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Abstract

The complete set of Kubo conductivity tensors are computed in two- and three-

dimensional linear magnetic null systems using collisionless single-particle sim-

ulations. Chaos regions are constructed for each case, along with the complete

Lyapunov spectrum. It is found that stochastic frequency mixing of particle

bounce motion, as well as gyromotion, contribute significantly to the con-

ductivity. For many cases, the conductivity curve is well approximated by

power-laws, resulting in a divergent value of the direct-current conductivity,

while others can be described by a sum of Maxwellian curves. The energy

dissipation of these systems is also briefly discussed.
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Chapter 1

Introduction

Magnetic reconnection is the process in which magnetic field lines from two or

more distinct fields re-assemble themselves in a plasma to form new magnetic

configurations. This is driven by the release of stored magnetic energy through

dissipative processes such as classical collisions or anomalous resistivity. The

consequence of reconnecting magnetic fields is a magnetic null (alternatively a

magnetic neutral point) which is the area between distinct magnetic domains,

providing the magnitude of the field becomes zero.

Historically, magnetic nulls have played an important role in magnetic re-

connection as far back as 1947 when Giovanelli [4] suggested that an electric

field near a magnetic null point could have the ability to accelerate free elec-

trons, leading to a possible mechanism for solar flares. Neutral points were

soon applied to models of the magnetosphere in 1949 by Hoyle [5]. It was

Dungey [6] in 1953 who developed the theory of magnetic reconnection and its

relation to magnetic neutral points. Electric fields near null points can heat

and accelerate particles towards areas of stronger magnetic field, resulting in

energy being carried away from the magnetic field which drives magnetic recon-

nection. Other various types of phenomena, from space plasmas to laboratory

plasmas, have also been attributed to magnetic reconnection. Recently, the

European Space Agency Cluster observed a three-dimensional magnetic null
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(a) (b)

Figure 1.1: (a) Artist’s impression of the magnetic null found by the four
ESA Cluster spacecraft. (b) Sketch of the same magnetic null shows a three-
dimensional spiral structure. Source: [1]

in the earth’s magnetosphere [7, 1]. Fig. 1.1 (a) shows an artist’s impression of

this null, while Fig. 1.1(b) shows the underlying three-dimensional structure.

Stark et al. [8] probed the ion velocity distribution function by using laser-

induced fluorescence during a reconnection event, finding that the heating of

the ions was proportional to the amplitude of the reconnection drive. Recon-

nection can also be an important mechanism in tokamaks. Fitzpatrick and

Hender [9] showed that, providing an electrical perturbation is driven near a

natural mode frequency, reconnection can occur. Fitzpatrick later showed [10]

that a strong enough perturbation can also drive reconnection even when the

perturbation frequency is far removed from a natural mode frequency.

The major limitation to magnetic reconnection is in the calculation of the

time and length scale of the process. While collisional reconnection processes

can be modeled fairly well over uniform resistivities, systems with non-uniform

resistivities, as well as three-dimensional reconnection, are less understood.

The theory behind collisionless reconnection is also not very well-developed.

The time scale of an average solar flare is of the order of 102−103 seconds. Slow
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reconnection models have been developed by Sweet [11] and Parker [12]. Parker

calculated a time scale of 5×104 seconds, which is much too large to account for

solar flares. However, Parker’s choice of scale has been criticized by Axford and

Yeh [13], which should be determined by the boundary conditions of the flow.

A fast reconnection mechanism was formulated by Petschek [14] and has been

generalized a number of times [15, 16]. While this mechanism yields correct

time scales, in the past MHD simulations have failed to reproduce these results

when applied to nulls with homogeneous resistivity [17]. Recently, Baty et al.

have been able to reproduce correct time scales using Petschek reconnection

over homogeneous resistivity by using non-uniform viscosity profiles [18].

One important aspect of magnetic reconnection is the conductivity (or

resistivity) around the point of reconnection, where the magnitude of the con-

ductivity can determine the time-scale of the reconnection by calculating the

dissipation D

D =

∫
S

E · jdx, (1.1)

where E is the electric field, j is the current, and S is the boundary of the

dissipation region. To determine E, Ohm’s law can be used for low-β magnetic

fields,

j = σE, (1.2)

where σ is the conductivity tensor. In general, for classical systems, σ is sym-

metric provided that the sign of the magnetic field is changed, i.e. σab(B) =

σba(−B), which is a result of the Onsager reciprocity relations [19]. The con-

ductivity tensor can be formulated to be dependent on the frequency of the

applied electric field. σ(ω = 0) is known as the direct current (DC) value of the

conductivity tensor, while σ(ω 6= 0) is known as the alternating current (AC)

conductivity tensor. There is no exact method of calculating the conductivity

tensor, therefore many methods must be studied and compared, with smaller
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conductivities being more important than larger ones. The conductivity was

classically calculated based on the collision frequency of particles with one an-

other. This inverse conductivity is called the Spitzer resistivity [20] and has

the form

η ≈ πq2
sm

1/2
s

(4πε0)2(kBTs)3/2
ln Λ (1.3)

where ms, qs and Ts is the particle mass, charge, and temperature of species

s, respectively, kB is the Boltzmann constant and the Coulomb logarithm Λ is

defined as

Λ =
λD

r0

. (1.4)

Here, λD is the ion skin depth and r0 is the maximum impact parameter.

Typically, Λ ∼ 10 in laboratory plasmas, Λ ∼ 20 in solar coronas, and Λ ∼

30 in the magnetosphere [21]. It is important to consider the fact that the

observable quantity for most cosmic systems is the current, not the electric

field. From this is it helpful to use the resistive form of Ohm’s law

E = ρj (1.5)

where ρ is the resistivity tensor. It is easy to see that ρ is the matrix inverse

of σ. For a conductivity tensor with no off-diagonal components, σaa = ρ−1
aa .

However, this does not hold for tensors with off-diagonal components.

In 1969, Speiser showed that resistivity can exist without particle collisions

or wave interactions [22]. He derived two collisionless resistivities, one based

on the gyromotion of particles and one based on non-adiabatic acceleration

around regions of diffusion. Another method for calculating the conductivity

is by using the Kubo formula [23], which is based on applying the fluctuation-

dissipation theorem [24] to electromagnetic fields. The method uses the ensem-

ble averaged correlation function of the velocities to compute the conductivity.

One advantage of the Kubo conductivity is its ability to compute conductiv-

ities over an entire spectrum of applied electric fields. Similar to the Kubo
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(a) (b)

Figure 1.2: Examples of two-dimensional O-type (a) and X-type (b) null
points. The O-type null has the magnetic field B = b0 (y,−x, 0) while the
X-type null has the magnetic field B = b0 (y, x, 0). Lines represent magnetic
field lines, while dashed lines signify the separatrix in the X-type null cases.
The null point is denoted by a dot at the origin. All units are reduced.

conductivity is the linearized Vlasov conductivity, which is derived by using

a kinetic theory of plasmas. For ergodic systems, the Kubo conductivity and

linearized Vlasov conductivity are equivalent [25].

Until the early 90s, research was mainly focused on the study of two-

dimensional linear magnetic nulls. As the region of interest is usually very

close to the null point, many two-dimensional magnetic systems can be ex-

panded into a linear system which is topologically and computationally sim-

pler to work with. The two main types of 2D linear nulls are O-point nulls

and X-point nulls, as shown in Fig. 1.2. The magnetic O-point is a location of

zero magnetic field surrounded by connected magnetic field lines. An example

of this would be a null point surrounded by concentric circular magnetic field

lines. A magnetic X-point has four distinct magnetic field domains separated

by an X-shaped separatrix where the intersection is a point with no mag-

netic field. As the O-type magnetic null deals with a single magnetic domain,

its application to magnetic reconnection is limited. Most focus has been on
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the study of the X-type magnetic null point. Martin [26] studied the chaotic

dynamics of the two-dimensional X-point using the method of Lyapunov ex-

ponents for a variety of situations. It was found that even without an applied

electric field, dynamics around a null point are generally chaotic. Numata and

Yoshida [2] calculated the conductivity of an expanded X-point (known as a

double Y-point) by using a conductivity similar to that derived by Speiser and

calculated the reconnection dynamics by using Petschek’s model. It was found

that a single chaos zone, while enhancing the resistivity of the system, cannot

solely account for fast-type reconnection.

Horton et al. studied the collisionless DC conductivity in a two-dimensional

approximation to the magnetic null in the geomagnetic tail by using the Vlasov

conductivity in a series of papers [27, 28, 25]. It was found that stochastic

processes near the magnetic null resulted in power-law decays of the correla-

tion of velocities, with an effective collision time, proportional to the cyclotron

period, being used to calculate the energy dissipation of the system. Holland

and Chen [29] criticized the use of the Vlasov conductivity in a number of

ways, where they stated that the use of the Vlasov conductivity may not

satisfy the necessary conditions needed to render it valid near magnetic null

points. It was also found that the Vlasov conductivity was sensitive to the

total integration time of the simulation. For long simulation times, particles

would also spent most of the simulation in non-chaotic regions, rendering a

definition of conductivity based on chaotic motion ambiguous. Afterwards,

they proposed a method to find the energy dissipation of particles based on

a method by Cowley [30], which is derived from the difference of ingoing and

outgoing particle pitch angles. Finally, they note that their results contradict

results found by Speiser [22], stating that the simple relation j = σE may

not be valid in plasmas. Hernandez et al. published a counter-rebuttal [31],

stating that long-term correlated motion near regions of chaos lead to impor-
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tant contributions to the conductivity calculation, as well as arguing that the

necessary conditions are met in order to apply the Vlasov conductivity.

In recent years, more attention has been given to the reconnection near

three-dimensional null points. These null points offer a large variety of dif-

ferent topological configurations. Cowley [32] first studied the structure of a

three-dimensional potential null with form B = (αx, βy,−(α + β)z), stating

that the neutral point consisted of a spine with field-lines expanding to a so-

called fan plane. Fukao [33] studied more general neutral points, finding spiral

structures. He noted that in general, the spine and the fan of the null are not

perpendicular. Parnell et al. performed a complete study on all possible types

of three-dimensional linear nulls, as well as degenerate two-dimensional null

cases [3].

Priest and Titov [34] studied the reconnection of a number of three-

dimensional null points, finding two types of reconnection (denoted as fan

reconnection and spine reconnection) unique to both the fan plane and the

spine. It was also found that reconnection and consistent electric field are

strongly dependent on the boundary conditions around the null point. The re-

connection between two adjacent three-dimensional null points was also briefly

mentioned. Parnell et al. have also shown that X-ray bright points in solar

flares are the result of reconnection near three-dimensional null points [35].

Priest, in a recent paper [36], has reclassified the types of three-dimensional

reconnection by now using three separate categories, called torsional spine

reconnection, torsional fan reconnection, and spine-fan reconnection.

Recently, Priest and Forbes [37] have shown that magnetic reconnection

can occur even in the absence of magnetic nulls. One such process where this

occurs is magnetic flipping, where large gradients in the magnetic field cause

greatly accelerated currents. These currents, in a resistive MHD model, drive

field line velocity. If this velocity is greater than the Alfvén velocity, magnetic
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field lines can experience dissipation and “flip” into different domains.

The purpose of this study is to construct the complete frequency-dependent

conductivity tensor of every case listed in Parnell’s study [3] by using the

Kubo conductivity formula. The conductivity of the system in Numata [2] will

also be computed from the Kubo conductivity in order to give a comparison

between Kubo’s conductivity and Speiser’s conductivity. Lyapunov exponents

for all systems shall be computed to better understand the underlying chaotic

dynamics. Finally, the energy dissipation will be computed and compared to

regular dynamics further away from magnetic null points.

This thesis is organized into the following sections: Sec. 2 explains the

theory behind Lyapunov exponents and the conductivities of interest, as well

as explaining the underlying mechanics of the computer simulations. Sec. 3

deals with the study of the two-dimensional system from Numata [2], as well

as the comparison of the Kubo and Speiser conductivities. Sec. 4 contains the

study of the three-dimensional null systems outlined in Parnell [3], as well as

a discussion of the results. The summary of this thesis is presented in Sec. 5

along with possible extensions of this research.
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Chapter 2

Methodology

2.1 Numerical Approach

The simulation of microscopic particle dynamics in the vicinity of magnetic

nulls is based on a system of non-interacting particles in an electromagnetic

field with the equations of motion

m
du

dt
= q(E(x) + u×B(x)), (2.1)

where q and m are the charge and mass of the particle, respectively. In this

simulation normalized units are used where x̂ = x/lx, b̂ = B/Bo, t̂ = t/τA, û =

u/vA, ê = E/mAvABo, where vA is the Alfvén velocity, B0 is the magnitude of

the magnetic field, τA ≡ lx/vA, lx is the scale-length of the experiment, and mA

is the Alfvén mach number. The magnetic field in the Alfvén velocity is taken

as the unit magnetic field (i.e. where x̂ = (1, 0, 0)). This gives a normalized

equation of motion

λi
lx

dû

dt̂
= mAê + û× b̂,

where λi = c/ωp. Here, c is the speed of light and ωp is the plasma frequency

for the specified particle species. For simplicity, lx = λi. Although the results

of this study can be scaled for both electrons and ions, it is assumed that since

the ion Larmor radius is much greater than that of the electron, most effects

will be the result from ion motion, as it will experience greater chaotic effects
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by being closer to the magnetic null.

For a discrete-time simulation, the equations of motion are integrated im-

plicitly with particle velocities and positions being evaluated at every integer

step and the electromagnetic fields being evaluated at every half-integer step.

The finite-difference equations of motion are

u1 − u0

δt
=

q

m

(
E(x1/2) +

u1 + u0

2
×B(x1/2)

)
x1 − x0

δt
=

u1 + u0

2
,

where x1/2 = (x1 + x0)/2. The two equations of motion are coupled in both

u1 and x1. Assuming the change in parallel velocity is small, u1 can be solved

as

u1 + u0

2
=

u0 + u0 ×
(
qδtB1/2

2m

)
+ u0 ·

(
qδtB1/2

2m

)(
qδtB1/2

2m

)
1 +

(
qδtB1/2

2m

)2 , (2.2)

where B1/2 ≡ B(x1/2). The variable x1/2 can then be solved iteratively.

For large time steps (δt > 1) the above solution fails to accurately capture

all particle drifts. This is caused by numerical time step errors which result

in the gyro-radius ρ0 becoming larger than the magnetic field scale length

ρ0 |∇B/B0|. Currently another approach [38] is used where the equations of

motion are modified as

u1 − u0

δt
=

q

m

(
E(x1/2) +

u1 + u0

2
×B(x1/2)

)
− µ∇B1/2

x1 − x0

δt
=

u1 + u0

2
,

where µ, the magnetic moment, is defined as

µ ≡ [u1⊥ − u0⊥]2

8B1/2

where the subscript ⊥ indicates variables perpendicular to the magnetic field.

One can show with a few algebraic manipulations that this alternative defini-

tion of the magnetic moment is equivalent to

µ =
u⊥Ω2δt2

8B1/2(1 + Ω2δt2/4)
,
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where Ω is the cyclotron frequency. This definition of µ becomes negligible

for small time steps and equal to the actual magnetic moment for large time

steps. This additional term explicitly adds contributions from the ∇B force

for large time steps, thus capturing all drift motion. As µ is dependent on u1,

the new equations of motion must be solved twice, once for µ then once for

u1.

As it is sufficiently accurate and fast for the simulations, in this thesis the

first method of integration is used with a small time step. However, in future

simulations the second method could be used to increase the time steps, as

well as the total integration time.

2.2 Lyapunov Exponents

In order to properly compute the collisionless conductivity tensor, the chaotic

regions of the systems of interest must be defined in order to avoid contribu-

tions from non-chaotic regions to the conductivity. It is expected that regions

close to the magnetic null are to be chaotic, while regions far away are to

be non-chaotic. In these chaotic regions the adiabatic invariants are not con-

served, thus resulting in very interesting particle trajectories.

One of the primary tools for examining chaotic properties of systems is

by the use of Lyapunov exponents, which measure the rate of divergence in

phase-space of two trajectories with an initial infinitesimal separation. The

spectrum of Lyapunov exponents in an n-dimensional phase space can best

be described using an n-sphere defined by n different points around a central

initial condition x0 [39]. The vectors that span from the initial condition to

the points on the n-sphere form perpendicular vectors in the tangent space

of the system. As the central point moves along in phase-space, the n-sphere

moves along with it, governed by a linearized set of differential equations for

the system. As time progresses, the n-sphere evolves into an n-ellipsoid due
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to the increasing separation from the trajectory derived from the initial point

and the n-sphere trajectories derived from the vectors in tangent space. The

ith one-dimensional Lyapunov exponent, λi, is then defined as the length of

the principal axis of the resulting ellipsoid,

λi = lim
t→∞

1

t
ln
|∆ri(t)|
|∆ri(0)|

= lim
N→∞

1

Nτ

m=N−1∑
m=0

ln
|∆ri((m+ 1)τ)|
|∆ri(mτ)|

,

where ∆ri(t) is the length of the ith vector in tangent space (or the ith principal

axis of the n-ellipsoid) at time t, N is the number of simulation steps, τ is the

time step, and, by convention,

λi ≥ λi+1.

An n-dimensional phase space will have a maximum of n distinct one-

dimensional Lyapunov exponents, though some may be repeated. In con-

servative Hamiltonian systems, if λi is a Lyapunov exponent, then −λi is also

a Lyapunov exponent, with the sum of all Lyapunov exponents summing to

zero. The systems that are studied here have a five-dimensional phase space

of three coordinate dimensions and two velocity (v⊥ and v‖) dimensions. As

this system is Hamiltonian, there will be three distinct Lyapunov exponents

with λ3 = 0. A system is considered chaotic if λ1 > 0, where λ1 is denoted as

the maximal Lyapunov exponent.

The jth-dimensional Lyapunov exponent can also be defined using the

volume growth rate of the j-parallelotope formed the by the j first principal

axises of the n-ellipsoid, which become a combination of j one-dimensional

Lyapunov exponents. This is described formally as [40]

λ(ej,x) = lim
t→∞

1

t
ln
||∆r1(t) ∧∆r2(t) ∧ · · · ∧∆rj(t)||
||∆r1(0) ∧∆r2(0) ∧ · · · ∧∆rj(0)||

,

where λ(ej,x) is the jth-dimensional Lyapunov exponent of some jth-

dimensional subspace ej in the tangent space of point x and ∧ denotes the

12



exterior product. The norm of the exterior product can alternatively be rep-

resented by the Gram determinant [41],

||∆r1(t) ∧∆r2(t) ∧ · · · ∧∆rj(t)||2 =

−

∣∣∣∣∣∣∣∣∣
〈∆r1(t),∆r1(t)〉 〈∆r1(t),∆r2(t)〉 . . . 〈∆r1(t),∆rj(t)〉
〈∆r2(t),∆r1(t)〉 〈∆r2(t),∆r2(t)〉 . . . 〈∆r2(t),∆rj(t)〉

...
...

. . .
...

〈∆rj(t),∆r1(t)〉 〈∆rj(t),∆r2(t)〉 . . . 〈∆rj(t),∆rj(t)〉

∣∣∣∣∣∣∣∣∣ ,
where 〈 , 〉 denotes the interior product. The jth-dimensional Lyapunov

exponent can take one of nCj values, but in practice, as the principal axises

are ordered by length, the jth-dimensional Lyapunov exponent is a sum of the

first j one-dimensional Lyapunov exponents.

A method for computing the Lyapunov exponents from a system of dif-

ferential equations was developed simultaneously by Benettin et al.[42, 43],

and Shimada et al.[40]. Special numerical considerations must be taken into

account when computing the Lyapunov spectrum. As the principal axises of

the n-ellipsoid diverge exponentially for chaotic systems, long simulations run

the risk of overflow problems. Also, for long simulations, the principal axes of

the n-ellipsoid tend to fall along the direction of most rapid growth associated

with the maximal Lyapunov exponent. Because of a lack of precision, this

leads to the calculation of only the maximal Lyapunov exponent. These two

problems can be easily circumvented using the Gram-Schmidt reorthonomal-

ization (GSR) procedure, which creates the following ortronormal basis vectors

in tangent space:

∆r′1 =
∆r1

|∆r1|

∆r′2 =
∆r2 − (∆r2 ·∆r′1)∆r′1
|∆r2 − (∆r2 ·∆r′1)∆r′1|

...

∆r′n =
∆rn − (∆rn ·∆r′n−1)∆r′n−1 − · · · − (∆rn ·∆r′1)∆r′1
|∆rn − (∆rn ·∆r′n−1)∆r′n−1 − · · · − (∆rn ·∆r′1)∆r′1|

.
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This ensures that the vectors remain a certain size to avoid overflow errors,

as well as preventing them to fall upon the same direction by keeping them

perpendicular. This procedure should be applied frequently enough to ensure

no numerical errors occur, but as it’s computationally inexpensive, in practice

it is applied after every time step.

As the direction of ∆r′1 is never altered, it is free to seek out the direc-

tion of fastest growth. This vector is associated with the maximal Lyapunov

exponent. As the direction of ∆r′2 is always perpendicular to ∆r′1 it is not

free to seek out the direction of fastest growth. It is also not able to seek out

the second most rapidly growing direction, as by applying the procedure at

different frequencies different ∆r′2’s will scan directions that are not in general

parallel. However, the growth rate of the area of the parallelogram formed by

∆r′1 and ∆r′2 will be equivalent to the growth rate of the area formed by ∆r1

and ∆r2, corresponding to the 2nd-dimensional Lyapunov exponent. This can

be seen by using a property of the exterior product [40], which can be written

as

∆r1(t) ∧∆r2(t) ∧ · · · ∧∆rj(t) =
∧
j

∆rj.

If U is the transformation that advances a particle’s phase-space coordinates

by one timestep and the sets {∆rj}, {∆r′j} span the same subspace, then

‖
∧
j U∆rj‖

‖
∧
j ∆rj‖

=
‖
∧
j U∆r′j‖

‖
∧
j ∆r′j‖

.

From this the n one-dimensional Lyapunov exponents can be calculated di-

rectly.

The equations of motion for the n-sphere are linearized by adding addi-

tional difference terms to Eqn.2.1, giving

d

dt
(u + ∆u) =

q

m
[E(x + ∆x) + (u + ∆u)×B (x + ∆x)] .
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As E and B are both linear in x, they can be separated, giving

du

dt
+
d∆u

dt
=

q

m

(
E(x) + E(∆x) + u×B(x)

+∆u×B(x) + u×B(∆x) + ∆u×B(∆x)
)
.

Second order terms can be eliminated as well as the zeroth-order equation that

has already been solved, giving

d∆u

dt
=

q

m
[E(∆x) + ∆u×B(x) + u×B(∆x)] ,

which are the final linearized equations of motion. The variables x and u are

taken from the computation of the main particle trajectory. To determine

the chaos region, we first define a time-dependent formulation of the maximal

Lyapunov exponent:

λ1(N) =
m=N−1∑
m=0

ln
|∆r1((m+ 1)τ)|
|∆r1(mτ)|

,

where τ is the time-step and N is the Nth-step of the simulation. The chaos

region is defined as the region on the particle trajectory where

d

dt
λ1(N) ≈ 1.

In practice, 100 particles are used in simulations lasting 100,000 timesteps to

determine the chaos region.

2.3 Evaluation of Conductance

2.3.1 Kubo Conductivity

The Kubo Conductivty is derived by applying the fluctation-dissipation theo-

rem to currents in eletromagnetic-fields. The fluctuation-dissipation theorem

states that the linear response to dissapative processes in non-equilibrium sys-

tems can be predicted by the fluctuation properties when the same system is in

equilibrium, providing the magnitude of the perturbation to the distribution
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function is small. In this section the fluctuation-dissipation will be derived

quantum-mechanically following Kubo’s derivation in [23, 24], after which the

classical equations can be obtained by taking the limit ~→ 0.

Consider an isolated system with a Hamiltonian H and density matrix ρ

which satisfies [H , ρ] = 0, where the brackets indicate the commutator. Let

ρ′(t) be the density of the perturbed system with an additional Hamiltonial

term H ′ = −AF (t). Here, F (t) is the perturbing force and A represents the

dynamical quantity conjugate to that force. The perturbed system obeys the

equation

d

dt
ρ′(t) =

1

i~
[H + H ′(t), ρ′(t)] (2.3)

with initial condition

ρ′(−∞) = ρ.

If the perturbation is small and applied adiabatically at t = −∞, p′(t) can be

expanded as

ρ′(t) = ρ+ ∆ρ(t). (2.4)

which, after dropping second order terms, gives

i~
∂∆ρ

∂t
= [H ,∆ρ]− F (t)[A, ρ]. (2.5)

By multiplying both sides by an integrating factor on the left and its complex

conjugate on the right, the solution is found to be

∆ρ(t) = − 1

i~

∫ t

−∞
exp(−i(t− t′)H /~)[A, ρ] exp(i(t− t′)H /~)F (t′)dt′. (2.6)

Suppose the response of the perturbation to the system is observed through the

change ∆B(t) of a physical quantity B(q, p), where q and p are the canonical

coordinates and momenta, respectively. The expectation value of ∆B(t) would
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then be given as

∆B(t) = Tr∆ρ(t)B(q, p) (2.7)

= − 1

i~
Tr

∫ t

−∞
exp(−i(t− t′)H /~)[A, ρ] exp(i(t− t′)H /~)BF (t′)dt′.

(2.8)

where Tr signifies the trace operation in quantum mechanics, which reduces

to a phase-space integration in classical mechanics. If we use the Heisenberg

representation of B, that is, transforming B(p, q)→ B(t) where B(t) satisfies

the equation

Ḃ(t) =
1

i~
[B(t),H ], B(0) = B,

then Eqn. 2.8 simplifies to

∆B(t) = − 1

i~
Tr

∫ t

−∞
[A, ρ]B(t− t′)F (t′)dt′. (2.9)

We define the linear response function φBA(t) as

φBA(t) = − 1

i~
Tr[A, ρ]B(t), (2.10)

which reduces in the classical limit to

φBA(t) = −
∫
dΓ(A, f)B(t). (2.11)

Here, f is the classical distribution function, the integral is over phase-space

and the parentheses represent the Poisson bracket,

(A,B) =
∑(

∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

)
. (2.12)

The response function can be used to simplify 2.9 even further to

∆B(t) =

∫ t

−∞
φBA(t− t′)F (t′)dt′. (2.13)

Equation 2.13 can be further simplified if we consider the identity

[A, exp(−βH )] = exp(−βH )

∫ β

0

exp(λH )[H , A] exp(−λH )dλ

=
~
i

exp(−βH )

∫ β

0

exp(λH )Ȧ exp(−λH )dλ (2.14)

=
~
i

exp(−βH )

∫ β

0

Ȧ(−i~λ)dλ
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where β = 1/kBT , kB is the Boltzmann constant and T is the temperature

of the system. The Heisenberg representation has been used in the above

derivation. Eqn. 2.14 is equivalent to

[ρ,A] = i~
∫ β

0

ρȦ(−i~λ)dλ.

From here the response function becomes

φBA(t) =
1

i~
Tr[ρ,A]B(t) (2.15)

=

∫ β

0

TrρȦ(−i~λ)B(t)dλ (2.16)

= −
∫ β

0

TrρA(−i~λ)Ḃ(t)dλ (2.17)

where the cyclic property of the trace has been used. For shorthand, we use

Trρ(Ȧ(−i~λ), B(t)) =
〈

(Ȧ(−i~λ), B(t))
〉
.

In classical mechanics, the angular brackets signify an ensemble average. The

force is assumed to be periodic,

F (t) = <F0e
iωt

then we can define the complex admittance χBA(ω) as the Fourier transform

of the response function. This approximation is valid for travelling waves with

long wavelengths k � ω. The response ∆B(t) of F (t) can now be expressed

as

∆B(t) = <χBA(ω)K0e
iωt (2.18)

with

χBA(ω) =

∫ ∞
0

e−iωtφBA(t)dt (2.19)

=

∫ ∞
0

e−iωt
∫ β

0

〈
(Ȧ(−i~λ), B(t))

〉
dλdt (2.20)
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where β = (kBT )−1Eqn.2.20 is known as the fluctuation-dissipation theorem.

In the classical limit, we have

χBA(ω) = β

∫ ∞
0

e−iωt
〈
Ȧ(0), B(t)

〉
dt. (2.21)

If the system is ergodic, the angular brackets become the correlation of quan-

tities A and B. To arrive at the Kubo conductivity, we consider a perturbing

electric field E(t) with the additional Hamiltonian term

H ′(t) = −
∑
i

eiri · E(t) (2.22)

where ei and ri are the charge and the position vector of the ith particle,

respectively. The linear response function of the current in the µ-direction

when an electric field is applied in the ν-direction is

φBA(t) =

〈
ei
d

dt
rν

∣∣∣∣
0

, Jµ(t)

〉
(2.23)

= 〈Jν(0), Jµ(t)〉 (2.24)

where

Jµ =
∑

eiẋiµ.

This results in the conductivity

σµν(ω) = χJµJν (ω) = β

∫ ∞
0

e−iωt 〈Jν(0), Jµ(t)〉 . (2.25)

Eqn. 2.25 is known as the Kubo conductivity, which is an exact expression for

the electrical conductivity tensor σµν(ω).

The correlation in Eqn. 2.25 is defined as

〈Jν(0), Jµ(t)〉 =
1

N

N∑
i=1

1

T

∫ T−τ

0

q2
i uν(t)uµ(t+ τ)dτ. (2.26)

A useful theorem to note here is the cross-correlation theorem,∫ ∞
−∞

Ā(t)B(t+ τ)dτ =
1

2π

∫ ∞
−∞

Ā(ω)B(ω)e−iωtdω (2.27)
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which states that the correlation of variables A and B is simply the inverse

fourier transform of the power spectrum between variables A and B, where the

overbar signifies the complex conjugate. When A = B, this theorem reduces

to the Wiener-Khinchin theorem. From this the Kubo conductivity is simply

proportional to the power spectrum of velocity vµ and vν . A corollary of this

is that when the Kubo conductivity is integrated over all frequencies,∫ ∞
0

dωRe σ(ω) =
nq2

m

π

2
, (2.28)

which can be seen by taking the inverse fourier transform of the power spec-

trum with t = 0.

2.3.2 Mean Drift method

The mean-drift method used to compute the DC-conductivty by Numata et

al.[2] is based on a dissipative approach. The dissipative equation used to fit

the average z velocity is

ρ̂
dˆ̄v

dt̂
= mAêz − ν̂eff ˆ̄v

where ˆ̄v is the normalized average velocity in the z direction, ρ̂ is an effective

mass normalized by the ion mass, and ν̂eff is an effective collision frequency

normalized by ωc which is to be determined. Here, ρ̂ = 1. The solution to this

equation is

ˆ̄v =
mAêz
ν̂eff

[
1− exp

(
− ν̂eff

ρ
t̂

)]
. (2.29)

Using Ohm’s law, we define an effective resistivity ηeff

Ez = ηeffjz = ηeffnqv̂sat, (2.30)

where n is the density and v̂sat is the defined as the asymptotic limit of the

average z velocity for large times, i.e. from Eqn.( 2.29)

v̂sat =
mAêz
ν̂eff

.
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From this, one can show that the resistivity is

ηeff

µ0

= λ2
iωcν̂eff . (2.31)

where λi = c/ωp is the ion skin depth and ωp is the ion plasma frequency. The

conductance is simply the reciprocal of the resistivity. This effective collisional

resistivity can be related to the Kubo DC-conductivity through

ν̂−1
eff = σzz(0)µ0λ

2
iωci = N−1β

N∑
i=1

∫ ∞
0

dτuz(t)uz(t− τ). (2.32)

It is important to note that while the mean-drift method gives a local con-

ductivity near the region of chaos, the Kubo conductivity effectively gives a

global conductivity for the whole system, as it is averaged over all space.

In order to compare Eqn. 2.31 to the conductivty by Speiser in [22], it is

important to note that Numata et al. find that their resistivity is inversely

proportional to the applied electric field. However, Numata et al. state that

the particle staying time τ̂1 is equal to the reciprocal of the Alfvén Mach

number mA. From this it can be shown that Eqn. 2.31 is equivalent to

σeff =
τ1

µ0λ2
i

=
τ1ω

2
p

µ0c2
(2.33)

=
ne2τ1

m
,

where τ1 is the unnormalized particle staying time. Eqn. 2.33 is consistent

with Speiser’s formulation of the conductivity.
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Chapter 3

Two-dimensional null results

In order to properly understand the results of the Kubo conductivity, both the

regular and chaotic equilibrium dynamics of the two-dimensional null must be

characterized. Speiser [22] considers three cases: regular (periodic) orbits in

which the adiabatic invariant µ is conserved, chaotic orbits in which µ is not

conserved, and orbits which observe fluctuating periodic motion in which µ is

not always conserved. The third case can be considered as a combination of

the first two cases and will not be considered independently.

The two-dimensional null model we consider here is one proposed by Nu-

mata et al.[2]:

B =

{
[B0 (y ∓ ly) , B0x/lx, 0] (±y > ly),
(0, B0x/lx, 0) (|y| ≤ ly),

(3.1)

where Lx = Ly = 1. For simplicity, the magnetic field is normalized to B0.

3.1 Regular dynamics

Regular orbits of the two-dimensional null are those that the adiabatic in-

variant µ is conserved, which are typically orbits far away from the magnetic

null. Two motions characterize these orbits, the first being the bounce mo-

tion around the hyperbolic field lines of B[34], which are given by solving the

differential equations

dx

Bx

=
dy

By

,

22



which give the field line

x =
√
y2 + C2

outside the Ly region, where C is a constant and Ly = 0 . Field lines in

the region |y| < Ly are simply straight lines that travel from −Ly to Ly with

constant x. As a particle travels along a field line, it experiences the mirror

force

F = −µ∇B = −µb0

Lx

xx̂+ yŷ√
x2 + y2

(3.2)

where B = |B| is the magnitude of the magnetic field. Here, Ly = 0 for

simplicity. Far along the field lines, the mirror force becomes a constant ac-

celeration which brings particles back towards the null in parabolic orbits. As

shall be seen, this is a feature for all linear magnetic nulls. Particles in the

region |y| < Ly travel at constant velocities along field lines.

The bounce frequency fB along the field lines can be calculated directly.

For Ly = 0, the element of arc length along the field line is

ds2 = dx2 + dy2 = dx2 +
x2

x2 + C2
dx2 =

2y2 + C2

y2 + C2
dx2. (3.3)

By using conservation of µ, the parallel velocity to the magnetic field is

v2
‖ = v2 − v2

⊥ = v2

[
1− B

B0

sin2(θ0)

]
(3.4)

where sin2(θ0) = v2
⊥0/v

2
0 and B0, v0, v⊥0 are the initial magnetic field, total and

perpendicular velocities, respectively. The bounce frequency fB can now be

calculated as

fB =
4

v

∫ ym

0

√
2y2 + C2√

y2 + C2

√
1− sin2 θ0

√
2y2+C2√
y20+C2

dx (3.5)

where ym is the mirroring point where v‖ = 0. For orbits that pass through

the region |y| < Ly, an extra term 4Ly/v‖0 is added, where v‖0 is the parallel

velocity within the region proper. The above equation applies to the region
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Figure 3.1: Typical particle orbit (solid line) in the Y-shaped magnetic field
(dotted line) with Lx = Ly and vs = 0.05vA

above and below the null line, while the region beside the null line is simply

the above with all y variables interchanged with x variables. To test Eq. 3.5,

we use a particle with initial conditions Ly = 1, C = 10, sin θ0 = 0.581, and

y0 = 0. This gives ym ≈ 19.7 and fB = 3.94 × 10−4, which should lead to a

delta-function peak at ωB = 2πfB = 2.47 × 10−3 in the σyy(ω) conductivity

and a delta function peak at ω = 2ωB in the σxx(ω) conductivity. This agrees

with simulation results.

The second motion that characterizes regular orbits is the ∇B-drift,

u∇B =
µ

q

B×∇B
B2

=

{
µq−1x−1ẑ (±y > ly),
µq−1B−3 [(y ∓ Ly)2 − x2] ẑ (|y| ≤ ly),

(3.6)

This results in a delta-function peak at the DC (ω = 0) component in the

σzz conductivity. As u∇B is inversely proportional to the xy-coordinates at

large distances away from the magnetic neutral point, the z-drift velocity is

negligible for regular orbits. Apart from the two motions mentioned about,

peaks are also expected around the cyclotron frequency ω = qB/m for all

diagonal components of the conductivity tensor.
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Figure 3.2: Chaotic particle trajectories which define the chaos region for the
two-dimensional null with mA = 0.001, Lx = 1, Ly = 2 (a) and Ly = 1 (b).
Dashed lines indicate the zone of chaos defined in [2].

3.2 Chaotic dynamics

Fig. 3.1 shows a typical orbit of a particle near the chaos region, defined by [2].

Particles that leave the chaos region eventually return due to the mirror force

along the field lines. As the mirror force on the particle is directly proportional

to the magnetic moment µ, the trip times may vary considerably as the value

of µ will not be conserved once the particle re-enters the chaos region. The

conductivity tensor components for these trajectories contain a spectrum of

frequencies which vary considerably depending on the initial conditions, which

reflects the sensitivity of chaotic motion.

Fig. 3.2 show the results for determining the chaos region using the maximal

Lyapunov exponent for the Lx = Ly = 1 null system (a) and the Lx = 1, Ly = 2

null system (b), computed by tracking the trajectories of 50 particles over

50000 time steps. These results agree with the chaos region defined in Numata

and Yoshida [2]. The chaos region is best described as a stadium-shaped region

with a rectangle centered around the origin with major length 2Ly on the y-

axis and minor length 2Lx on the x-axis with two half-circles of radius Lx on

either side.
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Figure 3.3: Typical evolution of the Lyapunov spectrum cotaining six expo-
nents for an average of ten particles.

Fig. 3.3 show the typical evolution of the Lyapunov spectrum for an average

of 10 particles over two million timesteps. All six exponents converge to a

definite value for large t, with λi = −λ6−i, i = 1, 2, 3. Computation of the

Lyapunov spectrum averaged over 100 particles show that the three positive

Lyapunov exponents are λ1 ≈ 0.02, λ2 ≈ 0.001, and λ3 = 0, which indicate

chaotic motion.

3.3 Conductivity results

Conductivity computations were carried out over 221 time steps using 30000

particles with velocities drawn from a Maxwellian distribution with vT =

0.05vA. Four cases of initial positions were used, with three cases on specific

points in the chaos region whereas the fourth case involved particles uniformly

distributed over the whole region. The positions are tabulated in Table 3.1.

Each case was run five times with a different random seed to provide statis-

tics for error analysis. Care must be taken to determine which points in the

frequency range represent sufficiently sampled frequencies. A range of frequen-
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Figure 3.4: The conductivity tensor component σxx(ω) in a log-log scale. ω
and σxx are in reduced units. Case IV follows the curve of Case I.

cies, defined by a minimum and a maximum frequency, can be determined by

both the timestep and the maximum integration time. The maximum fre-

quency is given by the Nyquist frequency

ωmax =
π

∆t
≈ 300,

while the minimum frequency is given by the Nyquist rate

ωmin ≈
π

N∆t
= 2× 10−4.

In practice, frequencies that fall within a factor of 4 of these cut-offs are also

considered undersampled. In all simulations, Lx = Ly = 1.

x̂0

Case I (0, 0, 0)
Case II (0, 0.5, 0)
Case III (0.5, 0, 5, 0)

Table 3.1: Initial positions in reduced units for the first three cases.

Fig. 3.4 shows the conductivity tensor component σxx(ω) on a log-log scale

in reduced units using one run for each case. Simulations of varying time steps
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Figure 3.5: The conductivity tensor components σyy(ω) (a) and σzz(ω) (b) in
a log-log scale. ω and σxx are in reduced units. Case IV follows the curve of
Case I.

show the curve for frequencies below the cyclotron frequency ωc ≈ 1 converge

to a power law with a unique exponent for all cases. Case II exhibits a different

pre-factor than the other cases. Frequencies around the cyclotron frequency

0.1 < ωc < 5 show a series of definite peaks above the power law line, though

the locations of these peaks change depending on the initial position of the

particles.

Case I Case II
axx (1.126± 0.005)× 10−1 (1.143± 0.08)× 10−1

bxx (−9.233± 0.004)× 10−1 (−9.208± 0.0013)× 10−1

ayy (3.16± 0.03)× 10−1 (3.22± 0.05)× 10−1

byy (−7.794± 0.014)× 10−1 (−7.77± 0.02)× 10−1

azz (1.000± 0.008)× 10−1 (1.013± 0.010)× 10−1

bzz (−7.370± 0.013)× 10−1 (−7.357± 0.0012)× 10−1

Case III Case IV
axx (4.23± 0.08)× 10−1 (1.56± 0.03)× 10−1

bxx (−9.293± 0.004)× 10−1 (−8.51± 0.03)× 10−1

ayy (1.060± 0.015)× 10−1 (4.7± 0.2)× 10−1

byy (−8.02± 0.02)× 10−1 (−7.07± 0.06)× 10−1

azz (5.91± 0.09)× 10−2 (2.58± 0.03)× 10−2

bzz (−8.63± 0.03)× 10−1 (−8.051± 0.0008)× 10−1

Table 3.2: Parameters for the diagonal component power laws of the conduc-
tivity tensor in reduced units.
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Fig. 3.5 shows the conductivity tensor components σyy(ω) (3.5(a))and

σzz(ω)(3.5(b)) on a log-log scale in reduced units using one run for each case.

As with σxx(ω), simulations of varying time steps show the curve for frequen-

cies below the cyclotron frequency converge to a power law, with additional

peaks appearing in the cyclotron frequency range. In all cases, σzz(ω) displays

a jaggedness for small frequencies ω � ωc. This is characteristic of a numeric

delta function v̂2
zδ(ω), where v̂2

z is the average squared velocity in the z direc-

tion. The jaggedness of this curve can be seen by taking the power spectrum

of a constant

|F (ω)|2 =
1

T

∣∣∣∣∫ T

0

v̂ze
iωtdt

∣∣∣∣2 ,
= 2v̂2

zT
(eiωt − 1)

(
e−iωT − 1

)
ω2T 2

,

= 2v̂2
zT

1− cos(ωT )

ω2T 2
,

= 2v̂2
zT

1− cos(πn)

(πn)2
.

where

lim
ω→0
|F (ω)|2 = v̂2

zT.

Here, T is the integration time, n is the iteration step, and, as the integrated

time interval is 2T to avoid wrap-around interference, ω = π/n∆t̂. The above

equations enables the direct calculation of the average squared z-velocity from

the conductivity without the need of integrating over the delta function. It

is important to note that v̂2
z is not a velocity associated with any particular

current, as it is an average of squared velocities. In practice, the average z

velocity is zero. The average squared z-velocity is tabulated in Tab. 3.3.

The parameters for all power laws σµν(ω) = aµνω
bµν are tabulated in

Tab. 3.2. For Case IV, the Gaussian function Aµνe
−(ω−ω0µν)2/∆ωµν was used

to fit peaks near the cyclotron frequency after the power laws were subtracted

from the original conductivity curves. The σyy(ω) and σzz(ω) conductivity
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curves were fitted using a single Gaussian function, while the σxx(ω) case was

fitted with three Gaussian functions. The parameters for the Gaussian func-

tions are tabulated in Tab. 3.4.

v2
z

Case I (1.182± 0.011)× 10−4

Case II (1.127± 0.017)× 10−4

Case III (1.675± 0.011)× 10−4

Case IV (5.02± 0.11)× 10−5

Table 3.3: Average square-velocity in the zz direction for all cases.

Non-diagonal components of the conductivity tensor σµν are characterized

by a noise for small values of ω which eventually disappears for larger values

of ω. As no consistent trend appears between any of the five test runs, the

off-diagonal elements of the conductivity tensor σµν are considered to be zero.

µν Aµν ∆ωµν ω0µν

xx1 0.2250± 0.0014 (9.0± 0.6)× 10−3 0.496± 1.6
xx2 0.49± 0.03 (6.2± 0.3)× 10−2 0.792± 0.003
xx3 −0.463± 0.009 (6.4± 0.9)× 10−3 (9.28± 0.13)× 10−2

yy 4.46± 0.07 (3.66± 0.06)× 10−6 (3.262± 0.007)× 10−2

zz 0.92± 0.02 0.174± 0.003 0.732± 0.003

Table 3.4: Parameters for the Gaussian functions applied to the conductivity
curves in Case IV.

3.4 Discussion

To better understand the results of the Kubo conductivity, it will be necessary

to compare the above results with other conductivities, such as those derived

from the mean-drift method, as well as those defined by Speiser [22]. A dis-

crepancy between these conductivities can immediately be noticed from the

fact that the Speiser conductivities as well as the mean-drift conductivity yield

finite, non-zero DC values of the conductivity tensor, while the Kubo-method
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diverges for ω = 0, though this divergence in itself is not a problem, as an

infinite conductivity simply implies no resistivity.

In order to explain these discrepancies, the theory behind the conductiv-

ities, as well as their physical meaning, must be compared. Speiser defines

three conductivities in [22], all with the form

σs =
ne2

m
τs (3.7)

where τs is an effective collision time of the system. One of the conductivities

defined is a collisional conductivity, with the two others being non-collisional.

The first non-collisional conductivity is based on the finite average lifetime

of particles inside the current sheet layer, where particles typically diffuse.

Here, the particles are freely accelerated by the applied electric field during

their lifetimes. Once these particles leave the current sheet layer, they resume

regular motion and the acceleration ceases. The total acceleration is simply

the magnitude of the electric field multiplied by the average particle time life.

The second conductivity defined by Speiser is related to the cyclotron motion

which induces the familiar drift velocity

vE =
E×B

B2
, (3.8)

which results in an effective collision time

τg =
m

qB⊥
=

1

ωc
(3.9)

which is equal to the reciprocal of the cyclotron frequency. Here, B⊥ is the

magnitude of the magnetic field perpendicular to that of the electric field. To

calculate the total conductivity of the system, Mathiessen’s rule is used, i.e.

σtotal =

(∑
s

σ−1
s

)−1

, (3.10)

where σs is a conductivity of type s. Speiser states that, in practice, one can

simply use the conductivity of smallest order, which reflects Eq. 3.10.
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As mentioned in Sec. 2.3.2, the mean-drift method for computing the DC-

conductivity follows the same form as Speiser’s in Eq. 3.7, where the effective

collision time is equivalent to the average staying time of the particle in the

chaos region. Numata et al. state that this time, in reduced units, is equal to

the reciprocal of the Alfvèn Mach number mA, which gives the magnitude of

the E×B drift velocity. This is derived from the reduced units B = b0b̂ and

E = vAmAb0ê, where hatted variables signify unitless quantities and vA is the

Alfvèn velocity. It is easy to see that, in reduced units,

vE
vA

= v̂E =
ê

b̂
= mA. (3.11)

If mA is small, the E×B is also small. This allows the particles to stay in the

zone of chaos for long periods of time. As mA is increased, the drift velocity

increases which results in more energetic particles leaving the zone of chaos

sooner. Providing ly/lx . 10, the relation τ̂1 ≈ m−1
A holds. Numata states that

to ensure that chaotic processes play a significant role in the conductivity, τ̂1

must be sufficiently large compared to the maximal Lyapunov exponent. This

requires that mA . 10−2.

The Kubo-conductivity is a formulation of the conductivity based on the

time-averaged auto-correlation of component velocities over all lag times. As

shown in Sec. 2.3.1 this is equivalent to the power spectrum of equilibrium

component velocities. Unlike the conductivity used by Speiser and Numata,

which is based on finite particle lifetimes, the Kubo conductivity must be

integrated over all time. As noted in Holland and Chen [29], this leads to

sensitivity of the the low-frequency (ω & 0) conductivity tensor to the total

simulation time T . However, it was found that for increasing time-step the

conductivity tensor for the two-dimensional linear null approached power laws

for low frequency.

The two main contributions to the conductivity were from the cyclotron
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frequency as well as the bounce frequency for trajectories to and from the null

region, which reflects the fact that particles spend the majority of the simu-

lation in non-chaotic adiabatic regions, as stated in [29]. The small amount

of time spent in the chaos region, however, greatly affects the results of the

conductivity tensors, as in this region the first adiabatic invariant µ is not-

conserved, which results in a broad power spectrum. Conversely, regular par-

ticle orbits drawn from a Maxwellian result in a bounce frequency peak around

some mean value. This bounce-frequency contribution to the conductivity is

not captured in the Speiser formulation of the conductivity.

Simulations with constant E field were ran to make comparisons to the

approach in Numata et al. [2]. It is important to note that neither initial

velocities nor particle positions are stated for any of the simulations performed

in that study. It is found that the saturation velocity v̂z is strongly dependent

on the initial temperature of the velocity distribution. For large time scales,

particles escape in the positive y region of the x-point, where the E×B drift

velocity drives the particle away from the magnetic null line.

It is important to compare the magnitude of the AC-conductivity to the

DC conductivities mentioned above. For the two-dimensional model, conduc-

tivities around the cyclotron frequency region ω ∼ 1 are of the order of unity,

σ ∼ 1, which is an order of magnitude smaller than the DC conductivity

found by Numata (σDC = 0.03−1 ≈ 33). Both of these values are less than the

conductivity derived from combining Ampère’s law with Ohm’s law,

σ =
∇×B

µ0E
, (3.12)

which in reduced units gives

σ̂ =
1

mA

. (3.13)

where mA is the Alfvén Mach number. In [2], Numata uses mA = 0.01. It

is important to note that whereas Numata uses this method to estimate a
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conductivity from a given electric field, Speiser in [22] uses this approach to

find the allowable self-consistent electric field given a computed conductivity.

From this it becomes clear that the Kubo conductivity, while negligible for

small frequencies and DC values, can play a significant role when the electric

field frequency is close to the cyclotron frequency.

It is clear that different formulations of the conductivity give different re-

sults. The Kubo-conductivity may not be well suited for calculating the DC-

conductivity on systems where particles are known to escape quickly. The

time spent outside the chaos region may also be problematic, as the bounce

motion of a particle can be greatly affected by drift-velocity introduced by an

applied electric field. In these situations the particle can leave the chaos re-

gion and not return. For this, a finite-lifetime model may be more appropriate.

However, correlated motions over the entire region inside and outside the zone

of chaos can become important for AC electric fields with frequencies on the

order of the cyclotron frequency. The Kubo-conductivity is able to properly

account for these motions, which makes it a powerful tool for computing AC

conductivities.

The average dissipation 〈j · E〉 can also be estimated, though the Kubo

conductivity doesn’t give any way to compute it directly. Here we consider

the current as a sum of equilibrium and perturbation values,

j = j0 + δj = j0 + σδE. (3.14)

For the two-dimensional system, the average equilibrium current in the z direc-

tion is governed by the grad-B drift. However, this drift has opposite directions

for either side of the magnetic null line, which results in no average current

for the equilibrium system. To calculate the perturbation dissipation D, we

assume a periodic electric field,

D = 〈j · E0 cos(ωT )〉 =

∑
i

∑
j σij(ω)Ej0Ei0

2
=

∑
i

∑
j ρij(ω)jjji

2
, (3.15)
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where i, j = x, y, z which is positive provided the conducitivty tensor is also

positive. The above formula is valid for both systems with regular orbits

and chaotic orbits. For regular systems, reversible dissipation is experienced

only near the peaks around the cyclotron frequency (ω ∼ ωc) and the bounce

frequency (ω ∼ ωb). For chaotic systems, irreversible dissipation will take

place over a broad spectrum of frequencies, which the strongest dissipation

occuring around and below the cyclotron frequency (ω ≤ ωc).
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Chapter 4

Three-dimensional null results

4.1 Magnetic field model

In this chapter the conductivity tensor σµν(ω) will be computed for the three-

dimensional null systems considered in Parnell [3], as well as some quantitative

properties of the regular orbits of the simpler potential null cases. The most

general form of a linear magnetic field around a three-dimensional neutral

point at the origin can be described using the form proposed in [3]

B = M · r,

where r is the position vector and M is a 3 × 3 matrix of the form

M =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,
where aij = ∂Bi/∂xi are real constants. Using the divergence of the magnetic

field, the trace of M, along with its eigenvalues, sum to zero. This matrix can

be reduced by exploiting certain properties of the linearized magnetic null.

Linear neutral points consists of two main features: a spine curve which

approaches (or recedes from) a null point from two directions, and a fan surface

which recedes (or approaches) the null point on a plane. As the eigenvalues

sum to zero, one can be chosen to have a negative real part, while the other

two can be chosen to have positive real parts. This set of eigenvalues de-

scribe positive neutral points where the spine curve points towards the origin.
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Alternatively, a set with two eigenvalues with negative real parts describes

a negative neutral point, where the spine diverges from the origin. Here we

choose to examine positive neutral points. In this case the spine curve is de-

scribed by the eigenvector of the negative eigenvalue, whereas the fan surface

is described by a combination of the remaining two.

If the field lines in the fan plane expand in a radially symmetric way, then

the null is called a proper radial null. If the field lines expand preferentially

toward a specific vector in the fan plane, then the null is called an improper

radial null [32] with minor and major fan axises. A null that contains loga-

rithmic spirals in the fan plane is called a proper spiral null [33]. Finally, a

null is called a critical spiral null [3] if the field lines curve in the fan plane,

expanding asymptotically to straight lines without any preferential vector.

Here we chose the z-axis to lie along the direction of the spine curve. We

can rotate this plane so the current perpendicular to the spine curve, j⊥, lies

on the x-axis. After dividing by a scaling factor, we formulate a simplified

matrix M that is the sum of a potential (symmetric) matrix and a current

(anti-symmetric) matrix,

M =

 1 1
2
(q − j‖) 0

1
2
(q + j‖) p 0

0 j⊥ −(p+ 1)

 ,
where p and q are potential parameters of the magnetic field and j‖ is the

current parallel to the spine curve. The eigenvalues of this matrix are

λ1 =
p+ 1 +

√
(p− 1)2 + q2 − j2

‖

2
,

λ2 =
p+ 1−

√
(p− 1)2 + q2 − j2

‖

2
,

λ3 = −(p+ 1).

To ensure that the z-axis corresponds to the spine curve (i.e. the third

eigenvalue), p ≥ −1 and q2 ≤ j2
‖ + 4p. It will be useful to define a threshold
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current

jthresh =
√

(p− 1)2 + q2,

which reduces the eigenvalues to

λ1 =
p+ 1 +

√
j2

thresh − j2
‖

2
,

λ2 =
p+ 1−

√
j2

thresh − j2
‖

2
,

λ3 = −(p+ 1).

From this it is clear that the nature of the neutral point is determined by the

relative size of jthresh and j‖. We shall deal with the current nulls in three

cases, where j‖ is less than, equal to, and great than jthresh. When j⊥ = 0, we

can do another rotation to eliminate q, giving

M =

 1 −1
2
j‖ 0

1
2
j‖ p 0
0 0 −(p+ 1)

 .
It is worthwhile to note that when p = 0, the three dimensional neutral point

devolves into a two-dimensional null line lying on the y-axis. As the parameter

q has no effect on the overall topological structure of the linear magnetic null

model, as well as an effect on the eigenvalues of M, for simplicity we set q = 0

for all simulations.

4.1.1 Potential Nulls (j‖ = j⊥ = 0)

The initial simulations study the non-current magnetic field, also known as

the potential null, i.e. j⊥ = j‖ = q = 0. Here,

M =

 1 0 0
0 p 0
0 0 −(p+ 1)

 ,
with eigenvalues λ1 = 1, λ2 = p, and λ3 = −(p + 1) and jthresh = |p− 1|. In

order for λ3 to be associated with the spine curve, p ≥ 0.
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There are three main cases to consider for potential nulls. The first case,

jthresh = 0 and p > 0 deals with non-zero positive eigenvalues with two being

equal. The next case, jthresh, p > 0 deals with all non-zero and unequal eigen-

values. Finally, the third case is when one eigenvalue is zero, i.e. p = 0. It is

useful to note that when p > 1, by dividing by 1/p and substituting for a new

value, p′ = 1/p, we see that

M =

 p′ 0 0
0 1 0
0 0 −(p′ + 1)

 ,
which is identical to the case where 0 < p < 1, but with the x and y axises

interchanged. From this the only cases that need to be studied are for 0 ≤

p ≤ 1. Here, we deal specifically with the values p = 0, 0.1, 0.25, 0.5, 0.75, and

1 to cover all three cases. In every case the spine is in the z direction while the

fan plane is in the xy-plane. When p = 1, the null becomes a proper radial

null, whereas when 0 < p < 1 the null becomes an improper radial null. When

p = 0, the null reduces to a two-dimensional null which consists of a series of

X-points in xz-planes.

4.1.2 Current Nulls

Here M becomes antisymmetric and the magnetic field has a current of J =(
j⊥, 0, j‖

)
. The eigenvalues of M are

λ1,2 =
1

2
(p+ 1)± 1

2

√
j2

thresh − j2
‖ , λ3 = −(p+ 1) (4.1)

with j2
thresh = (p− 1)2 + q2. To ensure that the eigenvector associated with λ3

lies in the z-plane, p ≥ 1 and (p+ 1)2 ≥ j2
thresh − j2

‖ .

j2
‖ < j2

thresh

The first case for the current null is when j2
‖ < j2

thresh, where all three eigenval-

ues are real and distinct, ensuring the existence of unique eigenvectors. This
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can be divided into three further subcases where either j‖ j⊥ are non-zero or

both are non-zero.

When only j‖ is non-zero, the eigenvectors are

x1,2 =


1−p±

q
j2thresh−j

2
‖

j‖

1
0

 , x3 =

 0
0
1

 (4.2)

which forms an important null with field-lines expanding towards x2. In the

case where p = −j2
‖/4 the magnetic field becomes a two-dimensional null with

X-points parallel to the plane j‖x− 2y = 0 and a null line along y = 2x/j‖.

When j⊥ is non-zero, the eigenvectors become

x1,2 =


−3p2+3+j2thresh±2(p+2)jthresh

2j⊥
√
j2thresh−(p−1)2

3+3p±jthresh

2j⊥

1

 , x3 =

 0
0
1

 , (4.3)

where the plane of the fan is not perpendicular to the spine, but defined by

the equation

2j⊥

√
j2

thresh − (p− 1)2x− 4j⊥(p+ 2)y +
[
9(p+ 1)2 − j2

thresh

]
z = 0. (4.4)

Here, the null is an improper null with field lines converging to the line

I(γ) =

(
−3p2 + 3 + j2

thresh + 2(p+ 2)jthresh

2j⊥
√
j2

thresh − (p− 1)2
,
3 + 3p+ jthresh

2j⊥
γ, γ

)
. (4.5)

When p = jthresh − 1 the null becomes two-dimensional with X-points in the

xz-plane and a null line

I(γ) =

(
−(p+ 1)

√
p

j⊥
γ,
p+ 1

j⊥
γ, γ

)
. (4.6)

Finally, when both j⊥ and j‖ are non-zero, the eigenvectors are

x1,2 =


−3p2+3+j2thresh−j

2
‖±2(p+2)

q
j2thresh−j

2
‖

2j⊥

“√
j2thresh−(p−1)2+j‖

”
3(p+1)±

q
j2thresh−j

2
‖

2j⊥

1

 , x3 =

 0
0
1

 , (4.7)
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with fan plane

2j⊥

(√
j2

thresh − (p− 1)2 + j‖

)
x−4j⊥(p+2)y+

[
9(p+ 1)2 − j2

thresh + j2
‖
]
z = 0.

(4.8)

The null itself is an improper null with major fan axis x1. When (p + 1)2 =

j2
thresh − j2

‖ , the null becomes two-dimensional with X-points parallel to the

plane

2px−
(√

4p+ j2
‖ − j‖

)
y = 0 (4.9)

with null line

I(γ) =

−(p+ 1)
(√

4p− j2
‖ − j‖

)
2j⊥

γ,
p1

j⊥
γ, γ

 (4.10)

j2
‖ = j2

thresh

The eigenvalues for the case when j2
‖ = j2

thresh are

λ1,2 =
p+ 1

2
, λ3 = −(p+ 1). (4.11)

Since two eigenvalues are repeated, the uniqueness of three eigenvectors is no

longer certain. Once again, this can be divided into three subcases where

either j‖ j⊥ are non-zero or both are non-zero.

When j⊥ is non-zero, the eigenvectors become

x1 =

 1
0
0

 , x2 =

 0
3
j⊥

1

 , x3 =

 0
0
1

 , (4.12)

with radial fan plane

j⊥y − 3z = 0. (4.13)

When j‖ is non-zero, the two repeated eigenvalues have a single eigenvector.

A Jordan basis vector x∗2 can be used as an extra vector to define the fan plane,

which is found by solving the equation

Mx∗2 = λ1x
∗
2 + x1 (4.14)
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where λ1 is the repeated eigenvalue with eigenvector x1. The vectors used to

define the fan plane and the spine are thus

x1 =

 1−p
j‖

1
0

 , x∗2 =

 3−p
j‖

1
0

 , x3 =

 0
0
1

 . (4.15)

This results in a fan plane perpendicular to the spine with a critical spiral null.

If p = −1, the plane x = y becomes a neutral plane with anti-parallel field

lines on either side.

When both j⊥ and j‖ are non-zero, the repeated eigenvector once again

has only one associated eigenvector. After finding the Jordan basis vector, the

vectors that describe the fan plane and the spine are

x1 =


(3p2−4p−11)

“q
j2‖−(p−1)2−j‖

”
2j⊥(p−1)

3(p+1)
2j⊥

0

 ,

x∗2 =


3(p+1)

“q
j2‖−(p−1)2−j‖

”
2j⊥(p−1)2

3p+5
2j⊥

1

 , x3 =

 0
0
1

 .

with fan plane

2j⊥

(√
j2
‖ − (p− 1)2 + j‖

)
x− 4j⊥(p+ 2)y + 9(p+ 1)2 = 0. (4.16)

A critical spiral is formed in the fan plane with major axis x1. When p = −1,

the z-axis becomes a null line with zero parabolic filed lines lying in parallel

x = y + c : z-planes, where c is a constant.

j2
‖ > j2

thresh

In this case, λ1 = λ̄2, where the overbar signifies the complex conjugate. This

results in eigenvalues

λ1,2 =
p+ 1

2
± i

2

√
j2
‖ − j2

thresh, λ3 = −(p+ 1). (4.17)
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As the eigenvectors of two complex conjugate eigenvalues are also complex

conjugates, the fan plane will be defined seperately by the real and imaginary

parts of these vectors. As j‖ must be a positive non-zero number, the only

case to consider is whether or not j⊥ = 0.

When j⊥ is zero, the eigenvectors are

x′1 =

 1−p
j‖

1
0

 , x′2 =


q
j2‖−j

2
thresh

j‖

0
0

 , x3 =

 0
0
1

 . (4.18)

with the fan plane being perpendicular to the spine, with spiral field lines of

the form

ρ =
C√

(p− 1) sin 2φ+ j‖
(4.19)

× exp

(p+ 1) tan−1[(j‖ tanφ+ p− 1)/
√
j2
‖ − (p− 1)2]√

j2
‖ − (p− 1)2

 (4.20)

where ρ =
√
x2 + y2, tanφ = y/x and C is a constant. Logarithmic spirals

occur when p = 1, where Eq. 4.19 reduces to

ρ = C exp

(
2φ

j‖

)
. (4.21)

Field lines in this case oscillate around the spine until they arrive in the fan

plane where they spiral out. When p = −1 the magnetic null becomes two-

dimensional with a null line in the z-axis and concentric ellipses in planes

parallel to the xy-plane.

When neither j‖ or j⊥ are zero, the eigenvectors are

x′1 =


−3p2+3+j2thresh−j

2
‖

2j⊥

“√
j2thresh−(p−1)2+j‖

”
3(p+1)

2j⊥

1

 , (4.22)

x′2 =


(p+2)

q
j2‖−j

2
thresh

j⊥

“√
j2thresh−(p−1)2+j‖

”q
j2‖−j

2
thresh

2j⊥

0

 , x3 =

 0
0
1

 . (4.23)
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with the fan plane

2j⊥

(√
j2

thresh − (p− 1)2 + j‖

)
x−4j⊥(p+ 2)y+ (9(p+ 1)2− j2

thresh + j2
‖)z = 0.

(4.24)

Here, p > −1 to satisfy the λ3-spine condition. When p = −1, the magnetic

null once again becomes two-dimensional with a null line along the z-axis and

elliptical field lines parallel to the plane

2j⊥

(√
j2

thresh − 4 + j‖

)
x− 4j⊥y + (j2

‖ − j2
thresh)z = 0. (4.25)

4.2 Regular dynamics

As with the two-dimensional null case, regular orbits of the three-dimensional

null are those for which the adiabatic invariant µ is conserved. Typically

these orbits occur at great distances away from the magnetic null. Regular

dynamics for the three-dimensional potential null (j⊥ = j‖ = 0, p 6= 0) is

characterized by two periodic motions around the null point, consistent of a

bounce motion which oscillates between the spine and the fan plane, and a

periodic ∇B motion with oscillates around the spine above the fan plane. The

bounce motion can be calculated in a similar fashion[34] to Sec. 3.1. The field

lines for the potential null are calculated by solving the differential equations

dx

x
=
dy

py
=

dz

−(1 + p)z
(4.26)

which gives the solutions

y = c1x
p (4.27)

z = c2x
−(1+p), (4.28)

where c1 and c2 are constants. The element of arc length along the field line is

ds2 = dx2 + dy2 + dz2 = dx2
(
1 + c2

1p
2x2(p−1) − c2

2(1 + p)2x−2(2+p)
)
. (4.29)
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Once again, Eq. 3.5 is used to obtain the bounce frequency

fB =
2

v

∫ x2

x1

√
1 + c2

1p
2x2(p−1) − c2

2(1 + p)2x−2(2+p)√
1− sin2 θ0B

−1
0

√
x2 + c2

1p
2x2p + c2

2(p+ 1)2x−2(p+1)

dx. (4.30)

where B0 is the initial magnetic field and x1, x2. are the mirror points.

The precession frequency fp can also be calculated by considering the aver-

age azimuthal velocity vθ around the z-axis caused by the grad-B drift, as well

as the curvature drift. Here we consider the potential null case. The combined

grad-B and curvature drift is

vR+∇B =
m

q

(
v2
‖ +

1

2
v2
⊥

)
Rc ×B

R2
cB

2
=
m

q

(
v2 − µB

) Rc ×B

R2
cB

2
(4.31)

where µ is the first adiabatic invariant, B = |B| and Rc is the radius of

curvature, which is a vector of magnitude

Rc =

[
1 +

(
df(x)
dx

)2
]

∣∣∣d2f(x)
dx2

∣∣∣ (4.32)

which lies in the direction of curvature. Here, f(x) is the function that defines

a field line. The precession frequency fp is calculated as

fp = 2π 〈vθ〉−1 = 2π

(
1

s2 − s1

∫ s2

s1

vθds

)−1

, (4.33)

where s1 and s2 are the mirror points of the given field line. If the simplest

case is considered, where a particle is confined to the xz-plane with p = 1, this

becomes

ωp =
µ

q

(
1

t2 − t1

∫ t2

t1

6zx

(x2 + 4z2)3/2
dt

)
(4.34)

=
µ

q

(
1

t2 − t1

∫ t2

t1

6c2x(t)−1

(x(t)2 + 4c2
2x(t)−4)3/2

dt

)
, (4.35)

where x1 and x2 are the x mirror points of the given field line.

To verify the above equations, solutions are calculated using a particle

with initial conditions c1 = 0, c2 = 0.302, B0 = 2.01 and sin θ0 = 0.931 and
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Figure 4.1: Results for a typical particle simulation for p = 0.5, q = j⊥ =
j‖ = 0 versus time. (a) the distance from the origin. (b) evolution of the first
adiabatic invariant µ. (c) λ1(t), normalized by the time of the simulation to
give the maximal Lyapunov exponent.

calculated x1 = 0.5177, x2 = 2.3129, and µ = 2.01×10−4. This gives a bounce

frequency fb = 2.60 × 10−3 and a precession frequency of fp = 1.1 × 10−4.

One needs to consider that these two motions form a product of cosines, so

the bounce frequency peak actually becomes two peaks with lower and upper

frequencies ωB,± = ωB ± ωp. These agree with simulation results within an

error of five percent.

4.3 Chaotic dynamics

Fig. 4.1 shows results for a typical particle trajection for p = 0.5, q = j⊥ = j‖ =

0 over the simulation. Fig. 4.1 a) shows the distance away from the magnetic

null at the origin over time, while b) shows the first adiabatic invariant µ
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Figure 4.2: Chaotic particle trajectories for systems with varying values of p,
q = j‖ = j⊥ = 0. Dashed lines indicate magnetic field lines. (a) and (b) are
the x-y and x-z projections for p = 1, respectively. (c), (d), (e), (f) show the
elongation of the chaos region in the y-direction for p = 0.75, 0.5, 0.25, and 0,
respectively.

and c) shows λ1(t), scaled by the total time of the simulation. Far from the

null the magnetic mirror force is directly proportional to µ which results in

long parabolic orbits from the null if µ ever becomes sufficiently small. The

growth of the Lyapunov exponent also ceases away from the null, while grows

steadily near the null. It is clear that near the origin µ is not conserved and

varies considerably. This results in travel times away from the null to vary

sporadically in a non-deterministic way.

Fig. 4.2 shows the chaos region for potential nulls for p values of

1, 0.75, 0.5, 0.25 and 0. Fig. 4.2(a) and (b) show the x-y and x-z projections
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for the p = 1 system, respectively. The eigenvectors for potential nulls are

the x,y, and z unit vectors, where the z unit vector corresponds to the spine

and the x, y unit vectors correspond to the major and minor axes of the fan,

respectively. The chaos region for this case can be best described as a sphere

of unit radius, which reflects the azimuthal symmetry of the p = 1 system.

This symmetry is broken for other values of p, as can be seen in the rest of

the figures. For systems where 0 < p < 1 the sphere becomes an ellipsoid with

a unit minor radius and a major radius equal to p−1. Here the minor axis

of the ellipsoid lies along the major axis of the fan, while the minor axis of

the ellipsoid lies along the major axis of the fan. The x-z projections of these

systems are similar to that of the p = 1 case, and therefore are not shown in

this diagram. For p = 0 the chaos region gives an infinitely long cylinder of

unit radius as the y-direction is spatially symmetric.

Fig. 4.3 shows the chaos region for current nulls with j2
‖ < j2

thresh. The cases

shown here are those studied in [3] which covers every specific case, as outlined

in Sec. 4.1. A feature for the chaos regions for current nulls is that, as the

field lines curve away from the fan axises, the structures that define the chaos

region won’t necessarily be described by the eigenvectors which define the

magnetic null. The chaos zone in Fig. 4.3(a) can approximately be described

as an ellipsoid with ordered radii r1,2,3 = 7, 2, 1 with r1 lying in the direction

(1, 3.2, 0) and r2 perpendicular to r1 in the xy-plane. The degenerate case,

Fig. 4.3(b), becomes an infinitely long cylinder with unit radius, oriented along

the vector (1, 2, 0). In the case where j‖ = 0, the chaos region in Fig. 4.3(c)

can be described by an ellipsoid with ordered radii r1,2,3 = 4, 1, 1 with r1

lying along the vector (0, 1, 0.7). The degenerate case Fig. 4.3(d) becomes an

infinitely long cylinder with unit radius that lies along the vector (0, 1,−1). In

the cases where both j‖ and j⊥ are non-zero, Fig. 4.3(e) and (f) show the xy

and yz projections of the case where p = 0.25, j‖ = 0.5 and j⊥ = 1. The chaos
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Figure 4.3: Chaotic particle trajectories for systems where j2
‖ < j2

thresh. Cases

considered here are the cases studied in [3]. Dashed lines indicate magnetic
field lines. Solid lines indicate fan axises and spine. For all systems, q = 0.

region can best be described as an ellipsoid of ordered radii r1,2,3 = 7, 1, 1 with

r1 along the vector (0.1,1,0.81). The degenerate case (not shown) is simply an

infinitely long cylinder of unit radius along the vector (0.375,0.75,-1).

Fig. 4.4 shows the chaos region for magnetic nulls where j2
‖ = j2

thresh. The

chaos zone for the region described in Fig. 4.4(a) is a simple sphere of unit ra-

dius on the origin. Fig. 4.4(b) shows a zone of chaos best described by an ellip-

soid of ordered radii r1,2,3 = 2, 1, 1 with r1 lying along the vector (1,−1.67, 0).

In the degenerate case, Fig. 4.4(c), the zone of chaos becomes an infinity long

sheet of thickness d = 2, perpendicular to the vector (1,−1, 0). Fig. 4.4(e)

and (f) displays the general case when both j‖ and j⊥ are non-zero. This zone
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Figure 4.4: Chaotic particle trajectories for systems where j2
‖ = j2

thresh. Cases

considered here are the cases studied in [3]. Dashed lines indicate magnetic
field lines. Solid lines indicate fan axises and spine. For all systems, q = 0.

of chaos is desscribed as an ellipsoid with ordered radii r1,2,3 = 3, 2, 1 with r1

lying along the vector (−0.456, 1, 1). In the degenerate case,Fig. 4.4(d), the

zone of chaos becomes an infinitely long cylinder with an ellipse base with

radii r1,2 = 3, 1 with r1 lying on the vector (1, 0.75, 0).

Fig. 4.3 shows the chaos regions for magnetic nulls with j2
‖ > j2

thresh. The

chaos region in Fig. 4.3(a) is best desribed as an ellipsoid of ordered radii

r1,2,3 = 2, 1, 1 with r1 lying along the vector (1, 1.7, 0), while the chaos region

in Fig. 4.3(b) can be described as an opoid with ordered radii r1 = 2, 1, 0.5 with

r1 along (2, 1,−1) and r2 along the y axis. An ellipsoid also describes the null

in Fig. 4.3(c) with ordered radii r1,2,3 = 1, 1, 0.5 with r1 along (−1, 1, 0) and
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r3 in along the z-axis. The degenerate case, Fig. 4.3(d) becomes an infinitely

ellipse-based long cylinder on the z-axis with radii r1,2 = 2, 1 with r1 along
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Figure 4.5: Regions of chaos for various systems where j2
‖ > j2

thresh. Solid lines
signify fieldlines on the spine and fan plane whereas short-dashed lines signify
fieldlines that run from the spine to the fan. Dots indicate points on particle
trajectories that are considered chaotic. For all systems, q = 0.
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the vector (1, 1). Finally, for the cases where both j‖ and j⊥ are non-zero, the

case in Fig. 4.3(e) can be described as an ellipse with ordered radii r1,2,3 =

3, 0.8, 0.8 with r1 along (−0.8, 1, 0.6). The chaos region for the degenerate

case in Fig. 4.3(f) is described as an infinitely long ellipse-based cylinder on

the z − axis with radii r1,2 = 2.5, 1 with r1 lying along the vector (1, 1, 0).

Results from the calculation of the Lyapunov spectrum for all systems are

tabulated in tab. 4.1. For all cases, the spectrum was computed using 221 steps

with a time step of ∆t̂ = 0.01, averaged over 100 particles. As λi = −λ6−i, and

λ3 = λ4 = 0, only the first two Lyapunov exponents are shown. The maximal

Lypunov exponents (MLE) ranges from the order of 10−2 to 10−4, indicating

that some systems are more chaotic than others. For the potential systems,

the p = 0 system has the largest MLE, while the p = 0.5 system has the

largest MLE for the three dimensional nulls. In general, the two-dimensional

nulls have MLE larger than the three-dimenisonal nulls. The null plain system,

where p = −1, j‖ = 2, and j⊥ = q = 0, contains the smallest set of Lyapunov

exponents, indicating that it is the least chaotic of all systems studied here.

4.4 Conductivity results

Conductivity computations were carried out over 221 time steps using 30000

particles with velocities drawn from a Maxwellian distribution with vT =

0.05vA. Particles were positioned uniformly over their respective chaos regions

as defined in sec. 4.3. For all cases, five runs with different initial conditions

were computed to provide statistics for error analysis. Five additional runs

over 217, 218, 219 220, and 222 time steps were used to study the convergence

of the conductivity tensor for every case. For all cases, q = 0.

52



p j‖ j⊥ λ1 λ2

Potential Nulls
0 0 0 (3.6± 0.2)× 10−2 (8.6± 5.4)× 10−3

0.1 0 0 (6.3± 0.8)× 10−3 (4.9± 0.6)× 10−4

0.25 0 0 (2.2± 0.4)× 10−2 (3.8± 2.1)× 10−3

0.5 0 0 (2.9± 0.2)× 10−2 (6.5± 0.5)× 10−3

0.75 0 0 (2.2± 0.3)× 10−2 (3.6± 3.3)× 10−3

1 0 0 (1.8± 0.4)× 10−2 (1.2± 0.6)× 10−2

j2
‖ < j2

thresh

0.25 0.5 0 (3.2± 0.4)× 10−3 (3.8± 0.6)× 10−4

-0.25 1 0 (1.9± 0.2)× 10−2 (6.8± 8.9)× 10−7

0.25 0 1 (6.4± 0.5)× 10−3 (6.5± 0.5)× 10−4

0 0 -1 (1.6± 0.2)× 10−2 (2.6± 0.2)× 10−4

0.25 0.5 1 (5.4± 0.2)× 10−3 (6.0± 0.6)× 10−4

-0.25 1 -1 (1.22± 0.13)× 10−2 (2.56± 0.10)× 10−4

j2
‖ = j2

thresh

1 0 0.5 (1.6± 0.2)× 10−2 (5.2± 0.6)× 10−4

0.5 -0.5 0 (6.1± 0.6)× 10−3 (7.6± 0.8)× 10−4

-1 2 0 (4.0± 0.2)× 10−4 (1.7± 0.2)× 10−5

0.5 -0.5 1.5 (6.1± 0.6)× 10−3 (6.7± 0.7)× 10−4

-1 2 3 (5.8± 0.5)× 10−3 (3.7± 0.2)× 10−4

j2
‖ > j2

thresh

0.5 1 0 (5.4± 0.5)× 10−3 (7.1± 0.7)× 10−4

-0.5 -4 0 (3.7± 0.2)× 10−3 (1.08± 0.07)× 10−3

1 -4 0 (8.9± 1.3)× 10−3 (2.73± 0.11)× 10−4

-1 3 0 (3.7± 0.3)× 10−2 (3.30± 0.10)× 10−4

-0.5 -2 0.25 (5.3± 0.4)× 10−3 (8.4± 0.6)× 10−4

-1 3 0.5 (1.35± 0.15)× 10−2 (2.99± 0.11)× 10−4

Table 4.1: Lyapunov spectrum for all three-dimensional null systems of inter-
est. As all systems considered are Hamiltonian, only the two unique non-zero
Lyapunov exponents are tabulated. For all cases, q = 0.
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Figure 4.6: yy-component of the conductivity tensor σ(ω) for cases dealing
with the potential magnetic null on a log-log scale. ω and σyy are in reduced
units.

4.4.1 Potential Nulls

As the y component of the magnetic field is the most topologically dependent

on the parameter p, the tensor component σyy(ω) will be considered first.

Fig. 4.6 shows the yy compontent of the conducitivty tensor for all potential

cases. Cyclotron motion produces peaks in all cases for frequencies around

order unity, with the p = 1 case following a clear power-law (σµν(ω) = aµνω
bµν )

for all smaller frequencies. For all cases, the conductivity for frequences above

the cyclotron region ω > 10 becomes negligible. The p = 0 conductivity below

the cyclotron frequency follows a power-law with an additional delta function

which represents the average velocity in the y-direction, as seen in Sec. 3.3.

The velocity is tabulated in Tab A.8. For intermediate cases where 0 < p < 1,

a distinct peak around ω = 10−2 is seen, with a decrease in conductivity for

descreasing ω. However, as the simulation time is increased, theses peaks

shift towards smaller ω as well as decrease in width. The power-law is thus

computed from the points taken from the frequency region in between the
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Figure 4.7: Conductivity tensor components σxx(ω) (a) and σzz(ω) (b) for
potential null systems on a log-log scale. ω and σxx are in reduced units.

peak in question and the cyclotron frequency peak. All power law parameters

are tabulated in Tab A.1.

Fig. 4.7 shows the conductivity tensor components σxx(ω) (a) and σzz(ω) on

a log-log scale in reduced units using one run for each case. Below the cyclotron

frequency ωc ∼ 1, the conductivties follow decreasing power laws. For σxx(ω),

cases p = 0 and p = 1 follow an overall similar shape, with the rest of the

cases varying slightly. These differences becomes more pronounced for the

σzz(ω). All power law parameters for the zz-conductivity tensor component are

tabulated in Tab A.1. For all potential cases, off-diagonal tensor components

are negligible, and are thus not plotted here.

4.4.2 Current Nulls

Fig. 4.8 shows the conductivity tensor components for (a) σxx(ω) and (b)

σzz(ω) for the current nulls where j2
‖ < j2

thresh with parameters
(
p, j‖, j⊥

)
. The

conductivity curves are of similar shape to those in Fig. 4.7, with peaks around

the cyclotron frequency ωc ∼ 1 with addition to power laws below ωB. For

frequencies above the cyclotron frequency, ω > 10, the conducivity becomes

negligible.
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Figure 4.8: Conductivy tensor components σxx(ω) (a) and σzz(ω) (b) on a
log-log scale for the current magnetic null with parameters

(
p, j‖, j⊥

)
and j2

‖ <

j2
thresh. ω and σxx are in reduced units.

Fig. 4.9 shows the yy-component of the conductivity tensor for the cur-

rent null cases with j2
‖ < j2

thresh with parameters
(
p, j‖, j⊥

)
. All cases show

the characteric cyclotron peak around ω ∼ 1. The curves with parameters

(−0.25, 1, 0) and (−0.25, 1,−1) follow clear powers for frequencies below the

cyclotron frequency region ω < 10−1, with the (0, 0,−1) following a power

law with an additional delta function defined by a root mean squared velocity

which is tabulated in Tab. A.8. Cases with p = 0.25 show a similar curve

to the intermediate potential nulls as seen in Fig. 4.6. The peaks around

ω ∼ 10−2 move to smaller ω for larger time steps. In practice, the power law

fit is calculated using points between this peak and the cyclotron region. The

power law parameters for the diagonal conductivity tensor components of all

potential nulls are tabulated in Tab. A.2.

Unlike the potential null systems, specific off-diagonal components for

current nulls are not negligible. The case (0, 0,−1) has a non-zero tensor

component yz that is described by a power law with a negative prefactor.

Power-laws with positive prefactors describe the xy tensor component for cases

(0.25, 0.5, 0), (−0.25, 1, 0), (−0.25, 1,−1), and (0.25, 0.5, 1), with the two last
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Figure 4.9: yy-component of the conductivity tensor σ(ω) for cases dealing
with the current null for j2

‖ < j2
thresh with parameters

(
p, j‖, j⊥

)
on a log-log

scale. ω and σyy are in reduced units.

cases also having non-zero xz and yz tensor components, also described by

power laws. The case (0.25, 0.5, 1) has an additional bulge in the yz tensor

component which can be approximated by a Maxwellian peak with formed

σ(ω) =
a

b2
ω2e−ω

2/b2 . (4.36)

Finally, the case (0.25, 0.5, 0) contains a Maxwellian peak near ω ≈ 0.06. All

power-law parameters for non-diagonal tensor components are tabulated in

Tab. A.5, while the Maxwellian curve parameters are tabulated in Tab. A.6.

Fig. 4.10 shows the conductivity tensor components (a) σxx(ω) and (b)

σxx(ω) for current nulls with j2
‖ = j2

thresh and parameters
(
p, j‖, j⊥

)
. As before,

most curves show characteristic peaks around the cyclotron frequency ωc ∼ 1,

with the (1, 0, 0.5) case following a power law for smaller frequencies. Instead

of following a power-law, the (−1, 2, 3) case is best described by the sum of a

Maxwellian peak (Eq.4.36) and a translated Maxwellian peak with form

σ(ω) =
a

b2
(ω − ω0)2e−(ω−ω0)2/b2 . (4.37)

In this case, the DC-value of the conductivity approaches the finite values
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Figure 4.10: Conductivity tensor components σxx(ω) (a) and σyy(ω) (b) on a
log-log scale for current nulls with j2

‖ = j2
thresh and parameters

(
p, j‖, j⊥

)
. ω

and σxx are in reduced units. The case (−1, 2, 0) is not shown.

σxx,yy(ω = 0) = 0.667 ± 0.004, 0.665 ± 0.004, respectively, with a slight in-

crease for frequencies approaching the cyclotron region. This case decays faster

than the other cases shown in Fig, 4.10. The parameters for this translated

Maxwellian are tabulated in Tab. A.7, while parameters for the unshifted

Maxwellian are presented in Tab. A.6.

Fig. 4.11 shows the conductivity tensor component σzz(ω) with j2
‖ = j2

thresh

and parameters
(
p, j‖, j⊥

)
. Most curves show characteristic cyclotron peaks

as well as power laws below the cyclotron region ω < 10−1. The (1, 2 − 3)

case now follows a power-law,as well as an additional delta function with a

mean squared velocity tabulate in Tab. A.8. As with the cases in Fig. 4.10,

the (−1, 2, 3) system decays faster than the other cases above the cyclotron

frequency ω > 10. The diagonal power-law parameters for the nulls with

j2
‖ = j2

thresh are tabulated in Tab. A.3.

As in the previous current null case, systems with j2
‖ = j2

thresh have spe-

cific non-zero off-diagonal components of the conductivity tensor. Power-laws

describe xy component for (0.5,−0.5, 0), the yz component in (0.5,−0.5, 0),

and all components in (0.5,−0.5, 1.5). Additional Maxwellian bulges appear in
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Figure 4.11: zz-component of the conductivity tensor σ(ω) for current nulls
with j2

‖ = j2
thresh and parameters

(
p, j‖, j⊥

)
on a log-log scale. ω and σyy are

in reduced units.

the xy component of (0.5,−0.5, 0) and in the yz component of (0.5,−0.5, 1.5).

The xy component for the (−1, 2, 3) closely follows the trend of the xx and

yy diagonal components, consisting of a translated Maxwellian as well as an

additional un-translated Maxwellian. Parameters for the off-diagonal power

laws are tabulated in Tab. A.5. The parameters for the shifted and unshifted

Maxwellian curves are tabulated in Tab. A.7 and Tab. A.6, respectively.

The current null case (−1, 2, 0) has been omitted in both Fig. 4.10 and

Fig. 4.11. As all field lines are parallel to the z : x = y-plane, with a drift

velocity vD in the z-direction, particles cannot leave the chaotic zone. How-

ever, while the adiabatic invariant µ may not be consered in this region, the

particles tend to follow periodic orbits with drift velocity regardless. The

Lyapunov exponent given in Tab. 4.1 is small enough for this system to be

considered non-chaotic. The drift velocity, as well as the velocity along field

lines, result in delta functions in all diagonal components of the conductivity

tensor. The x-component of the field-line velocity is also directly correlated

to the y-component of the field-line velocity, giving a delta function in the
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Figure 4.12: Conductivity tensor components σxx(ω) (a) and σyy(ω) (b) for
current nulls with j2

‖ > j2
thresh and parameters

(
p, j‖, j⊥

)
on a log-log scale. ω

and σxx are in reduced units.

xy components of the conductivity tensor. Delta functions also exist in the

xz, yz components of the conductivity tensor, but are much less pronounced.

All mean squared velocities are tabulated in Tab. A.8. Maxwellian peaks

(Eq. 4.36) also appear around the cyclotron region ωc ∼ 1 for all diagonal

components of the conductivity tensor as well as the xy components. The

parameters c1 and ∆ω are tabulated in Tab. A.6.

Fig. 4.12 shows the xx (a) and yy (b) conductivities for current nulls with

j2
‖ > jthresh and parameters on a

(
p, j‖, j⊥

)
log-log scale. All cases show char-

acteristic peaks near the cyclotron frequency ωc ∼ 1. The cases (1,−4, 0),

(0.5, 1, 0) and (0.5,−2, 0.25) follow a power law for frequencies ω < 10−1. in

both xx and yy conductivities, as well as the case (0.5, 1, 0) in the yy, the

conductivty has a slanted plateau in the frequency region 10−3 < ω > 10−2,

with a slight decrease for ω < 10−3. However, as the integration time of the

simulations is increased, this plateau moves towards smaller frequencies along

a line which would follow the power-law fit of the curve. This slanted plateau is

subsequently ignored in the analysis of the numerical fits. Cases where p = −1

and j‖ = 3 show strong peaks around the cyclotron region ω ∼ 1 as well as an
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effection bounce frequency region 10−2 < ω < 10−1 with tails on either side.

These two curves appear to be the same for both cases. As the integration

time of the simulations increases, these tails decrease in size, becoming negli-

gible. Aside from the diminishing tail, both cases can be sufficiently described

by the same two peaks. The two peaks themselves are very well approximated

as the combination of two Maxwellian peaks with the form

σ(ω) =
∑
i

ai
b2
i

ω2e−ω
2/b2i ,

where ai and bi are fit parameters for either peak and i = 1, 2. These parame-

ters are tabulated in Tab. A.6, while the rest of the power-law parameters are

tabulated in Tab. A.4.

Fig. 4.13 shows the zz component of the conductivity tensor for cur-

rent nulls with j2
‖ > jthresh and parameters

(
p, j‖, j⊥

)
on a log-log scale.

The zz-component of the conductivity for the cases (1,−4, 0), (0.5, 1, 0) and

(0.5,−2, 0.25) evolves in a similar fashion to the xx and yy components of the

conductivity. Cases where p = −1 and j‖ = 3 now include an additional power
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law and delta function for frequencies below the cyclotron region ω < 10−2,

with the (−1, 3, 0.5) case only containing one Maxwellian peak around the cy-

clotron region ω ∼ 1. Maxwellian parameters are tabulated in Tab. A.6, while

the rest of the power-law parameters are tabulated in Tab. A.4. The average

square velocity for the delta function is tabulated in Tab. A.8.

Off-diagonal tensor components for the j2
‖ > jthresh become slightly more

complicated than the previous cases, with power laws appear in the xy compo-

nents of (−0.5,−4, 0), (0.5, 1, 0) and (−0.5,−2, 0.25). Maxwellian peaks fea-

ture more prominently in these tensor components, with two appearing in the

xy component of (−1, 3, 0), the xz component of (−0.5,−2, 0.5), as well as all

off-diagonal components of (−1, 3, 0.5). The yz component of (−0.5,−2, 0.25)

actually contains three Maxwellian peaks, all well below the cyclotron region

ω ∼ 1. Once again, power-law data for off-diagonal components are tabulated

in Tab. A.5 while Maxwellian parameters are tabulated in Tab. A.6.

4.5 Discussion

Many interesting features arise from the Kubo conductivity when applied to

three-dimensional magnetic nulls. As with the two-dimensional cases, the con-

ductivities, with few exceptions, are generally well described by power laws.

This reflects the fact that the Fourier transform of a power law tα with expo-

nent −1 < α < 0 is also a power law with exponent −(1 + α). The velocity

autocorrelations of chaotic orbits usually follow these types of power laws.

For many of these systems, the region around ω ∼ 0, 2 shows a noticeable

decrease in conductivity. This inverted peak can be considered the region

where both bounce frequency and cyclotron effects become negligible. As with

the two-dimensional cases, for the three-dimensional nulls the conductivity is

of order unity when the AC frequency is around the cyclotron region. In

fact, throughout the entire range of frequency, the magnitude of the three-
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dimensional conductivity (which match power-laws) is similar to that of the

two-dimensional cases. This can be attributed to the total area underneath the

conductivity, given by Eq. 2.28. Once again, the Kubo-conductivity becomes

significant when dealing with electric perturbations with ω > ωc.

The computation of the chaos zone reveals how varied systems behave de-

pending on their topological properties. However, the chaos zone is generally

localized to a region near the neutral structure (be it point, line, or plane),

usually contained within a distance of order unity. The region of chaos is well

defined for potential systems as an ellipsoid with major radius on the y-axis

with magnitude proportional to p−1. The Lyapunov spectrums for these sys-

tems, however, do not seem to follow any particular trend. As regions of chaos

for the current nulls behave in a more complex manner, these cases must be

dealt with individually, as no trend can be made between subcases. In gen-

eral, the Lyapunov exponents for two-dimensional null systems are about a

factor of 5−10 larger than those for the three-dimensional case. However, the

(−1, 2, 3) case, which contains a null plane, has the smallest Lyapunov spec-

trum. Simulations of this case suggest a dominance of non-chaotic (adiabatic)

trajectories.

While the Lyapunov spectrum gives insight on how chaotic a particular

system may be, apart from non-chaotic systems, it bears no indication of the

form of the conductivity tensor. It is clear that many of the three-dimensional

null systems observe interesting conductivity curves that do not, in general,

follow power laws. These cases are confined to the systems where j2
‖ ≥ j2

thresh.

The (−1, 2, 3) case is of particular interest as this is the only case that exhibits a

finite, non-zero value for the DC conductivity which converges for arbitrarily

large integration times. The cases where p = −1 and j‖ = 3 also lack a

power law for all tensor components (with the exception of zz), containing

only Maxwellian peaks around a mean cyclotron frequency, as well as a mean
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traversal frequency around O-shape field lines. These systems do not contain

infinite field lines with increasing |B|, which result in an absence of bounce

frequency mixing.

With the exception of a couple of cases, the appearance of off-diagonal

components depends on the presence of B-field current. In order for the xy

component of the conductivity tensor to be non-zero, j‖ must be non-zero.

Conversely, for there to exist a non-zero yz component of the conductivity

tensor, j⊥ must be non-zero. Finally, both j‖ and j⊥ must be non-zero for

there to be a non-trivial yz component of the conductivity tensor. However,

these conditions do not necessarily lead to non-zero off-diagonal components.

The case (1,−4, 0), while having a non-zero j‖, has no non-trivial off-diagonal

conductivity tensor components. The case (−1, 2, 3) only has one non-trivial

component of the conductivity tensor (xy), even though both j‖ and j⊥ are

non-zero. While for most cases the sign of the current also matches the overall

sign of the conductivity tensor component, this doesn’t hold for every case.

This shows that these systems must be studied on a case-by-case basis, due to

the complex chaotic processes that are unique to each system.

Eq. 3.15 can be used to calculate the power dissipation of the three-

dimensional null systems. Once again, as the current in reconnection system

is the value most likely to be the primary variable, it may be advantageous to

consider the resistive form of Eq. 3.15.
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Chapter 5

Summary and Future Work

In this study, the complete Kubo-conductivity tensor for linear 2D and 3D

magnetic nulls was computed using single particle simulations. The regions

of chaos for each system were also determined through the use of Lyapunov

exponents in order to provide a well-defined region in which to produce initial

conditions. The conductivity tensor for the two-dimensional system proposed

in Numata [2] was computed and compared against other conductivities, such

as the Speiser conductivity. For these cases the diagonal components of the

conductivity were well approximated by power-laws over the entire frequency

range, with additional peaks in the cyclotron region. It was found that while

the Kubo-conductivity resulted in negligible resistivity at low frequency, elec-

tric perturbations near the cyclotron frequency become significant and can be

an order of magnitude larger than that derived from the Speiser formula. In

these regions significant dissipation can occur from energy being carried away

by accelerated particles. Off-diagonal components of the conductivity tensor

for this system were found to be negligible.

The chaos regions for the three-dimensional potential null were found to

be well-defined by an ellipsoid with major radius on the y-axis inversely pro-

portional to the magnetic parameter p. Chaos regions for current nulls were

found to be more complex, and had to be defined on a case-by-case basis.
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The computation of the Lyapunov spectrum confirmed the stochasticity of

most systems, with the exception of the case (1, 2, 0) which was found to be

non-chaotic.

Computation of the conductivity tensors for the three dimensional null sys-

tems show very complex behaviour between every case. For all cases, the value

of the diagonal components of conductivity, in reduced units, is of order unity

around the cyclotron frequency. The xx and zz components of the potential

conductivity behave similarly between cases of varying p. The exponent of the

yy-component of the conductivity between the p = 0 case and the p = 0.1

makes a jump to a higher value, while the prefactor decreases. As p is in-

creased from p = 0.1 to p = 1, the prefactor of the power law increases as

the exponent decreases. Current nulls display complex behaviour which ne-

cessitates the need to examine the conductivity tensor on a case-by-case basis.

For off-diagonal components of the conductivity tensor to be non-negligible,

certain requirements must be met, though satisfying these conditions is not

sufficient to produce these conductivities.

The research presented in this thesis can be continued in a number of ways.

Although comparisons have been made between DC conductivities, it would

be worthwhile to compare AC-conductivities to real-world values, since around

the cyclotron frequency the Kubo equation yields significant resistivities. Such

alternating currents can be found in astrophysical plasmas as well a laboratory

plasmas. More study can also be done with the three-dimensional null systems.

In the potential null cases, the gap between the p = 0 case and the p = 0.1

can be studied further in order to see if there is any continuum in the yy-

component of the conductivity. The computations of the three-dimensional

current nulls performed in this study only consider a single instance of every

subcase (specifically, the example systems given in Parnell [3]). Future studies

can focus on specific subcases with multiple runs being performed to better
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understand how the systems evolve with slight perturbations in the parameter

space. Finally, a generalized form of the Kubo conductivity that includes

the wavenumber term can be considered, which would broaden the potential

real-applications of this method.

67



Bibliography

[1] C. J. Xiao. Cluster hits the magnetic bulls-eye, July 2006. URL http:

//www.esa.int/esaSC/SEMAYXAUQPE_index_0.html.

[2] R. Numata and Z. Yoshida. Phys. Rev. Let., 88(4), 2002.

[3] C. E. Parnell, J. M. Smith, T. Neukirch, and E. R. Priest. Phys. Plasmas,

3:3, 1995.

[4] R. G. Giovanelli. Mon. Not. R. Astron. Soc., 107:338, 1947.

[5] F. Holye. Some Recent Researches in Solar Physics. Cambridge University

Press, New York, 1949.

[6] J. W. Dungey. Philos. Mag., 7(44):725, 1953.

[7] C. J. Xiao, X. G. Wang, Z. Y. Pu, H. Zhao J. X. Wang, Z. W. Ma, S. Y.

Fu, M. G. Kivelson, Z. X. Liu, Q. G. Zong, K. H. Glassmeier, A. Balogh,

A. Korth, H. Reme11, and C. P. Escoubet. Nat. Phys., 2:478, 2006.

[8] A. Stark, W. Fox, J. Egedal, O. Grulke, and T. Klinger. Phys. Rev. Let.,

95:235005, 2005.

[9] R. Fitzpartrick and T. C. Hender. Phys. Fluids B, 3(3):6445, 1991.

[10] R. Fitzpartrick. Nuc. Fusion, 33(7):1049, 1993.

[11] P. A. Sweet. Electromagnetic Phenomena in Cosmical Physics, page 123.

Cambridge University Press, New York, 1958.

68



[12] E. N. Parker. Astrophys. J. Suppl., (8):177, 1963.

[13] T. Yeh and W. I. Axford. J. Plasma Phys., 4(2):207, 1970.

[14] H. E. Petschek. In AAS-NASA symp. on Phys. of Solar Flares, NASA

SP-50, page 425, 1964.

[15] E. R. Priest and T. G. Forbes. J. Geophys. Res., 91(A5):5579, 1986.

[16] M. Jardine and E. R. Priest. J. Plasma Phys., 42(1):111, 1989.

[17] R. Kulsrud. Earth Planets Space, 53:417, 2001.

[18] H. Baty, E. R. Priest, and T. G. Forbes. Phys. Plasmas, 16:060701, 2009.

[19] R. K. Pathria. Statistical Mechanics. Eslevier Butterworth-Heinemann,

second edition, 1996.

[20] F. Chen. Plasma Physics and Controlled Fusion. Springer, second edition,

1983.

[21] E. Priest and T. Forbes. Magnetic Reconnection: MHD theory and appli-

cations. Cambridge University Press, 2000.

[22] T. W. Speiser. Planet Space Sci., 18:613, 1970.

[23] R. Kubo. J. Phys. Soc. Japan, 12(6):570, 1957.

[24] R. Kubo. Rep. Prog. Phys., 29:255, 1966.

[25] W. Horton, C. Liu, B. Burns, and T. Tajima. Phys. Fluids. B, 3(8):2192,

1991.

[26] Jr R. F. Martin. J. Geophys. Res., 91(A114):11,985, 1986.

[27] W. Horton and T. Tajima. Geophys. Res. Let., 17(2):123, 1990.

69



[28] W. Horton and T. Tajima. J. GeoPhys. Res., 96(A9):15811, 1991.

[29] D.L. Holland and J. Chen. GeoPhys. Res. Let., 19(12):1231, 1992.

[30] S. W. H. Cowley. Planet. Space Sci., 26, 1978.

[31] J. Hernandez, W. Horton, and T. Tajima. J. GeoPhys. Res., 98(A4):

5893, 1993.

[32] S.W.H. Cowley. Radio Sci., 8:903, 1973.

[33] S. Fukao, M. Ugai, and T. Tsuda. Rep. Ion. Space Res. Jpn., 29:133,

1975.

[34] E. R. Priest and V. S. Titov. Phil. Trans. R. Soc. Lond. A, 354:2951–2992,

1996.

[35] C. E. Parnell and E. R. Priest. Solar Phys., 151:57, 1994.

[36] E. R. Priest and D. I. Pontin. Phys. Plasmas, 16:122101, 2009.

[37] E. R. Priest and T. G. Forbes. J. Geophys. Res., 97(A2):1521, 1992.

[38] H. X. Vu and J. U. Brackbill. J. Comp. Phys., 116:384, 1995.

[39] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Physica, 16(D):

285, 1984.

[40] I. Shimada and T. Nagashima. Prog. of Theo. Phys., 61(6):1605, 1979.

[41] R. Courant and F. John. Introduction to Calculus and Analysis, volume

II/1, chapter 2, pages 194–195. Springer, 1989.

[42] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn. Meccanica, 15:

9, 1980.

70



[43] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn. Meccanica, 15:

21, 1980.

71



Appendix A

Fit parameters

In this appendix the fit parameters for all functions mentioned in Chapter 4

are tabulated, along with any given errors. All functions are fit using the

method of non-linear least squares. Errors are generated by calculating the

standard error of the mean (denoted by SE), given by

SE =
σ√
n

where n is the number of samples and σ is the sample standard deviation. For

all cases, five samples are used. While errors are given for prefactors for the

fitting functions, it is expected that these values are to be used as an order of

magnitude estimate.

Power laws were fitted over a small frequency range of the conductivity

curves. The ranges were determined by running simulations with varying

total simulation time and noting the range over which conductivity curves

converged to a power law. The range of the power law would increase with the

total time of the simulation. Care was taken to ensure that points for which

frequencies would be undersampled were not included in these fits. Undersam-

pled points are those beyond the Nyquist frequency (ωmax = π/∆t) and those

below the Nyquist rate (ωmin = π/N∆t), where ∆t is the timestep, N is the

total number of steps, and ωmax,min is the upper and lower bound of properly

sampled frequencies, respectively. In practice, frequencies within a factor of
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two of these bounds are also considered undersampled.

p axx byy
0 0.182± 0.002 −0.861± 0.002
0.1 0.342± 0.004 −0.661± 0.003
0.25 0.754± 0.008 −0.509± 0.004
0.5 0.377± 0.006 −0.637± 0.003
0.75 0.351± 0.06 −0.654± 0.003
1 0.173± 0.002 −0.774± 0.002
p ayy byy
0 (8.82± 0.05)× 10−3 −0.650± 0.003
0.1 (5.98± 0.15)× 10−3 −1.810± 0.009
0.25 (5.94± 0.10)× 10−3 −1.785± 0.005
0.5 (9.10± 0.11)× 10−3 −1.654± 0.003
0.75 (1.93± 0.10)× 10−2 −1.423± 0.003
1 0.173± 0.005 −0.775± 0.002

p azz bzz
0 0.181± 0.003 −0.861± 0.002
0.1 0.270± 0.013 −0.689± 0.009
0.25 0.754± 0.007 −0.509± 0.002
0.5 0.876± 0.004 −0.459± 0.002
0.75 0.829± 0.011 −0.479± 0.03
1 0.131± 0.003 −0.808± 0.005

Table A.1: Parameters for the potential null power laws.
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(p, j‖, j⊥) axx byy
(0, 0,−1) 0.219± 0.002 −0.818± 0.002
(0.25, 0, 1) 0.431± 0.003 −0.644± 0.002

(0.25, 0.5, 0) 0.665± 0.02 −0.482± 0.005
(−0.25, 1, 0) 0.181± 0.002 −0.823± 0.002

(−0.25, 1,−1) 0.255± 0.002 −0.723± 0.002
(0.25, 0.5, 1) 0.595± 0.005 −0.555± 0.002

(p, j‖, j⊥) ayy byy
(0, 0,−1) (5.03± 0.09)× 10−3 −0.660± 0.002
(0.25, 0, 1) (6.53± 0.02)× 10−3 −1.677± 0.009

(0.25, 0.5, 0) (3.02± 0.07)× 10−2 −1.327± 0.006
(−0.25, 1, 0) (4.64± 0.05)× 10−2 −0.834± 0.002

(−0.25, 1,−1) (6.62± 0.06)× 10−2 −0.725± 0.002
(0.25, 0.5, 1) (1.72± 0.03)× 10−2 −1.411± 0.005

(p, j‖, j⊥) azz bzz
(0, 0,−1) 0.216± 0.003 −0.820± 0.003
(0.25, 0, 1) 0.699± 0.005 −0.553± 0.002

(0.25, 0.5, 0) 1.30± 0.03 −0.331± 0.005
(−0.25, 1, 0) 0.253± 0.003 −0.805± 0.002

(−0.25, 1,−1) 0.293± 0.002 −0.762± 0.02
(0.25, 0.5, 1) 1.03± 0.07 −0.468± 0.005

Table A.2: Parameters for the current null power laws where j2
‖ < j2

thresh.

(p, j‖, j⊥) axx byy

(1, 0, 0.5) 0.157± 0.004 −0.803± 0.003
(0.5,−0.5, 0) 0.505± 0.008 −0.562± 0.004

(0.5,−0.5, 1.5) 0.476± 0.005 −0.597± 0.002
(p, j‖, j⊥) ayy byy
(1, 0, 0.5) 0.152± 0.003 −0.810± 0.007

(0.5,−0.5, 0) (1.20± 0.02)× 10−3 −1.57± 0.03
(0.5,−0.5, 1.5) 0.936± 0.005)× 10−3 −0.426± 0.003

(p, j‖, j⊥) azz bzz
(1, 0, 0.5) 0.198± 0.002 −0.751± 0.002

(0.5,−0.5, 0) 0.927± 0.011 −0.437± 0.003
(0.5,−0.5, 1.5) 1.240± 0.011 −0.475± 0.008

(−1, 2, 3) (3.40± 0.09)× 10−2 −1.15± 0.02

Table A.3: Parameters for the current null power laws where j2
‖ = j2

thresh
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(p, j‖, j⊥) axx byy
(0.5, 1, 0) 0.759± 0.002 −0.435± 0.005

(−0.5, 4, 0) 0.510± 0.002 −0.427± 0.003
(1,−4, 0) 0.258± 0.003 −0.584± 0.003

(−0.5,−2, 0.25) 1.19± 0.03 −0.410± 0.005
(p, j‖, j⊥) ayy byy
(0.5, 1, 0) (2.87± 0.02)× 10−2 −1.34± 0.05

(−0.5, 4, 0) 0.481± 0.002 −0.448± 0.002
(1,−4, 0) 0.257± 0.003 −0.584± 0.003

(−0.5,−2, 0.25) (0.923± 0.018)× 10−2 −0.470± 0.005

(p, j‖, j⊥) azz bzz
(0.5, 1, 0) (7.06± 0.06)× 10−2 −1.06± 0.02

(−0.5, 4, 0) 1.419± 0.013 −0.443± 0.002
(−1, 3, 0) (1.89± 0.03)× 10−2 −0.507± 0.002
(1,−4, 0) 0.207± 0.004 −0.659± 0.004

(−0.5,−2, 0.25) 4.09± 0.02 −0.339± 0.003
(−1, 3, 0.5) (8.81± 0.07)× 10−3 −0.641± 0.003

Table A.4: Parameters for the current null power laws where j2
‖ > j2

thresh

(p, j‖, j⊥)µν aµν bµν
j2
‖ < j2

thresh

(0, 0,−1)yz (−1.6± 0.3)× 10−4 −1.15± 0.04
(0.25, 0.5, 0)xy (5.54± 0.08)× 10−2 −0.62± 0.004
(−0.25, 1, 0)xy (8.23± 0.02)× 10−2 −0.843± 0.003

(−0.25, 1,−1)xy 0.138± 0.002 −0.709± 0.003
(−0.25, 1,−1)xz (−2.95± 0.05)× 10−2 −0.870± 0.003
(−0.25, 1,−1)yz (−6.68± 0.03)× 10−3 −1.012± 0.009
(0.25, 0.5, 1)xy (1.67± 0.05)× 10−2 −0.833± 0.005
(0.25, 0.5, 1)xz (1.31± 0.05)× 10−2 −0.799± 0.009
(0.25, 0.5, 1)yz (2.01± 0.05)× 10−2 −0.652± 0.004

j2
‖ = j2

thresh

(1, 0, 0.5)yz (6.92± 0.02)× 10−2 −0.668± 0.004
(0.5,−0.5, 0)xy (−3.04± 0.07)× 10−2 −0.789± 0.003

(0.5,−0.5, 1.5)xy (−4.28± 0.08)× 10−2 −0.770± 0.002
(0.5,−0.5, 1.5)xz (−2.32± 0.10)× 10−2 −0.778± 0.017
(0.5,−0.5, 1.5)yz (6.36± 0.11)× 10−2 −0.646± 0.003

j2
‖ > j2

thresh

(−0.5,−4, 0)xy 0.110± 0.008 −0.398± 0.017
(0.5, 1, 0)xy (2.1± 0.6)× 10−2 −0.70± 0.03

(−0.5,−2, 0.25)xy −0.358± 0.008 −0.499± 0.006

Table A.5: Parameters for all off-diagonal power law fits for current nulls.
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(p, j‖, j⊥)µν aµν bµν
j2
‖ < j2

thresh

(0.25, 0, 1)yz (3.38± 0.02)× 10−4 (6.60± 0.04)× 10−2

(0.25, 0.5, 1)yz 22.5± 0.3 (7.47± 0.04)× 10−2

j2
‖ = j2

thresh

(0.5,−0.5, 0)xy −20.5± 0.4 (3.50± 0.06)× 10−3

(−1, 2, 0)xx 3.42± 0.11 0.509± 0.010
(−1, 2, 0)xy −3.36± 0.11 0.508± 0.010
(−1, 2, 0)yy 3.42± 0.011 0.509± 0.010
(−1, 2, 0)zz 2.30± 0.13 0.832± 0.003

(0.5,−0.5, 1.5)yz 40.5± 0.4 (5.66± 0.03)× 10−3

(−1, 2, 3)xx 0.628± 0.010 2.54± 0.05
(−1, 2, 3)xy −0.140± 0.007 2.11± 0.03
(−1, 2, 3)yy 0.614± 0.010 2.58± 0.03
(−1, 2, 3)zz −0.382± 0.011 0.215± 0.009

j2
‖ > j2

thresh

(−1, 3, 0)xx1 21.0± 0.04 (6.69± 0.02)× 10−2

(−1, 3, 0)xx2 1.49± 0.02 1.11± 0.03
(−1, 3, 0)xy1 9.55± 0.05 (7.16± 0.03)× 10−2

(−1, 3, 0)xy2 −0.590± 0.007 1.485± 0.009
(−1, 3, 0)yy1 21.0± 0.04 (6.69± 0.02)× 10−2

(−1, 3, 0)yy2 1.48± 0.03 1.113± 0.005
(−1, 3, 0)zz 1.48± 0.03 1.123± 0.005
(0.5, 1, 0)xy 3.00± 0.03 (3.84± 0.04)× 10−3

(−0.5,−2, 0.25)xz1 5.8± 0.2 (1.40± 0.03)× 10−3

(−0.5,−2, 0.25)xz2 1.91± 0.03 (1.11± 0.03)× 10−2

(−0.5,−2, 0.25)yz1 26.3± 1.0 (3.89± 0.02)× 10−4

(−0.5,−2, 0.25)yz2 15.1± 0.2 (2.51± 0.02)× 10−3

(−0.5,−2, 0.25)yz3 10.1± 0.3 (8.56± 0.05)× 10−3

(−1, 3, 0.5)xx1 21.0± 0.07 (5.80± 0.02)× 10−2

(−1, 3, 0.5)xx2 1.60± 0.02 1.267± 0.011
(−1, 3, 0.5)xy1 10.20± 0.04 (6.19± 0.02)× 10−2

(−1, 3, 0.5)xy2 −0.482± 0.007 1.64± 0.02
(−1, 3, 0.5)xz1 10.3± 0.03 (6.16± 0.02)× 10−2

(−1, 3, 0.5)xz2 −0.480± 0.007 1.66± 0.02
(−1, 3, 0.5)yy1 22.4± 0.6 (5.75± 0.02)× 10−2

(−1, 3, 0.5)yy2 1.47± 0.02 1.33± 0.02
(−1, 3, 0.5)yz1 2.95± 0.07 (5.11± 0.07)× 10−2

(−1, 3, 0.5)yz2 −0.278± 0.002 0.989± 0.018
(−1, 3, 0.5)zz1 6.63± 0.02 (5.48± 0.07)× 10−2

(−1, 3, 0.5)zz2 2.28± 0.02 1.390± 0.009

Table A.6: Parameters for all Maxwellian curve fits for current nulls.
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µν aµν bµν ω0µν

xx 3.34± 0.07 (6.75± 0.07)× 10−2 (−4.84± 0.06)× 10−2

xy 3.24± 0.05 (6.27± 0.04)× 10−2 (−4.33± 0.05)× 10−2

yy 3.30± 0.02 (6.28± 0.03)× 10−2 (−4.35± 0.05)× 10−2

Table A.7: Parameters for the translated Maxwellian curve for current null
with parameters (−1, 2, 3).

(p, j‖, j⊥)µν vµvν
(0, 0, 0)yy (9.87± 0.06)× 10−6

(0, 0,−1)yy (6.10± 0.09)× 10−6

(−1, 2, 0)xx (1.24± 0.05)× 10−3

(−1, 2, 0)xy (1.24± 0.05)× 10−3

(−1, 2, 0)xz (−3.42± 6.16)× 10−6

(−1, 2, 0)yy (1.24± 0.05)× 10−3

(−1, 2, 0)zz (0.77± 3.03)× 10−6

(−1, 2, 3)zz (5.42± 0.13)× 10−4

(−1, 3, 0)zz (1, 19± 0.06)× 10−4

(−1, 3, 0.5)zz (9.77± 0.18)× 10−5

Table A.8: Tabulated values of the average squared velocities which define the
delta functions for three-dimensional null cases.
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