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Abstract 

Officials of large-scale assessment programs often want to report subscale 

scores in addition to the total test score. However, in addition to the reliability of 

reported scores, evidence that subscales reveal real differences in student 

performances must be obtained in order to support reporting of subscale scores. In 

this study, two correlational methods, including correlations corrected for 

attenuation, r’, and the proportional reduction of the mean squared error, PRMSE 

(Haberman, 2005; Sinharay et al., 2007), and the agreement method (Kelley, 

1923) for determining whether subscore reporting is warranted in large-scale 

achievement assessments were examined. Whereas correlation-based methods 

consider student performances on pairs of measures in terms of ranked positions, 

the agreement method takes into account actual differences between students’ 

standard scores on the pairs of measures being compared. The correlational 

methods revealed that with one possible subscale difference, the subscales did not 

differ among themselves and from the total test for the English Reading (N = 

128,089) and Mathematics (N = 127,596) assessments considered in this study. In 

contrast, Kelley’s agreement method one to five percent students had differences 

between their scores on the English Reading subscales that were greater than the 

difference expected due to the chance. However, with two exceptions for the 

Mathematics assessment, the results of the agreement method were 

uninterpretable. In agreement with Sinharay, et al. (2007), it was concluded that 

for the detection methods to work, three conditions need to be met, one 

substantive (multidimensional construct for which scores are wanted for each 



dimension), and two statistical (high reliabilities of and low intercorrelations 

among subscales). The results for replicated random samples (n = 250, 500, 1,000, 

2,000, and 5,000) revealed that the statistics for the three detection methods were 

accurate and precise estimators of the corresponding population parameters.  
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CHAPTER I: INTRODUCTION 

 In a large-scale assessment of student achievement, test items should be 

referenced to a curriculum that is multidimensional in composition, with each 

dimension characterized by specific content and/or cognitive skills. For example, 

items on a Mathematics achievement test can be referenced to (a) content areas, 

such as number sense and numeration, measurement, geometry and spatial sense, 

patterning and algebra, and data management and probability, and/or (b) 

cognitive skills, such as knowledge and understanding, application, and problem-

solving as specified in a Mathematics curriculum. In test development, the table of 

specifications or test blueprint serves to ensure that the test reflects the 

multidimensionality of the curriculum and that the number of test items reflects 

the proportional weighting to be given to each cell within the table. Most often the 

number of items in each cell is such that the total test can be administered in a 

reasonable amount of time and that the internal consistency (reliability) of the 

total test is adequate for reporting purposes. However, often there is a desire to 

report the scores for the content areas and/or cognitive skills identified in the table 

of specifications. Teachers use these scores to identify areas of strength and areas 

that need to be addressed for individual students and/or to alter their instruction in 

ways to maintain strength and address issues at the class level, thereby improving 

their students’ learning and achievement. Consequently, in addition to reporting 

the total test score, officials of large-scale assessment programs want to report 

subscale scores, with the subscales corresponding to the different dimensions of 

the curriculum as reflected in the table of specifications.  
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However, before reporting such information, large-scale assessment 

agencies should determine whether or not subscales are both reliable and distinct 

to warrant the reporting of scores on each. Determining whether or not the 

subscales are reliable and distinct complies with the Standards for Educational 

and Psychological Testing (American Educational Research Association, 

American Psychological Association, & National Council on Measurement in 

Education, 1990). Two standards apply here: 

Standard 1.12:  When interpretation of subscores, score 

differences, or profile is suggested, the rationale and relevant 

evidence in support of such interpretation should be provided. 

Where composite scores are developed, the basis and rationale for 

arriving at the composites should be given. (p. 20)  

Standard 5.12: When group-level information is obtained by 

aggregating the results of partial tests taken by individuals, 

validity and reliability should be reported for the level of 

aggregation at which results are reported. Scores should not be 

reported for individuals unless the validity, comparability, and 

reliability of such scores have been established. (p. 65) 

Taken together, these two standards imply that before test developers or 

practitioners decide to report subscale scores, they must gather reliability and 

validity evidence in support of such a provision. The evidence may consist of 

logical evidence, procedural evidence, and empirical evidence. The focus of the 

present study is on the empirical sources of evidence, in particular on methods for 
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determining whether reporting student performances on the subscales and the total 

test composed of the subscales is warranted. 

Evidence for reliability consists of determining the internal consistency of 

the test items using Cronbach’s alpha (Cronbach, 1951) and Cronbach’s stratified 

alpha (1965) for the total test if the reporting of subscale scores is found to be 

warranted. Various methods for determining whether subscale scores are distinct 

among each other and, in some cases, from the total test have been developed. 

These include the use of the standard error of the difference between subscale 

scores (Gulliksen, 1951; Kelley, 1923; Lord & Novick, 1968; Ryan, 2003), 

correlations corrected for attenuation due to unreliability of the measures 

(Haladyna & Kramer, 2004; Harris & Hanson, 1991; McPeek, Altman, Wallmark, 

& Wingersky, 1976), factor analytic procedures (Grandy, 1992; McPeek et al., 

1976), augmented scores (Edwards & Vevea, 2006; Wainer, Sheehan, & Wang, 

2000), objective performance index (Yen, 1987), statistical model fit (Harris & 

Hanson, 1991), and proportional reduction of the mean squared error (Haberman, 

2005, 2008; Sinharay, Haberman, & Puhan, 2007). However, the methods used 

most recently in large-scale assessment are correlation-based methods, namely 

correlations corrected for attenuation due to unreliability of the measures (r´) and 

proportional reduction of the mean squared error (PRMSE) (Haberman, 2005, 

2008; Haberman et al., 2009; Haladyna & Kramer, 2004; Harris & Hanson, 1991; 

Lyren, 2009; McPeek et al., 1976; Sinharay et al., 2007; Sinharay et al., 2009; 

Sinharay, 2010). 
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For the r´ method, if correlation coefficients corrected for attenuation due 

to unreliability in measures are equal to or greater than 0.90 (McPeek et al., 

1976), then it is concluded that students’ performances in terms of their ranked 

positions on pairs of subscales and/or subscale–total test pairs are not different 

and thus, reporting of subscale scores is not warranted. For example, Haladyna 

and Kramer (2004) used the r´ method to determine whether subscale scores on a 

basic biomedical science test revealed any differences in examinees’ 

performances. They found that the corrected correlations were higher than 0.90, 

suggesting a high degree of similarity in examinees’ performances on the 

subscales of the test. However, a problem with this method is the use of the 

observed subscale score on its own and as a part of the total test score to estimate 

the correlation between the two true scores. 

 For the PRMSE method (Haberman, 2005, 2008), if the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 for the 

true subscore when linearly predicted from the observed subscore is greater than 

the 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 for the true subscore when linearly predicted from the observed total 

score, then it is concluded that the true student performances on the subscale are 

better predicted by the observed subscores than by the observed total scores. In 

this case, student performances on the subscale are concluded to differ from 

student performances on the total test. Otherwise, student performances on both 

the subscale and the total test are concluded to be comparable. For example, 

Haberman (2008) used the PRMSE method to determine whether or not the 

subscale scores on SAT I “had added value over and above the value of the total 

score.” He reported that “none of the section scores of SAT I math or SAT I 
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verbal provide any appreciable information concerning an examinee that is not 

already provided by the math or verbal total score” (p. 221). Haberman’s 

procedure was developed to determine if a subscale “added value” over the total 

test. As with the correlations, a problem with this procedure is the use of the 

observed subscale score on its own and as a part of the total test score to predict 

the true subscale score. Hence, as with the r´ method, there is an overlap between 

the two separate predictors in the PRMSE method. This raises the question of 

whether, in addition to predicting value, the PRMSE method can be used for 

determining whether subscale scores have diagnostic value. 

As mentioned earlier, both the r´ and PRMSE methods are group level 

methods that are based on correlations. Correlations are high when examinees’ 

scores on two measures – two subscales or a subscale and the total test – rank 

examinees similarly. Correlations do not reflect whether or not the scores on two 

measures agree. Given this, a measure that takes into account actual differences in 

individual student performances on subscales should be used to determine 

whether or not reporting of subscores is warranted.  

Kelley (1923) developed a two-step agreement method that takes into account 

score differences and allows determining ‘probable errors’ of the judgements 

made about score differences for individual students. First, working with 

standardized scores (i.e., z-scores (μ = 0 and σ = 1)) to account for differences in 

the means and standard deviations of two measures, Kelley defined the difference 

between two observed standard scores for an individual student as:  

𝑑𝑖 = 𝑠𝑖𝑗 − 𝑠𝑖𝑗′ , 
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where 𝑠𝑖𝑗 is the observed standard score of student i on subscale j,  

𝑠𝑖𝑗′ is the observed standard score of student i on subscale j’, and  

𝑑𝑖  is the difference between the two observed standard scores of student i. 

Recognizing that the two values (i.e., 𝑠𝑖𝑗 and 𝑠𝑖𝑗′) would differ by chance, 

Kelley developed the formula for the standard error of the difference due to 

measurement error present in each of the two subscales. The standard error of the 

difference, 𝜎𝑑,∞𝜔, is given by: 

𝜎𝑑,∞𝜔 =  �2 − 𝛼𝑠𝑗 − 𝛼𝑠𝑗′, 

where 𝛼𝑠𝑗  and 𝛼𝑠𝑗′  are reliabilities (Cronbach’s alpha) of subscales j and j’, and 

           ∞ and 𝜔 are the true scores of student i on subscales j and j’, respectively. 

According to Kelley (1923), “this formula fills a long felt need since it makes 

possible the determination of the probable errors of our judgments of difference of 

abilities within the individual” (p. 325). Noting that the difference scores were 

essentially normally distributed, Kelley defined the probable error of an individual 

difference as:  

𝑃𝐸 = 0.6745�2 − 𝛼𝑠𝑗 − 𝛼𝑠𝑗′, 

 
where the terms are defined as above. The value of 0.6745 in the PE formula 

refers to the 75th percentile when positive and the 25th percentile when negative in 

a normal distribution. Thus, the probable error captures the middle 50% of the 

scores in a normal distribution. If the difference between the two standard scores 

of student i (i.e., 𝑑𝑖) exceeds the probable error, then some sort of intervention to 
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increase learning for the subject area measured by the subscale with the lower 

score would be warranted. 

Next, Kelley (1923) demonstrated that “if the distribution of differences 

for the entire population of students should have the same standard deviation as 

this [the standard error of the difference], then, obviously, the obtained 

differences are no greater than chance indicates” (p. 329). In order to determine 

this, the ratio of the standard error of the difference, 𝜎𝑑,∞𝜔, to the standard 

deviation of differences, 𝜎𝑑, is computed and subsequently used to determine the 

proportion of differences in excess of the chance (Table IV in Kelley (1923), p. 

330): 

𝐾𝑒𝑙𝑙𝑒𝑦′𝑠 𝑟𝑎𝑡𝑖𝑜 =  𝜎𝑑,∞ 𝜔
𝜎𝑑

=  
�2−𝛼𝑠𝑗−𝛼𝑠𝑗′

�2−2𝜌𝑠𝑗𝑠𝑗′

 , 

where 𝜌𝑠𝑗𝑠𝑗′ is the correlation between measures j and j’, and 

𝛼𝑠𝑗  and 𝛼𝑠𝑗′  are reliabilities (Cronbach’s alpha) of measures j and j’. 

To summarize, with the mandate expressed in the Standards for 

Educational and Psychological Testing (AERA, APA, & NCME, 1999) on 

determining the distinctiveness of scores, assessment programs must gather 

validity evidence in support of their decisions to report subscale scores on their 

assessments in addition to the total score. Although correlational and agreement 

methods have been used by large-scale assessment programs for this purpose, 

these methods have not been studied systematically to determine the properties 

and performances of these methods while keeping certain conditions (i.e., data 
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source, sample size, subject area, number of subscales and their psychometric 

properties) constant.  

Purpose of the Study 

The purposes of the present study are to determine whether 

1. the correlations corrected for attenuation, proportional reduction of the 

mean squared error, and the agreement methods lead to the same or 

different decision regarding the reporting of subscale scores; and 

2. the statistics used for each method are accurate and precise.  

Delimitations of the Study 

The data used in the present study were obtained from the Education 

Quality and Accountability Office (EQAO) in the province of Ontario. The data 

were students’ scores on the items included in the Junior (Grade 6) Reading and 

Mathematics 2009 assessments. The EQAO assessments administered at other 

grade levels (i.e., Primary Division (Grades 1– 3), Grade 9) and assessments 

administered by other agencies were not considered in this study. Therefore, the 

results obtained in the present study apply to the Junior Reading and Mathematics 

assessments administered in 2009. 

Definition of Terms 

Achievement test. A test used to evaluate the extent of knowledge or skill 

attained by a test taker in a content domain in which he/she has received 

instruction (adapted from AERA, APA, & NCME, 1999). 
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Domain. A set of knowledge and skills to be measured by an achievement 

test, often organized into categories (i.e., sub-domains) to which test items are 

referenced (adapted from AERA, APA, & NCME, 1999). 

Subscale, subscale score. In an achievement test, the set of items 

referenced to a sub-domain is usually referred to as a subtest or subscale, with the 

scores derived from a subscale called subscale scores. In this study, subscale 

scores and subscores are used interchangeably to distinguish these scores from the 

total test score. Similarly, subtests and subscales are used interchangeably.  

Dimensionality. Dimensionality refers to the conceptual homogeneity or 

heterogeneity of the content being measured. If the content is unidimensional, a 

single test score derived from a relatively homogeneous set of items is reported. 

Multidimensional content often consists of several sub-domains, for which 

separate scores can be reported (adapted from Schmeiser & Welch, 2006, p. 318).  

Validity. Validity is an integrated evaluative judgement of the degree to 

which empirical evidence and theoretical rationales support the adequacy and 

appropriateness of inferences and actions based on test scores or other modes of 

assessment (Messick, 1989, p. 13).  

Content-related evidence. “Evidence based on test content” is referred to 

as content-related evidence (AERA, APA, & NCME, 1999). Such evidence 

supports the test content as being representative of the important aspects of the 

curriculum being taught (Phillips, 1993) and the test as a representative sample of 

the content domain (Schmeiser & Welch, 2006, p. 313). 
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Reliability. The degree to which test scores for a group of test takers are 

consistent over repeated applications of a measurement procedure; the degree to 

which scores are free of errors of measurement for a given group (adapted from 

AERA, APA, & NCME, 1999).  

Standard error of measurement (SEM). The standard error of 

measurement is the standard deviation of errors of measurement, with the error of 

measurement being the difference between an obtained score and its theoretical 

true score counterpart.  

Organization of the Dissertation 

 The background of the problem, the purpose of the study, delimitations of 

the study, and definition of terms were outlined in Chapter I. Chapter II contains a 

review of the methods used for determining whether subscore reporting is 

warranted on large-scale assessments, followed by a review of research studies in 

which these methods were used. A discussion of the agreement method concludes 

the chapter. The methods used to address the problem, including the description 

of the data, design, and analyses, are outlined in Chapter III. The results and 

discussion of the results are provided in Chapter IV for the English Reading 

assessment and Chapter V for the Mathematics assessment. Chapter VI includes 

the summary of the purposes, research method, and analyses, summary of 

findings, explanation of findings, conclusions, implications for practice, and 

recommendations for future research. 
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CHAPTER II: LITERATURE REVIEW 

 The literature reviewed in this chapter has specific relevance to the 

theoretical framework established in this study to compare different methods for 

determining whether reporting of subscale scores is warranted in large-scale 

assessments. The chapter is organized in two main sections. In the first section, 

the definition of a subscale score is provided and the purposes and uses of 

subscale scores are considered. The development of subscale scores is outlined 

next, followed by the psychometric criteria used in subscore reporting. The 

second section of this chapter contains a critical review of research pertaining to 

methods considered in this dissertation for determining whether reporting of 

subscale scores is warranted in large-scale assessments. Within this section, the 

research related to the use of correlations corrected for attenuation is provided 

first, followed by the use of the proportional reduction of the mean squared error 

and the agreement method.  

Defining Subscale Scores 

 Assessment results can be reported in the form of either one total test score 

or a set of scores composed of subscale scores and the total test score. The 

common practice has been to report only the total score as a summary of 

proficiency with respect to an entire domain of knowledge and skills. However, in 

light of increasing interest in diagnostic assessments, large-scale assessment 

agencies have turned their attention to the generation and reporting of subscale 

scores in addition to the total score (Bock, Thissen, & Zimowski, 1997; Gessaroli, 

2004; Kahraman & Kamata, 2004; Sinharay, Haberman, & Puhan, 2007; 
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Sinharay, 2010; Tate, 2004; Wainer et al., 2000; Yao & Boughton, 2007; Yen, 

1987). 

A subscale is typically defined by a group or subset of test items that 

measure one attribute or trait among the number of attributes or traits measured by 

the total test. Examples include subscales that are based on content categories or 

strands within one subject matter area (e.g., subscales for algebra and geometry in 

a mathematics test) and subtests in a test battery (e.g., subtests in intelligence 

batteries). Scores derived from subscales and subtests are commonly referred to as 

subscale scores. Other names found in literature include subtest scores, subscores, 

profile scores, diagnostic scores, and trait scores. For example, in assessments of 

writing, subscores are also referred to as trait scores (Dorans, 2005). 

Purposes and Uses of Subscale Scores 

 Wainer et al. (2001) stated that the two most common uses of assessments 

are ranking students and diagnosing students’ strengths and weaknesses. In 

addition to reporting the total test score, reporting subscale scores is desirable for 

a number of important reasons (Haberman, Sinharay, & Puhan, 2006). First, while 

total scores provide information for the total domain of interest, scores on 

identifiable subsections of a test (i.e., subscales) may be used to provide feedback 

specific to the corresponding content areas that together comprise the total 

domain. These subscores are included to provide detailed diagnostic information 

that may be useful in making individual instructional placement and remediation 

decisions as well as for improving curriculum, instruction, and learning. For 

example, unsuccessful candidates or failing students want to know their strengths 
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and weaknesses in different content areas so that they, together with their teacher 

and parents, can plan future remedial work. Similarly, academic institutions such 

as schools, colleges, and universities want a profile of performance for their 

graduates so that they can evaluate their training programs and curriculum 

effectiveness and, thus, better focus their efforts on areas that need instructional 

improvement (Haladyna & Kramer, 2004).  

Colleges and universities also use course marks and subscale scores to 

help make admission decisions, particularly when there are a number of 

applicants with identical or almost identical total scores on admission tests and 

who are similar on other factors considered for admission purposes (i.e., GPA, 

educational background). Similarly, employers want to be able to use subscores 

when hiring employees based on individual skills and proficiencies. They may 

also use subscores from tests administered to their employees to identify areas in 

need of remediation and/or professional development. 

 Finally, there is substantial pressure from the public to limit the number of 

tests students take, so that more time is devoted to instruction (Monaghan, 2006). 

Further, educational authorities want to see a reduction in the resources and 

expenses associated with the administration of assessments. Consequently, 

obtaining as much information as possible from an assessment is a desired 

outcome. As Monaghan (2006) noted, “the thinking is that assessment 

organizations obtain a vast amount of data from their tests that they can then 

compartmentalize to report on the individual skills of a test taker” (p. 2). This 
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being the case, subscore reporting is often seen as one of the ways to extract 

maximum information with minimum testing time. 

Development of Subscale Scores 

Whether or not to generate and report subscale scores should ideally be 

established at the beginning of the test development process, when a test 

developer or a client asserts that the content domain of the test is intended to be 

multidimensional or unidimensional (Haladyna & Kramer, 2004). At the stage of 

defining the construct or domain to be measured by the test, the test developer or 

client decides whether subdomains are real and important (i.e., a multidimensional 

view) or irrelevant (i.e., a unidimensional view).  

Clearly, subscores only have meaning in the multidimensional case. 

Luecht et al. (2006) argued that “inherently unidimensional item and test 

information cannot be decomposed to produce useful multidimensional score 

profiles – no matter how well intentioned or which psychometric model is used to 

extract the information” (p. 6). In the multidimensional case, the identification 

and definition of the subdomains for which subscores are to be reported must first 

be established. The subsequent activities in developing a test (i.e., task analysis, 

test specifications, test design, item development) should reflect the 

multidimensional nature of what is to be assessed and reported. According to 

Haladyna and Kramer (2004), the logical and procedural evidence for supporting 

the argument for test multidimensionality must be supported by empirical 

evidence to ensure the valid interpretation and use of reliable subscores.  
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Empirical evidence to support the reporting of subscores is also required 

for already existing assessment programs, which at the time of their development 

had no explicit goal to report subscores to examinees (Monaghan, 2006). Since 

the primary purpose of these assessment programs was not necessarily to provide 

diagnostic information but rather an overall indication of performance to 

examinees, reporting of subscores was not included in the design specifications of 

such assessment programs. However, given the emphasis on accountability and 

the need to improve curriculum and instruction, assessment agencies feel 

increased pressure or are, in fact, required “to report subscores with these 

programs regardless of the primary purpose of the assessments” (Monaghan, 

2006, p. 2). 

Psychometric Conditions and Criteria for Reporting Subscale Scores 

Although subscale scores may be desired, there are important conditions 

and criteria that should be considered before deciding to report subscores. In 

particular, three psychometric conditions must be satisfied: 

1. The test items in each subscale must be relevant to and representative 

of the construct being measured by the corresponding subscale 

(Messick, 1989).   

2. The reliability and the standard error of measurement must be 

adequate for each subscale (AERA, APA, & NCME, 1999; Tate, 2004; 

Wainer et al., 2001). 
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3. The scores that capture student performance on each subscale (i.e., 

subscores) must provide different information among themselves and 

add information over and above the information that is summarized by 

the total score (Dorans, 2005; Haberman, 2005). 

The first condition, that the items in a subscale must be relevant to and 

representative of the corresponding subscale, is addressed by using the 

professional judgment of qualified experts such as teachers, principals, curriculum 

specialists, and subject matter experts. Their qualifications include: knowledge of 

the curriculum, including both the content to be learned and the knowledge and 

cognitive skills to be acquired by the students; and the knowledge of the nature of 

the students who are expected to learn the curriculum and will be assessed by the 

assessment instrument. Once selected, the committees of qualified experts are 

asked to assess (a) the relevancy of the items referenced to each subdomain and 

(b) the representativeness of the relevant items for each subdomain to ensure that 

the subscale scores can be validly interpreted. Following this, test items should be 

sent to teachers who administer the items in their classes to determine if the items 

work as intended (i.e., students understand the items and their responses 

correspond to the behaviours called for when the items were developed).  

The second condition pertaining to the adequate reliability of each 

subscale is addressed by including a sufficient number of test items that assess the 

given knowledge or cognitive skill to produce a stand-alone score for each 

subdomain. Wainer et al. (2001) and Tate (2004) emphasized the importance of 

ensuring that subscale scores be sufficiently reliable or, alternatively, that the 
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standard error of measurement (in classical test theory) or the standard error of 

estimate (in item response theory) be small in order to minimize incorrect 

decisions. Given that tests are usually administered on one occasion, measures of 

internal consistency are used to estimate the reliability of scores. When the 

classical test score model is used, Cronbach’s alpha is computed together with the 

standard error of measurement. When the item response models, both 

unidimensional and multidimensional, are used, the standard error of estimate for 

the ability estimate, θi, for each student or around the cut-score are considered. In 

1972, when the Educational Testing Service (ETS) began reporting subscale 

scores for the Graduate Record Examinations (GRE), only subscores that attained 

a reliability of at least 0.80 were reported to examinees for admission purposes 

(McPeek et al., 1976). However, McPeek et al. (1976) suggested that if subscores 

were to “be used only for guidance and placement purposes, the statistical 

standards for reliability could be greatly reduced” (p. 3) because “guidance and 

placement decisions are perceived reversible, whereas admissions decisions 

generally are not” (p. 1). Salvia and Ysseldyke (2001) recommended that the 

minimum reliability value be set at 0.60 for reporting subscores at the group level. 

The third condition that subscale scores provide different information 

among themselves and between each subscale and the total test is addressed by 

determining whether there are real differences in student performances on the 

pairs of subscales and subscale–total test pairs. Dorans (2005) and Haberman et 

al. (2006) considered the second and third conditions together, and indicated that 

frequently subscale scores provide information that is not reliable and/or is 
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redundant with the information captured by the total score, with the problem 

being even more serious in cases when assessments were not specifically designed 

to report subscores. 

Further, Standard 1.12 of the Standards for Educational and 

Psychological Testing (AERA, APA, & NCME, 1999) states:  

When interpretation of subscores, score differences, or profile is 

suggested, the rationale and relevant evidence in support of such 

interpretation should be provided. Where composite scores are 

developed, the basis and rationale for arriving at the composites 

should be given. (p. 20) 

In other words, if more than one score is to be reported on an assessment, 

the distinctiveness of the separate scores must be demonstrated. In 

addition, Standard 5.12, which also applies to subscale scores, states:  

When group-level information is obtained by aggregating the 

results of partial tests taken by individuals, validity and reliability 

should be reported for the level of aggregation at which results 

are reported. Scores should not be reported for individuals unless 

the validity, comparability, and reliability of such scores have 

been established. (p. 65) 

What these two standards imply is that before test developers or practitioners 

decide on what scores to report they must gather validity evidence in support of 

such a provision. Such validity evidence may consist of logical evidence, 

procedural evidence, and empirical evidence (see Haladyna & Kramer, 2004). 
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Accordingly, the focus of the present study is on the empirical sources of 

evidence, in particular on the methods for determining whether reporting student 

performances on the subscales and the total test composed of the subscales is 

warranted. 

Methods for Determining Whether Reporting of Subscale Scores is 

Warranted in Large-scale Assessments 

Different statistical procedures have been developed for determining 

whether reporting of subscale scores is warranted in large-scale assessments. In 

the framework of the classical test theory (CTT), such methods include: 

• zero-order correlations for the pairs of subscales and subscale–total 

test pairs (Haladyna & Kramer, 2004; Sinharay, Haberman, & Puhan, 

2007; Tate, 2004); 

• correlations corrected for attenuation due to unreliability for the pairs 

of subscales and subscale–total test pairs (Gulliksen, 1967; Haladyna 

& Kramer, 2004; Harris & Hanson, 1991; Lord & Novick, 1968; 

McPeek et al., 1976); 

• proportional reduction of the mean squared error (PRMSE) when 

predicting the true subscale score from the observed subscale score 

and the observed total score using linear regression for approximation 

(Haberman, 2005, 2008; Lyren, 2009; Sinharay et al., 2007; Sinharay 

et al., 2009; Sinharay, 2010); 
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• agreement method based on the ratio of the standard error of the 

difference due to measurement error and the standard deviation of the 

difference (Gulliksen, 1951; Haladyna & Kramer, 2004; Kelley, 1923; 

Lord & Novick, 1968; Ryan, 2003); 

• factor analysis, including both exploratory and confirmatory factor 

analytic procedures (Grandy, 1992; Haladyna & Kramer, 2004; 

McPeek et al, 1976); 

• reliabilities of augmented scores compared to the reliability of the total 

score (Edwards & Vevea, 2006; Wainer, Sheehan, & Wang, 2000); 

and 

• fitting a statistical model (Harris & Hanson, 1991). 

In the present study, the following methods were considered:  

• correlations corrected for attenuation due to unreliability (r´) for the 

pairs of subscales and subscale–total test pairs; 

• proportional reduction of the mean squared error (PRMSE) when 

predicting the true subscale score from the observed subscale score 

and the observed total score; and 

• agreement method based on the ratio of the standard error of the 

difference due to measurement error and the standard deviation of the 

difference. 

The two correlational methods were selected because they are the most 

common methods used by large-scale assessment agencies, both when the test is 

explicitly constructed to be multidimensional and when the test is implicitly 
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considered multidimensional (Haberman, 2005, 2008; Haberman et al., 2009; 

Haladyna & Kramer, 2004; Harris & Hanson, 1991; Lyren, 2009; McPeek et al., 

1976; Sinharay et al., 2007; Sinharay et al., 2009). These methods are 

conceptually similar in that they are based on correlations, which focus on the 

similarity of students’ rankings on the two measures being correlated. 

In contrast to the correlational methods, the agreement method focuses on 

actual differences between standardized scores on any two measures. Given this, 

the two correlational methods and the agreement method can be contrasted for 

their capability in detecting differences in student performances on subscales that 

otherwise would not be captured if only the total score was used in reporting the 

general level of student performance. What follows next is a description of the 

selected correlational methods (i.e., r´ and PRMSE) and the agreement method 

and a review of the research using these methods with large-scale assessments. 

 
Correlations Corrected for Attenuation (r´) 

 
  In the context of subscore reporting, the method of correlations corrected 

for attenuation involves, first, computing zero-order correlation coefficients for 

the pairs of subscales and subscale–total test pairs, and then, using Spearman’s 

(1904) formula, correcting the observed correlation coefficients for attenuation 

due to unreliability in subscales and the total test. The basic formula for 

computing a correlation coefficient corrected for attenuation is given by: 

𝜌𝜏𝑗𝜏𝑗′ =  𝜌𝑗𝑗′
�𝜌𝑗𝜌𝑗′

 , 
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where 𝜌𝜏𝑗𝜏𝑗′  is the correlation between the true scores on measures j and j’ or the 

correlation corrected for attenuation between two measures (i.e., two 

subscales or a subscale and the total test),  

𝜌𝑗𝑗′ is the uncorrected (i.e., observed) correlation between the two 

measures, and  

 𝜌𝑗and 𝜌𝑗′ are the reliabilities of the j and j’, respectively. 

Given the subscales and the total test are administered on one occasion, reliability 

estimates are determined for one occasion using Cronbach’s alpha coefficient.   

If the corrected correlations for the pairs of subscales and subscale–total 

test pairs are high, then it is concluded that students’ performances in terms of 

their ranked positions on the pairs of measures are not different and thus, 

reporting of subscale scores is not warranted. However, in the case of the 

correlation between subscale scores and the total test scores, a certain degree of 

correlation is expected, given that each subscale consists of a subset of items that 

are part of the total test. As Monaghan (2006) noted, “the total score and 

subscores often share such a high degree of correlation that one could more 

reasonably predict the subscores a person would receive on different forms of the 

test from the score on the whole test than from the test taker’s subscore” (p. 3). 

Consequently, high subscale–total test correlations are expected. Longford (1990) 

provided the following recommendation for evaluating the usefulness of reporting 

subscores when using the method of corrected correlation coefficients:  

The “true” subscores underlying the observed subscores are often 

highly correlated. If two true subscores, related to different 
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domains of ability (subtests), are perfectly correlated, then the 

corresponding observed scores are merely two less reliable 

versions of the true score underlying the aggregate of the two 

subtests. Then it is preferable to provide only the observed score 

for the aggregate, thus simplifying the format of the score report. 

(p. 92) 

When the Educational Testing Service (ETS) began reporting subscale 

scores for the Graduate Record Examinations (GRE) in 1972, corrected 

correlations between the scores on each pair of subscales had to be less than 0.90 

to warrant reporting subscale scores (Chalifour & Powers, 1988; McPeek et al., 

1976). Harris and Hanson (1991) used the r´ method with the P-ACT+ (American 

College Testing, 1989), which measures students’ proficiency in English, 

including usage/mechanics and rhetorical skills, and Mathematics, including 

geometry and pre-algebra/algebra, to determine if the English and Mathematics 

subscores provided “different and better information for examinee-level 

[placement] decisions” than the total score. Three forms of the P-ACT+ were 

administered to randomly equivalent groups of Grade 10 examinees, with 

approximately 2,000 examinees administered each form. Harris and Hanson 

(1991) reported that the values of uncorrected zero-order correlations ranged 

between 0.67 and 0.79 and the values of the corrected correlations ranged from 

0.94 to 0.98. They concluded that “the fact that the disattenuated correlations 

range from 0.94 to 0.98 suggest that the subscores are not measuring distinct 

constructs” (Harris & Hanson, 1991, p. 7). 
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In a later study, Haladyna and Kramer (2004) used the r´ method to 

determine whether reporting subscale scores was warranted for a basic biomedical 

science test that was included as a part of the examination program for dentists 

(Joint Commission on National Dental Examinations, 2004). The number of 

examinees was 6,390. The values of the uncorrected correlation coefficients 

ranged between 0.76 and 0.87 and the values of the corrected correlation 

coefficients ranged from 0.83 to 0.94. Haladyna and Kramer (2004) concluded 

that high correlations indicated a high degree of common variance among the 

subscale scores. Attempting to explain the high degree of common variance, they 

noted that “…all cognitive tests tend to tap general intelligence, which may, in 

part, account for high correlations among all cognitive measures” (p. 361). They 

added that the fact that all the candidates received comparable intensive 

instruction also contributed to the high correlations. However, if McPeek et al.’s 

(1976) recommendation was taken, the scores on three pairs of subscales, namely 

the pairs of the dental anatomy and occlusion subscale with the anatomic anatomy 

sciences, biochemistry and physiology, and microbiology and pathology 

subscales, would have been determined to be distinct because the corrected 

correlations for these pairs were below 0.90. 

Although computationally simple and relatively easy to explain to non-

measurement audience, the method of correlations corrected for attenuation for 

the pairs of subscales and subscale–total test pairs has a major limitation. As a 

group level statistics, a correlation coefficient, either uncorrected or corrected, 

indicates the extent to which the rankings of students on two measures are 
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consistent. It does not, however, reveal whether the actual scores on two measures 

are similar or different in value.   

Proportional Reduction of the Mean Squared Error (PRMSE) 

The PRMSE method is a more recent correlation-based procedure that has 

been extensively used with large-scale assessments. Taking the classical test 

theory (CTT) perspective that the true subscale score, st, can be estimated from 

the observed subscale score, s, or the total score, x, Haberman (2005, 2008) 

developed the PRMSE method for determining if subscale and total test scores 

differed.  

The PRMSE method (Haberman, 2005, 2008) involves the following 

computations for each subscale. First, two estimates of the true subscale score, st, 

are obtained: 

(i) an estimate based on the observed subscale score, s, where the estimated 

true subscale score, ss, is predicted by its regression on the observed 

subscale score: 

𝑠𝑠 = �̅� + 𝛼(𝑠 − �̅�),  

where �̅� is the average subscale score for the group of examinees, and  

          𝛼 is the reliability of the subscale. 

(ii) an estimate based on the observed total score, x, where the estimated true 

subscale score, sx, is predicted by its regression on the observed total 

score: 

𝑠𝑥 = 𝑠 � + 𝑐(𝑥 − �̅�), 

where �̅� is the average total score, and 
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c is a constant that depends on the reliabilities and standard 

deviations of the subscale and the total test and the correlation of the 

subscale and the total test (for the computation of c see Haberman 

(2005)).  

Next, the proportional reduction of the mean squared error (PRMSE) is 

computed for each estimate. For the estimate based on the observed subscale 

score ss, the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 is given by: 

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 =
𝜎2(𝑠𝑡)− 𝐸(𝑠𝑠 − 𝑠𝑡)2

𝜎2(𝑠𝑡)
, 

 
 

where 𝐸(𝑠𝑠 − 𝑠𝑡)2 is the mean squared error (MSE) for the estimate ss and defined 

as:  

𝐸(𝑠𝑠 − 𝑠𝑡)2 = 𝜎2(𝑠𝑡)[1 − 𝜌2(𝑠𝑡, 𝑠)], 

where σ2(st) is the variance of the true subscale score, st, and which is a product  

 of the observed subscale score variance and the subscale reliability (see 

Sinharay et al., 2007), and  

𝜌2(𝑠𝑡, 𝑠) is the subscale reliability.  

The PRMSE for the estimate based on the observed total score, 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 , is 

defined similarly: 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 =
𝜎2(𝑠𝑡)− 𝐸(𝑠𝑥 − 𝑠𝑡)2

𝜎2(𝑠𝑡)
, 

where 𝐸(𝑠𝑥 − 𝑠𝑡)2 is the mean squared error (MSE) for the estimate sx and defined 

as:  

𝐸(𝑠𝑥 − 𝑠𝑡)2 = 𝜎2(𝑠𝑡)[1 − 𝜌2(𝑠𝑡,𝑥)], 
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where σ2(st) is the variance of the true subscale score, st, and which is a product 

of the observed subscale score variance and the subscale reliability (see 

Sinharay et al., 2007), and 

𝜌2(𝑠𝑡,𝑥) is the reliability of the total test.  

Haberman (2005, 2008) showed that the value of 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 is equal to the 

subscale reliability. He further explained that for a subscale to have added value, 

it should provide a more accurate prediction of the construct it purports to 

measure than the total test. If the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 is less than the 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, then the 

subscale score does not provide added value over the total test score because, in 

this case, the total test score is a more accurate estimate of the true subscale score 

than the subscale score.  

Sinharay et al. (2007) used the PRMSE method to determine whether 

reporting of subscale scores was warranted for a basic skills test administered to 

prospective and practicing teacher’s aides. The numbers of examinees for the two 

test forms were 3,240 and 2,331. Since the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 was consistently smaller than 

the 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, Sinharay et al. concluded that reporting of either the subscale scores 

(i.e., reading skills, reading application, mathematics skills, mathematics 

application, writing skills, and writing application) or the combined subscores for 

reading, mathematics, and writing was not warranted. In a later study, Haberman 

(2008) applied the PRMSE method to the subscores on the SAT I, which is used 

for college admission. The sample size of the SAT I test-takers was not indicated 

in the study. Haberman (2008) reported that “none of the section scores of SAT I 

math or SAT I verbal provide any appreciable information concerning an 



WARRANT OF SUBSCORE REPORTING IN LARGE-SCALE ASSESSMENTS 
 

28 
 

examinee that is not already provided by the math or verbal total score” (p. 221). 

Similarly, Puhan, Sinharay, Haberman, and Larkin (2008) used the PRMSE 

method to examine subscores for eight teacher certification tests that represented a 

broad range of subject and skill areas, including elementary education, 

mathematics, social studies, science, and foreign languages. The test-takers were 

prospective and beginning teachers, entry-level principals, and other school 

leaders. The total number of examinees for each of the eight tests ranged from 

2,154 to 31,001. Like Sinharay et al. (2007) and Haberman (2008), Puhan et al. 

(2008) concluded that the subscale scores provided no information beyond what 

was already captured by the total score.  

Lyren (2009) examined subscores on a Swedish college admission test 

(SweSAT). The data consisted of examinees’ scores from five consecutive 

administrations of the SweSAT, a norm-referenced, multiple-choice test with five 

subscales: vocabulary, Swedish reading comprehension, English reading 

comprehension, data sufficiency, and diagrams, tables and maps. The number of 

test-takers ranged from 26,610 to 41,530 for the five administrations. Using the 

PRMSE method, Lyren (2009) found that, for the SweSAT, all but one of the 

subscores added value beyond the value provided by the total score. In particular, 

except for the Swedish reading comprehension, the observed subscale scores were 

better estimates of the true subscale scores than the observed total score. Lyren 

(2009) concluded that the total score, being a composite of the subscale scores, 

was a more reliable measure of Swedish reading comprehension than the 

corresponding subscale score. As a possible explanation, Lyren (2009) suggested 
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that this result could be attributed to the fact that the rest of the SweSAT 

subscales, in addition to measuring distinct sub-domains, required a certain degree 

of reading comprehension, making the total score a better estimate of the true 

subscore of reading comprehension. This was confirmed by a study of the latent 

structure of the SweSAT (Lyren, 2009).    

Based on their work, Haberman (2005) and Sinharay et al. (2007) 

concluded that “subscores are most likely to have value if they have relatively 

high reliability by themselves and if the true subscale score and the true total 

score have only a moderate correlation. Both conditions are important” (Sinharay 

et al., 2007, p. 28). Given this, Sinharay et al. (2007) noted that the PRMSE 

method is likely to provide support for the reporting of subscale scores “for tests 

with reasonably large number of items in each subcategory and composed of 

distinct subcategories” (p. 28). The former condition ensures higher subscore 

reliabilities, while the second condition ensures moderate correlation of each 

subscale with the total test. However, reliability is contingent upon the number of 

items included in a test and item discriminations, with higher values contributing 

to higher reliability. Despite this, including items with lower discrimination may 

be required to fill in gaps in the test specifications as dictated by the curriculum or 

due to a low inventory in the item bank (Haladyna & Kramer, 2004). Further, in 

the PRMSE method, the focus is on the added value of each subscore over the 

total score. Given this, this method fails to address the question of whether or not 

subscores are distinct among each other. Yet another potential problem with the 

PRMSE method is the use of the observed subscale score on its own and as a part 
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of the total test score to predict the true subscale score. This creates an overlap 

between the two separate predictors. Finally, the PRMSE method is based on 

correlations and, as mentioned earlier, correlations are high when the scores on 

two measures rank students similarly. That is, the actual differences between the 

scores on each subscale and the total test are not taken into account in this 

method. Given the limitations associated with the two correlational methods (i.e., 

r´ and PRMSE), it is proposed that Kelley’s (1923) agreement method that takes 

into account the actual agreement between score values might be better used to 

determine whether subscore reporting is warranted. This method is reviewed next.  

Agreement Method 

Kelley (1923) developed a two-step agreement method. As the first step, 

Kelley proposed that the standard error of the difference be used to determine if 

the score difference for an individual student was greater than what he called the 

“probable error” (p. 325) to conclude that the student’s performances on a pair of 

subscales differ beyond the difference that can be expected due to the errors of 

measurement. As the second step, Kelley demonstrated that “if the distribution of 

differences for the entire population of students should have the same standard 

deviation as this [the standard error of the difference], then, obviously, the 

obtained differences are no greater than chance indicates” (p. 329). These two 

steps are discussed in detail next. 

Step 1 

As mentioned earlier, Kelley’s method is based on the differences between 

each student’s observed standard scores on two measures. The use of standard 
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scores accounts for the differences in the means and standard deviations of each 

subscale and the total test at the group level. If ignored, these differences would 

serve to magnify student differences among subscales. Different standard (scaled) 

scores can be used. Kelley (1923) adopted z-scores. What a standard score 

represents is a student’s deviation from the common mean for each subscale and 

the total test, where the deviation is a function of the student’s level of 

performance on each subscale or a subscale and the total test. If the student’s 

standard scores differ between two subscales or a subscale and the total test, then 

the student’s performance on the measure (i.e., a subscale or the total test) with a 

higher standard score is greater than the student’s performance on the measure 

with a lower standard score. Kelley (1923) defined the difference between two 

observed standard scores for an individual student as:  

𝑑𝑖 = 𝑠𝑖𝑗 − 𝑠𝑖𝑗′ ,  

 

where 𝑠𝑖𝑗 is the observed standard score of student i on subscale j,  

𝑠𝑖𝑗′ is the observed standard score of student i on subscale j’, and  

𝑑𝑖  is the difference between the two observed standard scores of student i. 

If 𝑠𝑖𝑗 is close in value to𝑠𝑖𝑗′ for all n students, then the differences (i.e.,𝑑𝑖) will be 

close to zero. As the values of 𝑠𝑖𝑗 and 𝑠𝑖𝑗′ become more and more distinct (for 

some if not all students), 𝑑𝑖 will increase in value, with larger values implying 

larger differences in student performances on the two measures. 
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Rather than working with observed scores, Gulliksen (1950) suggested 

using estimated true scores, with the difference between the two estimated true 

scores in standard-score form given as: 

𝑑𝜏𝑖 =  𝛼𝑠𝑗𝑠𝑖𝑗 − 𝛼𝑠𝑗′𝑠𝑖𝑗′ =  𝜏𝑖𝑗 − 𝜏𝑖𝑗′ , 

where 𝑠𝑖𝑗 and 𝑠𝑖𝑗′ are defined as above,  

𝛼𝑠𝑗  and 𝛼𝑠𝑗′are reliabilities (Cronbach’s alpha) of measures j and j’,  

𝜏𝑖𝑗 and 𝜏𝑖𝑗′ are estimated true scores of student i on measures j and j’, and 

𝑑𝜏𝑖 is the difference between the two estimated true scores of student i. 

It should be noted that when reliabilities of the two measures are low, the true 

score estimates obtained using Gulliksen’s method tend to regress to the mean. 

However, as the reliabilities of subscales increase, observed scores and true score 

estimates become close in value, leading to no practical difference between the 

results of Kelley’s and Gulliksen’s methods.  

Next, recognizing that the two observed values (i.e., 𝑠𝑖𝑗 and 𝑠𝑖𝑗′) would 

differ by chance, Kelley developed the formula for the standard error of the 

difference due to measurement error present in each of the two subscales when the 

scores were expressed as z-scores (µz = 0; σz = 1). The standard error of the 

difference, 𝜎𝑑,∞𝜔, is given by: 

𝜎𝑑,∞𝜔 =  �2 − 𝛼𝑠𝑗 − 𝛼𝑠𝑗′, 

where 𝛼𝑠𝑗  and 𝛼𝑠𝑗′are reliabilities (Cronbach’s alpha) of subscales j and j’, and 

           ∞ and 𝜔 are the true scores of student i on subscales j and j’, respectively. 
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According to Kelley (1923), “this formula fills a long felt need since it makes 

possible the determination of the probable errors of our judgements of difference 

of abilities within the individual” (p. 325). The probable error of individual 

difference is given by: 

𝑃𝐸 = 0.6745�2 − 𝛼𝑠𝑗 − 𝛼𝑠𝑗′, 

 
where the terms are defined as above. To be considered a real difference, the 

difference between the two standard scores of student i (i.e., 𝑑𝑖) would have to 

exceed the probable error, which means that the difference is above the 75th 

percentile if positive or below the 25th percentile if negative. However, when 

subscale reliabilities are high, it is common to use a minimum difference of one 

standard error of the difference (i.e., 68% confidence level) to identify systematic 

differences for an individual (personal communication, Dr. Troy Janzen, 

November 24, 2010). The lower percent of confidence is adopted in low-stake 

assessments such as those used for instructional guidance, placement, and 

curriculum purposes, because “guidance and placement decisions are perceived 

reversible, whereas admission decisions generally are not” (McPeek et al., 1976, 

p. 1). For the latter type of decisions, that is those made for admission and 

employment purposes, a higher percent of confidence may be adopted to reflect 

the seriousness of the consequences of wrongly concluding a score difference 

when there really is not one.  

It should be noted that in Kelley’s formula for the standard error of the 

difference, the errors of measurement in the two measures are assumed to be 

independent. Kelley developed the formula based on the argument that errors of 
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measurement in the classical test theory are considered random, uncorrelated to 

the true score, and uncorrelated to each other (see also Gulliksen, 1950; Lord & 

Novick, 1968). However, questions have been raised about the assumption that 

the errors of measurement on the two measures for which differences are being 

interpreted are independent. That is, the errors of measurement may be correlated 

(Zimmerman, Brotohusodo, & Williams, 1981; Zimmerman & Williams, 1982; 

Rogosa & Willett, 1983). Zimmerman et al. (1981) provided the following 

formula to estimate the correlation between the errors of measurement for two 

measures j and j’, 𝜌(𝐸𝑠𝑗  𝐸𝑠𝑗′):  

�𝜌𝑠𝑗𝑠𝑗′ −  𝜌(𝐸𝑠𝑗  𝐸𝑠𝑗′) �(1 − 𝛼𝑠𝑗)(1 − 𝛼𝑠𝑗′)� ≤  �𝛼𝑠𝑗𝛼𝑠𝑗′  , 

 
where 𝜌𝑠𝑗𝑠𝑗′ is the correlation between measures j and j’, 

𝛼𝑠𝑗  and 𝛼𝑠𝑗′are reliabilities (Cronbach’s alpha) of measures j and j’, and  

𝜌(𝐸𝑠𝑗  𝐸𝑠𝑗′) 
is the correlation between the errors of measurement (i.e., 

correlated error) for measures j and j’ (p. 182). 

Although the concern with correlated errors has been addressed in the 

measurement theory, “there has not been practical work done in attempts to 

eliminate them [correlated errors] or correct for them in testing. When writers 

acknowledge the possible existence of correlated errors, they tend to downplay 

them or to argue that their effects are not large” (personal communication, Dr. 

Donald Zimmerman, June, 14, 2011)1

                                                      
1 Theoretical work on score differences has been primarily done in the measurement of change 

(Cronbach & Furby, 1970; O’Connor, 1972; Rogosa & Willett, 1983), and research on gain 
scores (Zimmerman & Williams, 1982, 1998). 

. In the context of the present study, 
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correlated errors are likely to be more of a concern when a subscale is included as 

part of another scale, such as when a subscale is part of the total test, than when 

the two subscales do not overlap. 

Step 2 

Next, Kelley (1923) sought to determine the proportion of cases in the 

population in which the score difference, 𝑑𝑖, is so large as to be significant. He 

argued that “if the distribution of differences for the entire population of students 

should have the same standard deviation as this [the standard error of the 

difference, 𝜎𝑑,∞𝜔], then, obviously, the obtained differences are no greater than 

chance indicates” (p. 329). In order to determine this, the ratio of the standard 

error of the difference, 𝜎𝑑,∞𝜔, to the standard deviation of differences, 𝜎𝑑, is 

computed and subsequently used to determine the proportion of differences in 

excess of the chance (Table IV in Kelley (1923), p. 330): 

𝐾𝑒𝑙𝑙𝑒𝑦′𝑠 𝑟𝑎𝑡𝑖𝑜 =  𝜎𝑑,∞𝜔 
𝜎𝑑

=  
�2−𝛼𝑠𝑗−𝛼𝑠𝑗′

�2−2𝜌𝑠𝑗𝑠𝑗′
 , 

where 𝜌𝑠𝑗𝑠𝑗′ is the correlation between measures j and j’, and 

 𝛼𝑠𝑗  and 𝛼𝑠𝑗′are reliabilities (Cronbach’s alpha) of measures j and j’. 

In order for Kelley’s ratio to work, the mean of the reliabilities has to be greater 

than the correlation between the two subscales being compared. The reliabilities 

of subscales that Kelley worked with on the Stanford Achievement battery were 

moderate to high (0.67–0.95), while the intercorrelations for all possible pairs of 

subscales were small to moderate (0.02–0.76). Using the ratio of standard 
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deviations, Kelley (1923) determined that, depending on a pair of subscales, the 

percentages of differences in individual test scores in excess of the chance for 

Grade 8 students (N = 96) ranged from as low as 10% and as high as 44%. 

With respect to practical application of score differences, they have been 

mostly used in psychological and intelligence testing (Anastasi, 1988; Gulliksen, 

1967; Lord & Novick, 1968), with a few studies conducted in the context of large-

scale achievement testing (Haladyna & Kramer, 2004; Ryan, 2003). However, 

rather than following Kelley’s approach (i.e., computing the standard error of the 

difference and Kelley’s ratio), the approach adopted by Ryan (2003) and 

Haladyna and Kramer (2004) involved computing the reliability of the difference 

which was then used to determine the standard error of the difference. With the 

assumption made in the classical test theory about the errors on the two measures 

being independent from each other, the reliability of the difference, 𝜌𝑑, is given 

by: 

𝜌𝑑 =  
𝛼𝑠𝑗−𝛼𝑠𝑗′

2 −𝜌𝑠𝑗𝑠𝑗′

1−𝜌𝑠𝑗𝑠𝑗′
 , 

 
where 𝜌𝑠𝑗𝑠𝑗′ is the correlation between measures j and j’, and 

 𝛼𝑠𝑗  and 𝛼𝑠𝑗′are reliabilities (Cronbach’s alpha) of measures j and j’. 

An artefact is associated with the formula for the reliability of the difference. The 

reliability of the difference can be quite low and may result in a negative value 

even though the reliability of each subscale is quite high. This situation occurs 

when the correlation between the two measures, 𝜌𝑠𝑗𝑠𝑗′ , is quite high. 
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Ryan (2003) examined the subscales in a state assessment of Mathematics at 

Grade 3 and English Language Arts at Grade 8. The reliabilities of the five 

subscales in the Mathematics assessment were between 0.44 and 0.83, whereas 

the reliabilities of the differences in students’ performances (N ≈ 48,000) on the 

subscales ranged from –0.06 to 0.35.  Similarly, the reliabilities of Grade 8 

English/Language Arts four subscales ranged from 0.47 to 0.88, whereas the 

reliabilities of the differences were determined to be between 0.05 and 0.43. Ryan 

concluded that the reliabilities of the differences were well below the level 

acceptable for making inferences about students, which meant that claims about 

students being stronger or weaker in various strands assessed by the two tests 

would be based on differences that were generally not much greater than random 

variation. Nevertheless, although low, the reliabilities of the differences were then 

used to compute standard errors of the differences and construct 95% confidence 

interval around each difference. Ryan (2003) reported that, depending on the pair 

of subscales, approximately 4% to 12% of students had differences that fell 

beyond the 95% confidence interval.  

In a later study, Haladyna and Kramer (2004) examined subscore 

differences using Ryan’s (2003) approach to determine whether reporting of 

subscale scores was warranted for a basic biomedical science. With the 

reliabilities of four subscales ranging from 0.92 to 0.94, which were much higher 

than those reported in Ryan’s study, and the reliabilities of the differences being 

between 0.47 and 0.69, Haladyna and Kramer (2004) determined that, depending 
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on a subscale pair, approximately 35.6% to 70.7% of examinees had subscore 

differences greater than two standard errors. 

To summarize, the expectation in this study, based on the work of 

Sinharay et al. (2007, 2009) and Sinharay (2010), was that the use of the 

agreement method would lead to decisions different from those made using the r´ 

and the PRMSE methods. Given that the ultimate interest as seen in the section on 

the purposes and uses of subscale scores (see pp. 12-14) is in informing individual 

students on their possible strengths and weaknesses to improve learning, the 

agreement method may be superior in that it looks at the differences in 

performances of individual students, which is not possible with either r´ or 

PRMSE methods. Such information can be useful in planning remedial instruction 

for individual students identified as having differences beyond the chance level. 
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CHAPTER III: METHOD 

This chapter describes the method used to determine whether the 

correlations corrected for attenuation, proportional reduction of the mean squared 

error, and the agreement methods lead to the same decision or different decisions 

regarding the reporting of subscale scores, and whether the statistics used for each 

method are accurate and precise. Given the data for this study are obtained from 

the Education Quality and Accountability Office (EQAO), a description of the 

EQAO assessments is provided first, followed by the description of data, research 

design, and statistical analyses. 

Assessments 

The purpose of the EQAO is to ensure greater accountability and better 

quality of education in the schools in Ontario that are publicly funded. As an 

agency at arm’s length to the Ontario provincial government, the EQAO aims to 

provide parents, teachers, and the public with reliable information that can be 

validly interpreted about student achievement. The EQAO also makes 

recommendations for improvement that policy makers at the provincial and board 

levels as well as educators in schools and parents can use to improve learning and 

teaching. To address these purposes, the EQAO assesses student achievement at 

the end of the Primary (Grades 1–3) and Junior (Grades 4–6) divisions (Reading, 

Writing, and Mathematics), Grade 9 (Mathematics), and Grade 10 (Ontario 

Secondary School Literacy Test (OSSLT – Reading and Writing)). These 

assessments, which are in a paper-and-pencil format, are administered in the 

English- and French-languages once a year, except for the Grade 9 assessments, 
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which are administered at the end of each semester in both languages. 

Approximately 120,000 English students and 6,500 French students are 

administered the Primary assessments. The corresponding numbers are 

approximately 128,000 and 6,200 students for the Junior assessments and 

approximately 144,000 and 5,500 students for the Grade 9 assessments. The 

numbers of first-time eligible English-language and French-language students are 

approximately 145,500 and 5,500 for the OSSLT2

The EQAO assessments were selected for this study for two reasons. First, 

like other large-scale assessment agencies, the EQAO is contemplating the 

reporting of subscale scores. As indicated above, the EQAO presently reports the 

percentage of students that achieve the standard of acceptability on each subscale 

at the provincial, board, and school levels. The EQAO’s consideration of score 

reporting by subscale is in response to the feedback from the field and relates to 

. For the Primary, Junior, and 

Grade 9 assessments, the percentages of students at each of five levels of 

achievement (i.e., below 1, 1, 2, 3, and 4) and the percentages of students who 

achieve the acceptable standard (Levels 3 and 4) are reported for each subscale at 

the provincial, board, and school levels. For the OSSLT, the scale scores for 

students performing below the passing score are reported both to schools and 

students in addition to the percentages of students who did and did not achieve the 

passing score. The students who score below the passing score are also provided 

with suggestions about how to improve their performance. This type of 

information is not provided for the other assessments. 

                                                      
2  Successful completion of OSSLT is one of 32 requirements for the Ontario Secondary School 

Diploma (OSSD). Students who fail can take OSSLT again the following year. 
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teachers doing the same when interpreting class reports they receive containing 

item responses for the students in their classes. However, the EQAO constructed 

its assessments and tests with the focus on the total score and there has been little 

empirical evidence to support the EQAO decision to report subscale scores. That 

is, no systematic studies have been completed to determine if there is value added 

by subscale scores beyond the reporting of the percentages of students who met 

the acceptable standard. Given this, the EQAO provided the data for the present 

study. 

The EQAO uses both multiple-choice and open-response items in each of 

its assessments. These items are developed by practicing teachers separately in 

English and in French using the corresponding test blueprints for each language 

group. In the test blueprints, measurable curriculum expectations set out in the 

Ontario Curriculum are clustered by topic, and test items are developed for each 

cluster. The teachers are brought together in one location for a two-day item 

writing session for each assessment. The first half day is devoted to training, with 

the training completed by EQAO staff members responsible for the development 

of the assessment instrument. The teachers then write items and share them with 

other teachers writing items referenced to the cluster and the members of the 

EQAO staff responsible for the assessment. Following the writing session, the 

EQAO staff review first-draft items and revise them as needed. The items are then 

sent to the corresponding teachers who wrote the items. The teachers then 

administer the items in their own classroom as part of a cognitive lab. These 

cognitive labs allow item writers to see if the items they wrote are working as 
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intended (i.e., students understand the items and their responses correspond to the 

behaviours called for by each item). Students’ responses are then used to inform 

the editing and refining of the stem and options for multiple-choice items and 

prompts and item-specific scoring rubrics for open-response items. Following 

this, an Assessment Committee, composed of teachers, curriculum specialists and 

subject matter experts selected from across the province, evaluates the revised test 

items for their (a) relevance to and (b) representativeness of each construct 

subdomain to which the items are referenced. Hence, the premise here is that the 

assessments accurately reflect the multidimensionality of the curriculum. 

However, there is no deliberate attempt to ensure that the number of items 

referenced to each subdomain is sufficient to have adequate reliability for the 

corresponding subscales (see pp. 16-17). At the same time, a separate Sensitivity 

Committee, composed of teachers and subject experts representative of the 

province, reviews the items to check for gender bias, reading difficulty, and 

possible offensiveness with respect to a particular sub-population within the entire 

population of students. The final revised items are field-tested as embedded items 

in operational test forms, with a set of field-test items appearing in the same 

places within each test form. Field-test items with acceptable psychometric 

properties and as a set representative of the full domain become operational items 

in the next year and are used to equate the next year’s assessments and the present 

year’s assessments to allow a measure of change between the two years. 

The present study focused on the EQAO Junior assessments of English 

Reading and Mathematics. These annual assessments measure the reading and 
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mathematics skills students are expected to learn by the end of Grade 6. The 

information obtained from these assessments is used to inform educators on 

student achievement in terms of the curriculum expectations outlined in the 

Ontario Curriculum that were assessed by the EQAO. The number of subscales 

varies with each content area. In particular, there are three subscales in English 

Reading and five content subscales and three knowledge and skills subscales in 

Mathematics.  

English Reading 

 In the table of test specifications, the items included in the English 

Reading assessment are divided into three subscales: explicit information (6 

items), implicit information (18 items) and connections (12 items). While the 

items in the explicit information subscale require students to detect and 

understand information and ideas stated explicitly in a variety of text types 

required by the curriculum, the items in the implicit information subscale probe 

students’ understanding of the implicitly stated information and ideas. In the case 

of the items in the connections subscale, the students are expected to demonstrate 

their understanding of text passages by connecting, comparing, and contrasting 

the ideas presented in passages to their own knowledge, experience, and insights 

as well as other texts and the world around them. Thus, the three subscales can be 

ordered in terms of complexity, with the explicit information and connections 

subscales at the lowest and the highest levels of complexity, respectively. The 

total number of items on the English Reading assessment is 36, including 10 
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open-response items scored using a four-point scoring rubrics and 26 

dichotomously scored multiple-choice items. 

Mathematics 

In contrast to the English Reading assessment, the items on the 

Mathematics assessment are referenced by (a) content areas (i.e., strands) and (b) 

knowledge and skills as specified in the mathematics curriculum. Consequently, 

the items on the Mathematics assessment can be arranged into content-based 

subscales or into knowledge and skills subscales. The five content areas include: 

number sense and numeration (8 items involving estimation, rate, ratio, and use of 

fractions), measurement (8 items involving the use of area relationships, 

understanding of the dimensions of the shapes needed to calculate their areas, and 

the conversion of metric area units), geometry and spatial sense (6 items dealing 

with the identification, performance and description of transformations, the 

identification of angles, and accurate use of rulers and protractors), patterning and 

algebra (7 items dealing with growing patterns, use of diagrams, tables and 

number sequences to represent the stages of patterns), and data management and 

probability (7 items involving concepts of probability, predicting and representing 

the probability of an outcome, comparing probabilities using common 

representations (e.g., common denominators, percents or decimals), and 

interpreting graphs). The five content areas are not ordered in terms of 

complexity.  

Knowledge and skills are divided into three categories: knowledge and 

understanding (8 items), application (15 items), and thinking-problem solving (13 
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items). The items referenced to the knowledge and understanding category require 

students to demonstrate subject specific content (knowledge) and the 

comprehension of its meaning and significance (understanding). The application 

items require students to select and fit an appropriate mathematical tool or get the 

necessary information. The thinking-problem solving items require students to 

select and sequence a variety of tools to solve a problem and demonstrate a 

critical-thinking process. That is, to answer thinking-problem solving items, 

students need to make a plan. In contrast to the content subscales, the knowledge 

and skills subscales can be ordered in terms of complexity, with the knowledge 

and understanding subscale and the thinking-problem solving subscale being at 

the lowest and the highest levels of complexity, respectively. The total number of 

items on the Mathematics assessment is 36, including 8 open-response items 

scored using a four-point scoring rubric and 28 dichotomously scored multiple-

choice items. 

Data 

 The operational data for the 2009 Junior (Grade 6) assessments obtained 

from the Education Quality and Accountability Office (EQAO) were used in the 

present study. The total numbers of students assessed in the English Reading and 

Mathematics were 128,089 and 127,596, respectively. 

Analyses 

The purpose of the present study was to evaluate three methods for 

determining whether subscale scores are distinct among each other and from the 

total score in terms of their differential ability to detect differences among 
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subscale scores and the total score and whether or not the methods were equally 

accurate and precise. The three detection methods considered were:  

• correlations corrected for attenuation due to unreliability (r´) for each 

pair of subscales and subscale–total test pairs; 

• proportional reduction of the mean squared error (PRMSE) when 

predicting the true subscale score from the observed subscale score 

and from the observed total score for each subscale; and 

• agreement method based on the standard error of the differences 

(Kelley, 1923) between standardized scores on two measures. 

The detection methods were first used with the entire population of 

students assessed in reading and mathematics and then with replicated random 

samples drawn from the population. In the case of replicated random samples, 

five levels of sample size (n = 250, 500, 1,000 2,000, and 5,000) were considered, 

with 1,000 replications for each sample size, to determine the effect of sample 

size on ability of the different detection methods to recover the parameter values 

obtained from the analyses at the population level and to determine their accuracy 

and precision. What follows next is the description of the decision rules used to 

determine whether subscale scores are distinct among each other and/or from the 

total score for each of the three detection methods. 

Decision Rules 

Correlations Corrected for Attenuation (r´) 

The decision rule for the r´ method adopted for this study was based on 

the rule proposed by McPeek et al. (1976): a value less than 0.90 indicates that the 
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rank order of the scores on the two measures being correlated is sufficiently 

different to warrant reporting the scores of each (i.e., D = 1 if r´ < 0.90; D = 0 if r´ 

≥ 0.90, where D stands for the decision made and r´ is the value of the corrected 

correlation). In the present study, this rule was used with the population and the 

replicated sampling data. 

Proportional Reduction of the Mean Squared Error (PRMSE) 

The decision rule for the PRMSE method adopted for this study was the 

rule proposed by Haberman (2005, 2008) and later used by Sinharay et al. (2007, 

2009) and Sinharay (2010): if the PRMSEss> 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, then students’ true 

performances on the subscale are concluded to be better predicted by the observed 

subscale score than by the observed total test score (i.e., D = 1 if PRMSEss > 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥; D = 0 if 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 ≤ 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, where D stands for the decision 

made, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 is the proportional reduction of the mean squared error when 

predicting the true subscale score from the observed subscale score by itself, and 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 is the proportional reduction of the mean squared error when predicting 

the true subscale score from the observed total score). 

Agreement Method 

Several decisions had to be made when the agreement method was used 

with the two assessments considered in this study. First, the agreement method 

was used with the observed standardized scores (Kelley, 1923) rather than with 

the estimated true scores (Gulliksen, 1950). Had the Gulliksen’s approach been 

used, the estimates of the true scores would have regressed to the means of 
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corresponding subscales due to the somewhat low reliabilities of some of the 

subscales. Second, given the artefact associated with the reliability of the 

difference formula (see p. 36), the agreement method proposed by Kelley (1923) 

and not the approach adopted by Ryan (2003) and Haladyna and Kramer (2004) 

was used in the present study. 

Third, although, in the classical test theory, the errors of measurement are 

assumed to be uncorrelated and thus, were not originally considered by Kelley 

(1923), the correlations of the errors on the pairs of subscales and subscale–total 

test pairs were examined to determine the tenability of the zero correlation 

assumption. In the context of the present study, correlated errors were likely to be 

more of a concern when a subscale was included as part of the other scale, such as 

when a subscale was part of the total test, than when the two subscales did not 

overlap. For the subscale–total test pairs, if the correlated errors were to be 

determined to be large due to the overlap of two measures, these pairs would have 

been excluded altogether from the subsequent analyses. For the pairs of subscales, 

if the correlated errors were to be determined to be negligible (i.e., close to zero), 

Kelley’s agreement method would have been used; otherwise, Zimmerman et al.’s 

(1981) recommendation to include the correlated errors when examining score 

differences would have been followed. Finally, Kelley’s ratio of the standard error 

of the difference, 𝜎𝑑,∞𝜔, to the standard deviation of differences, 𝜎𝑑, was 

computed (see p. 35) to determine the proportion of differences in excess of the 

chance (Table IV in Kelley (1923), p. 330). 
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The results of the analyses for each of the three detection methods are 

presented in the next two chapters. The results for the English Reading assessment 

are provided in Chapter IV; the results for the Mathematics assessment are 

presented in Chapter V. For each detection method, the consistency of the 

decisions was evaluated using the percentage of samples that led to the same 

decision made at the population level. Means and standard deviations of the 

distributions of sample statistics (i.e., r´, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, Kelley’s ratio) 

were used to evaluate the three detection methods with respect to their accuracy 

and precision.  
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CHAPTER IV: RESULTS AND DISCUSSION – ENGLISH READING 

For the English Reading assessment, the analyses were performed first for 

the original three subscales – explicit information (E), implicit information (I), 

and connections (C) – as specified in the table of test specifications. The two 

information subscales were then combined given the small number of explicit 

information items and, consequently, low internal consistency (i.e., reliability) of 

this subscale (see below). This combination was confirmed with the item 

developers responsible for Reading at the EQAO, the agency that provided the 

data. The analyses were then repeated for the new subscale, information (IN). The 

results for the population are provided first, followed by the results for the 

replicated random samples drawn from the population. 

Psychometric Properties of the English Reading Assessment 

The number of items, maximum score, mean, standard deviation, 

skewness, kurtosis, internal consistency, and standard error of measurement for 

the explicit information, implicit information, combined information, and 

connections subscales and the total test are reported in Table 1 for the population 

of students. The means and standard deviations are reported in the observed score 

units and as percentages (in parentheses). The means (percentages) revealed that 

students’ performance declined on the original three subscales as the complexity 

of the constructs increased. The standard deviations (percentages) were essentially 

the same for the implicit information and connections subscales, which are the 

two higher levels of complexity, but smaller than for the explicit information 

subscale, likely because of the smaller number of items in the explicit subscale. 
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Table 1 

Psychometric Properties: English Reading, N = 128,089 

Subscale k/ms .X  Xs  sk ku Xα  se 
        
Explicit Information 6/6 4.59 (76.5) 1.28 (21.3) -0.81 0.14 0.47 0.93 

Implicit Information 18/30 20.92 (69.7) 4.42 (14.7) -0.82 0.72 0.76 2.17 

Information 24/36 25.52 (70.9) 5.27 (14.6) -0.85 0.69 0.80 2.36 

Connections 12/30 17.16 (57.2) 4.33 (14.4) -0.13 -0.12 0.74 2.21 

Total Test 36/66 42.68 (64.7) 8.97 (13.6) -0.54 0.23 0.87 3.23 

Note. k is number of items in a subscale or the total test and ms is the maximum score greater than 
or equal to k given the use of dichotomously scored multiple-choice items and polytomously 
scored open-response items; 𝑋.�  – the mean; 𝑠𝑋 – standard deviation; sk – skewness; ku – kurtosis; 
𝑎𝑋 – internal consistency (Cronbach’s alpha); 𝑠𝑒  – standard error of measurement. 
Means and standard deviations expressed as percents are shown in parentheses.  

 
The mean and standard deviation of the combined information subscale were 

close to the mean and standard deviation of the implicit information subscale, 

which is attributable to the larger number of implicit items included in the 

combined information subscale. The distributions of scores on the explicit 

information, implicit information, and information subscales were more 

negatively skewed than the distribution of scores on the connections subscale, 

meaning that, as a group, students performed higher on the explicit information, 

implicit information and information subscales than on the connections subscale.  

Next, as shown in Table 1, the values of internal consistency (i.e., 

reliability) of each subscale were not the same. The internal consistency 

(Cronbach’s alpha) of the explicit subscale, 0.47, was much lower than the 

internal consistency of the implicit information, combined information, and 

connections subscales, which are 0.76, 0.80, and 0.74, respectively. Only one of 

these values satisfied the criterion of 0.80 used by ETS (McPeek, et al., 1976). 
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However, as indicated in the review of literature, the internal consistencies of the 

implicit information and connections subscales are congruent with the notion that 

subscale reliabilities may be lower if subscores were to be used for guidance and 

placement purposes where the decisions are perceived reversible as opposed to 

admission decisions (McPeek et al., 1976, p. 3). Such was the case for the EQAO, 

where the results were to be used for instructional and curriculum purposes. The 

low reliability of the explicit information is likely due to the relatively small 

number of items in this subscale in comparison to the other subscales (6 items vs. 

at least 12 items). However, the explicit subscale was retained to see what effect 

the low level of reliability would have on the results. The estimate of the internal 

consistency of the total test was 0.87, with the total number of items (both 

multiple-choice and open response) being 36.  

Detection of Performance Differences 

Correlations Corrected for Attenuation (r´) 

The zero-order correlations for the population – uncorrected, r, and 

corrected for attenuation due to unreliability, r´, – among the subscales and 

between each subscale and the total test are reported in Table 2. The uncorrected 

correlations are reported in the upper triangle and the corrected correlations are 

reported in the lower triangle. The uncorrected correlations are provided because 

they serve as input in the r´ and the PRMSE methods. Correlation coefficients 

shown in italics are between two measures where one measure is a part of the 

second measure. For example, each subscale is a part of the total test. Similarly, 

the explicit information and implicit information subscales are parts of the 
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Table 2 

Detection of Performance Differences: Uncorrected and Corrected Correlations,            

English Reading, N = 128,089 

Subscale Explicit 
Information 

Implicit 
Information 

Information Connections Total 
Test 

Explicit 
Information - 0.59  0.74 0.52  0.69  

Implicit 
Information 0.98 (0) - 0.98 0.74 0.93 

Information 1.21 1.26 - 0.75 0.95 

Connections 0.89 (1) 0.98 (0) 0.97 (0) - 0.92 

Total Test 1.07 (0) 1.14 (0) 1.13 (0) 1.15 (0) - 

 

Note. Uncorrected correlations are in the upper triangle and corrected correlations are in the lower 
triangle. Correlation coefficients, both uncorrected and corrected shown in italic are between two 
measures, with one of the measures being a part of the other. Decision made with respect to the 
scores on a pair of measures (0 – not different; 1 – different) is shown in parentheses. 
 
 
combined information subscale. As a result, the observed correlations are higher 

due to the presence of common items in both measures, which likely led to the 

values of the corrected correlations being greater than one. 

As described in Chapter III, the decision rule for the method of 

correlations corrected for attenuation is: a value less than 0.90 (McPeek, et al., 

1976) indicates that the ranks on the two measures being correlated are 

sufficiently different to warrant reporting the scores on each (i.e., D = 1 if r´ < 

0.90; D = 0 if r´ ≥ 0.90, where D stands for the decision made and r´ is the value 

of the corrected correlation). As shown in Table 2, the only performance 

difference found is between the explicit information and connections subscales 

(E_C) when the r´ method is used. Although below the decision value of 0.90, the 

value of the corrected correlation of 0.89 for the E_C is still very close to 0.90. 
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Interestingly, the corrected correlation of 0.98 for the explicit information and 

implicit information pair (E_I) is much higher than the corrected correlation for 

the E_C pair. Given the reliabilities of the implicit information and connections 

subscales are approximately the same (0.74 and 0.76, respectively), the corrected 

correlation of 0.89 for the E_C pair is likely due to the difference in the 

complexity levels between what is called for when using the information that is 

explicitly stated in the text and when making connections between what is read 

and one’s own personal experience. The values of the corrected correlations for 

the remaining pairs of the original subscales all exceed 0.90, thus indicating that 

students’ performances as reflected by their rank order on the measures in each 

pair are similar. 

Somewhat disturbing, but not unexpected, are the values of the corrected 

correlations of each subscale with the total test (i.e., E_T, I_T, IN_T and C_T) 

and the explicit and implicit information subscales with the combined information 

subscale (i.e., E_IN and I_IN). All are greater than one. As indicated above, this is 

likely due to the common items present in the two measures. In particular, the 

presence of common items inflates the uncorrected correlations between the 

measures in each of these pairs, and subsequently leads to the corrected 

correlations being greater than one. Given these findings, the r´ method was used 

only with the pairs of the original subscales and the combined information–

connections pair in the replicated sampling component of this study. 

The results for the r´ method when used with the replicated random 

samples are presented in Table 3. In the table, the values in the first row for each 
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pair of subscales are, respectively, the frequency and percentage (in parentheses) 

of random samples (out of 1,000) with the same decision as in the population at a 

given sample size. The values in the second row for each pair of subscales are the 

mean and standard deviation (in parentheses) of the sampling distribution of 1,000 

corrected correlations at a given sample size. The last column contains the values 

of the corrected correlations in the population. 

As shown in Table 3, the consistency of the decisions made using sample 

data increased as (a) the population value of the corrected correlation increased, 

(b) the sample size increased, (c) the reliability increased, and (d) the difference in 

the complexity levels between two subscales became smaller. First, with the 

exception of the E_C pair, the percentage agreement between the decisions made 

using sample data and the decisions made in the population was high if not 100% 

for the pairs that were determined to be highly correlated in the population (r´ 

greater or equal to 0.97). Second, the lowest percentage agreement for each pair 

occurred when n = 250 and increased as the sample size increased, reaching 100% 

when n = 2,000 for the E_I pair and n = 500 for the I_C and IN_C pairs. Third, 

while the percentage agreement increased with the increase in the sample size for 

the E_C pair, it never exceeded 77%. As it was the case for the population, this 

finding is most likely attributable to the difference in complexity between the 

explicit information and connections subscales, which are, respectively, of the 

lowest and highest levels of complexity. Further, with the value of the corrected 
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Table 3 

Frequency of Decisions that Agreed with Decisions Made in the Population, Means and 

Standard Deviations of the Sampling Distributions of Corrected Correlations at Five 

Levels of Sample Size for English Reading 
 

 

Sample Size 
 

Pair 250 500 1,000 2,000 5,000 Pop. 

E_I (0)a 905 (90.5)b 951 (95.1) 991 (99.1) 1000 (100) 1000 (100)  
0.99 (.078)c 0.99 (.051) 0.99 (.037) 0.98 (.026) 0.98 (.016) 0.98 

      
E_C (1) 514 (51.4) 554 (55.4) 581 (58.1) 664 (66.4) 768 (76.8)  

0.90 (.081) 0.89 (.056) 0.89 (.039) 0.89 (.028) 0.89 (.017) 0.89 
      

I_C (0) 996 (99.6) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

0.99 (.031) 0.99 (.022) 0.98 (.015) 0.98 (.011) 0.98 (.007) 0.98 
      

IN_C (0) 993 (99.3) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  
0.97 (.029) 0.97 (.021) 0.97 (.015) 0.97 (.011) 0.97 (.007) 0.97 

      
 

Note. E – explicit information; I – implicit information; C – connections; IN – information. 
a Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parenthesis is the percentage of random samples 
(out of 1,000) with the same decision as in the population at a given sample size.  
c The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distribution (i.e., standard error) of 1,000 corrected correlations at a given sample size. 
 
 
correlation for the E_C pair in the population being 0.89, which is 0.01 below the 

decision value of 0.90, and larger sampling variability due principally to the 

explicit information subscale, the sample estimates of the corrected correlation for 

the E_C pair varied more, resulting in the low decision consistency. 

With respect to the accuracy of sample estimates, the corresponding values 

of the corrected correlations in the population were recovered well. The sample 

estimators of population parameters of the corrected correlations were accurate 

and precise. Namely, for all the pairs of subscales and sample size levels, the 
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means of the sampling distributions of the corrected correlations were within 0.01 

of the corresponding population values. The standard errors of sample estimators 

decreased as the sample size increased. For n = 250, the standard errors ranged 

between 0.029 and 0.081, whereas for n = 5,000, the standard errors were as low 

as 0.007 and as high as 0.017. Given the low reliability of the explicit information 

subscale, the standard errors for the pairs involving this subscale (i.e., E_I and 

E_C) were consistently higher than the standard errors for the remaining pairs. 

Proportional Reduction of the Mean Squared Error (PRMSE) 

The results for the PRMSE method are reported in Table 4 for the 

population (the last column) and the replicated sample data (columns 3 through 

7). In the table, the values in the first row for each subscale are, respectively, the 

frequency and percentage (in parentheses) of random samples (out of 1,000) with 

the same decision as in the population. The values in the second row for each 

subscale are the mean and standard deviation (in parentheses) of the sampling 

distributions of the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 at a given sample size. Similarly, the values in the 

third row for each subscale are the mean and standard deviation (in parentheses) 

of the sampling distributions of the 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 at a given sample size. 

The decision rule for this method is: if the 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 > 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, then 

students’ true performances on the subscale are concluded to be better predicted 

by the observed subscale score (𝑃𝑅𝑀𝑆𝐸𝑠𝑠) than by the observed total test score 

(𝑃𝑅𝑀𝑆𝐸𝑠𝑥). In this case, student performances on the subscale are said to be 

different from student performances on the total test. Otherwise, student 

performances on both the subscale and the total test are comparable (i.e., D = 1 if  
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Table 4 

Frequency of Decisions that Agreed with Decisions Made in the Population, Means and 

Standard Deviations of the Sampling Distributions of 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 at Five 

Levels of Sample Size for English Reading 

  
Sample Size 

Subscale  250 500 1,000 2,000 5,000 Pop. 

Explicit 
Information (0)a 

11111111111                999 (99.9)b 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠  0.47 (.054)c 0.47 (.038) 0.47 (.027) 0.47 (.020) 0.47 (.012) 0.47 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.80 (.100) 0.79 (.065) 0.79 (.047) 0.79 (.033) 0.79 (.020) 0.79 

        

Implicit 
Information (0) 

 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠  0.76 (.023) 0.76 (.016) 0.77 (.011) 0.77 (.008) 0.77 (.005) 0.77 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.87 (.017) 0.87 (.013) 0.87 (.008) 0.87 (.006) 0.87 (.004) 0.87 

        

Information (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠  0.80 (.019) 0.80 (.014) 0.80 (.009) 0.80 (.007) 0.80 (.004) 0.80 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.86 (.016) 0.86 (.011) 0.86 (.008) 0.86 (.006) 0.86 (.003) 0.86 

        

Connections (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠  0.73 (.023) 0.73 (.016) 0.73 (.011) 0.74 (.008) 0.74 (.005) 0.74 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.85 (.020) 0.85 (.014) 0.85 (.010) 0.85 (.007) 0.85 (.004) 0.85 
 

Note. 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 denotes the proportional reduction of the mean squared error for the estimated 
subscale true score that is linearly predicted from the observed subscale score; PRMSEsxdenotes 
the proportional reduction of the mean squared error for the estimated subscale true score that is 
linearly predicted from the observed total test score. 
a  Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parentheses is the percentage of random samples 
(out of 1,000) with the same decision as in the population.  
c The first value is the mean and the value in parentheses is the standard deviation (i.e., standard 
error) of the sampling distributions of the corresponding PRMSE at a given sample size. 
 

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 > 𝑃𝑅𝑀𝑆𝐸𝑠𝑥; D = 0 if 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 ≤ 𝑃𝑅𝑀𝑆𝐸𝑠𝑥, where D stands for the 

decision made). According to Haberman (2005, 2008), the PRMSE is conceptually 

similar to reliability, and the value of 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 is exactly equal to the reliability of 

a subscale (cf. the last column in Table 4 and column 7, Table 1). As shown in 
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Table 4, regardless of the complexity and reliability of each subscale, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 < 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 for all subscales, meaning that the true subscale scores are better 

predicted by the observed total scores than by the observed subscale scores. That 

is, students’ performances on each subscale are no different from their 

performances on the total test. Further, regardless of the sample size, reliability 

and complexity of each subscale, the decisions made using sample data were 

100% consistent with the population decisions. The means of the distributions of 

sample estimators of 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 were within 0.01 of the 

corresponding population values for all four subscales. The standard errors of 

sample estimators were the largest when the explicit information subscale was 

considered (e.g., the standard error for 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 = 0.100 for n = 250) but 

decreased as the sample size increased, ranging between 0.003 and 0.020 n = 

5,000. The smallest standard errors were for the combined information subscale 

for all the sample size levels, given that the internal consistency of this subscale 

was the largest (0.80). 

The results for the PRMSE are not unexpected given the low values for 

reliability. As pointed out in Chapter II (see pp. 27-28), subscales are most likely 

to have value over and above the total test if the subscales have relatively high 

reliability and if the true subscale score and the true total score have only a 

moderate correlation. As seen from Tables 1 and 2, the reliabilities are not 

especially high and the correlations corrected for attenuation due to unreliability 

are high. 
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Agreement Method 

The results for the agreement method are reported in Tables 5 and 6. First, 

the correlations between the errors on the pairs of subscales and subscale–total 

test pairs were obtained to determine the tenability of the zero correlation 

assumption. The results of this analysis are provided in Table 5. As was done in 

Table 2, the correlation coefficients shown in italics in Table 5 are between two 

measures, with one of the measures being a part of the other.  

The examination of the correlation coefficients revealed low, if not close 

to zero, correlated errors for the pairs of the original subscales and high correlated 

errors for the remaining pairs (i.e., E_IN, I_IN, E_T, I_T, IN_T, and C_T). The 

high correlated errors are not unexpected, given the presence of the common 

items. The presence of common items inflates the correlations between the 

measures in each of these pairs since the errors for the common items are 

identical. Given this finding as well as the fact that previous studies (Haladyna & 

Kramer, 2004; Ryan, 2003) examined score differences for the pairs of subscales 

and not for the subscale–total test pairs, the agreement method (Kelley, 1923) 

was, therefore, used only with the pairs of the original subscales in this study. 

Further, what curriculum specialists and teachers will look at are the students’ 

performances on the pairs of subscales and not the students’ performances on 

subscale–total test pairs.  

Next, Kelley’s ratio, defined as the ratio of the standard error of the 

difference due to measurement error, 𝜎𝑑,∞𝜔, to the standard deviation of the 

difference between observed scores, 𝜎𝑑, was computed for the pairs of the original  
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Table 5 

Correlated Errors, English Reading, N = 128,089 

Subscale Explicit 
Information 

Implicit 
Information 

Information Connections 

     

Explicit Information -    

Implicit Information -.021 -   

Information .389 .914 -  

Connections -.188 -.040 -.085 - 

Total Test .193 .662 .718 .640 

Note. Correlation coefficients shown in italic are between two measures, with one of the measures 
being a part of the other. 
 

subscales in each of the 1,000 replicated samples. The mean value of this ratio 

and its standard error are provided for each pair of subscales in Table 6. As shown 

in the table, the mean of Kelley’s ratio in the random samples was within 0.01 of 

the corresponding population value for each subscale pair and sample size. The 

standard deviation of the sampling distribution (i.e., the standard error) of 

Kelley’s ratio decreased as the sample size increased. Namely, for n = 250 the 

standard errors were between 0.043 and 0.049, whereas for n = 5,000 the standard 

errors were between 0.009 and 0.011. That is, the sample estimators of Kelley’s 

ratio were accurate and precise.   

Somewhat disturbing, however, are the values of Kelley’s ratio, which are 

all close to one. As mentioned in Chapter II, for Kelley’s procedure to work, the 

mean of the two reliabilities has to be greater than the correlation between the two 

subscales being compared. Given that the reliabilities of the English Reading  
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Table 6 

Means and Standard Deviations of Kelley’s Ratio at Five Levels of Sample Size and 

Percentage of Differences in Excess of the Chance for English Reading 

 
 

Sample Size 
  

 250 500 1,000 2,000 5,000 Pop. % 

E_I 0.97 (.049)a 0.97 (.035) 0.97 (.024) 0.97 (.017) 0.97 (.011) 0.97 ≈1.5% 
        

E_C 0.92 (.046) 0.91 (.032) 0.91 (.022) 0.91 (.015) 0.91 (.010) 0.91 ≈5.0% 
        

I_C 0.98 (.044) 0.98 (.032) 0.98 (.022) 0.98 (.016) 0.98 (.010) 0.98 ≈1.0% 
        

IN_C 0.96 (.043) 0.95 (.032) 0.95 (.021) 0.95 (.015) 0.95 (.009) 0.96 ≈2.0% 
        

Note. E – explicit information; I – implicit information; C – connections; IN – information.  
a The first value is the mean and the value in parentheses is the standard deviation (i.e., standard 
error) of the sampling distribution of the corresponding statistics at a given sample size. 
% – percentage of differences in excess of the chance in the population, determined using Table IV 
in Kelley (1923, p. 330).  
 
 
subscales and the correlations between them were very close in value, high values 

of Kelley’s ratio were observed for these pairs of subscales. Finally, using Table 

IV in Kelley (1923, p. 330), the proportion of score differences in excess of the 

chance was determined to be between 0.01 and 0.05, meaning that depending on a 

pair of subscales, between one to five percent of students had score differences 

that could not be attributed to the chance. Given that the means of Kelley’s ratio 

at the five levels of sample size were within 0.01 of the corresponding population 

values for each pair, with the standard error being very low, the proportion of 

score differences in excess of the chance was not computed in the replicated 

samples. 
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Summary 

To summarize, both correlational methods (i.e., r´ and PRMSE) led to the 

same decisions. Namely, student performances on the pairs of the original 

subscales and subscale–total test pairs were determined to be no different. The 

agreement method revealed that, depending on a subscale pair, there were 

between one to five percent of students showing differences in their subscale 

scores sufficiently great that they could not be attributed to chance and thus, were 

likely due to something systematic. The statistics used for each method were 

determined to be accurate and precise. Sample estimators were within 0.01 of the 

corresponding population parameters. Standard errors of sample estimators 

decreased as the sample size increased from n = 250 to n = 5,000. 
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CHAPTER V: RESULTS AND DISCUSSION – MATHEMATICS 

This chapter describes the results of the analyses conducted to determine 

whether the correlations corrected for attenuation, proportional reduction of the 

mean squared error, and the agreement methods led to the same decision or 

different decisions regarding the reporting of subscale scores on the Mathematics 

assessment, and whether the statistics used for each method were accurate and 

precise. The analyses were performed first for the three knowledge and skills 

subscales: knowledge and understanding (K), application (A), and thinking-

problem solving (P). Following this, the analyses were performed for the five 

content subscales: number sense and numeration (N), measurement (M), geometry 

and spatial sense (G), patterning and algebra (A), and data management and 

probability (P). Presentation of the Mathematics results mirrors the presentation of 

the English Reading results. 

Psychometric Properties of the Knowledge and Skills Subscales 

The psychometric properties of the knowledge, application, and problem 

solving subscales and the total test are reported in Table 7 for the population of 

students. The means and standard deviations are reported in the observed score 

units and as percentages (in parentheses). As with the English Reading, the means 

(percentages) revealed that students’ performance on the three mathematics 

cognitive subscales declined as the level of required thinking increased from 

knowledge to application to problem solving. The standard deviations 

(percentages) were essentially the same for the application and problem solving 

subscales, which are two higher levels of complexity, but smaller than the 
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Table 7 

Psychometric Properties: Knowledge and Skills Subscales, Mathematics, N = 127,596 

Subscale k/ms .X  Xs  sk ku Xα  se 
        
Knowledge 8/8 5.45 (68.0) 1.87 (23.4) -0.49 -0.50 0.60 1.18 

Application 15/24 14.98 (62.4) 4.91 (20.5) -0.15 -0.83 0.75 2.46 

Problem Solving 13/28 15.36 (54.8) 5.42 (19.4) -0.12 -0.71 0.78 2.54 

Total Test 36/60 35.79 (59.7) 11.20 (18.7) -0.07 -0.81 0.89 3.71 

Note. k is number of items in a subscale or the total test and ms is the maximum score greater than 
or equal to k given the use of dichotomously scored multiple-choice items and polytomously 
scored open-response items; 𝑋.�  – the mean; 𝑠𝑋 – standard deviation; sk – skewness; ku – kurtosis; 
𝑎𝑋 – internal consistency (Cronbach’s alpha); 𝑠𝑒  – standard error of measurement. 
Means and standard deviations expressed as percents are shown in parentheses.  
 
standard deviation for the knowledge subscale, likely because of the smaller 

number of items in the knowledge subscale. The distribution of scores on the 

knowledge subscale was more negatively skewed than the distributions of scores 

on the application and problem solving subscales, indicating that again, as a 

group, students performed higher on the knowledge subscale than on the 

application and problem solving subscales. 

Next, as shown in Table 7, the values of internal consistency (i.e., 

reliability) of each subscale were not the same. The internal consistency 

(Cronbach’s alpha) of the knowledge subscale, 0.60, was lower than the internal 

consistencies of the application and problem solving subscales, which were more 

alike, 0.75 and 0.78, respectively. The somewhat low value of reliability for the 

knowledge subscale is likely due to the relatively smaller number of items (8) in 

this subscale as compared to the numbers of items in the other two subscales (15 

for the application and 13 for the problem solving subscales). With the results of 

the assessment being used by teachers and education authorities for instructional 
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and curriculum purposes, the low reliability values are perceived to be congruent 

with the spirit that the reliability values may be reduced because the decisions 

associated with instruction and curriculum are perceived reversible (McPeek et 

al., 1976). The estimate of internal consistency of the total test was 0.89, with the 

total number of items (both multiple choice and open response) being 36. 

Detection of Performance Differences 

Correlations Corrected for Attenuation (r´) 

The results for the r´ method when used with the population data are reported in 

Table 8. As shown in the lower triangle, regardless of the complexity and 

reliability of subscales in each pair, no performance difference was found either 

for pairs of subscales or subscale–total test pairs, thus indicating that students’ 

performances as reflected by their rank order were similar on the subscales and 

the total test. As with some pairs of the English Reading subscales, the values of 

corrected correlations for the Mathematics subscales, except for the K_P pair, 

were greater than one. For the K_A and A_P pairs, the corrected correlations 

greater than one were observed because their uncorrected correlations were close 

in value to the reliabilities of subscales in each pair. Despite this finding, the 

decision was made to proceed with the analyses using the r´ method to examine 

the distribution of the r´ statistics in replicated random samples. For the subscale–

total test pairs (i.e., K_T, A_T, and P_T), a factor contributing to the corrected 

correlations being greater than one was the presence of common items in the two 

measures. Given this, the r´ method was not used with the subscale–total test pairs 

in the replicated sampling component of this study. 
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Table 8 

Detection of Performance Differences: Uncorrected and Corrected Correlations, 

Mathematics Knowledge and Skills Subscales, N = 127,596 

Subscale Knowledge Application Problem Solving Total Test 

Knowledge - 0.70  0.67  0.80  

Application 1.04 (0) - 0.79 0.94 

Problem Solving 0.98 (0) 1.03 (0) - 0.94 

Total Test 1.09 (0) 1.14 (0) 1.13 (0) - 

 

Note. Uncorrected correlations are in the upper triangle and corrected correlations are in the lower 
triangle. Correlation coefficients, both uncorrected and corrected, shown in italic are between two 
measures, with one of the measures being a part of the other. Decision made with respect to the 
scores on a pair of measures (0 – not different; 1 – different) is shown in parentheses. 
 
 

The results for replicated random samples are presented in Table 9. As 

shown in this table, the consistency of decisions made using the r´ method and 

sample data increased as (a) the population value of the corrected correlation 

increased, (b) the sample size increased, (c) the reliability increased, and (d) the 

difference in the complexity levels between two subscales became smaller. First, 

the percentage agreement between the decisions made using sample data and the 

decisions made in the population was high if not 100%. Second, the lowest 

percentage agreement occurred when n = 250 and increased as the sample size 

increased. Third, given the greater difference in complexity between the 

constructs measured by the knowledge and problem solving subscales than the 

difference between the constructs measured by the knowledge and application 

subscales, the lowest percentage agreement was observed for the K_P pair. With 

respect to the accuracy of sample estimators, the corresponding r´ values in the 
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Table 9 

Frequency of Decisions that Agreed with Decisions Made in the Population, Means 

and Standard Deviations of the Sampling Distributions of Corrected Correlations at 

Five Levels of Sample Size for Mathematics Knowledge and Skills Subscales 

  
 

Sample Size 
 

 

Pair 250 500 1,000 2,000 5,000 Pop. 

K_A (0)a 
998 (99.8)b 1000 (100) 1000 (100) 1000 (100) 1000 (100)  
1.04 (.047)c 1.04 (.031) 1.04 (.023) 1.04 (.016) 1.04 (.010) 1.04 

      

K_P (0) 
972 (97.2) 998 (99.8) 1000 (100) 1000 (100) 1000 (100)  

0.99 (.048) 0.99 (.031) 0.98 (.023) 0.98 (.016) 0.98 (.010) 0.98 
      

A_P (0) 
1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  
1.03 (.026) 1.03 (.018) 1.03 (.013) 1.03 (.009) 1.03 (.006) 1.03 

      
 

Note. K – knowledge; A – application; P – problem solving. 
a Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parenthesis is the percentage of random samples 
(out of 1,000) with the same decision as in the population at a given sample size.  
c The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distribution of 1,000 corrected correlations at a given sample size. 
 
 
population were recovered very well (within 0.01); the standard errors of sample 

estimators were small and, as expected, decreased with an increase in the sample 

size. For n = 250, the standard errors ranged between 0.026 and 0.048, whereas 

for n = 5,000, the standard errors were as low as 0.006 and as high as 0.010. 

Given the relatively low reliability of the knowledge subscale, the standard errors 

of sample estimates for the K_A and K_P pairs were consistently higher than the 

standard errors of sample estimates for the A_P pair for all the levels of sample 

size. Overall, although the results for the two pairs of subscales (i.e., K_A and 

A_P) were uninterpretable, r´ was determined to be an accurate and precise 

estimator of the corresponding population parameter.  
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Proportional Reduction of the Mean Squared Error (PRMSE) 

As shown in the last column in Table 10, regardless of the complexity and 

reliability of each subscale, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 < 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 for all subscales, meaning that 

the true subscale scores were better predicted by the observed total scores than by 

the observed subscale scores. As with the English Reading, students’ 

performances on each of the three knowledge and skills subscales in the 

Mathematics assessment were no different from their performances on the total 

test. The results for replicated samples are presented in columns 3 through 7 in 

Table 10. As shown in this table, regardless of the sample size, reliability and 

complexity of each subscale, the decisions made using the PRMSE method and 

sample data were 100% consistent with the decisions made in the population. The 

means for the sample estimators of 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 were within 0.01 of 

their corresponding population values for all three subscales and five levels of 

sample size. The standard errors of sample estimators were the largest when the 

knowledge subscale was considered (e.g., the standard error for 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 = 0.100 

for n = 250) but decreased as the sample size increased, ranging between 0.003 

and 0.012 for n = 5,000. The largest standard errors were for the knowledge 

subscale for all the sample size levels, given that the internal consistency of this 

subscale was the smallest (0.60). 

Agreement Method 

The results for the agreement method are reported in Tables 11 and 12. 

First, the correlations of the errors on the pairs of subscales and each subscale– 
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Table 10 
Frequency of Decisions that Agreed with Decisions Made in the Population, Means and 

Standard Deviations of the Sampling Distributions of 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 at Five 

Levels of Sample Size for Mathematics Knowledge and Skills Subscales 

  Sample Size 
Subscale  250 500 1,000 2,000 5,000 Pop. 

Knowledge (0)a 

 1000 (100)b 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.60 (.038)c 0.60 (.026) 0.60 (.019) 0.60 (.013) 0.60 (.008) 0.60 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.90 (.055) 0.89 (.036) 0.89 (.027) 0.89 (.018) 0.89 (.012) 0.89 
        

Application (0) 

 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.75 (.019) 0.75 (.013) 0.75 (.010) 0.75 (.007) 0.75 (.004) 0.75 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.91 (.016) 0.91 (.011) 0.91 (.008) 0.91 (.005) 0.91 (.004) 0.91 
        

Problem  
Solving (0) 

 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.78 (.017) 0.78 (.012) 0.78 (.009) 0.78 (.006) 0.78 (.004) 0.78 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.89 (.014) 0.90 (.010) 0.90 (.007) 0.90 (.005) 0.90 (.003) 0.90 
 

Note.
 
𝑃𝑅𝑀𝑆𝐸𝑠𝑠 

denotes the proportional reduction of the mean squared error for the estimated 
subscale true score that is linearly predicted from the observed subscale score; 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 

denotes 
the proportional reduction of the mean squared error for the estimated subscale true score that is 
linearly predicted from the observed total test score. 
a  Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parentheses is the percentage of random samples 
(out of 1,000) with the same decision as in the population.  
c The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distributions of the corresponding PRMSE at a given sample size. 

 

total test pair were obtained to determine the tenability of the zero correlation 

assumption. The results of this analysis are provided in Table 11. The correlation 

coefficients shown in italics in Table 11 are between two measures, with one of 

the measures being a part of the other. Examination of the correlation coefficients 

revealed low, if not close to zero, correlated errors for the subscale pairs and high 

correlated errors for the subscale–total test pairs. Given this finding as well as the 

approach adopted when the subscales in the English Reading were examined, the 
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Table 11 

Correlated Errors, Mathematics Knowledge and Skills Subscales, N = 127,596 

Subscale Knowledge Application Problem Solving 
    

Knowledge -   

Application .092 -  

Problem Solving -.048 .107 - 

Total Test .330 .742 .687 
 

Note. Correlation coefficients shown in italic are between two measures, with one of the measures 
being a part of the other. 

 
agreement method (Kelley, 1923) was used only with the pairs of the subscales. 

Next, Kelley’s ratio was computed for each subscale pair using first the 

entire population of students and then replicated random samples of different 

sizes. The results for the population are shown in the second last column on the 

right, and the results for the samples, including the mean of Kelley’s ratio and its 

standard error across random samples, are provided in columns three to seven in 

Table 12. As shown in this table, the values of the ratio were greater than one for 

the two of the three pairs of subscales. As mentioned in Chapter II, for Kelley’s 

procedure to work, the mean of the two reliabilities has to be greater than the 

correlation between the two subscales being compared. Given that the reliabilities 

of the Mathematics subscales and the correlations between them were very close 

in value, the values of Kelley’s ratio greater than one or close to one were 

observed. However, as was the case when the r´ method was used with the 

Mathematics subscales, the decision was made to use the agreement method with 

all the pairs of subscales in the replicated sampling component of this study, 

although the ratio for the two pairs were found to be uninterpretable in the 
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Table 12 

Means and Standard Deviations of Kelley’s Ratio at Five Levels of Sample Size and 

Percentage of Differences in Excess of the Chance 

 
 

Sample Size 
  

 250 500 1,000 2,000 5,000 Pop. % 

K_A 1.04 (.052)a 1.04 (.035) 1.04 (.026) 1.03 (.017) 1.04 (.011) 1.04 - 
        

K_P 0.98 (.049) 0.98 (.031) 0.98 (.024) 0.97 (.016) 0.97 (.011) 0.97 ≈1.5% 
        

A_P 1.05 (.048) 1.05 (.035) 1.05 (.024) 1.05 (.018) 1.05 (.011) 1.05 - 
        

Note. K – knowledge; A – application; P – problem solving. 
a The first value is the mean and the value in parentheses is the standard deviation (i.e., standard 
error) of the sampling distribution of the corresponding statistics at a given sample size. 
% – percentage of differences in excess of the chance in the population, determined using Table IV 
in Kelley (1923, p. 330).  

 
population. This allowed determining whether or not Kelley’s ratio was accurate 

and precise. The mean value of this ratio and its standard error are provided for 

each pair of subscales in Table 12. As shown in the table, the mean of Kelley’s 

ratio in the random samples was within 0.01 of the corresponding population 

value for each subscale pair and sample size. The standard deviation of the 

sampling distribution (i.e., the standard error) of Kelley’s ratio decreased as the 

sample size increased. Namely, for n = 250 the standard errors were between 

0.048 and 0.052, whereas for n = 5,000 the standard errors were 0.011 for the 

three pairs. That is, the sample estimators of Kelley’s ratio were accurate and 

precise.   

Finally, using Table IV in Kelley (1923, p. 330), the proportion of score 

differences in excess of the chance was determined only for the K_P pair and not 

for the other two pairs due to the uniterpretability of Kelley’s ratio for these two 

pairs. Approximately 1.5% of students in the population were determined to have 
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differences between their scores on the knowledge and problem solving subscales 

that could not be attributed to the chance. Given that the means of Kelley’s ratio 

at the five levels of sample size were within 0.01 of the corresponding population 

values, with the standard error being very low, the proportion of score differences 

in excess of the chance was not computed in the replicated random samples.  

Psychometric Properties of the Content Subscales 

The psychometric properties of the five content subscales and the total test 

are reported in Table 13 for the population of students. The means and standard 

deviations are reported in the observed score units and as percentages (in 

parentheses). The means (percentages) revealed that student performance was the 

highest on the algebra subscale, 66.3%, and the lowest on the probability 

subscale, 55.4%. The corresponding numbers for the measurement, geometry, and 

numeration subscales are 57.6%, 59.8%, and 60.3%. The standard deviations 

(percentages) were somewhat larger for the measurement and geometry subscales, 

24.3% and 23.3%, respectively, than the standard deviations for the numeration, 

algebra, and probability subscales, which were essentially the same, 21.6%, 

21.4% and 20.8%, respectively. The values of skewness further reinforce what has 

been stated with respect to the means of subscales. In particular, out of the five 

subscales, the distribution of scores on the algebra subscale was the most 

negatively skewed, sk = -0.39, meaning that the majority of students tended to 

perform high on this subscale; the values of skewness for the remaining subscales 

were close to zero. Given the numbers of items in each subscale do not differ 

much as they did in the case of reading and mathematics knowledge and skills, 
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Table 13 

Psychometric Properties: Content Subscales, Mathematics, N = 127,596 

Subscale k/ms .X  Xs  sk ku Xα  se 

Numeration 8/14 8.44 (60.3) 3.02 (21.6) -0.06 -0.80 0.63 1.84 

Measurement 8/11 6.34 (57.6) 2.67 (24.3) 0.03 -1.02 0.63 1.62 

Algebra 7/10 6.63 (66.3) 2.14 (21.4) -0.39 -0.38 0.58 1.39 

Probability 7/13 7.20 (55.4) 2.71 (20.8) 0.12 -0.68 0.61 1.69 

Geometry 6/12 7.18 (59.8) 2.80 (23.3) -0.08 -0.92 0.60 1.77 

Total Test 36/60 35.79 (59.7) 11.20 (18.7) -0.07 -0.81 0.89 3.71 

Note. k is number of items in a subscale or the total test and ms is the maximum score greater than 
or equal to k given the use of dichotomously scored multiple-choice items and polytomously 
scored open-response items; 𝑋.�  – the mean; 𝑠𝑋 – standard deviation; sk – skewness; ku – kurtosis; 
𝑎𝑋 – internal consistency (Cronbach’s alpha); 𝑠𝑒  – standard error of measurement. 
Means and standard deviations expressed as percents are shown in parentheses.  
 
 
the internal consistencies (Cronbach’s alpha) of the five content subscales were 

essentially the same, ranging from 0.58 to 0.63. The estimate of the internal 

consistency of the total test was 0.89. 

Detection of Performance Differences 

Correlations Corrected for Attenuation (r´) 

The results for the r´ method are reported in Table 14 for the population 

and in Table 15 for the random sampling data. As shown in Table 14, no 

performance differences were found, thus indicating that students’ performances 

as reflected by their rank order on two measures were similar for each of the pairs 

of subscales and subscale–total test pairs. As with the Mathematics knowledge 

and skills subscales, the values of the corrected correlations for the pairs of 

content subscales were greater than one when the uncorrected correlations were 

close in value to subscale reliabilities. However, the analyses for these pairs were 
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Table 14 

Detection of Performance Differences: Uncorrected and Corrected Correlations, 

Content Subscales, Mathematics, N = 127,596 

Subscale N M A P G Total Test 

Numeration - 0.66 0.62  0.67 0.63 0.87  

Measurement 1.04 (0) - 0.59 0.63 0.63 0.84 

Algebra 1.03 (0) 0.97 (0) - 0.62 0.59 0.80 

Probability 1.09 (0) 1.02 (0) 1.04 (0) - 0.62 0.85 

Geometry 1.03 (0) 1.03 (0) 0.99 (0) 1.03 (0) - 0.83 

Total Test 1.16 (0) 1.12 (0) 1.11 (0) 1.15 (0) 1.14 (0) - 

Note. N – numeration; M – measurement; A – algebra; P – probability; G – geometry; T – total 
test. Uncorrected correlations are in the upper triangle and corrected correlations are in the lower 
triangle. Correlation coefficients, both uncorrected and corrected, shown in italic are between two 
measures, with one of the measures being a part of the other. Decision made with respect to the 
scores on a pair of measures (0 – not different; 1 – different) is shown in parentheses. 
 
 
still conducted using replicated random samples to examine the psychometric 

properties of the r´ statistics with the Mathematics content subscales. As with the 

English Reading and Mathematics knowledge and skills subscales, no analyses 

were conducted for the subscale–total test pairs, given the presence of common 

items on the two measures. 

The results for the r´ method for the random samples are presented in 

Table 15. As shown, the accuracy of sample estimates and the consistency of the 

decisions made using sample data increased as (a) the population value of the 

corrected correlation increased and (b) the sample size increased. That is, the 

percentage agreement between the decisions made using sample data and 
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Table 15 

Frequency of Decisions that Agreed with Decisions Made in the Population, Means and 

Standard Deviations of the Sampling Distributions of Corrected Correlations at Five 

Levels of Sample Size for Mathematics Content Subscales 

  Sample Size  
Pair 250 500 1,000 2,000 5,000 Pop. 

N_M 
(0)a 

995 (99.5)b 1000 (100) 1000 (100) 1000 (100) 1000 (100)  
1.05 (.054)c 1.05 (.037) 1.05 (.026) 1.05 (.018) 1.04 (.012) 1.04d 

      
N_A 
(0) 

989 (98.9) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

1.04 (.062) 1.04 (.042) 1.04 (.031) 1.03 (.020) 1.03 (.014) 1.03 

      
N_P 
(0) 

1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

1.09 (.051) 1.09 (.038) 1.09 (.027) 1.09 (.018) 1.09 (.012) 1.09 

      
N_G 
(0) 

989 (98.9) 999 (99.9) 1000 (100) 1000 (100) 1000 (100)  

1.03 (.058) 1.03 (.040) 1.03 (.029) 1.03 (.021) 1.03 (.013) 1.03 

      
M_A 
(0) 

895 (89.5) 959 (95.9) 988 (98.8) 998 (99.8) 1000 (100)  

0.98 (.062) 0.97 (.045) 0.97 (.032) 0.97 (.022) 0.97 (.014) 0.97 

      
M_P 
(0) 

986 (98.6) 999 (99.9) 1000 (100) 1000 (100) 1000 (100)  

1.02 (.055) 1.02 (.038) 1.02 (.028) 1.02 (.020) 1.02 (.013) 1.02 

      
M_G 
(0) 

970 (97.0) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

1.02 (.062) 1.03 (.041) 1.03 (.031) 1.03 (.020) 1.03 (.013) 1.03 

      
A_P 
(0) 

986 (98.6) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

1.04 (.064) 1.04 (.043) 1.04 (.030) 1.04 (.022) 1.04 (.013) 1.04 

      
A_G 
(0) 

924 (92.4) 985 (98.5) 998 (99.8) 1000 (100) 1000 (100)  

0.99 (.066) 1.00 (.046) 0.99 (.033) 0.99 (.023) 0.99 (.014) 0.99 

      
P_G 
(0) 

990 (99.0) 999 (99.9) 1000 (100) 1000 (100) 1000 (100)  

1.04 (.059) 1.03 (.042) 1.03 (.029) 1.03 (.021) 1.03 (.014) 1.03 

      
Note. N – numeration; M – measurement; A – algebra; P – probability; G – geometry. 
a Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parenthesis is the percentage of random samples 
(out of 1,000) with the same decision as in the population at a given sample size.  
c The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distribution of 1,000 corrected correlations at a given sample size. 
d The value of the corrected correlation in the population. 
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decisions made using sample data increased as (a) the population value of the 

corrected correlation increased and (b) the sample size increased. That is, the 

percentage agreement between the decisions made using sample data and 

thedecisions made in the population was high if not 100%. With respect to the 

accuracy of sample estimates, the corresponding r´ values in the population were 

recovered very well (within 0.01); the standard errors of sample estimates were 

small and, as expected, decreased with an increase in the sample size. For n = 250, 

the standard errors ranged between 0.051 and 0.066, whereas for n = 5,000, the 

standard errors were between 0.012 and 0.014. Given the reliabilities of the 

Mathematics content subscales did not differ as much as the reliabilities of the 

English Reading and Mathematics knowledge and skills subscales, the standard 

errors for the pairs of content subscale were comparable across the pairs at each 

level of sample size. Overall, although the r´ statistic was determined to be an 

accurate and precise estimator of the population parameter, the results were 

uninterpretable (i.e., r´ > 1.00).   

Proportional Reduction of the Mean Squared Error (PRMSE) 

The results for the PRMSE method are reported in Table 16 for the population 

(the last column) and the replicated sampling data (columns 3 through 7). First, as 

shown in the last column of the table, regardless of the reliability and complexity 

of each subscale, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 < 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 for all subscales, meaning that the true 

subscale scores were better predicted by the observed total scores than by the 

observed subscale scores. That is, students’ performances on each subscale were 

no different from their performances on the total test. Next, regardless of the  
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Table 16 

Frequency of Decisions that Agreed with Decisions Made in the Population, Means and 

Standard Deviations of the Sampling Distributions of 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 at Five 

Levels of Sample Size for Mathematics Content Subscales 

  
 

Sample Size 

Subscale  250 500 1,000 2,000 5,000 Pop. 

Numeration (0)a 
11111111 1000 (100)b 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.63 (.028)c 0.63 (.019) 0.63 (.015) 0.63 (.010) 0.63 (.006) 0.63d 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.94 (.037) 0.94 (.025) 0.94 (.019) 0.94 (.012) 0.94 (.008) 0.94 

        

Measurement (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.63 (.029) 0.63 (.024) 0.63 (.015) 0.63 (.010) 0.63 (.006) 0.63 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.90 (.042) 0.90 (.031) 0.90 (.021) 0.89 (.014) 0.89 (.009) 0.89 

        

Algebra (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.58 (.038) 0.58 (.025) 0.58 (.019) 0.58 (.013) 0.58 (.008) 0.58 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.89 (.055) 0.88 (.039) 0.88 (.027) 0.88 (.019) 0.88 (.012) 0.88 

        

Probability (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.61 (.032) 0.61 (.022) 0.61 (.019) 0.61 (.011) 0.61 (.007) 0.61 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.94 (.042) 0.93 (.029) 0.93 (.020) 0.93 (.015) 0.93 (.009) 0.93 

        

Geometry (0) 
 1000 (100) 1000 (100) 1000 (100) 1000 (100) 1000 (100)  

𝑃𝑅𝑀𝑆𝐸𝑠𝑠 0.60 (.033) 0.60 (.024) 0.60 (.017) 0.60 (.011) 0.60 (.007) 0.60 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥 0.90 (.045) 0.90 (.031) 0.90 (.023) 0.90 (.016) 0.90 (.010) 0.90 
 

Note.
 
𝑃𝑅𝑀𝑆𝐸𝑠𝑠 denotes the proportional reduction of the mean squared error for the estimated 

subscale true score that is linearly predicted from the observed subscale score; 𝑃𝑅𝑀𝑆𝐸𝑠𝑥denotes 
the proportional reduction of the mean squared error for the estimated subscale true score that is 
linearly predicted from the observed total test score. 
a  Decision (0 – not different; 1 – different) made in the population. 
b The first value is the frequency and the value in parentheses is the percentage of random samples 
(out of 1,000) with the same decision as in the population.  
c The first value is the mean and the value in parentheses is the standard deviation of the sampling 
distributions of the corresponding PRMSE at a given sample size. 
d The value of the corresponding PRMSE in the population. 
 



WARRANT OF SUBSCORE REPORTING IN LARGE-SCALE ASSESSMENTS 
 

79 
 

sample size, the decisions made using sample data were 100% consistent with the 

decisions made in the population. The means of the distributions of sample 

estimators of 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 and 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 were within 0.01 of the corresponding 

population values for all the five subscales. The standard errors of sample 

estimators were the largest when the algebra subscale was considered (e.g., the 

standard error for 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 = 0.055 for n = 250) but decreased as the sample size 

increased, ranging between 0.006 and 0.012 for n = 5,000. The smallest standard 

errors were for the numeration and measurement subscales, given that the internal 

consistency for these subscales was slightly larger (both 0.63) than for the other 

content subscales in the Mathematics assessment. 

Agreement Method 

The results for the agreement method are reported in Tables 17 and 18. 

First, the correlations of the errors on the pairs of subscales and each subscale–

total test pair were obtained. The results of this analysis are provided in Table 17. 

As shown in this table, whereas the correlated errors for the pairs of subscales 

were low, the correlated errors for the subscale–total test pairs were high due to 

the common items present in the two measures. Given these findings, the 

agreement method was used only with the pairs of subscales. 

Next, Kelley’s ratio was computed for each subscale pair using first the 

entire population of students and then replicated random samples of different 

sizes. The results for the population are shown in the second last column on the 

right, and the results for the samples, including the mean of Kelley’s ratio and its 

standard error across random samples, are provided in columns three to seven in  
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Table 17 

Correlated Errors, Mathematics Content Subscales, N = 127,596 

Subscale N M A P G 
      

Numeration -     

Measurement .081 -    

Algebra .039 -.037 -   

Probability .132 .027 .062 -  

Geometry .039 .039 .000 .038 - 

Total Test .601 .452 .379 .546 .473 

Note. Correlation coefficients shown in italic are between two measures, with one of the measures 
being a part of the other. 
 

Table 18. As shown in the table, the values of Kelley’s ratio were greater than one 

for all but one pair of subscales. Given that the reliabilities of the Mathematics 

content subscales and the intercorrelations among the subscales were very close in 

value, the values of Kelley’s ratio greater than one were observed for these pairs. 

The results for the agreement method when used with random samples were 

congruent with the results at the population level. The mean value of Kelley’s 

ratio and its standard error are provided for each pair of subscales in Table 18. As 

shown in the table, the mean was within 0.01 of the corresponding population 

value for each subscale pair and sample size. The standard error of Kelley’s ratio 

decreased as the sample size increased. Namely, for n = 250 the standard errors 

were between 0.045 and 0.051, whereas for n = 5,000 the standard errors were no 

greater than 0.011 for all the pairs of subscales. That is, the sample estimators of 

Kelley’s ratio were accurate and precise.   

 



WARRANT OF SUBSCORE REPORTING IN LARGE-SCALE ASSESSMENTS 
 

81 
 

Table 18 

Means and Standard Deviations of Kelley’s Ratio at Five Levels of Sample Size and 

Percentage of Differences in Excess of the Chance for Mathematics Content Subscales 

 
 

Sample Size 
  

 250 500 1,000 2,000 5,000 Pop. % 

N_M 1.04 (.051)a 1.04 (.035) 1.04 (.025) 1.04 (.017) 1.04 (.011) 1.04 - 
        
N_A 1.03 (.050) 1.03 (.034) 1.03 (.025) 1.03 (.016) 1.03 (.011) 1.02 - 
        
N_P 1.09 (.050) 1.09 (.037) 1.08 (.026) 1.08 (0.18) 1.08 (.011) 1.07 - 
        
N_G 1.03 (.049) 1.03 (.037) 1.03 (.025) 1.02 (.017) 1.02 (.011) 1.02 - 
        
M_A 0.98 (.045) 0.98 (.033) 0.98 (.023) 0.98 (.016) 0.98 (.010) 0.98 ≈1.0% 
        
M_P 1.02 (.046) 1.02 (.032) 1.02 (.024) 1.02 (.017) 1.02 (.010) 1.01 - 
        
M_G 1.02 (.052) 1.03 (.035) 1.02 (.026) 1.02 (.017) 1.02 (.011) 1.02 - 
        
A_P 1.03 (.049) 1.03 (.033) 1.03 (.024) 1.03 (.017) 1.03 (.010) 1.03 - 
        
A_G 1.00 (.047) 1.00 (.033) 1.00 (.023) 1.00 (.017) 1.00 (.010) 1.00 - 
        
P_G 1.03 (.048) 1.03 (.034) 1.03 (.023) 1.03 (.017) 1.03 (.011) 1.02 - 

        
Note. N – numeration; M – measurement; A – algebra; P – probability; G – geometry. 
a The first value is the mean and the value in parentheses is the standard deviation (i.e., standard 
error) of the sampling distribution of the corresponding statistics at a given sample size. 
% – percentage of differences in excess of the chance in the population, determined using Table IV 
in Kelley (1923, p. 330). 
 

 

Finally, using Table IV in Kelley (1923, p. 330), the proportion of score 

differences in excess of the chance was determined only for the M_A pair and not 

for the remaining pairs due to the uniterpretability of Kelley’s ratio for these pairs. 

Approximately 1% of the students in the population were determined to have 

differences in their scores on the measurement and algebra subscales that could 

not be attributed to the chance. 
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Summary 

To summarize, as with the English Reading, both correlational methods 

(i.e., r´ and PRMSE) led to the same decisions when used with the Mathematics 

knowledge and skills subscales and the Mathematics content subscales. Namely, 

student performances on the pairs of subscales and subscale–total test pairs were 

determined to be no different. Using the agreement method with the Mathematics 

knowledge and skills subscales, it was determined that there were 1.5% of 

students with differences between their scores on the knowledge and problem 

solving subscales greater than the chance. In case of the Mathematics content 

subscales, 1.0% of students had differences between their scores on the 

measurement and algebra subscales greater than what could be attributable to the 

chance. For the remaining pairs of subscales, the differences in subscale scores 

were unlikely due to anything systematic when the agreement method was used. 

The statistics used for each method were determined to be accurate and precise. 

Sample estimators were within 0.01 of the corresponding population parameters. 

Standard errors of sample estimators decreased as the sample size increased from 

n = 250 to n = 5,000. 
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CHAPTER VI: SUMMARY AND CONCLUSIONS 

The final chapter is organized in six sections. A brief summary of the 

purposes of the present study, the research method and analyses conducted to 

determine if the three detection methods identified subscale scores as distinct 

among each other and from the total score is provided in the first section. A 

summary of findings for each detection method is presented in the second section, 

followed by the explanation of findings. The limitations of the study are identified 

in the third section followed by the conclusions formulated from the findings and 

taking into account the limitations. The last two sections contain, respectively, the 

implications for practice and recommendations for future research.  

Summary of the Purposes, Research Method, and Analyses 

The purposes of the present study were to determine whether 

1. the correlations corrected for attenuation, proportional reduction of the 

mean squared error, and the agreement methods led to the same or 

different decision regarding the reporting of subscale scores; and 

2. the statistics used for each method were accurate and precise.  

The three detection methods were:  

• correlations corrected for attenuation due to unreliability (r´) (Haladyna & 

Kramer, 2004; Harris & Hanson, 1991; McPeek, et al., 1976); 

• proportional reduction of the mean squared error (PRMSE) (Haberman, 

2005, 2008; Lyren, 2009; Sinharay et al., 2007; Sinharay, 2010); and  
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• agreement method based on the ratio of the standard error of the difference 

due to measurement error and the standard deviation of the difference 

(Gulliksen, 1951; Kelley, 1923; Lord & Novick, 1968). 

Whereas the r´ and, especially, the PRMSE methods have been extensively used 

with large-scale assessments, the agreement method introduced by Kelley in 1923 

is a method that has not received much attention in achievement testing and, 

therefore, was re-visited in the present study. 

The data were provided by the Education Quality and Accountability 

Office (EQAO), which, as an agency at arm’s length to the Ontario provincial 

government, aims to provide parents, teachers, and the public with reliable 

information that can be validly interpreted about student achievement. Like other 

large-scale assessment agencies, the EQAO considers score reporting by subscale 

on their achievement assessments in response to the feedback from teachers doing 

the same when interpreting reports they receive on their students’ achievement. 

However, empirical evidence is required for assessment programs that consider 

subscore reporting in addition to reporting total test scores on their assessments to 

be gathered to support their decisions. 

The EQAO assessments considered in this study included (a) the 2009 

Junior English Reading with three process subscales and (b) the 2009 Junior 

Mathematics with three knowledge and skills subscales and five content 

subscales. These large-scale assessments are developed to reflect The Ontario 

Curriculum and administered annually to students in Grade 6 in all publically 

funded schools in the province of Ontario. Using the three detection methods with 
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these assessments, the analyses were conducted first using the population of 

students assessed in 2009, with N = 128,089 for the English Reading assessment 

and N = 127,596 for the Mathematics assessment. Following this, the analyses 

were repeated for five different sample sizes – 250, 500, 1,000 2,000, and 5,000 – 

to examine the effect of sample size on each of the three detection methods 

considered in this study in terms of how well the three methods agree when 

detecting score differences and how accurate and precise the statistics used with 

each method are. A replicated sampling method, in which 1,000 samples were 

randomly drawn from the population with replacement at each of the five levels of 

sample size, was used to examine decisions made at different levels of sample 

size for the three detection methods. For each detection method, the consistency 

of the decisions was evaluated using the percentage of samples that led to the 

same decision made at the population level. Means and standard deviations (i.e., 

standard errors) of the distributions of sample estimators (i.e., r´, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 and 

𝑃𝑅𝑀𝑆𝐸𝑠𝑥, Kelley’s ratio) were used to evaluate the three detection methods in 

terms of their accuracy and precision.  

Summary of Findings 

Correlations Corrected for Attenuation (r´) 

When the r´ method was used with the English Reading, only one pair of 

subscales was determined to be distinct at the population level, meaning that 

students’ performances in terms of their rank-ordered positions on the two 

subscales were different. In particular, the explicit information and connections 

subscales, which were of the lowest and the highest levels of complexity 
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respectively, had the corrected correlation, 0.89, slightly below the value specified 

by the decision rule, 0.90. For the Mathematics assessment, none of the pairs of 

subscales was determined to be distinct at the population level. Further, the 

corrected correlations for the two out of three pairs of the knowledge and skills 

subscales and the eight out of ten pairs of the content subscales were greater than 

one. This was likely due to low reliabilities of subscales and/or the mean of the 

reliabilities and correlations being of similar magnitude. The corrected 

correlations greater than one were also observed for all the subscale–total test 

pairs both for the English Reading and Mathematics assessments. This result was 

due to the presence of common items on the two measures. Given this, the r´ 

method was not used with these pairs in the replicated sampling component of this 

study. The consistency of the decisions made using sample data for the English 

Reading subscales varied between 51% and 100% with the lower values for the 

pairs involving the explicit information subscale, which had the lowest reliability 

(0.47). In the case of the Mathematics assessment, the consistency of the decisions 

varied between 97% and 100% for the knowledge and skills subscales and 

between 89% and 100% for the content subscales. For all three sets of subscales, 

the consistency of decisions increased as (a) the population value of the corrected 

correlation increased, (b) the sample size increased, (c) the reliability increased, 

and (d) the difference in the complexity levels between two subscales became 

smaller. The sample estimators of the corrected correlations were accurate, within 

0.01 of the population values for the three sets of subscale pairs. The standard 

errors of sample estimators decreased as the sample size increased. For n = 250, 
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the standard errors ranged from 0.029 to 0.081 for the English Reading subscales, 

0.026–0.048 for the Mathematics knowledge and skills subscales, and 0.051–

0.066 for the Mathematics content subscales, whereas for n = 5,000, the standard 

errors ranged from 0.007 to 0.017 for the English Reading, 0.006–0.010 for the 

Mathematics knowledge and skills subscales, and 0.012–0.014 for the 

Mathematics content subscales. Given the low reliability of the explicit 

information subscale (0.47) in the English Reading, the standard errors for the 

pairs involving this subscale (i.e., E_I and E_C) were consistently higher than the 

standard errors for the other pairs of subscales. 

Proportional Reduction of the Mean Squared Error (PRMSE) 

When the PRMSE method was used with the population data, students’ 

true performances on the subscales in the English Reading and Mathematics 

assessments were determined to be better predicted from students’ performances 

on the total tests than from their performances on the corresponding subscales. 

Regardless of the complexity and reliability of subscales, 𝑃𝑅𝑀𝑆𝐸𝑠𝑠was smaller 

than 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 for each subscale.The decisions made using sample data were 100% 

consistent with the decisions made in the population, irrespective of the (a) 

sample size, (b) reliability, and (c) complexity of each subscale. For both the 

English Reading and Mathematics assessments, the sample estimators of 𝑃𝑅𝑀𝑆𝐸𝑠𝑠 

and 𝑃𝑅𝑀𝑆𝐸𝑠𝑥were accurate, within 0.01 of the corresponding population values. 

The standard errors of sample estimators were the largest when the explicit 

information subscale in the English Reading was considered (e.g., the standard 

error for 𝑃𝑅𝑀𝑆𝐸𝑠𝑥 = 0.100 for n = 250) but decreased as the sample size increased. 
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The smallest standard errors across the five levels of sample size were for the 

combined information subscale in the English Reading, given that the internal 

consistency for this subscale was the largest (0.80). The standard errors of sample 

estimators for the Mathematics content subscales were comparable across the five 

levels of sample size, given the values of internal consistency for these subscales 

(0.59–0.63) did not vary as much as they did for the English Reading subscales 

(0.47–0.80) and the Mathematics knowledge and skills subscales (0.60–0.78). 

Overall, the statistics for the PRMSE method were determined to be accurate and 

precise.  

However, the fact that the true subscale score were determined to be better 

predicted by the observed total score that contains information on students’ 

performances on each of the subscales, questions the appropriateness of using the 

PRMSE method for determining the “added value” of subscale scores over the 

total score. As indicated by Sinhary et al. (2007), the finding that the PRSME 

method did not reveal that the subscale scores had added value over the total score 

is due to the low reliability estimates and the high correlations between the true 

scores on each subscale and the total test. However, it is not clear whether low 

correlations between true scores on a subscale and the total test can be realized 

given the total test contains the subscale with which it is being correlated.  

Agreement Method 

First, in response to issues regarding the need to consider the correlation 

between error scores for the pair of subscales or each subscale with the total test 

(Zimmerman, 1981), the correlations for each pair were examined. Whereas the 



WARRANT OF SUBSCORE REPORTING IN LARGE-SCALE ASSESSMENTS 
 

89 
 

correlations between the errors on the pairs of subscales were determined to be 

low (< |0.20|), the correlations between the errors for the subscale–total test 

pairs were higher (> 0.33, with the exception of the explicit information subscale 

for the English Reading (0.19)), due to the presence of common items. Therefore, 

as with the r´ method, the agreement method was used with the pairs of subscales 

given the low correlated errors (less than 10% shared variance) and not with the 

subscale–total test pairs.  

For both the English Reading and Mathematics assessments, the sample 

estimators of Kelley’s ratio were determined to be accurate. For each pair of 

subscales, the sample estimators were within 0.01 of the population values across 

the five levels of sample size. The standard error of Kelley’s ratio decreased as the 

sample size increased. In particular, for n = 250 the standard errors ranged from 

0.043 to 0.049 for the English Reading, 0.048–0.052 for the Mathematics 

knowledge and skills subscales, and 0.045–0.052 for the Mathematics content 

subscales, whereas for n = 5,000, the standard errors ranged from 0.009 to 0.011 

for the English Reading, the Mathematics knowledge and skills subscales, and the 

Mathematics content subscales. That is, Kelley’s ratio was accurate and precise.  

Turning to the agreement among the subscale scores, the values of 

Kelley’s ratio were high. For the English Reading, the values ranged from 0.91 to 

0.98. Depending on a subscale pair, between one to five percent of students had 

differences in subscale scores greater than the chance. That is, the score 

differences for these students were attributable to something systematic. The 

largest percentage (i.e., ≈5.0%) of students was observed for the explicit 
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information and connections subscales, which were, respectively, of the lowest 

and the highest levels of complexity. For the Mathematics assessment, the values 

of Kelley’s ratio exceeded 1.00 for all but one pair of knowledge and skills 

subscales and one pair of content subscales. Values for Kelley’s ratio equal to or 

greater than one are not interpretable – the standard error of the difference due to 

measurement error theoretically cannot be equal to or exceed the standard 

deviation of differences. For the two pairs of Mathematics subscales with 

interpretable ratios, 1.5% of students had differences in their scores on the 

knowledge and problem solving subscales greater than the chance, and 1.0% of 

students had greater-than-the-chance differences between their scores on the 

measurement and algebra subscales. For the remaining pairs of Mathematics 

subscales, the score differences were unlikely due to anything systematic. 

To summarize, both correlational methods (i.e., r´ and PRMSE) led to the 

same decisions when used with the English Reading, Mathematics knowledge and 

skills subscales, and the Mathematics content subscales. Namely, student 

performances on the pairs of subscales and subscale–total test pairs were 

determined to be no different. Further, most of the corrected correlations could 

not be meaningfully interpreted due to their values being greater than one. For the 

PRMSE method, none of the true subscale scores were determined to be better 

predicted by the corresponding observed subscale score than by the observed total 

score. In contrast, the agreement method revealed that between 1.0% to 5% of 

students had subscore differences greater in absolute value than the difference 

expected due to the chance when used with the English Reading assessment. 
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Using the agreement method with the Mathematics knowledge and skills 

subscales, it was determined that there were 1.5% of students with differences 

between their scores on the knowledge and problem solving subscales greater than 

the chance. For the Mathematics content subscales, 1.0% of students had 

differences between their scores on the measurement and algebra subscales 

greater than what could be attributable to the chance. For the remaining pairs of 

Mathematics subscales, the results of the agreement method were uninterpretable 

and thus, differences in subscale scores were unlikely due to anything systematic. 

Overall, although the results of the analyses for the three methods could not be 

meaningfully interpreted in some cases, the decisions made in replicated samples 

were consistent with the decisions made in the population, with the statistics for 

each method being accurate and precise estimators of the corresponding 

population parameters. 

Explanation of Findings 

The reliabilities of and intercorrelations among the subscales in the two 

assessments used to examine the different detection methods were close in value. 

Based on their work, Haberman (2005) and Sinharay et al. (2007) concluded that 

“subscores are most likely to have value if they have relatively high reliability by 

themselves and if the true subscale score and the true total score have only a 

moderate correlation. Both conditions are important” (Sinharay et al., 2007, p. 

28). Such was not the case for most of the pairs in the present study. With the 

reliabilities of 0.47–0.80 for the subscales, and 0.87 for the English Reading and 

0.89 for the Mathematics total tests, and the corrected correlations between each 
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subscale and the total test being all greater than one, the two conditions stated by 

Sinharay et al. (2007) were not realized in the two assessments. Further, Sinharay 

et al. (2007) noted that the PRMSE method is likely to provide support for the 

reporting of subscale scores “for tests with reasonably large number of items in 

each subcategory and composed of distinct subcategories” (p. 28). The former 

condition ensures higher subscore reliabilities, while the second condition ensures 

moderate correlations of each subscale with the total test. However, reliability is 

contingent upon the number of items included in each subscale, with higher 

numbers contributing to higher reliability. The number of items included in each 

subscale in the two assessments considered in this study was as low as 6 and as 

high as 18 items, and thus, the reliabilities for some of the subscales were low to 

moderate (0.47–0.80).   

Similarly, Kelley’s agreement method will only work if the mean of the 

reliabilities of subscales is greater than the correlation between the two subscales, 

with the greater the difference leading to the identification of the number of 

students with systematic differences in their subscale scores. Again, this statistical 

condition is most likely to be satisfied if subscales were specifically developed to 

measure a multidimensional construct or domain, with clearly defined 

subdomains (substantive condition). As mentioned earlier, given the English 

Reading and Mathematics assessments were developed to report total scores, the 

achievement domain assessed by each assessment was likely conceived as 

unidimensional rather than multidimensional, with no clear subdomains, and thus, 

moderate to high inter-correlations (0.59–0.79) were observed. Clearly, subscores 
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have meaning only in the multidimensional case. The results of this study provide 

support for Luecht et al.’s (2006) contention that “inherently unidimensional item 

and test information cannot be decomposed to produce useful multidimensional 

score profiles – no matter how well intentioned or which psychometric model is 

used to extract the information” (p. 6). 

Limitations of the Study 

This study was limited by the assessments examined. As mentioned 

earlier, the data used in the study were obtained from the Education Quality and 

Accountability Office (EQAO) in the province of Ontario. The data consisted of 

students’ scores on the Junior (Grade 6) English Reading and Mathematics 

assessments administered in June 2009. The EQAO administers assessments at 

other grade levels (i.e., Primary Division (Grades 1–3), Grade 9) that were not 

considered in the present study. Likewise, assessments administered by other 

large-scale agencies were not considered.  

The EQAO assessments were initially developed to yield total scores and 

not specifically for diagnosing students’ strengths and weaknesses in the 

subdomains specified in the table of specifications for each assessment. Given the 

original purpose of the two assessments, the reliabilities of the subscales used in 

this study (0.47–0.80) were borderline, if not below the minimum reliability 

required for subscore reporting. But the minimum is somewhat controversial. 

According to McPeek et al. (1976), only subscores that have a reliability of at 

least 0.80 should be reported to examinees for high-stake purposes such as 

admission. However, he goes on to say if subscores are to “be used only for 
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guidance and placement purposes, the statistical standards for reliability could be 

greatly reduced” (p. 3) because “guidance and placement decisions are perceived 

reversible, whereas admissions decisions generally are not” (p. 1). Salvia and 

Ysseldyke (2001) recommended that the minimum reliability value for reporting 

subscale scores be set at 0.60. In this study, the examination of the effect of 

reliability on the different detection methods was limited to the values of 

reliabilities of subscales (0.47–0.80) in the English Reading and Mathematics 

assessments, with several of the reliabilities being below the minimum reliability 

recommended by Salvia and Ysseldyke (2001). Finally, given the English 

Reading and Mathematics assessments were developed to report total scores, the 

achievement domain assessed by each assessment was likely conceived to be 

unidimensional rather than multidimensional, thus leading to moderate to high 

inter-correlations (0.59–0.79). Consequently, the examination of the different 

detection methods was limited to these correlations and reliabilities of subscales 

in the English Reading and Mathematics. 

Conclusion 

 Based on the results of the study, the following is concluded:  

1. the correlational methods agreed; 

2. the agreement method did not agree with the correlational methods 

when the correlations between the subscales was lower than the mean 

of the reliabilities; 

3. the statistics used for the three methods were accurate and consistent; 
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and 

4. three conditions need to be met, one substantive (multidimensional 

construct for which scores are wanted for each dimension), and the 

other  two statistical (high reliabilities of and low intercorrelations 

among subscales). In agreement with Sinharay et al. (2007), the results 

of this study clearly show that, although the estimates are accurate and 

consistent, “subscores are most likely to have value if they have 

relatively high reliability by themselves and if the true subscale score 

and the true total score have only a moderate correlation. Both 

conditions are important” and “...for tests with reasonably large 

number of items in each subcategory and composed of distinct 

subcategories” (Sinharay et al., 2007, p. 28). 

Implications for Practice 

 The rationale for this study was predicated on the notion that reporting of 

subscale scores allows extracting information about students’ strengths and 

weaknesses on the assessed subdomains with minimum testing time. However, a 

number of issues need to be considered when reporting subscale scores in addition 

to the total scores. The implications for practice include those for test 

development and use of assessment results by teachers in the field.  

Whether or not to generate and report subscale scores should be 

established at the beginning of the test development process. At the stage of 

defining or prescribing the domain to be measured by a test, which should be the 

beginning activity, effort should be devoted to determining if the domain is 
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unidimensional or multidimensional. If the domain is found to be unidimensional, 

then the question of subdomains and subscores is irrelevant. On the other hand, if 

the domain is found to be multidimensional and scores for the subdomains are to 

be reported, then the items and final test form should be developed accordingly 

(Haladyna & Kramer, 2004; Luecht et al., 2006). That is, domain clarity should be 

established in the first place. In the multidimensional case, the subdomains to be 

assessed by the subscales should be clearly distinguishable and the items included 

in each subscale should be relevant to and representative of the subdomain to 

which they are referenced and not to the other subdomains assessed by the test. 

Further, a sufficient number of items should be included in each subscale so that 

the reliabilities of subscales are high. In sum, to warrant reporting of subscale 

scores, tests must be built to satisfy three conditions, one substantive 

(multidimensional construct for which scores are wanted for each dimension), and 

the other  two statistical (high reliabilities of and low intercorrelations among 

subscales).  

With respect to the use of assessment results by teachers in the field, the 

following implication is in place. Given that teachers use scores to identify areas 

of strength and areas that need to be addressed for individual students and/or to 

alter their instruction to improve their students’ learning and achievement, only 

Kelly’s (1923) agreement method provides such information. The agreement 

method works with actual score differences on pairs of subscales, thereby 

providing information on the magnitude of score differences for individual 

students. Neither the r´ nor the PRMSE methods are able to provide directly such 
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information to teachers. If the correlational methods suggest that there are 

differences, teachers would then look at an individual students’ scores on the pairs 

of subscales for which distinctiveness was found. And this is what the agreement 

method is able to provide to teachers directly, thus, meeting teachers’ need for 

useful and interpretable assessment results. 

Recommendations for Future Research 

 Based on the findings and in the light of limitations of this study, the 

following recommendations for future research are in place. 

1. Examination of the performance of different detection methods with 

assessments specifically designed to have subscales for diagnostic purposes 

(i.e., assessments of constructs and achievement areas that are 

multidimensional) is needed. 

2. Simulation studies are needed to systematically examine the effects of 

reliability of subscales and correlations among subscales and each subscale 

with the total test for each detection method given the domain is 

multidimensional. This will allow determining the minimum magnitude of 

the difference between the mean of reliabilities and correlations required for 

differences in subscale scores for individual students to be detected. 

The results from such work will allow making generalizations with respect to the 

use of the detection methods in a variety of assessment contexts and situations. 
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