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ABSTRACT 

Risk management is essential for the construction industry to successfully 

fulfill project objectives. Several studies were conducted in the past 

decade to support quantitative risk analysis. These studies were based on 

using some of the commonly used techniques such as risk matrix, 

decision trees, Monte Carlo, and sensitivity analysis. However, some of 

these techniques are limited because they either do not support 

quantitative risk analysis, or are difficult to be utilized due to the required 

amount of data to support quantitative risk analysis.  

 To address such limitations, a comprehensive framework was 

developed, based on combining three well-known techniques in reliability 

engineering, i.e., failure mode and effect analysis, fault trees, and event 

trees with fuzzy logic. Fuzzy logic and failure mode and effect analysis 

were first combined to provide an answer to the problem of identifying of 

critical risk events through the development of a fuzzy expert system 

software package named Risk Criticality Analyzer. 

To support quantitative risk analysis in the construction industry, 

fault tree and event tree were combined, and fuzzy logic is used to solve 

both of them. Fuzzy arithmetic operations on fuzzy numbers were used to 

represent logical gates in the fault tree structure, and to conduct event tree 

analysis. To automate solving both fault trees and event trees, Fuzzy 

Reliability Analyzer was designed and implemented using Visual 

Basic.net. Both tools were then validated through case studies. The 



 
 

results indicate that by using the proposed methodology, the risk can be 

assessed effectively and efficiently. 

The proposed framework presented in this research provides the 

contribution of combining fuzzy logic with failure mode and effect analysis, 

fault trees, and event trees in a comprehensive framework to support risk 

identification, risk assessment, and risk response. Since the proposed 

framework is based on using linguistic terms, risk analysts are offered a 

more convenient and practical framework to conduct risk analysis. The 

proposed framework was able to address several limitations attributed to 

the conventional application of failure mode and effect analysis and 

offered a generic framework that can be adapted to fit any industry or 

organization.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

ACKNOWLEDGMENTS 
 
 
I was given a great opportunity to study my Ph.D. degree at the University 

of Alberta.  During the last four years, I have received a tremendous 

amount of support from many professionals. First and foremost, I would 

like to express my sincere gratitude to my advisor, Dr. Aminah Robinson 

Fayek, for her guidance, invaluable ideas, intellectual support, and the 

time she dedicated to me despite her busy schedule. She gave me a lot of 

motivation and support to work in this area of research, which is really very 

challenging, and gave me a lot of guidance toward my academic goals. 

She always welcomed my ideas, responded quickly to any concerns, and 

always kept motivating me to do a good job. Her continuous motivation 

helped me a lot to excel in my work, and to finish ahead of all proposed 

target dates. It was truly an honour for me to work under her supervision.   

Secondly, I would like to express my appreciation to Mr. Fernando 

Martinez for all the time, effort, and feedback I have received from him 

during this research. His support and ideas helped me a lot during the 

journey of my thesis.  

Finally, I am truly indebted to my family in Egypt. I would like to give 

a special thanks to my father, Abdelrahman, for his continuous motivation 

and steady support, and to my mother, Thanaa, for her deepest love and 

support, and for always being beside me even over this long distance. 

This work was financially supported by the NSERC Associate 

Industrial Research Chair in Construction Engineering and Management at 



 
 

the University of Alberta under a Natural Sciences and Engineering 

Industrial Research Chair grant (NSERC IRCPJ 349527-05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table of Contents 

 

1.0 Introduction        1 

1.1 Background        1 

1.2 Problem Statement      3  

1.3  Research Objectives     6 

1.4  Expected Contributions     7 

1.5  Research Methodology     9 

1.6  Thesis Organization     14 

 

2.0 Literature Review         16 

2.1  Risk Definition      16 

2.2 Risk versus Uncertainty     18 

 2.3 Risk Breakdown Structure (RBS)    20 

 2.4  Risk Management      21 

2.5 Risk Analysis       24 

2.5.1 Risk Matrix (Qualitative Risk Analysis)   26 

2.5.2 Risk Analysis Using AHP (Qualitative Risk Analysis) 29 

2.5.3 Risk Analysis Using AHP and Decision Tree  

(Quantitative Risk Analysis)     32 

2.5.4 Risk Analysis Using Neural Networks 

(Qualitative/Quantitative  Risk Analysis)    33 

2.5.5 Risk Analysis Using Regression  



 
 

Analysis (Qualitative/Quantitative Risk Analysis) 36 

2.5.6 Risk Analysis Using Monte Carlo Simulation    

 (Quantitative Risk Analysis)     38 

2.5.7 Risk analysis Using Fuzzy Logic  

(Qualitative/Quantitative Risk Analysis)   44 

2.6 Summary        55 

 

3.0  Risk Analysis Techniques (FMEA, Fault Trees, and Event 

Trees)          57 

3.1  Introduction           57 

3.2  Failure Mode and Effect Analysis (FMEA) - Concepts  

and Framework       58 

3.2.1  Failure Modes and Failure Causes      61 

3.2.2 Risk Priority Number (RPN)      63 

3.2.3 Previous FMEA Studies      66 

3.2.4 FMEA Limitations       70 

3.2.5 Fuzzy Logic         72 

3.2.6 Fuzzy Expert Systems      74 

3.3  Fault Tree Analysis (FTA)      82 

3.3.1  Advantages of FTs in Decision Making    85 

3.3.2 Fault Trees Analysis- Steps     86 

3.3.3  Qualitative Fault Tree Analysis     87 

 3.3.3.1   Minimal Cut Set Automation         90 



 
 

 3.3.4  Quantitative Fault Tree Analysis     94 

3.3.5   Fault Tree Applications      96 

 3.4  Event Tree        100 

 3.4.1   Event Tree Applications      105 

3.5     Fault Trees, Event Trees, and FMEA    111 

3.6     Summary        113 

 

4.  Risk Criticality Analysis (Fuzzy FMEA)   114 

4.1  Introduction        114 

4.2  Fuzzy Failure Mode and Effect Analysis (FMEA)  

Proposed Terminologies     116 

4.2.1  Linguistic Definition of Input Variables   117 

4.2.2 Membership Functions for Input Factors   119 

4.2.3   Membership Definition for the Output Variable (RCN) 121 

4.2.4 Aggregate Cost Impact, Time Impact, and 

Scope/Quality Impact     123 

4.2.5   Fuzzy Rule Base      129 

4.3 Risk Criticality Analyzer (RCA)    131 

4.4 Risk Criticality Analyzer (RCA)-An Overview  135 

4.5 Summary       142 

 

5.0  Quantitative Risk Analysis Using Fuzzy Fault Tree and  

Fuzzy Event Tree       145 



 
 

5.1  Risk Analysis Using Fuzzy Fault Tree and Fuzzy  

Event Tree       145 

5.2  Risk Analysis Using Fuzzy Fault Tree Analysis  148 

5.2.1  Collect Root Causes     149 

5.2.2  Establish Linguistic Terms to Assess the Probability  

of Occurrence      150 

5.2.3  Conduct Qualitative Fault Tree analysis   151 

5.2.4  Conduct Quantitative Fault Tree Analysis and  

Fuzzy Importance Analysis     157 

5.2.5  Conduct Fuzzy Fault Tree Analysis for Each 

  Mitigation Strategy      166 

5.3  Fuzzy Event Tree Analysis     177 

5.4 Fuzzy Reliability Analyzer (FRA)    181 

5.4.1  Fuzzy Reliability Analyzer (FRA): Module No. 1  182 

5.4.2  Fuzzy Reliability Analyzer (FRA): Module No. 2  186 

5.5 Summary        189 

 

6.  Case Study for Validation      190 

6.1 Data Collection      190 

6.2 Risk Criticality Analysis Validation    195 

6.3 Fuzzy Fault Tree Analysis Validation   205 

6.4 Fuzzy Event Tree Analysis Validation   215 

6.5 Validation of Contributions     225 



 
 

6.6 Summary       231 

 

7.  Conclusion and Future work     235 

7.1 Summary       235 

7.2 Contributions       240 

7.3 Recommendations for Future Work   245 

8.0 References        248 

Appendix I-Fuzzy Expert System Rule Base for RCN 

Calculations        265 

Appendix II- Sample Risk Register     271 

Appendix III- Fuzzy Importance Analysis Detailed Calculation 272 

Appendix IV-Risk Breakdown Structure (RBS) for Pipeline  

Projects        277 

Appendix V- Risk Criticality Analysis Validation    278 

Appendix VI- Minimal Cut Calculations for the Case Study 

   Using (Hauptmanns 1988) algorithm    281 

Appendix VII- Alpha Cut Representation for Basic Events  293  

Appendix VIII- Detailed Calculation of the Term (1- FPro (Basic 

event)α)  for the Case Study     307  

Appendix IX- Top Event Fuzzy Probability (TE1) for the 

 Case Study        321 

Appendix X- Top Event Fuzzy Probability Calculations for 

 Fuzzy Importance Analysis      322 



 
 

Appendix XI- Failure of Mitigation (1) – (T1) Fuzzy Probability 

Calculations          336 

Appendix XII- Failure of Mitigation (2) – (T2) Fuzzy Probability 

Calculations       341 

Appendix XIII- Failure of Mitigation (3) – (T3) Fuzzy Probability         

Calculations       346 

Appendix XIV- Risk Criticality Analyzer and Fuzzy Reliability  

Analyzer Contribution Validation    351 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of Tables 

 

Table 2-1. Sample probability of occurrence and impact table  

(adapted from PMI, 2004)     28 

Table 2-2. AHP pairwise comparison scale and definition  

(adapted from Saaty 1982)       30 

Table 3-1. Severity (S) rating evaluation criteria (adapted from  

Ayyub 2003)       65 

Table 3-2. Occurrence (O) rating evaluation criteria (adapted from 

 Ayyub 2003)       65 

Table 3-3. Detection (D) rating evaluation criteria (adapted from 

 Ayyub 2003)       66 

Table 3-4. Boolean Algebra Rules (Adapted from NASA 2002) 89 

Table 3-5. Boolean Matrix Representation of example fault tree 91  

Table 3-6. Initial Working Boolean Matrix representation of the  

example fault tree      92  

Table 3-7. Final Working Boolean Matrix representation of the  

example fault tree      93  

Table 4-1. Probability of occurrence (Abdelgawad and 

Fayek 2010a)       118  

Table 4-2. Impact (I) (Abdelgawad and Fayek 2010a)   118 

 Table 4-3. Linguistic definition of Detection/control (D)  

(Abdelgawad and Fayek 2010a)    119 

    



 
 

Table 4-4. RCN and priority for corrective action(Adapted from 

Abdelgawad and Fayek 2010a)    123  

Table 4-5. Standard AHP calculation of OP (Adapted from  

Abdelgawad and Fayek 2010a)     127 

Table: 4-6. λmax calculations (Adapted from  

Abdelgawad and Fayek 2010a)    127  

Table 4-7. Risk assessment results     137 

Table 4-8. Traditional FMEA calculations    137 

Table 4-9. Comparison between traditional FMEA and fuzzy FMEA 140  

Table 5-1. Boolean matrix representation of the example fault tree 153 

Table 5-2. Initial working Boolean matrix representation of the  

example fault tree      154 

Table 5-3. Second iteration of the working Boolean matrix   155 

Table 5-4. Third iteration of the working Boolean matrix   155 

Table 5-5. Forth iteration of the working Boolean matrix  156 

Table 5-6. α-cut representation for “medium” probability of  

occurrence       160 

Table 5-7. α-cut representation for “high” probability of occurrence  161 

Table 5-8. α-cut representation of the top event fuzzy probability 164 

Table 5-9. Fuzzy importance analysis of the fault tree   164 

Table 5-10. Basic events and fuzzy probability assessment of basic  

          events        167  

Table 5-11. Boolean matrix representation of failure of mitigation (1) 167 



 
 

Table 5-12. Boolean matrix representation of failure of mitigation (2) 167 

Table 5-13. Working Boolean matrix representation of failure of  

         mitigation (1)       169 

Table 5-14. Working Boolean matrix representation of failure of 

                   mitigation (2)       169 

Table 5-15. α-cut representation for the probability of basic events  

                    A and B        171 

Table 5-16. α-cut representation of  (1- FPro(A)α), (1- FPro(B)α) 172 

Table 5-17. α-cut representation of  failure of mitigation (1)   173 

Table 5-18. α-cut representation of  failure of mitigation (2)   174  

Table 5-19. Fuzzy importance analysis for the failure of mitigation 1 176 

Table 5-20. Fuzzy importance analysis for the failure of mitigation 2 176 

Table 5-21. Trapezoidal representation of impact     

         (% of baseline cost) (Abdelgawad and Fayek 2010c) 178  

Table 5-22. Expected risk magnitude (ERM) and EMV calculations 180 

Table 6-1. Cumulative RCN/ corrective action    198 

Table 6-2. Proposed update to the rule base     201 

Table 6-3. Basic events and fuzzy probability assessment    

      (Abdelgawad et al. 2010)      208  

Table 6-4. Fuzzy importance analysis (Abdelgawad and Fayek  

2010b)        212 

Table 6-5. Expected monetary value (EMV) calculations   218 

Table 6-6. Probability and three point estimate of the impact  221 



 
 

Table 6-7. Cumulative distribution of the expected monetary value  223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of Figures  

 

Figure 2-1. Risk matrix (adapted from PMI, 2004)   29 

Figure 3-1. Sample failure mode and effect analysis worksheet 66 

Figure 3-2. Fuzzy inference system     75 

Figure 3-3. Example fuzzy expert system    76 

Figure 3-4. Sample (if-then) rules      77 

Figure 3-5. Membership representation of the nine rules  77 

Figure 3-6. Membership values of the input variables   80 

Figure 3-7. Aggregation of membership function   81 

Figure 3-8.  Defuzzification of the output function   82 

Figure 3-9. Sample fault tree structure     84 

Figure 3-10. Simple event tree structure and ETA using two 

 mitigations (Abdelgawad and Fayek 2010c)  103 

Figure 4-1. Membership functions for probability of occurrence (P) 120  

Figure 4-2. Membership functions for impact (CI, TI, SI, AI)  120  

Figure 4-3. Membership functions for detection/control (D)  121  

Figure 4-4.  Eight proposals for the membership functions of 

 the RCN       122 

Figure 4-5. Membership functions of the RCN  

       (Adapted from Abdelgawad and Fayek 2010a)   123  

Figure 4-6. AHP hierarchy       124 

Figure 4-7. Pairwise comparison using trapezoidal fuzzy number 

(Abdelgawad and Fayek 2010a)    126 



 
 

Figure 4-8. Fuzzy expert system for risk criticality analysis  130 

Figure 4-9. Risk Criticality Analyzer (Beginner Module)  133 

Figure 4-10. Risk Criticality Analyzer Example using the  

            Beginner Module      134 

Figure 4-11. Risk Criticality Analyzer (Advanced Module)    

 (Abdelgawad and Fayek 2010a)    135  

Figure 4-12. RCN calculation for Risk #1     139 

Figure 4-13. RCN calculation for Risk #2     139 

Figure 4-14. RCN calculation for Risk #1using the Beginner 

 Module         140 

Figure 4-15. RCN calculation for Risk #2 using the Beginner  

Module         140 

Figure 4-16. Risk criticality analysis and risk analysis   143  

Figure 5-1. Proposed integration between FMEA, fault trees,    

event trees, and fuzzy logic     147  

Figure 5-2. Example event tree fault tree integration using two  

mitigation strategies      148  

Figure 5-3. Membership function to assess probability of  

occurrence       151  

Figure 5-4. An example fault tree structure     152 

Figure 5-5. Fuzzy probability of occurrence of the top event  163  

Figure 5-6. Fault tree structure of failure of mitigation 1  

and mitigation 2      166 



 
 

Figure 5-7. Fuzzy probability of failure of mitigation#1   175 

Figure 5-8. Fuzzy probability of failure of mitigation#2   175 

Figure 5-9. Event tree structure      179 

Figure 5-10. Assessment the consequence and calculating the OP 180  

Figure 5-11. FRA: General overview of modules and components 182 

Figure 5-12. FRA: Fuzzy probability identification component  184 

Figure 5-13. FRA:  Data input/output component    184 

Figure 5-14. FRA: Fuzzy impact identification    187 

Figure 5-15. FRA:  Event tree structure (three mitigations)  188 

Figure 5-16. FRA:  Event tree analysis     189 

Figure 6-1. Corrective action versus % total risk events  197 

Figure 6-2. RCN versus risk ID      198 

Figure 6-3. Percentage of risk event classified by RBS   199 

Figure 6-4. Proposed update to the fuzzy expert system   202 

Figure 6-5. HDD failure to meet project objectives (Abdelgawad et al. 

2010)        207  

Figure 6-6. Inputs and outputs minimal cut sets for the HDD case  

study        209 

Figure 6-7. The fuzzy probability distribution for the HDD risk event  

(Abdelgawad and Fayek 2010b)    211 

Figure 6-8. Fault tree analysis of different mitigation strategies 

(Abdelgawad and Fayek 2010c)     214 

Figure 6-9. Fuzzy event tree analysis        



 
 

(Abdelgawad and Fayek 2010c)    217 

Figure 6-10. Expected Monetary Value (EMV)    218 

Figure 6-11. Cumulative distribution of the  

expected monetary value      222 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. Introduction  

 

1.1 Background  

The construction industry is distinguished by high level of risks and 

uncertainties due to the nature of construction business activities. In the 

UK, a 1975 report shows that one in six contracts overran by more than 

40% of the original contract value, and a significant number overran by 

more than 80% of the original contact value (Thompson and Perry 1992). 

A 1983 report confirmed the same finding from 1975, where many projects 

experienced cost overruns and schedule delays (Thompson and Perry 

1992). 

Increasing projects’ sizes and degrees of complexity are current 

trends in the construction industry, and these create more risk and 

uncertainties for the project team to cope with. Risks and uncertainties are 

inherent in all construction projects, starting from the conceptual phase of 

the project, passing by the planning phase, moving to the execution 

phase, and even remaining during the operational phase. Typically, the 

lack of information at the commencement of projects creates an 

outstanding environment for risks and uncertainties.  

Several authors have discussed the advantage of quantifying risk 

and adding risk premium to the original estimate. Mak and Picken (2000) 

pointed out that an advantage of adding risk premium is that it ensures 

that the estimated project cost is realistic and sufficient enough to absorb 
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any cost incurred by risk and uncertainty. Ford (2002) highlighted the 

advantage of adding risk premium in the original estimate to provide funds 

for unforeseen expenses. On the other hand, some authors questioned 

the additions of any allowance to cover risk. For instance, Thompson and 

Perry (1992) highlighted some weaknesses in the current practice of 

estimating the required risk premium. These weaknesses are attributed to 

the current trend of some estimators to rely on arbitrary approaches. In 

addition, some estimators tend to double count the effect of risk by adding 

extra allowances in the estimate, which leads to hiding the poor 

management of the project team. Mak and Picken (2000) described the 

work of Raftery (1994), who has identified personal bias and differences in 

personal risk attitude. Mak and Picken (2000) highlighted the effect of 

negative sanctions by imposing a penalty for an underestimate, where 

tender bids are above the pretender estimate but there is no reward or 

penalty for an overestimate.  

Kangari and Riggs (1989) indicated that the construction industry is 

characterized as having a poor reputation when it comes to risk, and 

highlighted that risk analysis is either ignored, or done arbitrarily by simply 

adding a line item as a risk premium. Noor and Tichacek (2004) noted 

some problems in this practice. The most obvious problem is whether this 

line item is adequate to handle all project-specific risk events. The second 

problem lies in determining when the allocated money should be used. 

Shortfall to use the allocated money to address risk events will end up 



3 
 

holding this premium until the end of the project, and then looking for ways 

to spend the money in non-efficient ways. 

Based on a questionnaire survey of general contractors and project 

management practices, Akintoye and MacLeod (1997) concluded that 

formal risk analysis and management techniques are rarely used. Instead, 

the construction industry has approached risk management in terms of 

individual intuition, judgment, and experience gained from previous 

contracts. The reasons provided by contractors for not using techniques to 

perform risk analysis were: lack of familiarity and experience with the risk 

analysis techniques, the degree of sophistication involved in using some of 

these techniques, the doubts about the suitability of these techniques to 

the construction industry, the required amount of data to ensure 

confidence in the outcome, the fact that many risk events are fairly 

subjective and hence they are better dealt with based on experience from 

previous contracts undertaken by the firm, and the difficultly to see the 

benefits of going through these formal risk analysis processes. 

Through a number of interviews, Smith and Bohn (1999) concluded 

that contractors had little knowledge of the formal risk modeling 

techniques that have been published, and tended to add risk premium as 

a percentage of the total cost based on their intuition and previous 

contract knowledge.  

 

1.2 Problem Statement 
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Risk and uncertainty are associated with all projects undertaken by 

individuals and organizations, regardless of their size, nature, and place of 

execution. These risks could result in significant failures in the form of cost 

overruns, delays, environmental damage, and even injuries and loss of 

life. Datta and Mukherjee (2001) indicated that successful project 

completion within the targeted budgets of cost and time is highly 

dependent on the early identification of the immediate risk events, 

analyzing them, and making better decisions. Thus, any project team must 

aim at identifying key risk events so that they can be analyzed and 

assigned appropriate response actions (Andi 2006). 

Companies need to estimate the bidding price of a construction 

project, and submit a bid even in scenarios when the probability of the 

occurrence of risk events and their associated consequences is uncertain. 

The problem will became large if the calculated expected monetary value 

resulting from risk events is not considered, or is underestimated. Thus, 

the expected monetary value of each risk event should be established 

based on thorough risk identification and risk analysis, and must be 

sufficient enough to cover the costs and/or time required to avoid, transfer, 

mitigate, or bear the consequences of risks. 

 In the literature, many researchers have proposed and utilized 

different risk analysis techniques, such as risk matrix, analytical hierarchy 

process (AHP), decision trees, Monte Carlo, neural network, regression 

analysis, fault trees, event trees, FMEA, and hybrid techniques between 
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two or more of the previously mentioned techniques. These techniques 

can be classified under qualitative risk analysis techniques and 

quantitative risk analysis techniques. Although there are many techniques 

to perform risk analysis, most of these techniques are limited due to the 

non-availability of data. In the construction industry, data are either not 

available, or expensive to obtain, or not relevant, or sparse and require a 

lot of effort to be refined.  

 To ensure a correct reflection of this situation, it is necessary to 

develop a practical approach that considers uncertainty in inputs, and 

reflects that in a comprehensive framework. Since risk analysis is dealing 

with uncertain situations in which we do not have complete and accurate 

knowledge and data, risk events are often discussed using terms such as 

high or low. So far, fuzzy set theory has been used for cost range 

estimation, but has not been used as extensively to perform risk analysis, 

especially in the construction domain. This technique is characterized by 

the ability to assign membership values expressing a degree of belief that 

a certain value of a variable corresponds to a linguistic concept. Fuzzy set 

is intended to treat uncertainties that emerge as a result of linguistic 

approximation and measurement imprecision. Taking the approach of 

using linguistic terms could solve the uncertainty problem, especially when 

it comes to risk analysis. This thesis is intended to develop a 

comprehensive framework to screen critical risk evens and to support risk 

analysis as well as risk identification and risk response planning in the 
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construction industry using linguistic terms. The proposed framework is 

intended to overcome the drawbacks of the commonly used risk analysis 

techniques by integrating fuzzy logic with three well-known techniques in 

reliability analysis.  

 

1.3  Research Objectives  

The overall aim of the research is to develop a framework for 

systematic modelling and analyzing of risk events affecting the 

construction industry, using combined fuzzy logic, event trees, fault trees, 

and failure mode and effect analysis. The overall objective of this research 

can be broken down to the following sub-objectives: 

 To establish a framework for risk criticality analysis in the 

construction industry aiming at screening of critical risk events, and 

supporting the comparison of risk events at the project level as well 

as at the portfolio level. 

 To investigate the concept of risk analysis, and introduce a new 

technique for analyzing and quantifying risk that is based on 

subjective assessment of risk events. 

 To aid risk-based decision-making, especially for problems that 

involve multi-criteria decision-making.  

 To extend the fuzzy set application(s) in the construction domain by 

incorporating the use of fuzzy logic with three commonly-used 
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techniques in risk analysis, known as failure mode and effect 

analysis, fault trees, and event trees. 

 To aid in determining which risk events should be used for lessons 

learned, and which one must undergo detailed root cause analysis.  

 To help in identifying the training needs for different risk individuals 

by identifying areas of weakness within each project.  

 To support the decision-makers to identify the critical root causes 

by conducting fuzzy importance analysis on fault trees.  

 To verify the validity of the proposed model by undertaking a case 

study and illustrating the advantage of using fuzzy logic to 

overcome the limitations of each technique.  

 

1.4  Expected Contributions  

The main contribution of the proposed research is the introduction 

of a comprehensive framework for risk management based on combining 

three well know techniques in reliability engineering in a novel way to 

support risk identification, risk analysis, and risk response while 

considering the subjective characteristics of the risk-related data. In this 

research, fuzzy logic is combined with both failure mode and effect 

analysis (FMEA) and analytical hierarchy process (AHP) to provide a 

practical and thorough approach for screening of critical risk events in the 

construction domain. Moreover, to support risk analysis, fuzzy logic is 

combined with both fault trees and event trees. The proposed integration 
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of fuzzy logic to solve fault trees and event trees offers risk experts the 

ability to express the probability of the occurrence of basic events and the 

impact linguistically, and the ability to calibrate these linguistic terms to suit 

different organizations or contexts. The proposed framework can also help 

in understanding the logic that can lead to the occurrence of a risk event, 

and to identify critical root causes by analyzing the level of importance of 

each root cause. The proposed combination between fuzzy logic, event 

trees, and fault trees added more features and supports addressing more 

limitations of the currently available techniques for risk analysis. Moreover, 

the integrated system creates a more powerful modeling tool capable of 

quantifying the risk magnitude based on a subjective assessment of 

different risk events. The expected contribution of this research can be 

summarized as follows:  

 The proposed approach explores different means of implementing 

fuzzy set theory concepts to risk analysis, and supports linguistic 

assessment of risk events in the construction domain. 

 The proposed approach supports the screening of critical risk 

events and provides decision-makers with a practical tool to identify 

the level of importance of establishing corrective actions. 

 The proposed approach explores the use of Fuzzy AHP to support 

risk-based multi-criteria decision-making using linguistic 

assessment. 
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 The utilization of the fuzzy expert system to calculate the risk 

criticality offers a transparent mean to understand the concept of 

risk criticality and to train new people. 

 The proposed approach considers the calibration of the 

membership functions for both probability and impact assessment 

to support event trees and fault trees analyses. 

 The utilization of fuzzy logic to solve fault trees and event trees 

offers a transparent and an easy to understand framework. Such 

transparency can help verifying the resultant expected monetary 

value as compared to other models such as Monte Carlo simulation 

based models.  

 The proposed approach offers the contribution of combining fuzzy 

logic, event trees, and fault trees in a comprehensive framework not 

only to support risk analysis but also to support risk identification 

and risk response management.  

 

1.5  Research Methodology 

In order to achieve the research objectives, this research entails 

adapting three well-known techniques—failure mode and effect analysis 

(FMEA), fault trees (FTs), and event trees (ETs)—to the construction 

industry by using fuzzy logic. The use of fuzzy logic allows experts to 

provide an assessment of the probability of occurrence of risk events and 

their consequences linguistically, rather than using probabilistic 
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distributions, which is more realistic in the construction domain. The 

research study is conducted in ten stages, as follows: 

Stage one involves a literature review of the previous work 

conducted under the area of risk analysis and risk management. The 

purpose of this stage is to learn more about different risk analysis 

techniques, and to understand shortcomings and limitations of each study. 

A summary of these established techniques, areas of application, and 

limitations is explained in Chapter 2. 

Stage two involves working with the participating organization to 

establish a risk register template, probability table, impact table, 

detection/control table, and a risk breakdown structure. Five linguistic 

terms are selected to define the probability of occurrence, impact, and 

detection/control. The risk register template is designed to collect data 

such as: risk ID, risk description, root causes, definition of risk (i.e., threat 

or opportunity), assessment of the probability of occurrence using the 

probability table, assessment of cost impact, time impact, scope/quality 

impact, safety impact, and environmental impact of each risk event using 

the impact table, definition of risk response, and assessment of the level of 

risk detection and control using the detection/control table. Risk 

acceptability level is a feature included in the risk register to screen risk 

events that have unacceptable risk level due to either safety or 

environmental impact. Such risk events are required to undergo detailed 

risk analysis using fuzzy fault tree and fuzzy event tree.  
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Stage three involves conducting a risk identification workshop to 

populate the risk register with the required data. During this stage, the 

selected case study project is broken down to its main components using 

the work breakdown structure (WBS), and each work package is analyzed 

to identify different risk events. Root cause analysis is conducted and the 

impact of each risk event is identified using three dimensions, i.e., cost 

impact, time impact, and scope/quality impact. Each risk event is then 

assigned a risk response strategy. An interview is then arranged with the 

risk analyst to analyze each risk response strategy and to asses the level 

of detection and control.  

Stage four involves aggregating the multiple dimensions of impact 

into one variable named aggregated impact (AI). Fuzzy AHP is used 

during this stage to enable experts to express the multiple impact of risk 

on the project objectives using linguistic terms, which are translated into 

fuzzy scales. 

Stage five involves establishing a fuzzy expert system, which 

calculates the risk criticality number (RCN) given the probability of 

occurrence, aggregated impact (AI), and the level of detection/control. 

Each of the input parameters is defined using five linguistic terms, while 

nine linguistic terms are used to define the output variable, i.e., the RCN. 

The direct method with one expert (Klir and Yuan 1995) is used to define 

the shape and the range of the membership functions for the inputs and 

output variables. One hundred and twenty-five rules were defined and 
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used to represent the relationships between the input variables and the 

output and used to build the fuzzy rule base. The resultant RCN is 

assigned a corrective action. FuzzyTech® is used to build the fuzzy expert 

system and Visual Studio® is used to build a software package entitled 

Risk Criticality Analyzer (RCA). RCA is used to screen critical risk events 

that require detailed risk analysis as explained in the next stage.  

Stage six involves identifying risk events that require conducting a 

detailed risk analysis. During this stage, an interview was conducted with a 

senior risk coordinator and a decision was made that any risk event that 

has a RCN that falls in categories 5–9 is defined as a critical risk event 

(CRE), and hence is required to undergo a detailed risk analysis in 

accordance with the steps defined in the next stages. All unacceptable risk 

events due to safety and environments, as defined in stage 2, are also 

required to undergo detailed risk analysis as defined in the next stages.   

 Stage seven involves establishing a fault tree structure for any 

identified CRE, and assessing the fuzzy probability of occurrence of basic 

events using the probability table defined in stage two. Two-step Delphi 

approach is used to reach consensus between two experts regarding the 

fault tree structure and to assess the probability of basic events. Minimal 

cut sets are then calculated using Hauptmann’s (1988) algorithm. The 

direct method with one expert (Klir and Yuan 1995) is used to elicit the 

required information to build the membership functions. Each membership 

function is represented using alpha cuts, and fuzzy arithmetic operations 
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on fuzzy numbers are then applied to calculate the probability of 

occurrence of the CRE. Finally, fuzzy importance analysis is applied, to 

rank different basic events according to their level of contribution to the top 

event’s probability of occurrence.  

Stage eight involves working in establishing risk response 

strategies. Each risk response strategy is thereafter studied to understand 

how this plan might fail. The failure of each risk response strategy is 

represented using a fault tree structure, and the same steps defined in 

stage seven are applied to calculate the probability of failure of each risk 

response plan.  

Stage nine involves establishing an event tree structure, using the 

findings from stages seven and eight and assessing the impact of each 

path of the event tree. The direct method with one expert (Klir and Yuan 

1995) is again applied to elicit the required information to build the 

membership functions. Each membership function is then represented 

using alpha cuts, and fuzzy arithmetic operations on fuzzy numbers are 

then applied to calculate the expected monetary value (EMV) of the CRE. 

Fuzzy Reliability Analyzer (FRA) is developed using Visual Studio® to 

automate fault trees and event trees analyses.  

Stage ten involves validation of the findings obtained using RCA 

and FRA. During this stage, “Face Validation” was used to identify 

practical applications of the proposed framework. Further validation, of the 

risk criticality concept, was conducted by running several experiments 
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using RCA and comparing the results against the traditional FMEA. The 

results obtained using fuzzy fault tree and fuzzy event tree were also 

validated by comparing the results against the results obtained using 

Monte Carlo simulation. The results indicate that performing risk analysis 

using fuzzy logic, faults trees, and event trees yields very comparable 

outputs when compared to the probabilistic approach. The expected 

contributions of this research were validated by running several 

experiments using RCA and FRA along the line with a questionnaire 

conducted with two risk experts. Results of the survey show validity of the 

proposed contributions and indicate the advantages of using fuzzy logic to 

solve the limitations of the traditional application of FMEA, fault trees, and 

event tree.     

 

1.6  Thesis Organization 

This thesis is organized as follows:  

Chapter 1 provides background and the problem statement. This 

chapter also explains the expected contribution and the proposed 

methodology.  

Chapter 2 contains a literature review of previous research 

conducted on the area of risk and risk analysis, and provides an overview 

of the limitations and drawbacks of previous studies. 

Chapter 3 contains detailed background information about three 

commonly-used risk analysis techniques, known as failure mode and 
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effect analysis, fault trees, and event trees, and highlights the advantages 

and limitations of each technique.  

Chapter 4 introduces a framework for risk criticality analysis by 

integrating fuzzy logic and failure mode and effect analysis (FMEA).  

Chapter 5 discusses a methodology proposed to integrate fuzzy 

logic, fault trees, and event trees to support risk analysis in the 

construction industry.  

Chapter 6 presents data collection, a case study, and the validation 

of the risk criticality model and the risk analysis model. 

Chapter 7 describes the conclusions of this research, the expected 

academic and industrial contributions, limitations, and recommendations 

for future research. 
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2. Literature Review 

 

This chapter is intended to provide an in-depth literature review on 

the concept of risk and risk analysis. Presented in this chapter is a detailed 

overview of risk, uncertainty, risk management, and the risk analysis 

process. Previous studies are presented to clarify some of the concepts 

and techniques, and to illustrate the gaps. The first part of this chapter 

provides an overview of different risk and risk management definitions and 

terminologies, as introduced in different studies. The second part of this 

chapter presents an overview of previous research conducted in the area 

of risk analysis, and highlights the limitations and drawbacks of each 

study.  

 

2.1  Risk Definition  

Each industry shapes the definition of risk by viewing it through 

their own lens, yielding a wide range of perspectives of what “risk” means. 

For instance, Moskowitz and Bunn (1987) indicated that the term “risk” has 

many interpretations, and its meaning varies from one industry to another 

and from one context to another. Al-Bahar and Crandall defined risk as 

"the exposure to the chance of occurrences of events adversely or 

favorably affecting project objectives as a consequence of uncertainty" 

(1990, 535). Liu (1998) referred to “risk” as the volatility of outcomes, and 

argued that it can be measured as a deviation from the expected value. 
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Blair et al. defined risk as “the potential for loss as a result of a system 

failure” (2001, 70). Baloi and Price defined risk in the construction industry 

as” the likelihood of a detrimental event occurring to the project” (2003, 

262). Jannadi and Almishar defined risk as “a measure of the probability, 

severity, and exposure of all the hazards of an activity” (2003, 492). 

Molenaar considered the negative side (threat) as a definition of a risk 

event, and defined risk events as “ potential adverse events that 

negatively affect the defined project resulting in negative impacts to cost, 

schedule, safety, performance, or other characteristic but do not include 

the minor variance inherent in Base Costs” (2005, 352). On the other 

hand, Molenaar defined opportunity events as “potential beneficial events 

that positively affect the project resulting in improvements to cost, 

schedule, safety, performance, or other characteristic but are greater than 

the minor variance inherent in Normal Costs ” (2005, 352). Cooper et al. 

defined risk in a project context as “the chance of something happening 

that will have an impact upon objectives” (2005, 3). 

Some institutes also offer definitions for the term “risk.” For 

example, the Association for the Advancement of Cost Engineering 

(AACE) (2007) (International Recommended Practice No. 10S-90) 

established the following three definitions to define the term “risk”: 

(1) “The degree of dispersion or variability around the expected or 

"best" value” (2007, 86). 
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(2) “An ambiguous term that can mean any of the following: a) All 

uncertainty (threats + opportunities); or b) Downside uncertainty (threats); 

or c) The net impact or effect of uncertainty (threats – opportunities)” 

(2007, 86).  

 (3) “Probability of an undesirable outcome” (2007, 86). 

The PMBOK refers to project risk as an “uncertain event or 

condition that, if it occurs, has a positive or a negative effect on a project 

objective” (Project Management Institute (PMI) (2004, 238).  

The classical definition of risk as represented by the risk matrix is 

shown in Equation 2-1 as follows:  

Risk = probability of occurrence of a risk event x consequence 

(loss/gain)              [2-1] 

 

2.2 Risk versus Uncertainty 

Some authors tend to use the terms “risk” and “uncertainty” 

interchangeably. For example, Kaplan & Garrick defined risk as 

“uncertainty + damage” (1981, 12). Chapman and Cooper defined risk as 

“an undesirable implication of uncertainty” (1983, 238). Motawa et al. 

defined risks as “uncertain outcomes or consequences of activities or 

decisions when they are manageable” (2006, 583).  

On the other hand, some authors introduce some definitions to 

differentiate the meaning of “uncertainty” from the meaning of “risk.” For 

instance, Pilcher (1985) indicated that “uncertainty” referred to the 
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situation in which data are unavailable, while the term “risk” is used to 

refer to situations in which historical data are available from previous 

projects (Öztaş and Ökmen 2005). Moskowitz and Bunn (1987) indicated 

that uncertainty is a term that refers to probabilities and to probability 

distributions associated with decision alternatives having uncertain 

outcomes. Al-Bahar and Crandall (1990) used the term "uncertainty" to 

represent the probability that an event occurs. Emblemsvag and Kjolstad 

(2005) provided another way to differentiate between risk and uncertainty. 

They noted that risk arises as a consequence of a choice that was made 

and a choice that was not made. On the other hand, uncertainty arises as 

a result of the lack of information or clarity, and has nothing to do with 

choices. Choi and Mahadevan (2008) indicated that uncertainties in expert 

judgment are due to: (1) the complexity of work; or (2) the level of 

education, confidence, and experience; while uncertainties in parameter 

estimation are due to (1) unreliable/insufficient data; or (2) approximation 

in statistical analysis methods. 

As can be noticed from previous studies, the term “risk” is defined 

in many different ways. Any of the previous definitions can refer to the 

term “risk” since there is no way to judge if one definition is better than 

another. However, what is more important than just selecting a definition 

to be referred to by the term “risk” is to communicate the selected 

definition to the project team, and to make the selected definition 

consistently used to communicate “risk” within the organization. In this 
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thesis, the Project Management Body of Knowledge (PMBOK) definition of 

risk, which is “an uncertain event or condition that, if it occurs, has a 

positive or a negative effect on at least one project objective, such as time, 

cost, scope or quality” (PMI 2004, 238) is adapted.  This definition was 

selected because it offers a comprehensive definition in which the positive 

and negative effects of risk are considered on the project objectives.  

  

2.3 Risk Breakdown Structure (RBS)  

The PMI defined the RBS as “A hierarchically organized depiction 

of the identified project risks arranged by risk category” (2004, 117). 

According to the PMBOK (PMI 2004), RBS can provide a structure that 

ensures a comprehensive framework to identify the risk event in a project. 

Hillson (2002) noted that the RBS is similar to the WBS and can provide a 

number of benefits, by decomposing potential sources of risk into layers of 

increasing detail. 

Dorofee et al. (1996) proposed an RBS to categorize the risk for 

software developers. The first level includes the following groups: project 

engineering, development, environment, and program constraints. The 

second level includes: requirements, design, code and unit test, 

integration test, engineering specialties, development process, 

development system, management process, management methods, work 

environment, resources, contract, and program interfaces (Hillson 2002).  
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Chapman (2001) proposed an RBS for construction design that 

includes the following groups: environment, industry, client, and project. 

The second level contains: statutory, market, client team, PM team, 

targets, funding, tactics, team, and task. 

Dikmen and Birgonul (2006) established an RBS for international 

construction projects. The first level of the hierarchy is composed of two 

components, i.e., project and country. The project is further subdivided 

into four sub-elements, including: complexity, unavailability, vagueness, 

and constraints/restrictions. The country is divided into seven sub-

elements: poor international relationship, instability of political conditions, 

poor attitude towards foreign companies, unfavourability of economic 

environment, immaturity of legal system, societal conflict, and differences.  

Hillson (2002) indicated that the RBS can aid risk identification by 

considering the upper level of the RBS as a prompt list with any risk 

identification method. For example, a risk identification workshop or 

brainstorm might work through the various elements of the RBS. Hillson 

(2002) noted that the RBS can help in establishing a common language 

and terminology that supports capturing lessons learned and provides 

consistent reporting.  

 

2.4 Risk Management  

Risk Management is a process that aims at identifying risk events 

as early as possible, quantifying their effects, and working on managing 

them for preventing the harmful effects (threats) and maximizing the 
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positive effects (opportunity) of the risks on the project objectives. Al-

Bahar and Crandall defined risk management as "A formal orderly process 

for systematically identifying, analyzing, and responding to risk events 

throughout the life of a project to obtain the optimum or acceptable degree 

of risk elimination or control" (1990, 534). Gray defines risk management 

as the area of project management that “identifies as many risk events as 

possible (what can go wrong), minimizes their impact (what can be done 

about the event before the project begins), manages responses to those 

events that do materialize (contingency plan), and provides contingency 

funds to cover risk events that actually materialize” (2003, 207).  

Like every project management knowledge area, risk management 

entails several processes, which can be summarized as follows:  

 Risk management planning: This is defined as the process of 

describing methods for identifying, analyzing, prioritizing, and 

tracking risk. This process entails assigning specific 

responsibilities for the management of risk, and prescribes the 

timing, monitoring, and reporting processes to be followed. 

Typically, this activity is performed at the early stage of the 

project. 

 Risk identification: This is defined as the process of investigating 

which risk events might affect the project, classifying them, and 

identifying their root causes. Typically, a risk identification 

workshop is facilitated to capture different risk events and 
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potential causes of risk. Other techniques for risk identification 

include: checklist, interviews, and Delphi. During this process, 

initial response strategies could be assigned to risk events. 

Readers can refer to PMI (2004) and Chapman (1998) for further 

details about risk identification techniques.  

 Risk analysis (qualitative and quantitative): This can be defined 

as the process of quantifying the effect of risk events on the 

project objectives. A complete risk analysis entails providing an 

answer to the following two questions:  

 What is the likelihood of the risk?  

 What are the impacts of the risk over different project 

objectives?  

 Risk response: This is defined as the process in which risk 

response strategies are assigned to different risk events, and 

commitments are obtained from different stakeholders. 

Strategies for threats include: mitigation, transfer, avoidance, or 

acceptance. Strategies for opportunities include: exploiting, 

sharing, enhancing, or accepting. Readers can refer to Al-Bahar 

(1988), Al-Bahar and Crandall (1990), and PMI (2004) to 

understand more about different risk response strategies. 

 Risk monitoring and control: This process entails monitoring the 

implementation of risk response strategies, identifying new risk 

events, conducting root cause investigation for realized risk 
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events, and tracking the contingency expenditure. It is worth 

noting that communication of the risk-related data during all of 

the previously mentioned processes is crucial for the successful 

implementation of risk management. 

Smith and Merritt (2002) noted that companies fail at risk 

management because they fail at cross functionality and proactiveness. 

Instead of firefighting the risk after its occurrence, which is not an effective 

approach to deal with risk, companies should consider starting risk 

management at the earliest stage of the project life cycle. They introduced 

risk management implementation guidelines, which can be summarized as 

follows:  

 Enforce consistent terms for risk within the company. 

 Train the management team to understand and prioritize risk 

events and understand the existing company thresholds.  

 Consider risk an opportunity for gain and a chance for loss.  

 Collect information and use it to make better decisions.  

Since the focus of this thesis is on the quantitative aspect of risk 

throughout risk analysis, the rest of this section is dedicated to provide 

more details about previous studies conducted on the area of risk 

analysis. In addition to a critical review of the proposed technique, the 

weakness and limitations of each study are also provided.  

 

 2.5 Risk Analysis  
 



25 
 

There are various techniques to perform risk analysis of 

construction projects. Kangari and Riggs (1989) classified these 

techniques under two categories: (1) classical models (probabilistic 

methods), and (2) subjective models (i.e., fuzzy set methods). In analyzing 

risk, we are trying to predict how the future will be if we undertake a 

certain course of action (Kaplan and Garrick 1981). For a complete risk 

analysis, the following questions have to be answered:  

(1) What is the probability that it will happen? 

(2) What is the impact if it happens?  

Kaplan and Garrick (1981) indicated that risk analysis must be 

established to provide input(s) to the decision problem, which involves not 

only risks but also other forms of costs and benefits. Based on a survey, 

McGregor (1983) concluded that the major problems in building risk 

analysis models are: lack of sufficient data, the inability to establish 

probability distributions, the difficulty of understanding the probability 

concepts, the correlation assumptions between variables and across time, 

and management refusing to accept that there were risks involved in the 

project and understanding the output.  

Simister (1994) conducted a questionnaire to rank the benefits of 

using risk analysis. Benefits indentified are ranked as follows:  

(1) Allows the formulation of more realistic plans 

(2) Gives an increased understanding of the risks in a project 

(3) Allows the assessment of contingencies 
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(4) Facilitates realistic risk-taking 

(5) Identifies the party best able to handle a risk 

(6) Leads to the use of the most suitable form of procurement 

(7) Builds up statistical information about historical risks 

(8) Assists in distinguishing between good luck/good management 

and bad luck/bad management 

The rest of this section is intended to provide details about different 

techniques that can be used to quantify risk. Some of these techniques 

are qualitative in nature and are flexible enough to be utilized under 

numerous situations. Qualitative techniques can be applied as a 

preliminary stage to screen significant risk events, which can be further 

studied by exploring one of the quantitative techniques. This section is 

also intended to highlight advantages and disadvantages of each 

technique. It is important to note that risk events should first be identified, 

by means of risk identification, before conducting risk analysis. Readers 

can refer to Thompson and Perry (1992), Chapman (1998), and PMI 

(2004) for further details about risk identification techniques, and the 

strengths and weaknesses of each technique. Chapter 6 provides a 

detailed overview of the risk register template and the risk breakdown 

structure, which are developed to support collecting the risk-related data.  

2.5.1 Risk Matrix (Qualitative Risk Analysis)  

Risk matrix is a tool that can be used to conduct qualitative risk 

assessment by evaluating probability of occurrence and impact to 
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calculate the risk magnitude. Typically in the risk matrix analysis, each risk 

event is allocated to a grid with probability (P) along one axis and impact 

on the other axis. After risk events have been identified, they are analyzed 

for the probability of occurrence and impact by selecting from a pre-

identified linguistic scale for probability and impact. Table 2-1 illustrates 

sample linguistic terms and numerical limits for both probability of 

occurrence (P) and impact in terms of schedule (IS) and cost (IC). The 

matrix shown in Figure 2-1 can be used to calculate risk magnitude. A 

threshold is typically constructed according to the organizational policy, 

and is used to show the risk tolerance zone. For example, the risk matrix 

in Figure 2-1 shows three risk levels represented by white, light grey, and 

dark grey. The white area represents an acceptable level of risk, in which 

risk events allocated in this area are monitored during project execution. 

The light grey area in the “threats” section represents an undesirable level 

of risk in which avoidance or transfer are to be considered. The dark grey 

area in the “threats” section represents an unacceptable level of risk. Risk 

events assigned to this area must be eliminated or transferred. Haifang et 

al. (2009) utilized the risk matrix to identify the key risk events for private 

companies participating in government projects in China, and to provide a 

basis for risk prevention. Examples of using the risk matrix to perform risk 

analysis can be found in Abdelgawad and Fayek (2008) and PMI (2004). 

The risk matrix approach has a number of advantages. The concept 

presented in the risk matrix is simple to understand, and the tool is easy to 



28 
 

use. Risk matrix can be adjusted and calibrated to fit any type of project. 

Most importantly, the matrix can be used as a screening tool by identifying 

risk events that require further quantitative assessment. However, this 

method is primarily qualitative, which can be a disadvantage, limiting its 

use in assessing the risk impact on capital projects. For example, this 

technique cannot be used alone to determine the required amount of risk 

premium. This technique also cannot support risk-based multi-criteria 

decision-making. For example, the technique can not be used if multiple 

criteria, i.e., cost, time, scope, safety, and environment, are required to be 

included to assess the level of impact of different risk events (Abdelgawad 

and Fayek 2008). Moreover, the risk tolerance zone for the risk matrix is 

subjective and is based on using sharp boundaries (Markowski and 

Mannan 2008). 

 

Table 2-1. Sample probability of occurrence and impact table (adapted 

from PMI 2004) 

 

Term Probability (P) Schedule impact (IS) Cost impact (IC) 

Very Low < 1% chance Critical path unaffected Cost increase< 1% 

Low  1≤ P<20% chance <2% Critical path Cost increase 1≤ IC<2% 

Medium 20≤ P<50% chance 2%≤ IS <5% increase in 
duration

Cost increase 2≤ IC 
<5%

High  50≤ P <85 % 
chance 

5% ≤ IS ≤8% increase in 
duration 

Cost increase 5≤ IC 
≤10% 

Very High  Over 85% chance >8% increase in duration Cost increase >10% 
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Figure 2-1. Risk matrix (adapted from PMI 2004) 

 

2.5.2 Risk Analysis Using AHP (Qualitative Risk Analysis) 

Mustafa and Al-Bahar (1991) utilized the Analytical Hierarchy 

Process (AHP) to perform a risk assessment of a bridge construction. 

Significant risk events are identified and incorporated in this assessment. 

The AHP analysis starts by representing the decision problem as a 

hierarchical structure, where the top level of the hierarchy reflects the 

overall objective. The elements affecting the decision are represented in 

the intermediate levels and called decision criteria, while the lowest level 

comprises the decision alternatives (Dey 2003). Experts are required to 

prioritize elements in each level of the hierarchy using the pairwise 

comparison scale shown in Table 2-2. Elements at each level are 

compared in pairs with respect to their importance in making the decision. 

The relative weights of the elements at each level compared to an element 

in the upper level are computed as the components of the normalized 
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eigenvector associated with the largest eigenvalue of their comparison 

matrix (Mustafa and Al-Bahar 1991).  

After constructing of the AHP hierarchy, the relative weights of the 

various elements are determined from expert opinions. The methodology 

integrated during this study includes the determination of the importance 

of the risk factor and the sub-factors and the likelihood of the risk. Readers 

can refer to Abdelgawad and Fayek (2008) for a detailed explanation of 

the steps that can be used to conduct AHP analysis. 

 

Table 2-2. AHP pairwise comparison scale and definition (adapted from 
Saaty 1982)  

Scale Definition 

1 Equal importance 

3 Slightly favors one over another 

5 Strong importance of one over another 

7 Demonstrated importance of one over another 

9 Extreme importance of one over another 

2, 4, 6, 8 Intermediate values 

 

Dey (2003) presented an AHP model for predicting the risk of 

pipeline failures during the operation phase of a 1,500 km length of crude 

oil pipeline, three intermediate booster stations, and an offshore terminal. 

The throughput of the project is 9 million metric tons per annum. The 

objective of the model can be summarized in predicting the greatest risk 

factors, analyzing the effect of them in pipeline failure, responding to risk, 

analyzing the costs and benefits, and rationalizing insurance premium. 

The methodology adopted during this study involves conducting 
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brainstorming workshops to split the pipeline project into sections, and 

analyzing the effect of risk factors that lead to failure of each section. The 

next step involves presenting risk factors in the form of an AHP hierarchy, 

and conducting a pairwise comparison between risk factors and sub-

factors to determine the likelihood of pipeline failure due to each factor and 

sub-factor. An analysis of the result is conducted, and effective mitigation 

actions are determined. The last step is to establish a cost-benefit analysis 

to justify the proposed investment and to formulate a cost-effective 

insurance plan for pipeline.  

The AHP is characterized as a multi-criteria decision-making 

problem that allows subjective and objective assessment of factors while 

offering a systematic thinking environment. A measure of consistency 

used by the AHP can be computed and is known as the Consistency Ratio 

(CR). This ratio is designed so that values of the ratio exceeding 0.1 are 

indicative of inconsistent judgments. This ratio can support the decision-

maker so he or she can judge the level of consistency in the expert’s 

judgment and reach a more reliable analysis. However, one shortcoming 

of using the AHP method is attributed to the level of uncertainty and 

subjectivity of selecting a single number from the pairwise comparison 

scale. Zeng et al. (2007) noted that experts sometimes found difficulties in 

selecting a single number for comparison, and argued the advantage of 

allowing for a range values for comparison. In addition, the output 

obtained from this tool is a scale number, which can support the decision-
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maker only to judge the level of riskiness of the project but cannot be used 

to provide an estimate of the required risk premium. Moreover, this model 

cannot be calibrated if a new risk event is required to be added to the 

model and calculations are required to be conducted all over again.  

 

2.5.3 Risk Analysis Using AHP and Decision Tree (Quantitative Risk 

Analysis)  

A decision tree is an excellent tool that allows a choice between 

several courses of action. It is constructed as a graphical representation of 

possible outcomes of known choices and their probability of occurrence. 

Decision trees are widely employed to explore varies mitigation 

alternatives in a tree arrangement and to select the best mitigation 

alternative given the probability and consequence of every alternative 

(Akintoye and Macleod 1997).  

Dey (2002) established a decision support system to perform risk 

analysis for a pipeline project in India. The proposed approach is based on 

combining the analytical hierarchy process (AHP) and a decision tree. The 

AHP is used to analyze risk in the project and the decision tree is used for 

selecting the risk response strategy. The methodology adopted by Dey 

(2002) involves decomposing the project using the work breakdown 

structure, identifying critical work packages, conducting risk identification 

using brainstorming sessions, conducting AHP analysis, calculating the 

impact of each risk event in terms of cost and time, brainstorming for 
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various risk response strategies for each risk factor, estimating the cost 

associated with each risk response strategy, establishing a decision tree 

structure for the problem, calculating the expected monetary value, and 

selecting the best option. 

  Although decision trees offer several advantages—including 

conducting quantitative risk analysis in this study—this technique 

nevertheless has some limitations. For instance, Thompson and Perry 

(1992) indicated that there is rarely historical data available to calculate 

accurate probability values for decision points, which makes it difficult to 

conduct decision tree analysis especially if the numerical value for one or 

more consequent(s) is/are not available. The proposed model also did not 

explain how critical work packages can be identified, since they did not 

establish an approach for risk criticality assessment. Additionally, the 

proposed model did not investigate the root causes of different risk events 

to select the most appropriate mitigation strategy and limit the selected 

mitigation strategy to five pre-identified options.  

 

2.5.4 Risk Analysis Using Neural Networks (Qualitative/Quantitative 

Risk Analysis)  

Maria-Sanchez (2005) introduced a risk analysis model to quantify 

risks in terms of dollar value. During this study, several discussions were 

held with the contractor, and the final decision was to concentrate on 17 

risk events, defined as: risks caused by the change in law and regulations, 
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risks by problems on permissions, inflation risks, management risks 

caused by the subcontractor, contract risks caused by the subcontractor, 

risks from security and health protection, force majeure risks, weather 

risks, transport risks, design and construction risks, quality risks, technical 

and execution risks, risks from water and air pollution, contract risks, 

guarantee risks, business and market risks, and risks caused by the client. 

A scale ranging from 0–100 was established to assess the 17 risk factors 

over sixteen projects. Twelve projects were used to train the neural 

network (NN) model, while the remaining four projects were used for 

testing. The total risk (TR) value (output) was obtained using Equation 2-2 

as follows:  

TR = 
  

  
 * 100      [2-2] 

The results obtained from using NN indicated that the NN was able 

to recognize a pattern between inputs and the output even with a very 

small set of data. Results also show that the obtained NN model is 

capable to produce the total risk (TR) value for new projects. Authors 

noted that the main constraint in using the NN model is related to the data 

for training and testing. Having a small set of data increases the chances 

of the NN to fail at recognizing a pattern between the inputs and output(s).  

Al-Sobiei et al. (2005) introduced a hybrid neural network and 

genetic algorithm technique to predict the likelihood of contractor default in 

Saudi Arabia. The model is designed to support the construction owners to 

assess the likelihood of contractors’ failure and to aid in assigning the bid 
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to the most reliable contractor. Twenty-three risk factors were identified 

and classified depending upon the overall health of the contractor, the 

contract characteristics, and the nature of the project. Likelihood of the 

twenty-three risk factors represents the input pairs, while the output is 

defined in binary format as default/not default. The genetic training 

strategy is added to make the NN work better, especially when the training 

data are sparse. The performance of the network was assessed by 

measuring the R-square. The maximum R-square was reached when 14 

hidden neurons were used in one hidden layer. The model was then 

tested using data from five projects. NN and GA were found not able to 

predict the outcome of two of the five projects. Authors indicated that a 

minimum contingency should be allocated to cover for the inaccuracies in 

the predictions of the model and classify the amount according to the 

contractor strategy to deal with risk. For instance, for a ‘risk seeking’ 

strategy, it is recommended to budget 9–15% of the contract value. For a 

‘risk averse’ strategy, the contingency should be 15–24% of the contract 

value, whereas for a ‘risk neutral’ strategy, the contingency may be around 

15%.  

Eventually, NN is characterized as an excellent technique, which 

can offer a number of advantages. For example, there is no need to define 

statistical distributions for either inputs or output(s). Neural networks can 

be trained by defining the inputs and the output(s) subjectively, which 
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makes NN a best candidate technique to be utilized in the area of risk 

analysis.  

However, NN is also characterized by some disadvantages that 

limit the usability of this technique. For example, NN models are 

considered to be black boxes since it is difficult to explain the logic behind 

how these models do reasoning to calculate the output(s). NN can also be 

limited by over-fitting, a case in which the error in the training set is 

reduced to a very small value, but when new data are presented to the 

network, the error is large. Another limitation, attributed to the ability of the 

NN to train, is constrained when small sets of data are used for the 

training. In this particular application of NN to risk analysis, the authors 

ended their study recommending adding some ranges for contingency to 

cover the inaccuracy of the prediction of their model without explaining the 

logic behind these numbers, which make the practice of estimation more 

dependent on guessing, rather than relying on evidence and facts. 

Moreover, the output obtained from this model is binary, i.e., either default 

or not default, but does not provide a value of the likelihood of defaulting 

or not defaulting. In addition, both studies didn’t consider risk mitigation 

during the analysis, and focus on connecting the likelihood of the risk with 

the risk magnitude.  

  

2.5.5 Risk Analysis Using Regression Analysis (Qualitative/ 

Quantitative Risk Analysis)  
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Fang et al. (2004) established a model for risk analysis of the Chinese 

construction market based on questionnaire investigation and the use of 

regression analysis. The methodology adopted during this study involves 

the following steps: 

(1) Design questionnaires to collect different risk events in the 

construction market.  

(2) Collect data using the questionnaire established in step 1.  

(3) Review the outcomes obtained in step 2 and conduct an initial 

selection of the risk events, which will be included in the risk 

assessment model. Bivariate cross table analysis and 

univariate logistic regression analysis were used to determine 

which variables can enter the last regression analysis. Based 

on conducting the analysis, sixteen independent variables were 

identified.  

(4) Establish the final risk assessment model by using multivariate 

regression analysis. Equation 2-3 and Equation 2-4 show the 

findings from this study.  

Risk Value = 
 

         [2-3]  

x = 14.33 - 12.73 * x1 - 13.50* x2 -13.90* x3 -12.84* x4 - 0.674* 

x5+11.31* x6             [2-4] 

where x1 = 1 if owners’ project capital mainly comes from their own 

funds and 0 otherwise; x2 = 1 if contractors and owners have 

cooperated previously and 0 otherwise; x3 = 1 if bidding competition 
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is relatively fierce or moderate and 0 otherwise; x4 = 1 if the bid 

price is reasonable and 0 otherwise; x5= 1 if the company fully 

supports its project team and 0 otherwise; x6= 1 if the owner is a 

civilian-run enterprise and 0 otherwise. 

The model obtained from regression analysis is robust and can help 

in establishing a confidence interval of the results (Ng 2006). However, 

this technique requires sufficient data to establish the regression model, 

which is difficult to obtain in the construction domain. In addition, the 

analysis must start from scratch if a new risk event is required to be added 

to the regression equation, which makes this technique static and time-

consuming (Abdelgawad et al. 2010). Moreover, Equation 2-3 is a 

qualitative equation and can be only used to perform comparisons 

between projects to identify if one project is more favourable than another. 

However, this model cannot be used to assign a dollar value to each risk 

event, which limits its applicability. Finally, this model did not consider the 

risk mitigation within the analysis of risk events.  

 

2.5.6 Risk Analysis Using Monte Carlo Simulation (Quantitative Risk 

Analysis)  

Monte Carlo simulation has been widely used in a lot of applications 

related to risk analysis. The simulation process is built on iterations that 

make use of internally generated random numbers to generate results. 

Monte Carlo simulation can be used to calculate the required amount of 
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risk premium. In this regard, the identified risk events are assigned 

probability distributions to represent the probability of occurrence (P) and 

the impact (I). During each iteration, a randomly generated number (R), 

that follows a pre-identified probability distribution, is created to represent 

the value of (P) and (I), and to calculate the total risk magnitude (TRM). 

The simulation is repeated several times and the calculated TRM is saved. 

The mean and the standard deviation of the resulting TRM are used to 

construct a normal distribution function of the expected monetary value 

(EMV). Finally, the risk premium can be established by selecting a 

probability percentile of under run.  

Kraemer (1976) applied Monte Carlo simulation to evaluate the 

cost, schedule, and technical risk of an aircraft development program. The 

proposed program is divided into seven major phases, named: air vehicle 

design, major subcontractors, A/C manufacturing, subsystem test, ground 

and wind tunnel test, and project management. Lower risk elements are 

evaluated using subjective assessment, while higher risk elements are 

evaluated using Monte Carlo simulation. Upon the identification of higher 

risk elements, risk identification is conducted and experts’ judgment is 

used to define the probability of occurrence and to capture a three point 

estimate (i.e., minimum, most likely, and maximum) of the risk impact, 

represented in terms of time and cost. Experts are then required to 

estimate the most likely number of risk events that are expected to occur 

during the schedule of each element. Poisson distribution, defined using 
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the most likely number, is used to represent the monthly occurrence of 

different risk events. Monte Carlo simulation is then conducted starting 

with the first month and proceeding to the end of the program span. The 

results of conducting Monte Carlo simulation are represented in probability 

density functions that represent the cost and time of the program.  

Javid and Seneviratne (2000) proposed using Monte Carlo 

simulation to estimate and understand the impacts of cash flow 

uncertainties on project feasibility. The risk issues addressed pertain to 

investment decisions made by developers in airport parking infrastructure 

facilities. The authors defined total investment risk as a function in three 

sources of risk, i.e., project risk, competitive risk, and market risk. 

Competitive risk arises from the practices of other competitors seeking to 

increase their market share, while market risk is triggered by inflation, 

interest rate, and legislative restrictions. The authors noted that changes in 

income and expenditure due to inflation, interest rate, and legislative 

restrictions are the most difficult to describe in terms of probability density 

functions (PDFs). The investment risk is then represented as the 

probability of the net present value (NPV) being less than the target value 

(V). The NPV over a period of time (i) is represented as a function in three 

parameters, named: total revenue, total operating and maintenance cost, 

and discount rate. Equations used to define the three parameters contain 

random quantities defined using PDFs. Monte Carlo summation is then 

conducted to calculate the NPV and to estimate the investment risk. 
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During this study, the authors assumed that there is sufficient expertise to 

establish PDFs for all the parameters and variables used in this study.  

Molenaar (2005) presents a methodology for cost and schedule risk 

analysis of highway megaprojects. Monte Carlo simulation was utilized to 

generate probability distributions for total cost and schedule to completion 

that considers the base cost estimate and the probable cost/duration of 

risk and opportunity events. 

Molenaar (2005) noted that the process can be used to help 

determine where the cost risks and opportunities are located. Thus, 

management can focus its resources to effectively manage and mitigate 

these uncertainties. A sensitivity analysis, which was conducted to rank 

different risk events, supports management to identify high risk items and 

establish immediate mitigation measures that can be taken to reduce the 

uncertainty.  

Moses and Hooker (2005) developed a Monte Carlo based model 

for probabilistic cost and schedule risk assessment for a satellite launcher. 

A schedule was developed from past launchers of similar types, and was 

composed of 136 major tasks. Risk identification was conducted and each 

identified risk event was mapped to the developed schedule. Binomial 

distributions were used to define the likelihood of each identified risk event 

and triangular probability density distributions were selected to represent 

the consequences (impact).  



42 
 

Öztaş and Ökmen (2005) proposed a schedule risk analysis 

method, called the judgmental risk analysis process (JRAP). JRAP is 

classified as a pessimistic risk analysis methodology based on Monte 

Carlo simulation. This pessimism is imposed through equations that use 

the maximum operator to calculate the overall effect of different risk 

events. The author attributed their selection of a pessimistic approach to 

the various judgmental decisions that are normally conducted based on 

experience and intuition, which would add more uncertainty to the 

analysis. Steps identified under the proposed methodology include the 

following:  

 Identify critical risks that may affect activity durations.  

 Assign probability distributions to the identified risk event, and 

define the maximum and minimum duration of each activity using 

a set of predefined equations.  

 Define the percentage effect of each risk over each activity. 

 Conduct Monte Carlo simulation to calculate the variation in 

activity duration. 

Although Monte Carlo simulation based models have been utilized 

by many researchers to conduct risk analysis, these models entail some 

difficulties attributed to the required amount of data; otherwise, 

uncertainties in the input parameters may result in large uncertainties in 

the resulting estimate. As can be noticed from the previously highlighted 

studies, researchers tend to rely on assumptions to define the PDFs to 
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overcome the limited availability of data. Moreover, in some cases, the 

output obtained from the simulation is very wide in range, and therefore 

cannot help to establish an accurate estimate of risk. Thevendran and 

Mawdesley (2004) pointed out that although Monte Carlo simulation and 

sensitivity analysis are commonly used for quantitative risk analysis, these 

risk analysis techniques cannot accurately forecast the effects of human 

factors because of its complex, unpredictable, and qualitative nature. 

Establishing correlation between risk events is another challenge in 

conducting Monte Carlo simulation. Öztaş and Ökmen (2005) indicated 

that assessment of the correlation between risk factors is as important as 

the identification of risks, and any risk model should consider defining 

these correlation coefficients, if correlation exists. Otherwise, the 

simulation results would not be realistic.  

Guyonnet et al. (1999) conducted a study to compare the fuzzy 

approach to the Monte Carlo approach to evaluate environmental risks 

related to contaminated sites. They concluded, based on reviewing the 

results, that the result obtained using the fuzzy approach had considered 

all possible combinations of inputs, while in the Monte Carlo analysis, 

scenarios that combine low probability inputs have very little chance of 

being randomly selected. Failure to consider low probability inputs may 

result in wrong decisions—especially for environmental context, where 

human health is often at risk.  
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2.5.7 Risk Analysis Using Fuzzy Logic (Qualitative/Quantitative Risk 

Analysis) 

The concept of fuzzy sets was first suggested by Zadeh (1965), and 

since then, has been used for many applications. Fuzzy sets provide an 

adequate model for modes of reasoning that are approximate rather than 

exact. This technique is characterized by the ability to assign membership 

values expressing a degree of belief that a certain value of a factor 

corresponds to a linguistic concept. Thus, instead of representing risk 

events using probability density functions, the concept of fuzzy logic uses 

possibility distributions. Possibility distributions can be used to describe 

the relationship between a variable and its membership value. The use of 

fuzzy logic is helpful to solve complex problems in which there is no simple 

mathematical solution to accommodate the problem. The imprecise and 

uncertain nature of construction projects lends itself to the use of fuzzy 

sets, and many applications have been developed to perform risk analysis. 

Dikmen et al. (2007) introduced a fuzzy risk analysis tool to 

quantify risk ratings in the construction domain at an early phase of a 

project. The proposed approach is based on using influence diagrams as 

a risk identification tool, and utilizing fuzzy logic for risk assessment. The 

influence diagramming method is used to establish relationships between 

project and country level risk sources and influencing factors, i.e., root 

causes. Factors that may affect the magnitude of country risk include: 

experience of the company in the host country, immaturity of the legal 



45 
 

system, instability of political conditions, societal conflict, poor attitude 

towards foreign companies, poor macroeconomic conditions, 

cultural/religious conflicts, and contract clauses about country risk. Factors 

that may affect the magnitude of project risk include: construction risk, 

technical risk, managerial risk, resource risk, productivity risk, design risk, 

payment risk, client risk, and subcontractor risk. Experts are required to 

rate the risk factors and the influencing factors using five linguistic terms, 

defined as low, low to medium, medium, medium to high, and high. During 

the risk assessment phase, aggregation rules between the rating of the 

country risk factors and the favorability of the contract clauses, and 

between the project risk factors and the experience of the company in 

similar projects, are used to calculate the final risk rating. The minimum 

operator is used for implication between different rules, and the maximum 

operator is used for aggregation. The final risk rating is then defuzzified. 

The output of the fuzzy risk assessment procedure is a final cost overrun 

risk rating, calculated by using a scale of 1 to 10.  

The proposed model offers guidance for the company about the 

amount of risk premium that should be included in the mark-up. This tool 

can be also used as an organizational learning tool, since knowledge is 

captured in the form of (if, then) rules. However, the proposed model 

entails some limitations and drawbacks. For instance, the output obtained 

from this tool is a scale number between 1 and 10, which limits the 

usability of this tool to provide qualitative assessment of risk rather than 



46 
 

providing quantitative assessment of the risk premium. In addition, and as 

noted by the authors, the influence diagram given in this paper covers only 

the major sources of risk rather than providing a complete list, which make 

this risk model a specific model rather than being a generic model. As a 

result, considering the addition of any new risk event will imply electing all 

the rules to include the new risk event. Thus, the calibration of these 

models to serve in another context was not taken into consideration. 

Finally, and similar to the previously illustrated NN models, this model did 

not consider risk mitigation during risk assessment. 

Markowski and Mannan (2008) established a fuzzy risk matrix to 

support risk analysis. The fuzzy risk matrix is based on establishing a 

fuzzy inference system between probability of occurrence, severity, and 

the risk magnitude. The probability of occurrence is categorized into seven 

categories (A: remote, B: unlikely, C: very low, L: low, M: medium, H: high, 

and G: very high). The severity of the risk is categorized into five 

categories (I: negligible, II: low, III: moderate, IV: high, and V: 

catastrophic). Four risk tolerance zones were identified (A: acceptable, TA: 

tolerable acceptable, TNA: tolerable unacceptable, NA: unacceptable). 

The relation between probability, severity, and the risk magnitude is 

described in the form of if-then rules. Thirty-five rules were identified to 

establish the relationship between probabilities of occurrence, severity as 

inputs to the fuzzy inference system, and the expected risk magnitude 

over the identified four tolerance zones. The Mamdani fuzzy inference 
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system was utilized to perform aggregation and implications. The center of 

area (COA) method was used to defuzzify the outcomes and provide a 

crisp value of the risk magnitude.  

The proposed fuzzy matrix offers the advantages of reducing sharp 

transitions between different risk zones by incorporating the membership 

function, which allows gradual transition between concepts. The proposed 

fuzzy matrix offers the advantage of supporting qualitative assessment of 

risk events. However, this approach suffers from the limitation of its 

inability to support quantitative assessment of risk events and calculate 

the required risk premium.  

Nasirzadeh et al. (2008) presented a new model for risk analysis 

that considers the interrelationships and interactions between risk events. 

Authors argued that the cumulative impact of a group of risk events may 

be greater than the sum of their individual impacts. Five risk events were 

considered during this study and are defined as: (1) pressure to crash 

project duration, (2) contribution of local community, (3) deficit in financial 

sources, (4) inefficiency of owner supervisors, and (5) inflation risk. The 

proposed methodology is a hybrid system dynamics (SD) and fuzzy logic 

approach in which both direct and indirect effects of risk events are 

modeled through feedback loops. Forrester (1961) introduced SD in the 

early 1960s as a simulation methodology for analysis of industrial 

systems, and since then, it has been used for many applications. SD is 

used to present the interaction between the five risk events, and also to 
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model the relationship between each risk event and its root causes. Input 

data of the five risk events are represented using fuzzy numbers and are 

represented using α-cut. To quantify the cumulative impacts of risk events, 

the crisp values of each risk event at each α-cut are determined from their 

membership functions. Accordingly, dynamic simulation is performed with 

these crisp values. The output of the simulation yields the overall risk 

magnitude of the project and is represented as a fuzzy number. The 

center of area method was used to defuzzify the output. The results of 

using the hybrid fuzzy system dynamic model were then compared to 

using fuzzy arithmetic operation alone, to quantify the magnitude of each 

risk event without considering interactions. The results obtained from 

using the hybrid model indicated that the project is expected to have more 

project delays and cost overrun, as compared to the fuzzy model. The 

authors argued that modeling interrelationships between different risks 

using SD provided an appropriate measure to quantify the full impact of 

different risks. However, the authors did not validate their argument and 

provide proof that the results obtained from using the hybrid model better 

representing reality than the fuzzy model. In addition, the construction 

industry is subject to many complex interrelationships that are difficult to 

be modeled, and for this reason, this study is limited to only five risk 

events. Moreover, this study did not show how the authors had 

established the mathematical model within the SD to define each risk 

event.  
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Gürcanli and Müngen (2009) propose a method for assessing risk 

events that workers are exposed to at construction sites, using the fuzzy 

expert system. Three input parameters were considered during the 

development of the fuzzy expert system, i.e., risk likelihood, current safety 

rating, and risk severity. Accidents considered during this study include: 

fall from height, contact with electricity, falling object, heavy equipment 

accidents, traffic accident on site, building or structure collapse, cave-ins, 

other causes of accidents, fire or explosion, and material bouncing to face 

or other parts of the body.  

The accident likelihood was obtained from past data. Accident 

severity for each accident was derived from interviews. To assess the 

safety rating, a set of safety measures (SM) were determined and a 

checklist comprised of 120 questions was prepared. AHP was utilized to 

calculate the weighting for each safety measure (SM) in the checklist. By 

answering all questions in the checklist, the overall safety rating was 

calculated. A fuzzy expert system was designed to establish the 

relationship between the input parameters and the risk level in the form of 

if-then rules. To utilize the expert system, the likelihood and severity are 

assessed linguistically using a scale ranging from 1 to 10. To assess the 

safety level, experts have to provide a rating from 1 to 10 for each safety 

measure (SM) in the checklist. The safety rating is then calculated by 

applying AHP and exporting the rating to the fuzzy expert system. 

Aggregation and implications are performing using the Mamdani inference 
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system, and the result is defuzzified to assess the hazard level of the job 

site.  

The proposed model offers the advantage of using linguistic terms 

to assess the level of risk in the construction industry; however, this model 

only supports a qualitative assessment of risk in a scale from 1 to 10, 

rather than providing a quantitative assessment. Moreover, this model 

requires assessing 120 safety measures (SM) to assess one of the input 

variables, i.e., safety rating. Finally, this model does not take into 

consideration calibration of the model, which would be necessary if a new 

safety measure was required to be added to the model.  

Sachs and Tiong (2009) proposed a knowledge-based fuzzy expert 

system for quantifying risk in a generic, systematically structured, and 

coherent process. The proposed model utilizes fuzzy sets to capture 

expert opinion and to translate uncertain information on risk and mitigating 

strategies into dollar values. The proposed method combines fuzzy set, 

possibility, and probability theory to provide a quantitative assessment of 

risk. As compared to the previous studies, this study provides a 

comprehensive framework for risk analysis, and thus, a detailed summary 

of the work conducted under this study is summarized as follows:  

(1) Seven trapezoidal linguistic terms were chosen to assess the 

expert’s opinion on impact and likelihood of the risk factors. 

These seven alternatives are defined as: extremely low (EL), 



51 
 

very low (VL), low (L), medium (M), high (H), very high (VH), 

and extremely high (EH).  

(2) The project is broken down into several cash flows, and each 

cash flow that is perceived to be at risk is investigated to 

identify different risk events.  

(3) Each identified risk event is structured using an influence 

diagram to show its root causes. For each risk event, the 

likelihood (L) and the impact (I) of its root causes are collected 

using expert opinions or judgments. Multiple opinions on the 

same root cause are aggregated, as shown in Equation 2-5:  

Agg (x) = ∑ w  A x  where ∑ w 1    [2-5] 

where Ai (x) denotes the selected linguistic term by expert i; wi = 

weight attributed to each expert; and n = number of expert 

opinions collected. 

(4) The opinions collected from experts on the likelihood and 

impact are aggregated by the fuzzy weighted mean method to 

calculate the risk magnitude for each risk event and is defined 

as follows:  

I
∑ L I

∑ L
        [2-6] 

where Lr is the aggregated likelihood for each root cause 

following the rule presented in Equation 2-5, and Ir is the 

aggregated impact following the rule presented in Equation 2-5. 

The multiplication, division, and summation in Equation 2-6 are 



52 
 

based on applying fuzzy arithmetic operations on fuzzy 

numbers. 

(5) The aggregated impact in the previous step is converted into a 

probability density function (PDF), as shown in Equation 2-7:  

Height (h) =      [2-7] 

(6) If the risks affecting a cash flow are perceived as high, then a 

mitigating measure can be applied to minimize the effect. The 

ability of the proposed mitigation (M) in controlling the impact of 

each risk event is represented as a trapezoidal fuzzy number 

(a2,b2,c2,d2), and the remaining impact of the risk is calculated, 

applying the subtraction operator on fuzzy numbers.  

Step 3 involves the use of influence diagrams, which can be used in 

risk analysis to help describe the behaviour of systems that are too 

complex. Influence diagrams can be easily understood and used without 

the aid of an expert. These diagrams can help with testing alternative 

strategies or policy decisions by propagating the influences of the decision 

throughout the diagram (Diekmann 1992). Although this study has offered 

a generic model to assess risk event, it does have some limitations. For 

instance, the influence diagram, as compared to fault trees, does not offer 

the ability to use logical gates (i.e., AND or OR) to represent the logic 

between root causes and the risk event. Diekmann (1992) noted one 

serious weakness of using influence diagrams attributed to the way how 

those diagrams are solved. The most commonly used method of solving 



53 
 

influence diagrams is throughout the uses of conditional-probability, which 

make the problem more complex especially when a risk event is attributed 

to more than one root cause. Moreover, the authors did not establish a 

framework to identify critical cash flow and to judge the level of risk 

criticality. 

Shaheen et al. (2007) explores an alternate approach to range 

estimating based on fuzzy set theory. The intent of using fuzzy logic is to 

address some of the limitations of Monte Carlo simulation associated with 

computational burden, sensitivity to the input distribution shapes, and the 

need to assume correlations among all inputs. The following steps 

summarize the proposed model: 

(1) Consult the experts to identify work packages that have major 

effects on the total cost of the project. 

(2) Ensure each expert gives his/her estimate based on his/her 

experience, using one of the following distributions:  

 triangular,  

 trapezoidal, or  

 uniform.  

(3) Aggregate the experts’ inputs using the Fuzzy Delphi approach. 

(4) Calculate the total cost estimate by adding up the costs of the 

work packages. 

(5) Calculate the expected mean value, standard deviation, 

fuzziness measure, ambiguity measure, and fuzzy number 
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quality index, and use this information to assess the precision 

and quality of the output compared to outputs obtained from 

different estimating techniques.  

The authors compared the results obtained from range estimating 

using fuzzy arithmetic against outputs obtained using the probabilistic 

approach. The results from both approaches show comparable results. 

The use of fuzzy logic offers the ability to reduce the number of iterations 

required to generate the output. This study also proposed the use of some 

quality measures that can be used to compare the results to outputs 

obtained from other estimating techniques. 

 
Sadeghi et al. (2010) proposed a fuzzy Monte Carlo simulation (FMCS) 

framework for modeling risk in construction projects. This framework is 

capable of considering both fuzzy and probabilistic uncertainty of the input 

variable. Authors introduced the fuzzy cumulative density function (CDF) 

as a generalized form of CDF. Fuzzy CDF has the ability to represent both 

fuzzy and probabilistic uncertainty in a single figure. FMCS was used to 

develop a cost range estimating template for construction projects. The 

examples used to verify the proposed framework indicated that the FMCS 

framework is very effective for providing decision support for construction 

projects.  

The models proposed by Shaheen et al. (2007) and Sadeghi et al. 

(2010) have some limitations. For instance, none of these models is 

capable of explaining the logic that might lead to the occurrence of a risk 
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event. In addition, both models represent the aggregated impact of 

different risk events as a range estimate, rather than estimating the 

expected monetary value of each risk event. Thus, both models lack the 

ability of defining how much money can be allocated to address each 

specific risk event. Moreover, none of the above models consider the 

effect of establishing mitigation strategies and how this might affect the 

expected monetary value of a risk event.  

 

2.6 Summary  

This chapter presented a different perspective on risk and risk 

analysis. This chapter also presented some studies that were conducted in 

the past to address risk analysis. An overview of the proposed approach 

was presented, followed by a discussion of the advantages and 

disadvantages of each proposed approach. Some of the proposed 

approaches are qualitative, which implies that they can be used only for 

the ranking of risk events or to judge the level of riskiness of the project. 

However, these techniques cannot offer risk analysts the ability to conduct 

quantitative risk analysis by calculating the expected monetary value of 

each risk event. Some of the proposed techniques require identifying 

critical work packages or critical cash flows without establishing a 

framework to indentify them. It is also quite obvious that the shortfalls of 

the studies that are based on a probabilistic approach. For example, 

decision trees and Monte Carlo are due to the lack of sufficient data to 
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establish the required distributions and the level of transparency of using 

these models. Many of the highlighted studies are not generic, which 

implies that any further modification to the risk analysis model—for 

example, adding new risk event—will require rebuilding the model from 

scratch.  

Thus, in order to develop a comprehensive risk analysis model, 

further research is required. This research should be conducted to 

address the limitations of previous studies, by offering a generic risk model 

that can do reasoning even if data do not exist to quantify the required risk 

premium, offering experts the ability to express themselves linguistically, 

and also considering the ability to mitigate risk during the analysis 

process. Such a model is required to be transparent enough by offering 

the ability to trace the results and understand how a certain conclusion is 

obtained. Such a model is also required to be more comprehensive to 

support other risk management processes such as risk identification, risk 

response, and risk monitoring and control. The next section will provide an 

introduction to three well-known techniques to perform risk analysis. 

These are known as failure mode and effect analysis (FMEA), fault trees, 

and event trees. These three techniques are combined together to 

construct the proposed framework. Fuzzy logic is used to address the 

limitations of each technique, as will be highlighted in chapter 4 and 

chapter 5.  
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3. Risk Analysis Techniques (FMEA, 

Fault Trees, and Event Trees)  

 

The purpose of this chapter is to review some common techniques 

for risk analysis, such as failure mode and effect analysis, fault trees, and 

event trees, and to highlight issues and challenges associated with using 

these techniques to develop a robust risk analysis framework.   

 

3.1  Introduction  

One can anticipate that risks always exist and can lead to 

unsuccessful outcomes, especially in the construction domain, in which 

high levels of risk and uncertainty are expected due to a lack of 

information. Each project is considered to be unique, which adds more 

uncertainty for the project team since accumulated data about risk events 

could be irrelevant for new projects.  

To help manage risk events in a construction project, many 

techniques have been developed. This chapter describes three techniques 

that can be used effectively to analyze risk events at the early stages of 

the project, as well as during the execution phase. 

The first technique to be covered is failure mode and effect analysis 

(FMEA). This technique can help project teams anticipate project failure 

modes and assess the level of priority of establishing corrective actions. 
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By establishing a priority rating of different risk events, the management 

team can establish its priority for responding to different risk events, which 

will aid in establishing cost effective response strategies.  

The second technique described in this chapter is fault tree analysis 

(FTA), which can be viewed as complementary to FMEA, as it considers 

more levels of details. Unlike FMEA, which stops the level of analysis at 

the top level (risk level), FTA drills deeply into the root causes by 

establishing a logical diagram between a risk event and its associated root 

causes. Fault trees can be solved qualitatively, by determining minimal cut 

sets, and quantitatively, by calculating the probability of occurrence of the 

risk event.  

The third technique described in this chapter is event tree analysis 

(ETA). The outcomes of an event tree are determined by considering all 

possible permutations of the success and failure of mitigation strategies. 

Event trees are used to estimate the severity of the adverse consequence 

that a project may be eventually subjected to as a result of the occurrence 

of a specific risk event.  

 

3.2  Failure Mode and Effect Analysis (FMEA) - Concepts and 

Framework  

The first work in establishing a procedure for performing FMEA and 

criticality analysis was created by the U.S. military in 1949. In the early 

1960s, the U.S. military established a military standard (MIL-STD-1629a) 
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for systematically evaluating the potential impact of functional or hardware 

failures on mission success, system performance, maintainability, and 

maintenance requirements. The aerospace industry adopted this 

technique in the 1960s because of the potential risk to life when their 

products fail. In the early 1980s, the automotive industry began to 

incorporate FMEA into the product development process (McDonald et al. 

2008).  

The military standard (MIL-STD-1629a) defined FMEA as “A 

procedure by which each potential failure mode in a system is analyzed to 

determine the results or effects thereof on the system and to classify each 

potential failure mode according to its severity” (1980, 4). Goel and Graves 

defined FMEA as “an inductive bottom-up approach that identifies 

potential failure modes in a system caused by either design or 

manufacturing or assembly process deficiencies” (2007, 128). Within any 

traditional FMEA framework, risk analysts start from the component level 

of the system, work on compiling a list of potential failure modes, and try to 

analyze the effects of those failure modes on the system by calculating an 

index score, named the risk priority number (RPN).  

FMEA is an effective method used to analyze the risk associated 

within any system, and to support evaluating the level of risk criticality. 

Similar to other risk analysis tools, FMEA can provide an answer to the 

following questions:  

 What can go wrong?  
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 What is the probability that it will happen?  

 What is the consequence if it happens?  

One of the aspects of the FMEA that makes it widely accepted is 

the group dynamic in which personnel from different functional groups are 

gathered to evaluate the risk associated with a system from various 

standpoints and concerns. One of the main concerns is the omission of 

some critical failure modes because the brainstorming session is not 

sufficiently comprehensive. Thus, it is crucial to bring the right team to the 

session. Goel and Graves (2007) indicated that the optimal size of the 

team to perform FMEA is 4 to 6, and the maximum is 10. The team is 

responsible of determining the level of risk severity (S), occurrence (O), 

and detection (D), and to establish the acceptable level of risk for the 

system being evaluated. The level of training and practical experience of 

the user of this technique is essential to the analysis since it provides the 

user with a better understanding of how the tool is working and enhances 

the way in which he/she perceives risk within a specified situation.  

FMEA can be applied following three phases. The first phase is 

concerned with identifying a potential failure mode within a system. The 

failure mode can be internal or external to the system. Root cause 

analysis is conducted to understand the relationship between different 

causes and their effects. The second phase is concerned with using 

feedback from subject matter experts to assess the occurrence (O), 

severity (S), and the level of detection (D) of each identified failure mode. 



61 
 

The assessment of O, S, and D is used to calculate the RPN. According to 

the calculated value of the RPN, team members can work on establishing 

improvements to the system to mitigate the identified failures.         

FMEA entails several advantages, which can be summarized as 

follows (Dhillon 1992):  

 FMEA can help provide data for developing fault tree analysis. 

 FMEA can support establishing corrective actions. 

 FMEA can aid in selecting design alternatives with high reliability at 

the initial design stages. 

 FMEA can support the identification of possible failure modes. 

 FMEA can be regarded as the basis for developing test methods. 

Chapter 6 provides more applications and advantages attributed to 

the utilization of FMEA as perceived by experts in the construction 

domain.  

 

3.2.1  Failure Modes and Failure Causes   

Identifying different failure modes is an important step of any FMEA 

process.  According to the military standard (MIL-STD-1629a), a failure 

mode is defined as “the manner by which a failure is observed. Generally 

describes the way the failure occurs and its impact on equipment 

operation” (1980, 4). Each failure can be attributed to several root causes, 

entitled failure causes. A failure cause is defined by the military standard 

(MIL-STD-1629a) as “the physical or chemical processes, design defects, 
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quality defects, part misapplication, or other processes which are the basic 

reason for failure or which initiate the physical process by which 

deterioration proceeds to failure” (1980, 4). Each failure mode can result in 

an effect known as “failure effect.” Failure effect is defined by the military 

standard (MIL-STD-1629a) as “the consequence(s) a failure mode has on 

the operation, function, or status of an item” (1980, 4).  

Bluvband and Grabov (2009) proposed a checklist that can be used 

by the FMEA team to identify potential failure modes. This list is based on 

asking the key question "What can go wrong?" The checklist can be 

summarized as follows:   

 The intended function is not performed. 

 The intended function is performed with some safety problems.  

 The intended function is performed at a wrong time. 

 The intended function is performed at a wrong place. 

 The intended function is performed in a wrong way. 

 The intended function is performed with lower performance level. 

 The intended function is performed with cost overrun.  

 The life time of the intended function is lower than planned. 

 Providing support for the system to perform its intended function is 

impossible or problematic (maintenance problems, repairability 

problems). 
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The same checklist can be adapted to identify failure modes (risk 

events) in the construction domain. For instance, the first question can be 

reformatted as follows:  

 What can go wrong in the project that can make the project unable 

to perform its intended function? 

If the intended function of the project is to transfer 50,000 bpd of 

crude oil from point A to point B, then any problems that can lead to a 

reduction in that quantity has to be questioned and analyzed to identify 

potential failure modes. After identifying all potential failure modes (risk 

events), the second phase is applied to assess O, S, and D.  

 

 3.2.2 Risk Priority Number (RPN)  

Within the context of the traditional FMEA, the degree of criticality is 

determined by calculating the risk priority number (RPN). The RPN ranges 

from 1 to 1000 and is an index score calculated as the product of three 

measurement scales: severity (S), occurrence (O), and detection (D) (i.e., 

S * O * D). The RPN is a unitless measure normally used to prioritize a list 

of failure events. The higher the RPN, the more critical the failure event is. 

The severity (S) reflects the seriousness of the effects of the failure. The 

severity rating is evaluated over a range from 1 to 10 to reflect the 

potential consequence of a failure mode. The occurrence rating (O) is the 

frequency of the occurrence of the failure over the life cycle of the system, 

evaluated over a range from 1 to 10. Occurrence (O) and severity (S) 
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represent the two dimensions known as probability and impact for any risk 

matrix. The extra dimension that FMEA had brought is the evaluation of 

the level of detection (D).  Ayyub defined the detection rating (D) as “a 

measure of the capability of the current controls” (2003, 61). Within 

traditional FMEA, a numerical scale ranging between 1 and 10 is used to 

asses the level of detection (D). Risk events with a low probability of 

occurrence cannot be assumed to have high detection ratings unless there 

is an effective measure established in place to control these risk events. 

Thus, detection rating adds more meaning to the analysis compared to the 

traditional approach of using O*S in the risk matrix.  Industry and 

companies usually establish their own versions of the severity, 

occurrence, and detection rating that fits their needs and requirements. 

Tables 3-1, 3-2, and 3-3 list sample criteria to rate severity (S), occurrence 

(O), and detection (D).      

 According to the value assigned to the previously mentioned terms, 

the value of the PRN is calculated. Figure 3-1 shows an example of an 

FMEA worksheet to collect data. Chapter 6 presents the risk register 

designed to collect data.  

The outcome of conducting FMEA is compiled in the FMEA report. 

The FMEA report contains a summary of the results, sources of the data, 

a system definition narrative, analysis assumptions, and recommendations 

based upon the analysis (MIL-STD-1629a). Results obtained out of the 

FMEA provide a lot of valuable information that can be used to reduce the 
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impact of risk events and increase the chances of meeting the project 

objectives.   

 

Table 3-1. Severity (S) rating evaluation criteria (adapted from Ayyub 

2003) 

Linguistic Terms  Rating Description 

Minor 1 No effect.  

Low 2–3 Slightly noticeable. 

Moderate 4–6 Noticeable effect on subsystem.  

High 7–8 Effects on major system, but not on safety or 

government regulated compliance items. 

Extreme 9–10 Effects on safety or involving noncompliance 

with government regulation. 

 

Table 3-2. Occurrence (O) rating evaluation criteria (adapted from Ayyub 

2003) 

Linguistic Terms Rating Description 

Minor 1 Failure is unlikely. 

Low 2–3 Only isolated failures associated with almost identical 

processes. 
Moderate 4–6 Failure of similar processes that have experienced 

occasional failures, but not in minor operations. 
High 7–8 Failure associated with similar processes that have often 

failed. 
Extreme 9–10 Failure is almost inevitable. 
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Table 3-3. Detection rating evaluation criteria (adapted from Ayyub 2003)  

Linguistic terms Rating Description 

Certainty of non-

detection 

10 Controls will not detect a defect. 

Very low 9 Controls probably will not detect a defect. 

Low 7–8 Controls have a poor chance of detecting a 

defect. 

Moderate 5–6 Controls may detect a defect. 

High 3–4 Controls have a good chance of detecting a 

defect.  

Very high 1–2 Controls certainly will detect a defect. 

 

 

Figure 3-1. Sample failure mode and effect analysis worksheet  

 

3.2.3 Previous FMEA Studies  

Paparella (2007) utilized FMEA to support redesigning the health 

care systems and to prevent the future occurrence of error. During FMEA 

investigations, the following questions were asked:  
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 What could go wrong?  

 How could a failure happen?  

 What would be the worst outcome if something did go wrong?  

 What needs to be done to prevent these failures in our systems?  

The steps taken during this study are as follows:  

(1) Select a process for study and define the process.  

(2) Identify potential failure modes and why they might happen, and 

determine their effects. 

(3) Rank the impact and likelihood of each failure.  

(4) Determine root causes of critical failure modes. 

(5) Redesign the process where the effects of errors are 

unacceptable. 

(6) Analyze and monitor the new process. 

The author concluded that being a conscious practitioner includes 

thinking and working proactively, by using techniques such as FMEA to 

reduce the chances of adverse events occurring, to achieve a safe 

environment free from preventable harms. 

Cassanelli et al. (2006) applied FMEA during the design phase of an 

electric motor control system for vehicle HVAC (heating/ventilation/air 

conditioning). FMEA analysis has started with lowest level and has 

proceeded in a bottom-up approach until the end effect on the system has 

been identified. After two years of production, the occurrence factor for a 

failure event was increased up to 5, leading the RPN to exceed the 
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threshold. After several reviews, the problem was attributed to the failure 

of the diode (D1). A group of single chip Schottky rectifier was analyzed. 

The result of the analysis indicated that they were subject to short circuits 

and excess leakage. This first generic analysis suggests that some 

mechanical stress is the root cause of the observed failures. A detection 

strategy was suggested to introduce a stress screening test, which forced 

the RPN to decrease by decreasing the detection (D) (a decrease from 3 

to 2). This correction was mainly to prevent the problem from reaching the 

customer, but did not fix the problem itself. However, a persistent, 

excessively high return rate remained, which forced the team to look 

further for the failure mechanism in order to find the right corrective actions 

to reduce the occurrence (O). Several studies that were conducted 

resulted in the conclusion that the diode must be replaced with a more 

robust device against reverse voltage overstress to reduce the occurrence 

(O) of this failure. The author concluded the importance of educating 

different teams in the application of FMEA, and considering the results 

obtained from the analysis in implementing corrective actions.     

Rhee and Ishii (2003) introduced life cost based FMEA, which 

measures risk in terms of cost by comparing and selecting design 

alternatives that can reduce the overall life cycle cost of a particular 

system. The authors noted that failures may occur at any stage of the 

product life cycle, and the cost of failure becomes greater as the origin of 

the failure and the detection become further apart in time. 
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Failure cost is defined over three major components—labor cost, 

material cost, and opportunity cost—and is defined as shown in Equation 

3-1, 3-2, and 3-3:  

Labor cost = occurrence * (detection time * labor rate * No. of operators) + 

(fixing time* labor rate * No. of operators) + (delay time * labor rate * No. of 

operators)           [3-1]  

Material cost = occurrence * cost of part        [3-2]  

Opportunity cost = (detection time + fixing time + delay time)* hourly 

opportunity cost             [3-3]  

Equation 3-4 defines the availability of a reparable component, as follows: 

Availability (AV) = 
M  T   F

M  T  B  F
               [3-4] 

Equation 3-5 defines the total availability of a system, as follows:    

TA = (AV1component) 
no. of components        [3-5] 

Equation 3-6 defines the failure frequency, as follows:  

 FF = 
D  F  T D  T

M  T   R
         [3-6] 

A Monte Carlo simulation is applied to the life cost based FMEA 

assuming triangular distribution of variables associated to failure cost, 

including failure frequency, detection time, fixing time, delay time, and 

parts cost. 

Dhillon (1992) presents a brief introduction and an extensive list of 

references on failure modes and the effects analysis concept. Readers 

can refer to this list to understand more about the concept and the variety 

of applications prepared using FMEA. 
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3.2.4 FMEA Limitations  

Despite the apparent simplicity of the method and the advantages 

of applying this technique, many shortcomings were identified by several 

authors. For instance, Bowles and Peláez (1995) and Puente et al. (2002) 

noted several shortcomings in both the ways in which calculations are 

made, by using the multiplication operator, and the ways in which the 

results are interpreted. For example, a failure mode with the following 

assessment of severity (S), occurrence (O), and detection (D) (say 9, 5, 

and 5, respectively) may have a lower RPN (225) than one with high 

severity (S), high occurrence (O), and a moderate level of detection (D) 

(say 6, 7, and 6, yielding a RPN of 252). Yet from the management 

perspective, the first failure must induce higher priority for corrective action 

compared to the second one, since the severity of the first one is high. 

Gilchrist (1993) indicated that there is no rationale as to why S, O, and D 

should be multiplied to produce the RPN. Bowles and Peláez (1995) 

indicated that the traditional application of FMEA may fail to estimate the 

RPN when the impact of failure is calculated over multi-dimensions, since 

only the most severe effect is used in the calculation. Puenta et al. (2002) 

and Pillay and Wang (2003) noted that the RPN does not differentiate 

between the importance of the input variables—i.e., severity (S), 

occurrence (O), and detection (D)—during the calculation of the RPN, 

since they are all coming with one weight. Herrera (1997) noted the 

advantage of using linguistic terms to capture the preference of experts 
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especially in situation in which experts can not provide exact numerical 

number.  Xu et al. (2002) noted the shortcomings of using numerical 

values to evaluate the occurrence of the failure event, and argued the 

advantage of using other techniques that can support linguistic 

assessment of failure modes. Xu et al. (2002) also noted the difficulty for 

experts to provide precise assessment of the probability of failure events 

to conducted FMEA. Bowles and Peláez (1995) noted the advantage of 

using fuzzy logic to conduct FMEA especially in situations in which the 

information on which they are based is vague, ambiguous, qualitative, or 

imprecise. Chin et al. (2007) Indicated that most of the information 

required to conduct FMEA are better expressed using linguistic terms, 

such as ‘likely’, ‘important’ or ‘very high’. Braglia et al. (2003) noted the 

difficulty for experts to give a numerical evaluation of these (intangible) 

quantities. Braglia et al. (2003) noted that “Even if the technique is thought 

as “quantitative” approach, it is really based on qualitative assessments, 

predicted failure rates, and other factors that are only guesses at the best.” 

Abdelgawad and Fayek (2010a) reviewed the rule of thumb 

proposed by Ayyub (2003), in which he noted that any failure mode with a 

RPN greater than 125 should be considered seriously. Abdelgawad and 

Fayek (2010a) noted that such a rule of thumb is very subjective, since 

there is no proof to verify this argument. Abdelgawad and Fayek (2010a) 

also indicated that without linking the value of the RPN to linguistic terms 

describing the priority to take corrective action, the project team will not be 
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able to recognize the difference, for example, between a risk event with an 

RPN equal to 140 versus one with an RPN equal to 160.  In order to 

address many of the above mentioned limitations, fuzzy logic was 

combined with the traditional FMEA and used to develop a fuzzy expert 

system, as will be explained in detail in the next chapter. Fuzzy logic and 

fuzzy expert systems are described next. 

     

3.2.5 Fuzzy Logic 

The concept of fuzzy set was first suggested in the mid-sixties by 

Zadeh (1965) to achieve a simplified modelling of complex systems that 

require approximate solutions rather than exact. Yager and Zadeh (1992) 

indicated that the conventional approaches do not provide an adequate 

model for modes of reasoning that looks for approximate solutions rather 

than exact. Since 1975 there were attempts to develop applications for 

laboratories as well as for large scale technical utilization. Mamdani was 

the first large scale application that was realized successfully for 

controlling a cement kiln (Kruse et al. 1994). Starting at the beginning of 

the 80s, Japan was the leader in using fuzzy expert systems for practical 

applications, including video cameras, washing machines, rice cookers, 

etc. (Zimmermann 1999).  

Zimmermann (1999) noted several advantages of using fuzzy logic 

in real world applications. These advantages can be summarized as 

follows: 
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(1) Fuzzy logic based models are conceptually easy to understand, 

since fuzzy logic imitates human-like reasoning.  

(2) Fuzzy logic based models are tolerant of imprecise data. 

(3) Fuzzy logic based models can model most nonlinear complex 

functions. 

(4) Fuzzy logic based models can be built on top of the experience 

of experts. 

(5) Fuzzy logic based models are based on natural language, and 

hence can provide better communication between experts and 

managers. 

Due to the imprecise nature of many factors that affect construction 

projects, fuzzy logic lends itself well to many construction applications. 

Many construction-related factors are subjective and uncertain, and thus 

fuzzy logic is being used more and more to model construction issues 

where the information is only available in the mind of an experienced 

construction practitioner (Knight and Fayek 2002). 

Since fuzzy logic is based on a natural way of human communication, 

the subjective assessment of the problem can be utilized to derive an 

acceptable approximation. Fuzzy logic is combined with FMEA to 

overcome the deficiencies associated with the traditional approach of 

computing the RPN number. Instead of depending on the multiplication of 

S, O, and D to calculate the RPN, the proposed approach uses a fuzzy 
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expert system, based on information elicited from experts, to analyse and 

prioritise different risk events.  

 

3.2.6 Fuzzy Expert Systems 

The fuzzy expert system is a popular computing framework based 

on the concepts of fuzzy set theory, fuzzy IF-Then rules, and fuzzy 

reasoning. It has found successful applications in a wide variety of fields. 

Because of its multidisciplinary nature, the fuzzy expert system is known 

by numerous other names, such as fuzzy-rule-based system, fuzzy 

inference system, fuzzy model, fuzzy associative memory, and fuzzy logic 

controller (Jang et al. 1997). 

Jang et al. (1997) noted the ability of fuzzy expert system to take 

advantage of domain knowledge that might not be directly employed in 

other modeling approaches. The basic structure of a fuzzy expert system 

consists of three conceptual components referred to as fuzzification, fuzzy 

inference, and defuzzification. In fuzzy FMEA, the fuzzification process is 

the process in which occurrence (O), severity (S), and detection (D) are 

converted into their fuzzy representations. During this process, the user 

provides assessments of severity (S), occurrence (O), and detection (D), 

and according to the assessment of S, O, and D, the fuzzy expert system 

identifies the corresponding membership value for each variable.  

The second component of the fuzzy expert system is the 

knowledge base, which is a database of IF-Then rules that define the 
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relationships between the premise, represented by the input variables S, 

O, and D; and the consequent, represented by the RPN in the proposed 

framework. During the fuzzy reasoning process, each rule is fired 

according to the degree of matching between the input value and the 

premise of each rule. Implications and aggregations are used during this 

process to calculate the contribution of each rule to the overall value of the 

RPN. The final step is the defuzzification process, in which a crisp output 

value of the RPN is calculated from the aggregated fuzzy set. Figure 3-2 

shows different components of the fuzzy expert system. The steps 

conducted to develop the fuzzy FMEA expert system are described in the 

next chapter. 

 

 

Figure 3-2. Fuzzy inference system 

 

In order to demonstrate how fuzzy expert system works, let us 

assume that we are required to design a fuzzy expert system in which we 

have two input variables named: X1, and X2, and one output variable 
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named Y. Let us assume that the two input variables were defined over 

the range of 1 to 10 using three linguistic terms named: low, medium, and 

high. Let us also assume that the output variable is defined over the range 

of 1 to 100 using five linguistic terms named: very low, low, medium, high, 

and very high. Figure 3-3 shows a simple structure of the fuzzy expert 

system developed using the Fuzzy Logic Toolbox running under 

MatlabR2008b ® environment.  

 

 

Figure 3-3. Example fuzzy expert system 

  

After defining the membership functions for the inputs and the 

output variable, expert’s opinion can be used to define the relationship 

between the inputs and the output variable in the form of (if-then) rules. 

Figure 3-4 shows nine rules to represent the relationship between X1, X2, 

and Y. For example, rule 1 indicates that: if (X1 is low) and (X2 is low) 

then (Y is very Low).  Figure 3-5 shows the membership functions 

representation of the nine rules. For example, the first rule shows the 
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membership of (X1 is low) and (X2 is low) and (Y is very low). The second 

rule shows the membership of (X1 is low) and (X2 is medium) and (Y is 

very low). The same concept can be applied to understand the remaining 

rules in Figure 3-5. Please note that the if-part of the rule “X1 is low” and 

“X2 is low” is called the premise, while the then-part of the rule “Y is very 

low” is called the consequent or conclusion. 

 

 

Figure 3-4. Sample (if-then) rules 

 

 

Figure 3-5. Membership representation of the nine rules 
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The next step is defining a t-norm to represent the logical operator 

(AND). Any t-norm is a binary operation that satisfies the following rules 

(Pedrycz and Gomide 2007):  

1- Commutatively: a t b= b t a     [3-7] 

2- Associatively: a t (b t c)= (a t b) t c     [3-8] 

3‐ Monotonicity: if b ≤ c, then a t b ≤ a t c    [3-9]  

4‐ Boundary conditions:    1
  0 0

    [3-10] 

Where a, b, c  [0, 1]  

 Some of the commonly t-norms are defined as follows (Pedrycz and 

Gomide 2007): 

1- Minimum= min (a, b)      [3-11]  

2- Product= a*b        [3-12] 

3- Lukasiewicz= max (a+b-1, 0)      [3-13] 

If the relationship between the inputs is defined using an (OR) 

operator, an s- norm is required to be defined. Any s-norm is a binary 

operation that satisfies the following rules (Pedrycz and Gomide 2007):  

5- Commutatively: a s  b= b s  a     [3-14] 

6- Associatively: a s (b s c)= (a s b) s  c     [3-15] 

7‐ Monotonicity: if b ≤ c, then a s b ≤ a s c    [3-16] 

8‐ Boundary conditions:    1 1
  0

    [3-17] 

Where a, b, c  [0, 1]  

 Some of the commonly s-norms are defined as follows (Pedrycz 

and Gomide 2007): 
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4- Maximum= max(a, b)      [3-18] 

5- Probabilistic Sum= a+b- a*b      [3-19] 

6- Lukasiewicz = min (a+b, 1)      [3-20] 

 

By defining values for the input variables, the membership value ( ) 

of each input variable is calculated applying the following equation for 

triangular distributions (Pedrycz and Gomide 2007).  

 

0       

    ,

 
   ,

     [3-21] 

where a is the minimum, m is the most likely, b is the maximum, 

and x is the value at which the membership function is required to be 

calculated.  

To demonstrate how Equation 3-21 is used, let us assume that the 

value of X1 is defined as X1=7 and the value of X2 as X2=5. Firstly, the 

membership value of the X1 and X2 is calculated for each rule using 

Equation 3-21 as shown in Figure 3-6. As can be noticed in Figure 3-6, 

only rule 5 and rule 8 were fired since the input values for X1 and X2 

satisfy the premise of both rules. To demonstrate how the membership 

value of X1 is calculated in rule 5, Equation 3-21 can be used as follows:  

1 7  
.

0.57         [3-22]      

The membership value of X2 is calculated using Equation 3-21 as 

follows:  
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2 5  
.

0.86      [3-23] 

 

 

Figure 3-6. Membership values of the input variables  

 

After calculating the membership value for each input variable at 

different rules, the logical operator is represented using one of the t-norms 

or s-norms.  Since X1 and X2 is connected using an (And) operator, refer 

to Figure 3-4, then one of the t-norms as defined in Equations 3-11 to 3-13 

can be used. For the sake of this example, let us assume that the 

minimum operator defined in Equation 3-11 is to be used as follows:   

X1 And X2 = min (0.57, 0.86) = 0.57     [3-24] 

The implication operation is then performed based on the 

calculated value in Equation 3-24. For the sake of the example, we are 

going to use one of the commonly used operators to do the implication, 
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i.e., the minimum operator. Thus, the implication of rule 5 can be 

represented as the min (0.57, Y is low). Figure 3-6 shows the results of the 

implications for different rules. The same concept can be applied to 

calculate the value of the membership function for X1 and X2 in rule 8 and 

to perform the implication.  The implicated membership function from each 

rule is then aggregated using the max operator. Figure 3-7 shows the 

resultant membership function after aggregating the implicated 

membership functions from all rules.  

 

 

Figure 3-7. Aggregation of membership function 

 

The final aggregated membership function is then defuzzified using 

one of the defuzzification methods. Some of the common defuzzification 

methods are (Yager and Zadeh 1992): 
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1. Center of area method:  the center of area method calculates the 

center of the distribution. Figure 3-8 shows the defuzzified value of 

Y, the output, after applying this method.   

2. Mean of Maximum: The Mean of Maximum Method (MOM) is 

based on averaging the support values which their membership 

values reach the maximum.  

 

 

Figure 3-8.  Defuzzification of the output function 

 

3.3 Fault Tree Analysis (FTA) 

The concept of FTA was first introduced in 1961 by H. A. Watson of 

Bell Laboratories, by an order of the U.S. Air Force (Ericson 1999). In 

1963, Boeing was the first commercial company to recognize the 
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advantages of FTA and to establish FTA applications (Ericson 1999). 

Following the advancement of using FTA in the aerospace industry, the 

technique began to gain widespread acceptance amongst practitioners in 

the nuclear industry. Since then, significant contributions have been made 

in advancing FTA by developing algorithms and software to solve fault 

trees (Ericson 1999).     

NASA defined fault tree as “a graphic model of the various parallel 

and sequential combinations of faults that will result in the occurrence of 

the predefined undesired event. The faults can be events that are 

associated with component hardware failures, human errors, software 

errors, or any other pertinent events which can lead to the undesired 

event” (2002, 2). The undesired event of any system is represented by the 

top event in a fault tree structure. The analyst next determines the 

immediate and sufficient causes for the occurrence of this top event, which 

represents the intermediate events (gate events). The intermediate events 

(gate events) are then treated as sub-top events, and the analyst 

proceeds to determine their immediate and sufficient causes. The analysis 

continues until reaching the primary events (basic events and 

undeveloped events). The primary events are the events that are not 

further developed. The logical gates integrate the primary events to the top 

event. The most commonly used logical gates to connect root causes with 

upper events are AND (intersection) or OR (union) gates. The AND gate 

indicates that the upper event can not occur unless all the lower events 
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occur. The Boolean symbol “*” is equivalent to the AND-gate. The OR gate 

indicates that the occurrence of any of the events in the lower level is 

sufficient for the upper event to occur. The Boolean symbol “+” is 

equivalent to the OR gate. Figure 3-9 shows a simple structure of a fault 

tree using OR and AND gates.  

 

 

Figure 3-9. Sample fault tree structure 

 

Fault tree (FT) is mathematically represented by a set of Boolean 

equations. The qualitative fault tree analysis identifies the minimal cut 

sets. Ayyub defined a minimal cut set (MCS) as “a cut set with the 

condition that the non-occurrence of any one basic event from this set 

results in the non-occurrence of the top event” (2003, 76). Thus, MCSs 

can be looked at as the smallest number of combinations between basic 

events, which, if occurring simultaneously, can lead to the occurrence of 

the top event.  
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The quantitative fault tree analysis represents the calculation of the 

top event probability of occurrence. Probability of occurrence is a 

numerical measure of the degree of certainty of the occurrence of an 

event, and is calculated as the ratio of a possible outcome of an event to 

all possible outcomes. Within FTA, the probability of occurrence of the top 

event (TE) is calculated by assigning values to the probability of basic 

events and propagating the calculations of the probabilities, using Boolean 

algebra, until the top event is reached. 

 

3.3.1  Advantages of FTs in Decision Making 

Fault trees can provide valuable information to decision-makers. 

Some of its advantages are summarized as follows (NASA 2002):    

(1) Fault trees provide visual representation to communicate the 

logic behind the occurrence of top events, i.e., risk events. This 

information can be used more effectively by the project team as 

a way to communicate risk.   

(2) Fault trees can be utilized as a proactive tool to help create 

proactive response strategies. By understanding the logic 

behind each risk event, proactive response strategies can be 

designed to control those root causes at early stages before 

risk events are realized. For instance, any MCS with one basic 

event indicates a critical combination in which a single event 

alone can cause the top event to occur. These single failures 



86 
 

combinations are often weak links, and should be the focus of 

prevention actions. 

(3) Fault tree analysis and importance analysis provide valuable 

information to risk analysts by allowing the prioritization of the 

contribution of events to the occurrence of the top event. Using 

such an approach, the project team can work on establishing 

proactive risk response strategies to minimize critical root 

causes. 

(4) Fault trees can be used to conduct root cause investigation 

after the realization of any risk event. By analyzing the logic 

between different root causes, decision-makers can understand 

why a risk event is realized. Thus, lessons learned can be 

captured, and more effective risk response strategies can be 

planned in the future.  

(5) Fault trees are flexible to model any system and to help analyze 

the effect of change of one or more basic events on the 

probability of failure of the top event.  

 

3.3.2 Fault Tree Analysis Steps 

A successful FTA requires the following steps be carried out (NASA 

2002, Ferdous 2006):  

(1) Acquire knowledge about the system that will be analyzed. 
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(2) Define the top event (risk event) and the level of detail to which 

the failure causes for the top event will be developed. 

(3) Define the ground rules, including the procedure by which basic 

events and gate events are named in the FT.  

(4) Define the scope of the analysis, and proceed with fault tree 

construction. 

(5) Conduct a qualitative FTA by calculating the MCSs.  

(6) Conduct a quantitative FTA by calculating the top event 

probability.  

(7) Conduct a sensitivity analysis by evaluating the level of 

contribution of root causes to the top event probability.  

(8) Analyze and interpret the results.   

  

3.3.3 Qualitative Fault Tree Analysis  

 After constructing fault trees, risk analysts can perform qualitative 

fault tree analysis to obtain MCSs. MCSs can be obtained by performing a 

Boolean algebra analysis on the constructed fault tree. The analysis can 

be conducted following either a top-down approach or a bottom-up 

approach. The difference between both is the starting point of the analysis. 

For instance, in the top-down approach, the analysis starts from the top 

event (TE) and moves down until reaching the basic events. The bottom-

up approach starts from basic events and moves up until reaching the top 

event. Applying either the top-down approach or the bottom-up approach 
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will lead to the same minimal cut sets (MCS) and it is left to the analyst’s 

preference to select whatever techniques are more suitable for him/her to 

work with.  

 To demonstrate the calculations of MCSs, the structure shown in 

Figure 3-9 is used to apply the top-down approach for obtaining MCSs, as 

shown in Equations 3-25 to 3-30:  

TE = GE1  GE2  GE3         [3-25] 

GE1 = BE1  BE2           [3-26] 

GE2 = BE1  BE3         [3-27] 

GE3 = BE4  BE5  BE6        [3-28] 

TE = (BE1  BE2)  BE1  BE3  (BE4 BE5  BE6)                 [3-29] 

M1 = (BE1, BE2); M2 = (BE1); M3 = (BE3); M4 = (BE4, BE5, BE6) 

                  [3-30] 

where M1, M2, M3, M4, and M5 are the minimal cut sets. 

 Equation 3-30 shows that there are four minimal cut sets. M1 

indicates that BE1 and BE2 must occur together to cause the top event 

(TE) to occur. M2 and M3 indicate that BE1 and BE3 are critical basic 

events, because each one is sufficient by itself to cause the top event to 

occur. M4 indicates that BE4, BE5, and BE6 must occur together to cause 

the top event to occur. Following the creation of the MCSs, Boolean 

simplifications are conducted according to the standard Boolean rules 

shown in Table 3-4.  
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Table 3-4. Boolean algebra rules (adapted from NASA 2002) 

Law Rule 1 Rule 2 

Commutative x  y = y  x x  y = y  x 

Associative x  (y  z) = (x  y)  z x  (y  z) = (x  y)  z 

Distributive x  (y  z) = (x  y)  (x  z) x  (y  z) = (x  y)  (x  z) 

Idempotent  x  x = x x  x = x 

Absorption  x  (x  y) = x x  (x   y) = x 

Transitivity If x  y  and y  z , then x  z  

Involution  x = x  

Boundary 

Conditions 

x   =  x  X = x 

x   = x x  X = X 

DeMorgan's  x y x y  x y x y  

Complementation  x  x=  x  x= X 

 

 In this example, BE1 is a repeated basic event (RBE), since it 

appears in both M1 and M2, and is simplified by applying the absorption 

law as shown in Equation 3-31:  

(BE1  BE2)  BE1 = BE1      [3-31] 

Thus, Equation 3-29 can be further simplified, as shown in Equation 3-32:    

T = BE1  BE3   (BE4  BE5  BE6)        [3-32] 

  

3.3.3.1 Minimal Cut Set Automation  
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 Qualitative fault tree analysis is conducted to obtain MCSs, which 

can be performed manually, as shown in Equations 3-25 to 3-30. 

However, manual calculation of MCSs is a tedious and time-consuming 

job, particularly for large fault trees. Several attempts have been made to 

automate the calculation of minimal cut sets, and the main challenge is to 

find an effective algorithm for minimal cut set identification. In 1974, 

Fussell developed an algorithm named MOCUS (method for obtaining cut 

sets) to automate the generation of minimal cut sets (Ferdous 2006). 

However, the MOCUS algorithm contains some problems, which limits the 

usability of this algorithm. For instance, Vatin (1992) noted that users of 

this algorithm may run out of memory, since it is required to define the 

number of columns to be large enough to hold the cut set with the highest 

number of basic events, and the number of rows to be large enough to 

hold all (non-minimal) cut sets. Vatin (1992) also noted that the algorithm 

entails many unnecessary and duplicated steps, and the final cut set 

matrix is hard to be reduced to obtain the minimal cut sets.  

 Hauptmanns (1988) introduced an algorithm to automate the 

calculation of minimal cut sets. Compared to MOCUS, Hauptmanns’ 

(1988) algorithm is intuitive, can create MCSs for any fault tree structure, 

and can be easily automated. In order to automate the algorithm, the 

following steps are applied (Hauptmanns 1988):  

(1) Transform the fault tree logic into a Boolean matrix (BM) 

composed of 0’s and 1’s.  “0” is used to indicate that no 
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connection exists, while “1” is used to indicate a connection 

between events. The rows of the BM are divided into two 

sections: the OR gate events (GE) in the upper part, and the 

AND gate events (GE) in the lower parts. The columns of the 

BM are divided into three blocks starting with basic events, 

followed by OR gate events (GE), and finally followed by AND 

gate events (GE). Table 3-5 shows the Boolean matrix (BM) for 

the example fault tree shown in Figure 3-9.    

 

Table 3-5. Boolean matrix representation of example fault tree 

Gate 

event 

ID 

Gate 

type 

Basic events OR (GE)  AND (GE) 

BE

1 

BE

2 

BE

3 

BE

4 

BE

5 

BE

6 

TE GE

2 

GE

1 

GE

3 

TE OR 0 0 0 0 0 0 0 1 1 1 

GE2 OR 1 0 1 0 0 0 0 0 0 0 

GE1 AND 1 1 0 0 0 0 0 0 0 0 

GE3 AND 0 0 0 1 1 1 0 0 0 0 

 

(2) Create another empty matrix, referred to as the working 

Boolean matrix (WBM), and start the analysis from the top 

event.  

(3) Replace the top event in the WBM with it is equivalent (basic 

events/gate events) from the Boolean matrix, referred to as the 

connection list (CL), by taking the following two rules into 

consideration:     
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3a) If the top event is connected by an OR gate with its CL, 

then insert each event from the CL into a separate row in 

the WBM.  

3b) If the top event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM. Table 3-6 shows the WBM after applying step 3. 

As shown in Table 3-6, since the top event in the BM, 

shown in Table 3-5, is connected by “1” with three gate 

events (GE1, GE2, GE3) using an OR gate, the WBM is 

created by inserting three separate rows, applying rule 3a, 

and adding a connection “1” under each gate event.   

 

Table 3-6. Initial working Boolean matrix representation of the example 

fault tree 

Basic events OR (GE) AND (GE) 

 

BE1 

 

BE2 

 

BE3 

 

BE4 

 

BE5 

 

BE6 

 

TE 

 

GE2 

 

GE1 

 

GE3 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

 

(4) Scan all the rows of the WBM to check if there is any 

connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).” If so, then replace each gate event in the 

WBM with its equivalent (basic events/gate events) from the 
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Boolean matrix, referred to as the connection list (CL), by taking 

the following two rules into consideration: 

4a) If a gate event is connected by an OR gate with its CL, then 

insert each event from the CL into a separate row in the 

WBM.  

4b) If a gate event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM.  

(5) Repeat step 4 until the WBM contains 0 connections in the last 

two blocks, “OR (GE)” and “AND (GE).” Table 3-7 shows the 

final WBM for the example fault tree.  

 

Table 3-7. Final working Boolean matrix representation of the example 

fault tree 

Basic events OR (GE) AND (GE) 

BE1 BE2 BE3 BE4 BE5 BE6 TE GE2 GE1 GE3 

1 1 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

 

(6) Use each row in the final WBM to develop the MCS equations 

by converting each connection “1” in a row with its related basic 

event, and connect basic event(s) within each row using 

intersection “”. For example, the first row in Table 3-7 can be 
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read as “BE1  BE2”. Basic event(s) in a row is/are connected 

with basic event(s) in another row using the union “” operator. 

For example, the first and the second rows in Table 3-7, can be 

read as “BE1  BE2”  “BE1”. By applying step 6 to all the rows 

in Table 3-7, a similar result to Equation 3-29 is obtained.      

(7) Perform Boolean simplifications on the MCS equations. The 

simplification of the Boolean equation will lead to Equation 3-33, 

which is exactly similar to Equation 3-32. 

 T = BE1  BE3   (BE4  BE5  BE6)    [3-33] 

     

3.3.4  Quantitative Fault Tree Analysis 

 Equation 3-33 shows the result after conducting a qualitative fault 

tree analysis, and can be used to understand and explain how different 

root causes are connected logically to cause the top event (TE) to occur. 

To conduct quantitative fault tree analysis, the union and the intersection 

operators in Equation 3-33 must be converted as follows: 

 The Boolean symbol “+” is equivalent to the OR gate (). For 

example, if the top event is connected with an OR gate with two basic 

events (A, B), this will be equivalent to the Boolean expression, TE = A + 

B. Either A or B or both must occur in order for TE to occur. In terms of 

probability, the probability of the top event can be written as shown in 

Equation 3-34 (NASA 2002):   

P(TE) = P(A) + P(B) - P(A∩B) Or = P(A) + P(B) – P(A)P(B|A)  [3-34] 
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 If A and B are mutually exclusive events, then P(A∩B) = 0. Event A 

and event B are mutually exclusive if they cannot both occur 

simultaneously (i.e., if A ). 

 If A and B are independent events, then P(B|A) = P(B) and 

  P(TE) = P(A) + P(B) - P(A) P(B). 

 Finally, the probability of the top event (TE) or gate events 

connected by an OR gate is defined as shown in Equation 3-35 for 

mutually exclusive events after applying the De-Morgan law (Singer 1990). 

 Pr Top Event  1 ∏ 1 MCSN       [3-35] 

where N represents the total number of MCSs, and Pr represents 

the probability of occurrence. 

 On the other hand, the Boolean symbol “*” is equivalent to the 

AND-gate (). For example, if the top event is connected with an AND-

gate with two basic events (A, B), this will be equivalent to the Boolean 

expression, TE = A * B. In terms of probability, the probability of the top 

event can be written as shown in Equation 3-36 (Singer 1990).  

    Pr Top Event  ∏ MCSN                     [3-36] 

To illustrate Equation 3-35 and 3-36, assume that all the basic 

events connected by an OR gate in Figure 3-9 are mutually exclusive, and 

that there are sufficient data to estimate the probability of basic events as 

follows:  

Pr(BE1) = 0.20; Pr(BE2) = 0.25; Pr(BE3) = 0.35; Pr(BE4) = 0.45; Pr(BE5) 

= 0.35; Pr(BE6) = 0.60 
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Hence, the probability of occurrence of the top event is calculated 

as follows in Equation 3-37:  

Pr (Top Event) = 1-[(1-0.20)*(1-0.35)*(1-0.45*0.35*0.60)] = 0.53 [3-37]           

 

3.3.5 Fault Tree Applications  

Sianipar and Adams (1997) proposed FTA to evaluate element 

interaction phenomena in which the deterioration of one element can 

influence the deterioration of other elements. The implementation of the 

FTA involves several steps, including: knowledge elicitation, construction 

of the FT model, and qualitative and quantitative analyses of the FT. 

Seventeen basic events were considered in this study and modeled using 

AND and OR gates. Due to the non-availability of data, a bridge engineer 

was invited to provide an assessment of the probability of basic events 

assuming that the bridge is located at interstate highways and constructed 

in compliance with standard procedures. Basic events are also assumed 

to be mutually exclusive from each other. The qualitative FTA indicated 60 

MCSs. The top seven important interactions are identified as follows:  

(1) Transverse flexure cracks and damage to joint seals.  

(2) Flexure cracks and damage to joint seals.  

(3) Transverse flexure cracks and loose or missing fasteners. 

(4) Transverse flexure cracks and heavy traffic volume causing 

deficiency in joint anchoring.  
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(5) Flexure cracks and heavy traffic volume causing deficiency in 

joint anchorage.  

(6) Flexure cracks and loose or missing fasteners. 

(7) Damage to area exposed to traffic, and damage to joint seals.  

The authors noted the advantage of using FTA to alert departments 

of transportation of potential deterioration problems, which will aid in 

establishing prompt mitigation scenarios. The authors also highlighted the 

problem of non-availability of data to establish probability distribution for 

basic events.     

Johnson (1999) established a fault tree model to examine the 

interactions and sequences of events that could lead to a bridge failure 

due to scour or channel instabilities at the piers or abutments. The author 

noted that although there are mathematical models to quantify scouring, 

the field is more complex and cannot be modeled entirely in the laboratory. 

During this study, the top event is defined as failure of the bridge. A bridge 

can fail due to failure at the abutment, or failure at the piers, or both. 

Abutment or pier failure can occur due to: channel widening, lateral 

migration of the channel, local scour, contraction scour, or channel 

degradation. The author indicated the difficulty of determining probability 

information for basic events to calculate the top event probability. 

Engineering judgement and physical limitations were used to establish 

three estimates of the lower, most likely, and upper limit of the probabilities 

of basic events. The author concluded by noting the advantage of using a 
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fault tree to asses the probability of failure or a range of probabilities of 

failure for the current problem.  

Hadipriono (2001) utilized FTA to investigate a real situation in 

which a woman fell on a ramp in front of a pub and broke her ankle. In this 

case, the investigations are performed by forensic engineers who are 

knowledgeable in the area of construction safety. Steps conducted can be 

summarized as follows:  

(1) Identify details about all possible causes that contributed to the 

accident, and classify them as follows:  

I. Enabling events (internal events). 

II. Trigger events (active external events). 

III. Supporting events (passive external events).  

(2) Model the findings in step 1 using FTA.  

(3) Assess the probability of occurrence of different causes. 

(4) Conduct qualitative and quantitative FTA. 

(5) Identify the probable and most probable causes of the accident.  

The possible causes of failure were identified as follows: drunk, 

sudden illness, friend impact, storm impact, defective shoes, damaged 

shoes, defective slope, slippery ramp, no guardrail, no warning sign, and 

inadequate light. Qualitative and quantitative fault tree analyses were 

conducted, and the results of the analyses reveal that the most probable 

causes are defective slope and slippery ramp. Results show the suitability 

of using fault tree analysis to perform forensic studies.  
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Ortmeier and Schellhorn (2007) presented the formalization of fault 

tree analysis (FTA) to verify whether a certain combination of component 

failures in a radiobased railroad crossing is critical for system failure or 

not. The main difference between this technology and the traditional 

railroad crossings is that hardware on the route are replaced by radio 

communication and software computations in the train and railroad 

crossing. Using the radiobased communication tools, the train identifies 

the position where it has to send a signal to close the barriers. The risk 

associated with this operation can happen when a train passes the 

crossing and the crossing is not secured. A fault tree analysis was 

conducted to represent the failure of communication between the 

radiobased communication and software. In this regard, the top event of 

the fault tree is defined as collision, and connected to two intermediate 

gate events using an OR gate. The first primary event is that the train 

passes the crossing, while the bars are not closed and the closing signal 

has not been released. The other is a situation where the train passes the 

crossing, while the bars are not closed, but a signal has been sent. The 

authors concluded that FTA is the only one which has a logic background 

structure that can be read and understood, and can be more easily 

accepted. 

Ralph (1983) noted a drawback of using fault trees, which could be 

attributed to the difficulty of analysis due to the limited availability of data. 

Chapter 5 presents the proposed framework to address this limitation by 
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incorporating fuzzy arithmetic operations to solve fault trees. Ferson 

(2002) indicated that fuzzy arithmetic operations are computationally 

simple, can be easily explained, does not require detailed empirical 

information, and does not require knowledge of correlations among 

variables, which makes fuzzy arithmetic operation to be more favourable 

scenario in case of non availability of data. 

Ralph (1983) also noted that the top event of the fault tree is 

described in two states, i.e., failure or success; however, fault trees fail to 

represent the partial success state of a system. Ralph (1983) suggested 

combining fault trees with event trees to address this limitation. The next 

section introduces event trees and previous research in combining fault 

trees and event trees. Chapter 5 presents in detail our proposed 

framework to combine fault trees, event trees, and fuzzy logic.  

   

3.4  Event Tree  

The concept of an event tree was first used in 1960 by the U.S. 

Nuclear Regulatory for the assessment of risk in nuclear power plants. 

Afterward, the concept was used to study risk in various contexts 

(Srivastava 2008). Pate-Cornell (1984) suggests that if the purpose of the 

risk analysis is to compute the probability of system failure, then it is 

preferable to use fault trees. However, if the problem involves other 

variables that affect consequences, then it is better to use event trees.  
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The event tree can be defined as a horizontal graphical tool that 

starts on the left with an initiating event—a “risk event”—and proceeds 

chronologically by adding risk response strategies represented by 

branches to mitigate the initiating event. The branching point at which a 

new risk response strategy is introduced in the tree is called a node.  The 

event trees are usually developed in a binary format, e.g., a success or a 

failure defined for each node variable. At a branching point, the upper 

branch of an event usually shows the success of the event, and the lower 

branch shows the failure. The probability of success or failure is calculated 

for each branch. Moreover, the outcome of each sequence of events, or 

path, is illustrated at the end of each sequence (Ahmadi and Soderhölm 

2008). 

According to Koren et al. (1984), the application of the event tree 

requires the following tasks to be done by the risk analyst:  

(1) Understanding of the systems that are modeled using the event 

tree.  

(2) Defining the set of possible failures and successes.  

(3) Constructing the event tree. 

(4) Defining the probability and its complement for each branch pair 

in the tree. 

(5) Determining the overall probability (OP) of each path.  

(6) Documenting the finished tree and determining the possible 

cost overrun and/or delay.  
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In conducting event tree analysis (ETA), the probability of 

occurrence of dependent events is conditional on the occurrence of events 

that precede it in the tree (Pate-Cornell 1984). For independent events, 

the overall probability (OP) of a chain of events (path) is calculated by 

multiplying the probability of occurrence associated with all events on the 

chain that connects the initiating event point to the corresponding end 

node. The same concept is applied to dependent events, but by viewing 

the probability of each event as conditional probability on the events that 

precede the event in the chain, and using the product operator to calculate 

the combined probability of each chain (path). The expected monetary 

value is calculated as the sum of the probability-weighted consequences 

over all the paths in the event tree (Sherali et al. 2008). To explain the 

above concept, let us consider the event tree structure given in Figure 3-

10. Figure 3-10 represents an event tree structure composed of two 

mitigation strategies, referred to as mitigation1 and mitigation2. The 

probability of occurrence of the risk event is defined as (X), the probability 

of failure of mitigation 1 is defined as Fm1, and the probability of failure of 

mitigation 2 is defined as Fm2. For the sake of the example, let us assume 

that X = 0.50; Fm1 = 0.30, and Fm2 = 0.45. The probability of success of 

mitigation 1 and mitigation 2 can be calculated as follows in Equations 3-

38 and 3-39:     

Sm1= 1- Fm1= 1- 0.3 =0.70      [3-38] 

 Sm2= 1- Fm2=1- 0.45= 0.55         [3-39] 
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Figure 3-10. Simple event tree structure and ETA using two mitigations 

(Abdelgawad and Fayek 2010c) 

 

The overall probability (OP) of each path is then calculated by 

multiplying the probability of events located on the selected path. For 

example, path 1 indicates that the risk has occurred, and mitigation 1 and 

mitigation 2 were both successful in mitigating the risk. Accordingly, the 

OP of this path is calculated as shown in Equation 3-40:  

OP1= X * Sm1 * Sm2=0.5*0.70*0.55= 0.19    [3-40]  

The same concept can be applied to calculate OP2 to OP4. To 

calculate the expected risk magnitude (ERM1) of path 1, let us assume 
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that the estimated consequence (C1) of path 1 is $100,000. Thus, the 

ERM1 is calculated as shown in Equation 3-41:      

ERM1= OP1 * C1= 0.19 * 100, 000= $19,000               [3-41] 

The same concept can be applied to calculate ERM2 to ERM4. For 

the sake of the example, let us assume that ERM2, ERM3, and ERM4 were 

estimated following the previous steps, as shown in Equations 3-42, 3-43, 

and 3-44:  

ERM2 = $30,000       [3-42] 

ERM3 = $35,000                  [3-43]  

ERM4 = $78,000       [3-44] 

Accordingly, the expected monetary value (EMV) can be estimated 

as in Equation 3-45: 

EMV = ERM1 + ERM2 + ERM3 + ERM4 = $162,000  [3-45] 

 

Event trees are characterized to have many advantages. Fjellheim 

and Fiksel (1990) summarized these advantages according to the life 

cycle of the project as follows:  

 During design of the plant, event trees can be used to identify 

hazardous accident or failure scenarios. 

 During operation of the plant, event trees may be used for dynamic 

assessment of the possible outcomes of an accident, and to help 

identify appropriate actions. 
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 During modification of the plant, an event tree can provide insights 

into the required safety features. 

 

3.4.1 Event Tree Applications 

Since 1960, many studies have been done using event trees 

related to the fields of nuclear industry, chemical processing, offshore oil 

and gas production, and transportation. For instance, Bott (1999) 

developed an event tree methodology for national security analysis by 

estimating the relative likelihood of espionage scenarios that involve 

employees or visitors to a secure facility who are recruited as agents by an 

outside interest. The analyst identifies target information and users who 

might attempt to gain that information, and uses an event tree to develop a 

set of espionage scenarios called “compromise paths.” A compromise 

path begins when an ultimate user identifies target information in a secure 

facility. The ultimate user recruits an agent (employee) who gains entrance 

to the secure facility. Once inside the facility, the agent uses an access 

mode to access the target information and then transmit the compromised 

information to the ultimate user. Probability models were developed for 

each compromise path in the event tree, based on historical data and 

expert judgments.  

The author assumed that security breaches occur at a constant rate 

per person, and the time to first occurrence of the security breaches is 

represented as exponential distribution. The author draws some 
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conclusion based on ETA. For example, one way to reduce the threat of 

recruiting an internal agent (employee) is to restrict the number of people 

with authorization. Another strategy would be to require two-man 

authentication to access any valuable information. Also, reducing the 

threat can be obtained by limiting the time that an employee has access to 

valuable information.  

The other option of espionage is through the recruitment of visitors. 

In this regard, the occurrence of an agent in a group of visitors was 

modeled with a binomial distribution. According to ETA, the author 

indicated that one way to reduce the espionage risk from visitors is to host 

only one well-escorted group rather than a large number of smaller 

groups. The author concluded that this model provides many useful 

insights into espionage prevention, even in the absence of quantitative 

data. 

Novack et al. (2005) investigated the use of event trees to analyze 

accident scenarios attributed to oil spill. The research conducted includes 

two steps. The first step is concerned with a literature review of different 

studies that are related to oil spill incidents. To ensure consistency in 

reviewing information, the following facility types were considered during 

the review: production facilities, vessels, terminals, refineries, and storage 

tanks. Case studies were selected based on the fulfilment of the following 

criteria: (1) must be a comprehensive study covering most of the identified 

facilities; (2) must cover different types of spills, including different types of 
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human interactions; and (3) must have an availability of enough details to 

establish event trees. The findings from this step indicate that ten case 

studies can be selected.  

  The second step is the construction of event trees for the case 

studies, based on the findings from the first step. In order to limit the 

number of generated event trees, nine safety measures (risk response 

strategies) were identified: (1) planning and resources; (2) execution of the 

plan developed during the planning phase; (3) monitoring the ongoing 

process to detect failure and perform avoidance, depending on the 

findings from monitoring; (4) establish primary containment; (5) establish 

early detection; (6) establish early recovery; (7) establish hazard 

containment; (8) establish secondary containment; and (9) late recovery. 

The analysis of the ten case studies leads to a number of conclusions 

about risk response strategies, which can be summarized as follows:  

(1) A missing oil spill detection alarm was identified as the reason 

of failure for four case studies. 

(2) Violation of the operation procedure was identified as the 

potential reason of failure for five case studies.  

The authors noted the advantage of using an event tree to perform 

the analysis of different case studies, and highlight the suitability of this 

technique to analyze the case studies by supporting graphical 

representations of different alternatives.  
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Sherali et al. (2008) proposed an approach for the strategic 

allocation of certain available prevention and protection resources, based 

on ET, to reduce the failure probabilities of a safety system and the total 

expected loss from a sequence of events. Resources such as investments 

in improved technologies or equipment could be used to reduce the failure 

likelihood of different safety features, given that a particular sequence of 

preceding events has occurred. To reduce the consequence of an event, 

resources such as clean-up devices and trained emergency response 

personnel could be utilized. This research contributes to the development 

of an optimization algorithm for manipulating event probabilities and end 

effect consequences, through technological and emergency response 

investments. The objective was to minimize the overall expected loss (risk) 

of the project. The proposed algorithm was tested, and the results show 

that it can converge to a global optimal solution. 

Hong et al. (2009) analyzed the risk of an underwater tunnel 

excavation using an earth pressure balance (EPB) type tunnel boring 

machine (TBM). The event tree analysis (ETA) is used to perform risk 

analysis at the design stage to identify problems which can happen during 

tunnel construction. Components that are considered to be under high risk 

have been analyzed, and their probabilities of occurring were evaluated 

based on expert judgements. Several risk response measures have been 

investigated to mitigate or eliminate the major problems that were 

predicted during the evaluation process.  
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The initiating events in the ETA have been selected based on a 

checklist constructed based on the analysis of design reports and case 

studies of underwater tunnel problems. Three initiating events that have 

been identified are defined as: poor ground condition, high water pressure, 

and heavy rainfall. Various general countermeasures were analyzed, and 

it has been found that survey/design, process planning, type of 

construction machine during the design stage, and construction 

management and reinforcement during construction stage can be applied 

as the safety functions against poor ground condition, high water pressure, 

and heavy rainfall. The quantitative assessment of risk was conducted 

based on ETA. The quantification of results per each accident path are 

obtained from averaging assessment results estimated by four experts. 

Assessment of each path on the ET is performed by multiplying the 

probabilities of all events located on the selected path. The summary of 

the findings indicated that the probability of occurrence of an accident due 

to poor ground condition is 0.59, the probability for an accident due to high 

water pressure is 0.56, and the probability of an accident due to heavy 

rainfall is 0.46. The results indicated that the site has a relatively high 

probability for accidents if only the general countermeasures are 

considered. The consequence of each path is analyzed using five 

categories, named: catastrophic, critical, serious, manageable, and 

negligible. A risk rating was established based on the probability of 

occurrence and consequence of each path, and classified into three 
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levels. The first level is the case that needs significant countermeasure 

applications to reduce the risk level or to remove it. The second level also 

requires adding countermeasures to reduce the risk level or to remove it. 

The third level requires active construction management and management 

of disaster. The authors noted that safety measures should be established 

to satisfy both safety and economical criteria, because an excessive 

application of countermeasures may result in financial burden. A series of 

mitigation actions were identified based on ETA, and applied for the tunnel 

construction. 

The authors concluded that ETA is useful for improving system 

performance and for identifying useful methods to protect a system from 

failure. The authors also noted that the suggested framework and a 

process utilizing ETA can be applied for the estimation and analysis of 

risks in the construction industry. However, conducting ETA is subject to 

the same limitations of FTA attributed to the required data to complete the 

analysis of the event tree, which makes fuzzy arithmetic operations on 

fuzzy numbers to be a more favourable option to solve event trees, 

especially in the construction industry. Chapter 5 presents the proposed 

framework to address this limitation by incorporating fuzzy arithmetic 

operations to solve events trees. 

 

3.5 Fault Trees, Event Trees, and FMEA  
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Fjellheim and Fiksel (1999) indicated that fault trees and event 

trees constitute an important part of the risk analyst's tool kit for assessing 

failure causes and consequences for different systems. Christian (1997) 

applied fault trees and event trees to predict process safety. The process 

is applied to a heat treating chamber, and analyzes the probability of 

expansion due to the existence of oxygen. Fault trees were established to 

trace various failures in the system. Event trees were established to trace 

the list of actions based on an initiating event. The author noted the 

advantage of combining fault trees and event trees in quantifying potential 

hazards, since all root causes can be traced through the trees.    

Khodabandehloo (1996) developed a combined FMEA, a fault 

event tree model to assess human-robot interaction to identify the risks 

associated with the use of robots in everyday application. This study 

considered a number of cases by focusing on the safety and reliability 

issues of robotic systems.  

The robot system considered in this study is composed of five 

joints, while each joint is controlled by a hydraulic servo mechanism. The 

author noted that the safe operation of a robotic system relies heavily on 

establishing safety procedures, and the availability of appropriate safety 

features to support the practice of such procedures by people operating 

the robot. The reason behind any accident can be attributed to equipment 

malfunction and bad operation practice. Khodabandehloo (1996) applied 

FMEA to examine all possible component failure modes and to identify 
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their effects on the system. Each component of the system is considered 

during the analysis, and each component is also studied with regard to its 

effects on other components as well as on the whole system. FTA and 

ETA were then applied to examine the errors and failures in the system. 

Major risk events identified from performing FMEA are identified as 

follows:  

(1)  Undesirable robot movement in playback mode. 

(2)  Undesirable robot movement in teach mode. 

(3)  Arm runaway when switching on. 

(4) No emergency stop action when demanded. 

(5)  Arm 'creep' or degradation of repeatability. 

Each of the identified major risk events were considered as a top 

event for FTA. The author indicated that the branching of the FT is 

terminated by an event for which the required failure rate data is available. 

A set of safeguards were added into the equipment, and the system was 

further analyzed using ETA. Specific consideration has been given to 

welding cells for a detailed ETA. A number of observations were obtained 

out of ETA which help improve safety integrity and minimize the hazards.  

 Khodabandehloo (1996) concluded that the inclusion of safety 

features in both hardware and software can reduce the likelihood of 

failure. The author also noted the need for incorporating FMEA, ETA, and 

FTA at the early design phase to produce long-term cost savings. The 

proposed framework can help establish appropriate safety measures, and 
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aids in the development of an awareness of the hazards present in a robot 

system. Hence, it provides a basis for the selection of the necessary 

contents of safety training. However, even with these advantages, the 

author noted that it was not an easy task to assign probabilities to a 

number of events in the trees.  

 

3.6 Summary 

This chapter provides an overview of three well-known techniques 

in reliability engineering, known as failure mode and effect analysis, fault 

trees, and event trees. This chapter provided a detailed explanation of the 

steps that can be followed to solve each technique, illustrated some 

applications, and noted the advantages of each technique. The limitations 

of each technique were also highlighted. Chapter 4 and chapter 5 are 

intended to present the proposed framework to address some of these 

limitations.     
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4. Risk Criticality Analysis (Fuzzy 

FMEA)  

 

The purpose of this chapter is to present the framework to address 

the limitations of the traditional application of FMEA. The framework is 

based on combining fuzzy logic and FMEA. To support multi-criteria 

decision-making, fuzzy logic is combined with AHP to aggregate cost 

impact, time impact, and scope/quality impact into one variable, known as 

aggregated impact. The framework is intended to help management in 

screening of critical risk events such that detailed risk analysis, using fuzzy 

fault tree and fuzzy event tree, can be conducted for critically identified risk 

events.  

 

4.1  Introduction  

The traditional FMEA approach of calculating the RPN is easy to 

understand and straightforward. However, several authors noted concerns 

related to using the traditional FMEA approach to calculate the RPN as 

previously highlighted under section 3.2.4. The following is a summary of 

these concerns: 

(1) The use of the multiplication operator to calculate the risk 

priority number (RPN) may result in an incorrect interpretation 

of the final outcomes. 
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(2) The traditional application of FMEA relies on using numerical 

values to evaluate the input parameters, i.e., “occurrence,” 

“severity,” and “detection,” which are difficult to evaluate in the 

construction domain.  

(3) The traditional application of FMEA may fail to estimate the 

RPN when the impact of failure is calculated over multi-

dimensions. 

(4) There is a lack of established formal guidelines that associate 

the calculated RPN with the required corrective actions.  

 

In order to address these limitations, a comprehensive framework 

was established based on combining fuzzy logic with the traditional FMEA. 

The use of fuzzy logic offered the advantage of addressing the first two 

concerns. In order to address the third concern, a fuzzy analytical 

hierarchy process (AHP) was utilized to address the multi-criteria decision-

making process. The resultant RPN was associated with the required 

corrective action to provide meaningful results. The project manager can 

rely on the recommended corrective actions to aid in successful 

completion of a project by identifying critical risk events that require 

immediate corrective actions. In addition, the results obtained from using 

this technique can aid in identifying risk events that require comprehensive 

root cause analysis and detailed lessons learned. Thus, more successful 

projects can be achieved in the future using this technique.  
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4.2  Fuzzy Failure Mode and Effect Analysis (FMEA) Proposed 

Terminologies 

The first step in establishing the framework is to establish 

definitions and ranges for different FMEA terminologies, i.e., “failure 

mode,” “occurrence,” “severity,” “detection,” and the “RPN,” and to ensure 

that different team members use them consistently. In this regard, we 

used the “risk” definition as defined in the PMBOK to refer to “failure 

mode,” which is “an uncertain event or condition that, if it occurs, has a 

positive or a negative effect on at least one project objective, such as time, 

cost, scope or quality” (PMI 2004). Occurrence, severity, detection, and 

RPN are defined as follows:  

 Occurrence (O) is the frequency of the occurrence of the failure, 

and is referred to as probability of occurrence (P). This variable is 

defined over the range of 1 to 10.  

 Severity (S) is used to represent the potential effects associated 

with the occurrence of a risk event. Severity (S) is referred to as 

impact (I) and has three dimensions: cost impact (CI), time impact 

(TI), and scope/quality impact (SI). They are all defined over the 

range of 1 to 10.  

 Detection (D) is referred to as detection/control and is defined as 

“the ability of the risk response strategy to detect and control the 

root causes before they lead to the occurrence of the risk event, 
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and to control the effect given the occurrence of the risk event“ 

(Abdelgawad and Fayek 2010a). Detection/control (D) is defined 

over the range of 1 to 10.  

 PRN is referred to as risk criticality number (RCN) and is defined 

over the range of 1 to 1000.  

To overcome many of the previously noted limitations of the 

tradition application of FMEA, fuzzy logic was combined with the traditional 

FMEA and used to develop a fuzzy expert system. The fuzzy AHP was 

utilized to address the multi-criteria decision-making process. The 

following sections describe the approach taken to develop the framework. 

 

4.2.1  Linguistic Definition of Input Variables 

The first step in integrating fuzzy logic and FMEA is to define the 

probability of occurrence (P), impact (I), and detection/control (D) using 

linguistic terms. Each variable is defined using membership functions 

(MFs) over the universe of discourse of 1 to 10. To define the linguistic 

terms for each variable, several meetings were arranged with a senior risk 

coordinator working at one of the largest pipeline companies in North 

America. The objective of the first meeting was to introduce FMEA to the 

expert and to understand the company’s current practice to assess risk. 

The feedback received on the first meeting showed great acceptability of 

the expert to explore the idea, noting that the current risk matrix of the 

company is based on linguistic definition for both probability of occurrence 
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(P) and impact (I). Table 4-1 and Table 4-2 present five linguistic terms 

and their definition for both probability of occurrence (P) and impact (I), as 

defined in the company risk management standard. The meaning of each 

linguistic term can be calibrated to suit a different organization or context. 

For example, the meaning of the very high probability of occurrence can 

be changed to represent “> 50% chance.” The same concept can be 

applied to other terms. 

Table 4-1. Probability of occurrence (Abdelgawad and Fayek 2010a) 

Linguistic term Probability of occurrence (P) 

Very High (VH) > 67% (2/3) chance.  

High (H) Between 33%–67% (2/3) chance.  

Medium (M) Between 10%–33% (1/3) chance. Event may occur. 

Low (L) Between 1%–10% chance. Event is unlikely to occur.  

Very Low (VL) Less than 1% chance. Event is highly unlikely to occur. 

 

Table 4-2. Impact (I) (Abdelgawad and Fayek 2010a) 

Terms Impact categories 

Cost Time Scope/quality 

Very High 
(VH) 

Cost increase is ≥ 
10% of project 
cost. 

In service date delayed 
≥ 10% of project 
duration. 

Project scope or quality does 
not meet business 
expectations.  

High 

 (H) 

Cost increase is ≥ 
7% and < 10% of 
project cost. 

In service date delayed 
≥ 7% and < 10% of 
project duration. 

Scope changes or quality are 
unacceptable to project 
sponsor. 

Medium 

 (M) 

Cost increase is ≥ 
4% and < 7% of 
project cost. 

In service date delayed 
≥ 4% and < 7% of 
project duration. 

Major areas of scope or 
quality are affected. 

Low  

(L) 

Cost increase is ≥ 
1% and < 4% of 
project cost. 

In service date delayed 
≥ 1% and < 4% of 
project duration. 

Few areas of scope or quality 
are affected.  

Very Low  

(VL) 

< 1% of project 
cost. 

Insignificant schedule 
slippage.  

Scope change is not 
noticeable/quality degradation 
is not noticeable. 
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To define the detection/control linguistic terms, some deviations 

from the traditional FMEA definition were considered during this study. 

The meaning of control of root causes and controlling the effect of the risk 

event have been incorporated into the definition of detection/control. 

Several interviews were arranged with two risk experts and the senior risk 

coordinator. Table 4-3 provides a summary of the findings from these 

interviews. The meaning of each of these linguistic terms can be calibrated 

to suit a different organization or context.  

 

 Table 4-3. Linguistic definition of detection/control (D) (Abdelgawad and  

Fayek 2010a) 

 

4.2.2 Membership Functions for Input Factors  

The development of membership functions of different input factors 

represents the second stage. During this stage, the senior risk coordinator 

Terms Detection/control 

Very Low 
(VL) 

The project team was unable to identify a risk response strategy capable 
of detecting the risk event, controlling root causes, and controlling the 
consequence of the risk event.  

Low (L) The project team has identified a risk response strategy with a low chance 
of detecting the risk event, controlling the root causes, and controlling the 
consequence of the risk event.  

Moderate 
(M) 

The project team has identified a risk response strategy with a moderate 
chance of detecting the risk event, controlling the root causes, and 
controlling the consequence of the risk event.  

High (H) The project team has identified a risk response strategy with a high 
chance of detecting the risk event, controlling the root causes, and 
controlling the consequence of the risk event.  

Very High 
(VH) 

The project team has identified a risk response strategy that has been 
proven in the past to have high effectiveness in detecting the risk event, 
controlling the root causes, and controlling the consequence of the risk 
event.  
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was asked to define five membership functions for probability of 

occurrence (P), impact (I), and detection/control (D), in accordance with 

the information shown in Table 4-1, Table 4-2, and Table 4-3, while 

considering that the universe of discourse ranged between 1 and 10. 

Trapezoidal and triangular representation were selected to represent the 

membership functions of different variables. The direct method with one 

expert (Klir and Yuan 1995) was used during this stage to define the 

membership functions. Figures 4-1, 4-2, and 4-3 show the findings from 

this stage. 

 

 

Figure 4-1. Membership functions for probability of occurrence (P) 

 

 

Figure 4-2. Membership functions for impact (CI, TI, SI, AI) 
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Figure 4-3. Membership functions for detection/control (D) 

 

4.2.3 Membership Definition for the Output Variable (RCN)  

In order to select the membership functions for the RCN, more 

discussions have been conducted with the senior risk coordinator. During 

these discussions, it was agreed that nine linguistic variables—very low 

(VL), very low-low (VL-L), low (L), low-medium (L-M), medium (M), 

medium-high (M-H), high (H), high-very high (H-VH), and very high (VH)—

would be sufficient to cover the universe of discourse for the RCN. As per 

the expert’s request, eight options had been proposed for further 

discussions with the expert, as shown in Figure 4-4. The expert’s vote was 

give to option 2 since it starts with a small interval at the beginning and 

increases rapidly near the end. Figure 4-5 presents the membership 

functions for the RCN, as agreed with the expert. Table 4-4 presents the 

relationship between the value of the RCN and the requirement of 

establishing corrective actions, as agreed with the expert. It is important to 

note that any risk event that is assessed to have an RCN that falls within 

the range defined by categories 5 to 9, as shown in Figure 4-5, must 

undergo detailed risk analysis, as will be presented in chapter 5. 
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Figure 4-4. Eight proposals for the membership functions of the RCN 
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Figure 4-5. Membership functions of the RCN (Adapted from Abdelgawad 

and Fayek 2010a)  

 

Table 4-4. RCN and priority for corrective action (Adapted from 

Abdelgawad and Fayek 2010a)  

 

4.2.4 Aggregate Cost Impact, Time Impact, and Scope/Quality 

Impact 

In order to address the concern that the RPN may be 

underestimated when a failure mode has multiple dimensions of effect 

(Bowles and Peláez 1995), the fuzzy AHP concept has been adopted in 

this study. The analytical hierarchy process (AHP) was first established by 

Label Corrective Action Categories RCN value 

1 No corrective action is required x < 25.5 

2 Unnecessary to take any corrective action(s)/accept 25.5 ≤ x < 87.5 

3 Low priority to take any corrective action(s)/accept 87.5 ≤ x < 162.5 

4 
Somewhat moderate priority to take corrective action(s)/ 
consider mitigation 

162.5 ≤ x < 250 

5 
Moderate priority to take corrective action(s)/consider 
mitigation or transfer 

250 ≤ x < 350 

6 
Somewhat high priority to take corrective action(s)/ 
consider mitigation or transfer 

350 ≤ x < 462.5 

7 
High priority to take corrective action(s)/consider 
avoidance or transfer 

462.5 ≤ x < 
587.5 

8 
Necessary to take corrective action(s)/consider 
avoidance or transfer 

587.5 ≤ x < 725 

9 
Absolutely necessary to take corrective 
action(s)/consider avoidance options 

x≥ 725 
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Saaty (1982) to aid in decision-making for problems that involve multiple 

criteria. To overcome the uncertainty and subjectivity of selecting a single 

number from the pairwise comparison scale, presented in Table 2-2, fuzzy 

AHP was utilized. Zeng et al. (2007) noted that experts sometimes found 

difficulties in selecting a single number from the pairwise comparison 

scale, and argued the advantage of allowing for a range values for 

comparison.  

To address this deficiency, the fuzzy AHP approach, as proposed 

by Zeng et al. (2007), is adopted in this study. The steps conducted in this 

study can be summarized as follows:  

(1) Establish the AHP hierarchy for the problem under analysis. 

Figure 4-6 shows the finding of this step.  

 

 

Figure 4-6. AHP hierarchy 

 

(2) Conduct pairwise comparison between elements on the criteria 

level, i.e., between cost impact (CI), time impact (TI), and 

scope/quality (SI), to establish the preference of these factors in 
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affecting the project objectives. During this step, three 

preferences, i.e., time (T) vs. cost (C), named (atc); cost (C) vs. 

scope/quality (S), named (acs); and time (T) vs. scope/quality 

(S), named (ats); were required to be collected from the same 

senior risk coordinator. The preference of the expert was 

captured using a standard trapezoidal fuzzy number (STFN), 

i.e., each preference was captured using four parameters (a, b, 

c, d). The preference of the expert was then used to establish 

the MF in accordance with Equation 4-1 (Pedrycz and Gomide 

2007). 

  ,

 
  ,

1  ,
0  

       [4-1] 

where a represents the minimum, b and c represents the most 

likely, and d represents the maximum.  

Figure 4-7 shows a summary of the finding. For instance, when 

comparing time (T) vs. scope/quality (S) to calculate (ats), the expert 

believed that the minimum is that time (T) is equally to moderately more 

important than scope/quality (S) (i.e., a = 2), the most likely is that time (T) 

is moderately more important than scope/quality (Q) (i.e., b = c = 3), and 

the maximum is that time (T) is moderately to strongly more important than 

scope/quality (S) (i.e., d = 4).  

The defuzzified value for each preference was calculated according 

to Equation 4-2: 
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aij =
6

)(*2 dcba 
        [4-2] 

where aij is the relative importance of factor i over j. For example, 

the defuzzified value of time (T) vs. scope/quality (S) is calculated 

as follows: 

ats =  
6

4)33(*22 
 = 3.0      [4-3] 

 

Figure 4-7. Pairwise comparison using trapezoidal fuzzy number 

(Abdelgawad and Fayek 2010a) 

 

(3) Use the reciprocal value to define the inverse comparison, i.e., 

scope/quality (S) vs. time (T). Apply the same concept to 

calculate the defuzzified value of time (T) vs. cost (C), and cost 

(C) vs. scope/quality (S) and their reciprocal terms.  

(4) Construct the pairwise comparison matrix and use AHP 

standard calculations to calculate the weighting of each factor 

and the consistency index. After construction of the pairwise 
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comparison matrix, a summation of each column is calculated 

and used thereafter to normalize each column. The overall 

priority (OP) for each criterion is calculated by taking the 

average of the summation of each row result. Table 4-5 

summarizes the calculations. Table 4-6 shows the calculation 

conducted to calculate λmax (the maximum eigenvalue).  

 

Table 4-5. Standard AHP calculation of OP (Adapted from Abdelgawad 

and Fayek 2010a)  

 C T S Normalized C T S OP 

C 1.00 0.80 3.00 C 0.40 0.38 0.43 0.40 

T 1.20 1.00 3.00 T 0.47 0.47 0.43 0.46 

S 0.33 0.33 1.00 S 0.13 0.15 0.14 0.14 

∑ 2.5 2.1 7.0 ∑ column 1.0 1.0 1.0  1.0 

 

Table 4-6. λmax calculations (Adapted from Abdelgawad and Fayek 2010a)  

 C T S ∑ max Overallmax 

C 0.40 0.37 0.42 1.19 3.0 
3.0 T 0.48 0.46 0.42 1.36 3.0 

S 0.13 0.15 0.14 0.42 3.0 

 

Equation 4-4 shows the calculation for the consistency index.  

Consistency Index =
1

max




n

n
=

13

33




=0    [4-4] 

where n is the dimension of the pairwise matrix.  

The result of the analysis is consistent since the consistency index 

is less than 0.1 (Pedrycz and Gomide 2007). 
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According to the AHP results in Table 4-5, the aggregated impact 

(AI) is calculated as shown in Equation 4-5, and is extended over the 

universe of discourse of 1 to 10 with membership functions similar to CI, 

TI, and SI in Figure 4-2.  

AI = 0.40 * Cost Impact + 0.46 * Time Impact + 0.14 * 

Scope/Quality Impact         [4-5]  

 Please note all that risk events that have an impact on either safety 

and/or environment are treated using the risk acceptability level concept 

as will be explained in chapter 6. All risk events that have a risk level, i.e., 

probability * impact, greater than 5 due to either safety and/or environment 

are considered unacceptable risk events; and hence detailed risk analysis 

using fuzzy fault tree and fuzzy event tree is required to be conducted.   

Steps 1 to 4 represent a general framework that can be further 

investigated to represent different contexts or organizations. An equation 

similar to Equation 4-5 will be obtained with some modifications to the 

weights, i.e., 0.40, 0.46, and 0.14. The use of AHP supports conducting 

multi-criteria decision-making, and supports conducting consistency 

analysis. One of the shortcomings of using AHP is attributed to the 

difficultly of selecting a single number from the pairwise comparison scale. 

In this regard, the concept of fuzzy AHP was introduced in which the user 

can provide a range represented by trapezoidal distribution to represent 

his/her preference. The use of fuzzy AHP offered a more practical 

approach to collect experts’ preference. Moreover, the proposed 
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integration between fuzzy logic and AHP supports addressing one of the 

shortcomings of the traditional application of FMEA, attributed to the 

failure to estimate the RCN when the impact of failure is calculated over 

multi-dimensions. In this regard, Equation 4-5 was established to 

aggregate the multi-dimensions of the impact into one variable, named the 

aggregated impact (AI).  

 

4.2.5 Fuzzy Rule Base  

The next step in the construction of the fuzzy expert system is to 

build the rule base between inputs and the output. Since we have three 

inputs (P, I, and D) and each input is represented using five linguistic 

variables, 53 = 125 rules can be generated from this scenario. An interview 

has been arranged with the same senior risk coordinator to elicit different 

rules. A sample example of the Fuzzy If-Then rules is:  

IF Impact is “very low” and probability of occurrence is “very low” 

and detection/control is “high” THEN RCN is “very low.” 

Appendix I contains the identified rules between input(s) and the 

output as elicited from the expert. The Max-Min was selected to do the 

implication and aggregation because of their wide applicability and easy 

graphical interpretation (Jang et al. 1997). The center of the area was 

selected for defuzzification. Membership functions presented in Figure 4-1, 

Figure 4-2, Figure 4-3, and Figure 4-5, together with the fuzzy rules, were 

utilized to build a fuzzy expert system. This system was implemented 

using Fuzzy Tech 5.72©, as shown in Figure 4-8.  
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Figure 4-8. Fuzzy expert system for risk criticality analysis 

 

The use of the fuzzy expert system has offered the ability to solve 

many of the limitations of the traditional application of FMEA. Using the 

fuzzy expert system, the multiplication operator was replaced by a fuzzy 

rule base. The fuzzy rule base is composed of 125 rules, which were built 

to represent the preference between the probability of occurrence, impact, 

and detection/control in contributing to the calculated RCN. Thus, the 

calculated risk priority number (RCN), as obtained from the fuzzy expert 

system, represents the right interpretation of the final outcomes, since the 

weighing of each input variable is considered during the building of the 

rule base.  
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Moreover, instead of asking for exact numerical values to evaluate 

the input parameters, i.e., “occurrence,” “severity,” and “detection,” the 

fuzzy expert system offers the ability to connect between these numerical 

values and the linguistic terms to evaluate the input variables. A formal 

guideline was established to associate the calculated RCN and the 

required corrective actions, as presented in Table 4-4. Thus, the use of the 

fuzzy expert system has offered the ability to establish a comprehensive 

framework that provides a practical and transparent approach for 

assessing the level of criticality of risk events in the construction domain.  

 

4.3 Risk Criticality Analyzer (RCA) 

The proposed approach has been used to design a software 

package entitled “Risk Criticality Analyzer” (RCA), implemented using 

Visual Studio 2008©. The purpose of using RCA is to support the decision-

makers in assessing the level of risk criticality. Figure 4-9 shows the main 

screen of the software.  

The software is composed of two modules to support beginners and 

advanced users. The “Beginner Module” is based on manual manipulation 

of data, in which the user has to input linguistic assessment for probability 

of occurrence (P), cost impact (CI), time impact (TI), scope/quality impact 

(SI), and detection/ control (D). The system is automated to calculate the 

aggregated impact (AI) according to the weighting defined in Equation 4-5. 

The software also supports the user to conduct fuzzy AHP analysis and to 
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update the weighting of cost impact, time impact, and scope/quality impact 

in Equation 4-5. This analysis can be carried out for each individual risk 

event by clicking on the “Update” button. This action will direct the user to 

a built-in Excel sheet for conducting fuzzy AHP calculation. The calculated 

weighting for cost, time, scope/quality, will be exported to the upper right 

corner of RCA. Further discussions around the suitability of using one 

consistent weighting to evaluate all the risk events in a project are 

provided in section 6.5 

The last step is to calculate the RCN by clicking on the “Calculate” 

button—which communicates with the fuzzy expert system presented in 

Figure 4-8—export values of the input variables, fire the associated fuzzy 

rules, and calculate the defuzzified value of the risk criticality number 

(RCN). The defuzzified value of the RCN is then presented to the user 

together with the recommended action, as shown in Figure 4-9. RCA is 

used to screen critical risk events such that detailed risk analysis can be 

applied using the concept presented in chapter 5. 
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Figure 4-9. Risk Criticality Analyzer (Beginner Module) 

 

Please note that RCA can use any value that falls within the range 

1 to10 to define the probability of occurrence, cost impact, time impact, 

and scope quality impact. For instance, using the previous example, if the 

risk analyst believes that the probability of occurrence is located 

somewhere between low to medium, then he/she can use number 4 to 

define the probability of occurrence. In this case, the fuzzy rule base is 

fired to a different degree resulting in a different RCN as shown in Figure 

4-10.  As can noticed in this example, although Table 4-1 does not have a 

term named “low to medium”, the use of the membership function concept 

has facilitated gradual transition between the two concepts. For instance, 

in this case, all the rules that have low or medium probability of occurrence 

and satisfy the aggregated impact and detection control conditions, will be 
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fired resulting in a lower RCN compared to the original case noted in 

Figure 4-9.          

 

 

Figure 4-10. Risk Criticality Analyzer Example using the Beginner Module 

 

The second module is the “Automated Module,” and it is intended to 

serve advanced users. A comprehensive risk register was designed using 

Microsoft Excel© to support collecting data to run this module. Appendix II 

presents the risk register template, and chapter 6 provides a detailed 

explanation of each field in the risk register template. Data accumulated in 

the risk register are loaded automatically to the program by clicking on the 

“Load Data” button. After data are loaded to the software, data are 

presented to the user in the data grid shown in Figure 4-11. The user is 

advised to review and check the accuracy and consistency of all the data 

before proceeding with analysis. By clicking on the “Calculate” button, 

RCA reads P, CI, TI, SI, and D from the risk register for each risk event, 
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calculates the aggregated impact (AI) using fuzzy AHP, exports P, AI, and 

D to the fuzzy expert system to calculate the RCN, and presents the 

resultant RCN and the recommended corrective actions to the user. 

 

 

Figure 4-11. Risk Criticality Analyzer (Automated Module) (Abdelgawad 
and Fayek 2010a) 

 

4.4 Risk Criticality Analyzer (RCA) - An Overview 

To show how this system works, let us assume that we have the 

following assessments for one of the risk events: 

probability of occurrence (P) = low, cost impact = medium, time 

impact = medium, scope/quality impact = medium, and 

detection/control = medium  

Firstly, the AI is calculated, according to Equation 4-5, as shown in 

Equation 4-6: 

AI = 0.4 * 5 + 0.46 * 5 + 0.14 * 5 = 5      [4-6]       
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As can be noticed in Equation 4-6, the default setting is to represent 

the medium linguistic term by the element that has the highest 

membership value for the selected linguistic term, i.e., medium. As can be 

noticed in Figure 4-2, element 5 is the only element that has the highest 

membership degree, i.e., 1 for the medium membership function. 

However, the user is also allowed to select any number that falls within the 

medium membership function, i.e., 3–7, in case of any preference.  

Secondly, the assigned values for the probability of occurrence, i.e., 

3, and for detection/control, i.e., 5, together with the calculated AI are used 

as input to the fuzzy FMEA expert system. Input values are fuzzified 

according to Figure 4-1, Figure 4-2, and Figure 4-3, and the membership 

values μ(x) of each linguistic term are calculated. The fuzzy expert system 

fires the appropriate rules, performs rule implication and aggregation, and 

defuzzifies the result to obtain a value of RCN of 200. Thus, according to 

Figure 4-5 and Table 4-4, there is a “somewhat moderate priority to take 

corrective action(s), and the organization should consider mitigation or 

transfer of the risk.”  

To demonstrate the advantage of using the fuzzy expert system to 

solve the limitation of the traditional application of FMEA attributed to the 

use of the multiplication operator to calculate the RCN, let us consider that 

a risk identification workshop was arranged and two risk events were 

identified in which the probability, cost impact, time impact, scope/quality 

impact were assessed as shown in Table 4-7. 
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Table 4-7. Risk assessment results 

 

 Since the cost impact is equal to time impact is equal to 

scope/quality impact, the overall impact of Risk #1 is equal to 5 and the 

overall impact of Risk #2 is equal to 9.  

Based on the traditional FMEA equation, the multiplication of 

probability * impact * detection/control is used to calculate the RCN as 

shown in Table 4-8. Please note that the resultant RCN is equal for both 

risk events even though the impact of Risk #2 is more sever than the 

impact of Risk #1.   

Table 4-8. Traditional FMEA calculations 

 

 

 

 

 

The results obtained from the traditional application of FMEA 

indicate that both risk events are equal in terms of their criticality.  

Although that there is no formal way to link between the calculated RCN 

and the required corrective action using the traditional FMEA, let us 

assume that we are going to use Table 4-4 to define the required 

Risk ID Probability  

 

Cost 

Impact 

Time 

Impact 

Scope/Quality 

Impact 

Detection

/Control 

Risk #1 9 5 5 5 5 

Risk #2 5 9 9 9 5 

Risk ID  Traditional FMEA 

Risk #1 RCN=9*5*5= 225 

Risk #2 RCN 5*9*9= 225 



138 
 

corrective action. In this case both risk events were to be considered 

“somewhat moderate priority to take corrective action(s)/ consider 

mitigation”. 

To compare the results of the traditional FMEA and the proposed 

fuzzy FMEA approach, the aggregated impact of both risk events is 

calculated firstly by applying Equation 4-5 as follows:  

AI Risk #1= 0.40 * 5 + 0.46 * 5 + 0.14 * 5 = 5   [4-7] 

AI Risk #2= 0.40 * 9 + 0.46 * 9 + 0.14 * 9 = 9   [4-8] 

 

The aggregated impact value together with the probability of 

occurrence and detection/control values are exported to the fuzzy expert 

system. For detailed example showing how fuzzy expert system performs 

reasoning to calculate the output, please refer to section 3.2.6. Figure 4-12 

shows the inputs (Probability (P), aggregated impact (I), detection/control 

(D)) and the output variable (RCN) for Risk #1. As can be seen in Figure 

4-12, Rule # 73 is the only rule that satisfy the input values and hence it 

was fired. Figure 4-13 shows the inputs and the output variables for Risk # 

2. For Risk #2, Rule # 113 is the only rule that satisfy the input values and 

hence it was fired. The results from the fuzzy expert system are then 

exported to Risk Criticality Analyzer. The RCN for both risk events and the 

recommended corrective action are presented in Figure 4-14 and Figure 

4-15 by using the Beginner Module. Table 4-9 provides detailed 
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comparison between the calculated RCN using the traditional FMEA 

approach and the proposed fuzzy FMEA approach.  

 

 

Figure 4-12. RCN calculation for Risk #1 

       

 

Figure 4-13. RCN calculation for Risk #2 
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Figure 4-14. RCN calculation for Risk #1using the Beginner Module 

 

 

Figure 4-15. RCN calculation for Risk #2 using the Beginner Module 

 

Table 4-9. Comparison between traditional FMEA and fuzzy FMEA 

Risk ID  Traditional 

FMEA 

Recommended 

Action  

Fuzzy 

FMEA 

Recommended 

Action 

Risk 

#1 

RCN=9*5*5= 

225 

somewhat moderate 

priority to take 

corrective action(s)/ 

consider mitigation 

RCN=400 Somewhat high 

priority to take 

corrective action(s)/ 

consider mitigation or 

transfer 

Risk 

#2 

RCN 5*9*9= 

225 

somewhat moderate 

priority to take 

corrective action(s)/ 

consider mitigation 

RCN=525 High priority to take 

corrective action(s)/ 

consider avoidance or 

transfer 
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To validate the proposition that Risk #1 should not be considered 

equal to Risk #2 in terms of its level of criticality, the results of the 

traditional FMEA is presented to a risk manager and to a risk analyst 

working for a different group at the same participating organization. The 

risk manager and the risk analyst were asked whether they agree that 

both risk events should be treated equally in terms of criticality, and if not 

then which risk event is to be considered more critical than the other. Both 

of the risk manager and the risk analyst indicated that Risk #2 should be 

considered more critical given that the severity of the impact of this risk is 

very high as compared to the first risk and the level of control of both risk 

events is equal. The calculated RCN for both risk events as calculated 

using fuzzy FMEA were then presented to the risk analyst and the risk 

manager. Both experts indicated an acceptance to the calculated RCN 

and the recommended corrective action as calculated using fuzzy FMEA 

and indicated that both risk events should not be treated similarly in terms 

of their criticality.         

To utilize RCA to assess risk in a construction project, the project is 

broken down to its main components using the work breakdown structure 

(WBS), and each work package is analyzed to identify different risk 

events. Root cause analysis is conducted to identify root causes of 

different risk events. Understanding the root causes can help the risk 

analyst to estimate the probability of occurrence (P) of each risk event and 

also to suggest an appropriate risk response strategy. An evaluation of the 
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level of detection/control (D) for each response strategy is conducted, and 

the RCN is calculated using the fuzzy expert system. If the risk event is 

assessed to have safety impact and/or environmental impact, then risk 

acceptability level is assessed as will be explained in chapter 6. Chapter 6 

also presents the linguistic terms that are used to assess safety impact 

and environmental impact. If the risk event is assessed to have 

unacceptable risk level, then detailed quantitative risk analysis is required 

to be conducted as explained in chapter 5. Please note also that if the 

calculated RCN for any risk event is identified to fall in categories 5 to 9, 

then this implies that this risk event is a critical risk event (CRE) and hence 

detailed quantitative risk analysis is required to be conducted, as will be 

explained in the next chapter. All risk events are then monitored and 

controlled during the execution stage in which data are collected to 

support future risk assessment and updating the risk criticality level. Figure 

4-16 shows a summary of the proposed integration between risk criticality 

analysis and risk analysis.  

 

4.5 Summary 

In this chapter, the concept of risk criticality analysis was 

investigated by combining fuzzy logic with both FMEA and AHP in a 

comprehensive framework that provides a practical and thorough 

approach for screening of critical risk events in the construction domain. 

Fuzzy logic was utilized to address the limitations that some combinations 
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with lower RCN should be given more attention than others with higher 

RCN. The development of the fuzzy rule base has take into account the 

relative importance of input factors in calculating the RCN. Moreover, the 

framework offers the management team the ability to communicate the 

importance of establishing corrective actions.  

 

 

Figure 4-16. Risk criticality analysis and risk analysis  
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The fuzzy AHP approach has been adopted in this study to solve 

the multi-criteria decision-making problem by integrating cost impact, time 

impact, and scope/quality impact into one variable named aggregated 

impact (AI). The Risk Criticality Analyzer (RCA) was developed to 

implement the framework. Risk events that are assessed to fall in 

categories 5 to 9, in Figure 4-5, must undergo detailed risk analysis, as will 

be explained in the next chapter. 
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5. Quantitative Risk Analysis Using 

Fuzzy Fault Tree and Fuzzy Event Tree 

 

The purpose of this chapter is to present a comprehensive 

framework for risk analysis in the construction industry. The proposed risk 

analysis model is based on integration between two commonly used 

techniques, i.e., fault trees and event trees, and fuzzy logic. The proposed 

integration between fault trees and event trees with fuzzy logic is intended 

to address the limitations of the traditional application of event tree and 

fault tree analysis presented in chapter 3. The framework also offers 

several advantages, as explained in this chapter and the next chapter.  

 

5.1  Risk Analysis Using Fuzzy Fault Tree and Fuzzy Event Tree 

After identifying critical risk events (CRE) using RCA, each 

identified CRE is required to undergo detailed risk analysis following the 

procedure presented in Figure 5-1. Part A of Figure 5-1 represents risk 

criticality analysis, which was explained in detail in the previous chapter. If 

the calculated RCN falls in categories 5 to 9, then the steps identified 

under Part B of Figure 5-1 are required to be conducted. Any risk event 

that is assessed to have unacceptable risk level, due to either safety or 

environment, is required to undergo detailed risk analysis following the 
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steps identified under Part (B) of Figure 5-1. Further details about the risk 

acceptability level concept are presented in chapter 6.   

According to Figure 5-1, the first step under Part B is to calculate 

the probability of occurrence (P) of each critical risk event using fuzzy fault 

tree analysis. In this regard, the probability of basic events is represented 

using possibility distributions, and experts can provide linguistic 

assessments of the probability of occurrence of basic events, which are 

referred to as fuzzy probabilities (FPro). Fuzzy arithmetic operations are 

applied to conduct a quantitative FTA, to calculate the FPro of the CRE, 

according to the steps that will be explained in the following sections. 

Fuzzy importance analysis is also established to rank different basic 

events according to their level of contribution to the top event, which may 

help in defining risk mitigation strategies. 

After calculating the fuzzy probability of the identified critical risk 

events, team members are invited to identify mitigation strategies to 

control each identified CRE. It is worth noting that each CRE can have 

more than one mitigation strategy. Each mitigation strategy is subject to 

failure, and a fault tree structure can be established to represent the failure 

of each mitigation strategy. Fuzzy fault tree analysis is again conducted to 

quantify the fuzzy probability of failure of each mitigation strategy. 
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Figure 5-1. Proposed integration between FMEA, fault tree, event tree, 

and fuzzy logic 
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Given the risk event and the mitigation strategies, the event tree 

structure can be established. Figure 5-2 shows an example demonstrating 

the proposed integration between event tree and fault trees. As can be 

noticed in Figure 5-2, the probability of occurrence (P) of the failure 

branches is obtained from conducting fuzzy fault tree analysis. The 

probabilities of success branches are evaluated as (1 - the probability of 

failure). The consequence of each path is evaluated linguistically. Fuzzy 

event tree analysis (FETA) is then applied to estimate the expected 

monetary value (EMV).  

 

 

Figure 5-2. Example event tree fault tree integration using two mitigation 

strategies 

 

5.2  Risk Analysis Using Fuzzy Fault Tree Analysis  
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After indentifying CRE, a quantitative FTA is required to be 

conducted. The following steps were adapted to conduct a quantitative 

fault tree analysis (Hauptmanns 1988, NASA 2002):  

(1) Collect root causes of each CRE and use them to construct 

fault trees. 

(2) Establish linguistic terms to assess the fuzzy probability of basic 

events. 

(3) Use the linguistic variable in step 2 to assess the fuzzy 

probability of occurrence for all basic events and conduct 

qualitative fault tree analysis using Hauptmanns’ (1988) 

algorithm, described in chapter 3.  

(4) Conduct a quantitative fault tree analysis by calculating the top 

event fuzzy probability, and a sensitivity analysis by means of 

fuzzy importance analysis. Analyze the results and use them to 

develop risk response strategies.  

(5) Repeat steps 1 to 4 for each identified mitigation in step 4 by 

considering failure of the proposed mitigation as the top event 

instead of the CRE. The following sections explain these steps 

in details. 

 

5.2.1  Collect Root Causes  

Step 1 is concerned with the elicitation of root causes of the risk 

event and the failure of mitigation strategies using any standard 
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knowledge elicitation technique such as interviews, brainstorming, Delphi, 

or checklists. Chapman (1998) provides a comparison between some of 

these techniques, and the reader can refer to his work for more details. In 

this study, structured interviews were arranged with the same senior risk 

coordinator and another risk engineer to collect the required information, 

since face-to-face meetings were more convenient to both of them. The 

Delphi technique, using two rounds, was then used to reach an agreement 

between the two experts.  

 

5.2.2 Establish Linguistic Terms to Assess Probability of Occurrence 

To define the linguistic terms required to assess the fuzzy 

probability of basic events, an interview was arranged with the senior risk 

coordinator. After reviewing the existing risk matrix, a decision was made 

to continue using five linguistic terms—very low (VL), low (L), medium (M), 

high (H), and very high (VH)—to assess the probability of occurrence. The 

same expert was consulted to establish the membership function for each 

linguistic term. The direct method with one expert (Klir and Yuan, 1995) 

was used to elicit the required information to build the membership 

function for each linguistic term. Figure 5-3 shows the results of this 

elicitation process.  

 



151 
 

 

Figure 5-3. Membership function to assess probability of occurrence  

 

5.2.3  Conduct Qualitative Fault Tree Analysis  

Step 3 is intended to use the linguistic terms, established in the last 

step, to assess the fuzzy probability of occurrence of basic events and to 

identify minimal cut sets (MCS). Any standard knowledge elicitation 

technique such as interviews, brainstorming, Delphi, or checklists can be 

used for this purpose. Ayyub defined a minimal cut set (MCS) as “a cut set 

with the condition that the non-occurrence of any one basic event from this 

set results in the non-occurrence of the top event” (2003, 76). 

In order to demonstrate the calculation of the minimal cut sets 

(MCS) concepts using Hauptmanns’ (1988) algorithm, let us consider that 

a risk identification workshop was conducted and a fault tree structure was 

established for one of the risk events as shown in Figure 5-4. This fault 

tree demonstrates failure of establishing of proper field process as a top 

event and this top event (TE) is connected by an (OR) gate to three gate 

events. The first gate event (GE1) is defined as “inadequate follow up 

training”, the second gate event (GE2) is defined as “loss of key 

resources”, and the third gate event (GE3) is defined as “lack of 
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documentation of communication requirements.” Each gate event is 

connected with a list of basic events.  

 

 

Figure 5-4. An example fault tree structure  

 

The first step of applying Hauptmanns’ (1988) algorithm is to 

convert the fault tree structure into a Boolean matrix (BM) composed of 0’s 

and 1’s. “0” is used to indicate that no connection exists, while “1” is used 

to indicate a connection between events. The rows of the BM are divided 

into two sections: the OR gate events (GE) in the upper part, and the AND 

gate events (GE) in the lower parts. The columns of the BM are divided 

into three blocks starting with basic events, followed by OR gate events 

(GE), and finally followed by AND gate events (GE). Table 5-1 shows the 

Boolean matrix (BM) for the fault tree shown in Figure 5-4.   
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Table 5-1. Boolean matrix representation of the example fault tree 

Gate 

event 

ID 

Gate 

type 

Basic events OR (GE)  AND (GE) 

A B C  D E F TE GE

2 

GE

1 

GE

3 

TE OR 0 0 0 0 0 0 0 1 1 1 

GE2 OR 1 0 1 0 0 0 0 0 0 0 

GE1 AND 1 1 0 0 0 0 0 0 0 0 

GE3 AND 0 0 0 1 1 1 0 0 0 0 

 

The second step is to create another empty matrix, referred to as 

the working Boolean matrix (WBM), and start the analysis from the top 

event.  

The third step is to replace the top event in the WBM with it is 

equivalent (basic events/gate events) from the Boolean matrix, referred to 

as the connection list (CL), by taking the following two rules into 

consideration:     

3a) If the top event is connected by an OR gate with its CL, 

then insert each event from the CL into a separate row in 

the WBM.  

3b) If the top event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM. Table 5-2 shows the WBM after applying step 3. 

As shown in Table 5-2, since the top event in the BM, 

shown in Table 5-1, is connected by “1” with three gate 

events (GE1, GE2, GE3) using an OR gate, the WBM is 
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created by inserting three separate rows, applying rule 3a, 

and adding a connection “1” under each gate event.   

 

Table 5-2. Initial working Boolean matrix representation of the example 

fault tree 

Basic events OR (GE) AND (GE) 

A B C D E F TE GE2 GE1 GE3 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

 

The forth step is to scan all the rows of the WBM to check if there is 

any connection “1” under any of the two blocks named “OR (GE)” and 

“AND (GE).” If so, then replace each gate event in the WBM with its 

equivalent (basic events/gate events) from the Boolean matrix, referred to 

as the connection list (CL), by taking the following two rules into 

consideration: 

4a) If a gate event is connected by an OR gate with its CL, then 

insert each event from the CL into a separate row in the 

WBM.  

4b) If a gate event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM.  

By doing the first scan on the initial working Boolean matrix, as 

defined in Table 5-2, there is a connection “1” under GE2 and it is an OR 
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Gate. Thus, applying rule (4a), GE2 is replaced with its equivalent (basic 

events), i.e., A, and C each one is in a separate raw.  

 

Table 5-3. Second iteration of the working Boolean matrix  

Basic events OR (GE) AND (GE) 

A B C D E F TE GE2 GE1 GE3 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

 

The fifth step is to repeat step 4 until the WBM contains 0 

connections in the last two blocks, “OR (GE)” and “AND (GE).” By doing 

another scan on the working Boolean matrix, as defined in Table 5-3, 

there is a connection “1” under GE1 and it is an AND Gate. Thus, applying 

rule (4b), GE1 is replaced with its equivalent (basic events), i.e., A, and B 

both in one single raw as shown in Table 5-4.  

 

Table 5-4. Third iteration of the working Boolean matrix  

Basic events OR (GE) AND (GE) 

A B C D E F TE GE2 GE1 GE3 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 

 

By doing another scan on the working Boolean matrix, as defined in 

Table 5-4, there is a connection “1” under GE3 and it is an AND Gate. 
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Thus, applying rule (4b), GE3 is replaced with its equivalent (basic 

events), i.e., D, E and F all in one single raw as shown in Table 5-5. Table 

5-5 shows the final working Boolean matrix since there is no connection 

“1” under any of the two blocks named “OR (GE)” and “AND (GE).” 

 

Table 5-5. Forth iteration of the working Boolean matrix 

Basic events OR (GE) AND (GE) 

A B C D E F TE GE2 GE1 GE3 

1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 0 

 

The six step is to use each row in the final WBM to develop the 

MCS equations by converting each connection “1” in a row with its related 

basic event, and connect basic event(s) within each row using intersection 

“”. For example, the first row in Table 5-5 can be read as “A”. Basic 

event(s) in a row is/are connected with basic event(s) in another row using 

the union “” operator. For example, the first and the second rows in 

Table 5-5, can be read as “A”  “C”. By applying step 6 to all the rows in 

Table 5-5, the top event is represented as shown in Equation 5-1. 

TE= A  C  (A  B)  (D  E  F)       [5-1]    

The seventh step is to perform Boolean simplifications on the MCS 

equations using the rules presented in Table 3-4. The simplification of 

Equation 5-1 is as follows:  
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 TE = A  C  (D  E  F)       [5-2] 

 

5.2.4 Conduct Quantitative Fault Tree Analysis and Fuzzy Importance 

Analysis 

Quantitative fault tree analysis is conducted by calculating the top 

event probability. To do so, the probability of occurrence of each basic 

event in a fault tree structure is assessed linguistically by selecting one of 

the linguistic terms presented in Figure 5-3. The steps followed to conduct 

a quantitative FTA can be summarized as follows:  

(1) Represent each selected linguistic term from Figure 5-3, using 

the alpha-cut (α-cut) principle. 

(2) Use the minimal cut set, identified in 5.2.3, to represent the top 

event fuzzy probability.  

(3)  Conduct fuzzy arithmetic operations to convert the “” and “” 

in the MCS equations, as shown in Equation 5-3:  

The α-cut of the fuzzy probability of events connected by an “” 

gate is defined as shown in Equation 5-3 (Verma et al. 2007) for mutually 

exclusive events.  

FPro (Top Event) α = 

 1 ∏ 1 a b a , 1 ∏ 1 d d

c  1 ∏ 1 a b a , 1 ∏ 1 d d

c           [5-3] 
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where n is the number of events connected by “,” a represents the 

minimum value, b and c represent the most likely value, and d 

represents the maximum value of the membership function (MF). 

The fuzzy probability of events connected by an “” gate is defined 

as shown in Equation 5-4 (Verma et al. 2007):  

FPro (Top Event) α = ∏ a b a , ∏ d d c    

          [5-4] 

where s is the number of events connected by “”.  

The multiplication operator, ∏, in Equation 5-3 and 5-4 is defined as 

follows:  

If A and B are two fuzzy sets represented over the interval Aα = [a1 

d1], B
α = [a2 d2], then Aα * Bα is defined as shown in Equation 5-5 

(Verma et al. 2007): 

Aα * Bα = [min( a1 * a2, a1 * d2, d1 * a2, d1 * d2), max (a1 * a2, a1 * d2, 

d1 * a2, d1 * d2 )]        [5-5] 

(4) Defuzzify the top event fuzzy probability using the mean of 

maximum (MOM) method. Since the membership function at α 

equals 1 represents the most confident level, the mean of 

maximum can be viewed as the most likely estimate of 

probability over the most confident range. 

(5) Conduct a fuzzy importance analysis to identify critical root 

causes using the following equation (Khan and Abbasi 1999): 

 FIM = 
TE TE

TE
* 100%       [5-6] 
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where (TE1) is the top event fuzzy probability, assuming that all root 

causes will occur according to their respective fuzzy probability, and 

(TE2) is the top event fuzzy probability, assuming each root cause 

is eliminated in turn (i.e., by setting FPro = 0 for the root cause). 

(6) Analyze the results from the qualitative and quantitative FTAs 

and propose proper risk response strategies. 

To illustrate the steps presented under section 5.2 (steps 1 to 4), 

the example fault tree presented in Figure 5-4 is used. Let us assume that 

a risk assessment workshop was arranged with experts to provide an 

assessment of the probability of basic events (A, B, C, D, E, and F), and 

the following results were obtained:  

FPro(A) = medium; FPro(B) = medium; FPro(C) = medium; FPro(D) 

= high; FPro(E) = medium; FPro(F) = high 

Each of these linguistic assessments is presented using α-cut. 

Table 5-6 shows the α-cut representation for the medium linguistic term, 

i.e., the assessment provided for A, B, C, and E.  
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Table 5-6. α-cut representation for “medium” probability of occurrence 

α  Lower bound  Upper bound 
0 0.050   0.33 

0.05 0.053   0.32 

0.10 0.055   0.32 

0.15 0.058   0.31 

0.20 0.060   0.32 

0.25 0.062   0.30 

0.30 0.065   0.30 

0.35 0.068   0.30 

0.40 0.070   0.28 

0.45 0.073   0.28 

0.50 0.075   0.27 

0.55 0.078   0.27 

0.60 0.080   0.26 

0.65 0.083   0.26 

0.70 0.085   0.25 

0.75 0.088   0.24 

0.80 0.090   0.24 

0.85 0.093   0.23 

0.90 0.095   0.23 

0.95 0.098   0.22 

1.0 0.10   0.22 

 

Please note that the upper and the lower bound is calculated by 

applying Equation 5-7, and Equation 5-8 respectively at each alpha cut 

level 

  a b a α     [5-7] 
    

        [5-8] 
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where a represents the minimum value, b and c represent the most 

likely value, and d represents the maximum value of the membership 

function (MF) as defined in Figure 5-3. 

The same α-cut principle is applied to represent the probability of 

occurrence (P) of D, and F as shown in Table 5-7.  

 

Table 5-7. α-cut representation for “high” probability of occurrence  

α Lower bound  Upper bound 
0 0.22  0.67 

0.05 0.22  0.66 

0.10 0.23  0.65 

0.15 0.23  0.65 

0.20 0.24  0.64 

0.25 0.24  0.63 

0.30 0.25  0.62 

0.35 0.26  0.61 

0.40 0.26  0.60 

0.45 0.27  0.59 

0.50 0.27  0.59 

0.55 0.28  0.58 

0.60 0.28  0.57 

0.65 0.29  0.56 

0.70 0.30  0.55 

0.75 0.30  0.54 

0.80 0.31  0.53 

0.85 0.31  0.53 

0.90 0.32  0.52 

0.95 0.32  0.51 

1.0 0.33  0.50 
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By using the minimal cut equation defined in Equation 5-2 and 

applying Equation 5-3 and 5-4, the fuzzy probability of the top event can 

be represented as shown in Equation 5-9:  

FPro(TE1)
α = 1- [(1- FPro(A)α) * (1- FPro(C)α) * (1- (FPro(D)α) * FPro(E)α * 

FPro(F)α) ]         [5-9] 

Equation 5-9 is used to calculate the top event fuzzy probability by 

incrementally increasing the value of alpha by 0.050 increments. For 

instance, at α equals zero, Equation 5-9 can be written as follows in 

Equation 5-10:  

FPro(TE1)
0 = 1- {[(1-(0.050+(0.1-0.050))),(1-(0.33-(0.33-0.22)))] * 

[(1-(0.050+(0.1-0.050))),(1-(0.33-(0.33-0.22)))] * [1-{[(0.22+(0.33-0.22)), 

(0.67-(0.67-0.50))] * [(0.050+(0.10-0.050), (0.33-(0.33-0.22))] * 

[(0.22+(0.33-0.22)), (0.67-(0.67-0.50))]}]     [5-10] 

By using Equation 5-5 to solve the multiplication operator in 

Equation 5-10, the fuzzy probability of occurrence of the top event at alpha 

equals zero is calculated as follows in Equation 5-11:  

FPro(TE1)
0 = [10 62]       [5-11] 

By substituting the fuzzy probability of basic events into Equation 5-

9 for different α-cuts, the fuzzy probability of the top event can be 

calculated, as shown in Figure 5-5 and Table 5-8.  

By applying the mean of maximum (MOM) method, the top event 

fuzzy probability of occurrence can be estimated as shown in Equation 5-

12.  
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FPro (TE1) = ( 
 
 ) = 31 %     [5-12] 

 

 

Figure 5-5. Fuzzy probability of occurrence of the top event 

 

After conducting quantitative FTA, fuzzy importance analysis (FIM) 

can be applied to rank different root causes according to their level of 

contribution to the top event fuzzy probability by applying Equation 5-6. 

Appendix III shows detailed calculation of (TE2) in Equation 5-6. Please 

note that TE1 is calculated in Equation 5-12. Table 5-9 shows a summary 

of the fuzzy importance analysis. For example, the FIM of BE1 can be 

calculated as follows:  

 FIM =  * 100% = 42%      [5-13] 
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Table 5-8. α-cut representation of the top event fuzzy probability 

α 
Lower 

bound (%) 
  

Upper 
bound (%) 

0 10  62 

0.05 10  61 

0.10 11  60 

0.15 11  59 

0.20 12  58 

0.25 12  57 

0.30 13  56 

0.35 13  55 

0.40 14  54 

0.45 14  53 

0.50 15  52 

0.55 15  51 

0.60 16  50 

0.65 16  49 

0.70 17  48 

0.75 17  47 

0.80 18  46 

0.85 18  45 

0.90 19  44 

0.95 19  43 

1.0 20  42 

 

Table 5-9. Fuzzy importance analysis of the fault tree 

Event ID (TE1) (TE2) FIM 
 

Rank 

A 31 18 42 1 
C 31 18 42 1 
D 31 29 6.5 2 
E 31 29 6.5 2 
F 31 29 6.5 2 

 

 



165 
 

As can be noticed from Table 5-9, basic event A and C have the 

highest contribution to the top event fuzzy probability, and risk response 

strategies can be established to reduce or eliminate A and C to aid in 

reducing the overall probability of the CRE (step 5). An important 

conclusion that can be driven from using fuzzy importance analysis is that 

although D and F were identified to have a high probability of occurrence, 

as shown in Table 5-7, and A and C were all identified to have a medium 

probability of occurrence, as shown in Table 5-6, the fuzzy importance 

analysis results, as shown in Table 5-9, indicated that A and C are more 

important than D and F. The reason behind this is attributed to the logic 

that can leads to the occurrence of the top event, which was defined 

previously in the fault tree structure shown in Figure 5-4. As noted early 

under section 3.3.3, minimal cut sets that are composed of one basic 

event are critical because the occurrence of this one basic event is 

sufficient by itself to cause the top event to occur. According to Equation 

5-2, A represents the first minimal cut, C represents the second minimal 

cut, D and E and F all together represent the third minimal cut. Thus, 

although, D and F were identified to have high probability, they have to 

occur all together with E to cause the top event to occur. On the other 

hand, A is sufficient by itself to cause the top event to occur and C is 

sufficient by itself to cause the top event to occur. By using the fuzzy 

importance analysis concept, such conclusion can be driven without the 

need to review the fault tree structure.       
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 The next chapter presents a detailed application of the concepts 

presented in this section using a case study.   

 

5.2.5 Conduct Fuzzy Fault Tree Analysis for each Mitigation Strategy 

Each identified mitigation strategy is then analyzed by considering 

the failure of the selected mitigation to be the top event, and repeating 

steps 1 to 4 (section 5.2). To illustrate more on this step, let us assume 

that the project team has identified two mitigation strategies: mitigation (1) 

“establish proper training material”, and mitigation (2) “establish a 

communication protocol”. Team members can then investigate each 

mitigation strategy and identify the root causes that can lead to failure of 

each mitigation strategy. Figure 5-6 shows the fault tree to represent the 

failure of each mitigation strategy and the fuzzy probability of basic events. 

Table 5-10 shows the description of basic events in Figure 5-6. 

  

 

Figure 5-6. Fault tree structure of failure of mitigation 1 and mitigation 2 

 



167 
 

Table 5-10. Basic events and fuzzy probability assessment of basic 

events 

Symbol Description Fuzzy probability (FPro) of 
occurrence  

A No enough budget Medium (M) 
B Poor quality of produced materials Medium (M) 
C Lack of enforce of the protocol by top 

management 
High (H) 

D Failure to involve key personnel Low (L) 
E Lack of time Medium (M) 

 

The qualitative FTA is conducted following the same steps 

presented in section 5.2.3. The first step of applying Hauptmanns’ (1988) 

algorithm is to convert the fault tree structure into a Boolean matrix 

composed of 0’s and 1’s.  Table 5-11 shows the Boolean matrix (BM) for 

the failure of mitigation (1) and Table 5-12 shows the Boolean matrix (BM) 

for the failure of mitigation (2).    

 

Table 5-11. Boolean matrix representation of failure of mitigation (1) 

Gate event 

ID 
Gate type 

Basic events OR (GE)  AND (GE) 

A B TE    

TE OR 1 1 0 0 0 0 

 

Table 5-12. Boolean matrix representation of failure of mitigation (2) 

Gate 

event 

ID 

Gate 

type 

Basic events OR (GE)  AND (GE) 

C D E TE    

TE OR 1 1 1 0 0 0 0 
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The second step is to create another empty matrix, referred to as 

the working Boolean matrix (WBM), and start the analysis from the top 

event.  

The third step is to replace the top event in the WBM with it is 

equivalent (basic events/gate events) from the Boolean matrix, referred to 

as the connection list (CL), by taking the following two rules into 

consideration:     

3a) If the top event is connected by an OR gate with its CL, 

then insert each event from the CL into a separate row in 

the WBM.  

3b) If the top event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM. Table 5-13 shows the WBM of the failure of 

mitigation (1) after applying step 3. As shown in Table 5-13, 

since the top event in the BM, shown in Table 5-11, is 

connected by “1” with two basic events (A) and (B) using an 

OR gate, the WBM is created by inserting two separate 

rows, applying rule 3a, and adding a connection “1” under 

each gate event.  The same logic is applied to establish the 

working Boolean matrix to represent the failure of mitigation 

(2) as shown in Table 5-14.   
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Table 5-13. Working Boolean matrix representation of failure of 

mitigation (1) 

Basic events OR (GE)  AND (GE) 

A B TE    

1 0 0 0 0 0 

0 1 0 0 0 0 

 

Table 5-14. Working Boolean matrix representation of failure of 

mitigation (2) 

Basic events OR (GE)  AND (GE) 

C D E TE    

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

 

The forth step is to scan all the rows of the WBM to check if there is 

any connection “1” under any of the two blocks named “OR (GE)” and 

“AND (GE).” If so, then replace each gate event in the WBM with its 

equivalent (basic events/gate events) from the Boolean matrix, referred to 

as the connection list (CL), by taking the following two rules into 

consideration: 

4a) If a gate event is connected by an OR gate with its CL, then 

insert each event from the CL into a separate row in the 

WBM.  
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4b) If a gate event is connected by an AND gate with its CL, 

then insert all the events from the CL into a single row in 

the WBM.  

Since there is no connection “1” under any of the two blocks named 

“OR (GE)” and “AND (GE)” in Table 5-13 and Table 5-14, we can move to 

the next step.  

The six step is to use each row in the final WBM to develop the 

MCS equations by converting each connection “1” in a row with its related 

basic event, and connect basic event(s) within each row using intersection 

“”. Basic event(s) in a row is/are connected with basic event(s) in another 

row using the union “” operator.  

By applying step 6 to all the rows in Table 5-13, the failure of 

mitigation (1) (FM1) is represented as shown in Equation 5-14. 

 FM1 = A  B         [5-14] 

By applying step 6 to all the rows in Table 5-14, the failure of 

mitigation (1) (FM1) is represented as shown in Equation 5-15. 

FM2 = C  D   E       [5-15] 

After conducting qualitative FTA, quantitative FTA can be 

conducted following the same steps presented in section 5.2.4. The first 

step is to represent the fuzzy probability of failure of mitigation (1) as 

represented in Equation 5-14 by substituting in Equation 5-3.  
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FPro(FM1)
α = 1- [(1- FPro(A)α) * (1- FPro(B)α)]   [5-16] 

where FPro(A)α  and FPro(B)α are the fuzzy probability of basic 

event A and basic event B represented using alpha cut. Since A and B are 

both represented using medium probability of occurrence, Table 5-10, they 

are defined using the same alpha cut representation as defined in Table 5-

15.   

 

Table 5-15. α-cut representation for the probability of basic events A and B  

α  Lower bound  Upper bound 
0 0.050   0.33 

0.05 0.053   0.32 

0.10 0.055   0.32 

0.15 0.058   0.31 

0.20 0.060   0.32 

0.25 0.062   0.30 

0.30 0.065   0.30 

0.35 0.068   0.30 

0.40 0.070   0.28 

0.45 0.073   0.28 

0.50 0.075   0.27 

0.55 0.078   0.27 

0.60 0.080   0.26 

0.65 0.083   0.26 

0.70 0.085   0.25 

0.75 0.088   0.24 

0.80 0.090   0.24 

0.85 0.093   0.23 

0.90 0.095   0.23 

0.95 0.098   0.22 

1.0 0.10   0.22 
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Please note that the upper bound and lower bound in Table 5-15 

are calculated by substituting in Equation 5-7 and Equation 5-8.  

The next step is to calculate the following terms in Equation 5-16 

(1- FPro(A)α) and (1- FPro(B)α). Table 5-16 present the calculation of both 

terms (1- FPro(A)α) and (1- FPro(B)α). 

 

Table 5-16. α-cut representation of  (1- FPro(A)α), (1- FPro(B)α) 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 

 

The next step is to use the calculated value of (1- FPro(A)α) and (1- 

FPro(B)α), as presented in Table 5-16, and substitute this value in 
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Equation 5-16 at each alpha cut. Please note that the multiplication 

operator in Equation 5-16 is represented as defined in Equation 5-5.   

By substituting in Equation 5-16 at different alpha cuts, the fuzzy 

probability of failure of mitigation (1) is calculated as shown in Table 5-17. 

Table 5-17. α-cut representation of  failure of mitigation (1)  

α 
Lower 

Bound % 
 

 Upper 
Bound % 

0.00 10 55 

0.05 10 54 

0.10 11 54 

0.15 11 53 

0.20 12 52 

0.25 12 51 

0.30 13 50 

0.35 13 50 

0.40 14 49 

0.45 14 48 

0.50 14 47 

0.55 15 46 

0.60 15 45 

0.65 16 45 

0.70 16 44 

0.75 17 43 

0.80 17 42 

0.85 18 41 

0.90 18 40 

0.95 19 39 

1.00 19 38 

 

Applying the same concept, the fuzzy probability of failure of 

mitigation (2) is calculated as shown in Table 5-18.  
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 Table 5-18. α-cut representation of  failure of mitigation (2)  

α 
Lower 

Bound % 
 

 Upper 
Bound % 

0.00 25 80 

0.05 26 79 

0.10 27 79 

0.15 28 78 

0.20 29 77 

0.25 29 76 

0.30 30 75 

0.35 31 75 

0.40 32 74 

0.45 32 73 

0.50 33 72 

0.55 34 71 

0.60 35 70 

0.65 35 69 

0.70 36 68 

0.75 37 68 

0.80 37 67 

0.85 38 66 

0.90 39 65 

0.95 40 64 

1.00 40 63 

 

The fuzzy probability of failure of mitigation 1 and mitigation 2, i.e., 

FProFM1 and FProFM2, as represented in Table 5-17 and Table 5-18, are 

shown in Figure 5-7 and Figure 5-8 respectively.  

The mean of maximum method is then used to defuzzify the fuzzy 

probability of failure of mitigation 1 and mitigation 2, as shown in 

Equations 5-17 and 5-18: 

FPro.FM1 = ( 
 
 ) = 29 %       [5-17] 
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FPro.FM2 = ( 
 
 ) = 52 %       [5-18] 

 Fuzzy importance analysis can be also conducted, following the 

same steps presented in section 5.2.4, to identify the level of contribution 

of each basic event to the fuzzy probability of failure of each mitigation 

strategy, as summarized in Table 5-19 and Table 5-20.  

 

 

Figure 5-7. Fuzzy probability of failure of mitigation 1 

 

 

Figure 5-8. Fuzzy probability of failure of mitigation 2 
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Table 5-19. Fuzzy importance analysis for the failure of mitigation 1 

Event ID (TE1) (TE2) FIM 
 

Rank 

A 29 16 45 1 
B 29 16 45 1 

 

Table 5-20. Fuzzy importance analysis for the failure of mitigation 2 

Event ID (TE1) (TE2) FIM 
 

Rank 

C 52 18 65 1 
D 52 50 3.8 3 
E 52 43 17 2 

 

The next chapter presents a detailed application of the concepts 

presented in this section using a case study. 

The use of a fault tree supported explaining the logic behind how 

different root causes may interact to cause the risk event to occur. For 

example, Equation 5-2 indicates that the risk event will occur if A occurred, 

or C occurred, or if the following combinations between (D and E and F) 

occurred. The logic presented by this equation can aid in understanding 

the logic of how the risk event might occur, and hence, the project team 

can work in establishing of proactive risk response strategies. The use of 

fuzzy arithmetic operations on fuzzy numbers has facilitated establishing a 

practical approach for quantitative fault tree analysis in the construction 

industry. In this regard, experts are required to use linguistic terms to 

assess the fuzzy probability of occurrence of basic events. Thus, 

quantitative fault tree analysis can be established even if data do not exist 

or are difficult to obtain. The use of fault trees also supports explaining the 



177 
 

logic that might lead to failure of mitigation strategies, and hence can aid 

further improvement of these mitigations. After calculating the fuzzy 

probability of the risk event, and the fuzzy probability of failure of mitigation 

1 and mitigation 2, fuzzy event tree can be conducted, as explained in the 

next section.  

 

5.3  Fuzzy Event Tree Analysis  

After conducting quantitative FTA for the CRE under analysis, and 

for the failure of identified mitigation strategies, (i.e., mitigation 1 and 

mitigation 2), fuzzy event tree analysis can be conducted as follows:  

Define the linguistic terms to assess the impact (consequence) of 

risk events. In this regard, more interviews were arranged with the 

same senior risk coordinator. The direct method with one expert 

(Klir and Yuan 1995) was further used to elicit the required 

information to build the membership function for each linguistic 

term. A trapezoidal membership function is selected to define each 

linguistic term, as shown in Table 5-21. Please note that a is the 

minimum impact value, b and c represent the most likely impact 

value, and d represents the maximum impact value defined as a 

percentage of the baseline cost. 

I. Use the fuzzy probability of the CRE and the fuzzy probability of 

failure of each mitigation strategy according to the findings from the 

fuzzy fault tree analysis.  
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II. Define the fuzzy probability of success of each mitigation strategy 

as follows, using Equation 5-19: 

Fuzzy probability of success = 1- fuzzy probability of failure [5-19] 

 

Table 5-21. Trapezoidal representation of impact (% of baseline 

cost) (Abdelgawad and Fayek 2010c) 

Linguistic 
terms 

Impact (consequence) 

a b c d 

Very High  6.0 10 100 100 

High 1.10 2.0 6.0 10.0 

Medium 0.11 0.20 1.10 2.0 

Low  0.01 0.02 0.11 0.20 

Very Low  0.00 0.00 0.01 0.02 

 

III. Construct the event tree structure based on the findings from II and 

III. Figure 5-9 shows the event tree structure for the example 

explained in the last section. As can be noticed in Figure 5-9, the 

FPro of the risk event, FPro.FM1, and FPro.FM2, are all obtained 

from the fuzzy fault tree analysis. The fuzzy probability of success 

of each mitigation strategy is calculated as 1—the calculated FPro. 

of failure.  

IV. Assess the consequence (C) of each path using the linguistic terms 

established in the first step. Let us assume for the sake of the 

illustration that the consequences were assessed to be very low 
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(VL), low (L), low (L), and medium (M) for path 1 to path 4 

respectively.  

V. Determine the overall probability (OP) of each path by multiplying 

the fuzzy probability of all the events located on the same path. 

Figure 5-10 shows the OP of each path and the consequence.  

 

 

Figure 5-9. Event tree structure 

 

VI. Multiply the OP of each path with the estimated consequence (C) of 

each path to calculate the expected risk magnitude (ERM) of each 

path.  

VII. Use the fuzzy arithmetic operation on fuzzy numbers to calculate 

the expected monetary value (EMV) as follows:  
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If A and B are two trapezoidal fuzzy sets representing the ERM of 

two paths and is defined as follows:  

Aα = [a1 d1], Bα = [a2 d2] then the EMV is defined as shown in 

Equation 5-20 (Verma et al. 2007).  

Aα + Bα = [a1 + a2, b1 + b2, c1 + c2, d1 + d2]    [5-20] 

Steps VII and VIII are illustrated in Table 5-22. 

 

 

 Figure 5-10. Assessment the consequence and calculating the OP  

 

Table 5-22. Expected risk magnitude (ERM) and EMV calculations 

Path OP 
Consequence (C) Expected risk magnitude (ERM) 

A b c d a b c d 

Path1 0.11 0.00 0.00 0.010 0.020 0 0 0.001 0.002 

Path2  0.11 0.010 0.020 0.11 0.20 0.001 0.002 0.012 0.022 

Path3  0.044 0.010 0.020 0.11 0.20 0 0.001 0.005 0.009 

Path4 0.047 0.11 0.20 1.1 2.0 0.005 0.009 0.052 0.094 

Expected monetary value (EMV) 0.007 0.012 0.070 0.13 
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VIII. Use the mean of maximum (MOM) method to provide a crisp value 

of the expected monetary value (EMV) of the risk event.  

Equation 5-21 shows the defuzzified value of the EMV represented 

as a percentage of the baseline cost: 

EMV = 
. . 100 = 4.1%      [5-21] 

To obtain $ value estimate of the EMV, let us assume that the 

baseline cost of this project is $100,000,000. Thus, the EMV is estimated 

as shown in Equation 5-22:  

EMV = 0.041* $100,000,000 = $ 4,100,000    [5-22] 

  Please note that this calculation can be done since the 

consequences were defined as % of the baseline cost. 

 

5.4 Fuzzy Reliability Analyzer (FRA) 

In order to automate the qualitative and quantitative fuzzy fault 

trees analysis and fuzzy event tree analysis, a software package called 

Fuzzy Reliability Analyzer (FRA) was developed in Visual Studio®. FRA is 

composed of two modules. Figure 5-11 presents a general overview of 

different modules, and the components of each module. 
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Figure 5-11. FRA: General overview of modules and components 

 

5.4.1 Fuzzy Reliability Analyzer (FRA): Module No. 1  
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The first module is used to conduct the qualitative and quantitative 

FTA. This module is composed of seven components. The function of 

each component is as follows:  

I. Fuzzy probability identification: This component is used to define 

the MFs for different linguistic terms using a trapezoidal 

representation. Figure 5-12 shows how this module is used to 

define the linguistic term “high” probability according to the data 

previously presented in Figure 5-3.  

II. Data input/output: This component is used to collect data to 

establish the fault tree logic and to support FTA. Inputs include: 

basic event ID, basic event description, basic event fuzzy 

probability, gate event ID, gate event description, top event 

description, gate type (OR/AND). Outputs include: Boolean matrix, 

working Boolean matrix, MCS, MCS equation, quantitative FTA, 

and fuzzy importance analysis. Figure 5-13 shows the data 

input/output module. The quantitative FTA and fuzzy importance 

analysis are exported to an Excel spreadsheet. The qualitative and 

quantitative FTA has not yet been conducted, and thus the “MCS” 

and “MCS equation” boxes are empty in Figure 5-13.  
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Figure 5-12. FRA: Fuzzy probability identification component 

 

 

Figure 5-13. FRA: Data input/output component  

 

III. Data integrity check: This component performs several integrity 

checks on the data provided by the user, including the following: 
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a. Check that the user cannot give the same ID for two different 

basic events connected to the same gate event.  

b. Check that a gate event cannot be connected to itself.  

c. Check FT structure integrity by ensuring that the user of the 

software had provided inputs for all gate events. If the user 

forgets to provide input for one or more of the gate events, the 

software creates an error message under the “Error Box” to alert 

the user about the missing information.  

d. Check if the FT structure is composed of repeated events to 

direct the software to do Boolean algebra simplification before 

conducting a quantitative FTA.  

IV. Minimum cut set generator: This component generates the Boolean 

matrix (BM) and the working Boolean matrix (WBM) by applying 

Hauptmanns’ (1988) algorithm. Summary results are presented to 

the user by the input/output component. Detailed calculations of BM 

and WBM are exported to an Excel spreadsheet.  

V. Boolean algebra simplification: This component is triggered only if 

the fault tree contains repeated basic events (RBE). FRA interacts 

with MuPAD® from the symbolic math toolbox, running under the 

Matlab® environment, to perform Boolean simplification. FRA 

exports the MCS equation to MuPAD® and the Boolean 

simplification is conducted according to the rules presented in Table 
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3-4. Accordingly, FRA updates the working Boolean matrix and 

proceeds to the quantitative FTA.  

VI. Quantitative fault tree analysis: This component generates alpha-

cuts and performs a quantitative FTA according to Equations 5-3, 5-

4, and 5-5. The results of the analysis are presented to the user in 

an Excel spreadsheet. 

VII. Fuzzy importance analysis: This component is used to measure the 

level of importance of different basic events according to their level 

of contribution to the probability of occurrence of the top event. 

Equation 5-6 is used to perform the analysis, and detailed 

calculations are presented to the user in an Excel spreadsheet.  

 

5.4.2 Fuzzy Reliability Analyzer (FRA): Module No. 2 

The second module is responsible for the quantitative fuzzy event 

tree analysis. This module is composed of five components. The function 

of each component is as follows:  

I. Fuzzy impact identification: This component is used to define the 

MFs for different linguistic terms using a trapezoidal representation 

according to the data previously presented in Table 5-21. Figure 5-

14 shows how the linguistic term “high” impact is defined using this 

component.  

II. Event tree structure component: This component establishes the 

structure of the event tree according to the number of mitigation 
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strategies. FRA is designed to handle up to three mitigation 

strategies. Figure 5-15 presents an event tree structure using 

three mitigation scenarios. In considering the three mitigation 

module, the user is required to provide an assessment of the 

probability of the risk event, probability of failure of mitigation 1, 

probability of failure of mitigation 2, probability of failure of 

mitigation 3, and to assess the consequence column of each path 

as previously presented under section 5.3. 

 

 

Figure 5-14. FRA: Fuzzy impact identification 

 

III. Data integrity component: This component is responsible for 

verifying that all the required inputs to run ETA are entered by the 

user.  

IV. Data input/output: This component is used to collect data to 

establish the event tree structure and to support fuzzy ETA. Inputs 
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include: fuzzy probability of initiating event, fuzzy probability of 

failure of mitigation scenarios, and assessment of the 

consequence of each path. The output is the trapezoidal 

representation of the expected monetary value (EMV) exported to 

Excel.  

 

 

Figure 5-15. FRA: Event tree structure (three mitigations) 

 

V. Quantitative event tree analysis module: This module generates 

alpha-cuts and performs a quantitative event tree analysis 

according to Equations 5-19 and 5-20.  

Figure 5-16 presents a screenshot showing fuzzy event tree 

analysis for the example presented under section 5.3. As can be noticed, 
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the expected monetary value (EMV) obtained from FRA is similar to the 

one obtained from the manual calculations presented in Equation 5-21.  

 

 

Figure 5-16. FRA: Event tree analysis  

 

5.5 Summary  

This chapter presents the proposed integration between fault trees, event 

trees, and fuzzy logic to provide a quantitative risk analysis of critical risk 

events identified in chapter 4. The proposed approach offers experts in the 

construction domain the ability to use linguistic terms rather than 

numerical values to assess the probability of occurrence of basic events 

and the impact of risk. Fuzzy arithmetic operations are used to perform 

quantitative fault tree and event tree analyses. The Fuzzy Reliability 

Analyzer (FRA) was developed to automate both qualitative and 

quantitative FTAs and ETAs. The next chapter presents a case study for 

validation of the framework presented in chapter 4 and chapter 5. 
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6. Case Study for Validation 

 

Chapter 4 and chapter 5 present the framework to identify critical 

risk events and to support quantitative risk analysis using fault tree 

analysis and event tree analysis. The purpose of this chapter is to present 

the process followed to collect the required data to run Risk Criticality 

Analyzer (RCA) and Fuzzy Reliability Analyzer (FRA), to demonstrate the 

concept of risk acceptability level, and to validate the framework and the 

proposed contributions of this research.  

 

6.1 Data Collection  

In order to support collecting the required risk related data, a 

comprehensive risk register template was designed in Microsoft Excel®. 

The risk register is a central repository for risk-related information in a 

project. It captures information that supports risk identification, risk 

analysis, risk prioritization, risk response, and risk monitoring and control. 

The developed risk register went through several revisions to enhance the 

capabilities of the template. The latest update is version 2.00, and is 

designed to capture the following information:  

 Risk ID: This is a unique ID to identify each risk event.  

 Risk area: The risk area is obtained from the RBS, as will be 

explained later in this chapter. 
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 Risk description: This is a statement that provides a description of 

the uncertain event and the project objective that is at risk.  

  T/O: This field is intended to differentiate threat risk events (T) 

from opportunity risk events (O). 

 Root causes: This field is designed to capture different root causes 

that can lead to the occurrence of a risk event. This field is 

important for constructing the fault tree structure. 

 Description of impact: This field is used to document the 

assumptions or scenarios considered to justify the impact of the 

risk on the project objectives. 

 WBS Ref.: This field is used to document the affected work 

package.  

 Risk owner: This field is used to document the person in charge of 

assessing, monitoring, and controlling the identified risk event. 

 Risk status: Three available statuses are supported, including:  

I. Active (A): a risk event that is expected to happen 

in the future. 

II. Expired (E): a risk event that has expired and is no 

longer expected to happen. 

III. Realized (R): a risk event that has occurred and 

has not yet expired. 

 Next review date: This field is used to track future updates of the 

risk-related data, and can be used to monitor risk events.  
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 Probability (P): This field is used to document the assessment of 

the probability of occurrence (P), as described in Table 4-1. 

 Very Low (1): less than 1% chance. Event is highly unlikely 

to occur. 

 Low (2): between 1%–10% chance. Event is unlikely to 

occur. 

 Medium (3): between 10%–33% (1/3) chance. Event may 

occur. 

 High (4): between 33%–67% (2/3) chance. 

 Very High (5): > 67% (2/3) chance.  

 Cost impact (CI): This field is used to document the assessment of 

the cost impact (CI), as described in Table 4-2. 

 Time impact (TI): This field is used to document the assessment of 

the time impact (TI), as described in Table 4-2. 

 Scope/quality impact (SI): This field is used to document the 

assessment of the scope/quality impact (SI), as described in Table 

4-2. 

 Safety Impact (SEI): This field is assessed using five dimensions 

defined as follows:  

 Very Low (1): first aid is not required. 

 Low (2): first aid is required. 

 Medium (4): medical treatment for injury/illness is required. 
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 High (8): disabling injury/illness and or serious health 

impact. 

 Very high (16): One or more fatalities. 

 Environmental Impact (EI): This field is assessed using five 

dimensions defined as follows: 

 Very Low (1):  insignificant adverse effects on the 

environment. 

 Low (2): short-term adverse effects on the environment. 

 Medium (4): on-lease clean-up and remediation for 6 months 

or more. 

 High (8): off-lease clean-up and remediation for less than 6 

months. 

 Very high (16): off-lease clean-up and remediation for more 

than 6 months.  

 Risk acceptability Level (RAL): This field is used to filter any risk 

event that has potential effect on safety and or environment. Firstly, 

the risk level (RL) is calculated by multiplying probability of 

occurrence and the impact. Then, the risk level (RL) is compared 

against a threshold of 5. If the RL is less than 5, then this risk is 

acceptable. If the RL is greater than 5, then this risk is considered 

unacceptable and further investigation is required to be 

incorporated to bring this risk to an acceptable level. To illustrate 

this concept, let us assume that risk (A) is assessed to have 
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medium probability of occurrence and high safety impact. The risk 

level is equal to medium (3) * high (8) = 24 > 5. This risk should is 

unacceptable risk, and thus detailed risk analysis is required to be 

conducted using fault tree and event tree analysis as presented in 

chapter 5.           

 Mitigation strategy: This column is used to document the proposed 

mitigation strategy and the specific action(s). 

 Detection/control (D): This field is used to document the 

assessment of the detection/control (SI), as described in Table 4-3. 

 Required by (date): This is the target date for the identified 

mitigation strategy to be fully implemented.  

 Mitigation status: This date is used to document the % progress of 

the implementation of the mitigation strategy. The reader can refer 

to Appendix II for a sample risk register template. 

In order to facilitate collection of the risk-related data, a risk 

breakdown structure (RBS) was proposed, based on literature reviews, 

and presented to the same senior risk coordinator and the risk engineer. 

The RBS is similar to the work breakdown structure (WBS), and is used to 

facilitate grouping of the risk-related data. To support establishing the 

RBS, several interviews were then conducted with both experts. The 

Delphi technique was utilized to reach an agreement between both 

experts. The first level of the RBS represents different functional areas in 

the organization. This level includes: planning, development, regulatory, 



195 
 

permits, construction, commercial, corporate, engineering, environment, 

financial, aboriginal and community affairs, legal, project management, 

procurement, team, right of way (ROW), utilities, commissioning, and 

operation. The second and third levels represent more details under each 

functional area. Appendix IV provides an overview of the proposed RBS, 

as agreed upon by both experts. 

 

6.2 Risk Criticality Analysis Validation  

In order to validate the proposed approach presented in chapter 4, 

the risk register for an actual project is utilized. The approximate capacity 

of the chosen pipeline project is 70,000 barrels per day (bpd), and is 

composed of new and refurbished pump stations, metering facilities, and 

substations. A workshop session was arranged at the participating 

organization with a group of six experts, consisting of three risk analysts, 

the manager of the project management office, one practices and 

standards coordinator, and the senior risk coordinator. The purpose of the 

meeting was to present the traditional approach of applying FMEA, its 

drawbacks, the proposed approach to address these limitations, and an 

introduction to RCA. Following the first meeting, further meetings were 

arranged with the project team members to populate the risk register. The 

outcomes of those meetings were to populate the risk register with data 

related to 41 active risk events including their root cause, description of 
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impact, WBS ref., probability of occurrence (P), cost impact, time impact, 

scope/quality impact, and mitigation strategies.  

In order to assess the level of detection/control (D), an additional 

interview was conducted with the risk analyst in charge of the project. The 

meeting began with an introduction of the FMEA concept, and a 

demonstration of the Risk Criticality Analyzer (RCA). 

 After introducing the concept, the risk analyst was asked to 

evaluate the level of detection/control (D) of each risk event in accordance 

with the linguistic terms defined in Table 4-3. RCA was then utilized to 

calculate the RCN and the required corrective actions for each risk event. 

Figure 6-1 presents the percentage of total risk events that falls under 

each corrective action category. Figure 6-1 can be used to compare 

different projects. For instance, according to this figure, 14.63% of the risk 

events in this project fall under “moderate priority to take corrective 

action(s).” The percentage of risk events that falls under categories 5 to 9 

can be used to compare different projects.  

Figure 6-2 presents the risk ID versus the RCN. This figure can 

support management teams in identifying the most critical risk events in a 

project. For example, risk event No. 13 is the most critical risk event in this 

project. Figure 6-2 can also be used to identify risk events that are 

required to undergo detailed risk analysis. For example, any risk event that 

has an RCN equal to 250 or above, i.e., classified to fall under corrective 
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action category 5 or above as presented in Table 4-4, is required to 

undergo detailed risk analysis using fault tree and event tree analyses.  

 Table 6-1 presents the summation of the RCN under each of the 

nine recommended corrective action categories. The cumulative RCN for 

the selected project is 5947. This number is a unitless number, and can be 

used to compare projects at the project level as well as at the portfolio 

level. For example, the cumulative RCN for category 5 for the selected 

project can be compared against the cumulative RCN for category 5 in 

other projects. The same logic can be applied to compare different 

categories between different projects.  

Table 6-1 can be used also by the organization to compare projects 

at the portfolio level. For instance, the selected project has a cumulative 

RCN equal to 5947. This cumulative unitless number can be used by the 

organization to benchmark this project against other projects. For 

instance, this project can be considered less critical compared to another 

project with a cumulative RCN equal to 3000. 
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Figure 6-1. Corrective action versus % total risk events  

 

 

Figure 6-2. RCN versus risk ID 
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Table 6-1. Cumulative RCN/corrective action 

 

Figure 6-3 presents the percentage of risk events classified 

according to the first level of the RBS. As can be noticed from this figure, 

almost 50% of the risk events in this project are classified under 

procurement and construction. Some of the RBS categories are not shown 

in this figure, which implies that none of the 41 identified risk events were 

classified to fall under these categories. 

  

 

Figure 6-3. Percentage of risk event classified by RBS  
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Corrective action  Total RCN  

No action is required 25 

Unnecessary to take any corrective action(s) 235 

Low priority to take any corrective action(s) 2479 

Somewhat moderate priority to take corrective action(s)  1350 

Moderate priority to take corrective action(s) 1858 

Somewhat high priority to take corrective action(s) 0 

High priority to take corrective action(s) 0 

Necessary to take corrective action(s) 0 

Absolutely necessary to take corrective action(s) 0 

  5947 
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In order to validate the findings using RCA, interviews were 

arranged with a risk analyst working for a different group within the 

participating organization. The objective of the first interview is to introduce 

the traditional FMEA concept and the proposed fuzzy FMEA approach. 

The second interview was intended to present the same case study and 

get his feedback regarding which approach, i.e., fuzzy FMEA or traditional 

FMEA, is producing more meaningful results. Nine risk events were 

randomly selected out of the 41 identified risk events and the RCN and the 

corrective action as calculated using the fuzzy FMEA approach and the 

traditional FMEA were presented to the expert as shown in Appendix V. 

The expert has given his opinion to the results obtained using the fuzzy 

FMEA for seven out of the nine selected risk events. Please note that 

although the expert has given his opinion to the RCN produced using the 

traditional FMEA approach for two cases, the fuzzy expert system can be 

adapted to reflect his opinion by changing the (if then) rule(s). For 

instance, if a consensus has been obtained within the organization to 

make such combinations between probability of occurrence, cost impact, 

time impact, scope/quality impact to produce a similar decision to the one 

obtained using the traditional FMEA, then this change can be 

accomplished in a few steps. To highlight more on the required update, let 

us consider that the decision for the risk entitled “poor productivity due to 

severe weather” is required to be updated to be similar to the one obtained 
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using the traditional FMEA. In this case, the aggregated impact is 

calculated firstly using Equation 4-5 as follows:  

AI = 0.40 * 5 + 0.46 * 7 + 0.14 * 1= 5.4     [6-1] 

According to Figure 4-2, the calculated impact value has a 

membership value that falls under medium impact as well as high impact. 

Given that the selected probability of occurrence is medium and the 

selected detection/control is high, the RCN linguistic value of the two rules 

shown in Table 6-2 are required to be updated to reflect the selected 

decision. Please refer to Appendix I for all the rule base that are used to 

establish the fuzzy FMEA model      

 

Table 6-2. Proposed update to the Rule Base 

Rule 

ID 
(I) (P) (D) (RCN) 

(RCN) Proposed Modification 

64 M M H L-M VL-L 

89 H M H M L-M 

 

Figure 6-4 present the fuzzy expert system and the updated output 

value of rule 64 and rule 89.  As can be noticed in Figure 6-4, the resultant 

RCN using the fuzzy expert system is 79, which fall under “low priority to 

take any corrective action(s)/accept.” Such flexibility to reflect expert’s 

opinion is not supported using the traditional FMEA approach since the 

resultant RCN is based on the multiplication of probability, impact, and 

detection. Thus, using the use of the fuzzy expert system has offer more 
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flexibility to reflect expert opinion to support risk criticality analysis.  Such 

flexibility offers a great advantage to reflect any change to the organization 

policy toward risk, i.e., (risk averse, risk neutral, risk seeking), without the 

need to start building the model all over again.  

 

 

Figure 6-4. Proposed update to the fuzzy expert system  

               

The use of the fuzzy expert system also offers the advantage of 

capturing the knowledge of experts in the domain of risk management and 

utilizes this knowledge to train new persons in the same domain.  
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Since the rule base are defined and utilized using language that the 

expert can directly understand i.e., (low, medium, high), new persons to 

this domain can use the fuzzy expert system, similar to the one presented 

in Figure 6-4, to understand how different combinations between 

probability, impact, and detection/control can affect the calculated RCN. 

Such transparency can not be established using the traditional FMEA.  

“Face Validation” was used to identify practical applications of the 

proposed framework (Lucko and Rojas 2010). In this regard, an interview 

was conducted with the senior risk coordinator and the risk analyst to 

review the usefulness of RCA in practice. Experts noted several practical 

uses of RCA, which can be summarized as fallows:  

 The use of fuzzy logic supported the linguistic assessment of 

probability of occurrence, cost impact, time impact, scope/quality 

impact, and detection/ control. The linguistic assessment of these 

terms has supported FMEA studies and offered a more convenient 

approach for experts to assess the level of risk criticality.  

 The use of fuzzy AHP offered great ability by supporting the 

aggregation of the impact and by offering the ability to validate the 

level of consistency.  

 The framework offered guidelines by connecting the RCN with the 

required corrective actions as defined in Table 4-4.  

 RCA can aid in the comparison between projects in two levels, i.e., 

at the project level as well as at the portfolio level. For example, 



204 
 

using Figure 6-1, different projects can be compared by considering 

the % of total risk events that falls under categories 5 to 9. The 

cumulative RCN in Table 6-1, i.e., 5947, can be used to benchmark 

projects at the portfolio level.  

 RCA can aid in identifying which risk events are required to 

undergo detailed risk analysis using the framework presented in 

Figure 5-1. All risk events that fall under categories 5 to 9 or have 

unacceptable risk level should be considered for detailed root 

cause analysis.  

 RCA can aid in determining which risk events should be used for 

lessons learned. For example, all risk events that fall under 

categories 5 to 9 or have unacceptable risk level should be tracked 

monthly, and detailed lessons learned should be documented.  

 RCA can help in determining training needs for different project 

teams, by identifying areas of weakness within each project that are 

attributed to human failure. The people responsible can then work 

on establishing training to mitigate those failures.  

 RCA can help in identifying common areas of strength and 

weakness between different projects.  

 RCA can support the identification of successful response 

strategies for future use on new projects, and weak response 

strategies for future avoidance and improvement.  
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RCA was further utilized to assess the level of risk criticality in 

several projects in the company. One of the criticality identified risk events 

in more than one project is identified as “horizontal directional drilling 

(HDD) failure to meet project objectives.” Referring to Figure 5-1, this risk 

event is required to undergo detailed risk analysis using fuzzy fault tree 

and fuzzy event tree analysis, as will be explained next. For confidentiality 

purposes, the HDD case study was selected from a different project than 

which one used for RCA validation, as will be explained in the next 

section. 

 

6.3 Fuzzy Fault Tree Analysis Validation 

The scope of the selected project for fuzzy fault tree analysis 

validation includes the installation of a new crude oil pipeline with an initial 

capacity of 350,000 bpd. The total length of the pipeline is 380 km. 

Horizontal directional drilling (HDD) failure to meet the project objectives 

was identified as a critical risk event using RCA.  

In order to understand the risk involved in HDD construction, a 

literature review was conducted to understand the installation process and 

the root causes that can lead to failure. The installation process of HDD 

begins from the surface by launching the pilot bore at a pre-specified 

angle until reaching the design depth. The pilot bore can be tracked from 

the surface by installing a directional monitoring device. To stabilize the 

borehole and to reduce friction, a drilling fluid is injected under pressure 
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ahead of the advancing bit. After reaching the design depth, the pilot bore 

moves horizontally until reaching the desired exit point. Once reaching this 

point, the pilot bore is brought to the surface along a curved path. To 

enlarge the hole to the design diameter and to establish the product pipe, 

the bit is removed and replaced by a backreamer (Ariaratnam 2001). 

To establish the fault tree structure, several interviews were 

arranged with the same senior risk coordinator and another risk engineer. 

The interview started by reviewing the summary of the literature review 

and different root causes of failure as defined in the literature. Thereafter, 

the Delphi technique was used to make consensus between the two 

experts. Two rounds were used to establish the fault tree structure. In the 

first round, an interview was arranged with the risk engineer to establish 

the fault tree structure. The established structure was then presented to 

the senior risk coordinator, and further modifications were recommended 

to represent the fault tree structure for the selected case study. The 

modifications, as recommended by the senior risk coordinator, were 

incorporated in the fault tree structure and used for a second round. The 

second round started with the risk engineer aiming at reviewing the 

modifications as recommended by the senior risk coordinator. The risk 

engineer agreed with some of the modifications and added further 

modifications to the fault tree structure. These modifications were 

presented next to the senior risk coordinator, and an agreement was 

finally obtained for the established fault tree structure. Figure 6-5 shows 
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the fault tree (FT) structure that connects the top event with the entire root 

causes, as agreed upon by both experts (Abdelgawad et al. 2010). 

After establishing the FT structure, both experts were further asked 

to assess the fuzzy probability of different basic events. Table 6-3 

presents a description of root causes and their associated linguistic 

assessment, in accordance with the criteria defined in Table 4-1. It is 

important to note that each HDD crossing is unique, and hence, the ability 

to collect data regarding some root causes is difficult, if not impossible, 

making quantitative fault tree analysis (FTA) of such fault trees not 

possible using probability theory. The use of fuzzy arithmetic operations 

on fuzzy numbers has offered more flexibility to assess the probability of 

occurrence of basic events and to support quantitative risk analysis. Using 

the linguistic assessment established in Table 4-1, both experts were able 

to provide an assessment of the probability of occurrence of basic events 

as demonstrated in Table 6-3.  
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Figure 6-5. HDD failure to meet project objectives (Abdelgawad et al. 

2010) 

 

Table 6-3. Basic events and fuzzy probability assessment (Abdelgawad et 
al. 2010) 

Symbol Description Fuzzy probability (FPro) of 
occurrence  

A Emergency shutdown system trips  High (H) 
B Equipment breakdown Medium (M) 
C Loss of communication with drilling machine Low (L) 
D Interference with bedrock Medium (M) 
E Interference with aquifer Medium (M) 
F Unstable bank  Medium (M) 
G Operator lacking required skills Low (L) 
H Fatigue of workers Very Low (VL) 
I Lack of proper supervision Low (L) 
J Safety incidents on site Low (L) 
K Seepage of drilling fluid into waterway  Low (L) 
L Seepage of drilling fluid into soil Medium (M) 
M River flooding Very Low (VL) 
N Severe weather conditions  Medium (M) 
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The Fuzzy Reliability Analyzer (FRA) is then utilized to conduct 

qualitative and quantitative assessment of the FT presented in Figure 6-5. 

The qualitative assessment of the fault tree, as presented in Appendix 

(VI), indicates that we have fourteen minimal cut sets MCSs defined as 

follows, in Equation 6-2:  

M1 = (A); M2 = (B); M3 = (C); M4 = (D); M5 = (E); M6 = (F); M7 = (G); M8 

= (H); M9 = (I); M10 = (J); M11 = (K); M12 = (L); M13 = (M); M14 = (N)  

          [6-2]  

These MCS combinations indicate critical scenarios since the 

occurrence of any of the basic events, as identified by the MCS, is 

sufficient to cause the top event to occur. For instance, the occurrence of 

basic event A is sufficient to cause HDD to fail in meeting the project 

objectives. Figure 6-6 presents a screenshot of the inputs and the output 

minimal cut sets and minimal cut set equations.  

 The right bottom corner of Figure 6-6 shows the minimal cut sets 

and the minimal cut set equation. The fuzzy probability of the top event 

can be further represented as shown in Equation 6-3:  

FPro(Top Event) = FPro(A) OR FPro(B) OR FPro(C) OR FPro(D) OR 

FPro(E) OR FPro(F) OR FPro(G) OR FPro(H) OR FPro(I) OR FPro(G) OR 

FPro(K) OR FPro(L) OR FPro(M) OR FPro(N)     [6-3] 

Equation 6-3 can be further represented using the α-cut principle, 

as follows in Equation 6-4: 
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FPro(Top Event)α = FPro(A)α  FPro(B)α  FPro(C)α  FPro(D)α  

FPro(E)α  FPro(F)α  FPro(G)α  FPro(H)α  FPro(I)α  FPro(G)α  

FPro(K)α  FPro(L)α  FPro(M)α  FPro(N)α     [6-4] 

 

 

Figure 6-6. Inputs and outputs minimal cut sets for the HDD case study 

 

The alpha cut representations of basic events A through basic 

event B are presented in Appendix (VII). Since the top event is connected 

by an OR gate with basic events, Equation 5-3 is used as follows:  

FPro (Top Event)α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro 

(C)α) *(1- FPro (D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- 

FPro (H)α) *(1- FPro (I)α) *(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- 

FPro (M)α) *(1- FPro (N)α)]        [6-5] 
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Equation 6-5 is applied to calculate the lower and upper bound of 

the top event fuzzy probability at each alpha cut. Appendix (VIII) shows 

detailed calculation of the following terms in Equation 6-5: (1- FPro (A)α), 

(1- FPro (B)α) , (1- FPro (C)α , (1- FPro (DB)α, (1- FPro (E)α, (1- FPro (F)α, 

(1- FPro (G)α, (1- FPro (H)α, (1- FPro (I)α, (1- FPro (J)α, (1- FPro (K)α, (1- 

FPro (L)α, (1- FPro (M)α, (1- FPro (N)α.    

By multiplying all the calculated terms in Appendix (VIII) at each 

alpha cut using the multiplication operator, i.e., Equation 5-5, the upper 

and the lower bound of the top event fuzzy probability is calculated as 

shown in Appendix (IX).  

Please note that since the probability of occurrence is always 

represented using positive numbers, Equation 5-5, can be simplified as 

follows:   

Aα * Bα = [a1 * a2, d1 * d2]      [6-6] 

      Where a1 * a2 represents the lower bound of multiplying two 

fuzzy numbers and d1 * d2 represents the upper bound of multiplying two 

fuzzy numbers.  Figure 6-7 shows the top event fuzzy probability using the 

values presented in Appendix (IX).   
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Figure 6-7. The fuzzy probability distribution for the HDD risk event 

(Abdelgawad and Fayek 2010b) 

 

After calculating the fuzzy probability of the top event, the mean of 

maximum (MOM) method was utilized to defuzzify the results. Equation 6-

7 shows the defuzzified estimate of the fuzzy probability for HDD failure 

using the MOM method.  

FPro (Top Event) = ( 
. .

 ) * 100 = 79 %     [6-7] 

”Face Validation” was used to verify the advantage of using 

linguistic terms to assess the fuzzy probability of failure of basic events. In 

this regard, an interview was conducted with both experts in which both   

experts has indicated the advantage of using linguistic terms to provide an 

assessment of the fuzzy probability of basic events versus providing 

numerical numbers.  

After conducting qualitative and quantitative FTA, FRA was then 

used to conduct fuzzy importance analysis (FIM). The top event fuzzy 
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probability (TE1), assuming that all root causes will occur according to their 

respective fuzzy probability, is as calculated in Equation 6-7. Noting that 

there are 14 basic events in the MCS equations, the fuzzy probability of 

the top event has to be calculated 14 times, simply by eliminating each 

root cause (i.e., by setting FPro = 0 for the root cause) to calculate the top 

event fuzzy probability (TE2). Appendix X shows the detailed calculation of 

TE2 after removing each of the root causes. Table 6-4 shows a summary 

of the fuzzy importance analysis.  

 

Table 6-4. Fuzzy importance analysis (Abdelgawad and Fayek 

2010b)  

Event ID (TE1) (TE2) FIM Rank 
A 79 66 17 1 
B 79 75 5.1 2 
C 79 78 1.3 3 
D 79 75 5.1 2 
E 79 75 5.1 2 
F 79 75 5.1 2 
G 79 78 1.3 3 
H 79 79 0 4 
I 79 78 1.3 3 
J 79 78 1.3 3 
K 79 78 1.3 3 
L 79 75 5.1 2 
M 79 79 0 4 
N 79 75 5.1 2 
 

Results from FIM show that the emergency shutdown system trip 

(basic event A) is ranked first in contributing to the top event fuzzy 

probability. Altering this basic event by itself is sufficient to reduce the top 

event fuzzy probability to 66% (TE2). Thus, risk response strategies can 

be developed specifically to mitigate this basic event. 
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”Face Validation” was used to verify the advantage of using fuzzy 

importance analysis to rank different basic events. In this regard, an 

interview was conducted with both experts in which both experts has 

indicated the advantage of using FIM to support ranking different root 

causes, which can support the establishment of effective risk response 

strategies.  

 In order to establish mitigation strategies for the selected risk event, 

further interviews were arranged with the senior risk coordinator and the 

risk engineer. The outcomes from these meetings indicated that three 

mitigation strategies can be established, as follows:  

 Mitigation 1: Establish a proper prequalification strategy to 

select the right HDD contractor.  

 Mitigation 2: Establish a proper procedure to select the right 

drilling location.  

 Mitigation 3: Establish a contingency plan to control the risk if 

realized. 

The two experts were asked to identify the root causes of failure of 

each mitigation strategy, and to assess the fuzzy probability of each 

basic event. Figure 6-8 depicts a summary of the findings.  
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Figure 6-8. Fault tree analysis of different mitigation strategies 

(Abdelgawad and Fayek 2010c)  

 

FRA is used to conduct qualitative and quantitative assessment of 

the fault trees presented in Figure 6-8. The fuzzy probability of failure of 

each mitigation strategy, following the same principle explained to 

calculate the top event fuzzy probability, is estimated as follows:  

 FPro. failure of mitigation 1 = 29% 

 FPro. failure of mitigation 2 = 50% 

 FPro. failure of mitigation 3 = 18% 

Please refer to Appendix (XI), (XII), and (XIII) for detailed 

calculations of the fuzzy probability of failure of mitigation 1, mitigation 2, 

and mitigation 3. Please note that the use of fuzzy logic to conduct 

quantitative fault tree analysis has offered an easy to understood and 

transparent approach to track the calculated fuzzy probability for the top 
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event as well as the probability of failure of mitigation 1, mitigation 2, and 

mitigation 3.  

  ”Face Validation” was used to verify the advantage of using fault 

tree analysis to calculate the fuzzy probability of the top event. In this 

regard, an interview was conducted with both experts and the following 

advantages were noted:  

 The use of fault trees can help in explaining the logic behind how 

different root causes may interact to cause the failure of different 

mitigation strategies.  

 Fault trees offered the ability to create proactive risk response 

strategies by working on eliminating critical root causes. For 

example, mitigation 1 can be used to reduce the probability of 

occurrence of basic event A.  

 Fuzzy logic offers more flexibility to conduct quantitative fault tree 

analysis to calculate the probability of failure of different mitigation 

strategies by supporting the linguistic assessment of basic events.  

 

6.4 Fuzzy Event Tree Analysis Validation 

Based on the findings from fuzzy fault tree analysis, event tree 

structure is established considering three mitigation strategies. The fuzzy 

probability of the risk event and the failure of the mitigation strategies 

were obtained by performing fuzzy fault tree analysis, i.e., 79, 29, 50, 

and 18 for the risk event, mitigation 1, mitigation 2, and mitigation 3 
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respectively. The senior risk coordinator and the risk engineer were 

further asked to assess the consequence of impact for each path, 

considering the events located on each path, as presented in the last 

column of Figure 6-9. For example, path No. 1 is assessed considering 

the following scenario:  

(1) If the risk event occurs and mitigation No. 1 was successful, 

mitigation No. 2 was successful, and mitigation No. 3 was 

successful, then what would be the residual cost impact of the 

risk?  

According to the feedback from experts, path No. 1 was 

assessed to have “Very Low (VL)” impact following the cost 

impact presented in Table 5-21. 

The same logic of questions were used to collect experts’ opinions 

regarding the cost impact given the sequence of events located on each 

path. Figure 6-9 presents the event tree structure and the expected 

monetary value (EMV) obtained after running FRA-event tree module. 

Figure 6-10 presents the defuzzified expected monetary value (EMV) after 

conducting event tree analysis. The mean of maximum defuzzification 

method was used to defuzzify the EMV. Please refer to section 5.3 for 

detailed explanations of the steps required to conduct fuzzy event tree 

analysis to calculate the EMV.  

The expected monetary value is represented as a percentage of the 

baseline cost of the selected project. This percentage can be converted to 
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a dollar value by multiplying this percentage and the baseline cost of the 

project. For example, if the baseline cost of the project is $100,000,000, 

then the EMV can be calculated, as shown in Equation 6-8: 

EMV = 0.0027 * $100,000,000 = $267,000     [6-8] 

 

 

Figure 6-9. Fuzzy event tree analysis (Abdelgawad and Fayek 2010c)  
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Figure 6-10. Expected monetary value (EMV) 

 

Table 6-5 presents detailed calculation of the event tree shown in 

Figure 6-9. Please note that the minimum, most likely, and the maximum 

values are similar to the numbers presented in Figure 6-10 using Fuzzy 

Reliability Analyzer (FRA).  

 

Table 6-5. Expected monetary value (EMV) calculations  

Path OP 
Consequence (C) Expected risk magnitude (ERM) 

a B c d a b C d 

Path1  
0.23 0 0 0.01 0.02 0.00 0.00 0.00 0.00 

Path2  
0.05 0.01 0.02 0.11 0.2 0.00 0.00 0.01 0.01 

Path3  
0.23 0.11 0.2 1.1 2 0.03 0.05 0.25 0.46 

Path4 
0.05 0.11 0.2 1.1 2 0.01 0.01 0.06 0.10 

Path5  
0.09 0.01 0.02 0.11 0.2 0.00 0.00 0.01 0.02 

Path6  
0.02 0.01 0.02 0.11 0.2 0.00 0.00 0.00 0.00 

Path7  
0.09 0.11 0.2 1.1 2 0.01 0.02 0.10 0.18 

Path8 
0.02 0.11 0.2 1.1 2 0.00 0.00 0.02 0.04 

Expected monetary value (EMV) 
0.04 0.08 0.45 0.82 
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The defuzzified expected monetary valve is calculated using the 

mean of maximum method as follows:  

EMV= 
. . 0.27%      [6-9] 

”Face Validation” was used to verify the advantage of the proposed 

framework to conduct risk analysis. In this regard, an interview was 

conducted with both experts and both experts have noted the following 

advantages:  

 The use of event trees supports explaining the expected cost 

impact of the risk event and a sequence of mitigation scenarios, as 

presented in Table 6-5.  

 Fault trees offered the ability to explain the logic that might lead to a 

failure of mitigation strategies, and hence, can aid further 

improvement of these mitigations.  

 Fuzzy logic has offered considerable flexibility to conduct 

quantitative event tree analysis to calculate the expected monetary 

value (EMV). For example, the use of the linguistic terms, 

presented in Table 5-21, supported conducting event tree analysis 

even if data do not exist.  

The advantage of using fuzzy logic to solve event trees as 

compared to other techniques is attributed to the ability of fuzzy logic to 

establish transparent and easy to understood models in which the results 

can be traced back to understand how a certain number or conclusion is 
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obtained. For example, Table 6-5 shows how fuzzy arithmetic operations 

are conducted to solve the event trees shown in Figure 6-9.      

In order to validate the findings of using fuzzy fault tree analysis and 

fuzzy event tree analysis, an interview was arranged with a construction 

manager with more than 30 years of experience, during which he was in 

charge of the executing of more than thirty-five horizontal directional 

drillings. Before conducting the interview, a detailed report of the selected 

case study was obtained from the senior risk coordinator. The detailed 

report together with the fault tree structure, presented in Figure 6-5, and 

the fuzzy probability of basic events, presented in Table 6-3, were all 

presented to the construction manager. The construction manager was 

then asked to provide an assessment of the probability of the risk event 

and three point estimate of the impact representing the minimum, most 

likely, and maximum cost. The following scenarios were considered to 

represent the cost impact of the selected risk event:  

1- The minimum cost impact represents the scenario that the HDD will 

not fail; however, extra cost will be incurred due to delays and the 

requirement to add extra casing to support the drilling.  

2- The most likely scenario considers that HDD crossing will fail and 

an isolated crossing is to be used without impacting the in service 

date of the project.  
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3- The Maximum scenario considers that HDD crossing will fail and an 

isolated crossing is to be used; however the in service date will be 

delayed due to the late permitting from regulatory agencies.        

Table 6-6 presents summary of the finding from the interview. 

Please note that for confidentiality purposes, the impact is represented as 

a percentage of the project baseline cost.  

 

Table 6.6. Probability and three point estimate of the impact 

Probability of 

Occurrence 

Cost impact 

(min) % 

Cost impact          

(most likely) % 

Cost impact 

(maximum) % 

0.75 0.06 0.14 0.52 

        

A Monte Carlo simulation model was developed using Primavera 

Risk Analysis®. The risk event is represented using triangular distribution 

and 1000 iterations were conducted to calculate the expected monetary 

value (EMV). Figure 6-11 presented a cumulative distribution curve of the 

expected monetary value of the risk event. Table 6-7 shows the 

cumulative cost impact of the selected risk event represented as a 

percentage of the project baseline cost. The calculated mean cost value of 

this risk is equal to be 0.24% of the project baseline cost based on using 

Monte Carlo simulation and is used to represent the expected monetary 

value (EMV) of the risk event. The expected monetary value (EMV) 

obtained using Monte Carlo is compared against the expected monetary 

value (EMV) obtained using fuzzy fault tree and fuzzy event tree analysis 
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as calculated in Equation 6-9. The results show the validity of using fuzzy 

fault tree and fuzzy event tree analysis to calculate the expected monetary 

value. Comparing the EMV indicated that the resultant EMV obtained 

using fuzzy fault tree and fuzzy event tree analysis, i.e., 0.27% of the 

baseline cost as shown in Equation 6-9, is more conservative than the 

value obtained using Monte Carlo simulation, 0.24% of the baseline cost.  

 

 

Figure 6-11. Cumulative distribution of the expected monetary value   
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Table 6-7. Cumulative distribution of the expected monetary value   

Probability Cost Impact (% project base budget) 

0% 0.06 

5% 0.10 

10% 0.12 

15% 0.13 

20% 0.14 

25% 0.16 

30% 0.17 

35% 0.18 

40% 0.19 

45% 0.21 

50% 0.22 

55% 0.24 

60% 0.25 

65% 0.27 

70% 0.29 

75% 0.31 

80% 0.33 

85% 0.35 

90% 0.38 

95% 0.42 

100% 0.51 

 

The absolute error between Monte Carlo simulation and the result 

obtained using Fuzzy Reliability Analyzer (FRA) is calculated as follow:   

Absolute error =     

 
100  [6-10] 

  According to Equation 6-10, the absolute error is obtained as 

follows: 

Absolute error = 
. .

.
100 13%    [6-11] 
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By comparing the proposed approach against Monte Carlo 

simulation, a list of conclusions can be derived:  

1- The utilization of fuzzy logic to solve fault trees and event trees 

offers a transparent approach to track the calculated probability 

of occurrence and the expected monetary value. Such 

transparency can help verifying the resultant expected monetary 

value as compared to the value obtained using Monte Carlo 

simulation approach in which random numbers are created and 

used to calculate the results.  

2- The use of fuzzy logic allows experts to comminute information 

about the probability of occurrence and the impact of risk events 

using linguistic terms, which is more convenient for experts 

especially when it comes to risk assessment. Such advantage is 

not supported using Monte Carlo simulation in which experts are 

asked to provide numerical values for probability and impact.     

3- The utilization of fault trees to support risk analysis also offers 

the advantage of supporting risk identification. In this regard, the 

utilization of the fault tree structure, as presented in Figure 6-5, 

allows experts to understand the root causes of the risk event. 

Monte Carlo simulation model does not support such 

identification of the root causes. 

4- The use of the fuzzy importance analysis offers the advantage 

of ranking different root causes and supporting experts to 



226 
 

understand which root causes are contributing the most to the 

occurrence of the risk event. Such understanding can aid risk 

response by working on establishing mitigation strategies that 

can either eliminate or reduce the chances of the occurrence of 

the highest ranked root causes. Monte Carlo simulation models 

fails to offers such mechanism to aid risk response.  

5- The use of event tree analysis offers the advantage of exploring 

different scenarios for risk mitigation and understanding the 

impact on a risk event by considering the failure and success of 

the identified mitigation strategies. Monte Carlo simulation as 

compared to event tree analysis does not offer the ability of 

explaining how the expect monetary value (EMV) of a risk event 

might change as a result of revising or adding different 

mitigation scenarios to mitigate the risk event under analysis.   

 

6.5 Validation of Contributions 

In order to validate the contributions of the proposed framework, a 

survey was conducted, with two experts specialized in the field of risk 

analysis. The objective of this survey was to test the advantages of the 

proposed integration between fuzzy logic, FMEA, fault tree, and event tree 

versus traditional risk analysis approaches. Prior to conducting the survey, 

the proposed framework and its various components were presented to 

the two experts, and the two software packages, i.e., Risk Criticality 
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Analyzer and Fuzzy Reliability Analyzer were also demonstrated using the 

case studies presented under this section. Experts were also given the 

ability to experiment with both software packages by running several 

examples.  The fuzzy expert system (FES) component of Risk Criticality 

Analyzer was also demonstrated to both experts and they were given the 

ability to notice how different rules are fired and how the FES system 

calculates the resultant RCN. Thereafter, a survey was conducted, by 

means of a questionnaire (Appendix XIV), which addressed specific 

questions to test whether each specific component of the proposed 

framework has provided an advantage(s) over other available risk analysis 

techniques. Not only the experts were asked to provide (Yes/No) answers 

to the questions but also they were asked to provide justifications of their 

answers. The questionnaire was composed of eleven basic questions as 

follows:  

 Question (1) is composed or three parts targeting to address the 

preference of the experts of using numerical scale to assess 

probability of occurrence (1a), impact (1b), and detection/ control 

(1c) versus the linguistic scale. 

 Question (2) is targeting the ability of the fuzzy expert system to 

provide transparent mean of obtaining the RCN and the ability of 

this system to educate new employees. 
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 Question (3) is intended to check the advantage of providing multi 

dimensions to assess risk events versus relaying on a mixed scale 

of (cost, time, scope/quality … etc) to assess the impact. 

 Question (4) is intended to test if there are any advantages of using 

linguistic terms to assess probability of occurrence, cost impact, 

time impact.  

 Question (5) is intended to check the value added of using fuzzy 

expert system versus an Excel look up table. 

 Question (6) is intended to test the ability of applying the proposed 

framework to other projects to validate if this framework can be 

considered as a general framework. 

 Question (7) is intended to test if there is any value added by 

considering the combination between fault tree and event tree.  

 Question (8) is intended to verify if there is any advantage of 

providing the ranking of basic events according to their level of 

contribution to the top event fuzzy probability.  

 Question (9) is intended to compare the proposed framework 

against one of the commonly used techniques, i.e., Monte Carlo 

simulation, to understand the advantages and limitations of both 

approaches.          

 Question (10) is intended to understand which one of the following 

two scenarios is more appropriate to be used to calculate the 



229 
 

aggregated impact of cost impact, time impact, and scope/quality 

impact using fuzzy AHP.  

 Scenario 1: use one aggregated impact equation to calculate 

the aggregated impact for all the risk events in one project by 

running the analysis at the project level. 

 Scenario 2:change the aggregated impact equation for each 

risk event in a risk register by running the analysis at the 

individual risk level.  

 Question (11) is intended to check if safety and environment is to 

be considered in the calculation of the aggregated impact rather 

than handling it separately through the use of risk acceptability 

level.  

Based on the feedback of the two experts, the experts preferred 

using the linguistic terms to assess probability of occurrence, impact, and 

detection/control (refer to questions 1a, 1b, 1c), which are the method 

used by Risk Criticality Analyzer. In their responses to these three 

questions, the experts noted that linguistic terms had the advantage of: (1) 

providing better statistical range (0-100); (2) providing better 

communication; (3) solving the problem of non availability of data since 

probability of occurrence has to be assessed based on conditions, which 

is difficult to obtain; (4) using of linguistic terms is the most established 

practice within the construction industry. 
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The two experts noted the advantage of using the linguistic scale to 

assess the impact as described in Table 4-2. Several advantages were 

noted as follows: (1) it enables specific impact description of cost, time, 

and scope as compared to the one dimension representation of the impact 

as defined by the traditional FMEA method; (2) the linguistic terms provide 

better communication with project team members. The advantage of using 

linguistic scale to assess detection/control was also noted by both experts. 

The description of the detection/control as defined in Table 4-3 provides 

less subjective assessment of the level of detection/control and provides 

better communication.  

Both experts also noted the advantage of using fuzzy expert system 

to educate new team members since it is based on the use linguistic 

terms. The common knowledge base created using linguistic terms is 

more transparent for experts to use and apply.  

Both experts also noted the advantage of using three dimensions to 

represent the impact of risk. Any assessment that does not supports 

providing multi dimensions to asses the impact will entails an ambiguous 

communication mechanism of the risk related information. The 

management team will not able to know which dimension of the impact is 

the one that govern the feedback of the project team when they provided 

their assessment of the impact.  

Allowing the experts to experiment with the fuzzy experts system 

supported them to understand how different if-then rules are fired, how 
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implication, aggregation, and defuzzification are applied. Experts were 

then asked to compare what they have seen against establishing an Excel 

Look up table that takes numerical assessment of probability of 

occurrence, impact, and detection to calculate the RCN. Experts noted 

that the fuzzy expert system is more preferable for them to calculate the 

RCN since it is based on linguistic terms and it is transparent to visualize 

the results.      

The framework as demonstrated to both experts shows that it can 

be considered to be a generic framework. Experts noted that the range of 

each linguistic term can be adjusted, if required, and used to fit another 

context.  

Experts noted that the use fault tree and event tree as proposed by 

this study does not only support risk assessment but also it provides a 

general mechanism that aids risk identification, risk assessment, mitigation 

planning, decision making, and contingency assessment. The combination 

of fault tree and event tree can aid assessing of risk benefit to cost ratio 

and applying decision related to contingency response planning.  

The ability of the framework to rank different root causes using 

fuzzy importance analysis was also highlighted as a contribution of this 

framework. This advantage can support the project team in establishing 

effective mitigation strategies. 

The experiment demonstrated to both experts using fuzzy reliability 

analyzer and Monte Carlo simulation had supported them to provide a 
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judgement about the advantages and limitations of both applications. 

Experts noted that fuzzy reliability analyzers shows a comprehensive 

framework that offer multi-advantage such as risk identification, risk 

assessment, and risk response planning which provide more integrated 

tool that can fit the needs of the construction projects.        

The calculation of the aggregated impact at the project level is 

perceived as the most appropriate way to calculate the aggregated impact. 

Calculating the aggregated impact at the project level will ensure 

consistency in decision making. Moreover, doing this calculation for each 

specific risk event is a cumbersome, impractical, and will add more 

confusion to the risk owner since this decision is a project based rather 

than a risk based decision.  

The utilization of the risk acceptability level concept to screen risk 

events that have critical impact on safety and/or environment is perceived 

to be sufficient. Both experts indicated that all unacceptable risk events 

are then must undergo detailed risk analysis using fault tree and event 

tree analysis and based on the application of this concept, detailed risk 

response strategies can be established.     

 

6.6 Summary  

In this chapter, the proposed integration between FMEA, fault trees, 

event trees, and fuzzy logic was explored. Fuzzy FMEA is first applied 

using RCA, to identify critical risk events. The failure of horizontal 
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directional drilling (HDD) to meet project objectives was identified as a 

critical risk event using RCA. Detailed fuzzy fault tree analysis and event 

tree analysis were conducted to quantify the expected monetary value 

(EMV) of the selected risk event. The results were then validated by 

comparing the results against a Monte Carlo simulation model. The 

experts noted several advantages of using this framework in the 

construction domain to conduct a quantitative assessment of risk. For 

instance, the use of fuzzy logic has offered the ability to conduct a 

linguistic assessment of probability of occurrence, cost impact, time 

impact, scope/quality impact, and detection/ control. The use of fuzzy AHP 

offered the ability to aggregate the three dimensions of the impact and 

support conducting consistency analysis. The framework supports the 

identification of the required corrective action, as presented in Table 4-4. 

The use of fault trees offered the ability to explain how a risk event might 

occur, and supported creating proactive risk response strategies. Fuzzy 

logic offers more flexibility to conduct quantitative fault tree and event tree 

analysis to calculate the probability of a risk event, by considering the 

linguistic assessment of basic events, as presented in Table 4-1, and 

supporting the expected monetary value (EMV) calculations using of the 

linguistic terms presented in Table 5-21.  

The proposed integration between event tree and fault tree, as 

presented in Figure 5-2, and demonstrated thought out a case study offers 

several advantages as compared to Monte Carlo simulation models. This 
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integration between event tree and fault tree offers a compressive 

framework not only to support risk analysis but also to support risk 

identification and risk response management.                

In order to validate the contributions of the proposed framework, an 

experiment was conducted with two experts specialized in risk analysis a 

long. Thereafter, a survey was conducted to test the advantages of the 

proposed integration between fuzzy logic, FMEA, fault tree, and event tree 

versus traditional risk analysis approaches and to verify the contribution of 

this study. The following is a summary of the results obtained from the 

survey.      

 The framework supports judging the level of risk criticality by 

addressing the limitations of the conventional FMEA.  

 The use of the fuzzy logic offers the advantage of capturing the 

knowledge of experts in the domain of risk management and help 

utilizing this knowledge to train new personnel in the same domain.  

 The use fuzzy expert system and FMEA offers a transparent model 

in which the calculated RCN can be tracked.  

 The use of fuzzy AHP offers the advantage of using three 

dimensions to represent the impact of risk. Any assessment that 

does not supports providing multi dimensions to asses the impact 

will entails an ambiguous communication mechanism of the risk 

related information. 
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 The framework offers the contribution of combining fuzzy logic, 

event trees, and fault trees in a comprehensive framework that 

does not only support risk assessment but also provides a general 

mechanism that aids risk identification, risk assessment, mitigation 

planning, decision making, and contingency assessment. 

 The use of fuzzy logic to solve fault trees and event trees offers a 

transparent framework, in which the calculated fuzzy probability of 

occurrence and the expected monetary value can be easily tracked 

and understood. 

 The use of fuzzy logic allows experts to express themselves 

linguistically which is more convenient for experts. 

 The framework offers a generic framework that can be adapted to 

fit any industry or organization.  

 The framework supports conducting sensitivity analysis by ranking 

different basic events, which can aid risk response planning. 

 The concept of fuzzy AHP analysis is better being applied at the 

project level rather than being applied at the specific risk level, 

which confirms the logic used in this study. 

 Safety and environmental impact are both well handled using the 

risk acceptability level concept.  
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7. Conclusions and Future Work   

 

This chapter provides a summary of the work conducted in this 

research, and summarizes the contributions. Limitations of the framework 

and recommendations for future research are also outlined.            

 

7.1 Summary  

Risk analysis represents one of the crucial steps of any risk 

management framework. Conducting risk analysis using qualitative 

techniques such as risk matrix and AHP lacks the ability to provide an 

accurate estimate of the expected monetary value of risk events, since the 

ultimate outcomes of these techniques is to rank different risk events. On 

the other hand, conducting risk analysis using the probabilistic techniques, 

such as Monte Carlo simulation or decision trees, requires collecting a 

sufficient amount of data to establish probability density functions to define 

each risk event, which is difficult to obtain, especially in the construction 

industry. Eventually this difficulty of conducting risk analysis creates more 

need to establish a more flexible framework that can support screening of 

critical risk events and supporting risk analysis, even if data are not 

available or hard to obtain and is required to be transparent by offering the 

ability to trace the output obtained and understand how these models 

derive the outcomes. Such a framework has to consider the linguistic 

nature of risk events by allowing the use of linguistic terms, such as low, 
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medium, and high, to assess risk events, rather than using numerical 

numbers. In addition, any proposed framework has to consider supporting 

the risk analyst to distinguish between critical and non-critical risk events 

so that more time can be dedicated to the ones that require more attention 

to the establishment of proper risk response strategies. Moreover, the 

framework is required to be comprehensive to support other risk 

management processes such as risk identification and risk response 

management. 

The objective of this research is to establish a comprehensive 

framework to support screening of critical risk events and to facilitate 

conducting risk analysis in the construction industry by addressing some 

of the outlined limitations of the previous work conducted in this domain. 

The approach developed is based on combining three well-known 

techniques in reliability engineering, i.e., failure mode and effect analysis 

(FMEA), fault trees, and event trees with fuzzy logic. The framework 

created in this thesis is based upon using the significant capability of fuzzy 

logic to support linguistic assessment of risk events, which is more 

convenient for experts working in the field of risk analysis. During this 

research, FMEA is combined with fuzzy logic to create a fuzzy expert 

system to support screening of critical risk events in the construction 

industry. Inputs to the fuzzy expert system include an assessment of the 

probability of occurrence (P), cost impact (CI), time impact (TI), 

scope/quality impact (SI), and the level of detection/control (D).  Fuzzy 
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AHP was utilized to support aggregating the multi-dimension of impact, 

i.e., CI, TI, SI, into one variable named aggregated impact (AI). One 

hundred and twenty-five rules were elicited to define the relationship 

between inputs P, AI, and D, and the risk criticality number (RCN). The 

RCN range, i.e., 1 to 1000, was then divided into nine categories, and 

each category was assigned a level of priority for establishing corrective 

actions. Corrective actions vary from accepting the risk events, when the 

RCN is small, to recommending the avoidance of risk events, when the 

RCN is high. The use of the fuzzy expert system and FMEA has offered 

the advantage of addressing several limitations of the conventional 

approach of conducting FMEA, outlined in chapter 3, and offered a 

transparent system that can help educating new personnel regarding the 

risk criticality principle. The framework also offers the advantage of 

associating each RCN with a corrective action, which is used to screen 

critical risk events. The risk acceptability level (RAL) concept is introduced 

to handle risk events that have safety and/or environmental impact. All risk 

events that have unacceptable risk level are required to undergo detailed 

risk analysis. 

After identifying critical risk events and/or risk events with 

unacceptable risk level, detailed risk analysis is required to be conducted 

using fault tree and event tree analysis. Fault tree analysis and event tree 

analysis are well-established methods for risk analysis that have been 

used extensively in many industries. The utilization of fault trees and event 
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trees offers several advantages compared to other risk analysis 

techniques. For instance, fault tree analysis (FTA) supports the decision-

maker in understanding how different root causes interact to cause the top 

event (i.e., risk event), and provides supporting detail behind the estimated 

probability of occurrence of a risk event. In addition, FTA can be used as a 

tool to identify proactive risk response strategies. Moreover, FTA can be 

used as a diagnostic tool after the occurrence of a risk event to 

understand the logic that leads to the occurrence of the risk event. On the 

other hand, event tree analysis can be used to calculate the expected 

monetary value of each risk event by considering different scenarios to 

mitigate the risk event. However, due to the limited availability of data in 

the construction domain, few works were recognized that involve the use 

of such techniques.   

To facilitate adapting fault tree analysis and event tree analysis in 

the construction industry, fuzzy logic was utilized. The use of fuzzy logic 

has offered the advantage of using linguistic terms to assess the 

probability of occurrence of basic events and to support quantitative fault 

tree analysis. Conducting fuzzy importance analysis offered the ability to 

rank different basic events according to their level of contribution to the top 

event’s (risk event) fuzzy probability of occurrence. Hence, proactive risk 

response strategies can be established to address the top ranked basic 

events. The use of fuzzy logic has also offered the advantage of 

conducting event tree analysis using linguistic terms.  
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 Since conducting fault tree analysis and event tree analysis is a 

cumbersome process that requires a lot of time and effort, this study has 

established a practical approach for conducting detailed risk analysis 

using both techniques. In this regard, risk events that are analyzed to fall 

under categories 5 to 9, defined by the RCN, are required to undergo 

detailed risk analysis using fault tree analysis and event tree analysis. 

Thus, more focus and attention can be allocated to risk events that drive 

more criticality to the project. By combining fuzzy logic with FMEA, fault 

tree, and event tree a compressive and novel framework is established 

that can support risk analysis as well as other risk management processes 

such as risk identification, and risk response planning while considering 

the linguistic nature of the risk related data.    

The framework was implemented in two software applications, 

entitled Risk Criticality Analyzer (RCA) and Fuzzy Reliability Analyzer 

(FRA). A case study was utilized to verify the validity of the proposed 

framework. RCA was applied first to calculate the level of criticality of 

different risk events. Horizontal directional drilling failure to meet project 

objectives was identified as a critical risk event using RCA. Hence, fuzzy 

event tree and fuzzy fault tree analysis were conducted to calculate the 

expected monetary value (EMV). “Face validation” is applied to verify the 

advantage of the proposed framework. In this regard, an interview was 

conducted with two experts and both have noted the advantage of using 

the proposed framework to examine the level of risk criticality and to 
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calculate the expected monetary value. Detailed analysis was conducted 

by comparing the results obtained using traditional FMEA and fuzzy FMEA 

and used to validate the finding and to illustrate the advantage of using 

fuzzy FMEA to solve some of the limitations of the traditional FMEA 

approach. A Monte Carlo simulation model was developed and used to 

validate the results obtained using fuzzy fault tree analysis and fuzzy 

event tree analysis. A detailed comparison was also conducted and used 

to highlight the advantages of using the proposed framework to conduct 

risk analysis.    

In order to validate the contributions of the framework, an 

experiment was conducted with two experts specialized in risk analysis 

using Risk criticality Analyzer and Fuzzy Reliability Analyzer. Thereafter, a 

survey was conducted aiming at testing the advantages of the proposed 

integration between fuzzy logic, FMEA, fault tree, and event tree versus 

traditional risk analysis approaches and to verify the contribution of this 

study. The results of the survey confirmed several contributions as will be 

highlighted in the next section.  

 

7.2 Contributions   

The main contribution of the proposed research is the introduction 

of a comprehensive framework for risk management based on combining  

three well know techniques in reliability engineering in a novel way to 

support risk identification, risk analysis, and risk response while 
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considering the subjective characteristics of the risk-related data. The 

framework presented in this research provides several contributions to the 

area of risk management. The framework supports risk analysis even in 

scenarios in which data are unavailable or difficult to obtain. Since the 

framework is based on using linguistic terms to asses risk events, risk 

analysts are offered a more convenient and practical framework to 

conduct risk analysis, especially in the construction industry. Described 

below are the key academic contributions offered by this research:       

 The framework offers the contribution of combining fuzzy logic, 

FMEA, fault tree, and event tree in a novel way to support risk 

analysis as well as risk identification, and risk response planning.  

 The framework supports judging the level of risk criticality by 

addressing the limitations of the conventional FMEA. Several 

limitations of the conventional FMEA were addressed by 

establishing a fuzzy expert system to support calculating the risk 

criticality number (RCN), and to identify the required corrective 

actions. 

 The use of the fuzzy logic offers the advantage of capturing the 

knowledge of experts in the domain of risk management and help 

utilizing this knowledge to train new persons in the same domain. 

Thus, fuzzy logic has offered the ability of incorporating the 

subjective quality aspects of experts in decision-making. 
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 The use fuzzy expert system and FMEA offers a transparent model 

in which the calculated RCN can be tracked. Such transparency 

offers flexibility to reflect any change to the organization policy 

toward risk, i.e., (risk averse, risk neutral, risk seeking), without the 

need to building the model all over again. Experts can review the 

fuzzy rule base and identify which rules are fired and track the 

calculated RCN.  

 The framework explores the utilization of fuzzy AHP to support risk-

based multi-criteria decision-making. The utilization of the fuzzy 

AHP concept has supported the aggregation of the cost impact (CI), 

time impact (TI), and scope/quality impact (SI) into one variable 

named aggregated impact (AI). Such aggregation was crucial to 

support risk criticality analysis.  

 The use of fuzzy logic to solve fault trees and event trees offers a 

transparent framework, in which the calculated fuzzy probability of 

occurrence and the expected monetary value can be easily tracked 

and understood. Such transparency is not guaranteed by other 

techniques such as Monte Carlo simulation.     

 The use of fuzzy logic allows experts to comminute information 

regarding the probability of occurrence and the impact of risk 

events using linguistic terms, which is more convenient for experts. 

 The use of event tree analysis offers the advantage of exploring 

different scenarios for risk mitigation and understanding the impact 
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on a risk event by considering the failure and success of the 

identified mitigation strategies. 

 The framework offers a generic framework that can be adapted to 

fit any industry or organization. Calibrations of the membership 

functions were considered during this study to support probability 

and impact assessment as shown in Figure 5-12 and Figure 5-14. 

 The framework supports conducting sensitivity analysis and ranking 

different basic events according to their level of contribution to the 

top event. Thus, the framework can aid risk response planning by 

working on establishing mitigation strategies that can either 

eliminate or reduce the chances of the occurrence of the highest 

ranked root causes. 

In addition to the academic contributions, the framework also offers 

several industrial contributions, which can be summarized as follows:  

 The framework offers risk analysts a framework that can reason 

about and calculate the level of risk criticality, calculate the 

probability of occurrence, and calculate the expected monetary 

value even if data are not available or are hard to obtain, and allow 

experts to express themselves linguistically. 

 Risk criticality analysis offers the advantages of judging the level of 

risk criticality at the project level as well as at the portfolio level, as 

illustrated in Figure 6-1, Figure 6-2, Figure 6-3, and Table 6-1. 
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 Risk criticality analysis aids the decision of identifying which risk 

events are required to undergo detailed root cause analysis. In this 

regard, any risk event that was assessed to fall in categories 5 to 9, 

described in Table 4-4, is required to undergo detailed root cause 

analysis.   

 Risk criticality analysis helps in identifying training requirements for 

different risk owners. Risk events that were assessed as critical risk 

events at the portfolio level are required to be further analyzed to 

define the root causes. If the root causes were attributed to the lack 

of required training, then organizations can work on establishing 

training for different risk owners to close the gap. 

 Risk criticality analysis aids in the identification of effective 

response strategies for future usage in new projects, and weak 

response strategies for future avoidance and improvement. By 

monitoring the deviation of the RCN of each risk event from one 

reporting period to another, analyzing the findings, and 

documenting the reason behind the deviation, the organization can 

identify effective and weak risk response strategies.  

 Fault trees offer the contribution of explaining the logic behind how 

different root causes may interact to cause the risk event.  

 Fault trees offer the contribution of supporting decision-makers to 

work on creating proactive risk response strategies by working on 

eliminating critical root causes.  
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7.3 Recommendations for Future Work  

The methodology presented in this research and the findings 

obtained have created more interest for future research by incorporating 

FMEA, fault trees, and event tree. Future work can be conducted by 

building upon the findings from this study, and can be summarized as 

follows:  

 The rule base of the fuzzy expert system reflects the participant 

organization’s perspective toward risk. More testing and validation 

is required to be conduct in the future in case of any change of 

the organizational policy toward risk or if it is required to use this 

model within other organization.  

    The membership functions of probability of occurrence, cost 

impact, time impact, and scope/quality impact were all 

represented using trapezoidal and triangular membership 

functions. Other forms of the membership function can be used in 

the future and sensitivity analysis can be conducted to verify the 

sensitivity of the model to the change of the membership function 

shape.     

 More sensitivity analysis is also required to be conducted to 

explore changes of the t-norm operator to represent an (AND) 

logic, change of the s-norms operator to represent an (OR) logic, 

change of the implication, aggregation, and the defuzzification 
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method, and also to explore which rules are fired and which are 

unnecessary and can be eliminated from the rule base.  

 The proposed application of fuzzy fault tree and fuzzy event tree 

has been tested and validated by using one critical risk event. To 

generalize the applicability, the framework should be tested using 

more risk events.  

 The direct method with one expert is used to elicit the 

membership functions for probability of occurrence (P), impact (I), 

and detection/control (D). Other methods, such as direct methods 

with multiple experts or indirect methods with one or multiple 

experts, can be investigated and the results can be compared. 

 The fuzzy fault tree analysis and fuzzy event tree analysis were 

both conducted using trapezoidal membership functions to 

represent the fuzzy probability of basic events and the impact of 

risk, as shown in Figure 5-3 and Table 5-21. Future research can 

be conducted to investigate the use of other shapes of 

membership functions, and the results can be compared.  

 The impact table for the event tree analysis is represented using 

the cost impact. Other dimensions of the impact can be used in 

the future such as; time, safety, and environment to represent the 

impact and to calculate the expected monetary value.    

 The framework considers defuzzifying the expected monetary 

value (EMV) using the mean of maximum to provide an estimated 
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dollar value of the risk magnitude.  Future research can be 

conducted to investigate different possibility-probability 

transformation approaches to provide probabilistic assessment of 

the EMV.     

 The framework can be further enhanced by collecting a database 

for root causes of critical risk events and establishing a framework 

to automate the creation of the fault tree structure out of the 

collected root causes. 

 The probability of occurrence of risk events were assessed using 

subjective numerical terms such as: low, medium, high. More 

objective terms can be used in the future by using terms such as 

“expected to occur once per (year/decade/lifetime) within (this 

project/this company/this country/anywhere in the industry)”. 

 The Beginner module of RCA support updating the weighting of 

cost, time, and scope/quality impact at the individual risk event 

while the automated module does not. Future work can be carried 

to support automating the calculation of the aggregated impact at 

the individual risk level.  
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Appendix I – Fuzzy Expert System Rule Base for RCN Calculations   

 

Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

1 VL VL VL VL 

2 VL VL L VL 

3 VL VL M VL 

4 VL VL H VL 

5 VL VL VH VL 

6 VL L VL VL-L 

7 VL L L VL-L 

8 VL L M VL-L 

9 VL L H VL 

10 VL L VH VL 

11 VL M VL L 

12 VL M L L 

13 VL M M VL-L 

14 VL M H VL 

15 VL M VH VL 

16 VL H VL L 

17 VL H L L 

18 VL H M L 

19 VL H H L 

20 VL H VH VL 
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Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

21 VL VH VL L-M 

22 VL VH L L-M 

23 VL VH M L 

24 VL VH H VL-L 

25 VL VH VH VL 

26 L VL VL L 

27 L VL L VL-L 

28 L VL M VL-L 

29 L VL H VL 

30 L VL VH VL 

31 L L VL L-M 

32 L L L L-M 

33 L L M L 

34 L L H VL 

35 L L VH VL 

36 L M VL L-M 

37 L M L L-M 

38 L M M L 

39 L M H L 

40 L M VH VL 

41 L H VL M 

42 L H L L-M 

43 L H M 

L-M 
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Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

44 L H H L 

45 L H VH L 

46 L VH VL M 

47 L VH L M 

48 L VH M L-M 

49 L VH H L 

50 L VH VH L 

51 M VL VL L-M 

52 M VL L L 

53 M VL M VL-L 

54 M VL H VL 

55 M VL VH VL 

56 M L VL L-M 

57 M L L L-M 

58 M L M L-M 

59 M L H L 

60 M L VH L 

61 M M VL H 

62 M M L M-H 

63 M M M M 

64 M M H L-M 

65 M M VH L 

66 M H VL 
 

H 
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Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

67 M H L M-H 

68 M H M M 

69 M H H L-M 

70 M H VH L 

71 M VH VL H 

72 M VH L H 

73 M VH M M-H 

74 M VH H M 

75 M VH VH L 

76 H VL VL M 

77 H VL L M 

78 H VL M L-M 

79 H VL H L 

80 H VL VH VL 

81 H L VL M-H 

82 H L L M 

83 H L M L-M 

84 H L H L 

85 H L VH L 

86 H M VL H-VH 

87 H M L H-VH 

88 H M M H 

89 H M H 

M 
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Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

90 H M VH L-M 

91 H H VL VH 

92 H H L H 

93 H H M M-H 

94 H H H M 

95 H H VH L 

96 H VH VL VH 

97 H VH L VH 

98 H VH M H 

99 H VH H M-H 

100 H VH VH L-M 

101 VH VL VL H 

102 VH VL L M-H 

103 VH VL M M 

104 VH VL H VL-L 

105 VH VL VH VL 

106 VH L VL H 

107 VH L L M-H 

108 VH L M M 

109 VH L H L-M 

110 VH L VH L 

111 VH M VL VH 

112 VH M L 

VH 
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Rule 
ID 

Impact (I) 
Probability of 

Occurrence (P) 
Detection/Control (D) 

Risk Criticality  
Number (RCN) 

113 VH M M H 

114 VH M H L-M 

115 VH M VH L 

116 VH H VL VH 

117 VH H L VH 

118 VH H M H 

119 VH H H M-H 

120 VH H VH L 

121 VH VH VL VH 

122 VH VH L VH 

123 VH VH M VH 

124 VH VH H H 

125 VH VH VH M 
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Appendix II-Sample Risk Register 

R
isk ID

 

R
isk A

rea 

R
isk 

D
escription 

T
/O

 

R
oot 

C
auses 

D
escription 

of Im
pact: 

W
B

S
 R

ef. 

R
isk 

O
w

ner 

R
isk 

S
tatus 

N
ext 

R
eview

 

P
 

C
I 

T
I 

S
I 

S
E

I 

E
I 

R
A

L
 

M
itigation

 

D
 

R
eq

uire
d 

B
y 

M
itigation

 

S
tatus 

 

 

 

                    

 

 

 

                    

 

 

                    

 

 

                    

 

 

                    

 

 

                    



273 
 

 Appendix III- Fuzzy Importance Analysis Detailed Calculation   

 

Top event fuzzy probability (TE2) after removing basic event (A) 

FPro(TE2)
α = 1- [(1- 0) * (1- FPro(C)α) * (1- (FPro(D)α) * FPro(E)α * 

FPro(F)α) ]  

 

α 
Lower 

Bound (%)  

Upper 
Bound 

(%) 
0.00 5  43 

0.05 5  42 

0.10 6  41 

0.15 6  40 

0.20 6  39 

0.25 7  38 

0.30 7  38 

0.35 7  37 

0.40 7  36 

0.45 8  35 

0.50 8  34 

0.55 8  33 

0.60 9  32 

0.65 9  31 

0.70 9  31 

0.75 9  30 

0.80 10  29 

0.85 10  28 

0.90 10  27 

0.95 11  27 

1.00 11  26 

 

TE2 =  = 18% 
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Top event fuzzy probability (TE2) after removing basic event (C) 

FPro(TE2)
α = 1- [(1- FPro(A)α) * (1- 0) * (1- (FPro(D)α) * FPro(E)α * 

FPro(F)α) ]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 18% 

 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 5  43 

0.05 5  42 

0.10 6  41 

0.15 6  40 

0.20 6  39 

0.25 7  38 

0.30 7  38 

0.35 7  37 

0.40 7  36 

0.45 8  35 

0.50 8  34 

0.55 8  33 

0.60 9  32 

0.65 9  31 

0.70 9  31 

0.75 9  30 

0.80 10  29 

0.85 10  28 

0.90 10  27 

0.95 11  27 

1.00 11  26 
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Top event fuzzy probability (TE2) after removing basic event (D) 

FPro(TE2)
α = 1- [(1- FPro(A)α) * (1- FPro(C)α) * (1- (0) * FPro(E)α * 

FPro(F)α) ]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 29% 

 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 10  55 

0.05 10  54 

0.10 11  54 

0.15 11  53 

0.20 12  52 

0.25 12  51 

0.30 13  50 

0.35 13  50 

0.40 14  49 

0.45 14  48 

0.50 14  47 

0.55 15  46 

0.60 15  45 

0.65 16  45 

0.70 16  44 

0.75 17  43 

0.80 17  42 

0.85 18  41 

0.90 18  40 

0.95 19  39 

1.00 19  38 
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Top event fuzzy probability (TE2) after removing basic event (E) 

FPro(TE2)
α = 1- [(1- FPro(A)α) * (1- FPro(C)α) * (1- (FPro(D)α) * 0 * 

FPro(F)α) ]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 29% 

 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 10  55 

0.05 10  54 

0.10 11  54 

0.15 11  53 

0.20 12  52 

0.25 12  51 

0.30 13  50 

0.35 13  50 

0.40 14  49 

0.45 14  48 

0.50 14  47 

0.55 15  46 

0.60 15  45 

0.65 16  45 

0.70 16  44 

0.75 17  43 

0.80 17  42 

0.85 18  41 

0.90 18  40 

0.95 19  39 

1.00 19  38 
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Top event fuzzy probability (TE2) after removing basic event (F) 

FPro(TE2)
α = 1- [(1- FPro(A)α) * (1- FPro(C)α) * (1- (FPro(D)α) * FPro(E)α * 

0) ]   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 29% 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 10  55 

0.05 10  54 

0.10 11  54 

0.15 11  53 

0.20 12  52 

0.25 12  51 

0.30 13  50 

0.35 13  50 

0.40 14  49 

0.45 14  48 

0.50 14  47 

0.55 15  46 

0.60 15  45 

0.65 16  45 

0.70 16  44 

0.75 17  43 

0.80 17  42 

0.85 18  41 

0.90 18  40 

0.95 19  39 

1.00 19  38 
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Appendix V- Risk Criticality Analysis Validation  

 

 RCN using Fuzzy FMEA  (Option A) RCN using Traditional FMEA  (Option B) Selection 
Option 

Risk 
Description 

P CI TI SI D RCN Corrective 
Action 

P CI TI SI AI D RCN Corrective 
Action 

RCN Action

Unavailability 
of critical 

resources - 
project team  

M L L L H 125 

Low priority to 

take any 

corrective 

action(s)/Accept

5 3 3 3 3 3 45 

Unnecessary to 

take any 

corrective 

action(s)/Accept

A A 

Late delivery 
of valve 

actuators to 
manufacturer 

in Italy 

L L M VL M 149 

Low priority to 

take any 

corrective 

action(s)/Accept

3 3 5 1 5 5 75 

Unnecessary to 

take any 

corrective 

action(s)/Accept

A A 

Limited or 
insufficient 

construction 
inspection 
resources 

M L M VL H 149 

Low priority to 

take any 

corrective 

action(s)/Accept

5 3 5 1 5 3 75 

Unnecessary to 

take any 

corrective 

action(s)/Accept

A A 

Unknown 
underground 
utilities and 

M M L L H 155 
Low priority to 

take any 

corrective 

5 5 3 3 5 3 75 
Unnecessary to 

take any 

corrective 

A A 



280 
 

obstructions  action(s)/Accept action(s)/Accept

Late delivery 
of pumps L L L L VL 200 

Somewhat 

moderate 

priority to take 

corrective 

action(s) 

/consider 

mitigation 

3 3 3 3 3 9 81 

Unnecessary to 

take any 

corrective 

action(s)/Accept

A A 

Late delivery 
of motors  L L H VL M 183 

Somewhat 

moderate 

priority to take 

corrective 

action(s) 

/consider 

mitigation 

3 3 7 1 7 5 105 

Low priority to 

take any 

corrective 

action(s)/Accept

A A 

Late delivery 
of Triple off 

valves  
M M H VL M 340 

Moderate 

priority to take 

corrective 

action(s)/ 

consider 

mitigation or 

transfer 

5 5 7 1 7 5 175 

Somewhat 

moderate 

priority to take 

corrective 

action(s) 

/consider 

mitigation 

A A 

Poor 
productivity 

due to 

M M H VL H 218 
Somewhat 

moderate 

priority to take 

5 5 7 1 7 3 105 
Low priority to 

take any 

corrective 

B B 



281 
 

severe 
weather 

corrective 

action(s) 

/consider 

mitigation 

action(s)/Accept

Transformers 
late 

procurement 
L L L VL M 114 

Low priority to 

take any 

corrective 

action(s)/Accept

3 3 3 1 3 5 45 

Unnecessary to 

take any 

corrective 

action(s)/Accept

B B 
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Appendix VI- Minimal Cut Calculations for the Case Study Using (Hauptmanns 1988) Algorithm 

 

1- Boolean matrix representation for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 
 

Gate 

event  

ID 

Gate 

type 

Basic events OR (GE) AND

(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

TE OR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 

GE1 OR 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GE2 OR 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

GE3 OR 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

GE4 OR 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

GE5 OR 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

  

TE= HDD failure to meet project objectives, GE1= Equipment unavailability, GE2= Geotechnical problems, GE3= 
Operational problems, GE4= Environmental and safety problems, GE5= Loss of drilling fluid, GE6= Environmental 
hazard. Basic events A to N are defined in Table 6-3.    
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2- Initial working Boolean matrix (WBM) representation for the case study fault tree (Figure 6-5) using (Hauptmanns 

1988) algorithm 

Start the analysis from the top event. Replace the top event in the WBS with its equivalent (basic events/ gate 

events) from the Boolean matrix. In this case study, the top event is connected by an OR gate with (GE1, GE2, 

GE3, GE4). Thus, rule (3a), refer to section 3.3.3.1, is applied.  

 

Basic events OR (GE) AND

(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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3- Working Boolean matrix iteration (1) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By doing the first scan on the initial working Boolean matrix, as defined in the previous step, 

there is a connection “1” under GE1 and it is an OR Gate. Thus, applying rule (4a), GE1 is replaced with its 

equivalent (basic events), i.e., A, B, and C, each one is in a separate raw.  

Basic events OR (GE) AND(GE) 

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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4- Working Boolean matrix iteration (2) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By scanning the working Boolean matrix, as defined in the previous step, there is a connection 

“1” under GE2 and it is an OR Gate. Thus, applying rule (4a), GE2 is replaced with its equivalent (basic events/ 

gate events), i.e., D, E, F and GE5, each one is in a separate raw.   

Basic events OR (GE) AND(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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5- Working Boolean matrix iteration (3) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By scanning the working Boolean matrix, as defined in the previous step, there is a connection 

“1” under GE5 and it is an OR Gate. Thus, applying rule (4a), GE5 is replaced with its equivalent (basic events), 

i.e., K, and L each one is in a separate raw.   

Basic events OR (GE) AND(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
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6- Working Boolean matrix iteration (4) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By scanning the working Boolean matrix, as defined in the previous step, there is a connection 

“1” under GE3 and it is an OR Gate. Thus, applying rule (4a), GE3 is replaced with its equivalent (basic events), 

i.e., G, H, and I each one is in a separate raw.   
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Basic events OR (GE) AND(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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7- Working Boolean matrix iteration (5) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By scanning the working Boolean matrix, as defined in the previous step, there is a connection 

“1” under GE4 and it is an OR Gate. Thus, applying rule (4a), GE4 is replaced with its equivalent (basic events/ 

gate events), i.e., GE6, and J each one is in a separate raw.   
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Basic events OR (GE) AND(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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8- Working Boolean matrix iteration (6) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  If so, then replace each gate event in the WBM with its equivalent (basic events/gate events) from 

the Boolean matrix. By scanning the working Boolean matrix, as defined in the previous step, there is a connection 

“1” under GE6 and it is an OR Gate. Thus, applying rule (4a), GE6 is replaced with its equivalent (basic events), 

i.e., M, and N each one is in a separate raw.   
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Basic events OR (GE) AND(GE)

A B C D E F G H I J K L M N TE GE1 GE2 GE3 GE4 GE5 GE6  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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9- Working Boolean matrix iteration (7) for the case study fault tree (Figure 6-5) using (Hauptmanns 1988) algorithm 

 

Scan all the rows of the WBM to check if there is any connection “1” under any of the two blocks named “OR (GE)” 

and “AND (GE).  Further scanning for the working Boolean matrix indicates that there is “No” connection, i.e., “0”s 

in the last two blocks, i.e., “OR (GE)” and “AND (GE)”. Thus, the last matrix represents the final WBM and the MCS 

equations can be written by converting each connection “1” in a row with its related basic event, and connect basic 

event(s) within each row using intersection “”. For example, the first row in can be read as “A”. Basic event(s) in a 

row is/are connected with basic event(s) in another row using the union “” operator. For example, the first and the 

second rows in the final WBM can be read as “A”  “B”. By applying the above mentioned rules to all the rows in 

the final WBM, the following MCS equations are obtained.  

TE=   A  B  C  D  E  F  K  L  G  H  I   J  M  N  

M1= (A), M2= (B), M3=(C), M4= (D), M5= (E), M6=(F), M7= (K), M8= (L), M9= (G), M10= (H), M11= (I), M12=(J), 

M13=(M), M14= (N)   

    Where M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14 are the minimal cut sets.
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Appendix VII- Alpha Cut Representation for Basic Events    

 

Alpha cut representation of basic event (A) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.22 0.67 
0.05 0.22 0.66 
0.10 0.23 0.65 
0.15 0.23 0.64 
0.20 0.24 0.64 
0.25 0.24 0.63 
0.30 0.25 0.62 
0.35 0.26 0.61 
0.40 0.26 0.60 
0.45 0.27 0.59 
0.50 0.27 0.59 
0.55 0.28 0.58 
0.60 0.28 0.57 
0.65 0.29 0.56 
0.70 0.30 0.55 
0.75 0.30 0.54 
0.80 0.31 0.53 
0.85 0.31 0.53 
0.90 0.32 0.52 
0.95 0.32 0.51 
1.00 0.33 0.50 

 

 a b a α 

   

According to Figure 5-3, the membership function of “high” probability is 
represented as follows: 

 a b c d 

Basic Event A 0.22 0.33 0.50 0.67 
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Alpha cut representation of basic event (B) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event B 0.05 0.10 0.22 0.33 
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Alpha cut representation of basic event (C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “low” probability is 
represented as follows: 

 a b c d 

Basic Event C 0.00 0.01 0.05 0.10 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 

0.01 0.05 
1.00 0.01 0.05 
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Alpha cut representation of basic event (D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event D 0.05 0.10 0.22 0.33 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 
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Alpha cut representation of basic event (E) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event E 0.05 0.10 0.22 0.33 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 



299 
 

Alpha cut representation of basic event (F) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event F 0.05 0.10 0.22 0.33 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 
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Alpha cut representation of basic event (G) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “low” probability is 
represented as follows: 

 a b c d 

Basic Event G 0.00 0.01 0.05 0.10 

 

α 
Lower Bound 

* 
 

 

Upper Bound 
** 
 

0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 0.01 0.05 
1.00 0.01 0.05 
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Alpha cut representation of basic event (H) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “vey low” probability 
is represented as follows: 

 a b c d 

Basic Event H 0.00 0.00 0.00 0.01 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.00 0.01 
0.05 0.00 0.01 
0.10 0.00 0.01 
0.15 0.00 0.01 
0.20 0.00 0.01 
0.25 0.00 0.01 
0.30 0.00 0.01 
0.35 0.00 0.01 
0.40 0.00 0.01 
0.45 0.00 0.01 
0.50 0.00 0.01 
0.55 0.00 0.00 
0.60 0.00 0.00 
0.65 0.00 0.00 
0.70 0.00 0.00 
0.75 0.00 0.00 
0.80 0.00 0.00 
0.85 0.00 0.00 
0.90 0.00 0.00 
0.95 0.00 0.00 
1.00 0.00 0.00 
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Alpha cut representation of basic event (I) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “low” probability is 
represented as follows: 

 a b c d 

Basic Event I 0.00 0.01 0.05 0.10 

 

α 
Lower Bound 

* 
 

 

Upper Bound 
** 
 

0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 0.01 0.05 
1.00 0.01 0.05 
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Alpha cut representation of basic event (J) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “low” probability is 
represented as follows: 

 a b c d 

Basic Event J 0.00 0.01 0.05 0.10 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 0.01 0.05 
1.00 0.01 0.05 
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Alpha cut representation of basic event (K) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the memberships function of ““low” probability is 
represented as follows: 

 a b c d 

Basic Event K 0.00 0.01 0.05 0.10 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 0.01 0.05 
1.00 0.01 0.05 
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Alpha cut representation of basic event (L) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event L 0.05 0.10 0.22 0.33 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 
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Alpha cut representation of basic event (M) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “very low” probability 
is represented as follows: 

 a b c d 

Basic Event M 0.00 0.00 0.00 0.01 

 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 

0.00 0.01 
0.05 

0.00 0.01 
0.10 

0.00 0.01 
0.15 

0.00 0.01 
0.20 

0.00 0.01 
0.25 

0.00 0.01 
0.30 

0.00 0.01 
0.35 

0.00 0.01 
0.40 

0.00 0.01 
0.45 

0.00 0.01 
0.50 

0.00 0.01 
0.55 

0.00 0.00 
0.60 

0.00 0.00 
0.65 

0.00 0.00 
0.70 

0.00 0.00 
0.75 

0.00 0.00 
0.80 

0.00 0.00 
0.85 

0.00 0.00 
0.90 

0.00 0.00 
0.95 

0.00 0.00 
1.00 

0.00 0.00 
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Alpha cut representation of basic event (N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event N 0.05 0.10 0.22 0.33 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 
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Appendix VIII- Detailed Calculation of the Term (1- FPro (Basic 
event)α)  for the Case Study  

 

(1- FPro (A)α) 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.78 0.33 
0.05 0.78 0.34 
0.10 0.77 0.35 
0.15 0.77 0.36 
0.20 0.76 0.36 
0.25 0.76 0.37 
0.30 0.75 0.38 
0.35 0.74 0.39 
0.40 0.74 0.40 
0.45 0.73 0.41 
0.50 0.73 0.42 
0.55 0.72 0.42 
0.60 0.72 0.43 
0.65 0.71 0.44 
0.70 0.70 0.45 
0.75 0.70 0.46 
0.80 0.69 0.47 
0.85 0.69 0.47 
0.90 0.68 0.48 
0.95 0.68 0.49 
1.00 0.67  0.50 
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(1- FPro (B)α) 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 
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(1- FPro (C)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
α 

Lower 
Bound 

 

 Upper 
Bound 

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 

0.99 0.95 
1.00 0.99 0.95 



311 
 

(1- FPro (D)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95  0.67 
0.05 0.95  0.68 
0.10 0.95  0.68 
0.15 0.94  0.69 
0.20 0.94  0.69 
0.25 0.94  0.70 
0.30 0.94  0.70 
0.35 0.93  0.71 
0.40 0.93  0.72 
0.45 0.93  0.72 
0.50 0.93  0.73 
0.55 0.92  0.73 
0.60 0.92  0.74 
0.65 0.92  0.74 
0.70 0.92  0.75 
0.75 0.91  0.76 
0.80 0.91  0.76 
0.85 0.91  0.77 
0.90 0.91  0.77 
0.95 0.90  0.78 
1.00 0.90  0.78 
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(1- FPro (E)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.78 
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(1- FPro (F)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.78 
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(1- FPro (G)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower Bound

 
 Upper Bound

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 0.99 0.95 
1.00 0.99 0.95 
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(1- FPro (H)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 1.00 0.99 
0.05 1.00 0.99 
0.10 1.00 0.99 
0.15 1.00 0.99 
0.20 1.00 0.99 
0.25 1.00 0.99 
0.30 1.00 0.99 
0.35 1.00 0.99 
0.40 1.00 0.99 
0.45 1.00 0.99 
0.50 1.00 1.00 
0.55 1.00 1.00 
0.60 1.00 1.00 
0.65 1.00 1.00 
0.70 1.00 1.00 
0.75 1.00 1.00 
0.80 1.00 1.00 
0.85 1.00 1.00 
0.90 1.00 1.00 
0.95 1.00 1.00 
1.00 1.00 1.00 
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(1- FPro (I)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower Bound

 
 Upper Bound

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 0.99 0.95 
1.00 0.99 0.95 
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(1- FPro (J)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 0.99 0.95 
1.00 0.99 0.95 
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(1- FPro (K)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 0.99 0.95 
1.00 0.99 0.95 
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(1- FPro (L)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.78 
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(1- FPro (M)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 
1.00 0.99 

0.05 
1.00 0.99 

0.10 
1.00 0.99 

0.15 
1.00 0.99 

0.20 
1.00 0.99 

0.25 
1.00 0.99 

0.30 
1.00 0.99 

0.35 
1.00 0.99 

0.40 
1.00 0.99 

0.45 
1.00 0.99 

0.50 
1.00 1.00 

0.55 
1.00 1.00 

0.60 
1.00 1.00 

0.65 
1.00 1.00 

0.70 
1.00 1.00 

0.75 
1.00 1.00 

0.80 
1.00 1.00 

0.85 
1.00 1.00 

0.90 
1.00 1.00 

0.95 
1.00 1.00 

1.00 
1.00 1.00 



321 
 

(1- FPro (N)α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.78 
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Appendix IX- Top Event Fuzzy Probability (TE1) for the Case Study  

 

FPro (Top Event)α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- 
FPro (D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) 
*(1- FPro (I)α) *(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) 
*(1- FPro (N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE1 =  = 79% 

 

α 
Lower 
Bound 

% 

 Upper 
Bound 

% 
0.00 42   98 
0.05 44   98 
0.10 45   98 
0.15 47   98 
0.20 48   98 
0.25 49   97 
0.30 51   97 
0.35 52   97 
0.40 53   97 
0.45 54   96 
0.50 56   96 
0.55 57   96 
0.60 58   95 
0.65 59   95 
0.70 60   94 
0.75 61   94 
0.80 62   93 
0.85 63   93 
0.90 64   92 
0.95 65   92 
1.00 66   91 
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Appendix X- Top Event Fuzzy Probability Calculations for Fuzzy 
Importance Analysis  

 

Top event fuzzy probability (TE2) after removing basic event (A) 

FPro (TE2)
α = 1- [(1- 0) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro (D)α) *(1- 

FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) *(1- 
FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro (N)α)]   

 

α 
Lower 

Bound (%)  

Upper 
Bound 

(%) 
0.00 26 95 

0.05 28 94 

0.10 29 94 

0.15 30 94 

0.20 32 93 

0.25 33 93 

0.30 34 92 

0.35 35 92 

0.40 37 91 

0.45 38 91 

0.50 39 90 

0.55 40 89 

0.60 41 89 

0.65 42 88 

0.70 43 87 

0.75 44 87 

0.80 45 86 

0.85 46 85 

0.90 47 84 

0.95 48 83 

1.00 49 82 

 

TE2 =  = 66% 
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Top event fuzzy probability (TE2) after removing basic event (B) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- 0) *(1- FPro (C)α) *(1- FPro (D)α) *(1- 

FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) *(1- 
FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro (N)α)]   

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 39 97 

0.05 40 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 

 

 

TE2 =  = 75% 

 

 

 



325 
 

Top event fuzzy probability (TE2) after removing basic event (C) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- 0) *(1- FPro (D)α) *(1- 

FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) *(1- 
FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro (N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 78% 

 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 97 

0.25 49 97 

0.30 50 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 55 96 

0.55 56 95 

0.60 58 95 

0.65 59 94 

0.70 60 94 

0.75 61 93 

0.80 62 93 

0.85 63 92 

0.90 64 92 

0.95 65 91 

1.00 66 90 
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Top event fuzzy probability (TE2) after removing basic event (D) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- 0) *(1- 

FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) *(1- 
FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro (N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 75% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 39 97 

0.05 41 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 
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Top event fuzzy probability (TE2) after removing basic event (E) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- 0) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) 
*(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 75% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 39 97 

0.05 41 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 
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Top event fuzzy probability (TE2) after removing basic event (F) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- 0) *(1- FPro (G)α) *(1- FPro (H)α) *(1- FPro (I)α) 
*(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 75% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 39 97 

0.05 41 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 
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Top event fuzzy probability (TE2) after removing basic event (G) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- 0) *(1- FPro (H)α) *(1- FPro (I)α) 
*(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 78% 

 

α 
Lower Bound

(%)  
Upper Bound

(%) 

0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 97 

0.25 49 97 

0.30 50 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 55 96 

0.55 56 95 

0.60 58 95 

0.65 59 94 

0.70 60 94 

0.75 61 93 

0.80 62 93 

0.85 63 92 

0.90 64 92 

0.95 65 91 

1.00 66 90 
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Top event fuzzy probability (TE2) after removing basic event (H) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- 0) *(1- FPro (I)α) 
*(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 79% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 98 

0.25 49 97 

0.30 51 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 56 96 

0.55 57 96 

0.60 58 95 

0.65 59 95 

0.70 60 94 

0.75 61 94 

0.80 62 93 

0.85 63 93 

0.90 64 92 

0.95 65 92 

1.00 66 91 
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Top event fuzzy probability (TE2) after removing basic event (I) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 0) 
*(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 78% 

 

 

α 
Lower Bound

(%)  
Upper Bound

(%) 

0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 97 

0.25 49 97 

0.30 50 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 55 96 

0.55 56 95 

0.60 58 95 

0.65 59 94 

0.70 60 94 

0.75 61 93 

0.80 62 93 

0.85 63 92 

0.90 64 92 

0.95 65 91 

1.00 66 90 
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Top event fuzzy probability (TE2) after removing basic event (J) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 
FPro (I)α) *(1- 0) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2=  = 78% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 97 

0.25 49 97 

0.30 50 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 55 96 

0.55 56 95 

0.60 58 95 

0.65 59 94 

0.70 60 94 

0.75 61 93 

0.80 62 93 

0.85 63 92 

0.90 64 92 

0.95 65 91 

1.00 66 90 
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Top event fuzzy probability (TE2) after removing basic event (K) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 
FPro (I)α) *(1- FPro (J)α) *(1- 0) *(1- FPro (L)α) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 78% 

 

 

α 
Lower 

Bound (%)  

Upper 
Bound 

(%) 
0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 97 

0.25 49 97 

0.30 50 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 55 96 

0.55 56 95 

0.60 58 95 

0.65 59 94 

0.70 60 94 

0.75 61 93 

0.80 62 93 

0.85 63 92 

0.90 64 92 

0.95 65 91 

1.00 66 90 
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Top event fuzzy probability (TE2) after removing basic event (L) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 
FPro (I)α) *(1- FPro (J)α) *(1- FPro (K)α) *(1- 0) *(1- FPro (M)α) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2 =  = 75% 

 

 

α 
Lower 

Bound (%)  

Upper 
Bound 

(%) 
0.00 39 97 

0.05 41 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 
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Top event fuzzy probability (TE2) after removing basic event (M) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 
FPro (I)α) *(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- 0) *(1- FPro 
(N)α)]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2=  = 79% 

 

 

α 
Lower 

Bound (%)  

Upper 
Bound 

(%) 
0.00 42 98 

0.05 44 98 

0.10 45 98 

0.15 47 98 

0.20 48 98 

0.25 49 97 

0.30 51 97 

0.35 52 97 

0.40 53 96 

0.45 54 96 

0.50 56 96 

0.55 57 95 

0.60 58 95 

0.65 59 95 

0.70 60 94 

0.75 61 94 

0.80 62 93 

0.85 63 93 

0.90 64 92 

0.95 65 92 

1.00 66 91 
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Top event fuzzy probability (TE2) after removing basic event (N) 

FPro (TE2)
α = 1- [(1- FPro (A)α) * (1- FPro (B)α) *(1- FPro (C)α) *(1- FPro 

(D)α) *(1- FPro (E)α) *(1- FPro (F)α) *(1- FPro (G)α) *(1- FPro (H)α) *(1- 
FPro (I)α) *(1- FPro (J)α) *(1- FPro (K)α) *(1- FPro (L)α) *(1- FPro (M)α) *(1-
0)] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TE2=  = 75% 

 

 

α 
Lower 
Bound 

(%) 
 

Upper 
Bound 

(%) 
0.00 39 97 

0.05 41 97 

0.10 42 97 

0.15 43 97 

0.20 45 96 

0.25 46 96 

0.30 47 96 

0.35 48 95 

0.40 50 95 

0.45 51 95 

0.50 52 94 

0.55 53 94 

0.60 54 93 

0.65 55 93 

0.70 56 92 

0.75 57 92 

0.80 58 91 

0.85 59 91 

0.90 60 90 

0.95 61 89 

1.00 62 88 
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Appendix XI- Failure of Mitigation (1) – (T1) Fuzzy Probability 
Calculations     

Alpha cut representation of basic event (A) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event A 0.05 0.10 0.22 0.33 
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Alpha cut representation of basic event (B) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event B 0.05 0.10 0.22 0.33 
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(1- FPro (A)α) 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 

 

 

 

 

 

 

 

 

 



340 
 

(1- FPro (B)α) 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 
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FPro (T1)α = 1- [(1- FPro (A)α) * (1- FPro (B)α) ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 =  = 29% 

 

 

 

 

α 
Lower 
Bound 

% 

 Upper 
Bound 

% 
0.00 10 55 
0.05 10 54 
0.10 11 54 
0.15 11 53 
0.20 12 52 
0.25 12 51 
0.30 13 50 
0.35 13 50 
0.40 14 49 
0.45 14 48 
0.50 14 47 
0.55 15 46 
0.60 15 45 
0.65 16 45 
0.70 16 44 
0.75 17 43 
0.80 17 42 
0.85 18 41 
0.90 18 40 
0.95 19 39 
1.00 19 38 
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Appendix XII- Failure of Mitigation (2) – (T2) Fuzzy Probability 
Calculations   

Alpha cut representation of basic event (C) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.22 0.67 
0.05 0.22 0.66 
0.10 0.23 0.65 
0.15 0.23 0.64 
0.20 0.24 0.64 
0.25 0.24 0.63 
0.30 0.25 0.62 
0.35 0.26 0.61 
0.40 0.26 0.60 
0.45 0.27 0.59 
0.50 0.27 0.59 
0.55 0.28 0.58 
0.60 0.28 0.57 
0.65 0.29 0.56 
0.70 0.30 0.55 
0.75 0.30 0.54 
0.80 0.31 0.53 
0.85 0.31 0.53 
0.90 0.32 0.52 
0.95 0.32 0.51 
1.00 0.33 0.50 

 

 a b a α 

   

According to Figure 5-3, the membership function of “high” probability is 
represented as follows: 

 a b c d 

Basic Event A 0.22 0.33 0.50 0.67 
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Alpha cut representation of basic event (D) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event B 0.05 0.10 0.22 0.33 
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(1- FPro (C)α) 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.78 0.33 
0.05 0.78 0.34 
0.10 0.77 0.35 
0.15 0.77 0.36 
0.20 0.76 0.36 
0.25 0.76 0.37 
0.30 0.75 0.38 
0.35 0.74 0.39 
0.40 0.74 0.40 
0.45 0.73 0.41 
0.50 0.73 0.42 
0.55 0.72 0.42 
0.60 0.72 0.43 
0.65 0.71 0.44 
0.70 0.70 0.45 
0.75 0.70 0.46 
0.80 0.69 0.47 
0.85 0.69 0.47 
0.90 0.68 0.48 
0.95 0.68 0.49 
1.00 0.67 0.50 
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(1- FPro (D)α) 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 
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FPro (T2)α = 1- [(1- FPro (C)α) * (1- FPro (D)α) ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2 =  = 50% 

 

 

 

 

α 
Lower 
Bound 

% 

 Upper 
Bound 

% 
0.00 25 78 
0.05 26 77 
0.10 27 76 
0.15 28 76 
0.20 28 75 
0.25 29 74 
0.30 30 73 
0.35 31 72 
0.40 31 72 
0.45 32 71 
0.50 33 70 
0.55 33 69 
0.60 34 68 
0.65 35 67 
0.70 36 66 
0.75 36 65 
0.80 37 64 
0.85 38 64 
0.90 38 63 
0.95 39 62 
1.00 40 61 
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Appendix XIII- Failure of Mitigation (3) – (T3) Fuzzy Probability 
Calculations   

Alpha cut representation of basic event (E) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.00 0.10 
0.05 0.00 0.10 
0.10 0.00 0.10 
0.15 0.00 0.09 
0.20 0.00 0.09 
0.25 0.00 0.09 
0.30 0.00 0.09 
0.35 0.00 0.08 
0.40 0.00 0.08 
0.45 0.00 0.08 
0.50 0.01 0.08 
0.55 0.01 0.07 
0.60 0.01 0.07 
0.65 0.01 0.07 
0.70 0.01 0.07 
0.75 0.01 0.06 
0.80 0.01 0.06 
0.85 0.01 0.06 
0.90 0.01 0.06 
0.95 0.01 0.05 
1.00 0.01 0.05 

 

 a b a α 

   

According to Figure 5-3, the membership function of “low” probability is 
represented as follows: 

 a b c d 

Basic Event A 0 0.01 0.05 0.10 
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Alpha cut representation of basic event (F) 

α 
Lower 

Bound * 
 

 

Upper 
Bound ** 

 
0.00 0.05 0.33 
0.05 0.05 0.32 
0.10 0.06 0.32 
0.15 0.06 0.31 
0.20 0.06 0.31 
0.25 0.06 0.30 
0.30 0.07 0.30 
0.35 0.07 0.29 
0.40 0.07 0.28 
0.45 0.07 0.28 
0.50 0.08 0.27 
0.55 0.08 0.27 
0.60 0.08 0.26 
0.65 0.08 0.26 
0.70 0.09 0.25 
0.75 0.09 0.24 
0.80 0.09 0.24 
0.85 0.09 0.23 
0.90 0.10 0.23 
0.95 0.10 0.22 
1.00 0.10 0.22 

 

 a b a α 

   

According to Figure 5-3, the membership function of “medium” probability 
is represented as follows: 

 a b c d 

Basic Event B 0.05 0.10 0.22 0.33 
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(1- FPro (E)α) 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 1.00 0.90 
0.05 1.00 0.90 
0.10 1.00 0.91 
0.15 1.00 0.91 
0.20 1.00 0.91 
0.25 1.00 0.91 
0.30 1.00 0.92 
0.35 1.00 0.92 
0.40 1.00 0.92 
0.45 1.00 0.92 
0.50 1.00 0.93 
0.55 0.99 0.93 
0.60 0.99 0.93 
0.65 0.99 0.93 
0.70 0.99 0.94 
0.75 0.99 0.94 
0.80 0.99 0.94 
0.85 0.99 0.94 
0.90 0.99 0.95 
0.95 0.99 0.95 
1.00 0.99 0.95 
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(1- FPro (F)α) 

 

α 
Lower 
Bound 

 

 Upper 
Bound 

0.00 0.95 0.67 
0.05 0.95 0.68 
0.10 0.95 0.68 
0.15 0.94 0.69 
0.20 0.94 0.69 
0.25 0.94 0.70 
0.30 0.94 0.70 
0.35 0.93 0.71 
0.40 0.93 0.72 
0.45 0.93 0.72 
0.50 0.93 0.73 
0.55 0.92 0.73 
0.60 0.92 0.74 
0.65 0.92 0.74 
0.70 0.92 0.75 
0.75 0.91 0.76 
0.80 0.91 0.76 
0.85 0.91 0.77 
0.90 0.91 0.77 
0.95 0.90 0.78 
1.00 0.90 0.79 
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FPro (T3)α = 1- [(1- FPro (E)α) * (1- FPro (F)α) ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T3 =  = 18% 

 

 

 

 

 

α 
Lower 
Bound 

% 

 Upper 
Bound 

% 
0.00 5 40 
0.05 5 39 
0.10 6 38 
0.15 6 38 
0.20 6 37 
0.25 6 36 
0.30 7 36 
0.35 7 35 
0.40 7 34 
0.45 8 33 
0.50 8 33 
0.55 8 32 
0.60 9 31 
0.65 9 31 
0.70 9 30 
0.75 9 29 
0.80 10 28 
0.85 10 28 
0.90 10 27 
0.95 11 26 
1.00 11 25 
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Appendix XIV- Risk Criticality Analyzer and Fuzzy Reliability Analyzer 

Contribution Validation  

Name (Optional): 

Position: 

Years of Experience:  

You were given the following two options (numerical scale versus linguistic scale) to 

assess probability of occurrence, impact, and level of detection/ control of risk. Please 

select which option that is more preferable to conduct your assessment and provide 

reason behind your choice.   

Table 1. Option 1- Probability of occurrence (P) rating evaluation criteria  

Rating Description 

1 Failure is unlikely. 

2–3 Only isolated failures associated with almost identical 

4–6 Failure of similar processes that have experienced occasional 

failures, but not in minor operations. 
7–8 Failure associated with similar processes that have often 
9–10 Failure is almost inevitable. 

 

Table 2. Option2- Probability of occurrence  

Linguistic term Probability of occurrence (P) 

Very High (VH) > 67% (2/3) chance.  

High (H) Between 33%–67% (2/3) chance.  

Medium (M) Between 10%–33% (1/3) chance. Event may occur. 

Low (L) Between 1%–10% chance. Event is unlikely to occur.  

Very Low (VL) Less than 1% chance. Event is highly unlikely to occur. 
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Answer: 

Why?  

Table 3. Option1- Impact (I) rating evaluation criteria 

Rating Description 

1 No effect 

2–3 Slightly noticeable 

4–6 Noticeable effect on subsystem 

7–8 Effects on major system, but not on safety or government regulated 

compliance items 

9–10 Effects on safety or involving noncompliance with government regulation 

 

Table 4. Option 2-Impact (I) rating evaluation criteria 

Terms Impact categories 

Cost Time Scope/quality 

Very High 
(VH) 

Cost increase is ≥ 
10% of project cost. 

In service date delayed 
≥ 10% of project 
duration. 

Project scope or 
quality does not 
meet business 

High 

 (H) 

Cost increase is ≥ 7% 
and < 10% of project 
cost. 

In service date delayed 
≥ 7% and < 10% of 
project duration. 

 

Scope changes or 
quality are 
unacceptable to 
project sponsor. 

Medium 

 (M) 

Cost increase is ≥ 4% 
and < 7% of project 
cost. 

In service date delayed 
≥ 4% and < 7% of 
project duration. 

Major areas of scope 
or quality are 
affected. 

Low  

(L) 

Cost increase is ≥ 1% 
and < 4% of project 
cost. 

In service date delayed 
≥ 1% and < 4% of 
project duration. 

Few areas of scope 
or quality are 
affected.  

Very Low  

(VL) 

< 1% of project cost. Insignificant schedule 
slippage.  

Scope change is not 
noticeable/quality 
degradation is not 
noticeable. 
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Answer: 

Why?  

Table 5. Option 1-detection rating evaluation criteria   

Rating Description 

10 Controls will not detect a defect. 

9 Controls probably will not detect a defect. 

7–8 Controls have a poor chance of detecting a defect. 

5–6 Controls may detect a defect. 

3–4 Controls have a good chance of detecting a defect.  

1–2 Controls certainly will detect a defect. 

 

Table 6. Option 2-Linguistic definition of detection/control (D)  

 

Answer: 

Terms Detection/control 

Very Low 
(VL) 

The project team was unable to identify a risk response strategy capable of 
detecting the risk event, controlling root causes, and controlling the 
consequence of the risk event.  

Low (L) The project team has identified a risk response strategy with a low chance of 
detecting the risk event, controlling the root causes, and controlling the 
consequence of the risk event.  

Moderate 
(M) 

The project team has identified a risk response strategy with a moderate 
chance of detecting the risk event, controlling the root causes, and 
controlling the consequence of the risk event.  

High (H) The project team has identified a risk response strategy with a high chance 
of detecting the risk event, controlling the root causes, and controlling the 
consequence of the risk event.  

Very High 
(VH) 

The project team has identified a risk response strategy that has been 
proven in the past to have high effectiveness in detecting the risk event, 
controlling the root causes, and controlling the consequence of the risk 
event.  
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Why?  

 

2- Given what we have presented so far, do you think that this system is 

transparent to track the results? Can we use this fuzzy expert system to 

educate new employees in this field?  

 

 

3- Do you see any advantage of adding three dimensions, i.e., cost, time 

and quality to measure the impact versus using one dimension to assess 

the impact?  

 

 

4- Is there is any value added of using linguistic scale to assess probability 

of occurrence, cost impact, time impact? What do you think about using 

numerical scale? 

 

 

5- Consider that the (if then) rules in appendix (I) were changed to an 

Excel lookup table and used to calculate the RCN. Do you think that there 

is any value added of considering the use of a fuzzy expert system?   
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6- Do you think that this framework is a generic framework that can be 

applied elsewhere? If not, what is required to be modified to enhance this 

framework?   

 

 

7- Do you think that combining event tree with fault tree can support other 

risk management activities? If so, can you please list some?  

 

 

8- Do you think that ranking of root causes using fuzzy importance 

analysis is a value added compared to other approaches?   

 

 

 

9- Please provide a comparison between Monte Carlo simulations to the 

concept presented using fuzzy reliability analyzer? Any value added? 

 

 

 

10- In your view, do you think that the aggregated impact, i.e., the 

combination of cost, time, and quality, is better being calculated at the 

project level or the risk level? In other words, do we need to run fuzzy 

AHP analysis and revise the aggregated impact equation for every risk 



357 
 

event in the risk register before calculating the risk criticality number 

(RCN) or just use a consistent weighting to calculate the aggregated 

impact for all the risk events? Why?  

 

 

11- Risk criticality Analyzer does not consider safety impact and 

environmental impact in calculating the aggregated impact value. Do 

you consider this as one of the limitations of this study? Please support 

your answer with more details.  

 


