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Abstract 

The purposes of this study were: 1) to compare the values of decision 

consistency (DC) and decision accuracy (DA) yielded by three commonly used 

estimation procedures:  Livingston-Lewis (LL) and the compound multinomial 

procedure (CM) procedures, both of which are based on classical test theory 

approach, and Lee’s IRT procedure based on item response theory approach and 

2) to determine how accurate and precise these procedures are. Two population 

data sources were used: the Junior Reading (N = 128,103) and Mathematics (N = 

127,639) assessments administered by the Education Quality and Accountability 

Office (EQAO) and the three entrance examinations administered by the 

University of Malawi (U of M; N = 6,191). To determine the degree of bias and 

the level of precision for both DC and DA, 100 replicated random samples 

corresponding to four sample sizes (n = 1,500, 3,000, 4,500, 6,000) for the EQAO 

populations and two sample sizes (n = 1,500, 3,000) for the U of M population 

were selected.  

At the population level, there was an interaction between the three 

procedures and the four cut-scores. While the differences between the values of 

DC and the values of DA among the three procedures tended to be small for one 

or both extreme cut-scores, the differences tended to be larger when the cut-score 



 

 

 

 

was closer to the population mean. The IRT procedure tended to provide the 

highest values for both DC and DA, followed in turn by the CM and LL 

procedures.   

At the sample level, the estimates of DC and DA yielded by the three 

estimation procedures were unbiased and precise. Consequently, the findings at 

the population are applicable at the sample level. Therefore, based on the findings 

of the present study, the compound multinomial procedure should be used to 

determine DC and DA when classical test score theory is used to analyze a test 

and its items and the IRT procedure should be used to determine DC and DA 

when item response theory is used to analyze a test and its items. 
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CHAPTER 1: INTRODUCTION 
 

Background of the Problem 

The consistency and accuracy of student proficiency classifications must 

be evaluated if decisions from educational assessment results are to be useful and 

defensible. One of the most significant purposes of large-scale assessments is to 

determine whether or not a candidate has been classified in the correct category 

based on his/her score on the assessment used for this purpose (Livingston & 

Wingersky, 1979; Livingston & Zieky, 1982; Zhang, 2008).  Using assessment 

results, applicants must be classified into different proficiency levels. For 

example, in the case of licensure decisions, candidates are either licensed or not. 

Likewise in public education candidates are classified into different proficiency 

levels, such as masters versus non-masters or Below Basic, Basic, Proficient, and 

Advanced (American Educational Research Association, American Psychological 

Association, & National Council on Measurement in Education, 1999; Guo, 2006; 

Martineau, 2007). It is vital to note that any measurement instrument has an 

inherent measurement error. Consequently, the test scores used to classify 

students according to their abilities also include measurement error (Ercikan, 

2006; Lee, 2008; Wang, Bradlow & Wainer, 2002). Therefore, it is vital for 



2 

 

 

 

educational experts to evaluate the decision accuracy (DA) and decision 

consistency (DC) in the presence of measurement error so that students are 

classified in the correct performance-level categories. 

Misclassifications usually occur when the score of a student is at the 

border of the cut-score (Glass, 1978; Rudner, 2005; Wang & Wilson, 2005). For 

instance, if the score of a student is either just above or just below the cut-score, 

then the score may change if a parallel form of the test is administered due to 

measurement error (Berk, 1980; Glaser, 1963; Lord & Novick, 1968). If the score 

of the student is above the cut-score on the first administration but below the cut-

score on the second administration, there is high probability of committing Type 

II error. In this situation the placement is called false negative. On the other hand, 

if the score is below the cut-score on the first administration but above the cut-

score on the second administration, there is high probability of committing Type I 

error which leads to false positive classification (Cizek, 2001; Crocker & Algina, 

1986; Cronbach, Linn, Brennan & Haertel, 1997). Therefore, it is important to 

estimate the DA and DC of classifications so as to know the probability that 

correct or same decisions are made about students’ performance. If the values of 

DA and/or DC are low, then the use of the assessment for classification decisions 
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may not be warranted (Lee, Hanson & Brennan, 2002; Saito, 2003; Subkoviak, 

1978). 

Definitions of Decision Accuracy and Consistency 

Decision accuracy is defined as the degree to which classifications using 

test scores are the same as the classifications using true scores, which are errorless 

(Embertson & Reise, 2000; Lee, 2010; Wilcox, 1981). Classification accuracy is 

used interchangeably with validity of a classification system (Hambleton & 

Novick, 1973; Hambleton, Swaminathan & Rogers, 1991; Lee, Hanson & 

Brennan, 2002).  In contrast, decision consistency or reliability of classification 

deals with only observed scores. It refers to the degree to which examinees are 

placed in the same performance-level categories each time the measurement 

instrument is employed under similar conditions (Hambleton, Swaminathan  

Algina & Coulson, 1978; Hambleton, & Traub, 1973; Lord, 1965). 

Factors that affect Decision Accuracy and Consistency 

There are several factors that affect the values of DA and DC. First is the 

position of the cut-score in the score distribution relative to the mean for the score 

distribution (Gelman, Carlin, Stern & Rubin, 1998; Wainer & Thissen, 1996; 

Wan, Brennan & Lee, 2007).  Given that generally a large number of students’ 

scores are close to the mean, more students are liable to be misclassified if the 



4 

 

 

 

cut-score is closer to the mean of students’ scores due to measurement error 

(Cronbach, 1951; Shepard, 1980; Wainer, Bradlow & Du, 2000). The likelihood 

of committing a Type I error or Type II error decreases as the distance between 

the cut-score and the center of a distribution increases in a score distribution. The 

further the cut-score is from the center of a distribution of a score distribution, the 

higher the values of DA and DC (Feldt & Brennan, 1993;  Haertel & Wiley, 1993; 

Huynh, 1978). 

The second factor is the number of cut-scores. As the number of 

proficiency levels increases, the number of cut-scores increases (Bourque, 

Goodman, Hambleton & Han, 2004; Misley, 1984; Sireci, Thissen & Wainer, 

1991). For example, the use of three proficiency levels requires two cut-scores 

while the use of four proficiency levels requires three cut-scores. Given the same 

score distribution, the distances between three cut-scores will generally be less 

than the difference between two cut-scores (Popham & Husek, 1969; Reschly, 

1981; Resnick, 1980). When the distances between adjacent cut-scores are small, 

the likelihood of committing type I error or type II error is higher than when 

distances between adjacent cut-scores are larger (Berk, 1984; Brennan & Lee, 

2006a, 2006b; Bradlow, Wainer & Wang, 1999; Traub & Rowley, 1980). 
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The third factor that influences DA and DC is the length of the test (Li, 

2006; Linn, 1979; Rogosa, 1999). As the length of the test increases by adding 

more items, the error of measurement decreases, which will in turn reduce the 

number of misclassifications, thereby leading to higher values of DA and DC         

(Birnbaum, 1968; Spearman, 1910; Wainer, Wang, Skorupski & Bradlow, 2005). 

Fourth, the values of indices for DA and DC are affected by the type of 

scores used (i.e., raw scores or scale scores) (Brennan, 2001; Brennan & Kane, 

1977; Hambleton & Swaminathan, 1985). These two types of scores may not 

always give the same results for decision accuracy and decision consistency 

indices due to the lack of one-to-one correspondence between the raw and scale 

scores (Lee, 2005; Lord, 1980).  

Estimation Procedures Based on Classical Test Score Theory 

Historically, the estimation of decision consistency was considered before 

the estimation of decision accuracy and was based on classical test score theory 

(CTST). At first, KR-20 and a corrected split-half reliability were used to estimate 

internal consistency of examination scores before 1973 (Hambleton, & Slater, 

1997). However, Hambleton and Novick (1973) recognized that these two indices 

were not appropriate for determining the consistency of classifications. They then 

defined DC as the consistency of classification of the candidate’s performance in 
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the correct category of proficiency level resulting from two administrations of the 

same test or parallel forms of the examination. Consequently the proportion of 

correct decisions, op , or the proportion corrected for chance,   (Cohen, 1960), 

made from two administrations of the same test or the  administration of parallel 

forms of the same test on two occasions were used.  However it is very difficult to 

construct two parallel forms of the test that will meet the test specifications and is 

doubtful that some candidates administered the same test twice will not remember 

some of the responses to the first administration or will not be available for both 

administrations. As a result, several procedures for estimating DC for 

dichotomously-scored items using a single administration of the test were 

proposed (e.g., Huynh 1976; Marshall & Haertel, 1976; Peng & Subkoviak, 1980; 

Subkoviak, 1976). 

In 1990, Hanson and Brennan proposed a procedure for estimating both 

DC and DA for dichotomously scored items. Subsequently, several methods for 

estimating both DC and DA were developed that are applicable for assessments 

with both dichotomously scored and polytomously-scored items (see Breyer & 

Lewis, 1994; Lee 2005; Lee, Brennan & Wan, 2009; Livingston & Lewis 1995). 
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Estimation Procedures Based on Item Response Theory 

  Due to the increased use of item response theory (IRT) in test 

development, several procedures for estimating DA and DC have been developed 

based on IRT. As with CTST and single test administration, the first procedures 

were developed for dichotomously scored items (e.g., Huynh, 1990; Schulz, 

Kolen & Nice-wander, 1999). Subsequently, estimation procedures were 

developed for both dichotomously and polytomously scored items (e.g., Lee, 

2008, 2010; Lee, Hanson & Brennan, 2002; Wang, Kolen & Harris, 2000; 

Rudner, 2001, 2004).  

However, studies comparing the various procedures (Hanson & Brennan, 

1990; Lee, 2010; Lee, Hanson & Brennan, 2002) have revealed that the 

procedures do not necessarily lead to the same estimates of DA and DC. Of these 

studies, only one study (Lee, 2010) compared the correctness of the decisions 

using procedures based on CTST and procedures based on IRT. The three 

procedures that Lee considered included the Livingston-Lewis procedure (CTST), 

compound multinomial procedure (CTST), and the three-parameter IRT model. 

Lee found that the decision indices obtained using IRT procedures were generally 

higher than the decisions using the two CTST procedures. The study employed 

small sample sizes (n = 500 for a mathematics ability test and approximately 
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4,000 for science test). The scarcity of studies in which these three procedures are 

compared is regrettable because it is the sort of evidence that testing companies 

require when defending the accuracy and consistency of the decisions they make 

when classifying students based on their test scores. 

Purpose of the Study 

Consequently, the purpose of this study was to compare the correctness of 

decision accuracy and decision consistency of the following three estimation 

procedures:  Livingston-Lewis procedure (LL) CTST approach, the compound 

multinomial procedure (CM) CTST approach, and the Lee IRT procedure. The 

following research questions were addressed: 

1. Do the LL, CM, and IRT procedures yield the same results across four cut- 

scores and sample sizes? 

2. To what extent does the cut-score location affect the magnitude of the 

values of DC and DA obtained using the LL, CM, and IRT procedures? 

3. To what extent does the number of examinees around the cut-score affect 

the magnitude of the values of DC and DA obtained using the LL, CM, 

and IRT procedures? 

4. Are the LL, CM, and IRT procedures equally consistent and accurate 

across four cut-scores and different sample sizes? 
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Delimitations 

Given the scope and size of the present study, it was not possible to 

conduct a follow-up study to determine whether or not the placement of the 

students on the borderline between two performance categories was correct in 

terms of how much of the subject matter content these students had mastered. 

Such a study was not feasible in terms of time and the resources needed given the 

location of the students in a different province and country. However, a follow-up 

study would be beneficial. 

Definition of Terms 

Standard setting: a measurement activity in which a procedure is applied 

to systematically derive one or more cut-scores in the score distribution for a test 

(Canale & Swain, 1980; Rogers & Ricker, 2006). 

Performance standard: the conceptualization of the lowest level of 

achievement deemed necessary to be given to a performance-level category 

(Livingston  &   Zieky, 1982; Rogers & Ricker, 2006). 

Masters: Students performances whose scores are equal to or greater than 

a cut-score (Brennan & Lee, 2006a, 2006b; Rogers & Ricker, 2006). 

Non-masters: Students performances whose scores are lower than the cut-

score  (Livingston  &   Zieky, 1982; Rogers & Ricker, 2006). 
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Advanced: a higher level of achievement based on performance standards. 

The student may also achieve at levels that exceed the grade-level standard 

(Cizek, 2001; Knupp, 2009).  

Proficient: a high level of achievement based on performance standards. 

The student is able to perform at the level of difficult, complexity, or fluency 

specified in the grade-level standard (Cizek, 2001; Lee, 2005). 

Basic: The lowest level of achievement based on performance standards 

(Brennan & Lee, 2006a, 2006b; Cizek, 2001).  

Below Basic: below the lowest level of achievement based on 

performance standards (Livingston  &   Zieky, 1982; Rogers & Ricker, 2006). 

Cut-score:  a point in a score distribution that generates groups 

representing two or more states or degrees of performance. A cut-score is the 

numerical operationalization of a performance standard (Bachman & Palmer, 

1996; Cizek, 2001; Livingston  &   Zieky, 1982).  

Decision accuracy:  the degree to which classifications based on test 

scores are equivalent to those that could have been made if the scores were 

errorless (Lee, 2010; Livingston  &   Zieky, 1982).                  
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Decision consistency: the degree to which classifications based on test 

scores are equal to the decisions based on scores from a second, parallel form of 

the same test (Rogers & Ricker, 2006, Lee, 2010). 

False Negative:  a  mistake that arises when the application of a cut-score 

classifies an examinee as failing when the examinee truly possesses the level of 

knowledge, skill or ability required for passing (Ercikan, 2006; Lee, 2008, 2010). 

False Positive: a mistake that occurs when the application of a cut-score 

classifies an examinee as passing when the examinee truly does not possess the 

level of knowledge, skill or ability required for passing (Lee, Brennan & Wan, 

2009; Livingston  &   Zieky, 1982). 

Minimum Competency: The ability to display fundamental proficiencies 

or work effectively during the performance of life roles (Girrbach &  Claus, 1982; 

Livingston  &   Zieky, 1982). 

Organization of the Dissertation 

Chapter 1 included a brief overview of the background to problem, the 

purpose and corresponding research questions to be addressed, the significance 

and delimitations of this study, and the operational definitions of terms. Chapter 2 

begins with the role of testing in decision-making process, followed by the 

context in which DA and DC are needed, and a description of existing approaches 
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to estimating DA and DC based on CTST and IRT. The chapter concludes with a 

summary of the literature review and how this connects to the research questions. 

Chapter 3 presents the procedures to be used in this study for estimating the 

correctness of decision consistency and decision accuracy. Chapters 4 and 5 

contain the results for the population and samples and a discussion of the results 

for the two data sources used in this study.  Chapter 6 presents the summary of the 

study and the findings for each data source, discussion across the two findings 

across the two data sources, the conclusions drawn on the basis of the overall 

findings, implications for practice, and recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 
 

This chapter presents a review of previous research for estimating 

Decision Accuracy (DA) and Decision Consistency (DC). Several methods have 

been developed to indicate how accurate and consistent educational decisions 

based on test scores are. These methods were developed using either Classical 

Test Score Theory (CTST) or Item Response Theory (IRT). The chapter is 

organized in three sections. The context in which DA and DC are needed is 

provided first. This is followed by a description of existing approaches to 

estimating DA and DC based on CTST and IRT. A summary of the literature and 

how the findings from the literature connect to the research questions presented in 

Chapter 1 concludes the chapter. 

The Role of Educational Testing in Decision-making Process 

Two of the purposes of large-scale testing in education are to produce 

reliable scores that can be validly interpreted and to make decisions about 

placement, remediation, and certification using these scores. It is important and 

fair that the decisions made are both accurate and consistent (Mislevy, 1991; 

Messick, 1975; Rulon, 1939; Wainer & Kiely, 1987).  Accurate and consistent 

decisions depend upon the clarity of the descriptions of the different ordered 

performance levels or categories, administration of tests that yield reliable scores 
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that can be validly interpreted in terms of the domain represented by the 

performance levels, and sound procedures for setting cut-scores in the test score 

distribution that distinguish the performance levels (Klein & Orlando, 2000; 

Nevitt, 1998; Skakun & Kling, 1980). For example, given these conditions are 

met, we could report with confidence that a student performed well in a range of 

activities related to numeracy but less successfully with a range of activities 

related to geometry. This information is useful because teachers can concentrate 

on those topics where a student is weak, thereby leading to improvement in the 

student’s performance (Bradlow & Wainer, 1998; Brennan, 2001; Hagen, 1983). 

Figure 1 provides a graphical representation of the steps of the decision-

making process followed to determine in which of three performance levels – 

below basic, basic and above basic – a student should be placed based on what the 

student knows as demonstrated on a test.  
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Step 1: Experts identify the expected behaviours that should be portrayed by 

examinees whose scores will be used to classify the examinees at each of 

the three performance levels. These behaviours depict the level of subject 

matter content and processes that an examinee should have mastered in 

order to be classified in a particular performance category (Howard, 1964; 

Skakun & Kling, 1980; Subkoviak, 1978). 

Step 2: Subject matter experts construct the test with items that are relevant to and  

representative of the expected behaviours for each performance-level 

category. Thereafter, proper procedures are followed during test 

administration and scoring to obtain reliable test scores that can be validly 

interpreted for each student who sat for this test (Chester, 2003; Cicchetti, 

& Feinstein, 1990; English Language Institute, University of Michigan, 

2006). Correct decisions about students’ abilities based on the 

performance during examinations are enhanced if the tests used are 

properly standardized (Hoover, Hieronymus, Frisbie, & Dunbar, 1996a, 

1996b; Keats & Lord, 1962; Keller, Swaminathan, & Sireci, 2003). 

Standardization of a test ensures that all the students are administered the 

same test referenced to and representative of the performance levels, the 
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instructions and timing are the same, and scoring rubrics for the open-

response items are the same and are applied in the same way. The intent is 

to ensure that the testing process does not adversely influence a student’s 

performance (Brown, 1980; Hagen, 1983; Nunnally, 1978; Wainer, 

Bradlow & Wang, 2007). 

Step 3: Cut-scores are set that separate the students into the performance levels. 

Examinees’ are classified into different performance levels by using cut-

scores. Cut-scores, which are usually set on a continuous score scale, 

differentiate the examinees’ performances on the test according to the 

prescribed performance standard at two adjacent levels (Harwell & 

Janosky, 1991; Heubert & Hauser, 1999; Lee, Brennan  & Kolen, 2000).  

Consequently, when setting these cut-scores care must be taken to ensure 

that the cut-scores are reasonable in order to make accurate and consistent 

decisions. For example, examinees who have sufficient knowledge about 

the subject matter content and who score above the cut-score that 

differentiates basic from above basic performance should be able to 

answer most of the items on the test, whereas examinees whose scores fall 

below the cut-score should be able to correctly answer fewer of the items 

(Rogers & Ricker, 2006; Wainer, Wang, Skorupski & Bradlow, 2005). 



18 

 

 

 

Step 4: The cut-scores developed at Step 3 are used to place students in one of the 

three performance levels. If a student’s test score is less than the first cut-

score that separates the below basic and basic performance levels, then the 

student is placed in the below basic category (Fitzmaurice, 2002; Gong & 

Hill, 2001; Uebersax, 2003). A student with a score that is equal to or 

greater than the first cut-score and below the second cut-score would be 

placed in the basic category. Lastly, a student with a score equal to or 

greater than the second cut-score would be placed in the above basic 

category (Spray & Welch, 1990; Swaminathan, Hambleton & Algina, 

1975). 

Step 5: How good the decisions made at Step 4 are assessed at Step 5 by 

estimating decision accuracy and decision consistency.  

The purpose of this dissertation, which corresponds to Step 5 in Figure 1, 

was to compare three estimation procedures for determining DA and DC in terms 

of bias and consistency for the three estimators. The fact that there is more than 

one estimation procedure speaks to the difficulty in determining DA and DC. For 

example, while it is obvious that two testing occasions are needed, it is generally 

not possible to test students on two different forms that are interchangeable 

because of difficulties in constructing the forms and examinees not being present 
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for both testing occasions (Box & Draper, 1987; Kolen & Brennan, 2004; Liu, 

Bolt & Fu, 2006). 

Decision Consistency and Decision Accuracy for Two or More Test 

Administrations 

Decision Consistency 

Decision consistency is discussed first because historically consistency 

was considered before accuracy. In estimating DC, the observed or transformed 

scores on the two administrations of the same test form are not errorless. For 

instance, some examinees may achieve higher scores on the first administration of 

the test than on the second administration of the same test form while other 

examinees may achieve equal scores on both occasions of test administrations; 

and still other examinees their scores on the first administration may be lower 

than on the second administration of the same test form (EQAO Report, 2011; 

Lee, Brennan & Kolen, 2000; Messick, 1975; Mislevy, 1991). The reason for 

these differences is due to measurement error. However, some of the differences 

may be very large and lead to inconsistent classifications of examinees into 

different performance-level categories (Kolen & Brennan, 2004; Wainer & Kiely, 

1987). The problem is that we never know the size of the error of measurement 



20 

 

 

 

for each person on each occasion of test administration, so we never know if the 

observed score on the first administration of the test is:  

a. lower than the score on the second  administration of the same test 

form, which would mean that examinees may be placed in the lower 

category with the first administration of the test but in higher category 

with the second administration of the same test form,  

b. the same or close to the score on the second administration of the same 

test form, in which case their placement would be consistent, or  

c. higher than the score on the second administration of the same test 

form, which would mean that examinees may be placed in the higher 

category using the first administration of the test but in a lower 

category when using the second administration of the same test form.  

Carver (1970) was probably the first psychometrician to propose a 

procedure for estimating DC. He based his procedure on the proportion of 

examinees that were consistently placed in one of two categories: failed to meet 

the standard ( 00p ) and met the standard ( 11p ) (see Table 1). The sum of these two 

proportions, 0p , is the total proportion of examinees consistently categorized on 

two interchangeable test forms or on two administrations of the same test: 

0 00 11p p p  . 
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If there is no measurement error, then identical decisions would be made and

0 1p  . However, given the fallibility of measurement, measurement error will be 

present and 0 1p  .  

 

Table 1 

 Demonstration of Decision Consistency  

  Observed Scores 2  

  0 1 Row Margins 

Observed 0 
00p  01p  1.p  

Scores 1 1 
10p  11p  2.p  

 Column 

Margins 

.1p  .2p  1.00 

 

 Cohen (1960) indicated that 0p  was also influenced by chance. He 

therefore proposed that 0p  be corrected for chance. The formula for the 

probability of a correct decision by chance is:  

.22..11. pppppc 
 

where cp  is the probability of correct decisions by chance, 
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1p  and 1p  are the row and column percentages of the examinees 

classified in the lower proficiency category, and  

2p  and 2p  are the row and column percentages of examinees classified 

in the higher proficiency categories on two interchangeable test forms 

(see Table 1).  

The formula for coefficient kappa, , the corrected proportion of correct decisions 

for a 2 x 2  table, is given by: 

0 ,
1

c

c

p p
k

p




  

where cpp 0  is the actual gain over chance, and 

cp1  is the theoretical gain over time.  

Hambleton et al. (1973) and Swaminathan et al. (1974) extended the 

formulas for 0p   and   for use in situations where there were more than two 

performance categories. The general formula for 0p is: 

,
1

0 



k

i
iipp

 

where iip  is the percentage of examinees consistently classified to the ith 

proficiency categories on two occasions using two interchangeable test 

forms, and  
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k 2  is the number of proficiency-level categories.  

The general formulas for cp  and  are, respectively:  

,
1

i

k

i
ic ppp 




 

and   

0 ,
1

c

c

p p

p
 



 

where ip and ip  are the percentage of individuals classified in the ith proficiency 

level categories on two interchangeable test forms. 

Decision Accuracy 

Although test scores are not errorless due to measurement error, the 

corresponding true scores are errorless. Consequently, classification decisions that 

are made using true scores are the accurate classifications. On the contrary, 

classification decisions that are made using test scores are not accurate because 

they contain measurement error (Keats & Lord, 1962; Keller, Swaminathan & 

Sireci, 2003; Klein & Orlando, 2000). Sometimes, the examinees scores may be 

too low leading to negative measurement error, other examinees scores may be 

just right leading to zero measurement error and still other examinees scores may 

be too high and this gives rise to positive measurements error (Kolen  & Brennan, 
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1995; Shepard, 1980; Wainer, H., Bradlow & Du, 2000). The problem is that we 

never know the error of measurement, so we never know if the test score is:  

a. too low, which would mean that examinees may be placed in the lower 

category when their true score indicates they should be in the next 

higher category,  

b. just right, in which case their placement would be valid or truthful, or 

c. too high, which would mean that examinees may be placed in the higher 

category when their true score indicates they should be in the next lower 

category.  

 

Table 2 

 Demonstration of Decision Accuracy 

  Observed Scores  

  0 1 Row Margins 

True 0 
00p  01p  1.p  

Scores 1 
10p  11p  2.p  

 Column 

Margins 

.1p  .2p  1.00 
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The inconsistent classifications, 01p  and 10p (see Table 2), are likely due 

to the presence of error of measurement in the observed score. In Table 2, the DA 

is:   

 0 00 11p p p  ,  

where 00p  is the proportion of students classified in the lower category using 

both the true score and the observed score, and  

 11p  is the proportion of students classified in the upper category using 

both the true score and the observed score.  

The value of 0p  should be close to 1.00. 

As mentioned earlier, procedures for estimating DC were developed 

before procedures for estimating DA. As result, the procedures developed during 

the 1970s and 1980s only estimated DC (e.g., Hambleton & Novick, 1973; 

Swaminathan, et al., 1974; Huyhn, 1976; Marshall & Haertel, 1975; Subkoviak, 

1976, 1978; Peng & Subkoviak, 1980). Beginning in the early 1990s, both DC 

and DA were considered. The first procedure for estimating both DC and DA for 

dichotomously scored items was put forward by Hanson and Brennan (1990). 

Subsequently, Livingston and Lewis (1995) extended the Hanson and Brennan 

(1990) procedure for estimating DC and DA for tests containing both 
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dichotomously scored items and polytomously scored items. To accommodate 

polytomously scored items they used what they called the effective test length. 

However, this procedure appeared to be complex in terms of mathematical 

computation. As a result, Lee (2005) proposed the compound multinomial 

procedure as an extension of Livingston and Lewis procedure that avoided the 

need to use a test’s effective length. Lee proposed two models.  The multinomial 

model can be used for estimating DC and DA for dichotomously scored items 

only and for polytomously scored items with the same score points across all 

items; and the compound multinomial model can be used with items with varying 

score points. These two developmental studies were conducted in the framework 

of CTST. Similarly, there were developmental studies that were carried out in the 

framework of IRT. For example, Huynh (1990) developed the first procedure to 

estimate DA and DC in the framework of IRT for tests that contained only 

dichotomously scored items. Schulz, Kolen, and Nice-wander (1999) put forward 

another procedure using dichotomously scored items in estimating DC and DA 

based on IRT framework. Then Wang, Kolen, and Harris (2000) extended their 

IRT procedure to include polytomously scored items when estimating both DC 

and DA. Afterwards, numerous developmental studies were completed for 

complex assessment in the framework of IRT to estimate both DA and DC (e.g., 
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Lee, 2010; Lee, Hanson, & Brennan, 2002; Martineau, 2007; Rudner, 2005; Wan, 

2006; Zhang, 2008).  

Given that both DC and DA were considered in the present study, the 

following section is restricted to three procedures that estimate both consistency 

and accuracy: the Livingston-Lewis (LL procedure) (Livingston, & Lewis, 1995), 

Compound Multinomial (CM Procedure) (Lee, 2005), and IRT procedure (Lee, 

2008). As mentioned above, the LL procedure and the CM procedure are based on 

CTST whereas Lee’s procedure is based on IRT. These three procedures are the 

procedures that were compared in the present dissertation. 

Livingston-Lewis Procedure (LL procedure) 

The Livingston and Lewis (1995) procedure is based on CTST and 

accommodates the use of both dichotomously and polytomously scored items. 

Livingston and Lewis utilized the four-parameter beta distribution to estimate the 

examinees’ true scores and the binomial distribution to estimate the conditional 

error of measurements. To accommodate the inclusion of polytomously scored 

items, they proposed what they called the effective test length. The effective test 

length is determined by the “number of discrete, dichotomously scored, locally 

independent, equally difficult test items necessary to produce total scores having 

the same precision as the scores being used to classify the test takers” (Livingston 
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& Lewis, 1995, p. 180). The steps that are followed to estimate DC and DA are 

delineated below: 

Step 1: Determine the effective test length (H) 

Estimation of the effective test length for each test is done by employing 

the reliability of the total scores derived from all of the items that comprise the 

test form. The formula for the effective test length is: 

 

  
,

)1(2

2








r

rUU
H highestlowest




  

where H denotes the effective test length to nearest whole number, 

  represents the mean of the total scores,  

2
  stands for the variance of  the total scores,  

r  represents the test score reliability of the test, and 

lowestU  and highestU are the least possible score and uppermost possible score 

derived from examinees’ responses from the initial test form, respectively 

(Livingston & Lewis, 1995, p. 182). 
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Step 2: Adjust the observed score 

Using the effective test length H computed in Step 1, the observed score 

scale is adjusted onto a new score scale ranging from 0 to H. The adjusted test 

score is: 

,Hp
UU

UU
HL

lowesthighet

lowest 





 

where L  represents  the adjusted test score to nearest whole number, 

U stands for the examinee’s score, 

lowestU  and higestU stand for the least possible  score and uppermost possible 

score derived from examinees’ responses from the test form respectively, 

and 

p denotes the proportional total score for a particular examinee on the 

range from 0 to 1 scale. 

Step 3: Determine the proportional true score ( ) distribution  

Lord’s (1965) strong true score theory is employed to determine the 

proportional true score distribution that is derived from the adjusted raw scores. It 

is assumed that the proportional true score distribution follows a four-parameter 

beta distribution with probability density function given by: 

p
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where B stands for beta function. The process of deriving the above function 

involves the use of a two-parameter beta distribution, having parameters ( 1 ) 

and ( 1 ) on the scale (0, 1) and then the scores are adjusted linearly onto the 

interval (k, l), where 0  k<l< 1. The two parameters k and l are added to the 

function in order to make the function conformable for the computation technique 

by permitting zero frequencies for the lowest and highest true-scores (see Hanson 

& Brennan, 1990). The proportional true score equivalent to an observed score U 

on a range from 0 to 1 scale is given by: 

( )
,r lowest

p
highest lowest

U U

U U

 



 

where p  is the proportional true score,  

)(Ur  denotes the expected value of an examinee’s observed score for 

transposable test forms,  and  

lowestU  and highestU stand for the least possible  score and uppermost 

possible score derived from examinees’ responses from the test form 

respectively (Livingston & Lewis, 1995, p. 182).  



31 

 

 

 

Step 4: Compute decision accuracy 

The estimation of the agreement between true classifications and observed 

classifications leads to the computation of DA. This involves the use of the 

proportional true score distribution, that was estimated in step 3.  The distribution 

of the hypothetical test form scores with H independent dichotomously-scored 

items conditioned on true scores for the examinees is employed to generate the 

binomial distribution for each performance-level category.  

In order to estimate decision accuracy, it is assumed that true cut-scores 

are identical to observed cut-scores. Using these cut-scores, the joint distribution 

of the classifications derived from the true scores and the original test form scores 

are as shown in Table 2 and: 

.11000 ppp   

Step 5: Compute decision consistency. 

Estimation of DC involves the computation of the probability of 

consistently classifying an examinee above prescribed cut-score or below the 

prescribed cut-score on both the original test form and the hypothetical test form. 

Using the same cut-score for both tests, the probability of consistently classifying 

a student based on both tests is derived from original test form and the 

hypothetical test form as shown in Table 1. As before, the DC is given by: 
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0 00 11p p p   

The decision consistency due to chance is:                 

1..10..0 pppppc   

which is then used to compute  coefficient kappa  : 

0

1
c

c

p p
k

p





. 

Compound Multinomial Procedure (CM Procedure) 

While still based on CTST but in contrast to the Livingston and Lewis 

(1995) procedure, the compound multinomial procedure employs two models 

depending on the nature of the items included in a test. The multinomial model is 

employed if the test consists of only dichotomously-scored items or only open-

ended items that have the same number of total marks for each item. The 

compound multinomial model is used with a test in which number of marks varies 

across items (Lee, 2005). 

Multinomial Model 

Let s be the number of items, where each item is worth T possible item 

scores, a1, a2..........aT, and 2T  .It is assumed that: 

1.  the s items are randomly drawn from a pool of items referenced to the 

same domain: 
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2.  T ,........., 21


  represents the proportion of items in the pool of 

items referenced to the same domain  that an examinee can obtain marks 

of a1, a2..........aT, respectively, and 

3. .1
1




T

g
g  

Let R1  R2...........RT  be random variables corresponding to the  numbers of items 

in the test that examinees receive a score of a1, a2..........aT, where



T

g
g sR

1

 for 

each examinee. Then, the multinomial distribution for these randomly selected 

items is given by: 
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The total likely combination of all possible marks for each item that examinees 

can get and that leads to the same aggregate mark can be expressed using the 

probability density function: 

  ,)/......,,Pr(/Pr
.........
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where q is the aggregate mark obtained through different combinations of all 

possible marks Trrr ,........,, 21  such that 



T

g
gg qRa

1

. 
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Classification and Performance-level Categories 

Let the number of independent performance-level categories be H. This 

implies that there are H-1 cut-scores: ..,........., 121 H  Lee (2005) introduced 

two additional “cut-scores” in order to be able to establish intervals of the form 

)( 1 hh H   . The two new cut-score are )min(0 H and )max(HH  . Let 

hg  represents the performance-level category in which an examinee is classified 

on each on two interchangeable test forms or on two occasions when the same test 

form is administered and h =1, 2, ........H. 

In the case of a single administration, a set of scores on a hypothetical 

parallel form is created using the bootstrap procedure (Efron, 1982; Brennan & 

Wan, 2004). The bootstrap can be applied at the item level to create a full form. 

Alternatively, the bootstrap can be applied at the test level. In the present study, 

the bootstrap was applied at the test level to obtain a random set of bootstrap 

scores where the number of examinees equalled the number in the actual sample 

(Brennan, Harris, & Hanson, 1987). 

Decision Consistency 

The probability of a randomly selected examinee l with total score Q will 

be consistently placed in performance category, tg , using  the test and the 

hypothetical test is given by: 
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The decision consistency for examinee l is the probability that the examinee l’s 

scores will be placed in the same performance category, ,tg  is given by:  
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Taken across the N examinees, the decision consistency is given by 
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Kappa, k, the correction for chance, is given by:
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where cp  is the probability due to chance:  
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Decision Accuracy 

In order to estimate decision accuracy index, as with Livingston and Lewis 

(1995), Lee assumed that true cut-scores are identical to observed cut-scores. 

Using these cut-scores, examinee l’s true status level is given by: 
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where examinee l is classified in the performance category tg . Across the N 

examinees in a group, the decision accuracy is given by: 
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Hanson et al. (1990) used the false positive and false negative errors to 

determine decision accuracy. The probability of a false positive error is given by: 
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and the probability of a false negative error is given by: 
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where t̂  represents the examinee’s true category. The false positive error rates and 

false negative error rates for the N examinees who sat for this particular 

examination are, respectively: 
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and  
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Compound Multinomial Model 

As indicated above, the compound multinomial model allows mixed item 

formats. Consequently, the probability formulas for the multinomial model need 

to be adjusted to account for the different item formats. This is done by dividing 

the s items in the total test into U subtests, where the items in each subtest have 

the same number of score points and then working at the subtest level. However, 

the procedures for classification of an examinee into categories and determining 

decision consistency and accuracy are the same. Therefore, only the adjusted 

procedures are provided here. This is then followed by the presentation of a 

procedure for correcting for bias given the finding that the results yielded by the 

compound multinomial model are biased.  

Again, let s represent the number of items in the test with  f test item 

subsets. But now let U represent the number of subsets of items with the same 

number of score points 
fTa ;  and there are ),.......,2,1( Ffs f  test items in each 

subset such that
1

U

f
u

s s


 .  Lastly, let fQ represent the aggregate mark for each 

examinee for the fth subset. The compound multinomial model assumes that 

correlations among the errors of measurement of the U different subsets total 
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scores are zero.  With this assumption and letting  
ffTfff  .........., 21



represent the joint probability density function for each examinee of fQ s for U 

item subsets is given by: 

.)/Pr(),......,/..,,.........Pr(
1

111 

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U

f
fffUUU qQqQqQ 
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)/Pr( fff qQ 


 is computed in the same way as in multinomial model. However, 

the probability distribution for the total test score for each examinee 



U

f
ff QvD

1

is given by: 



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1111
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where   dqvqq ffU :,......,1 displays the aggregate score for all possible 

subsets total scores of Uqq ,........,1  such that the combined weighted  aggregate 

scores is equal to  the aggregate score d. When the correspondence between scale 

marks and raw marks is not one to one, then the probability density function for 

scale marks is given by: 

 ,/Pr)/Pr(
)(:





scquq

qQscSC 


 

where u(q) denotes the function used to adjust the raw marks to scale marks, and  
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q:u(q) = sc is equal to the aggregate for all q marks that are adjusted to 

one scale mark sc.  

As indicated above, the same procedure used for raw marks in estimating 

decision consistency and decision accuracy is also employed for scale marks.  

Correction for Bias 

A problem with compound multinomial procedure is that the estimates of 

decision accuracy and decision consistency are biased. As a result, Brennan and 

Lee (2006) and Wan, Brennan, and Lee (2007) proposed a bias-correction 

procedure for the compound multinomial procedure. The bias-correction 

procedure is based on the notion that the true score variance is less than the 

observed scored variance since the observed score is equal to true score plus error 

score according to classical test score theory. However, the true score variance is 

greater than the regressed true score variance (Kelley, 1947). Brennan and Lee’s 

(2006) procedure for bias-correction uses weights that give the maximum 

estimates for decision indices. The combination of weights for raw scores is given 

by:  

,
1 2

2

xx

xx






 

whereas the combination of weights for the regressed score is given by:     
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1
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where xx2  is the index  of reliability of test X.  

For dichotomously scored items, the combined weighted true proportion-correct 

score that provides the maximum value for an examinee is given by: 

),(ˆˆ 2

n

X

n

x
xx

N

X
   

where X  is the mean score across examinees, 

n  is the number of items, and 

x  is the examinee’s correct score. 

For  polytomously scored items, the combined weighted true proportion-correct 

score that provides the maximum possible mark for each examinee is: 

),(ˆˆ 2

n

X

n

x
xx

N

X ggg
g    

where hx is the observed number of items in the subset marked with a mark 

option g for the examinee, and  

gX is the average number of items in the subset marked with the mark 

option h for all  examinees who sat for this test (Wan, et al., 2007, p.18). 
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While applying these formulas may reduce the bias, they do not totally eliminate 

the bias (Wan et al., 2007, p. 22). Despite this, the decision consistency and 

decision accuracy indices achieved by using the compound multinomial procedure 

are somewhat superior compared to indices attained by employing Livingston and 

Lewis (Wan et al., 2007 p. 23). 

IRT Procedure 

Lee (2008) developed a method based on the IRT for estimating DC and 

DA using a single-administration of the test form. The procedure may be used 

with the 1-, 2-, and 3-parameter IRT models. The procedure can make use of any 

score metric in which the cut-scores are expressed. For the purposes of this 

dissertation, the 3-parameter model was employed. Calibration of the IRT 

parameters included in the 3-parameter IRT model and derived from examinees’ 

item responses is the first stage in the process of estimating DC using Lee’s 

(2008) IRT procedure. The 3-parameter logistic IRT model (Hambleton, 

Swaminathan, &  Rogers, 1991) is given by: 

 

 

where Pi() is the probability of a “correct” response for an individual at a given 

level of theta, 

,
e1

e
)c - (1  c  )(P

)b-(Da

)b-(Da
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


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bi is the item difficulty or location parameter, 

ai is the item discrimination parameter, 

D is a scaling constant equal to 1.702, 

ci  is the pseudo-guessing parameter. . 

Estimating the examinees total raw score Q  that is conditioned on ability  using 

Lord and Wingersky (1984) algorithm is the second stage. Given the assumption 

of local independence has been met, the probability of an examinee getting a 

score of r on item i given ability  is )./( ii rRP   The conditional probability 

for the total observed score Q  is given by:  

1 1 2 2( / ) ( / ) ( / )......... ( / ).
i

t t
q r

P Q q P R r P R r P R r   


    

  

Decision Consistency 

The raw score distribution conditioned on ability is used when estimating 

examinees’ probabilities of belonging to one particular performance-level 

category is consonant with their total scores obtained on the examination. The 

procedure for computing DC and DA is similar to the compound multinomial 

procedure. It is assumed that the examinee’s scores on two interchangeable test 

forms or when the same test form is administered on two occasions are 
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conditionally independent and identical. Therefore, the DC for the examinee l’s 

scores consistently classified in one performance category, tg , is given by: 

2
1

2121

)]/([

)/Pr()/Pr()/,Pr(








t

tttt

gQP

gQgQgQgQ





 where 1Q  and 2Q  represent the aggregate scores obtained from two 

interchangeable test forms. Therefore, the DC for an examinee l is the probability 

that the examinee’s scores will be placed in the same performance category, ,tg  

each time the measurement instrument is employed under the similar conditions. 

This probability is given by:  
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The overall 0p  for all the examinees N is given by: 
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where )(  is the ability distribution. 

Kappa, k , can be computed by: 

,
1

0

c
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
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where cp  is the probability index for decision consistency due to chance given 

by:  

,)/Pr(
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where 




 


dgQ t )/Pr(  is the marginal category probability. 

For scale scores, the conditional category probability for any two randomly 

selected scale scores, 1SC  and 2SC ,categorized in the same category is given by: 
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The overall decision consistency for scale score is given by: 
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1
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Decision Accuracy 

Lee (2008) used the expected value of an examinee’s raw score, l , as the 

examinee’s true score. Estimation of decision accuracy requires that the score 

metric for observed cut-scores is congruent with the expected score metric. 

Therefore, the expected scores metric derived from the cut-scores metric 

conditioned on   is given by: 
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),ˆ/Pr()ˆ/(   
i j

i jRjQE  

where ̂ represents a  cut-score;  

Ri  is a random variable representing examinees’ responses to item i; and 

)ˆ/Pr(   jRi  denotes the conditional probability for score j for item i, 

conditioned on the ability  .  

The cut-scores on the theta distribution are converted to the cut-scores on the 

observed score metric. In view of the fact that the expected scores metric is the 

same as the metric for the examinees’ true scores ),........2,1( T , then the 

probability that an examinee’s score will be classified in a specific performance-

level category  conditioned on his/her true score is computed by: 

.),/Pr()( tt gandforgQ    

Hence, the marginal classification accuracy index,  , is:  





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Hanson et al., (1990) indicated that false positive error rates and false negative 

errors are also used as a measure for decision accuracy indices. The conditional 

false positive error rate is given by: 

,ˆ,)(
1*
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where ̂  is the true cut-score associated with  .  

The conditional false negative error rate is given by: 

.ˆ,)(
1

1

*





 for





   

Hence, the marginal false positive error rate,  , is given by: 






  ,)(   d  

and the marginal false negative error rate,  , is given by: 






  ,)(   d  

where )(  denotes the ability distribution. The estimation of these marginal false 

positive and false negative error rates is done by either using an individual 

distribution which involves using theta estimates for each personal, or a 

distribution approach which involves the use of theta quadrature points and 

weights.   

Previous studies on DC and DA 

The review of research studies that compared different procedures for 

determining DC and DA is focused on studies that compared the three procedures 

considered in the present study. Hanson and Brennan (1990) compared the 

correctness of DC and DA for three different beta distribution models used in the 
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estimation of DC and DA in the procedure they developed: the two-parameter 

beta binomial model, the four-parameter beta binomial model, and four-parameter 

beta compound binomial model. Their study included two samples: 230,033 

examinees who took the October 1987 ACT English, Mathematics, Social Studies 

and Natural Science Assessments and 151,050 examinees who took the same four 

tests for February 1988. The values of DC obtained from the three procedures 

were similar, ranging from 0.86 to 0.90.  Generally the values for DC were the 

lowest for the two-parameter beta model, followed, in turn, by the four-parameter 

beta binomial model and the four-parameter beta compound binomial model.  The 

DA values ranged from 0.88 to 0.95. Again, the values of DA were lowest for the 

two-parameter beta model, followed, in turn, by the four-parameter beta binomial 

model and the four-parameter beta compound binomial model (p.353).   

Lee, Hanson and Brennan (2002) conducted a follow up study to compare 

the correctness of the DC and DA indices using three different distribution models 

used in the estimation process: the two-parameter beta binomial model; four-

parameter beta binomial model, and 3-parameter logistic IRT model. Their study 

included 3,000 examinees for Form X of the ACT Applied Mathematics 

administered in fall 1997 and 19,158 examinees for Form Y of ACT Applied 

Mathematics administered in 1997.  The decision consistency values ranged from 
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0.73 to 1.0. Generally, the values of DC were lowest for the two-parameter beta 

model, followed, in turn, by the four-parameter beta binomial model and the 3- 

parameter logistic model. A similar pattern was observed with DA which ranged 

from 0.81 to 1.0 with the lowest values for the two-parameter beta model, 

followed, in turn, by the four-parameter beta binomial model and the 3- parameter 

logistic model (p.424).  

Wan (2006) compared the estimates of DC and DA using the normal 

approximation (NM), Breyer-Lewis (BL), Livingston-Lewis (LL), Bootstrap 

(BW), and compound multinomial models (CM). The sample for his study 

included the 650 examinees who sat for Multistate Bar Examinations developed 

by the National Conference of Bar Examiners. The estimates for DC were quite 

close, ranging from 0.83 to 0.86, with the LL providing the lowest estimates 

followed in turn by NM and BL. The CM and BW provided the highest estimates.  

The range of estimates for DA was greater, ranging from 0.70 to 0.96. Again, the 

LL method provided the lowest estimate of DA, followed in turn by NM and BL. 

The CM and BW provided the highest estimates for DA (p. 98). 

 Knupp (2009) compared the values of DC and DA using three 

procedures: normal approximation (NM), compound multinomial model (CM), 

and 3-parameter logistic IRT model. The sample included 3,000 grade eight 
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examinees who sat for Iowa Tests of Basic Skills (ITBS), Form K, Level 14  1993 

(p.46). The DC values for the ITBS ranged from 0.54 to 0.97.  The findings 

revealed that the estimates of DC obtained from NM were smallest, followed by 

the estimates obtained from the CM which were less than the estimates from the 

IRT model. The estimates for DA ranged from 0.64 to 0.98. As with DC, the 

values of DA obtained from NM were smallest, followed by the estimates 

obtained from the CM, which were less than the estimates from the 3-parameter 

IRT model (p. 6). These findings are somewhat similar with the previous study 

(Lee, Hanson, & Brennan, 2002) in which IRT model provided the highest 

estimates for both DC and DA.  

In contrast to the previous studies in which different distribution models 

were compared, Lee (2010) compared the correctness of the decisions using the 

Livingston-Lewis procedure (LL), compound multinomial procedure (CM), and 

six different IRT models: one-parameter logistic (1PL), two-parameter logistic 

(2PL), three-parameter logistic (3PL) models, partial credit (PC) model (Masters, 

& Wright, 1997), the generalized partial credit (GPC) model (Muraki, 1997), and 

graded response (GR) model (Samejima, 1997). The combinations of the 

dichotomous and polytomous IRT models Lee considered were: 1PL+PC, 

2PL+GPC, 3PL+GPC, 1PL+GR, 2PL+ GR, and 3PL+GR.  Two samples were 



50 

 

 

 

considered. The first included 500 grade 7 examinees who sat for Iowa Tests of 

Basic Skills Mathematics Test.  The second sample included 4,000 grade 10 

examinees who sat for Science Achievement Test administered by a state 

government. The Mathematics test consisted of 35 multiple-choice items with 5 

options scored with a two-point scale (0 and 1), and 18 open-ended items scored 

with a three-point scale (0, 1, and 2). For classification purposes, a cut-score was 

set arbitrarily to aggregate score of 38. The Science test consisted of 40 

dichotomously scored multiple-choice items and 7 open-ended items scored on a 

four-point scale (0-3). In contrast to the Mathematics test, there were three cut-

scores for the Science test: 15, 40, and 45. This provided four performance-level 

categories (p.6). The estimates for DC were generally higher in Mathematics, 

which ranged from 0.86 to 0.88, than in Science, which ranged from 0.71 to 0.75. 

For both tests, the estimates for DC obtained from the LL procedure were 

smallest, followed by the estimates obtained from the CM procedure which were 

less than the estimates from the IRT models, which were generally the same. A 

similar pattern was also found for DA. The estimates were higher for 

Mathematics, which ranged from 0.90 to 0.91 than for Science, which ranged 

from 0.79 to 0.82. Again, for both tests, the estimates for DA obtained from the 
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LL procedure were smallest, followed, in turn by the estimates obtained from the 

CM procedure and the IRT procedures. 

Deficiency in the Literature 

Only one study (Lee, 2010) compared the correctness of the decision 

indices using the Livingston-Lewis procedure (LL), compound multinomial 

procedure (MN), and 3-parameter IRT procedure.  Lee found that the decision 

indices obtained using IRT procedures were generally higher than the decisions 

using either of the two procedures based on CTST. Lee worked with two sample 

sizes, a small sample size (n = 500 for the Mathematics test) and a larger sample 

size (n   4,000 for the Science test). Hence, it is difficult to generalize results to 

other samples of other sizes. The present study addressed the issue of sample size 

by using two different populations of students, one with approximately 127,000 

examinees in Canada and the other with approximately 6,200 examinees Malawi  

and drawing 100 replicated random samples of different sizes from each 

populations. At the same time, issues of bias and precision of the estimates were 

addressed by comparing the mean of the 100 replications to the results obtained 

for the populations and computing the standard deviation of the 100 estimates.  
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CHAPTER 3 METHODOLOGY 
 

The methods used to comparatively evaluate the Livingstone and Lewis, 

compound multinomial, and 3-parameter logistic IRT procedures for determining 

DA and DC are described in this chapter.   First, the data sources for this study are 

presented and described. The factors examined are described in the second 

section. The replicated sampling procedure is provided in the third section. The 

procedures used to analyze the replicated sample data are provided in the fourth 

and last section. 

Data Source 

Two data sets were considered in this study. The first data set was 

provided by the Education Quality and Accountability Office (EQAO), which is 

an arm’s-length Crown agency of the Government of Ontario, Canada. The 

second set was provided by the University of Malawi.  

EQAO Junior Reading and Mathematics Data Sets 

The EQAO is responsible for developing, administering, marking, and 

reporting annually standardized province-wide Reading, Writing, and 

Mathematics assessments at the Primary (Grade 3) and Junior (Grade 6) 

educational levels and the Academic and Applied Mathematics assessments at 

Grade 9. As well, the EQAO administers the Ontario Secondary School Literacy 
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Test (OSSLT), which is a high school graduation requirement administered to 

students in Grade 10. The data obtained for the present study from EQAO consist 

of the students’ responses to the multiple-choice items and open response items 

included in the 2010 Junior Reading and Junior Mathematics Assessments. The 

multiple-choice items are dichotomously scored and the open-response items are 

polytomously scored using scoring rubrics with four scoring categories. The 

numbers of students who responded to these assessments was approximately 

127,000. 

Junior Reading 

The Junior Reading assessment is designed to measure explicit and 

implicit information gained from reading a reading prompt and connections 

between the reading prompt and their own experience. The assessment, which is 

administered toward the end of the school year, comprises 26 multiple-choice 

items and 10 open-response items. The students are supposed to answer all the 

items. Students are expected to write this paper during a one-hour period. 

However, in acknowledgement of normal classroom practice, the assessments are 

designed to be untimed. Additional time can be provided to any student unable to 

complete a session in one hour. The amount of additional time per session will 

normally range from five to 20 minutes; however, students may take the time they 
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need to complete the session as long as it is in one continuous sitting on the day 

on which the session is assigned (EQAO, 2009).  

The reading booklets contain both operational and field-test items. The 

operational portion of the reading component contains one long reading selection 

(650–700 words) followed by 10 multiple-choice questions and two open-

response questions and four short reading selections (300–350 words), each 

followed by four multiple-choice questions and two open response questions. 

Different sets of field test items are embedded in each operational form such that 

the number of forms is about 20. The field tests are embedded in the same 

position in each form, and the number of field test items is such that no more that 

20% of the testing time is required to respond to them. Only the students’ 

responses to the operational items are used to determine their achievement scores 

(EQAO, 2009).  

Junior Mathematics 

Five mathematical strands are assessed in the Junior Mathematics 

assessment: Number Sense and Numeration; Measurement; Geometry and Spatial 

Sense; Patterning and Algebra; and Data Management and Probability. The 

operational portion of the mathematics booklet contains 28 multiple-choice and 

eight open-response questions.  As with Reading, one hour with extra time is 
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allowed to complete the form and field-test items are embedded in the same 

position in approximately 20 operational forms. Likewise, the students’ responses 

to the operational items are used to determine their scores (EQAO, 2009). 

University of Malawi Data Set 

The second data set was obtained from the University of Malawi.  The 

University of Malawi administers entrance examinations in the areas of Verbal 

Reasoning, Numerical Reasoning, and English Language. The data from the 

University of Malawi consist of the applicants’ responses to the multiple-choice 

items and the open-response items contained in these three examinations. 

Approximately 6,200 students sat these examinations in 2009.   

Verbal Reasoning 

The Verbal Reasoning examination has two parts: Part A: 30 multiple-

choice items and Part B: 10 open-response items.  It is a 2-hour paper. The 

applicants are expected to answer all the items. The items in Part A are 

dichotomously scored and the items in Part B are scored using a 3 point scoring 

rubric. It is expected that examinees would take less time for each multiple-choice 

item and more time for each written response item (U of M, 2009). 
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Numerical Reasoning 

The Numerical Reasoning paper has 40 multiple-choice items in Section A 

and 10 open-response items in section B. The administration time for this paper is 

two hours. As for Verbal Reasoning, it is expected that examinees will take less 

time for each multiple-choice item and more time for each open-response item. 

Applicants are expected to answer all the items in both sections.  The score points 

for section A is 40 points and for section B 40 points (each of the 10 open-

response items was scored on scale from 0 – 4 points) (U of M, 2009).   

English Language 

The English Language examination has two parts: Part A: Multiple Choice 

and Part B: Open-ended Response items. The examination consists of 40 multiple 

choice items and 10 open-ended response items. The test is for 2 hours. It is 

expected that examinees would take less time for each multiple choice item and 

more time for each open-ended response item. The applicants are expected to 

answer all the items. The total score points for this test is 80 with 40 points for the 

multiple-choice items and 40 points for the open-ended response items (each 

response to an open-response item is scored using a five point (0-4) rubric) (U of 

M, 2009). 
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Cut-Scores 

EQAO Junior Reading and Mathematics Assessments 

The students who write the EQAO Junior Reading and Mathematics 

assessments are placed in one of five performance categories: 0, 1, 2, 3, and 4. 

The performance category descriptors are presented below: 

Category 4: The student has demonstrated the required knowledge and 

skills. Achievement surpasses the provincial standard. 

Category 3:  The student has demonstrated most of the required 

knowledge and skills. Achievement is at the provincial 

standard. 

Category 2:  The student has demonstrated some of the required 

knowledge and skills. Achievement approaches the 

provincial standard. 

Category 1:  The student has demonstrated some of the required 

knowledge and skills in limited ways. Achievement falls 

much below the provincial standard. 

Category 0: "Not enough evidence for Level 1." The student has not 

demonstrated enough evidence of knowledge and 

understanding to be assigned Level 1. (EQAO, 2009). 
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As well, a two category system is used – met standard (categories 3 and 4) and did 

not meet standard (categories 0. 1, and 2). The cut-scores corresponding to these 

performance categories are set on the theta score distribution created using the 3-

parameter IRT model with a fixed pseudo-guessing parameter of 0.20 (EQAO, 

2009) and the PARSCALE computer program (Muraki, & Bock, 2003). The cut-

score values in ascending order are: -3.0671, -1.8559, -0.7191 and 1.0282 for 

Junior Reading and -3.0896, -1.5770, -0.4279 and 0.9875 for Junior Mathematics 

(Michael Kozlow, Personal Communication, June 8, 2011)  

The applicants’ scores obtained from the University of Malawi Entrance 

Examinations are classified into five categories: Failure, Pass, Credit, Marginal 

Distinction, and Undoubted Distinction. The performance category descriptors are 

presented below: 

Undoubted Distinction: The applicant demonstrates outstanding 

knowledge and superior ability. 

Marginal Distinction:  Performance of the applicant is excellent. 

Credit:    Performance is considerably above the expected minimum level 

                for an applicant  

Pass:       Performance is at the minimum level expected for an applicant. 

Failure:   Performance is unacceptably low for an applicant to be admitted  
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                 into the University of Malawi. 

The four cut-scores corresponding to these performance categories are set on the 

raw score distribution. The cut-scores associated with the data from University of 

Malawi for all the three papers (i.e., Verbal Reasoning, Numerical Reasoning, and 

English Language) are presented in percentages: 50%, 60%, 70%, and 75% (U of 

M, 1985). 

Procedure 

  Decision consistency and accuracy were determined using the cut-scores 

identified above for the Junior Reading and Mathematics data sets from the 

EQAO and data set from the U of M. The values of DC and DA obtained from 

these two populations served as the population parameters to be recovered by 

each of the three procedures examined and sample sizes considered in this study.  

Replicated samples were selected from each of the EQAO population and 

the U of M population. In the case of the EQAO Junior assessments, four sample 

sizes were considered: 1,500, 3,000, 4,500, and 6,000. In the case of the U of M, 

two samples sizes were considered: 1,500 and 3,000. The difference in the sample 

sizes between the EQAO and the U of M is because the population data from U of 

M is smaller (6,200 applicants vs. 127,000 students).  For each sample size, 100 

replicates were generated (Harwell, Stone, Hsu, & Kirisci, 1996; Vale, & 
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Maurelli, 1983). The DC and DA were estimated for each replicate for the LL, 

CM and IRT procedures.  

Dependent Variables 

The bias of DC and DA provided by the LL, CM and IRT procedures was 

equal to the difference between the population values of DC and DA at each cut-

score from the mean of 100 replicates of DC and DA for each selected sample 

size for each cut-score. The following formula was used for the standard error for 

each cut-score/sample size condition Glass & Hopkins, 1996, p. 321): 

(1 )
p n

   , 

where p
 
is the standard error of the percentage of students below the cut-score, 

  is the population percentage of the students below the cut-score, and  

n is the sample size.  

A procedure is unbiased if the difference between the estimate and the 

parameter value is zero (Bose, 2001). But the estimate is subject to sampling 

error. Thus, the values may differ from zero when the true bias is zero.  Thus a 

rule had to be established about how large the difference between the estimate and 

the parameter value could be and still claim that the estimate was unbiased. 

Examination of the data from the replications revealed the majority of values of 
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the bias were close to zero. Thus, taking the ratio of the bias to its standard error 

led to values that did not reflect the small values of the bias, the vast majority of 

which were within one percent. For example, consider the results for the 

replicated samples for Reading presented in Tables 5 to 8 in the next chapter. Of 

the 144 estimates of bias across the four cut-scores and four sample sizes, the bias 

for 137 (95.1%) estimates was within 1% of their corresponding parameter values. 

Of the remaining seven, four were 1.1%, one was 1.2%, one was 1.7% and the last 

was 1.9%. All but one was for cut-score 2/3, and all seven were for the IRT 

procedure. Essentially the same results were obtained for the other four 

assessment considered. Of the 144 standard error estimates for the replicated 

samples, all but two were less than one percent, and the two that were not 1.1%. 

Thus, with perhaps one or two cases, the bias was essentially zero and the 

estimates were precise. 

Software 

The following   programs and software packages were used: BB-CLASS 

(Brennan.2004) for the LL procedure, MULT-CLASS, version 3.0 (Lee, 2008) for 

the CM procedure, and IRT-CLASS (Lee & Kolen, 2008) for the IRT procedure. 

The programs that were employed to estimate item and ability parameters were 

the same as the programs used by the respective sources of data: PARSCALE 
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(Muraki & Bock, 2003) for the EQAO Junior Reading and Junior Mathematics 

assessments and MULTILOG (Thissen, 1991) for the University of Malawi 

examinations.  The SSPS and SAS computer packages were used for other 

programming procedures to facilitate the computation of decision indices. 
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Chapter 4: Results and Discussion 
 

The EQAO Assessments 

The results obtained from the data analyses for the research questions 

presented in the Chapter 1 are provided and discussed in the present chapter for 

the two EQAO assessments and in the next chapter for the University of Malawi 

examinations.  The present chapter is organized in two parts, one for the EQAO 

Junior Reading assessment and the other for the EQAO Junior Mathematics 

assessment. Each part is divided into four sections. In the first section, population 

parameters for the EQAO assessments are provided. The values of DC and DA 

obtained using the Livingston-Lewis, compound multinomial, and IRT procedures 

are provided in the second section, and the values for bias and standard error of 

DC and DA for 100 replicates associated for each sample size are provided for 

each cut-score for each procedure in the third section. A discussion of the full set 

of results for the assessment is then provided in the fourth section.  

EQAO Junior Reading 

Population Parameters 

This dataset included 128,103 student responses for the Junior (Grade 6) 

Reading assessment. The population parameters for EQAO Junior Reading 
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assessment are reported in Table 3 and the frequency distribution of ability 

estimates is provided in Figure 2.  

The scores, mean, standard deviations, and cut-scores are expressed in 

terms of logits. As shown in Table 3, the population mean was -0.5695, the 

standard deviation was -3.3725, and the distribution was negatively skewed ( 1  = 

-0.54) and slightly leptokurtic ( 2  = 0.23) (see Figure 2).  The internal 

consistency was 0.87, and the cut-scores progressed from -3.07 (0/1) to 1.03 (3/4). 

Population DC and DA 

The values for DC and DA for the population for Reading are reported in 

Table 4 for each cut-score and over all the cut-scores. The 2/3 cut-score is marked 

with an asterisk since students that score at or above the 2/3 cut-score have met 

the provincial standard. Whereas, the values for DC and DA over all the cut-

scores yielded by the IRT procedure were the highest, followed in turn by the CM 

procedure and the LL procedure, there is an interaction between procedure and 

cut-score.  As the position of the cut-score move towards the extremes of the 

score distributions, the differences among the values of DC and of DA yielded by 

the three procedures become smaller, but in different ways. The results for each 

cut-score are presented first followed by a discussion. 
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Table 3 

Psychometric Properties for EQAO English Reading, N =128,103 

    1  2  
0 /1cs  1/ 2cs  2 /3cs  3/ 4cs  

-0.5695 -3.3725 -0.544 0.228 0.87 -3.067 -1.855 -0.719 1.0282 

Note:  is the population mean;  is the standard deviation;
1
 is the population skewness;

2
 is 

the population kurtosis; is the internal consistency (Cronbach’s alpha), 0/1cs is cut-score 

0/1; 1/ 2cs is cut-score 1/2; 2/3cs is cut-score 2/3; and 3/ 4cs is cut-score 3/4.  

 

Figure 2: Frequency Distribution of Thetas for EQAO Junior Reading 
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0/1 cut-score  

The three values of DC yielded by the three procedures are within 0.001 of 

each other and the values of the DA are within 0.002 of each other at the 0/1 cut-

score. All values are greater than 0.998. This finding is attributable to the large 

difference between the 0/1 cut-score and the population mean and the small 

number of students around cut-score 0/1 (see Figure 2). 

Table 4 

 Decision Consistency and Decision Accuracy Using LL, CM, and IRT   

Models Conditioned on Cut-Scores for EQAO Junior Reading Scores 
 Procedure 

 LL CM IRT 

Separately using 
each Cut-Score 

DC DA DC DA DC DA 

0/1 0.998 0.998 0.999 1.000 0.998 0.999 

1/2 0.978 0.979 0.994 0.996 0.998 0.997 

2/3* 0.909 0.928 0.980 0.979 0.970 0.972 

3/4 0.883 0.915 0.885 0.918 0.910 0.945 

Overall 0.774 0.822 0.849 0.892 0.895 0.923 
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1/2 cut-score 

The three values of DC are within 0.004 of each other and the values of 

the DA are within 0.018 of each other at the 1/2 cut-score. All values are greater 

than 0.994. The values for DC and DA are close to the values of DC and DA for 

the 0/1 cut-score. This is likely due to the large difference between the 1/2 cut-

score and the population mean, and as shown in Figure 2, while larger than for the 

0/1 cut-score, the relatively small number of students around the 1/2 cut- score. 

2/3 cut-score 

The discrepancy among the values of DC and DA are more pronounced 

for the 2/3 cut-score than that observed for the 0/1 and 1/2 cut-scores. This is due 

principally to the LL procedure. The values for the LL procedure, 0.909 and 

0.928, are the lowest, while the values for the CM and IRT procedures are higher 

and closer together, 0.980 and 0.979 and 0.970 and 0.972, respectively.  Further, 

the values for both DC and DA for each procedure are lower than the values 

observed for the 0/1 and 1/2 cut-scores. This finding is attributable to the fact that 

the cut-score 2/3 is closer to population mean and the much greater number of 

students around the 2/3 cut-score (see Figure 2). Hence, there is higher probability 

of misclassifications and cut-score 2/3 than the two previous cut-scores and this 

leads to lower values for DC and DA (Lee, 2010). 
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3/4 cut-score 

As for the first two cut-scores, the three values of DC yielded by the three 

procedures are within 0.027 of each other and the values of the DA are within 

0.030 of each other at the 3/4 cut-score. However, the values of DC and DA are 

the lowest at the 3/4 cut-score, ranging from 0.883 to 0.945. In contrast to the 2/3 

cut-score, the values of DC and DA for the LL and CM procedures are close and 

lower than the corresponding values for the IRT procedure. As for the 0/1 and 1/2 

cut-scores and in contrast to the 2/3 cut-score, the distance between the 3/4 cut-

score and the population mean is large. However, in contrast to the 0/1 and 1/2 

cut-scores and like the 2/3 cut-score, the number of students around this cut-score 

is large, in fact the largest. The large number of examinees led to a greater number 

of misclassifications (Lee, 2010). 

Sample Results 

Bias and Standard Error 

Tables 5 to 8 show the values of DC and of DA for the mean of the 100 

replicated samples for DC and DA for each cut-score, the bias, and the standard 

error of the mean, which in the present case is the standard deviation of the 100 

sample means. The four tables correspond respectively to the four sample sizes 

considered: 6,000, 4,500, 3,000, and 1,500. The bias was determined as the 
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difference between the population values of DC and DA at each cut-score from 

the mean of 100 replicates of DC and DA for each selected sample size for each 

cut-score. For example, the bias was zero and the standard error was 0.001 for DC 

for the LL procedure, n = 6, 000 (see Table 5). 

Examination of Tables 5 to 8 reveals that the values of bias and the 

corresponding standard errors are small and also similar.  The largest bias for both 

DC and DA occurred at the 2/3 cut-score. Further, at this cut-score, the largest 

bias occurred for the IRT procedure. However, the bias values were less than 0.02 

(2%). The remaining bias values for the LL and CM procedures at this cut-score 

and for the three procedures at the other cut-scores were less than or equal to 0.01 

(1%). The largest standard error, 0.011, was obtained for DA, IRT procedure, 

sample sizes 3,000 and 1,500. The remaining standard errors were less than or 

equal to 0.01 (1%). For example, the bias and standard error for the IRT 

procedure were, respectively,  0.000 and 0.002 for DC and 0.000 and 0.002 for 

DA, n = 6,000. Thus, it appears that the three estimation procedures produce 

unbiased and precise estimates. 
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Table 5 

Decision indices for LL, CM, and IRT models using sample size 6000 for each 
cut-score for EQAO Junior Reading Scores 
     Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.988 0.999 0.999 0.999 0.998 0.998 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.001 0.001 0.000 0.000 0.002 0.002 

1/2 Mean 0.978 0.979 0.993 0.994 0.999 0.999 

 Bias 0.000 0.000 0.001 0.002 -0.001 -0.002 

 SE 0.001 0.001 0.000 0.000 0.003 0.002 

2/3 Mean 0.906 0.925 0.962 0.969 0.959 0.960 

 Bias 0.003 0.005 0.008 0.010 0.011 0.012 

 SE 0.005 0.008 0.002 0.002 0.003 0.008 

3/4 Mean 0.882 0.918 0.881 0.913 0.899 0.934 

 Bias 0.001 -0.003 0.004 0.006 0.009 0.011 

 SE 0.002 0.003 0.001 0.001 0.002 0.004 
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Table 6 

Decision Indices for LL, CM, and IRT Models Using Sample Size 4500 for each 
Cut-Score for EQAO Junior Reading Scores 

    Procedure    

  LL  CM  IRT  

Cut-Scores Statistics DC DA DC DA DC DA 

0/1 Mean 0.998 0.999 0.999 0.999 0.998 0.998 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.000 0.001 0.000 0.000 0.001 0.002 

1/2 Mean 0.979 0.981 0.995 0.997 0.998 0.998 

 Bias 0.001 -0.002 -0.001 -0.001 -0.000 -0.001 

 SE 0.001 0.004 0.000 0.000 0.003 0.002 

2/3 Mean 0.909 0.926 0.979 0.974 0.943 0.961 

 Bias 0.000 0.002 -0.009 0.005 0.007 0.011 

 SE 0.002 0.006 0.002 0.001 0.004 0.007 

3/4 Mean 0.882 0.916 0.887 0.916 0.906 0.939 

 Bias 0.001 -0.001 0.002 0.004 0.004 0.006 

 SE 0.003 0.004 0.001 0.001 0.001 0.005 
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Table 7 

Decision Indices for LL, CM, and IRT Models Using Sample Size 3000  for each 
Cut-Score  for EQAO Junior Reading Scores 

    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.998 0.999 0.999 0.999 0.998 0.998 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.000 0.001 0.000 0.000 0.001 0.001 

1/2 Mean 0.980 0.981 0.990 0.991 0.990 0.991 

 Bias -0.002 -0.002 0.004 0.005 -0.008 -0.006 

 SE 0.003 0.006 0.002 0.002 0.004 0.010 

2/3 Mean 0.906 0.923 0.961 0.972 0.960 0.953 

 Bias 0.002 0.005 0.009 0.007 0.010 0.019 

 SE 0.004 0.017 0.003 0.004 0.006 0.011 

3/4 Mean 0.881 0.918 0.880 0.913 0.902 0.937 

 Bias 0.001 -0.003 0.005 0.006 0.008 0.008 

 SE 0.002 0.005 0.001 0.001 0.005 0.009 
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Table 8 

Decision Indices for LL, CM, and IRT Models Using Sample Size 1500 for each 
Cut-Score for EQAO Junior Reading Scores 
    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.998 0.999 0.999 0.999 0.998 0.998 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.002 0.002 0.000 0.000 0.003 0.007 

1/2 Mean 0.980 0.983 0.989 0.990 0.991 0.989 

 Bias -0.002 0.003 0.005 0.007 0.007 0.009 

 SE 0.002 0.007 0.000 0.000 0.004 0.008 

2/3 Mean 0.905 0.931 0.962 0.971 0.959 0.965 

 Bias 0.003 -0.004 0.008 0.008 0.011 0.017 

 SE 0.003 0.009 0.003 0.003 0.006 0.011 

3/4 Mean 0.881 0.913 0.881 0.914 0.901 0.938 

 Bias 0.001 0.002 0.004 0.005 0.008 0.007 

 SE 0.002 0.003 0.001 0.001 0.005 0.010 
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Discussion 

As expected, the findings reveal that the values of DC were never greater 

than the values of DA. Where differences were observed, DC < DA for all three 

procedures.  The difference is due to the use of an observed score and an 

estimated observed score in the case of DC and an observed score and the 

corresponding estimated true score in the case of DA. Since observed scores 

contain error of measurement, there are two sources of error in the case of DC and 

only one source in the case of DA. 

The findings also reveal that the three procedures were differentially 

influenced by the distance between the cut-score and the population mean and the 

number of students around the cut-score. The absolute values of the differences 

and the relative numbers of students around each cut-score are:  

- for 0/1: 2.49766 largest difference and smallest number of students 

around cut-score; 

- for 1/2: 1.2864 second largest difference and third largest number of 

students around cut-score; 

- for 2/3: 0.1496 smallest difference and second largest number of 

students around cut-score; and 
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- for 3/4: 0.4587 third largest difference and largest number of students 

around cut-score. 

Based only on the distance between the cut-score and the mean, the values of DC 

and DA should be the highest at 0/1, followed by 1/2, and then 3/4, and lastly 2/3. 

Based only on the number of students around the cut-score, the values of DC and 

DA should be highest at 0/1, followed in turn by 1/2, 2/3, and 3/4. Thus, both the 

distance between the cut-score and the mean and the number of students around 

the cut-score are important. However there is an interaction between the two 

factors. 

As shown in Table 4, the values for DC and for DA for all three models 

were highest and essentially the same for cut-score 0/1. Then next highest values 

for DC and DA were for cut-score 1/2 for all three models. However, differences 

among the three models emerged: both the DC and DA values for the LL 

procedure were less than the corresponding values for the CM and IRT 

procedures, which were quite similar. At cut-score 3/4, the values for all three 

procedures were lower than at cut-score 2/3. Again, the differences between 

values DC and DA values for the LL procedure were less, but not by as much, 

than the corresponding values for the CM and IRT procedures, which again were 

similar. Lastly, the values of DC and DA were the lowest for all three models at 
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cut-score 3/4. However, and in contrast to the results at cut-scores 1/2 and 2/3, the 

values of DC and DA for the LL and CM procedure were essentially the same but 

lower, but by not as much as that observed above for the LL procedure, than the 

values of DC and DA for the IRT procedure. Thus, it would appear that the 

number of students around a cut-score may be more important than the distance 

between the cut-score and the mean.  

Another factor identified in the literature is the difference in the 

assumptions regarding the nature of the test forms. Whereas, the IRT model 

assumes that the test forms are strictly parallel because the item parameters are the 

same across an infinite number of replicates of test forms, the compound 

multinomial model and Livingston-Lewis model state the assumption made is that 

the test forms are randomly parallel. 

Given these assumptions, the expectation would be that the values for DC 

and DA would be more similar for the LL and CM procedures than for the IRT 

procedure. However, this was not the case.  As shown in Table 4, when the DC 

and DA values for the LL and CM procedures differed, the differences were larger 

than when the DC and DA values for the CM and IRT differed. It would appear 

that the CM procedure, which respects the nature of the way sets of items are 
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scored, is more similar to the IRT which works at the item level than to the LL 

procedure that creates an effective test length. 

Despite the differences noted among the LL, CM, and IRT procedures, the 

estimates of DC and DC were unbiased and precise for each of the four sample 

sizes considered. Thus, the discussion presented above for the population is 

applicable at the sample level. 

EQAO Junior Mathematics 

Population Parameters 

This dataset included 127,639 student responses for the Junior (Grade 6) 

Mathematics assessment. The population parameters for EQAO Mathematics 

assessment are reported in Table 9 and the frequency distribution of ability 

estimates is provided in Figure 3. As for Reading, the scores, mean, standard 

deviation, and cut-scores are expressed in terms of logits. As shown in Table 9, 

the population mean was -0.3867, the standard deviation was -3.7185, and the 

distribution was slightly negatively skewed ( 1 = -0.0664), and Platykurtic ( 2  = -

0.8046) (see Figure 3). The internal consistency was again high, 0.87, and the cut-

scores progressed from -3.09 (0/1) to 0.99 (3/4). 

 



78 

 

 

 

Table 9 

 Psychometric Properties for EQAO Mathematics, N =127,639 

    1  2  
0 /1cs  1/ 2cs  2 /3cs  3/ 4cs  

-0.3867 -3.7185 -0.0664 0.8046 0.89 -3.0896 -1.5770 -0.4279 0.9875 

Note:  is the population mean;
  is the standard deviation;

1
 is the population skewness;

2
 is 

the population kurtosis; is the internal consistency (Cronbach’s alpha), 0/1cs is cut-score 0/1; 

1/ 2cs is cut-score 1/2; 2/3cs is cut-score 2/3; and 3/ 4cs is cut-score 3/4. 

 

Figure 3: Frequency Distribution of Thetas for EQAO Junior Mathematics 
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Population DC and DA 

The values for DC and DA for the population for Mathematics are 

reported in Table 10 for each cut-score and overall the cut-scores. The 2/3 cut-

score is marked with an asterisk since students that score at or above the 2/3 cut-

score have met the provincial standard. Again, as for Reading, whereas the values 

for DC and DA over all the cut-scores yielded by the IRT procedure were the 

highest, followed in turn by the CM procedure and the LL procedure, there is an 

interaction between procedure and cut-score.  As the position of the cut-score 

move towards the extremes of the score distributions, the differences among the 

values of DC and of DA yielded by the three procedures become smaller, but in 

different ways. The results for each cut-score are presented first followed by a 

discussion. 

0/1 cut-score. 

The three values of DC yielded by the three procedures are within 0.006 of 

each other and the values of the DA are within 0.003 of each other at the 0/1 cut-

score. All values are greater than 0.992. This finding is attributable to the large 

difference between the 0/1 cut-score and the population mean and the small 

number of students around cut-score 0/1 (see Figure 3). 
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Table 10 

Decision Consistency and Decision Accuracy Using LL, CM, and IRT  Models 
Conditioned on Cut-Scores for EQAO Junior Mathematics 

 Procedure 

 LL CM IRT 

Separately using 
each Cut-Score 

DC DA DC DA DC DA 

0/1 0.992 0.996 0.998 0.999 0.998 0.999 

1/2 0.945 0.962 0.987 0.992 0.997 0.976 

2/3* 0.865 0.904 0.914 0.939 0.953 0.975 

3/4 0.924 0.946 0.867 0.904 0.946 0.970 

Overall 0.729 0.808 0.771 0.835 0.868 0.919 

 

1/2 cut-score 

The three values of DC yielded by the three procedures are within 0.052 of 

each other and the values of the DA are within 0.030 of each other at the 1/2 cut-

score. All values are greater than 0.945, with the lowest values for both DC and 

DA yielded by the LL procedure. This is likely due to the large difference 

between the 1/2 cut-score and the population mean, and the still small number of 

students around the 1/2 cut-score (see Figure 3).  
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2/3 cut-score 

The discrepancy among the values of DC and DA are more pronounced 

for the 2/3 cut-score than that observed for the 0/1 and 1/2 cut-scores. However, 

somewhat in contrast to Reading, while the values for DC and DA yielded by the 

LL procedure were again the lowest, 0.87 and 0.90, respectively, the values for 

the CM and IRT procedures differed more for Mathematics, 0.91 and 0.94 vs. 

0.95 and 0.98, respectively.  However, like Reading, the values for both DC and 

DA for all three procedures were lower than the values observed for the 0/1 and 

1/2 cut-scores. This latter finding is attributable to the fact that the cut-score 2/3 is 

closer to population mean and the much greater number of students around the 2/3 

cut-score (see Figure 3). Hence, there is high probability of misclassifications and 

this leads to lower values for DC and DA (Lee, 2010). 

3/4 cut-score 

The three values of DC yielded by the three procedures are within 0.079 of 

each other and the values of the DA are within 0.066 of each other at the 3/4 cut-

score. The values of DC and DA for the CM procedure were lower than the 

corresponding values for the LL procedure which were lower than the 

corresponding values for the IRT procedure. Further, the values of DC and DA 

are the lowest at the 3/4 cut-score especially for the CM and IRT procedures, 
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ranging from 0.87 to 0.97, whereas, the values of DC and DA for LL procedure 

are higher than values of DC and DA yielded by the CM procedure but lower than 

values of DC and DA yielded by IRT procedures. As for the 0/1 and 1/2 cut-

scores and in contrast to the 2/3 cut-score, the distance between the 3/4 cut-score 

and the mean is large. However, in contrast to the 0/1 and 1/2 cut-scores and like 

the 2/3 cut-score, the number of students around this cut-score is large, in fact the 

largest. The large number of examinees at the 3/4 cut-score can lead to a greater 

number of misclassifications (Lee, 2010). 

Sample Results 

Bias and Standard Error 

Tables 11 to 14 contain the values of DC and DA for the mean of the 100 

replicated samples for DC and DA for each cut-score, the bias, and the standard 

error of the mean, which in the present case is the standard deviation of the 100 

sample means. As with Reading, the four tables correspond respectively to the 

four sample sizes considered: 6,000, 4,500, 3,000, and 1,500. The bias was 

determined as the difference between the population values of DC and DA at each 

cut-score from the mean of 100 replicates of DC and DA for each selected sample 

size for each cut-score. For example, the bias was zero and the standard error was 

0.002 for DC for the LL procedure, n = 6, 000 (see Table 11). 
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As was the case for Reading, examination of Tables 11 to 14 reveals that 

the values of bias and the corresponding standard errors for Mathematics are 

small and also similar.  The largest bias for both DC and DA occurred at the 2/3 

cut-score. Further, at this cut-score, the largest bias occurred for the IRT 

procedure. However, the bias values were less than 0.02 (2%). The remaining bias 

values for the LL and CM procedures at this cut-score and for the three 

procedures at the other cut-scores were less than or equal to 0.01 (1%). The 

largest standard error, 0.011, was obtained for DA, IRT procedure, sample sizes 

3,000 and 1,500. The remaining standard errors were less than or equal to 0.01 

(1%). For example, the bias and standard error for the IRT procedure were, 

respectively,  0.000 and 0.002 for DC and 0.000 and 0.002 for DA, n = 6,000. 

Thus, it appears that the three estimation procedures produce unbiased and precise 

estimates. 
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Table 11 

Decision Indices for LL, CM, and IRT Models Using Sample Size 6000  for each 
Cut-Score for EQAO Junior Mathematics 
    Procedure    

  LL  CM  IRT 

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.992 0.996 0.998 0.999 0.998 0.999 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.002 0.001 0.000 0.000 0.003 0.001 

1/2 Mean 0.945 0.961 0.986 0.991 0.994 0.973 

 Bias 0.000 0.001 0.001 0.001 -0.003 -0.003 

 SE 0.001 0.002 0.000 0.000 0.003 0.002 

2/3 Mean 0.868 0.893 0.913 0.946 0.949 0.963 

 Bias 0.003 -0.005 0.008 0.007 0.005 0.012 

 SE 0.006 0.007 0.002 0.001 0.003 0.008 

3/4 Mean 0.922 0.941 0.868 0.906 0.958 0.977 

 Bias 0.002 -0.003 0.004 0.006 0.009 0.011 

 SE 0.001 0.003 0.001 0.001 0.006 0.004 
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Table 12 

Decision Indices for LL, CM, and IRT Models Using Sample Size 4500 for each 
Cut-Score for EQAO Junior Mathematics 
    Procedure    

  LL  CM  IRT  

Cut-Scores Statistics DC DA DC DA DC DA 

0/1 Mean 0.992 0.994 0.998 0.999 0.998 0.998 

 Bias 0.000 0.000 0.000 0.000 0.000 0.001 

 SE 0.001 0.001 0.000 0.000 0.001 0.002 

1/2 Mean 0.946 0.962 0.986 0.993 0.998 0.970 

 Bias 0.000 0.000 -0.001 -0.001 -0.001 0.006 

 SE 0.002 0.004 0.000 0.001 0.003 0.006 

2/3 Mean 0.863 0.901 0.900 0.934 0.945 0.961 

 Bias 0.003 0.003 0.004 0.005 0.007 0.014 

 SE 0.002 0.004 0.002 0.001 0.003 0.005 

3/4 Mean 0.923 0.945 0.871 0.908 0.960 0.978 

 Bias 0.001 0.000 0.004 0.004 0.014 0.006 

 SE 0.004 0.005 0.001 0.001 0.002 0.005 
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Table 13 

Decision Indices for LL, CM, and IRT Models Using Sample Size 3000  for each 
Cut-Score for EQAO Junior Mathematics 
    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.992 0.996 0.998 0.999 0.995 0.997 

 Bias 0.000 0.000 0.000 0.000 0.003 0.002 

 SE 0.001 0.001 0.000 0.000 0.001 0.001 

1/2 Mean 0.941 0.960 0.987 0.991 0.989 0.970 

 Bias -0.004 -0.002 0.004 0.001 -0.008 -0.006 

 SE 0.004 0.005 0.001 0.002 0.005 0.010 

2/3 Mean 0.867 0.909 0.909 0.937 0.928 0.956 

 Bias 0.002 0.005 0.005 0.002 0.025 0.019 

 SE 0.003 0.014 0.003 0.003 0.003 0.016 

3/4 Mean 0.922 0.938 0.945 0.907 0.966 0.981 

 Bias 0.002 -0.008 0.012 0.003 0.0013 0.011 

 SE 0.003 0.004 0.001 0.001 0.003 0.005 
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Table 14 

Decision Indices for LL, CM, and IRT Models Using Sample Size 1500 for each 
Cut-Score for EQAO Junior Mathematics 
    Procedure     

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.992 0.996 0.998 0.999 0.998 0.999 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.001 0.002 0.000 0.000 0.004 0.007 

1/2 Mean 0.945 0.962 0.988 0.992 0.985 0.975 

 Bias 0.000 0.000 0.011 0.000 0.012 0.001 

 SE 0.002 0.007 0.000 0.000 0.004 0.008 

2/3 Mean 0.870 0.904 0.917 0.949 0.965 0.982 

 Bias 0.005 0.000 0.003 0.010 0.012 0.017 

 SE 0.002 0.007 0.001 0.002 0.005 0.010 

3/4 Mean 0.922 0.944 0.870 0.909 0.932 0.966 

 Bias 0.002 0.002 0.003 0.005 0.012 0.004 

 SE 0.001 0.004 0.001 0.001 0.004 0.009 
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Discussion 

As expected, the findings reported above reveal that the values of DC were 

never greater than the values of DA. Where differences were observed, DC < DA 

for all three procedures. The difference is due to the use of an observed score and 

an estimated observed score in the case of DC and an observed score and the 

corresponding estimated true score in the case of DA. Since observed scores 

contain error of measurement, there are two sources of error in the case of DC and 

only one source in the case of DA.  

The findings reported above also reveal that the three procedures were 

differentially influenced by the distance between the cut-score and the population 

mean and the number of students around the cut-score. The absolute values of the 

differences and the relative numbers of students around each cut-score are:  

- for 0/1: 2.7029 largest difference and smallest number of students 

around cut-score; 

- for 1/2: 1.1903 second largest difference and third largest number of 

students around cut-score; 

- for 2/3: 0.0412 smallest difference and second largest number of  

students around cut-score; and 
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- for 3/4: 0.6008 third largest difference and largest number of students 

around cut-score. 

Based only on the distance between the cut-score and the mean, the values of DC 

and DA should be the highest at 0/1, followed by 1/2, and then 3/4, and lastly 2/3. 

Based only on the number of students around the cut-score, the values of DC and 

DA should be highest at 0/1, followed in turn by 1/2, 2/3, and 3/4. Thus, both the 

distance between the cut-score and the mean and the number of students around 

the cut-score are important. However there is an interaction between the two 

factors. 

As shown in Table 10, the values for DC and DA for all three models were 

highest at cut-score 0/1. Then next highest values for DC and DA were for cut-

score 1/2 for all three models.  At cut-scores 0/1, 1/2, and 2/3, IRT procedure 

yielded the highest values for DC and DA followed in turn by CM procedure and 

LL procedure yielded the lowest values for DC and DA. However, there was a 

slight change at cut-score 3/4 in which the values of DC and DA for the LL and 

IRT procedures were similar, and CM yielded the lowest values for DC and DA. 

Thus, it would appear that the number of students around a cut-score may be more 

important than the distance between the cut-score and the mean.  
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As mentioned in the case of Reading assessment, another factor identified 

in the literature and thought to account for differences among the DC and DA 

values is the difference in the assumptions regarding the nature of the test forms. 

Whereas, it is assumed that the test forms are strictly parallel for the IRT model 

because the item parameters are the same across an infinite number of replicates 

of test forms, it is assumed that test forms are randomly parallel for the 

Livingston-Lewis and compound multinomial models. Given these assumptions, 

the expectation would be that the values for DC and DA would be more similar 

for the LL and CM procedures than for the IRT procedure. However, this was not 

the case. As shown in Table 10, when the DC and DA values for the LL and CM 

procedures differed, the differences were larger than when the DC and DA values 

for the CM and IRT differed. It would appear that the CM procedure, which 

respects the nature of the way sets of items are scored, is more similar to the IRT 

which works at the item level than to the LL procedure that creates an effective 

test length. 

Despite the differences noted among the LL, CM, and IRT procedures, the 

estimates of DC and DC were unbiased and precise for each of the four sample 

sizes considered. Thus, the discussion presented above for the population is 

applicable at the sample level. 
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Chapter 5: Results and Discussion 
 

The University of Malawi Examinations 

The results obtained from the data analyses for the research questions 

presented in Chapter 1 are provided and discussed in the present chapter for the 

University of Malawi (U of M) entrance examinations.  The present chapter is 

organized in three parts: the first part is for the U of M Verbal Reasoning 

examination, the second part is for the U of M English Language examination, 

and the third part is for the U of M Numerical Reasoning examination. As was the 

case in the previous chapter, each part is divided into four sections. The 

population parameters for U of M for the entrance examination presented and 

discussed in the part are provided in the first section. The values of DC and DA 

obtained using the Livingston-Lewis, compound multinomial, and IRT models are 

provided in the second section, followed by presentation of the values for bias and 

standard error of DC and DA for the 100 replicates associated for each sample 

size in the third section. A discussion of the full set of results for the assessment is 

then provided in the fourth section.  
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U of M Verbal Reasoning Examination 

Population Parameters 

This dataset included 6,191 student responses for the University of Malawi 

Entrance Examination for Verbal Reasoning. The population parameters for the U 

of M Verbal Reasoning examination are reported in Table 15 and the frequency 

distribution of examinees scores is provided in Figure 4. In contrast to the EQAO 

assessments discussed in Chapter 4, the scores, mean, standard deviation, and cut-

scores are expressed in terms of percentages. As shown in Table 15, the 

population mean was 60, the standard deviation was 10, and the distribution was 

slightly negatively skewed ( 1  = -0.31) and but mesokurtic ( 2  = -0.02) (see 

Figure 4).  The internal consistency was 0.89 and the cut-scores progressed from 

50% (0/1) to 75% (3/4). 

Population DC and DA 

The values for DC and DA for the population for Verbal Reasoning are 

reported in Table 16 for each cut-score and overall. As for the two EQAO 

assessments, whereas the overall values for DC and DA yielded by the IRT 

procedure were the highest, followed in turn by the CM procedure and the LL 

procedure, there is an interaction between procedure and cut-score. 
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Table 15 

 Psychometric Properties for U of M Verbal Reasoning Examination,  N  =6,191 

    1  2  
0 /1cs  1/ 2cs  2 /3cs  3/ 4cs  

60 10 -0.31 -0.02  0.89 50 60 70 75 

Note:  is the population mean;   
is the standard deviation; 

1
 is the population skewness; 

2
 is 

the population kurtosis;  is the internal consistency (Cronbach’s alpha), 0/1cs is cut-score 0/1; 

1/ 2cs is cut-score 1/2; 2/3cs is cut-score 2/3; and 3/ 4cs is cut-score 3/4.  

 

Figure 4: Frequency Distribution for U of M Verbal Reasoning Examination 
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As the position of the cut-score move towards the extremes of the score 

distributions, the differences among the values of DC and of DA yielded by the 

three procedures become smaller, but in different ways. The results for each cut-

score are presented first followed by a discussion. 

0/1 cut-score 

The three values of DC are within 0.009 of each other and the values of 

the DA are within 0.007 of each other at the 0/1 cut-score. All values, which are 

greater than 0.823, are the second highest values across the four cut-scores. This 

is attributable to fact the difference between the 0/1 cut-score and the population 

mean is the second largest. However, the values for DC and DA are lower than 

that observed for the EQAO assessments at the 0/1 cut-score presented in Chapter 

4 due to the fact that there are a greater number of U of M students around the 0/1 

cut-score (cf., Figures 1 and 2 (Ch. 4) and Figure 4). 
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Table 16 

Decision Consistency and Decision Accuracy Using LL, CM, and IRT Models 
Conditioned on Cut-Scores for U of M Verbal Reasoning Examination 

 Procedure 

 LL CM IRT 

 Separately using 
each Cut-Score 

DC DA DC DA DC DA 

0/1 0.824 0.867 0.823 0.869 0.832 0.874 

1/2 0.706 0.761 0.731 0.792 0.732 0.819 

2/3 0.799 0.842 0.814 0.871 0.829 0.885 

3/4 0.909 0.923 0.910 0.923 0.911 0.935 

Overall 0.529 0.523 0.545 0.551 0.598 0.652 

 

1/2 cut-score 

The discrepancy among the values of DC and DA are more pronounced 

for the 1/2 cut-score than that observed for the 0/1 cut-score. The values for DC 

and DA for the LL procedure, 0.706 and 0.761 respectively, are the lowest, while 

the values for the CM and IRT procedures are higher and closer together, 0.731 

and 0.792 vs. 0.732 and 0.819, respectively.  The values for both DC and DA for 

each procedure are lower than the values observed for the 0/1 cut-score. The 

lower values are attributable to the fact that the cut-score 1/2 is at the population 

mean, and as shown in Figure 4, there is a greater number of students around the 
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1/2 cut-score than around the 0/1 cut-score. Hence, there is higher probability of 

misclassifications at 1/2 cut-score than around the 0/1 and this leads to lower 

values for DC and DA (Lee, 2010). 

2/3 cut-score 

The three values of DC are within 0.030 of each other and the values of 

the DA are within 0.043 of each other at the 2/3 cut-score. All values are greater 

than 0.799. The values for DC and DA are also larger than the values of DC and 

DA for the 1/2 cut-score, but less than the values at the 0/1 cut-score. These 

findings are likely due to the difference between population mean and the 2/3 cut-

score and the smaller number of students around the 2/3 cut-score than around the 

1/2 cut-score and the larger number of students around the 2/3 cut-score than 

around the 0/1 cut-score (see Figure 4).  

3/4 cut-score 

The values of DC are the within 0.002 of each other and the values of the 

DA are within 0.012 of each other at the 3/4 cut-score. Further, the values of DC 

and DA are the highest at the 3/4 cut-score, with all values greater than or equal to 

0.909. The distance between the 3/4 cut-score and the mean is largest and the 

number of students around this cut-score is the smallest (see Figure 4). Hence, the 

values of DC and DA at the 3/4 cut-score are the highest (Lee, 2010). 
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Sample Results 

Bias and Standard Error 

Tables 17 and 18 show, respectively, the mean values of DC and DA for 

the 100 replicated samples for DC and DA for each cut-score, the bias, and the 

standard error of the mean, which in the present case is the standard deviation of 

the 100 sample means. The two tables correspond respectively to the two sample 

sizes considered:  3,000, and 1,500. The bias was determined as the difference 

between the population values of DC and DA from the mean of 100 replicates of 

DC and DA for each selected sample size for each cut-score. For example, the 

bias was 0.002 and the standard error was 0.004 for DC for the LL procedure, n = 

3,000 (see Table 17). 

Examination of Tables 17 and 18 reveals that the values of bias and the 

corresponding standard errors are small and similar. For example, the bias and 

standard error for the IRT procedure were, respectively,  0.010 and 0.007 for DC 

and 0.012 and 0.012 for DA, n = 3,000. The largest difference between the 

population DC and DA and the corresponding sample mean DC and DA occurred 

at the 1/2 cut-score. At this cut-point, the largest differences occurred for the IRT 

procedure. However, the values of bias were less than 0.015 (1.5%). The largest 
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standard error, 0.013, was obtained for DA using the IRT procedure and with n = 

1,500. Thus, it appears that the three estimation procedures produce unbiased and 

precise estimates. 

Discussion 

As expected, the findings reported above reveal that the values of DC were 

never greater than the values of DA. Where differences were observed, DC < DA 

for all three procedures. The difference is due to the use of an observed score and 

an estimated observed score in the case of DC and an observed score and the 

corresponding estimated true score in the case of DA. Since observed scores 

contain error of measurement, there are two sources of error in the case of DC and 

only one source in the case of DA. 
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Table 17 

Decision Indices for LL, CM, and IRT Models Using Sample Size 3000  for each 
Cut-Score for U of M Verbal Reasoning Examination 
    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.822 0.864 0.828 0.863 0.827 0.866

 Bias 0.002 0.003 -0.005 0.006 0.005 0.008

 SE 0.004 0.006 0.002 0.003 0.006 0.009

1/2 Mean 0.702 0.756 0.729 0.983 0.743 0.807

 Bias 0.004 0.005 0.007 0.009 0.010 0.012

 SE 0.006 0.008 0.003 0.005 0.007 0.012

2/3 Mean 0.799 0.841 0.814 0.868 0.825 0.882

 Bias 0.000 0.001 0.002 0.003 0.004 0.003

 SE 0.003 0.002 0.001 0.002 0.004 0.005

3/4 Mean 0.909 0.923 0.91 0.923 0.911 0.935

 Bias 0.000 0.000 0.000 0.000 0.000 0.000

 SE 0.002 0.001 0.001 0.0001 0.002 0.003

 

 



100 

 

 

 

 

Table 18 

Decision Indices for LL, CM, and IRT Models Using Sample Size 1500 for each 
Cut-Score for U of M Verbal Reasoning Examination 
    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.822 0.864 0.829 0.862 0.827 0.866 

 Bias 0.002 0.003 -0.004 0.005 0.005 0.008 

 SE 0.002 0.007 0.001 0.002 0.006 0.007 

1/2 Mean 0.702 0.757 0.730 0.983 0.743 0.806 

 Bias 0.004 0.04 0.006 0.009 0.01 0.013 

 SE 0.006 0.008 0.003 0.003 0.007 0.010 

2/3 Mean 0.799 0.841 0.814 0.869 0.825 0.880 

 Bias 0.000 0.001 0.002 0.002 0.004 0.005 

 SE 0.002 0.002 0.001 0.002 0.004 0.005 

3/4 Mean 0.909 0.923 0.91 0.923 0.911 0.935 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.002 0.001 0.001 0.0001 0.002 0.004 
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The findings reported above also reveal that the three procedures were 

differentially influenced by the distance between the cut-score and the population 

mean and the number of students around the cut-score. The absolute values of the 

differences and the relative numbers of students around each cut-score are:  

- for 0/1: 10. second largest difference and third largest number of 

students around cut-score; 

- for 1/2: 0, smallest difference and largest number of students around 

cut-score; 

- for 2/3: 10 second largest difference and second largest number of 

students around cut-score; and 

- for 3/4: 15, largest difference and smallest number of students around 

cut-score. 

Based only on the distance between the cut-score and the mean, the values of DC 

and DA should be the highest at 3/4, followed by a tie at 0/1 and 2/3, and lastly 

1/2. Based only on the number of students around the cut-score, the values of DC 

and DA should be highest at 3/4, and the lowest at cut-score 1/2. While the 

number of students around cut-score 2/3 is higher than the number of students 

around cut-score 0/1, the difference between the two numbers is not that large. 

Hence, it is not as clear about whether the values of DC and DA would be greater 
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at 0/1 than at 2/3 or vice-versa. Despite this, both the distance between the cut-

score and the mean and the number of students around the cut-score are important 

factors to consider. However there is an interaction between the two factors. 

As shown in Table 16, the values for DC and for DA for all three 

procedures were highest and essentially the same for cut-score 3/4, which was 

furthest from the mean and had the fewest number of students around it. The next 

highest values for DC and DA were for cut-scores 0/1 and 2/3 for all three 

procedures. However, differences among the three procedures emerged: both the 

DC and DA values for the LL procedure were less than the corresponding values 

for the CM and IRT procedures, which were more similar in value. Further the 

difference between the DC and DA values at the 0/1 cut-score and the 2/3 cut-

score were larger for the LL procedure than differences for the CM and IRT 

procedures, which again were similar. While these two cut-scores were 

equidistant from the mean, there were fewer students were around cut-score 0/1 

than around cut-score 2/3. It appears that the LL procedure is more sensitive to the 

number of students around the cut-score than the CM and IRT procedures. Lastly, 

the values of DC and DA were the lowest for all three procedures at cut-score 1/2 

and followed the same pattern observed at cut-score 2/3 but not cut-score 0/1. 
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Thus, it would appear that the number of students around a cut-score may be more 

important than the distance between the cut-score and the mean.  

As mentioned in the previous chapter, another factor identified in the 

literature is the difference in the assumptions regarding the nature of the test 

forms. Whereas, the IRT model assumes that the test forms are strictly parallel 

because the item parameters are the same across an infinite number of replicates 

of test forms, the compound multinomial model and Livingston-Lewis model state 

the assumption made is that the test forms are randomly parallel. Given these 

assumptions, the expectation would be that the values for DC and DA would be 

more similar for the LL and CM procedures than for the IRT procedure. However, 

this was not the case. As shown in Table 16, when the DC and DA values for the 

LL and CM procedures differed, the differences were larger than when the DC 

and DA values for the CM and IRT differed. It would appear that the CM 

procedure, which respects the nature of the way sets of items are scored, is more 

similar to the IRT which works at the item level than to the LL procedure that 

creates an effective test length. 

Despite the differences noted among the LL, CM, and IRT procedures, the 

estimates of DC and DC were unbiased and precise for each of the four sample 
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sizes considered. Thus, the discussion presented above for the population is 

applicable at the sample level. 

U of M English Language Examination 

Population Parameters 

This dataset included 6,191 student responses for the U of M Entrance 

Examination for English Language. The population parameters for this 

examination are reported in Table 19 and the frequency distribution of ability 

estimates is provided in Figure 5. As for Verbal Reasoning, the scores, mean, 

standard deviation, and cut-scores are expressed in terms of percentages. As 

shown Table 19, the population mean was 50, the standard deviation was 12, and 

the distribution was essentially symmetric ( 1  = 0.07) and slightly mesokurtic ( 2  

= -0.23) (see Figure 5). The internal consistency was again high, 0.89, and the cut-

scores progressed from 50% (0/1) to 75% (3/4). 
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Table 19 

 Psychometric Properties for U of M English Language Examination, N =6,191 

    1  2  
0 /1cs  1/ 2cs  2 /3cs  3/ 4cs  

50 12 0.07 -0.23  0.89 50 60 70 75 

Note:  is the population mean;
   

is the standard deviation; 
1
 is the population skewness;

2
 is 

the population kurtosis; is the internal consistency (Cronbach’s alpha), 0/1cs is cut-score 0/1; 

1/ 2cs is cut-score 1/2; 2/3cs is cut-score 2/3; and 3/ 4cs is cut-score 3/4. 

 

Figure 5: Frequency Distribution for U of M English Language Examination 
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Population DC and DA 

 

The values for DC and DA for the population for English Language 

examination are reported in Table 20 for each cut-score and overall. Again, as 

with two EQAO assessments and the U of M Verbal Reasoning examination, 

whereas the overall values for DC and DA yielded by the IRT procedure were the 

highest, followed in turn by the CM procedure and the LL procedure, there is an 

interaction between procedure and cut-score.  As the position of the cut-score 

move towards the extremes of the score distributions, the differences among the 

values of DC and of DA yielded by the three procedures become smaller, but in 

different ways. The results for each cut-score are discussed first followed by a 

discussion. 

0/1 cut-score 

The three values of DC are within 0.003 of each other and the values of 

the DA are within 0.001 of each other at the 0/1 cut-score.  Further, the values of 

DC and DA are the lowest at cut-score 0/1 than at the three other cut-scores. This 

finding is attributable to the fact that the cut-score 0/1 is at the population mean 

and the greatest number of students around the 0/1 cut-score (see Figure 5). 
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Hence, there is high probability of misclassifications and this leads to lower 

values for DC and DA (Lee, 2010). 

Table 20 

Decision Consistency and Decision Accuracy Using LL, CM, and IRT Models 
Conditioned on Cut-Scores for U of M English Language Examination 

 Procedure 

 LL CM IRT 

Separately using 
each Cut-Score 

DC DA DC DA DC DA 

0/1 0.763 0.827 0.761 0.827 0.764 0.828 

1/2 0.825 0.860 0.829 0.864 0.826 0.877 

2/3 0.909 0.927 0.943 0.940 0.956 0.954 

3/4 0.946 0.973 0.968 0.975 0.959 0.983 

Overall 0.519 0.625 0.532 0.638 0.558 0.643 

 

1/2 cut-score 

The three values of DC are within 0.004 of each other and the values of 

the DA are within 0.017 of each other at the 1/2 cut-score. All values are greater 

than 0.825. The values for DC and DA are larger than the values of DC and DA 

for the 0/1 cut-score but smaller at the higher two cut-scores. This is likely due to 

the difference between the 1/2 cut-score and the population mean and the second 

largest number of students around the 1/2 cut-score (see Figure 5). 
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2/3 cut-score 

The discrepancy among the values of DC and DA are more pronounced 

for the 2/3 cut-score than that observed for the 0/1 and 1/2 cut-scores. The value 

for the LL procedure, 0.91 and 0.93, are the lowest, while the values for the CM 

and IRT procedures are higher and closer together, 0.94 and 0.94 vs. 0.96 and 

0.95.  Further, the values for each procedure are higher than the values observed 

for the 0/1 and 1/2 cut-scores. This finding is likely more attributable to the larger 

difference between the population mean and the 2/3 cut-score and the somewhat 

smaller number of students around the 2/3 cut-score than the difference for and 

number of students around the 0/1 and 1/2 cut-scores (see Figure 5).  

3/4 cut-score 

The values of DC are the within 0.022 of each other and the values of the 

DA are within 0.010 of each other at the 3/4 cut-score. Further, the values of DC 

and DA are the highest at the 3/4 cut-score, with all values greater than or equal to 

0.946. The reasons for this latter finding is the fact the 3/4 cut-score is furthest 

away from the population mean and the smallest number of students around the 

3/4 cut-score (see Figure 4). Hence, there is a smaller number of 

misclassifications of examinees at this cut-score than at cut-score 2/3 (Lee, 2010). 
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Sample Results 

Bias and Standard Error 

Tables 21 and 22 show, respectively, the mean values of DC and DA for 

the 100 replicated samples for DC and DA for each cut-score, the bias, and the 

standard error of the mean, which in the present case is the standard deviation of 

the 100 sample means. The results reveal that the values of bias and the 

corresponding standard errors are small and similar.  For example, the bias and 

standard error for the IRT procedure were, respectively,  0.013 and 0.008 for DC 

and 0.016 and 0.010 for DA, n = 3,000. The largest difference between the 

population DC and DA and the corresponding sample mean DC and DA occurred 

at the 0/1 cut-score. At this cut-point, the largest differences occurred for the IRT 

procedure. However, the values of bias were less than 0.02 (2%). The largest 

standard error, 0.013, was obtained for DA using the IRT procedure and with n = 

1,500. Thus, it appears that the three estimation procedures produce unbiased and 

precise estimates. 
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Table 21 

Decision Indices for LL, CM, and IRT Models Using Sample Size 3000 for each 
Cut-Score for U of M English Language Examination 
    Procedure    

  LL  CM  IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.766 0.831 0.770 0.835 0.777 0.844 

 Bias 0.002 0.004 0.009 0.008 0.013 0.016 

 SE 0.005 0.012 0.003 0.004 0.008 0.010 

1/2 Mean 0.825 0.857 0.833 0.870 0.832 0.884 

 Bias 0.001 -0.003 0.004 0.006 0.006 0.007 

 SE 0.002 0.004 0.001 0.001 0.005 0.008 

2/3 Mean 0.907 0.925 0.946 0.944 0.947 0.948 

 Bias -0.002 -0.002 0.003 0.004 -0.005 -0.006 

 SE 0.003 0.003 0.002 0.002 0.003 0.06 

3/4 Mean 0.946 0.973 0.968 0.975 0.959 0.983 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.001 0.003 0.001 0.001 0.003 0.002 
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Table 22 

Decision Indices for LL, CM, and IRT Models Using Sample Size 1500  for each 
Cut-Score for U of M English Language Examination 

    Procedure    

  LL CM  IRT 

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.766 0.824 0.768 0.835 0.777 0.847 

 Bias 0.003 -0.003 0.007 0.008 0.013 0.019 

 SE 0.003 0.006 0.003 0.003 0.007 0.013 

1/2 Mean 0.823 0.862 0.832 0.869 0.833 0.885 

 Bias -0.002 0.002 0.003 0.005 0.007 0.008 

 SE 0.002 0.004 0.001 0.002 0.004 0.006 

2/3 Mean 0.910 0.928 0.946 0.943 0.958 0.959 

 Bias 0.001 0.001 0.003 0.003 0.002 0.005 

 SE 0.001 0.002 0.001 0.001 0.005 0.003 

3/4 Mean 0.946 0.973 0.968 0.975 0.959 0.983 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.001 0.001 0.0001 0.0001 0.002 0.002 
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Discussion 

As expected, the findings reported above reveal that the values of DC were 

never greater than the values of DA. Where differences were observed, DC < DA 

for all three procedures. The difference is due to the use of an observed score and 

an estimated observed score in the case of DC and an observed score and the 

corresponding estimated true score in the case of DA. Since observed scores 

contain error of measurement, there are two sources of error in the case of DC and 

only one source in the case of DA. 

The findings reported above also reveal that the three procedures were 

differentially influenced by the distance between the cut-score and the population 

mean and the number of students around the cut-score. The absolute value of the 

differences and the relative numbers of students around each cut-score are:  

- for 0/1: 0, smallest difference and largest number of students around 

cut-score; 

- for 1/2: 10, third largest difference and second largest number of 

students around cut-score; 

- for 2/3: 20, second largest difference and third largest number of 

students around cut-score; and 
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- for 3/4: 25, largest difference and smallest number of students around 

the cut-score. 

Based only on the distanced between the cut-score and the mean, the values of DC 

and DA should be the highest at 3/4, followed by 2/3, and then 1/2, and lastly 0/1. 

Based only on the number of students around the cut-score, the values of DC and 

DA should be highest at 3/4, followed in turn by 2/3, 1/2, and 0/1. This was the 

case. However there was an interaction between the cut-scores and the three 

procedures. 

As reported in Table 20 the values for DC and for DA for all the three 

procedures were essentially the same for the cut-scores 0/1 and 1/2. In contrast, 

they differed at the other two cut-scores. The difference between the LL 

procedure and the CM and IRT procedures was more pronounced for cut-scores 

2/3 in which the value of DC and for DA for the LL procedure was the lowest, 

followed in turn by the CM procedure and then the IRT procedure However, this 

effect is somewhat different at cut-score 3/4. At cut-score 3/4, for the value of DC 

for the LL procedure was lowest, followed by the value for the IRT procedure and 

then the value for the CM procedure. In the case of DA, the values for the LL and 

CM procedures were similar but less than the value for the IRT procedure. Thus, 
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it would appear that the number of students around a cut-score may be more 

important than the distance between the cut-score and the mean.  

Another factor identified in the literature is the difference in the 

assumptions regarding the nature of the test forms. Whereas the IRT model 

assumes that the test forms are strictly parallel because the item parameters are the 

same across an infinite number of replicates of test forms, the compound 

multinomial model and Livingston-Lewis model state the assumption made is that 

the test forms are randomly parallel. Given these assumptions, the expectation 

would be that the values for DC and DA would be more similar for the LL and 

CM procedures than for the IRT procedure. However, this was not the case. As 

shown in Table 20, when the DC and DA values for the LL and CM procedures 

differed, the differences were larger than when the DC and DA values for the CM 

and IRT differed. It would appear that the CM procedure, which respects the 

nature of the way sets of items are scored, is more similar, to the IRT procedure 

which works at the item level than to the LL procedure that creates an effective 

test length. 

Again, despite the differences noted among the LL, CM, and IRT 

procedures, the estimates of DC and DA were unbiased and precise for each of the 
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four sample sizes considered. Thus, the discussion presented above for the 

population is applicable at the sample level. 

U of M Numerical Reasoning Examination 

Population Parameters 

This dataset included 6,191 student responses for the University of Malawi 

Entrance Examination for Numerical Reasoning. The population parameters for 

the U of M Numerical Reasoning examination are reported in Table 23 and the 

frequency distribution of ability estimates is provided in Figure 6. As for Verbal 

Reasoning, and English Language examinations, the scores, mean, standard 

deviation, and cut-scores are expressed in terms of percentages. As shown in 

Table 23, the population mean was 40, the standard deviation was 15, and the 

distribution was slightly positively skewed ( 1  = 0.45) and essentially mesokurtic 

( 2  = 0.03; see Figure 6). The internal consistency was once more high, 0.89, and 

the cut-scores progressed from 50% (0/1) to 75% (3/4). 
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Table 23 

Psychometric Properties for U of M Numerical Reasoning Examination, 

N =6,191 

    1  2  
0 /1cs  1/ 2cs  2 /3cs  3/ 4cs  

40 15 0.45 0.03  0.89 50 60 70 75 

Note:  is the population mean;
   

is the standard deviation; 
1
 is the population skewness;

2
 is 

the population kurtosis; is the internal consistency (Cronbach’s alpha), 0/1cs is cut-score 0/1; 

1/ 2cs is cut-score 1/2; 2/3cs is cut-score 2/3; and 3/ 4cs is cut-score 3/4. 
 

 

 
 

Figure 6: Frequency Distribution for Numerical Reasoning 
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Population DC and DA 
 

The values for DC and DA for the population for Numerical Reasoning 

examination are reported in Table 24 for each cut-score and overall. Over again, 

as with two EQAO assessments  and the U of M Verbal Reasoning, and English 

Language examinations, whereas the overall values for DC and DA yielded by the 

IRT procedure were the highest, followed in turn by the CM procedure and the LL 

procedure, there is an interaction between procedure and cut-score.  As the 

position of the cut-score move towards the extremes of the score distributions, the 

differences among the values of DC and of DA yielded by the three procedures 

become smaller, but in different ways. The results for each cut-score are discussed 

first followed by a discussion. 

0/1 cut-score 

The three values of DC are within 0.023 of each other and the values of 

the DA are within 0.024 of each other at the 0/1 cut-score. All values are greater 

than 0.786. This finding is attributable to the large difference between the 0/1 cut-

score and the population mean, and there were a few number of students who 

scored around the 0/1 cut-score (see Figure 6). 
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Table 24 

Decision Consistency and Decision Accuracy Using LL, CM, and IRT Models 
Conditioned on Cut-Scores for U of M Numerical Reasoning 

 Procedure 

 LL CM IRT 

Separately using 
each Cut-Score 

DC DA DC DA DC DA 

0/1 0.786 0.856 0.797 0.855 0.809 0.832

1/2 0.840 0.877 0.839 0.879 0.843 0.879

2/3 0.897 0.908 0.918 0.915 0.926 0.937

3/4 0.928 0.949 0.929 0.952 0.929 0.954

Overall 0.560 0.637 0.573 0.689 0.615 0.700

 

1/2 cut-score 

The three values of DC are within 0.004 of each other and the values of 

the DA are within 0.002 of each other at the 1/2 cut-score. All values are greater 

than 0.839. The values for DC and DA are larger than the values of DC and DA 

for the 0/1 cut-score. This is likely due to the larger difference between population 

mean and the 1/2 cut-score, and as shown in Figure 6, while larger than for the 0/1 

cut-score, the relatively small number of students around the 1/2 cut- score. 
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2/3 cut-score 

The three values of DC are within 0.029 of each other and the values of 

the DA are within 0.019 of each other at the 2/3 cut-score. All values are greater 

than 0.897. The values for DC and DA are also larger than the values of DC and 

DA at cut-scores 0/1 and 1/2. These findings are likely due to the larger difference 

between population mean and the 2/3 cut-score and the smaller number of 

students around the 2/3 cut-score than around the1/2 cut-score, and also the 

smaller number of students around the 2/3 cut-score than around the 0/1 cut-score 

(see Figure 6).  

3/4 cut-score 

The values of DC are the within 0.001 of each other and the values of the 

DA are within 0.005 of each other at the 3/4 cut-score. Further, the values of DC 

and DA are the highest at the 3/4 cut-score, with all value greater than or equal to 

0.93. As for the 0/1 and 1/2 cut-scores and in contrast to the 2/3 cut-score, the 

distance between the 3/4 cut-score and the mean is large. However, in contrast to 

the 0/1 and 1/2 cut-scores and like the 2/3 cut-score, the number of students 

around this cut-score is small, in fact the smallest as shown in Figure 6. The small 

number of examinees around 3/4 cut-score and combined with the fact that the 3/4 
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cut-score is furthest away from the population mean, lead to fewer number of 

misclassifications and hence high values of DC and DA (Lee, 2010). 

Sample Results 

Bias and Standard Error 

Tables 25 and 26 show, respectively, the mean values of DC and DA for 

the 100 replicated samples for DC and DA for each cut-score, the bias, and the 

standard error of the mean, which in the present case is the standard deviation of 

the 100 sample means. The two tables correspond respectively to the two sample 

sizes considered:  3,000, and 1,500. The bias was determined as the difference 

between the population values of DC and DA from the mean of 100 replicates of 

DC and DA for each selected sample size for each cut-score. For example, the 

bias was 0.003 and the standard error was 0.003 for DC for the LL procedure, n = 

3,000 (see Table 25). 

Examination of Tables 25 and 26 reveals that the values of bias and the 

corresponding standard errors are small and similar.  The largest difference 

between the population DC and DA and the corresponding sample mean DC and 

DA occurred at the 0/1 cut-score. At this cut-point, the largest differences 

occurred for the IRT procedure. However, the values of bias were less than 0.015 

(1.5%). The largest standard error, 0.014, was obtained for DA using the IRT 
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procedure and with n = 1,500. Thus, it appears that the three estimation 

procedures produce unbiased and precise estimates. 

Discussion 

As expected, the findings reported above reveal that the values of DC were 

never greater than the values of DA. Where differences were observed, DC < DA 

for all three procedures. The difference is due to the use of an observed score and 

an estimated observed score in the case of DC and an observed score and the 

corresponding estimated true score in the case of DA. Since observed scores 

contain error of measurement, there are two sources of error in the case of DC and 

only one source in the case of DA. 

The findings reported above also reveal that the three procedures were 

again differentially influenced by the distance between the cut-score and the 

population mean and the number of students around the cut-score. The absolute 

values of the differences and the relative numbers of students around each cut-

score are:  

- for 0/1: 10, smallest difference and largest number of students around 

cut-score; 

- for 1/2: 20, third largest difference and second largest number of 

students around cut-score; 
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- for 2/3: 30, second largest difference and third largest number of 

students around cut-score; 

- for 3/4: 35,  largest difference and smallest number of students around 

cut-score; 

Based only on the distance between the cut-score and the mean, the values of DC 

and DA should be the highest at 3/4, followed by 2/3, and then 1/2, and lastly 0/1. 

Based only on the number of students around the cut-score, the values of DC and 

DA should be highest at 3/4, followed in turn by 2/3, 1/2, and 0/1. Thus, both the 

distance between the cut-score and the mean and the number of students around 

the cut-score are important. However there is an interaction between the two 

factors. 

As shown in Table 24, the values for all the three models were essentially 

the same for the cut-score 1/2, and 3/4 but differed at the other two cut-scores. 

The difference between the LL, CM and IRT procedures was more pronounced 

for cut-score 2/3. In contrast, the values of DC for the CM and IRT procedures are 

essentially the same at the 1/2, and 3/4 cut-scores, and while the values differ at 

cut-score 2/3, the difference is not as great as that observed for the LL procedure 

at this point.  
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Table 25 

Decision Indices for LL, CM, and IRT Models Using Sample Size 3000 for each 
Cut-Score for U of M Numerical Reasoning 
    Procedure    

   LL CM IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.789 0.871 0.786 0.862 0.821 0.853 

 Bias 0.003 0.005 0.006 0.007 0.007 0.014 

 SE 0.003 
 

0.006 
 

0.003 
 

0.004 
 

0.006 
 

0.010 
 

1/2 Mean 0.837 0.875 0.844 0.885 0.834 0.867 

 Bias -0.001 -0.002 0.005 0.006 -0.007 -0.012 

 SE 0.004 
 

0.005 
 

0.002 
 

0.002 
 

0.005 
 

0.008 
 

2/3 Mean 0.898 0.906 0.922 0.920 0.934 0.944 

 Bias 0.001 -0.002 0.002 0.003 0.005 0.007 

 SE 0.002 
 

0.003 
 

0.001 
 

0.001 
 

0.004 
 

0.004 
 

3/4 Mean 0.928 0.949 0.929 0.952 0.929 0.954 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.0001 
 

0.002 
 

0.001 
 

0.001 
 

0.002 
 

0.002 
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Table 26 

Decision Indices for LL, CM, and IRT Models Using Sample Size 1500  for each 
Cut-Score for U of M Numerical Reasoning 

    Procedure    

  LL CM IRT  

Cut-
Scores 

Statistics DC DA DC DA DC DA 

0/1 Mean 0.789 0.852 0.785 0.863 0.821 0.855 

 Bias 0.003 -0.004 0.008 0.008 0.012 0.015 

 SE 0.003 
 

0.005 
 

0.003 
 

0.003 
 

0.006 
 

0.014 
 

1/2 Mean 0.838 0.879 0.844 0.885 0.85 0.889 

 Bias -0.002 0.002 0.005 0.006 0.007 0.008 

 SE 0.002 
 

0.004 
 

0.002 
 

0.001 
 

0.004 
 

0.006 
 

2/3 Mean 0.898 0.909 0.92 0.918 0.930 0.941 

 Bias 0.001 0.001 0.002 0.003 0.003 0.004 

 SE 0.002 
 

0.002 
 

0.000 
 

0.000 
 

0.003 
 

0.007 
 

3/4 Mean 0.928 0.949 0.929 0.952 0.929 0.954 

 Bias 0.000 0.000 0.000 0.000 0.000 0.000 

 SE 0.002 0.002 0.001 0.001 0.003 0.004 
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Again, the differences between values DC and DA values for the LL procedure 

were less, but not by as much, than the corresponding values for the CM and IRT 

procedures, which again were similar. The values of DC and DA were the highest 

for all three models at cut-score 3/4. Finally, and in contrast to the findings at cut-

scores 1/2, and 3/4, values of DC yielded by the IRT procedure were the highest, 

followed in turn by CM procedure, and LL procedure yielded the least values for 

DC.  Thus, it would appear that the number of students around a cut-score may be 

more important than the distance between the cut-score and the mean.  

As before, another factor identified in the literature is the difference in the 

assumptions regarding the nature of the test forms. Whereas, the IRT model 

assumes that the test forms are strictly parallel because the item parameters are the 

same across an infinite number of replicates of test forms, the compound 

multinomial model and Livingston-Lewis model state the assumption made is that 

the test forms are randomly parallel. Given these assumptions, the expectation 

would be that the values for DC and DA would be more similar for the LL and 

CM procedures than for the IRT procedure. However, this was not the case. As 

shown in Table 24, when the DC and DA values for the LL and CM procedures 

differed, the differences were larger than when the DC and DA values for the CM 

and IRT differed. It would appear that the CM procedure, which respects the 
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nature of the way sets of items are scored, is more similar, to the IRT which 

works at the item level than to the LL procedure that creates an effective test 

length. 

These factors appear to be more dominant than the differences between the 

two models. Whereas, the IRT model assumes that the test forms are strictly 

parallel because the item parameters are the same across an infinite number of 

replicates of test forms, the compound multinomial model and Livingston-Lewis 

model state the assumption made is that the test forms are randomly parallel. 

Given the parallel condition is a subset of the randomly parallel condition and the 

assessments are built to the same specifications and are equated for difficulty, it 

likely that differences due to the differences in assumption were small and 

dominated by cut-score placement and numbers of students around the cut-scores. 

Again, despite the differences noted among the LL, CM, and IRT 

procedures, the estimates of DC and DA were unbiased and precise for each of the 

four sample sizes considered. Thus, the discussion presented above for the 

population is applicable at the sample level. 
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Chapter 6: Summary, Conclusion and Recommendations 
 

This chapter is organized in five sections. In the first section, the research 

questions stated in Chapter 1 together with a summary of the procedures followed 

is provided. A summary of the findings for decision consistency (DC) and 

decision accuracy (DA) is presented for the three procedures in relation to the 

research questions, followed by a discussion of the findings in light of previous 

research findings in the second section. Limitations of the study are provided in 

the third section followed by the conclusions drawn in light of the limitations. 

Implications for practice and recommendations for future research are presented 

in the last two sections.  

Research Questions and Procedures 

The purpose of this study was to compare the correctness of decision 

accuracy and decision consistency of the following three estimation procedures:  

Livingston-Lewis procedure (LL) CTST approach, the compound multinomial 

procedure (CM) CTST approach, and Lee IRT procedure. The specific research 

questions (RQ) addressed included: 

1. Do the LL, CM, and IRT procedures yield the same results across four cut- 

scores and sample sizes? 
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2. To what extent does the cut-score location affect the magnitude of the 

values of DC and DA obtained using the LL, CM, and IRT procedures? 

3. To what extent does the number of examinees around the cut-score affect 

the magnitude of the values of DC and DA obtained using the LL, CM, 

and IRT procedures? 

4. Are the LL, CM, and IRT procedures equally consistent and accurate 

across four cut-scores and different sample sizes? 

To address these questions, two population data sources were used: the Junior 

Reading (N = 128,103) and Mathematics (N = 127,639) assessments administered 

by the Education Quality and Accountability Office (EQAO) and the three 

entrance examinations administered by the University of Malawi (U of M; N = 

6,191). Each assessment had four cut-scores corresponding to different levels of 

performance.  To determine the degree of bias and the level of precision for both 

DC and DA, 100 replicated random samples corresponding to four sample sizes (n 

= 1,500, 3,000. 4,500, and 6,000) for the two EQAO populations and two sample 

sizes (n = 1,500 and 3,000) for the U of M population were selected.  
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Summary and Discussion of the Findings 

The major findings at the population level were: 

a) The IRT procedure tended to provide the highest values for both DC and 

DA, followed in turn by the CM procedure and the LL procedure across 

the four cut-scores for both the EQAO assessments and U of M 

assessments. However, there was an interaction between procedure and 

cut-score; whereas the differences among the values of DC and DA 

yielded by the three procedures tended to be smaller for one or both 

extreme cut-scores, the values of DC and DA tended to be larger for the 

two middle cut-scores. The results for the LL procedure tended to vary the 

most, while the results for the CM and IRT procedures tended to be more 

stable and similar. (RQ 1) 

b) Generally, while the differences between the values of DC and DA yielded 

by the three procedures tended to be smaller for one or both extreme cut-

scores, they tended to be larger when the cut-score is closer to the 

population mean or at the population mean with LL procedure yielding the 

lowest values and the CM and IRT procedures yielding comparable values 

for DC and DA. (RQ2). 
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c) The values of DC and DA increased as the number of examinees around 

the cut-score decreased for both the EQAO and U of M assessments. 

When the number of examinees around the cut score was the largest, there 

was high probability of misclassifications. Hence this led to low values of 

DC and DA. However, as the number of examinees decreased, the values 

of DC and DA increased because the number of examinees around the cut-

score decreased which gave rise to fewer misclassifications and hence 

high values for DC and DA (RQ 3). 

d) At the sample level, despite the differences noted among the LL, CM, and 

IRT procedures at the population level, the estimates of DC and DC were 

unbiased and precise for each of the four sample sizes considered at each 

cut-score for the EQAO and two sample sizes considered at each cut-score 

for the U of M assessments (RQ4). Consequently, the findings presented 

above for the population are applicable at the sample level. 

The findings presented above generally agree with findings reported in the 

literature (Huynh, 1976; Lee, 2010; Wan, Brennan, & Lee, 2007).The reason for 

the differences among the three models in estimating DC and DA is due in part to 

the differences in the assumptions made for each model. Whereas for the IRT 

procedure it is assumed that the test forms are strictly parallel because the item 
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parameters are the same across an infinite number of replicates of test forms, for 

the CM procedure and LL procedure it is assumed that the test forms are 

randomly parallel. Thus, the assumptions are stronger for the IRT procedure 

which in turn theoretically leads to the higher values of DC and DA than for CM 

and LL. The expectation would be that the values for DC and DA would be more 

similar for the LL and CM procedures than for the IRT procedure. However, this 

was not the case in the present study.  When the DC and DA values differed, the 

values yielded by the LL procedure were lower than the values for the CM and 

IRT procedures which were more similar. It would appear that the CM procedure, 

which respects the nature of the way sets of items are scored, is more similar to 

the IRT which works at the item level than to the LL procedure that creates an 

effective test length to accommodate open-response items. 

However, the interaction between the distance between a cut-score and the 

number of examinees around the cut-score appears to be more influential than the 

distance between a cut-score and the population mean. For example, the values of 

DC and DA obtained using the LL, CM and IRT procedures were essentially the 

same when the distance was large and the number of examinees was small. But as 

the distance between the cut-score and population mean decreased and/or the 

number of examinees increased, differences among the procedures appeared, but 
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not in a consistent way. For instance, at cut-score 2/3 for the EQAO Reading, 

while the distance between the population mean and the cut-score was small, there 

was a large number of students around this cut-score. The values of DC and DA 

yielded by the CM procedure were slightly higher than the values of DC and DA 

yielded by the IRT procedure, while the values of DC and DA yielded by LL were 

quite a bit lower. However, at cut-score 3/4 the distance between the population 

mean and the cut-score was large as was the number of students around the cut-

score. In this case the values of DC and DA yielded by CM were lower than the 

values of DC and DA yielded by IRT and closer to the values yielded by LL 

procedure, which were still the lowest (see Table 4, Chapter 4). A second example 

of the lack of consistency can be seen with the U of M examinations. In the case 

of the Verbal Reasoning examination, the values for DC and DA for all three 

procedures were highest and essentially the same for cut-score 3/4, which was 

furthest from the mean and had the fewest number of students around it. The next 

highest values for DC and DA were for cut-scores 0/1 and 2/3 for all three 

procedures. However, differences among the three procedures emerged: both the 

DC and DA values for the LL procedure were less than the corresponding values 

for the CM and IRT procedures, which were more similar. Further the difference 

between the DC and DA values at the 0/1 cut-score and the 2/3 cut-score were 
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larger for the LL procedure than differences for the CM and IRT procedures, 

which again were similar. While these two cut-scores were equidistant from the 

mean, there were fewer students were around cut-score 0/1 than around cut-score 

2/3. Lastly, the values of DC and DA were the lowest for all three procedures at 

cut-score 1/2 and followed the same pattern observed at cut-score 2/3 but not cut-

score 0/1. Thus, it would appear that the number of students around a cut-score 

may be more important than the distance between the cut-score and the mean and 

that the LL procedure is more sensitive to the number of students around the cut-

score than the CM and IRT procedures. The reason for the first finding is that 

large numbers of examinees around cut-scores lead to more misclassifications that 

give rise to lower values for DC and DA (Huynh, 1976; Lee, 2005; Wan, 

Brennan, & Lee, 2007). As indicated earlier, the reason for the second finding is 

that the LL procedure does not fully recognize the nature of open-response items 

while the CM and IRT do, but in different ways. 

Turning to the use of samples, such as in a pilot-testing situation, the 

results revealed that regardless of cut-score or the number of students in the 

sample, the three estimation procedures produce unbiased and precise estimates. 

Therefore, the values of DC and DA found and the pattern of values found at the 

population level exist at the sample level.  



134 

 

 

 

Limitations of the Study 

 The findings of the present study were confined to single-administration 

procedures for estimating DC and DA. Consequently, the findings cannot be 

generalized to a situation where direct estimates of DC and DA are obtained when 

two parallel test forms are administered or a single test is administered twice.  

The smallest samples size considered in the present study was 1,500. 

While the LL, CM, and IRT procedures yielded unbiased and precise estimates, 

sample sizes less than 1,500 need to be considered. 

Conclusion 

Based on the findings of the present study, the compound multinomial 

procedure should be used to determine DC and DA when classical test score 

theory is used to analyze a test and its items and the IRT procedure should be used 

to determine DC and DA when item response theory is used to analyze a test and 

its items. These procedures can be used with both a population of examinees or a 

sample of examinees of at least 1,500 students given the sample estimates of DC 

and DA are unbiased and precise. Lastly, regardless of procedure, the distance 

between a cut-score and the number of examinees around the cut-score must be 

taken into account when interpreting the decision accuracy and precision indices. 
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Implications for Practice 

 In view of the findings from this study, testing agencies should use the 

estimation procedure in agreement with test theory – classical or item response – 

that the agency uses in order to estimate the item parameter and obtain estimates 

of ability. If the agency uses classical test score theory to conduct an item analysis 

and to obtain total scores, then the CM procedure should be used to determine the 

values of DC and DA. If IRT theory is used to estimate item parameters and 

ability estimates, then the IRT procedure should be used to determine the values 

of DC and DA. In so doing, the full set of analyses will be in harmony, with the 

same definition of error at each point in the analyses.  

Recommendations for Future Research 

Based on the finding of the present study, three topics for future research 

emerged:  

a) When a single administration is used to determine DC and DA, it is 

necessary to estimate, respectively, a second observed score of a true 

score. Replication of this study involving two parallel forms or the same 

test administered on two occasions to confirm the findings of the present 

study. 

b) As indicated above, there was an interaction between the distance between the 

population mean and the cut-score and the number of examinees around the cut-
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score. Use of simulation procedures in which the distance between cut-

scores and the mean and the number of examinees around a cut-score are 

systematically varied and how the variations influence the values of DC 

and DA would help to better understand the nature of this interaction.  

c) As pointed out in the limitation of the study and in the conclusion, the 

smallest sample size considered in this study was 1,500 students. While 

the sample estimates were unbiased and precise, further study is needed to 

see if the estimates are unbiased and precise with smaller samples. 
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