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Abstract

A sequence with similarity to mammalian chemokine CCL19 was 

identified in an expressed sequence tag project to identify duck genes relevant to 

immunity. Mammalian CCL19 recruits antigen presenting cells and lymphocytes 

to the secondary lymphoid organs. Northern hybridization indicated significant 

expression of the transcript in spleen and lung. Southern blot analysis showed two 

hybridizing bands, suggesting CCL19 most likely exists in two copies in the duck 

genome. The sequence encoding the mature protein was directionally cloned into 

the pET29b vector with a 6 X Histidine-tag at the carboxyl terminus. Recombinant 

duck CCL19 made in a bacterial expression system was purified by affinity 

column chromatography and tested for biological activity in vitro. A gradient of 

CCL19 attracted duck peripheral blood leukocytes in a transwell migration assay.
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1. INTRODUCTION

1.1 Chemokines

The generation of protective immunity against pathogens and the effective 

maintenance of immune surveillance is manifested by the orchestrated movement 

of leukocytes within distinct microenvironments (Nagira et al. 1997; Dieu et al. 

1998; Gunn et al. 1998; Forster et al. 1999; Sallusto and Lanzavecchia 2000). The 

key players in guiding the leukocytes through the tissues and peripheral lymphoid 

organs are small, secreted polypeptides known as chemokines (Ebert et al. 2005; 

Limatola et al. 2005). Chemokines are a family of specialized cytokines with a 

molecular weight of 8-12 kDa, that primarily mediate leukocyte trafficking under 

basal and inflammatory conditions (reviewed by Fernandez and Lolis 2002; 

Campbell et al. 2003; Gunn 2003; Laing and Secombes 2004; Moser et al. 2004). 

All the chemokines are structurally related and characterized by the presence of 

highly conserved cysteine domains. The entire chemokine family is classified into 

CC, CXC, CX3C and C subtypes based on the configurations o f the cysteine 

residues at the amino terminus [Table 1] (Rossi and Zlotnik 2000; Fernandez and 

Lolis 2002).

Chemokines possess diverse biological functions (Campbell et al. 2001; 

Reiss et al. 2001). Based on their function and expression, chemokines are 

subdivided into two categories -  constitutive and inflammatory or inducible 

(Moser and Loetscher 2001; Kunkel and Butcher 2002). The former are 

constitutively expressed in the secondary lymphoid tissues and serve a

1
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housekeeping function. They facilitate lymphocyte homing into the lymphoid 

organs to undergo activation and also maintain homeostasis ie. the number of 

lymphocytes circulating between the tissues and the peripheral lymphoid organs 

(Campbell et al. 1999; Peled et al. 1999; Zabel et al. 1999; Kunkel and Butcher 

2002; Uehara et al. 2002). The inflammatory or inducible chemokines serve as the 

principal molecular cues in navigating specific subsets of leukocytes between the 

tissues and secondary lymphoid organs in inflammatory immune responses. Their 

expression is strongly upregulated in the peripheral tissues in response to 

inflammatory stimuli like LPS, IL-1 and TNF-a (Luster and Ravetch 1987; 

Sherry et al. 1988; Leonard and Yoshimura 1990; Schall et al. 1990; Bazzoni et 

al. 1991; Jose et al. 1994).

The ability of leukocytes to respond to chemokines by sensing the 

chemotactic gradients is conferred by chemokine receptors. They are members of 

the 7 transmembrane spanning G protein coupled receptors (Rollins 1997; Rossi 

and Zlotnik 2000). The differential expression of chemokine receptors on any 

given leukocyte type directs their entry from the peripheral tissues into the lymph 

node (Sozzani et al. 1998; Ohl et al. 2004; Bromley et al. 2005; Debes et al. 

2005). Certain chemokines belonging to the CXC group are also involved in 

angiogenesis/angiostasis (Koch et al. 1992; Strieter et al. 1995; Karl et al. 2005) 

as well as tumour growth and metastasis (Arenberg et al. 1997; Luan et al. 1997). 

Thus, the regulated expression of chemokines and chemokine receptors aid 

leukocyte development, maintain leukocyte homeostasis and control leukocyte 

trafficking in order to sustain immunity.

2
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Chemokine nomenclature
Chemokine Receptor
CC chemokines
CCL1 CCR8
CCL2 CCR2
CCL3 CCR1.CCR5
CCL4 CCR5
CCL5 CCR1 ,CCR3,CCR5
CCL7 CCR1, CCR2, CCR3
CCL8 CCR3
CCL11 CCR3
CCL13 CCR2.CCR3
CCL14 CCR1
CCL15 CCR1.CCR3
CCL16 CCR1
CCL17 CCR4
CCL18 Unknown
CCL19 CCR7
CCL20 CCR6
CCL21 CCR7
CCL22 CCR4
CCL23 CCR1
CCL24 CCR3
CCL25 CCR9
CCL26 CCR3
CCL27 CCR10
CXC chemokines
CXCL1 CXCR2.CXCR1
CXCL2 CXCR2
CXCL3 CXCR2
CXCL4 Unknown
CXCL5 CXCR2
CXCL6 CXCR1.CXCR2
CXCL7 CXCR2
CXCL8 CXCR1.CXCR2
CXCL9 CXCR3
CXCL10 CXCR3
CXCL11 CXCR3
CXCL12 CXCR4
CXCL13 CXCR5
CXCL14 Unknown
C chemokine
XCL1 XCR1
XCL2 XCR1
CX3C chemokine
CX3CL1 CX3CR1

Table 1. Systematic nomenclature of chemokines
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1.2 Brief evolutionary history of chemokines

The origin and evolutionary history of chemokines has been traced back to 

about 650 million years ago [mya] in early vertebrates (DeVries et al. 2006). The 

chemokine system has been completely characterized and extensively described 

only in mice and humans (Muller et al. 1995; Imai et al. 1996; Nagira et al. 1997; 

Rossi et al. 1997; Nakano et al. 1998; Ngo et al. 1998; Vassileva et al. 1999; Stein 

et al. 2000; Nakano and Gunn 2001). With the advent of bioinformatics and using 

an expressed sequence tag [EST] based approach, about 42 chemokines and 18 

chemokine receptors have been identified in humans (Rollins 1997; Rossi and 

Zlotnik 2000; Laing and Secombes 2004; DeVries et al. 2006). Apart from mice 

and humans, about 25 different C, CC, CXC and CX3C chemokines have been 

identified in the rhesus monkey (Basu et al. 2002). Overall, there is an indication 

of evolutionary conservation among the chemokine subfamilies across different 

mammalian vertebrate species.

However, the chemokines are not well characterized in non mammalian 

vertebrates. There have been a few reports in fishes suggesting that chemokines 

originated early in the evolution of vertebrates (Lally et al. 2003; Laing and 

Secombes 2004; Mackenzie et al. 2004; Baoprasertkul et al. 2005; Goostrey et al. 

2005; Inoue et al. 2005; Peatman et al. 2005; Peatman et al. 2005). EST databases 

in channel catfish and blue catfish have revealed many CC and CXC chemokines 

as multiple ESTs (He et al. 2004). A number of putative chemokines have been 

identified and reported from the draft genome of zebrafish (DeVries et al. 2006). 

Although there are more chemokines and chemokine receptors than found in mice

4
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and humans, the data are fragmentary. Several chemokines such as CCL1, CCL3, 

CCL6 , CCL7, CCL 8 , CX3CLI reported in humans and mice are lacking in 

zebrafish. It is interesting to note that many of these chemokines are involved in T 

cell differentiation and the initiation of T helper (Th2) type of immune responses 

(DeVries et al. 2006). A similar analysis on the pufferfish genome indicated fewer 

chemokines and chemokine receptors (Aparicio et al. 2002).

The birds and mammals shared a common ancestor about 310 mya 

(Kumar and Hedges 1998). The chicken draft genome and the availability of the 

chicken EST database have facilitated the systematic identification, 

characterization and annotation of chemokine and chemokine receptor genes in 

the chicken genome (Wang et al. 2005; DeVries et al. 2006). About 23 

chemokines encompassing the C, CC, CXC and CX3C subfamilies and 14 

chemokine receptors have been reported in the chicken (Hughes and Bumstead 

2000; Sick et al. 2000; Hughes et al. 2001; Smith et al. 2004; Kaiser et al. 2005; 

Wang et al. 2005). The phylogenetic analyses suggested that most of the chicken 

chemokine and chemokine receptor genes shared a common ancestry with the 

mouse and human chemokine and chemokine receptor families. Also, there were 

significantly more gene duplications among the CC, CXC, CCR and CXCR 

subfamilies in mammals than in aves after their divergence (Kaiser et al. 1999; 

Hillier et al. 2004; Wang et al. 2005). Among the other birds, only three different 

chemokines namely CCL4, CCL5 and RANTES have been identified in ducks 

(Sreekumar et al. 2005).

5
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1.3 Molecular organization of the chemokine system - classification and 

nomenclature based on structure

Chemokines are structurally related proteins with most members 

containing four invariant cysteines at the amino terminus (Rollins 1997; Laing 

and Secombes 2004). They are classified into two large subgroups CC, CXC and 

two small subgroups C and CX3 C based on the number and arrangement of the 

cysteine residues [Table 1] (Baysal and Atilgan 2001; Fernandez and Lolis 2002). 

The members of the CXC and CX3C subgroups contain one or three amino acids 

respectively in between the cysteine residues. Among the CC chemokines, the 

cysteine residues are located adjacent to each other. The C chemokine 

lymphotactin, is exceptional since it contains only a single cysteine residue in the 

N terminal domain. Another exception is ffactalkine, an integral membrane 

protein which has three amino acids intervening between the first two cysteines 

(Rollins 1997; Rossi and Zlotnik 2000). The CXC chemokines are further 

subdivided into ELR and non-ELR subtypes. The ELR chemokines contain a 

three amino acid motif comprising of glutamate, leucine and arginine between the 

N terminus and the first cysteine, example - CXCL8  which recruits neutrophils 

(Baggiolini et al. 1994; Laing and Secombes 2004). The non-ELR CXC 

chemokines recruit different subsets of lymphocytes (Rollins 1997; Fernandez 

and Lolis 2002). Some of the genes encoding chemokines have been mapped and 

are found to cluster together at specific loci. In humans, the CC chemokines 

cluster at chromosome 17ql 1.2-12 and the CXC chemokine genes at 4ql3 

(Rollins 1997).

6
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1.4 Structural biology of chemokines

NMR and X ray crystallography have enabled elucidation of the tertiary 

structure of certain chemokines. The mature chemokine domains are usually 

about 66-111 amino acids in length. Despite low sequence identities ranging from 

20%-30% between the different chemokine subfamilies, the tertiaiy structure of 

all chemokines are remarkably similar [Figl]. The tertiary structure is composed 

of three antiparallel p strands; p , p 2and p 3 folded and packed by hydrophobic 

interactions against an amphipathic C terminal a  helix (Ye et al. 1999; Bay sal and 

Atilgan 2001; Ye et al. 2001; Handel et al. 2005). The region before the p t strand 

is divided into two segments, containing a disorganized N terminus and a 

comparatively well organized N - loop. These two segments are connected by a 

short peptide domain containing two to five amino acid residues terminated on 

each side by two of the four conserved cysteines. The section connecting the p , 

and p 2 strands is known as the 30s loop and has been implicated in receptor 

binding and/or activity. The loop connecting the P 2and P 3 strands is called the 

40s loop. (Clark-Lewis et al. 1994; Clark-Lewis et al. 1995; Baysal and Atilgan 

2001; Rajarathnam et al. 2001). The unordered N terminal domain is usually 

variable in length and is critical for receptor activation (Ott et al. 2004 a; Ott et al. 

2004 b). In the CXC chemokines, the ELR motif is located in this region (Clark- 

Lewis et al. 1994; Clark-Lewis et al. 1995). The C terminal a  helix is highly basic 

in most chemokines and usually contains amino acid residues that bind to 

glycosaminoglycans [GAGs].

7
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40’s
loop

a-helix

Disulphides

N-terminal domain

Fig. 1. Monomeric structure of the chemokine CXCL8 . This is a ribbon 

diagram of CXC chemokine CXCL8  in which the different secondary structure 

elements are labeled accordingly (Adapted from Fernandez and Lolis 2002).
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Apart from binding to their cognate G protein coupled chemokine 

receptors on migrating cells, it has been postulated that chemokines bind to 

different kinds of immobilized gycosaminoglycans [GAGs] selectively, as a 

mechanism for retention at the cell surface and presentation to circulating 

leukocytes (Kuschert et al. 1999; Middleton et al. 2002; Shriver et al. 2002). The 

glycosaminoglycans are a family of anionic polysaccharides located on the 

endothelial surface and the extracellular matrix (McComack et al. 2004; Handel et 

al. 2005; Johnson et al. 2005). The importance of chemokine-GAG interactions is 

supported by experimental observations that chemokines bind to purified GAGs 

in vitro and in vivo (Middleton et al. 1997; Ali et al. 2000; Middleton et al. 2002). 

The majority of chemokines are highly basic and presumably bind to the 

negatively charged GAGs by nonspecific electrostatic interactions. However, 

studies in CCL4 and CCL5 suggest that the interaction between the chemokines 

and GAGs is specific (Proudfoot et al. 2003). Specificity has been observed in the 

relative affinity of some chemokines for heparin and other members of the GAG 

family (Hoogewerf et al. 1997; Kuschert et al. 1998). The interaction of 

chemokines with GAGs has been used as a novel therapeutic intervention. 

Heparin has anti-inflammatoiy disease ameliorating properties (Lever and Page 

2002). Although the exact mode of heparin action is not well established, it is 

hypothesized that the interaction between pro-inflammatory cytokines and 

membrane associated GAGs may induce clinical immunosuppression. It is likely 

that the anti-inflammatory effects of heparin are mediated partly by interference 

with chemokines (Douglas et al. 1997; Douglas et al. 1997; Johnson et al. 2004).

9
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The formation of disulphide bonds is of paramount importance in the 

stabilization of tertiary structures of chemokines as well as their biological 

activities (Clark-Lewis et al. 1994; Clark-Lewis et al. 1995; Nardese et al. 2001; 

Rajarathnam et al. 2001). Chemokines are quite stable in biological fluids, partly 

due to the disulphide bridges formed between Cysteines 1 and 3, and Cysteines 2 

and 4. (Clore and Gronenbom 1995). Some members of the CC chemokines 

namely CCL 14, CCL 15 and CCL21 possess a third disulphide bond connecting 

the C terminal a  helix to the p strand. However this does not appear to be critical 

for protein folding or function (Hedrick and Zlotnik 1997; Hromas et al. 1997; 

Tanabe et al. 1997; Hromas et al. 1999; Forssmann et al. 2001).

Three major types of quartenary structures have been reported in 

chemokines, monomers, dimers and tetramers. There are two distinct kinds of 

dimers, the compact CXCL8  common to several CXC chemokines made up of a 

six strand antiparallel p sheet (Clark-Lewis et al. 1994; Clark-Lewis et al. 1995; 

Baysal and Atilgan 2001; Swaminathan et al. 2003) and the extended CCL4 type 

found in many CC chemokines containing an antiparallel p sheet arrangement 

between the N terminal domains and N loops of the monomers (Clore and 

Gronenbom 1995; Baysal and Atilgan 2001). Recent experimental evidence 

suggest that GAGs can induce dimerization at low chemokine concentrations (Ali 

et al. 2001; Forssmann et al. 2001). In particular, GAG induced dimerization of 

CCL2 is critical for pro-inflammatory functions in vivo (Proudfoot et al. 2003).

10
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1.5 Chemokine receptors

The migration of specific leukocyte subsets in response to inflammatory 

stimuli or under basal conditions is tightly regulated by the differential expression 

of chemokines and chemokine receptors (Kuziel et al. 1997; Sallusto and 

Lanzavecchia 2000; Uehara et al. 2002; Bromley et al. 2005; Randolph et al. 

2005; Randolph et al. 2005). Similar to the classification system of chemokines, 

the chemokine receptors are classified into four main families, CR, CCR, CXCR 

and CX3CR that interact with C, CC, CXC and CX3C chemokines respectively 

(Murphy 1994; Murphy et al. 2000). The chemokine receptors are G protein 

coupled, seven transmembrane receptors that range between -340-370 amino 

acids in length and are present on the membrane of target cells that enable them to 

respond to chemotactic cues. The N terminus is extracellular and the C terminus is 

intracellular. There are seven predicted membrane spanning domains, three 

extracellular loops [ECL] and three intracellular loops [ICL] (Rossi and Zlotnik 

2000; Ott et al. 2004; Ott et al. 2004). Although similar in structure to many other 

seven transmembrane receptors, chemokine receptors possess certain unique 

structural features namely the amino acid motif DRYLAIY in the second 

intracellular loop domain (Murphy 1994; Rossi and Zlotnik 2000). The 

intracellular and hydrophobic domains of the chemokine receptors are highly 

conserved across species while the extracellular domains are the least conserved. 

In addition to the sequence motif DRYLAIV in the ICL2, the chemokine 

receptors have other common features like the presence of an acidic and relatively

11
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short N terminal segment, a short basic ICL3 and a cysteine in each of the four 

extracellular domains (Mayer and Stone 2001; Limatola et al. 2005).

The chemokine receptor-ligand interactions are very promiscuous, with 

every chemokine receptor binding to a number of different chemokine ligands 

[Table 1]. The chemokine receptors belong to the G protein coupled receptor 

family [GPCR] (Gao et al. 1993; Murphy 1994; Combadiere et al. 1995; Tiffany 

et al. 1997). The biochemical pathways underlying chemokine receptor-ligand 

interactions have not been characterized very well due to the lack of chemokine 

specific reagents.

Most of the knowledge about chemokine signaling has been acquired from 

the information available on GPCR signaling. The G proteins are plasma 

membrane associated signal transducers consisting of an a  subunit which binds 

the guanine nucleotides GDP or GTP, and a covalently linked Py heterodimer 

subunit (Mellado et al. 2001 a; Mellado et al. 2001 b). The standard caveat for 

initiation of intracellular signaling through GPCRs requires activation of the G 

protein pathway upon chemokine ligand binding to the receptor. In an inactive or 

resting state, the GDP is bound to the a  subunit. Upon ligand binding and 

receptor dimerization, the receptor is transformed into a guanine nucleotide 

exchange factor [GEF] which catalyzes the exchange of GDP for GTP on the 

a  subunit. This causes the G protein to dissociate into a  and Py subunits thereby 

activating downstream effectors, namely the JAK/STAT cascade. The 

conformational changes imposed by ligand binding followed by dissociation of 

the heterotrimeric G protein complex results in the activation of intracellular

12
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signaling responses on distinct effector molecules. The a  subunit has intrinsic 

GTPase activity which restores the GDP bound form of the a  subunit and 

reassociates with the (ty subunits, thus completing the cycle (Mellado et al. 2001 

a; Mellado et al. 2001 b; Soriano et al. 2003). Chemokine receptor-ligand 

interactions culminate in the migration of leukocytes towards the source of the 

chemokine due to redistribution of the cell cytoskeleton.

1.6 Mechanism of chemotaxis

The migration of leukocytes in response to chemotactic gradients is 

critical for leukocyte function and has implications in the initiation of 

inflammatory immune responses. Cell migration is a complex process that begins 

with the acquisition o f polarity marked by morphological changes and a migratory 

phenotype. During this process, filamentous actin is segregated and concentrated 

in two specific distinct regions of the cell, the leading edge and the uropod. The 

uropod is a pseudopodia like projection which is important in cell adhesion and 

motility. In migrating cells, adhesion molecules like L-Selectin, ICAM, PSGL-1, 

Mac-1 and CD43 are concentrated in the uropod. This promotes binding and 

interactions between the neighbouring cells, thus enabling leukocyte recruitment 

and transendothelial migration (Sanchez-Madrid and del Pozo 1999). The leading 

edge concentrates various receptors such as those for integrin, chemokine 

receptors CCR2, CCR5 and CXCR4 in lymphocytes. The redistribution of 

chemokine receptors to the leading edge of the cell is initiated by many 

chemokines and few cytokines like IL-2 and IL-15. The presence of chemokine

13
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receptors at the leading edge are not only important to establish polarity but also 

help the migrating cell to detect the chemotactic gradient and orient the cell 

towards the source of the chemoattractant (del Pozo et al. 1997; Sanchez-Madrid 

and del Pozo 1999). The molecules involved in signal transduction coupled to the 

activated chemokine receptors are also localized at the leading edge, implying 

their role in signaling the cytoskeleton directly in order to initiate cell migration 

(Parent et al. 1998).

1.7 Introduction to CCL19

The CC chemokines or p chemokines as they are commonly known, are 

characterized by the presence of two consecutive cysteines in the N terminus 

(Rollins 1997; Moser et al. 2004). Most CC chemokines are potent 

chemoattractants for monocytes. They are also known to attract lymphocytes, 

basophils and/or eosinophils with variable specificity and potency. Generally, the 

CC chemokines contain four cysteines, but there are certain exceptions. Some 

chemokines within the CC subfamily contain six cysteines. These include CCL1, 

CCL 15, CCL21, CCL23 and CCL28 (Wang et al. 2000; Laing and Secombes 

2004). The position of all the four cysteine residues among the various members 

of the CC chemokine family are highly conserved. The CC chemokines are 20%- 

30% identical at the amino acid level across different vertebrate species (Yoshida 

et al. 1997). Bioinformatics has paved way for the identification of several 

members o f the chemokine family. One such chemokine identified in a large 

database of expressed sequence tags [ESTs] is the CC chemokine CCL 19, also

14
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known as ELC [Epstein-Barr vims induced ligand chemokine] or MIP-3 p 

[macrophage inflammatory protein- 3 p] (Rossi et al. 1997). By screening ESTs 

derived from the cDNA library of mouse thymus, a mouse CC chemokine was 

identified. This chemokine sequence was used as a query sequence to perform 

TBLASTN searches against the dbEST database. As a result, several human ESTs 

were discovered, that formed a contig. BLASTX analysis of the consensus 

sequence revealed that it encoded a unique human chemokine with a CC motif. 

This chemokine was designated as MIP-3 p then, but according to the 

nomenclature system currently in use, it is now known as CCL19 (Rossi et al. 

1997).

CCL19, a potent leukocyte chemoattractant is a small secreted polypeptide 

with a molecular weight of approximately 10-12 lcDa. The mammalian 

homologues of CCL19 have been well characterized. In humans, CCL19 is 

constitutively expressed in the lymphoid tissues as established by Northern blot 

analysis. The thymus, appendix and lymph nodes have been revealed as 

exceptionally rich sources o f CCL19 in humans (Rossi et al. 1997; Yoshida et al.

1997). In mice, CCL19 is significantly expressed in the spleen, peripheral lymph 

nodes and fairly expressed in the mesenteric lymph nodes. In particular, mouse 

CCL19 was found to be distributed in distinct T zone dendritic cells [DCs] of 

spleen and lymph node as determined by in situ hybridization analysis (Ngo et al.

1998).

CCL19 is a dual chemokine exhibiting a homeostatic function as well as 

serving as a proinflammatory peptide. It regulates the trafficking of naive and
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some memory T lymphocytes, along with mature DCs into the T cell areas within 

the secondary lymphoid organs under resting and inflammatory conditions (Dieu 

et al. 1998; Ngo et al. 1998; Kunkel and Butcher 2002; Yoshida et al. 1998). The 

functional role of CCL19 is discussed in detail in section 1.13.

1.8 Identification of CCL19 and its cognate receptor CCR7

CCL19 was first reported in humans, named as EBI-1 ligand chemokine 

[ELC] (Yoshida et al. 1997). EBI-1, Epstein-Barr virus (EBV] induced gene was 

identified as an orphan, seven transmembrane spanning GPCR in strongly 

upregulated EBV-negative Burkitt lymphoma cell lines upon infection with EBV 

(Birkenbach et al. 1993). The same receptor was reported independently as 

Burkitt’s lymphoma receptor 2 [BLR2] which was shown to be induced by EBV- 

encoded transactivator, EBNA-2 (Burgstahler et al. 1995). The gene encoding the 

receptor was later isolated from CD4 T cells that were infected with human 

herpes virus HHV6  and HHV7 (Hasegawa et al. 1994). It has been demonstrated 

that ELC specifically binds to EBI-1 with high affinity and induces chemotaxis 

and calcium mobilization in EBI-1 transfected cells (Yoshida et al. 1997). Thus, 

ELC or CCL19 was found to be the high affinity ligand for EBI-1, now termed as 

CCR7.

1.9 Structure of CCL19

As established by NMR and X-ray crystallography, all the CC chemokines 

have very similar three dimensional structures. A disordered N terminus that
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precedes the conserved cysteines has been shown to be involved in stabilizing the 

active conformation of several CC chemokines. Following the conserved 

cysteines is the N-loop which terminates in one turn of a 3 J0  helix, a three 

stranded antiparallel p sheet and a C terminal a  helix. The N terminus and the N- 

loop are tethered to the (3 sheet by the conserved disulphide bonds while the 

a  helix lies in close proximity (Ott et al. 2004 a; Ott et al. 2004 b).

1.10 Mechanism of ligand binding and receptor interaction

Chemokines exert their biological effects through two separate sets of 

interactions namely interactions involved in high affinity binding and interactions 

critical for stabilizing the active conformation of the receptor. On the chemokine, 

the N-loop and loops connecting the antiparallel p strands are considered 

important for high affinity ligand binding. This has been demonstrated by the 

chemical synthesis of N-terminal analogues of CCL19. Successive truncations of 

the N-terminus of CCL19 resulted in decreased affinity of the receptor CCR7 for 

the ligand. The chemically synthesized N-terminal analogues of CCL19 were less 

potent in comparison to the wild type CCL19 in inducing chemotaxis of cell lines 

transfected with CCR7 (Ott et al. 2004 a). The N terminal regions are thought to 

interact with the extracellular domains of the receptor. The active conformation of 

the receptor is stabilized by low energy interactions between the N-terminal 

domain and the helix bundle o f the receptor (Ott et al. 2004 b). However, the 

above mechanisms are not absolute for all chemokines and can vary in different 

members. For example, CCL19 contains residues involved in high affinity ligand
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binding in the N terminus while the residues in the N-loop are implicated in 

receptor activation in CCL19 and CCL21. However, mutation of a lysine to 

alanine on CCR7 reduces CCL21 mediated receptor activation drastically by 

twenty two fold while CCL19 mediated activation is unimpaired. This indicates 

that there is at least one amino acid residue that distinguishes between interactions 

of CCL19 and CCL21 with CCR7 (Ott et al. 2004 a; Ott et al. 2004 b).

1.11 Vertebrate CCL19 and CCL21 -  ligands of CCR7

A closely related vertebrate homologue of CCL19 is another CC 

chemokine CCL21 also known as secondary lymphoid-tissue chemokine [SLC] or 

Exodus 2 or Thymus-derived chemotactic agent 4 [TCA4], The mammalian 

CCL21 homologues were first identified in an EST based approach and 

characterized (Hedrick and Zlotnik 1997; Hromas et al. 1997). The primary amino 

acid sequence of CCL21 is highly conserved among humans, mice and pigs. An 

important characteristic feature of CCL21 is the presence of an extremely basic, 

longer carboxy-terminal domain which is conserved in both mice and humans. 

Apart from the four cysteine residues found in the mature protein of all CC 

chemokines, the carboxyl terminus of CCL21 contains two additional cysteines. 

The disulphide bridge formed between these two cysteines result in the formation 

of a C terminal structure unique to CCL21. CCL19 lacks the additional highly 

basic C terminal domain found in CCL21 (Hedrick and Zlotnik 1997; Hromas et 

al. 1997; Hromas et al. 1999). CCL19 and CCL21 are structurally related 

chemokines and both bind to the receptor CCR7 which is expressed primarily on
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mature DCs and naive T cells (Campbell et al. 1998; Yoshida et al. 1998). The 

amino acid sequence of CCR7 was aligned with the amino acid sequences of 

other chemokine receptors and known GPCRs to identify the residues important 

for receptor activation. Residues at the extracellular surface facing into the 

binding pocket were implicated in signal transduction. These residues were then 

mutated to alanines to establish their role in ligand binding, receptor activation 

and chemotaxis of cell lines transfected with CCR7. Apart from identifying the 

residues critical for receptor activation, these studies also showed that the sites on 

CCR7 involved in the binding of CCL19 were very different from those 

responsible for the binding of CCL21 (Ott et al. 2004 b).

CCL21 is significantly expressed by high endothelial venules [HEVs] in 

the lymph nodes and at relatively lower levels by a small fraction of stromal cells 

in the T cell zones of lymph nodes, spleen and Peyer’s patches (Hromas et al. 

1997; Gunn et al. 1998). CCL19 is expressed by a subset of DCs and stromal cells 

in the T cell areas of the secondary lymphoid tissues (Ngo et al. 1998). Both 

CCL19 and CCL21 are potent attractants o f T lymphocytes while CCL21 also 

weakly attracts B cells (Campbell et al. 1998; Ngo et al. 1998). These findings 

have led to the theory that CCL21 enables the recruitment of naive T cells across 

HEVs into the lymph node while CCL19 acts in concert with CCL21 in 

concentrating them in the T zones and promoting encounter between T zone DCs 

and T cells (Campbell et al. 1998; Ngo et al. 1998).

The chromosomal locations of the genes encoding CCL19 and CCL21 

have been mapped in mice, humans and chickens (Nagira et al. 1997; Yoshida et
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al. 1997; Nakano and Gunn 2001; Wang et al. 2005). Both genes are adjacent to 

each other on mouse chromosome 4 in a region of conserved synteny to human 

chromosome 9pl3 and chicken chromosome Z (Nagira et al. 1997; Yoshida et al. 

1997; Nakano and Gunn 2001; Wang et al. 2005). These observations are 

consistent with the possibility that CCL19 and CCL21 arose from a common 

ancestral gene as a result of gene duplication during the course of evolution.

The genomic organization of CCL19 and CCL21 has been well 

characterized in the pit mice. These mice are homozygous for the paucity of 

lymph node T cell mutation (Gunn et al. 1999; Stein et al. 2000). The pit mice do 

not express CCL21 in the secondary lymphoid tissues and exhibit marked defects 

in leukocyte migration and immune responses (Gunn et al. 1999; Vassileva et al.

1999). The pit locus was mapped to mouse chromosome 4 on which CCL19 and 

CCL21 are located. Southern blot analysis and sequencing of genomic clones 

revealed that there are at least three CCL21 genes and one functional CCL19 gene 

in the mouse genome (Nakano and Gunn 2001). Sequence analysis indicated that 

the sequences of the CCL21 gene were highly conserved with minor deletions 

relative to the consensus sequence. Another important feature observed was that 

the CCL21 a contained a serine residue at amino acid position 65 whereas the 

CCL216 and CCL21c forms contained a leucine residue at the same position 

(Nakano and Gunn 2001). The p it mice lack CCL21 serine in the lymphoid tissues 

and express CCL21 in the non-lymphoid tissues, as confirmed by northern blot 

analysis (Vassileva et al. 1999). Four CCL19 genes were identified in the mouse 

genome but three of them were pseudogenes and only one gene had the
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methionine codon ATG, thus being translated into a functional CCL19 protein 

(Nakano and Gunn 2001).

1.12 Brief description of chicken chemokines

The chicken draft genome and the availability of the chicken EST 

database have facilitated the systematic identification, characterization and 

annotation of chemokine and chemokine receptor genes in the chicken genome 

(Wang et al. 2005; DeVries et al. 2006). About 23 chemokines encompassing the 

C, CC, CXC and CX3C subfamilies and 14 chemokine receptors have been 

reported in the chicken (Hughes and Bumstead 2000; Sick et al. 2000; Hughes et 

al. 2001; Smith et al. 2004; Kaiser et al. 2005; Wang et al. 2005). The 

phylogenetic analyses suggested that most of the chicken chemokine and 

chemokine receptor genes shared a common ancestry with the mouse and human 

chemokine and chemokine receptor families. Also, there were significantly more 

gene duplications among the CC, CXC, CCR and CXCR subfamilies in mammals 

than in aves after their divergence (Kaiser et al. 1999; Hillier et al. 2004; Wang et 

al. 2005). Among the other birds, only three different chemokines namely CCL4, 

CCL5 and RANTES have been identified in ducks but not functionally 

characterized (Sreekumar et al. 2005). Comparison of the chromosomal segments 

containing chemokines in the human, mouse and chicken suggest that the 

genomic organization of chemokines is generally conserved between chickens 

and mammals. The chicken CC chemokines are located on chromosomes 1, 4, 6 ,
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9, 13, 19 and Z. Chicken CCL19 and CCL21 are located on chromosome Z. In 

terms of gene structure, according to the chicken genome sequence, chicken 

chemokines share the characteristic three exon CC structures with mammals. 

Also, chicken chemokines are shorter in comparison to human counterparts due to 

the presence of shorter introns (Kaiser et al. 2005; Wang et al. 2005).

1.13 Functional role of CCL19

The biological role of CCL19 was established by the discovery of a 

spontaneous mutant mouse that was deficient in CCL19 and CCL21 (Luther et al.

2000). This mutant was called pit, for paucity of lymph node T cells. These mice 

were shown to have greatly reduced numbers of migrating T cells into lymph 

nodes, Peyer’s patches and the regions of lymphoid tissue in the small intestine 

(Nakano and Gunn 2001). Genetic mapping studies revealed that the pit locus in 

mice was located in the same region of chromosome 4 as the genes for CCL19 

and CCL21. Previous studies have shown that the pit mice lack CCL21 serine and 

have only one functional CCL21 gene (Nakano and Gunn 2001). In an another 

independent attempt to extend these findings it was shown that these pit mice 

lacked the CCL19 gene also, as determined by Southern blot analysis (Luther et 

al. 2000). The extracts from the spleen and LN of pit mice were examined for the 

presence of CCL19 and CCL21 protein by a Western blot analysis using goat 

anti-mouse CCL19 or CCL21. CCL19 and CCL21 were undetectable in these 

extracts confirming that the pit mice were double deficient for CCL19 and CCL21 

in the lymphoid tissues (Luther et al. 2000).
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A successful adaptive immune response is initiated when antigen specific 

naive T cells interact with antigen bearing mature DCs in the secondary lymphoid 

tissues, spleen and lymph node (Cyster 2000). As a consequence of DC 

activation, there is an upregulation of co-stimulatory molecules which thereby 

deliver an amplified signal to the T cells (Yanagihara et al. 1998). Activated DCs 

also trigger the release of specific cytokines and chemokines which polarize the 

subsequent T cell responses. The activated T cells then proliferate and migrate to 

the infected tissues to perform their effector functions (Gunn 2003). Thus, 

colocalization of naive T cells and DCs in the peripheral lymphoid organs is key 

to the initiation of an antigen specific adaptive immune response (Kaiser et al. 

2005; Marsland et al. 2005).

CCL19 is a potent leukocyte chemoattractant promoting the migration of 

antigen presenting cells [APCs] and lymphocytes to the secondary lymphoid 

organs in inflammatory immune responses (Yoshida et al. 1998; Marsland et al. 

2005). The functional receptor for CCL19 is CCR7 (Yoshida et al. 1998). Upon 

antigen uptake by immature DCs followed by their subsequent activation by 

recognition of pathogen associated molecular patterns [PAMPs], CCR7 

expression is upregulated which thereby directs the activated DCs into the T cell 

areas of the draining lymph node (Dieu et al. 1998; Sozzani et al. 1998; 

Yanagihara et al. 1998). This has been further substantiated by experimental 

observations in CCR7 deficient mice. In these mice, skin activated DCs show 

impaired migratory abilities to the draining LNs (Forster et al. 1999). CCL19 has 

also been identified as a potent inducer of DC maturation triggering the
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upregulation of co-stimulatory molecules and involved in the release of pro- 

inflammatory cytokines such as IL-12 and TNF- a . The critical role of CCL19 

and/or CCL21 as initiators of DC maturation is established by the observation that 

DCs in pit mice fail to mature completely after peripheral stimulation with TLR 

ligands and reach the LNs in a semi-mature state (Marsland et al. 2005). Thus 

CCL19 and CCL21 play pivotal roles in driving the maturation of P AMP-licensed 

DCs. These CCL19 and CCL21 activated DCs effectively differentiate thereby 

triggering the secretion of pro-inflammatory cytokines that determine the 

direction of subsequent T cell responses. Specifically, these cytokines are potent 

in inducing cytotoxic T cell and Th-1 responses (Marsland et al. 2005). This pro- 

inflammatory role of CCL19 is key to initiating effective, sustained cell mediated 

responses against viruses. In addition, CCL19 performs homeostatic functions 

regulating the transmigration of circulating lymphocytes across the HEVs into the 

lymph node (Baekkevold et al. 2001). In vitro, CCL19 is a potent inducer of both 

naive lymphocytes and DCs as determined by transwell chemotaxis assays 

(Yoshida et al. 1997; Ngo etal. 1998; Kellermann et al. 1999).

1.14 CCL19 as a vaccine adjuvant

CCL19 is a leukocyte chemoattractant promoting the recruitment o f DCs 

and lymphocytes to the secondary lymphoid tissues in inflammatory immune 

responses (Yoshida et al. 1998). CCR7, the functional receptor for CCL19 is 

upregulated on activated DCs and promotes their migration to the lymph node in 

response to CCL19 (Yanagihara et al. 1998; Marsland et al. 2005). CCL19 directs
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the migration of mature DCs to the distinct T cell zones in the lymphoid organs 

thereby establishing a functional microenvironment to prime naive T cells 

(Yoshida et al. 1998; Marsland et al. 2005). In this regard, it has also been shown 

that due to CCL19 secretion, activated DCs are able to induce a polarized and 

motile state in naive T cells. In a recent study, a video microscopy imaging 

system has been used to capture some of the early interactions between mature 

DCs and naive T cells. Human naive T cells were incubated along with 

autologous monocyte derived DCs. The response of naive T cells to immature and 

mature DCs was observed and compared using video microscopy imaging. It was 

found that about 60% of naive T cells became polarized in the presence of mature, 

activated DCs. They exhibited distinct morphological changes in comparison to 

naive T cells cultured in the presence of immature DCs. These T cells were 

torpedo shaped containing a leading edge and a trailing uropod, which are 

characteristic of cells undergoing migration. Neutralizing antibodies to CCL19 

and CCR7 resulted in approximately 92% reduction in the polarization of T cell 

responses. These findings conclusively support the theory that CCL19 facilitates 

interactions between naive T cells and cognate Ag bearing APCs (Kaiser et al. 

2005).

Manipulating the immune regulatory capacities of APCs using 

chemokines as immune modulators has scope in vaccine design and testing of 

antiviral therapies. In this regard, CCR7 ligands have demonstrated potential in 

orchestrating an effective antiviral immune response against HSV in mice (Eo et 

al. 2001; Toka et al. 2003). DCs, by virtue of their ability to activate naive T cells,
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qualify as key players for the establishment of specific antiviral immunity. 

Antigen specific interactions between DCs and T cells leads to the production of 

antigen specific CTLs. The virus specific CTLs mediate viral clearance by the 

activation of antiviral pathways (Menne and Tennant 1999). Therefore, vaccines 

aimed at targeting specific antigens to DCs and polarizing the subsequent T cell 

responses provide protection against the particular pathogen (Figdor et al. 2004).

Experimental evidence shows that immunizing transgenic mice with 

hepatitis B surface antigens [HBsAg] by cytokine activated DCs can break 

tolerance and trigger an HBV specific CIL response (Shimizu et al. 1998; Engler 

et al. 2001). Cytokine activated, bone marrow derived DCs and freshly isolated 

splenic DCs from transgenic and non-transgenic mice were compared in their 

ability to process and present the HBsAg. This was done by measuring the 

susceptibility of HBsAg pulsed DCs to cytolysis. Transgenic mice infused with 

ex-vivo activated DCs produced normal numbers o f HBsAg specific CTLs. The 

ex-vivo activated DCs delivered efficient co-stimulatory signals to the anergic, 

transgenic CTLs which enabled them to mount a sustained, HBsAg specific CTL 

response (Shimizu et al. 1998).

In another experiment, adoptive transfer of DCs pulsed with human 

papilloma virus [HPV] peptide induced HPV specific CTL responses, and 

protected mice from HPV induced tumors (Ludewig 2003). This indicated the 

involvement of DCs in the activation of anti-HP V T cells in vivo.

Most DC based vaccine strategies require that the DCs be customized in 

vitro, which involves manipulation of their maturation state. Upon interaction
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with antigens, the DCs migrate to the draining lymph nodes to meet the T cells. 

The activated DCs secrete chemokines to which appropriate receptor bearing cells 

respond (Ngo et al. 1998). This is important to prime naive T cells and initiate an 

antigen specific immune response. In mice, the migratory path of DCs responding 

to an artificial gradient o f CCL19 has been tracked from the epidermis to the 

lymph nodes. These migratory DCs have then been targeted in situ and shown to 

establish effective antitumor immunity, upon loading of the specific tumor 

associated antigens [TAAs] (Kumamoto et al. 2002).

1.15 The DHBV model

Ducks are natural hosts of an important virus duck hepatitis B virus 

[DHBV] that is very similar to the HBV infecting humans (Menne and Tennant 

1999). The hepadnaviruses have a very limited range of hosts comprising humans, 

woodchucks and ducks. Hence, the study of DHBV is veiy relevant to human 

health. The DHBV belongs to a family of hepadnaviruses which replicate in the 

liver of the host (Schultz and Chisari 1999; Tang and McLachlan 2002). The 

immune response to hepadnavirus encoded antigens has variable outcomes 

ranging from viral clearance to chronic infection (Chisari and Ferrari 1995; 

Guidotti et al. 1996). In patients infected with HBV, elimination of the virus is 

associated with the development of a vigorous cell mediated immune response 

(Guidotti and Chisari 1996; Guidotti et al. 1996). This involves recognition of 

viral epitopes in the context of class I MHC molecules by the HBV specific 

cytotoxic T lymphocytes [CTLs] resulting in the destruction of infected
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hepatocytes (Guidotti and Chisari 1996; Guidotti et al. 1996; Menne and Tennant 

1999). The activated CTLs kill the infected hepatocytes by inducing apoptosis and 

also release inflammatory cytokines IFN-y and TNF- a . These cytokines control 

the viral infection at different levels. They recruit macrophages, NK cells and T 

cells to perform their effector functions. They upregulate antigen processing, 

transport and expression of MHC in the infected cells (Guidotti and Chisari

2001). In HBV transgenic mice, the role o f these cytokines has been well 

established. Studies in these mice have revealed that antiviral mechanisms 

mediated by IFN-y and TNF-a expel the virus from infected cells without 

damaging host infected organs [non-cytopathic] (Guidotti et al. 1999; Sette et al. 

2001; Thimme et al. 2003). They activate antiviral pathways in hepatocytes, 

inhibiting replication and viral gene expression. The inability to mount an 

effective CTL response results in viral persistence due to incomplete viral 

clearance leading to the development o f chronic infection.

Ducks make defective, truncated IgY antibodies (Magor et al. 1992; 

Magor et al. 1994) and mount a weak humoral response against viruses. The 

truncated antibodies lack the Fc fragment and are incapable of binding to 

macrophages or other APCs to perform effector functions. Hence ducks may rely 

mainly on the cellular arm of the immune system and the innate immune system 

for antiviral immunity. In the current scenario, given the narrow host range for 

hepadnaviruses, ducks are a valuable model to understand HBV disease 

pathogenesis and for the development of HBV specific antiviral strategies (Menne
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and Tennant 1999; Mangisa et al. 2004). Identification of novel chemokines and 

cytokines in ducks would enable efficient use of the DHBV model.

1.16 Hypothesis and rationale

Our interest is in understanding the duck model of hepatitis B for 

evaluation of antiviral therapies. Exploiting the duck model o f hepatitis B for 

design of antiviral therapies requires development of specific immunological 

reagents.

To identify immunologically relevant genes in the duck, we constructed a 

spleen cDNA library in an EST project. We isolated a unique EST 4B6 bearing 

homology to CC chemokine CCL19. Our hypothesis was that EST 4B6 could be 

the duck homologue of CCL19. In order to test this hypothesis we have 

characterized CCL19 and shown that it is chemotactic for duck PBMCs in vitro 

thereby suggesting its functional significance.

Chemokines are a family o f proinflammatory peptides which have 

immense scope in vaccine design. They direct APCs and T cells to the lymph 

node during inflammatoiy immune responses. Manipulating the immune 

regulatory capacities of DCs using chemokines can help activate DCs and break 

tolerance, thereby skewing subsequent T cell responses and establishing an 

effective, sustained antigen specific antiviral immunity.

In this regard, using chemokines to manipulate dendritic cells in vivo 

would enable us to prime naive T cells for a DHBV antigen specific immune 

response in ducks. We have identified and characterized the duck homologue of
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CCL19 which is a dendritic cell chemokine that recruits DCs and naive T cells to 

the lymph node. In mice, the critical role of CCL19 in DC maturation was 

established by the observation that DCs in pit mice fail to mature completely after 

peripheral stimulation with TLR ligands and reach the LNs in a semi-mature state 

(Marsland et al. 2005). Thus CCL19 plays a key role in driving the maturation of 

PAMP-licensed DCs. These CCL19 activated DCs effectively differentiate 

thereby triggering the secretion of pro-inflammatory cytokines that determine the 

direction of subsequent T cell responses. Specifically, these cytokines are potent 

in inducing cytotoxic T cell and Th-1 responses (Marsland et al. 2005). This pro- 

inflammatory role of CCL19 has implications in initiating effective, sustained cell 

mediated immune responses against viruses. Thus, CCL19 is an effective tool to 

modulate the immune regulatory capacities of DCs which thereby polarize 

subsequent T cell responses and establish an effective, antigen specific antiviral 

immunity.

We have demonstrated the function of recombinant CCL19 in vitro by 

chemotaxis assays thereby implying that it has potential as an immune modulator. 

These findings can be extended for design of therapeutic strategies against the 

DHBV thereby enabling efficient use of the DHBV model. One of the current 

limitations in maintaining protective long term immunity against HBV is the 

inability to eliminate cccDNA from infected hepatocytes. Targeting the DHBV 

using molecular adjuvants like CCL19 has potential in establishing DHBV 

antigen specific antiviral immunity.
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2. MATERIALS AND METHODS

2.1 Ducks and duck PBMCs

A white Pekin duck [Anas platyrhynchos] was euthanized with Euthanyl. 

The peripheral blood was collected by cardiac puncture in blood collection tubes 

[BD Vacutainer, Becton Dickinson, Franklin Lakes, NJ] containing sodium 

heparin. The blood was diluted with an equal amount of RPMI1640 media 

[GIBCO ™-Invitrogen Coiporation] containing 5% heat inactivated fetal bovine 

serum [FBS]. The diluted blood samples [25 mis] were layered onto 15 mis of 

endotoxin tested Ficoll-Paque ™Plus [Amersham Biosciences, Uppsala, Sweden] 

and centrifuged at 274xg for 20 minutes at room temperature. The peripheral 

blood mononuclear cells [PBMCs] separated by density gradient centrifugation 

were collected and washed three times with RPMU640 media. Viable cells were 

counted using Trypan Blue exclusion and a hemocytometer and diluted to obtain a 

final concentration of 1 0  6  cells/ml.

2.2 Clone identification and sequence analysis

Three thousand clones were randomly picked and sequenced from a spleen 

cDNA library in an EST project in our laboratory to identify immunologically 

relevant genes in the duck. One clone bearing significant homology to 

mammalian CC chemokine CCL19 was identified. The entire insert of 1320 bp 

was sequenced in both directions on an ABI Prism 377 automated DNA
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sequencer [PE Applied Biosystems]. The primers used for sequencing are shown 

in Table 2. The chromatogram editing, nucleotide alignment and primer design 

was performed using the program GeneTool [version-2, BioTools, Edmonton, 

Alta], Protein alignment and analysis of amino acid sequences was done using 

PepTool {BioTools].

Table 2. Primers used for sequencing EST 4B6

Primer Seq 5' to 3' Tm
Location of the 
primer

CCL19F1 CGGTGGCAACAACGTCCTGGA 66.47
CCL19
forward exon 1

CCL19F2 GCCGACTTGCTTCCACCTCCT 66.47
CCL19
forward 3’ UTR

CCL19R2 CTGAGAGCTGGCCCCGATATG 66.47
CCL19
reverse exon 1

CCL19F3 CCCTCCACCATTCCCATCCTG 66.47
CCL19
forward 3’ UTR

CCL19R3 TGCCCTCCI I I I CAGTCCCCA 64.52
CCL19
reverse 3’ UTR

2.3 CCL19 probe preparation

To create a probe for northern and Southern hybridization analysis, a 230 

bp product was amplified from the CCL19 cDNA sequence using forward primer 

CCL19F1 and reverse primer CCL19R2 that annealed to the exon 1 region 

[predicted based on the human CCL19 genomic sequence]. PCR amplification 

was done in a Gene Amp PCR system 9700 [PE Applied Biosystems, Foster City, 

Calif.] for 30 cycles using Tag polymerase [Qiagen, Mississauga, Ontario]. The 

CCL19 probe was radiolabelled with [32P] a-dCTP by random priming [Prime-It
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Random Primer Labeling Kit, Stratagene, TX] for detection in northern and 

Southern hybridizations.

2.4 Northern hybridization

Total RNA samples were isolated from different tissues including heart, 

kidney, lung, duodenum, brain, spleen, liver and bursa using TriZol [InVitrogen, 

life technologies, Carlsbad, CA, USA] according to the manufacturer’s 

instructions. About lOpg of RNA samples from the various tissues were run on a 

1.2% agarose, 0.6% formaldehyde gel and blotted onto a Nytran Supercharge 

nylon transfer membrane and UV cross-linked [UV Stratalinker 2400, 

Stratagene]. The blot was prehybridized at 42°C for 2 hours and hybridized 

overnight with [32P] labelled CCL19 probe in formamide hybridization solution 

[50% formamide, 5x Denhardt’s reagent, 4x SSPE and 1% SDS]. The blot was 

washed at high stringency in O.lx SSPE, 0.1%SDS at 65°C and exposed to Kodak 

BioMax XAR film at -80°C for one week.

2.5 Southern hybridization

High molecular weight genomic DNA obtained from erythrocytes o f a 

White Pekin duck was digested to completion with restriction enzymes BamHI, 

EcoRI, Hindlll and PstI and separated on 0.8% agarose gels, blotted onto a 

Nytran Supercharge nylon transfer membrane and immobilized by UV cross- 

linking. The blot was prehybridized at 42°C for 6  hours and hybridized overnight 

with [3 2P] labelled CCL19 probe in formamide hybridization solution [50%
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formamide, 5x Denhardt’s reagent, 5% dextran sulfate, 4x SSPE and 1% SDS], 

The blot was washed at low stringency in lx  SSPE, 0.1%SDS at 52°C and 

exposed to Kodak BioMax XAR film at -80°C for a week.

2.6 Production and purification of recombinant CCL19

The sequence encoding amino acids 22-99 encompassing the entire mature 

protein was amplified by PCR using the forward primer CCL19F.ex 5’- 

CATATGGGTGGCAACAACGTCCTGGA-3 ’ and reverse primer CCL19R.ex 

5’-CTCGAGATTGCCTTTATTTGGGACCTTC-3’, purified using QIAquick 

PCR purification Kit [QIAGEN, Maryland, USA], The vector was digested with 

the restriction enzymes Ndel and Xhol. The purified PCR product was subcloned 

into the Ndel and Xhol sites of the pET29b vector [Novagen, Inc., Madison, WI] 

in frame with the COOH-terminal 6 xHis tag and BL21(DE3) cells were 

transformed. Briefly, a 50 ml overnight culture in LB plus 30pg/ml kanamycin 

was inoculated into one litre LB containing 30tig/ml kanamycin at 37°C. After 1- 

2 hours of incubation, at an O.D. 6oo of 0.6, 1 mM IPTG was added to the culture 

and incubated overnight. Bacteria were harvested by centrifugation at 3000xg for 

20 minutes at 4°C. The pellet was resuspended in lOmM Tris-HCl pH 8 , lOmM 

EDTA, sonicated, washed and centrifuged three times at 3000xg for 20 minutes at 

4°C to recover the inclusion bodies containing recombinant CCL19. The inclusion 

bodies were lysed by sonication in cell lysis buffer [8 M Urea, 1% Triton-X 100, 

50mM Tris-HCl, lOmM EDTA, lysozyme 0.1|Ag/ml and O.lmM PMSF], The 

lysate was cleared by centrifugation, run on a NiNTA agarose column [QIAGEN,
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Mississauga, Ontario] and eluted in 8 M urea buffer containing 300mM imidazole 

to obtain pure, recombinant CCL19. The purity of recombinant CCL19 was 

assessed on a 15% reducing SDS polyacrylamide gel stained with Coomassie 

Blue. Recombinant CCL19 was detected as a band at the expected size of 11-12 

kDa. The protein fragments were transferred to nitrocellulose membranes [Bio- 

Rad Laboratories, CA, USA], blocked with 0.5% BSA for 30 minutes, washed in 

TTBS and detected by chemiluminescence using an antibody specific for the 6 x 

His tag [ECL ™ Western Blotting Kit, Amersham Biosciences, Buckinghamshire, 

UK], The urea was removed by dialysis in a stepwise manner from a 

concentration of 8 M to 1M. The concentration of purified recombinant CCL19 in 

1M urea buffer was estimated with a Micro BCA ™ protein assay kit [Pierce, EL, 

USA],

2.7 Chemotaxis assays

Chemotaxis assays were performed using 24 well homemade chemotaxis 

chambers. The pure, recombinant CCL19 in 1M urea was diluted with RPMI- 

1640 media containing 5% heat inactivated FBS to obtain desired concentrations. 

The diluted chemokine solution was used to fill the bottom chamber. A 

polycarbonate membrane filter with a pore size 5 pm in diameter, [Neuroprobe 

Inc, Gaithersburg, MD, USA] was placed over the bottom chamber using a pair of 

sterile foreceps. The top chamber was then screwed in place on top of the 

membrane filter. Cell suspension containing approximately 1.5xl05 cells was 

placed in the top chamber. The chemotaxis chambers were incubated for 4 hours

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in 5% CO2 at 37°C and cells were allowed to migrate to the lower chamber in the 

presence or absence of the chemokine. The cells in the top chamber that did not 

migrate in response to the chemokine were removed. The top chamber was rinsed 

two times in sterile PBS [pH 7.2] gently, without damaging the membrane filter. 

The top chamber was then unscrewed. The membrane filter was carefully 

removed using foreceps and placed upside down on a glass slide. The filter 

carrying cells that migrated through the pores to the underside o f the membrane 

filter were fixed in Hema-3 fixative [Fisher Scientific, Kalamazoo, ML, USA], air 

dried briefly and stained using Hema-3 stain [Fisher Scientific, Kalamazoo, MI, 

USA], Cells in 5 different fields were then counted at 400X magnification using a 

compound microscope. Cells that migrated in response to the media alone 

[without recombinant CCL19] served as the negative control.

To demonstrate the specific chemotactic ability of recombinant CCL19, 

chemotaxis assays were set up simultaneously with equal concentrations of 

purified, recombinant CCL19 and purified, recombinant p2 microglobulin 

expressed in E. coli. The subcloning, protein expression and protein purification 

of p2 microglobulin was done by Debra Moon. Cells that migrated in response to 

recombinant CCL19 and recombinant (32 microglobulin were enumerated 

similarly as mentioned before. To eliminate the possibility of contamination with 

bacterial LPS, 10 pg/ml o f recombinant CCL19 and recombinant p2 

microglobulin were incubated with 10 pg/ml of Polymyxin B sulfate [Sigma] at 

4°C for 1 hour. Polymyxin B sulfate binds to bacterial LPS in solution. 

Chemotaxis assays were performed with recombinant CCL19 and recombinant p2
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microglobulin treated with or without Polymyxin B sulfate to demonstrate that 

migration is not due to contaminating LPS from E. coli.

2.8 Quantification of LPS using limulus amoebocyte lysate test

The amount of contaminating LPS in recombinant CCL19 and 

recombinant p2 microglobulin was quantified using the limulus amoebocyte lysate 

endosafe kit according to the manufacturer’s instructions [Charles River], Briefly, 

200 pi of recombinant CCL19 or recombinant (32 microglobulin in 1M urea was 

incubated in the single test vial containing buffered lysate at 37°C for an hour. 

Salmonella typhimurium at a concentration of 10qg was used as a positive control 

for detection of LPS. Sterile pyrogen free water was used as the negative control. 

A positive result was indicated in Salmonella typhimurium by the formation of a 

firm gel capable of maintaining its integrity when inverted at 180°. A negative test 

was characterized by the absence of gel or by the formation of a viscous mass. 

Both recombinant CCL19 and recombinant fJ2 microglobulin gave a negative 

result indicating that the amount of contaminating LPS was below the detection 

limit of the endosafe reagent [0.25EU/ml],
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3. RESULTS

3.1 Identification of a duck homologue of CCL19

To enable identification of immunologicaly relevant genes in the duck 

[Anas platyrhynchos], 3000 randomly selected clones from a duck spleen cDNA 

libraiy were sequenced. We identified a unique clone 4B6 [GenBank accession 

number - AY682098] bearing significant homology to the mouse and human CC 

chemokine CCL19 [Fig. 2]. The full length cDNA was 1320 base pairs in length 

and contained an open reading frame starting with the methionine codon that 

encoded a polypeptide of 99 amino acids with a predicted molecular weight of 12 

kDa. The 3 ’ noncoding region was longer than that of the mammalian CCL19 and 

featured a typical AATAAA polyadenylation signal sequence [Fig. 2].

The deduced polypeptide sequence consisted of a highly hydrophobic 

amino terminal region characteristic of a signal peptide with a predicted cleavage 

site between amino acid residues Gly-22 and Gly-23, based on the mouse and 

human CCL19 polypeptide sequences [Fig. 2], The predicted mature protein had 

an estimated isoelectric point of 11.04 [www.expasy.org/tools/pi_tool.html]. The 

highly basic polypeptide of 99 amino acids contained 16 positively charged amino 

acid residues and 7 negatively charged amino acid residues throughout the entire 

sequence. There were no potential N glycosylation sites.
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1 cagagctcac ctctcctgcc cagagccccg ctgcctccag cccatcctct 
51 gccagactca gcgacacaat gcagcagctg catcttctct gcctcggtct

M Q Q L  H L L C  L G L  
101 cctggtgctg ggatgtatcc tgcacgtgca cggtggcaac aacgtcctgg

t
L V L G C I  L H V  H G G N N V L

151 actgctgcct gaggacgagc gagaatccca tcccacggcg gatcgtgcag 
D C C L R T S  E N P I P R R  I V Q  

201 agatatcaga tacagctggt gcaggacggc tgcgaaatcc ctgccaacgt 
R Y Q I Q L V  Q D G  C E I  P A N  

251 gttcatcacc gtgaggggca agcgcctctg cgccccgctc gaagccccgt 
V F I T  V R G  K R L  C A P L E A P

301 gggctgttcg cctccgggag aagctggact ctggctctgc caggaaggtc 
W A V R  L R E  K L D  S G S A R K V

351 ccaaataaag gcaattaggc cctgaagaag cccacggctg gccccagcac 
P N K G N *

401 ccatatcggg gccagctctc agctgtgaat ctgaagctca tgaagccgac
451 ttgcttccac ctcctactac agtgcacggg gccaaccctc ctcgggactc
501 atgtcagtgc atggggcttg tcacagccct gcagctctct cttctcccct
551 ctgccaccag tgtgactcaa aaaccttgcg tcaggctgag ccggtggctg
601 ctggaccaaa agtctccgct ccaaggggtg ctcgggcatc tccaagcacc
651 cctttgcagc caggaggctg gtttgatgga ctgatctgtg agatgagttt
701 tggggatccc agccttcctc tgagcgccaa gtctgttccc ccttcgggtt
751 tccaattcat caagccttga aacctgagcg cctttctgca tccctgggaa
801 agggcagcgg ggatgggact gtgcaaggga tggaggggaa ggggtaggga
851 tgtttgtcac cactaggtcg gtcgtgtgag gtcctccagc tttccccctc
901 ctgcccttcc ctgcccaggt ggaaatggag ccagtgccag catccatggt
951 ttgtcccaga ctggcaccac tggctgctgt ggcataactc tggtgtccac

1001 ttggccaggg cattactcac aggatgggaa tggtggaggg tccctgccct
1051 tgtcagggac attgccctcc ttttcagtcc ccaagcctgc caccgtggtc
1101 aaagcctgcc tggtgctgct gcccgggcag ggatgcaaga gcagcgctcg
1151 cgctgtgctc aggtatttgc tgctaaatct gctcagtgca aaaattacgg
1201 gtgttagctg cttctggcct ttcttttttt ttatattttt tatttttttt
1251 ttttctctgg atttgttaaa taaaaaqaaa agcctaaaaa aaaaaaaaaa
1301 aaaaaaaaaa aaaaaaaaaa

Fig. 2. Full length nucleotide and deduced amino acid sequence of duck CC 

chemokine CCL19. The predicted signal sequence and polyadenylation signal 

sequence is underlined. The arrow indicates the cleavage site o f the signal 

sequence. Cysteine residues are shown in bold. The sequence data is available in 

GenBank under the accession number A Y682098.
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The full length polypeptide sequence encoded by 4B6 showed significant 

homology to other vertebrate CC chemokines [Fig. 3], The four cysteine residues 

in the mature protein were highly conserved as in the CC chemokine subfamily in 

all vertebrate species. The protein encoded by our duck clone 4B6 shared 78% 

identity to the chicken CCL19, 46% identity to the mouse CCL19 and 44% 

identity to the human CCL19 at the amino acid level [GenBank accession 

numbers - AF059208, AJ223410].

To investigate the evolutionary relationship between the closely related 

vertebrate CC chemokines CCL19 and CCL21, a phylogenetic tree was drawn 

from a Clustal W generated amino acid alignment of the available vertebrate 

CCL19 and CCL21 sequences [Fig. 4], The duck CCL19 appears to be more 

closely related to chicken and mammalian CCL19 homologues than to chicken 

and mammalian CCL21 homologues.

To determine the tissue distribution pattern of duck CCL19 a northern 

blotting analysis was done. Eight different tissues from a duck including heart, 

kidney, lung, duodenum, brain, spleen, liver and bursa were hybridized with a 

probe for CCL19 [Fig. 5]. The duck CCL19 was found to be significantly 

expressed only in spleen and weakly expressed in the lung. The expression of 

CCL 19 in the spleen is consistent with that of its mammalian counterparts [Fig. 

5], The blot was stripped and re-hybridized with GAPDH as a control for amounts 

o f RNA loaded.
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%

Duck — MQQLHLLCLGLLVLGCILH--VHGGNNVLDCCLRTSENPIPRRIVQRYQIQL
Chicken — . .R. .V.. .S... .R.V.. —  . YA.............K.. .W... .D.RM.. 78
Rat MASRVTP..AFS....WTFSAPALG.A.DAE....SVTQR...GN..KAFRYL. 46
Mouse MAPRVTP. . AFS WTFPAPTLG. A . DAE SVTQR. . . GN. . KAFRYL. 46
Dog MAS.AAV..A.S..L.WTSPA--LG.A.DAE SVTQR...GN..RAFHYL. 43
Human  MAL..A.S....WTSPAPTLS.T.DAE....SVTQK...GY..RNFHYL. 44
Rhe sus monkey MAL..A .S  WTSPAPTLS.T .DAE SVTQK...GY..RNFRYL. 42
Duck VQDGCEIPANVFITVRGKRLCAPLEAPWAVRLREKLDSGSARKVPNKGN--------
Chicken .....D...T..X. AK .......PQ... VL *L.. . . .TS. . . . . ■ .Q. • -
Rat I RV. .V. .T.L. .YQ.....DQ. .VE.IIRR.KKS.SKAKAAAP— KGALCLE
Mouse NE...RV..V..T.L..YQ....PDQ..VD.IIRR.KKS..KNKG.ST— RRSPVS-
Dog IK...RL..V..T.L...Q PDQ..VD.IIRR.QKN..KNKGHSS---------
Human IK...RV..V..T.L...Q PDQ..VE.IIQR.QRT..KMKRRSS---------
Rhesus monkey IK...RV..V..T.L...Q....PDQ..VE.IIQR.QRT.TKMKRRSS---------

Sequence:l- Duck (Anasplatyrhynchos) CCL19 (AY682098) 
Sequence:2- Red jungle fowl (Gallus gallus) CCL 19 (XM 424980). 
Sequence:3-Rat (Rattus norvegicus) CCL 19 (XM 342824). 
Sequence:4- Mouse (Mus musculus) CCL 19 (AF059208).
Sequence:5-Dog (Canis familaris) CCL19 (AB163919).
Sequence:6-Human (Homo sapiens) CCL19 (AJ223410).
Sequence:7- Rhesus monkey (Macaca maculata) CCL19 (AF449273).

Fig. 3. Amino acid alignment of duck CCL19 with other related CC 

chemokine sequences. The full length amino acid sequence of duck CCL 19 is 

aligned with related CC chemokine sequences using the T-Coffee alignment 

program. The gene accession numbers are mentioned below the alignment. The 

identical amino acid residues are indicated by a dot. The percent identity to duck 

CCL 19 is indicated on the right.
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Fig. 4. Phylogenetic analysis showing the relationship between different 

vertebrate CCL19 and CCL21. The tree was constructed using the Clustal W 

program (www.ddbi.nig.ac.jp). The sequences encoding the mature protein of 

duck, chicken, mouse, human, rat, dog and rhesus monkey CCL 19 (GenBank), 

duck CCL21 (unpublished), chicken CCL21 (U.D. Chick EST database), mouse, 

human, rat, dog, pig and rhesus monkey CCL21 were aligned using Neighbour-
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joining method. The resultant trees were bootstrapped 1000 times and bootstrap 

values greater than 700 considered significant, are shown in the figure. The 

accession numbers for all the sequences are indicated below.

Duck (Anasplatyrhynchos) CCL 19 (AY682098).

Red jungle fowl (Gallus gallus) CCL 19 (XM_424980).

Rat (Rattus norvegicus) CCL 19 (XM 342824).

Mouse (Mus musculus) CCL 19 (AF059208).

Dog (Canis familaris) CCL 19 (AB163919).

Human (Homo sapiens) CCL 19 (AJ223410).

Rhesus monkey (Macaca maculata) CCL 19 (AF449273).

Duck (Anas platyrhynchos) CCL21 (unpublished).

Red jungle fowl (Gallus gallus) CCL21 (U. D. Chick EST database). 

Rat (Rattus norvegicus) CCL21(AAH86571).

Mouse (Mus musculus) CCL21 (AF307987).

Dog (Canis familaris) CCL21(AB 164433).

Human (Homo sapiens) CCL21 (AB002409).

Rhesus monkey (Macaca maculata) CCL21 (AF449275).

PigCCL21 (AJ585194).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CCL19

I8S
GAPDH

28S

18S
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Fig. 5. Northern blot analysis showing CCL19 expression in various duck 

tissues. The northern blot made from total RNA samples isolated from eight 

different tissues in a duck was probed with 32P labelled CCL 19. Lane l:Heart; 

2:Kidney; 3:Lung; 4:Duodenum; 5:Brain; 6:Spleen; 7:Liver; 8:Bursa. /.* 

Hybridization with CCL 19 probe. II: Hybridization with GAPDH probe as a 

control for amounts of RNA loaded. Ill: RNA gel showing the different lanes as 

a control for quality of RNA loaded.
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To establish gene copy number of CCL 19 in the genome, Southern blot 

analysis was performed. Duck genomic DNA was digested with four different 

restriction enzymes including BamHI, EcoRI, Hindffl, PstI and hybridized with a 

probe for CCL 19. In each digest, there were two hybridizing restriction fragments 

for each of the different enzymes. There were no cut sites in the probe for any of 

the enzymes tested. This suggested that CCL 19 probably existed in two copies in 

the duck genome [Fig. 6].

3.2 Production and purification of recombinant CCL19

The cDNA encoding the mature protein was directionally cloned into the 

Ndel and Xhol sites of the pET29b vector in frame with a 6X His-tag at the 

carboxyl terminus. The recombinant protein expressed in E.coli was detected by 

SDS-PAGE stained with Coomassie brilliant blue at the expected size of 12 kDa 

[Fig. 7]. Recombinant CCL 19 purified on a nickel agarose [NiNTA] column 

under denaturing conditions with 8M urea was detected by SDS-PAGE stained 

with Coomassie brilliant blue [Fig. 8] and confirmed by western blotting analysis 

using an antibody specific for the 6X His-tag [Fig. 9], A significant fraction of 

recombinant CCL 19 existed as monomers while a small percentage of the protein 

formed homodimers. The urea was removed by dialysis in a stepwise manner. 

Concentration of recombinant CCL 19 in 1M urea buffer determined by a micro 

BCA assay was approximately 1 mg/ml.
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Fig. 6. Southern blot analysis indicating genomic organization of duck 

CCL19. Southern blot made from duck genomic DNA digested with four 

different restriction enzymes was hybridized with 32P labelled CCL 19 probe. The 

lkb+DNA size marker is indicated on the left.
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Fig. 7. SDS-PAGE analysis of recombinant CCL19. The E. coli culture BL21 

[DE3] was induced for expression of 6X His-tagged recombinant CCL 19. The 

different fractions collected at various time points were detected by SDS-PAGE 

stained with Coomassie brilliant blue. Lane 1: Molecular weight marker; 2: 

Empty; 3: Uninduced E. coli culture; 4: fi-galactosidase expression ISO minutes 

after induction [control]; 5: Uninduced E. coli culture; 6: CCL 19 expression 120 

minutes after induction; 7: CCL 19 expression 180 minutes after induction. The 

arrow at the top right indicates expected size of the control and the arrow at the 

bottom right shows the expression of CCL 19.
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Fig. 8. SDS-PAGE analysis of affinity purified recombinant CCL19. The

lysed inclusion bodies containing 6X His-tagged recombinant CCL 19 was 

purified on a nickel agarose column. The various fractions collected during 

purification were detected by SDS-PAGE under reducing conditions and stained 

with Coomassie brilliant blue. Lane 1. Uninduced E. coli culture; 2: CCL19 

expression 180 minutes after induction; 3: Inclusion bodies; 4: Flow through; 5; 

Wash; 6-8: Elution fractions of purified recombinant CCL 19. The molecular 

weight marker is indicated on the left. The arrow at the bottom right indicates 

purified CCL 19 obtained in elution fraction 3.
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Fig. 9. Western blot analysis of affinity purified recombinant CCL19. The

lysed inclusion bodies containing 6X His-tagged recombinant CCL 19 was 

purified on a nickel agarose column. The various fractions collected during 

purification were detected on a western blot with an antibody specific for the 6X 

His tag. Lane 1: Positive control-goldfish macrophage receptor (M-CSF); 2: 

Inclusion bodies; 3: Flow through; 4: Wash 1; 5: Wash 2; 6: The arrow at the 

bottom right indicates purified recombinant CCL 19. The molecular weight 

markers are indicated on the left.
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3.3 Chemotactic activity of recombinant CCL19 on freshly isolated duck 

peripheral blood mononuclear cells (PBMCs)

To test the capability of recombinant CCL 19 to attract duck PBMCs in vitro, a 

chemotaxis assay was set up with or without different concentrations of CCL 19 as 

indicated [Fig. 10]. Cells migrating across the pores o f the transwell membrane 

filter to the underside were counted and expressed as number of migrating cells 

per 5 different high power fields. Number of cells migrating in response to the 

media alone [without CCL 19] served as the negative control. A significant dose 

response was observed with maximum number of PBMCs migrating towards the 

underside of the transwell membrane filter at a concentration of lOpg/ml [Fig. 

10].

To demonstrate that migration towards recombinant CCL 19 across the pores 

of the transwell membrane filter was directional and not random movement, 

migration assays were set up with recombinant CCL 19 as a gradient [specific 

concentrations of CCL 19 in the bottom chamber alone] or without a gradient 

[equal concentrations o f CCL 19 in the top and bottom chambers] [Fig. 11]. At all 

concentrations tested, migration of PBMCs towards CCL 19 in a gradient was 

significantly higher than migration without a gradient indicating that the response 

to recombinant CCL 19 was chemotactic [Fig. 11],
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Fig. 10. Migration of duck PBMCs in response to recombinant CCL19.

Chemotaxis assays showing the number o f PBMCs counted in 5 high power 

fields to the underside of the transwell membrane filter in response to the 

specified concentrations of recombinant CCL 19. Data indicated as mean + 

standard error in 5 experiments using different individuals for each 

experiment.
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Fig. 11. Migration of duck PBMCs in the presence or absence of a 

gradient of recombinant CCL19. Chemotaxis assays showing the 

number of PBMCs counted in 5 high power fields that migrated to the 

underside o f the transwell membrane filter in response to the specified 

concentrations of recombinant CCL 19. Recombinant CCL 19 was set up as 

a gradient (gradientspecified concentration of CCL 19 in the lower 

chamber alone) or without a gradient {no gradient-equal concentrations of 

CCL 19 in the upper and lower chambers). Data indicated as mean + 

standard error in 5 experiments using different individuals for each 

experiment.
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To assess the specific chemotactic ability of recombinant CCL 19 to 

attract duck PBMCs, compared to any other recombinant protein expressed in E. 

coli, a chemotaxis assay was set up simultaneously with equal concentrations of 

recombinant CCL 19 and recombinant £ 2  microglobulin [Fig. 12]. The number of 

cells migrating in response to the two different proteins was determined. The 

number of PBMCs migrating in response to the media alone and the 1M urea 

buffer served as the negative control. The PBMCs demonstrated increased 

responsiveness to recombinant CCL 19 than recombinant P2  microglobulin at all 

concentrations tested indicating that the migration was CCL 19 specific [Fig. 12],

To establish that migration was specific in response to recombinant 

CCL 19 and not LPS from E.coli, chemotaxis assays were performed with 

recombinant CCL 19 and recombinant P2 microglobulin with or without 

Polymyxin B sulfate [Sigma] at a concentration of 10pg/ml [Fig. 13], Polymyxin 

B sulfate binds to bacterial LPS in solution. A significant response of duck 

PBMCs to endotoxin treated recombinant CCL 19 in comparison to untreated 

recombinant CCL 19 confirmed that migration is not due to contaminating LPS 

from E. coli [Fig. 13],
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Fig. 12. Migration of duck PBMCs towards recombinant CCL19 or 

recombinant p 2 microglobulin. Chemotaxis assays showing the number of 

PBMCs counted in 5 high power fields on the underside of the transwell 

membrane filter that migrated in response to the specified concentrations of 

recombinant CCL 19 or recombinant p2 microglobulin. Data indicated as mean + 

standard error in 5 experiments using different individuals for each experiment.
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Fig. 13. Migration of duck PBMCs toward specified concentrations of 

recombinant CCL19 and recombinant p 2 microglobulin incubated with or 

without polymyxin B sulfate. Chemotaxis assays showing the number of 

PBMCs counted in 5 high power fields to the underside of the transwell 

membrane filter that migrated in response to the specified concentrations of 

recombinant CCL 19 and recombinant fL microglobulin. The sample(s) in the 

third and last panel were treated with polymixin B sulfate. Data indicated as mean 

+ standard error of 5 experiments using different individuals in each experiment.
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4. DISCUSSION

4.1 Characterization of a duck homologue of CCL19

In the present study, we have identified the duck homologue of CC 

chemokine CCL 19 and demonstrated that it is chemotactic for peripheral blood 

mononuclear cells (PBMCs) in vitro. Random selection of 3000 clones from a 

duck (Anas platyrhynchos) spleen cDNA library and subsequent sequencing 

yielded a novel clone 4B6 identical to mammalian CCL 19 homologues. Our 

findings based on sequence characteristics, high degree of sequence homology 

with other vertebrate CCL 19 homologues and phylogenetic data strongly suggest 

that clone 4B6 is the probable duck homologue of CCL 19. The full length cDNA 

encoded a highly basic polypeptide typical of all vertebrate CC chemokines (Imai 

et al. 1996; Nagira et al. 1997). Duck CCL19 shared homology with other 

members of the vertebrate CCL 19 subfamily with approximately 40-78% amino 

acid identity across species. The four cysteine residues in the mature protein 

stabilized by the disulphide bonds are highly conserved which is characteristic of 

all vertebrate CC chemokines (Yoshida et al. 1997; Ngo et al. 1998; Basu et al. 

2002). The high degree of conservation of the cysteine residues throughout 

evolution imply an important biological role for this motif in the structure. Also, 

the DCCL motif in the N terminus is highly conserved among the vertebrate 

CCL 19 homologues suggesting its functional significance.
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We eliminated the possibility that duck 4B6 encoded the closely related 

homologue of CCL 19, another CC chemokine, CCL21. CCL 19 lacks the 

additional highly basic C terminal domain found in CCL21. Chicken CCL21 is 

available as an EST in the U.D. (University of Delaware) Chick EST database 

(unpublished). We also identified duck CCL21 in the EST project from the spleen 

cDNA constructed in our lab (Jianguo Xia, unpublished data). An important 

characteristic feature of CCL21 is the presence of a longer carboxy-terminal 

domain with a high content of basic amino acids (Nagira et al. 1997). This C 

terminal region typical of CCL21 is highly conserved in both mice and humans 

(Hedrick and Zlotnik 1997; Hromas et al. 1997; Tanabe et al. 1997). Apart from 

the four cysteine residues found in the mature protein of all CC chemokines, the 

carboxyl terminus of CCL21 contains two additional cysteines (Hedrick and 

Zlotnik 1997; Hromas et al. 1997; Tanabe et al. 1997). The disulphide bridge 

formed between these two cysteines results in the formation of a C terminal 

structure unique to CCL21 (Hedrick and Zlotnik 1997; Hromas et al. 1997; 

Tanabe et al. 1997). Duck CCL21 contains this unique C terminal extension of 

basic amino acids while duck CCL 19 lacks it.

The sequences in the N terminal domain of duck CCL 19 in comparison to 

mammalian, duck and chicken CCL21 counterparts are fairly conserved. The N 

terminal residues preceding the first cysteine in the mature mammalian CCL 19 

like asparigine in the third position, aspartate in the fourth and seventh positions 

are important for ligand binding (Ott et al. 2004 a). Although the interactions 

responsible for ligand binding and receptor activation are independent of each
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other, the N terminus is considered crucial for the biological activity of CCL 19 

(Ott et al. 2004). The N terminal region is conserved throughout phylogeny 

indicating the importance of this functional domain in CCL 19.

The evolutionary relationship between CCL 19 and CCL21 was established 

based on phylogenetic analysis. Regions encompassing the mature protein of 

available vertebrate CCL 19 and CCL21 homologues were analyzed. Our data 

suggests that duck CCL 19 is more closely related to mammalian CCL 19 

homologues than mammalian CCL21 homologues. Duck CCL 19 is more closely 

related to chicken CCL 19 than to chicken and duck CCL21. Chicken CCL 19 and 

chicken CCL21 are approximately 35% identical to each other at the amino acid 

level. Also, the duck and chicken CCL 19 are characterized by the presence of two 

cysteine residues in the leader peptide which is not observed in the mammalian 

CCL 19 and CCL21 homologues. The chromosomal locations of the genes 

encoding CCL 19 and CCL21 have been mapped in mice, humans and chickens 

(Nagira et al. 1997; Yoshida et al. 1997; Maho et al. 1999; Nakano and Gunn 

2001; Wang et al. 2005). Both genes are adjacent to each other on mouse 

chromosome 4 in a region of conserved synteny to human chromosome 9pl3 and 

chicken chromosome Z (Nagira et al. 1997; Yoshida et al. 1997; Maho et al. 

1999; Nakano and Gunn 2001; Wang et al. 2005). These observations are 

consistent with the possibility that CCL 19 and CCL21 arose from a common 

ancestral gene as a result of gene duplication during evolution.

The tissue distribution pattern of duck CCL 19 was determined by northern 

blot analysis. Duck CCL 19 has a very restricted expression profile in tissues. A
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strong hybridization signal was detected only in spleen and a signal with a 

relatively weaker intensity was detected in the lung. In mice and humans, CCL 19 

is predominantly expressed in hematopoetic tissues (Yoshida et al. 1997; Ngo et 

al. 1998). Among the various tissues tested, the tissue distribution pattern of duck 

CCL 19 was consistent with that o f mammalian CCL 19 homologues.

The copy number of genes encoding CCL 19 in the duck genome was 

determined by Southern blotting analysis. In each digest, there were two 

hybridizing restriction fragments of different sizes for each of the enzymes. None 

of the enzymes used to digest the genomic DNA had cut sites in the probe. 

Studies in mice, humans and chickens have shown that CCL 19 and CCL21 genes 

colocalize and are closely linked to each other (Nagira et al. 1997; Maho et al. 

1999; Nakano and Gunn 2001; Wang et al. 2005). The genes have probably 

diverged during evolution from a common ancestral gene as a result of gene 

duplication. The nucleotide identity o f the region used as a probe from duck 

CCL 19 was compared to the duck CCL21 sequence. There was 36% nucleotide 

identity to the duck CCL21. It is not possible that the CCL 19 probe is hybridizing 

to CCL21. Based on our data, it is most likely that there are two copies of CCL 19 

in the genome of ducks.

The biological function of recombinant CCL 19 in vitro was assessed by 

chemotaxis assays using a transwell system. Recombinant CCL 19 attracted 

freshly isolated duck peripheral blood mononuclear cells (PBMCs) in a dose 

dependent manner with maximum recruitment at a concentration of lOpg/ml. A 

significant response of duck PBMCs towards recombinant CCL 19 in the presence
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of a gradient confirmed that the migration was chemotactic and not random 

chemokinetic movement. There was significant migration of duck PBMCs to 

recombinant duck §2 microglobulin subcloned into the same vector as 

recombinant CCL 19 and expressed in E. coli. However, the response was 

abrogated by treatment o f the P2  microglobulin sample with Polymixin B sulfate, 

that binds to bacterial LPS in solution. Treatment of CCL 19 sample with 

Polymixin B sulfate did not significantly alter chemotaxis. This implied that the 

chemotactic movement of duck PBMCs was not due to contaminating bacterial 

components from E. coli.

The variation in the number of responding cells to same concentrations of 

the chemokine in individual chemotaxis assays suggests that recombinant CCL 19 

was not completely refolded resulting in a partially bioactive form. However, 

every purified CCL 19 preparation used in the chemotaxis assays was quantified to 

maintain consistency in concentration. The functional receptor for the CCL 19 

ligand is CCR7 (Yoshida et al. 1997). In humans, recombinant Flag-tagged 

CCL 19 recruits CCR7 transfected cells in vitro at an optimal concentration of 

300ng/ml (Yoshida et al. 1997). Cells from 5 different high power fields [400X 

magnification] were counted. The number o f migrating cells in response to human 

CCL 19 increased approximately six fold as the concentration was increased from 

10 ng/ml to 300 ng/ml (Yoshida et al. 1997). In mice, a significant purified 

population of spleen T lymphocytes and a relatively lesser population of B 

lymphocytes migrated effectively towards recombinant CCL 19 (Ngo et al. 1998). 

The percentage of input cells migrating towards mouse CCL 19 was taken into
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account. About 20% of input CD4 positive T cells migrated effectively towards 

lOng/ml of recombinant CCL 19, while approximately 40% of CD8 positive T 

cells exhibited significant migration at a concentration of lOOng/ml (Ngo et al. 

1998). Recombinant duck CCL19 is required at a concentration of lpg/ml to 

stimulate efficient chemotaxis. When the concentration of duck CCL 19 was 

increased 10 times from 500ng/ml to 5 pg/ml, there was approximately a 2.5 fold 

increase in the number o f duck PBMCs migrating in response to the chemokine. 

There are several possible reasons for this. Recombinant duck CCL 19 expressed 

in E. coli was purified from inclusion bodies under denaturing conditions in 8M 

urea. The urea was removed by stepwise dialysis to a final concentration of 1M 

urea. Dialyzing recombinant CCL 19 below 1M urea resulted in precipitation. 

Addition of a nonionic detergent n-octyl-p-D-glucopyranoside to the dialysis 

buffer to prevent aggregation below 1M urea was not successful.

The correct formation of disulphide bridges between the cysteines is 

critical for the biological activity of chemokines (Clark-Lewis et al. 1994; Clark- 

Lewis et al. 1995; Rajarathnam et al. 2001). The role of cysteines in the biological 

activity of chemokines has been well illustrated in IL-8 (Clark-Lewis et al. 1994). 

To assess the importance of individual disulphide bridges, the cysteine residues in 

IL-8 were substituted with a-aminobutyric acid [Aba]. These substituted forms 

lacked considerable activity and displayed marginal capability to interact with the 

cognate receptor as determined by ligand binding assays (Moser et al. 1991). 

Hence, it is speculated that the correct formation of disulphide bridges is 

necessary to provide the right framework and conformation for the receptor
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binding motifs in the N-terminus and consequently important for biological 

activity of chemokines (Baysal and Atilgan 2001; Ott et al. 2004; Ott et al. 2004). 

CCL 19 has four cysteine residues in the mature protein. The conformational 

restrictions imposed by the disulphides made it difficult to completely refold 

recombinant CCL 19. The inability to refold recombinant CCL 19 completely to its 

native conformation probably resulted in the requirement of higher optimal 

concentrations to induce chemotaxis. However, a consistently significant 

migration of PBMCs to recombinant duck CCL 19 in comparison to the controls 

suggests that it is indeed biologically active.

We eliminated the possibility that the migration of duck PBMCs to our 

recombinant CCL 19 was due to bacterial LPS contamination. Chemotaxis assays 

were performed with recombinant CCL 19 and recombinant P2  microglobulin with 

or without using Polymyxin B sulphate (Sigma) at a concentration of 10 

micrograms/ml. Polymyxin B sulphate binds to bacterial LPS in solution. A 

significant response of duck PBMCs to endotoxin treated versus untreated 

recombinant CCL 19 preparations confirmed that migration is not due to 

contaminating LPS from E. coli.

4.1.1 Expression of recombinant CCL19 in a eukaryotic system

The prokaryotic system enables expression of recombinant proteins in 

substantial amounts. However, a significant fraction of the protein in E.coli is 

recovered from inclusion bodies which are aggregates of malfolded polypeptides 

present in the insoluble fraction of the cell (Lu et al. 2001). The recombinant
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protein is recovered under denaturing conditions and has to be refolded to its 

native conformation for biological activity. CCL 19 has four cysteine residues in 

the mature protein. The correct formation of disulphide bridges between the 

cysteines is crucial for the biological activity of CCL 19. The inability to refold 

recombinant CCL 19 completely to its native conformation probably resulted in 

the requirement of higher optimal concentrations to induce chemotaxis.

Expressing recombinant CCL 19 in a eukaryotic system is a potential 

alternative. Attempts to express recombinant human CCL 19 in the bacculovirus 

expression system was unsuccessful (Yoshida et al. 1997). In mice, recombinant 

CCL 19 has been expressed successfully using this approach. Briefly, the region 

encompassing the mature protein was expressed as an N terminal flag tagged 

CCL 19 in HEK 293 cells. The cells were then transfected with pCEP-N-FLAG- 

CCL19 using lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

instructions. The cells which were resistant to puromycin were then expanded. 

Serum free supernatants were collected and recombinant N terminal flag tagged 

recombinant CCL 19 was purified by affinity column chromatography using 

ANTI-FLAG M2-Agarose-sepharose (SIGMA) according to the manufacturer’s 

instructions (Marsland et al. 2005).

In a most recent study in ducks, monoclonal antibodies have been 

developed to detect monocytes, T and B lymphocytes (Kothlow et al. 2005). 

These antibodies could be used to identify the phenotype of specific leukocyte 

subsets migrating in response to recombinant CCL 19.
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4.1.2 Characterization of duck CCR7, the receptor for duck CCL19

Generation of effective adaptive immune responses requires efficient 

orchestration of immune cells through the secondary lymphoid organs. Leukocyte 

recruitment to peripheral sites and to the lymph node is governed by the 

differential expression of chemokine receptors (Moser et al. 2004). In this regard, 

CCR7 plays an important role in guiding naive lymphocytes and DCs to the 

secondary lymphoid tissues (Dieu et al. 1998; Sallusto et al. 1998; Sozzani et al. 

1998; Yanagihara et al. 1998). CCR7 is the characteristic G protein coupled 

receptor for CCL 19 and is expressed on the surface of naive T and B lymphocytes 

(Yoshida et al. 1997; Yanagihara et al. 1998; Yoshida et al. 1998). The 

mobilization of DCs from the periphery to the lymph nodes DLN] is regulated by 

CCR7. CCR7 expression is induced along with the maturation of human DCs 

while the expression of other chemokine receptors is down regulated (Dieu et al. 

1998; Sallusto et al. 1998; Sozzani et al. 1998; Yanagihara et al. 1998), In mice, 

CCR7 is also selectively expressed by bone marrow derived DCs and epidermal 

LCs. In a recent study in mice, it was demonstrated that CCR7 is an essential 

mediator regulating the migration of skin (epidermal and dermal) DCs into the 

lymphatic vessels under inflammatory as well as steady state conditions (Ohl et 

al. 2004). Experimental evidence suggests that CCR7 deficient mice revealed a 

marked defect in migration of DCs to the LN (Forster et al. 1999; Ohl et al. 2004). 

In a separate study using mice as a model of asthma, the role of CCR7 in the exit 

of T cells from the periphery into the afferent lymphatics was established. In this
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study, in vivo labeling of airway cells by carboxyfluoroscein succinimidyl ester 

[CFSE] demonstrated that peripheral T cells re-entered into the draining LN by 

migrating from the airways into the afferent lymphatic vessels. A significant 

population of these migrating T cells were CCR7 positive. The migration of 

effector T cells from the periphery was shown by the generation o f transgenic 

mice that constitutively expressed CCR7 in T cells. The CCR7 positive T cells 

continued migrating into the afferent lymph and accumulated in the draining LN. 

To further substantiate this observation, competitive migration experiments were 

set up wherein both CCR7 positive and CCR7 negative T cells were directed into 

the lung airways. It was observed that only CCR7 positive T cells migrated from 

the lung and entered into the afferent lymphatic vessels (Bromley et al. 2005). 

Thus CCR7 expression is essential for DCs and T cells to migrate to the lymph 

node, it acts as one of the “gatekeepers” in modulating immune responses 

(Bromley et al. 2005; Lira 2005).

We have cloned and sequenced the duck homologue of CCR7 in our 

laboratoiy. The full length sequence of CCR7 cDNA was obtained by degenerate 

oligonucleotide RT-PCR and specific 5’ and 3’ RACE PCR. Sequence analysis 

reveals that there is high degree of sequence homology between duck CCR7 and 

other known CCR7 sequences in chicken, human, rhesus monkey, chimpanzee, 

pig, mouse and rat. The deduced amino acid sequence for duck CCR7 was 

compared to the schematic structure of human CCR7. Seven hydrophobic TMs, 

four ECs and four ICs including the extracellular amino-terminus and intracellular 

carboxy-terminus were identified in the duck CCR7. An analysis of the amino
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acid alignment of various CCR7 sequences indicated conservation throughout 

most of the protein. In particular, comparison between duck CCR7 and human 

CCR7 at the amino acid level revealed identity in the amino acid residues o f the 

extracellular domain [EC4] known to be important for CCR7 function. Northern 

blotting analysis indicated significant expression of duck CCR7 in the spleen and 

lung, consistent with the expression pattern of our duck CCL19 [Ross and 

Brusnyk, unpublished data].

To extend our findings about duck CCL19, we could further study CCR7- 

CCL19 receptor-ligand interactions. In humans, there has been a similar attempt 

to demonstrate affinity between the ligand CCL19 and its cognate receptor CCR7 

(Ott et al. 2004 b). Briefly, chemotaxis assays were set up in which Jurkat T 

leukaemia cell line stably transfected with CCR7 by electroporation migrated 

towards different concentrations of CCL19. The cells were washed twice with 

PBS and resuspended in Dulbecco’s modified Eagle Medium (Cellgro, Fisher 

Scientific) supplemented 2 mM L-glutamine, lOmM HEPES and ImM sodium 

pyruvate and used in the chemotaxis assays to determine the migratory response 

to CCL19 (Ott et al. 2004 b).

4.1.3 Therapeutic potential of CCL19 -  scope in DC based vaccines

Currently, the use of DC based vaccines for treatment of various infectious 

diseases has become an area o f great interest because of its ability to induce both 

cellular and humoral immune responses. Activated DCs successfully prime T 

cells in the context o f specific antigens [Ags] which is key to breaking tolerance
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(Condon et al. 1996; Casares et al. 1997; Porgador et al. 1998; Akbari et al. 1999). 

The resting DCs are activated by adjuvants, inflammatory cytokines, chemokines, 

bacterial products, resulting in the upregulation of MHC-II molecules and co­

stimulatory molecules (Sallusto and Lanzavecchia 1994; Gao et al. 2005; Okada 

et al. 2005). Therefore, manipulating the immune regulatory capacities o f APCs 

using chemokines as immune modulators has immense scope in vaccine design 

and testing of antiviral therapies (Pinto et al. 2003; Frauenschuh et al. 2004).

CCL19 functions as a leukocyte chemoattraetant recruiting professional 

antigen presenting cells [APCs] and T lymphocytes and to the secondaiy 

lymphoid tissues (Yoshida et al. 1997; Ngo et al. 1998; Yoshida et al. 1998; 

Kellermann et al. 1999; Iwasaki and Kelsall 2000; Baekkevold et al. 2001). 

CCL19 directs the migration of mature DCs to the distinct T cell zones in the 

lymphoid organs thereby establishing a functional microenvironment to prime 

naive T cells (Kellermann et al. 1999; Kaiser et al. 2005). CCR7, the functional 

receptor for CCL19 is upregulated on activated DCs and promotes their migration 

to the lymph node in response to CCL19 (Yanagihara et al. 1998; Marsland et al. 

2005). CCR7 acts as a molecular gatekeeper guiding DC and T cell migrations 

from the peripheiy to the LN where it also promotes T cell priming in the context 

of specific Ags (Bromley et al. 2005; Debes et al. 2005; Lira 2005).

CCL19 has also been identified as a potent inducer of DC maturation 

triggering the upregulation of co-stimulatory molecules and involved in the 

release of pro-inflammatory cytokines such as IL-12 and TNF- a . The critical role 

of CCL19 and/or CCL21 as initiators of DC maturation is established by the
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observation that DCs in pit mice fail to mature completely after peripheral 

stimulation with TLR ligands and reach the LNs in a semi-mature state (Marsland 

et al. 2005). Thus CCL19 and CCL21 play pivotal roles in driving the maturation 

of PAMP-licensed DCs. These CCL19 and CCL21 activated DCs effectively 

differentiate thereby triggering the secretion of pro-inflammatory cytokines that 

determine the direction of subsequent T cell responses. Specifically, these 

cytokines are potent in inducing cytotoxic T cell and Th-1 responses (Marsland et 

al. 2005). This pro-inflammatory role of CCL19 has implication in initiating 

effective, sustained cell mediated responses against viruses.

It has also been demonstrated that due to CCL19 secretion, activated DCs 

are able to induce a polarized and motile state in naive T cells. In a recent study, 

video microscopy imaging system has been used to capture some of the early 

interactions between mature DCs and naive T cells. Human naive T cells were 

incubated along with autologous monocyte derived DCs. The response of naive T 

cells to immature and mature DCs was observed and compared using a video 

microscopy imaging system. It was found that about 60% of naive T cells became 

polarized and motile in the presence of mature, activated DCs. This resulted in an 

effective scanning of DC surfaces by T cells, thus enhancing the chances of 

MHC-peptide interactions. Neutralizing antibodies to CCL19 and CCR7 resulted 

in approximately 92% reduction in the polarization of T cell responses. These 

findings conclusively support the theory that CCL19 facilitates interactions 

between naive T cells and cognate Ag bearing APCs (Kaiser et al. 2005).
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These attributes of CCR7 and CCL19 makes them potential candidates for 

the development of Ag specific DC based vaccines. In this regard, the CCR7 

ligands have demonstrated potential in orchestrating an effective antiviral immune 

response against HSV in mice. In these studies, plasmid DNA encoding CCL19 

and CCL2 were codelivered intranasally with plasmid DNA encoding herpes 

simplex vims (HSV) gB (HSV-gB) in a prime-and-boost vaccination strategy. 

This vaccination strategy enhanced serum and vaginal IgG andlgA levels, as well 

as the numbers of HSV-gB4 9 8-5os peptide-specific gamma interferon-producing 

CD8+ T cells. Also, a significant number of cytotoxic T lymphocytes were 

observed when CCL19 and CCL21 was applied at both prime and boost in 

comparison to the absence of CCL19 and CCL21. These studies demonstrated that 

CCL19 and CCL21 expressed ectopically may serve as molecular adjuvants to 

boost the immune response to a codelivered antigen in mucosal surfaces (Eo et al. 

2001; Toka et al. 2003).

Experimental evidence suggests that immunizing transgenic mice with 

hepatitis B surface antigens [HBsAg] by cytokine activated DCs can break 

tolerance and trigger an HBV specific CTL response (Shimizu et al. 1998; Engler 

et al. 2001). Cytokine activated, bone marrow derived DCs and freshly isolated 

splenic DCs from transgenic and non-transgenic mice were compared, in their 

ability to process and present the HBsAg. This was done by measuring the 

susceptibility of HBsAg pulsed DCs to cytolysis. Transgenic mice infused with 

ex-vivo activated DCs produce normal numbers of HBsAg specific CTLs. The ex- 

vivo activated DCs deliver efficient co-stimulatory signals to the anergic,
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transgenic CTLs which enable them to mount a sustained, HBsAg specific CTL 

response (Shimizu et al. 1998).

In a separate study, adoptive transfer o f DCs pulsed with human papilloma 

virus peptide [HPV], induced HPV specific CTL responses and protected mice 

from HPV induced tumors (Ludewig 2003). This indicates the involvement of 

DCs in the activation of anti-HPV T cells in vivo. Most DC based vaccine 

strategies require that the DCs be customized in vitro, which involves isolation of 

DCs and manipulation of their maturational states in vitro. Upon interaction with 

antigens, the DCs migrate to the draining lymph nodes to meet the T cells. The 

activated DCs secrete chemokines to which appropriate receptor bearing cells 

respond (Ngo et al. 1998). This is important to prime naive T cells and initiate an 

antigen specific immune response.

Our interest is in using the duck model of hepatitis B for designing 

antiviral strategies. Identification of specific markers in duck immune cells is 

essential for the development of assays to characterize cell mediated immune 

responses. However, there are limitations in studying host immune responses to 

DHBV as sufficient immunological reagents are not available for the domestic 

duck Anas platyrhynchos. Functional characterization of novel chemokines and 

cytokines in ducks would enable effective use of the DHBV model.

Chemokines have been extensively studied in mammals. Among birds, 

there are few reports on chicken chemokines (Hughes et al. 2001; Kaiser et al. 

2005) (Sick et al. 2000; Wang et al. 2005), but veiy little is known about duck 

chemokines. Only three members of the CC chemokine family CCL4, CCL5 and
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MCP-1 have been identified, but not functionally characterized in ducks 

(Sreekumar et al. 2005). Characterization of duck CCR7 is a critical preliminary 

step towards obtaining specific markers for duck immune cells. This would be 

helpful in characterizing the cell mediated immune responses involving DC based 

vaccines. In this regard, this study is the first attempt in the functional 

characterization of duck CCL19. These findings can be extended towards the 

development of duck CCL19 as a molecular adjuvant to initiate an effective 

DHBV antigen specific immune response in ducks.
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