bigrams, explained in
Table 2.4. † indicates statistical significance (i.e. McNemar’s test for hits@k and
Student’s t-test for MRR@k with p-value < 0.05) over u−.

Model
NQ-open TQA

hits@10 MRR@10 hits@10 MRR@10

DrQA 71.8 0.511 80.2 0.663

BM25 with u− 74.9 0.566 83.6 0.679

BM25 with u− + b+ 78.5† 0.592† 84.4 0.692

BM25 with u−⇝ + b+⇝ 78.8† 0.606† 84.5 0.698†

BM25 with u−⇝ + b∗+⇝ 79.4† 0.621† 84.9† 0.709†

DPR-MaxP 82.3† 0.667† 86.2† 0.731†

DPR-MaxP+BM25Ours 84.2† 0.682† 86.8† 0.746†

2.5 Conclusions

Despite their simplicity, bag-of-word IR models often struggle in NLP tasks includ-

ing open-domain QA where syntactic information offers plausible signals to find an

answer. In this chapter, I showed that a simple modification to sparse retrievers to

incorporate local word order has a substantial impact on their effectiveness. The
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findings also revealed that although appealing, dense retrievers compromise their ex-

act matching capabilities as their effectiveness easily improves when combined with

our enhanced sparse retriever. I conjecture that this problem arises due to a lack of

understanding over contiguous spans of text. Thus, building dense retrieval models

that are designed to better represent such spans can be an interesting direction for

future work.
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Chapter 3

Robustness Via Sample-Efficient
Data Augmentation

Data Augmentation (DA) is known to improve the generalizability of deep neural net-

works as well as making models more robust. This chapter describes a taxonomy over

DA methods and points out that more effective DA methods tend to be prohibitively

slow. Moreover, I present a framework to bridge the gap between efficiency and effec-

tiveness in DA. Our method checks robustness (D2) and efficiency (D3) requirements

from the desiderata, provided in Section 1.2.

3.1 Introduction

The undeniable importance of data in deep learning [157, 155] and the costly process

of data annotation has propelled researchers into leveraging DA in a broad range

of applications from computer vision [36, 183] to NLP including machine transla-

tion [161, 164], language understanding [164, 145, 46], and question answering [163,

4, 119, 12]. DA is shown to be effective in improving generalization of deep neural

networks [44, 191] and in increasing the number of training samples especially in low

resource data regimes [161, 199]. Nonetheless, in NLP, the discrete nature of text

poses further complexity to DA as generating semantically viable text from another

text is challenging [54].

DA methods can be broadly categorized into task-aware and task-agnostic meth-
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ods. Task-agnostic DA methods essentially generate augmented text regardless of

the task at hand and often do not warrant additional training or fine-tuning. They

can be based on some hand-crafted heuristics [200, 186], back-translation [161, 49],

or token replacement from a pre-trained language model [96, 190, 137]. Even though

deploying task-agnostic methods is straightforward, these methods do not take into

account any task-specific information, and thus, their performance is usually limited.

On the other hand, task-aware DA methods are capable of generating augmented sam-

ples, conditioned on the downstream task objective [77, 191, 150]. These methods

adapt augmented examples specifically for a task in that they construct augmented

examples, sometimes partly, during training. Despite their advantages, they often in-

cur additional training costs, resulting in a prohibitively slow and a computationally

expensive training.

In general, the central problems surrounding DA techniques in NLP can be summa-

rized as follows: First, DA methods are mostly not sample-efficient in that they add

arbitrary number of augmented samples to the training data and naively incorporate

all of them into training without investigating how many of augmented samples are

actually needed. Second, although more effective, task-aware methods are notoriously

time-consuming to train. This is especially problematic in large-scale datasets such

as SQuAD [149] and MNLI [187]. Third, most DA methods are not universal as they

work solely with a particular setup—e.g., training a single-network [191], or training

in teacher-student settings [150]. Overall, the importance of both sample efficiency

and training efficiency for DA has been often overlooked.

Motivated by the above problems, in this work, we introduce a universal DA

method, Glitter 1, which can be plugged into any DA method to make them sample-

efficient, and task-aware without sacrificing performance. Specifically, given a pool of

augmented samples that are generated offline, our proposed method follows a mini-

max approach [53] to select a small subset with maximal expected loss (maximization

1Inspired by “All that is gold does not glitter” —J.R.R. Tolkien, The Fellowship of the Ring.
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step) during training. Without any further adjustments to the training algorithm,

the task objective can be optimized for this selected subset (minimization step).

Our key contributions can be summarized as follows:

1. Glitter is a universal method which can be effortlessly applied to any DA

method to enforce sample efficiency while maintaining (or even boosting) their

performance.

2. We devise strategies to adapt Glitter for a variety of widely used train-

ing setups including single-network, consistency training, self-distillation and

knowledge distillation.

3. Through our empirical evaluations, we show that Glitter achieves superior per-

formance over state-of-the-art DA methods on GLUE, SQuAD, and HellaSwag,

while significantly speeding up the training.

3.2 Related Work

3.2.1 Task-agnostic DA in NLP

Contextual augmentation techniques [96, 190] use pre-trained language models for

DA. Kobayashi [96] propose bidirectional LSTM language models for word substitu-

tion conditioned on the label of their input text. SSMBA [137] and TinyBERT [84]

perturb the input by masking some of the tokens, and then, sample tokens from a

BERT model to replace the masked tokens and generate augmented samples. Back-

Translation [161] augments data using two consecutive translation models: the first

model to translate the input into an arbitrary target language; then, a second model

to translate the result back into its original language. Mixed-up [68] generates aug-

mented samples based on interpolating word embedding and sentence embedding

vectors. Shen et al. [164] introduce a set of cut-off techniques that zero out con-

tiguous spans of the embedding matrix at token level, feature level and span level.
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EDA [186] consists of simple word-level operations including synonym replacement,

random deleting, random insertion and random swapping.

3.2.2 Task-aware DA in NLP

One approach to leverage task-specific information is to assign different weights to

augmented samples based on their individual impacts on the model [196]. Although

effective, the re-weighting mechanism largely ignores sample efficiency. Wu et al.

[190] introduce a mask-and-reconstruct approach, namely c-BERT, that fine-tune a

pre-trained BERT model to predict label-compatible tokens. CoDA [145] combines

various label-preserving transformations with adversarial training jointly with a con-

trastive regularization objective. Unsupervised DA (UDA) [191] uses off-the-shelf DA

methods and adds an auxiliary consistency loss to the training objective. However,

UDA is not sample-efficient and it is designed only for a single-network setup; how to

deploy it in other training scenarios such as knowledge distillation is not clear. Hu et

al. [77] propose a reinforcement learning-based technique where the reward function

is defined based on whether generated augmented samples are label-preserving or not.

3.2.3 DA for KD

KD [23, 74], initially proposed as a model compression technique, aims at transferring

the knowledge of an already trained model, called teacher, to a smaller or a same-size

student model. Several studies found that DA can significantly boost KD’s perfor-

mance in NLP. TinyBERT [84] uses a task-agnostic DA technique for its task-specific

fine-tuning. Kamalloo et al. [87] and Rashid et al. [150] showed that DA can also

be tailored for KD. In particular, MATE-KD [150] tunes a separate masked language

model in order to generate augmented samples with maximum divergence. Kamalloo

et al. [87] and Du et al. [46] employ kNN retrieval to fetch augmented samples from

a massive sentence bank.

Glitter differs from previous work in that it simultaneously focuses on sample
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efficiency, and universality such that it can be freely used in any training setting.

Figure 3.1: Illustration of Glitter (from left to right): first, generating augmented
samples from different DA techniques; second, forming a pool of samples X ′(i); third,
evaluating the augmented samples using the — loss; fourth, filtering the top-k1 sam-
ples based on their corresponding —; fifth, updating the parameters of the model by
minimizing the task loss ℓtask(: θ).

3.3 Methodology

In this section, we introduce our task-aware DA method, Glitter , that aims at

using an efficient number of augmented samples without sacrificing performance. Our

proposed strategy is agnostic to DA methods; it can be seamlessly plugged into any

DA method with any training setting to enforce sample efficiency.

Existing learning-based DA methods train a separate DA model and adapt its

output for a particular objective function that is entirely task-dependent:

ϕ∗ ← min
ϕ

ℓDA(M(Ω(x;ϕ); θ))

x′∗ = Ω(x;ϕ∗)
(3.1)

where ℓDA() is a loss function, geared towards the objective of the task, Ω(;ϕ) is

the DA model with trainable parameters ϕ, and M(; θ) refers to the original model,

parameterized by θ.

In contrast to learning-based DA, we propose to generate many augmented can-

didates using any arbitrary DA method prior training, and adaptively select most

suitable candidates during training. This procedure does not introduce additional
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trainable parameters into training, and more importantly, is capable of automati-

cally ignoring unnecessary augmented examples. Let (xi, yi)
N
i=1 ∈ {(X ,Y)} represent

training data such that a pair xi ∈ X and yi ∈ Y contains an input example and its

corresponding label. Suppose a pool of K augmented examples, X ′(i) = {x′k(i)}Kk=1,

are sampled from some DA model for each training example (xi, yi) ∈ (X ,Y). Note

that Glitter imposes no restrictions on how to augment training data; augmented

samples can be generated via a single or even multiple DA models.

Sample Selection. Given a pool of augmented samples, our approach is to adap-

tively select the best candidates according to a particular defined criteria. Inspired

by the minimax approach [53, 179], our selection mechanism is based on finding top-

k1 (out of K) worst-case augmented samples from the X ′ set. Minimizing the main

model loss function on these worst-case augmented samples will help improving the

generalization of the model [179]. In order to rank augmented samples, we evaluate

X ′(i) based on a distance function with respect to the corresponding original training

sample, xi, within the model’s latent space:

X ′∗(i)← topk1

(︂
ℓeval

(︁
M(xi; θ),M(X ′(i); θ)

)︁)︂
X ′∗(i) = {x′∗j (i)}k1j=1 ⊂ X ′(i)

(3.2)

where topk1() denotes returns top-k1 indices based on the scores returned by ℓeval,

X ′∗(i) is the set of k1 selected augmented samples for xi; ℓeval() is the evaluation loss

which is determined via the task objective.

Updating the Model Parameters. After obtaining the top-k1 augmented sam-

ples, we group them with the original training samples, {xi} ∪ X ′∗(i), and subse-

quently, update the model parameters only based on this selected set of augmented
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samples on the original loss:

L(θ) =
N∑︂
i=1

ℓtask

(︂
M(xi; θ),M(X ′∗(i); θ), yi

)︂
θt ← θt−1 − λ∇θ(L(θ))|θt−1

(3.3)

where N is the number of training samples, λ is the learning rate, and ℓtask() is

the final task loss—e.g., cross entropy (ce) for classification—that is computed over

both original data and selected augmented data. In the remainder of this section, we

discuss how Glitter can be applied to popular training settings including general

DA for single networks, and DA for teacher-student (KD) setups. Note that Glitter

is not restricted to these settings and may be adapted for other settings such as

DAIR [78].

3.3.1 General DA for Single Networks

We consider three potential setups for the single network scenario: (1) General single

network, (2) Self-distillation, and (3) Consistency training.

General Single Network. In this setup, augmented samples are exploited in a

semi-supervised manner where we can evaluate them based on the divergence of their

predicted output M(x′k(i); θ) = p(y|x′k(i); θ) from the ground-truth label or the pre-

diction of the original corresponding training sample M(xi; θ) = p(y|xi; θ) using the

cross entropy loss, ℓce:

ℓeval = ℓce
(︁
yi,M(x′k(i); θ)

)︁
or

ℓeval = ℓce
(︁
M(xi; θ),M(x′k(i); θ)

)︁
.

(3.4)

The cross entropy criterion is not the only option here. Other choices for ℓeval

include (but not limited to) focal loss [114], and tilted loss [105].

For the final task loss, ℓtask we can deploy a standard cross entropy loss over both
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training samples and their corresponding selected augmented samples:

ℓtask =ℓce
(︁
yi,M(xi; θ)

)︁
+

1

k1

∑︂
x∈X′∗(i)

ℓce
(︁
yi,M(x; θ)

)︁
. (3.5)

Consistency Training (CT) [191]. In this configuration, we can employ the same

ℓeval introduced in Eq. (3.4). As a result, our method naturally selects top-k1 most

inconsistent augmented samples for each training sample. Then, the network is op-

timized to make predictions for input augmented samples that are consistent with

predictions of their corresponding original training samples:

ℓCT
task =ℓce

(︁
yi,M(xi; θt)

)︁
+

1

k1

∑︂
x∈X′∗(i)

ℓce
(︁
M(xi; θt−1),M(x; θt)

)︁
. (3.6)

As stated in [191], the second term in Eq. (3.6) leverages the previous prediction

of the network for each training example.

Self-Distillation (Self-KD). In Self-KD, we first train a model, and then, use it

(M(; θ∗)) as a teacher to train an identical model but initialized from scratch using

KD [57]. How to adjust ℓeval and ℓtask is detailed in Section 3.3.2.

3.3.2 DA for Teacher-Student (KD)

In this setup, we have a teacher model, T (;ψ∗) with parameters ψ that is already

trained on the training data, along with a student model, M(; θ), which we aim

to train. The selection criterion for augmented samples is to maximize divergence

between the teacher and the student:

ℓKD
eval = ℓKL

(︂
T
(︁
x′k(i);ψ

∗)︁,M(︁
x′k(i); θ

)︁)︂
(3.7)

where ℓKL refers to the KL divergence. After selecting the maximum divergence

augmented samples, then we calculate the KD loss as following:

ℓKD
task = α ℓce

(︁
yi,M(xi; θ)

)︁
+

(1− α)× 1

k1 + 1

∑︂
x∈{xi}∪X′∗(i)

ℓKL

(︁
T (x;ψ∗),M(x; θ)

)︁ (3.8)
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where α is a hyperparameter.

3.4 Experiments

3.4.1 Setup

To incorporate unlabelled augmented data into training, we adopt CT [191] and KD

[74]. To this end, we conduct experiments under two settings:

• Standalone where we train a single model on the augmented data. In this

setting, we seek to answer two questions: (1) How much is DA capable of

improving the model generalization? (2) Does sample efficiency of Glitter hurt

performance? For this purpose, we fine-tune RoBERTabase [118] using CT and

Self-KD on augmented data.

• Distilled where we distill DistilRoBERTa [158] (student) from RoBERTaLarge

[118] (teacher) using the augmented data. Note that the teacher is already

trained on the original data and DA comes into play only during distilling the

student model. Our goal here is to investigate whether DA is an effective means

in knowledge transfer to curb the capacity gap [30] between a large model and

a small one.

In both settings, we take the best performing model on the development set and

evaluate it on the test set (depicted by Test). Additionally, for the standalone model

setting, we also report results on the development set when models are trained only

for 5 epochs (depicted by Dev), similar to CoDA [145], to make a comparison with

baselines. Our Dev results are an average of 10 runs with different seeds.

DA Methods

We leverage three widely used textual augmentation methods:
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1. EDA [186]2: We randomly replace 5% of the tokens with their synonyms and

randomly delete up to 10%.

2. Back-Translation (BT) [161]: We use fairseq [142] to translate sentences

into German and then back into English. We do nucleus sampling [76] with

p = 0.9 for both translations. We find that p = 0.6 works better on sentiment

classification.

3. Mask-and-Reconstruct (MR) [137]: We randomly mask 15% of the tokens

and construct a new sentence by sampling from a pre-trained BERTLarge for

masked tokens. We adopt top-k sampling with k = 20 to select new tokens.

For MNLI, we obtain better results with top-10 sampling.

For each augmentation method, we generate 12 augmented examples per training

instance for all datasets, except for large datasets (i.e. MNLI, QQP, and SQuAD)

where the number of augmented examples are 8 per train example.

Baselines

Because the two environments (i.e. standalone and distilled) are different in nature, we

compare Glitter with different baselines for each environment. For both, Vanilla-DA

that takes all augmented data into account without reservation is the first baseline.

The baselines for the standalone setting are: CoDA [145], MMEL [196], and Hid-

denCut [27]. And for distilled, we consider MATE-KD [150].

3.4.2 GLUE

The GLUE benchmark [182] is a well-known suite of nine3 tasks that aim at evaluating

natural language understanding models. We present test results in the distilled mode

in Table 3.1. Glitter consistently outperforms Vanilla-DA, while it is faster to train.

Specifically, Glitter achieves parity with Vanilla-DA for EDA in terms of the overall

2https://github.com/makcedward/nlpaug
3We excluded WNLI since our DA methods are not designed for this task.
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average score, while scoring +0.2% and +0.4% higher for BT and MR, respectively.

We observe that only in few cases Vanilla-DA negligibly outperforms Glitter (e.g.

on MRPC, and STS-B for BT). Nonetheless, Glitter 8x/1x4 trains 50% faster than

Vanilla-DA 8x on average, and 30% faster for 8x/2x. Also, Glitter surpasses MATE-

KD by +0.2% in the overall score. Unlike Glitter, MATE-KD introduces additional

parameters to the model during training and it trains drastically slower because it

generates augmented examples on-the-fly. Moreover, Table 3.1 illustrates that MR

yields the best test results across the three DA methods except for SST where BT

leads to better results. Based on this observation, we report results on MR augmented

data for all GLUE datasets except for SST in the remainder of our experiments.

Table 3.1: Test results of the distilled experiment on GLUE. The augmentation size
is 8x. Bold and underlined numbers indicate the best and the second best results
across the DA methods.

Method
CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE

Avg.
MCC Acc Acc/F1 P/S Acc/F1 Acc Acc Acc

RoBLarge 63.8 96.8 90.6 92.4 81.5 90.3/89.8 94.8 88.3 87.3

BERTLarge [43] 60.5 94.9 87.4 87.1 80.7 86.7/85.9 92.7 70.1 82.5

DistilRoB 55.2 93.9 85.9 86.0 80.3 84.0/83.1 90.6 73.6 81.1

KD 54.9 94.0 86.8 87.3 80.5 85.1/83.7 91.9 73.5 81.7

Task-Aware DA

MATE-KD [150] 56.0 94.9 90.2 88.0 81.2 85.5/84.8 92.1 75.0 82.8

EDA [186]

Vanilla-DA 55.5 94.8 87.6 86.1 80.7 85.3/84.7 92.0 72.8 81.8

Glitter 54.5 95.1 87.5 86.5 80.4 85.4/84.8 92.1 73.2 81.8

2x 1x 2x 2x 2x 2x 2x 1x

Back-Translation

Vanilla-DA 53.4 95.1 88.5 87.5 80.9 85.9/85.9 92.2 73.5 82.1

Glitter 54.9 95.1 88.4 87.3 80.9 86.2/85.3 92.2 73.7 82.3

2x 1x 1x 2x 2x 2x 2x 2x

Mask-and-reconstruct

Vanilla-DA 58.8 94.5 88.7 87.0 80.9 85.8/84.9 91.8 74.0 82.6

Glitter 59.2 95.1 89.2 87.6 81.0 86.6/84.8 92.4 74.1 83.0

1x 1x 2x 1x 2x 2x 2x 2x

For the standalone mode, Tables 3.2 and 3.3 present the results on test and dev,

4Our notation is K/k1 where K denotes the augmentation size and k1 is the selection size.
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respectively. Similar to distilled, Glitter outperforms Vanilla-DA by +0.5% for both

self-KD and CT. Self-KD yields better results than CT on all GLUE tasks except

CoLA. CT falls short on most GLUE tasks, compared to no DA results—i.e., top-2

rows in Table 3.2. This is why, we only evaluated Glitter with self-KD on the dev

data. Glitter achieves superior performance gains, compared to all three baselines on

all datasets except QNLI. The key advantage of Glitter is that the training procedure

remains intact.

Table 3.2: Test result of the standalone experiments on GLUE using RoBERTabase.

Method
CoLA SST MRPC STS-B QQP MNLI-m QNLI RTE

Avg.
MCC Acc Acc/F1 P/S Acc/F1 Acc Acc Acc

RoBERTabase 61.9 95.4 88.6 89.3 80.4 87.6 93.0 81.6 84.7

Self-KD 61.7 95.7 89.0 89.0 80.8 88.3 93.0 81.7 84.9

+ Vanilla-DA 61.5 96.1 88.9 89.7 81.0 88.0 92.9 81.1 84.9

8x 8x 8x 8x 8x 8x 8x 12x

+ Glitter 62.5 96.0 89.8 89.5 81.1 88.1 93.5 82.3 85.4

8x/1x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 8x/2x 12x/1x

CT + Vanilla-DA 59.4 95.6 89.0 85.8 80.3 82.5 92.0 80.2 83.1

8x 8x 8x 10x 8x 8x 8x 10x

CT + Glitter 62.7 95.8 89.2 87.9 80.9 84.1 92.9 81.8 84.4

8x/1x 8x/1x 8x/1x 10x/1x 8x/2x 8x/2x 8x/2x 10x/1x

Out-of-Domain Generalization

We also evaluate Glitter on OOD datasets. To this end, we test our models, already

trained on GLUE tasks, on OOD datasets whose data distribution differs from the

original data. In particular, here are our selected OOD datasets:

• SST: IMDb [121], IMDb-Cont. [61], and IMDb-CAD [91], as done by Chen et

al. [27]. Although both SST and IMDb datasets are collected on movie reviews,

IMDb reviews tend to be substantially longer than SST sentences.

• STS-B: SICK [124], a semantic relatedness dataset, created from image and

video captions. SICK and STS-B are collected on roughly identical domains,

but from different sources.
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Table 3.3: Dev results of the standalone experiment on GLUE using RoBERTabase.
For MMEL, the results are obtained from our implementation.

Method
SST MRPC MNLI-m QNLI RTE

Avg.
Acc F1 Acc Acc Acc

RoB [118] 94.8 90.2 87.6 92.8 78.7 88.8

CoDA [145] 95.3 91.7 88.1 93.6 82.0 90.1

HiddenCut [27] 95.8 92.0 88.2 93.7 83.4 90.6

MMEL [196] 94.6 ± 0.8 91.9 ± 0.4 88.1 ± 0.1 93.2 ± 0.1 85.3 ± 1.0 90.6

RoB 94.3 ± 0.1 91.6 ± 0.5 87.7 ± 0.1 92.8 ± 0.2 84.5 ± 0.8 90.2

Self-KD 94.3 ± 0.2 91.5 ± 0.3 87.9 ± 0.1 92.9 ± 0.2 84.0 ± 0.6 90.1

+ Vanilla-DA 95.4 ± 0.5 92.0 ± 0.3 88.2 ± 0.1 93.4 ± 0.1 84.4 ± 0.7 90.7

+ Glitter 95.7 ± 0.2 92.2 ± 0.5 88.2 ± 0.1 93.4 ± 0.1 85.6 ± 0.7 91.0

• QQP: PAWSQQP [201], analogous to [27], and MQP [127], a medical question

similarity dataset.

• MNLI: SciTail [95], collected from school-level science questions, and similar to

[27], A-NLI [139], and HANS [126].

• RTE: HANS [126].

Table 3.4 showcases the OOD results for the distilled mode. Glitter outperforms

Vanilla-DA in most cases, and is on par with it for nearly the rest. The only exceptions

are MQP, and PAWSQQP where Vanilla-DA outperforms Glitter by almost 1% on

average. Also, all models do not generalize well to PAWSQQP and A-NLI because

their performance is below a majority-class performance. Moreover, a fine-tuned

DistilRoBERTa achieves the best OOD performance on HANS, highlighting that DA

is not actually helpful for OOD accuracy on HANS.

Table 3.5 and Table 3.6 report the OOD results for standalone models on test and

dev settings, respectively. Glitter overwhelmingly outperforms all the baselines with

a few exceptions. In the dev results, the fine-tuned model with no DA achieves the
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best OOD generalization on IMDb, and SciTail, while HiddenCut scores the highest

on A-NLI with a 1% margin. Similarly, in the test results, Glitter trails Self-KD with

no DA on IMDb, IMDb-CAD, and SciTail.

Table 3.4: OOD results for the distilled mode. Bold numbers indicate the best result
across DistilRoB models.

Trained On → SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBLarge 93.7 94.0 84.3 71.6 43.6 82.0 45.9 81.8

DistilRoB 90.2 92.5 79.6 67.3 36.3 74.8 27.8 71.3

KD 90.6 93.2 79.9 65.6 33.1 77.3 28.9 70.6

EDA [186]

Vanilla-DA 91.8 92.9 80.0 59.9 38.0 75.8 27.3 66.6

Glitter 91.2 94.0 80.0 64.0 36.6 75.6 28.8 65.6

Back-Translation

Vanilla-DA 92.2 92.1 80.3 69.6 35.0 76.5 27.9 68.0

Glitter 92.4 92.8 81.2 68.7 35.2 77.6 30.4 70.5

Masked-and-reconstruct

Vanilla-DA 91.8 92.9 80.4 68.5 33.7 77.4 28.5 69.3

Glitter 92.0 92.5 80.7 68.8 35.3 78.2 29.9 70.9

Table 3.5: OOD results for test settings in the standalone mode. Bold numbers
indicate the best result.

Trained On → SST SST STS QQP QQP MNLI MNLI RTE

Method
IMDb IMDb-CAD SICK MQP PAWSQQP SciTail A-NLI HANS

Acc Acc P/S Acc/F1 Acc Acc Acc Acc

RoBBase 92.2 94.3 80.6 70.7 38.6 78.5 31.4 78.5

Self-KD 92.6 95.0 80.2 70.9 37.6 79.4 32.1 79.5

+ Vanilla-DA 91.8 94.8 81.5 71.4 38.8 78.4 31.5 79.3

+ Glitter 92.0 94.8 81.7 72.1 39.4 79.1 32.7 80.1

CT + Vanilla-DA 90.6 92.1 76.6 70.6 38.3 76.6 30.3 78.4

CT + Glitter 92.2 93.7 79.4 70.7 38.8 77.0 31.6 80.2

3.4.3 HellaSwag

HellaSwag [198] is a dataset for situated commonsense reasoning that involves picking

the best ending given a context. We augment contexts in HellaSwag using only BT
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Table 3.6: OOD results for dev settings in the standalone mode. For MMEL, the
results are obtained from our implementation. Bold numbers indicate the best result.

Trained On → SST SST SST MNLI MNLI RTE

Method
IMDb IMDb-Con. IMDb-CAD A-NLI HANS HANS

Acc Acc Acc Acc Acc Acc

RoBBase 91.9 ± 0.3 90.0 ± 0.4 94.1 ± 0.4 31.0 ± 0.6 73.7 ± 0.7 78.3 ± 0.4

HiddenCut [27] - 87.8 90.4 32.8 71.2∗ -

MMEL [196] 91.6 ± 0.1 90.5 ± 0.7 94.5 ± 0.4 31.4 ± 0.6 74.5 ± 0.6 78.3 ± 0.3

Self-KD 91.9 ± 0.3 90.3 ± 0.5 94.4 ± 0.4 30.9 ± 0.4 73.5 ± 0.7 78.2 ± 0.4

+ Vanilla-DA 91.6 ± 0.4 90.2 ± 0.4 94.3 ± 0.3 31.3 ± 0.5 73.9 ± 0.4 77.8 ± 0.3

+ Glitter 91.7± 0.2 90.6± 0.2 94.8± 0.2 31.8 ± 0.4 74.6 ± 0.3 78.4 ± 0.2

to ensure that the choices remain meaningful for the augmented contexts. Because

our standalone results have been consistent with the distilled results, we report our

results only in the distilled mode. According to our results demonstrated in Table 3.7,

Glitter comfortably surpasses Vanilla-DA by a +2.3% margin.

Table 3.7: Dev results of the distilled experiment on two downstream tasks.

Method
SQuAD HellaSwag

EM/F1 Acc

RoBLarge 88.9/94.6 85.2

DistilRoB 80.9/87.9 42.9

KD 81.1/88.2 42.5

+ Vanilla-DA (8x) 81.8/89.1 41.8

+ Glitter (8x/2x) 83.6/90.3 44.1

3.4.4 SQuAD

SQuAD [149] is a crowd-sourced reading comprehension benchmark that consists of

more than 100K questions, derived from Wikipedia passages. The task objective is to

extract an answer span from a given question/passage pair. We augment questions in

SQuAD v1.1 using only BT to ensure that the answer can still be found in the given

passage for the augmented questions. Analogous to HellaSwag, we report our results
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only in the distilled mode. As shown in Table 3.7, Glitter outperformas Vanilla-DA

by +1.8% in exact-match accuracy on the development set.

We also evaluate our trained models under distribution shift by testing them on

QA datasets from four different domains: Wikipedia, New York Times, Reddit, and

Amazon product reviews [130]. The OOD results are presented in Table 3.8. Glitter

is consistently superior to Vanilla-DA in all four domains.

Table 3.8: OOD results for models trained on SQuAD and tested on QA datasets
from four different domains [130].

Method
Wiki NYTimes Reddit Amazon

EM EM EM EM

RoBERTaLarge 84.4 85.9 76.6 74.4

DistilRoBERTa 76.6 78.1 66.2 62.9

KD 76.5 78.7 65.7 63.0

+ Vanilla-DA (8x) 77.3 79.0 65.9 63.3

+ Glitter (8x/2x) 79.3 80.7 68.1 64.7

3.5 Ablation Study and Discussion

In this section, we aim to answer the following questions:

• How does training time of Glitter compare against Vanilla-DA?

• Instead of adaptively selecting augmented data during training, can we pre-

process them to dispense with unnecessary examples prior to training?

• How many augmented examples are required for Glitter to work?

• Is our selection strategy based on sorting of ℓeval in Glitter important?

For this purpose, we conduct a detailed analysis on 4 GLUE tasks (i.e. SST,

MRPC, QNLI, and RTE). We trained models based on Vanilla-DA and Glitter using

Self-KD and tested them on the development set (the dev setting).
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3.5.1 Runtime Analysis

Throughout our experiments in Section 3.4, we compare Glitter with Vanilla-DA when

number of augmentations are similar for both methods—i.e., 8x. A natural question

is: how would both DA methods behave with fewer augmented data? To this end, we

vary augmentation size from 1x to 8x and train different Vanilla-DA models on each

augmented dataset. We measure average the training time per epoch for all models.

Figure 3.2 illustrates the dev accuracy as the training time increases. The training

speed of Glitter 8x/2x is slightly faster than Vanilla-DA 6x on SST, MRPC, and

QNLI and for Glitter 8x/1x, is faster than Vanilla-DA 4x on RTE. Glitter is superior

of the two on all datasets.
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Figure 3.2: Runtime Analysis of DA when training RoBERTabase using self-KD. The
red point signifies Glitter 8x/2x, except for RTE that is 8x/1x.

38



3.5.2 Effect of Pre-processing Augmented Data

We conjecture that Glitter does not need any data engineering on augmented exam-

ples to obtain preferable performance gains. However, Vanilla-DA may require some

pre-processing by weeding out potentially noisy data to become more effective. To

investigate this, we exploit two pre-processing techniques:

(1) Confidence-based filtering: Augmented examples for which the model’s con-

fidence is below a minimum threshold β are discarded,

(2) Label-preserving augmentation (LP): Augmented examples for which the

model predicts a different label than the original example are discarded.

The results, reported in Table 3.9, show no meaningful performance gains by these

pre-processing techniques. For Vanilla-DA, minimum confidence threshold of 0.7 per-

forms slightly better as it brings minor improvements on MRPC (+0.3%) and QNLI

(+0.1%), but is still lower than Glitter. On the other hand, applying these tech-

niques slightly deteriorates the performance of Glitter in almost all cases. The only

improvements are +0.1% on QNLI for LP and β=0.7.

Effect of Augmentation Size in Glitter. We explore how augmentation size

affects the performance of Glitter. Throughout our experiments, we fix the aug-

mentation size to 8x, but now, we reduce augmentation size K to 6x and 4x, while

retaining selection size k1 as before (i.e. 1 for RTE, and 2 for the rest). Our results,

shown in Table 3.10, reveal that when K becomes close to k1, Glitter’s performance

declines. Nonetheless, for a sufficiently large augmentation, Glitter starts to shine.

For SST, and MRPC, the magic number is 8x, whereas for QNLI, and RTE, Glitter

performs best on 6x. Another parameter in Glitter is the selection size k1. We find

that for all tasks, the best value can be chosen from {1, 2} (2 by default). Using this

method, tuning k1 is straightforward and does not impose additional complexity to

our method.
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Table 3.9: Dev results of self-KD exhibiting the effectiveness of different pre-
processing techniques to filter augmented examples on 4 GLUE tasks. β and LP
depict a minimum confidence threshold, and label preserving, respectively.

Method
SST MRPC QNLI RTE

Acc F1 Acc Acc

Vanilla-DA 95.1 92.2 93.3 84.8

+ β = 0.7 95.1 92.5 93.4 84.8

+ β = 0.9 95.0 92.2 93.3 83.8

+ LP 94.8 92.4 93.3 84.8

Glitter 95.8 92.8 93.4 85.9

+ β = 0.7 95.0 91.5 93.5 85.2

+ β = 0.9 95.0 92.5 93.3 84.1

+ LP 95.1 92.2 93.5 85.9

Effect of Selection Strategy in Glitter. In this section, our objective is to

assess whether our proposed selection algorithm is crucial in Glitter. To this end, we

sample random augmented examples at each iteration, namely Glitter-Rnd, instead

of selecting worst-case examples. As illustrated in Table 3.10 (the bottom two rows),

the performance drops on all datasets—i.e., 0.2% on QNLI, and more than 1% on the

rest, confirming the effectiveness of our selection algorithm.

3.6 Reproducibility

3.6.1 Fine-tuning Details

We adopted the publicly available pre-trained RoBERTa [118] and DistilRoBERTa

[158] using the Huggingface Transformers library [188] and the Pytorch Lightning

library5.

For the test settings, the model is evaluated on the development data once per

epoch for small datasets and twice per epoch for large ones (i.e. SST-2, MNLI, QNLI,

5https://github.com/PyTorchLightning/pytorch-lightning
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Table 3.10: Dev results of self-KD for studying the effect of augmentation size and
the selection algorithm for 4 GLUE tasks.

Method
SST MRPC QNLI RTE

Acc F1 Acc Acc

k1 = 2x k1 = 2x k1 = 2x k1 = 1x

Glitter (8x/k1) 95.8 92.8 93.4 85.9

Glitter (6x/k1) 94.7 92.7 93.7 86.3

Glitter (4x/k1) 95.0 92.1 93.3 85.7

Glitter-Rnd (8x/2x) 94.3 91.4 93.2 85.2

Glitter-Rnd (8x/1x) 94.3 91.8 93.2 84.5

SQuAD, and HellaSwag). The best performing model is chosen for testing. Our

learning rate schedule follows a linear decay scheduler with a warm-up, specified as a

ratio of the total number of training steps. Maximum number of epochs is set to 20

for all tasks except SQuAD, following [135]. For large datasets, we early stop with a

patience of 10. The learning rate, and the batch size are tuned for each task separately.

The details of hyperparameters are summarized in Table 3.12. We ran RoBERTabase

experiments with the similar hyperparameters, but with these exceptions: On QNLI,

learning rate, batch size, and weight decay are set to 3e-5, 64, and 0.1; warmup ratio

is set to 0.06 on QQP.

For dev experiments, we follow CoDA [145] on the GLUE tasks. Specifically, we

train the model for 5 epochs with a batch size of 32, learning rate 1e-5, warmup ratio

0.06, weight decay 0.1, and linear learning rate decay. For SQuAD, and HellaSwag,

the hyperparameters are detailed in Table 3.11.

All experiments were conducted on two Nvidia Tesla V100 GPUs.

3.6.2 Distillation Details

We implemented KD by caching the teacher’s logits prior to training. We per-

formed grid search to find the best softmax temperature τ from {5.0, 10.0, 12.0, 20.0,
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Table 3.11: Hyperparameters of DistilRoBERTa on two downstream tasks.

Hyperparameter SQuAD HellaSwag

Learning rate 1.5e-5 1.5e-5

Batch size 16 32

Max length 512 512

Max epochs 3 20

Warmup ratio 0.06 0.06

Grad. accumulation steps 4 1

Weight Decay 0.01 0.01

Softmax temp. τ (for KD) 5.0 10.0

Table 3.12: Hyperparameters of DistilRoBERTa on the GLUE benchmark. We used
the same configuration for RoBERTabase albeit with a few exceptions marked by (∗).

Hyperparam. CoLA SST MRPC STS-B QQP MNLI-m/mm QNLI RTE

Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 3e-5/1e-5 5e-5∗ 1e-5

Batch size 32 64 16 32 64 64 128∗ 32

Max length 128 256 128 128 256 256 256 256

Warmup ratio 0.1 0.06 0.06 0.06 0.1∗ 0.08/0.06 0.08 0.06

Gradient acc. steps 1 4 1 1 4 4 4 1

Weight Decay 0.1 0.1 0.1 0.1 0.1 0.0/0.1 0.0∗ 0.1

Softmax temp. τ (for KD) 30.0 20.0 12.0∗ 12.0 20.0 12.0 12.0 12.0

30.0}. The value of τ used in our experiments are reported in Tables 3.11 and 3.12

for DistilRoBERTa and RoBERTabase; with the exception τ = 20.0 on MRPC for

RoBERTabase. Loss weight α, in Eq. (3.8), is set to 0.5 for all tasks except CoLA in

which α = 0.75.

3.7 Conclusion

In this chapter, I proposed a universal DA technique, namely Glitter, that can be

freely applied to any DA technique to enforce sample efficiency without introducing

additional parameters or changing the training procedure. I extensively evaluated
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Glitter on a broad range of NLU tasks and in various widely used settings including

consistency training, self-distillation and knowledge distillation and demonstrated

substantial efficiency gains without compromising effectiveness. Extending Glitter to

auto-regressive models for machine translation and abstractive summarization is an

interesting direction for future work.

43



Chapter 4

An Unsupervised Model for
Grounding Location Mentions

The Web data is often accompanied by attachments that offer supplementary infor-

mation. For instances, images are geotagged by default when taken by smartphones,

or news articles include authors, and datelines, or scientific articles provide an ab-

stract along with some related keywords. Meta information provide useful means

that can be used for data processing (e.g. data cleaning or data augmentation) or

even modelling (e.g. inferring inductive biases). In QA, leveraging meta information

has been successful [203, 116]. More recently, Asai et al. [13] constructed reasoning

chains required for answering complex questions via Wikipedia link graph. In light

of these work, QA systems, especially in real-world scenarios, can benefit from meta

information. For instance, ambiguous questions may be successfully answered using

some auxiliary information from the user. In this chapter, I take the very first step

towards building such systems. More specifically, I present an algorithm that enriches

text with auxiliary information, yet another step towards effective knowledge acqui-

sition (D1) indicated in Section 1.2. The main focus here is on spatial information

(i.e. geographic footprints). Hopefully, using methods such as the present work spur

the development of QA systems leveraging meta information.
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4.1 Introduction

The size of the Web has been growing near-exponentially over the past decade with

a vast number of websites emerging on a variety of subjects and large volumes of

textual data being made available every day. In particular, a staggering amount of

Web content (such as news articles, blog, forum posts, and tweets) that are added

online on a minute by minute basis make frequent use of location names as points of

reference. However, many place names have multiple interpretations and using them

as references introduces ambiguity which in turn leads to uncertainty. Determining

geographic interpretations for mentions of place names, known as toponyms, involves

resolving multiple types of ambiguities. Toponym resolution is the task of disam-

biguating or resolving toponyms in natural language contexts to geographic locations

(i.e., the corresponding lat/long values). One of the formidable challenges is therefore

related to resolving the ambiguity of place names. For example, consider the word

Paris in the following sentences:

1. “The November 2015 Paris attacks were the deadliest in the country since

World War II.”1

2. “Paris was voted ‘the Prettiest Little Town in Canada’ by Harrowsmith Mag-

azine.”2

The first sentence cites the tragic incidents in Paris, France while in the second

sentence, the co-occurrence of Canada and Paris helps us identify Paris. This ex-

ample illustrates that a toponym resolution method should probe for such clues in

documents to reduce the inherent ambiguities of the natural language text. GeoN-

ames3, the largest crowd-sourced location database, lists 97 interpretations for the

place name Paris.

1https://en.wikipedia.org/wiki/November 2015 Paris attacks
2http://www.brant.ca/en/discover-brant/paris.asp
3http://geonames.org/
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The problem of toponym disambiguation has been studied in the literature. Early

works on geotagging documents rely on hand-crafted rules and heuristics (e.g., Web-

a-Where [6]). Recent studies, however, are grounded on supervised and unsupervised

models that do not warrant any manual rules [173, 128, 1, 41, 109]. Adaptive Con-

text Features (or Adaptive in short), proposed by Lieberman and Samet [109], and

TopoCluster, suggested by DeLozier et al. [41], are among the prominent methods

that have been proposed in this area. Adaptive method casts toponym resolution

as a classification problem, whereas TopoCluster leverages geographical measures to

estimate geographical profiles for words.

In this work, we propose an unsupervised model to tackle toponym resolution

since supervised methods yield a poor performance due to the paucity of sufficient

annotated data. Our methods rely merely on the document content and a gazetteer

primarily because supplementary information about a Web document often is neither

available nor reliable. Clearly, any additional data such as the hosting site of the

document and its location (if available) can further improve the performance.

Our toponym resolution model utilizes context-related features of documents. First,

we develop a probabilistic model, called Context-Bound Hypotheses (CBH), inspired

by the work of Yu and Rafiei [197], to incorporate two context-related hypotheses into

toponym resolution. Yu and Rafiei’s model aims at geotagging non-location entities

and employs a primitive disambiguation technique to spatially resolve toponyms. We

extend this model by integrating geographical information of locations into the hy-

potheses. These context-related premises capture some of the implicit relationships

that hold between place names mentioned in the same document; thus, each toponym

follows either the location of a frequent toponym or a nearby toponym. Then, we

develop another model, called Spatial-Hierarchy Sets (SHS), which discovers a mini-

mal set of relationships (as discussed in Section 4.2) that can exist among toponyms.

SHS maps the minimality problem to a conflict-free set cover problem wherein sets are

constructed using containment and sibling relationships among toponyms. The final
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model, Context-Hierarchy Fusion (CHF), merges CBH and SHS to exploit context

features in extracting minimal relationships.

We conduct extensive experiments to evaluate our model. Our experiments are

carried out on multiple datasets, one collected and annotated by us and two others

well-known and used in the literature, covering a large range of news sources. We

assess the performance of our model and compare it with the state-of-the-art super-

vised and unsupervised techniques as well as a few commercial geotagging products

including Yahoo! YQL Placemaker4, Thomson Reuter’s OpenCalais5, and Google

Cloud Natural Language API6. Moreover, we study the generalization problem of

supervised methods by feeding unseen data to Adaptive classifier, showing that the

classifier cannot keep up with our unsupervised model.

In summary, the key contributions of this work are as follows:

• We devise an unsupervised toponym resolution model that leverages context

features of documents as well as spatial relationships of toponyms to produce a

coherent resolution.

• We extensively evaluate our model on different datasets and in comparison with

state-of-the-art methods.

• We demonstrate that our unsupervised model surpasses the state-of-the-art un-

supervised technique, TopoCluster [41], and that it can handle unknown data

better than supervised techniques.

4.2 Problem Definition

Given a document D and a sequence of toponyms T = t1, t2, · · · , tK mentioned in

D (e.g. extracted using a named-entity recognizer), toponym resolution refers to

grounding each toponym ti to a geographic footprint ℓi with a latitude and a longitude.

4https://developer.yahoo.com/yql/
5http://www.opencalais.com/
6https://cloud.google.com/natural-language/
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Geographic footprints or references are often derived from a gazetteer, a repository

of georeferenced locations and their associated metadata such as type/class, popula-

tion, spatial hierarchy, etc. Following previous works [109, 173], we select GeoNames

as our gazetteer primarily because not only is it the largest public location database

with sufficiently high accuracy [2], but it also stores the spatial hierarchy of locations7.

Additionally, the bounding boxes of some locations can be retrieved from GeoNames.

Each toponym ti in D has a set of location interpretations Li = {li,1, li,2, · · · , li,ni
},

derived from a gazetteer G, where ni indicates the number of interpretations for

toponym ti. Hence, toponym resolution can be seen as detecting a mapping from

location mentions T to location interpretations. The resolution method yet cannot

enumerate all possible combinations of interpretations. For instance, in a document

that contains only 6 U.S. states: Washington (n1=113), Florida (n2=228), California

(n3=225), Colorado (n4=230), Arizona (n5=63) and Texas (n6=53), the number

of possible interpretations exceeds 4 billion. The past works in this area therefore

incorporate heuristics to reduce the immense search space. For instance, picking

the most populated interpretation is a simple heuristic that has been adopted in

early works [102]. However, population alone cannot be effective for an off-the-shelf

resolution system. We address this problem by looking into containment and sibling

relationships among toponyms in a document.

4.3 The Unsupervised Model

The proposed method leverages a combination of context-related features of docu-

ments to address toponym resolution. These features are grounded on the character-

istics of toponyms. It is well-accepted (e.g. SPIDER [173]) that toponyms mentioned

in a document often show the following minimality properties:

• one-sense-per-referent : all of the occurrences of a toponym generally refer to a

7OpenStreetMap, another well-known crowd-sourced gazetteer, is ruled out since it does not
contain spatial hierarchies [65].
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unique location within a single document;

• spatial-minimality : toponyms mentioned in a text tend to be in a spatial prox-

imity of each other.

In this section, we develop context-bound hypotheses, inspired by the named entity

geotagging method suggested by Yu and Rafiei [197]. Then, we describe spatial

hierarchies built from containment and sibling relationships among location mentions

in text. Lastly, we explain how these two methods coalesce into an unsupervised

model to disambiguate toponyms.

4.3.1 Context-Bound Hypotheses

Yu and Rafiei [197] propose a probabilistic model to associate named entities to loca-

tions. The task of geotagging named entities is delineated as follows: given a named

entity and a set of documents germane to it, a geotagger finds the geographic focus

of the named entity. The model, introduced by Yu and Rafiei [197], incorporates

two hypotheses: geo-centre inheritance hypothesis and near-location hypothesis and

estimates the probabilities that these premises hold. The probabilistic model makes

use of the known entities that are mentioned in the surrounding text to determine the

geo-centre of a named entity. Their geotagging task mainly focuses on non-location

named entities and does only a simple location disambiguation on each toponym,

independent of other toponyms in the same document. A question here is if their

probabilistic model can be applied to toponym resolution. This is the question we

study in our Context-Bound Hypotheses (CBH) model. In particular, to model the

cohesion of toponyms to context, we integrate the hypotheses with geographical in-

formation of locations in order to spatially locate a place mention. Context-Bound

assumptions allow us to reduce toponym resolution to a probabilistic model, which

we are set to compute the estimations in this section.

The space of possible interpretations (as shown with an example of 6 U.S. states)
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Algorithm 1 Preliminary Toponym Disambiguation in CBH

Require: Document D
Require: Sequence of toponyms T
1: resolution← ∅
2: for toponym ti in T do
3: ℓi ← Nil

4: for interpretation li,j in Li do
5: Hi,j ← RetrieveHierarchy(li,j)
6: node← LookUp(parent[li,j],Hi,j)
7: score← 0
8: while node ̸= Nil do
9: for mh in Mentions(node) do
10: for ml in Mentions(li,j) do
11: similarity ← max(similarity, 1

TD(mh,ml)
)

12: end for
13: score← score+ similarity
14: end for
15: node← parent[node]
16: end while

17: if confidence[ℓi] < score then
18: ℓi ← (li,j, score)
19: else if confidence[ℓi] = score then
20: if population[ℓi] < population[li,j] then
21: ℓi ← (li,j, score)
22: end if
23: end if
24: end for
25: resolution← resolution ∪ (ti, ℓi)
26: end for
27: return resolution ▷ A preliminary mapping from T to location interpretations

can be huge and enumerating all combinations may not be feasible. To be able

to compute probabilities of the hypotheses, we perform a preliminary location dis-

ambiguation [197]. This procedure, shown in Algorithm 1, leverages a heuristic to

resolve toponyms. Consider a location interpretation li,j of toponym ti. The men-

tions of the ancestors in li,j’s spatial hierarchy (line 5; the hierarchies can be obtained

from gazetteer G) can be used as clues to resolve toponym ti. The closer an ances-

tor mention is, the more chance that particular interpretation has to get selected.
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For example, toponym Edmonton refers to 6 different locations. Provided that it co-

occurred with either Alberta or Canada, we can pinpoint it (i.e. the city of Edmonton

located in Canada). For each toponym ti, the preliminary disambiguation measures

a score for each interpretation li,j (lines 8-16) and picks the interpretation with maxi-

mum score (lines 17-18) and in case of tie, the most populous interpretation is selected

(lines 19-23). The score is acquired by finding the maximum similarity between li,j

mentions and its ancestors’ mentions; similarity here is the inverse of term distance

(line 11), as used by Yu and Rafiei [197].

Preliminary disambiguation works poorly in cases where no mentions of locations

in spatial hierarchy exist in the document. For instance, suppose we find toponyms

Toronto, London, and Kingston in an article. Though, humans can recognize that

these cities are presumably located in Ontario, Canada, preliminary resolution is

unable to find any clues for disambiguation and as a result, assigns the toponyms to

the interpretation with the highest population (i.e. Toronto ↦→ Canada, London ↦→

England, and Kingston ↦→ Jamaica).

The result of the initial phase can be augmented by incorporating context-related

features into the resolution process. Our CBH model proceeds to compute probabil-

ities for the two hypotheses. The method operates at each administrative division

separately since toponyms may lie in disparate division levels. Hence, the method

begins the disambiguation process from the lowest division and furthers the process

until all toponyms are resolved.

The geo-centre inheritance indicates that the location interpretation of a toponym

can be drawn from the geographic scope of the document. The entities (i.e. people,

locations, and organizations) used in an article, can ascertain a location interpretation

to which the article is geographically relevant [7]. This location defines the geographic

scope of the document.

Based on the inheritance hypothesis, the toponyms mentioned in a document are

more likely to be part of or under the same administrative division as the geographic

51



scope of the document. This makes sense due to the spatial minimality property.

Therefore, we first estimate the geographic scope of the document via a probabilistic

model. In particular, for toponym ti at division d, the probability of li,j being the

correct interpretation is

P
(d)
inh(li,j|D, ti) =

tf ( ancd (li,j) )∑︁ni

p=1 tf ( ancd (li,p) )
(4.1)

where ancd returns the ancestor of an interpretation at division d and tf(w) computes

the term frequency in the document. Each location interpretation here is extended to

include its corresponding spatial hierarchy. For example, interpretations of toponym

Paris are represented as{︁
[Paris⇝ Ile-de-France⇝ France],

[Paris⇝ LamarCounty ⇝ Texas⇝ US], · · ·
}︁

The second hypothesis, namely near-location hypothesis, relies upon the toponyms

mentioned in the vicinity of a toponym. Toponyms nearby a toponym can be linked

to one another primarily because of object/container and comma group relationships

they possibly have [110]. According to this hypothesis, the closer toponym s to

toponym t, the stronger evidence toponym s is to disambiguate toponym t. This

is why, in this hypothesis, we compute the term distance between toponyms as a

measure of similarity to estimate probabilities. In effect, for toponym ti at division

d, the probability of li,j being the correct interpretation is

P (d)
near(li,j|D, ti) =

sim (ti , ancd (li,j))∑︁ni

p=1 sim (ti , ancd (li,p))
(4.2)

where sim(v1, v2) is the similarity function between terms v1 and v2 as demonstrated

below:

sim(v1, v2) =
1

minwi∈M(vi){TD(w1, w2)}
(4.3)

where TD(w1, w2) is the distance between indices of w1 and w2 and M(v) is a set

containing the mentions of term v in document D.
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Now, we combine P
(d)
inh and P

(d)
near to incorporate both premises into the model.

The final context-bound model is regarded as a weighted linear function of the two

probabilities:

P
(d)
CB(li,j|D, ti) = J (d)(D, ti) · P (d)

near(li,j|D, ti)

+ (1− J (d)(D, ti)) · P (d)
inh(li,j|D, ti)

(4.4)

The coefficient J (d)(D, ti) is obtained via Shannon Entropy of the vector induced

by near-location probabilities for toponym ti with respect to li,j for all values of j.

The resolution is undertaken through maximum likelihood estimation over the

probability in Equation (4.4). The final computed probability can be considered as

confidence score.

Algorithm 2 CBH Resolution

Require: Document D and sequence of toponyms T
Require: A mapping from T to location interpretations

1: resolution ← PreliminaryResol(D,T) ▷ Algorithm 1
2: for k=1 to maxIterations do
3: for division d in {County, State, Country} do
4: for toponym ti in T do
5: ℓi ← argmaxj{P (d)

CB(li,j|D, ti)} ▷ Refer to Eq. (4.4)
6: resolution← resolution ∪ (ti, ℓi)
7: end for
8: end for
9: end for

In summary, the CBH resolution method is illustrated in Algorithm 2. The ap-

proach starts with a preliminary resolution, followed by a hypotheses assessment to

rectify results from the initial resolution. The hypotheses model computes the prob-

abilities for each division separately to ensure the model can afford toponyms in all

levels of dispersion. Once the modification process finished, the algorithm repeats for

another iteration since altering the resolution of a toponym may affect other disam-

biguated toponyms. Our experiments show that CBH often takes two iterations to

complete. However, in some cases, the modification step never terminates. Specifi-

cally, consider the following sentence, an excerpt from a news article:
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“... London’s Heathrow, one of the world’s busiest travel hubs.”8

London and Heathrow are recognized as toponyms. Because no notion of ancestors in

the spatial hierarchy can be found, the initial resolution favors the highest population

interpretation (i.e., London ↦→ England and Heathrow ↦→ Florida, US). In the next

step, the hypotheses model maps London to a place in United States because the

other toponym is located in United States. Accordingly, Heathrow is assigned to the

airport in England. After the first iteration, the resolution is changed to {London ↦→

US,Heathrow ↦→ England}. Conversely, the second iteration would alter the results

to {London ↦→ England,Heathrow ↦→ US}; the algorithm is now trapped in an

infinite loop. This is why, we introduce maxIterations parameter to eschew these

circumstances. While CBH fails to successfully resolve toponyms in such cases, the

approach, described in the next section, can address this shortcoming.

4.3.2 Spatial-Hierarchy Sets

The spatial minimality property (noted by Leidner [102]) leads us to another res-

olution method called Spatial-Hierarchy Sets (SHS). This method is grounded on

containment and sibling relationships that are likely to exist among toponyms in a

document. Consider a non-disjoint partitioning of the universe of locations (in a

gazetteer) where locations with similar or related interpretations (e.g. those under

the same administrative division or within a close proximity) form a partition. Since

toponyms in a document tend to refer to geographically related locations, and those

locations are more likely to be in the same partitions than different partitions, we

want to find a small set of partitions that cover all toponyms; this can be modeled

as a conflict-free covering problem. Conflict-free covering refers to the traditional

set cover problem where each element must be covered by at most one set in the

answer. The covering needs to be conflict-free due to one-sense-per-referent property.

We formally define conflict-free covering as an instance of the conflict-free coloring of

8http://money.cnn.com/2016/12/14/news/companies/british-airways-ba-strike-christmas
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regions [71].

Conflict-free Covering Problem

Given a finite family of finite sets S where each set Si is associated with a non-negative

weight wi and a universal set U containing all the elements from the sets, we seek

to find a collection of sets, namely A, with minimum weight such that their union

becomes U while each element is covered by at most one set in A.

We formulate toponym resolution by conflict-free covering problem as the following:

1. Each parent with all its children form a set of related interpretations. Let S

denote the collection of all such sets that can be constructed. Each parent

appears in a set with its children, hence the size of S is the same as the number

of parents with non-zero children. Algorithm 3 depicts the details of generating

S.

2. Recall that T denotes the set of toponyms in document D as defined in Sec-

tion 4.2. We say a set in S covers a toponym in T , if the set contains the surface

text of the toponym. We want to select sets in S that cover all toponyms in T .

Our goal is to minimize the number of interpretations (spatial minimality) by

selecting as few sets in S as possible.

3. Let us form a color class for each toponym. The color class for a toponym

includes all possible interpretations of the toponym. For example, Texas is a

color class which includes all places that can resolve Texas. We want to avoid

selecting multiple interpretations for the same toponym. That means, we do the

selection in (2) with the constraint that no more than one color or interpretation

can be selected for each toponym.

In the special case where the color classes are empty (i.e. no constraint on colors),

the problem becomes the classic set cover, which is NP-complete. This means that
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Algorithm 3 Spatial-Hierarchy Set Generation

Require: Document D and sequence of toponyms T
1: S ← ∅
2: P ← ∅

3: for toponym ti in T do
4: if name[ti] in P then
5: skip ti
6: end if
7: for interpretation li,j in Li do
8: if parent[li,j] in S then ▷ Checks whether the set exists
9: AddChild((li,j, true),S[parent[li,j]])
10: else
11: ▷ The new set is a tree whose root is parent[li,j]
12: ▷ The boolean values represent mentioned flags
13: S ← S ∪ {(parent[li,j], false)→ (li,j, true)}
14: if li,j in S then
15: mentioned[S[li,j]]← true
16: end if
17: end if
18: P ← P ∪ name[li,j]
19: end for
20: end for
21: return S ▷ A collection of spatial hierarchy sets

existing methods approximate the optimal solution. We leverage a greedy approach

[172] to solve the problem. Although the greedy approach gives an approximate

answer to the problem in general, our experiments reveal that such answer yield a

competitive performance.

However, this model suffers from some deficiencies, even if an optimal solution is

reached. A problem with this formulation is that we cannot have Montreal, Quebec

and Windsor, Ontario in the same text (or they will not be resolved correctly) be-

cause Windsor is also a town in Quebec. These are cases where the hypotheses model,

namely CBH, can better resolve. Furthermore, there may be circumstances that sim-

ilar toponyms may appear in more than one sets and yet, we cannot favor one set

to another. Suppose we have a document where only Georgia and Turkey are men-

tioned. Two sets, {Georgia(city) ⇝ Texas(state), Turkey(city) ⇝ Texas(state)}
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and {Georgia(country)⇝ World, Turkey(country)⇝ World}, would emerge in S.

Without any additional information, such as document source, even humans cannot

choose the correct interpretation. SHS selects the most populated set as a rule of

thumb in these cases.

4.3.3 Context-Hierarchy Fusion

While the Spatial-Hierarchy Sets approach guarantees the minimality properties, it

fails to select between identical structures (e.g. the Georgia and Turkey case) mostly

because it does not delve into other context-related features of the document. On the

other hand, the Context-Bound Hypotheses model benefits from term frequency and

term distance features of the context. Notwithstanding the situations like Georgia

and Turkey, using other context sensitive information alleviates the disambiguation

process in most cases. For example, toponyms London, Aberdeen and Edinburgh have

interpretations located in Canada and SHS resolves them to the corresponding inter-

pretations in Canada to preserve minimality. Even the presence of toponym England

does not change the result because Aberdeen and Edinburgh located in Scotland and

we still need to pick two sets to attain the correct resolution.

Consequently, merging SHS and CBH method allows us to take advantage of both

methods at the same time. Context-Hierarchy Fusion (CHF) method chooses an

interpretation from CBH only if the confidence score is higher than a threshold τ .

Otherwise, it resolves toponyms using SHS.

4.4 Experiments

In this section, we conduct extensive experiments to evaluate our methods9 and to

assess their performance under different settings. The particular questions to be

investigated are:

9The source code and the annotated dataset is available at https://github.com/ehsk/CHF-
TopoResolver
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1. Given that CBH comprises different steps and components, how much does

inheritance and near location hypothesis improve upon the preliminary location

disambiguation?

2. How sensitive is Context-Hierarchy Fusion to the value of the threshold and if

there are some sweet spots?

3. How accurate is the proposed method, compared to the state-of-the-art super-

vised and unsupervised methods as well as commercial systems?

4. How does the proposed method compare to the state-of-the-art supervised

method in terms of the generality of the model on unseen data?

5. When is an unsupervised technique expected to surpass supervised methods?

For (3), we compare the performance of our method to that of the state-of-the-art

methods as well as commercial systems: Yahoo! YQL Placemaker, OpenCalais and

Google Cloud Natural Language API. The details of these proprietary products have

not been made public. However, these systems can be accessed through public Web

APIs at a relatively liberal rate limit, which enable us to automatically test their

geotagging process on our datasets.

In our evaluation setting, we apply two methods for toponym recognition. First,

we assume that the recognition phase is flawless, which is displayed as Resol. In this

method, the annotated toponyms without latitude/longitude are fed to the underlying

resolution method. These experiments are conducted to compare our methods to

resolution methods such as TopoCluster [41]. Second, we employ Stanford NER [55]

to tag locations, which is shown by GeoTag. We run GeoTag experiments to draw a

comparison with systems performing both recognition and resolution including closed-

source products and Adaptive [109].
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4.4.1 Datasets

In order to evaluate our toponym resolution methods, gold data corpora are required,

in which all occurrences of geographic names and phrases have been manually anno-

tated. In our experiments, we exploit three annotated datasets:

• TR-News: We collected this dataset from various global and local News

sources. We obtained news articles from several local news sources to include

less dominant interpretations of ambiguous locations such as Edmonton, Eng-

land and Edmonton, Australia rather than Edmonton, Canada or Paris, Texas,

US in lieu of Paris, France. Additionally, a number of articles from global news

sources such as BBC and Reuters have been selected to preserve the general-

ity of the corpus. We manually annotated toponyms in the articles with the

corresponding entries from GeoNames. The gold dataset consists of 118 articles.

• Local-Global Lexicon (LGL): This corpus was curated by Lieberman et al.

[107]. It is collected from local news sources and mainly focuses on including

ambiguous toponyms and this is why, it is suitable to test toponym resolution

systems against geographically localized documents. The dataset is composed

of 588 articles from 85 news sources.

• CLUST: Lieberman and Samet [108] compiled this dataset from a variety of

global and local news sources. CLUST is a large dataset containing 1082 anno-

tated articles.

Table 4.1 summarizes and compares the statistics of these datasets. The median

number of toponyms per document in all datasets are close to each other, meaning

that the corpora do not differ significantly with one another in terms of the number

of toponyms per article.

In addition, the three datasets contain toponyms (roughly 3%) that cannot be

found in gazetteer G, while annotated and linked to an entry in the gazetteer. We
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Table 4.1: Corpora used in our experiments

TR-News LGL CLUST

News sources 36 85 352

Documents 118 588 13327

Annotated docs 118 588 1082

Annotated topos 1318 5088 11962

Topos with GeonameID 1274 4462 11567

Distinct topos 353 1087 2323

Median topos per doc 9 6 8

Topos not found in GeoNames 2.7% 3.2% 3.3%

Wikipedia-linked topos 94.3% 94.1% 94.2%

observe that such toponyms fall into one of the following categories: uncommon

abbreviations such as Alta. stands for Alberta, Canada, multi-word places such as

Montreal-Pierre Elliott Trudeau International Airport, and transliterated place names

(e.g. city of Abbasiyeh, Egypt written as Abbassiya).

The test corpora is also analyzed by the location type of their annotated toponyms,

as done by Lieberman and Samet [109]. We compute the percentage of each location

type for each dataset. As show in Figure 4.1, LGL dataset largely consists of small

cities, which makes it a challenging test dataset since well-known locations are pre-

sumably to be resolved with high precision due to their frequent use in articles. In

contrast, TR-News and CLUST datasets are roughly similar and include countries

more than any location type. This denotes that the articles appeared in TR-News

and CLUST are extracted from sources that are aimed at a global audience. These

sources usually provide more details for location mentions such as saying Paris, US

instead of Paris. On the other hand, in LGL, because the articles are meant to be

of use for local audience, the news publishers typically do not state additional infor-

mation in this regard. Thus, geotagging approaches can be tested against these test
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corpora since they span a variety of news sources both globally and locally.

Figure 4.1: Comparative analysis of the test datasets based on location type

4.4.2 Evaluation Metrics

Performance measures in our experiments are Precision, Recall, F1-measure, and

mean error distance (M). However, to ascertain whether an interpretation is correctly

predicted, we also investigate the error distance between the predicted coordinates

and the actual coordinates, as used in numerous studies [29, 41, 173, 102, 159, 109,

8]. This distance enables us to fare various systems against each other since they may

select latitude/longitude of locations from different gazetteers or knowledge bases10.

We set the error distance to 10 miles, same as Adaptive method [109], whereas most

researches tend to adopt a relaxed threshold (i.e. 161 kilometers) [173, 41, 159, 8].

For TopoCluster [41] and the commercial products, on the other hand, we em-

ploy a different criteria primarily because the error distance may not be accurate

for large areas (even with higher error distance thresholds). Hence, in order to con-

sider whether an interpretation is correctly projected to a coordinate, we check if the

predicted interpretation resides in the bounding-box area of the ground truth; here

the bounding-boxes of locations are extracted from GeoNames. We did not use this

bounding-box grounded accuracy for other methods since most of them rely on the

10Locations are represented with a single centroid and gazetteers may vary in picking the centroids.
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same gazetteer adopted in this work. Although using bound-boxes works in favor of

TopoCluster and the proprietary products, the mean error distance fails to precisely

mirror the accuracy for these methods since for a prediction deemed as correct based

on bounding-boxes, the error distance can still be high.

Furthermore, in Resol experiments, we only calculate Precision because given a

toponym, a resolution method is more likely to map it to an interpretation unless it

does not exist in the gazetteer; thus, Recall would be approximately analogous to

Precision. It is also worth mentioning that the mean error distance is only reported in

Resol experiments and not in GeoTag experiments, because the mean error distance

cannot be measured for toponyms that are either not identified or falsely detected.

4.4.3 Analysis of Context-Bound Hypotheses

As discussed in Section 4.3.1, Context-Bound Hypotheses commences with a prelim-

inary toponym disambiguation, followed by estimating two probabilities for inheri-

tance and near-location hypotheses. In this section, we evaluate the preliminary phase

and see whether the modification phase by Context-Bound hypotheses alleviates the

resolution performance. Moreover, we study the role of the hypotheses in CBH by

removing one of them at a time and measuring the performance. This experiment is

conducted on the TR-News dataset in both Resol and GeoTag modes.

As shown in Table 4.2, taking both hypotheses into account complements the

preliminary disambiguation, though the improvement does not seem considerable

(slightly higher than 1% in F1-measure) in both GeoTag and Resol experiments.

Additionally, the near-location hypothesis contributes to the improvement more

than the inheritance hypothesis. This is largely because the inheritance hypothe-

sis estimates probabilities using term frequency. In cases where two locations are

mentioned as frequent as each other, term frequency does not seem accurate. For

example, consider the toponym Edmonton, which can be located in either Canada

or Australia in a document where Australia and Canada appear twice each. This
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Table 4.2: Detailed analysis of Context-Bound Hypotheses (CBH) on TR-News
dataset

PResol PGeoTag RGeoTag F1−GeoTag

Preliminary 78.0 73.4 52.1 60.9

Inheritance 78.1 73.6 52.0 61.0

Near-location 79.0 73.9 52.3 61.2

CBH 79.2 74.9 53.0 62.1

results in the same score for both interpretations and a decision would be made by

population size. Term distance, however, can help better in this case, denoting that

the closer mention is more likely to be the correct interpretation. Nonetheless, we

still need both hypotheses since the results are improved by putting near-location and

inheritance together.

4.4.4 Fusion Threshold Study

In Context-Hierarchy Fusion, explained in Section 4.3.3, choosing an appropriate

value for the threshold can be crucial in the resolution the performance. In this

experiment, we vary the threshold τ to study its effect on performance. According to

the results shown in Figure 4.2, we can identify a sweet spot when CHF achieves the

best performance on all three datasets; this happens when τ falls between 0.5 and

0.6; we set τ to 0.55 in our experiments.

Also, we can see a mild spike in F1-measure at τ = 1 in the LGL curve, which

can be attributed to the localized content of the dataset. In particular, SHS (at

τ = 1, CHF is analogous to SHS) works better on LGL since locations in LGL are

not mentioned frequently alongside their corresponding spatial hierarchy ancestors.

As discussed in Section 4.3.1, CBH needs to spot the mentions of these ancestors in

documents (containment relationship) in order to generate a more accurate resolution,

whereas SHS does not rely solely on containment relationships. It also takes sibling
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relationships into account, and as a result, merging SHS and CBH does not seem to

be effective on LGL.

Figure 4.2: F1-measure vs. threshold τ for Context-Hierarchy Fusion method on
TR-News dataset. At τ = 0.55, CHF achieves the best F1-measure on all three
corpora.

4.4.5 Resolution Accuracy

In this section, we measure the performance of our proposed methods and com-

pare them with other resolution techniques. The methods presented in this work

are Context-Bound Hypotheses (CBH), Spatial-Hierarchy Sets (SHS) and Context-

Hierarchy Fusion (CHF). We compare the results with two prominent systems: TopoClus-

ter [41], the state-of-the-art unsupervised model, and Adaptive [109], the state-of-the-

art supervised model. The source code of TopoCluster was available online, so we

were able to test the method on our datasets. However, in order to test the Adap-

tive classifier, we implemented the supervised method11, albeit without two features,

namely dateline and locallex ; this was because for locallex, the authors used an an-

notated dataset containing the expected audience location of the news sources and

also, dateline required a general location for each article which was not available for

11Since we did not have access to the source code.
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most articles in the test corpora. The modified version is named CustomAdaptive in

our results. We follow the same parameter setting of the original Adaptive [109] and

perform 10-fold cross validation to test CustomAdaptive.

Table 4.3 and Table 4.4 illustrate the evaluation results. CHF produces the best

performance among our proposed methods on CLUST and TR-News and SHS beats

the other proposed techniques on LGL. Among all listed methods, CustomAdaptive

shows the highest performance. We also report recall, to make a comparison with the

original Adaptive method [109].

While commercial products produce high precision, their recall is lower than our

proposed methods in all cases except for Yahoo! YQL Placemaker. Placemaker

yields the best results among the commercial products and achieves higher overall

performance than our methods. On the other hand, OpenCalais is able to recognize

toponyms as locative expressions. For instance, it identifies the Kenyan captial rather

than just Kenyan. However, we observe that sometimes it fails to detect a full location

phrase; for example, only Toronto in Greater Toronto Area is detected12. Further,

Google Cloud Natural API offers an entity extraction service, which focuses highly

on recognition of named entities13. The system links extracted entities to their corre-

sponding Wikipedia articles and provides no additional information about geographic

coordinates of location entities. Therefore, the geographical information of locations

can only be derived from Wikipedia for this product. According to Table 4.1, nearly

94% of toponyms in each dataset have Wikipedia articles14, but not all Wikipedia

articles contain spatial coordinates of locations, which is partly attributed to a poor

recall in our experiments. Thus, we can see why entity linking approaches cannot be

exploited for toponym resolution.

We run Resol experiments to analyze TopoCluster [41] since it is a resolution

12We count these as correct resolutions unless they fall outside the bounding box of the annotated
toponym.

13Google Cloud Natural API extracts locative expressions in any form in addition to proper names
like family home and suburb.

14GeoNames keeps record of Wikipedia URLs for each location.
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method. DeLozier et al. stipulated that TopoCluster performs best when integrated

with a gazetteer; this is why, the integrated version, called TopoClusterGaz, is adopted

throughout this experiment. The results are presented in Table 4.3 and Table 4.4

(PResol andMResol columns). According to our results, CHF outperforms TopoCluster

on all three datasets. Moreover, DeLozier et al. [41] set the error distance threshold

for TopoCluster to 161 kilometers and achieved an accuracy of 71.4% on LGL15,

whereas under the same setting, CHF reaches 71.2% on LGL, which is marginally

lower than TopoCluster.

Besides accuracy, the mean error distance is also measured in our Resol experi-

ments16. Among the unsupervised methods, CBH stands out with the lowest error.

CHF is close to CBH with its error not exceeding 40km. This difference stems from

SHS impacting CHF because when a toponym is projected to an incorrect location

by SHS, the mapped location is more likely located in a country different than the

ground truth.

4.4.6 Unseen Data Analysis

Supervised techniques benefit from the knowledge gained in the training phase and if

there is an overlap between the training data and the test data, then the prediction

can be counted as overly optimistic. Domingos [45] emphasizes that generalization is

achieved by a separation of the training data and the test data [45]. This is why, we

study the effect of the overlap between training and test datasets on F1-measure. For

this purpose, CustomAdaptive classifier was trained on CLUST dataset (the trend

does not vary significantly if the classifier trained on LGL) and tested against TR-

News. We define the overlap ratio measure as the number of toponyms per article in

test data, which has also been appeared in the training data. We can channel overlap

ratio through trimming off articles from test data and measure performance on the

15Among the datasets used in TopoCluster paper [41], LGL is the only dataset to which we have
access

16Mean error distance for TopoCluster in LGL is derived from the original paper [41].
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Table 4.3: Performance results in GeoTag and Resol experiments on LGL and CLUST.
The best results in each category are bolded.

Method
LGL CLUST

P R F1 PResol MResol P R F1 PResol MResol

Unsupervised

CBH 66.8 40.6 50.5 68.6 760 80.6 55.8 66.0 81.5 709

SHS 69.7 43.3 53.4 68.3 1372 72.8 51.6 60.4 71.1 1521

CHF 68.5 43.1 52.9 68.9 818 80.6 58.4 67.7 81.0 788

TopoCluster [41] - - - 59.7 1228 - - - 77.1 769

Supervised

Adaptive [109] - 58.7 - 94.2 - - 61.8 - 96.0

CustomAdaptive 79.2 48.5 60.2 88.3 679 89.8 57.9 70.4 93.4 504

Commercial

Placemaker 73.5 48.6 58.5 - - 87.4 61.1 71.9 - -

OpenCalais 77.1 28.9 42.1 - - 87.5 48.5 62.4 - -

GoogleNL+Wiki 80.5 34.0 47.8 - - 82.8 39.2 53.2 - -

Table 4.4: Performance results in GeoTag and Resol experiments on TR-News. The
best results in each category are bolded.

Method P R F1 PResol MResol

Unsupervised

CBH 74.9 53.0 62.1 79.2 869

SHS 73.8 53.6 62.1 69.9 2305

CHF 79.3 58.2 67.1 80.5 942

TopoCluster [41] - - - 68.8 1422

Supervised

CustomAdaptive 83.8 74.9 79.1 90.5 573

Commercial

Placemaker 80.8 63.0 70.8 - -

OpenCalais 81.3 48.5 61.2 - -

GoogleNL+Wiki 80.2 38.4 51.9 - -
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trimmed test data. Figure 4.3 plots F1-measure against the overlap ratio. The unsu-

pervised method surpasses the supervised method when the overlap ratio is less than

60% (when the overlap ratio is at 0.6, CHF still outperforms CustomAdaptive with

a 1% margin). This observation confirms that the unsupervised technique, namely

CHF, can handle unknown data better than the supervised method, namely Adaptive

(CustomAdaptive implementation).

Figure 4.3: F1-measure of CustomAdaptive trained on CLUST and CHF when overlap
ratio varies. CHF yields a better performance than CustomAdaptive when overlap
between training data and test data is lower than 60%.

4.5 Related Works

Numerous studies have been conducted and much progress has been made on the task

of disambiguating location mentions. The existing approaches in the literature may

be grouped into (1) unsupervised and rule-based, (2) supervised, and (3) those based

on some knowledge bases. However, a plethora of methods leverage a mixture of

techniques. For example, DeLozier et al. [41] proposed an unsupervised toponym res-

olution method that leverages geographical kernels and spatially annotated Wikipedia

articles. Also, Lieberman and Samet [109] presented a supervised technique that uses
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both geographical distance and additional knowledge like gazetteers and document

source to disambiguate toponyms.

Unsupervised and rule-based methods: In unsupervised resolution, various

techniques have been studied. Map-based methods create a representation of all

referents on a world map and apply techniques such as geographical centroid detec-

tion and outlier elimination to estimate the target of a toponym [102]. Moncla et al.

[134] introduced a map-based technique where density-based clustering was carried

out to detect outliers. Buscaldi [24] found that map-based techniques face difficulties

in grounding toponyms in a document when they are spatially far from each other.

Rule-based and heuristic-based methods also have been adopted in the literature [102,

6]. For instance, the presence of “Canada” in text London, Canada may help disam-

biguate London. However, finding a set of rules to cover all cases in natural language

text seems to be arduous.

Approaches using knowledge bases: Wikipedia has been integrated as a knowl-

edge base into more recent toponym disambiguation techniques [8, 41, 174, 173, 159].

Ardanuy and Sporleder [8] tackled toponym disambiguation in multilingual retro-

spective articles. They built a model to distill semantic features from Wikipedia

information such as page title and article body. Speriosu and Baldridge [173] found

that non-spatial words impart useful information to disambiguate toponyms and they

propose likelihood models that are obtained from Wikipedia. DeLozier et al. [41] pro-

posed TopoCluster, which does not rely on gazetteers to resolve toponyms, to address

cases where location mentions are not found in gazetteers. They constructed a ge-

ographical language model to capture geographical senses of words using Wikipedia

pages of locations. However, adding gazetteer information to TopoCluster, namely

TopoClusterGaz, yields a better performance. Less known toponyms are not expected

to be found in Wikipedia; they can introduce challenges and hinder the performance
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of this method.

Supervised methods: Many classification techniques have been proposed for geo-

tagging purposes including Bayesian [1], random forests [109], RIPPER rule learner

[60] and SVM [60, 128]. The features extracted for these classifiers can be grouped

into context-free and context-sensitive features [109]. Context-free features typically

include heuristics and information from external sources such as knowledge bases

and gazetteers and may include, for example, population [109] and location type

[60]. Context-sensitive features are obtained from documents where toponyms are

mentioned. Melo and Martins [128] used normalized TF-IDF document vectors over

curvilinear and quadrilateral regions on Earth’s surface. The adaptive method, pro-

posed by Lieberman and Samet [109], casts geographical proximity and sibling rela-

tionship among interpretations in a context window as features. GeoWhiz [1] aggre-

gates several likelihoods based on observations in training data. For instance, largely

populated places are more likely estimated as their prominent interpretation. The

suggested method by Santos et al. [159] consolidates information fromWikipage pages

of locations to compute several similarity and geographical features (context-free fea-

tures) and performs a nearest neighbor search using locality-sensitive hashing (LSH)

to resolve locations.

Other more general related work: Entity disambiguation (also known as en-

tity linking) [106, 115, 165, 75, 58] is related to toponym resolution. Linking named

entities (i.e., people, organizations, and locations) to their corresponding real world

entities in a knowledge base subsumes toponym disambiguation. Nonetheless, geo-

graphical features of location entities are neglected by these systems [173] and thus,

geographically specialized methods for resolving toponyms are still needed to map

locations to their corresponding geographic footprint.

Another line of research pertinent to this work is location disambiguation in social
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media. The related work in this area may incorporate user profile data and social

network information as well as natural language processing tools and gazetteers to

tackle this task [79, 136]. Flatow et al. [56] proposed a method that learns geo-

referenced n-grams from training data to perform geotagging on social messages. Use

of words that are endogenous to social media are considered as an inherent hurdle

here. Moreover, social media content have deficient orthographic structure and lack

context, which bring even more complexities to toponym resolution in social media

[51, 152, 125].

4.6 Conclusions

We studied toponym resolution and proposed two novel unsupervised models and a

mixture model, namely CHF, to address the problem. We investigated the effective-

ness of the proposed methods with other techniques. Our evaluations show that the

Context-Hierarchy Fusion method outperforms TopoCluster, the state-of-the-art un-

supervised method, in terms of precision. The performance of supervised techniques

exceeds that of our proposed methods (as expected), nonetheless, we have shown that

the state-of-the-art supervised classifier, called Adaptive, highly relies on the training

data and Context-Hierarchy Fusion can handle unseen toponyms better.

The future work may investigate other mixture models and a better understanding

of when one or both of supervised and unsupervised methods are expected to perform

not so well. Moreover, the correlations among the bounding-boxes of toponyms in

an article can be studied to augment the resolution, considering the gazetteer are

endowed with bounding-box of locations for this purpose [171]. Another direction is

understanding the differences between short and long text as far as toponym resolution

is concerned and the challenges each pose.
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Chapter 5

Document-level Reasoning: A
Hidden Challenge in Open-domain
QA Benchmarks

The research community, especially in IR and NLP, rapidly advances by developing

models that achieve remarkable performance on established benchmarks. Nonethe-

less, benchmarks per se are often taken for granted. Unfortunately, studies that aim

at critical analysis of benchmarks are far fewer than the number of existing bench-

marks. Luckily, some studies published in recent years thoroughly inspect well-known

datasets in computer vision [64, 193, 89, 28] and in NLP [16, 126, 176, 140]. In this

chapter, I pursue a similar goal on open-domain QA benchmarks towards reliable

evaluation (D4), a key requirement specified in Section 1.2. More precisely, my main

focus is to highlight an underlying pitfall in existing open-domain QA benchmarks,

as the saying goes “you can’t improve what you don’t measure.”1

5.1 Introduction

Answering information-seeking questions over a massive collection of documents,

known as Open-domain Question Answering (QA), has been a long-standing goal

of NLP research. Retrieving candidate documents that contain potential answer(s) is

at the heart of open-domain QA. A wide range of retrieval models have been adopted

1Often attributed to Peter Drucker, an influential figure in modern management studies.
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Q: What is the baby elephant’s name in Jungle Book?

Hathi is a fictional character created by Rudyard 
Kipling for the Mowgli stories collected in "The 
Jungle Book" (1894) and "The Second Jungle Book" 
(1895). Hathi is a bull elephant…

In the Disney film, the character of Hathi (voiced by 
J. Pat O’Malley)… He is called "Colonel Hathi"… and 
his son, Hathi Jr. (voiced by Clint Howard), in a 
marching patrol…

    Hathi
Hathi is a fictional character created by Rudyard Kipling 
for the Mowgli stories collected in "The Jungle Book" 
(1894) and "The Second Jungle Book" (1895). Hathi is a 
bull elephant that lives in the jungle…

Hathi is head of the elephant troop. He is one of the 
oldest animals of the jungle and represents order, dignity 
and obedience to the Law of the Jungle. Hathi is famed 
for his patience and never hurries unnecessarily. In 
"How Fear Came", he tells the jungle animals' creation 
myth and describes Tha, the Creator.

In the story "Letting In the Jungle", Mowgli reveals that 
Hathi once destroyed a human village in revenge for 
being captured, and persuades Hathi and his sons to do 
the same to Buldeo's village as punishment for 
threatening Messua with execution.

In the Disney film, the character of Hathi (voiced by J. 
Pat O’Malley)… He is called "Colonel Hathi", and he 
leads his wife, Winifred (voiced by Verna Felton), and his 
son, Hathi Jr. (voiced by Clint Howard), in a marching 
patrol…

The night after Mowgli is hypnotized by Kaa, Col. Hathi 
and the Dawn Patrol patrol the jungle and wake Mowgli 
and Bagheera…

Later in the film, Bagheera finds Hathi and asks him to 
find Mowgli, for he has run away. Hathi refuses, saying 
that…

Colonel Hathi returns in the Disney sequel "The Jungle 
Book 2”…

A: Hathi Jr.

Figure 5.1: An example question, taken from the Natural Questions-open test set
[101], that highlights the importance of document-level reasoning in retrieving pas-
sages.

for this purpose, from sparse retrievers such as BM25 [154] to dense retrievers [90]

and retrieval-augmented models [103, 70]. Yet, retrieval is invariably conducted over

a collection of passages. In particular, the standard practice is to split documents

(e.g. Wikipedia articles, news articles) into fixed-length passages [185]. The ubiquity

of passage retrieval is mainly due to the limited context size of deep learning models

[43, 3]. Moreover, existing models often struggle in capturing long-range dependen-

cies within documents [92]. In open-domain QA, it is well documented that passage

retrieval is effective on several benchmarks [35, 185, 90].

Notwithstanding the success of passage retrieval in open-domain QA, such passage-

level treatment of documents largely ignores document-level evidence that may be es-

sential in finding candidate answers. Documents are written in a logically-structured

manner and follow a cohesive narrative [83]. By carving their discourse into passages,

the underlying relationship among different parts of documents (e.g. coreferences)

is no longer upheld. These issues introduce additional challenges that can impede

models from answering some questions. For example, in Figure 5.1, the key informa-

tion to answer the question is dispersed in two paragraphs that are distant from each

another.
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In this work, we inspect open-domain QA datasets to identify questions that re-

quire document-level reasoning to answer. We conduct document-level retrieval on

three widely adopted open-domain QA datasets: Natural Questions-open [101], Triv-

iaQA [85], and WebQuestions [19]. We then find questions for which document-level

retrieval outperforms passage-level retrieval. Our observation, consistent with the lit-

erature, is that passage retrieval provides better overall performance than document

retrieval on these datasets. However, on 325 questions, passage retrieval either com-

pletely fails or underperforms document retrieval. We manually audit these questions

to determine whether document-level information is actually required for them. Our

analysis reveals that these benchmarks are heavily skewed toward questions where

passage-level information is sufficient. Despite the prevalence of such questions, we

collect 82 questions that require document-level reasoning to answer. Our evaluation

benchmark, although small, highlights an often unheeded problem in open-domain

QA.

Our contributions can be summarized as:

1. Providing an in-depth analysis of three widely adopted open-domain QA bench-

marks to identify questions for which document-level evidence is critical,

2. Introducing a new challenging benchmark of 82 questions, curated from the

existing benchmarks, to highlight the importance of document-level reasoning

where current models often fail.

5.2 Related Work

Retrieval in open-domain QA. In the deep learning era, open-domain QA pipelines

are streamlined to a retriever plus a reader. DrQA [26], leverages a TF-IDF retriever

at document-level. Subsequent works [33, 184] add a re-ranking step that recali-

brates retrieval scores for paragraphs or sentences, derived from retrieved documents.

Other works [100, 138] develop a model to re-rank paragraphs of retrieved docu-
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ments. Yang et al. [194] study the granularity level of retrieval and find that retrieval

at paragraph-level yields best results. Multi-passage BERT [185] suggests that fixed-

length overlapping passages work best for retrieval. With the rise of dense retrievers

[25] and retrieval-augmented models [103], recent models [101, 90, 70, 192, 94] have

switched to passage retrieval outright.

Document modelling in QA. Several works [31, 202, 117, 181] in closed-domain

QA leverage document structure to answer questions. In this work, we underline that

a combination of two granularity levels (i.e. document and passage) is an effective

means for open-domain QA.

Reasoning in QA. Datasets with different types of reasoning are prolific in QA:

coreference resolution [40], multi-hop reasoning [195], numerical reasoning [47], causal

relations [112], and spatial reasoning [133]. Our goal is in line with these datasets,

but we focus on questions that require document-level information to answer in an

open-domain setting.

5.3 Document-level Reasoning QA Challenge

5.3.1 Setup

Datasets. We use the following three popular information-seeking QA datasets:

Natural Questions-open (NQ-open) [101], TriviaQA (TQA) [85], and WebQuestions

(WQ) [19]. The details of NQ-open and TQA are provided earlier in Section 2.4.1.

For the sake of completeness, we give a brief overview of the three datasets:

• Natural Questions-open (NQ-open) [101]: Derived from Natural Ques-

tions (NQ) [98] whose questions were curated from Google search queries.

• TriviaQA (TQA) [85]: TQA questions are trivia questions that were mined

from quiz-league websites.
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• WebQuestions (WQ) [19]): Consisting of 2,032 questions, this dataset was

collected for question answering over knowledge bases. In WQ, questions are

obtained from Google Suggest API and the answers are entities whose cor-

responding Freebase IDs were annotated. In open-domain QA, however, the

dataset is free of Freebase references and answers are stored as plain text [26].

Retrieval Models. BM25 is a widely employed sparse retriever for open-domain

QA, which treats text as a bag of words. We employ BM25 for both passage retrieval

and document retrieval. For dense retrieval, we adopt ANCE [192], a prominent and

well tested dense retriever for open-domain QA, whose trained model checkpoints are

publicly available. We use three retrievers throughout the paper: ANCE and BM25

for passage retrieval, and BM25 for document retrieval.

5.3.2 Document retrieval vs. Passage retrieval

To understand when document-level reasoning is appropriate, we first need to com-

pare the output of document retrieval against passage retrieval results. However, the

ranking of candidate documents is not directly comparable to the ranking of candidate

passages because of disparity in their granularity levels. To overcome the comparison

problem, we compute text volume — the minimum number of terms that must be

processed by a reader to find an answer in the retrieved results — to equalize the

two heterogeneous granularity levels. More specifically, given that each document/-

passage is a sequence of terms, we accumulate the number of terms from the top

of the retrieved list until an answer is found. We measure hits ratio (hits@vol), the

percentage of questions for which an answer document/passage is found, with respect

to the text volume.

The left plots of Figure 5.2 illustrates hit ratios for the three retrievers vs. text

volume. Both passage retrievers outperform document retrieval by a high margin,

corroborating the consensus in the community that passage retrieval is effective on
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these benchmarks.
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Figure 5.2: Hits ratio vs. text volume (left), and for the subset that document re-
trieval performs better (right). Although both passage retrievers outperform docu-
ment retrieval by a high margin on the full dataset, document retrieval significantly
outperforms both passage retrievers on the selected questions.
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5.3.3 Data Collection

Based on the previous experiment, we aim to identify questions for which document

retrieval surpasses passage retrieval. Table 5.1 summarizes the statistics of such

questions on the three datasets. Psg-Oracle indicates the best passage retriever out

of the two, which serves as an oracle that is aware of the better passage retriever

prior to retrieval. We consider the oracle here to estimate an upper bound for passage

retrieval and to make the comparison with document retrieval more robust. In total,

325 questions (4.5%), passage retrieval fails even after retrieving the same volume of

text at which a naive document retrieval succeeds.

Table 5.1: Number of questions for which document retrieval surpasses passage re-
trieval

Dataset
#Questions that Doc wins vs.

Psg-BM25 ANCE Psg-Oracle

NQ-open 462 (12.8%) 177 (4.9%) 81 (2.2%)

TQA 595 (5.3%) 551 (4.9%) 192 (1.7%)

WQ 245 (12.1%) 113 (5.6%) 52 (2.6%)

Total 1,302 841 325

We also plot hits@vol varying text volume only on the selected questions, depicted

in the right plots of Figure 5.2. Document retrieval surpasses both passage retrievers

by a significant margin on all datasets. Interestingly, ANCE struggles most on these

questions. It achieves parity with BM25 on TQA and WQ, while falling behind on

NQ-open.

Next, we manually audit the detected questions to shed light on:

1. What causes passage retrievers to fail?

2. Is document-level evidence really necessary to answer these questions?
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To this end, we conducted a human study, done by me, to identify failure modes

of passage retrieval in these questions.

Annotation Protocol. Our human annotation ensures: (1) whether top passages

are sufficient for answering the question, and (2) whether the retrieved documents

legitimately answer the question. Thus, the annotation procedure was done in two

steps. First, for each question, the annotator checked top-2 documents, returned

by the document retriever, that contain an official answer. Then, for each passage

retrieval model, the annotator inspected top-5 passages. When the question was

annotated as unanswerable, top-2 passages containing an official answer were also

examined, if exist and not already among top-5 passages. This additional step checks

whether passage retrieval correctly finds the answer or not. To select a question as

a candidate for our benchmark, the annotator carefully scanned the documents to

ensure document-level information including the core topic of the document, and/or

the document structure is required to answer the question. This procedure took

around 2 minutes per question on average.

Our manual assessment reveal three types of failure modes, showcased in Figure 5.3:

(A) Question-related problems: Questions that are impossible to answer given

the knowledge source [10], or are ambiguous that cannot be answered without

further clarification [132].

(B) Answer-related problems: Questions for which annotated answers are in-

correct or miss other variations of answers that are acceptable.

(C) Lack of document-level understanding: Questions that require document-

level reasoning in order to determine correct answers from the knowledge source.

We identify two main reasons why document-level evidence is crucial for these

questions: (i) a lack of ample context, or (ii) ignoring the document narrative.

These failure modes are mutually exclusive as we did not encounter a question with

both question-related issues and answer-related issues. Examples are provided in
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Table 5.2.

For the majority of the questions — 75% of the audited questions — data qual-

ity problems hinder passage retrievers to find answer passages. Despite these data

quality issues, we find that for nearly 25% of the questions — 82 questions in total —

document-level cues are critical. These clues include an understanding of the core

topic of documents or of the document structure. We present these questions as our

document-level evaluation benchmark.

(A) 32.3%

(B) 42.5%

(C) 25.2%

(A) Question-related problems (B) Answer-related problems
(C) Lack of document-level understanding

Figure 5.3: Manual inspection of 325 questions where document retrieval is superior
to passage retrieval over all three open-domain QA benchmarks.

5.4 Experiments

In this section, we seek to answer the following questions to empirically show that

our benchmark provides a challenge requiring document-level cues:

1. Do questions provide clues whether document-level reasoning is required?

2. What is the end-to-end performance of open-domain QA models on our bench-

mark?

3. Does increasing passage length provide adequate context?

4. Is injecting additional context into passages helpful?
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Table 5.2: The breakdown of passage retrieval failures.

Failure Modes

(A) Question-related problems: Questions that are impossible to answer [10] given the knowl-
edge source, or are ambiguous that cannot be answered without further clarification [132].

The lyric ‘Always sunny in a rich man’s world’, is from which song? Unanswerable

when did last podcast on the left start? Unanswerable

where will the first round of march madness be played? Ambiguous due to a lack of clarity in
the competition year and the gender of the competition.

when did ford change the f150 body style? Ambiguous because Ford F-150 has been man-
ufactured in several generations, each of which went through body changes at different
times.

(B) Answer-related problems: Questions for which annotated answers are incorrect or miss
other variations of answers that are acceptable.

how many times has psg won champions league? The official answer is 46 , but the actual
answer is 0 .

what is the first line of an http request to the server? Official answers are a request line or

the status line , but the answer is the first line of the response .

where did the battle of bonhomme richard take place? The official answer
is near Flamborough Head , yet the North Sea off the coast of Yorkshire or

Flamborough Head, Yorkshire are plausible too.

In the mid 1990s what major fossil discovery was made in Liaoning, China? While the official
answer is Well-preserved fossils of feathered dinosaurs , feathered dinosaur fossils is also
acceptable.

(C) Lack of document-level understanding: Questions that require document-level reasoning
in order to determine their answers from the knowledge source.

when was the last time the boston red sox pitched a no-hitter? (NQ-open)

In which film did teacher John Keating break all the rules? (TQA)

what high school did maya angelou go to? (WQ)

5.5 Experimental Setup

For retrieval, our knowledge source is Wikipedia articles, corresponding to the snap-

shot of 20-Dec-2018, following [101, 90]. We used Wikipedia passages, provided by

DPR [90]. Specifically, Wikipedia articles were split into non-overlapping passages of

100 words [185] along with the article title that is concatenated to the start of each

passage. For sparse retrieval, we construct the inverted index using Pyserini [111]
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and for dense retrieval, we use pre-encoded index files from Pygaggle2.

Tuning BM25. For passage retrieval, we use k1 = 0.9 and b = 0.4, as reported

in DPR. For document retrieval, k1 and b were tuned on the dev set of each dataset

separately. We bootstrap k1 and b by repeatedly resampling from [0, 3] and [0, 1]

(ranges are taken from [178]), 100 times with replacement. We take the best k1 and

b pairs; on NQ-open: k1 = 2.5 and b = 0.3, on TQA: k1 = 1.5 and b = 0.2, and on

WQ: k1 = 2.9 and b = 0.3.

5.5.1 Predicting Granularity Level of Retrieval

First, we study whether document-level cues can be identified using only questions.

To this end, we build a binary classifier that is able to accurately predicting the

granularity level of retrieval (i.e., passage-level or document-level). Such a classifier is

reminiscent of the unanswerability prediction via only the question [10] that achieves

an accuracy of 73%. Similarly, we train a classifier that takes a question as input and

predicts whether retrieval should be done at document-level or not.

The training data is constructed by computing text volume of BM25, explained in

§5.3.2, for both passage retrieval volpsg and document retrieval voldoc on the training

set of NQ-open. The label of each question is argmin(volpsg, voldoc). The dataset

statistics, constructed using this method, is reported in Table 5.3. We fine-tuned

RoBERTabase [118] on this dataset for 5 epochs (learning rate=1.5e−5 with a linear

decay and a warmup ratio of 0.1), and with a weighted cross entropy loss3 to account

for data imbalance. Our classifier achieves an accuracy of 65.7% (AUC=0.665, and

recall=58.7%) on the test set.

Next, we plug in the classifier to an open-domain QA pipeline with BM25 as the

retriever and FiD [81] as the reader. This model achieves an exact match (EM) ac-

2https://github.com/castorini/pygaggle/
3We adopted the “balanced” heuristic from the scikit-learn package for computing class weights:

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class weight.compute class weight.
html
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Table 5.3: Dataset Statistic, constructed from NQ-open, for predicting the granular-
ity level of retrieval.

Data Split Size #Doc-labelled instances

Train 69,896 9,848 (14.1%)

Dev 8,757 1,125 (4.9%)

Test 3,610 858 (5.6%)

curacy of 39.7% and 8.8% on the full NQ-open, and our benchmark, respectively.

The performance of the pipeline deteriorates, compared to when the classifier is not

used (Table 5.4), which indicates that our classifier is not accurate enough in pre-

dicting the right granularity level of the retrieval. Hence, unlike unanswerability

[10], using only the question to predict the granularity level of retrieval is not a use-

ful tool for an open-domain QA pipeline. Moreover, these results indicate that the

need for document-level reasoning is not a characteristic of the question alone. This

also supports our observation in the human study that document-level reasoning is a

byproduct of the corpus rather than the questions.

5.5.2 End-to-End Results

To measure the end-to-end performance, we pair our retrievers with the well-established

FiD reader [81], whose trained checkpoint is publicly available. For document re-

trieval, retrieved documents are naively split into passages as FiD accepts only pas-

sages. Note that this approach is not efficient and serves merely as a baseline. We

restrict the number of passages that are fed to the reader to 100, analogous to pre-

vious work [81, 90]. This restriction indeed puts document retrieval at disadvantage

since some parts of documents may be cut off. As showcased in Table 5.4, document

retrieval with our naive approach substantially underperforms on the full dataset,

whereas it leads both passage retrievers on our benchmark. This result highlights

that document-level information is central to answer the questions in our benchmark
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that even our naive approach surpasses the full-fledged passage-based pipelines.

Table 5.4: Exact-match accuracy of our retrievers, paired with FiD [81], on NQ-open.

Pipeline Full Dataset Our benchmark

Psg-BM25 + FiD 41.4 8.6

ANCE + FiD 46.6 6.9

Doc-BM25 + FiD 33.5 12.1

5.5.3 Varying Passage Length

One hypothesis is that increasing the passage length can be helpful when passages

are not long enough to reflect the document discourse. To investigate this, we vary

passage length within {50, 100, 200, 500, 1000} and perform BM25 retrieval for each

passage length. To this end, we construct a separate index for each passage length and

tune BM25 parameters as explained in §5.5. Then, we retrieve passages using BM25

over each index and measure hits ratio at volume 10K. The results are visualized in

Figure 5.4 for the full NQ-open as well as our evaluation benchmark. Even though

the performance declines overall with longer passage lengths, the hits ratio actually

increases on our document-level benchmark. The performance of document retrieval

remains almost intact for both cases. These results indicate that more context is

indeed required to locate plausible candidates on our benchmark.

5.5.4 Enrich Passages with Additional Context

In light of our findings in Section 5.5.3, we investigate whether enriching passages

with additional context is helpful or not. For this purpose, we leverage the leading

section of a document since according to the Wikipedia writing guidelines4, it serves

as a “summary of the most important points” of the document and “should stand on

its own as a concise overview of the article’s topic.”

4https://en.wikipedia.org/wiki/Wikipedia:Manual of Style/Lead section
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Figure 5.4: Hits ratio at volume 10K for various passage lengths on NQ-open and
our benchmark.

We take the first passage of documents as an estimate of the leading section and

prepend it to each passage in the document. We retrieve the enriched passages using

BM25 whose parameters are tuned following the procedure explained in Section 5.5.

The retrieval performance, hits ratio at volume 10K, slightly drops to 76.7%, com-

pared to that of passage retrieval — 77.6% — on NQ-open. On our benchmark,

enriched passage retrieval achieves 57.5%, whereas passage retrieval scores 47.5%.

We further plug the enriched passage retrieval into FiD. The exact match accuracy

for 100 enriched passages bumps up to 10.0%. Note that enriched passages are ap-

proximately twice longer than a passage, and they are mostly composed of repetitive

content (i.e. the first passage of their corresponding documents). Hence, this overall

result is not directly comparable with the end-to-end results, presented in Table 5.4.

Yet, these findings emphasize that additional context is indeed helpful for our bench-

mark.

5.6 Conclusion

Passage retrieval is not always sufficient for open-domain QA models. In fact, an-

swering some questions requires document-level reasoning. In this paper, we show

that this phenomenon is largely overlooked in existing benchmarks. To this end, we
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introduce a novel benchmark, carefully curated from three well-known open-domain

QA datasets, that consists of 82 such questions. We hope our benchmark spurs the

development of document-level open-domain QA models.
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Chapter 6

Conclusion and Future Work

This thesis culminates with drawing the central conclusions from the previous chap-

ters. To this end, I first recap the key contributions made towards building robust

and scalable QA systems suitable for real-world applications, my primary goal in this

thesis. Then, I take stock of the findings and contributions to discuss potential future

research directions.

6.1 Summary of Contributions

The present thesis set out to alleviate the adoption of open-domain QA models, ca-

pable of answering information-seeking questions over a knowledge source, in applied

areas. I argued that achieving this goal demands the following four key desiderata,

stated in Section 1.2: (D1) ability to effectively acquire knowledge from text, (D2)

maintaining robustness under distribution shifts during test time, (D3) ability to scale

up for large volume of data, and (D4) reliability in evaluation. In this section, I discuss

the contributions of my research and their connections to these desiderata. The core

of the work I presented in this thesis can be viewed through the lenses of modelling,

data, and evaluation, a vital triad for building clear-cut real-world systems.

I first focused on retrieval in open-domain QA systems (Chapter 2). Traditional

sparse retrieval has long been the go-to approach in open-domain QA until recently.

However, they are not designed for QA where textual cues matter most. This problem
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concerns a lack of knowledge acquisition methods that can incorporate some useful

features into the retrieval. To overcome this problem, I presented a simple retrieval

model to endow sparse retrievers with word order, the most salient syntactic cue.

Knowing what words precede and/or succeed a word in a sentence, also referred to as

local word order, strengthens the likelihood of localized context in documents. The

proposed model is shown to be a strong baseline for dense retrieval models. Local

word order-aware retrieval complements dense models when fused with them, thus

suggesting that the two models flounder on different test cases. Unlike dense models

(DPR [90], ANCE [192], inter alia) that perform poorly on out-of-distribution data

[177, 143], sparse models remain robust under distribution shift.

In Chapter 3, I proceeded to work on another crucial component in open-domain

QA systems, machine readers whose objective is to precisely pinpoint the answer. I

focused on a well-documented issue in this regard. QA models are heavily susceptible

to domain shift [130, 88, 15]. I explored the impact of DA to overcome this problem

because DA is previously shown effective for in-domain tests [4]. However, the size

of augmented data that directly impacts the training speed is never studied. Using

DA blindly impairs the scalability of training on large-scale datasets. Since this issue

is not limited to QA, I shifted gears to a wide range of NLU tasks including reading

comprehension (i.e. answering a question, given a passage). I presented an algorithm,

namely Glitter, that adaptively selects a subset of worst-case augmented samples with

a maximal loss. Glitter is flexible in the choice of the selection criterion; it can be

as simple as a cross entropy loss. More importantly, Glitter is sample-efficient in

that it selects only a portion of augmented data. Also, Glitter can be coupled with

any DA method, making it a universal framework. I showed that Glitter does not

compromise accuracy, but it is significantly faster to train, compared to naively using

all augmented data.

In Chapter 4, in line with the goal of knowledge acquisition methods, I studied

the task of generating viable meta information from bare-bones text, a path towards
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building context-rich text collections. In particular, I developed an algorithm to

map location mentions, called toponyms, to their corresponding spatial coordinates

without a reliance on labelled data. The proposed algorithm is based on two intuitive

hypotheses that (i) the geographic scope of the document is a strong signal to locate

toponyms, and (ii) nearby toponyms tend to be linked with one another. The two

hypotheses were characterized by a probabilistic model. However, one missing element

in the algorithm was to leverage spatial hierarchies (e.g. containment and sibling

relationships). For this purpose, I considered the minimality hypothesis of toponyms.

Specifically, toponyms in a document are often in the spatial proximity of each other.

The minimality property is modelled via the classical conflict-free covering problem.

All these hypotheses combined form a strong unsupervised model for the task that

surpasses supervised models on previously unseen toponyms.

Finally, Chapter 5 looked into the reliability of evaluation benchmarks in open-

domain QA. When comparing document retrieval with passage retrieval on existing

well-known benchmarks, the results suggest that passage retrieval outperforms docu-

ment retrieval by a high margin. These results have inspired many passage retrieval

models in the community insofar as document retrieval has gone virtually extinct in

recent open-domain QA models. Admittedly, the use of passage retrieval has a strong

precedent in this task [35] and is based on the assumption that the knowledge source

is substantial enough that the answer can be found somewhere in a localized context.

Nonetheless, this assumption does not hold in practice for Wikipedia and other spe-

cialized domains. Such observations motivated me to investigate questions for which

document retrieval performs better than passage retrieval. To this end, I conducted

a thorough manual analysis to find the real reason of the superiority of document

retrieval. The human study identified a small set of questions that are impossible

to be answered using passage retrieval because some kind of document-level evidence

is necessary for answering them. I curated these questions as a document-level rea-

soning benchmark for open-domain QA to spur the development of QA models with
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document-level understanding.

6.2 Future Work

I strongly believe there is still a long way to go to accomplish genuine human-level

open-domain QA. The discussion in Section 6.1 leaves ample avenues for future work.

In this section, I discuss the open problems based on the insights I gained doing this

thesis.

6.2.1 Considerations for using models in the wild

I touched upon four key requirements for deploying systems in real-world applications.

Nonetheless, systems that deal with real life problems even though successful on re-

search benchmarks are facing a myriad of other concerns that I envision as challenging

future directions: interpretability, and fairness.

Interpretability: The IR and NLP communities are used to model transparency

because the behaviour of classical statistical models were often predictable and con-

trollable. In contrast, in the deep learning era, neural models lack such transparency.

We need tools to provide explanation why a model is producing a particular output.

Moreover, we should be able to control the behaviour of a model because it provides

a means to diagnose and fix issues in models.

Fairness: Models should fairly treat diverse perspectives. Recent colossal PLMs

are shown to reflect biases and perpetuate stereotypes [62, 17]. How to surmount

biases, present in data, is an indispensable open problem. Another question is what

modelling decisions are needed to overcome biases. PLMs are nowadays the dominant

backbone of QA models, denoting that they propagate their biases into downstream

tasks. Another pivotal aspect of this problem is heeding the social contexts and target

demographics when models are considered to be used in practice.
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6.2.2 Scalability and Complex Reasoning

Answering questions requires a host of various reasoning skills including numerical

reasoning [5], discrete processing [47], coreferential understanding [40], and multi-

hop reasoning [195]. In fact, QA datasets can be categorized based on reasoning

capabilities, but they are mostly studied in a closed-domain setting where a context

is given. A potential future direction can be studying complex questions in an open-

domain mode where we have only access to a massive knowledge source. Multi-

hop QA is a leading example in this avenue where multiple supporting evidence

should be retrieved from a knowledge source for finding an answer. Making complex

reasoning QA tasks open introduces scalability as another challenging dimension into

the problem and may give rise to novel retrieval models.

6.2.3 Sample Efficiency for Dense Retrieval

Sample efficiency or learning from fewer examples allows us to build scalable models

on large-scale datasets. In IR, training end-to-end dense retrieval models exhibits

two limitations. First, they need a large number of queries, comprising positive and

negative examples. Second, these models should frequently re-index the data during

training [70, 170]. These problems entail the need for vast computational resources

that amount to larger carbon footprint and inhibit the wide adoption of these models.

Strategies to make dense retrievers sample-efficient would make them easier to build

and more accessible.

6.2.4 Data-centric Analysis of QA Datasets

Data-centric practices aim at systematically engineering data to build successful mod-

els. The increasing interest in data-centric techniques suggests that we need to look

for sustainable ways to analyze existing datasets. Our manual assessment of three

popular open-domain QA benchmarks in Section 5.3.3 uncovers a troubling number

of data quality issues. A careful inspection of these errors and the steps to circumvent
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them are potential directions that can lead to the creation of high-quality datasets in

the future.
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