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Abstract 

In this thesis we demonstrate the value of dataflow information to improve makespan performance 

(i.e., time to complete a set of jobs) in batch-scheduled workloads. Novel mechanisms and policies 

are introduced to improve job concurrency (i.e., when resources are unlimited) and to reduce the im­

pact of deadlock (i.e., when resources are constrained). Without dataflow information concurrency 

might be limited, even if resources are unlimited, and resource usage might be inefficient, even if 

resource utilization is superficially high. The key insight is that dataflow, unlike control-flow, makes 

it visible when resources can be deallocated or reallocated, which allows for a crucial distinction 

between active and inactive resource usage. Through a simulation study, we show that the benefits 

of dataflow information can be a reduced makespan of over a factor of 5, depending on the workload 

and available resources. 

Despite a large body of research on dataflow, most high-performance computing (HPC) sys­

tems (e.g., clusters) are batch scheduled based on control-flow. The lack of a simple way to ob­

tain dataflow information and the lack of compelling policies to exploit dataflow may account for 

the control-flow status quo. Therefore, we describe a simple prototype for transparently gathering 

dataflow information (i.e., Workflow-aware File System (WaFS)) and several scheduling policies to 

exploit that knowledge for higher concurrency (e.g., Versioned Namespace (VNS), Overwrite-Safe 

Concurrency (OSC)) and for better deadlock handling (e.g., Dataflow Aggregate Requests (DAR), 

Dataflow Topological Ordering (DTO)). Notably, our simulations show how dataflow information 

allows our policies to have lower makespans than the classic banker's algorithm and Lang's algo­

rithm. 
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Chapter 1 

Introduction 

1.1 Research Goal 

Many high-performance computing (HPC) and scientific workloads (i.e., the set of computations 

to be completed), such as those in bioinformatics [91,102], biomedical informatics [42], chemin-

formatics [82] and geoinformatics [67], consist of jobs with control-flow or dataflow dependencies, 

represented as a Directed Acyclic Graph (DAG). Control-flow dependency specifies that one job 

must be completed before other jobs can start. In contrast, dataflow dependency specifies that a 

job cannot start until all its input data (typically created by previously completed jobs) is avail­

able. Control-flow is the more commonly used abstraction to reason about the relationship between 

different jobs, but we show how dataflow information is also valuable. 

Dataflow dependency signifies the actual information dependency— what compiler writers call 

true dependency [71]— requirements of the computation, whereas control dependencies may or may 

not imply information dependencies. Dataflow ensures the correctness of the computation under the 

assumption that there is no data-sharing via side effects (e.g., a shared read-write file). It should be 

noted that not all computations are easily characterized simply in terms of either their control-flow 

or dataflow. For example, a common database breaks the producer-consumer relationship of a DAG. 

However, many HPC workloads are of the form described here. 

For example, the Proteome Analyst (PA) web service [91] has a multistage Fork&Join workflow 

(Figure 1.1) that classifies the proteome (i.e., all of the proteins of an organism, usually represented 

as a set of strings) in terms of its molecular function and subcellular localization. In this example 

two pipelines are constructed. One pipeline is J o b A, B, D and F, and the other is J o b A, C, 

E and F. In this case the shapes of the control-flow DAG and the dataflow DAG are the same, but, in 
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Figure 1.1. Proteome Analyst Workflow (a 6-job Fork&Join workflow) 

general, they do not have to be the same. 

In practice, a workload is often composed of multiple instances of the same workflow, with each 

instance acting on (possibly) independent input files or different initial parameters. In our example, 

analyzing a proteome may require one instance of the workflow (e.g., Fork&Join) for each protein in 

the proteome. Therefore, a proteome analyst workload would consist of multiple instances or copies 

of the workflow in Figure 1.1. 

The goal of this thesis is to maximize the performance of these kinds of workloads in HPC 

systems. The primary metric of performance is makespan, which is the turnaround time to complete 

all jobs in a workload. 

1.1.1 The Challenges 

To achieve our goal, we have a key observation that from a control-flow perspective, workflow 

instances are inherently independent. However, in the context of a shared file system, where the 

namespace and finite resources are shared, interactions between instances can lead to incorrect ex­

ecutions. Whether the issue is anti or output dependency [71] on files or simple competition for 

storage resources, the selective isolation of each workflow instance can be important for maximiz­

ing scheduling flexibility and performance. However, in practice, realizing this benefit is not always 

straightforward due to a variety of problems and constraints: 

1. Filename conflicts: the unmediated interaction of different workflow instances can lead to a 

problem of filename conflicts between concurrent workflow instances overwriting common 

files (i.e., one can erroneously overwrite each other's data). 

As with compiler optimizations, our solution is based on a renaming strategy. Unlike related 

work on scheduling, our renaming is automatically provided by the file system and scheduler 

(Chapter 3.2). 

2. Deadlocks: the tens or hundreds of concurrent workflow instances can overwhelm any finite 
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(a) Control-flow-based (Unsafe) (b) Dataflow-based (Safe) 

Figure 1.2. Control-flow is not always safe to use in exploiting inter-workflow 
instance concurrency. An example (a) shows how File Out.A is unsafely over­
written by Job A in WI2 before Job D in WI1 consumes it (The data dependency 
between Job A and Job D is not shown in the control-flow). The dataflow exam­
ple (b) is correct in that both Job C and Job D in WI1 must complete before Job 
A in WI2 can overwrite File Out.A. Note that the dataflow from Job A to Job D is 
only specific to (b) for comparison purposes. 

storage resource constraint and lead to deadlock. 

Unlike related work on deadlock, which focuses on how deadlock can be prevented, avoided, 

or detected, we focus on deadlock avoidance while improving the active utilization of re­

sources (Chapter 4.2 and 4.5) to improve makespan. 

The batch schedulers in most current HPC systems (e.g., Condor [94], PBS [47] and LSF [108]) are 

control-flow driven (i.e., control-flow-driven batch schedulers; see Chapter 2.1) in the sense that job 

scheduling is generally based on the inter-job control dependencies (i.e., control-flow) specified by 

users. However, such control dependency information tends to be insufficient to achieve better job 

scheduling in terms of high performance and low storage overhead given the problems or constraints 

identified above. 

To resolve the filename conflicts, most current batch schedulers adopt a sub-directory-based strat­

egy (also called Sub-dir in the later discussion) that creates a working directory for each workflow in­

stance and moves all required data to that directory (e.g., GEL [64], Triana [93] and DAGMan [18]). 

Without any dataflow knowledge of what files are used within the workflow instance, control-flow-

driven batch schedulers have little choice but to partition the file namespace in a brute-force renam­

ing strategy. 

Specifically, all the computations of the instance are carried out in that directory. However, 

based on the control-flow information alone, it is not always possible to determine when a file 
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will no longer be used by the other jobs. For example, in Figure 1.2(a), after J o b B in workflow 

instance WI1 finishes, O u t . A cannot be deleted immediately because we do not know if it will be 

used by other jobs such as J o b D, J o b E or even J o b F. Therefore, files are usually not deleted 

immediately even when they can be deleted, thereby incurring potentially large storage overhead, 

especially when a large number of workflow instances execute concurrently and access large files. 

To maximize the concurrency while minimizing the storage overhead, overwrite is another strat­

egy that is often used. However, a control-flow-driven batch scheduler cannot always ensure the 

correct overlap of multiple workflow instances with respect to safe file overwriting. A different ex­

ample in Figure 1.2(a) illustrates why J o b A in workflow instance WI2 cannot be safely overlapped 

with J o b D in WI 1. The control-flow-based overwrite strategy might assume that since J o b B and 

J o b C in Wll are finished, the output of J o b A (i.e., Out .A) in WI1 can be overwritten. How­

ever, the overwrite may be premature, leading to an incorrect schedule. Thus, in practice, a common 

solution is to execute each workflow instance in a sequential order (also called BASE policy in the 

later discussion). Although this serial policy is simple and incurs small storage overhead, it does not 

allow any inter-instance concurrency (Chapter 2.1) and thus suffers from poor performance. 

Traditionally, in most current HPC systems, the batch scheduler dispatches jobs without any 

concern about the interaction between jobs and the underlying file system. Therefore, when storage 

is limited, such non-coordinated allocation among jobs may cause the system to enter a deadlock 

state due to jobs waiting to allocate file space. 

However, the control-flow-driven batch scheduler, even with the knowledge of the storage re­

quests of each job, cannot effectively resolve the deadlock problem. On one hand, as discussed, the 

files that are no longer useful cannot be deleted immediately and thus all the intermediate files inside 

a workflow instance have to be kept until all the jobs in the instance are finished, thereby increas­

ing the storage overhead. We can see a scenario from Figure 1.2(a) where Out .A (or any other 

file, if only control-flow is known) cannot be deleted until instance Wll finishes. But if O u t . A is 

only accessed by J o b B, and the file could potentially be deleted after J o b B completes, but the 

control-flow graph does not capture that information. Therefore, to be safe, all files can only be 

deleted when the entire instance completes. 

On the other hand, based on the control dependencies between the jobs, the maximum resource 

demand or claim {maximum claim for short) associated with each instance in general is hard to ac­

curately approximate since each intermediate file is assumed to be used until the end of the instance. 

The concept of having a good estimate (i.e., a tight upper bound) for the maximum claim is also 

central to the banker's algorithm [43]. But without reliable user- or system-provided information, 
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the global maximum claim must usually be taken to be the conservative sum of all the requests 

of all the jobs in the instance, which is, in practice, a loose upper bound on the maximum actual 

resource requests. Unfortunately, loose upper bounds on the maximum claim can lead to poor re­

source utilization (Chapter 4.5). Furthermore, global and static maximum claims may lead to poor 

active utilization of resources as the local and dynamic behavior of the workflow instances changes 

(Chapter 4.5). 

Therefore, to resolve the deadlock, traditional batch schedulers usually delegate the responsibility 

to users who have to manually intervene after deadlock has been detected, imposing the problem-

solving efforts on the users, and resulting in lost progress due to the need to stop and re-run jobs. 

1.1.2 The Advantages of Dataflow Information 

To address these problems, we argue that having the dataflow information is fundamentally ad­

vantageous to determining the precise scope and time window when resources are required. Some 

advantages can be observed in the following scenarios: 

1. Solving the Resource Deallocation/Prompt Release Problem: In Figure 1.2(a), given the 

dataflow information, we know that the file O u t . A in WI1 can be deleted immediately after 

J o b B finishes because no further jobs will need that file. 

2. Solving the Premature Resource Release/Re-Use Problem: In Figure 1.2(b), with the 

dataflow information, we know it is necessary to delay the start of J o b A in WI2 until after 

J o b C and J o b D in WI1 are completed. Delaying the start of J o b A maintains correctness 

without requiring any additional resources for a file renaming strategy. And since J o b A of 

instance WI2 can still overlap J o b F of Wll , there is still inter-workflow instance concur­

rency. 

3. Solving the Poor Resource Requirement Estimation Problem: Of course, dataflow is not 

essential to deadlock resolutions, but it is useful to design algorithms with better performance. 

To improve efficient storage utilization, the dataflow information can be exploited at runtime 

to compute more accurate localized maximum claims for each instance as opposed to a pre-

computed global maximum claim in the control-flow-driven batch scheduler. For example, in 

Scenario 1 (Resource Deallocation Problem) above, the localized maximum claim associated 

with J o b D in WI1 can be computed as the sum of all jobs' requests deducted by the size of 

O u t . A since we know, based on the dataflow information, that after J o b B finishes, O u t . A 

can be deleted immediately. 



In this study we demonstrate the value of dataflow information in workflow batch scheduling, 

with a focus on maximizing job concurrency given the filename conflicts and reducing the impact of 

deadlock when storage resources are constrained. 

1.2 Contributions 

Although some ad hoc solutions exist and other systems have attempted to address these prob­

lems, we are advocating a more systematic and comprehensive solution. More specifically, our 

contributions are the following: 

1. New Policies Exploiting Dataflow to Maximize Concurrency (Chapter 3): 

We introduce three new dataflow-based scheduling policies to maximize concurrency (and 

minimize makespan) by reducing the impact of the filename conflict and deadlock problems. 

(a) Versioned Namespace (VNS) 

(b) Overwrite-Safe Concurrency (OSC) 

(c) Hybrid Policy (HB), the combination of VNS and OSC, including the proposed deadlock 

avoidance algorithms in Contribution 2 below. 

Both VNS and OSC take advantage of dataflow information to maximize the inter-workflow 

instance concurrency. HB, the combination of VNS and OSC, can trade off performance for 

the storage overhead, and thus it is much more flexible than the other two policies. In this 

study the various approaches to deadlock avoidance are in the HB policy. 

Main quantitative evidence/results (Chapter 3.4): Both OSC and VNS are shown to reduce 

makespans, relative to BASE (the baseline in reality), and reduce storage overhead, relative to 

Sub-dir (the common practice in reality). These results demonstrate that dataflow information 

is valuable in addressing the filename conflict problem by improving job concurrency while 

minimizing storage overhead. 

2. Dataflow Information Improves Active Resource Utilization with Deadlock Avoidance 

(Chapter 4): We integrate two novel concepts with the traditional problem of deadlock avoid­

ance. First, we show how knowledge of dataflow information can be exploited at runtime 

to compute localized maximum claims and reduce makespan when deadlock is a potential 

problem. Second, we show how a distinction between Active, Inactive and Free resources, as 

opposed to just Allocated versus Unallocated resources, is important to minimizing makespan. 



Here, the active resources refer to the allocated resources that are held by the running jobs, 

whereas the inactive resources are also allocated but are held by the blocked jobs due to re­

source constraints. The remainder are free (i.e., unallocated) storage. 

First, with Dataflow-based Aggregate Requests (DAR), the maximum claim of each instance 

is dynamically computed by summing the resource requirements of all the remaining jobs (i.e., 

those jobs that have not yet been finished), instead of using a static pre-defined value. Second, 

the Dataflow-based Topological Ordering (DTO) algorithm exploits the dataflow knowledge 

to topologically order the jobs in the current instance when checking for safety (i.e., a specific 

order of job completion that is within a resource budget). Both algorithms try to maximize 

the active storage utilization by either improving the inter-instance concurrency or improving 

the intra-instance concurrency (Chapter 2.1). 

Main quantitative evidence/results (Chapter 4.5): DAR and DTO outperform the banker's 

algorithm and Lang's algorithm [60] with respect to makespan and active storage utilization 

for the workloads with a variety of workflow shapes, workflow sizes and other workflow 

parameters. In addition, we show that, unexpectedly, Lang's improvements to the banker's 

algorithm do not always result in improved makespans. As designed, Lang's algorithm does 

improve total storage utilization, but much of the utilized storage is inactive utilization, which 

does not improve makespan. This result shows that making a distinction between active and 

inactive storage is important to minimizing makespan. 

3. WaFS for Dataflow Collection (Chapter 3 and Chapter 5): We propose and prototype a 

novel system called Workflow-aware File System (WaFS) that extends a traditional file system 

to provide a distinct namespace for each workflow instance (to address the filename conflict 

problem) and transparently gather the dataflow information to help the scheduler. Unfortu­

nately, the dataflow information is not usually available from the user submission in control-

flow-based systems or tracked by the traditional file systems. 

To overcome these challenges, we show how an enhanced Versioned Namespace Manager 

(VNM) can be layered on top of a traditional file system to integrate the file system and the 

batch scheduler as a WaFS Scheduler. The WaFS Scheduler uses WaFS to collect dataflow 

information and stores that dataflow information in the VNM, and the modified scheduler 

exploits the dataflow information for better scheduling. 

WaFS is primarily a proof-of-concept prototype of a new combined file system and scheduler 

architecture. A full evaluation of different implementation strategies is beyond the scope of 
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this dissertation. 

In summary, we characterize the proposed policies and the associated deadlock avoidance al­

gorithms in Table 1.1. For comparison purposes, some reference policies and algorithms are also 

listed. In the table, Batch Scheduling is characterized by three features: Concurrency, Storage Al­

location Granularity and Dataflow Collection. Concurrency is related to the job scheduling, which 

can be obtained from intra-instance concurrency and inter-instance concurrency (see Chapter 2). 

Both kinds of concurrency are limited by dataflow information or control-flow information, or (to­

tal/active) storage. Storage Allocation Granularity refers to the computation unit (instance or job) 

by which the storage is allocated. Dataflow Collection is only available to dataflow-based batch 

scheduling. Deadlock Avoidance Algorithms are distinguished by the computation of maximum 

storage demand/claim and how the safety check (i.e., the safety check of a job's request) is con­

ducted. Maximum resource demand/claim can be characterized by three features: what type of 

graph is used in its computation, dataflow or control-flow, whether the scope of the computed value 

is local or global to the associated instance, and whether the maximum claim is computed, static or 

dynamic. Safety checking refers to what kind of safe sequence, either instance or job, is constructed 

when a request is made. 

1.3 Dissertation Organization 

The rest of this dissertation is organized as follows. Chapter 2 provides background information, 

including some important concepts that are directly relevant to this thesis. Workflow-aware File 

System (WaFS) for dataflow collection and scheduling policies, together with their performance 

evaluations, are presented in Chapter 3. The deadlock avoidance algorithms for the hybrid policy 

and their evaluation results are presented in Chapter 4. Chapter 5 describes a simple prototype of 

WaFS. Chapter 6 covers some related work. The conclusions are summarized in the last chapter. 
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Chapter 2 

Background Knowledge 

A survey of related work is given in Chapter 6. This chapter covers the related background knowl­

edge (with relevant citations) for the main parts of the thesis. 

2.1 Basic Concepts 

A job is the execution of code by the system, such as a shell script, an interpreted program or a 

compiled application. Users submit jobs to the system, which in turn queues (if necessary), places 

and schedules the jobs. In a computation, a job is usually associated with some resource requests 

(e.g., the number of required processors, the estimated time to be executed, input/output (I/O) file 

sizes, startup parameters), which must be satisfied for the job execution to take place. 

A workflow consists of a set of jobs with dependency relationships. With control dependency, 

some jobs must finish before other jobs can start. The control dependencies of a workflow can be 

represented as a Directed Acyclic Graph (DAG) whose nodes represent the jobs and whose edges 

denote their control dependencies. We call this graph a control-flow graph (CFG), denoted as Gc = 

G(N, Ec). Figure 2.1 represents a Fork&Join workflow; its input script in Condor DAGMan [18], a 

well-known meta-scheduler for Condor jobs [94], is shown in Figure 2.2. This workflow consists 

of six jobs ( Job A, J o b B, J o b C, J o b D, J o b E and J o b F), and their control dependencies 

are described at the bottom of this script. The implicit node in Figure 2.1 does not represent a real 

job. It is a virtual job implied by the semantics of DAGMan to synchronize the executions of J o b 

B, J o b C and J o b D, J o b E. 

A workflow instance is a concrete execution of the workflow with its own input data or parameters 

for each constituent job. It is created after the workflow is submitted to the scheduler. For example, 
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/* Filename: Fork&Join.dag */ 
Job A 
Job B 
Job C 
Job D 
Job E 
Job F 
Script 
Script 
Script 
Script 
Script 
Script 
Script 
Script 
Script 
Script 
PARENT 
PARENT 
PARENT 

A. CO] 

B . CO] 

ndor 
ndor 

C.condor 
D.condor 
E.condor 
F.condor 
PRE 
PRE 
POST 
PRE 
POST 
PRE 
POST 
PRE 
POST 
PRE 

A 
B 
B 
C 
C 
D 
D 
E 
E 
F 

top_pre. csh 
mid-pre.perl $JOB 
mid_post.perl $JOB 
mid.pre.perl $JOB 
mid_post .perl $JOB 
mid_pre.perl $JOB 
mid.post .perl $JOB 
mid_pre.perl $JOB 
mid-post.perl $JOB 
bot-pre. csh 

A CHILD B C 
B C 
D E 

CHILD D E 
CHILD F 

$RETURN 

$RETURN 

$RETURN 

$RETURN 

Figure 2.1. An Example of a 
Fork&Join Workflow 

Figure 2.2. An Example input Script 
File for DAGMan 

the user can submit the input script file in Figure 2.2 to DAGMan to create a workflow instance. 

Each submission, possibly of the same input script, creates a different workflow instance. 

Assuming no job preemption, a job progresses through different states: 

• Submitted State: A job in this state is generally blocked unless its control dependencies are 

already resolved. The time when a job enters this state is usually the job's submission time, 

denoted as job.submitTime. 

• Ready State: Whenever a job's control dependencies are resolved (all its parent jobs have 

completed), it enters the ready state, waiting to be scheduled. The time when it enters the 

ready queue is defined as the ready time of the job and denoted as job.readyTime. 

• Running State: When resources become available and a job is selected by the scheduler to 

be executed, the job enters the running state. The time when it starts running is the job's start 

time, denoted as job.startTime. 

• Done State: when a job finishes its computation, it enters the done state. The time when it 

enters the done state is denoted asjob.doneTime, which is the job's completion time. 

In our discussion, a workload consists of a set of workflow instances that come from the same 

workflow. We characterize a workload from several aspects. The first is the shape of the workflow, 
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such as Pipeline, Fork&Join and Lattice. The shape of a workflow determines the inherent degree 

of job concurrency within each workflow instance. The second is the average inter-arrival time of 

the workflow instances, which is the difference in job.submitTime between different jobs and char­

acterizes the arrival rate of workload submission (i.e., offered load). The third is the service time of 

the jobs within each workflow instance; the sum of them in a workload reflects the total computa­

tional work. In addition, when storage resources are limited and deadlock is a pragmatic concern, 

other characteristics of the workload such as the workflow size and file sizes are also important to the 

performance goal(s) (this will be discussed in the next section). 

Job scheduling [29,84] is the process of computing a plan (or schedule) that maps each ready 

job to a processor or a computing host to achieve the performance goal(s). This process is usually 

accomplished by following the constraints and precedences specified in the control-flow graph (Fig­

ure 2.2). Unlike control dependency, data dependency refers to a producer-consumer relationship 

between two or more jobs where a job cannot start until all its input data (which is typically generated 

by the previously completed jobs) is available. Similar to control dependencies, data dependencies 

of a workflow can also be represented as a DAG. We call it a dataflow graph (DFG), which can be 

denoted as Gd = G(N, Ed), where the edges, Ed, reflect the data dependencies between the nodes, 

N. 

Thus, under the assumption that there are only file-based dependencies and no side-effects with 

globally shared data, the dataflow graph captures the fundamental dependencies among jobs, which 

must be respected to ensure the correct computation. In contrast, the dependencies in the control-

flow graph are generally created for the convenience of the programmer. For example, in Figure 2.2, 

the line 

PARENT B C CHILD D E 

produces four control-flow dependencies (see the sub-graph surrounded by the dashed line in Fig­

ure 2.1): 

B t o D 

B t o E 

C t o D 

C t o E 

even though, in fact, there are no data dependencies from J o b E to J o b B and from J o b D to 

J o b C. DAGMan introduces an implicit synchronization point between J o b B, J o b C and J o b 

D, J o b E for the users to easily reason about their workflows, but the additional synchronization 
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Global Variable 

r 
max.claim 

alloc 

need 

Size 

1 

n 

n 

n 

Stored Data 

r(t) is the number of available resources at the moment I 
max_claim(i) is the maximum resource claim that process % 
will request 
alloc(i, t) is the number of resources that have been allo­
cated to process i before the moment t 
need(i,t) = max-claim(i) — alloc(i, i) , i.e., the max num­
ber of resources that process i still needs to complete its task 
at the moment t 

Table 2.1. Some Global Variables Used in the Banker's Algorithm: n is the 
number of processes that are involved in deadlock avoidance. 

results in (potentially) lower concurrency than using the corresponding dataflow graph. As for the 

benefits of dataflow, we will give more details in the later sections. 

Based on the above definitions, we make a further assumption that the shape of a workflow's 

dataflow graph is independent of the workflow's input data and job parameters (i.e., static dataflow 

graph). Although this assumption seems restrictive, we believe it is quite reasonable in scientific 

computation. 

A Control-flow-driven batch scheduler schedules jobs based on Gc, which is usually specified by 

users. Most current batch schedulers are generally identified to be control-flow-driven. In contrast, 

the Dataflow-driven batch scheduler schedules jobs based on Gd- Gd is not always available to a 

control-flow-driven batch scheduler, or even if it is available, it might not be used by a control-flow-

driven batch scheduler. For example, in the DAGMan script shown in Figure 2.2, the PRE and/or 

POST sub-scripts are commonly used to stage in and/or stage out files in some area for the cluster 

jobs. These sub-scripts actually specify the dataflow information, but such information is not used 

in the DAGMan scheduler. 

2.2 Deadlock and the Banker's Algorithm 

When multiple workflow instances run concurrently and compete for the limited storage re­

sources, deadlock can occur. Generally, there are three approaches to dealing with deadlock, dead­

lock prevention, deadlock avoidance and deadlock detection combined with recovery [92], each with 

advantages and disadvantages with respect to the resource utilization and computation overhead. > 

The banker's algorithm [23] is the most widely recognized deadlock avoidance algorithm. The 

basic idea of this algorithm to prevent deadlock is to deny or postpone the request if granting the 

request could put the system in an unsafe state (one where deadlock could occur). The pseudo code 
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/* Process P,; makes a resource request b, */ 
banker(_Pj, bt) { 

if (h >r(t)) 
/* wait because there aren't enough free storage*/ 
return false; 

else 
/* pretend to modify the system */ 
r(t) <-r(t)-bi; 
alloc(i, t) <— alloc(i, t) + bi; 
need(i, t) <~ need(i, t) — bi; 
if (safety check (Pi)) 

return true; 
else 

/* undo the changes since allocation could course 
** deadlock and try the request later once resources 
** have been cleaned up. */ 
r(t)<-r(t)+bi; 
alloc(i, t) <— alloc(i, t) ~ bf, 
need(i, t) <— need(i, t) + bf, 
return false; 

} 

Figure 2.3. The Banker's Algorithm for Requesting a Resource Allocation 

for the banker's algorithm for a single type of resource is shown in Figure 2.3 and 2.4. 

Although the banker's algorithm has more potential to improve resource utilization due to its 

dynamic safety check, it has a basic premise that the maximum amount of resources required by 

each process need to be declared a priori. Even with this premise, the banker's algorithm still forms 

the basis for many deadlock avoidance algorithms in a variety of application contexts [8,10,60,61]. 

2.3 Performance Metrics 

The execution of a workflow G may use different numbers of computational nodes at different 

time periods. For each time period, the number of computational nodes used to execute a workload 

is defined as the Degree of Concurrency (DOC). We can use DOC to measure the instantaneous 

concurrency of a workflow instance. Note that DOCGC (i.e., DOC based on Gc) may be different 

from DOCod (i.e., DOC based on Go)- Based on this concept, we can further compute Average 

DOC: 

Aug. DOC = — — / = DOCG(t)dt (2.1) 
h - *i Ju 

to measure the aggregate concurrency (ti and i2 are two time points). 

When multiple instances of the same workflow execute concurrently, the concurrency may come 
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/* checking if system is in a safe state at moment t.*l 
safetycheck(_Pp) { 

/* process[ ] is an array of processes to 
** record if a process can be finished 
** in the safety check. process[ ] 
** and resource are local variables. */ 
resource <— r(t); /* available resource */ 
for [each Pi in the process[ ]) do 

process[i] *— false; 
while {3Pi such that process[i] 

= false Aneed(i,t) < resource) do 
resource <— resource + alloc(i, t); 
resource[i] <— true; 
if (i =p) 

return true; /* state is safe */ 
return false; /* state is unsafe */ 

} 

Figure 2.4. The Safety Checking Algorithm in the Banker's: The algorithm is 
performed to find out if the system is in a safe state. 

from two aspects. One is called intra-workflow instance concurrency (intra-instance concurrency, 

for short), referring to the number of concurrent jobs that belong to the same workflow instance. The 

other is called inter-workflow instance concurrency {inter-instance concurrency, for short), referring 

to the number of concurrent instances. Both intra- and inter-workflow instance concurrencies are 

vital for the scheduler to make the best use of system resources and hence achieve high-performance. 

The following metrics are frequently used in measuring the performance of different scheduling 

algorithms on a set of jobs, denoted as Jobs: 

Makespan (MS): 

MS = max job.endTime — min job.submitTime (2.2) 
job(zJobs job€Jobs 

Intuitively, makespan is the amount of time the system takes to complete all of the jobs of a 

workload, from the submission of the first job to the completion of the last job. 

• Mean Response Time (MRT): 

2^ job.responseTime 

MRT = jobeJobs , T L , (2.3) 
\Jobs\ 

where job.responseTime — job.endTime — job.submitTimewad \Jobs\ denotes the num-
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ber of jobs in the job set, Jobs. Mean response time is the length of time the system takes, on 

average, to complete a job after it has been submitted. 

Throughput (TP): 
\Jobs\_ 

MS { } 

Throughput represents a metric to show how many jobs can be finished during a given time 

unit. 

Primarily, users are concerned with both makespan and mean response time as they are most 

often interested in minimizing the total computation time and the delay between job submis­

sion and job completion. In contrast, system administrators usually care about throughput 

as the throughput generally reflects the overall performance of the system. However, in our 

context, makespan is more important since the workload as a whole is usually the concern 

to carry out a well defined computation task (i.e., a parameter-based study) rather than each 

individual job or instance. 

Resource Utilization (RU): 

pMS 
y / job.reqRes(t)dt 

RU = ^J°bS' MS,N (2.5) 

where N is the total number of available resources of the system (e.g., nodes of the cluster, 

storage units), and job.reqRes(t) = the number of requested resources by the job at the mo­

ment t. Utilization refers to the percentage of the time that resources are busy or occupied 

with useful work. Sometimes this metric is also useful in the evaluation of the scheduling 

performance. 

2.4 Scheduling in Batch Queuing Systems 

Scheduling algorithms on supercomputers or clusters can be broadly classified into two cate­

gories: time-sharing and space-sharing. Time-sharing algorithms divide time on a processor into 

discrete intervals or time slices and then assign these time slices to unique jobs. As a result, multiple 

jobs can share the same computing resources by preempting jobs and alternating between differ­

ent jobs across different time slices. Conversely, space-sharing algorithms partition the processors 

into disjoint sets and execute each parallel job in a distinct partition until the job completes. Batch 
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Figure 2.5. An Architecture of a Typical Batch Queuing System: A central 
job queue is maintained by Queue Manager, which performs some particular 
scheduling algorithm to map jobs to a set of interconnected computers. 

queuing systems are generally based on space-sharing algorithms. 

A batch queuing system is often used as a resource manager for a supercomputer or a cluster. The 

purposes of the queuing system are to maximize the utilization of shared resources and to fairly share 

the resources between users. Figure 2.5 shows an architecture of a typical batch queuing system. 

Jobs are submitted to a centralized queue master where a scheduling algorithm is performed to map 

each job to the assigned computer(s). 

In batch queuing systems, some typical space-sharing algorithms used are First Come First Serve 

(FCFS) and Shortest Job First (SJF). FCFS schedules jobs according to the order they enter the 

queue. This algorithm is simple and easy to implement. It can also produce a fair and predictable 

schedule. But FCFS's mean response time is may be high when jobs with long service times arrive 

before short jobs if many shorter jobs continue to arrive. 

SJF addresses this problem by periodically sorting the incoming jobs according to their service 

time and scheduling the shortest job first, thereby lowering the mean response time. However, unlike 

FCFS, SJF requires the user to estimate the job service time. In its pure form, SJF can also lead to 

starvation for long jobs. 

To fulfill user requirements and improve system performance, in practice these basic scheduling 

algorithms are enhanced by integrating a variety of new functionalities. Some of them are as follows: 

• Fair-share Strategy: This strategy refers to the ability of a batch scheduler to treat each user 

fairly in terms of resource allocation when a system is heavily loaded. One of the methods to 

achieve this ability is to allow the batch scheduler to dynamically adjust the priorities of the 
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jobs in the queue based on the historical data of previously executed jobs. 

• Advanced Reservation: Advanced reservation is a technique used by batch schedulers to 

ensure the QoS for applications. This functionality is usually achieved by using the user-

estimated execution time to reserve system resources such as processors and memory in ad­

vance and thereby computing a qualified schedule. For example, a reservation may allow the 

user to start an arbitrary number of interactive or batch jobs during the reserved time frame. 

Moreover, deadline scheduling can be implemented to guarantee that a batch job with a dead­

line notification is completed at (or before) the specified time. 

• Backfilling Technique: Backfilling is a technique used to improve the resource utilization 

(especially of the processors) in space-sharing scheduling algorithms [30,37,65]. Backfilling 

tries to improve system utilization by allowing the jobs with low priorities to bypass1 those 

with high priorities so that the otherwise idle resources can be utilized. Currently, many batch 

queuing systems (e.g., LoadLeveler [53], LSF [108] and PBS [47]) have implemented this 

technique. 

• Job Dependency: Many existing batch queuing systems (e.g., PBS [47], LSF [108], CO-

DINE [39], Condor [94] and LoadLeveler [53]) allow the user to specify job dependencies 

(i.e., control dependencies). Since creating an optimal schedule for a set of dependent jobs 

under space-sharing scheduling is generally NP-complete [58], heuristic algorithms based on 

some well-known algorithms (e.g., List Schedules [1] and Clustering Algorithms [35]) are 

generally used. 

• Resource Constraints: Scheduling with resource constraints allows users or batch queuing 

systems to enforce limits on multiple resources so that resource over-subscription on the sys­

tem can be prevented. For example, in NQE [21] the memory limits per system and per batch 

queue can be defined in advance, and in PBS [47] multiple batch queues can be defined with 

hard limits on a number of resources (e.g., memory, storage space and CPU time) available to 

each queue. When considering job dependencies, resource constraints might cause deadlock 

due to resource competition. However, few existing batch systems address it at the system 

level. Rather, in general, they delegate the responsibilities to the users. 

The computed schedules of the jobs with high priorities are not altered. 
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Figure 2.6. An Example of Typical GROMACS Workflow Chart 

2.5 Some Typical Workflow Applications 

We describe three typical workflow applications [38,42,91] (Table 2.2), which have different 

workflow shapes and are representative of many scientific computations. 

2.5.1 GROMACS: Molecular Dynamics 

Molecular Dynamics (MD) is a computer simulation that helps people to " understand the proper­

ties of assemblies of molecules in terms of their structure and the microscopic interactions between 

them" [3]. 

"[MD] acts as a bridge between microscopic length and time scales and the macroscopic world 

of the laboratory: we provide a guess at the interactions between molecules, and obtain 'exact' 

predictions of bulk properties. The predictions are 'exact' in the sense that they can be made as 

accurate as we like, subject to the limitations imposed by our computer budget. At the same time, 

the hidden detail behind bulk measurements can be revealed" [3]. 

The simulation consists of the numerical, step-by-step, solution of the classical equations of 

motion (e.g., the Newtonian equations of motion for systems with hundreds to millions of particles). 
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Application 

GROMACS [42] 

Proteorae Analyst (PA) [91] 

Bronze Standard Medical Imaging 
(BSMI) [38] 

Functions 

A molecular dynamics simulation pack­
age to simulate the Newtonian equations 
of motion for systems with hundreds to 
millions of particles 
A bioinformatics tool to predict protein 
properties such as the general function 
and the subcellular localization of pro­
teins using machine learning techniques 
A data intensive medical image process­
ing application developed to overcome 
the difficulties of evaluating the accu­
racy and robustness of image processing 
algorithms when the reference image is 
not available 

Workflow Shape 

Pipeline 

Fork&Join 

Lattice 

Table 2.2. Three Typical Workflow Applications: GROMACS, Proteome Analyst 
(PA) and Bronze Standard Medical Imaging (BSMI) 

GROMACS [42] is a versatile collection of programs and libraries to perform the molecular dynamics 

and the subsequent analysis of the trajectory data. 

Typically, a GROMACS workflow has a Pipeline shape. Figure 2.6 shows a typical GROMACS 

MD run of a protein in a box of water. Several steps of energy minimization may be necessary; these 

consist of cycles: grompp —> mdrun. The details of each stage are reported in [42]. 

2.5.2 Proteome Analyst (PA): Bioinformatics, Machine Learning 

Proteome Analyst (PA) [91] is a bioinformatics tool developed at the University of Alberta to 

predict protein properties such as general function (i.e., what does the protein do) and subcellular 

localization (i.e., where in the cell does the protein perform its main function) using established 

machine learning techniques. 

The basic PA workflow has a Fork&Join shape (see Figure 2.7). It first accepts a proteome 

(i.e., a blend of proteins and genome that is often used to describe the entire complement of proteins 

expressed by a genome, cell, tissue or organism) in the form of a text string, and then uses BLAST [4] 

to find the homologs among known proteins for each given protein. During this process PA also 

gains information about InterPro 2 families, which can also provide information about homology. 

PA uses this information to predict the classes of proteins. More specifically, the feature extraction 

programs (i.e., Feature Extractions in Figure 2.7) take the homologs as the input and use different 

algorithms to extract some keywords or annotations as features. The extracted features are classified 

by different trained classifiers to determine the function and the localization for each query sequence 
2InterPro is an integrated documentation resource for protein families, domains and functional sites. 
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Figure 2.7. An Example of a Typical PA Workflow Chart 

within the cell. Finally, the program Summary gathers, summarizes and presents the outputs from 

various classifiers. 

In practice, as a minor simplification, if the proteome has 1000 sequences, then there will be 1000 

workflow instances in the workload. The large number of instances make the PA workload an HPC 

and scheduling problem. 

2.5.3 Bronze Standard Medical Imaging (BSMI): Medical Image Processing 

Bronze Standard Medical Imaging (BSMI) [38] is a data-intensive medical image processing ap­

plication developed to overcome the difficulties of evaluating the accuracy and robustness of image 

processing algorithms when the ground truth (i.e., reference image) is not available. The bronze 

standard method used in the application does not require the ground truth. Instead, it estimates the 

ground truth by leveraging the redundant information in all possible registered pairs of images. 

The application is a workflow assembled from a set of basic tools (i.e., jobs, see Figure 2.8(a)), 

each having its own function to process the data, extract quantitative information and analyze results. 

The workflow can be simplified to be a Lattice-like workflow shown in Figure 2.8(b),3 in which four 

major different registration algorithms [73] are used: 

1. Baladin: an intensity-based algorithm that uses a block matching strategy to extract feature 

points in two images (e.g., the reference and the floating images) to be registered. 

3 The shape of BSMI workflow can be transformed into a Lattice-shaped workflow. This simplification is common in 
literature to abstract the real workflow [15,69,76]. 
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Figure 2.8. An Example of a Bronze Standard Medical Imaging Workflow Chart 
(a). We view it as a Lattice-like workflow shape (b) in our discussion. 

2. Yasmina: an intensity-based algorithm built on top of the Powel algorithm to optimize a 

similarity measure on the complete images. 

3. CrestMatch: a prediction-verification method used to initialize all the other algorithms to 

ensure that all algorithms converge toward the same minimum. 

4. PFRegister: an Iterative-Closet-Point (ICP)-based algorithm to register the features (ex­

tracted from the input images) with more complex structures than points. 

In addition to computation, these algorithms are also responsible for data exchange. In practice, a 

BSMI workload usually needs to process hundreds of individual medical images; thus, data paral­

lelism is desired. The data parallelism is achieved through concurrent execution of multiple instances 

of the BSMI workflow. 

2.6 Concluding Remarks 

This chapter covered the background knowledge that is directly relevant to this thesis. First, we 

introduced some important concepts in workflow scheduling, which are useful to understand our 

WaFS Scheduler, including its mechanisms and policies for collecting and exploiting dataflow infor­

mation. In addition, we discussed some performance metrics that are often used in the evaluation of 

batch scheduling algorithms. Among the discussed metrics, makespan and average degree of con­

currency (i.e., Average DOC) are our major concerns. Finally, we described three typical workflow 

applications in molecular dynamics, bioinformatics and medical image processing. These applica­

tions have different workflow shapes (i.e., Pipeline, Fork&Join and Lattice) and are representative 

22 



of many scientific computations. They motivate us to use Pipeline, Fork&Join and Lattice workflow 

shapes in evaluating our scheduling policies and algorithms (Chapter 3.4 and Chapter 4.5). 
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Chapter 3 

Dataflow Collection and Scheduling 

Policies 

In this chapter we introduce our dataflow-based scheduling policies and how they exploit the Workflow-

aware File System (WaFS) implementation (discussed in Chapter 5). We discuss the policies before 

the implementation because our implementation (Chapter 5) is simply a prototype, and any imple­

mentation or architecture that reliably gathers dataflow information can be used with our policies. 

In other words, our policies are more general than any specific implementation. 

Our dataflow-based scheduling policies rely on having a mechanism to collect the dataflow in­

formation for batch scheduled jobs (Chapter 3.2, Chapter 5). Then they exploit the information to 

maximize job concurrency within the workflows despite possible filename conflicts and deadlock. 

Knowing the true dependencies between the jobs [71] (i.e., the dataflow among jobs) enables a file 

renaming strategy that eliminates artificial bottlenecks to concurrency while efficiently using re­

sources. Through a simulation-based study we show the potential benefits of the use of dataflow 

information to job concurrency and the trade-offs that can be made between storage overhead and 

performance. Note that, unlike later chapters that consider deadlock, in this chapter we assume 

that there are an arbitrary number of processors and storage resources. In other words, this chapter 

studies limits to concurrency other than simple resource limits (e.g., data hazards [71]). 

3.1 Motivation 

There are two major challenges to collecting and using dataflow information: 
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1. Dataflow information is not always available from the user submission: 

As discussed, in general, the user-submitted control-flow dependencies and the dataflow de­

pendencies of a workflow do not have to be the same. Therefore, the dataflow information has 

to be gathered automatically during the computation. 

2. Traditional file systems do not track dataflow information: 

The underlying file systems used in HPC typically do not track the dataflow information in­

herent to jobs. Historically, file systems react to file operations requested by the application 

instead of proactively gathering information. 

To address these challenges, we propose a WaFS Scheduler (overview in Chapter 3.2; WaFS pro­

totype discussed in Chapter 5), a novel approach that integrates the file systems and the batch sched­

ulers to collect and exploit the dataflow information on a per-workflow instance (or per-instance, for 

short) basis. With this integration we can obtain several benefits: 

1. The dataflow dependencies between the jobs in a workflow can be inferred by combining the 

scheduler's knowledge of the jobs (and possibly control-flow) and the file system's knowledge 

of the files accessed. 

2. Separate namespaces can automatically be constructed on a per-instance basis to maximize 

the workflow instance concurrency while incurring low storage overhead, despite filename 

conflicts. 

3. The dataflow information can be used to make trade-offs between concurrency and storage 

overhead when there are (potential) filename conflicts or deadlocks. 

To achieve these ends, we propose and evaluate a set of dataflow-based scheduling policies, in­

cluding Versioned Namespace (VNS) and Overwrite-Safe Concurrency (OSC), to address the prob­

lems of filename conflicts. A hybrid policy (HB) of combining VNS and OSC is also considered 

when storage resources are limited and deadlock is a potential problem. Using simulation studies for 

a variety of workloads, we show the value of dataflow-based scheduling policies for improving the 

degree of job concurrency and thereby decreasing makespan while minimizing the storage overhead 

of workflow-based computations. The HB policy for deadlock resolution is presented in the next 

chapter. 
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Figure 3.1. WaFS Scheduler: Integration of WaFS with Batch Scheduler for 
Dataflow Collection 

3.2 Dataflow Collection: WaFS Scheduler 

To collect the dataflow information and to manage a distinct namespace for each workflow in­

stance, we propose a Workflow-aware File System that layers a Versioned Namespace Manager 

(VNM) on top of existing file systems and integrates it with the batch scheduler. The integrated sys­

tem (i.e., WaFS + Batch Scheduler) is called WaFS Scheduler. Note that in traditional HPC systems 

neither the batch scheduler nor the file system can obtain and exploit the dataflow information alone. 

For example, file systems do not associate files being accessed with a workflow or instance; file sys­

tems passively respond to file operations without recording the jobs that access the files. Further, 

schedulers do not consider the set of files that a job, workflow or instance will access when making 

scheduling decisions. 

The architecture of the WaFS Scheduler for dataflow collection is shown in Figure 3.1. It consists 

of two major components: the batch scheduler (enhanced with VNS, OSC or their hybrid HB policy) 

and WaFS. The enhanced batch scheduler obtains the dataflow information from WaFS and uses 

it to maximize job concurrency through the proposed policies (to be discussed in Chapter 3.3 and 

Chapter 4). WaFS monitors the workflow computations, and interacts with the underlying file system 

to capture the file access information and infer the dataflow information on a per-instance basis. 

More specifically, under the assumption that no filename conflicts occur inside workflow instances, 

for any pair of control-dependent jobs (i.e., where there is a direct path between two jobs in the 

control-flow graph), if a file is created by one job (source) and read by the other job (destination), 
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Policy 

BASE 
Sub-dir 
VNS 

osc 

HB 

DOC 

Low 
High 
High 
Medium 

Selectable 

Intra-Instance 
limited by 
(Table 1.1) 

Control-flow 
Control-flow 
Dataflow 
Dataflow 

Dataflow 

Inter-Instance 
limited by 
(Table 1.1) 

Control-flow 
Total Storage 
Total Storage 
Dataflow 

Active Storage 

Storage 
Overhead 

Low 
High 
High 
Low 

Selectable 

File Versioned 

Never 
Always 
Always 
Never 

Selectable 

Storage Alloca­
tion/Deallocation 
Granularity 

Job/Instance 
Job/Instance 
Job/Job 
Job/Job (when 
safe to over­
write) 
Job/Job 

Table 3.1. The Characteristics of the Compared Policies: VNS, OSC and HB 
are our dataflow-based policies, BASE is the control-flow-based serial policy, 
and Sub-dir refers to the policy that employs the working directory to address 
the filename conflicts and maximize the job concurrency. BASE and Sub-dir 
policies are listed for comparison purposes. DOC is short for "Degree of Con­
currency." 

then a data dependency is established between these two jobs (from the source job to the destination 

job). In addition, WaFS provides services for the batch schedulers to exploit the inferred dataflow 

information and maximize the job concurrency while minimizing storage overhead. 

To validate the basic ideas behind WaFS, we developed a simple WaFS prototype (described 

in Chapter 5). The prototype works at the user level, using p t r a c e () via a monitor component 

(not shown in Figure 3.1; see Chapter 5), to trace the file-oriented system calls (e.g., o p e n () and 

c l o s e ( ) ) and collect the dataflow information in the VNM. Although a full, production-quality 

dataflow-based scheduler has not been implemented, the WaFS prototype does validate the basic 

design and shows one possible implementation strategy of a key mechanism. 

3.3 Dataflow-based Scheduling Policies 

To exploit the WaFS mechanism, we propose three basic policies: Versioned Namespace (VNS), 

Overwrite-Safe Concurrency (OSC), and their hybrid (HB, detailed in Chapter 4). All these polices, 

together with the reference policies of BASE and Sub-dir are characterized in Table 3.1. 

The essence of VNS and OSC is to exploit the dataflow information to selectively break the name 

dependencies (i.e., the filename conflicts) between concurrent workflow instances. Unlike HB, both 

policies assume that there are an arbitrary number of processors and storage resources. In other 

words, both policies study the limits to concurrency other than simple resource limits (e.g., data 

hazards [71]). 

To simplify the presentation of VNS and OSC, we assume that the final output files are staged out 
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(a) Serial Policy (BASE) 

(c) Overwrite-Safe Concurrency Policy (OSC) (b) Versioned Namespace Policy (VNS) 

Figure 3.2. Inter-Workflow Instance Concurrency: (a) Serial Policy (BASE), (b) 
Versioned Namespace (VNS) and (c) Overwrite-Safe Concurrency (OSC) 

to a different file system by the workflow instance itself before each instance is complete. Therefore, 

the WaFS Scheduler assumes it can simply deallocate all of the storage resources upon instance 

completion. 

Consider Figures 3.2(b) and 3.2(c) as examples where three workflow instances (i.e., WI1, WI2 

and WI3) are submitted for scheduling. For comparison purposes, we also show the BASE policy 

i.e., the serial policy (Figure 3.2(a)). In BASE the inter-workflow instance concurrency is limited by 

the control-flow information and thus each workflow instance is executed sequentially (i.e., no inter-

instance concurrency). Files are never versioned, and storage is deallocated after the completion of 

each instance (see Table 3.1). Although it is a bit of a "straw man" policy to execute the workflow 

instances sequentially, the BASE policy does represent a class of users and workloads in practice. 

Perhaps a more reasonable comparison is the Sub-dir policy that employs a per-instance working 

directory strategy to isolate the input and output files of each individual workflow instance (i.e., 

files are essentially always versioned). Therefore, Sub-dir inherently breaks filename conflicts and 

increases the concurrency. In Sub-dir the inter-instance concurrency is limited by the available 

total storage, and the storage held by each instance is deallocated after the instance is completed 

(see Table 3.1). As we will see, Sub-dir is similar to VNS. In contrast, VNS is transparent to the 

application and also has other benefits discussed later. 
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3.3.1 Versioned Namespace (VNS) Policy 

The VNS policy adopts a renaming strategy by automatically versioning each output rile (Fig­

ure 3.2(b), VNS). Specifically, files are always versioned when created with a file open for writing. 

Then, when the file is closed and if the dataflow information determines that the file is no longer 

needed (e.g., has no more readers), the file storage is deallocated (see Table 3.1). 

The basic strategy is similar to register renaming [48,87] in processor microarchitecture in that 

extra (i.e., file) resources are used to improve concurrency. The major difference between VNS and 

register renaming is that the file-based dataflow information required for VNS to work is not readily 

available in current systems. Our proposed WaFS fills in that dataflow gap. 

With VNS, although the different instances may generate files that have the same name, their 

version numbers are different. For example, in Figure 3.2(b), J o b A in WI1 and WI2 may have 

output files that have the same name, O u t . A, but this file will have different version numbers in each 

workflow instance, such as Out . A . l in w i l and Out .A. 2 in WI2. Given this versioning policy, 

together with the integration of the file system and job scheduler, VNS can construct a separate 

namespace for each workflow instance (i.e., NS1, NS2 and NS3). Here, the namespace of VNS, in 

terms of isolating the workflow instances, is similar to the working directory in the Sub-dir policy 

(Chapter 1.1.1). In contrast, the namespace of VNS can be related back to the workflow instance 

(since scheduler and file systems are coupled) to capture and exploit its dataflow information. 

First, with dataflow information, when a job is finished, VNS can delete the files that are no 

longer used immediately (i.e., job deallocation granularity; see Table 3.1). However, Sub-dir, with­

out dataflow information, is unable to do so until the end of an instance, minimizing the effective 

storage utilization. Second, compared to the Sub-dir policy, VNS can potentially increase the degree 

of concurrency (DOC) (Chapter 2.3), since based on the dataflow information, VNS can improve 

the intra-instance concurrency by removing the implicit synchronizations (i.e., virtual job) in the 

control-flow DAG (see the implicit node in Figure 2.1 in Chapter 2). 

3.3.2 Overwrite-Safe Concurrency (OSC) Policy 

Even though, compared with the Sub-dir policy, the job deallocation granularity in VNS can 

reduce the storage overhead, the storage overhead of VNS is still high due to the potential of a large 

number of concurrent workflow instances. 

To overcome the storage overhead of VNS, the OSC policy overwrites files when it is safe to do 

so instead of always versioning files as per VNS. Files are never versioned when created and never 
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deleted when closed, but they can be overwritten by later instances as long as they are not needed in 

the current instance (i.e., job deallocation granularity; see Table 3.1). 

As an example, in Figure 3.2(c), Jobs D and E of WI1 can execute concurrently with J o b A of 

WI2. Specifically, J o b A of WI2 has to wait until the completion of both J o b B and J o b C of 

WI1, then WI2 's J o b A can overwrite the file O u t . A. The DOC increases to three (Figure 3.2(c): 

dashed box, concurrent jobs 'CJ2' limited only by dataflow information; see Table 3.1). Therefore, 

OSC improves the DOC as compared to the serial policy (Figure 3.2(a)) by increasing the inter-

workflow instance concurrency. 

Since OSC solves the filename conflict problem by overwriting files instead of versioning files 

in VNS, the storage overhead of OSC is small. In fact, the storage overhead of OSC is proportional 

to the actual DOC and not proportional to the number of workflow instances. On the other hand, 

OSC improves DOC over strategies (e.g., BASE) that must be conservative in overwriting files (e.g., 

when all jobs in a workflow instance are completed) but without incurring extra storage overhead. 

3.3.3 Hybrid Policy (HB) 

We note that VNS and OSC represent two extremes along a spectrum of policies that trade off 

storage overhead for DOC. Compared to VNS, OSC consumes much less storage, but its DOC is 

limited. Compared to OSC, VNS maximizes DOC, but it consumes much more storage. Ideally, 

a scheduler might want to use a combination of overwriting/deleting and versioning to selectively 

improve DOC while controlling storage overhead. 

To achieve this goal, given a storage budget (i.e., the maximum amount of storage that can be used 

during the computation), our HB policy versions the output files for high DOC whenever deadlock 

(due to storage competition between multiple concurrent workflow instances) can be avoided. More 

specifically, when a job in instance i creates a file for writing, if there already exists a file with exactly 

the same name but no longer used in instance i — 1, the existing file will be safely overwritten by 

instance i. Otherwise, a new version number for the created file will be obtained from VNM. In both 

cases, the new file is created without incurring deadlock. For example, in Figure 3.3, when O u t . A 

is no longer used in WI1, it can be safely overwritten by WI2. However, a new version number for 

Out .A is needed (i.e., Out . A . l ) forWI3 since O u t . A is being used in WI2 when WI3 starts. 

Compared to VNS and OSC, HB can selectively control the storage overhead (e.g., via the storage 

budget) while increasing its DOC. In our example, it is not necessary for WI3, like in OSC, to wait 

for start until J o b B and J o b C in WI2 are finished. Rather, if there is sufficient storage left 
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Figure 3.3. Inter-Workflow Instance Concurrency in HB Policy 

(i.e., deadlock can be avoided), WI3 can start immediately to improve DOC. Otherwise, WI3 has 

to wait until sufficient storage is available, avoiding consuming too much storage as does in VNS. 

The comparison between the three proposed policies is summarized in Table 3.1 and the deadlock 

avoidance in the HB policy will be detailed in Chapter 4. 

3.3.4 Summary 

In this chapter, we proposed three basic policies, VNS and OSC and their hybrid (HB), to max­

imize job concurrency by addressing the problem of the control-flow-based batch schedulers (see 

Table 3.1). 

VNS and Sub-dir are consistently the best overall policies in terms of DOC [99,100], but both 

suffer from storage overhead. However, compared to the Sub-dir policy, VNS provides the benefit 

of being able to construct a namespace to infer and capture the dataflow information on a per-

workfiow instance basis. Therefore, VNS can improve the intra-instance concurrency and deallocate 

the unused storage at the earliest possible time. In contrast, without dataflow information Sub-dir 

can only deallocate the storage at the end of each instance, therefore suffering from more storage 

overhead than VNS. 

Due to its low storage overhead, OSC is valuable in situations where storage is scarce, but it 

suffers from potentially lower DOC. HB is between VNS and OSC and can make more fine-grained 

trade-offs between DOC and storage overhead. Specifically, HB can optimize the performance by 

selective control of the DOC under a given storage budget. 
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(a) (b) 

Figure 3.4. Benchmark Workflow Graphs: A circle represent a job, and a rounded 
rectangle represents an input/output file. The Fork&Join (a) is characterized by 
the fan-out factor and the number of stages, whereas the Lattice (b) is charac­
terized by its height and width. 

3.4 Simulation Results 

We use simulation-based techniques to show the potential of dataflow information to improve 

workflow scheduling. In all experiments we use the serial policy and the Sub-dir policy, the two 

most common solutions in practice, as our baseline strategies (BASE and Sub-dir) and identify the 

circumstances under which OSC and VNS outperform these baseline strategies with respect to the 

makespan, the average DOC and the storage overhead. 

VNS is equal to Sub-dir (current best practice) on makespan, but always better, and usually a 

factor of 2 or better, on storage overhead. OSC provides even more efficient storage utilization than 

either VNS or Sub-dir, while remaining comparable to VNS and Sub-dir on makespan for moderate 

to non-intensive workloads. 

With WaFS, depending on the workloads being studied, OSC and VNS can substantially improve 

makespan over BASE usually by an order-of-magnitude. The actual improvement depends on the 

arrival rate of the workload and other factors. To different degrees, OSC and VNS exploit the 

inherent concurrency between workflow instances that BASE is unable to exploit. 

3.4.1 Methodology 

Based on the applications described in Chapter 2, we chose to use three representative structures: 

Fork&Join, Lattice and Pipeline (see Figure 3.4). These structures cover a spectrum of workflows 

and DOC. The Fork&Join structure, characterized by the number of stages and fan-out factors, ex­

hibits near-constant DOC and is representative of a large class of problems with a Pipeline of parallel 
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phases [15,28,91,98]. The Lattice structure, characterized by its width and height, exhibits variable 

concurrency, where the concurrency increases initially to a maximum degree and then decreases 

progressively. A variety of numerical linear algebra computations that arise in a broad range of sci­

entific and engineering applications have a Lattice structure [38,59,78,81]. The Pipeline structure 

can be viewed as a special case of Fork&Join (i.e., fan-out factor is one) or Lattice (i.e., either width 

or height is one), but it is very common in scientific computation [6,20,42,51,89]. 

Example dataflow DAGs for these workflows are shown in Figure 3.4. For the Fork&Join, we 

assume that the control-flow DAG is similar to its dataflow counterpart except that any two consec­

utive stages (i.e., all jobs in the stage) are synchronized by an implicit virtual job (see Figure 2.1). 

In contrast, for both Lattice and Pipeline, the control-flow DAG and the dataflow DAG are assumed 

to be exactly the same. Although user-submitted control-flow DAGs may have various shapes, the 

assumptions we made here are reasonable for users to easily reason about their workflows. 

As implied in the previous sections, for the OSC and VNS strategies to work, the scheduler must 

know both the control-flow of the computation (i.e., the control-flow DAG) and the dataflow of the 

jobs in the workflow. Control-flow information is the typical way in which dependencies are made 

known to batch schedulers such as LSF [108], PBS [47] and Condor [18]. Dataflow information is 

gathered by the WaFS during the execution of the first workflow instance and exploited by OSC and 

VNS to improve the DOC of later instances. 

Since there are no well-accepted models for job service times (JST), data file sizes (FS) nor their 

relationships for the workflow-based workloads, in experiments we assume that for instances of all 

the examined workflows, the job service time as well as the data file size are uniformly distributed. 

These assumptions are consistent with some previous studies [16,88,106,107]. A brief examination 

of the non-uniform Zipf distribution for JST (and file sizes) can be found in Appendix B. In addition, 

in each experiment, there are a total of 100 workflow instances in the workload, and the workflow 

instance inter-arrival time follows the exponential distribution. 

The characteristics of the benchmark workloads are summarized in Table 3.2, and the compared 

policies, except for the HB policy, are characterized in Table 3.1. We do not evaluate the HB policy 

since it is identical to the VNS policy when the storage budget is not a concern. We study the HB 

policy with a variety of deadlock avoidance algorithms in Chapter 4. 

We further assume that an unbounded number of homogeneous computational nodes and infinite 

storage are available so that the maximum DOC is never constrained by the hardware. 

We use the discrete event simulation package SMURPH [33] to implement our simulator. The 

simulated scheduler is given the control-flow DAG by the user submitting the workflow instances. 
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Characteristics 

Shape Parameter 
Job Service Time 
Inter-arrival Time 
Workload Size 
File Size 

Fork&Join 

stages x fan-out 
uniform 
exponential 
100 
uniform 

Lattice 

heightx width 
uniform 
exponential 
100 
uniform 

Pipeline 

stages 
uniform 
exponential 
100 
uniform 

Table 3.2. The Characteristics of the Benchmark Workloads 

A simulated Versioned Namespace Manager (i.e., VNM) sees all of the file reads and writes and 

records the dataflow DAG for a workflow. Based on the historical dataflow information, the sched­

uler knows (from VNM) the dataflow of each workflow instance. The SMURPH-based simulation is 

written in C++ with both the versioned namespace manager and scheduler abstracted into modules 

independent of the underlying simulation engine. 

3.4.2 Results, Data Points and Standard Deviation 

There are a variety of factors that impact the performance and average DOC of the workloads 

(i.e., makespan and average DOC). Some of those are identified in our experiments as follows: 

1. Instance Inter-arrival Time Distribution: simulated user behavior, (e.g., exponential distribu­

tion). 

2. Workflow Shape: the structure of the workflow (e.g., Pipeline). 

3. Job Service Time (JST), simulated job behavior (e.g., uniform distribution). 

Since the storage budget (assumed in this chapter) is unbounded, the file size distribution does not 

affect the makespan and the average DOC; it only affects the storage overhead. Therefore, in all 

experiments we fix the file size distribution as a uniform distribution on [1,10] storage units. The 

data point in each experiment is averaged over 10 runs by changing the random seed in the simulator. 

We found that in all experiments reported in this chapter, the standard deviation for the 10 runs is 

never greater than 12% of the mean of the 10 runs (i.e., the data point's value). More specifically, for 

all makespan and DOC data points, the standard deviation is less than 5%, and for all storage over­

head data points, the standard deviation is less than 12%. Therefore, for clarity of presentation, we 

do not show the standard deviation bars on the graphs. A similar presentation strategy is discussed 

in Chapter 4.5.4. 

We first vary the average inter-arrival time of workflow instances to understand their impact on 

performance and storage overhead. For a Fork&Join structure with three stages and a fan-out of 
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Figure 3.5. Simulation Results for the Fork&Join (3 x 32): (a) Makespan, (b) 
Average DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all 
other values are either time units or storage units) 
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32 per stage, Figure 3.5 shows makespans, corresponding average DOC and storage overhead for a 

variety of different simulation parameters. In Figure 3.5, the JSTs are uniformly distributed between 

500 and 1000 time units, and we vary the inter-arrival time between instances from 0 to 6400 time 

units. Intuitively, a short inter-arrival time represents an intense workload, where the instances arrive 

close to each other. On the extreme right of each graph, an inter-arrival time of 6400 represents a 

lighter workload, where the inter-arrival time is much larger than the job service times. 

For intensive workloads (i.e., x-axis < 200 in Figure 3.5(a)), VNS and Sub-dir are better (i.e., 

lower makespan) than BASE (i.e., the typical, Serial Strategy) by over an order-of-magnitude. OSC 

also has a lower makespan than BASE, but not as low as VNS. The performance improvements are 

due to improvements in the DOC (Figure 3.5(b)), which typically results in a lower makespan. As 

discussed earlier, VNS isolates each workflow instance by creating a separate namespace for each 

instance. As a result, there are no name conflicts between the different instances, and the jobs can 

be executed immediately as long as their intra-workflow instance data dependencies are respected. 

Sub-dir creates a separate directory for each instance and thus has similar performance to VNS. 

However, compared with VNS, Sub-dir has a somewhat lower DOC due to its control-flow based 

scheduling (VNS is based on the dataflow), especially when all the instances in a workload arrive at 

the same time (i.e., x-axis 0). However, this difference is marginal. 

The main drawback of Sub-dir is its storage overhead since it never overwrites files until the 

end of the instance computation. In contrast, both BASE and OSC create only a limited number 

of different files for the workload, and VNS can overwrite files immediately based on the data 

dependency information. 

As the instance inter-arrival time increases (i.e., the arrival rate decreases), the performance dif­

ference as well as the storage overhead between BASE, OSC, VNS and Sub-dir diminish. A larger 

inter-arrival time means that fewer workflow instances are in the scheduler's queue at any given 

time, which implies a smaller number of active instances and a smaller DOC. Since the storage 

overhead of the compared policies is either proportional to the number of active instances (Sub-dir 

and VNS) or proportional to DOC (i.e., BASE and OSC), it decreases as the instance inter-arrival 

time increases. Naturally, if there is a lack of inherent job concurrency in the workload, the benefits 

of OSC and VNS are not observed. 

Therefore, for low-arrival-rate workloads (e.g., where the inter-arrival time is 3200 time units or 

larger), the BASE strategy is preferred since it has the same makespan of the other strategies, with 

none of the additional complexity and overhead. For medium-arrival-rate workloads (e.g., where 

the inter-arrival time is between 1200 and 2400 time units), OSC performs almost as well as VNS 
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Figure 3.6. Simulation Results for the Lattice (8 x 12): (a) Makespan, (b) Average 
DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all other values 
are either time units or storage units) 
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and Sub-dir, but without the storage overhead. For high-arrival-rate workloads (e.g., where the inter-

arrival time is 800 time units or less), VNS is the clear performance leader. It outperforms Sub-dir 

in terms of makespan and storage overhead. 

Many HPC workloads consist of a large parameter sweep, where all workflow instances are 

known at the beginning of the computation, corresponding to inter-arrival times of 200 time units 

(or less). This also corresponds to the region of the graphs where OSC and VNS perform best. 

To evaluate the impacts of workflow shapes, we did the same simulation studies on both the 

Lattice and Pipeline workflow whose simulation results are shown in Figures 3.6 and 3.7, respec­

tively. Recall that the Lattice is expected to have a lower intra-workfiow instance DOC than the 

Fork&Join because of the additional dependencies between the jobs. For our specific Lattice, an 8 

x 12 rectangle/diamond, the critical path through each workflow instance is much longer than the 3-

stage Fork&Join discussed above. This is reflected in the near-constant makespan for BASE despite 

variations in the inter-arrival times of the workflow instances. Intuitively, the Lattice has a lower av­

erage DOC than the 3-stage Fork&Join and a longer critical path, which reduces the intra-workflow 

instance DOC such that the BASE strategy cannot reduce the makespan, even for low-arrival-rate 

workloads. 

However, both OSC and VNS can still exploit inter-workflow instance concurrency to signifi­

cantly reduce makespans through higher DOC. VNS continues to be better than OSC at reducing the 

makespan, but (once again) at the cost of increased file storage due to versioning. Sub-dir demon­

strates the same performance as VNS since the shapes of the control-flow DAG and the dataflow 

DAG are exactly the same for our Lattice workflow. However, Sub-dir suffers from larger storage 

overhead than VNS. 

For both VNS and Sub-dir, their performance improvements over BASE are largely independent 

of the workflow shapes. This is different from OSC. For OSC a longer critical path usually implies 

a larger number of concurrent instances during the computation. So OSC exhibits relatively better 

performance for a workflow with a longer critical path. We can observe this by comparing the 

makespans between BASE and OSC in Figures 3.5(a) and 3.6(a), where, again, the critical path of 

the Lattice instance is much longer than that of the Fork&Join instance. 

In contrast to the 3-stage Fork&Join, we also found that the difference of storage overhead be­

tween VNS and Sub-dir for Lattice becomes relatively large (compare Figures 3.5(c) and 3.6(c)). 

This is not difficult to understand since DOC is proportional to the storage overhead of VNS, and 

the DOC of the Lattice is much less than that of the Fork&Join (i.e., the storage overhead of VNS 

for Fork&Join is relatively high). 
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Figure 3.7. Simulation Results for the Pipeline (10-stage): (a) Makespan, (b) 
Average DOC and (c) Storage Overhead. (DOC units are numbers of jobs; all 
other values are either time units or storage units) 
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The same performance observation concerning the compared policies can also be observed in the 

graphs for the 10-stage Pipeline workflow (see Figure 3.7), an extreme case of Fork&Join (Lattice) 

workflow. However, the relative performance between OSC and BASE for the Pipeline is not as good 

as that for the Lattice (compare Figures 3.6(a) and 3.7(a)). This is easy to understand since there 

is no intra-workflow instance DOC, the significant performance improvements of OSC, VNS and 

Sub-dir over BASE are derived totally from exploiting the inter-workflow instance job concurrency. 

On the other hand, in our experiments the critical paths of the Pipeline instances are shorter than 

those of the Lattice instances, limiting the number of concurrent instances for OSC. 

Since the intra-instance concurrency of the Pipeline workflow is lower, the difference in stor­

age overhead between VNS and Sub-dir is relatively large for the Pipeline, which is similar to the 

situation with the Lattice. 

To summarize, for all the benchmark workflow shapes we have the following conclusions: 

1. Depending on the workloads being studied, OSC and VNS consistently outperform BASE 

by up to an order-of-magnitude. Most performance gains are from exploiting inter-instance 

concurrency. 

2. VNS continues to be better than OSC at reducing makespan but at the expense of increased 

file storage. Sub-dir has almost the same performance as VNS but suffers from larger storage 

overhead than VNS. The performance improvements of both policies over BASE are indepen­

dent of the workflow shapes. 

3. The workflow shape impacts the performance of OSC. In general, OSC exhibits better perfor­

mance for a workflow with a longer critical path. 

4. VNS in general is more efficient than Sub-dir in terms of storage utilization. The relative 

difference in storage overhead between VNS and Sub-dir depends on the amount of intra-

instance concurrency. When intra-instance concurrency is highest, the difference is lowest. 

In the following experiments (Figures 3.8, 3.9 and 3.10), we show how DOC, makespan and 

storage overhead depend on multiple factors, including the job service time (JST), the shape of the 

workflow DAG and the instance inter-arrival time. We tried various JST ranges to approximate 

poorly-balanced job service time (i.e., JST in the range of [10, 1000]), moderately-balanced job 

service time (i.e., JST in the range of [500,1000]; see the previous experiments), and well-balanced 

job service time (i.e., JST in the range of [800,1000]). We also varied the inter-arrival time between 

0 and 6400 time units. 
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Figure 3.8. Impacts of Job Service Time on the Fork& Join (3x12): Makespan, Av­
erage DOC and Storage Overhead (Left: JST[10,1000], Right: JST[800,1000]). 
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Our conclusions from these experiments are: 

1. Independent of JST and the shape of the workflow DAG, OSC and VNS are consistently 

better than BASE and Sub-dir for high-arrival-rate workloads (i.e., low inter-arrival times) 

with respect to makespan and storage overhead, respectively. 

2. As the JST range varies, the inherent intra-instance DOC of the workload changes (as ex­

pected, except for the Pipeline) because processes are left idle due to the load imbalance. 

However, OSC, VNS and Sub-dir continue to achieve higher DOC than that achieved by 

BASE, for intensive workloads, at the expense of increased storage overhead. 

3. Ultimately, the maximum JST (which is always 1000 time units) in our experiments deter­

mines the critical path of each workflow instance and thus the makespan. Consequently, 

regardless of the load imbalance within workflow instances, OSC, VNS and Sub-dir exploit 

enough concurrency between workflow instances to be preferred over BASE, with similar 

caveats and trade-offs as discussed for Figure 3.5. 

4. The impact of JST on the storage overhead of each compared policy is different. Specifi­

cally, for intensive workloads, regardless of the workflow shape, the impact on BASE, OSC, 

and VNS is small. However, depending on the workflow shape, the impact on Sub-dir is 

different, either small for both the Fork&Join and Lattice or large for the Pipeline (compare 

Figures 3.10(e) and 3.10(f)). 

3.4.3 Summary 

Our simulation studies show that the basic idea of the WaFS Scheduler (i.e., the integrated file 

system and batch scheduler) can effectively resolve filename conflicts and significantly improve job 

scheduling by maximizing job concurrency while lowering storage overhead. Specifically, gathering 

and using dataflow information to support the novel OSC and VNS scheduling policies is shown to: 

1. reduce makespans, relative to BASE; 

2. reduce storage overhead, relative to Sub-dir; 

3. improve inter-workflow instance concurrency, relative to BASE; 

4. maintain the benefits over BASE and Sub-dir for a variety of workload intensities, a variety 

of job service time distributions and three different typical workflow shapes (i.e., Fork&Join, 

Lattice and Pipeline). 
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Figure 3.10. Impacts of Job Service Time on the Pipeline (10-stage): Makespan, 
Average DOC and Storage Overhead (Left: JST[10, 1000], Right: JST[800, 
1000]). 
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The main criteria for choosing between OSC and VNS is the trade-offs in performance for the 

storage overhead of file versioning. 

3.5 Concluding Remarks 

In this chapter we studied the potential of using dataflow information in maximizing job concur­

rency while resolving filename conflicts. Our contributions are: 

1. We propose the WaFS Scheduler, a novel approach that integrates the file systems with the 

batch schedulers to collect the dataflow information and make it available to the control-flow-

driven batch scheduler in order to facilitate the workflow scheduling. 

2. To exploit the inferred dataflow information, we propose and evaluate through simulation 

studies a set of simple yet effective scheduling policies: VNS, OSC and their hybrid (HB) 

(details in Chapter 4). The essence of these policies is to take advantage of the dataflow 

information to remove artificial limits (i.e., filename conflicts) on the degree of concurrency 

and thereby to allow the batch scheduler to better exploit the available HPC resources. 

Our simulation results show that by combining dataflow information with a versioned names­

pace (i.e., VNS), depending on the workload, the makespans can be improved by over an order-of-

magnitude, while the storage overhead is low. In addition, the dataflow information can also make 

trade-offs between concurrency and storage overhead (i.e., OSC) when there are (potential) filename 

conflicts. 
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Chapter 4 

Dataflow-based Scheduling for 

Deadlock Avoidance 

In this chapter we study the hybrid (HB) policy that combines versioning and overwriting, and 

leverages the dataflow information to address the deadlock problem when storage resources are con­

strained. To this end, we integrate two novel concepts with the traditional problem of deadlock 

avoidance. First, we show how knowledge of dataflow information can be exploited at runtime to 

improve the banker's-based algorithms and also reduce makespan. Second, we show how a distinc­

tion between active and inactive resources, rather than allocated versus un-allocated resources, is 

important to minimizing makespan. 

Although the density and availability of storage is increasing rapidly, most HPC centers still 

operate with disk quotas in some form or another. In practice, storage is still a finite resource [76]. 

In fact, given the ease with which parameter-based studies can generate jobs and workflow instances, 

storage can often be a constraining resource. Therefore, a scheduler should both deal with potential 

deadlock issues and maximize performance as measured by makespan and throughput. 

As discussed in Chapter 2, deadlock can be handled by prevention, avoidance, or detection. In 

comparison to prevention, deadlock avoidance has more potential to make effective use of storage 

since decisions are made dynamically. And in comparison to detection, deadlock avoidance does 

not have the deadlock recovery overhead. However, deadlock avoidance requires knowledge of the 

storage requirements of the computations, which can either be given by the user (e.g., as part of the 

job description) or estimated by the system based on historical information. 

We propose two algorithms for deadlock avoidance that attempt to maximize active (not just al-
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located) resource utilization and minimize makespan. Our approach is based on the well-known 

banker's algorithm, but our algorithms make the important distinction between active and inactive 

resources, which is not a part of previous approaches. The central idea is to leverage the gathered 

dataflow information to dynamically approximate localized maximum claim (i.e., the resource re­

quirements of the remaining jobs of the instance) to improve either inter-instance or intra-instance 

concurrency and still avoid deadlock. 

There are two primary, new algorithms. First, with Dataflow-based Aggregate Requests (DAR), 

the maximum claim of each job is dynamically computed by summing the resource requirements of 

all the remaining jobs (i.e., those jobs that have not yet been finished), instead of using a static pre­

defined value. Second, the Dataflow-based Topological Ordering (DTO) algorithm exploits dataflow 

knowledge to topologically order (i.e., a specific order of job completion that is within a resource 

budget) the jobs when checking for safety. For both algorithms, the computed localized maximum 

claims are either independent of the scheduling orders of the remaining jobs (DAR) or not (DTO), 

with different advantages and disadvantages. 

In simulation-based studies we integrate both algorithms into a dataflow-driven batch scheduler 

and show how DAR and DTO are better than the banker's algorithm and Lang's algorithm [60] in 

terms of makespan and active storage utilization. A variety of workflow shapes and parameters are 

examined. Depending on the situations, either DAR or DTO was found to be the best algorithm. 

In addition, we also investigate the behavior of the proposed algorithms and show how dataflow 

information can be used to integrate an instance admission control with the deadlock avoidance 

algorithms to further reduce the makespan. 

4.1 Notation and Workflow Model 

To describe the proposed algorithms, we first summarize some notation in Table 4.1 and then 

define our workflow model. In our workflow model, the dataflow graph of a workflow as presented 

in Chapter 2 is refined as a weighted DAG G(N, E), where N is a set of n nodes and E is a set 

of e edges. A node in the DAG represents a job which in turn is a program that must be executed 

in sequential order. The weight of the node is the job's service time. The weight of the edge 

indicates the size of the file that is created by the source node and used by the destination node. The 

precedence constraints of a DAG dictate that a node cannot begin execution until all its input files 

have arrived and no output files are available until the node has finished, and at that time, all output 

files are simultaneously accessible to its destination nodes. Hereafter, we use the terms node and job 
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symbol 

rn 
n 
r(t) 

J] 
J ' 

|W?I 
\R)\ 

sm 
Slit) 
Sl{t) 

si(t) 

meaning 

the number of instances in a workload 
the number of jobs in instance; it is a constant from instance to instance. 
the available storage (i.e., the free storage) at moment t 
the jth job in J" 
the set of the jobs in instance h (i.e., { Jg,..., J,;_i}) 
the size of the write data set of job Jj in instance Ii 
the size of the read data set of job J , in instance /,; 
the set of the completed jobs in instance Ii before moment t 
the set of the ready jobs in instance /,; at moment t 
the set of the active jobs in instance Ii at moment t 
the set of the scheduled jobs in instance Ii at moment t, i.e., Sl{t) = Slit) U Slit) 

Table 4.1. Notation Used in Algorithm Descriptions 

interchangeably for easy presentation. 

A workload may consist of multiple instances of the same workflow, with each instance having 

its own node and edge weights. Thus, for an instance Ii, 1 < i < m (i is the index of U and m is 

the number of instances in a workload), the read and write data sets of the job J j can be denoted as 

Kj = {rlji,rlj2, •••,rljk} and Wj = {w%jX,nA2, ••-,wl-l}, 1 < j < n (where n is the number of jobs 

in the instance, r and w represent input files and output files, respectively. I and k are integers). The 

total sizes of Rj and W], denoted by \Rj\ and \Wj\, respectively, are defined as |i?*| = X^=i \r)s\ 

and \Wj\ = ^2S=.1 \WJS\, 1 < j < n, respectively; where | / | represents the size of a file / . 

In practice, the node and edge weights are generally estimated by the user, but the actual values 

may be different than the estimated values. For deadlock avoidance consideration, we tend to be 

conservative here by assuming that both the node and edge weights are always over-estimated. The 

claim on the storage for a job J1, in instance Ii is, therefore, known a priori to the scheduler and can 

be computed as \RlA + |W?|, 1 < j < n. However, due to data dependencies, the claim of job J^ 

can be simplified as \Wj\, 1 < j < n since the input storage has been allocated by its parent jobs. 

Similarly, we can define the storage that job J j can release after it has completed as |i?*|,l < j <n, 

if each file is safely deleted based on dataflow information (e.g., we may use a reference counter to 

record if a file is read by multiple jobs, and only those files whose reference counters are zero are in 

R% 

Without loss of generality, a single source node (i.e., top node) and a single sink node (i.e., bottom 

node) are assumed in the DAG. These two nodes can be viewed as the jobs in the workflow that stage 

in the initial input files and stage out the final output files, respectively. 

During the execution of a workflow instance, the life cycle of a job may experience several states, 

as discussed in Chapter 2. A completed job will release the storage space of its input files only if 
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Algorithm 

Banker's 
DAR 
DTO 

Graph Type 

Control-flow 
Dataflow 
Dataflow 

Maximum Claim Scope, 
Computation Time 

Global, Static 
Local, Dynamic 
Local, Dynamic 

Safe Sequence 

Instance 
Instance 
Jobs of the cur­
rent instance 

Storage Allocation/ 
Deallocation Unit 

Instance 
Instance 
Job 

Table 4.2. The Characteristics of the Compared Deadlock Avoidance Algorithms 

they are no longer used by other jobs (i.e., under the dataflow-driven batch scheduler). The released 

storage space can be reallocated to other jobs or instances. The output files are not released; they 

are kept as the input files to later jobs. 

Our model is deterministic, at least to the extent that the time, and storage space required by any 

job, as well as the data dependencies among the jobs, are pre-determined and remain unchanged 

during the computation. 

4.2 The Algorithms 

As stated, both our proposed algorithms, DAR and DTO, are based on the banker's algorithm. 

However, previous deadlock avoidance algorithms do not distinguish between active versus inactive 

resource utilization. In contrast, DAR and DTO attempt to improve (makespan) performance by 

maximizing active resource utilization. 

Table 4.2 summarizes the major characteristics of DAR and DTO. For comparison purposes, a 

control-flow-based banker's algorithm is also included. The major difference between our algo­

rithms and the banker's algorithm is that our algorithms are based on dataflow instead of control-

flow. With DAR and DTO it is possible to locally and dynamically compute maximum (resource) 

claims since it is possible to determine when resources are deallocated. Therefore, for subgraphs of 

the dataflow graph the maximum claims will be lower (technically, monotonically non-increasing, 

possibly decreasing) than for the entire graph. But, since the control-flow graph does not record 

when resources are deallocated, all subgraphs necessarily have the same maximum claim values, 

which are aggregates of all job requests. DAR and DTO are different from each other in the scope 

(i.e., jobs within the current instance versus all instances in the workload) they use to construct the 

safe sequence (jobs or instances) for a safety check. More details of both algorithms are presented in 

Chapter 4.2.1 and Chapter 4.2.2, respectively. The notation used in the descriptions are summarized 

in Table 4.1. 
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4.2.1 The DAR Algorithm 

The motivation of the DAR algorithm is to try to maximize active storage utilization. Specifically, 

DAR tries to improve inter-instance concurrency. To this end, we view each workflow instance in 

the workload as a unit of storage allocation and deallocation (in contrast to DTO, Chapter 4.2.2) and 

leverage the dataflow information to minimize the maximum claim associated with each instance at 

runtime. By dynamically reducing the maximum claim associated with each instance, the goal is 

to increase the number of instances running concurrently. More specifically, in the DAR algorithm 

we have previously defined the maximum claim of an instance U (i is the index of instance Ii) at 

moment t to be the total requests of all the remaining jobs (i.e., those jobs in J1 — Sl
c(t), which 

contains the jobs that have not finished. Here, J1 represents the total jobs in l{ and S\(£) represents 

the set of completed jobs in Ii before moment t, see Table 4.1.) in the instance Jj. 

Formally, we can define it as 

max-claim{i,t) = \ J \RlA (4.1) 
J*e(j'-sj(t)) 

Initially (i.e., t = 0), the set of completed jobs, iS*(0) = <j>, the maximum claim associated with 

the instance /; represents the total requests of all the jobs (i.e., the banker's algorithm's maximum 

claim). More formally, based on our workflow model, we have max-claim(i, 0) = J^ j ' e J ' l-^jl = 

Ylj^ji |W7I if only distinct files in instance Ii are counted (i.e., if a file is read by multiple jobs, 

the size of the file is only counted once in max-daim(i,t)). 

In this way, the maximum claim is localized and monotonically non-increasing (possibly decreas­

ing) as the execution of the instance proceeds (i.e., dynamic computation, where max-claim(i, t) 

changes for different t). This is different from the standard control-fiow-based banker's algorithm 

where a global maximum claim is pre-computedby conservatively aggregating all the jobs' requests, 

(i.e., max-claim(i, t) is a constant for all t) 

Figure 4.1 is an example showing how the maximum claims defined in DAR are computed. In the 

example, three workflow instances with different shapes, Pipeline (Figure 4.1 (a)), Fork&Join (Fig­

ure 4.1 (b)) and Lattice (Figure 4.1 (c)), are considered. The jobs (represented by the nodes) inside 

the dashed regions have not been completed as of time t'. They are either active or unscheduled. 

By applying Equation (4.1), the computation of the maximum claims for the three workflow 

instances at t = 0 and t = t' can be done. These are detailed in Table 4.3. Note that some jobs have 

been completed as of time t' (i.e., the jobs outside the dashed regions in Figure 4.1). We can see 
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(a) (b) (c) 

Figure 4.1. An example showing how the maximum claims defined in DAR are 
computed. In this example three workflow instances /,s with different shapes, 
(a) Pipeline, (b) Fork&Join and (c) Lattice, are considered. The nodes in the 
graphs represent the jobs, and the jobs inside the dashed regions are those 
jobs that have not been completed as of time /'. The numbers marked beside 
each edge indicate the file sizes. 

that the maximum claims are monotonically decreasing in this example (non-increasing in general) 

as the instances proceed, regardless of the workflow shapes. 

Based on the definition in Equation (4.1), we have the following lemma: 

Lemma 4.2.1 Given a workflow instance U where each file is only read by one job and no files 

created by some completed jobs will be read by a subset of unscheduled jobs in Jl — {S\ (t) US'* (£)) at 

moment t, the need matrix, defined as the difference between the maximum claim and the allocated 

resources, can be computed as 

need(i,t)= ] T \W}\ (4.2) 
J<eJ'-s«(t) 

where, at the moment t, the set of completed jobs is Sl
c{t), the set of active jobs is S^(t) and the set 

of ready jobs is 5*(t). 

Proof The allocated storage for instance ij at moment t is computed as 

alloc(i,t)= Yl \Rl\+ J2 \WJ\ <4-3> 
7*e(S'(t)us»(t)) ^eS'(t) 

Since the intersection of any two sets in {Sl(t), Sl(t),Sl{t)} is empty, we have J1 — Sl
c{t) = 
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Workflow Instance 
with Different Shapes 

Pipeline /* 

Fork&Join /; 

Lattice /,; 

Time (t) 

0 
t' 
0 
t' 
0 

t' 

Completed Jobs 

(sm) 
4> 
{A,B} 

4> 
{A,B} 

0 

{A,B,C,C,E} 

Uncompleted Jobs 
(J* - s«(0) 
{A.B.C.D} 
{C,D} 
{A,B,C,D,E,F} 
{C,D,E,F} 
{A,B,C,D,E,F, 
G,H,I,J,K,L} 
{F, G, H, I, J, K, L} 

max-claim(i, t) 

2 + 3 + 1 = 6 
3 + 1 = 4 
4+3+2+1+3+7 = 20 
3 + 2 + 1 + 3 + 7 = 16 
2 + 4+1 + 6 + ... + 4 = 
69 (all edge weights) 
5+7+5+8+2+4+3+ 
1 + 3 + 9 + 2 + 4 = 53 

Table 4.3. The computation of the maximum claims are detailed for the three 
examined workflow instances at t = 0,t' where, as of time t', some jobs have 
been completed in each instance. 

5* (i) U S«(t) U ( J - Sl(t) - (Si(t) U Sj(t))), and 

need(i,t) = max-daim(i,t) — alloc(i,t) 

E 1*51+ E I^I 
•Jje(S*(t)us*(t)) jj6(Ji-sj(t)-(Si(t)us*(*))) 

- E w\- E 1̂71 
•>je(sj(t)us*(t)) J'jesnt) 

E I^I- E Ki 
J'6(J<-SJ(t)-(5«(t)US«(t))) ^6S i ( t ) 

E i^i- E IW?I 
JJG(J4-5j(t)) Jj€Si(t) 

E 1̂ 1+ E \n- E I^I 
J*e(j*-s*(t)-sr«(t)) ^es«(t) Jje.s«(t) 

E IW7I 

Equation 4.2 is also true for a more general case where a file might have multiple readers if only 

the sizes of distinct files are counted in both max-daim(i, i) and alloc(i, t). Although we do not 

consider the situation in which the files created by some completed jobs are read by the subset of 

unscheduled jobs (i.e., J1 — (Sl
s(t) U ££(*))), it does not affect the correctness of the lemma since 

the storage allocated to these files is counted in both max-claim(i, t) and alloc(i, t). 

Lemma 4.2.1 indicates that the need matrix is determined by the set of unscheduled jobs (i.e., 

J% — S\ (£)), and thus it can be updated by subtracting | Wj | at the time when job Jj is safely granted 
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/* DAR is invoked when job J 1 in instance /; 
** is intended to be scheduled. r(t) is a global variable 
** representing the available storage at t. t is 
** monotonically increasing. \Wj\ and \Rlj\ are 
** the sizes of the write and read data sets of J1 in /;. 
** need(i, 0) is initialized to max-claim(i, 0) for /,;. 
** alloc(i, i) records the amount of storage that has 
** been allocated to I{. alloc(i,0) is initialized to 0. 
** Both need(i, t) and alloc(i, t) are global variables. */ 
DAR(/i ,Jj){ 

/* Wj and Rj are local variables. */ 
Wj <- getWriteSet(J)); 
if ( |W7 |> r ( t ) ) 

/* wait until there is enough free storage*/ 
return false; 

/* pretend to modify the system by assuming 
** that J1- has completed.*/ 
R) <- getReadSet(JJ); 
r(t)<-r(t)-(\W;\-\Rl\); 
alloc{i,t) <- alloc{i,t) + (\W]\ - \R)\); 
need(i,t) *- need(i,t) -\W}\\I* Lemma4.2.1 */ 
if (safetycheck(Ii)) 

/* Actually, J j is not completed */ 
r(t)*-r(t)-\R*\; 
alloc(i,t) <— alloc(i,t) + \R\\; 
return true; /* the request is safe */ 

else 
/* recover the modification */ 
r(t)^r(t) + (\W;\-\R^\); 
alloc(i,t) <- alloc(i,t) - (\W]\ - \R)\); 
need(i,t) <— need(i,t) + \Wj\; 
return false; /* the request is unsafe */ 

Figure 4.2. The DAR Algorithm. 

its request. We can leverage these results to design our DAR algorithm as well as its safety checking 

algorithm. The DAR algorithm is shown in Figures 4.2. 

DAR is invoked each time a job Jj in instance h is considered for scheduling (Figure 4.2). DAR 

first checks if the current available storage is sufficient to satisfy the request of the job (obtained via 

getWriteSet()). If not, the job has to wait until sufficient storage is available. Otherwise, the job J1, is 

assumed to be completed, and the corresponding data structures associated with the instance h (i.e., 

r(t), alloc(i,t) and need(i,t)) are updated accordingly. Subsequently, the safety of granting the 

request of job Jj is checked using the subroutine safetycheck(). We assume that job JJ- is completed 

before checking for the safety because we want the algorithm to be more aggressive in the safety 
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check. Thus, if the safety check is passed (i.e., the system is in a safe state), the request of job J' is 

safe, but some data structures (i.e., r(t) and alloc(i, t)) in the algorithm need to be re-adjusted since 

job J* is actually not yet completed. 

The safety checking algorithm in DAR is identical to that in the standard banker's algorithm 

(Chapter 2.2) when viewing each instance as a process. The algorithm iterates over all the instances 

in the workload and pools their allocated storage until the need matrix of the current examined 

instance is satisfied (i.e., a safe state) or all instances are checked but it is impossible to complete 

the current examined instance (i.e., an unsafe state). 

The DAR algorithm correctly avoids deadlocks in workflow-based computation since the maxi­

mum claim defined in Equation (4.1) is clearly an upper bound on the storage requirements of the 

instance. The DAR algorithm follows the classic banker's algorithm, and thus has the same time 

complexity of 0(m2) as the banker's algorithm for checking the safety of a request, where m is the 

number of instances in the workload. 

As discussed earlier, DAR tends to improve the inter-instance concurrency at the expense of 

intra-instance concurrency. Specifically, in DAR the need matrix associated with each instance is 

monotonically non-increasing (possibly decreasing) as the instance proceeds; therefore, instances 

nearing completion will have smaller need matrices. As a result, the need matrices associated with 

the nearly completed instances are easily satisfied, and the storage they are holding is easily deal­

located as well. The resulting deallocated storage can be gathered during the construction of the 

safe instance sequence to improve the possibility of safely granting requests from new instances 

(although their need matrices are large). Consequently, more instances can be active (i.e., inter-

instance concurrency is enhanced). In contrast, the conservatively large value of the need matrix 

defined in the control-flow-based banker's algorithm makes it hard to construct safe instance se­

quences, thereby restricting inter-instance concurrency. 

4.2.2 The DTO Algorithm 

The DTO algorithm, unlike DAR, is designed to maximize the active storage utilization by trying 

to improve the intra-instance concurrency. To this end, we view the job rather than the instance, as 

in DAR, as the unit of storage allocation and deallocation and localize the safety checking of the job 

request to the current instance (i.e., the instance making the request). 

More specifically, when deciding if a job Jj in instance h can be scheduled at moment t (see 

Figure 4.3), DTO first checks whether the request of the job (obtained via getWriteSet()) is greater 
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than the current available storage. If so, the job has to wait until there is sufficient storage. Otherwise, 

the set of jobs that have already been scheduled £'](£) and the current job J ' (i.e., 5](t) U {•/!}) are 

computed, which also provides the set of jobs not yet scheduled (i.e., Jl
k 6 (J* — {S\{t) U {J)})), 

and the safety of granting the request of job J- is checked. 

in the safety check (Figure 4.4), it is first assumed that job J ] is granted the request and finished 

immediately and then the scheduling state (after scheduling job Jj) is tested by topologically order­

ing each job Jl
k g (,/' — (S\(t) U {J}})) (i.e., only considering all remaining jobs in instance U) 

such that: 

m\<r(t)- £ m\-\R}\) (4.4) 
idx(Ji )<idx(J^) 

Here, r(t) is the available storage at moment t (after J? is assumed to be finished); the initial value of 

r{t) (i.e., fori = 0) is the total storage budget; J\ is the job that is scheduled before job J\. in instance 

If, idx(x) is the index of job J* in the topologically ordered sequence. By definition, a topological 

ordering of a workflow DAG is a linear ordering of its jobs in which the data dependencies between 

the jobs are respected. The scheduling state is safe if all remaining jobs (i.e., those jobs that have not 

yet been scheduled in the current workflow instance) can be topologically ordered while satisfying 

Inequality (4.4). Otherwise, the scheduling state is unsafe. A job request is safe if the scheduling 

state is safe after the job request is granted. 

For example, in Figure 4.1 (b), if at the moment £', J o b A and J o b B in the Fork&Join instance 

are finished and the available storage is 20 units. At this point, J o b D is making a request of 3. 

For checking the safety of this request, DTO first assumes J o b D to be finished. Then, r(t')=20-

3+2=19. Based on Inequality (4.4), we topologically order the remaining jobs J o b C, J o b E and 

J o b F by following an order: J o b C—>Job E—>Job F. Then, we have 

1. 19 > 1 ( Job C can be finished) 

2. 19 - 1 + 3 = 21 > 7 ( Job E can be finished) 

3. 1 9 - 1 + 3 - 7 + 1 = 15 > 0 ( Job F can be finished) 

So, we can topologically order the remaining jobs and the request of J o b D is safe. 

With regard to the safety check, our concern is the existence of such a safe job sequence, which 

indicates thai given a storage budget, there is at least one deadlock-free job schedule if the order 

specified in the safe job sequence is followed. However, given an arbitrary DAG and a storage 

budget, determining the existence of such a safe job sequence is generally believed to be a NP-

complete problem [83]. Therefore, instead of looking for an optimal algorithm to find the safe job 
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/* DTO is invoked when Jj in U is intended 
** to be scheduled at moment t. Be aware that t is 
** monotonically increasing. Ss(t)'' is the set of 
** jobs in h that have been scheduled before t. 
** r(t) is a global variable representing the 
** available storage at t. 
** \Wj\ is the size of the write data set of Jj in li */ 
DTO(/» , J j ){ 

/* local variables: W), S\{t),S\(t) and S'a{t) */ 
W] <- getWriteSet(jf); 
it (\WJ\ >r(t)) 

/* wait until there is enough free storage*/ 
return false: 

Sl(t) <— getCompletedJobs(Ii); 
Sl(t) <— get Active Jobs(Ii); 
Sl(t) *~ Sl(t) U Sl

a(t); /* see Table 4.1 */ 
if (safetycheck(S's(t), Jj)) 

r(t) <-r(t) - \WJ\; 
I* the request of J j is safe */ 
return true; 

else 
/* the request of J j is unsafe */ 

return false; 

} 

Figure 4.3. The DTO Algorithm 

sequence, we use some heuristics to topologically order the jobs that satisfy Inequality (4.4) (see the 

topological order algorithm in Figure 4.5). 

In the safety checking algorithm topological jorder (), shown in Figure 4.5, is our proposed func­

tion to topologically order the remaining jobs so that each ordered job will have sufficient storage 

to satisfy its request (as determined by Inequality (4.4)). The algorithm searches the (remaining) 

dataflow DAG in breadth-first order and expands the nodes whose parent nodes have all been ex­

panded (i.e., the ready jobs). A node is expanded if its request can be satisfied by the amount of 

storage computed in the right side of Inequality (4.4). Given the available storage, if all the remain­

ing jobs can be ordered, the algorithm returns true, indicating a safe scheduling state; otherwise, the 

algorithm returns false. Again, a job request is safe if the scheduling state is safe. 

Since our algorithm is built on top of breadth-first traversal, the complexity of the algorithm for 

checking the safety of a request is 0{n2), where n is the number of jobs in the instance. Our breadth-

first-based algorithm is different from the situation in the banker's algorithm where the nodes (i.e., 

processes) are independent without data dependencies. 

It can be shown that DTO can avoid deadlock among multiple concurrent workflow instances 
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/* checking if scheduling J ' is safe at moment t. 
** \Rlj | is the size of read data set of J,- in Iz */ 
safetycheck(S*(£), J)) { 

I* Rlj, Wj, d and C are local variables. */ 
d^r(t):, 
R) <- getReadSet(Jj); /* get read set */ 
Wj <- getWriteSet{Jj)\ /* get write set */ 
d«-d-|W7l + |flj|; 
/* assume C l is the set of completed jobs of It */ 
C* <- Sj(t) U {J,1}; /*assume J] is finished*/ 
/* topologicalxirder is the function that 
** topologically orders the unscheduled jobs 
** to satisfy Inequality (4.4) */ 

return topological .order (d, C1, i); 

} 

Figure 4.4. The Safety Checking Algorithm in DTO: The algorithm is performed 
to find out if a job scheduling in instance /, is in a safe state. 

and also improve the intra-instance concurrency. The correctness of this algorithm is not difficult to 

understand since via (informal) inductive arguments, we can see that there always exists at least one 

active instance and the state is safe. The DTO algorithm, as with the banker's algorithm and DAR, 

only allows for transitions into safe states. Therefore, a non-safe (i.e., deadlock possible) state is 

never entered. 

As discussed earlier, DTO tends to improve intra-instance concurrency at the expense of inter-

instance concurrency. Specifically, DTO is biased to grant resource requests to instances nearing 

completion (i.e., intra-instance), rather than start (or admit) new instances (i.e., inter-instance). 

When resources are tight, the resource requests for new instances tend to be larger than the re­

sources available. However, the resource requests of admitted instances, which are monotonically 

non-increasing due to the topological order, might be satisfiable under the same constraints. 

4.2.3 Summary 

In this section we described two deadlock avoidance algorithms, DAR and DTO, for workflow-

based computation when storage resources are constrained. Both algorithms are based on the well-

known banker's algorithm. However, our algorithms leverage the dataflow information and make a 

distinction between active and inactive resources to minimize the makespan, which is different from 

the previous work where improving resource utilization was usually the goal. 

With DAR the maximum claim associated with each instance is dynamically computed by using 

the dataflow information to sum the resource requirements of all the remaining jobs (i.e., those jobs 
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/* given J ' and r(t), if we can topologically order the jobs in J' — C 
** to satisfy Inequality (4.4) at t. 
** DAG1 is the dataflow DAG of /,, which is globally accessible. */ 
topological_order(d, C',i) { 

/* Q is a local variable that keeps the set of all remaining 
** unmarked nodes with no incoming edges (i.e., ready jobs) */ 
Q <r- <j>; /* local variable */ 
for (each J^eC1) do 

mark J\ a s Done i n DAG1; 
/* search in breadth-first order */ 
for {each node J£ £ (J2 — C l) with an edge e from J% to J\) do 

remove e d g e e from t h e DAG1; 
if (J£ is a ready job) 

p u t Jj, i n t o t h e end of Q; 
while (T ^ <j>) do 

J* <— Q.popQ; /* the first ready job */ 
W7? <- getWriteSet{Jl

r); 
Rl <- getReadSet{Jl

r); 
if (IW Î >d) 

return /aZse; /* scheduling is unsafe */ 
mark J%

r a s Done; /* satisfying Inequality (4.4) */ 
d <-d - \W*\ + \R*.\; 
Ci <- Cl U {J 2 }; 
/* search in breadth-first order */ 
for (each node Jl

k 6 (J* — C") wit/i an edge e from Jl
r to JJ.) do 

remove e d g e e from t h e DAG1 

if (J\ is a ready job) 
p u t J\. i n t o t h e end of Q; 

return true; /* scheduling is safe */ 
} 

Figure 4.5. The topological order algorithm in the DTO algorithm 

that have not yet been finished). The DTO algorithm exploits the dataflow information to topo­

logically order the remaining jobs in the current instance when checking for safety (i.e., a specific 

order of job completion that is within a resource budget). Both algorithms try to maximize the ac­

tive storage utilization by either improving the inter-instance concurrency (DAR) or improving the 

intra-instance concurrency (DTO). 

4.3 Deadlock Avoidance Batch Scheduler 

We describe a deadlock avoidance batch scheduler, which provides a natural way to integrate 

batch schedulers with deadlock avoidance algorithms. Specifically, we introduce a component 

known as a deadlock avoider that implements both DAR and DTO and we integrate it with apriority-

based batch scheduler for checking the safety of job requests. The resulting scheduler architecture 

is shown in Figure 4.6. 
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Figure 4.6. Deadlock Avoidance Batch Scheduler. MDF stands for Most Done 
Job First, an Instance Scheduling Policy. 

4.3.1 The Priority-based Batch Scheduler 

In a priority-based batch scheduler the instances are assigned priorities and ordered in a list in 

decreasing magnitude of priority (i.e., PriorityQ in Figure 4.6). In addition, a priority sub-queue 

is also maintained for each instance to prioritize its ready jobs. The processors are allocated to 

instances first and then to the jobs in the selected instance according to a higher-priority-first policy. 

Ties are broken randomly [27]. 

Depending on evaluation metrics, instances can be prioritized based on different strategies; for 

example, First Come First Serve (FCFS) for fairness, Shortest Job First (SJF) for minimizing the 

mean response time and so forth. Although these strategies are popular and always used as the 

default in most batch schedulers for processor allocation (e.g., Maui/Moab [54] and IBM's Load-

Leveler [53]), they are not entirely suitable when the total makespan is the performance concern 

and the instances can be preemptive at some particular points when jobs are finished. To meet 

our demands, we propose a simple strategy, called Most-Done Job First (MDF) to prioritize the 

instances. In this strategy, the instance with the largest number of completed jobs has the highest 

priority (ties are broken by the instance ids assigned by the scheduler when the instances enter the 

system). The motivation for this strategy is the hope that the instances who have completed most of 

the jobs will finish as soon as possible, thereby minimizing the storage contention by freeing storage 

resources. 

If no data dependence constraints are violated, the job priorities can also be determined in a va­

riety of ways such as Highest Level First (HLF) [17], Longest Path (LP) [17], Longest Processing 
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State 

1 

2 

3 

Event 

One or more new instances arrive 

One or more jobs are finished 

No active instances, but PriorityQ 
is not empty 

Action 

Accepting incoming instances and ini­
tializing PriorityQ 
Resolving the dataflow dependencies 
and updating some data structures to 
record the changes of the free and allo­
cated storage 
Triggering the batch scheduling 

Table 4.4. Scheduling States, Events and Corresponding Actions 

Time (LPT) [32,55] and Critical Path (CP) [40]. Moreover, the priority computation can be either 

at submission time, static scheduling; at runtime, dynamic scheduling [57,86,104]; or by a combi­

nation of both. In our job scheduling we adopt HLF, a simple strategy not requiring the processor 

information, but an effective heuristic to approximately speed up the computation along the critical 

path. The notion of level is the sum of computation costs of all of the nodes along the longest path 

from the node to be scheduled to the sink node. The motivation for this heuristic is the hope that it 

will minimize the instance execution time and thus release the held storage as soon as possible. 

In addition to the priority queue, there is another important queue called BlockedQ, which main­

tains the jobs for each instance whose data dependencies have not yet been resolved. If a job's data 

dependencies have been resolved, it becomes a ready job and enters the corresponding job priority 

queue. 

4.3.2 Integration with Deadlock Avoider 

The deadlock avoider is integrated with the batch scheduler using inter-process communication. 

The batch scheduler records the request of each job and is responsible for scheduling the instances 

and jobs by allocating resources to them (i.e., processors and storage; storage being our concern). 

More specifically, in order to safely grant the request of a job, the scheduler will ask the deadlock 

avoider if the request is safe or not. The deadlock avoider will answer "Yes" or "No" by running 

DAR or DTO for the safety check. 

The batch scheduler is event-driven: there are three major states to process three kinds of schedul­

ing events at moment t. The processing states and their corresponding trigger events as well as the 

major actions in each stage are shown in Table 4.4, and the algorithms corresponding to each state 

are described in Figures 4.7,4.8 and 4.9, respectively. 

The scheduling algorithm for State 1 (new instance arrival) is simple; it accepts (by acceptAnstanceQ) 

an incoming instance at moment t and assigns an identifier to it (i.e., i for the instance Ii in the algo-
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/* State 1: accepting incoming instances at moment t.*/ 
i ^ 0 ; 
do 

li <— acceptJnstanceQ; 
for (each job J j e U) do 

if(Jj',s data dependency has been resolved) 
insert J j into PriorityQ; 

else 
put JJ- into BlockQ; 

i + +; 
until (all incoming instances are accepted) 

Figure 4.7. Algorithm for Dealing with New Instance Arrivals 

rithm). Then the jobs in the instance are checked and either inserted into PriorityQ for scheduling 

or put into BlockQ awaiting dependency resolution (each job is also assigned a job id, but this is not 

shown in the algorithm). This procedure is repeated for all incoming instances at moment t until all 

are processed. 

State 2 (j°b(s) finished) deals with the situation where a set of jobs are completed at moment t. It 

first updates the available storage (the allocated storage to the instance to which the completed job 

belongs) by adding up (deducting) the released storage of the completed job and then, if possible, 

frees any jobs in BlockQ that data depend on the completed job placing them in the PriorityQ queue 

(using depj-esolver()). This procedure is repeated for all completed jobs at moment t until all are 

processed. Finally, it checks PriorityQ based on some particular scheduling strategies (MDF and 

HLF in our case) to select the instance and the job to grant the storage requests if deadlock-avoider() 

returns true. 

State 3 (scheduling required) is necessary to avoid the situation when there are no running jobs 

but the computation has not been finished (i.e., PriorityQ is not empty). In this case the State 3 

algorithm is triggered, acting the same as the scheduling part of State 2 except that when no job's 

request is granted after scheduling, it reports the storage is insufficient to complete the computation. 

In both State 2 and State 3, the job whose request has been (safely) granted is removed from the 

corresponding instance's job queue. The algorithm of deadlockjavoider is fairly simple. Its pseudo 

code is shown in Figure 4.10. Depending on the parameter alg, either DAR or DTO is invoked for 

the safety check whenever a job J j in some instance /»is selected to be scheduled. 
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/* State 2: One or more jobs are finished at moment t*l 
do 

/* when a job ,/• in Instance /, finishes at moment i*l 
** the available storage at t and the allocated storage to 7j 
** are first updated. r(t) and alloc(i, i) are global variables. */ 
r(t)^r(t) + \R*\; 
alloc(i,t) ^~ alloc(i,t) — \R)\] 
/*Check BlockQ to insert those jobs (i.e., Hl) whose data 
** dependency has been resolved into PriorityQ.*/ 
H% <— depsolver(i,j)] 
for {each job J- G Hl) do 

insert J 1 into PriorityQ: 
until (all completed jobs are processed) 
/* Scheduling Part: finally checks PriorityQ 
** to select instance and job to grant the storage 
** requests if no potential deadlock could be incurred. 
** PriorityQ[i] contains all jobs of instance /$.*/ 
for (each instance li in PriorityQ) do 

for (each job Jj in PriorityQ[i]) do 
if (deadlock.avoider (It, Jj,alg)) 

schedule job J1-; 
remove job J* from PriorityQ[i]; 

Figure 4.8. Algorithm for Dealing with Job Completions 

4.4 Active-Instance-Aware Admission Control 

Too little concurrency will limit performance. Chapter 4.2 has already discussed efficiency from 

the point of view of maximizing concurrency by introducing new algorithms (i.e., DAR and DTO) 

that use dataflow information to dynamically compute maximum resource needs. However, too 

much concurrency of the wrong kind can also have a detrimental effect. Specifically, too many 

admitted instances that are blocked on unsatisfiable resource requests leads to inactive resource 

allocation. In this section we discuss the role of instance admission control, also based on dataflow 

information, to further improve makespans. 

The following is a simple example to illustrate the problems that can occur when there is no 

admission control (see Figure 4.11). Suppose that initially we have 13 storage units and each file 

has a unit size. J o b A in each instance thus require 3 storage units. The requests from all the J o b 

As (one J o b A per instance) of the four workflow instances can be safely granted, and the four 

instances are admitted to execution, achieving the maximum degree of concurrency (DOC) (Fig­

ure 4.11(a)). After one of the J o b As is finished, say J o b A in WI1, it is safe to grant the request 

of J o b B in Wl l since there is one storage unit left. Unfortunately, in the following computation 

no progress can be made on WI2, WI3 and WI4 since no storage left for the output files of J o b 
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/* State 3: No active instances, but PriorityQ is not empty 
** at moment t check PriorityQ to select instance and job to 
** grant the storage requests if no potential deadlock could 
** be incurred. PriorityQli] contains all jobs of instance /,.*/ 
for (each instance l.t in PriorityQ) do 

for (each job ,/* in PriorityQ[i}) do 
if (deadlock javoider (Ii, , / j , alg)) 

schedule job J ] ; 
remove job JJ from PriorityQ[i}: 

if (no job is scheduled) 
print "the storage is insufficient to 

complete the computation."; 

Figure 4.9. Algorithm for Triggering Batch Scheduling 

/* depending on alg, either DAR or DTO is invoked to 
** check the safety of the request of J* in I,. */ 
deadlock_avoider(7i, Jj,alg) { 

switch(aZg) { 
case DAR: 

return DAR(/;, Jj;) 
case DTO: 

return DTO( J;,Jj;) 
default: 

print "Unknown Deadlock Avoidance Algorithm"; 
return fal se; 

} 
} 

Figure 4.10. The Deadlock Avoider Algorithm 

B, J o b C and J o b D in these three instances. As a result the storage they hold becomes inactive 

until WI1 is finished. When storage is allocated but is inactive, there is less storage to be allocated 

to other non-blocked jobs, which tends to reduce concurrency, thus likely increasing makespan. 

The problem of too much and too little concurrency is analogous to the problems faced by op­

erating systems in controlling the degree of multiprogramming. However, storage resources are not 

preemptable (unlike memory, for instance), and dataflow information can be valuable when making 

admission control decisions. For example, using knowledge of the Fork&Join workflow shape of 

the instance, an admission control algorithm can reduce, the degree of concurrency of the system in 

the short term to achieve better concurrency in the long term. In Figure 4.11(b) only two instances 

(i.e., the right hand side) are initially admitted, and 7 storage units (out of a total of 13 units) are 

left unallocated. In the short term, this is less than the four instances admitted and 1 storage unit 

unallocated in Figure 4.11 (a). However, after the Job As are completed, the degree of concurrency 

in Figure 4.11(b) increases to six (i.e., Jobs B, C andD of w i l and WI2) since there will be enough 
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Figure 4.11. An example illustrating that allocating storage without admission 
control may incur poor performance. 

storage for those jobs. In contrast, as discussed above for Figure 4.11(a), only J o b B of WI1 can 

ran after J o b A of WI1 finishes. Although Figure 4.11 is a specific example where admission 

control has a benefit, we will show that the benefits are more general (Chapter 4.5.7). 

4.4.1 The Admission Control Algorithm 

In this section, we propose a simple active-instance-aware admission control algorithm (Instance 

Admission Control (IAC), for short) and integrate it with the deadlock avoider to further minimize 

the amount of inactive storage. The parameter space for admission control is large, and we show 

significant benefits for our algorithm, but we do not perform an exhaustive study of admission con­

trol. Our main point is that admission control can be valuable in addition to the DAR and DTO 

algorithms. 

The basic idea of the IAC algorithm is to use the dataflow information to estimate the average 

number of active instances so that each such instance could be ensured of a moderate amount of 

storage to maximize its job concurrency. However, due to the characteristics of the workload (e.g., 

workflow shape) the definition of "moderate" is not easy to determine. Our simple heuristic is to 

compute the average degree of job concurrency for the workflow shape (Equation (4.5), Table 4.5) 

and, subsequently, the average storage requirement of an instance (Equation (4.6), Table 4.5). Then 

by simply dividing the total amount of storage available by the average storage requirement of each 

instance, we have a target average number of concurrent instances for the system (Equation (4.7), 

Table 4.5). 

More specifically, the algorithm first estimates the average degree of job concurrency (i.e., avg^doc) 
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symbol 

avg-fs 
B 
total-files 
totaLjobs 
max-doc 
miri-doc 
avgjdoc 
avgst 
avgAc 
avg-jst 
avgjcp 
mk 

meaning 
the average file size 
the given storage budget 
the total number of files in the workflow DAG 
the total number of nodes in the workflow DAG 
the maximum degree of job concurrency 
the minimum degree of job concurrency 
the average degree of job concurrency 
the average storage held by each instance 
the average degree of instance concurrency 
the average job service time 
the average length of critical path 
the total makespan of the computation 

Table 4.5. Notation Used in Instance Admission Control 

for the workflow shape as follows (some notation used is shown in Table 4.5): 

avg.doc s 
mirudoc + max.doc 

(4.5) 

It then approximates the average storage held by each instance (i.e., avgst) using: 

total-files 
avgst w 2 • avgjdoc • , • avg.js 

totaLjobs 
(4.6) 

Here, the factor 2 means that we count both input and output files for each job. 

Finally, given storage budget B, the algorithm estimates the number of concurrent instances as: 

B 
avgjic '• 

avgst 
(4.7) 

The advantage of Equation (4.7) is that avgAc is simply a function of miri-doc and maxjdoc of 

the workflow shape. It does not need other information related to instances such as job service time 

and critical path. 

Although Equation (4.7) simplifies the estimation, it also introduces inaccuracy, and thus it may 

result in poor performance in some special cases. The inaccuracy of this estimation is caused by 

the assumption implied by Equation (4.5) that the degree of job concurrency is changed smoothly 

during the instance computation. 

From Equation (4.5) we can see that the key point in our algorithm is the computation of mirudoc 

and max Aoc of the workflow. This can be achieved by knowing the dataflow DAG of the workflow. 

miii-doc is relatively easy to compute since our workflow model assumes a single entry node. In 

our experiments, max-doc is easily computed for the relatively straightforward workflow shapes. 
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/* the extended deadlock_avoider. ,/' in It is intended 
** to schedule at moment t. The running instances at t 
** are those instances that have active jobs at t. 
** 5 is the id set of running instance at t and avgJc 
** is computed by Equation (4.7) (see Chapter 4.4.1). */ 
deadlock_avoider_ext(/j, J ] , alg) { 

S <— getActivelnstanceldSetQ; 
if (z £ S) 

if (|51 > avgJc) /* \S\ is the size of S */ 
return false; 

return deadlock-avoider(Ii, JJ, alg); 

} 

Figure 4.12. The Extended Deadlock Avoider after Integrating with Instance Ad­
mission Control 

For the general case of arbitrary DAGs we note that maxAoc can be computed via the Dilworth 

Decomposition algorithm [24,95]. The Dilworth algorithm actually computes the maximum anti-

chain for the DAG, which can be used as an upper bound on the maximum degree of concurrency. 

Based on the estimated value of avgJc, the deadlock avoider is extended (Figure 4.12) to add the 

admission control (called from the code in Figure 4.8). 

Before checking the safety of a job's request, the algorithm first obtains (by using getActiveln-

stanceIdSet()) the id set of running instances S at moment t (i.e., those instances that have active 

jobs) and controls the instance admission as follows: 

1. If the selected instance Jj is not running (i.e., Ii has no running jobs), processing its jobs might 

increase the number of running instances. Thus, if the number of running instances (i.e.,|S|) 

has reached the upper bound (i.e., avgJc), the algorithm returns false, denying the instance 

admission. 

2. If the selected instance 7, is running, processing its jobs does not increase the number of 

running instances, and thus the jobs in the selected instance can be processed directly by 

invoking the original deadlock avoider (i.e., DAR or DTO). 

4.5 Simulation Results 

We evaluated the performance of the proposed algorithms through a simulation-based study. The 

simulator in Chapter 3 was extended to include the deadlock avoider, which integrates both DAR 

and DTO for deadlock avoidance. On each occasion, a multiple-instance workload, together with 

the control-flow DAG as well as the estimated job service time and data file sizes of each constituent 
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job, was submitted to the scheduler. As discussed earlier, the scheduler obtains the detected dataflow 

from WaFS. The instance scheduling strategy is based on Most Done Job First (MDF) while the job 

scheduling strategy is based on Highest Level First (HLF) [17]. 

4.5.1 Methodology 

In the simulation study, we have four main methodology axes: 

1. Benchmark Workloads: The benchmark workloads are characterized by the workflow shape, 

workflow shape parameter, job characteristics and so on. 

2. Reference Algorithms: Our reference algorithms are the standard banker's algorithm, Lang's 

algorithm [60] and a deadlock detection algorithm. 

3. Simulated Platforms: We assume that an unbounded number of homogeneous nodes but lim­

ited total storage budget is available. 

4. Instance Admission Control: No instance admission control is assumed in our baseline strate­

gies in Chapter 4.5.5 and 4.5.6. 

4.5.1.1 Benchmark Workloads 

We still use the two representative structures, Fork&Join and Lattice as well as their special case, 

Pipeline, as our experimental workflow shapes. In our experiments, for instances of all workflows, 

we assume that the job service time (JST) is uniformly distributed, and every output data file has a 

size with a uniform distribution. In addition, each workload contains 100 instances and all instances 

are assumed to arrive (at the batch scheduler) at the same time since this situation is both the common 

and worst case in terms of storage contention. The characteristics of the benchmark workloads are 

in Table 3.2 in Chapter 3. 

4.5.1.2 Reference Algorithms 

• Banker's Algorithm : Since, without dataflow information, storage space, in general, cannot 

be safely reclaimed until the end of each instance, we thus use the aggregate storage require­

ments of all jobs in instance as its global maximum claim for the control-flow-based banker's 

algorithm. 
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• Lang's Algorithm: Lang's algorithm f60] is a more recently proposed deadlock avoidance 

algorithm which demonstrates an advantage over the standard banker's algorithm in terms of 

resource utilization. However, our empirical results show that this algorithm, except for some 

special cases (Figure 4.28(b)), never outperforms the banker's algorithm in terms of makespan 

when applying it to our benchmark Pipeline workloads (Chapter 4.5.5.1 and 4.5.5.3). 

• Deadlock Detection: To evaluate the difference between our deadlock avoidance algorithms 

and other kinds of deadlock resolution algorithms, we compare DAR and DTO with dead­

lock detection. The parameter space for deadlock detection is (non-exhaustively) explored. 

The basic idea of the deadlock detection algorithm is to have the batch scheduler detect the 

deadlock at the earliest time and then use a variety of strategies to compute the amount of 

storage that needs to be released after a deadlock has been detected, select the victims and re­

allocate the released storage to recover from the deadlock. Through a parameter space study 

we found that the deadlock detection algorithm has the best overall performance when half of 

the storage budget is released after a deadlock has been detected and the victim instances are 

selected based on the Least-Done Job First (LDF) criteria. We denote the deadlock detection 

algorithm as Det(0.50Bgt-LDF) and use it as a reference algorithm to evaluate our deadlock 

avoidance algorithms, DAR and DTO (Chapter 4.5.6). 

4.5.1.3 Simulated Platforms 

In the study we further assume that an unbounded number of homogeneous computational nodes 

are available so that the maximum DOC is never constrained by the hardware except for the storage. 

The total storage budget in each experiment is limited. 

4.5.1.4 Instance Admission Control 

As will be discussed in Chapter 4.5.7, instance admission control can be beneficial in reducing the 

makespan of some workloads (e.g., Lattice and Pipeline). We have not included admission control 

in the baseline strategies of Chapter 4.5.5 and 4.5.6 because the actual admission control policy 

of Chapter 4.5.7 is simplistic (which makes it unworthy of setting a standard). Also, we wish to 

limit the number of policy parameters and elements when considering the impacts of workflow and 

workload characteristics. 
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Total Storage 

Active Inactive 
R active Rinacth 

Figure 4.13. Classification of Storage Resource Utilization 

4.5.2 Performance Metrics 

To evaluate the algorithms we have two primary metrics: makespan and active/inactive storage 

utilization. 

1. Makespan: Makespan is the amount of time it takes to complete all the jobs of a workload, 

from the submission of the first job to the completion of the last job (Chapter 2.3). We use it 

to measure the algorithm's performance. 

2. Active and Inactive Storage Utilization: Our classification of the storage resources is shown 

in Figure 4.13. We use the following ratio to define the active and inactive storage utilization 

(Equation 4.8): 

Rds = _ J o Scis(t)dt 
makespan • total storage 

where Scis (*) is the total amount of storage in the class of els e {active, inactive} at moment 

t. Rfree = 1 - (Ractive + Rinactive) specifies the ratio of free storage. Here Ractive + 

Rinactive is the traditional storage resource utilization. 

4.5.3 Organization 

Our simulation studies are organized as follows: In Chapter 4.5.5 we study the sensitivities of our 

algorithms to some workload characteristics and show how our algorithms are better than the refer­

ence deadlock algorithms in terms of reduced makespans and high active storage utilization. Then, 

in Chapter 4.5.6 we compare our algorithms with the reference deadlock detection algorithm and 

show the circumstances under which DAR and DTO outperform the detection algorithm. Finally, 

we evaluate the performance benefits of instance admission control in Chapter 4.5.7. 
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Deviation 

< 10% 
< 20% 
< 30% 
< 4 0 % 
< 5 0 % 

DAR (%) 

98.7 
100 
100 
100 
100 

DTO (%) 

98.7 
100 
100 
100 
100 

Banker's (%) 

93.6 
100 
100 
100 
100 

No std. deviation bars 

Lang's (%) 

71.1 
91.1 
100 
100 
100 

Detection (%) 

79.8 
93.6 
96.9 
99.4 
100 

With std. deviation bars 

Overall (%) 

92.9 
98.6 
99.5 
99.9 
100 

Table 4.6. The Distribution of the Standard Deviations of the Makespan Data in 
Our Simulations 

4.5.4 Data Points and Standard Deviation 

Each data point in the makespan and storage usage graphs (see y-axis) is averaged over 10 runs 

by changing the random number seed in the simulator for each run. Important exceptions to the 

multiple run methodology are the trace data used for Figures 4.18, 4.19, 4.23, 4.24 and 4.32, which 

are based on a single, representative run. 

Again, to measure the distribution of the set of 10 values for each makespan data point, we 

compute the standard deviations of the data points in Chapters 4.5.5 through 4.5.7 (see Table 4.6). 

We found that, overall, 92.9% of standard deviations are less than 10% of the data point's value. 

Specifically, for the DAR and DTO algorithms 98.7% of the standard deviations were less than 10% 

of the data point's value. In the case of the banker's algorithm, 92.9% of the standard deviations 

were less than 10% of the data point's value. Therefore, for clarity of presentation we have omitted 

standard deviation bars on the graphs for DAR, DTO and the banker's algorithm data points. A 

similar presentation strategy was used in Chapter 3.4.2. 

Lastly in our simulation, for all graphs where the x-axis represents storage units, the leftmost, 

starting point on the x-axis is based on the largest maximum claim of the banker's algorithm for all 

workflow instances. It is not possible to run DAR and the banker's algorithm with storage budgets 

of less than this maximum claim value. For example, in Figure 4.14(a), the x-axis begins at 250 

units because the largest maximum claim of the banker's algorithm for all 100 workflow instances 

is 203 units. 

4.5.5 Sensitivity to Workload Characteristics 

In this section we present some simulation results on the sensitivities of our proposed algorithms 

to workload characteristics and show, in a variety of cases, how our proposed algorithms outper­

form the banker's algorithm (for both Fork&Join and Lattice workloads) and Lang's algorithm (for 
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Pipeline workloads, since Lang's algorithm cannot effectively process a workload that has a general 

structured workflow graph) in terms of makespan and active storage utilization. 

For instances of all the benchmark workflows, their job service times and file sizes are assumed 

to be over-estimated and uniformly distributed on [500, 1000] time units and [1, 10) storage units, 

respectively. In our experiments we also assume that each job-created file has only one reader. 

However, to reflect the reality, the sensitivities of the proposed algorithms to multiple-reader access 

patterns is also studied (Chapter 4.5.5.5). 

In general, it is difficult to explain the performance differences between deadlock avoidance al­

gorithms since their abilities to maximize the resource utilization may be different or, sometimes, 

incomparable. Roughly speaking, in our studies the performance of the compared deadlock avoid­

ance algorithms largely depends on their capability to make a distinction between the active and 

inactive storage (reflected in their safety check of a job's request), which are related to the following 

workflow characteristics: 

1. Workflow shape: the structure of the workflow, e.g., Pipeline. 

2. Workflow shape parameters: the parameters that describe the workflow with a particular 

shape. 

3. Workflow size: the scale of the workflow specified by the total number of nodes (jobs). 

4. Job characteristics: the job service time and data file sizes associated with each job 

5. File Access Pattern: how a job-created file is read, either by a single job or by multiple jobs. 

6. Total storage budget: the given amount of storage that can be used by the entire computation. 

The relative performance between the compared algorithms will change as these factors change. We 

investigate the impact of these factors by varying the storage budget. 

4.5.5.1 Sensitivity to Workflow Shapes: Performance Changes Depend on the Shapes 

The experiments in this section are intended to show how the compared algorithms are sensitive 

to the workflow shapes. For both the examined Fork&Join and Lattice workloads, DAR and DTO 

are consistently better than the banker's algorithm. For the Pipeline workload, DAR and DTO are 

consistently better than Lang's algorithm, and DTO and the banker's algorithm are competitive in 

terms of showing the best performance. In addition, we also compared the storage utilization of the 

algorithms and found that in general our proposed algorithms have high active storage utilization. 
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Figure 4.14. Impacts of Workflow Shape on the Makespans of the Compared 
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The relative performance between DAR and DTO also depends on the workflow shapes; neither one 

algorithm can consistently outperform the other across all the examined workflow shapes. 

Comparison with the Banker's Algorithm and Lang's Algorithm (The comparisons with the 

reference deadlock detection algorithm are detailed in Chapter 4.5.6) Figure 4.14 shows how DAR 

and DTO are consistently better than the banker's algorithm and Lang's algorithm for the benchmark 

workloads of Fork&Join (3 x 8), Lattice (4 x 6) and Pipeline (5-stage). It also shows how DTO 

and the banker's algorithm are competitive in terms of having the best performance for the Pipeline 

workload. 

For the Fork&Join, our proposed algorithms demonstrate better performance than the banker's 

algorithm since they have higher resource utilization. Due to the large intra-instance concurrency, 

the allocated storage resources to the Fork&Join workload can be effectively used. This is evidenced 

by the high active storage utilizations of all compared algorithms shown in Figure 4.15(a). Thus, 

improving the resource utilization can directly improve the active storage utilization as well as the 

performance for the Fork&Join (3 x 8). 

The same observation can be obtained from the Lattice workload. As shown in Figure 4.16, 

both our proposed algorithms outperform the banker's algorithm by improving the active storage 

utilization. However, due to the low intra-instance concurrency (i.e., high data dependency in the 

Lattice DAG), the active storage utilizations of all compared algorithms for the Lattice workload are 

lower than those for the Fork&Join workload. 

In addition, we can see from Figure 4.16 that as the storage budget increases from 300 units to 

a certain value such as 1200 units, the active storage utilization for each algorithm decreases while 

the inactive storage utilization increases, but the overall performance remains largely unchanged or 

becomes slightly better. At first, these two observations seem contradictory, but, in actual fact, they 

are not. 

On one hand, as the storage increases, more and more instances can be safely granted the re­

sources and admitted to execution. However, due to the storage constraints most of them become 

blocked, holding inactive storage. The number of blocked jobs, and the inactive storage utilization, 

increase monotonically as the storage budget increases. On the other hand, the large number of 

blocked jobs also indicates that a large amount of work has been finished. As a result, the overall 

performance might be improved or not changed. 

When the storage increases over a certain value, all the instances in the Lattice workload can be 

admitted. Thereafter, increasing storage undoubtedly minimizes the inactive storage and reduces the 

makespan. Due to the high data dependency inside the Lattice workflow, the available storage might 
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Figure 4.15. How the storage is used by each of compared algorithms for 
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not be efficiently used. Thus, the compared algorithms for the Lattice have relatively higher free 

storage ratio than for the Fork&Join, especially when the storage increases over 1500 units (compare 

Figures 4.15(c) and 4.16(c)). 

Figure 4.14(c) shows how DAR and DTO outperform Lang's algorithm and DTO competes with 

the banker's algorithm to have the best performance for a 5-stage Pipeline workload. The low 

performance of Lang's algorithm shows that high resource utilization does not always imply high 

performance for a workflow-based workload and making the distinction between active and inactive 

storage is important for reducing the makespan. 

As we know, Lang's algorithm has the highest resource utilization among the algorithms being 

compared (our experimental results validate the claim of Lang [60]; see Figure 4.17(c)). However, 

the high resource utilization does not result in high performance. Rather, Lang's algorithm suffers 

from the worst performance. This is because improving resource utilization also implies increasing 

inactive storage utilization, which has adverse effects on the performance (Figure 4.17). This ex­

planation is confirmed by comparing DAR and DTO with Lang's algorithm, where both DAR and 

DTO show lower resource utilization but better performance. 

Another interesting observation is that the banker's algorithm, which has the lowest resource 

utilization, is comparable to the best performance (DTO) for the 5-stage Pipeline workload. We think 

the reason for this is that due to the Pipeline structure, the defined global maximum claim can act as 

a good instance admission control for the efficient use of the storage. In other words, the maximum 

claim is relatively small so that a sufficient number of instances can be admitted to execution, yet it 

is big enough to prevent too many instances from being admitted, thereby minimizing the storage 

contention and lowering the inactive storage (Figure 4.17(b)). 

The Relative Performance between DAR and DTO: Figure 4.14 also shows how, depending on 

the workflow shape, the relative performance between DAR and DTO change. Roughly speaking, as 

the workflow shape is varied and the request of the first job in each instance is reduced, the relative 

performance of DAR to DTO becomes worse. However, when the storage is highly constrained and 

the data dependencies inside the workflow are high, DAR is slightly better than DTO. 

More specifically, as the number of edges going out of the first node from the workflow DAGs 

decrease (i.e., the request of the first job is reduced) from 8 (Fork&Join (3 x 8)) to 2 (Lattice (4 x 6)) 

and further to 1 (Pipeline (5-stage)), the relative performance of DAR gradually becomes worse, 

from being consistently better than DTO for the Fork&Join (Figure 4.14(a)) to consistently worse 

than DTO for the Pipeline (Figure 4.14(c)). As for the Lattice workload, DAR exhibits marginally 

better performance than DTO when the storage budget is low and slightly worse performance when 
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Fork&Join 

Lattice 

Stage 

12 
6 
3 
2 

Height 

2 
4 
3 

Fan-out 

2 
4 
8* 
12 

Width 

12 
6* 
8 

Table 4.7. Investigated Workflow Shape Parameters: The total number of jobs 
is fixed as 24 for Lattice and 26 for Fork&Join (two extra nodes for the source 
and sink). * indicates the shape parameters that were studied in the previous 
experiments. 

the storage budget is increased over a certain value (1100 units in Figure 4.14(b)). 

These results are not surprising since DAR tends to maximize inter-instance concurrency; then, 

as the request of the first job is reduced, DAR is biased to admit more instances to execution. Con­

sequently, the storage allocated to each instance is minimized and thus the instance completion rate 

of DAR is decreased. The instance completion rate is defined by how many instances have been 

completed during a given period of time. Clearly, the higher the instance completion rate, the lower 

the makespan. 

We can validate this explanation by observing Figures 4.18 and 4.19, where DAR has a lower in­

stance completion rate than DTO for both the Lattice and Pipeline. However, for the Fork&Join, due 

to its large fan-out factor, admitting instances becomes difficult and thus relatively more resources 

can be left to the already admitted instances to increase their completion rates. From Figures 4.18(a) 

and 4.19(a), we can see that the performance of DAR is largely determined by the instance comple­

tion rate during the early stage of the computation, which is slightly higher than that of DTO. 

When the storage budget is highly limited and data dependency inside the workflow is high, 

DAR is slightly better than DTO (see Figure 4.14(b) where the storage budget is less than 1000 

units). This, again, is not surprising since, due to the large value of the maximum claim and the 

highly limited resources, it becomes difficult for DAR to construct a safe instance sequence for 

checking the safety of job requests. As a result, it admits fewer instances than DTO, leaving more 

storage to the admitted instances, thereby improving the instance completion rate. These results are 

more pronounced when the workflow size is enlarged (see Chapter 4.5.5.3). 

In summary, depending on the workflow shape and available storage budget, neither DAR nor 

DTO will consistently outperform the other. 
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Figure 4.20. Impacts of Workflow Shape Parameters on the Makespans of the 
Compared Algorithms for the Fork&Join (26 jobs): Note that Figure 4.20(c) is 
identical to Figure 4.14(a). 

4.5.5.2 Insensitivity to Workflow Shape Parameters: Performance Changes Are Not 

Sensitive 

The following experiments show how the compared algorithms are insensitive to the workflow 

shape parameters in terms relative performance. To this end, we focus on the Fork&Join and Lattice 

workflows, fix their total number of jobs (i.e., the workflow size) and vary their shape parameters 

(see Table 4.7). 

Figure 4.20 shows that for all studied parameters DAR and DTO perform better than the banker's 

algorithm for the Fork&Join and, as the fan-out factor increases, the performance of all compared 

algorithms is slightly degraded. These results are expected since, compared with DAR and DTO, 

the banker's algorithm is conservative in resource utilization, and as the fan-out factor increases, the 
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intra-instance concurrency of the workload increases, resulting in higher storage contention and 

lower performance. 

Figure 4.21 shows how DAR and DTO outperform the banker's algorithm for the Lattice struc­

tured workflows and how the performance of all compared algorithms is also slightly degraded as 

the shape parameters are changed from (2 x 12) to (4 x 6). These results are consistent with those 

obtained in the Fork&Joins since as the parameters change, the intra-instance concurrency increases 

and so does the storage contention. An exception is the Lattice (2 x 12) where DTO is not con­

sistently better than the banker's algorithm. There are two reasons for this. First, compared to the 

other two sets of shape parameters, the Lattice (2x12) has relatively low intra-instance concurrency, 

thereby compromising the performance of DTO. Second, as the shape changes, the total number of 

edges in the Lattice DAG is also changed, which affects the value of the maximum claim. Conse­

quently, the maximum claim of the Lattice (2 x 12) estimated by the banker's algorithm is smaller 

than those of the other two shapes (i.e., (3 x 8) and (4 x 6)), reducing the conservativeness of the 

banker's algorithm for Lattice (2 x 12) workflow in the safety check. 

In addition, these experiments show that regardless of the workflow shapes (at least for Fork& Join 

and Lattice), the relative performance between DAR and DTO remains largely unchanged as the 

workflow shape parameter changes. This demonstrates that the impact of the workflow shape pa­

rameters on the relative performance between DAR and DTO is marginal. 

To summarize, we reach the following conclusions. First, regardless of the workflow shape pa­

rameters, both the DAR and DTO algorithms are better than the banker's algorithm, showing the 

value of dataflow information in the design of deadlock avoidance algorithms. Second, the per­

formance of the compared algorithms is slightly degraded as the shape parameters are changed to 

increase the intra-instance concurrency. Last, the workflow shape parameters have minor impacts on 

the relative performance between DAR and DTO, at least for the examined Fork&Joins and Lattices. 

4.5.5.3 High Sensitivity to Workflow Sizes: Performance Differences Are Enlarged 

Figure 4.22 shows how the relative performance between the compared algorithms remains largely 

unchanged as workflow size increases, but depending on the workflow shape, the performance dif­

ferences can be highly sensitive to workflow size (compare to Figure 4.14 for small workflow size). 

To demonstrate fairness in the experiments, we also increased the storage budget in proportion to 

the workflow size (i.e., the number of jobs in workflow). 

For both the Fork&Join and Lattice workloads, the performance of the banker's algorithm is dra-
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Figure 4.23. Execution Traces (Lattice (8 x 12)): The total number of workflow 
instances that are admitted and completed by DAR and DTO as the computation 
proceeds, given a storage budget of 1100 units for the Lattice (8 x 12). 

matically degraded when the storage budget is low, which is different from that for the Pipeline 

workload whose degradation is relatively small. Such a performance sensitivity is not surprising 

since the banker's algorithm is based on the control-flow information, and the defined global max­

imum claim is determined by the total file sizes in the workflow instead of by jobs. Except for 

the Pipeline, the total file sizes increase quickly as the workflow size becomes large. As a result, 

the large value of the maximum claim significantly reduces the storage resource utilization in the 

banker's algorithm, leading to poor performance. 

As the workflow size increases, the performance differences between DAR and DTO are slightly 

enlarged for the Fork&Join (3 x 32) (see Figure 4.22(a)) but significantly enlarged for the Lattice (8 x 
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Figure 4.24. Execution Traces (Lattice (4 x 6)): The total number of workflow 
instances that are admitted and completed by DAR and DTO as the computation 
proceeds, given a storage budget of 300 units for the Lattice (4 x 6). 

12) (up to 50%), especially when the storage budget is low (see Figure 4.22(b)). We attribute these 

results to the increased differences between the numbers of instances admitted by both algorithms 

at the beginning of the computation as well as the effects of the workflow shapes. The number of 

instances admitted at the beginning of the computation is our concern because a large amount of 

storage might be held as inactive storage for a long time (possibly starting from the scratch), thereby 

compromising the performance significantly. For the Fork&Join, although the difference between 

the numbers increases as the workflow size becomes large, it is not as large as that for the Lattice 

due to the effects of the large fan-out factor. Therefore, the performance difference between DAR 

and DTO is relatively small for the Fork&Join. 
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For the Laltice (8 x 12) the large performance difference between DAR and DTO mostly results 

from the large difference between the numbers of instances admitted by DTO and DAR at the begin­

ning of the computation (i.e., 96 vs. 23; see Figure 4.23). DTO admits more instances and thus has 

much less storage left for the admitted instances than DAR, resulting in more blocked instances/jobs 

and inactive storage, which further results in a low instance completion rate (Figure 4.23). However, 

the difference in instance admission between DTO and DAR is not large for the Lattice (4 x 6): 

only 24 instances are initially admitted by DTO and 16 instances by DAR (i.e., 24 vs. 16; see Fig­

ure 4.24). The difference between these numbers is primarily determined by the localized maximum 

claim of DAR, which depends on the workflow size. 

As shown in Figure 4.22(c), the relative performance difference between DAR and DTO remains 

largely unchanged as the number of Pipeline stages increases. However, the performance differences 

of the proposed algorithms and Lang's algorithm are relatively enlarged. The performance of Lang's 

algorithm is degraded as the Pipeline size increases, thereby enlarging its performance differences 

between DAR and DTO. These results are not surprising since Lang's algorithm has the highest 

resource utilization. It is thus relatively easy to admit and block more instances than both DAR and 

DTO during the computation, resulting in a large amount of inactive storage, especially when the 

number of Pipeline stages increases. 

To further validate our explanations, we also show how the storage resources are used by each 

algorithm for the examined workloads in Figures 4.25,4.26 and 4.27. As expected, our deadlock al­

gorithms have higher active resource utilization overall than both the banker's algorithm and Lang's 

algorithm (when the storage is highly constrained for the Pipeline; less than 250 units). Moreover, 

compared to the small workflow size, DAR and DTO exhibit many more advantages for improving 

active resource utilization when the workflow size is large, which is consistent with our makespan 

results shown in Figure 4.22. 

From these experiments, we can conclude that the relative performance between the compared 

algorithms is largely unchanged, but their performance differences are enlarged as the workflow size 

increases, especially for the Lattice workload when storage is highly constrained. 
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Figure 4.25. How the storage is used by each of the compared algorithms for 
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Figure 4.26. How the storage is used by each of the compared algorithms for 
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Figure 4.28. Impacts of File Size Distribution Parameters on the Makespans of 
the Compared Algorithms: Figure 4.28(a) is the same as Figure 4.22(c). 

4.5.5.4 Insensitivity to Job Characteristics: Performance Remains Largely Un­

changed 

In the following experiments we show how the relative performance of the compared algorithms 

is insensitive to the job characteristics. Jobs are characterized by their job service times and in­

put/output file sizes. 

To this end, we conducted the same experiments as those in Chapter 4.5.5.3 while changing the 

distribution parameters of the job service time and file size. For the job service time, in addition to 

[500,1000], we also considered the uniform distribution ranges of [10, 1000] and [800,1000]. The 

job service time indicates how long the allocated storage is held by each job. Similarly, in addition 
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to [I, 10], the uniform distribution parameters of the file size were changed to [1, 1] (i.e., unit size) 

and [1, 50]. Our experimental results show that except for the Pipeline workload with unit file size, 

the relative performance between the compared algorithms is not changed.1 

Figure 4.28(b) shows the simulation results for the Pipeline workload with unit file size when 

the job service time is uniformly distributed on [500, 1000] time units. We found that the relative 

performances of DAR and Lang's algorithm are dramatically improved (even over DTO), while the 

banker's algorithm is degraded, which is different from the observations in the Pipeline with variable 

file sizes (see Figure 4.28(a)). We attribute these changes to the unit file size and corresponding 

dynamically decreased maximum claims for DAR and Lang's algorithm. Because all the files have 

unit size and each instance is scheduled based on MDF, the released storage of the completed jobs 

can be easily reused by the already admitted instances in DAR and Lang's algorithm instead of 

admitting more new blocked instances (maximum claims are dynamically decreased and thus the 

safe instance sequence is easy to construct). This is different from the Pipeline workload with 

variable file sizes, where new instances are relatively easily admitted, thereby incurring inactive 

storage. 

For the banker's algorithm, given the unit file size, the constant maximum claim is relatively 

large, and the allocated storage to each instance is either one or two units, which makes it difficult 

to build the safe sequence during the safety check. As a result, the instances that could otherwise 

be admitted when the file sizes are varied to reduce the total makespan might be blocked, leading to 

poor performance. 

4.5.5.5 Sensitivity to File Access Patterns: Relative Performance is Altered 

In the following experiments we show how the relative performance between the compared al­

gorithms is altered when the file access patterns are changed from single reader to multiple readers. 

Specifically, a file created by a job might have multiple readers (i.e.,a multiple-reader access pattern), 

instead of a single one (i.e., a single-reader access pattern) as was assumed in earlier experiments. 

To this end, we conduct an experiment by using a Fork&Join (3 x 32) workflow in which a single 

output file of the first job is read by all its child jobs. We denote the workflow as Fork&Join+ 

(3 x 32). An example of such a workflow in practice is the Proteome Analyst (PA) web service [91] 

described in Chapter 2, where the homologs found by the BLAST job are fed into different pipelines 

to classify the proteome. 

1 Since these results are not significant, we thus do not show their corresponding figures. 
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Figure 4.29. Makespan Comparisons: The algorithms are compared for the 
Fork&Join (3 x 32) workload with a file access pattern such that a single output 
file of the first job is read by all its child jobs (i.e., Fork&Join+ (3 x 32)). 

Figure 4.29 shows that DAR is not consistently better than DTO and the banker's algorithm, 

which differs from the single-reader access pattern. The relative performance between DAR and 

DTO is quite similar to the situation in the Lattice, but the performance differences after DTO 

outperforms DAR are relatively large. 

Since the single file of the first job is read by all its child jobs, the effects of the large fan-out 

factor are lessened. As a result, the inter-instance concurrency of DAR is increased, but the storage 

allocated to each instance is reduced and thus lowers the intra-instance concurrency notably. 

To validate our explanations, we profiled some runtime information of the compared algorithms 

that are presented in Figures 4.30 and 4.31, where the inter and intra-instance concurrencies of each 

algorithm for both access patterns (i.e., multiple readers and single reader) are plotted for compari­

son. From these figures, we can see that for DAR, compared to the single reader situation, more than 

half of the intra-instance concurrency is reduced for the multiple-reader situation. Consequently, the 

instance completion rate in the multiple-reader situation is slowed down, leading to degraded per­

formance. 

In addition to the degraded performance of DAR, another reason for the banker's algorithm to 

outperform DAR in the multiple-reader situation is that the reduced maximum claim defined in the 

banker's algorithm can play a dual role in improving the performance. On one hand, it can improve 

the storage utilization (i.e., minimization of the free storage) and thus allow more instances to run 

concurrently (compare Figures 4.30(a) and 4.31(a)). On the other hand, it can act as a controller 

to prevent the inter-instance concurrency from being overly increased, leaving the storage resources 
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Figure 4.30. Concurrency Comparisons: The algorithms are compared for the 
Fork&Join+ (3 x 32) with a multiple-reader access pattern. 

available for maximizing the intra-instance concurrency. From Figure 4.32, where the execution 

traces of each algorithm under a given storage budget of 1400 units are plotted, we can see that the 

instance completion rate achieved by the banker's algorithm is higher than that achieved by DAR, 

which can lead to better performance. 

In contrast to DAR, DTO is consistently better than the banker's algorithm. From Figure 4.30(b), 

we can observe that the performance advantages of DTO are primarily from its large intra-instance 

concurrency. This observation is expected since as the effects of the fan-out factor diminish, the 

value of the need matrix associated with each instance in DTO becomes small. Consequently, com­

pared to the single-reader situation, requests from the jobs in the admitted instances can be safely 
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Figure 4.31. Concurrency Comparisons: The algorithms are compared for the 
Fork&Join (3 x 32) with a single-reader access pattern. 

granted much more easily. 

DAR outperforms DTO when the storage resources are highly constrained. This is expected since 

although the effects of the large fan-out factor are lessened, the relatively large value of the maxi­

mum claim defined in DAR (compared to that defined in DTO) still limits the number of admitted 

instances. Thus, DAR achieves a better performance, which is similar to the situation in the Lattice 

(Chapter 4.5.5.3). 

Overall, our proposed algorithms are better than the banker's algorithm for the Fork&Join+ 

(3 x 32) with this new file access pattern, especially when the storage budget is low. This again 

demonstrates that by leveraging the dataflow information, we can maximize the active storage and 
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reduce the makespan for workflow scheduling. 

4.5.5.6 Summary 

In summary, based on the simulation results we have the following conclusions: 

1. Overall, both our proposed algorithms, DAR and DTO, are better than the banker's algorithm 

and Lang's algorithm for the benchmark workloads with different workflow shapes, workflow 

shape parameters, workflow sizes, job service time and file size distributions. Specifically, for 

different file access patterns in Fork&Join, DTO consistently outperforms the banker's algo­

rithm. These results demonstrate that dataflow information is valuable in designing deadlock 

avoidance algorithms to gain performance benefits for workflow scheduling. 

2. In different situations, either DAR or DTO will be the best algorithm. Roughly speaking, as 

the workflow shape is varied from Fork&Join to Pipeline and the request of the first job in 

each instance is reduced, the relative performance of DAR to DTO becomes worse (i.e., from 

consistently better than DTO for Fork&Join to consistently worse than DTO for Pipeline). 

Specifically, if the storage is highly constrained and the data dependency inside the workflow 

is high, DAR outperforms DTO. Otherwise, DTO shows some performance advantages over 

DAR. 

3. Compared with the control-flow-based banker's algorithm, both proposed dataflow-based al­

gorithms are less sensitive to the workflow shape parameters and job characteristics. 

4. Unexpectedly, Lang's improvements to the banker's algorithm in terms of total storage utiliza­

tion do not always result in improved makespans since much of the utilized storage is inactive 

utilization, which compromises the makespan. This result shows that making a distinction 

between active and inactive storage is important to minimizing makespan. 

4.5.6 Comparison with Deadlock Detection 

In the following set of experiments we show how DAR and DTO in most cases outperform the 

reference deadlock detection algorithm Det(Q.hOBgtJLDF) (see Chapter 4.5.1.2). 

Again, for instances of all the benchmark workflows, the job service times and file sizes arc 

assumed to be over-estimated and uniformly distributed on [500,1000] time units and [1,10] storage 

units, respectively. In the experiments we also assume that all of the workflow instances arrive at 

the same time. 
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Figure 4.32. Execution Traces: The total number of workflow instances are 
admitted and completed by the compared algorithms as the computations pro­
ceed. The examined workflow is the Fork&Join+ (3 x 32) with a multiple-reader 
access pattern, and the storage budget is 1400 units. 
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Figure 4.33. Makespan Comparisons (Small Workflow Size): The deadlock 
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when the workflow shape is changed. Each file has only one reader. 
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Figure 4.34. Makespan Comparisons (Large Workflow Size): The deadlock 
avoidance algorithms and detection algorithm Det(0.5Bgt_LDF) are compared 
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Storage Budget (unit) 
# of deadlocks 
# of rollbacked jobs 
% of rollbacked jobs 

Lattice (4 x 6) (2400 jobs) 
300 
7.67 
48.25 
2.01% 

400 
2 
50.33 
2.1% 

500 
2 
64.67 
2.69% 

600 
1.67 
60.67 
2.53% 

Lattice (8 x 12) (9600 jobs) 
1200 
1.9 
138.5 
1.44% 

1600 
1 
92.3 
0.96% 

2000 
0.7 
101.9 
1.06% 

2400 
0.1 
17.8 
0.12% 

Table 4.8. Comparisons of the Overhead of Deadlock Recovery between Lattice 
(4 x 6) and Lattice (8 x 12): Note that the storage budget given to the Lattice 
(8 x 12) is 4 times as much as the budget given to the Lattice (4 x 6). 

Figures 4.33 and 4.34 show how our proposed deadlock avoidance algorithms are on average bet­

ter than the deadlock detection algorithm. More specifically, Figures 4.33(a) and 4.34(a) show that 

for the Fork&Join (single-reader situation) the performance of the proposed avoidance algorithms 

and detection algorithm is very close, regardless of the workflow sizes. This primarily results from 

the large fan-out factor of the workflow, which prevents an overly large number of instances from 

being admitted and thus minimizes the storage contention (i.e., the number of deadlocks and hence, 

the overhead of deadlock recovery). 

In contrast, for the Lattice workload (see Figures 4.33(b) and 4.34(b)), the relative performance 

between the proposed avoidance algorithms and detection algorithm changes as the workflow size 

increases. When the workflow size is small (i.e. the Lattice (4 x 6)), the detection algorithm is not 

always inferior to the avoidance algorithms. Rather, it exhibits the best performance in some storage 

ranges. The reason behind this is that when the storage budget is moderately small (not too small, 

i.e., not less than 500 units in Figure 4.33(b)), the deadlocks generally occur in the early stage of the 

computation. As a result, the number of completed jobs in each rollbacked instance is small, and 

the recovery overhead is thus low. More importantly, the recovery process reallocates the storage to 

some deadlocked instances first instead of to the re-submitted victim instances, which will minimize 

the inactive storage and reduce the makespan. This demonstrates that for the detection algorithm, 

the recovery process is not always detrimental to performance. Rather, if the recovery overhead is 

not high, the storage reallocation may improve the overall performance. 

However, with increasing Lattice size, the relative performance of the detection algorithm to 

DAR and DTO is degraded. At first, we intuitively attributed this result to the overhead of the 

deadlock recovery. However, based on our observations, the recovery overhead is unexpectedly 

non-increasing as the Lattice size increases. We can observe this from Table 4.8, where the number 

of deadlocks and the number and percentage of the total rollbacked jobs (i.e., recovery overhead) for 

both the Lattice(4 x 6) and Lattice (8 x 12) are listed for comparison. We found the reason is that as 
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Storage Budget (unit) 
# of deadlocks 
# of rollbacked jobs 
% of rollbacked jobs 

Pipeline (5-stage) (500 jobs) 
50 
8.8 
78.3 
15.7% 

100 
1.7 
23.9 
4.78% 

150 
1 
14.6 
2.92% 

200 
1 
19.5 
3.9% 

Pipeline (10-stage) (1000 jobs) 
100 
8.8 
145.8 
14.58% 

200 
2.2 
23.4 
2.34% 

300 
1 
28 
2.8% 

400 
0.8 
29.6 
2.96% 

Table 4.9. Comparisons of the Overhead of Deadlock Recovery between Pipeline 
(5-stage) and Pipeline (10-stage): Note that the storage budget given to the 
Pipeline (10-stage) is twice as much as the budget given to the Pipeline (5-
stage). 

the Lattice size increases, the high level of data dependencies inside the Lattice workflow reduces 

the storage contention and thus minimizes the possibilities of deadlocks. 

In fact, the major reason for the poor relative performance of the detection algorithm is that the 

performance of DAR and DTO is relatively improved as the Lattice size increases. More specifi­

cally, although the given storage budget is proportional to the workflow size in our experiments, the 

maximum claims computed by DAR and DTO increase relatively faster than the increased storage 

budget as the Lattice size becomes large (again, the maximum claim depends on the file sizes rather 

than the jobs in the workflow). The large value of the maximum claim can prevent the Lattice in­

stances from being overly admitted, as discussed earlier. As a result, the performance of both DAR 

and DTO is relatively improved, compared to that for the small Lattice size, especially for DAR 

when storage is highly constrained. Therefore, in most cases, both DAR and DTO outperform the 

deadlock detection algorithm by up to 49.7%. 

Figures 4.33(c) and 4.34(c) show how the relative performance between the detection algorithm 

and avoidance algorithms is largely unchanged for the Pipeline workloads when the number of stages 

increases from 5 to 10. For both Pipeline workflow sizes, when the storage is highly constrained 

(less than 50 and 200 units for the 5-stage and 10-stage Pipelines respectively), both DAR and DTO 

are better than the detection algorithm. However, as the available storage increases, the detection 

algorithm gradually outperforms the DAR algorithm, but in most cases the detection algorithm is 

not as good as the DTO algorithm. 

We attribute these phenomena to the aggressive instance admission and high overhead of dead­

lock recovery in the detection algorithm. We can observe the evidence supporting this conclusion 

from Table 4.9, where the number of deadlocks and the number and percentage of the total roll-

backed jobs (i.e., recovery overhead) for both Pipeline (5-stage) and Pipeline (10-stage) are listed 

for comparison. Compared to the Lattice workload (Table 4.8), the Pipeline workload has relatively 

high recovery overhead due to its low level of data dependencies inside the workflow as well as due 
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Figure 4.35. Makespan Comparisons: the deadlock avoidance algorithms and 
detection algorithm Det(0.5Bgt LDF) are compared for the Fork&Join+ (3 x 8) 
and Fork&Join4 (3 x 32) with a multiple-reader access pattern. 

to high storage contentions. However, as the storage increases, the number of deadlocks and total 

rollbacked jobs decrease (Table 4.9), and thus the performance of the detection algorithm improves 

rapidly, even over both DAR and DTO. 

As the storage budget continues to increase, the overhead of the deadlock recovery may increase 

since approximately 50% of the storage budget needs to be released after a deadlock has been de­

tected, which indicates that more admitted instances and jobs need to be rollbacked during the 

recovery. This is evidenced by the data shown in Table 4.9. For example, when the storage bud­

get increases from 200 to 300 units for the 10-stage Pipeline workload, the number of rollbacked 

jobs increases from 23.4 to 28. Although the difference is not very large, the rollbacked jobs might 
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otherwise hold storage for a long time before they are rollbacked, adversely affecting the overall 

computation performance. 

The same explanation can also be applied to similar observations for the Lattice workload (Ta­

ble 4.8). For example, the makespan of the detection algorithm for the Lattice (8 x 12) is elongated 

when the storage budget increases from 1900 to 2000 units. 

In addition, we compared the algorithms for the Fork&Join with a multiple-reader access pattern. 

To simplify the presentation, we will use Fork&Join+ (3 x 8) to denote the Fork&Join (3 x 8) work­

flow with a multiple-reader access pattern in the following description (including Chapter 4.5.7). 

Figure 4.35 shows how the relative performance between the algorithms is changed as the workflow 

size is varied. 

Figure 4.35(a) shows that in the case of small workflow size, the detection algorithm exhibits the 

best performance when the storage budget is moderately low (not less than 250 units), but as the 

storage increases, the detection algorithm gradually becomes worse and is outperformed by DAR 

and DTO. Performance behavior such as that of the detection algorithm for the Fork&Join+ (3 x 8) is 

quite similar to that for the Lattice (3 x 8). We can understand this by following the same reasoning 

as for the Lattice workload. 

Figure 4.35(b) shows that as the workflow size increases (i.e., to Fork&Join+(3 x 32)), the relative 

performance of the detection algorithm remains largely unchanged and the performance differences 

with the avoidance algorithms are enlarged. 

Similar to the Fork&Join+ (3 x 8), both DAR and DTO are better than the detection algorithm for 

the Fork&Join+ (3 x 32) when the storage budget is very tight (less than 900 units in Figure 4.35(b)). 

However, unlike the Fork&Join+ (3 x 8), due to the initial large value of the maximum claim, DAR 

can prevent the instances from being overly admitted and thus exhibits a relatively large performance 

advantage over DTO and the detection algorithm, which is consistent with our observations in the 

Lattice (8 x 12) (Chapter 4.5.5.3). The detection algorithm outperforms DTO significantly for the 

Fork&Join+ (3x32) because of (1) the aggressiveness of DTO in admitting instances (i.e., degrading 

the performance of DTO) and (2) the low recovery overhead as well as the benefits of reallocating 

storage in the detection algorithm (thereby improving the performance of the detection algorithm). 

In summary, the relative performance between the proposed avoidance algorithms and the detec­

tion algorithm depends on the shape and size of workflow. By and large, we reach the following 

conclusions: 

1. Regardless of the workflow size, DAR slightly and consistently outperforms the detection al-
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gorithm for the Fork&Join workload with a single-reader access pattern. However, for the 

workflow with a multiple-reader access pattern, depending on the given storage budget, nei­

ther DAR nor DTO is consistently better than the detection algorithm. 

2. For the Lattice, the avoidance algorithms (especially, the DAR algorithm) exhibit significant 

performance advantages over the detection algorithm when the workflow size is large. Other­

wise, the detection algorithm generally performs better, but not always. 

3. Both DAR and DTO outperform the detection algorithm when the storage is highly con­

strained for the Pipeline workloads. The performance differences between them become 

pronounced when the workflow size is enlarged. However, as the storage increases, the per­

formance of the detection algorithm improves rapidly, even over both DAR and DTO. 

These conclusions demonstrate that our deadlock avoidance algorithms are generally desirable when 

the storage resources are highly constrained and the workflow size is relatively large. 

4.5.7 Performance Benefits of Instance Admission Control 

In this section we show how Instance Admission Control (IAC) benefits the performance of all 

the compared algorithms, including the deadlock detection algorithm, regardless of the workflow 

shapes, sizes and file access patterns. 

Again, for instances of all the benchmark workflows, the job service times and file sizes are 

assumed to be over-estimated and uniformly distributed on [500,1000] time units and [1,10] storage 

units, respectively. In the experiments we also assumed that all of the workflow instances arrive at 

the same time. 

Our simulation results are shown in Figures 4.36 and 4.37, where the normalized makespans 

of the compared algorithms for the different workflow sizes are compared, given IAC or not. The 

normalized makespan is computed as MakespaniAc/Makespanp{0iAC> where MakespaniAc 

and MakespanpfoiAC are the respective makespans when IAC is present and when it is absent. 

From these figures we have two major observations: 

1. The performance benefits of IAC are independent of workflow size, except for the deadlock 

detection algorithm on some data points for the Pipeline workloads. 

2. The performance benefits of IAC are highly sensitive to the workflow shape. Specifically, for 

the Fork&Join the benefits are marginal, but for the Lattice and Pipeline the benefits can be 

large. 
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Figure 4.36. Performance Benefits of Instance Admission Control (IAC) Mea­
sured by the Normalized Makespan (Small Workflow Size) 
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We found that the major benefit of I AC is the admission control of the workflow instances (via the 

estimated number of concurrent instances) at the beginning of the computation so that a significant 

amount of storage can be reserved for the admitted instances. For the Fork&Join, regardless of 

the workflow size, due to the large fan-out factor, the difference between the estimated number of 

the concurrent instances and the actual number of the concurrent instances is small. Therefore, 

the performance benefits of IAC for the Fork&Join workload are marginal (see Figures 4.36(a) and 

4.37(a)). 

However, for the Lattice workload, regardless of the workflow size, significant performance ben­

efits of IAC are exhibited in all the compared algorithms (see Figures 4.36(b) and 4.37(b)). For 

example, up to 69.7% (Lattice (8 x 32), 1800 storage units) performance improvement can be ob­

tained by the banker's algorithm, up to 49.4% by DAR (Lattice (4 x 6), 1000 storage units) and up 

to 61.2% by DTO (Lattice (8 x 12), 1200 storage units) in the presence of IAC. We attribute these 

results to the large difference between the estimated instance concurrencies and the actual instance 

concurrencies. As a result, IAC exhibits more performance benefits for the Lattice workload. 

Since there is no intra-instance concurrency in the Pipeline workloads, the estimated number 

of concurrent instances does not deviate much from the actual value. As a consequence, the per­

formance benefits of IAC on the compared algorithms for the Pipeline are relatively small (see 

Figures 4.36(c) and 4.37(c)). 

The detection algorithm, in general, demonstrates better performance in the presence of IAC 

because IAC not only minimizes the inactive storage but also has the side effect of reducing the 

impact of deadlock (the number of active instances is controlled). However, in some cases (see 

Figure 4.37(c) when the storage budget is 300), the performance of the detection algorithm in the 

presence of IAC is worse than that of the detection algorithm without IAC, which is different from 

the situations in DAR and DTO. This is not surprising since, as we know from the previous discus­

sion, deadlock is not always detrimental to performance. On the other hand, the IAC based on the 

estimated number might not be always helpful to the performance improvements. 

In addition, we investigate the benefits of IAC on all the compared algorithms for the Fork&Join+ 

(3 x 8) and Fork&Join+ (3 x 32). Figure 4.38 shows that, as the effects of the fan-out factor diminish, 

the performance benefits of IAC (measured by the normalized makespans) on all the compared 

algorithms become more pronounced. The results are different from those for the Fork&Join with 

a single-reader access pattern, where the performance improvements due to IAC are marginal. The 

reasons behind these results are not difficult to understand. By limiting the number of concurrent 

instances, IAC can dramatically improve the intra-instance concurrency of the Fork&Join workloads 
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64209.3 
55148.3 
50021.8 
43374.3 
41597.9 
38321.2 
36490.6 
34253.5 
32133.9 
32136.5 

gt-LDF) 

IAC 
129732 
90728.3 
69902 
57910.3 
48545 
42608.3 
37723 
34163 
31485.3 
28919 
26902 
25364 
23944.3 

Table 4.10. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Fork&Join (3 x 8) workload when IAC is present and when it is absent. Storage 
budget is varied from 250 to 1450 storage units. The lowest makespan in each 
row is boldfaced. 

because of the Pipeline structure inside the workflow and diminished effects of the fan-out factor. 

Finally, in order to compare the relative performance between the compared algorithms when 

IAC is present and when it is absent, we show more data points in Tables 4.10 through 4.13 for the 

small workflows (i.e., Fork&Join (3 x 8), Lattice (4 x 6), Pipeline (5-stage) and Fork&Join+ (3 x 8)); 

and in Tables 4.14 through 4.17 for the large workflows (i.e., Fork&Join (3 x 32), Lattice (8 x 12), 

Pipeline (10-stage) and Fork&Join+ (3 x 32)). In each table the lowest makespan in each row is 

boldfaced, which indicates which algorithm, in combination with IAC or not, can demonstrate the 

best performance. 

From these tables we have the following observations: 

1. Regardless of the workflow size, the detection algorithm combined with IAC in most cases 

gives the best performance for Fork&Join. However, for Fork&Join+, in most cases the best 

result is achieved by DAR combined with IAC. 

2. DTO in combination with IAC is consistently the best for the Lattice workloads, regardless of 

the workflow size. 

3. When IAC is present, DTO and banker's are competitive in showing the best performance 

for the Pipeline (5-stage). However, for the Pipeline (10-stage), DTO combined with IAC is 

clearly the performance leader. 

These observations demonstrate that, in general, it is more valuable to combine IAC with DAR 

and DTO than with the reference algorithms to achieve better performance. We think the reason for 
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Storage 
400 
600 
800 
1000 
1200 
1400 
1600 
1800 
2000 

DAR 

NoIAC 
130244 
106076 
91639.7 
86653 
82756.3 
61705 
45072.3 
35531 
30396.3 

IAC 
105403 
72625.9 
54745 
43861.8 
37315.6 
32272.3 
29330.6 
26218.5 
24237.7 

DTO 

No IAC 
138664 
108776 
103539 
91597.7 
73836.7 
46821.7 
37645 
31455.3 
27485 

IAC 
98643.8 
65511.4 
49903.7 
40692.1 
34684.5 
30906.1 
27738.4 
25166 
22757.1 

Banker's 

No IAC 
218508 
149053 
125965 
114097 
118025 
65915 
45722 
36355.3 
30850.3 

IAC 
151242 
82590.6 
58595.6 
45872.7 
38378.5 
32956.1 
29342.3 
26847.4 
24312.7 

Det(0.5Bgt_LDF) 

NoIAC 
175311 
97400 
76074 
74732 
54626 
67590 
55304.3 
42964.3 
35409.3 

IAC 
153770 
91166.1 
65129 
49518.2 
40468.3 
35497.4 
32011.1 
28621.1 
25853.2 

Table 4.11. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Lattice (4 x 6) workload when IAC is present and when it is absent. Storage 
budget is varied from 400 to 2000 storage units. The lowest makespan in each 
row is boldfaced 

Storage 
50 
100 
150 
200 
250 
300 

DAR 
NoIAC 
120503 
69052.7 
40066 
30561 
24154.5 
20984.3 

IAC 
112850 
52939.1 
32457 
22913.3 
18311.7 
15439.6 

DTO 
NoIAC 
88661.4 
42452.6 
29613.7 
23426.6 
20118.2 
17883.4 

IAC 
86513.7 
40374.1 
26935.4 
20743.3 
16844 
14531.9 

Banker's 
NoIAC 
93133.3 
41696.8 
28415.6 
22604.7 
19459.3 
17410.7 

IAC 
90346 
39698.5 
26535.5 
20357.2 
16806.1 
14547.4 

Lang's 
NoIAC 
154004 
80590.2 
44952.5 
33242.9 
27342 
23416.5 

IAC 
136907 
56266.2 
31335.8 
23332 
18287.9 
15540.4 

Det(0.5BgLLDF) 
NoIAC 
126967 
57655 
31416.1 
22470.7 
18896.4 
15938.7 

IAC 
121578 
55427.9 
32968.3 
23802.2 
18349.1 
15570.2 

Table 4.12. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Pipeline (5-stage) workload when IAC is present and when it is absent. Storage 
budget is varied from 50 to 300 storage units. The lowest makespan in each row 
is boldfaced. 

this is that the reference algorithms are either too aggressive (e.g., the detection algorithm) or too 

conservative (e.g., the banker's algorithm) in granting the job resource requests. In the former case, 

when the number of the active instances is less than the estimated value during the computation, new 

instances are admitted more easily, potentially increasing the storage competition and the amount of 

inactive storage, whereas in the latter case the reserved resources due to the presence of IAC might 

not be efficiently used. In contrast, both DAR and DTO, by exploiting the dataflow information, can 

make efficient use of the storage resources and thus are more beneficial than the reference algorithms 

in combination with IAC. 

4.6 Concluding Remarks 

This chapter studied the value of dataflow information to a deadlock problem in workflow-based 

computing when storage resources are constrained. To this end, we presented two dataflow-based 

deadlock avoidance algorithms (i.e., DAR and DTO) based on the well-known banker's algorithm. 
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Storage 
250 
350 
450 
550 
650 
750 
850 
950 
1050 
1150 
1250 
1350 
1450 

DAR 

NolAC 
155600 
130579 
124860 
124536 
123896 
95688.5 
70996.6 
53772.6 
44756.6 
37982.3 
33536.5 
30048.3 
27387 

1AC 
102528 
73314.9 
57538.5 
47316.8 
41019.4 
36253.7 
32281.2 
29485.1 
27147.5 
25155.4 
23514.5 
22135.6 
20813.2 

DTO 
NolAC 
165829 
136258 
123098 
113730 
74467.4 
54318.9 
43698.4 
36908.8 
32242.2 
28814.8 
26239.3 
24063.4 
22475.4 

I AC 
116919 
78687.3 
60128.2 
49576.8 
42127.3 
36545.1 
32874.3 
29516.3 
27061.9 
25119 
23327.8 
22124.6 
20717.3 

Banker's 
NolAC 
186795 
146153 
132095 
124346 
117350 
69178.6 
51492.2 
42404.3 
36005.5 
31621.5 
28494 
25692.2 
23722.5 

1AC 
134431 
85515.9 
63359.6 
51252.7 
43623.1 
37474.8 
33613.1 
30431.7 
27661.1 
25511.3 
23787.2 
22396.2 
21259.3 

Det(0.5BgLLDF) 

NolAC 
153235 
115678 
95367.1 
73315.2 
64464 
75253 
70548.1 
57641.1 
46265.9 
39300.6 
34291.1 
30707 
27858.7 

IAC 
103991 
75961.3 
59488.9 
48922.8 
43356.1 
37826.5 
33771.1 
31004.9 
28399.2 
26639.7 
24903.1 
23544.2 
22324.9 

Table 4.13. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Fork&Join+ (3 x 8) workload (multiple readers) when IAC is present and when it 
is absent. Storage budget is varied from 250 to 1450 storage units. The lowest 
makespan in each row is boldfaced. 

Storage 
1000 
1200 
1400 
1600 
1800 
2000 
2200 
2400 

DAR 
NolAC 
131023 
107134 
90634.2 
79110.4 
70509.6 
63757.4 
58438.6 
54253.9 

IAC 
131310 
106357 
90234.3 
79045.8 
70186.9 
63573.3 
58265.9 
54162.1 

DTO 
NolAC 
134044 
111314 
94784.9 
85391.7 
77752.6 
70910 
65002.3 
61190.2 

IAC 
132185 
107567 
91713.5 
79782.7 
71117 
64142.1 
58605 
54044.8 

Banker's 
NolAC 
245419 
158998 
124120 
102918 
87649.1 
77720.2 
69750.2 
63772 

IAC 
241950 
157842 
123949 
102530 
87677.4 
77774.3 
69825.8 
63434 

Det(0.5Bgt_LDF) 
NolAC 
131772 
109793 
93786.2 
84427.1 
76395.7 
70122.7 
64971.3 
59069 

IAC 
129885 
106115 
90218 
78959 
70183.1 
63657.3 
58289.7 
53698.1 

Table 4.14. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Fork&Join (3 x 32) workload when IAC is present and when it is absent. Storage 
budget is varied from 1000 to 2400 storage units. The lowest makespan in each 
row is boldfaced. 

The essence of these algorithms is to make important distinction between active and inactive re­

sources and attempt to maximize the active resource utilization for performance while avoiding 

deadlock. 

Through simulation-based studies, we show how dataflow information allows our DAR and DTO 

to have lower makespans than the control-flow-based banker's algorithm, Lang's algorithm and the 

deadlock detection algorithm for a variety of workflow shapes, sizes, and other parameters. 

110 



Storage 
1200 
1400 
1600 
1800 
2000 
2200 
2400 
2600 
2800 
3000 
3200 
3400 

DAR 

NolAC 
181700 
168563 
159435 
151154 
143084 
128633 
119226 
109070 
100355 
92046.7 
86875.5 
80708.7 

1AC 
170328 
141376 
128902 
112890 
106324 
96364.3 
88926 
82907.3 
76944.8 
71025.1 
68182 
64381.5 

DTO 
NolAC 
375807 
242077 
183754 
151374 
131850 
116970 
105149 
96411.7 
89562.1 
83680.8 
78949.4 
75133.3 

1AC 
150044 
128602 
113618 
101434 
93393.6 
86155.1 
78719 
74661.9 
69206.7 
66449.3 
62292.9 
58660.3 

Ban 

NolAC 
820535 
666974 
604108 
581179 
498376 
322673 
219772 
175634 
147842 
127288 
114022 
101947 

cer's 

IAC 
553011 
315651 
231969 
182276 
154059 
130891 
116226 
103660 
94723.1 
86703.3 
80437 
75215.9 

Det(0.5E 
NolAC 
342260 
273203 
206670 
184112 
228940 
236431 
208678 
187265 
150710 
130055 
117171 
107503 

gt-LDF) 
IAC 
270288 
204986 
168375 
142250 
124379 
110428 
101269 
91488.3 
85109.5 
78163 
73738 
68559.6 

Table 4.15. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Lattice (8 x 12) workload when IAC is present and when it is absent. Storage 
budget is varied from 1200 to 3400 storage units. The lowest makespan in each 
row is boldfaced. 

Storage 
100 
200 
300 
400 
500 
600 

DAR 
NolAC 
122096 
74347.3 
46954.7 
33397.7 
27774.3 
22909 

IAC 
114920 
59413 
36141.6 
26402.2 
21588.6 
18574.6 

DTO 
NolAC 
97967.3 
55442.7 
40532.7 
33987.7 
29977 
22732.3 

IAC 
90364.6 
44784.4 
31192.2 
23697 
21092.8 
16664.4 

Banker's 
NolAC 
132994 
55302.3 
38092 
30604.3 
26244 
22853 

IAC 
126164 
50779.2 
33233.4 
25532.6 
21752.8 
18185.2 

Lang's 
NolAC 
191251 
98990.7 
69593 
45009 
38009 
25868 

IAC 
173290 
68936.2 
38909 
28057.6 
22637.2 
19227.4 

Det(0.5Bgt.LDF) 
NolAC 
171910 
71307.3 
38987.3 
37998.7 
35860 
26926 

IAC 
173287 
78320.8 
42149.2 
29838.6 
23539.8 
20282.4 

Table 4.16. Performance Benefits of Instance Admission Control (IAC) Measured 
by Makespan: The algorithms are compared (measured in time units) for the 
Pipeline (10-stage) workload when IAC is present and when it is absent. Storage 
budget is varied from 100 to 600 storage units. The lowest makespan in each 
row is boldfaced. 

Storage 
1000 
1200 
1400 
1600 
1800 
2000 
2200 
2400 

DAR 
NolAC 
177012 
171605 
149194 
127126 
106901 
90396.1 
77527.6 
67196.4 

IAC 
97265.8 
81741.2 
70220.4 
61616.6 
56328.7 
51138.6 
47057.1 
43623.4 

DTO 
NolAC 
149178 
111102 
90961.9 
77693.4 
67676.2 
59740.4 
53550.7 
49075.1 

IAC 
113060 
93860.7 
77850.1 
67984.6 
61479.5 
55031.5 
50404.3 
47226.7 

Banker's 
NolAC 
269129 
173712 
116987 
90801.6 
75554 
65402.9 
57957.2 
52210.5 

IAC 
128468 
101252 
82564.9 
70995 
62742.9 
56420.6 
51259.3 
47015.2 

Det(0.5Bgt_LDF) 
NolAC 
159619 
141378 
158160 
137780 
111849 
91827.5 
78653.6 
68976.9 

IAC 
101823 
85861.4 
74017.8 
65362.4 
60092.7 
54581.6 
50365.7 
46614.2 

Table 4.17. Makespan Comparison: The algorithms are compared (measured 
in time units) for the Fork&Join+ (3 x 32) workload (multiple readers) when IAC 
is present and when it is absent. Storage budget is varied from 1000 to 2400 
storage units. The lowest makespan in each row is boldfaced. 
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1 DAR (IAC) 
[] DTO (IAC) 

Banker's (IAC) 
1 Det (0.5Bgt_LDF) (IAC) 

450 650 
Storage Units 

(a) Fork&Join+ (3 x I 

DAR (IAC) 
DTO (IAC) 
Banker's (IAC) 
Det (0.5Bgt_LDF) (IAC) 

1500 2000 
Storage Units 

(b) Fork&Join+ (3 x 32) 

Figure 4.38. Performance Benefits of Instance Admission Control (IAC) Mea­
sured by the Normalized Makespan: DAR, DTO and the banker's algorithm are 
compared in the absence and presence of IAC for the benchmark workloads of 
Fork&Join+ (3 x 8) and Fork&Join+ (3 x 32) with a multiple-reader access pattern. 
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Chapter 5 

WaFS Prototype 

The main point of this research is that dataflow information is useful when scheduling scientific 

computations. Specifically, a variety of scheduling algorithms have been proposed and evaluated 

through a simulation-based, parameter space study (Chapters 3 and 4). However, since the schedul­

ing benefits are predicated on having the dataflow information in the first place, we address the issue 

of how to obtain the necessary information for a workfiow-aware file system. 

In this chapter, we describe the design and implementation of a WaFS prototype. As a proof-

of-concept, the WaFS prototype provides evidence that such a system can be built with low (e.g., 

12% or less) overheads and that the dataflow, job service time (JST), and file size information can be 

gathered transparently. Finally, the information gathered by the WaFS prototype is used as the base­

line values for a new simulated workload, with qualitatively similar (but, as expected, quantitatively 

different) results to previous simulations, thus validating some of the ideas from this research. 

5.1 Design Options 

We have developed a prototype as a proof-of-concept, called WaFS (short for Workflow-aware 

File System), to efficiently collect and exploit file-based dataflow information on a per-instance 

basis. The dataflow information is collected by tracking the system calls open () and c l o s e () to 

determine producer-consumer relationships. Thus, a key design problem in WaFS is how to intercept 

system calls related to file accesses. This can be done either at the kernel level or at the user-level. 

One of the most natural kernel-level approaches would be to directly modify the system call 

routines that need to be monitored. However, this approach requires modifying the kernel and hence 

rebuilding the kernel. Another relatively simple kernel-level approach is to write a Loadable Kernel 

113 



Module (LKM) that can replace an entry in the system call table of the kernel with a function of our 

own. Our function would then be invoked when a system call is made, instead of the kernel code 

implementing the invoked system call (e.g. open () ) . Although this approach does not require the 

modification and rebuild of the kernel, the major problem is that we have to know the address of 

the system call table, which is no longer given after Linux Kernel 2.4. Since we are only concerned 

with the system calls that are related to file system accesses, we have another option for tracking 

these system calls by installing an extensible file system via the Virtual File System (VFS) (e.g., 

Scruf [68]). 

Kernel-level approaches are transparent to the user applications and execution environments and 

generally demonstrate good performance in observing all file access operations made by a given 

process. However, these approaches suffer from a major drawback in that the load and unload of the 

modules require super-user privileges, making them difficult to deploy in practice. Therefore, the 

most user-friendly approach would be a method acting at just the user level. 

Our prototype consists of three major components: Batch Scheduler, Monitor and Versioned 

Namespace Manager (VNM). As previously discussed, the Scheduler schedules the submitted jobs 

to computational hosts, and the VNM is responsible for detecting and managing the dataflow in­

formation associated with the workload. The Monitor mediates between Scheduler and VNM to 

intercept the system calls of the running jobs and communicate with VNM to allow VNM to accom­

plish its tasks. All these components are running at the user-level. Because of this, the architecture 

enjoys the following advantages. 

1. No requirement to change the underlying file system. 

2. No requirement to modify the standard shared libraries. 

3. No requirements of the source code of the applications. 

5.2 The Batch Scheduler and Versioned Namespace Manager 

Note that our simulated batch scheduler is not as sophisticated as a production batch scheduler. 

Modifying PBS [47], LSF [108], or SGE [90] to be WaFS-compatible would be a desirable but 

non-trivial task. Furthermore, as justified earlier, a simulated system (including our simple batch 

scheduler) is what makes it realistic to explore the already large parameter space of our policies. 

Conversely, making our simulated batch scheduler as sophisticated as, say, PBS would add many 

more dimensions to the parameter space. Therefore, we focus our prototyping efforts on the least-
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understood component of the overall system: How can we monitor jobs to transparently gather 

dataflow (and other) information (Chapter 5.3)? 

We designed the batch scheduler and VNM based on a client/server architecture. The batch 

scheduler is simulated as a batch queuing and workload management system that acts as a client that 

communicates with the VNM (the server) to schedule and manage the user submitted workloads 

among a set of networked computational hosts. 

The VNM is built on top of an existing file system to capture the dataflow information on a 

per-instance basis (i.e, multi-version namespace) and provide service to the client. To achieve this 

goal, an On-line Data Dependency Solver is implemented to construct dataflow graphs in WaFS by 

resolving the data dependencies as the computation proceeds. In addition, a query utility is provided 

to serve the remote requests (i.e., for dataflow information) from the batch scheduler. 

The centralized VNM introduces a performance bottleneck, but we believe that the performance 

loss due to the centralized VNM accesses is insignificant compared to the job computation time. 

5.3 The Monitor 

There exist a variety of techniques that can be used in the Monitor to intercept the system calls at 

the user-level. These include wrapping the calls in the application source code, instrumenting the C 

library and overriding the C library. Each technique has its own drawbacks: source code required, 

language-dependent or not guaranteed to work with all processes. 

The technique we used is the process-tracing mechanism called ptrace that was originally pro­

vided in the Linux kernel and most other Unix-like operating systems to facilitate debugging pro­

grams. Ptrace allows one process to examine and change the behavior of another process. This 

functionality is used by the debugging utility strace in Linux to monitor the system calls used by a 

program and all the signals it receives. 

Using a ptrace-based monitoring system has all of the benefits (except the performance) of the 

kernel-level approaches and the previously discussed user-level approaches, yet it overcomes their 

respective drawbacks. For example, it is able to intercept all file access system calls made by any 

given process without the modification of the execution environments and the legacy applications. 

On the other hand, compared with the aforementioned user-level approaches, it also overcomes the 

difficulties in preserving and sharing information between monitored processes.1 

The major disadvantage of the ptrace-based monitoring system is the performance degradation, 

1 The file system runs in the separate address space of each process; sharing data among them becomes more difficult. 
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especially for those system-call-intensive applications, as each system call may incur multiple con­

text switches. However, we will provide evidence (Chapter 5.4.2) that the overheads are less than 

12% for short jobs and less than 0.4% for the longer jobs of many HPC workloads. 

5.3.1 Handling open() and close() 

To collect dataflow information on a per-instance basis, it is critical for the Monitor to track 

both open () and c l o s e () system calls. Roughly speaking, intercepting the open () system 

call is primarily useful to track the dataflow dependency between the jobs, whereas intercepting the 

c l o s e () system call can assist in the construction of the versioned namespace for each workflow 

instance. 

When entering the open () system call, the Monitor first checks whether the operation flag is 

O-RDONLY or (XRDWR. If it is, the Monitor obtains the file pathname2 and sees if the file already 

exists. The file will be read directly if the answer is "Yes". Otherwise, the Monitor will contact 

the VNM to obtain the correct version of the file and its new location. However, if the checked 

file is not found in VNM, the Monitor will simply report "file not found in VNM" and continue the 

system call. Otherwise, the Monitor rewrites the file pathname argument of open () and continues 

the system call. 

Before leaving open ( ) , the Monitor creates an entry in a. file table for each output file, recording 

its file descriptor and corresponding file name and operation flag. 

The Monitor catches c l o s e () only before it leaves the system call. Specifically, the Monitor 

first uses the file descriptor to search the file table and get the corresponding file access information. 

If the file is created for writing, the Monitor first obtains a version number and a new path location 

from the VNM and then constructs a new pathname for the file and records it in the VNM. Finally, 

the Monitor moves the newly created file (with a new version number) to the new path location. 

In addition to open () and c l o s e {), in order to handle the complexity of real applications, we 

need to pay attention to all the system calls that take a file pathname as an argument. Basically, the 

Monitor handles the file pathname by following a similar procedure. 

5.3.2 Manipulating the File Pathname 

To correctly collect the dataflow information, file pathname manipulation is critical. In our im­

plementation we manipulate the file pathnames in two main cases: linking and rewriting. 

2 Here we do not discuss the filename canonicalization and the procedure of filtering out the non-relevant filenames. 
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Both hard linking and soft linking can affect the correctness of the detected dataflow graph if we 

do not consider them. One of the typical algorithms used to address the linking problem is to canoni-

calize paths by replacing such elements (along the path) as ' / ' , ' . ' , ' . . ' and symbolic links with 

their absolute path. The GNU C library functions r e a l p a t h () and c a n o n i c a l i z e _ f i l e _ n a m e () 

can accomplish this functionality and get the real name of a file. However, both functions resolve rel­

ative paths from the working directory of the current running process, and hence cannot completely 

fulfill our requirements. Our solution to this problem is to simply change the working directory of the 

Monitor to that of the process being monitored before invoking the function of either r e a l p a t h () 

or c a n o n i c a l i z e _ f i l e j i a m e () and then change back after finishing the function. 

Rewriting the file pathname in the open () system call is always required in our implementation 

since the input file might be versioned and relocated somewhere. Unfortunately, it is not always 

possible to update the file pathname in place because the new pathname may be longer than the 

existing pathname, and the memory segment of the existing pathname may be read only. To address 

this issue, we adopted one of the typical solutions [2] that writes the new file pathname in a free 

portion of the monitored process's address space and redirects the system call argument (i.e., EBX 

register in Linux on x86) to point to the new pathname string. 

5.3.3 Tracing Process Family 

Tracing a process' family is another requirement for detecting and constructing the correct dataflow 

graphs for those real application workflows whose constituent jobs may involve multiple processes. 

For example, the jobs may invoke s y s t e m () and/or p o p e n ( ) functions to execute other programs 

or invoke the system calls f o r k () or c l o n e () directly to create multiple processes. However, 

the ptrace mechanism cannot automatically intercept the system calls that are made in the resulting 

child processes of the monitored process. To address this issue, one typical solution is to intercept 

the f o r k () system call made in the monitored process, obtain its child process id before f o r k () 

returns and then attach the child process to the monitoring process using PTRACE.ATTACH primi­

tives. Although this solution is simple, it has a race condition since the newly attached process (i.e., 

the child process of the original monitored process) may start making system calls before its parent 

(i.e., the original monitored process) leaves the f o r k () system call. 

A natural solution to the race condition is to not allow the child process to return from the 

f o r k () system call until the parent returns. This solution can be simply achieved by rewriting 

the intercepted f o r k () system call into a c l o n e () system call with the CLONE.PTRACE flag in 
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our Linux platform. 

5.4 Proof-of-Concept and Results 

The prototype was created mainly as a proof-of-concept: to show it is possible, given certain 

assumptions about applications and workflows (e.g., static workflow shapes, all dataflows are via 

producer-consumer pattern), to automatically detect and collect the necessary dataflow information. 

In this section, we use GROMACS as an example. First, we show that the WaFS prototype can 

collect dataflow information from GROMACS. Second, we use the JST and file size information 

gathered by WaFS as the basis of a new, simple simulation study (Figure 5.5). The relative per­

formance of our new policies (e.g., DAR, DTO) compared to existing policies (e.g., the banker's 

algorithm) are similar to the results in Chapter 4, but with significant differences in the absolute 

performance. 

Ideally, the WaFS prototype should be directly integrated with a batch scheduler and Chap­

ter 5.4.3 should be a real workload experiment instead of a simulation. However, building such 

a system is beyond the scope of this thesis. 

Nonetheless, this section shows an end-to-end example of a real application (i.e., GROMACS), 

real dataflow, JST, and file size information gathered by the prototype, which is then used as baseline 

parameters for a simulation. 

5.4.1 Dataflow Collection: A Running Example 

To illustrate the capability of WaFS to automatically collect the dataflow information of a work­

flow, in this section we present a running example from GROMACS [42], i.e., the Ribonulease 

S-peptide (abbreviated as S-peptide) workflow. This example is interesting because of the following 

features: 

• A detailed description of the steps to run the workflow and an example dataflow chart are 

available in the GROMACS document, which can be used to verify our results. 

• The workflow has complicated file access patterns. For example, the constituent programs 

(i.e., jobs) can version their output files and call other programs through the system() function. 

Also, the programs can automatically add file extension names to the opened files (provided 

as parameters in the command line), depending on the command line options. 
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Roughly speaking, this workflow consists of five steps, which are implemented by seven pro­

grams (shown in parentheses):3 

1. Generate a topology file (pdb2gmx), 

2. Solvate the peptide ( e d i t c o n f , genbox) , 

3. Energy minimization (grompp, mdrun), 

4. Molecular dynamics with position restraints (grompp, mdrun), and 

5. Checking of the simulation results (g_energy). 

To simulate the S-peptide, we need a starting structure (i.e., the initial input data). This can be taken 

from the protein data bank. Here we simply use the example stored in the file s p e p t i d e .pdb in 

the GROMACS package. This file contains 146 atoms, classified into 19 groups. 

We follow the semantics oiDAGMan [18] to design our input script and show an example script 

of S-peptide workflow, called gromacs.st, in Figure 5.1 where three segments must be specified. 

The first includes the user name and the workflow name and location (i.e., the set of the con­

stituent jobs in the workflow). For this particular instance the locations of the initial input data 

files and final output data files are specified by I n p u t and O u t p u t , respectively. For example, 

the instance's inputs may be located in Workf l o w / g r o m a c s / i n i t - i n p u t , and the outputs in 

Workf l o w / g r o m a c s / f i n a l . o u t p u t . 

The next segment is .map in which the jobs in the workflow are mapped one-to-one to integers, 

each integer representing a job and being used in the following segments. 

The last segment .dep contains the control-flow description described by the user. For example, 

the child J o b 1 cannot start until its parent J o b 0 finishes. In our example, there are 8 jobs in the 

workflow which are organized as a pipeline (see Figure 5.2). 

To submit a workload to our simulator, we also implement a command qsub to mimic submission 

in a real batch queuing system: 

% q s u b g r o m a c s . s t 

qsub will parse the input script g romacs . s t and translate its contents into a workflow instance 

that can be scheduled by the simulated batch scheduler. The dataflow dependencies are tracked 

by WaFS as the computation proceeds, and the computation ends up with the construction of the 

dataflow graph of the S-peptide workflow in VNM (Figure 5.3). 
3Details at h t tp : //www.gromacs .org/documentation/reference/online/speptide.html. 
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# GROMACS script 
# edited by Wang Yang 
User: wang 
Workflow: GROMACS 
Location: Workflow/gromacs 
Input: Workflow/gromacs/init_input 
Output: Workflow/gromacs/final_output 
.map 

# jid command arguments 
# (1) Generate a topology file (.top) from the pdb-file (.pdb) 
JOB 0 pdb2gmx -f speptide.pdb -p tmp/speptide.top -o tmp/speptide.gro 
# (2) Solvate the peptide in a periodic box filled with water 
JOB 1 editconf -f speptide -o -d 0.5 
JOB 2 genbox -cp out -cs -p speptide -o tmp/b4em 
# (3) Perform an energy minimization of the peptide in solvent 
JOB 3 grompp -v -f em -c b4em -o tmp/em -p speptide 
JOB 4 mdrun -v -s em -o tmp/em -c tmp/after_em -g tmp/emlog 
# (4) Perform a short MD run with position restraints on the peptide 
JOB 5 grompp -f pr -o tmp/pr -c after_em -r after_em -p speptide 
JOB 6 mdrun -v -s pr -e tmp/pr -o tmp/pr -c tmp/after_pr -g tmp/prlog 
# (5) Show results 
JOB 7 g_energy -f pr -o tmp/out -w 
.dep 
# control-flow description 
PARENT 0 CHILD 1 
PARENT 1 CHILD 2 
PARENT 2 CHILD 3 
PARENT 3 CHILD 4 
PARENT 4 CHILD 5 
PARENT 5 CHILD 6 
PARENT 6 CHILD 7 
#end 

Figure 5.1. An Example of a GROMACS Input Script: gromacs.st 

5.4.2 Overhead of Prototype on Potential Applications 

The overhead of WaFS on potential applications is expected to be low because there are relatively 

few calls to open () and c l o s e () in scientific workloads. This can be validated by examining the 

GROMACS benchmarking system gmxbench [42] that consists of four molecules published by the 

GROMACS group. The four molecules in the benchmark are d.dppc, d.lzm, d.poly-ch2, and d.villin, 

whose atom trajectories, in water, over a period of time, are simulated by GROMACS software. The 

gmxbench is known to be compute-intensive and is representative of a large class of simulation-based 

applications. 

For our study, we compare the runtime of the computationally intensive 6 . mdrun program that 

actually performs the simulation. The configuration for this experiment is shown in Table 5.1. We 
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0,pdb2gmx 

t t.editconf' J 

2-.genbox 

3.gtompp 

ndmn 

i.grompp 

speptide.top 

Figure 5.2. The Given CFG Figure 5.3. The Detected DFG 

use two computers; one is assigned to the simulated batch scheduler and monitor, and the other 

is to the VNM. The monitor runs in each compute host to monitor the job execution and send the 

intercepted information to the remote VNM. The monitor and VNM constitute the WaFS prototype. 

The network between the Simulated Batch and VNM is 1 Gbit/s Ethernet. 

The results of the GROMACS gmxbench are shown in Figure 5.4. Each data point is averaged 

over 5 runs. The bars labeled Or i g are for the same runs, but without the overheads associated with 

WaFS. The overheads for WaFS are from 0.39% (d.dppc) to 11.74% (d.villiri), depending on the 

computation involved in each simulated molecule. Although 11.74% overhead might be considered 

high in absolute terms, the low run time (97 seconds, Table 5.3) is not as typical as the longer runs 

times of the d.dppc example. 
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Component 

Simulated Batch (Monitor) 
VNM 

CPU 

AMD Athlon 2.4GHz 
AMD Athlon XP 2.2GHz 

Memory 

1GB 
1GB 

Cache | OS 

512KB 
512KB 

Linux 2.4.29 
Linux 2.6.18 

Table 5.1. Experimental Configuration for gmxbench 

GMX Benchmark 
6000 

5000 

4000 

2000 

1000 

d.dppc d.lzm d.poly-ch2 d.villin 

Figure 5.4. Performance of GROMACS gmxbench in absence and presence of 
WaFS. The performance overhead of WaFS is shown by the percentage above 
the bar. 

5.4.3 Simulation Results for an GROMACS Workload 

Of course, the purpose of WaFS is to gather information which can then be used by a WaFS-

compatible batch scheduler. Unfortunately, as discussed earlier (Chapter 5.2), a WaFS-compatible 

scheduler does not exist and creating one is beyond the scope of the current research. 

As an intermediate step, we can use the WaFS-measured information (e.g., dataflow, JST, file 

sizes) from real runs of GROMACS (Tables 5.2 and 5.3) to serve as the basis for a simulated work­

load (Figure 5.5). Note that the simulations in Chapters 3 and 4 are not based on these measured 

values because of the relative lack of variety (i.e., limited JST and file size distributions) in the 

parameter space values of the GROMACS input files. 

The specific methodology of the new simulated workload is complicated, but is as follows: 

1. For all of the pipeline stages, except 6 .mdrun's JST, the simulation's average JST and file 
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size values come from the S-peptide input file (Table 5.2). 

The actual JST of a job for all stages (including 6 .mdrun, below) within an instance is from 

a normal distribution in the range [ (0.9 x average JST), (1.1 x average JST) ]. 

Since it is part of the GROMACS software distribution, S-peptide is readily available. For 

completeness, the 6 .mdrun values for S-peptide are given in Table 5.2, but the JST=328 

value is not used in the simulation. 

2. For the JSTs for stage 6 . mdrun, the simulated workload uses a combination of values from 

gmxbench (Table 5.3). Specifically, for 100 workflow instances, 25 instances are based on 

each of the four benchmarks in gmxbench. Therefore, there are 25 instances with {average 

JST=5433 s, S-peptide file size=426 KB}, 25 instances with {average JST=708 s, S-peptide 

file size=426 KB}, 25 instances with {average JST=112 s, S-peptide file size=426 KB}, and 

25 instances with {average JST=97 s, S-peptide file size=426 KB}. As with the other stages, 

the actual JST of the 6 .mdrun job within an instance is from a normal distribution around 

the average JST, as described above. 

Note that the JST and file sizes for pipeline stages 0 to 5, and 7, are not available for d.dppc, 

d.lzm, d.poly-ch2, and d.villin because the benchmarks are defined purely in terms of stage 

6 .mdrun, with the required files for the other stages being unavailable. 

3. In our experiment (Figure 5.5), all the data points are the averages of 10 runs by changing 

the random seed in the simulator (e.g., used to generate the normal distribution around the 

average JST), where the observed standard deviation of the simulated makespan (i.e., Y-axis) 

is very low. 

The lack of some of the input files for gmxbench makes it necessary to base the simulation values 

primarily on S-peptide. But, in a desire for a variety of JSTs for 6 .mdrun, we use the WaFS-

measured JSTs from gmxbench. Other methodologies for creating a WaFS-measured workload are 

possible; our workload still serves to validate the basic ideas behind WaFS, the prototype, and 

provides some new simulation results. 

As the storage units in the budget varies from 2,000 KB to 100,000 KB, there are marked differ­

ences in simulated makespan between the different polices (Figure 5.5). Note that the most directly 

comparable results from earlier simulations are Figures 4.33(c) and 4.34(c). As expected, the ab­

solute performance differences between the policies change given the different JST and file size 

parameters. 
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Pipeline Stage 

0.pdb2gmx 
1 .editconf 
2.genbox 
3.grompp 
4.mdrun 
5.grompp 
6.mdrun 
7.g_energy 

Job Service Time (s) 

8 
5 
16 
10 
23 
11 
328 
140 

File Size (KB) 

49 
9 
146 
469 
135 
471 
426 
15 

Table 5.2. WaFS-measured Job Service Times and File Sizes for the GROMACS 
S-peptide Workflow 

Benchmark 

d.dppc 
d.lzm 
d.poly-ch2 
d.villin 

Job Service Time (s) 

5433 
708 
112 
97 

File Size (MB) 

12 
2 
2 
1 

Table 5.3. WaFS-measured Job Service Times and File Sizes for the 6 .mdrun 
stage of GROMACS gmxbench 

But, consistent with earlier results, DTO remains the best overall algorithm because it appropri­

ately considers the file storage requirements of the later pipelines stages. DTO (still) has the lowest 

makespan, with the advantage of DTO over DAR, banker's algorithm, and Lang's algorithm grow­

ing as the storage budget increases to 100,000 KB. Although not shown, all of the policies converge 

in makespans as the storage budget gets even larger and deadlock is no longer a concern. 

In particular, the file size requirement of stage 0 . pdb2 gmx is low (i.e., 49 KB) relative to stages 

3 .grompp (469 KB), 5 .grompp (471 KB), and 6 .mdrun (426 KB). Therefore, the tendency 

for banker's algorithm, Lang's algorithm and DAR to admit more workflow instances given a small 

initial resource requirement of 49 KB, often leads to blocked instances in the later stages, which 

results in high inactive resource utilization, which also results in higher makespans. But, DTO tends 

to give resources to already admitted instances, which allows the instances to complete faster instead 

of blocking. 

Lang's algorithm, consistent with earlier simulations, still has the worst performance for the 

GROMACS workload. An interesting observation is that the detection algorithm shows a better 

performance than all the other algorithms, except for DTO. We observed the deadlock frequency 

to be high, but the released storage (after deadlock is detected and victim instances are killed) can 

allow the deadlocked instances, which are usually blocked on the data-intensive jobs, to finish their 

as quickly as possible. 
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Figure 5.5. Simulation Results for the G ROM ACS Workload: Compared to Fig­
ure 4.33(c) and 4.34(c), DTO shows greater performance advantages compared 
to other policies. 

5.5 Concluding Remarks 

This chapter introduced our ptrace-based WaFS prototype wi th a special emphasis on the dataflow 

collection. To this end, we detailed how the open () and c l o s e () system calls are handled, file 

pathnames are manipulated and process family is tracked. 

To validate the prototype, we used a real application workflow from GROMACS, called Ri-

bonulease S-peptide, as an example to illustrate how WaFS automatically collects the dataflow in­

formation. In addition, we also measured the performance overhead of WaFS for the GROMACS 

benchmark gmxbench. The overheads are measured to be between 0.39% and 11.74%, with lower 

overheads associated with longer job service times. 

Finally, we used the gathered dataflow information of the S-peptide and gmxbench as the trace/baseline 

data for a GROMACS workload to evaluate our algorithms. Our results are qualitatively consistent 

with earlier results, showing the advantages of the DTO algorithm for pipeline workflows. 
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Chapter 6 

Related Work 

We provide an overview of related work more or less according to our research scope. In Chapter 6.1 

we describe some existing techniques to resolve filename conflicts in workflow computation. Some 

related file system studies are reviewed in Chapter 6.2. In high performance computing dataflow 

information can be used in various ways, and we survey some of its applications in Chapter 6.3. The 

most recent work in storage-aware workflow scheduling is discussed in Chapter 6.4. Finally, we 

review some related work on deadlock avoidance in Chapter 6.5. 

6.1 Filename Conflict Resolution 

To enable multiple workflow instances to execute concurrently, existing systems adopt different 

strategies to avoid filename conflicts. Grid Execution Language (GEL) [64] is a scripting language 

developed by the Bioinformatics Institute, Singapore, to facilitate job scheduling in grid computing 

systems. It allows multiple instances of the same workflow to execute concurrently by creating a 

working directory for each instance. All binaries (in each instance) run in the same working directory 

where they read, create and modify files based on the control-flow information. The output of the 

instance may finally be moved to some where from its working directory. However, using a separate 

directory in a control-flow-driven scheduler to isolate computations suffers from potentially higher 

storage overhead than necessary. 

Unlike GEL, DAGMan [18] in Condor [94] (on which DAGMan is built) provides a number of 

complementary mechanisms to manage multiple instances of similar jobs and to help avoid filename 

conflicts. For output files Condor uses the $(Cluster) (i.e., job ID) macro when naming them so that 

they are unique to each job instance. 
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universe = vanilla 
executable = /bin/hostname 
output = results.$(Cluster) 
error = errors.${Cluster) 
log = log.$(Cluster) 
queue 

Figure 6.1. An Example of Condor Submit Description File 

For example, we could specify the job submit file shown in Figure 6.1 for multiple nodes in a 

DAG. This will create files like " r e s u l t s . 132", " r e s u l t s . 133", " r e s u l t s .N", etc., where 

N is the Condor job id of the actual job instance. 

To help avoid conflicts in a job's runtime files, each Condor vanilla or standard universe job is 

executed in its own unique job "sandbox" directory on the remote execution host. As a result, while 

it runs, any runtime files used by the job (in the current working directory) are safe from other jobs' 

instances running beside the job. Although DAGMan can avoid the filename conflicts in concurrent 

executions of multiple instances of a single job, it is not clear how this mechanism can deal with a 

workload that is composed of multiple dependent jobs. 

The most common solution to filename conflicts in batch schedulers is to execute each workflow 

instance in a sequential order (Figure 3.2(a), Serial Policy (BASE)). The serial policy is simple, but 

unlike the previous strategies it does not allow any inter-workflow instance concurrency. Despite 

the low degree of concurrency of the serial policy, its simplicity makes it a popular choice. 

6.2 Related File System Studies 

File systems have been studied in various computing environments for different workloads and 

with different goals. For example, FileNet [25] was designed to support a class of read-mostly work­

loads (e.g., document image processing) in a distributed system. Zebra [45] is a network file system 

that combines the two ideas of a log structured file system (LFS) and striping with parity calcula­

tions to increase file access throughput. Elephant [79,80] is a versioning file system with a design 

goal of automatically retaining all important versions of a user's files. Recently, the Google File 

System (GFS) [36] was developed to address issues in fault tolerance, the management of large data 

sets and the optimization of append-intensive files for large distributed data-intensive applications. 

Unlike these file systems, our Workflow-aw are File System (WaFS) is oriented to high-performance 

workflow-based workloads. It is designed to layer on top of the traditional file systems to discover 

the workflow-specific information automatically. And in terms of integrating the job scheduler and 
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file system, WaFS is similar to BAD-FS [12], a batch-aware distributed file system, but BAD-FS (at 

this time) is designed to deal with the issues of data consistency and replication but not scheduling. 

In contrast, the development of WaFS is motivated by a desire to improve job concurrency and to 

allow for efficient deadlock avoidance using dataflow information. 

Linking File System (LiFS) [5] and Transparent Result Caching (TREC) [97] are also related 

to WaFS. LiFS extends the traditional set of file system metadata to include not only arbitrary, 

user-specified key-value pairs on files but also relationships between files in the form of links with 

attributes. Although LiFS can be used to record the dataflow information, it cannot discover such 

information automatically as the computation proceeds, unlike WaFS. 

TREC is a general framework for transparently tracking process lineage (i.e., each process's 

parent, children, input files and output files) and file dependencies (i.e., for each file, the sequence of 

operations and the set of input files used to create the file). TREC can be used to deduce the dataflow 

information by observing program execution. However, it does not consider the filename conflict 

problem, and TREC does not use an integrated job scheduler and file system as WaFS does. 

Versioning file systems are not a new idea. Traditionally, versioning file systems are designed to 

record the history of changes to files and to facilitate easy back-ups and rollbacks to previous ver­

sions of files. Some versioning file systems in the literature include Elephant [79,80], Versionfs [72], 

Wayback [19] and Moraine [103]. However, none of these systems are integrated with a batch sched­

uler with the purpose of improving job concurrency. In addition to per-file versioning, versioning 

techniques also include volume and file system snapshots. A snapshot is a read-only, logical image 

of a collection of data as it appeared at a single point in time. For example, the ext3cow [74] file 

system, which is built on Linux's popular ext3 file system, takes advantage of snapshot capabilities 

to provide users with a time-shifting file system. 

6.3 Dataflow Applications 

The idea of exploiting dataflow information to facilitate computation is certainly not new. For ex­

ample, in parallel computer architectures [7], dataflow concepts are used to overcome the difficulty 

of conventional control-flow-based architectures in maximizing instruction-level parallelism, which 

is roughly analogous to intra-workflow instance concurrency in our context. Of course, Versioned 

Namespace (VNS) and Overwrite-Safe Concurrency (OSC) use dataflow information primarily to 

improve inter-workflow instance concurrency (which could be compared to Simultaneous Multi­

threading (SMT) processor designs [26,96]). Nonetheless, in the software systems context OSC 
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and VNS are unique in their ability to improve job scheduling through the integration of the file 

namespace manager (for gathering and controlling dataflow information) and the scheduler (for ex­

ploiting the dataflow information). 

In compiler optimization, where dataflow and control-flow analyses are common, the compiler 

attempts to improve performance by increasing instruction-level parallelism and by re-ordering or 

transforming code to reduce overheads. Of course, OSC and VNS improve the degree of concur­

rency. However, neither of our proposed strategies attempt to re-order or transform the jobs of a 

workflow since there is as yet no higher-level semantics (e.g., a programming language for a com­

piler) to constrain and guide such transformations. 

In high-performance computing systems dataflow is often used to improve job-level concurren­

cies. For example, LSF Batch [108] can define a job that is dependent on file events in advance so 

that a job can run after some file event (e.g., file arrival) has occurred. The Workflow Enactment 

Engine [105] proposes a decentralized event-driven scheduling architecture by using tuple space as 

a communication mechanism between data-dependent tasks. It allows tasks to be scheduled based 

on data dependency rather than waiting for the completion of (control-flow-based) parent jobs. A 

similar idea is also applied in PAGIS [101], a metacomputer system that uses process networks [62] 

as a semantic model for the composition of complex tasks in a geographic information system. In 

the metacomputer system a server takes a process network from a client and distributes work to the 

workers. The data is moved between the worker processes via a central queue in the server. Our 

work has the same purpose (i.e., improving concurrency) as these systems, however, our focus is on 

inferring the dataflow information automatically via the combination of the batch schedulers and file 

systems and further exploiting such information to maximize both intra- and inter-workflow instance 

concurrency. 

In addition to maximizing job concurrency, dataflow information can be exploited for other pur­

poses. For example, BAD-FS [12] refers to the flow of data as I/O scoping and uses it to compute 

an execution plan to minimize the network traffic. In Kepler [67], a scientific workflow system built 

upon the dataflow-oriented Ptolemy II system [75], dataflow information is used to specify the exe­

cution semantics of a workflow in a diagram via a Process Network Director. MSF [52] introduces 

a workflow service infrastructure for computational grid environments. Static dataflow information 

is described in its Job Control Markup Language (JCML) to facilitate data movement. 

Dataflow information can be viewed as a special kind of application-specific information, which 

is exploited by our WaFS Scheduler to improve its scheduling. In this sense the WaFS Scheduler has 

the same philosophy as AppLeS [13,14] and MARS [34]. 
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AppLeS [13,14] is an application-level scheduling project with a primary focus on developing 

scheduling agents for individual applications on production computational grids. The approach is 

to use application-specific information to model the application performance under a given set of 

resources (i.e., creating a performance model) and then based on the performance model to sched­

ule the application. The programming model of AppLeS is on a per-application basis. To relieve 

programmers of the burden, AppLeS Templates were developed as software frameworks to embody 

common characteristics from various applications with similar structure and the same computational 

model. 

MARS [34] is a framework for minimizing the execution time of distributed applications on a 

metacomputer. The application is usually structured as a Single-Program-Multiple-Data (SPMD) 

program that consists of multiple phases. For each phase, its execution profile remains the same 

across several runs. However, the phases are identified by users rather than detected automatically. 

MARS uses the phase profiling data of previous runs to derive an improved task-to-process mapping. 

The differences between our WaFS Scheduler and these systems are that the WaFS Scheduler uti­

lizes the application-specific information (i.e., dataflow information) via the underlying file system 

(i.e., WaFS), and such information is automatically discovered by WaFS, whereas, the development 

of AppLeS templates and identification of MARS phases are all the users' responsibilities. 

6.4 Storage-Aware Workflow Scheduling 

The interest in scheduling workflow-based computations in storage-constrained HPC systems is 

increasing with the awareness of the growth of datasets [9,41]. In this section we review two storage-

aware workflow scheduling systems that have recently been published in the literature [12,76]. 

Comparison with our WaFS Scheduler are given in Table 6.1. 

Bent et. al proposed a capacity-aware scheduling in BAD-FS [12], in which a centralized batch 

scheduler manages the storage space by carefully allocating storage volumes for the jobs from mul­

tiple workflow instances so that storage overflowing or cache thrashing can be avoided. To achieve 

these ends, Bent et. al identified five possible data allocation strategies which influence the exe­

cution path and the performance of the workloads [11]. Although these allocation strategies can 

prevent deadlocks (not stated explicitly by the authors), they are unable to make the best use of 

storage resources for performance optimization. For example, neither the AllPrivate strategy nor 

the AUBatch strategy optimizes the allocation of the available storage. On the other hand, all their 

allocation strategies are designed for batch-pipeline workflows and might not be effective for other 
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System 

Bent's [12] 
Ramakrishnan's [76] 
WaFS Scheduler 

Workflow 
Shape 

Pipeline 
Arbitrary 
Arbitrary 

Workflow 
Instance 

Multiple 
Single 

r Multiple 

Storage Site 

Single 
Multiple 
Single 

Garbage Collection 

Not Clear 
Cleanup Job 
Scheduler Control 

Deadlock 

Prevention 
Ostrich 
Avoidance 

Table 6.1. Comparison between Bent's System, Ramakrishnan's System and the 
WaFS Scheduler 

workflow shapes such as those have examined in this thesis. Unlike the strategies designed to care­

fully allocate the storage, our alternative is to use a deadlock avoidance approach to deal with the 

storage constraints. 

Most recently, Ramakrishnan et. al considered the scheduling of data-intensive workflows with 

more general shapes onto a set of storage-constrained distributed computational sites [76]. They 

address exactly the same problem as ours, i.e., improving the workflow data storage utilization. 

Their basic approach is to add a cleanup job for each data file when that file is no longer needed by 

other jobs in the workflow or when it has already been staged out to some permanent storage. The 

garbage files are deleted (also called garbage collection) in time, and the amount of storage used for 

the workflow can be reduced significantly. Although the cleanup jobs are not compute-intensive, the 

large number of cleanup jobs may cause performance degradation. To mitigate this problem, they 

also implemented a heuristic that uses a single cleanup job for removing multiple files. Unlike their 

approach, the garbage collection in our system is directly controlled by the batch scheduler based 

on the dataflow information gathered in WaFS, rather than requiring cleanup jobs. 

A major difference between our system and theirs is how deadlock is dealt with. Their algorithm 

is storage-aware in the sense that when deciding to schedule a job, the disk space available from 

each site is first considered and only the eligible sites (i.e., the sites with sufficient disk space) are 

prioritized according to some performance metrics for the job scheduling. Job are mapped to the 

sites with the highest priority first to minimize the overall execution time of the workflow. However, 

deadlock is not considered in their algorithm. When a deadlock occurs, the workflow is simply 

aborted. This might not be a serious problem in the situation where a single workflow instance is 

scheduled onto multiple storage sites. We consider scheduling multiple workflow instances onto 

a single storage site, which is similar to the situation in Bent's work, and deadlock is usually a 

pragmatic concern. 
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Algorithm 

Habermann [43] 

Holt [49] 

Minoura [70] 

Lang [60] 

Kameda [56] 
Belik [10] 
Habermann [44] 
Finkel&Madduri [31] 

Lee [63] 

Time Complexity 

0(rrm-i) 

0(mn') 

0(mn) 
O(r) 
O(logn) 

0{n) 

Major Techniques 

a time-based technique 
(1) resource-request graph, but the 
resource requests are made in a 
nested form. (2) localized maxi­
mum claims are computed by dy­
namic may-wait for graph. 

resource-request graph and decom­
position into regions 

network technique 
safe sequence reduction 

allocation history in a binary tree 
parallel algorithm and hardware im­
plementation 

Comments 

Not all processes need to be 
sequenced in the safety check 
address the artificial deadlock 

localized maximum claims 

localized maximum claims 

amortized worst case 
single resource type 
single resource type 

for MPSoC 

Table 6.2. Comparison of Some Banker's-based Deadlock Avoidance Algorithms 
(m: the number of resource types, n: the number of processes, r: the number 
of resource units) 

6.5 Deadlock Avoidance 

Deadlock avoidance attempts to keep the system in a set of safe states, where the circular chain of 

resource contention that produces the deadlock cannot occur. To achieve this, it is usually necessary 

to have some advance information about the resource use of processes. For example, the most widely 

recognized banker's algorithm requires a priori knowledge of the maximum amount of resources 

needed by each process. Unfortunately, such knowledge is not always available in reality, rendering 

this algorithm mostly inapplicable in practice. However, as previously discussed, in workflow-based 

computations the storage requirements of each job are in general available, making the deadlock 

avoidance algorithm a promising approach. 

The banker's algorithm, since it was originally proposed by Dijkstra to handle a single resource 

type [23], has initiated much follow-up research, most conducted in the early days of operating 

systems [43,46,49,50,70]. However, the banker's algorithm still forms the basis for many deadlock 

avoidance algorithms in a variety of application contexts [8,10,60,61]. In the studies on the banker's 

algorithm the research is mainly concentrated on the resource utilization and time complexity of the 

algorithms. We summarize some related work in this area in Table 6.2, where the first three studies 

focus on improving the resource utilization, whereas the last five concentrate on minimizing the time 

complexity. Our work largely falls into the former class, since for workflow-based workloads the 

execution time of the constituent jobs is generally much longer than the deadlock resolution time. 
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The complexity of the deadlock avoidance algorithm is thus not our primary concern. 

In order to improve the resource utilization, Habermann redesigned the banker's algorithm and 

extended it to multiple serially reusable resource types [43]. Although the contribution was im­

portant in making the banker's algorithm more general, it could not address a practical problem of 

permanent blocking, identified by R. Holt [49] as the scheduler-incurred artificial deadlock (i.e., 

the processes with safe requests were never scheduled). This problem was discussed by Holt and 

addressed by a time-based technique. 

In addition to the extension of the functionality, other research efforts focused on refining the al­

gorithm based on some interesting process models, each differing in the amount of information that 

is assumed to be available [77,85]. The purpose of these works is primarily to minimize the con-

servativeness in the safety check so that the resource utilization of the algorithms can be improved. 

An early effort was made by Minoura [70] with the concept that the control-flow of the involved 

processes can be modeled as a resource-request graph, which is a rooted tree of nodes, each node 

representing either a resource request or a resource release. Based on the resource-request graph, the 

current execution points of a process can be tracked, and then the localized approximate maximum 

claim of the process can be computed by using a dynamic may-wait-for graph. Finally, a modi­

fied version of Habermann's algorithm leverages this localized maximum claim to improve upon 

the original algorithm. However, this algorithm has a major limitation that it requires the resource 

requests to be made in such a way that for each resource type within a process, the units granted last 

are released first (i.e., a "nested" form). 

Later, based on the same resource-request graph, Sheau-Dong Lang [60] described a natural ex­

tension of the banker's algorithm to overcome the limitation of the modified Habermann's algorithm 

in [70]. Lang's algorithm decomposes the control-flow graph of a process into a nested family of 

regions and improves upon the banker's algorithm by having the knowledge of the localized approx­

imate maximum claim associated with each region. Lang's algorithm does not require a "nested" 

form of resource-request graph. However, it still inherits the rooted-tree-like resource-request graph, 

which, although it represents a wide range of applications' control-flows, cannot effectively model 

the storage access patterns in our workfiow-based computations. 

The complexity of the banker's algorithm and its variants is also a major concern in practice. 

Given n processes and m resource types, Habermann's algorithm requires 0(7wi2) time for the 

safety check. Kameda [56] presented an algorithm which with an aid of a network technique, re­

duces the complexity to 0(mn^). Belik [10] modified the banker's algorithm by slightly sacrificing 

the resource utilization but achieving an 0(mn) amortized worst case running time under certain 
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likely conditions. When considering a single resource type, Habermann [44] proposed an efficient 

algorithm to handle a resource request or release within the space and time complexity of 0(n + r) 

and 0(r), respectively, where r is the number of resource units. Later, the time complexity was im­

proved to O(logn) by Finkel and Madduri [31], whose algorithm maintains the resource allocation 

history in a binary tree. More recently, Lee [63] proposed a 0(n) parallel banker's algorithm and 

implemented it in hardware to provide a mechanism for very fast, automatic deadlock avoidance for 

a Multiprocessor System-on-a-Chip (MPSoC). 

In addition to operating systems, the banker's algorithm is also applicable in other areas where 

deadlock is recognized as a serious problem. For example, Lomet [66] tailored the algorithm to the 

needs of database systems. The proposed algorithm is not only simpler but also performs better in 

a database environment. In addition, the algorithm provides additional functions that are absent in 

the earlier algorithms. The banker's algorithm was also refined to deal with the deadlock problems 

in Flexible Manufacturing Systems (FMS) [8,61,77], where new process models and more static 

knowledge are always available to maximize concurrency while avoiding the deadlocks. 

When compared with this related work, our algorithms, Dataflow-based Aggregate Requests 

(DAR) and Dataflow-based Topological Ordering (DTO), of course, bear certain similarities to 

some existing algorithms [60,77]. However, our algorithms are unique in that they make a distinc­

tion between active and inactive resources for makespan reduction, which is not a part of previous 

approaches. 
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Chapter 7 

Concluding Remarks 

7.1 Limitations 

Our proposed system provides the benefits of transparently detecting the dataflow information 

and exploiting it to efficiently overcome the artificial constraints on concurrency in most current 

batch schedulers. However, our system does has some limitations: 

1. Dataflow graphs are assumed to be static from instance to instance. Although this assumption 

seems restrictive, we believe it is quite reasonable in scientific computation. 

2. It is assumed that no filename conflicts occur inside workflow instances. In other words, 

filename conflicts are only possible between workflow instances. In general, it is difficult 

to resolve filename conflicts inside workflow instances due to the associated race conditions. 

Such conflicts effectively represent specification errors and hence are not considered. 

3. It is assumed that the job service time and file sizes are always over-estimated; otherwise, 

deadlock can occur. 

4. Our simulation assumes a centralized batch scheduler and a single storage-constrained site. 

However, we believe that our system can be generalized to other configurations. 

5. Our WaFS prototype is not a full, production-quality system. Instead, it is just a proof-of-

concept implementation used to validate our basic design and show one possible implemen­

tation strategy. Any implementation or architecture that reliably gathers dataflow information 

can be used with our scheduling policies. 
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Although some of the described limitations prevent our system from dealing with a number of use 

cases, such cases are believed to be rare in practice; hence, our system is useful in spite of these 

limitations. 

7.2 Conclusions 

The research in this thesis was motivated by some specific problems (limitations) of control-flow-

driven batch schedulers used in current HPC systems with respect to filename conflicts and deadlock 

in storage allocation. Although these problems are not fundamental to batch schedulers, filename 

conflicts and deadlock impose constraints on job scheduling that limit the degree of concurrency and 

lower the efficient utilization of storage resources. 

Our major contribution in this thesis is in demonstrating the value of dataflow information in 

addressing these problems and advocating for a systematic solution that is more transparent, easier 

to use and has performance benefits. We proposed a system (i.e., the WaFS Scheduler) based on 

an integrated file system and batch scheduler. The essence of the system is to extend a traditional 

file system into a Workfiow-aware File System (WaFS) for capturing and managing the dataflow 

information as the computation proceeds. The system then makes this gathered dataflow information 

available to the batch scheduler in order to maximize job concurrency given the filename conflicts 

and reducing the impact of deadlock when storage resources are limited, which are generally not 

possible in the traditional control-flow-based batch schedulers. 

To leverage the dataflow information, we have developed and evaluated three scheduling policies, 

Versioned Namespace (VNS), Overwrite-Safe Concurrency (OSC) and their hybrid (HB), through 

simulation studies. 

By combining dataflow information with a versioned namespace, we showed that VNS can re­

duce the makespans by over an order-of-magnitude, depending on the arrival rate of the workload, 

while the storage overhead is low. 

In contrast, OSC takes advantage of dataflow information to safely overwrite files instead of 

always versioning files as per VNS. Thus, OSC is able to minimize the storage overhead but at the 

expense of losing DOC when more storage resources are available. Both policies exhibit advantages 

over the traditional sub-directory-based resolution of filename conflicts in terms of lower makespan 

and storage overhead. 

To combine the advantages of versioning and overwriting, HB was also studied for its ability to 

maximize both DOC and efficient storage resource utilization. The key point of HB is to leverage the 
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inferred dataflow information to effectively resolve the deadlock problem when multiple concurrent 

workflow instances compete for the limited available storage resources. 

To this end, we proposed two deadlock avoidance algorithms, Dataflow-based Aggregate Re­

quests (DAR) and Dataflow-based Topological Ordering (DTO), based on the classic banker's al­

gorithm. However, unlike previous studies, which generally do not distinguish between active and 

inactive resource utilization, our algorithms leverage the dataflow information to make the impor­

tant distinction between active and inactive resources for makespan reduction. A key part of that 

distinction is to compute maximum resource claims dynamically (as with DAR and DTO), instead 

of statically (as with the banker's algorithm). 

First, with DAR the maximum claim associated with each instance is computed at runtime by 

using the dataflow information to sum the storage requirements of all the remaining jobs. Second, 

in DTO the dataflow knowledge is exploited to topologically order the remaining jobs in the current 

instance when checking for safety. Both algorithms try to maximize the active storage utilization 

by improving either the inter-instance concurrency or the intra-instance concurrency. Our simula­

tion studies show that the proposed algorithms, in most cases, are better than the static, control-

flow-based banker's algorithm and Lang's algorithm in terms of both makespan and active storage 

utilization. 

7.3 Future Work 

A major future research direction is to take the WaFS prototype (Chapter 5) and expand it into a 

production-level system. The benefits of our new algorithms, as validated by the simulation-based 

study of this dissertation, provide significant motivation to proceed on that system-building line of 

research. Furthermore, real applications (in addition to GROMACS) can be, and should be, studied. 

A natural and worthwhile extension of the existing simulation-based studies is to consider more 

workflow shapes and different random number distributions, beyond uniform and Zipf distributions 

(Appendix B). 

Lastly, in terms of scheduling algorithms, the emphasis of this dissertation has been on mini­

mizing makespan. However, mean response time (MRT) is another key metric in scheduling and a 

proper study of using dataflow information to minimize MRT would also be valuable. 
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Appendix A 

Comparisons with Lang's algorithm 

in Workflow-Based Computation 

In spirit, our algorithms bear some similarities to Lang's algorithm [60] where the localized approx­

imate maximum claims, as opposed to the global maximum claims of each process, are used for the 

safety check. Thus, in this appendix, we will make a direct comparison between our algorithms 

and Lang's algorithm. To this end, we first review Lang's algorithm and identify its problems when 

applying it to the workftow-based computation and then describe how our algorithms address these 

problems. 

A.l An Overview of Lang's Algorithm 

Lang's algorithm [60] is a natural extension of the banker's algorithm, with the aim of improving 

the potential of resource utilization while incurring low overhead. More specifically, Lang's algo­

rithm models the control-flow of a process as a resource-request graph, represented as a rooted tree 

of nodes with each node corresponding to a resource request or a resource release. Such a graph is 

further decomposed into a nested family of prime regions. A prime region is defined as a directed 

path (i.e., a sequence of connected nodes) which satisfies the following conditions1: 

1. No resources are allocated before the control enters the first node of the path. 

2. All allocated resources are released when the control leaves the last node. 

3. No proper subpaths also satisfy the first two properties. 
1 This definition does not require the resource requests be made in a nested form. 

145 



© 

(a) (b) 

Figure A.1. Resource-request Graphs used in Lang's Algorithm: To compare 
with the storage utilization in workflow-based computation, only a single type 
of resources is depicted. In fact, Lang's algorithm can handle multiple types of 
resources. 

A subprime region is a subpath of a prime region having the same end node. Some example resource-

request graphs and their regions are shown in Figure A.l. For simplicity, only one resource type 

is illustrated. In Figure A.l(a), the path {1,2,3,4,5} consists of two prime regions {1,2} and 

{3,4, 5}, while in Figure A.l(b), {6,7,8} and {6,9,10,11} are two prime regions. An example of 

a subprime region is {9,10,11}, which is a subpath of the prime region {6,9,10,11}. 

Based on the concept of region, Lang's algorithm avoids the deadlock in such a way that, 

1. the information on the maximum resource claims for each region, i.e., localized approximate 

maximum claims, can be extracted prior to process execution. 

2. when entering a new region of each process at runtime, the original banker's algorithm is 

applied by using the localized approximate maximum claims of the region instead of the 

global maximum claims of the whole control-flow graph. 

3. all allocated resources are released before the control leaves a region. 

The key point of Lang's algorithm is to determine for each node of a resource-request graph the 

corresponding region and the maximum resource claim associated with that region. This is achieved 

by the Region Decomposition Algorithm. In this algorithm a region for a node u, denoted by re-

gion(u), is identified by collecting the nodes (including u) along the depth-first traversal path of the 

146 



resource-request graph until the net resources occupied by the collected nodes become zero. The 

maximum resource claim associated with the node u is pre-computed as well by the union of the 

claims associated with the prime or subprime regions in region(u). 

The details of Lang's algorithm can be found by refening to his paper [60]. Lang's algorithm 

suffers from the limitation of the rooted tree structure of the control-flow graph. Consequently, it 

cannot be directly used in deadlock avoidance for workflow-based computation, where the resource-

request graph can be arbitrary shape. 

A.2 The Problems of Lang's Algorithm in Workflow-based Computation 

When applying Lang's algorithm to a workflow-based computation, we first need to transform the 

dataflow DAG of the workflow into a resource-request graph by splitting each node in the workflow 

graph into a pair of nodes to represent the resource request and release, respectively. However, the 

resulting resource-request graph may have an arbitrary structure rather than the tree-like structure 

required by Lang's algorithm. Specifically, to process a resource-request graph with a more general 

structure, Lang's algorithm faces two major problems: 

1. When to compute: In a tree-like graph, the scheduling order of a node is fixed (depending 

on the control-flow). Thus, the maximum claim associated with a node, according to Lang's 

algorithm, can be computed in advance. However, in a general graph the scheduling order 

of a node is generally unknown in advance (depending on the scheduling algorithm). Lang's 

algorithm cannot effectively compute the maximum claim for each node. 

2. How to compute: In Lang's algorithm the localized maximum claim associated with a node 

is recursively computed by enumerating and traveling all its branches (rooted in the examined 

node) to select the largest maximum claim associated with its child node. The nodes along 

the path are executed sequentially. However, this computation procedure is impractical to 

compute the maximum claim associated with a node in a DAG since the scheduling space is 

generally intractable. In other words, computing the maximum claim for a node by recursively 

computing the maximum claims of its child nodes (i.e., those nodes which can be scheduled 

immediately after the examined node) in a general DAG is not effective. 

To illustrate these problems, we use an example workflow DAG, shown in Figure A.2, where 

its scheduling graph is also shown. The scheduling graph is defined as a directed tree where the 

nodes along a path signify a scheduling order. To see the first problem, we can examine Node 3 
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(a) An Example of Workflow (b) The Corresponding Scheduling Graph: 
Graph The associated maximum claims are marked 

beside the nodes 

Figure A.2. An Example of Workflow DAG and its Scheduling Graph 

in the scheduling graph. Depending on the unknown scheduling orders of the remaining nodes, the 

maximum claim associated with Node 3 might be different (i.e., 18 or 20). Thus, Lang's algorithm 

cannot compute the maximum claim in advance. 

The second problem is in computing the maximum claim for Node 3 after Node 1 has been 

completed and Node 2 has been scheduled. In this small example, Node 3 has two branches, 

with each branch having different maximum claims of 18 and 20, respectively. However, for a 

large graph, the huge number of branches might render the computation procedure for the maximum 

claims defined in Lang's algorithm to be intractable. 

Although the scheduling graph is a tree, the potential size of the tree (i.e., scheduling graph) 

makes Lang's algorithm impractical for handling the workflows with an arbitrary dataflow DAG. 

The root of these problems is that the resource-graph used in Lang's algorithm is constructed 

based on the process's control-flow information where the execution order of each resource node 

is pre-determined, which is not a general case in workflow-based computations. Therefore, in the 

case of workflow-based computations, Lang's algorithm is only feasible for the pipeline-shaped 

workflows where the job execution orders are pre-defined. 
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Resource-
Request Graph 
(RRG) 

When to com­
pute the maxi­
mum claim 

How to com­
pute the maxi­
mum claim 

Lang's 

a tree without integrating the 
scheduling information. The 
nodes along a path of the tree 
are executed one after another. 

statically computing the max­
imum claim associated with 
each node before the node is ac­
tually executed. 

the localized maximum claim 
associated with a node is re­
cursively computed by enu­
merating and traveling all its 
branches (rooted at the ex­
amined node) to select the 
largest maximum claim associ­
ated with its child node. 

DAR 
a general structured DAG in­
tegrated with scheduling infor­
mation of the nodes. The result­
ing graph is called a scheduling 
graph, a tree on which the DAR 
algorithm acts to avoid dead­
locks. 
dynamically computing the 
maximum claim associated 
with each node during the com­
putation. Thus, the maximum 
claim for a node is not fixed; it 
depends on how many nodes 
have not been completed. 

the maximum claim of each 
node is computed by exploit­
ing dataflow knowledge to ag­
gregate resource requirements 
of all the remaining nodes (i.e., 
those nodes that have not yet 
been completed). 

DTO 

the same as the DAR algorithm 

the same as the DAR algorithm 

the maximum claim of each 
node is computed by exploiting 
dataflow information to topo­
logical^ order the remaining 
nodes in the DAG for the safety 
check. 

Table A.1. Comparisons between Lang's Algorithm and our Algorithms: DAR 
and DTO 

A.3 The Comparisons between Lang's Algorithm and our Algorithms: DAR 

and DTO 

The key difference between our algorithms and Lang's is that our algorithms can handle the 

workflow graph (as well as its corresponding resource-request graph) with a more general structure. 

We first integrate the scheduling information with the dataflow DAG to define a scheduling graph, 

which is a tree to our algorithms and then compute the localized maximum claim associated with 

each node by leveraging the properties of this graph. For example, DAR computes the localized 

maximum claim by aggregating the requests of the nodes along a path, whereas in DTO all the 

remaining nodes are topologically ordered to compute this value. The detailed comparisons are 

shown in Table A. 1. 
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Appendix B 

Non-Uniform Distributions: 

Zipf-based Workloads 

In addition to uniform distributions for job service times (JST) and file sizes, we consider the impact 

of other distributions on our algorithms. In particular, we consider the Zipf distribution, which has 

a large range, is highly skewed to the lower values in the range, and therefore has long tails in 

histograms of the value frequencies (Figure B.l). 

In our experiments, the Zipf distribution generator is based on the algorithm presented by De-

vroye [22], but we limit the generated random numbers to the range [1, 500]. The Zipf distribution 

is characterized by a parameter a > 1 to capture the amount of skew. We select a — 1.5 for both 

the JST and file size. As with previous chapters, in these experiments, there are 100 instances in the 

workload and all of the workflow instances arrive at the same time. 

B.l Average of Simulated Makespans 

Figure B.2 shows, especially for small storage budgets, how DTO has the lowest average simu­

lated makespans when using Zipf distributions for both JST and file size. The advantage of DTO over 

the other algorithms is consistent with, but even more pronounced than with, average makespans and 

uniform distributions (Figure 4.14). In fact, there are a few data points with uniform distributions 

where DAR is faster than DTO (e.g.,Figure 4.14(b)), but DTO appears to dominate DAR for all data 

points with Zipf distributions. 

As noted previously (e.g., Chapter 5.4.3), DTO tends to deal better with workflows where some 

jobs have considerably larger JSTs and file sizes than other jobs. By favoring already admitted 
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Bin (Bin Size: 20) 

Figure B.1. Histogram of 1,000 Zipf Distributed Numbers (o 
mum=500) 

1.5, maxi-

workflow instances over admitting new instances, DTO avoids the problem of inactive resource 

utilization. 

B.2 Median of Simulated Makespans 

However, the skewed nature of the Zipf distribution also leads to high standard deviations over 

multiple simulated runs (Tables B.l, B.2, and B.3). Therefore, we also present the same 10 simulated 

runs of Figure B.2, but instead graph the representative data points using the median of the 10 runs 

(Figure B.3), instead of the average. 

When considering medians, the advantage of DTO is less clear than when considering average 

makespans. However, DTO remains either comparable to the best algorithm in some cases (Fig­

ures B.3(a) and (c)), or the best algorithm in other cases (Figure B.3(b)). 

A thorough examination of Zipf and other non-uniform distributions is a topic for future work. 
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Figure B.2. Average Makespans: Zipf Distributions (a = 1.5) for Job Service 
Time and File Size (10 Runs, Average) 

152 



1 1 

-

, 

—DAR 
e-Bj) rP0 

Banker's 
—Det (0.5Bgt_LDF) 

" * -^«=^rM——»- « 

-

-

l , l , 
2000 

Storage Unils 

(a) Fork&Join (3 x 8) 

DAR 
DTO 
Banker's 
Det (0.5Bgt_LDF) 

(b) Lattice (4 x 6) 

2000i-

—DAR 
•HiDTO 
** Banker's 
+ +Lang's 

Det (0.5Bgt_LDF) 

300 400 
Slorage Units 

(c) Pipeline (5-stage) 

Figure B.3. Median Makespans: Zipf Distributions (a = 1.5) for Job Service Time 
and File Size (10 Runs, Median) 

153 



Storage 

1000 

1200 

1400 

1600 

1800 

2000 

2200 

2400 

2600 

2800 

3000 

DAR 
Mean (Dev.) 

13195.4 

(56.37%) 

10764.3 
(58.28%) 
8951.2 
(69.3062%) 
8915.7 
(88.2864%) 

7827.6 
(98.6343%) 

7949.3 
(109.662%) 

7489.5 

(125.861%) 

6285.8 

(118.545%) 
5307.1 
(104.244%) 
5021.5 
(101.612%) 

5531.2 
(118.008%) 

Median 

10572 

8063 

5801 

5006 

4258 

3746 

3315 

3036 

2843 

2627 

2485 

DTO 
Mean (Dev) 

12069.2 

(65.1301%) 

9670.6 
(66.6141%) 

8292.8 
(65.8857%) 
6800.8 
(63.1433%) 

6188.8 
(69.0582%) 

5490.5 
(63.6481%) 

4969.6 
(69.2454%) 

4304.8 
(66.6276%) 

4298.6 
(65.6382%) 

3928.9 
(63.9745%) 

3814.3 
(67.0394%) 

Median 

9444 

7234 

6462 

5290 

4721 

4309 

3855 

3464 

3338 

3059 

2756 

Banker's 
Mean (Dev.) 

26376.5 
(73.9852%) 

25677.3 
(79.6774%) 

22518.7 
(86.726%) 

21600.2 
(91.2554%) 

18792.2 
(92.4956%) 

16004.3 
(90.32%) 

15985.8 
(106.946%) 

12341.7 
(97.18%) 
13460.1 
(113.641%) 
9828 
(112.431%) 

7486.1 
(100.293%) 

Median 

21020 

14309 

13957 

13479 

10288 

10070 

8640 

6914 

6678 

5333 

4793 

Detection 
Mean (Dev.) 

14156.7 
(103.348%) 
13395.2 

(109.468%) 
10060.4 
(80.5991%) 

10345 
(93.0438%) 

8524.8 
(87.4768%) 

6315.3 
(81.6924%) 

5723.7 
(89.4397%) 

4922 

(77.2362%) 

4373.3 
(79.2978%) 
4219.8 
(81.2795%) 
3586.1 
(69.0216%) 

Median 

9423 

6947 

5381 

4841 

4158 

3610 

3309 

2979 

2756 

2578 

2361 

Table B.1. Standard Deviations for Figure B.2(a) 
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Storage 

1000 

1200 

1400 

1600 

1800 

2000 

2200 

2400 

2600 

2800 

3000 

DAR 
Mean (Dev.) 

13094.6 
(66.537%) 

10514.5 
(46.3043%) 

9169.6 
(46.551%) 

8729.4 
(41.57%) 

8200.6 
(46.7796%) 

8064.6 
(49.0271%) 

7408 
(47.2951%) 

7209.7 
(51.6111%) 
6750.1 
(49.7191%) 

6170.9 
(50.8373%) 

5794.4 
(53.7406%) 

Median 

10886 

9293 

8064 

8263 

6888 

6394 

6531 

5862 

5528 

5066 

4441 

DTO 
Mean (Dev) 

9476.8 
(47.225%) 
7623.4 
(47.9312%) 

6508 
(51.0089%) 

5570.9 
(48.1493%) 

5043.3 
(48.2259%) 

4686.6 
(47.5396%) 

4260.3 
(46.7345%) 

3970.3 
(49.5066%) 

3769.9 
(48.2363%) 

3477.4 
(51.76%) 

3161.8 
(61.0984%) 

Median 

8829 

7353 

5823 

4788 

4180 

3685 

3425 

3285 

3070 

2601 

2392 

Banker's 
Mean (Dev.) 

40676 
(52.1543%) 
32836.1 
(54.5143%) 

28483.2 
(63.0588%) 

25448.1 
(64.969%) 

23684 
(63.4573%) 

22069.2 
(63.4802%) 

20252.5 
(71.042%) 

18614.7 
(73.2416%) 

16355.3 
(77.9709%) 

14447.3 
(79.1261%) 

12257.7 
(80.2956%) 

Median 

42206 

28210 

17837 

16401 

15681 

15037 

13559 

11425 

10422 

8723 

9275 

Detection 
Mean (Dev.) 

52413 
(91.4224%) 

37916 
(71.9872%) 

31808.7 
(70.4901%) 

30366.6 
(81.0315%) 

28061.6 
(99.6826%) 

21897.9 
(88.183%) 

19716.5 
(97.2323%) 

18137.8 
(106.146%) 
15457.1 
(108.007%) 

13415.4 
(101.329%) 

12562.9 
(104.658%) 

Median 

38273 

24374 

23652 

22496 

12684 

13974 

12927 

11244 

7659 

8405 

7400 

Table B.2. Standard Deviations for Figure B.2(b) 
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