
University of Alberta

TRANSPARENT DATAFLOW DETECTION AND USE IN WORKFLOW SCHEDULING:

CONCURRENCY AND DEADLOCK AVOIDANCE

by

Yang Wang ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46450-2
Our file Notre reference
ISBN: 978-0-494-46450-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

To my wife, Liang Lei.

Abstract

In this thesis we demonstrate the value of dataflow information to improve makespan performance

(i.e., time to complete a set of jobs) in batch-scheduled workloads. Novel mechanisms and policies

are introduced to improve job concurrency (i.e., when resources are unlimited) and to reduce the im­

pact of deadlock (i.e., when resources are constrained). Without dataflow information concurrency

might be limited, even if resources are unlimited, and resource usage might be inefficient, even if

resource utilization is superficially high. The key insight is that dataflow, unlike control-flow, makes

it visible when resources can be deallocated or reallocated, which allows for a crucial distinction

between active and inactive resource usage. Through a simulation study, we show that the benefits

of dataflow information can be a reduced makespan of over a factor of 5, depending on the workload

and available resources.

Despite a large body of research on dataflow, most high-performance computing (HPC) sys­

tems (e.g., clusters) are batch scheduled based on control-flow. The lack of a simple way to ob­

tain dataflow information and the lack of compelling policies to exploit dataflow may account for

the control-flow status quo. Therefore, we describe a simple prototype for transparently gathering

dataflow information (i.e., Workflow-aware File System (WaFS)) and several scheduling policies to

exploit that knowledge for higher concurrency (e.g., Versioned Namespace (VNS), Overwrite-Safe

Concurrency (OSC)) and for better deadlock handling (e.g., Dataflow Aggregate Requests (DAR),

Dataflow Topological Ordering (DTO)). Notably, our simulations show how dataflow information

allows our policies to have lower makespans than the classic banker's algorithm and Lang's algo­

rithm.

Acknowledgements

It has been a longer journey than I originally expected to finish the dissertation. However, it has not

been a solitary journey. Many people have provided supports to me along the way. 1 owe a great

many of thanks to them.

First, I would like to thank my supervisor, Dr. Paul Lu, for his guidance, his patience and his

understanding during this challenging time. Without his help and support, my dissertation would

not have been possible. I would also like to thank other members of my supervisory committee,

Dr. Michael MacGregor, Dr. Jonathan Schaeffer, Dr. Vincent Gaudet and Dr. Mario Nascimento,

for their time and energy in reviewing my proposal and their invaluable advice and feedback on my

research.

Thanks also go to Cam Macdonell, Zhuang Guo, Meng Ding, Mike Closson, Nicholas Lamb,

Paul Nalos, and all the other members of the Trellis group for their excellent work in Trellis and for

all the help they have given me.

In addition, I am extremely grateful for the scholarship and financial supports from the National

Sciences and Engineering Research Council (NSERC) of Canada, the Informatics Circle of Research

Excellence (iCORE), and the University of Alberta who provided the funding to allow me to finish

this dissertation.

Last, but not least, this dissertation would not be possible without the moral support and encour­

agement of my family who have been with me throughout this long journey.

Contents

1 Introduction 1
1.1 Research Goal 1

1.1.1 The Challenges 2
1.1.2 The Advantages of Dataflow Information 5

1.2 Contributions 6
1.3 Dissertation Organization 8

2 Background Knowledge 10
2.1 Basic Concepts 10
2.2 Deadlock and the Banker's Algorithm 13
2.3 Performance Metrics 14
2.4 Scheduling in Batch Queuing Systems 16
2.5 Some Typical Workflow Applications 19

2.5.1 GROMACS: Molecular Dynamics 19
2.5.2 Proteome Analyst (PA): Bioinformatics, Machine Learning 20
2.5.3 Bronze Standard Medical Imaging (BSMI): Medical Image Processing . . 21

2.6 Concluding Remarks 22

3 Dataflow Collection and Scheduling Policies 24
3.1 Motivation 24
3.2 Dataflow Collection: WaFS Scheduler 26
3.3 Dataflow-based Scheduling Policies 27

3.3.1 Versioned Namespace (VNS) Policy 29
3.3.2 Overwrite-Safe Concurrency (OSC) Policy 29
3.3.3 Hybrid Policy (HB) 30
3.3.4 Summary 31

3.4 Simulation Results 32
3.4.1 Methodology 32
3.4.2 Results, Data Points and Standard Deviation 34
3.4.3 Summary 42

3.5 Concluding Remarks 45

4 Dataflow-based Scheduling for Deadlock Avoidance 46
4.1 Notation and Workflow Model 47
4.2 The Algorithms 49

4.2.1 The DAR Algorithm 50
4.2.2 The DTO Algorithm 54
4.2.3 Summary 57

4.3 Deadlock Avoidance Batch Scheduler 58
4.3.1 The Priority-based Batch Scheduler 59
4.3.2 Integration with Deadlock Avoider 60

4.4 Active-Instance-Aware Admission Control 62
4.4.1 The Admission Control Algorithm 64

4.5 Simulation Results 66
4.5.1 Methodology 67

4.5.1.1 Benchmark Workloads 67
4.5.1.2 Reference Algorithms 67
4.5.1.3 Simulated Platforms 68
4.5.1.4 Instance Admission Control 68

4.5.2 Performance Metrics 69
4.5.3 Organization 69
4.5.4 Data Points and Standard Deviation 70
4.5.5 Sensitivity to Workload Characteristics 70

4.5.5.1 Sensitivity to Workflow Shapes: Performance Changes Depend
on the Shapes 71

4.5.5.2 Insensitivity to Workflow Shape Parameters: Performance Changes
Are Not Sensitive 81

4.5.5.3 High Sensitivity to Workflow Sizes: Performance Differences Are
Enlarged 83

4.5.5.4 Insensitivity to Job Characteristics: Performance Remains Largely
Unchanged 91

4.5.5.5 Sensitivity to File Access Patterns: Relative Performance is Altered 92
4.5.5.6 Summary 96

4.5.6 Comparison with Deadlock Detection 96
4.5.7 Performance Benefits of Instance Admission Control 104

4.6 Concluding Remarks 109

5 WaFS Prototype 113
5.1 Design Options 113
5.2 The Batch Scheduler and Versioned Namespace Manager 114
5.3 The Monitor 115

5.3.1 Handling open() and close() 116
5.3.2 Manipulating the File Pathname 116
5.3.3 Tracing Process Family 117

5.4 Proof-of-Concept and Results 118
5.4.1 Dataflow Collection: A Running Example 118
5.4.2 Overhead of Prototype on Potential Applications 120
5.4.3 Simulation Results for an GROMACS Workload 122

5.5 Concluding Remarks 125

6 Related Work 126
6.1 Filename Conflict Resolution 126
6.2 Related File System Studies 127
6.3 Dataflow Applications 128
6.4 Storage-Aware Workflow Scheduling 130
6.5 Deadlock Avoidance 132

7 Concluding Remarks 135
7.1 Limitations 135
7.2 Conclusions 136
7.3 Future Work 137

Bibliography 138

A Comparisons with Lang's algorithm in Workflow-Based Computation 145
A.l An Overview of Lang's Algorithm 145
A.2 The Problems of Lang's Algorithm in Workflow-based Computation 147
A.3 The Comparisons between Lang's Algorithm and our Algorithms: DAR and DTO . 149

B Non-Uniform Distributions: Zipf-based Workloads 150
B.l Average of Simulated Makespans 150
B.2 Median of Simulated Makespans 151

List of Figures

1.1 Proteome Analyst Workflow (a 6-job Fork&Join workflow) 2
1.2 Control-flow is not always safe to use in exploiting inter-workflow instance concur­

rency. An example (a) shows how File Out.A is unsafely overwritten by Job A in
WI2 before Job D in WI1 consumes it (The data dependency between Job A and
Job D is not shown in the control-flow). The dataflow example (b) is correct in that
both Job C and Job D in WI1 must complete before Job A in WI2 can overwrite
File Out.A. Note that the dataflow from Job A to Job D is only specific to (b) for
comparison purposes 3

2.1 An Example of a Fork&Join Workflow 11
2.2 An Example Input Script File for DAGMan 11
2.3 The Banker's Algorithm for Requesting a Resource Allocation 14
2.4 The Safety Checking Algorithm in the Banker's: The algorithm is performed to find

out if the system is in a safe state 15
2.5 An Architecture of a Typical Batch Queuing System: A central job queue is main­

tained by Queue Manager, which performs some particular scheduling algorithm to
map jobs to a set of interconnected computers 17

2.6 An Example of Typical GROMACS Workflow Chart 19
2.7 An Example of a Typical PA Workflow Chart 21
2.8 An Example of a Bronze Standard Medical Imaging Workflow Chart (a). We view

it as a Lattice-like workflow shape (b) in our discussion 22

3.1 WaFS Scheduler: Integration of WaFS with Batch Scheduler for Dataflow Collection 26
3.2 Inter-Workflow Instance Concurrency: (a) Serial Policy (BASE), (b) Versioned Names­

pace (VNS) and (c) Overwrite-Safe Concurrency (OSC) 28
3.3 Inter-Workflow Instance Concurrency in HB Policy 31
3.4 Benchmark Workflow Graphs: A circle represent a job, and a rounded rectangle

represents an input/output file. The Fork&Join (a) is characterized by the fan-out
factor and the number of stages, whereas the Lattice (b) is characterized by its height
and width 32

3.5 Simulation Results for the Fork&Join (3 x 32): (a) Makespan, (b) Average DOC and
(c) Storage Overhead. (DOC units are numbers of jobs; all other values are either
time units or storage units) 35

3.6 Simulation Results for the Lattice (8 x 12): (a) Makespan, (b) Average DOC and (c)
Storage Overhead. (DOC units are numbers of jobs; all other values are either time
units or storage units) 37

3.7 Simulation Results for the Pipeline (10-stage): (a) Makespan, (b) Average DOC and
(c) Storage Overhead. (DOC units are numbers of jobs; all other values are either
time units or storage units) 39

3.8 Impacts of Job Service Time on the Fork&Join (3 x 12): Makespan, Average DOC
and Storage Overhead (Left: JST[10, 1000], Right: JST[800, 1000]) 41

3.9 Impacts of Job Service Time on the Lattice (8 x 12): Makespan, Average DOC and
Storage Overhead (Left: JST[10, 1000], Right: JST[800,1000]) 43

3.10 Impacts of Job Service Time on the Pipeline (10-stage): Makespan, Average DOC
and Storage Overhead (Left: JST[10, 1000], Right: JST[800, 1000]) 44

4.1 An example showing how the maximum claims defined in DAR are computed. In
this example three workflow instances i^s with different shapes, (a) Pipeline, (b)
Fork&Join and (c) Lattice, are considered. The nodes in the graphs represent the
jobs, and the jobs inside the dashed regions are those jobs that have not been com­
pleted as of time f. The numbers marked beside each edge indicate the file sizes. . 51

4.2 The DAR Algorithm 53
4.3 The DTO Algorithm 56
4.4 The Safety Checking Algorithm in DTO: The algorithm is performed to find out if

a job scheduling in instance Jj is in a safe state 57
4.5 The topologicaLorder algorithm in the DTO algorithm 58
4.6 Deadlock Avoidance Batch Scheduler. MDF stands for Most Done Job First, an

Instance Scheduling Policy 59
4.7 Algorithm for Dealing with New Instance Arrivals 61
4.8 Algorithm for Dealing with Job Completions 62
4.9 Algorithm for Triggering Batch Scheduling 63
4.10 The Deadlock Avoider Algorithm 63
4.11 An example illustrating that allocating storage without admission control may incur

poor performance 64
4.12 The Extended Deadlock Avoider after Integrating with Instance Admission Control 66
4.13 Classification of Storage Resource Utilization 69
4.14 Impacts of Workflow Shape on the Makespans of the Compared Algorithms when

the Workflow Sizes are Small 72
4.15 How the storage is used by each of compared algorithms for Fork&Join (3 x 8). . . 74
4.16 How the storage is used by each of the compared algorithms for Lattice (4 x 6). . . 75
4.17 How the storage is used by each of the compared algorithms for Pipeline (5-stage). 77
4.18 Execution Traces (DAR): The total number of workflow instances that are admitted

and completed by DAR as the computation proceeds, given the storage budget of
250 units for the Fork&Join (3 x 8), 1200 units for the Lattice (4 x 6), and 50 units
for the Pipeline (5-stage) 78

4.19 Execution Traces (DTO): The total number of workflow instances that are admitted
and completed by DTO as the computation proceeds, given the storage budget of
250 units for the Fork&Join (3 x 8), 1200 units for the Lattice (4 x 6), and 50 units
for the Pipeline (5-stage) 79

4.20 Impacts of Workflow Shape Parameters on the Makespans of the Compared Algo­
rithms for the Fork&Join (26 jobs): Note that Figure 4.20(c) is identical to Fig­
ure 4.14(a) 81

4.21 Impacts of Workflow Shape Parameters on the Makespans of the Compared Algo­
rithms for Lattice (24 jobs): Note that Figure 4.21(c) is identical to Figure 4.14(b)
with different scales along the y-axis 82

4.22 Impacts of Workflow Size on the Makespans of the Compared Algorithms when the
Workflow Sizes become Large 84

4.23 Execution Traces (Lattice (8 x 12)): The total number of workflow instances that
are admitted and completed by DAR and DTO as the computation proceeds, given a
storage budget of 1100 units for the Lattice (8 x 12) 85

4.24 Execution Traces (Lattice (4 x 6)): The total number of workflow instances that are
admitted and completed by DAR and DTO as the computation proceeds, given a
storage budget of 300 units for the Lattice (4 x 6) 86

4.25 How the storage is used by each of the compared algorithms for the Fork&Join
(3 x 32) 88

4.26 How the storage is used by each of the compared algorithms for the Lattice (8 x 12). 89

4.27 How the storage is used by each of the compared algorithms for the Pipeline (10-
stage) 90

4.28 Impacts of File Size Distribution Parameters on the Makespans of the Compared
Algorithms: Figure 4.28(a) is the same as Figure 4.22(c) 91

4.29 Makespan Comparisons: The algorithms are compared for the Fork&Join (3 x 32)
workload with a file access pattern such that a single output file of the first job is
read by all its child jobs (i.e., Fork&Join+(3 x 32)) 93

4.30 Concurrency Comparisons: The algorithms are compared for the Fork&Join+ (3 x
32) with a multiple-reader access pattern 94

4.31 Concurrency Comparisons: The algorithms are compared for the Fork&Join (3 x 32)
with a single-reader access pattern 95

4.32 Execution Traces: The total number of workflow instances are admitted and com­
pleted by the compared algorithms as the computations proceed. The examined
workflow is the Fork&Join+ (3 x 32) with a multiple-reader access pattern, and the
storage budget is 1400 units 97

4.33 Makespan Comparisons (Small Workflow Size): The deadlock avoidance algorithms
and detection algorithm Det(0.5Bgt_LDF) are compared when the workflow shape
is changed. Each file has only one reader. 98

4.34 Makespan Comparisons (Large Workflow Size): The deadlock avoidance algorithms
and detection algorithm Det(0.5Bgt_LDF) are compared when the workflow shape
is changed. Each file in the workloads has only one reader. 99

4.35 Makespan Comparisons: the deadlock avoidance algorithms and detection algorithm
Det(0.5Bgt_LDF) are compared for the Fork&Join+ (3 x 8) and Fork&Join+ (3 x 32)
with a multiple-reader access pattern 102

4.36 Performance Benefits of Instance Admission Control (IAC) Measured by the Nor­
malized Makespan (Small Workflow Size) 105

4.37 Performance Benefits of Instance Admission Control (IAC) Measured by the Nor­
malized Makespan (Large Workflow Size) 106

4.38 Performance Benefits of Instance Admission Control (IAC) Measured by the Nor­
malized Makespan: DAR, DTO and the banker's algorithm are compared in the
absence and presence of IAC for the benchmark workloads of Fork&Join+ (3 x 8)
and Fork&Join+(3 x 32) with a multiple-reader access pattern 112

5.1 An Example of a GROMACS Input Script: gromacs.st 120
5.2 The Given CFG 121
5.3 The Detected DFG 121
5.4 Performance of GROMACS gmxbench in absence and presence of WaFS. The per­

formance overhead of WaFS is shown by the percentage above the bar. 122
5.5 Simulation Results for the GROMACS Workload: Compared to Figure 4.33(c) and

4.34(c), DTO shows greater performance advantages compared to other policies. . 125

6.1 An Example of Condor Submit Description File 127

A.l Resource-request Graphs used in Lang's Algorithm: To compare with the storage
utilization in workflow-based computation, only a single type of resources is de­
picted. In fact, Lang's algorithm can handle multiple types of resources 146

A.2 An Example of Workflow DAG and its Scheduling Graph 148

B.l Histogram of l,000Zipf Distributed Numbers (a = 1.5, maximum=500) 151
B.2 Average Makespans: Zipf Distributions (a = 1.5) for Job Service Time and File

Size (10 Runs, Average) 152
B.3 Median Makespans: Zipf Distributions (a = 1.5) for Job Service Time and File Size

(10 Runs, Median) 153

List of Tables

1.1 The Characteristics of the Proposed Policies and Associated Deadlock Avoidance
Algorithms: BASE/Serial and Sub-dir correspond to our discussed serial policy and
the policy that employs the sub-directory-based strategy to address the filename con­
flict problem. VNS, OSC and HB are our proposed policies. The HB policy con­
tains several deadlock avoidance algorithms among which DAR and DTO are our
proposed deadlock avoidance algorithms. Banker's and Lang's are reference algo­
rithms for evaluating both DAR and DTO in the later chapters 9

2.1 Some Global Variables Used in the Banker's Algorithm: n is the number of pro­
cesses that are involved in deadlock avoidance 13

2.2 Three Typical Workflow Applications: GROMACS, Proteome Analyst (PA) and
Bronze Standard Medical Imaging (BSMI) 20

3.1 The Characteristics of the Compared Policies: VNS, OSC and HB are our dataflow-
based policies, BASE is the control-flow-based serial policy, and Sub-dir refers to
the policy that employs the working directory to address the filename conflicts and
maximize the job concurrency. BASE and Sub-dir policies are listed for comparison
purposes. DOC is short for "Degree of Concurrency." 27

3.2 The Characteristics of the Benchmark Workloads 34

4.1 Notation Used in Algorithm Descriptions 48
4.2 The Characteristics of the Compared Deadlock Avoidance Algorithms 49
4.3 The computation of the maximum claims are detailed for the three examined work­

flow instances at t = 0, t' where, as of time £', some jobs have been completed in
each instance 52

4.4 Scheduling States, Events and Corresponding Actions 60
4.5 Notation Used in Instance Admission Control 65
4.6 The Distribution of the Standard Deviations of the Makespan Data in Our Simulations 70
4.7 Investigated Workflow Shape Parameters: The total number of jobs is fixed as 24 for

Lattice and 26 for Fork&Join (two extra nodes for the source and sink). * indicates
the shape parameters that were studied in the previous experiments 80

4.8 Comparisons of the Overhead of Deadlock Recovery between Lattice (4 x 6) and
Lattice (8 x 12): Note that the storage budget given to the Lattice (8 x 12) is 4 times
as much as the budget given to the Lattice (4 x 6) 100

4.9 Comparisons of the Overhead of Deadlock Recovery between Pipeline (5-stage) and
Pipeline (10-stage): Note that the storage budget given to the Pipeline (10-stage) is
twice as much as the budget given to the Pipeline (5-stage) 101

4.10 Performance Benefits of Instance Admission Control (I AC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Fork&Join (3 x 8)
workload when IAC is present and when it is absent. Storage budget is varied from
250 to 1450 storage units. The lowest makespan in each row is boldfaced 108

4.11 Performance Benefits of Instance Admission Control (1 AC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Lattice (4 x 6) work­
load when 1AC is present and when it is absent. Storage budget is varied from 400
to 2000 storage units. The lowest makespan in each row is boldfaced 109

4.12 Performance Benefits of Instance Admission Control (I AC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Pipeline (5-stage)
workload when IAC is present and when it is absent. Storage budget is varied from
50 to 300 storage units. The lowest makespan in each row is boldfaced 109

4.13 Performance Benefits of Instance Admission Control (IAC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Fork&Join+ (3 x 8)
workload (multiple readers) when IAC is present and when it is absent. Storage
budget is varied from 250 to 1450 storage units. The lowest makespan in each row
is boldfaced 110

4.14 Performance Benefits of Instance Admission Control (IAC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Fork&Join (3 x 32)
workload when IAC is present and when it is absent. Storage budget is varied from
1000 to 2400 storage units. The lowest makespan in each row is boldfaced 110

4.15 Performance Benefits of Instance Admission Control (IAC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Lattice (8 x 12) work­
load when IAC is present and when it is absent. Storage budget is varied from 1200
to 3400 storage units. The lowest makespan in each row is boldfaced I l l

4.16 Performance Benefits of Instance Admission Control (IAC) Measured by Makespan:
The algorithms are compared (measured in time units) for the Pipeline (10-stage)
workload when IAC is present and when it is absent. Storage budget is varied from
100 to 600 storage units. The lowest makespan in each row is boldfaced I l l

4.17 Makespan Comparison: The algorithms are compared (measured in time units) for
the Fork&Join+ (3 x 32) workload (multiple readers) when IAC is present and when
it is absent. Storage budget is varied from 1000 to 2400 storage units. The lowest
makespan in each row is boldfaced I l l

5.1 Experimental Configuration for gmxbench 122
5.2 WaFS-measured Job Service Times and File Sizes for the GROMACS S-peptide

Workflow 124
5.3 WaFS-measured Job Service Times and File Sizes for the 6 . mdrun stage of GRO­

MACS gmxbench 124

6.1 Comparison between Bent's System, Ramakrishnan's System and the WaFS Schedulerl31
6.2 Comparison of Some Banker's-based Deadlock Avoidance Algorithms (m: the num­

ber of resource types, n: the number of processes, r: the number of resource units) . 132

A.l Comparisons between Lang's Algorithm and our Algorithms: DAR and DTO . . . 149

B.l Standard Deviations for Figure B.2(a) 154
B.2 Standard Deviations for Figure B.2(b) 155
B.3 Standard Deviations for Figure B.2(c) 156

List of Abbreviations

Abbreviation

BSMI

CFG

CP

DAG

DAR

DFG

DOC

DTO

FCFS

FMS

GEL

GFS

HB

HLF

HPC

IAC

ICP

JCML

JST

LDF

LFS

LKM

LPT

LP

LiFS

Full Name

Bronze Standard Medical Imaging

Control-flow Graph

Critical Path

Directed Acyclic Graph

Dataflow-based Aggregate Requests

Dataflow Graph

Degree of Concurrency

Dataflow-based Topological Ordering

First Come First Serve

Flexible Manufacturing System

Grid Execution Language

Google File System

Hybrid

Highest Level First

High Performance Computing

Instance Admission Control

Iterative Closet Point

Job Control Markup Language

Job Service Time

Least-Done Job First

Log Structure File System

Loadable Kernel Module

Longest Processing Time

Longest Path

Linking File System

Definition and Discussion

Chapter 2.5

Chapter 2.1

Chapter 4.3.1

Chapter 2.1

Chapter 1.2, Chapter 4.2.1

Chapter 2.1

Chapter 2.3

Chapter 1.2, Chapter 4.2.2

Chapter 2.4

Chapter 6.5

Chapter 6.1

Chapter 6.2

Chapter 3.3.3, Chapter 4

Chapter 4.3.1

Chapter 1.1

Chapter 4.4.1, Chapter 4.5.7

Chapter 2.5

Chapter 4.3.1

Chapter 3.4

Chapter 4.5.6

Chapter 6.2

Chapter 5

Chapter 4.3.1

Chapter 4.3.1

Chapter 6.2

MDF

MD

MPSoC

MRT

MS

OSC

PA

QoS

RU

SJF

SPMD

TP

TREC

VFS

VNM

VNS

WaFS

Most-Done Job First

Molecular Dynamics

Multiprocessor System-on-a-Chip

Mean Response Time

Makespan

Overwrite-Safe Concurrency

Proteome Analyst

Quality of Service

Resource Utilization

Shortest Job First

Single Program Multiple Data

Throughput

Transparent Result Caching

Virtual File System

Versioned Namespace Manager

Versioned Namespace

Workflow-aware File System

Chapter 4.3.1

Chapter 2.5, Chapter 5.4.1

Chapter 6.5

Chapter 2.3

Chapter 2.3

Chapter 1.2, Chapter 3.3.2

Chapter 1.1, Chapter 2.5

Chapter 2.4

Chapter 2.3

Chapter 2.4

Chapter 6.3

Chapter 2.3

Chapter 6.2

Chapter 5

Chapter 1.2, Chapter 3.2, Chapter 5

Chapter 1.2, Chapter 3.3.1

Chapter 1.2, Chapter 3.2, Chapter 5

Chapter 1

Introduction

1.1 Research Goal

Many high-performance computing (HPC) and scientific workloads (i.e., the set of computations

to be completed), such as those in bioinformatics [91,102], biomedical informatics [42], chemin-

formatics [82] and geoinformatics [67], consist of jobs with control-flow or dataflow dependencies,

represented as a Directed Acyclic Graph (DAG). Control-flow dependency specifies that one job

must be completed before other jobs can start. In contrast, dataflow dependency specifies that a

job cannot start until all its input data (typically created by previously completed jobs) is avail­

able. Control-flow is the more commonly used abstraction to reason about the relationship between

different jobs, but we show how dataflow information is also valuable.

Dataflow dependency signifies the actual information dependency— what compiler writers call

true dependency [71]— requirements of the computation, whereas control dependencies may or may

not imply information dependencies. Dataflow ensures the correctness of the computation under the

assumption that there is no data-sharing via side effects (e.g., a shared read-write file). It should be

noted that not all computations are easily characterized simply in terms of either their control-flow

or dataflow. For example, a common database breaks the producer-consumer relationship of a DAG.

However, many HPC workloads are of the form described here.

For example, the Proteome Analyst (PA) web service [91] has a multistage Fork&Join workflow

(Figure 1.1) that classifies the proteome (i.e., all of the proteins of an organism, usually represented

as a set of strings) in terms of its molecular function and subcellular localization. In this example

two pipelines are constructed. One pipeline is J o b A, B, D and F, and the other is J o b A, C,

E and F. In this case the shapes of the control-flow DAG and the dataflow DAG are the same, but, in

1

Figure 1.1. Proteome Analyst Workflow (a 6-job Fork&Join workflow)

general, they do not have to be the same.

In practice, a workload is often composed of multiple instances of the same workflow, with each

instance acting on (possibly) independent input files or different initial parameters. In our example,

analyzing a proteome may require one instance of the workflow (e.g., Fork&Join) for each protein in

the proteome. Therefore, a proteome analyst workload would consist of multiple instances or copies

of the workflow in Figure 1.1.

The goal of this thesis is to maximize the performance of these kinds of workloads in HPC

systems. The primary metric of performance is makespan, which is the turnaround time to complete

all jobs in a workload.

1.1.1 The Challenges

To achieve our goal, we have a key observation that from a control-flow perspective, workflow

instances are inherently independent. However, in the context of a shared file system, where the

namespace and finite resources are shared, interactions between instances can lead to incorrect ex­

ecutions. Whether the issue is anti or output dependency [71] on files or simple competition for

storage resources, the selective isolation of each workflow instance can be important for maximiz­

ing scheduling flexibility and performance. However, in practice, realizing this benefit is not always

straightforward due to a variety of problems and constraints:

1. Filename conflicts: the unmediated interaction of different workflow instances can lead to a

problem of filename conflicts between concurrent workflow instances overwriting common

files (i.e., one can erroneously overwrite each other's data).

As with compiler optimizations, our solution is based on a renaming strategy. Unlike related

work on scheduling, our renaming is automatically provided by the file system and scheduler

(Chapter 3.2).

2. Deadlocks: the tens or hundreds of concurrent workflow instances can overwhelm any finite

2

(a) Control-flow-based (Unsafe) (b) Dataflow-based (Safe)

Figure 1.2. Control-flow is not always safe to use in exploiting inter-workflow
instance concurrency. An example (a) shows how File Out.A is unsafely over­
written by Job A in WI2 before Job D in WI1 consumes it (The data dependency
between Job A and Job D is not shown in the control-flow). The dataflow exam­
ple (b) is correct in that both Job C and Job D in WI1 must complete before Job
A in WI2 can overwrite File Out.A. Note that the dataflow from Job A to Job D is
only specific to (b) for comparison purposes.

storage resource constraint and lead to deadlock.

Unlike related work on deadlock, which focuses on how deadlock can be prevented, avoided,

or detected, we focus on deadlock avoidance while improving the active utilization of re­

sources (Chapter 4.2 and 4.5) to improve makespan.

The batch schedulers in most current HPC systems (e.g., Condor [94], PBS [47] and LSF [108]) are

control-flow driven (i.e., control-flow-driven batch schedulers; see Chapter 2.1) in the sense that job

scheduling is generally based on the inter-job control dependencies (i.e., control-flow) specified by

users. However, such control dependency information tends to be insufficient to achieve better job

scheduling in terms of high performance and low storage overhead given the problems or constraints

identified above.

To resolve the filename conflicts, most current batch schedulers adopt a sub-directory-based strat­

egy (also called Sub-dir in the later discussion) that creates a working directory for each workflow in­

stance and moves all required data to that directory (e.g., GEL [64], Triana [93] and DAGMan [18]).

Without any dataflow knowledge of what files are used within the workflow instance, control-flow-

driven batch schedulers have little choice but to partition the file namespace in a brute-force renam­

ing strategy.

Specifically, all the computations of the instance are carried out in that directory. However,

based on the control-flow information alone, it is not always possible to determine when a file

3

will no longer be used by the other jobs. For example, in Figure 1.2(a), after J o b B in workflow

instance WI1 finishes, O u t . A cannot be deleted immediately because we do not know if it will be

used by other jobs such as J o b D, J o b E or even J o b F. Therefore, files are usually not deleted

immediately even when they can be deleted, thereby incurring potentially large storage overhead,

especially when a large number of workflow instances execute concurrently and access large files.

To maximize the concurrency while minimizing the storage overhead, overwrite is another strat­

egy that is often used. However, a control-flow-driven batch scheduler cannot always ensure the

correct overlap of multiple workflow instances with respect to safe file overwriting. A different ex­

ample in Figure 1.2(a) illustrates why J o b A in workflow instance WI2 cannot be safely overlapped

with J o b D in WI 1. The control-flow-based overwrite strategy might assume that since J o b B and

J o b C in Wll are finished, the output of J o b A (i.e., Out .A) in WI1 can be overwritten. How­

ever, the overwrite may be premature, leading to an incorrect schedule. Thus, in practice, a common

solution is to execute each workflow instance in a sequential order (also called BASE policy in the

later discussion). Although this serial policy is simple and incurs small storage overhead, it does not

allow any inter-instance concurrency (Chapter 2.1) and thus suffers from poor performance.

Traditionally, in most current HPC systems, the batch scheduler dispatches jobs without any

concern about the interaction between jobs and the underlying file system. Therefore, when storage

is limited, such non-coordinated allocation among jobs may cause the system to enter a deadlock

state due to jobs waiting to allocate file space.

However, the control-flow-driven batch scheduler, even with the knowledge of the storage re­

quests of each job, cannot effectively resolve the deadlock problem. On one hand, as discussed, the

files that are no longer useful cannot be deleted immediately and thus all the intermediate files inside

a workflow instance have to be kept until all the jobs in the instance are finished, thereby increas­

ing the storage overhead. We can see a scenario from Figure 1.2(a) where Out .A (or any other

file, if only control-flow is known) cannot be deleted until instance Wll finishes. But if O u t . A is

only accessed by J o b B, and the file could potentially be deleted after J o b B completes, but the

control-flow graph does not capture that information. Therefore, to be safe, all files can only be

deleted when the entire instance completes.

On the other hand, based on the control dependencies between the jobs, the maximum resource

demand or claim {maximum claim for short) associated with each instance in general is hard to ac­

curately approximate since each intermediate file is assumed to be used until the end of the instance.

The concept of having a good estimate (i.e., a tight upper bound) for the maximum claim is also

central to the banker's algorithm [43]. But without reliable user- or system-provided information,

4

the global maximum claim must usually be taken to be the conservative sum of all the requests

of all the jobs in the instance, which is, in practice, a loose upper bound on the maximum actual

resource requests. Unfortunately, loose upper bounds on the maximum claim can lead to poor re­

source utilization (Chapter 4.5). Furthermore, global and static maximum claims may lead to poor

active utilization of resources as the local and dynamic behavior of the workflow instances changes

(Chapter 4.5).

Therefore, to resolve the deadlock, traditional batch schedulers usually delegate the responsibility

to users who have to manually intervene after deadlock has been detected, imposing the problem-

solving efforts on the users, and resulting in lost progress due to the need to stop and re-run jobs.

1.1.2 The Advantages of Dataflow Information

To address these problems, we argue that having the dataflow information is fundamentally ad­

vantageous to determining the precise scope and time window when resources are required. Some

advantages can be observed in the following scenarios:

1. Solving the Resource Deallocation/Prompt Release Problem: In Figure 1.2(a), given the

dataflow information, we know that the file O u t . A in WI1 can be deleted immediately after

J o b B finishes because no further jobs will need that file.

2. Solving the Premature Resource Release/Re-Use Problem: In Figure 1.2(b), with the

dataflow information, we know it is necessary to delay the start of J o b A in WI2 until after

J o b C and J o b D in WI1 are completed. Delaying the start of J o b A maintains correctness

without requiring any additional resources for a file renaming strategy. And since J o b A of

instance WI2 can still overlap J o b F of Wll , there is still inter-workflow instance concur­

rency.

3. Solving the Poor Resource Requirement Estimation Problem: Of course, dataflow is not

essential to deadlock resolutions, but it is useful to design algorithms with better performance.

To improve efficient storage utilization, the dataflow information can be exploited at runtime

to compute more accurate localized maximum claims for each instance as opposed to a pre-

computed global maximum claim in the control-flow-driven batch scheduler. For example, in

Scenario 1 (Resource Deallocation Problem) above, the localized maximum claim associated

with J o b D in WI1 can be computed as the sum of all jobs' requests deducted by the size of

O u t . A since we know, based on the dataflow information, that after J o b B finishes, O u t . A

can be deleted immediately.

In this study we demonstrate the value of dataflow information in workflow batch scheduling,

with a focus on maximizing job concurrency given the filename conflicts and reducing the impact of

deadlock when storage resources are constrained.

1.2 Contributions

Although some ad hoc solutions exist and other systems have attempted to address these prob­

lems, we are advocating a more systematic and comprehensive solution. More specifically, our

contributions are the following:

1. New Policies Exploiting Dataflow to Maximize Concurrency (Chapter 3):

We introduce three new dataflow-based scheduling policies to maximize concurrency (and

minimize makespan) by reducing the impact of the filename conflict and deadlock problems.

(a) Versioned Namespace (VNS)

(b) Overwrite-Safe Concurrency (OSC)

(c) Hybrid Policy (HB), the combination of VNS and OSC, including the proposed deadlock

avoidance algorithms in Contribution 2 below.

Both VNS and OSC take advantage of dataflow information to maximize the inter-workflow

instance concurrency. HB, the combination of VNS and OSC, can trade off performance for

the storage overhead, and thus it is much more flexible than the other two policies. In this

study the various approaches to deadlock avoidance are in the HB policy.

Main quantitative evidence/results (Chapter 3.4): Both OSC and VNS are shown to reduce

makespans, relative to BASE (the baseline in reality), and reduce storage overhead, relative to

Sub-dir (the common practice in reality). These results demonstrate that dataflow information

is valuable in addressing the filename conflict problem by improving job concurrency while

minimizing storage overhead.

2. Dataflow Information Improves Active Resource Utilization with Deadlock Avoidance

(Chapter 4): We integrate two novel concepts with the traditional problem of deadlock avoid­

ance. First, we show how knowledge of dataflow information can be exploited at runtime

to compute localized maximum claims and reduce makespan when deadlock is a potential

problem. Second, we show how a distinction between Active, Inactive and Free resources, as

opposed to just Allocated versus Unallocated resources, is important to minimizing makespan.

Here, the active resources refer to the allocated resources that are held by the running jobs,

whereas the inactive resources are also allocated but are held by the blocked jobs due to re­

source constraints. The remainder are free (i.e., unallocated) storage.

First, with Dataflow-based Aggregate Requests (DAR), the maximum claim of each instance

is dynamically computed by summing the resource requirements of all the remaining jobs (i.e.,

those jobs that have not yet been finished), instead of using a static pre-defined value. Second,

the Dataflow-based Topological Ordering (DTO) algorithm exploits the dataflow knowledge

to topologically order the jobs in the current instance when checking for safety (i.e., a specific

order of job completion that is within a resource budget). Both algorithms try to maximize

the active storage utilization by either improving the inter-instance concurrency or improving

the intra-instance concurrency (Chapter 2.1).

Main quantitative evidence/results (Chapter 4.5): DAR and DTO outperform the banker's

algorithm and Lang's algorithm [60] with respect to makespan and active storage utilization

for the workloads with a variety of workflow shapes, workflow sizes and other workflow

parameters. In addition, we show that, unexpectedly, Lang's improvements to the banker's

algorithm do not always result in improved makespans. As designed, Lang's algorithm does

improve total storage utilization, but much of the utilized storage is inactive utilization, which

does not improve makespan. This result shows that making a distinction between active and

inactive storage is important to minimizing makespan.

3. WaFS for Dataflow Collection (Chapter 3 and Chapter 5): We propose and prototype a

novel system called Workflow-aware File System (WaFS) that extends a traditional file system

to provide a distinct namespace for each workflow instance (to address the filename conflict

problem) and transparently gather the dataflow information to help the scheduler. Unfortu­

nately, the dataflow information is not usually available from the user submission in control-

flow-based systems or tracked by the traditional file systems.

To overcome these challenges, we show how an enhanced Versioned Namespace Manager

(VNM) can be layered on top of a traditional file system to integrate the file system and the

batch scheduler as a WaFS Scheduler. The WaFS Scheduler uses WaFS to collect dataflow

information and stores that dataflow information in the VNM, and the modified scheduler

exploits the dataflow information for better scheduling.

WaFS is primarily a proof-of-concept prototype of a new combined file system and scheduler

architecture. A full evaluation of different implementation strategies is beyond the scope of

7

this dissertation.

In summary, we characterize the proposed policies and the associated deadlock avoidance al­

gorithms in Table 1.1. For comparison purposes, some reference policies and algorithms are also

listed. In the table, Batch Scheduling is characterized by three features: Concurrency, Storage Al­

location Granularity and Dataflow Collection. Concurrency is related to the job scheduling, which

can be obtained from intra-instance concurrency and inter-instance concurrency (see Chapter 2).

Both kinds of concurrency are limited by dataflow information or control-flow information, or (to­

tal/active) storage. Storage Allocation Granularity refers to the computation unit (instance or job)

by which the storage is allocated. Dataflow Collection is only available to dataflow-based batch

scheduling. Deadlock Avoidance Algorithms are distinguished by the computation of maximum

storage demand/claim and how the safety check (i.e., the safety check of a job's request) is con­

ducted. Maximum resource demand/claim can be characterized by three features: what type of

graph is used in its computation, dataflow or control-flow, whether the scope of the computed value

is local or global to the associated instance, and whether the maximum claim is computed, static or

dynamic. Safety checking refers to what kind of safe sequence, either instance or job, is constructed

when a request is made.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides background information,

including some important concepts that are directly relevant to this thesis. Workflow-aware File

System (WaFS) for dataflow collection and scheduling policies, together with their performance

evaluations, are presented in Chapter 3. The deadlock avoidance algorithms for the hybrid policy

and their evaluation results are presented in Chapter 4. Chapter 5 describes a simple prototype of

WaFS. Chapter 6 covers some related work. The conclusions are summarized in the last chapter.

8

P
ol

ic
y

N
am

e

B
A

SE
/S

er
ia

l
(C

hp
.

1)

S
ub

-d
ir

(C
hp

.
1)

V
N

S
(C

hp
. 3

.3
.1

)
O

S
C

 (
C

hp
. 3

.3
.2

)

H
B

 (
C

hp
. 3

.3
.3

)

B
at

ch
 S

ch
ed

ul
in

g
(C

hp
.

1,
 3

,4
.3

,
an

d
5)

C

on
cu

rr
en

cy
 (

C
hp

. 3
.3

 a
nd

4.

3)

(J
ob

 S
ch

ed
ul

in
g)

In

tr
a-

In
st

an
ce

li

m
it

ed
 b

y

C
on

tr
ol

-f
lo

w

C
on

tr
ol

-f
lo

w

D
at

af
lo

w

D
at

af
lo

w

D
at

af
lo

w

In
te

r-
In

st
an

ce

li
m

it
ed

 b
y

C
on

tr
ol

-f
lo

w
"

T
ot

al
 S

to
ra

ge

T
ot

al
 S

to
ra

ge

D
at

af
lo

w
*

A
ct

iv
e

S
to

ra
ge

(C

hp
. 1

,4
.2

,
an

d
4.

5)

S
to

ra
ge

 A
ll

oc
at

io
n

G
ra

nu
la

ri
ty

(C

hp
.

3.
3

an
d

4.
3)

In
st

an
ce

In

st
an

ce

Jo
b

Jo
b

Jo
b

D
at

af
lo

w

C
ol

le
ct

io
n

(C
hp

.
3.

2
an

d
5)

D
ea

dl
oc

k
A

vo
id

an
ce

 (
C

hp
. 4

)
M

ax
im

um
 S

to
ra

ge
 D

em
an

d/
C

la
im

 &
 S

af
et

y
C

he
ck

in
g

(G
ra

ph
 t

yp
e,

 S
co

pe
, T

im
e,

 S
af

e
S

eq
ue

nc
e)

D

A
R

(C

hp
. 4

.2
.1

)
D

T
O

(C

hp
.

4.
2.

2)

B
an

ke
r'

s
[4

3]

L
an

g'
s

[6
0]

(A

pp
en

di
x

A
)

B
A

S
E

 a
nd

 S
ub

-d
ir

 e
va

lu
at

ed

w
it

h
un

li
m

it
ed

 r
es

ou
rc

es
 (

C
hp

.
3.

4)

A
va

ila
bl

e
A

va
il

ab
le

A
va

il
ab

le

V
N

S
an

d
O

S
C

 e
va

lu
at

ed

w
it

h
un

li
m

it
ed

 r
es

ou
rc

es
 (

C
hp

.
3.

4)

D
at

af
lo

w

(s
ch

ed
ul

e
in

de
pe

nd
en

t)
,

L
oc

al
 s

co
pe

,
D

yn
am

ic
,

In
st

an
ce

 s
eq

.
(C

hp
.

4.
5)

D
at

af
lo

w

(s
ch

ed
ul

e
de

pe
nd

en
t)

,
L

oc
al

 s
co

pe
,

D
yn

am
ic

,
Jo

b
se

q.
c

(C
hp

.
4.

5)

C
on

tr
ol

-f
lo

w

(s
ch

ed
ul

e
in

de
pe

nd
en

t)
,

G
lo

ba
l

sc
op

e,

S
ta

ti
c,

In

st
an

ce
 s

eq
.

(C
hp

.
4.

5)

D
at

af
lo

w
 (

P
ip

el
in

e)

(s
ch

ed
ul

e
de

pe
nd

en
t)

,
L

oc
al

 s
co

pe
,

S
ta

ti
c,

In

st
an

ce
 s

eq
.

(C
hp

.
4.

5)

T
ab

le
 1

.1
. T

he
 C

ha
ra

ct
er

is
tic

s
of

 t
he

 P
ro

po
se

d
P

ol
ic

ie
s

an
d

A
ss

oc
ia

te
d

D
ea

dl
oc

k
A

vo
id

an
ce

 A
lg

or
ith

m
s:

B

A
S

E
/S

er
ia

l
an

d
S

ub
-d

ir
co

rr
es

po
nd

 t
o

ou
r

di
sc

us
se

d
se

ria
l

po
lic

y
an

d
th

e
po

lic
y

th
at

 e
m

pl
oy

s
th

e
su

b-
di

re
ct

or
y-

ba
se

d
st

ra
te

gy
 t

o
ad

dr
es

s
th

e
fil

en
am

e
co

nf
lic

t
pr

ob
le

m
.

V
N

S
,

O
S

C
 a

nd
 H

B
 a

re
 o

ur
 p

ro
po

se
d

po
lic

ie
s.

T

he
 H

B
 p

ol
ic

y
co

nt
ai

ns
 s

ev
er

al
 d

ea
dl

oc
k

av
oi

da
nc

e
al

go
ri

th
m

s
am

on
g

w
hi

ch
 D

AR
 a

nd
 D

TO
 a

re
 o

ur
 p

ro
po

se
d

de
ad

lo
ck

 a
vo

id
an

ce
 a

lg
or

ith
m

s.

B
an

ke
r's

 a
nd

 L
an

g'
s

ar
e

re
fe

re
nc

e
al

go
ri

th
m

s
fo

r
ev

al
ua

tin
g

bo
th

 D
AR

 a
nd

 D
TO

 in
 th

e
la

te
r

ch
ap

te
rs

.

"p
os

si
bl

e
fi

le
na

m
e

co
nf

lic
t

''n
o

fi
le

na
m

e
co

nf
lic

t
'T

h
e

jo
bs

 l
oc

al
 to

 th
e

in
st

an
ce

 m
ak

in
g

re
qu

es
ts

Chapter 2

Background Knowledge

A survey of related work is given in Chapter 6. This chapter covers the related background knowl­

edge (with relevant citations) for the main parts of the thesis.

2.1 Basic Concepts

A job is the execution of code by the system, such as a shell script, an interpreted program or a

compiled application. Users submit jobs to the system, which in turn queues (if necessary), places

and schedules the jobs. In a computation, a job is usually associated with some resource requests

(e.g., the number of required processors, the estimated time to be executed, input/output (I/O) file

sizes, startup parameters), which must be satisfied for the job execution to take place.

A workflow consists of a set of jobs with dependency relationships. With control dependency,

some jobs must finish before other jobs can start. The control dependencies of a workflow can be

represented as a Directed Acyclic Graph (DAG) whose nodes represent the jobs and whose edges

denote their control dependencies. We call this graph a control-flow graph (CFG), denoted as Gc =

G(N, Ec). Figure 2.1 represents a Fork&Join workflow; its input script in Condor DAGMan [18], a

well-known meta-scheduler for Condor jobs [94], is shown in Figure 2.2. This workflow consists

of six jobs (Job A, J o b B, J o b C, J o b D, J o b E and J o b F), and their control dependencies

are described at the bottom of this script. The implicit node in Figure 2.1 does not represent a real

job. It is a virtual job implied by the semantics of DAGMan to synchronize the executions of J o b

B, J o b C and J o b D, J o b E.

A workflow instance is a concrete execution of the workflow with its own input data or parameters

for each constituent job. It is created after the workflow is submitted to the scheduler. For example,

10

/* Filename: Fork&Join.dag */
Job A
Job B
Job C
Job D
Job E
Job F
Script
Script
Script
Script
Script
Script
Script
Script
Script
Script
PARENT
PARENT
PARENT

A. CO]

B . CO]

ndor
ndor

C.condor
D.condor
E.condor
F.condor
PRE
PRE
POST
PRE
POST
PRE
POST
PRE
POST
PRE

A
B
B
C
C
D
D
E
E
F

top_pre. csh
mid-pre.perl $JOB
mid_post.perl $JOB
mid.pre.perl $JOB
mid_post .perl $JOB
mid_pre.perl $JOB
mid.post .perl $JOB
mid_pre.perl $JOB
mid-post.perl $JOB
bot-pre. csh

A CHILD B C
B C
D E

CHILD D E
CHILD F

$RETURN

$RETURN

$RETURN

$RETURN

Figure 2.1. An Example of a
Fork&Join Workflow

Figure 2.2. An Example input Script
File for DAGMan

the user can submit the input script file in Figure 2.2 to DAGMan to create a workflow instance.

Each submission, possibly of the same input script, creates a different workflow instance.

Assuming no job preemption, a job progresses through different states:

• Submitted State: A job in this state is generally blocked unless its control dependencies are

already resolved. The time when a job enters this state is usually the job's submission time,

denoted as job.submitTime.

• Ready State: Whenever a job's control dependencies are resolved (all its parent jobs have

completed), it enters the ready state, waiting to be scheduled. The time when it enters the

ready queue is defined as the ready time of the job and denoted as job.readyTime.

• Running State: When resources become available and a job is selected by the scheduler to

be executed, the job enters the running state. The time when it starts running is the job's start

time, denoted as job.startTime.

• Done State: when a job finishes its computation, it enters the done state. The time when it

enters the done state is denoted asjob.doneTime, which is the job's completion time.

In our discussion, a workload consists of a set of workflow instances that come from the same

workflow. We characterize a workload from several aspects. The first is the shape of the workflow,

11

such as Pipeline, Fork&Join and Lattice. The shape of a workflow determines the inherent degree

of job concurrency within each workflow instance. The second is the average inter-arrival time of

the workflow instances, which is the difference in job.submitTime between different jobs and char­

acterizes the arrival rate of workload submission (i.e., offered load). The third is the service time of

the jobs within each workflow instance; the sum of them in a workload reflects the total computa­

tional work. In addition, when storage resources are limited and deadlock is a pragmatic concern,

other characteristics of the workload such as the workflow size and file sizes are also important to the

performance goal(s) (this will be discussed in the next section).

Job scheduling [29,84] is the process of computing a plan (or schedule) that maps each ready

job to a processor or a computing host to achieve the performance goal(s). This process is usually

accomplished by following the constraints and precedences specified in the control-flow graph (Fig­

ure 2.2). Unlike control dependency, data dependency refers to a producer-consumer relationship

between two or more jobs where a job cannot start until all its input data (which is typically generated

by the previously completed jobs) is available. Similar to control dependencies, data dependencies

of a workflow can also be represented as a DAG. We call it a dataflow graph (DFG), which can be

denoted as Gd = G(N, Ed), where the edges, Ed, reflect the data dependencies between the nodes,

N.

Thus, under the assumption that there are only file-based dependencies and no side-effects with

globally shared data, the dataflow graph captures the fundamental dependencies among jobs, which

must be respected to ensure the correct computation. In contrast, the dependencies in the control-

flow graph are generally created for the convenience of the programmer. For example, in Figure 2.2,

the line

PARENT B C CHILD D E

produces four control-flow dependencies (see the sub-graph surrounded by the dashed line in Fig­

ure 2.1):

B t o D

B t o E

C t o D

C t o E

even though, in fact, there are no data dependencies from J o b E to J o b B and from J o b D to

J o b C. DAGMan introduces an implicit synchronization point between J o b B, J o b C and J o b

D, J o b E for the users to easily reason about their workflows, but the additional synchronization

12

Global Variable

r
max.claim

alloc

need

Size

1

n

n

n

Stored Data

r(t) is the number of available resources at the moment I
max_claim(i) is the maximum resource claim that process %
will request
alloc(i, t) is the number of resources that have been allo­
cated to process i before the moment t
need(i,t) = max-claim(i) — alloc(i, i) , i.e., the max num­
ber of resources that process i still needs to complete its task
at the moment t

Table 2.1. Some Global Variables Used in the Banker's Algorithm: n is the
number of processes that are involved in deadlock avoidance.

results in (potentially) lower concurrency than using the corresponding dataflow graph. As for the

benefits of dataflow, we will give more details in the later sections.

Based on the above definitions, we make a further assumption that the shape of a workflow's

dataflow graph is independent of the workflow's input data and job parameters (i.e., static dataflow

graph). Although this assumption seems restrictive, we believe it is quite reasonable in scientific

computation.

A Control-flow-driven batch scheduler schedules jobs based on Gc, which is usually specified by

users. Most current batch schedulers are generally identified to be control-flow-driven. In contrast,

the Dataflow-driven batch scheduler schedules jobs based on Gd- Gd is not always available to a

control-flow-driven batch scheduler, or even if it is available, it might not be used by a control-flow-

driven batch scheduler. For example, in the DAGMan script shown in Figure 2.2, the PRE and/or

POST sub-scripts are commonly used to stage in and/or stage out files in some area for the cluster

jobs. These sub-scripts actually specify the dataflow information, but such information is not used

in the DAGMan scheduler.

2.2 Deadlock and the Banker's Algorithm

When multiple workflow instances run concurrently and compete for the limited storage re­

sources, deadlock can occur. Generally, there are three approaches to dealing with deadlock, dead­

lock prevention, deadlock avoidance and deadlock detection combined with recovery [92], each with

advantages and disadvantages with respect to the resource utilization and computation overhead. >

The banker's algorithm [23] is the most widely recognized deadlock avoidance algorithm. The

basic idea of this algorithm to prevent deadlock is to deny or postpone the request if granting the

request could put the system in an unsafe state (one where deadlock could occur). The pseudo code

13

/* Process P,; makes a resource request b, */
banker(_Pj, bt) {

if (h >r(t))
/* wait because there aren't enough free storage*/
return false;

else
/* pretend to modify the system */
r(t) <-r(t)-bi;
alloc(i, t) <— alloc(i, t) + bi;
need(i, t) <~ need(i, t) — bi;
if (safety check (Pi))

return true;
else

/* undo the changes since allocation could course
** deadlock and try the request later once resources
** have been cleaned up. */
r(t)<-r(t)+bi;
alloc(i, t) <— alloc(i, t) ~ bf,
need(i, t) <— need(i, t) + bf,
return false;

}

Figure 2.3. The Banker's Algorithm for Requesting a Resource Allocation

for the banker's algorithm for a single type of resource is shown in Figure 2.3 and 2.4.

Although the banker's algorithm has more potential to improve resource utilization due to its

dynamic safety check, it has a basic premise that the maximum amount of resources required by

each process need to be declared a priori. Even with this premise, the banker's algorithm still forms

the basis for many deadlock avoidance algorithms in a variety of application contexts [8,10,60,61].

2.3 Performance Metrics

The execution of a workflow G may use different numbers of computational nodes at different

time periods. For each time period, the number of computational nodes used to execute a workload

is defined as the Degree of Concurrency (DOC). We can use DOC to measure the instantaneous

concurrency of a workflow instance. Note that DOCGC (i.e., DOC based on Gc) may be different

from DOCod (i.e., DOC based on Go)- Based on this concept, we can further compute Average

DOC:

Aug. DOC = — — / = DOCG(t)dt (2.1)
h - *i Ju

to measure the aggregate concurrency (ti and i2 are two time points).

When multiple instances of the same workflow execute concurrently, the concurrency may come

14

/* checking if system is in a safe state at moment t.*l
safetycheck(_Pp) {

/* process[] is an array of processes to
** record if a process can be finished
** in the safety check. process[]
** and resource are local variables. */
resource <— r(t); /* available resource */
for [each Pi in the process[]) do

process[i] *— false;
while {3Pi such that process[i]

= false Aneed(i,t) < resource) do
resource <— resource + alloc(i, t);
resource[i] <— true;
if (i =p)

return true; /* state is safe */
return false; /* state is unsafe */

}

Figure 2.4. The Safety Checking Algorithm in the Banker's: The algorithm is
performed to find out if the system is in a safe state.

from two aspects. One is called intra-workflow instance concurrency (intra-instance concurrency,

for short), referring to the number of concurrent jobs that belong to the same workflow instance. The

other is called inter-workflow instance concurrency {inter-instance concurrency, for short), referring

to the number of concurrent instances. Both intra- and inter-workflow instance concurrencies are

vital for the scheduler to make the best use of system resources and hence achieve high-performance.

The following metrics are frequently used in measuring the performance of different scheduling

algorithms on a set of jobs, denoted as Jobs:

Makespan (MS):

MS = max job.endTime — min job.submitTime (2.2)
job(zJobs job€Jobs

Intuitively, makespan is the amount of time the system takes to complete all of the jobs of a

workload, from the submission of the first job to the completion of the last job.

• Mean Response Time (MRT):

2^ job.responseTime

MRT = jobeJobs , T L , (2.3)
\Jobs\

where job.responseTime — job.endTime — job.submitTimewad \Jobs\ denotes the num-

15

ber of jobs in the job set, Jobs. Mean response time is the length of time the system takes, on

average, to complete a job after it has been submitted.

Throughput (TP):
\Jobs_

MS { }

Throughput represents a metric to show how many jobs can be finished during a given time

unit.

Primarily, users are concerned with both makespan and mean response time as they are most

often interested in minimizing the total computation time and the delay between job submis­

sion and job completion. In contrast, system administrators usually care about throughput

as the throughput generally reflects the overall performance of the system. However, in our

context, makespan is more important since the workload as a whole is usually the concern

to carry out a well defined computation task (i.e., a parameter-based study) rather than each

individual job or instance.

Resource Utilization (RU):

pMS
y / job.reqRes(t)dt

RU = ^J°bS' MS,N (2.5)

where N is the total number of available resources of the system (e.g., nodes of the cluster,

storage units), and job.reqRes(t) = the number of requested resources by the job at the mo­

ment t. Utilization refers to the percentage of the time that resources are busy or occupied

with useful work. Sometimes this metric is also useful in the evaluation of the scheduling

performance.

2.4 Scheduling in Batch Queuing Systems

Scheduling algorithms on supercomputers or clusters can be broadly classified into two cate­

gories: time-sharing and space-sharing. Time-sharing algorithms divide time on a processor into

discrete intervals or time slices and then assign these time slices to unique jobs. As a result, multiple

jobs can share the same computing resources by preempting jobs and alternating between differ­

ent jobs across different time slices. Conversely, space-sharing algorithms partition the processors

into disjoint sets and execute each parallel job in a distinct partition until the job completes. Batch

16

file:///Jobs/_

Jobs submitted

t
Queue Manager

Submitted Jobs

ooooo
Jobs assigned to computers

o l . . .

Figure 2.5. An Architecture of a Typical Batch Queuing System: A central
job queue is maintained by Queue Manager, which performs some particular
scheduling algorithm to map jobs to a set of interconnected computers.

queuing systems are generally based on space-sharing algorithms.

A batch queuing system is often used as a resource manager for a supercomputer or a cluster. The

purposes of the queuing system are to maximize the utilization of shared resources and to fairly share

the resources between users. Figure 2.5 shows an architecture of a typical batch queuing system.

Jobs are submitted to a centralized queue master where a scheduling algorithm is performed to map

each job to the assigned computer(s).

In batch queuing systems, some typical space-sharing algorithms used are First Come First Serve

(FCFS) and Shortest Job First (SJF). FCFS schedules jobs according to the order they enter the

queue. This algorithm is simple and easy to implement. It can also produce a fair and predictable

schedule. But FCFS's mean response time is may be high when jobs with long service times arrive

before short jobs if many shorter jobs continue to arrive.

SJF addresses this problem by periodically sorting the incoming jobs according to their service

time and scheduling the shortest job first, thereby lowering the mean response time. However, unlike

FCFS, SJF requires the user to estimate the job service time. In its pure form, SJF can also lead to

starvation for long jobs.

To fulfill user requirements and improve system performance, in practice these basic scheduling

algorithms are enhanced by integrating a variety of new functionalities. Some of them are as follows:

• Fair-share Strategy: This strategy refers to the ability of a batch scheduler to treat each user

fairly in terms of resource allocation when a system is heavily loaded. One of the methods to

achieve this ability is to allow the batch scheduler to dynamically adjust the priorities of the

Interconnection Network

|

Computer

,
'

\
1
o

Computer

~̂ v

Con

17

jobs in the queue based on the historical data of previously executed jobs.

• Advanced Reservation: Advanced reservation is a technique used by batch schedulers to

ensure the QoS for applications. This functionality is usually achieved by using the user-

estimated execution time to reserve system resources such as processors and memory in ad­

vance and thereby computing a qualified schedule. For example, a reservation may allow the

user to start an arbitrary number of interactive or batch jobs during the reserved time frame.

Moreover, deadline scheduling can be implemented to guarantee that a batch job with a dead­

line notification is completed at (or before) the specified time.

• Backfilling Technique: Backfilling is a technique used to improve the resource utilization

(especially of the processors) in space-sharing scheduling algorithms [30,37,65]. Backfilling

tries to improve system utilization by allowing the jobs with low priorities to bypass1 those

with high priorities so that the otherwise idle resources can be utilized. Currently, many batch

queuing systems (e.g., LoadLeveler [53], LSF [108] and PBS [47]) have implemented this

technique.

• Job Dependency: Many existing batch queuing systems (e.g., PBS [47], LSF [108], CO-

DINE [39], Condor [94] and LoadLeveler [53]) allow the user to specify job dependencies

(i.e., control dependencies). Since creating an optimal schedule for a set of dependent jobs

under space-sharing scheduling is generally NP-complete [58], heuristic algorithms based on

some well-known algorithms (e.g., List Schedules [1] and Clustering Algorithms [35]) are

generally used.

• Resource Constraints: Scheduling with resource constraints allows users or batch queuing

systems to enforce limits on multiple resources so that resource over-subscription on the sys­

tem can be prevented. For example, in NQE [21] the memory limits per system and per batch

queue can be defined in advance, and in PBS [47] multiple batch queues can be defined with

hard limits on a number of resources (e.g., memory, storage space and CPU time) available to

each queue. When considering job dependencies, resource constraints might cause deadlock

due to resource competition. However, few existing batch systems address it at the system

level. Rather, in general, they delegate the responsibilities to the users.

The computed schedules of the jobs with high priorities are not altered.

18

eiwit.pdb ~~v

Generate a GROMACS topology

Enlarge the box

Solvate protein

grompp.mdp

Generate mdrun input file

Run the simulation (EM or MD)

Analysis

pdb2gmx

nl

•.•-.lll . . \

1 " grompp

i ikl iun

J ngmx

inl \ i) i iv

Figure 2.6. An Example of Typical GROMACS Workflow Chart

2.5 Some Typical Workflow Applications

We describe three typical workflow applications [38,42,91] (Table 2.2), which have different

workflow shapes and are representative of many scientific computations.

2.5.1 GROMACS: Molecular Dynamics

Molecular Dynamics (MD) is a computer simulation that helps people to " understand the proper­

ties of assemblies of molecules in terms of their structure and the microscopic interactions between

them" [3].

"[MD] acts as a bridge between microscopic length and time scales and the macroscopic world

of the laboratory: we provide a guess at the interactions between molecules, and obtain 'exact'

predictions of bulk properties. The predictions are 'exact' in the sense that they can be made as

accurate as we like, subject to the limitations imposed by our computer budget. At the same time,

the hidden detail behind bulk measurements can be revealed" [3].

The simulation consists of the numerical, step-by-step, solution of the classical equations of

motion (e.g., the Newtonian equations of motion for systems with hundreds to millions of particles).

19

Application

GROMACS [42]

Proteorae Analyst (PA) [91]

Bronze Standard Medical Imaging
(BSMI) [38]

Functions

A molecular dynamics simulation pack­
age to simulate the Newtonian equations
of motion for systems with hundreds to
millions of particles
A bioinformatics tool to predict protein
properties such as the general function
and the subcellular localization of pro­
teins using machine learning techniques
A data intensive medical image process­
ing application developed to overcome
the difficulties of evaluating the accu­
racy and robustness of image processing
algorithms when the reference image is
not available

Workflow Shape

Pipeline

Fork&Join

Lattice

Table 2.2. Three Typical Workflow Applications: GROMACS, Proteome Analyst
(PA) and Bronze Standard Medical Imaging (BSMI)

GROMACS [42] is a versatile collection of programs and libraries to perform the molecular dynamics

and the subsequent analysis of the trajectory data.

Typically, a GROMACS workflow has a Pipeline shape. Figure 2.6 shows a typical GROMACS

MD run of a protein in a box of water. Several steps of energy minimization may be necessary; these

consist of cycles: grompp —> mdrun. The details of each stage are reported in [42].

2.5.2 Proteome Analyst (PA): Bioinformatics, Machine Learning

Proteome Analyst (PA) [91] is a bioinformatics tool developed at the University of Alberta to

predict protein properties such as general function (i.e., what does the protein do) and subcellular

localization (i.e., where in the cell does the protein perform its main function) using established

machine learning techniques.

The basic PA workflow has a Fork&Join shape (see Figure 2.7). It first accepts a proteome

(i.e., a blend of proteins and genome that is often used to describe the entire complement of proteins

expressed by a genome, cell, tissue or organism) in the form of a text string, and then uses BLAST [4]

to find the homologs among known proteins for each given protein. During this process PA also

gains information about InterPro 2 families, which can also provide information about homology.

PA uses this information to predict the classes of proteins. More specifically, the feature extraction

programs (i.e., Feature Extractions in Figure 2.7) take the homologs as the input and use different

algorithms to extract some keywords or annotations as features. The extracted features are classified

by different trained classifiers to determine the function and the localization for each query sequence
2InterPro is an integrated documentation resource for protein families, domains and functional sites.

20

Sequence

BLAST

. 'Ill

.tiachon 1

1 r i i . I '.-II

(. l " l l ! 1 I

[_bxiractia» 2

1 i- ,:l ..ill-•!!

(i.—i:u. 1

11

I
Feature

lixtraclion 3

I ; ! . . . I . •:

Featur:-
Lxlracli- •! 1

I r. - I I / I -
(:.i-. Flu:

Figure 2.7. An Example of a Typical PA Workflow Chart

within the cell. Finally, the program Summary gathers, summarizes and presents the outputs from

various classifiers.

In practice, as a minor simplification, if the proteome has 1000 sequences, then there will be 1000

workflow instances in the workload. The large number of instances make the PA workload an HPC

and scheduling problem.

2.5.3 Bronze Standard Medical Imaging (BSMI): Medical Image Processing

Bronze Standard Medical Imaging (BSMI) [38] is a data-intensive medical image processing ap­

plication developed to overcome the difficulties of evaluating the accuracy and robustness of image

processing algorithms when the ground truth (i.e., reference image) is not available. The bronze

standard method used in the application does not require the ground truth. Instead, it estimates the

ground truth by leveraging the redundant information in all possible registered pairs of images.

The application is a workflow assembled from a set of basic tools (i.e., jobs, see Figure 2.8(a)),

each having its own function to process the data, extract quantitative information and analyze results.

The workflow can be simplified to be a Lattice-like workflow shown in Figure 2.8(b),3 in which four

major different registration algorithms [73] are used:

1. Baladin: an intensity-based algorithm that uses a block matching strategy to extract feature

points in two images (e.g., the reference and the floating images) to be registered.

3 The shape of BSMI workflow can be transformed into a Lattice-shaped workflow. This simplification is common in
literature to abstract the real workflow [15,69,76].

21

Output Unisfo Output lansfo Output tarisfo

(a) (b)

Figure 2.8. An Example of a Bronze Standard Medical Imaging Workflow Chart
(a). We view it as a Lattice-like workflow shape (b) in our discussion.

2. Yasmina: an intensity-based algorithm built on top of the Powel algorithm to optimize a

similarity measure on the complete images.

3. CrestMatch: a prediction-verification method used to initialize all the other algorithms to

ensure that all algorithms converge toward the same minimum.

4. PFRegister: an Iterative-Closet-Point (ICP)-based algorithm to register the features (ex­

tracted from the input images) with more complex structures than points.

In addition to computation, these algorithms are also responsible for data exchange. In practice, a

BSMI workload usually needs to process hundreds of individual medical images; thus, data paral­

lelism is desired. The data parallelism is achieved through concurrent execution of multiple instances

of the BSMI workflow.

2.6 Concluding Remarks

This chapter covered the background knowledge that is directly relevant to this thesis. First, we

introduced some important concepts in workflow scheduling, which are useful to understand our

WaFS Scheduler, including its mechanisms and policies for collecting and exploiting dataflow infor­

mation. In addition, we discussed some performance metrics that are often used in the evaluation of

batch scheduling algorithms. Among the discussed metrics, makespan and average degree of con­

currency (i.e., Average DOC) are our major concerns. Finally, we described three typical workflow

applications in molecular dynamics, bioinformatics and medical image processing. These applica­

tions have different workflow shapes (i.e., Pipeline, Fork&Join and Lattice) and are representative

22

of many scientific computations. They motivate us to use Pipeline, Fork&Join and Lattice workflow

shapes in evaluating our scheduling policies and algorithms (Chapter 3.4 and Chapter 4.5).

23

Chapter 3

Dataflow Collection and Scheduling

Policies

In this chapter we introduce our dataflow-based scheduling policies and how they exploit the Workflow-

aware File System (WaFS) implementation (discussed in Chapter 5). We discuss the policies before

the implementation because our implementation (Chapter 5) is simply a prototype, and any imple­

mentation or architecture that reliably gathers dataflow information can be used with our policies.

In other words, our policies are more general than any specific implementation.

Our dataflow-based scheduling policies rely on having a mechanism to collect the dataflow in­

formation for batch scheduled jobs (Chapter 3.2, Chapter 5). Then they exploit the information to

maximize job concurrency within the workflows despite possible filename conflicts and deadlock.

Knowing the true dependencies between the jobs [71] (i.e., the dataflow among jobs) enables a file

renaming strategy that eliminates artificial bottlenecks to concurrency while efficiently using re­

sources. Through a simulation-based study we show the potential benefits of the use of dataflow

information to job concurrency and the trade-offs that can be made between storage overhead and

performance. Note that, unlike later chapters that consider deadlock, in this chapter we assume

that there are an arbitrary number of processors and storage resources. In other words, this chapter

studies limits to concurrency other than simple resource limits (e.g., data hazards [71]).

3.1 Motivation

There are two major challenges to collecting and using dataflow information:

24

1. Dataflow information is not always available from the user submission:

As discussed, in general, the user-submitted control-flow dependencies and the dataflow de­

pendencies of a workflow do not have to be the same. Therefore, the dataflow information has

to be gathered automatically during the computation.

2. Traditional file systems do not track dataflow information:

The underlying file systems used in HPC typically do not track the dataflow information in­

herent to jobs. Historically, file systems react to file operations requested by the application

instead of proactively gathering information.

To address these challenges, we propose a WaFS Scheduler (overview in Chapter 3.2; WaFS pro­

totype discussed in Chapter 5), a novel approach that integrates the file systems and the batch sched­

ulers to collect and exploit the dataflow information on a per-workflow instance (or per-instance, for

short) basis. With this integration we can obtain several benefits:

1. The dataflow dependencies between the jobs in a workflow can be inferred by combining the

scheduler's knowledge of the jobs (and possibly control-flow) and the file system's knowledge

of the files accessed.

2. Separate namespaces can automatically be constructed on a per-instance basis to maximize

the workflow instance concurrency while incurring low storage overhead, despite filename

conflicts.

3. The dataflow information can be used to make trade-offs between concurrency and storage

overhead when there are (potential) filename conflicts or deadlocks.

To achieve these ends, we propose and evaluate a set of dataflow-based scheduling policies, in­

cluding Versioned Namespace (VNS) and Overwrite-Safe Concurrency (OSC), to address the prob­

lems of filename conflicts. A hybrid policy (HB) of combining VNS and OSC is also considered

when storage resources are limited and deadlock is a potential problem. Using simulation studies for

a variety of workloads, we show the value of dataflow-based scheduling policies for improving the

degree of job concurrency and thereby decreasing makespan while minimizing the storage overhead

of workflow-based computations. The HB policy for deadlock resolution is presented in the next

chapter.

25

[VNsJ [OScJ Versioned Namespace Manager (VNM)

File Access Info

computation node

O

File System

Figure 3.1. WaFS Scheduler: Integration of WaFS with Batch Scheduler for
Dataflow Collection

3.2 Dataflow Collection: WaFS Scheduler

To collect the dataflow information and to manage a distinct namespace for each workflow in­

stance, we propose a Workflow-aware File System that layers a Versioned Namespace Manager

(VNM) on top of existing file systems and integrates it with the batch scheduler. The integrated sys­

tem (i.e., WaFS + Batch Scheduler) is called WaFS Scheduler. Note that in traditional HPC systems

neither the batch scheduler nor the file system can obtain and exploit the dataflow information alone.

For example, file systems do not associate files being accessed with a workflow or instance; file sys­

tems passively respond to file operations without recording the jobs that access the files. Further,

schedulers do not consider the set of files that a job, workflow or instance will access when making

scheduling decisions.

The architecture of the WaFS Scheduler for dataflow collection is shown in Figure 3.1. It consists

of two major components: the batch scheduler (enhanced with VNS, OSC or their hybrid HB policy)

and WaFS. The enhanced batch scheduler obtains the dataflow information from WaFS and uses

it to maximize job concurrency through the proposed policies (to be discussed in Chapter 3.3 and

Chapter 4). WaFS monitors the workflow computations, and interacts with the underlying file system

to capture the file access information and infer the dataflow information on a per-instance basis.

More specifically, under the assumption that no filename conflicts occur inside workflow instances,

for any pair of control-dependent jobs (i.e., where there is a direct path between two jobs in the

control-flow graph), if a file is created by one job (source) and read by the other job (destination),

26

Policy

BASE
Sub-dir
VNS

osc

HB

DOC

Low
High
High
Medium

Selectable

Intra-Instance
limited by
(Table 1.1)

Control-flow
Control-flow
Dataflow
Dataflow

Dataflow

Inter-Instance
limited by
(Table 1.1)

Control-flow
Total Storage
Total Storage
Dataflow

Active Storage

Storage
Overhead

Low
High
High
Low

Selectable

File Versioned

Never
Always
Always
Never

Selectable

Storage Alloca­
tion/Deallocation
Granularity

Job/Instance
Job/Instance
Job/Job
Job/Job (when
safe to over­
write)
Job/Job

Table 3.1. The Characteristics of the Compared Policies: VNS, OSC and HB
are our dataflow-based policies, BASE is the control-flow-based serial policy,
and Sub-dir refers to the policy that employs the working directory to address
the filename conflicts and maximize the job concurrency. BASE and Sub-dir
policies are listed for comparison purposes. DOC is short for "Degree of Con­
currency."

then a data dependency is established between these two jobs (from the source job to the destination

job). In addition, WaFS provides services for the batch schedulers to exploit the inferred dataflow

information and maximize the job concurrency while minimizing storage overhead.

To validate the basic ideas behind WaFS, we developed a simple WaFS prototype (described

in Chapter 5). The prototype works at the user level, using p t r a c e () via a monitor component

(not shown in Figure 3.1; see Chapter 5), to trace the file-oriented system calls (e.g., o p e n () and

c l o s e ()) and collect the dataflow information in the VNM. Although a full, production-quality

dataflow-based scheduler has not been implemented, the WaFS prototype does validate the basic

design and shows one possible implementation strategy of a key mechanism.

3.3 Dataflow-based Scheduling Policies

To exploit the WaFS mechanism, we propose three basic policies: Versioned Namespace (VNS),

Overwrite-Safe Concurrency (OSC), and their hybrid (HB, detailed in Chapter 4). All these polices,

together with the reference policies of BASE and Sub-dir are characterized in Table 3.1.

The essence of VNS and OSC is to exploit the dataflow information to selectively break the name

dependencies (i.e., the filename conflicts) between concurrent workflow instances. Unlike HB, both

policies assume that there are an arbitrary number of processors and storage resources. In other

words, both policies study the limits to concurrency other than simple resource limits (e.g., data

hazards [71]).

To simplify the presentation of VNS and OSC, we assume that the final output files are staged out

27

(a) Serial Policy (BASE)

(c) Overwrite-Safe Concurrency Policy (OSC) (b) Versioned Namespace Policy (VNS)

Figure 3.2. Inter-Workflow Instance Concurrency: (a) Serial Policy (BASE), (b)
Versioned Namespace (VNS) and (c) Overwrite-Safe Concurrency (OSC)

to a different file system by the workflow instance itself before each instance is complete. Therefore,

the WaFS Scheduler assumes it can simply deallocate all of the storage resources upon instance

completion.

Consider Figures 3.2(b) and 3.2(c) as examples where three workflow instances (i.e., WI1, WI2

and WI3) are submitted for scheduling. For comparison purposes, we also show the BASE policy

i.e., the serial policy (Figure 3.2(a)). In BASE the inter-workflow instance concurrency is limited by

the control-flow information and thus each workflow instance is executed sequentially (i.e., no inter-

instance concurrency). Files are never versioned, and storage is deallocated after the completion of

each instance (see Table 3.1). Although it is a bit of a "straw man" policy to execute the workflow

instances sequentially, the BASE policy does represent a class of users and workloads in practice.

Perhaps a more reasonable comparison is the Sub-dir policy that employs a per-instance working

directory strategy to isolate the input and output files of each individual workflow instance (i.e.,

files are essentially always versioned). Therefore, Sub-dir inherently breaks filename conflicts and

increases the concurrency. In Sub-dir the inter-instance concurrency is limited by the available

total storage, and the storage held by each instance is deallocated after the instance is completed

(see Table 3.1). As we will see, Sub-dir is similar to VNS. In contrast, VNS is transparent to the

application and also has other benefits discussed later.

28

3.3.1 Versioned Namespace (VNS) Policy

The VNS policy adopts a renaming strategy by automatically versioning each output rile (Fig­

ure 3.2(b), VNS). Specifically, files are always versioned when created with a file open for writing.

Then, when the file is closed and if the dataflow information determines that the file is no longer

needed (e.g., has no more readers), the file storage is deallocated (see Table 3.1).

The basic strategy is similar to register renaming [48,87] in processor microarchitecture in that

extra (i.e., file) resources are used to improve concurrency. The major difference between VNS and

register renaming is that the file-based dataflow information required for VNS to work is not readily

available in current systems. Our proposed WaFS fills in that dataflow gap.

With VNS, although the different instances may generate files that have the same name, their

version numbers are different. For example, in Figure 3.2(b), J o b A in WI1 and WI2 may have

output files that have the same name, O u t . A, but this file will have different version numbers in each

workflow instance, such as Out . A . l in w i l and Out .A. 2 in WI2. Given this versioning policy,

together with the integration of the file system and job scheduler, VNS can construct a separate

namespace for each workflow instance (i.e., NS1, NS2 and NS3). Here, the namespace of VNS, in

terms of isolating the workflow instances, is similar to the working directory in the Sub-dir policy

(Chapter 1.1.1). In contrast, the namespace of VNS can be related back to the workflow instance

(since scheduler and file systems are coupled) to capture and exploit its dataflow information.

First, with dataflow information, when a job is finished, VNS can delete the files that are no

longer used immediately (i.e., job deallocation granularity; see Table 3.1). However, Sub-dir, with­

out dataflow information, is unable to do so until the end of an instance, minimizing the effective

storage utilization. Second, compared to the Sub-dir policy, VNS can potentially increase the degree

of concurrency (DOC) (Chapter 2.3), since based on the dataflow information, VNS can improve

the intra-instance concurrency by removing the implicit synchronizations (i.e., virtual job) in the

control-flow DAG (see the implicit node in Figure 2.1 in Chapter 2).

3.3.2 Overwrite-Safe Concurrency (OSC) Policy

Even though, compared with the Sub-dir policy, the job deallocation granularity in VNS can

reduce the storage overhead, the storage overhead of VNS is still high due to the potential of a large

number of concurrent workflow instances.

To overcome the storage overhead of VNS, the OSC policy overwrites files when it is safe to do

so instead of always versioning files as per VNS. Files are never versioned when created and never

29

deleted when closed, but they can be overwritten by later instances as long as they are not needed in

the current instance (i.e., job deallocation granularity; see Table 3.1).

As an example, in Figure 3.2(c), Jobs D and E of WI1 can execute concurrently with J o b A of

WI2. Specifically, J o b A of WI2 has to wait until the completion of both J o b B and J o b C of

WI1, then WI2 's J o b A can overwrite the file O u t . A. The DOC increases to three (Figure 3.2(c):

dashed box, concurrent jobs 'CJ2' limited only by dataflow information; see Table 3.1). Therefore,

OSC improves the DOC as compared to the serial policy (Figure 3.2(a)) by increasing the inter-

workflow instance concurrency.

Since OSC solves the filename conflict problem by overwriting files instead of versioning files

in VNS, the storage overhead of OSC is small. In fact, the storage overhead of OSC is proportional

to the actual DOC and not proportional to the number of workflow instances. On the other hand,

OSC improves DOC over strategies (e.g., BASE) that must be conservative in overwriting files (e.g.,

when all jobs in a workflow instance are completed) but without incurring extra storage overhead.

3.3.3 Hybrid Policy (HB)

We note that VNS and OSC represent two extremes along a spectrum of policies that trade off

storage overhead for DOC. Compared to VNS, OSC consumes much less storage, but its DOC is

limited. Compared to OSC, VNS maximizes DOC, but it consumes much more storage. Ideally,

a scheduler might want to use a combination of overwriting/deleting and versioning to selectively

improve DOC while controlling storage overhead.

To achieve this goal, given a storage budget (i.e., the maximum amount of storage that can be used

during the computation), our HB policy versions the output files for high DOC whenever deadlock

(due to storage competition between multiple concurrent workflow instances) can be avoided. More

specifically, when a job in instance i creates a file for writing, if there already exists a file with exactly

the same name but no longer used in instance i — 1, the existing file will be safely overwritten by

instance i. Otherwise, a new version number for the created file will be obtained from VNM. In both

cases, the new file is created without incurring deadlock. For example, in Figure 3.3, when O u t . A

is no longer used in WI1, it can be safely overwritten by WI2. However, a new version number for

Out .A is needed (i.e., Out . A . l) forWI3 since O u t . A is being used in WI2 when WI3 starts.

Compared to VNS and OSC, HB can selectively control the storage overhead (e.g., via the storage

budget) while increasing its DOC. In our example, it is not necessary for WI3, like in OSC, to wait

for start until J o b B and J o b C in WI2 are finished. Rather, if there is sufficient storage left

30

Figure 3.3. Inter-Workflow Instance Concurrency in HB Policy

(i.e., deadlock can be avoided), WI3 can start immediately to improve DOC. Otherwise, WI3 has

to wait until sufficient storage is available, avoiding consuming too much storage as does in VNS.

The comparison between the three proposed policies is summarized in Table 3.1 and the deadlock

avoidance in the HB policy will be detailed in Chapter 4.

3.3.4 Summary

In this chapter, we proposed three basic policies, VNS and OSC and their hybrid (HB), to max­

imize job concurrency by addressing the problem of the control-flow-based batch schedulers (see

Table 3.1).

VNS and Sub-dir are consistently the best overall policies in terms of DOC [99,100], but both

suffer from storage overhead. However, compared to the Sub-dir policy, VNS provides the benefit

of being able to construct a namespace to infer and capture the dataflow information on a per-

workfiow instance basis. Therefore, VNS can improve the intra-instance concurrency and deallocate

the unused storage at the earliest possible time. In contrast, without dataflow information Sub-dir

can only deallocate the storage at the end of each instance, therefore suffering from more storage

overhead than VNS.

Due to its low storage overhead, OSC is valuable in situations where storage is scarce, but it

suffers from potentially lower DOC. HB is between VNS and OSC and can make more fine-grained

trade-offs between DOC and storage overhead. Specifically, HB can optimize the performance by

selective control of the DOC under a given storage budget.

31

(a) (b)

Figure 3.4. Benchmark Workflow Graphs: A circle represent a job, and a rounded
rectangle represents an input/output file. The Fork&Join (a) is characterized by
the fan-out factor and the number of stages, whereas the Lattice (b) is charac­
terized by its height and width.

3.4 Simulation Results

We use simulation-based techniques to show the potential of dataflow information to improve

workflow scheduling. In all experiments we use the serial policy and the Sub-dir policy, the two

most common solutions in practice, as our baseline strategies (BASE and Sub-dir) and identify the

circumstances under which OSC and VNS outperform these baseline strategies with respect to the

makespan, the average DOC and the storage overhead.

VNS is equal to Sub-dir (current best practice) on makespan, but always better, and usually a

factor of 2 or better, on storage overhead. OSC provides even more efficient storage utilization than

either VNS or Sub-dir, while remaining comparable to VNS and Sub-dir on makespan for moderate

to non-intensive workloads.

With WaFS, depending on the workloads being studied, OSC and VNS can substantially improve

makespan over BASE usually by an order-of-magnitude. The actual improvement depends on the

arrival rate of the workload and other factors. To different degrees, OSC and VNS exploit the

inherent concurrency between workflow instances that BASE is unable to exploit.

3.4.1 Methodology

Based on the applications described in Chapter 2, we chose to use three representative structures:

Fork&Join, Lattice and Pipeline (see Figure 3.4). These structures cover a spectrum of workflows

and DOC. The Fork&Join structure, characterized by the number of stages and fan-out factors, ex­

hibits near-constant DOC and is representative of a large class of problems with a Pipeline of parallel

32

phases [15,28,91,98]. The Lattice structure, characterized by its width and height, exhibits variable

concurrency, where the concurrency increases initially to a maximum degree and then decreases

progressively. A variety of numerical linear algebra computations that arise in a broad range of sci­

entific and engineering applications have a Lattice structure [38,59,78,81]. The Pipeline structure

can be viewed as a special case of Fork&Join (i.e., fan-out factor is one) or Lattice (i.e., either width

or height is one), but it is very common in scientific computation [6,20,42,51,89].

Example dataflow DAGs for these workflows are shown in Figure 3.4. For the Fork&Join, we

assume that the control-flow DAG is similar to its dataflow counterpart except that any two consec­

utive stages (i.e., all jobs in the stage) are synchronized by an implicit virtual job (see Figure 2.1).

In contrast, for both Lattice and Pipeline, the control-flow DAG and the dataflow DAG are assumed

to be exactly the same. Although user-submitted control-flow DAGs may have various shapes, the

assumptions we made here are reasonable for users to easily reason about their workflows.

As implied in the previous sections, for the OSC and VNS strategies to work, the scheduler must

know both the control-flow of the computation (i.e., the control-flow DAG) and the dataflow of the

jobs in the workflow. Control-flow information is the typical way in which dependencies are made

known to batch schedulers such as LSF [108], PBS [47] and Condor [18]. Dataflow information is

gathered by the WaFS during the execution of the first workflow instance and exploited by OSC and

VNS to improve the DOC of later instances.

Since there are no well-accepted models for job service times (JST), data file sizes (FS) nor their

relationships for the workflow-based workloads, in experiments we assume that for instances of all

the examined workflows, the job service time as well as the data file size are uniformly distributed.

These assumptions are consistent with some previous studies [16,88,106,107]. A brief examination

of the non-uniform Zipf distribution for JST (and file sizes) can be found in Appendix B. In addition,

in each experiment, there are a total of 100 workflow instances in the workload, and the workflow

instance inter-arrival time follows the exponential distribution.

The characteristics of the benchmark workloads are summarized in Table 3.2, and the compared

policies, except for the HB policy, are characterized in Table 3.1. We do not evaluate the HB policy

since it is identical to the VNS policy when the storage budget is not a concern. We study the HB

policy with a variety of deadlock avoidance algorithms in Chapter 4.

We further assume that an unbounded number of homogeneous computational nodes and infinite

storage are available so that the maximum DOC is never constrained by the hardware.

We use the discrete event simulation package SMURPH [33] to implement our simulator. The

simulated scheduler is given the control-flow DAG by the user submitting the workflow instances.

33

Characteristics

Shape Parameter
Job Service Time
Inter-arrival Time
Workload Size
File Size

Fork&Join

stages x fan-out
uniform
exponential
100
uniform

Lattice

heightx width
uniform
exponential
100
uniform

Pipeline

stages
uniform
exponential
100
uniform

Table 3.2. The Characteristics of the Benchmark Workloads

A simulated Versioned Namespace Manager (i.e., VNM) sees all of the file reads and writes and

records the dataflow DAG for a workflow. Based on the historical dataflow information, the sched­

uler knows (from VNM) the dataflow of each workflow instance. The SMURPH-based simulation is

written in C++ with both the versioned namespace manager and scheduler abstracted into modules

independent of the underlying simulation engine.

3.4.2 Results, Data Points and Standard Deviation

There are a variety of factors that impact the performance and average DOC of the workloads

(i.e., makespan and average DOC). Some of those are identified in our experiments as follows:

1. Instance Inter-arrival Time Distribution: simulated user behavior, (e.g., exponential distribu­

tion).

2. Workflow Shape: the structure of the workflow (e.g., Pipeline).

3. Job Service Time (JST), simulated job behavior (e.g., uniform distribution).

Since the storage budget (assumed in this chapter) is unbounded, the file size distribution does not

affect the makespan and the average DOC; it only affects the storage overhead. Therefore, in all

experiments we fix the file size distribution as a uniform distribution on [1,10] storage units. The

data point in each experiment is averaged over 10 runs by changing the random seed in the simulator.

We found that in all experiments reported in this chapter, the standard deviation for the 10 runs is

never greater than 12% of the mean of the 10 runs (i.e., the data point's value). More specifically, for

all makespan and DOC data points, the standard deviation is less than 5%, and for all storage over­

head data points, the standard deviation is less than 12%. Therefore, for clarity of presentation, we

do not show the standard deviation bars on the graphs. A similar presentation strategy is discussed

in Chapter 4.5.4.

We first vary the average inter-arrival time of workflow instances to understand their impact on

performance and storage overhead. For a Fork&Join structure with three stages and a fan-out of

34

200 400 800 1600
Average Interarrival Time

(a) Makespan

o
a IOOO

1 — ' — i — ' — i — ' — r

BASE
OSC
VNS
Sub-dir

• J , - d tg , _g| H , - i i j f l , -jatffl i -J*;ISI , 1...
0 100 200 400 800 1600 3200 6400

Average Interarrival Time

(b) Average DOC.

0 100 200 400 800 1600 3200 6400
Average Interarrival Time

(c) Peak Storage Overhead

Figure 3.5. Simulation Results for the Fork&Join (3 x 32): (a) Makespan, (b)
Average DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all
other values are either time units or storage units)

35

32 per stage, Figure 3.5 shows makespans, corresponding average DOC and storage overhead for a

variety of different simulation parameters. In Figure 3.5, the JSTs are uniformly distributed between

500 and 1000 time units, and we vary the inter-arrival time between instances from 0 to 6400 time

units. Intuitively, a short inter-arrival time represents an intense workload, where the instances arrive

close to each other. On the extreme right of each graph, an inter-arrival time of 6400 represents a

lighter workload, where the inter-arrival time is much larger than the job service times.

For intensive workloads (i.e., x-axis < 200 in Figure 3.5(a)), VNS and Sub-dir are better (i.e.,

lower makespan) than BASE (i.e., the typical, Serial Strategy) by over an order-of-magnitude. OSC

also has a lower makespan than BASE, but not as low as VNS. The performance improvements are

due to improvements in the DOC (Figure 3.5(b)), which typically results in a lower makespan. As

discussed earlier, VNS isolates each workflow instance by creating a separate namespace for each

instance. As a result, there are no name conflicts between the different instances, and the jobs can

be executed immediately as long as their intra-workflow instance data dependencies are respected.

Sub-dir creates a separate directory for each instance and thus has similar performance to VNS.

However, compared with VNS, Sub-dir has a somewhat lower DOC due to its control-flow based

scheduling (VNS is based on the dataflow), especially when all the instances in a workload arrive at

the same time (i.e., x-axis 0). However, this difference is marginal.

The main drawback of Sub-dir is its storage overhead since it never overwrites files until the

end of the instance computation. In contrast, both BASE and OSC create only a limited number

of different files for the workload, and VNS can overwrite files immediately based on the data

dependency information.

As the instance inter-arrival time increases (i.e., the arrival rate decreases), the performance dif­

ference as well as the storage overhead between BASE, OSC, VNS and Sub-dir diminish. A larger

inter-arrival time means that fewer workflow instances are in the scheduler's queue at any given

time, which implies a smaller number of active instances and a smaller DOC. Since the storage

overhead of the compared policies is either proportional to the number of active instances (Sub-dir

and VNS) or proportional to DOC (i.e., BASE and OSC), it decreases as the instance inter-arrival

time increases. Naturally, if there is a lack of inherent job concurrency in the workload, the benefits

of OSC and VNS are not observed.

Therefore, for low-arrival-rate workloads (e.g., where the inter-arrival time is 3200 time units or

larger), the BASE strategy is preferred since it has the same makespan of the other strategies, with

none of the additional complexity and overhead. For medium-arrival-rate workloads (e.g., where

the inter-arrival time is between 1200 and 2400 time units), OSC performs almost as well as VNS

36

100 200 400 800 1600
Average Inlerarrival Time

3200 6400

(a) Makespan

3

BASE
OSC
VNS
Sub-dir

• J a . j l . j I . _ i l . _ H I
100 200 400 800 1600 3200 6400

Average Interarrival Time

(b) Average DOC.

100 200 400 800 1600 3200 6400
Average Interarrival Time

(c) Peak Storage Overhead

Figure 3.6. Simulation Results for the Lattice (8 x 12): (a) Makespan, (b) Average
DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all other values
are either time units or storage units)

37

http://�
http://Ja.jl.jI._il._HI

and Sub-dir, but without the storage overhead. For high-arrival-rate workloads (e.g., where the inter-

arrival time is 800 time units or less), VNS is the clear performance leader. It outperforms Sub-dir

in terms of makespan and storage overhead.

Many HPC workloads consist of a large parameter sweep, where all workflow instances are

known at the beginning of the computation, corresponding to inter-arrival times of 200 time units

(or less). This also corresponds to the region of the graphs where OSC and VNS perform best.

To evaluate the impacts of workflow shapes, we did the same simulation studies on both the

Lattice and Pipeline workflow whose simulation results are shown in Figures 3.6 and 3.7, respec­

tively. Recall that the Lattice is expected to have a lower intra-workfiow instance DOC than the

Fork&Join because of the additional dependencies between the jobs. For our specific Lattice, an 8

x 12 rectangle/diamond, the critical path through each workflow instance is much longer than the 3-

stage Fork&Join discussed above. This is reflected in the near-constant makespan for BASE despite

variations in the inter-arrival times of the workflow instances. Intuitively, the Lattice has a lower av­

erage DOC than the 3-stage Fork&Join and a longer critical path, which reduces the intra-workflow

instance DOC such that the BASE strategy cannot reduce the makespan, even for low-arrival-rate

workloads.

However, both OSC and VNS can still exploit inter-workflow instance concurrency to signifi­

cantly reduce makespans through higher DOC. VNS continues to be better than OSC at reducing the

makespan, but (once again) at the cost of increased file storage due to versioning. Sub-dir demon­

strates the same performance as VNS since the shapes of the control-flow DAG and the dataflow

DAG are exactly the same for our Lattice workflow. However, Sub-dir suffers from larger storage

overhead than VNS.

For both VNS and Sub-dir, their performance improvements over BASE are largely independent

of the workflow shapes. This is different from OSC. For OSC a longer critical path usually implies

a larger number of concurrent instances during the computation. So OSC exhibits relatively better

performance for a workflow with a longer critical path. We can observe this by comparing the

makespans between BASE and OSC in Figures 3.5(a) and 3.6(a), where, again, the critical path of

the Lattice instance is much longer than that of the Fork&Join instance.

In contrast to the 3-stage Fork&Join, we also found that the difference of storage overhead be­

tween VNS and Sub-dir for Lattice becomes relatively large (compare Figures 3.5(c) and 3.6(c)).

This is not difficult to understand since DOC is proportional to the storage overhead of VNS, and

the DOC of the Lattice is much less than that of the Fork&Join (i.e., the storage overhead of VNS

for Fork&Join is relatively high).

38

1 BASE
I OSC
: VNS

1 Sub-dir

0 100 200 400 800 1600 3200 6400
Average Interarrival Time

(a) Makes pan

BASE
OSC
VNS
Sub-dir

0, -aa . ja.a , ja a , jm , J&A , jm , »̂M , „,i.„
0 100 200 400 800 1600 3200 6400 Average Interarrival Time

(b) Average DOC.

•-"?£ ™

BASE
OSC
VNS
Sub-dir

, irwjr,'Ki | trrrr*<i „J4S i ^ J J
100 200 4O0 800 1600 3200 6400

Average Interarrival Time

(c) Peak Storage Overhead

Figure 3.7. Simulation Results for the Pipeline (10-stage): (a) Makespan, (b)
Average DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all
other values are either time units or storage units)

39

The same performance observation concerning the compared policies can also be observed in the

graphs for the 10-stage Pipeline workflow (see Figure 3.7), an extreme case of Fork&Join (Lattice)

workflow. However, the relative performance between OSC and BASE for the Pipeline is not as good

as that for the Lattice (compare Figures 3.6(a) and 3.7(a)). This is easy to understand since there

is no intra-workflow instance DOC, the significant performance improvements of OSC, VNS and

Sub-dir over BASE are derived totally from exploiting the inter-workflow instance job concurrency.

On the other hand, in our experiments the critical paths of the Pipeline instances are shorter than

those of the Lattice instances, limiting the number of concurrent instances for OSC.

Since the intra-instance concurrency of the Pipeline workflow is lower, the difference in stor­

age overhead between VNS and Sub-dir is relatively large for the Pipeline, which is similar to the

situation with the Lattice.

To summarize, for all the benchmark workflow shapes we have the following conclusions:

1. Depending on the workloads being studied, OSC and VNS consistently outperform BASE

by up to an order-of-magnitude. Most performance gains are from exploiting inter-instance

concurrency.

2. VNS continues to be better than OSC at reducing makespan but at the expense of increased

file storage. Sub-dir has almost the same performance as VNS but suffers from larger storage

overhead than VNS. The performance improvements of both policies over BASE are indepen­

dent of the workflow shapes.

3. The workflow shape impacts the performance of OSC. In general, OSC exhibits better perfor­

mance for a workflow with a longer critical path.

4. VNS in general is more efficient than Sub-dir in terms of storage utilization. The relative

difference in storage overhead between VNS and Sub-dir depends on the amount of intra-

instance concurrency. When intra-instance concurrency is highest, the difference is lowest.

In the following experiments (Figures 3.8, 3.9 and 3.10), we show how DOC, makespan and

storage overhead depend on multiple factors, including the job service time (JST), the shape of the

workflow DAG and the instance inter-arrival time. We tried various JST ranges to approximate

poorly-balanced job service time (i.e., JST in the range of [10, 1000]), moderately-balanced job

service time (i.e., JST in the range of [500,1000]; see the previous experiments), and well-balanced

job service time (i.e., JST in the range of [800,1000]). We also varied the inter-arrival time between

0 and 6400 time units.

40

y,

jy

•y . # , 1 , 1 ,

—BASE
**OSC
-»VNS
*-*Sub-dir

1 . !

-

;

-

1600 3200 4800
Avg. InterAV. Time

?200 4800
Avg, InterAV. Time

(a) Makespan (b) Makespan

—BASE

*-*osc
" V N S
*-*Sub-dir

1600 3200 4800
Avy. InterAV. Time

(c) Average DOC. (d) Average DOC.

fH-isai H i ii»^-»

•BASE
"OSC
"VNS
"Sub-dir

1000 2000 3000 4000 5000 6000 7000
Avg. InterAV. Time

—BASE
~OSC
«VNS MSub-dir

(e) Peak Storage Overhead (f) Peak Storage Overhead

Figure 3.8. Impacts of Job Service Time on the Fork& Join (3x12): Makespan, Av­
erage DOC and Storage Overhead (Left: JST[10,1000], Right: JST[800,1000]).

41

Our conclusions from these experiments are:

1. Independent of JST and the shape of the workflow DAG, OSC and VNS are consistently

better than BASE and Sub-dir for high-arrival-rate workloads (i.e., low inter-arrival times)

with respect to makespan and storage overhead, respectively.

2. As the JST range varies, the inherent intra-instance DOC of the workload changes (as ex­

pected, except for the Pipeline) because processes are left idle due to the load imbalance.

However, OSC, VNS and Sub-dir continue to achieve higher DOC than that achieved by

BASE, for intensive workloads, at the expense of increased storage overhead.

3. Ultimately, the maximum JST (which is always 1000 time units) in our experiments deter­

mines the critical path of each workflow instance and thus the makespan. Consequently,

regardless of the load imbalance within workflow instances, OSC, VNS and Sub-dir exploit

enough concurrency between workflow instances to be preferred over BASE, with similar

caveats and trade-offs as discussed for Figure 3.5.

4. The impact of JST on the storage overhead of each compared policy is different. Specifi­

cally, for intensive workloads, regardless of the workflow shape, the impact on BASE, OSC,

and VNS is small. However, depending on the workflow shape, the impact on Sub-dir is

different, either small for both the Fork&Join and Lattice or large for the Pipeline (compare

Figures 3.10(e) and 3.10(f)).

3.4.3 Summary

Our simulation studies show that the basic idea of the WaFS Scheduler (i.e., the integrated file

system and batch scheduler) can effectively resolve filename conflicts and significantly improve job

scheduling by maximizing job concurrency while lowering storage overhead. Specifically, gathering

and using dataflow information to support the novel OSC and VNS scheduling policies is shown to:

1. reduce makespans, relative to BASE;

2. reduce storage overhead, relative to Sub-dir;

3. improve inter-workflow instance concurrency, relative to BASE;

4. maintain the benefits over BASE and Sub-dir for a variety of workload intensities, a variety

of job service time distributions and three different typical workflow shapes (i.e., Fork&Join,

Lattice and Pipeline).

42

(a) Makespan (b) Makespan

1 1

J:

«»•• • " - - «

1 1

r~-~t—=

1 i ' i

1—BASE
~OSC
MVNS
|MSub-dir _

BASE
—OSC
^ V N S

Sub-dir

3200 4800
Avg. InterAV. Time

3200
Avg. InterAV. Time

(c) Average DOC. (d) Average DOC.

2000 3000 4000 5000
Avg. InterAV. Time

•BASE
•OSC
-VNS
«Sub-dir

5000 6000 7000

(e) Peak Storage Overhead (f) Peak Storage Overhead

Figure 3.9. Impacts of Job Service Time on the Lattice (8x12): Makespan, Aver­
age DOC and Storage Overhead (Left: JST[10,1000], Right: JST[800,1000]).

43

• • — • »

(a) Makespan (b) Makespan

1 1 1 1 1

m»» m • . '-* '^~

i ' i

—BASE
~OSC
- - VNS
M Sub-dir

i i *

-

-

3200 4800
Avj>. InlerAV. Time

3200
Avg. InlerAV. Time

(c) Average DOC. (d) Average DOC.

1000 2000 3000 4000 5000 6000 7000
Avg. InterAV. Time

—BASE
—OSC
—VNS
- Sub-dir

(e) Peak Storage Overhead (f) Peak Storage Overhead

Figure 3.10. Impacts of Job Service Time on the Pipeline (10-stage): Makespan,
Average DOC and Storage Overhead (Left: JST[10, 1000], Right: JST[800,
1000]).

44

The main criteria for choosing between OSC and VNS is the trade-offs in performance for the

storage overhead of file versioning.

3.5 Concluding Remarks

In this chapter we studied the potential of using dataflow information in maximizing job concur­

rency while resolving filename conflicts. Our contributions are:

1. We propose the WaFS Scheduler, a novel approach that integrates the file systems with the

batch schedulers to collect the dataflow information and make it available to the control-flow-

driven batch scheduler in order to facilitate the workflow scheduling.

2. To exploit the inferred dataflow information, we propose and evaluate through simulation

studies a set of simple yet effective scheduling policies: VNS, OSC and their hybrid (HB)

(details in Chapter 4). The essence of these policies is to take advantage of the dataflow

information to remove artificial limits (i.e., filename conflicts) on the degree of concurrency

and thereby to allow the batch scheduler to better exploit the available HPC resources.

Our simulation results show that by combining dataflow information with a versioned names­

pace (i.e., VNS), depending on the workload, the makespans can be improved by over an order-of-

magnitude, while the storage overhead is low. In addition, the dataflow information can also make

trade-offs between concurrency and storage overhead (i.e., OSC) when there are (potential) filename

conflicts.

45

Chapter 4

Dataflow-based Scheduling for

Deadlock Avoidance

In this chapter we study the hybrid (HB) policy that combines versioning and overwriting, and

leverages the dataflow information to address the deadlock problem when storage resources are con­

strained. To this end, we integrate two novel concepts with the traditional problem of deadlock

avoidance. First, we show how knowledge of dataflow information can be exploited at runtime to

improve the banker's-based algorithms and also reduce makespan. Second, we show how a distinc­

tion between active and inactive resources, rather than allocated versus un-allocated resources, is

important to minimizing makespan.

Although the density and availability of storage is increasing rapidly, most HPC centers still

operate with disk quotas in some form or another. In practice, storage is still a finite resource [76].

In fact, given the ease with which parameter-based studies can generate jobs and workflow instances,

storage can often be a constraining resource. Therefore, a scheduler should both deal with potential

deadlock issues and maximize performance as measured by makespan and throughput.

As discussed in Chapter 2, deadlock can be handled by prevention, avoidance, or detection. In

comparison to prevention, deadlock avoidance has more potential to make effective use of storage

since decisions are made dynamically. And in comparison to detection, deadlock avoidance does

not have the deadlock recovery overhead. However, deadlock avoidance requires knowledge of the

storage requirements of the computations, which can either be given by the user (e.g., as part of the

job description) or estimated by the system based on historical information.

We propose two algorithms for deadlock avoidance that attempt to maximize active (not just al-

46

located) resource utilization and minimize makespan. Our approach is based on the well-known

banker's algorithm, but our algorithms make the important distinction between active and inactive

resources, which is not a part of previous approaches. The central idea is to leverage the gathered

dataflow information to dynamically approximate localized maximum claim (i.e., the resource re­

quirements of the remaining jobs of the instance) to improve either inter-instance or intra-instance

concurrency and still avoid deadlock.

There are two primary, new algorithms. First, with Dataflow-based Aggregate Requests (DAR),

the maximum claim of each job is dynamically computed by summing the resource requirements of

all the remaining jobs (i.e., those jobs that have not yet been finished), instead of using a static pre­

defined value. Second, the Dataflow-based Topological Ordering (DTO) algorithm exploits dataflow

knowledge to topologically order (i.e., a specific order of job completion that is within a resource

budget) the jobs when checking for safety. For both algorithms, the computed localized maximum

claims are either independent of the scheduling orders of the remaining jobs (DAR) or not (DTO),

with different advantages and disadvantages.

In simulation-based studies we integrate both algorithms into a dataflow-driven batch scheduler

and show how DAR and DTO are better than the banker's algorithm and Lang's algorithm [60] in

terms of makespan and active storage utilization. A variety of workflow shapes and parameters are

examined. Depending on the situations, either DAR or DTO was found to be the best algorithm.

In addition, we also investigate the behavior of the proposed algorithms and show how dataflow

information can be used to integrate an instance admission control with the deadlock avoidance

algorithms to further reduce the makespan.

4.1 Notation and Workflow Model

To describe the proposed algorithms, we first summarize some notation in Table 4.1 and then

define our workflow model. In our workflow model, the dataflow graph of a workflow as presented

in Chapter 2 is refined as a weighted DAG G(N, E), where N is a set of n nodes and E is a set

of e edges. A node in the DAG represents a job which in turn is a program that must be executed

in sequential order. The weight of the node is the job's service time. The weight of the edge

indicates the size of the file that is created by the source node and used by the destination node. The

precedence constraints of a DAG dictate that a node cannot begin execution until all its input files

have arrived and no output files are available until the node has finished, and at that time, all output

files are simultaneously accessible to its destination nodes. Hereafter, we use the terms node and job

47

symbol

rn
n
r(t)

J]
J '

|W?I
\R)\

sm
Slit)
Sl{t)

si(t)

meaning

the number of instances in a workload
the number of jobs in instance; it is a constant from instance to instance.
the available storage (i.e., the free storage) at moment t
the jth job in J"
the set of the jobs in instance h (i.e., { Jg,..., J,;_i})
the size of the write data set of job Jj in instance Ii
the size of the read data set of job J , in instance /,;
the set of the completed jobs in instance Ii before moment t
the set of the ready jobs in instance /,; at moment t
the set of the active jobs in instance Ii at moment t
the set of the scheduled jobs in instance Ii at moment t, i.e., Sl{t) = Slit) U Slit)

Table 4.1. Notation Used in Algorithm Descriptions

interchangeably for easy presentation.

A workload may consist of multiple instances of the same workflow, with each instance having

its own node and edge weights. Thus, for an instance Ii, 1 < i < m (i is the index of U and m is

the number of instances in a workload), the read and write data sets of the job J j can be denoted as

Kj = {rlji,rlj2, •••,rljk} and Wj = {w%jX,nA2, ••-,wl-l}, 1 < j < n (where n is the number of jobs

in the instance, r and w represent input files and output files, respectively. I and k are integers). The

total sizes of Rj and W], denoted by \Rj\ and \Wj\, respectively, are defined as |i?*| = X^=i \r)s\

and \Wj\ = ^2S=.1 \WJS\, 1 < j < n, respectively; where | / | represents the size of a file / .

In practice, the node and edge weights are generally estimated by the user, but the actual values

may be different than the estimated values. For deadlock avoidance consideration, we tend to be

conservative here by assuming that both the node and edge weights are always over-estimated. The

claim on the storage for a job J1, in instance Ii is, therefore, known a priori to the scheduler and can

be computed as \RlA + |W?|, 1 < j < n. However, due to data dependencies, the claim of job J^

can be simplified as \Wj\, 1 < j < n since the input storage has been allocated by its parent jobs.

Similarly, we can define the storage that job J j can release after it has completed as |i?*|,l < j <n,

if each file is safely deleted based on dataflow information (e.g., we may use a reference counter to

record if a file is read by multiple jobs, and only those files whose reference counters are zero are in

R%

Without loss of generality, a single source node (i.e., top node) and a single sink node (i.e., bottom

node) are assumed in the DAG. These two nodes can be viewed as the jobs in the workflow that stage

in the initial input files and stage out the final output files, respectively.

During the execution of a workflow instance, the life cycle of a job may experience several states,

as discussed in Chapter 2. A completed job will release the storage space of its input files only if

48

Algorithm

Banker's
DAR
DTO

Graph Type

Control-flow
Dataflow
Dataflow

Maximum Claim Scope,
Computation Time

Global, Static
Local, Dynamic
Local, Dynamic

Safe Sequence

Instance
Instance
Jobs of the cur­
rent instance

Storage Allocation/
Deallocation Unit

Instance
Instance
Job

Table 4.2. The Characteristics of the Compared Deadlock Avoidance Algorithms

they are no longer used by other jobs (i.e., under the dataflow-driven batch scheduler). The released

storage space can be reallocated to other jobs or instances. The output files are not released; they

are kept as the input files to later jobs.

Our model is deterministic, at least to the extent that the time, and storage space required by any

job, as well as the data dependencies among the jobs, are pre-determined and remain unchanged

during the computation.

4.2 The Algorithms

As stated, both our proposed algorithms, DAR and DTO, are based on the banker's algorithm.

However, previous deadlock avoidance algorithms do not distinguish between active versus inactive

resource utilization. In contrast, DAR and DTO attempt to improve (makespan) performance by

maximizing active resource utilization.

Table 4.2 summarizes the major characteristics of DAR and DTO. For comparison purposes, a

control-flow-based banker's algorithm is also included. The major difference between our algo­

rithms and the banker's algorithm is that our algorithms are based on dataflow instead of control-

flow. With DAR and DTO it is possible to locally and dynamically compute maximum (resource)

claims since it is possible to determine when resources are deallocated. Therefore, for subgraphs of

the dataflow graph the maximum claims will be lower (technically, monotonically non-increasing,

possibly decreasing) than for the entire graph. But, since the control-flow graph does not record

when resources are deallocated, all subgraphs necessarily have the same maximum claim values,

which are aggregates of all job requests. DAR and DTO are different from each other in the scope

(i.e., jobs within the current instance versus all instances in the workload) they use to construct the

safe sequence (jobs or instances) for a safety check. More details of both algorithms are presented in

Chapter 4.2.1 and Chapter 4.2.2, respectively. The notation used in the descriptions are summarized

in Table 4.1.

49

4.2.1 The DAR Algorithm

The motivation of the DAR algorithm is to try to maximize active storage utilization. Specifically,

DAR tries to improve inter-instance concurrency. To this end, we view each workflow instance in

the workload as a unit of storage allocation and deallocation (in contrast to DTO, Chapter 4.2.2) and

leverage the dataflow information to minimize the maximum claim associated with each instance at

runtime. By dynamically reducing the maximum claim associated with each instance, the goal is

to increase the number of instances running concurrently. More specifically, in the DAR algorithm

we have previously defined the maximum claim of an instance U (i is the index of instance Ii) at

moment t to be the total requests of all the remaining jobs (i.e., those jobs in J1 — Sl
c(t), which

contains the jobs that have not finished. Here, J1 represents the total jobs in l{ and S\(£) represents

the set of completed jobs in Ii before moment t, see Table 4.1.) in the instance Jj.

Formally, we can define it as

max-claim{i,t) = \ J \RlA (4.1)
J*e(j'-sj(t))

Initially (i.e., t = 0), the set of completed jobs, iS*(0) = <j>, the maximum claim associated with

the instance /; represents the total requests of all the jobs (i.e., the banker's algorithm's maximum

claim). More formally, based on our workflow model, we have max-claim(i, 0) = J^ j ' e J ' l-^jl =

Ylj^ji |W7I if only distinct files in instance Ii are counted (i.e., if a file is read by multiple jobs,

the size of the file is only counted once in max-daim(i,t)).

In this way, the maximum claim is localized and monotonically non-increasing (possibly decreas­

ing) as the execution of the instance proceeds (i.e., dynamic computation, where max-claim(i, t)

changes for different t). This is different from the standard control-fiow-based banker's algorithm

where a global maximum claim is pre-computedby conservatively aggregating all the jobs' requests,

(i.e., max-claim(i, t) is a constant for all t)

Figure 4.1 is an example showing how the maximum claims defined in DAR are computed. In the

example, three workflow instances with different shapes, Pipeline (Figure 4.1 (a)), Fork&Join (Fig­

ure 4.1 (b)) and Lattice (Figure 4.1 (c)), are considered. The jobs (represented by the nodes) inside

the dashed regions have not been completed as of time t'. They are either active or unscheduled.

By applying Equation (4.1), the computation of the maximum claims for the three workflow

instances at t = 0 and t = t' can be done. These are detailed in Table 4.3. Note that some jobs have

been completed as of time t' (i.e., the jobs outside the dashed regions in Figure 4.1). We can see

50

(a) (b) (c)

Figure 4.1. An example showing how the maximum claims defined in DAR are
computed. In this example three workflow instances /,s with different shapes,
(a) Pipeline, (b) Fork&Join and (c) Lattice, are considered. The nodes in the
graphs represent the jobs, and the jobs inside the dashed regions are those
jobs that have not been completed as of time /'. The numbers marked beside
each edge indicate the file sizes.

that the maximum claims are monotonically decreasing in this example (non-increasing in general)

as the instances proceed, regardless of the workflow shapes.

Based on the definition in Equation (4.1), we have the following lemma:

Lemma 4.2.1 Given a workflow instance U where each file is only read by one job and no files

created by some completed jobs will be read by a subset of unscheduled jobs in Jl — {S\ (t) US'* (£)) at

moment t, the need matrix, defined as the difference between the maximum claim and the allocated

resources, can be computed as

need(i,t)=] T \W}\ (4.2)
J<eJ'-s«(t)

where, at the moment t, the set of completed jobs is Sl
c{t), the set of active jobs is S^(t) and the set

of ready jobs is 5*(t).

Proof The allocated storage for instance ij at moment t is computed as

alloc(i,t)= Yl \Rl\+ J2 \WJ\ <4-3>
7*e(S'(t)us»(t)) ^eS'(t)

Since the intersection of any two sets in {Sl(t), Sl(t),Sl{t)} is empty, we have J1 — Sl
c{t) =

51

Workflow Instance
with Different Shapes

Pipeline /*

Fork&Join /;

Lattice /,;

Time (t)

0
t'
0
t'
0

t'

Completed Jobs

(sm)
4>
{A,B}

4>
{A,B}

0

{A,B,C,C,E}

Uncompleted Jobs
(J* - s«(0)
{A.B.C.D}
{C,D}
{A,B,C,D,E,F}
{C,D,E,F}
{A,B,C,D,E,F,
G,H,I,J,K,L}
{F, G, H, I, J, K, L}

max-claim(i, t)

2 + 3 + 1 = 6
3 + 1 = 4
4+3+2+1+3+7 = 20
3 + 2 + 1 + 3 + 7 = 16
2 + 4+1 + 6 + ... + 4 =
69 (all edge weights)
5+7+5+8+2+4+3+
1 + 3 + 9 + 2 + 4 = 53

Table 4.3. The computation of the maximum claims are detailed for the three
examined workflow instances at t = 0,t' where, as of time t', some jobs have
been completed in each instance.

5* (i) U S«(t) U (J - Sl(t) - (Si(t) U Sj(t))), and

need(i,t) = max-daim(i,t) — alloc(i,t)

E 1*51+ E I^I
•Jje(S*(t)us*(t)) jj6(Ji-sj(t)-(Si(t)us*(*)))

- E w\- E 1̂71
•>je(sj(t)us*(t)) J'jesnt)

E I^I- E Ki
J'6(J<-SJ(t)-(5«(t)US«(t))) ^6S i (t)

E i^i- E IW?I
JJG(J4-5j(t)) Jj€Si(t)

E 1̂ 1+ E \n- E I^I
J*e(j*-s*(t)-sr«(t)) ^es«(t) Jje.s«(t)

E IW7I

Equation 4.2 is also true for a more general case where a file might have multiple readers if only

the sizes of distinct files are counted in both max-daim(i, i) and alloc(i, t). Although we do not

consider the situation in which the files created by some completed jobs are read by the subset of

unscheduled jobs (i.e., J1 — (Sl
s(t) U ££(*))), it does not affect the correctness of the lemma since

the storage allocated to these files is counted in both max-claim(i, t) and alloc(i, t).

Lemma 4.2.1 indicates that the need matrix is determined by the set of unscheduled jobs (i.e.,

J% — S\ (£)), and thus it can be updated by subtracting | Wj | at the time when job Jj is safely granted

52

/* DAR is invoked when job J 1 in instance /;
** is intended to be scheduled. r(t) is a global variable
** representing the available storage at t. t is
** monotonically increasing. \Wj\ and \Rlj\ are
** the sizes of the write and read data sets of J1 in /;.
** need(i, 0) is initialized to max-claim(i, 0) for /,;.
** alloc(i, i) records the amount of storage that has
** been allocated to I{. alloc(i,0) is initialized to 0.
** Both need(i, t) and alloc(i, t) are global variables. */
DAR(/i ,Jj){

/* Wj and Rj are local variables. */
Wj <- getWriteSet(J));
if (|W7 |> r (t))

/* wait until there is enough free storage*/
return false;

/* pretend to modify the system by assuming
** that J1- has completed.*/
R) <- getReadSet(JJ);
r(t)<-r(t)-(\W;\-\Rl\);
alloc{i,t) <- alloc{i,t) + (\W]\ - \R)\);
need(i,t) *- need(i,t) -\W}\\I* Lemma4.2.1 */
if (safetycheck(Ii))

/* Actually, J j is not completed */
r(t)*-r(t)-\R*\;
alloc(i,t) <— alloc(i,t) + \R\\;
return true; /* the request is safe */

else
/* recover the modification */
r(t)^r(t) + (\W;\-\R^\);
alloc(i,t) <- alloc(i,t) - (\W]\ - \R)\);
need(i,t) <— need(i,t) + \Wj\;
return false; /* the request is unsafe */

Figure 4.2. The DAR Algorithm.

its request. We can leverage these results to design our DAR algorithm as well as its safety checking

algorithm. The DAR algorithm is shown in Figures 4.2.

DAR is invoked each time a job Jj in instance h is considered for scheduling (Figure 4.2). DAR

first checks if the current available storage is sufficient to satisfy the request of the job (obtained via

getWriteSet()). If not, the job has to wait until sufficient storage is available. Otherwise, the job J1, is

assumed to be completed, and the corresponding data structures associated with the instance h (i.e.,

r(t), alloc(i,t) and need(i,t)) are updated accordingly. Subsequently, the safety of granting the

request of job Jj is checked using the subroutine safetycheck(). We assume that job JJ- is completed

before checking for the safety because we want the algorithm to be more aggressive in the safety

53

check. Thus, if the safety check is passed (i.e., the system is in a safe state), the request of job J' is

safe, but some data structures (i.e., r(t) and alloc(i, t)) in the algorithm need to be re-adjusted since

job J* is actually not yet completed.

The safety checking algorithm in DAR is identical to that in the standard banker's algorithm

(Chapter 2.2) when viewing each instance as a process. The algorithm iterates over all the instances

in the workload and pools their allocated storage until the need matrix of the current examined

instance is satisfied (i.e., a safe state) or all instances are checked but it is impossible to complete

the current examined instance (i.e., an unsafe state).

The DAR algorithm correctly avoids deadlocks in workflow-based computation since the maxi­

mum claim defined in Equation (4.1) is clearly an upper bound on the storage requirements of the

instance. The DAR algorithm follows the classic banker's algorithm, and thus has the same time

complexity of 0(m2) as the banker's algorithm for checking the safety of a request, where m is the

number of instances in the workload.

As discussed earlier, DAR tends to improve the inter-instance concurrency at the expense of

intra-instance concurrency. Specifically, in DAR the need matrix associated with each instance is

monotonically non-increasing (possibly decreasing) as the instance proceeds; therefore, instances

nearing completion will have smaller need matrices. As a result, the need matrices associated with

the nearly completed instances are easily satisfied, and the storage they are holding is easily deal­

located as well. The resulting deallocated storage can be gathered during the construction of the

safe instance sequence to improve the possibility of safely granting requests from new instances

(although their need matrices are large). Consequently, more instances can be active (i.e., inter-

instance concurrency is enhanced). In contrast, the conservatively large value of the need matrix

defined in the control-flow-based banker's algorithm makes it hard to construct safe instance se­

quences, thereby restricting inter-instance concurrency.

4.2.2 The DTO Algorithm

The DTO algorithm, unlike DAR, is designed to maximize the active storage utilization by trying

to improve the intra-instance concurrency. To this end, we view the job rather than the instance, as

in DAR, as the unit of storage allocation and deallocation and localize the safety checking of the job

request to the current instance (i.e., the instance making the request).

More specifically, when deciding if a job Jj in instance h can be scheduled at moment t (see

Figure 4.3), DTO first checks whether the request of the job (obtained via getWriteSet()) is greater

54

than the current available storage. If so, the job has to wait until there is sufficient storage. Otherwise,

the set of jobs that have already been scheduled £'](£) and the current job J ' (i.e., 5](t) U {•/!}) are

computed, which also provides the set of jobs not yet scheduled (i.e., Jl
k 6 (J* — {S\{t) U {J)})),

and the safety of granting the request of job J- is checked.

in the safety check (Figure 4.4), it is first assumed that job J] is granted the request and finished

immediately and then the scheduling state (after scheduling job Jj) is tested by topologically order­

ing each job Jl
k g (,/' — (S\(t) U {J}})) (i.e., only considering all remaining jobs in instance U)

such that:

m\<r(t)- £ m\-\R}\) (4.4)
idx(Ji)<idx(J^)

Here, r(t) is the available storage at moment t (after J? is assumed to be finished); the initial value of

r{t) (i.e., fori = 0) is the total storage budget; J\ is the job that is scheduled before job J\. in instance

If, idx(x) is the index of job J* in the topologically ordered sequence. By definition, a topological

ordering of a workflow DAG is a linear ordering of its jobs in which the data dependencies between

the jobs are respected. The scheduling state is safe if all remaining jobs (i.e., those jobs that have not

yet been scheduled in the current workflow instance) can be topologically ordered while satisfying

Inequality (4.4). Otherwise, the scheduling state is unsafe. A job request is safe if the scheduling

state is safe after the job request is granted.

For example, in Figure 4.1 (b), if at the moment £', J o b A and J o b B in the Fork&Join instance

are finished and the available storage is 20 units. At this point, J o b D is making a request of 3.

For checking the safety of this request, DTO first assumes J o b D to be finished. Then, r(t')=20-

3+2=19. Based on Inequality (4.4), we topologically order the remaining jobs J o b C, J o b E and

J o b F by following an order: J o b C—>Job E—>Job F. Then, we have

1. 19 > 1 (Job C can be finished)

2. 19 - 1 + 3 = 21 > 7 (Job E can be finished)

3. 1 9 - 1 + 3 - 7 + 1 = 15 > 0 (Job F can be finished)

So, we can topologically order the remaining jobs and the request of J o b D is safe.

With regard to the safety check, our concern is the existence of such a safe job sequence, which

indicates thai given a storage budget, there is at least one deadlock-free job schedule if the order

specified in the safe job sequence is followed. However, given an arbitrary DAG and a storage

budget, determining the existence of such a safe job sequence is generally believed to be a NP-

complete problem [83]. Therefore, instead of looking for an optimal algorithm to find the safe job

55

/* DTO is invoked when Jj in U is intended
** to be scheduled at moment t. Be aware that t is
** monotonically increasing. Ss(t)'' is the set of
** jobs in h that have been scheduled before t.
** r(t) is a global variable representing the
** available storage at t.
** \Wj\ is the size of the write data set of Jj in li */
DTO(/» , J j){

/* local variables: W), S\{t),S\(t) and S'a{t) */
W] <- getWriteSet(jf);
it (\WJ\ >r(t))

/* wait until there is enough free storage*/
return false:

Sl(t) <— getCompletedJobs(Ii);
Sl(t) <— get Active Jobs(Ii);
Sl(t) *~ Sl(t) U Sl

a(t); /* see Table 4.1 */
if (safetycheck(S's(t), Jj))

r(t) <-r(t) - \WJ\;
I* the request of J j is safe */
return true;

else
/* the request of J j is unsafe */

return false;

}

Figure 4.3. The DTO Algorithm

sequence, we use some heuristics to topologically order the jobs that satisfy Inequality (4.4) (see the

topological order algorithm in Figure 4.5).

In the safety checking algorithm topological jorder (), shown in Figure 4.5, is our proposed func­

tion to topologically order the remaining jobs so that each ordered job will have sufficient storage

to satisfy its request (as determined by Inequality (4.4)). The algorithm searches the (remaining)

dataflow DAG in breadth-first order and expands the nodes whose parent nodes have all been ex­

panded (i.e., the ready jobs). A node is expanded if its request can be satisfied by the amount of

storage computed in the right side of Inequality (4.4). Given the available storage, if all the remain­

ing jobs can be ordered, the algorithm returns true, indicating a safe scheduling state; otherwise, the

algorithm returns false. Again, a job request is safe if the scheduling state is safe.

Since our algorithm is built on top of breadth-first traversal, the complexity of the algorithm for

checking the safety of a request is 0{n2), where n is the number of jobs in the instance. Our breadth-

first-based algorithm is different from the situation in the banker's algorithm where the nodes (i.e.,

processes) are independent without data dependencies.

It can be shown that DTO can avoid deadlock among multiple concurrent workflow instances

56

/* checking if scheduling J ' is safe at moment t.
** \Rlj | is the size of read data set of J,- in Iz */
safetycheck(S*(£), J)) {

I* Rlj, Wj, d and C are local variables. */
d^r(t):,
R) <- getReadSet(Jj); /* get read set */
Wj <- getWriteSet{Jj)\ /* get write set */
d«-d-|W7l + |flj|;
/* assume C l is the set of completed jobs of It */
C* <- Sj(t) U {J,1}; /*assume J] is finished*/
/* topologicalxirder is the function that
** topologically orders the unscheduled jobs
** to satisfy Inequality (4.4) */

return topological .order (d, C1, i);

}

Figure 4.4. The Safety Checking Algorithm in DTO: The algorithm is performed
to find out if a job scheduling in instance /, is in a safe state.

and also improve the intra-instance concurrency. The correctness of this algorithm is not difficult to

understand since via (informal) inductive arguments, we can see that there always exists at least one

active instance and the state is safe. The DTO algorithm, as with the banker's algorithm and DAR,

only allows for transitions into safe states. Therefore, a non-safe (i.e., deadlock possible) state is

never entered.

As discussed earlier, DTO tends to improve intra-instance concurrency at the expense of inter-

instance concurrency. Specifically, DTO is biased to grant resource requests to instances nearing

completion (i.e., intra-instance), rather than start (or admit) new instances (i.e., inter-instance).

When resources are tight, the resource requests for new instances tend to be larger than the re­

sources available. However, the resource requests of admitted instances, which are monotonically

non-increasing due to the topological order, might be satisfiable under the same constraints.

4.2.3 Summary

In this section we described two deadlock avoidance algorithms, DAR and DTO, for workflow-

based computation when storage resources are constrained. Both algorithms are based on the well-

known banker's algorithm. However, our algorithms leverage the dataflow information and make a

distinction between active and inactive resources to minimize the makespan, which is different from

the previous work where improving resource utilization was usually the goal.

With DAR the maximum claim associated with each instance is dynamically computed by using

the dataflow information to sum the resource requirements of all the remaining jobs (i.e., those jobs

57

/* given J ' and r(t), if we can topologically order the jobs in J' — C
** to satisfy Inequality (4.4) at t.
** DAG1 is the dataflow DAG of /,, which is globally accessible. */
topological_order(d, C',i) {

/* Q is a local variable that keeps the set of all remaining
** unmarked nodes with no incoming edges (i.e., ready jobs) */
Q <r- <j>; /* local variable */
for (each J^eC1) do

mark J\ a s Done i n DAG1;
/* search in breadth-first order */
for {each node J£ £ (J2 — C l) with an edge e from J% to J\) do

remove e d g e e from t h e DAG1;
if (J£ is a ready job)

p u t Jj, i n t o t h e end of Q;
while (T ^ <j>) do

J* <— Q.popQ; /* the first ready job */
W7? <- getWriteSet{Jl

r);
Rl <- getReadSet{Jl

r);
if (IW Î >d)

return /aZse; /* scheduling is unsafe */
mark J%

r a s Done; /* satisfying Inequality (4.4) */
d <-d - \W*\ + \R*.\;
Ci <- Cl U {J 2 };
/* search in breadth-first order */
for (each node Jl

k 6 (J* — C") wit/i an edge e from Jl
r to JJ.) do

remove e d g e e from t h e DAG1

if (J\ is a ready job)
p u t J\. i n t o t h e end of Q;

return true; /* scheduling is safe */
}

Figure 4.5. The topological order algorithm in the DTO algorithm

that have not yet been finished). The DTO algorithm exploits the dataflow information to topo­

logically order the remaining jobs in the current instance when checking for safety (i.e., a specific

order of job completion that is within a resource budget). Both algorithms try to maximize the ac­

tive storage utilization by either improving the inter-instance concurrency (DAR) or improving the

intra-instance concurrency (DTO).

4.3 Deadlock Avoidance Batch Scheduler

We describe a deadlock avoidance batch scheduler, which provides a natural way to integrate

batch schedulers with deadlock avoidance algorithms. Specifically, we introduce a component

known as a deadlock avoider that implements both DAR and DTO and we integrate it with apriority-

based batch scheduler for checking the safety of job requests. The resulting scheduler architecture

is shown in Figure 4.6.

58

Figure 4.6. Deadlock Avoidance Batch Scheduler. MDF stands for Most Done
Job First, an Instance Scheduling Policy.

4.3.1 The Priority-based Batch Scheduler

In a priority-based batch scheduler the instances are assigned priorities and ordered in a list in

decreasing magnitude of priority (i.e., PriorityQ in Figure 4.6). In addition, a priority sub-queue

is also maintained for each instance to prioritize its ready jobs. The processors are allocated to

instances first and then to the jobs in the selected instance according to a higher-priority-first policy.

Ties are broken randomly [27].

Depending on evaluation metrics, instances can be prioritized based on different strategies; for

example, First Come First Serve (FCFS) for fairness, Shortest Job First (SJF) for minimizing the

mean response time and so forth. Although these strategies are popular and always used as the

default in most batch schedulers for processor allocation (e.g., Maui/Moab [54] and IBM's Load-

Leveler [53]), they are not entirely suitable when the total makespan is the performance concern

and the instances can be preemptive at some particular points when jobs are finished. To meet

our demands, we propose a simple strategy, called Most-Done Job First (MDF) to prioritize the

instances. In this strategy, the instance with the largest number of completed jobs has the highest

priority (ties are broken by the instance ids assigned by the scheduler when the instances enter the

system). The motivation for this strategy is the hope that the instances who have completed most of

the jobs will finish as soon as possible, thereby minimizing the storage contention by freeing storage

resources.

If no data dependence constraints are violated, the job priorities can also be determined in a va­

riety of ways such as Highest Level First (HLF) [17], Longest Path (LP) [17], Longest Processing

59

State

1

2

3

Event

One or more new instances arrive

One or more jobs are finished

No active instances, but PriorityQ
is not empty

Action

Accepting incoming instances and ini­
tializing PriorityQ
Resolving the dataflow dependencies
and updating some data structures to
record the changes of the free and allo­
cated storage
Triggering the batch scheduling

Table 4.4. Scheduling States, Events and Corresponding Actions

Time (LPT) [32,55] and Critical Path (CP) [40]. Moreover, the priority computation can be either

at submission time, static scheduling; at runtime, dynamic scheduling [57,86,104]; or by a combi­

nation of both. In our job scheduling we adopt HLF, a simple strategy not requiring the processor

information, but an effective heuristic to approximately speed up the computation along the critical

path. The notion of level is the sum of computation costs of all of the nodes along the longest path

from the node to be scheduled to the sink node. The motivation for this heuristic is the hope that it

will minimize the instance execution time and thus release the held storage as soon as possible.

In addition to the priority queue, there is another important queue called BlockedQ, which main­

tains the jobs for each instance whose data dependencies have not yet been resolved. If a job's data

dependencies have been resolved, it becomes a ready job and enters the corresponding job priority

queue.

4.3.2 Integration with Deadlock Avoider

The deadlock avoider is integrated with the batch scheduler using inter-process communication.

The batch scheduler records the request of each job and is responsible for scheduling the instances

and jobs by allocating resources to them (i.e., processors and storage; storage being our concern).

More specifically, in order to safely grant the request of a job, the scheduler will ask the deadlock

avoider if the request is safe or not. The deadlock avoider will answer "Yes" or "No" by running

DAR or DTO for the safety check.

The batch scheduler is event-driven: there are three major states to process three kinds of schedul­

ing events at moment t. The processing states and their corresponding trigger events as well as the

major actions in each stage are shown in Table 4.4, and the algorithms corresponding to each state

are described in Figures 4.7,4.8 and 4.9, respectively.

The scheduling algorithm for State 1 (new instance arrival) is simple; it accepts (by acceptAnstanceQ)

an incoming instance at moment t and assigns an identifier to it (i.e., i for the instance Ii in the algo-

60

/* State 1: accepting incoming instances at moment t.*/
i ^ 0 ;
do

li <— acceptJnstanceQ;
for (each job J j e U) do

if(Jj',s data dependency has been resolved)
insert J j into PriorityQ;

else
put JJ- into BlockQ;

i + +;
until (all incoming instances are accepted)

Figure 4.7. Algorithm for Dealing with New Instance Arrivals

rithm). Then the jobs in the instance are checked and either inserted into PriorityQ for scheduling

or put into BlockQ awaiting dependency resolution (each job is also assigned a job id, but this is not

shown in the algorithm). This procedure is repeated for all incoming instances at moment t until all

are processed.

State 2 (j°b(s) finished) deals with the situation where a set of jobs are completed at moment t. It

first updates the available storage (the allocated storage to the instance to which the completed job

belongs) by adding up (deducting) the released storage of the completed job and then, if possible,

frees any jobs in BlockQ that data depend on the completed job placing them in the PriorityQ queue

(using depj-esolver()). This procedure is repeated for all completed jobs at moment t until all are

processed. Finally, it checks PriorityQ based on some particular scheduling strategies (MDF and

HLF in our case) to select the instance and the job to grant the storage requests if deadlock-avoider()

returns true.

State 3 (scheduling required) is necessary to avoid the situation when there are no running jobs

but the computation has not been finished (i.e., PriorityQ is not empty). In this case the State 3

algorithm is triggered, acting the same as the scheduling part of State 2 except that when no job's

request is granted after scheduling, it reports the storage is insufficient to complete the computation.

In both State 2 and State 3, the job whose request has been (safely) granted is removed from the

corresponding instance's job queue. The algorithm of deadlockjavoider is fairly simple. Its pseudo

code is shown in Figure 4.10. Depending on the parameter alg, either DAR or DTO is invoked for

the safety check whenever a job J j in some instance /»is selected to be scheduled.

61

/* State 2: One or more jobs are finished at moment t*l
do

/* when a job ,/• in Instance /, finishes at moment i*l
** the available storage at t and the allocated storage to 7j
** are first updated. r(t) and alloc(i, i) are global variables. */
r(t)^r(t) + \R*\;
alloc(i,t) ^~ alloc(i,t) — \R)\]
/*Check BlockQ to insert those jobs (i.e., Hl) whose data
** dependency has been resolved into PriorityQ.*/
H% <— depsolver(i,j)]
for {each job J- G Hl) do

insert J 1 into PriorityQ:
until (all completed jobs are processed)
/* Scheduling Part: finally checks PriorityQ
** to select instance and job to grant the storage
** requests if no potential deadlock could be incurred.
** PriorityQ[i] contains all jobs of instance /$.*/
for (each instance li in PriorityQ) do

for (each job Jj in PriorityQ[i]) do
if (deadlock.avoider (It, Jj,alg))

schedule job J1-;
remove job J* from PriorityQ[i];

Figure 4.8. Algorithm for Dealing with Job Completions

4.4 Active-Instance-Aware Admission Control

Too little concurrency will limit performance. Chapter 4.2 has already discussed efficiency from

the point of view of maximizing concurrency by introducing new algorithms (i.e., DAR and DTO)

that use dataflow information to dynamically compute maximum resource needs. However, too

much concurrency of the wrong kind can also have a detrimental effect. Specifically, too many

admitted instances that are blocked on unsatisfiable resource requests leads to inactive resource

allocation. In this section we discuss the role of instance admission control, also based on dataflow

information, to further improve makespans.

The following is a simple example to illustrate the problems that can occur when there is no

admission control (see Figure 4.11). Suppose that initially we have 13 storage units and each file

has a unit size. J o b A in each instance thus require 3 storage units. The requests from all the J o b

As (one J o b A per instance) of the four workflow instances can be safely granted, and the four

instances are admitted to execution, achieving the maximum degree of concurrency (DOC) (Fig­

ure 4.11(a)). After one of the J o b As is finished, say J o b A in WI1, it is safe to grant the request

of J o b B in Wl l since there is one storage unit left. Unfortunately, in the following computation

no progress can be made on WI2, WI3 and WI4 since no storage left for the output files of J o b

62

/* State 3: No active instances, but PriorityQ is not empty
** at moment t check PriorityQ to select instance and job to
** grant the storage requests if no potential deadlock could
** be incurred. PriorityQli] contains all jobs of instance /,.*/
for (each instance l.t in PriorityQ) do

for (each job ,/* in PriorityQ[i}) do
if (deadlock javoider (Ii, , / j , alg))

schedule job J] ;
remove job JJ from PriorityQ[i}:

if (no job is scheduled)
print "the storage is insufficient to

complete the computation.";

Figure 4.9. Algorithm for Triggering Batch Scheduling

/* depending on alg, either DAR or DTO is invoked to
** check the safety of the request of J* in I,. */
deadlock_avoider(7i, Jj,alg) {

switch(aZg) {
case DAR:

return DAR(/;, Jj;)
case DTO:

return DTO(J;,Jj;)
default:

print "Unknown Deadlock Avoidance Algorithm";
return fal se;

}
}

Figure 4.10. The Deadlock Avoider Algorithm

B, J o b C and J o b D in these three instances. As a result the storage they hold becomes inactive

until WI1 is finished. When storage is allocated but is inactive, there is less storage to be allocated

to other non-blocked jobs, which tends to reduce concurrency, thus likely increasing makespan.

The problem of too much and too little concurrency is analogous to the problems faced by op­

erating systems in controlling the degree of multiprogramming. However, storage resources are not

preemptable (unlike memory, for instance), and dataflow information can be valuable when making

admission control decisions. For example, using knowledge of the Fork&Join workflow shape of

the instance, an admission control algorithm can reduce, the degree of concurrency of the system in

the short term to achieve better concurrency in the long term. In Figure 4.11(b) only two instances

(i.e., the right hand side) are initially admitted, and 7 storage units (out of a total of 13 units) are

left unallocated. In the short term, this is less than the four instances admitted and 1 storage unit

unallocated in Figure 4.11 (a). However, after the Job As are completed, the degree of concurrency

in Figure 4.11(b) increases to six (i.e., Jobs B, C andD of w i l and WI2) since there will be enough

63

Figure 4.11. An example illustrating that allocating storage without admission
control may incur poor performance.

storage for those jobs. In contrast, as discussed above for Figure 4.11(a), only J o b B of WI1 can

ran after J o b A of WI1 finishes. Although Figure 4.11 is a specific example where admission

control has a benefit, we will show that the benefits are more general (Chapter 4.5.7).

4.4.1 The Admission Control Algorithm

In this section, we propose a simple active-instance-aware admission control algorithm (Instance

Admission Control (IAC), for short) and integrate it with the deadlock avoider to further minimize

the amount of inactive storage. The parameter space for admission control is large, and we show

significant benefits for our algorithm, but we do not perform an exhaustive study of admission con­

trol. Our main point is that admission control can be valuable in addition to the DAR and DTO

algorithms.

The basic idea of the IAC algorithm is to use the dataflow information to estimate the average

number of active instances so that each such instance could be ensured of a moderate amount of

storage to maximize its job concurrency. However, due to the characteristics of the workload (e.g.,

workflow shape) the definition of "moderate" is not easy to determine. Our simple heuristic is to

compute the average degree of job concurrency for the workflow shape (Equation (4.5), Table 4.5)

and, subsequently, the average storage requirement of an instance (Equation (4.6), Table 4.5). Then

by simply dividing the total amount of storage available by the average storage requirement of each

instance, we have a target average number of concurrent instances for the system (Equation (4.7),

Table 4.5).

More specifically, the algorithm first estimates the average degree of job concurrency (i.e., avg^doc)

64

symbol

avg-fs
B
total-files
totaLjobs
max-doc
miri-doc
avgjdoc
avgst
avgAc
avg-jst
avgjcp
mk

meaning
the average file size
the given storage budget
the total number of files in the workflow DAG
the total number of nodes in the workflow DAG
the maximum degree of job concurrency
the minimum degree of job concurrency
the average degree of job concurrency
the average storage held by each instance
the average degree of instance concurrency
the average job service time
the average length of critical path
the total makespan of the computation

Table 4.5. Notation Used in Instance Admission Control

for the workflow shape as follows (some notation used is shown in Table 4.5):

avg.doc s
mirudoc + max.doc

(4.5)

It then approximates the average storage held by each instance (i.e., avgst) using:

total-files
avgst w 2 • avgjdoc • , • avg.js

totaLjobs
(4.6)

Here, the factor 2 means that we count both input and output files for each job.

Finally, given storage budget B, the algorithm estimates the number of concurrent instances as:

B
avgjic '•

avgst
(4.7)

The advantage of Equation (4.7) is that avgAc is simply a function of miri-doc and maxjdoc of

the workflow shape. It does not need other information related to instances such as job service time

and critical path.

Although Equation (4.7) simplifies the estimation, it also introduces inaccuracy, and thus it may

result in poor performance in some special cases. The inaccuracy of this estimation is caused by

the assumption implied by Equation (4.5) that the degree of job concurrency is changed smoothly

during the instance computation.

From Equation (4.5) we can see that the key point in our algorithm is the computation of mirudoc

and max Aoc of the workflow. This can be achieved by knowing the dataflow DAG of the workflow.

miii-doc is relatively easy to compute since our workflow model assumes a single entry node. In

our experiments, max-doc is easily computed for the relatively straightforward workflow shapes.

65

/* the extended deadlock_avoider. ,/' in It is intended
** to schedule at moment t. The running instances at t
** are those instances that have active jobs at t.
** 5 is the id set of running instance at t and avgJc
** is computed by Equation (4.7) (see Chapter 4.4.1). */
deadlock_avoider_ext(/j, J] , alg) {

S <— getActivelnstanceldSetQ;
if (z £ S)

if (|51 > avgJc) /* \S\ is the size of S */
return false;

return deadlock-avoider(Ii, JJ, alg);

}

Figure 4.12. The Extended Deadlock Avoider after Integrating with Instance Ad­
mission Control

For the general case of arbitrary DAGs we note that maxAoc can be computed via the Dilworth

Decomposition algorithm [24,95]. The Dilworth algorithm actually computes the maximum anti-

chain for the DAG, which can be used as an upper bound on the maximum degree of concurrency.

Based on the estimated value of avgJc, the deadlock avoider is extended (Figure 4.12) to add the

admission control (called from the code in Figure 4.8).

Before checking the safety of a job's request, the algorithm first obtains (by using getActiveln-

stanceIdSet()) the id set of running instances S at moment t (i.e., those instances that have active

jobs) and controls the instance admission as follows:

1. If the selected instance Jj is not running (i.e., Ii has no running jobs), processing its jobs might

increase the number of running instances. Thus, if the number of running instances (i.e.,|S|)

has reached the upper bound (i.e., avgJc), the algorithm returns false, denying the instance

admission.

2. If the selected instance 7, is running, processing its jobs does not increase the number of

running instances, and thus the jobs in the selected instance can be processed directly by

invoking the original deadlock avoider (i.e., DAR or DTO).

4.5 Simulation Results

We evaluated the performance of the proposed algorithms through a simulation-based study. The

simulator in Chapter 3 was extended to include the deadlock avoider, which integrates both DAR

and DTO for deadlock avoidance. On each occasion, a multiple-instance workload, together with

the control-flow DAG as well as the estimated job service time and data file sizes of each constituent

66

job, was submitted to the scheduler. As discussed earlier, the scheduler obtains the detected dataflow

from WaFS. The instance scheduling strategy is based on Most Done Job First (MDF) while the job

scheduling strategy is based on Highest Level First (HLF) [17].

4.5.1 Methodology

In the simulation study, we have four main methodology axes:

1. Benchmark Workloads: The benchmark workloads are characterized by the workflow shape,

workflow shape parameter, job characteristics and so on.

2. Reference Algorithms: Our reference algorithms are the standard banker's algorithm, Lang's

algorithm [60] and a deadlock detection algorithm.

3. Simulated Platforms: We assume that an unbounded number of homogeneous nodes but lim­

ited total storage budget is available.

4. Instance Admission Control: No instance admission control is assumed in our baseline strate­

gies in Chapter 4.5.5 and 4.5.6.

4.5.1.1 Benchmark Workloads

We still use the two representative structures, Fork&Join and Lattice as well as their special case,

Pipeline, as our experimental workflow shapes. In our experiments, for instances of all workflows,

we assume that the job service time (JST) is uniformly distributed, and every output data file has a

size with a uniform distribution. In addition, each workload contains 100 instances and all instances

are assumed to arrive (at the batch scheduler) at the same time since this situation is both the common

and worst case in terms of storage contention. The characteristics of the benchmark workloads are

in Table 3.2 in Chapter 3.

4.5.1.2 Reference Algorithms

• Banker's Algorithm : Since, without dataflow information, storage space, in general, cannot

be safely reclaimed until the end of each instance, we thus use the aggregate storage require­

ments of all jobs in instance as its global maximum claim for the control-flow-based banker's

algorithm.

67

• Lang's Algorithm: Lang's algorithm f60] is a more recently proposed deadlock avoidance

algorithm which demonstrates an advantage over the standard banker's algorithm in terms of

resource utilization. However, our empirical results show that this algorithm, except for some

special cases (Figure 4.28(b)), never outperforms the banker's algorithm in terms of makespan

when applying it to our benchmark Pipeline workloads (Chapter 4.5.5.1 and 4.5.5.3).

• Deadlock Detection: To evaluate the difference between our deadlock avoidance algorithms

and other kinds of deadlock resolution algorithms, we compare DAR and DTO with dead­

lock detection. The parameter space for deadlock detection is (non-exhaustively) explored.

The basic idea of the deadlock detection algorithm is to have the batch scheduler detect the

deadlock at the earliest time and then use a variety of strategies to compute the amount of

storage that needs to be released after a deadlock has been detected, select the victims and re­

allocate the released storage to recover from the deadlock. Through a parameter space study

we found that the deadlock detection algorithm has the best overall performance when half of

the storage budget is released after a deadlock has been detected and the victim instances are

selected based on the Least-Done Job First (LDF) criteria. We denote the deadlock detection

algorithm as Det(0.50Bgt-LDF) and use it as a reference algorithm to evaluate our deadlock

avoidance algorithms, DAR and DTO (Chapter 4.5.6).

4.5.1.3 Simulated Platforms

In the study we further assume that an unbounded number of homogeneous computational nodes

are available so that the maximum DOC is never constrained by the hardware except for the storage.

The total storage budget in each experiment is limited.

4.5.1.4 Instance Admission Control

As will be discussed in Chapter 4.5.7, instance admission control can be beneficial in reducing the

makespan of some workloads (e.g., Lattice and Pipeline). We have not included admission control

in the baseline strategies of Chapter 4.5.5 and 4.5.6 because the actual admission control policy

of Chapter 4.5.7 is simplistic (which makes it unworthy of setting a standard). Also, we wish to

limit the number of policy parameters and elements when considering the impacts of workflow and

workload characteristics.

68

Total Storage

Active Inactive
R active Rinacth

Figure 4.13. Classification of Storage Resource Utilization

4.5.2 Performance Metrics

To evaluate the algorithms we have two primary metrics: makespan and active/inactive storage

utilization.

1. Makespan: Makespan is the amount of time it takes to complete all the jobs of a workload,

from the submission of the first job to the completion of the last job (Chapter 2.3). We use it

to measure the algorithm's performance.

2. Active and Inactive Storage Utilization: Our classification of the storage resources is shown

in Figure 4.13. We use the following ratio to define the active and inactive storage utilization

(Equation 4.8):

Rds = _ J o Scis(t)dt
makespan • total storage

where Scis (*) is the total amount of storage in the class of els e {active, inactive} at moment

t. Rfree = 1 - (Ractive + Rinactive) specifies the ratio of free storage. Here Ractive +

Rinactive is the traditional storage resource utilization.

4.5.3 Organization

Our simulation studies are organized as follows: In Chapter 4.5.5 we study the sensitivities of our

algorithms to some workload characteristics and show how our algorithms are better than the refer­

ence deadlock algorithms in terms of reduced makespans and high active storage utilization. Then,

in Chapter 4.5.6 we compare our algorithms with the reference deadlock detection algorithm and

show the circumstances under which DAR and DTO outperform the detection algorithm. Finally,

we evaluate the performance benefits of instance admission control in Chapter 4.5.7.

69

Deviation

< 10%
< 20%
< 30%
< 4 0 %
< 5 0 %

DAR (%)

98.7
100
100
100
100

DTO (%)

98.7
100
100
100
100

Banker's (%)

93.6
100
100
100
100

No std. deviation bars

Lang's (%)

71.1
91.1
100
100
100

Detection (%)

79.8
93.6
96.9
99.4
100

With std. deviation bars

Overall (%)

92.9
98.6
99.5
99.9
100

Table 4.6. The Distribution of the Standard Deviations of the Makespan Data in
Our Simulations

4.5.4 Data Points and Standard Deviation

Each data point in the makespan and storage usage graphs (see y-axis) is averaged over 10 runs

by changing the random number seed in the simulator for each run. Important exceptions to the

multiple run methodology are the trace data used for Figures 4.18, 4.19, 4.23, 4.24 and 4.32, which

are based on a single, representative run.

Again, to measure the distribution of the set of 10 values for each makespan data point, we

compute the standard deviations of the data points in Chapters 4.5.5 through 4.5.7 (see Table 4.6).

We found that, overall, 92.9% of standard deviations are less than 10% of the data point's value.

Specifically, for the DAR and DTO algorithms 98.7% of the standard deviations were less than 10%

of the data point's value. In the case of the banker's algorithm, 92.9% of the standard deviations

were less than 10% of the data point's value. Therefore, for clarity of presentation we have omitted

standard deviation bars on the graphs for DAR, DTO and the banker's algorithm data points. A

similar presentation strategy was used in Chapter 3.4.2.

Lastly in our simulation, for all graphs where the x-axis represents storage units, the leftmost,

starting point on the x-axis is based on the largest maximum claim of the banker's algorithm for all

workflow instances. It is not possible to run DAR and the banker's algorithm with storage budgets

of less than this maximum claim value. For example, in Figure 4.14(a), the x-axis begins at 250

units because the largest maximum claim of the banker's algorithm for all 100 workflow instances

is 203 units.

4.5.5 Sensitivity to Workload Characteristics

In this section we present some simulation results on the sensitivities of our proposed algorithms

to workload characteristics and show, in a variety of cases, how our proposed algorithms outper­

form the banker's algorithm (for both Fork&Join and Lattice workloads) and Lang's algorithm (for

70

Pipeline workloads, since Lang's algorithm cannot effectively process a workload that has a general

structured workflow graph) in terms of makespan and active storage utilization.

For instances of all the benchmark workflows, their job service times and file sizes are assumed

to be over-estimated and uniformly distributed on [500, 1000] time units and [1, 10) storage units,

respectively. In our experiments we also assume that each job-created file has only one reader.

However, to reflect the reality, the sensitivities of the proposed algorithms to multiple-reader access

patterns is also studied (Chapter 4.5.5.5).

In general, it is difficult to explain the performance differences between deadlock avoidance al­

gorithms since their abilities to maximize the resource utilization may be different or, sometimes,

incomparable. Roughly speaking, in our studies the performance of the compared deadlock avoid­

ance algorithms largely depends on their capability to make a distinction between the active and

inactive storage (reflected in their safety check of a job's request), which are related to the following

workflow characteristics:

1. Workflow shape: the structure of the workflow, e.g., Pipeline.

2. Workflow shape parameters: the parameters that describe the workflow with a particular

shape.

3. Workflow size: the scale of the workflow specified by the total number of nodes (jobs).

4. Job characteristics: the job service time and data file sizes associated with each job

5. File Access Pattern: how a job-created file is read, either by a single job or by multiple jobs.

6. Total storage budget: the given amount of storage that can be used by the entire computation.

The relative performance between the compared algorithms will change as these factors change. We

investigate the impact of these factors by varying the storage budget.

4.5.5.1 Sensitivity to Workflow Shapes: Performance Changes Depend on the Shapes

The experiments in this section are intended to show how the compared algorithms are sensitive

to the workflow shapes. For both the examined Fork&Join and Lattice workloads, DAR and DTO

are consistently better than the banker's algorithm. For the Pipeline workload, DAR and DTO are

consistently better than Lang's algorithm, and DTO and the banker's algorithm are competitive in

terms of showing the best performance. In addition, we also compared the storage utilization of the

algorithms and found that in general our proposed algorithms have high active storage utilization.

71

750 1000
Storage Units

(a) Fork&Join (3 x 8)

1500 2000
Storage Units

(b) Lattice (4 x 6)

—DAR
r^DTO
••Banker's
i Lang's

Storage Units

(c) Pipeline (5-stage)

Figure 4.14. Impacts of Workflow Shape on the Makespans of the Compared
Algorithms when the Workflow Sizes are Small

72

The relative performance between DAR and DTO also depends on the workflow shapes; neither one

algorithm can consistently outperform the other across all the examined workflow shapes.

Comparison with the Banker's Algorithm and Lang's Algorithm (The comparisons with the

reference deadlock detection algorithm are detailed in Chapter 4.5.6) Figure 4.14 shows how DAR

and DTO are consistently better than the banker's algorithm and Lang's algorithm for the benchmark

workloads of Fork&Join (3 x 8), Lattice (4 x 6) and Pipeline (5-stage). It also shows how DTO

and the banker's algorithm are competitive in terms of having the best performance for the Pipeline

workload.

For the Fork&Join, our proposed algorithms demonstrate better performance than the banker's

algorithm since they have higher resource utilization. Due to the large intra-instance concurrency,

the allocated storage resources to the Fork&Join workload can be effectively used. This is evidenced

by the high active storage utilizations of all compared algorithms shown in Figure 4.15(a). Thus,

improving the resource utilization can directly improve the active storage utilization as well as the

performance for the Fork&Join (3 x 8).

The same observation can be obtained from the Lattice workload. As shown in Figure 4.16,

both our proposed algorithms outperform the banker's algorithm by improving the active storage

utilization. However, due to the low intra-instance concurrency (i.e., high data dependency in the

Lattice DAG), the active storage utilizations of all compared algorithms for the Lattice workload are

lower than those for the Fork&Join workload.

In addition, we can see from Figure 4.16 that as the storage budget increases from 300 units to

a certain value such as 1200 units, the active storage utilization for each algorithm decreases while

the inactive storage utilization increases, but the overall performance remains largely unchanged or

becomes slightly better. At first, these two observations seem contradictory, but, in actual fact, they

are not.

On one hand, as the storage increases, more and more instances can be safely granted the re­

sources and admitted to execution. However, due to the storage constraints most of them become

blocked, holding inactive storage. The number of blocked jobs, and the inactive storage utilization,

increase monotonically as the storage budget increases. On the other hand, the large number of

blocked jobs also indicates that a large amount of work has been finished. As a result, the overall

performance might be improved or not changed.

When the storage increases over a certain value, all the instances in the Lattice workload can be

admitted. Thereafter, increasing storage undoubtedly minimizes the inactive storage and reduces the

makespan. Due to the high data dependency inside the Lattice workflow, the available storage might

73

1 ' 1

-

I l l ,

1 ' 1

—DAR
M D T O
•Banker 's

i i i

—4

-

750 1000
Storage Units

1250 1450

(a) Active Storage Utilization

~ D A R
" D T O
* 'Banker's

750 1000
Storage Units

1250 1450

(b) Inactive Storage Utilization

—DAR
BE.DTO
••Banker's

(c) Free Storage Ratio

Figure 4.15. How the storage is used by each of compared algorithms for
Fork&Join (3 x 8).

74

— DAR

Banker's

1000 1500 2000
Storage Units

2500 3000

(a) Active Storage Utilization

1000 1500 2000
Storage Units

2500 3000

(b) Inactive Storage Utilization

lOOO 1500 2 0 0 0
Storage Units

(c) Free Storage Ratio

Figure 4.16. How the storage is used by each of the compared algorithms for
Lattice (4 x 6).

75

not be efficiently used. Thus, the compared algorithms for the Lattice have relatively higher free

storage ratio than for the Fork&Join, especially when the storage increases over 1500 units (compare

Figures 4.15(c) and 4.16(c)).

Figure 4.14(c) shows how DAR and DTO outperform Lang's algorithm and DTO competes with

the banker's algorithm to have the best performance for a 5-stage Pipeline workload. The low

performance of Lang's algorithm shows that high resource utilization does not always imply high

performance for a workflow-based workload and making the distinction between active and inactive

storage is important for reducing the makespan.

As we know, Lang's algorithm has the highest resource utilization among the algorithms being

compared (our experimental results validate the claim of Lang [60]; see Figure 4.17(c)). However,

the high resource utilization does not result in high performance. Rather, Lang's algorithm suffers

from the worst performance. This is because improving resource utilization also implies increasing

inactive storage utilization, which has adverse effects on the performance (Figure 4.17). This ex­

planation is confirmed by comparing DAR and DTO with Lang's algorithm, where both DAR and

DTO show lower resource utilization but better performance.

Another interesting observation is that the banker's algorithm, which has the lowest resource

utilization, is comparable to the best performance (DTO) for the 5-stage Pipeline workload. We think

the reason for this is that due to the Pipeline structure, the defined global maximum claim can act as

a good instance admission control for the efficient use of the storage. In other words, the maximum

claim is relatively small so that a sufficient number of instances can be admitted to execution, yet it

is big enough to prevent too many instances from being admitted, thereby minimizing the storage

contention and lowering the inactive storage (Figure 4.17(b)).

The Relative Performance between DAR and DTO: Figure 4.14 also shows how, depending on

the workflow shape, the relative performance between DAR and DTO change. Roughly speaking, as

the workflow shape is varied and the request of the first job in each instance is reduced, the relative

performance of DAR to DTO becomes worse. However, when the storage is highly constrained and

the data dependencies inside the workflow are high, DAR is slightly better than DTO.

More specifically, as the number of edges going out of the first node from the workflow DAGs

decrease (i.e., the request of the first job is reduced) from 8 (Fork&Join (3 x 8)) to 2 (Lattice (4 x 6))

and further to 1 (Pipeline (5-stage)), the relative performance of DAR gradually becomes worse,

from being consistently better than DTO for the Fork&Join (Figure 4.14(a)) to consistently worse

than DTO for the Pipeline (Figure 4.14(c)). As for the Lattice workload, DAR exhibits marginally

better performance than DTO when the storage budget is low and slightly worse performance when

76

1 l 1 ' 1 ' 1

- -& _

-

I . I . I

~ D A R
" D T O
- Banker's
••*Lang's

i

-

~*:

-

100 150 200
Storage Units

(a) Active Storage Utilization

150 200
Storage Units

(b) Inactive Storage Utilization

1 1 ' 1

- T - "
™ — e — -1

i

i ' i '

— D A R
" D T O
'••*> Banker's
—̂h jL^ang s

-

-

i . i .
150 200

Storage Units

(c) Free Storage Ratio

Figure 4.17. How the storage is used by each of the compared algorithms for
Pipeline (5-stage).

77

i -
i -
I -
1 I 20

„

yfi

X>
./

/ -

X -
~ Total Instances Admitted
• -Total Instances Completed

i , i ,
50000 Ie+05

Simulated Computation Time

(a) DAR: Fork&Join (3 x i

^L S
A

/

* Total Instances Admitted
-Total Instances Completed
50000 le+05 1.5e+05
Simulated Computation Time

(b) DAR: Lattice (4 X 6)

Total Instances Admitted
Total Instances Completed

50000 le+05
Simulated Computation Time

(c) DAR: Pipeline (5-stage)

Figure 4.18. Execution Traces (DAR): The total number of workflow instances
that are admitted and completed by DAR as the computation proceeds, given
the storage budget of 250 units for the Fork&Join (3 x 8), 1200 units for the
Lattice (4 x 6), and 50 units for the Pipeline (5-stage).

78

]LNJ

=
i s „
' V
"i

r°
i

_B 40

i
£ 20

p

1 , , , -J, J

i f J

A"
«%**'

~js*

^y
y j(sr

off'

" J?
- jr

AT
V ~ Total Instances Admitted
• -Total Instances Completed
50000 le+05

Simulaled Compulation Time

(a) DTO: Fork&Join (3 x 8)

/
• Total Instances Admitted
-Total Instances Completed

0 50000 le+05
Simulated Computation Time

(b) DTO: Lattice (4 X 6)

|
I 20-
i2

•Total Instances Admitted
•Total Instances Completed

50000 le+05
Simulated Computation Time

(c) DTO: Pipeline (5-stage)

Figure 4.19. Execution Traces (DTO): The total number of workflow instances
that are admitted and completed by DTO as the computation proceeds, given
the storage budget of 250 units for the Fork&Join (3 x 8), 1200 units for the
Lattice (4 x 6), and 50 units for the Pipeline (5-stage).

79

Fork&Join

Lattice

Stage

12
6
3
2

Height

2
4
3

Fan-out

2
4
8*
12

Width

12
6*
8

Table 4.7. Investigated Workflow Shape Parameters: The total number of jobs
is fixed as 24 for Lattice and 26 for Fork&Join (two extra nodes for the source
and sink). * indicates the shape parameters that were studied in the previous
experiments.

the storage budget is increased over a certain value (1100 units in Figure 4.14(b)).

These results are not surprising since DAR tends to maximize inter-instance concurrency; then,

as the request of the first job is reduced, DAR is biased to admit more instances to execution. Con­

sequently, the storage allocated to each instance is minimized and thus the instance completion rate

of DAR is decreased. The instance completion rate is defined by how many instances have been

completed during a given period of time. Clearly, the higher the instance completion rate, the lower

the makespan.

We can validate this explanation by observing Figures 4.18 and 4.19, where DAR has a lower in­

stance completion rate than DTO for both the Lattice and Pipeline. However, for the Fork&Join, due

to its large fan-out factor, admitting instances becomes difficult and thus relatively more resources

can be left to the already admitted instances to increase their completion rates. From Figures 4.18(a)

and 4.19(a), we can see that the performance of DAR is largely determined by the instance comple­

tion rate during the early stage of the computation, which is slightly higher than that of DTO.

When the storage budget is highly limited and data dependency inside the workflow is high,

DAR is slightly better than DTO (see Figure 4.14(b) where the storage budget is less than 1000

units). This, again, is not surprising since, due to the large value of the maximum claim and the

highly limited resources, it becomes difficult for DAR to construct a safe instance sequence for

checking the safety of job requests. As a result, it admits fewer instances than DTO, leaving more

storage to the admitted instances, thereby improving the instance completion rate. These results are

more pronounced when the workflow size is enlarged (see Chapter 4.5.5.3).

In summary, depending on the workflow shape and available storage budget, neither DAR nor

DTO will consistently outperform the other.

80

••DAR
M D T O

Banker's

(a) Fork&Join (12x2) (b) Fork&Join (6 x 4)

1 1 ' ! 1 ' 1

" D A R
oeDTO

•Banker's

-

(c) Fork&Join (3 x i (d) Fork&Join (2 x 12)

Figure 4.20. Impacts of Workflow Shape Parameters on the Makespans of the
Compared Algorithms for the Fork&Join (26 jobs): Note that Figure 4.20(c) is
identical to Figure 4.14(a).

4.5.5.2 Insensitivity to Workflow Shape Parameters: Performance Changes Are Not

Sensitive

The following experiments show how the compared algorithms are insensitive to the workflow

shape parameters in terms relative performance. To this end, we focus on the Fork&Join and Lattice

workflows, fix their total number of jobs (i.e., the workflow size) and vary their shape parameters

(see Table 4.7).

Figure 4.20 shows that for all studied parameters DAR and DTO perform better than the banker's

algorithm for the Fork&Join and, as the fan-out factor increases, the performance of all compared

algorithms is slightly degraded. These results are expected since, compared with DAR and DTO,

the banker's algorithm is conservative in resource utilization, and as the fan-out factor increases, the

81

HCfUJ

3e+05

2e+05

le+05

1 ' 1

^ * - 5 ^ £ H -

I , i

i

1

1 i ' i

—DAR
" D T O

Banker's
•

-

lx>-u-a-o-£5 o-o-o a a JS-CJ ;

1500 2000
Storage Units

(a) Lattice (2 x 12)

~i—'—i—'—i—'—r

_• i , i . i

~DAR
M DT0
,-Banker's

HW5H8-S-
J__i I i I .

300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Storage Units

(b) Lattice (8 x 3)

3e+05

2e+05

le+05

1 '

V

{\

X*

1 ' 1 ' i ' i '

—DAR
M D T O
** Banker's

-

-

4. .^ . •* s

i . i . i . i .
1500 2000
Storage Units

(c) Lattice (4 x 6)

Figure 4.21. Impacts of Workflow Shape Parameters on the Makespans of the
Compared Algorithms for Lattice (24 jobs): Note that Figure 4.21(c) is identical
to Figure 4.14(b) with different scales along the y-axis.

82

intra-instance concurrency of the workload increases, resulting in higher storage contention and

lower performance.

Figure 4.21 shows how DAR and DTO outperform the banker's algorithm for the Lattice struc­

tured workflows and how the performance of all compared algorithms is also slightly degraded as

the shape parameters are changed from (2 x 12) to (4 x 6). These results are consistent with those

obtained in the Fork&Joins since as the parameters change, the intra-instance concurrency increases

and so does the storage contention. An exception is the Lattice (2 x 12) where DTO is not con­

sistently better than the banker's algorithm. There are two reasons for this. First, compared to the

other two sets of shape parameters, the Lattice (2x12) has relatively low intra-instance concurrency,

thereby compromising the performance of DTO. Second, as the shape changes, the total number of

edges in the Lattice DAG is also changed, which affects the value of the maximum claim. Conse­

quently, the maximum claim of the Lattice (2 x 12) estimated by the banker's algorithm is smaller

than those of the other two shapes (i.e., (3 x 8) and (4 x 6)), reducing the conservativeness of the

banker's algorithm for Lattice (2 x 12) workflow in the safety check.

In addition, these experiments show that regardless of the workflow shapes (at least for Fork& Join

and Lattice), the relative performance between DAR and DTO remains largely unchanged as the

workflow shape parameter changes. This demonstrates that the impact of the workflow shape pa­

rameters on the relative performance between DAR and DTO is marginal.

To summarize, we reach the following conclusions. First, regardless of the workflow shape pa­

rameters, both the DAR and DTO algorithms are better than the banker's algorithm, showing the

value of dataflow information in the design of deadlock avoidance algorithms. Second, the per­

formance of the compared algorithms is slightly degraded as the shape parameters are changed to

increase the intra-instance concurrency. Last, the workflow shape parameters have minor impacts on

the relative performance between DAR and DTO, at least for the examined Fork&Joins and Lattices.

4.5.5.3 High Sensitivity to Workflow Sizes: Performance Differences Are Enlarged

Figure 4.22 shows how the relative performance between the compared algorithms remains largely

unchanged as workflow size increases, but depending on the workflow shape, the performance dif­

ferences can be highly sensitive to workflow size (compare to Figure 4.14 for small workflow size).

To demonstrate fairness in the experiments, we also increased the storage budget in proportion to

the workflow size (i.e., the number of jobs in workflow).

For both the Fork&Join and Lattice workloads, the performance of the banker's algorithm is dra-

83

„L + U.

2e+05

|

le-t-05

1 '

-

^x
^ V f r ; ,

1

1 1

—DAR
BoDTO

Banker's
•

"

"

1 . 1 1
1500 2000

Slorage Units

(a) Fork&Join (3 x 32)

1100 1500

—DAR
^ D T O

Banker's

2000 2500
Storage Units

(b) Lattice (8x12)

200 300 400
Storage Units

(c) Pipeline (10-stage)

Figure 4.22. Impacts of Workflow Size on the Makespans of the Compared Al­
gorithms when the Workflow Sizes become Large

84

Total Instances Admitted
Total Instances Completed

le+05 2e+05 3e+05
Simulated Computation Time

(a) DAR: Lattice (8 x 12)

f so

1
•a 60

<

J 40

1
g 20

H

1 ' ' ^1
—Total Instances Admitted
—•Total Instances Completed

•-"•"*! , 1 . 1 , 1

'

"

-

le+05 2e+05 3e+05
Simulated Computation Time

(b) DTO: Lattice (8 x 12)

Figure 4.23. Execution Traces (Lattice (8 x 12)): The total number of workflow
instances that are admitted and completed by DAR and DTO as the computation
proceeds, given a storage budget of 1100 units for the Lattice (8 x 12).

matically degraded when the storage budget is low, which is different from that for the Pipeline

workload whose degradation is relatively small. Such a performance sensitivity is not surprising

since the banker's algorithm is based on the control-flow information, and the defined global max­

imum claim is determined by the total file sizes in the workflow instead of by jobs. Except for

the Pipeline, the total file sizes increase quickly as the workflow size becomes large. As a result,

the large value of the maximum claim significantly reduces the storage resource utilization in the

banker's algorithm, leading to poor performance.

As the workflow size increases, the performance differences between DAR and DTO are slightly

enlarged for the Fork&Join (3 x 32) (see Figure 4.22(a)) but significantly enlarged for the Lattice (8 x

85

/ /

V :
~ Total Instances Admitted
'•••Total Instances Completed

1 . 1 , 1

1
g 60

2 20

50000 le+05 1.5e+05 2e+05
Simuluted Compulation Time

(a) DAR: Lattice (4 x 6)

-Total Instances Admitted
•Total Instances Completed

50000 le+05 1.5e+05
Simulated Computation Time

(b) DTO: Lattice (4 x 6)

Figure 4.24. Execution Traces (Lattice (4 x 6)): The total number of workflow
instances that are admitted and completed by DAR and DTO as the computation
proceeds, given a storage budget of 300 units for the Lattice (4 x 6).

12) (up to 50%), especially when the storage budget is low (see Figure 4.22(b)). We attribute these

results to the increased differences between the numbers of instances admitted by both algorithms

at the beginning of the computation as well as the effects of the workflow shapes. The number of

instances admitted at the beginning of the computation is our concern because a large amount of

storage might be held as inactive storage for a long time (possibly starting from the scratch), thereby

compromising the performance significantly. For the Fork&Join, although the difference between

the numbers increases as the workflow size becomes large, it is not as large as that for the Lattice

due to the effects of the large fan-out factor. Therefore, the performance difference between DAR

and DTO is relatively small for the Fork&Join.

86

For the Laltice (8 x 12) the large performance difference between DAR and DTO mostly results

from the large difference between the numbers of instances admitted by DTO and DAR at the begin­

ning of the computation (i.e., 96 vs. 23; see Figure 4.23). DTO admits more instances and thus has

much less storage left for the admitted instances than DAR, resulting in more blocked instances/jobs

and inactive storage, which further results in a low instance completion rate (Figure 4.23). However,

the difference in instance admission between DTO and DAR is not large for the Lattice (4 x 6):

only 24 instances are initially admitted by DTO and 16 instances by DAR (i.e., 24 vs. 16; see Fig­

ure 4.24). The difference between these numbers is primarily determined by the localized maximum

claim of DAR, which depends on the workflow size.

As shown in Figure 4.22(c), the relative performance difference between DAR and DTO remains

largely unchanged as the number of Pipeline stages increases. However, the performance differences

of the proposed algorithms and Lang's algorithm are relatively enlarged. The performance of Lang's

algorithm is degraded as the Pipeline size increases, thereby enlarging its performance differences

between DAR and DTO. These results are not surprising since Lang's algorithm has the highest

resource utilization. It is thus relatively easy to admit and block more instances than both DAR and

DTO during the computation, resulting in a large amount of inactive storage, especially when the

number of Pipeline stages increases.

To further validate our explanations, we also show how the storage resources are used by each

algorithm for the examined workloads in Figures 4.25,4.26 and 4.27. As expected, our deadlock al­

gorithms have higher active resource utilization overall than both the banker's algorithm and Lang's

algorithm (when the storage is highly constrained for the Pipeline; less than 250 units). Moreover,

compared to the small workflow size, DAR and DTO exhibit many more advantages for improving

active resource utilization when the workflow size is large, which is consistent with our makespan

results shown in Figure 4.22.

From these experiments, we can conclude that the relative performance between the compared

algorithms is largely unchanged, but their performance differences are enlarged as the workflow size

increases, especially for the Lattice workload when storage is highly constrained.

87

—DAR
^DTO %* Banker's

1500 2000
Storage Units

(a) Fork&Join (3 x 32) Active Storage Utilization

—DAR
" D T O
** Banker's

- ""Er- - . «
^ ^ - _ / ^ r - r * *V * * ^

1500 2000
Storage Units

(b) Fork&Join (3 X 32) Inactive Storage Utilization

1500 2000
Storage Units

(c) Fork&Join (3 x 32) Free Ratio

Figure 4.25. How the storage is used by each of the compared algorithms for
the Fork&Join (3 x 32).

—DAR
ncDTO

Banker's

- /

1100 1500 2000 2300 3000
Storage Units

(a) Lattice (8 x 12) Active Storage Utilization

—DAR
^ D T O
-Banker ' s

n -s -# -g^_g^^^^ ^ ^-^-.

1100 1500 2000 2500
Storage Units

(b) Lattice (8 x 12) Inactive Storage Utilization

—DAR
B ^ D T O
*• Banker's

r k - B _B-S - & -H -S -B - S-8-*=*=s=*-»-4

1100 1500 2000 2500 3000
Storage Units

(c) Lattice (8 x 12) Free Storage Ratio

Figure 4.26. How the storage is used by each of the compared algorithms for
the Lattice (8 x 12).

89

— DAR
^DTO

Banker's
-* Lang's

300 400
Stonine Units

(a) Pipeline (10-stage) Active Storage Utilization

atrr:

—DAR
"DTO
•* Banker's
- Lang's

" • ^

200 300 400
Storage Units

(b) Pipeline (10-stage) Inactive Storage Utilization

300 400
Storage Units

(c) Pipeline (10-stage) Free Storage Ratio

Figure 4.27. How the storage is used by each of the compared algorithms for
the Pipeline (10-stage).

90

(a) Pipeline (10-stage), JST(500, 1000), FS(1,10)

~DAR
B O D T O
* Banker's
• Lang's

(b) Pipeline (10-stage), JST(500, 1000), FS(1,1)

Figure 4.28. Impacts of File Size Distribution Parameters on the Makespans of
the Compared Algorithms: Figure 4.28(a) is the same as Figure 4.22(c).

4.5.5.4 Insensitivity to Job Characteristics: Performance Remains Largely Un­

changed

In the following experiments we show how the relative performance of the compared algorithms

is insensitive to the job characteristics. Jobs are characterized by their job service times and in­

put/output file sizes.

To this end, we conducted the same experiments as those in Chapter 4.5.5.3 while changing the

distribution parameters of the job service time and file size. For the job service time, in addition to

[500,1000], we also considered the uniform distribution ranges of [10, 1000] and [800,1000]. The

job service time indicates how long the allocated storage is held by each job. Similarly, in addition

91

to [I, 10], the uniform distribution parameters of the file size were changed to [1, 1] (i.e., unit size)

and [1, 50]. Our experimental results show that except for the Pipeline workload with unit file size,

the relative performance between the compared algorithms is not changed.1

Figure 4.28(b) shows the simulation results for the Pipeline workload with unit file size when

the job service time is uniformly distributed on [500, 1000] time units. We found that the relative

performances of DAR and Lang's algorithm are dramatically improved (even over DTO), while the

banker's algorithm is degraded, which is different from the observations in the Pipeline with variable

file sizes (see Figure 4.28(a)). We attribute these changes to the unit file size and corresponding

dynamically decreased maximum claims for DAR and Lang's algorithm. Because all the files have

unit size and each instance is scheduled based on MDF, the released storage of the completed jobs

can be easily reused by the already admitted instances in DAR and Lang's algorithm instead of

admitting more new blocked instances (maximum claims are dynamically decreased and thus the

safe instance sequence is easy to construct). This is different from the Pipeline workload with

variable file sizes, where new instances are relatively easily admitted, thereby incurring inactive

storage.

For the banker's algorithm, given the unit file size, the constant maximum claim is relatively

large, and the allocated storage to each instance is either one or two units, which makes it difficult

to build the safe sequence during the safety check. As a result, the instances that could otherwise

be admitted when the file sizes are varied to reduce the total makespan might be blocked, leading to

poor performance.

4.5.5.5 Sensitivity to File Access Patterns: Relative Performance is Altered

In the following experiments we show how the relative performance between the compared al­

gorithms is altered when the file access patterns are changed from single reader to multiple readers.

Specifically, a file created by a job might have multiple readers (i.e.,a multiple-reader access pattern),

instead of a single one (i.e., a single-reader access pattern) as was assumed in earlier experiments.

To this end, we conduct an experiment by using a Fork&Join (3 x 32) workflow in which a single

output file of the first job is read by all its child jobs. We denote the workflow as Fork&Join+

(3 x 32). An example of such a workflow in practice is the Proteome Analyst (PA) web service [91]

described in Chapter 2, where the homologs found by the BLAST job are fed into different pipelines

to classify the proteome.

1 Since these results are not significant, we thus do not show their corresponding figures.

92

4e+05

3e+05

r
le+05

600 1000 1500 2000 2300
Storage Units

Figure 4.29. Makespan Comparisons: The algorithms are compared for the
Fork&Join (3 x 32) workload with a file access pattern such that a single output
file of the first job is read by all its child jobs (i.e., Fork&Join+ (3 x 32)).

Figure 4.29 shows that DAR is not consistently better than DTO and the banker's algorithm,

which differs from the single-reader access pattern. The relative performance between DAR and

DTO is quite similar to the situation in the Lattice, but the performance differences after DTO

outperforms DAR are relatively large.

Since the single file of the first job is read by all its child jobs, the effects of the large fan-out

factor are lessened. As a result, the inter-instance concurrency of DAR is increased, but the storage

allocated to each instance is reduced and thus lowers the intra-instance concurrency notably.

To validate our explanations, we profiled some runtime information of the compared algorithms

that are presented in Figures 4.30 and 4.31, where the inter and intra-instance concurrencies of each

algorithm for both access patterns (i.e., multiple readers and single reader) are plotted for compari­

son. From these figures, we can see that for DAR, compared to the single reader situation, more than

half of the intra-instance concurrency is reduced for the multiple-reader situation. Consequently, the

instance completion rate in the multiple-reader situation is slowed down, leading to degraded per­

formance.

In addition to the degraded performance of DAR, another reason for the banker's algorithm to

outperform DAR in the multiple-reader situation is that the reduced maximum claim defined in the

banker's algorithm can play a dual role in improving the performance. On one hand, it can improve

the storage utilization (i.e., minimization of the free storage) and thus allow more instances to run

concurrently (compare Figures 4.30(a) and 4.31(a)). On the other hand, it can act as a controller

to prevent the inter-instance concurrency from being overly increased, leaving the storage resources

• . ' 1 ' 1

J .

- \

i 1 i 1

B

1 1 '

—DAR
" D T O

Banker's

t 1

_

1 1 - t

93

_

) -4

1

—DAR
•-DTO

Banker's

r- ^

1

1 ' 1 '

^* _

p . - 3 - ' " " '

1 , 1 ,

600 1000 1500 2000
Storage Units

(a) Inter-instance Concurrency: Multiple Readers

_e—e—a—B e- a—a—a a a -B—B—B--e—-B—m

—DAR
B B D T O
•-•Banker's

600 1000 1500 2000
Storage Units

(b) Infra-instance Concurrency: Multiple Readers

Figure 4.30. Concurrency Comparisons: The algorithms are compared for the
Fork&Join+ (3 x 32) with a multiple-reader access pattern.

available for maximizing the intra-instance concurrency. From Figure 4.32, where the execution

traces of each algorithm under a given storage budget of 1400 units are plotted, we can see that the

instance completion rate achieved by the banker's algorithm is higher than that achieved by DAR,

which can lead to better performance.

In contrast to DAR, DTO is consistently better than the banker's algorithm. From Figure 4.30(b),

we can observe that the performance advantages of DTO are primarily from its large intra-instance

concurrency. This observation is expected since as the effects of the fan-out factor diminish, the

value of the need matrix associated with each instance in DTO becomes small. Consequently, com­

pared to the single-reader situation, requests from the jobs in the admitted instances can be safely

94

-

•r*

i

—DAR
DTO
Banker's

!

1

-

1500 2000
Storage Units

(a) Inter-instance Concurrency: Single Reader

$""" •=#=>• -

—DAR
os DTO
•* Banker's

1500 2000
Storage Units

(b) Intra-instance Concurrency: Single Reader

Figure 4.31. Concurrency Comparisons: The algorithms are compared for the
Fork&Join (3 x 32) with a single-reader access pattern.

granted much more easily.

DAR outperforms DTO when the storage resources are highly constrained. This is expected since

although the effects of the large fan-out factor are lessened, the relatively large value of the maxi­

mum claim defined in DAR (compared to that defined in DTO) still limits the number of admitted

instances. Thus, DAR achieves a better performance, which is similar to the situation in the Lattice

(Chapter 4.5.5.3).

Overall, our proposed algorithms are better than the banker's algorithm for the Fork&Join+

(3 x 32) with this new file access pattern, especially when the storage budget is low. This again

demonstrates that by leveraging the dataflow information, we can maximize the active storage and

95

reduce the makespan for workflow scheduling.

4.5.5.6 Summary

In summary, based on the simulation results we have the following conclusions:

1. Overall, both our proposed algorithms, DAR and DTO, are better than the banker's algorithm

and Lang's algorithm for the benchmark workloads with different workflow shapes, workflow

shape parameters, workflow sizes, job service time and file size distributions. Specifically, for

different file access patterns in Fork&Join, DTO consistently outperforms the banker's algo­

rithm. These results demonstrate that dataflow information is valuable in designing deadlock

avoidance algorithms to gain performance benefits for workflow scheduling.

2. In different situations, either DAR or DTO will be the best algorithm. Roughly speaking, as

the workflow shape is varied from Fork&Join to Pipeline and the request of the first job in

each instance is reduced, the relative performance of DAR to DTO becomes worse (i.e., from

consistently better than DTO for Fork&Join to consistently worse than DTO for Pipeline).

Specifically, if the storage is highly constrained and the data dependency inside the workflow

is high, DAR outperforms DTO. Otherwise, DTO shows some performance advantages over

DAR.

3. Compared with the control-flow-based banker's algorithm, both proposed dataflow-based al­

gorithms are less sensitive to the workflow shape parameters and job characteristics.

4. Unexpectedly, Lang's improvements to the banker's algorithm in terms of total storage utiliza­

tion do not always result in improved makespans since much of the utilized storage is inactive

utilization, which compromises the makespan. This result shows that making a distinction

between active and inactive storage is important to minimizing makespan.

4.5.6 Comparison with Deadlock Detection

In the following set of experiments we show how DAR and DTO in most cases outperform the

reference deadlock detection algorithm Det(Q.hOBgtJLDF) (see Chapter 4.5.1.2).

Again, for instances of all the benchmark workflows, the job service times and file sizes arc

assumed to be over-estimated and uniformly distributed on [500,1000] time units and [1,10] storage

units, respectively. In the experiments we also assume that all of the workflow instances arrive at

the same time.

96

Z 2»k

. /
/
7

/
/

^~
y

VL.
•Total Instances Admitted
•Total Instances Completed

50000 le+€5 1 ,Se+05 2e+05
Simulated Computation Time

(a) DAR

—• Total Instances Admitted
•-Total Instances Completed

50000 le+05 1.5e+05
Simulated Computation Time

(b)DTO

80

60

40

20

.

/
.» .

1 i / ' i •

~ Total Instances Admitted
• -Total Instances Completed

I , I ,
50000 le+05

Simulated Computation Tin

(c) Banker's

Figure 4.32. Execution Traces: The total number of workflow instances are
admitted and completed by the compared algorithms as the computations pro­
ceed. The examined workflow is the Fork&Join+ (3 x 32) with a multiple-reader
access pattern, and the storage budget is 1400 units.

97

—DAR
o^DTO

Banker's
—Det (0.5Bgt_LDF)

Storage Unils

(a) Fork&Join (3 x <

•DAR
^DTO
Banker's

^Det (0.5Bgt_LDF)

1500 2000
Storage Units

(b) Lattice (4 x 6)

—DAR
Q « D T O
*• Banker's
•< Lang's
—Det (0.5Bgt_LDF)

150 200
Storage Unils

(c) Pipeline (5-stage)

Figure 4.33. Makespan Comparisons (Small Workflow Size): The deadlock
avoidance algorithms and detection algorithm Det(0.5Bgt LDF) are compared
when the workflow shape is changed. Each file has only one reader.

98

1

fcx

1

1 ' 1 '

—DAR
- D T O

Banker's
—Det (0.5Bgt_LDF)

I . I ,

-

-

Storage Units

(a) Fork&Join (3 x 32)

_.,.... ! ,

l

—DAR
^ D T O
* Banker's
^ D e t (0.5Bgt_LDF)

i

T T1"'

1 , 1 .

-

•

2000 2500
Storage Units

(b) Lattice (8x12)

—DAR
^ D T O
* ̂ Banker's
•>• L a n g ' s

Det (0.5Bgt_LDF)

300 400
Siomge Unils

(c) Pipeline (10-stage)

Figure 4.34. Makespan Comparisons (Large Workflow Size): The deadlock
avoidance algorithms and detection algorithm Det(0.5Bgt_LDF) are compared
when the workflow shape is changed. Each file in the workloads has only one
reader.

99

Storage Budget (unit)
of deadlocks
of rollbacked jobs
% of rollbacked jobs

Lattice (4 x 6) (2400 jobs)
300
7.67
48.25
2.01%

400
2
50.33
2.1%

500
2
64.67
2.69%

600
1.67
60.67
2.53%

Lattice (8 x 12) (9600 jobs)
1200
1.9
138.5
1.44%

1600
1
92.3
0.96%

2000
0.7
101.9
1.06%

2400
0.1
17.8
0.12%

Table 4.8. Comparisons of the Overhead of Deadlock Recovery between Lattice
(4 x 6) and Lattice (8 x 12): Note that the storage budget given to the Lattice
(8 x 12) is 4 times as much as the budget given to the Lattice (4 x 6).

Figures 4.33 and 4.34 show how our proposed deadlock avoidance algorithms are on average bet­

ter than the deadlock detection algorithm. More specifically, Figures 4.33(a) and 4.34(a) show that

for the Fork&Join (single-reader situation) the performance of the proposed avoidance algorithms

and detection algorithm is very close, regardless of the workflow sizes. This primarily results from

the large fan-out factor of the workflow, which prevents an overly large number of instances from

being admitted and thus minimizes the storage contention (i.e., the number of deadlocks and hence,

the overhead of deadlock recovery).

In contrast, for the Lattice workload (see Figures 4.33(b) and 4.34(b)), the relative performance

between the proposed avoidance algorithms and detection algorithm changes as the workflow size

increases. When the workflow size is small (i.e. the Lattice (4 x 6)), the detection algorithm is not

always inferior to the avoidance algorithms. Rather, it exhibits the best performance in some storage

ranges. The reason behind this is that when the storage budget is moderately small (not too small,

i.e., not less than 500 units in Figure 4.33(b)), the deadlocks generally occur in the early stage of the

computation. As a result, the number of completed jobs in each rollbacked instance is small, and

the recovery overhead is thus low. More importantly, the recovery process reallocates the storage to

some deadlocked instances first instead of to the re-submitted victim instances, which will minimize

the inactive storage and reduce the makespan. This demonstrates that for the detection algorithm,

the recovery process is not always detrimental to performance. Rather, if the recovery overhead is

not high, the storage reallocation may improve the overall performance.

However, with increasing Lattice size, the relative performance of the detection algorithm to

DAR and DTO is degraded. At first, we intuitively attributed this result to the overhead of the

deadlock recovery. However, based on our observations, the recovery overhead is unexpectedly

non-increasing as the Lattice size increases. We can observe this from Table 4.8, where the number

of deadlocks and the number and percentage of the total rollbacked jobs (i.e., recovery overhead) for

both the Lattice(4 x 6) and Lattice (8 x 12) are listed for comparison. We found the reason is that as

100

Storage Budget (unit)
of deadlocks
of rollbacked jobs
% of rollbacked jobs

Pipeline (5-stage) (500 jobs)
50
8.8
78.3
15.7%

100
1.7
23.9
4.78%

150
1
14.6
2.92%

200
1
19.5
3.9%

Pipeline (10-stage) (1000 jobs)
100
8.8
145.8
14.58%

200
2.2
23.4
2.34%

300
1
28
2.8%

400
0.8
29.6
2.96%

Table 4.9. Comparisons of the Overhead of Deadlock Recovery between Pipeline
(5-stage) and Pipeline (10-stage): Note that the storage budget given to the
Pipeline (10-stage) is twice as much as the budget given to the Pipeline (5-
stage).

the Lattice size increases, the high level of data dependencies inside the Lattice workflow reduces

the storage contention and thus minimizes the possibilities of deadlocks.

In fact, the major reason for the poor relative performance of the detection algorithm is that the

performance of DAR and DTO is relatively improved as the Lattice size increases. More specifi­

cally, although the given storage budget is proportional to the workflow size in our experiments, the

maximum claims computed by DAR and DTO increase relatively faster than the increased storage

budget as the Lattice size becomes large (again, the maximum claim depends on the file sizes rather

than the jobs in the workflow). The large value of the maximum claim can prevent the Lattice in­

stances from being overly admitted, as discussed earlier. As a result, the performance of both DAR

and DTO is relatively improved, compared to that for the small Lattice size, especially for DAR

when storage is highly constrained. Therefore, in most cases, both DAR and DTO outperform the

deadlock detection algorithm by up to 49.7%.

Figures 4.33(c) and 4.34(c) show how the relative performance between the detection algorithm

and avoidance algorithms is largely unchanged for the Pipeline workloads when the number of stages

increases from 5 to 10. For both Pipeline workflow sizes, when the storage is highly constrained

(less than 50 and 200 units for the 5-stage and 10-stage Pipelines respectively), both DAR and DTO

are better than the detection algorithm. However, as the available storage increases, the detection

algorithm gradually outperforms the DAR algorithm, but in most cases the detection algorithm is

not as good as the DTO algorithm.

We attribute these phenomena to the aggressive instance admission and high overhead of dead­

lock recovery in the detection algorithm. We can observe the evidence supporting this conclusion

from Table 4.9, where the number of deadlocks and the number and percentage of the total roll-

backed jobs (i.e., recovery overhead) for both Pipeline (5-stage) and Pipeline (10-stage) are listed

for comparison. Compared to the Lattice workload (Table 4.8), the Pipeline workload has relatively

high recovery overhead due to its low level of data dependencies inside the workflow as well as due

101

3e+Q5

2e+05.

le-f-05

2CK

1 ' 1

_

1 , 1

1 1 ' 1 ' 1

" D A R
B O D T O

Banker's
^ D e t (0.5Bgt_LDF)

-
-

-

\ «

(a) Fork&Join+ (3 X I

—DAR
«=DTO
4 s Banker's

Det (0.5Bgt_LDF)

1500
Storage Units

(b) Fork&Join+ (3 x 32)

Figure 4.35. Makespan Comparisons: the deadlock avoidance algorithms and
detection algorithm Det(0.5Bgt LDF) are compared for the Fork&Join+ (3 x 8)
and Fork&Join4 (3 x 32) with a multiple-reader access pattern.

to high storage contentions. However, as the storage increases, the number of deadlocks and total

rollbacked jobs decrease (Table 4.9), and thus the performance of the detection algorithm improves

rapidly, even over both DAR and DTO.

As the storage budget continues to increase, the overhead of the deadlock recovery may increase

since approximately 50% of the storage budget needs to be released after a deadlock has been de­

tected, which indicates that more admitted instances and jobs need to be rollbacked during the

recovery. This is evidenced by the data shown in Table 4.9. For example, when the storage bud­

get increases from 200 to 300 units for the 10-stage Pipeline workload, the number of rollbacked

jobs increases from 23.4 to 28. Although the difference is not very large, the rollbacked jobs might

102

otherwise hold storage for a long time before they are rollbacked, adversely affecting the overall

computation performance.

The same explanation can also be applied to similar observations for the Lattice workload (Ta­

ble 4.8). For example, the makespan of the detection algorithm for the Lattice (8 x 12) is elongated

when the storage budget increases from 1900 to 2000 units.

In addition, we compared the algorithms for the Fork&Join with a multiple-reader access pattern.

To simplify the presentation, we will use Fork&Join+ (3 x 8) to denote the Fork&Join (3 x 8) work­

flow with a multiple-reader access pattern in the following description (including Chapter 4.5.7).

Figure 4.35 shows how the relative performance between the algorithms is changed as the workflow

size is varied.

Figure 4.35(a) shows that in the case of small workflow size, the detection algorithm exhibits the

best performance when the storage budget is moderately low (not less than 250 units), but as the

storage increases, the detection algorithm gradually becomes worse and is outperformed by DAR

and DTO. Performance behavior such as that of the detection algorithm for the Fork&Join+ (3 x 8) is

quite similar to that for the Lattice (3 x 8). We can understand this by following the same reasoning

as for the Lattice workload.

Figure 4.35(b) shows that as the workflow size increases (i.e., to Fork&Join+(3 x 32)), the relative

performance of the detection algorithm remains largely unchanged and the performance differences

with the avoidance algorithms are enlarged.

Similar to the Fork&Join+ (3 x 8), both DAR and DTO are better than the detection algorithm for

the Fork&Join+ (3 x 32) when the storage budget is very tight (less than 900 units in Figure 4.35(b)).

However, unlike the Fork&Join+ (3 x 8), due to the initial large value of the maximum claim, DAR

can prevent the instances from being overly admitted and thus exhibits a relatively large performance

advantage over DTO and the detection algorithm, which is consistent with our observations in the

Lattice (8 x 12) (Chapter 4.5.5.3). The detection algorithm outperforms DTO significantly for the

Fork&Join+ (3x32) because of (1) the aggressiveness of DTO in admitting instances (i.e., degrading

the performance of DTO) and (2) the low recovery overhead as well as the benefits of reallocating

storage in the detection algorithm (thereby improving the performance of the detection algorithm).

In summary, the relative performance between the proposed avoidance algorithms and the detec­

tion algorithm depends on the shape and size of workflow. By and large, we reach the following

conclusions:

1. Regardless of the workflow size, DAR slightly and consistently outperforms the detection al-

103

gorithm for the Fork&Join workload with a single-reader access pattern. However, for the

workflow with a multiple-reader access pattern, depending on the given storage budget, nei­

ther DAR nor DTO is consistently better than the detection algorithm.

2. For the Lattice, the avoidance algorithms (especially, the DAR algorithm) exhibit significant

performance advantages over the detection algorithm when the workflow size is large. Other­

wise, the detection algorithm generally performs better, but not always.

3. Both DAR and DTO outperform the detection algorithm when the storage is highly con­

strained for the Pipeline workloads. The performance differences between them become

pronounced when the workflow size is enlarged. However, as the storage increases, the per­

formance of the detection algorithm improves rapidly, even over both DAR and DTO.

These conclusions demonstrate that our deadlock avoidance algorithms are generally desirable when

the storage resources are highly constrained and the workflow size is relatively large.

4.5.7 Performance Benefits of Instance Admission Control

In this section we show how Instance Admission Control (IAC) benefits the performance of all

the compared algorithms, including the deadlock detection algorithm, regardless of the workflow

shapes, sizes and file access patterns.

Again, for instances of all the benchmark workflows, the job service times and file sizes are

assumed to be over-estimated and uniformly distributed on [500,1000] time units and [1,10] storage

units, respectively. In the experiments we also assumed that all of the workflow instances arrive at

the same time.

Our simulation results are shown in Figures 4.36 and 4.37, where the normalized makespans

of the compared algorithms for the different workflow sizes are compared, given IAC or not. The

normalized makespan is computed as MakespaniAc/Makespanp{0iAC> where MakespaniAc

and MakespanpfoiAC are the respective makespans when IAC is present and when it is absent.

From these figures we have two major observations:

1. The performance benefits of IAC are independent of workflow size, except for the deadlock

detection algorithm on some data points for the Pipeline workloads.

2. The performance benefits of IAC are highly sensitive to the workflow shape. Specifically, for

the Fork&Join the benefits are marginal, but for the Lattice and Pipeline the benefits can be

large.

104

S DAR (IAC)
[j DTO(IAC)

Banker's (IAC)
S Det (0.5Bgt_LDF) (IAC)

450 650
Storage Units

(a) Fork&Join (3 x :

B DAR (IAC)
n DTO(IAC)
g Banker's (IAC)
S Det (0.5Bgt_LDF) (IAC)

m 300 500 1000
Storage Units

(b) Lattice (4 x 6)

H DAR (IAC)
D DTO(IAC)
Bi Banker's (IAC)
i Lang's (IAC)
§ Det (0.5Bgt_LDF) (IAC)

(c) Pipeline (5-stage)

Figure 4.36. Performance Benefits of Instance Admission Control (IAC) Mea­
sured by the Normalized Makespan (Small Workflow Size)

105

-JZ I I

a DAR(IAC)
D DTO(IAC)
;;• Banker's (IAC)
H Det (0.5Bgt_LDF) (IAC)

j
II

HL
1500 2000

Storage Unils

(a) Fork&Join (3 x 32)

B DAR(IAC)
0 DTO(IAC)
1 Banker's (IAC)
S Det (0.5Bgt_LDF) (IAC)

1800 2400
Storage Unils

(b) Lattice (8 x 12)

S DAR(IAC)
0 DTO(IAC)
% Banker's (IAC)
i Lang's (IAC)
a Det (0.5Bgt_LDF) (IAC)

m I' i

(c) Pipeline (10-stage)

Figure 4.37. Performance Benefits of Instance Admission Control (IAC) Mea­
sured by the Normalized Makespan (Large Workflow Size)

106

We found that the major benefit of I AC is the admission control of the workflow instances (via the

estimated number of concurrent instances) at the beginning of the computation so that a significant

amount of storage can be reserved for the admitted instances. For the Fork&Join, regardless of

the workflow size, due to the large fan-out factor, the difference between the estimated number of

the concurrent instances and the actual number of the concurrent instances is small. Therefore,

the performance benefits of IAC for the Fork&Join workload are marginal (see Figures 4.36(a) and

4.37(a)).

However, for the Lattice workload, regardless of the workflow size, significant performance ben­

efits of IAC are exhibited in all the compared algorithms (see Figures 4.36(b) and 4.37(b)). For

example, up to 69.7% (Lattice (8 x 32), 1800 storage units) performance improvement can be ob­

tained by the banker's algorithm, up to 49.4% by DAR (Lattice (4 x 6), 1000 storage units) and up

to 61.2% by DTO (Lattice (8 x 12), 1200 storage units) in the presence of IAC. We attribute these

results to the large difference between the estimated instance concurrencies and the actual instance

concurrencies. As a result, IAC exhibits more performance benefits for the Lattice workload.

Since there is no intra-instance concurrency in the Pipeline workloads, the estimated number

of concurrent instances does not deviate much from the actual value. As a consequence, the per­

formance benefits of IAC on the compared algorithms for the Pipeline are relatively small (see

Figures 4.36(c) and 4.37(c)).

The detection algorithm, in general, demonstrates better performance in the presence of IAC

because IAC not only minimizes the inactive storage but also has the side effect of reducing the

impact of deadlock (the number of active instances is controlled). However, in some cases (see

Figure 4.37(c) when the storage budget is 300), the performance of the detection algorithm in the

presence of IAC is worse than that of the detection algorithm without IAC, which is different from

the situations in DAR and DTO. This is not surprising since, as we know from the previous discus­

sion, deadlock is not always detrimental to performance. On the other hand, the IAC based on the

estimated number might not be always helpful to the performance improvements.

In addition, we investigate the benefits of IAC on all the compared algorithms for the Fork&Join+

(3 x 8) and Fork&Join+ (3 x 32). Figure 4.38 shows that, as the effects of the fan-out factor diminish,

the performance benefits of IAC (measured by the normalized makespans) on all the compared

algorithms become more pronounced. The results are different from those for the Fork&Join with

a single-reader access pattern, where the performance improvements due to IAC are marginal. The

reasons behind these results are not difficult to understand. By limiting the number of concurrent

instances, IAC can dramatically improve the intra-instance concurrency of the Fork&Join workloads

107

Storage
250
350
450
550
650
750
850
950
1050
1150
1250
1350
1450

DAR
No I A C
131517
89841.4

70164.5
57712.4
49724.1
43902.7
39192.7
35790
33462
31145.5
29142.5
27511.7
26174.2

1AC
131934
90395.7
69808
58043
49040
42802
38315.7
34732.3
31749
28931
26965
25319.3
24119.7

DTO
NolAC
138139
94735.6
74150.5
61578.6
53423.4
46591.3
42058
39403.9
36228.2
33762.4
31545.6
30211
28702.1

1AC
133138
92141.3
71486.7
58907.7
48994.3
42911.7
38319
34485.7
31755.3
29074.3
27054
25158.7
23845.7

Banker's

No [AC
229379
121654

86165.2
68581.2
56791.6
49418.2
43531.4
39502.9
36224.7
33495.2
30905.9
29362.8
27806.7

IAC
234319
122609
86578.7
68826.7
55828.3
47801.7
41971.7
37502
34367.3
30515.3
28633.3
26534.3
25123.7

Det(0.5E

No IAC
134049
95811.2
74837.5
64209.3
55148.3
50021.8
43374.3
41597.9
38321.2
36490.6
34253.5
32133.9
32136.5

gt-LDF)

IAC
129732
90728.3
69902
57910.3
48545
42608.3
37723
34163
31485.3
28919
26902
25364
23944.3

Table 4.10. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Fork&Join (3 x 8) workload when IAC is present and when it is absent. Storage
budget is varied from 250 to 1450 storage units. The lowest makespan in each
row is boldfaced.

because of the Pipeline structure inside the workflow and diminished effects of the fan-out factor.

Finally, in order to compare the relative performance between the compared algorithms when

IAC is present and when it is absent, we show more data points in Tables 4.10 through 4.13 for the

small workflows (i.e., Fork&Join (3 x 8), Lattice (4 x 6), Pipeline (5-stage) and Fork&Join+ (3 x 8));

and in Tables 4.14 through 4.17 for the large workflows (i.e., Fork&Join (3 x 32), Lattice (8 x 12),

Pipeline (10-stage) and Fork&Join+ (3 x 32)). In each table the lowest makespan in each row is

boldfaced, which indicates which algorithm, in combination with IAC or not, can demonstrate the

best performance.

From these tables we have the following observations:

1. Regardless of the workflow size, the detection algorithm combined with IAC in most cases

gives the best performance for Fork&Join. However, for Fork&Join+, in most cases the best

result is achieved by DAR combined with IAC.

2. DTO in combination with IAC is consistently the best for the Lattice workloads, regardless of

the workflow size.

3. When IAC is present, DTO and banker's are competitive in showing the best performance

for the Pipeline (5-stage). However, for the Pipeline (10-stage), DTO combined with IAC is

clearly the performance leader.

These observations demonstrate that, in general, it is more valuable to combine IAC with DAR

and DTO than with the reference algorithms to achieve better performance. We think the reason for

108

Storage
400
600
800
1000
1200
1400
1600
1800
2000

DAR

NoIAC
130244
106076
91639.7
86653
82756.3
61705
45072.3
35531
30396.3

IAC
105403
72625.9
54745
43861.8
37315.6
32272.3
29330.6
26218.5
24237.7

DTO

No IAC
138664
108776
103539
91597.7
73836.7
46821.7
37645
31455.3
27485

IAC
98643.8
65511.4
49903.7
40692.1
34684.5
30906.1
27738.4
25166
22757.1

Banker's

No IAC
218508
149053
125965
114097
118025
65915
45722
36355.3
30850.3

IAC
151242
82590.6
58595.6
45872.7
38378.5
32956.1
29342.3
26847.4
24312.7

Det(0.5Bgt_LDF)

NoIAC
175311
97400
76074
74732
54626
67590
55304.3
42964.3
35409.3

IAC
153770
91166.1
65129
49518.2
40468.3
35497.4
32011.1
28621.1
25853.2

Table 4.11. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Lattice (4 x 6) workload when IAC is present and when it is absent. Storage
budget is varied from 400 to 2000 storage units. The lowest makespan in each
row is boldfaced

Storage
50
100
150
200
250
300

DAR
NoIAC
120503
69052.7
40066
30561
24154.5
20984.3

IAC
112850
52939.1
32457
22913.3
18311.7
15439.6

DTO
NoIAC
88661.4
42452.6
29613.7
23426.6
20118.2
17883.4

IAC
86513.7
40374.1
26935.4
20743.3
16844
14531.9

Banker's
NoIAC
93133.3
41696.8
28415.6
22604.7
19459.3
17410.7

IAC
90346
39698.5
26535.5
20357.2
16806.1
14547.4

Lang's
NoIAC
154004
80590.2
44952.5
33242.9
27342
23416.5

IAC
136907
56266.2
31335.8
23332
18287.9
15540.4

Det(0.5BgLLDF)
NoIAC
126967
57655
31416.1
22470.7
18896.4
15938.7

IAC
121578
55427.9
32968.3
23802.2
18349.1
15570.2

Table 4.12. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Pipeline (5-stage) workload when IAC is present and when it is absent. Storage
budget is varied from 50 to 300 storage units. The lowest makespan in each row
is boldfaced.

this is that the reference algorithms are either too aggressive (e.g., the detection algorithm) or too

conservative (e.g., the banker's algorithm) in granting the job resource requests. In the former case,

when the number of the active instances is less than the estimated value during the computation, new

instances are admitted more easily, potentially increasing the storage competition and the amount of

inactive storage, whereas in the latter case the reserved resources due to the presence of IAC might

not be efficiently used. In contrast, both DAR and DTO, by exploiting the dataflow information, can

make efficient use of the storage resources and thus are more beneficial than the reference algorithms

in combination with IAC.

4.6 Concluding Remarks

This chapter studied the value of dataflow information to a deadlock problem in workflow-based

computing when storage resources are constrained. To this end, we presented two dataflow-based

deadlock avoidance algorithms (i.e., DAR and DTO) based on the well-known banker's algorithm.

109

Storage
250
350
450
550
650
750
850
950
1050
1150
1250
1350
1450

DAR

NolAC
155600
130579
124860
124536
123896
95688.5
70996.6
53772.6
44756.6
37982.3
33536.5
30048.3
27387

1AC
102528
73314.9
57538.5
47316.8
41019.4
36253.7
32281.2
29485.1
27147.5
25155.4
23514.5
22135.6
20813.2

DTO
NolAC
165829
136258
123098
113730
74467.4
54318.9
43698.4
36908.8
32242.2
28814.8
26239.3
24063.4
22475.4

I AC
116919
78687.3
60128.2
49576.8
42127.3
36545.1
32874.3
29516.3
27061.9
25119
23327.8
22124.6
20717.3

Banker's
NolAC
186795
146153
132095
124346
117350
69178.6
51492.2
42404.3
36005.5
31621.5
28494
25692.2
23722.5

1AC
134431
85515.9
63359.6
51252.7
43623.1
37474.8
33613.1
30431.7
27661.1
25511.3
23787.2
22396.2
21259.3

Det(0.5BgLLDF)

NolAC
153235
115678
95367.1
73315.2
64464
75253
70548.1
57641.1
46265.9
39300.6
34291.1
30707
27858.7

IAC
103991
75961.3
59488.9
48922.8
43356.1
37826.5
33771.1
31004.9
28399.2
26639.7
24903.1
23544.2
22324.9

Table 4.13. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Fork&Join+ (3 x 8) workload (multiple readers) when IAC is present and when it
is absent. Storage budget is varied from 250 to 1450 storage units. The lowest
makespan in each row is boldfaced.

Storage
1000
1200
1400
1600
1800
2000
2200
2400

DAR
NolAC
131023
107134
90634.2
79110.4
70509.6
63757.4
58438.6
54253.9

IAC
131310
106357
90234.3
79045.8
70186.9
63573.3
58265.9
54162.1

DTO
NolAC
134044
111314
94784.9
85391.7
77752.6
70910
65002.3
61190.2

IAC
132185
107567
91713.5
79782.7
71117
64142.1
58605
54044.8

Banker's
NolAC
245419
158998
124120
102918
87649.1
77720.2
69750.2
63772

IAC
241950
157842
123949
102530
87677.4
77774.3
69825.8
63434

Det(0.5Bgt_LDF)
NolAC
131772
109793
93786.2
84427.1
76395.7
70122.7
64971.3
59069

IAC
129885
106115
90218
78959
70183.1
63657.3
58289.7
53698.1

Table 4.14. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Fork&Join (3 x 32) workload when IAC is present and when it is absent. Storage
budget is varied from 1000 to 2400 storage units. The lowest makespan in each
row is boldfaced.

The essence of these algorithms is to make important distinction between active and inactive re­

sources and attempt to maximize the active resource utilization for performance while avoiding

deadlock.

Through simulation-based studies, we show how dataflow information allows our DAR and DTO

to have lower makespans than the control-flow-based banker's algorithm, Lang's algorithm and the

deadlock detection algorithm for a variety of workflow shapes, sizes, and other parameters.

110

Storage
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400

DAR

NolAC
181700
168563
159435
151154
143084
128633
119226
109070
100355
92046.7
86875.5
80708.7

1AC
170328
141376
128902
112890
106324
96364.3
88926
82907.3
76944.8
71025.1
68182
64381.5

DTO
NolAC
375807
242077
183754
151374
131850
116970
105149
96411.7
89562.1
83680.8
78949.4
75133.3

1AC
150044
128602
113618
101434
93393.6
86155.1
78719
74661.9
69206.7
66449.3
62292.9
58660.3

Ban

NolAC
820535
666974
604108
581179
498376
322673
219772
175634
147842
127288
114022
101947

cer's

IAC
553011
315651
231969
182276
154059
130891
116226
103660
94723.1
86703.3
80437
75215.9

Det(0.5E
NolAC
342260
273203
206670
184112
228940
236431
208678
187265
150710
130055
117171
107503

gt-LDF)
IAC
270288
204986
168375
142250
124379
110428
101269
91488.3
85109.5
78163
73738
68559.6

Table 4.15. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Lattice (8 x 12) workload when IAC is present and when it is absent. Storage
budget is varied from 1200 to 3400 storage units. The lowest makespan in each
row is boldfaced.

Storage
100
200
300
400
500
600

DAR
NolAC
122096
74347.3
46954.7
33397.7
27774.3
22909

IAC
114920
59413
36141.6
26402.2
21588.6
18574.6

DTO
NolAC
97967.3
55442.7
40532.7
33987.7
29977
22732.3

IAC
90364.6
44784.4
31192.2
23697
21092.8
16664.4

Banker's
NolAC
132994
55302.3
38092
30604.3
26244
22853

IAC
126164
50779.2
33233.4
25532.6
21752.8
18185.2

Lang's
NolAC
191251
98990.7
69593
45009
38009
25868

IAC
173290
68936.2
38909
28057.6
22637.2
19227.4

Det(0.5Bgt.LDF)
NolAC
171910
71307.3
38987.3
37998.7
35860
26926

IAC
173287
78320.8
42149.2
29838.6
23539.8
20282.4

Table 4.16. Performance Benefits of Instance Admission Control (IAC) Measured
by Makespan: The algorithms are compared (measured in time units) for the
Pipeline (10-stage) workload when IAC is present and when it is absent. Storage
budget is varied from 100 to 600 storage units. The lowest makespan in each
row is boldfaced.

Storage
1000
1200
1400
1600
1800
2000
2200
2400

DAR
NolAC
177012
171605
149194
127126
106901
90396.1
77527.6
67196.4

IAC
97265.8
81741.2
70220.4
61616.6
56328.7
51138.6
47057.1
43623.4

DTO
NolAC
149178
111102
90961.9
77693.4
67676.2
59740.4
53550.7
49075.1

IAC
113060
93860.7
77850.1
67984.6
61479.5
55031.5
50404.3
47226.7

Banker's
NolAC
269129
173712
116987
90801.6
75554
65402.9
57957.2
52210.5

IAC
128468
101252
82564.9
70995
62742.9
56420.6
51259.3
47015.2

Det(0.5Bgt_LDF)
NolAC
159619
141378
158160
137780
111849
91827.5
78653.6
68976.9

IAC
101823
85861.4
74017.8
65362.4
60092.7
54581.6
50365.7
46614.2

Table 4.17. Makespan Comparison: The algorithms are compared (measured
in time units) for the Fork&Join+ (3 x 32) workload (multiple readers) when IAC
is present and when it is absent. Storage budget is varied from 1000 to 2400
storage units. The lowest makespan in each row is boldfaced.

I l l

1 DAR (IAC)
[] DTO (IAC)

Banker's (IAC)
1 Det (0.5Bgt_LDF) (IAC)

450 650
Storage Units

(a) Fork&Join+ (3 x I

DAR (IAC)
DTO (IAC)
Banker's (IAC)
Det (0.5Bgt_LDF) (IAC)

1500 2000
Storage Units

(b) Fork&Join+ (3 x 32)

Figure 4.38. Performance Benefits of Instance Admission Control (IAC) Mea­
sured by the Normalized Makespan: DAR, DTO and the banker's algorithm are
compared in the absence and presence of IAC for the benchmark workloads of
Fork&Join+ (3 x 8) and Fork&Join+ (3 x 32) with a multiple-reader access pattern.

112

Chapter 5

WaFS Prototype

The main point of this research is that dataflow information is useful when scheduling scientific

computations. Specifically, a variety of scheduling algorithms have been proposed and evaluated

through a simulation-based, parameter space study (Chapters 3 and 4). However, since the schedul­

ing benefits are predicated on having the dataflow information in the first place, we address the issue

of how to obtain the necessary information for a workfiow-aware file system.

In this chapter, we describe the design and implementation of a WaFS prototype. As a proof-

of-concept, the WaFS prototype provides evidence that such a system can be built with low (e.g.,

12% or less) overheads and that the dataflow, job service time (JST), and file size information can be

gathered transparently. Finally, the information gathered by the WaFS prototype is used as the base­

line values for a new simulated workload, with qualitatively similar (but, as expected, quantitatively

different) results to previous simulations, thus validating some of the ideas from this research.

5.1 Design Options

We have developed a prototype as a proof-of-concept, called WaFS (short for Workflow-aware

File System), to efficiently collect and exploit file-based dataflow information on a per-instance

basis. The dataflow information is collected by tracking the system calls open () and c l o s e () to

determine producer-consumer relationships. Thus, a key design problem in WaFS is how to intercept

system calls related to file accesses. This can be done either at the kernel level or at the user-level.

One of the most natural kernel-level approaches would be to directly modify the system call

routines that need to be monitored. However, this approach requires modifying the kernel and hence

rebuilding the kernel. Another relatively simple kernel-level approach is to write a Loadable Kernel

113

Module (LKM) that can replace an entry in the system call table of the kernel with a function of our

own. Our function would then be invoked when a system call is made, instead of the kernel code

implementing the invoked system call (e.g. open ()) . Although this approach does not require the

modification and rebuild of the kernel, the major problem is that we have to know the address of

the system call table, which is no longer given after Linux Kernel 2.4. Since we are only concerned

with the system calls that are related to file system accesses, we have another option for tracking

these system calls by installing an extensible file system via the Virtual File System (VFS) (e.g.,

Scruf [68]).

Kernel-level approaches are transparent to the user applications and execution environments and

generally demonstrate good performance in observing all file access operations made by a given

process. However, these approaches suffer from a major drawback in that the load and unload of the

modules require super-user privileges, making them difficult to deploy in practice. Therefore, the

most user-friendly approach would be a method acting at just the user level.

Our prototype consists of three major components: Batch Scheduler, Monitor and Versioned

Namespace Manager (VNM). As previously discussed, the Scheduler schedules the submitted jobs

to computational hosts, and the VNM is responsible for detecting and managing the dataflow in­

formation associated with the workload. The Monitor mediates between Scheduler and VNM to

intercept the system calls of the running jobs and communicate with VNM to allow VNM to accom­

plish its tasks. All these components are running at the user-level. Because of this, the architecture

enjoys the following advantages.

1. No requirement to change the underlying file system.

2. No requirement to modify the standard shared libraries.

3. No requirements of the source code of the applications.

5.2 The Batch Scheduler and Versioned Namespace Manager

Note that our simulated batch scheduler is not as sophisticated as a production batch scheduler.

Modifying PBS [47], LSF [108], or SGE [90] to be WaFS-compatible would be a desirable but

non-trivial task. Furthermore, as justified earlier, a simulated system (including our simple batch

scheduler) is what makes it realistic to explore the already large parameter space of our policies.

Conversely, making our simulated batch scheduler as sophisticated as, say, PBS would add many

more dimensions to the parameter space. Therefore, we focus our prototyping efforts on the least-

114

understood component of the overall system: How can we monitor jobs to transparently gather

dataflow (and other) information (Chapter 5.3)?

We designed the batch scheduler and VNM based on a client/server architecture. The batch

scheduler is simulated as a batch queuing and workload management system that acts as a client that

communicates with the VNM (the server) to schedule and manage the user submitted workloads

among a set of networked computational hosts.

The VNM is built on top of an existing file system to capture the dataflow information on a

per-instance basis (i.e, multi-version namespace) and provide service to the client. To achieve this

goal, an On-line Data Dependency Solver is implemented to construct dataflow graphs in WaFS by

resolving the data dependencies as the computation proceeds. In addition, a query utility is provided

to serve the remote requests (i.e., for dataflow information) from the batch scheduler.

The centralized VNM introduces a performance bottleneck, but we believe that the performance

loss due to the centralized VNM accesses is insignificant compared to the job computation time.

5.3 The Monitor

There exist a variety of techniques that can be used in the Monitor to intercept the system calls at

the user-level. These include wrapping the calls in the application source code, instrumenting the C

library and overriding the C library. Each technique has its own drawbacks: source code required,

language-dependent or not guaranteed to work with all processes.

The technique we used is the process-tracing mechanism called ptrace that was originally pro­

vided in the Linux kernel and most other Unix-like operating systems to facilitate debugging pro­

grams. Ptrace allows one process to examine and change the behavior of another process. This

functionality is used by the debugging utility strace in Linux to monitor the system calls used by a

program and all the signals it receives.

Using a ptrace-based monitoring system has all of the benefits (except the performance) of the

kernel-level approaches and the previously discussed user-level approaches, yet it overcomes their

respective drawbacks. For example, it is able to intercept all file access system calls made by any

given process without the modification of the execution environments and the legacy applications.

On the other hand, compared with the aforementioned user-level approaches, it also overcomes the

difficulties in preserving and sharing information between monitored processes.1

The major disadvantage of the ptrace-based monitoring system is the performance degradation,

1 The file system runs in the separate address space of each process; sharing data among them becomes more difficult.

115

especially for those system-call-intensive applications, as each system call may incur multiple con­

text switches. However, we will provide evidence (Chapter 5.4.2) that the overheads are less than

12% for short jobs and less than 0.4% for the longer jobs of many HPC workloads.

5.3.1 Handling open() and close()

To collect dataflow information on a per-instance basis, it is critical for the Monitor to track

both open () and c l o s e () system calls. Roughly speaking, intercepting the open () system

call is primarily useful to track the dataflow dependency between the jobs, whereas intercepting the

c l o s e () system call can assist in the construction of the versioned namespace for each workflow

instance.

When entering the open () system call, the Monitor first checks whether the operation flag is

O-RDONLY or (XRDWR. If it is, the Monitor obtains the file pathname2 and sees if the file already

exists. The file will be read directly if the answer is "Yes". Otherwise, the Monitor will contact

the VNM to obtain the correct version of the file and its new location. However, if the checked

file is not found in VNM, the Monitor will simply report "file not found in VNM" and continue the

system call. Otherwise, the Monitor rewrites the file pathname argument of open () and continues

the system call.

Before leaving open () , the Monitor creates an entry in a. file table for each output file, recording

its file descriptor and corresponding file name and operation flag.

The Monitor catches c l o s e () only before it leaves the system call. Specifically, the Monitor

first uses the file descriptor to search the file table and get the corresponding file access information.

If the file is created for writing, the Monitor first obtains a version number and a new path location

from the VNM and then constructs a new pathname for the file and records it in the VNM. Finally,

the Monitor moves the newly created file (with a new version number) to the new path location.

In addition to open () and c l o s e {), in order to handle the complexity of real applications, we

need to pay attention to all the system calls that take a file pathname as an argument. Basically, the

Monitor handles the file pathname by following a similar procedure.

5.3.2 Manipulating the File Pathname

To correctly collect the dataflow information, file pathname manipulation is critical. In our im­

plementation we manipulate the file pathnames in two main cases: linking and rewriting.

2 Here we do not discuss the filename canonicalization and the procedure of filtering out the non-relevant filenames.

116

Both hard linking and soft linking can affect the correctness of the detected dataflow graph if we

do not consider them. One of the typical algorithms used to address the linking problem is to canoni-

calize paths by replacing such elements (along the path) as ' / ' , ' . ' , ' . . ' and symbolic links with

their absolute path. The GNU C library functions r e a l p a t h () and c a n o n i c a l i z e _ f i l e _ n a m e ()

can accomplish this functionality and get the real name of a file. However, both functions resolve rel­

ative paths from the working directory of the current running process, and hence cannot completely

fulfill our requirements. Our solution to this problem is to simply change the working directory of the

Monitor to that of the process being monitored before invoking the function of either r e a l p a t h ()

or c a n o n i c a l i z e _ f i l e j i a m e () and then change back after finishing the function.

Rewriting the file pathname in the open () system call is always required in our implementation

since the input file might be versioned and relocated somewhere. Unfortunately, it is not always

possible to update the file pathname in place because the new pathname may be longer than the

existing pathname, and the memory segment of the existing pathname may be read only. To address

this issue, we adopted one of the typical solutions [2] that writes the new file pathname in a free

portion of the monitored process's address space and redirects the system call argument (i.e., EBX

register in Linux on x86) to point to the new pathname string.

5.3.3 Tracing Process Family

Tracing a process' family is another requirement for detecting and constructing the correct dataflow

graphs for those real application workflows whose constituent jobs may involve multiple processes.

For example, the jobs may invoke s y s t e m () and/or p o p e n () functions to execute other programs

or invoke the system calls f o r k () or c l o n e () directly to create multiple processes. However,

the ptrace mechanism cannot automatically intercept the system calls that are made in the resulting

child processes of the monitored process. To address this issue, one typical solution is to intercept

the f o r k () system call made in the monitored process, obtain its child process id before f o r k ()

returns and then attach the child process to the monitoring process using PTRACE.ATTACH primi­

tives. Although this solution is simple, it has a race condition since the newly attached process (i.e.,

the child process of the original monitored process) may start making system calls before its parent

(i.e., the original monitored process) leaves the f o r k () system call.

A natural solution to the race condition is to not allow the child process to return from the

f o r k () system call until the parent returns. This solution can be simply achieved by rewriting

the intercepted f o r k () system call into a c l o n e () system call with the CLONE.PTRACE flag in

117

our Linux platform.

5.4 Proof-of-Concept and Results

The prototype was created mainly as a proof-of-concept: to show it is possible, given certain

assumptions about applications and workflows (e.g., static workflow shapes, all dataflows are via

producer-consumer pattern), to automatically detect and collect the necessary dataflow information.

In this section, we use GROMACS as an example. First, we show that the WaFS prototype can

collect dataflow information from GROMACS. Second, we use the JST and file size information

gathered by WaFS as the basis of a new, simple simulation study (Figure 5.5). The relative per­

formance of our new policies (e.g., DAR, DTO) compared to existing policies (e.g., the banker's

algorithm) are similar to the results in Chapter 4, but with significant differences in the absolute

performance.

Ideally, the WaFS prototype should be directly integrated with a batch scheduler and Chap­

ter 5.4.3 should be a real workload experiment instead of a simulation. However, building such

a system is beyond the scope of this thesis.

Nonetheless, this section shows an end-to-end example of a real application (i.e., GROMACS),

real dataflow, JST, and file size information gathered by the prototype, which is then used as baseline

parameters for a simulation.

5.4.1 Dataflow Collection: A Running Example

To illustrate the capability of WaFS to automatically collect the dataflow information of a work­

flow, in this section we present a running example from GROMACS [42], i.e., the Ribonulease

S-peptide (abbreviated as S-peptide) workflow. This example is interesting because of the following

features:

• A detailed description of the steps to run the workflow and an example dataflow chart are

available in the GROMACS document, which can be used to verify our results.

• The workflow has complicated file access patterns. For example, the constituent programs

(i.e., jobs) can version their output files and call other programs through the system() function.

Also, the programs can automatically add file extension names to the opened files (provided

as parameters in the command line), depending on the command line options.

118

Roughly speaking, this workflow consists of five steps, which are implemented by seven pro­

grams (shown in parentheses):3

1. Generate a topology file (pdb2gmx),

2. Solvate the peptide (e d i t c o n f , genbox) ,

3. Energy minimization (grompp, mdrun),

4. Molecular dynamics with position restraints (grompp, mdrun), and

5. Checking of the simulation results (g_energy).

To simulate the S-peptide, we need a starting structure (i.e., the initial input data). This can be taken

from the protein data bank. Here we simply use the example stored in the file s p e p t i d e .pdb in

the GROMACS package. This file contains 146 atoms, classified into 19 groups.

We follow the semantics oiDAGMan [18] to design our input script and show an example script

of S-peptide workflow, called gromacs.st, in Figure 5.1 where three segments must be specified.

The first includes the user name and the workflow name and location (i.e., the set of the con­

stituent jobs in the workflow). For this particular instance the locations of the initial input data

files and final output data files are specified by I n p u t and O u t p u t , respectively. For example,

the instance's inputs may be located in Workf l o w / g r o m a c s / i n i t - i n p u t , and the outputs in

Workf l o w / g r o m a c s / f i n a l . o u t p u t .

The next segment is .map in which the jobs in the workflow are mapped one-to-one to integers,

each integer representing a job and being used in the following segments.

The last segment .dep contains the control-flow description described by the user. For example,

the child J o b 1 cannot start until its parent J o b 0 finishes. In our example, there are 8 jobs in the

workflow which are organized as a pipeline (see Figure 5.2).

To submit a workload to our simulator, we also implement a command qsub to mimic submission

in a real batch queuing system:

% q s u b g r o m a c s . s t

qsub will parse the input script g romacs . s t and translate its contents into a workflow instance

that can be scheduled by the simulated batch scheduler. The dataflow dependencies are tracked

by WaFS as the computation proceeds, and the computation ends up with the construction of the

dataflow graph of the S-peptide workflow in VNM (Figure 5.3).
3Details at h t tp : //www.gromacs .org/documentation/reference/online/speptide.html.

119

http://www.gromacs

GROMACS script
edited by Wang Yang
User: wang
Workflow: GROMACS
Location: Workflow/gromacs
Input: Workflow/gromacs/init_input
Output: Workflow/gromacs/final_output
.map

jid command arguments
(1) Generate a topology file (.top) from the pdb-file (.pdb)
JOB 0 pdb2gmx -f speptide.pdb -p tmp/speptide.top -o tmp/speptide.gro
(2) Solvate the peptide in a periodic box filled with water
JOB 1 editconf -f speptide -o -d 0.5
JOB 2 genbox -cp out -cs -p speptide -o tmp/b4em
(3) Perform an energy minimization of the peptide in solvent
JOB 3 grompp -v -f em -c b4em -o tmp/em -p speptide
JOB 4 mdrun -v -s em -o tmp/em -c tmp/after_em -g tmp/emlog
(4) Perform a short MD run with position restraints on the peptide
JOB 5 grompp -f pr -o tmp/pr -c after_em -r after_em -p speptide
JOB 6 mdrun -v -s pr -e tmp/pr -o tmp/pr -c tmp/after_pr -g tmp/prlog
(5) Show results
JOB 7 g_energy -f pr -o tmp/out -w
.dep
control-flow description
PARENT 0 CHILD 1
PARENT 1 CHILD 2
PARENT 2 CHILD 3
PARENT 3 CHILD 4
PARENT 4 CHILD 5
PARENT 5 CHILD 6
PARENT 6 CHILD 7
#end

Figure 5.1. An Example of a GROMACS Input Script: gromacs.st

5.4.2 Overhead of Prototype on Potential Applications

The overhead of WaFS on potential applications is expected to be low because there are relatively

few calls to open () and c l o s e () in scientific workloads. This can be validated by examining the

GROMACS benchmarking system gmxbench [42] that consists of four molecules published by the

GROMACS group. The four molecules in the benchmark are d.dppc, d.lzm, d.poly-ch2, and d.villin,

whose atom trajectories, in water, over a period of time, are simulated by GROMACS software. The

gmxbench is known to be compute-intensive and is representative of a large class of simulation-based

applications.

For our study, we compare the runtime of the computationally intensive 6 . mdrun program that

actually performs the simulation. The configuration for this experiment is shown in Table 5.1. We

120

0,pdb2gmx

t t.editconf' J

2-.genbox

3.gtompp

ndmn

i.grompp

speptide.top

Figure 5.2. The Given CFG Figure 5.3. The Detected DFG

use two computers; one is assigned to the simulated batch scheduler and monitor, and the other

is to the VNM. The monitor runs in each compute host to monitor the job execution and send the

intercepted information to the remote VNM. The monitor and VNM constitute the WaFS prototype.

The network between the Simulated Batch and VNM is 1 Gbit/s Ethernet.

The results of the GROMACS gmxbench are shown in Figure 5.4. Each data point is averaged

over 5 runs. The bars labeled Or i g are for the same runs, but without the overheads associated with

WaFS. The overheads for WaFS are from 0.39% (d.dppc) to 11.74% (d.villiri), depending on the

computation involved in each simulated molecule. Although 11.74% overhead might be considered

high in absolute terms, the low run time (97 seconds, Table 5.3) is not as typical as the longer runs

times of the d.dppc example.

121

Component

Simulated Batch (Monitor)
VNM

CPU

AMD Athlon 2.4GHz
AMD Athlon XP 2.2GHz

Memory

1GB
1GB

Cache | OS

512KB
512KB

Linux 2.4.29
Linux 2.6.18

Table 5.1. Experimental Configuration for gmxbench

GMX Benchmark
6000

5000

4000

2000

1000

d.dppc d.lzm d.poly-ch2 d.villin

Figure 5.4. Performance of GROMACS gmxbench in absence and presence of
WaFS. The performance overhead of WaFS is shown by the percentage above
the bar.

5.4.3 Simulation Results for an GROMACS Workload

Of course, the purpose of WaFS is to gather information which can then be used by a WaFS-

compatible batch scheduler. Unfortunately, as discussed earlier (Chapter 5.2), a WaFS-compatible

scheduler does not exist and creating one is beyond the scope of the current research.

As an intermediate step, we can use the WaFS-measured information (e.g., dataflow, JST, file

sizes) from real runs of GROMACS (Tables 5.2 and 5.3) to serve as the basis for a simulated work­

load (Figure 5.5). Note that the simulations in Chapters 3 and 4 are not based on these measured

values because of the relative lack of variety (i.e., limited JST and file size distributions) in the

parameter space values of the GROMACS input files.

The specific methodology of the new simulated workload is complicated, but is as follows:

1. For all of the pipeline stages, except 6 .mdrun's JST, the simulation's average JST and file

122

0.39%

I

1.6%

• Orig
0 WaFS

10.02%
_ J * 2 L

11,74%

size values come from the S-peptide input file (Table 5.2).

The actual JST of a job for all stages (including 6 .mdrun, below) within an instance is from

a normal distribution in the range [(0.9 x average JST), (1.1 x average JST)].

Since it is part of the GROMACS software distribution, S-peptide is readily available. For

completeness, the 6 .mdrun values for S-peptide are given in Table 5.2, but the JST=328

value is not used in the simulation.

2. For the JSTs for stage 6 . mdrun, the simulated workload uses a combination of values from

gmxbench (Table 5.3). Specifically, for 100 workflow instances, 25 instances are based on

each of the four benchmarks in gmxbench. Therefore, there are 25 instances with {average

JST=5433 s, S-peptide file size=426 KB}, 25 instances with {average JST=708 s, S-peptide

file size=426 KB}, 25 instances with {average JST=112 s, S-peptide file size=426 KB}, and

25 instances with {average JST=97 s, S-peptide file size=426 KB}. As with the other stages,

the actual JST of the 6 .mdrun job within an instance is from a normal distribution around

the average JST, as described above.

Note that the JST and file sizes for pipeline stages 0 to 5, and 7, are not available for d.dppc,

d.lzm, d.poly-ch2, and d.villin because the benchmarks are defined purely in terms of stage

6 .mdrun, with the required files for the other stages being unavailable.

3. In our experiment (Figure 5.5), all the data points are the averages of 10 runs by changing

the random seed in the simulator (e.g., used to generate the normal distribution around the

average JST), where the observed standard deviation of the simulated makespan (i.e., Y-axis)

is very low.

The lack of some of the input files for gmxbench makes it necessary to base the simulation values

primarily on S-peptide. But, in a desire for a variety of JSTs for 6 .mdrun, we use the WaFS-

measured JSTs from gmxbench. Other methodologies for creating a WaFS-measured workload are

possible; our workload still serves to validate the basic ideas behind WaFS, the prototype, and

provides some new simulation results.

As the storage units in the budget varies from 2,000 KB to 100,000 KB, there are marked differ­

ences in simulated makespan between the different polices (Figure 5.5). Note that the most directly

comparable results from earlier simulations are Figures 4.33(c) and 4.34(c). As expected, the ab­

solute performance differences between the policies change given the different JST and file size

parameters.

123

Pipeline Stage

0.pdb2gmx
1 .editconf
2.genbox
3.grompp
4.mdrun
5.grompp
6.mdrun
7.g_energy

Job Service Time (s)

8
5
16
10
23
11
328
140

File Size (KB)

49
9
146
469
135
471
426
15

Table 5.2. WaFS-measured Job Service Times and File Sizes for the GROMACS
S-peptide Workflow

Benchmark

d.dppc
d.lzm
d.poly-ch2
d.villin

Job Service Time (s)

5433
708
112
97

File Size (MB)

12
2
2
1

Table 5.3. WaFS-measured Job Service Times and File Sizes for the 6 .mdrun
stage of GROMACS gmxbench

But, consistent with earlier results, DTO remains the best overall algorithm because it appropri­

ately considers the file storage requirements of the later pipelines stages. DTO (still) has the lowest

makespan, with the advantage of DTO over DAR, banker's algorithm, and Lang's algorithm grow­

ing as the storage budget increases to 100,000 KB. Although not shown, all of the policies converge

in makespans as the storage budget gets even larger and deadlock is no longer a concern.

In particular, the file size requirement of stage 0 . pdb2 gmx is low (i.e., 49 KB) relative to stages

3 .grompp (469 KB), 5 .grompp (471 KB), and 6 .mdrun (426 KB). Therefore, the tendency

for banker's algorithm, Lang's algorithm and DAR to admit more workflow instances given a small

initial resource requirement of 49 KB, often leads to blocked instances in the later stages, which

results in high inactive resource utilization, which also results in higher makespans. But, DTO tends

to give resources to already admitted instances, which allows the instances to complete faster instead

of blocking.

Lang's algorithm, consistent with earlier simulations, still has the worst performance for the

GROMACS workload. An interesting observation is that the detection algorithm shows a better

performance than all the other algorithms, except for DTO. We observed the deadlock frequency

to be high, but the released storage (after deadlock is detected and victim instances are killed) can

allow the deadlocked instances, which are usually blocked on the data-intensive jobs, to finish their

as quickly as possible.

124

2e+05

1.5e+05i

le+05

50000

2000

>DAR
'DTO
Banker's
Lang's

^Det(0.5Bgt_LDF)

4000 6000
Storage Units

8000 10000

Figure 5.5. Simulation Results for the G ROM ACS Workload: Compared to Fig­
ure 4.33(c) and 4.34(c), DTO shows greater performance advantages compared
to other policies.

5.5 Concluding Remarks

This chapter introduced our ptrace-based WaFS prototype wi th a special emphasis on the dataflow

collection. To this end, we detailed how the open () and c l o s e () system calls are handled, file

pathnames are manipulated and process family is tracked.

To validate the prototype, we used a real application workflow from GROMACS, called Ri-

bonulease S-peptide, as an example to illustrate how WaFS automatically collects the dataflow in­

formation. In addition, we also measured the performance overhead of WaFS for the GROMACS

benchmark gmxbench. The overheads are measured to be between 0.39% and 11.74%, with lower

overheads associated with longer job service times.

Finally, we used the gathered dataflow information of the S-peptide and gmxbench as the trace/baseline

data for a GROMACS workload to evaluate our algorithms. Our results are qualitatively consistent

with earlier results, showing the advantages of the DTO algorithm for pipeline workflows.

125

Chapter 6

Related Work

We provide an overview of related work more or less according to our research scope. In Chapter 6.1

we describe some existing techniques to resolve filename conflicts in workflow computation. Some

related file system studies are reviewed in Chapter 6.2. In high performance computing dataflow

information can be used in various ways, and we survey some of its applications in Chapter 6.3. The

most recent work in storage-aware workflow scheduling is discussed in Chapter 6.4. Finally, we

review some related work on deadlock avoidance in Chapter 6.5.

6.1 Filename Conflict Resolution

To enable multiple workflow instances to execute concurrently, existing systems adopt different

strategies to avoid filename conflicts. Grid Execution Language (GEL) [64] is a scripting language

developed by the Bioinformatics Institute, Singapore, to facilitate job scheduling in grid computing

systems. It allows multiple instances of the same workflow to execute concurrently by creating a

working directory for each instance. All binaries (in each instance) run in the same working directory

where they read, create and modify files based on the control-flow information. The output of the

instance may finally be moved to some where from its working directory. However, using a separate

directory in a control-flow-driven scheduler to isolate computations suffers from potentially higher

storage overhead than necessary.

Unlike GEL, DAGMan [18] in Condor [94] (on which DAGMan is built) provides a number of

complementary mechanisms to manage multiple instances of similar jobs and to help avoid filename

conflicts. For output files Condor uses the $(Cluster) (i.e., job ID) macro when naming them so that

they are unique to each job instance.

126

universe = vanilla
executable = /bin/hostname
output = results.$(Cluster)
error = errors.${Cluster)
log = log.$(Cluster)
queue

Figure 6.1. An Example of Condor Submit Description File

For example, we could specify the job submit file shown in Figure 6.1 for multiple nodes in a

DAG. This will create files like " r e s u l t s . 132", " r e s u l t s . 133", " r e s u l t s .N", etc., where

N is the Condor job id of the actual job instance.

To help avoid conflicts in a job's runtime files, each Condor vanilla or standard universe job is

executed in its own unique job "sandbox" directory on the remote execution host. As a result, while

it runs, any runtime files used by the job (in the current working directory) are safe from other jobs'

instances running beside the job. Although DAGMan can avoid the filename conflicts in concurrent

executions of multiple instances of a single job, it is not clear how this mechanism can deal with a

workload that is composed of multiple dependent jobs.

The most common solution to filename conflicts in batch schedulers is to execute each workflow

instance in a sequential order (Figure 3.2(a), Serial Policy (BASE)). The serial policy is simple, but

unlike the previous strategies it does not allow any inter-workflow instance concurrency. Despite

the low degree of concurrency of the serial policy, its simplicity makes it a popular choice.

6.2 Related File System Studies

File systems have been studied in various computing environments for different workloads and

with different goals. For example, FileNet [25] was designed to support a class of read-mostly work­

loads (e.g., document image processing) in a distributed system. Zebra [45] is a network file system

that combines the two ideas of a log structured file system (LFS) and striping with parity calcula­

tions to increase file access throughput. Elephant [79,80] is a versioning file system with a design

goal of automatically retaining all important versions of a user's files. Recently, the Google File

System (GFS) [36] was developed to address issues in fault tolerance, the management of large data

sets and the optimization of append-intensive files for large distributed data-intensive applications.

Unlike these file systems, our Workflow-aw are File System (WaFS) is oriented to high-performance

workflow-based workloads. It is designed to layer on top of the traditional file systems to discover

the workflow-specific information automatically. And in terms of integrating the job scheduler and

127

file system, WaFS is similar to BAD-FS [12], a batch-aware distributed file system, but BAD-FS (at

this time) is designed to deal with the issues of data consistency and replication but not scheduling.

In contrast, the development of WaFS is motivated by a desire to improve job concurrency and to

allow for efficient deadlock avoidance using dataflow information.

Linking File System (LiFS) [5] and Transparent Result Caching (TREC) [97] are also related

to WaFS. LiFS extends the traditional set of file system metadata to include not only arbitrary,

user-specified key-value pairs on files but also relationships between files in the form of links with

attributes. Although LiFS can be used to record the dataflow information, it cannot discover such

information automatically as the computation proceeds, unlike WaFS.

TREC is a general framework for transparently tracking process lineage (i.e., each process's

parent, children, input files and output files) and file dependencies (i.e., for each file, the sequence of

operations and the set of input files used to create the file). TREC can be used to deduce the dataflow

information by observing program execution. However, it does not consider the filename conflict

problem, and TREC does not use an integrated job scheduler and file system as WaFS does.

Versioning file systems are not a new idea. Traditionally, versioning file systems are designed to

record the history of changes to files and to facilitate easy back-ups and rollbacks to previous ver­

sions of files. Some versioning file systems in the literature include Elephant [79,80], Versionfs [72],

Wayback [19] and Moraine [103]. However, none of these systems are integrated with a batch sched­

uler with the purpose of improving job concurrency. In addition to per-file versioning, versioning

techniques also include volume and file system snapshots. A snapshot is a read-only, logical image

of a collection of data as it appeared at a single point in time. For example, the ext3cow [74] file

system, which is built on Linux's popular ext3 file system, takes advantage of snapshot capabilities

to provide users with a time-shifting file system.

6.3 Dataflow Applications

The idea of exploiting dataflow information to facilitate computation is certainly not new. For ex­

ample, in parallel computer architectures [7], dataflow concepts are used to overcome the difficulty

of conventional control-flow-based architectures in maximizing instruction-level parallelism, which

is roughly analogous to intra-workflow instance concurrency in our context. Of course, Versioned

Namespace (VNS) and Overwrite-Safe Concurrency (OSC) use dataflow information primarily to

improve inter-workflow instance concurrency (which could be compared to Simultaneous Multi­

threading (SMT) processor designs [26,96]). Nonetheless, in the software systems context OSC

128

and VNS are unique in their ability to improve job scheduling through the integration of the file

namespace manager (for gathering and controlling dataflow information) and the scheduler (for ex­

ploiting the dataflow information).

In compiler optimization, where dataflow and control-flow analyses are common, the compiler

attempts to improve performance by increasing instruction-level parallelism and by re-ordering or

transforming code to reduce overheads. Of course, OSC and VNS improve the degree of concur­

rency. However, neither of our proposed strategies attempt to re-order or transform the jobs of a

workflow since there is as yet no higher-level semantics (e.g., a programming language for a com­

piler) to constrain and guide such transformations.

In high-performance computing systems dataflow is often used to improve job-level concurren­

cies. For example, LSF Batch [108] can define a job that is dependent on file events in advance so

that a job can run after some file event (e.g., file arrival) has occurred. The Workflow Enactment

Engine [105] proposes a decentralized event-driven scheduling architecture by using tuple space as

a communication mechanism between data-dependent tasks. It allows tasks to be scheduled based

on data dependency rather than waiting for the completion of (control-flow-based) parent jobs. A

similar idea is also applied in PAGIS [101], a metacomputer system that uses process networks [62]

as a semantic model for the composition of complex tasks in a geographic information system. In

the metacomputer system a server takes a process network from a client and distributes work to the

workers. The data is moved between the worker processes via a central queue in the server. Our

work has the same purpose (i.e., improving concurrency) as these systems, however, our focus is on

inferring the dataflow information automatically via the combination of the batch schedulers and file

systems and further exploiting such information to maximize both intra- and inter-workflow instance

concurrency.

In addition to maximizing job concurrency, dataflow information can be exploited for other pur­

poses. For example, BAD-FS [12] refers to the flow of data as I/O scoping and uses it to compute

an execution plan to minimize the network traffic. In Kepler [67], a scientific workflow system built

upon the dataflow-oriented Ptolemy II system [75], dataflow information is used to specify the exe­

cution semantics of a workflow in a diagram via a Process Network Director. MSF [52] introduces

a workflow service infrastructure for computational grid environments. Static dataflow information

is described in its Job Control Markup Language (JCML) to facilitate data movement.

Dataflow information can be viewed as a special kind of application-specific information, which

is exploited by our WaFS Scheduler to improve its scheduling. In this sense the WaFS Scheduler has

the same philosophy as AppLeS [13,14] and MARS [34].

129

AppLeS [13,14] is an application-level scheduling project with a primary focus on developing

scheduling agents for individual applications on production computational grids. The approach is

to use application-specific information to model the application performance under a given set of

resources (i.e., creating a performance model) and then based on the performance model to sched­

ule the application. The programming model of AppLeS is on a per-application basis. To relieve

programmers of the burden, AppLeS Templates were developed as software frameworks to embody

common characteristics from various applications with similar structure and the same computational

model.

MARS [34] is a framework for minimizing the execution time of distributed applications on a

metacomputer. The application is usually structured as a Single-Program-Multiple-Data (SPMD)

program that consists of multiple phases. For each phase, its execution profile remains the same

across several runs. However, the phases are identified by users rather than detected automatically.

MARS uses the phase profiling data of previous runs to derive an improved task-to-process mapping.

The differences between our WaFS Scheduler and these systems are that the WaFS Scheduler uti­

lizes the application-specific information (i.e., dataflow information) via the underlying file system

(i.e., WaFS), and such information is automatically discovered by WaFS, whereas, the development

of AppLeS templates and identification of MARS phases are all the users' responsibilities.

6.4 Storage-Aware Workflow Scheduling

The interest in scheduling workflow-based computations in storage-constrained HPC systems is

increasing with the awareness of the growth of datasets [9,41]. In this section we review two storage-

aware workflow scheduling systems that have recently been published in the literature [12,76].

Comparison with our WaFS Scheduler are given in Table 6.1.

Bent et. al proposed a capacity-aware scheduling in BAD-FS [12], in which a centralized batch

scheduler manages the storage space by carefully allocating storage volumes for the jobs from mul­

tiple workflow instances so that storage overflowing or cache thrashing can be avoided. To achieve

these ends, Bent et. al identified five possible data allocation strategies which influence the exe­

cution path and the performance of the workloads [11]. Although these allocation strategies can

prevent deadlocks (not stated explicitly by the authors), they are unable to make the best use of

storage resources for performance optimization. For example, neither the AllPrivate strategy nor

the AUBatch strategy optimizes the allocation of the available storage. On the other hand, all their

allocation strategies are designed for batch-pipeline workflows and might not be effective for other

130

System

Bent's [12]
Ramakrishnan's [76]
WaFS Scheduler

Workflow
Shape

Pipeline
Arbitrary
Arbitrary

Workflow
Instance

Multiple
Single

r Multiple

Storage Site

Single
Multiple
Single

Garbage Collection

Not Clear
Cleanup Job
Scheduler Control

Deadlock

Prevention
Ostrich
Avoidance

Table 6.1. Comparison between Bent's System, Ramakrishnan's System and the
WaFS Scheduler

workflow shapes such as those have examined in this thesis. Unlike the strategies designed to care­

fully allocate the storage, our alternative is to use a deadlock avoidance approach to deal with the

storage constraints.

Most recently, Ramakrishnan et. al considered the scheduling of data-intensive workflows with

more general shapes onto a set of storage-constrained distributed computational sites [76]. They

address exactly the same problem as ours, i.e., improving the workflow data storage utilization.

Their basic approach is to add a cleanup job for each data file when that file is no longer needed by

other jobs in the workflow or when it has already been staged out to some permanent storage. The

garbage files are deleted (also called garbage collection) in time, and the amount of storage used for

the workflow can be reduced significantly. Although the cleanup jobs are not compute-intensive, the

large number of cleanup jobs may cause performance degradation. To mitigate this problem, they

also implemented a heuristic that uses a single cleanup job for removing multiple files. Unlike their

approach, the garbage collection in our system is directly controlled by the batch scheduler based

on the dataflow information gathered in WaFS, rather than requiring cleanup jobs.

A major difference between our system and theirs is how deadlock is dealt with. Their algorithm

is storage-aware in the sense that when deciding to schedule a job, the disk space available from

each site is first considered and only the eligible sites (i.e., the sites with sufficient disk space) are

prioritized according to some performance metrics for the job scheduling. Job are mapped to the

sites with the highest priority first to minimize the overall execution time of the workflow. However,

deadlock is not considered in their algorithm. When a deadlock occurs, the workflow is simply

aborted. This might not be a serious problem in the situation where a single workflow instance is

scheduled onto multiple storage sites. We consider scheduling multiple workflow instances onto

a single storage site, which is similar to the situation in Bent's work, and deadlock is usually a

pragmatic concern.

131

Algorithm

Habermann [43]

Holt [49]

Minoura [70]

Lang [60]

Kameda [56]
Belik [10]
Habermann [44]
Finkel&Madduri [31]

Lee [63]

Time Complexity

0(rrm-i)

0(mn')

0(mn)
O(r)
O(logn)

0{n)

Major Techniques

a time-based technique
(1) resource-request graph, but the
resource requests are made in a
nested form. (2) localized maxi­
mum claims are computed by dy­
namic may-wait for graph.

resource-request graph and decom­
position into regions

network technique
safe sequence reduction

allocation history in a binary tree
parallel algorithm and hardware im­
plementation

Comments

Not all processes need to be
sequenced in the safety check
address the artificial deadlock

localized maximum claims

localized maximum claims

amortized worst case
single resource type
single resource type

for MPSoC

Table 6.2. Comparison of Some Banker's-based Deadlock Avoidance Algorithms
(m: the number of resource types, n: the number of processes, r: the number
of resource units)

6.5 Deadlock Avoidance

Deadlock avoidance attempts to keep the system in a set of safe states, where the circular chain of

resource contention that produces the deadlock cannot occur. To achieve this, it is usually necessary

to have some advance information about the resource use of processes. For example, the most widely

recognized banker's algorithm requires a priori knowledge of the maximum amount of resources

needed by each process. Unfortunately, such knowledge is not always available in reality, rendering

this algorithm mostly inapplicable in practice. However, as previously discussed, in workflow-based

computations the storage requirements of each job are in general available, making the deadlock

avoidance algorithm a promising approach.

The banker's algorithm, since it was originally proposed by Dijkstra to handle a single resource

type [23], has initiated much follow-up research, most conducted in the early days of operating

systems [43,46,49,50,70]. However, the banker's algorithm still forms the basis for many deadlock

avoidance algorithms in a variety of application contexts [8,10,60,61]. In the studies on the banker's

algorithm the research is mainly concentrated on the resource utilization and time complexity of the

algorithms. We summarize some related work in this area in Table 6.2, where the first three studies

focus on improving the resource utilization, whereas the last five concentrate on minimizing the time

complexity. Our work largely falls into the former class, since for workflow-based workloads the

execution time of the constituent jobs is generally much longer than the deadlock resolution time.

132

The complexity of the deadlock avoidance algorithm is thus not our primary concern.

In order to improve the resource utilization, Habermann redesigned the banker's algorithm and

extended it to multiple serially reusable resource types [43]. Although the contribution was im­

portant in making the banker's algorithm more general, it could not address a practical problem of

permanent blocking, identified by R. Holt [49] as the scheduler-incurred artificial deadlock (i.e.,

the processes with safe requests were never scheduled). This problem was discussed by Holt and

addressed by a time-based technique.

In addition to the extension of the functionality, other research efforts focused on refining the al­

gorithm based on some interesting process models, each differing in the amount of information that

is assumed to be available [77,85]. The purpose of these works is primarily to minimize the con-

servativeness in the safety check so that the resource utilization of the algorithms can be improved.

An early effort was made by Minoura [70] with the concept that the control-flow of the involved

processes can be modeled as a resource-request graph, which is a rooted tree of nodes, each node

representing either a resource request or a resource release. Based on the resource-request graph, the

current execution points of a process can be tracked, and then the localized approximate maximum

claim of the process can be computed by using a dynamic may-wait-for graph. Finally, a modi­

fied version of Habermann's algorithm leverages this localized maximum claim to improve upon

the original algorithm. However, this algorithm has a major limitation that it requires the resource

requests to be made in such a way that for each resource type within a process, the units granted last

are released first (i.e., a "nested" form).

Later, based on the same resource-request graph, Sheau-Dong Lang [60] described a natural ex­

tension of the banker's algorithm to overcome the limitation of the modified Habermann's algorithm

in [70]. Lang's algorithm decomposes the control-flow graph of a process into a nested family of

regions and improves upon the banker's algorithm by having the knowledge of the localized approx­

imate maximum claim associated with each region. Lang's algorithm does not require a "nested"

form of resource-request graph. However, it still inherits the rooted-tree-like resource-request graph,

which, although it represents a wide range of applications' control-flows, cannot effectively model

the storage access patterns in our workfiow-based computations.

The complexity of the banker's algorithm and its variants is also a major concern in practice.

Given n processes and m resource types, Habermann's algorithm requires 0(7wi2) time for the

safety check. Kameda [56] presented an algorithm which with an aid of a network technique, re­

duces the complexity to 0(mn^). Belik [10] modified the banker's algorithm by slightly sacrificing

the resource utilization but achieving an 0(mn) amortized worst case running time under certain

133

likely conditions. When considering a single resource type, Habermann [44] proposed an efficient

algorithm to handle a resource request or release within the space and time complexity of 0(n + r)

and 0(r), respectively, where r is the number of resource units. Later, the time complexity was im­

proved to O(logn) by Finkel and Madduri [31], whose algorithm maintains the resource allocation

history in a binary tree. More recently, Lee [63] proposed a 0(n) parallel banker's algorithm and

implemented it in hardware to provide a mechanism for very fast, automatic deadlock avoidance for

a Multiprocessor System-on-a-Chip (MPSoC).

In addition to operating systems, the banker's algorithm is also applicable in other areas where

deadlock is recognized as a serious problem. For example, Lomet [66] tailored the algorithm to the

needs of database systems. The proposed algorithm is not only simpler but also performs better in

a database environment. In addition, the algorithm provides additional functions that are absent in

the earlier algorithms. The banker's algorithm was also refined to deal with the deadlock problems

in Flexible Manufacturing Systems (FMS) [8,61,77], where new process models and more static

knowledge are always available to maximize concurrency while avoiding the deadlocks.

When compared with this related work, our algorithms, Dataflow-based Aggregate Requests

(DAR) and Dataflow-based Topological Ordering (DTO), of course, bear certain similarities to

some existing algorithms [60,77]. However, our algorithms are unique in that they make a distinc­

tion between active and inactive resources for makespan reduction, which is not a part of previous

approaches.

134

Chapter 7

Concluding Remarks

7.1 Limitations

Our proposed system provides the benefits of transparently detecting the dataflow information

and exploiting it to efficiently overcome the artificial constraints on concurrency in most current

batch schedulers. However, our system does has some limitations:

1. Dataflow graphs are assumed to be static from instance to instance. Although this assumption

seems restrictive, we believe it is quite reasonable in scientific computation.

2. It is assumed that no filename conflicts occur inside workflow instances. In other words,

filename conflicts are only possible between workflow instances. In general, it is difficult

to resolve filename conflicts inside workflow instances due to the associated race conditions.

Such conflicts effectively represent specification errors and hence are not considered.

3. It is assumed that the job service time and file sizes are always over-estimated; otherwise,

deadlock can occur.

4. Our simulation assumes a centralized batch scheduler and a single storage-constrained site.

However, we believe that our system can be generalized to other configurations.

5. Our WaFS prototype is not a full, production-quality system. Instead, it is just a proof-of-

concept implementation used to validate our basic design and show one possible implemen­

tation strategy. Any implementation or architecture that reliably gathers dataflow information

can be used with our scheduling policies.

135

Although some of the described limitations prevent our system from dealing with a number of use

cases, such cases are believed to be rare in practice; hence, our system is useful in spite of these

limitations.

7.2 Conclusions

The research in this thesis was motivated by some specific problems (limitations) of control-flow-

driven batch schedulers used in current HPC systems with respect to filename conflicts and deadlock

in storage allocation. Although these problems are not fundamental to batch schedulers, filename

conflicts and deadlock impose constraints on job scheduling that limit the degree of concurrency and

lower the efficient utilization of storage resources.

Our major contribution in this thesis is in demonstrating the value of dataflow information in

addressing these problems and advocating for a systematic solution that is more transparent, easier

to use and has performance benefits. We proposed a system (i.e., the WaFS Scheduler) based on

an integrated file system and batch scheduler. The essence of the system is to extend a traditional

file system into a Workfiow-aware File System (WaFS) for capturing and managing the dataflow

information as the computation proceeds. The system then makes this gathered dataflow information

available to the batch scheduler in order to maximize job concurrency given the filename conflicts

and reducing the impact of deadlock when storage resources are limited, which are generally not

possible in the traditional control-flow-based batch schedulers.

To leverage the dataflow information, we have developed and evaluated three scheduling policies,

Versioned Namespace (VNS), Overwrite-Safe Concurrency (OSC) and their hybrid (HB), through

simulation studies.

By combining dataflow information with a versioned namespace, we showed that VNS can re­

duce the makespans by over an order-of-magnitude, depending on the arrival rate of the workload,

while the storage overhead is low.

In contrast, OSC takes advantage of dataflow information to safely overwrite files instead of

always versioning files as per VNS. Thus, OSC is able to minimize the storage overhead but at the

expense of losing DOC when more storage resources are available. Both policies exhibit advantages

over the traditional sub-directory-based resolution of filename conflicts in terms of lower makespan

and storage overhead.

To combine the advantages of versioning and overwriting, HB was also studied for its ability to

maximize both DOC and efficient storage resource utilization. The key point of HB is to leverage the

136

inferred dataflow information to effectively resolve the deadlock problem when multiple concurrent

workflow instances compete for the limited available storage resources.

To this end, we proposed two deadlock avoidance algorithms, Dataflow-based Aggregate Re­

quests (DAR) and Dataflow-based Topological Ordering (DTO), based on the classic banker's al­

gorithm. However, unlike previous studies, which generally do not distinguish between active and

inactive resource utilization, our algorithms leverage the dataflow information to make the impor­

tant distinction between active and inactive resources for makespan reduction. A key part of that

distinction is to compute maximum resource claims dynamically (as with DAR and DTO), instead

of statically (as with the banker's algorithm).

First, with DAR the maximum claim associated with each instance is computed at runtime by

using the dataflow information to sum the storage requirements of all the remaining jobs. Second,

in DTO the dataflow knowledge is exploited to topologically order the remaining jobs in the current

instance when checking for safety. Both algorithms try to maximize the active storage utilization

by improving either the inter-instance concurrency or the intra-instance concurrency. Our simula­

tion studies show that the proposed algorithms, in most cases, are better than the static, control-

flow-based banker's algorithm and Lang's algorithm in terms of both makespan and active storage

utilization.

7.3 Future Work

A major future research direction is to take the WaFS prototype (Chapter 5) and expand it into a

production-level system. The benefits of our new algorithms, as validated by the simulation-based

study of this dissertation, provide significant motivation to proceed on that system-building line of

research. Furthermore, real applications (in addition to GROMACS) can be, and should be, studied.

A natural and worthwhile extension of the existing simulation-based studies is to consider more

workflow shapes and different random number distributions, beyond uniform and Zipf distributions

(Appendix B).

Lastly, in terms of scheduling algorithms, the emphasis of this dissertation has been on mini­

mizing makespan. However, mean response time (MRT) is another key metric in scheduling and a

proper study of using dataflow information to minimize MRT would also be valuable.

137

Bibliography

[1] T.L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules for parallel
processing systems. Communications of the ACM, 17(12):685-690,1974.

[2] A.D. Alexandrov, M. Ibel, K. E. Schauser, and C.J. Scheiman. Ufo: A personal global file
system based on user-level extensions to the operating system. ACM Transactions on Com­
puter Systems, 16(3):207-233,1998.

[3] M.P. Allen. Introduction to molecular dynamics simulation. In N. Attig, K. Binder, H. Grub-
muller, and K. Kremer, editors, Computational Soft Matter: From Synthetic Polymers to Pro­
teins, Lecture Notes. Gustav-Stresemann-Institut, Bonn, Germany, 2004.

[4] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403-410,1990.

[5] A. Ames, N. Bobb, S.A. Brand, A. Hiat, C. Maltzahn, E. L. Miller, A. Neeman, and D. Tuteja.
Richer file system metadata using links and attributes. In Mass Storage Systems Technologies
(MSST2005), Monterey, CA, 2005.

[6] NASA Ames and the Courant Institute at NYU. Cart3D, h t t p : / / p e o p l e . n a s . n a s a .
g o v / ~ a f t o s m i s / c a r t 3 d / c a r t 3 D h o m e . h t m l .

[7] K. Arvind and R.S. Nikhil. Executing a program on the MIT tagged-token dataflow architec­
ture. IEEE Transactions on Computers, 39(3), March 1990.

[8] Z.A. Banaszak and B.H. Krogh. Deadlock avoidance in flexible manufacturing systems
with concurrently competing process flow. IEEE Transactions on Robotics and Automation,
41(6):724-734,1990.

[9] B.C. Barish and R. Weiss. Ligo and the detection of gravitational waves. Physics Today, 52,
1999.

[10] F. Belik. Deadlock avoidance with a modified banker's algorithm. BIT, 27(3):290-305,1987.

[11] J. Bent. Data-driven batch scheduling, 2005. Ph.D thesis, University of Wisconsin-Madison.

[12] J. Bent, D. Thain, A.C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. Explicit
control in a batch-aware distributed file system. In Proceedings of Networked Systems Design
and Implementation (NSDI), pages 365-378, San Francisco, California, USA, 2004.

[13] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and D. Zagorodnov. Adaptive
computing on the grid using apples. IEEE Transactions on Parallel and Distributed Systems,
14(4):369-382,2003.

[14] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application level scheduling on
distributed heterogeneous networks. In Proceedings of the ACM/IEEE conference on Super-
computing, Pittsburgh, PA, November 1996.

138

[15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, andJ. Luitz. WlEN2k: An augmented plane
wave plus local orbitals program for calculating crystal properties. Technical report, Institute
of Physical and Theoretical Chemistry, Vienna University of Technology, 2001.

[16] J. Blythe, Y. Gil, and E. Deelman. Coordinating workflows in shared grid environments. In
Proceedings of the 14th International Conference on Automated Planning and Scheduling,
Whistler, British Columbia, Canada, 2004.

[17] E.G. Coffman. Computer and Job-Shop Scheduling Theory. Wiley, New York, 1976.

[18] Condor Team, 2004. h t t p : / / w w w . c s . w i s c . e d u / c o n d o r / d a g m a n .

[19] B. Cornell, P. Dinda, and F. And. Wayback: A user-level versioning file system for Linux. In
Proceedings ofUSENIX, Boston, MA, USA, 2004.

[20] P.E. Crandall, R.A. Aydt, A.A. Chien, and D.A. Reed. Input/output characteristics of scalable
parallel applications. In Proceedings of the IEEE/ACM Conference on Supercomputing, pages
59-89, San Diego, California, USA, 1995.

[21] Cray, h t t p : / / w w w . c r a y . c o m / p r o d u c t s / s o f t w a r e / n q e .

[22] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.

[23] E.W. Dijkstra. Cooperating Sequential Processes. New York:Academic Press, 1968.

[24] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51:161-166,1950.

[25] D.A. Edwards and M.S. Mckendry. Exploiting read-mostly workloads in the filenet file sys­
tem. In Proceedings of the 12th ACM Symposium on Operating Systems Principles, pages
58-70, Litchfield Park, Arizona, USA, 1989.

[26] SJ. Eggers, J.S. Emer, H.M. Levy, J.L. Lo, R.L. Stamm, and D.M. Tullsen. Simultaneous
multithreading: A platform for next-generation processors. IEEE Micro, 17(5): 12-19,1997.

[27] H. El-Rewini, T.G. Lewis, and H.H. Ali. Task scheduling in parallel and distributed systems.
Prentice-Hall, Inc, 1994.

[28] B. Abbott et. al. Search for gravitational waves from binary inspirals in S3 and S4 LIGO data,
h t t p : / / e d o c . m p g . d e / 3 1 6 9 6 9 .

[29] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong. Theory and practice
in parallel job scheduling. In Proceedings of the 3rd Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), pages 1-34,1997. Also published as Springer-Verlag LNCS
1291.

[30] D.G. Feitelson and M. A. Jette. Improved utilization and responsiveness with gang scheduling.
In 3rd Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 238-
261,1997.

[31] R. Finkel and H.H. Madduri. An efficient deadlock avoidance algorithm. Information Pro­
cessing Letter, 24(l):25-30, January 1987.

[32] D.K. Friesen. Tighter bound for LPT scheduling on uniform processors. SI AM Journal on
Computing, 16(3):554-560, June 1987.

[33] P. Gburzynski. SMURPH, h t t p : / / w w w . c s . u a l b e r t a . c a / ~ p a w e l / S M U R P H /
s m u r p h . h t m l .

139

http://www.cs.wisc.edu/condor/dagman
http://www.cray.com/products/software/nqe
http://edoc.mpg.de/316969
http://www.cs.ualberta.ca/~pawel/SMURPH/

[34] J. Gehring and A. Reinefeld. MARS-A framework for minimizing the job execution time in
a metacomputing environment. Proceedings of Future General Computer Systems, 12(1):87-
99, 1996.

[35] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing, 16:276-
291, 1992.

[36] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In 19th ACM Symposium
on Operating Systems Principles (SOSP), pages 29—43, New York, USA, 2003.

[37] R. Gibbons. A historical application profiler for use by parallel schedulers. In 3rd Work­
shop on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 58-77, Geneva,
Switzerland, 1997.

[38] T. Glatard, J. Montagnat, and X. Pennec. Grid-enabled workflows for data intensive medical
applications. In 18th IEEE Symposium on Computer-Based Medical Systems, pages 537-542,
Trinity College Dublin, Ireland, 2005.

[39] Genias Software GmbH. CODINE: Computing in distributed networked environments, 1995.

[40] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approx­
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathemat­
ics, 5:287-326,1979.

[41] J. Gray, D.T. Liu, M. Nieto-Santisteban, A. S. Szalay, D. DeWitt, and G. Heber. Scientific
data management in the coming decade. Technical Report MSR-TR-2005-10, Microsoft Cor­
poration, 2005.

[42] GROMACS. h t t p : / /www. g r o m a c s . o rg .

[43] A.N. Habermann. Prevention of system deadlocks. Communication of ACM, 12(7):373-385,
July 1969.

[44] A.N. Habermann. Introduction to Operating System Design. Chicago:Science Research As­
sociation, Inc., 1976.

[45] J.H. Hartman and J.K. Ousterhout. The Zebra striped network file system. In Hai Jin, Toni
Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage and Parallel I/O:
Technologies and Applications, pages 309-329. IEEE Computer Society Press and Wiley,
New York, NY, 2001.

[46] J.W. Havender. Avoiding deadlock in multitasking systems. IBM System Journal, 2:74—84,
1968.

[47] R. Henderson and D. Tweten. Portable batch system: External reference specification, 1996.
NASA Ames Research Center.

[48] J.L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, Third
Edition. Morgan Kaufmann, 2005.

[49] R.C. Holt. Comments on prevention of system deadlocks. Communications of ACM,
14(l):36-38, January 1971.

[50] R.C. Holt. Some deadlock properties of computer systems. ACM SIGOPS Operating Systems
Review, 6:64-71, June 1972.

[51] P. Hulith. The AMANDA experiment. In Proceedings of the XVII International Conference
on Neutrino Physics and Astrophysics, Helsinki, Finland, June 1996.

140

[52] S. Hwang and J. Choi. MSF: A workflow service infrastructure for computational grid en­
vironments. In Workshop on Grid Computing and its Application to Data Analysis (GADA),
volume 3292, pages 222-231,2004. In conjunction with OnTheMove Federated Conferences
(OTM), and published in Lecture Notes in Computer Science.

[53] IBM. Licensed program specifications: IBM LoadLeveler version 1 release 3.0, 1996. IBM
Document GH23-0040-03.

[54] D. Jackson, Q. Snell, and M. Clement. Core algorithms of the Maui scheduler. In 7th Work­
shop on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 87-102, Cam­
bridge, MA, USA, June 2001.

[55] M.J. Gonzalez Jr. Deterministic processor scheduling. ACM Computing Survey, 9(3):173-
204, September 1977.

[56] T. Kameda. Testing deadlock-freedom of computer systems. Journal of the ACM, 27(2):270-
280, April 1980.

[57] Y.-K. Kwok. Dynamic critical-path scheduling. IEEE Transactions on Parallel and Dis­
tributed Systems, 7(5):506-521,May 1996.

[58] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Computing Survey, 31 (4):406-471, September 1999.

[59] R. Lake, J. Schaeffer, and P. Lu. Solving large retrograde analysis problems using a network
of workstations. Advances in Computer Chess, VII:135-162,1994.

[60] S.-D. Lang. An extended banker's algorithm for deadlock avoidance. IEEE Transactions on
Software Engineering, 25(3):428^t32, May/June 1999.

[61] M. Lawley, S. Reveliotis, and R Ferreira. The application and evaluation of banker's al­
gorithm for deadlock-free buffer space allocation in flexible manufacturing systems. The
International Journal of Flexible Manufacturing Systems, 10:73-100, 1998.

[62] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773-
801, May 1995.

[63] J.J. Lee and V.J. Mooney. A novel O(n) parallel banker's algorithm for system-on-a-chip.
In Proceedings of the 12th Asia and South Pacific Design Automation Conference, Shanghai,
China, January 2005.

[64] C.C. Lian, F. Tang, P. Issac, and A. Krishnan. GEL: Grid execution language. Journal of
Parallel and Distributed Computing, 65:857-869,2005.

[65] D. Lifka. The ANL/IBM SP scheduling system. In 1st Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP), pages 295-303, Santa Barbara, CA, USA, 1995.

[66] D.B. Lomet. A practical deadlock avoidance algorithm for data base systems. In Proceedings
of the 1977 ACM SIGMOD international conference on Management of data, pages 122-127,
Toronto, Ontario, Canada, 1977.

[67] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao,
and Y. Zhao. Scientific workflow management and the kepler system. Concurrency and
Computation: Practice & Experience, Special Issue on Scientific Workflows, 2005.

[68] C. Macdonell. Trigger scripts for extensible file systems, 2002. Master's thesis, University of
Alberta, Canada.

141

[69] A. Mandal, K. Kennedy, C. Koelbel, B. Liu, and L. Johnsson. Scheduling strategies for map­
ping application workflows onto the grid. In Proceedings of the 14th International Symposium
on High Performance Distributed Computing (HPDC), pages 125-134, Research Triangle
Park, NC, USA, July 2005.

[70] T. Minoura. Deadlock avoidance revisited. Journal of the ACM, 29(4): 1023-1048, October
1982.

[71] S.S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann, 1997.

[72] K.-K. Muniswamy-Reddy, C.R Wright, A. Himmer, and E. Zodok. A versatile and user-
oriented versioning file system. In Proceedings of the Third USENIX Conference on File and
Storage Technologies (FAST), pages 115-128, San Francisco, California, USA, 2004.

[73] S. Nicolau, X. Pennec, L. Soler, and N. Ayache. Evaluation of a new 3D/2D registration crite­
rion for liver radio-frequencies guided by augmented reality. In International Symposium on
Surgery Simulation and Soft Tissue Model, pages 270-283, in-Les-Pins, France, June 2003.

[74] Z. Peterson and R. Burns. Ext3cow: A time-shifting file system for regulatory compliance.
ACM Transactions on Storage, 5(2):190-212, 2005.

[75] PTOLEMY II project and system, 2004. h t t p : / / p t o l e m y . e e c s . b e r k e l e y . e d u /
p t o l e m y l l / .

[76] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn,
D. Mayers, and M. Samidi. Scheduling data-intensive workflows onto storage-constrained
distributed resources. In Proceedings of the 7th IEEE International Symposium on Cluster
Computing and the Grid, pages 401^t09,2007.

[77] S.A. Reveliotis and M. A. Lawley. Efficient implementations of banker's algorithm for dead­
lock avoidance in flexible manufacturing systems. In Proceedings of the 6th International
Conference on Emerging Technologies and Factory Automation, Los Angeles, CA, USA,
March 1997.

[78] A.L. Rosenberg. On scheduling mesh-structured computations for internet-based computing.
IEEE Transactions on Computers, 53(9):1176—1186, September 2004.

[79] D. Santry, M. Feeley, N. Hutchinson, A. Veitch, R. Carton, and J. Ofir. Deciding when
to forget in the elephant file system. In the 17th ACM Symposium on Operating Systems
Principles (SOSP), pages 110-123, Kiawah Island Resort, near Charleston, SC, USA, 1999.

[80] D.J. Santry, M.J. Feeley, N.C. Hutchinson, and A.C. Veitch. Elephant: The file system that
never forgets. In Workshop on Hot Topics in Operating Systems, pages 2-7, Rio Rico, Ari­
zona, USA, 1999.

[81] J. Schaeffer and R. Lake. Solving the game of checkers. In Richard J. Nowakowski, editor,
Games of No Chance, volume 20. Cambridge University Press, 1996.

[82] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga,
and J. Montgomery. The general atomic and molecular electronic structure system. Journal
of Computational Chemistry, 14:1347-1363,1993. h t t p : / / w w w . m s g . a m e s l a b . g o v /
GAMESS/GAMESS.h tml .

[83] R.Sethi . Complete register allocation problem. S1AM Journal on Computing, 3(3):226--248,

1975.

[84] K.C. Sevcik. Application scheduling and processor allocation in multiprogrammed parallel
processing systems. Performance Evaluation, 19(2-3):107-140,1994.

142

http://berkeley.edu/
http://www.msg.ameslab.gov/

[85] A. Shoshani and E.G. Coffman. Sequencing tasks in multi-process, multiple resource systems
to avoid deadlocks. In Proceedings of the 11 th Annual Symposium on Switching and Automata
Theory, pages 225-233, October 1970.

[86] G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Sys­
tems, 4(2):75-87, Feb. 1993.

[87] D. Sima, T. Fountain, and P. Kacsuk. Advanced Computer Architectures, A Design Space
Approach. Addison Wesley, 1997.

[88] A. Sulistio and R. Buyya. A time optimization algorithm for scheduling bag-of-task applica­
tions in auction-based proportional share systems. In Proceedings of the 17th International
Symposium on Computer Architecture and High Performance Computing, pages 235-242,
Rio de Janeiro, Brazil, October 2005.

[89] A.K. Sum and J.J. de Pablo. Nautilus: Molecular simulation code. Technical report, Univer­
sity of Wisconsin-Madison, Department of Chemical Engineering, 2002.

[90] Sun Microsystems, h t t p : / / w w w . s u n . c o m / s o f t w a r e / g r i d w a r e / .

[91] D. Szafron, P. Lu, R. Greiner, D.S. Wishart, B. Poulin, R. Eisner, Z. Lu, J. Anvik, C. Mac-
donell, A. Fyshe, and D. Meeuwis. Proteome analyst: Custom predictions with explana­
tions in a web-based tool for high-throughput proteome annotations. Nucleic Acids Research,
32:W365-W371,7 2004. h t t p : / / w w w . e s . u a l b e r t a . c a / ~ b i o i n f o / P A / .

[92] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2001.

[93] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana applications within grid computing and
peer to peer environments. Journal of Grid Computing, 1:199-217,2004.

[94] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, G. Fox, and
T. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons, Inc., 2003.

[95] S.-A.-A. Touati. DDG, h t t p : / / w w w . p r i s m . u v s q . f r / ~ t o u a t i / s w / D D G / .

[96] T. Ungerer, B. Robic, and J. Silc. A survey of processors with explicit multithreading. ACM
Computing Surveys, 35(l):29-63,2003.

[97] A. Vahdat and T. Anderson. Transparent result caching. In Proceedings of the USEN1X
Technical Conference, New Orleans, Louisiana, 1998.

[98] J. Wang, H. Kuehl, and M.D. Sacchi. Least-squares wave-equation AVP imaging of 3D
common azimuth data. In Proceedings of the 73rd Annual International Meeting, Society of
Exploration Geophysicists, 2003.

[99] Y. Wang and P. Lu. On the benefits of a workflow-aware versioning filesystem in metacom-
puting systems. In The 8th International Conference on High Performance Computing in
Asia Pacific Region, Beijing, China, pages 227-234,2005.

[100] Y. Wang and P. Lu. Using dataflow information to improve inter-workflow instance concur­
rency. In 6th International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), pages 1078-1082, Dalian, China, 2005.

[101] D. Webb, A. Wendelborn, and K. Maciunas. Process networks as a high-level notation for
metacomputing. In International Workshop on Java for Parallel and Distributed Computing,
San Juan, Puerto Rico, 1999. In association with IPPS/SPDP 1999, and published in Lecture
Notes in Computer Science, volume 1586.

143

http://www.sun.com/software/gridware/
http://www.es
http://www.prism.uvsq

[102] T. Werner. Target gene identification from expression array data by promoter analysis.
Biomolecular Engineering, 17:87—94, 2001.

[103] T. Yamamoto, M. Matsushita, and K. Inoue. Accumulative versioning file system Moraine
and its application to metrics environment M AME. In Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 80-87, 2000.

[104] T. Yang. DSC: Scheduling parallel tasks on an unbounded number of processors. IEEE
Transactions on Parallel and Distributed Systems, 5(9):951-967, September 1994.

[105] J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tuple spaces. In
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID'04),
pages 119-128, Pittsburgh, USA, 2004.

[106] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow applications. In
Proceedings of the IEEE International Parallel & Distributed Processing Symposium, pages
214-220, Long Beach, CA, USA, September 2007.

[107] Y. Zhang, C. Koelbel, and K. Kennedy. Relative performance of scheduling algorithms in grid
environment. In Proceedings of the 7th IEEE International Symposium on Cluster Computing
and the Grid, Rio de Janeiro, Brazil, 2007.

[108] S. Zhou. LSF: Load sharing in large-scale heterogeneous distributed systems. In Proceedings
of the Workshop on Cluster Computing, Tallahassee, Florida, USA, December 1992.

144

Appendix A

Comparisons with Lang's algorithm

in Workflow-Based Computation

In spirit, our algorithms bear some similarities to Lang's algorithm [60] where the localized approx­

imate maximum claims, as opposed to the global maximum claims of each process, are used for the

safety check. Thus, in this appendix, we will make a direct comparison between our algorithms

and Lang's algorithm. To this end, we first review Lang's algorithm and identify its problems when

applying it to the workftow-based computation and then describe how our algorithms address these

problems.

A.l An Overview of Lang's Algorithm

Lang's algorithm [60] is a natural extension of the banker's algorithm, with the aim of improving

the potential of resource utilization while incurring low overhead. More specifically, Lang's algo­

rithm models the control-flow of a process as a resource-request graph, represented as a rooted tree

of nodes with each node corresponding to a resource request or a resource release. Such a graph is

further decomposed into a nested family of prime regions. A prime region is defined as a directed

path (i.e., a sequence of connected nodes) which satisfies the following conditions1:

1. No resources are allocated before the control enters the first node of the path.

2. All allocated resources are released when the control leaves the last node.

3. No proper subpaths also satisfy the first two properties.
1 This definition does not require the resource requests be made in a nested form.

145

©

(a) (b)

Figure A.1. Resource-request Graphs used in Lang's Algorithm: To compare
with the storage utilization in workflow-based computation, only a single type
of resources is depicted. In fact, Lang's algorithm can handle multiple types of
resources.

A subprime region is a subpath of a prime region having the same end node. Some example resource-

request graphs and their regions are shown in Figure A.l. For simplicity, only one resource type

is illustrated. In Figure A.l(a), the path {1,2,3,4,5} consists of two prime regions {1,2} and

{3,4, 5}, while in Figure A.l(b), {6,7,8} and {6,9,10,11} are two prime regions. An example of

a subprime region is {9,10,11}, which is a subpath of the prime region {6,9,10,11}.

Based on the concept of region, Lang's algorithm avoids the deadlock in such a way that,

1. the information on the maximum resource claims for each region, i.e., localized approximate

maximum claims, can be extracted prior to process execution.

2. when entering a new region of each process at runtime, the original banker's algorithm is

applied by using the localized approximate maximum claims of the region instead of the

global maximum claims of the whole control-flow graph.

3. all allocated resources are released before the control leaves a region.

The key point of Lang's algorithm is to determine for each node of a resource-request graph the

corresponding region and the maximum resource claim associated with that region. This is achieved

by the Region Decomposition Algorithm. In this algorithm a region for a node u, denoted by re-

gion(u), is identified by collecting the nodes (including u) along the depth-first traversal path of the

146

resource-request graph until the net resources occupied by the collected nodes become zero. The

maximum resource claim associated with the node u is pre-computed as well by the union of the

claims associated with the prime or subprime regions in region(u).

The details of Lang's algorithm can be found by refening to his paper [60]. Lang's algorithm

suffers from the limitation of the rooted tree structure of the control-flow graph. Consequently, it

cannot be directly used in deadlock avoidance for workflow-based computation, where the resource-

request graph can be arbitrary shape.

A.2 The Problems of Lang's Algorithm in Workflow-based Computation

When applying Lang's algorithm to a workflow-based computation, we first need to transform the

dataflow DAG of the workflow into a resource-request graph by splitting each node in the workflow

graph into a pair of nodes to represent the resource request and release, respectively. However, the

resulting resource-request graph may have an arbitrary structure rather than the tree-like structure

required by Lang's algorithm. Specifically, to process a resource-request graph with a more general

structure, Lang's algorithm faces two major problems:

1. When to compute: In a tree-like graph, the scheduling order of a node is fixed (depending

on the control-flow). Thus, the maximum claim associated with a node, according to Lang's

algorithm, can be computed in advance. However, in a general graph the scheduling order

of a node is generally unknown in advance (depending on the scheduling algorithm). Lang's

algorithm cannot effectively compute the maximum claim for each node.

2. How to compute: In Lang's algorithm the localized maximum claim associated with a node

is recursively computed by enumerating and traveling all its branches (rooted in the examined

node) to select the largest maximum claim associated with its child node. The nodes along

the path are executed sequentially. However, this computation procedure is impractical to

compute the maximum claim associated with a node in a DAG since the scheduling space is

generally intractable. In other words, computing the maximum claim for a node by recursively

computing the maximum claims of its child nodes (i.e., those nodes which can be scheduled

immediately after the examined node) in a general DAG is not effective.

To illustrate these problems, we use an example workflow DAG, shown in Figure A.2, where

its scheduling graph is also shown. The scheduling graph is defined as a directed tree where the

nodes along a path signify a scheduling order. To see the first problem, we can examine Node 3

147

(a) An Example of Workflow (b) The Corresponding Scheduling Graph:
Graph The associated maximum claims are marked

beside the nodes

Figure A.2. An Example of Workflow DAG and its Scheduling Graph

in the scheduling graph. Depending on the unknown scheduling orders of the remaining nodes, the

maximum claim associated with Node 3 might be different (i.e., 18 or 20). Thus, Lang's algorithm

cannot compute the maximum claim in advance.

The second problem is in computing the maximum claim for Node 3 after Node 1 has been

completed and Node 2 has been scheduled. In this small example, Node 3 has two branches,

with each branch having different maximum claims of 18 and 20, respectively. However, for a

large graph, the huge number of branches might render the computation procedure for the maximum

claims defined in Lang's algorithm to be intractable.

Although the scheduling graph is a tree, the potential size of the tree (i.e., scheduling graph)

makes Lang's algorithm impractical for handling the workflows with an arbitrary dataflow DAG.

The root of these problems is that the resource-graph used in Lang's algorithm is constructed

based on the process's control-flow information where the execution order of each resource node

is pre-determined, which is not a general case in workflow-based computations. Therefore, in the

case of workflow-based computations, Lang's algorithm is only feasible for the pipeline-shaped

workflows where the job execution orders are pre-defined.

148

Resource-
Request Graph
(RRG)

When to com­
pute the maxi­
mum claim

How to com­
pute the maxi­
mum claim

Lang's

a tree without integrating the
scheduling information. The
nodes along a path of the tree
are executed one after another.

statically computing the max­
imum claim associated with
each node before the node is ac­
tually executed.

the localized maximum claim
associated with a node is re­
cursively computed by enu­
merating and traveling all its
branches (rooted at the ex­
amined node) to select the
largest maximum claim associ­
ated with its child node.

DAR
a general structured DAG in­
tegrated with scheduling infor­
mation of the nodes. The result­
ing graph is called a scheduling
graph, a tree on which the DAR
algorithm acts to avoid dead­
locks.
dynamically computing the
maximum claim associated
with each node during the com­
putation. Thus, the maximum
claim for a node is not fixed; it
depends on how many nodes
have not been completed.

the maximum claim of each
node is computed by exploit­
ing dataflow knowledge to ag­
gregate resource requirements
of all the remaining nodes (i.e.,
those nodes that have not yet
been completed).

DTO

the same as the DAR algorithm

the same as the DAR algorithm

the maximum claim of each
node is computed by exploiting
dataflow information to topo­
logical^ order the remaining
nodes in the DAG for the safety
check.

Table A.1. Comparisons between Lang's Algorithm and our Algorithms: DAR
and DTO

A.3 The Comparisons between Lang's Algorithm and our Algorithms: DAR

and DTO

The key difference between our algorithms and Lang's is that our algorithms can handle the

workflow graph (as well as its corresponding resource-request graph) with a more general structure.

We first integrate the scheduling information with the dataflow DAG to define a scheduling graph,

which is a tree to our algorithms and then compute the localized maximum claim associated with

each node by leveraging the properties of this graph. For example, DAR computes the localized

maximum claim by aggregating the requests of the nodes along a path, whereas in DTO all the

remaining nodes are topologically ordered to compute this value. The detailed comparisons are

shown in Table A. 1.

149

Appendix B

Non-Uniform Distributions:

Zipf-based Workloads

In addition to uniform distributions for job service times (JST) and file sizes, we consider the impact

of other distributions on our algorithms. In particular, we consider the Zipf distribution, which has

a large range, is highly skewed to the lower values in the range, and therefore has long tails in

histograms of the value frequencies (Figure B.l).

In our experiments, the Zipf distribution generator is based on the algorithm presented by De-

vroye [22], but we limit the generated random numbers to the range [1, 500]. The Zipf distribution

is characterized by a parameter a > 1 to capture the amount of skew. We select a — 1.5 for both

the JST and file size. As with previous chapters, in these experiments, there are 100 instances in the

workload and all of the workflow instances arrive at the same time.

B.l Average of Simulated Makespans

Figure B.2 shows, especially for small storage budgets, how DTO has the lowest average simu­

lated makespans when using Zipf distributions for both JST and file size. The advantage of DTO over

the other algorithms is consistent with, but even more pronounced than with, average makespans and

uniform distributions (Figure 4.14). In fact, there are a few data points with uniform distributions

where DAR is faster than DTO (e.g.,Figure 4.14(b)), but DTO appears to dominate DAR for all data

points with Zipf distributions.

As noted previously (e.g., Chapter 5.4.3), DTO tends to deal better with workflows where some

jobs have considerably larger JSTs and file sizes than other jobs. By favoring already admitted

150

Bin (Bin Size: 20)

Figure B.1. Histogram of 1,000 Zipf Distributed Numbers (o
mum=500)

1.5, maxi-

workflow instances over admitting new instances, DTO avoids the problem of inactive resource

utilization.

B.2 Median of Simulated Makespans

However, the skewed nature of the Zipf distribution also leads to high standard deviations over

multiple simulated runs (Tables B.l, B.2, and B.3). Therefore, we also present the same 10 simulated

runs of Figure B.2, but instead graph the representative data points using the median of the 10 runs

(Figure B.3), instead of the average.

When considering medians, the advantage of DTO is less clear than when considering average

makespans. However, DTO remains either comparable to the best algorithm in some cases (Fig­

ures B.3(a) and (c)), or the best algorithm in other cases (Figure B.3(b)).

A thorough examination of Zipf and other non-uniform distributions is a topic for future work.

151

•DAR
>DTO
Banker's

^Det (0.5Bgt_LDF)

2000
Storage Units

(a) Fork&Join (3 x 8)

—DAR
DTO
Banker's
Det (0.5Bgt_LDF)

(b) Lattice (4 x 6)

—DAR
« D T O
* * Banker's
++Lang's

Det (0.5Bgt_LDF)

300 400
Storage Unils

(c) Pipeline (5-stage)

Figure B.2. Average Makespans: Zipf Distributions (a = 1.5) for Job Service
Time and File Size (10 Runs, Average)

152

1 1

-

,

—DAR
e-Bj) rP0

Banker's
—Det (0.5Bgt_LDF)

" * -^«=^rM——»- «

-

-

l , l ,
2000

Storage Unils

(a) Fork&Join (3 x 8)

DAR
DTO
Banker's
Det (0.5Bgt_LDF)

(b) Lattice (4 x 6)

2000i-

—DAR
•HiDTO
** Banker's
+ +Lang's

Det (0.5Bgt_LDF)

300 400
Slorage Units

(c) Pipeline (5-stage)

Figure B.3. Median Makespans: Zipf Distributions (a = 1.5) for Job Service Time
and File Size (10 Runs, Median)

153

Storage

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

DAR
Mean (Dev.)

13195.4

(56.37%)

10764.3
(58.28%)
8951.2
(69.3062%)
8915.7
(88.2864%)

7827.6
(98.6343%)

7949.3
(109.662%)

7489.5

(125.861%)

6285.8

(118.545%)
5307.1
(104.244%)
5021.5
(101.612%)

5531.2
(118.008%)

Median

10572

8063

5801

5006

4258

3746

3315

3036

2843

2627

2485

DTO
Mean (Dev)

12069.2

(65.1301%)

9670.6
(66.6141%)

8292.8
(65.8857%)
6800.8
(63.1433%)

6188.8
(69.0582%)

5490.5
(63.6481%)

4969.6
(69.2454%)

4304.8
(66.6276%)

4298.6
(65.6382%)

3928.9
(63.9745%)

3814.3
(67.0394%)

Median

9444

7234

6462

5290

4721

4309

3855

3464

3338

3059

2756

Banker's
Mean (Dev.)

26376.5
(73.9852%)

25677.3
(79.6774%)

22518.7
(86.726%)

21600.2
(91.2554%)

18792.2
(92.4956%)

16004.3
(90.32%)

15985.8
(106.946%)

12341.7
(97.18%)
13460.1
(113.641%)
9828
(112.431%)

7486.1
(100.293%)

Median

21020

14309

13957

13479

10288

10070

8640

6914

6678

5333

4793

Detection
Mean (Dev.)

14156.7
(103.348%)
13395.2

(109.468%)
10060.4
(80.5991%)

10345
(93.0438%)

8524.8
(87.4768%)

6315.3
(81.6924%)

5723.7
(89.4397%)

4922

(77.2362%)

4373.3
(79.2978%)
4219.8
(81.2795%)
3586.1
(69.0216%)

Median

9423

6947

5381

4841

4158

3610

3309

2979

2756

2578

2361

Table B.1. Standard Deviations for Figure B.2(a)

154

Storage

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

DAR
Mean (Dev.)

13094.6
(66.537%)

10514.5
(46.3043%)

9169.6
(46.551%)

8729.4
(41.57%)

8200.6
(46.7796%)

8064.6
(49.0271%)

7408
(47.2951%)

7209.7
(51.6111%)
6750.1
(49.7191%)

6170.9
(50.8373%)

5794.4
(53.7406%)

Median

10886

9293

8064

8263

6888

6394

6531

5862

5528

5066

4441

DTO
Mean (Dev)

9476.8
(47.225%)
7623.4
(47.9312%)

6508
(51.0089%)

5570.9
(48.1493%)

5043.3
(48.2259%)

4686.6
(47.5396%)

4260.3
(46.7345%)

3970.3
(49.5066%)

3769.9
(48.2363%)

3477.4
(51.76%)

3161.8
(61.0984%)

Median

8829

7353

5823

4788

4180

3685

3425

3285

3070

2601

2392

Banker's
Mean (Dev.)

40676
(52.1543%)
32836.1
(54.5143%)

28483.2
(63.0588%)

25448.1
(64.969%)

23684
(63.4573%)

22069.2
(63.4802%)

20252.5
(71.042%)

18614.7
(73.2416%)

16355.3
(77.9709%)

14447.3
(79.1261%)

12257.7
(80.2956%)

Median

42206

28210

17837

16401

15681

15037

13559

11425

10422

8723

9275

Detection
Mean (Dev.)

52413
(91.4224%)

37916
(71.9872%)

31808.7
(70.4901%)

30366.6
(81.0315%)

28061.6
(99.6826%)

21897.9
(88.183%)

19716.5
(97.2323%)

18137.8
(106.146%)
15457.1
(108.007%)

13415.4
(101.329%)

12562.9
(104.658%)

Median

38273

24374

23652

22496

12684

13974

12927

11244

7659

8405

7400

Table B.2. Standard Deviations for Figure B.2(b)

155

S
to

ra
ge

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

D
A

R

M
ea

n
(D

ev
.)

12
25

4.
1

(1
22

.8
55

%
)

94
93

.7

(1
61

.0
16

%
)

82
46

.3

(1
86

.1
96

%
)

77
76

.3

(1
98

.8
12

%
)

70
62

.8

(2
16

.4
06

%
)

67
44

.2

(2
24

.9
01

%
)

63
12

.8

(2
34

.9
93

%
)

59
82

.8

(2
45

.2
31

%
)

57
81

.2

(2
43

.0
25

%
)

55
52

.5

(2
49

.0
67

%
)

53
21

.1

(2
51

.9
89

%
)

M
ed

ia
n

74
44

37
60

24
23

19
01

17
31

16
05

14
34

13
19

13
32

12
51

11
68

D
T

O

M
ea

n
(D

ev
)

50
42

.1

(1
66

.0
96

%
)

32
57

.4

(1
65

.8
05

%
)

24
10

(1

57
.2

67
%

)
18

93
.9

(1

58
.5

44
%

)
17

04
.4

(1

57
.1

6%
)

14
26

.4

(1
58

.5
97

%
)

12
30

.2

(1
62

.1
96

%
)

10
82

.7

(1
65

.4
07

%
)

10
26

.5

(1
60

.1
84

%
)

96
7.

5
(1

58
.3

77
%

)
93

7.
8

(1
64

.1
6%

)

M
ed

ia
n

18
62

13
30

11
63

82
5

58
2

37
2

36
3

33
5

32
9

32
6

32
3

B
an

ke
r'

s
M

ea
n

(D
ev

.)

11
95

5.
4

(1
04

.7
26

%
)

75
54

.2

(1
31

.4
96

%
)

64
05

.9

(1
60

.4
67

%
)

57
15

.4

(1
74

.2
49

%
)

53
07

.8

(1
87

.1
39

%
)

51
47

.5

(1
97

.9
5%

)
46

16
.5

(2

09
.9

55
%

)
45

39
.8

(2

27
.2

87
%

)
42

73
.2

(2

34
.4

23
%

)
39

07
.8

(2

42
.8

43
%

)
37

99
.8

(2

55
.9

26
%

)

M
ed

ia
n

13
77

7.
8

10
74

0.
2

93
53

.6

88
67

95
04

.2

79
34

.4

72
12

.3

67
47

.5

62
70

.3

56
94

59
25

.7

L
an

g'
s

M
ea

n
(D

ev
.)

82
36

(1

08
.7

8%
)

49
38

(1

41
.6

39
%

)
29

12

(1
65

.2
17

%
)

23
06

(1

76
.3

56
%

)
19

78

(1
97

.5
12

%
)

17
08

(1

92
.4

21
%

)
15

25

(2
05

.9
11

%
)

14
35

(2

16
.5

4%
)

14
63

(2

22
.9

69
%

)
13

99

(2
42

.2
49

%
)

11
94

(2

54
.8

43
%

)

M
ed

ia
n

72
45

42
54

23
23

13
10

94
7

76
5

76
5

50
8

49
3

48
9

48
4

D
et

ec
ti

on

M
ea

n(
D

ev
.)

62
97

.5

(1
19

.4
17

%
)

36
32

.4

(1
36

.1
23

%
)

26
56

.3

(1
38

.6
19

%
)

19
80

.2

(1
44

.3
88

%
)

16
72

.5

(1
40

.0
71

%
)

16
07

.6

(1
30

.5
36

%
)

14
06

.3

(1
34

.3
69

%
)

12
54

.7

(1
32

.5
73

%
)

10
97

.6

(1
39

.1
34

%
)

10
28

.8

(1
32

.8
79

%
)

10
45

.5

(1
46

.5
8%

)

M
ed

ia
n

38
06

20
83

15
20

74
7

63
3

61
1

40
0

36
5

34
8

32
6

32
3

T
ab

le
 B

.3
.

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

s
fo

r
F

ig
u

re
 B

.2
(c

)

