
University of Alberta

ANALYZING AND EXTRACTING LISTS ON THE WEB

by

Afsaneh Esteki

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Afsaneh Esteki
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

The amount of information available on the Web is rapidly growing, and the need

for extracting more useful and relevant data from this tremendously large source

has become an interesting research challenge. Among various types of useful infor-

mation that can be extracted, lists in particular are highly valuable as they provide

groupings of related items. Such groupings are often interpretable and may present

data in a more structured and condensed format that can be fed to other applications.

In this thesis we explore some of the properties of lists embedded in web pages.

Based on these properties, we propose a technique for classifying web pages into

two categories: those containing lists, and the rest. Our results show that unlike

some previous work, not all list-specific html tags are useful for identifying list-

containing web pages. We also study the related problem of locating lists in a page.

We cast the problem of detecting the boundaries of a list as a classification task and

build a classifier using relevant page features. As the classifier produces a sequence

of labels for each page, we examine some of the properties of this sequence and

show how the accuracy of the detection can be further improved by rejecting some

of the sequences that are less likely to indicate a list.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Davood Rafiei for

his extreme support, patient and guidance through my research.

I am also thankful to my family, specially my parents for all their supports through-

out my life. Finally I would like to thank my husband, Rouzbeh, for his continued

support and encouragement during the past few years.

Table of Contents

1 Introduction 1
1.1 Thesis Statements . 2
1.2 Thesis Contributions . 3
1.3 Thesis Organization . 3

2 Background and Related work 4
2.1 NLP-Based Information Extraction 4
2.2 Wrappers and Wrapper Induction 5
2.3 Table Extraction . 6
2.4 Detecting Record Boundaries . 8
2.5 List Extraction . 9

3 Problem Definition and Dataset Preparation 11
3.1 Problem Definition . 11
3.2 System Overview . 11
3.3 Dataset Preparation . 12

4 Classification Methodology 15
4.1 Web Page Pre-Processing and Filtering 15

4.1.1 Web Page Representation 15
4.1.2 Web Page Cleaning and Filtering 16

4.2 Supervised Classification . 20
4.3 Feature selection for classification: finding the optimal features . . . 20

4.3.1 Structural based Features 21
4.3.2 Page Content and Title based Features 23
4.3.3 Dimensionality Reduction 24
4.3.4 Examining List-Related Tags 27

4.4 Classification Experiments and Evaluation 27
4.5 Classification Results and Discussion 29
4.6 Ranking Structural features . 30

5 Locating Lists in a Page 31
5.1 Locating lists in a page . 31

5.1.1 Experiments . 33

6 Increasing the Accuracy of Detection 37
6.1 Markov Model . 37
6.2 Rejecting Less Probable Sequences 38

7 Conclusions and Future work 40
7.1 Future work . 40

Bibliography 42

List of Tables

4.1 Set of some of the keywords used for eliminating noisy sections . . 18
4.2 Top 10 terms obtained from the page context for list-containing

Web pages . 27
4.3 Confusion matrix for a binary classification problem 28
4.4 Classification results using all features and 10-fold cross validation

vs baselines . 29
4.5 Classification results for combination of feature sets 30
4.6 Ranking individual structural features 30

5.1 Distribution of lists size based on the number of tokens for a random
sample of 50 pages . 31

5.2 11 Possible combinations of the labels for 3 Sub-pages 34
5.3 Top 3 window-sizes for different lists sizes, with a fix shift-size . . 35
5.4 Total results for locating lists vs baseline 36

6.1 Results for locating lists after applying Markov Model vs baseline . 39

List of Figures

3.1 Example of a negative page . 14
3.2 Example of a positive page . 14

4.1 Different sections in a Web page 16
4.2 Keywords and tags used in detecting noisy sections 19
4.3 Example of a normalized HTML tag 20

5.1 Logarithmic distribution of lists size 32
5.2 Correlation coefficient of the classifier for a fix shift-size and dif-

ferent window-sizes . 33
5.3 Four possible situations of a window and a list 35

6.1 Average of ∆Accuracy for all sequences 39

Chapter 1

Introduction

The amount of information available on the Web is growing very fast. Extract-

ing more useful and relevant data from this tremendously large collection of pages

has become a research challenge [2, 9, 30]. Such relevant data may be useful for

meta-search engines, shopping agents, or even building a knowledge base. Among

these valuable information, lists, or simply sets of similar or related items grouped

together by content providers or writers, are of more interest because they are inter-

pretable and present data in a more structured and condensed format. Examples of

lists are lists of medicines, airlines, or restaurants. Since there are a variety of lists

on the web, with different characteristics, there are many studies on extracting and

analyzing embedded information in them [3, 13].

We adopt a definition similar to Gatterbauer et al. [14] and define a list as: “A

set of similar or related data items.”. The definition is general enough to include

tables as well if an item is a record with multiple fields. However our focus in this

thesis is on unary column lists.

With the large variation in content and the formatting of web pages on the web,

finding similar items can be a challenge. For example, a web page that contains

a list of cell phone providers is clearly a good source, but a news article or even

a bibliography page may or may not be considered a good source. We treat the

problem as a binary classification where given a page, we want to detect if the page

has some ’useful’ lists of items. To the best of our knowledge, this is the first work

that studies the problem based on the properties of the page. Our method mostly

relies on the underlying HTML markup, structural and content-based properties of

1

the web page. Instead of focusing just on structural attributes, we also consider

context features based on the content and the title of pages. One of our findings is

that not all list-specific html tags such as and , used in some previous

work, are useful for identifying a list-containing page.

Once we can detect relevant web pages and to some degree separate those con-

taining useful lists, we further analyze the positive category: the category which

likely contains one or more. We study some of the properties that can help us locate

the place of possible lists in a page. Related work often uses heuristics for finding

data regions and record boundaries in a page [5, 22, 24]. Sleiman and Corchuelo

[29], define a region as a fragment which shows information about one or more

related items. We treat the problem of detecting the boundaries of a list also as

a classification problem. We start by shifting a fixed-size window over the page,

dividing the page into smaller sub-pages. Then by applying the classifier on each

sub-page separately, we are able to assign a label to it. The result is a sequence

of labels for each page, which shows the location(s) of the list(s) in that page. For

example the sequence “NYYYYYN” shows that the entire page is divided into 7

sub-pages and that there is no lists in the starting and the ending sub-pages, but the

middle sub-page does have lists.

Locating lists in a page solely based on one such classifier does not provide a per-

fect result. As a result, we propose a model based on Markov chain, which takes

into account the dependence between labels in a sequence, and tries to optimize the

likelihood of the predicted sequences and therefore increases the accuracy.

1.1 Thesis Statements

Our thesis statement is that using solely HTML list related tags, employed mainly

by web page providers for grouping a set of items, is a simple approach for identi-

fying list-containing pages, but at the same time error-prone. We hypothesize that

employing structural and context based features embedded in HTML web pages is

more effective for detecting list-containing web pages and their enclosed lists.

2

1.2 Thesis Contributions

The following are the main contributions of this thesis:

• A study on some of the characteristics of lists and their embedding in web

pages.

• A classifier for detecting lists containing pages.

• An effective algorithm for identifying the location of a list in a page.

1.3 Thesis Organization

The remain of this dissertation is organized as follows. In section 2 we review

related works, briefly explain them and compare their similarities and differences

to our work. In section 3 we present our problem definition, data set preparation and

pre-processing steps. In section 4 we discuss the methodology, classifier and feature

selection methods and results for the classification section. Section 5 presents the

second part of the study, which is locating lists in each page which likely contains

one or more lists. We then present a method based on the properties of Markov

Model for increasing the accuracy of results obtained in previous section. Finally

and in section 7 we discuss about results and present future works.

3

Chapter 2

Background and Related work

Information extraction, as the task of identifying and extracting relevant data from

web documents, is studied from different aspects. Relevant to our work, is extract-

ing data from unstructured or semi-structured data, which will provide a rich source

of information for further processing. The work on information extraction can be

classified according to the type of pages from which the information is being ex-

tracted. For the purpose of this thesis, pages on the Web may be categorized into

three classes [6]:

• Unstructured or free-text pages that are written in natural text, such as news

articles and journals.

• Semi-structured pages, such as pages containing relational tables.

• Structured pages, such as XML pages

In this section we review some of the related work and explain their relation-

ships to our works.

2.1 NLP-Based Information Extraction

Free-text web documents usually require natural language processing (NLP) tech-

niques, such as part-of-speech tagging or a lexicon, to build semantic and syntactic-

based relations used for deriving extraction rules [20]. Examples of such systems

are RAPIER [25], which uses a bottom-up supervised algorithm for learning ex-

traction patterns from a filled template, and also SRV described by Freitag [12].

4

SRV learns extraction rules using token-oriented features obtained from annotated

corpora. As mentioned, NLP-Based techniques are suitable for documents which

contain free text, while we are considering semi-structured and HTML documents.

2.2 Wrappers and Wrapper Induction

A traditional approach for extracting target information from structured documents

on the web is through a procedure, called wrapper. Wrappers are usually hand-

coded functions for extracting tuples from a particular information resource. Writ-

ing and maintaining manual wrappers is a tedious and challenging task, hence

wrapper induction methods are introduced. Wrapper induction techniques gener-

ate extraction rules usually from a set of training samples. They build delimiter-

based wrappers and unlike NLP-Based systems are suitable for semi-structured

and HTML documents. Sarawagi categorized HTML wrappers into three groups:

record-level, page-level, and site-level. Record-level wrappers are targeted for ex-

tracting homogeneous data records in a web page by discovering regularities in the

page. Page-level wrappers are capable of identifying multiple kinds of records in

a page, e.g., name, courses and publications from a personal home page. Finally,

site-level wrappers extract information from all pages of a web site (e.g., list of

courses from a university web site) [28].

Kushmerick pioneered a wrapper induction technique for automatically gen-

erating wrappers by introducing a family of six wrapper classes: Left-Right (LR),

Head-Left-Right-Tail (HLRT), Open-Close-Left-Right (OCLR), Head-Open-Close-

Left-Right-Tail (HOCLRT), Nested-LR (N-LR), and Nested-HLRT (N-HLRT). The

first four classes are suitable for semi-structured documents which have a tabular

format but not nested, while the two others are used for nested documents. Based

on the structure of a web site, one class of wrapper may be more appropriate than

others. For example if the set of pages have Open-Close-Left-Right structure (e.g.,

web pages have an opening delimiter, left and right delimiters for extracting flat

tuples, and a closing delimiter) an OCLR wrapper would be generated [19]. Kush-

merick’s work does not consider missing or reordered attributes in the input. It also

5

does not allow for disjunction, where there might exist more than one delimiter per

attribute. In order to handle disjunction and missing attributes, some related work

introduced finite-state transducers (FST), where each different attribute permutation

is encoded as a path [17].

RoadRunner [8] is an unsupervised wrapper induction method that starts by

comparing some sample documents of the same class and generates a grammar

based on their similarities and differences. Since RoadRunner is designed for page-

level extraction tasks, the generated wrapper is capable of extracting other instances

in the same web site. A difficulty with wrapper induction, in general, including

RoadRunner is that since each web site has its own template, it requires a separate

and sometimes tedious wrapper induction process. In other words a wrapper cannot

be trained to extract general lists from the Web.

As an alternative, Brin presented DIPRE as a system for extracting patterns and

relations from the web, based on a small sample seed set [2]. The technique is

based on exploiting pattern-relation duality, to expand the target set. The author

uses this approach to extract a set of book-author pairs. However, this approach

as well is not domain-independent and should be provided with a different set of

starting samples for each domain, such as musics, restaurants, etc.

2.3 Table Extraction

The problem of information extraction from embedded tables on the web is also re-

lated to our work. Web tables are a common schema for representing grouped data

or attribute-value relationships, such as airline schedules, book-author information,

student enrollment statistics in a particular year, etc. Penn et al. classify HTML

tables into: genuine and non-genuine tables [26]. They use the genuineness term

to denote tables where a relational content exist, while non-genuine tables are con-

sidered those where the content is visually grouped using table tags but there is no

logical relation among cell entities [26].

Chen et al. tried to identify genuine tables using heuristic rules and cell content

similarity [7]. Their method relies mostly on the HTML table tag. The WebTa-

6

bles system [4] extracts relational information from structured tables on the web

again using the table tag. The system uses some human-marked samples along with

a classifier built on features extracted from table layout and content, to filter out

relational tables. The authors report that actually 1.1% of the tables on the Web

represent relational information. Since this approach relies mainly on table tag, it is

biased towards certain Web structures and does not cover a uniform sample of web

pages.

Wang and Hu [32] detect genuine tables from non-genuine ones, using HTML

table tag and a machine leaning classification approach which relies on both layout

and content type features such as average and standard deviation of number of rows

and columns in a table.

Gatterbauer et al. tried to identify tabular data without using the HTML ta-

ble tag. Instead they employ visual presentation features of a page such as data

placement on the screen [14]. This method might be used in other table extraction

techniques which rely only on table tag, in order to enrich them with visual features.

Yin et al. developed a system, called FACTO, that extracts tables on the web

to answer fact lookup queries in search engines, e.g., Barack Obama date of birth

[35]. FACTO extracts entity-attribute-value triplets from tables and stores them in

a repository. This is done by distinguishing attribute-value tables from other tables,

extracting the main entity of each page and finally joining extracted entities with

attribute-values. Given a search query, FACTO decides if it is a fact lookup query,

finds out about the existence of the query or its equivalent in the database, and

provides the most confident result as the answer of the query. Authors compare

their system with popular search engines such as Google and Ask.com and report

that it obtains higher precision and comparable coverage. However their approach

considers only attribute-value tables in the web. There are many tables which are

not in attribute-value format. For example a table may be an entity-attribute relation

with the first column corresponding to the entity name and the second to an attribute

of the entity. Thus FACTO is not capable of answering queries about an entity

without any specific attribute.

7

2.4 Detecting Record Boundaries

Buttler et al. introduced OMINI to automatically learn rules for extracting objects

and data records, e.g., list items from the largest data region in a web page [3]. The

largest data region in the DOM tree of a page has the largest number of children,

the largest contents and also the largest number of tags. Some heuristics are used

to rank tags as candidate data separators. This work is close to ours as some of the

heuristics are similar.

Mining Data Records (MDR) [22], extracts data records from Web pages by

mining the DOM-structure of pages and string matching. MDR is built on the

hypothesis that data records have repetitive regular HTML tags and patterns, and

they are rooted in a single parent node [33]. Based on this hypothesis a subset

of adjacent nodes with the same parent are considered as strings and then grouped

together if the edit distance between them is less than a fixed threshold.

Tag Path Clustering is a similar approach to MDR which clusters tag paths based

on DOM path similarity [24]. It tries to detect nested data records, while MDR does

not handle nested data objects.

Vision-based Page Segmentation (VIPS) [5] is intended to locate all blocks of

a document, using its visual cues. Examples of visual features are: fonts, horizontal

or vertical lines, color, and background images. Unlike our work, this algorithm

is tag-tree independent and as a consequent, it will return all blocks of data, even

header, footer or other blocks that are irrelevant.

VSDR [21] is proposed for extracting data records which are similar and consist

of several types of information such as images, text and lists of hyperlinks. Since it

assumes that a data region is composed of different kinds of contents, it may fail if

lists are very simple, e.g., composed of only text or images.

The majority of detecting record boundary methods are unsupervised and do not

need training samples of the regions to be extracted. This is similar to our work, as

we do not rely on a supervised method for locating lists in a web page, and we do

this using a previously trained classifier.

Those proposals which use probabilistic methods are related to our work on

8

the key idea of combining some heuristics, usually based only on tag information.

However we combine both probabilistic information from DOM with content and

title features.

Also, in general, most of the related work which use tag dependent heuristics,

such as OMINI, rely on the fact that some types of tags are more probable to be

separating tags. One of the main contributions of our work is that we do not make

any assumptions about some specific types of tags for indicating a web page as a

list containing page. This means that we do not consider a group of specific list-

related tags. For example we assume both < li > and < div > tags have the same

probability of indicating a list.

Regarding noise detection and filtering, some heuristics are employed in a pre-

processing step of our method to filter out and remove noisy sections, such as footer,

header, and Drop-Down menus. This is applicable in our case since we use a DOM

tree information, unlike some other approaches in which noisy blocks are removed

after detecting all regions.

2.5 List Extraction

List extraction is widely useful in data mining tasks and has also attracted some

commercial interest. Google Sets was a famous service (still available in Google

Drive) for automatically generating lists given one or more examples. However the

exact framework of Google Sets has not been published, but a simple explanation

of how the system works is that it attempts to identify lists as it crawls web pages.

It may first extract items from lists by considering specific HTML tags, which are

mainly used for identifying lists on the web, such as , , <DL>, and

<H1>-<H6> tags, and also by looking for tables, or lists separated by commas,

semicolons or tabs. It then ranks all extracted items based on their co-occurrence in

statistics on the web as a pool of data [30]. KnowItAll which is a named-entity ex-

traction system, has a list extractor component which resembles Google Sets [10].

The SEAL (Set Expander for Any Language) project is also a set expander similar

to Google Sets but its extraction method is based on a wrapper learner [31]. As

9

a possible extension of our work, set expansion may be applied to the set of pages

identified by our method.

Fumarola et al. [13] developed a hybrid list extraction system which uses both

visual alignment of list items, embedded in modern web browsers, and structural

features. Their method extracts all items and all lists from a given web page without

filtering out any noisy ones. In comparison to our work, we try to purge some

explicit noisy data regions, such as footer and header of a page, in a pre-processing

step.

Recently Wang et al. have studied the problem of extracting top-k lists from the

web [36, 37]. Top-k lists describe top k instances of a particular topic or concept.

Examples of these lists include: “Top 10 podcasts”, and “20 Most Influential Sci-

entists Alive Today”. They use a binary classifier for classifying the title of a page

to “top-k like” or not “top-k like”, using a CRF model and extract features such as

POS tag, lemma and concept of the title. However, their approach considers just

extracting lists from web pages which have a “top-k like” title, and is missing other

pages which include a list not necessarily containing top ones.

10

Chapter 3

Problem Definition and Dataset
Preparation

3.1 Problem Definition

The purpose of our study is first to recognize web pages that contain lists and then

locate the place of those lists inside the pages. Hence the problem has two parts and

can be defined as follow:

1-Given a set of web pages, classify them into positive and negative classes so

that pages in positive class are likely to contain lists, while pages in the negative

class do not.

2-Given a positive web page, which contains a list or a set of lists, locate the

place of lists.

3.2 System Overview

The input for the system is a set of HTML web pages and the output is pages

possibly containing list or lists, as well as possible locations of those lists in the

corresponding pages. In order to classify web pages, we initially need a manually

labeled data set that can be used to train a classifier. Having the labeled training

data, a trained classifier is used for the task of binary classification. Once the clas-

sifier is trained, it can be used to predict output for unseen data. Classifier is trained

based on the features selected from the training web pages. Features are obtained

by looking into characteristics of list containing pages, such as the effectiveness of

11

using HTML tags, tag density inside a page or in a piece of page, and also context

features of the page.

After identifying list-containing pages, the next step is to analyze those pages

and locate the start and end positions of each list inside the page. We consider

this as a binary classification problem by dividing each page into sub-pages and

applying the trained classifier on each sub-page. Results would be a sequence of

labels for each page, which could be optimized by rejecting some of the sequences

that are less likely to indicate a list.

3.3 Dataset Preparation

We used the following two approaches to collect our dataset, 500 annotated URLs,

out of which 250 were in the positive class, meaning they contained list(s), and 250

were in the negative class.

• Two sets of keywords that are related to each class and are likely to occur in

web pages from each class were used. We used these keywords in Google

search and chose the first few top results returned by each keyword. Some

of the keywords used in this approach include: {list of manufacturers, list of

brands, list of items} for the first class which contains list, and {article, story

of, a letter to}, for the second class, likely not containing any list. In total

400 URLs were selected using this approach, 200 of them in positive class

and 200 in negative.

• In order to come up with more random samples which can be selected with-

out using a keyword set, we used a list of related items to gather more URLs.

Examples of these grouped items are name of some ”scientists”, ”cars” and

”mobile brands”. Again we typed these search queries to Google and se-

lected some of the first top results. We managed to collect 100 URLs using

this method, 50 of them in positive class and 50 in negative.

Having these candidate URLs, we fetched their web pages and kept a local

copy to be able to obtain consistent results over time. We asked 2 annotators to

12

label URLs into positive or negative labels. In order to decide about the class of the

URL, we considered the following criteria:

• Menus are not considered as lists. This includes Dropdown menus, which

might even contain a meaningful list. The reason for considering this criterion

is that, lists should be visible and not hidden in some parts of the page.

• Some regions in the page such as: ”read more”, ”related articles” and ”adver-

tisements” are not considered as lists.

• Pages that contain elements of a visible list would be considered as positive

pages.

• Pages that contain one or more text but not a list of similar items, would

be considered as negative pages. Also pages with some peices of data and a

small number of grouped items (less than 5), are considered as negative pages.

As well, navigation bars are not considered as lists even if they present a set

of links.

Figure 3.1 shows an example of a negative page, while Figure 3.2 shows an example

of a positive page.

Since distinguishing between the two categories is sometimes confusing, anno-

tators had the option to label a page into one of the {Y , N , Unknown} categories.

Here Y means that the page contain list, N means that it does not contain any list,

and Unknown means that annotator was not sure about the label. After annotating

all pages, we selected for our experiments only those ones in which both annota-

tors agreed upon and also the label is Y or N. Annotators agreed on 70% of URLs

obtained from the first method, and on 73% of URLs obtained from the second

method.

13

Figure 3.1: Example of a negative page

14

Figure 3.2: Example of a positive page

15

Chapter 4

Classification Methodology

In this chapter we discuss our pre-processing techniques, learning algorithms, and

features selection methods used throughout our classification task.

4.1 Web Page Pre-Processing and Filtering

In this section and before focusing on algorithms, we explain about web page rep-

resentation, pre-processing, and filtering obvious non-list containing items, recog-

nized as noisy sections.

4.1.1 Web Page Representation

The dataset consists of a set of URLs and the corresponding HTML page fetched

from the web. HTML TIDY [27], was used for finding and correcting errors in

HTML source files. HTML Tidy is especially useful for checking and cleaning up

deeply nested HTML files. It detects and fixes missing or mismatched end tags, and

corrects mixed up tags.

In this work we use HTML tags to find tag-related characteristics of a web page

and also for filtering out noisy sections. Most of the tags are in pair and consist of

an opening and a closing tag. There are also other tags inside such tag pairs, called

nested tags. Thus an HTML page can be represented in the form of a tag tree, where

each node in the tree represent one pair of tags in the corresponding web page. Tag

trees are often implemented as DOM trees. A DOM parser can parse HTML source

stored in a string into a DOM tree. Jsoup DOM parser [16] is used in this work to

16

represent DOM-based tag trees.

4.1.2 Web Page Cleaning and Filtering

An HTML page usually consists of multiple data blocks. While one or more of

these blocks contain the main contents of the page and are considered as the main

blocks, others may consist of simply noisy. Such noises can be grouped into two

categories according to their visibility in the browser:

• Invisible noises: These are noisy sections in the HTML page which are not

visible to the user. Examples include HTML comments and items with invis-

ible or hidden attribute.

• Visible noises: These are noisy items which cannot clearly represent any

useful data, even a list of items. Such noises include page header, copyright

notices, or items appearing in almost every web page.

These noisy items within a web page can harm the accuracy of a data mining

task and web page classification. Some related work have addressed the problem

of eliminating noisy sections in web pages [1, 34], by filtering all sections of the

page except the main content block. For example Yi et al. [34] try to eliminate all

noisy sections including navigation bars and banner advertisement. However we

believe that apart from the main content block, such so-called noisy sections may

also contain a useful set of lists. For example in Figure 4.1, while the horizontal

navigation bar in segment 1 is a noisy section and should be eliminated, the vertical

dotted area in segment 2 is a navigation bar which clearly provides a set of related

items and we do not want to remove it.

As a result and in order to improve the performance of the classification task,

several pre-filtering steps are needed to remove obvious non-list containing noisy

sections of a page. We decompose the page DOM tree structure of a page into

subtrees and remove some of the subtrees, including visible or invisible nodes. The

types of sections eliminated from pages include:

• Subtrees with empty leaf nodes - A piece of data by definition must contain

non-empty parsed data. All subtrees in the tag tree which do not contain non-

17

Figure 4.1: Different sections in a Web page

empty leaf nodes are removed from the DOM. This includes Input elements,

producing specific user interfaces, where the user can enter data.

• Comments subtrees - Comments and their tags are not displayed in browsers

and are removed from the source code of the pages. A comment tag is usually

used by programmers to explain the code or to insert comments.

• Head section - All subtrees under the head section, except Title of the page,

are excluded from further consideration. <head> tag is a container for all

the head elements.

18

• Footer subtrees- The footer sections under a footer tag are eliminated from

the source page. A <footer> tag defines a footer for a document. Apart

from a footer tag, there are also other tags which wrap footer elements. For

example the footer part in a page might be identified by <div id=”footer”>.

As a result, we eliminate all sub-trees in which the attribute of the HTML

element contains term ”footer”.

• Javascript objects - While HTML tags generate objects, JavaScript lets users

manipulate those objects, adds functionality to the page or communicate with

the server, etc. Since the <script> tag is used to include JavaScript code

directly into an HTML file, we remove internal Javascript sections from the

DOM tree of a page.

• STYLE nodes - A <style> tag specifies how HTML elements should render

in a browser and also defines the style information for an HTML document.

Since we do not need rendering information, we remove the <style> tag and

all the content inside it.

• Dropdown menus - Subtrees containing Dropdown menus, which are usually

defined by <select> HTML tags, are excluded from a DOM tree. However

these menus might contain a list of similar items, they usually contain a set

of simple items for user to choose from; such as dates for date of birth, or

country of residence. As mentioned, these menus are often general, hence

excluded from the DOM tree.

• Hidden subtrees - Usually there are some hidden sections in a page, with

their contents invisible or not displayed in the browser. These parts should

be discarded as much as possible. Useful heuristics for eliminating these

subtrees, are searching for HTML tags in which their display attribute is set

to hidden or none.

• Not all the footer or header elements in an HTMl page are wrapped by a spe-

cial tag like <footer>. For example the footer of a page might be built using

a table tag, and this make the task of finding such noisy sections difficult.

19

Table 4.1: Set of some of the keywords used for eliminating noisy sections

home, FAQ, related articles
about us, contact us

help, careers, copyright
downloads, terms of use
log in, read more, news

As an alternative, we are interested in detecting items which appear in almost

every web page, eg. navigation bars at the top of the page containing Home

and News buttons, or footer sections containing Contact Us information or

links to Terms of use. For this purpose we use a predefined set of keywords

and try to find those blocks of the page which at least x% of their total number

of items (leaf nodes) belong to this predefined list. Table 4.1 shows some of

the keywords used in repeating noisy sections. In order to detect such blocks,

we first look for these keywords in the leaf nodes and keep their correspond-

ing tags as well as the tags of their siblings, if any. If a corresponding tag

does not have any sibling, we keep its parent’s siblings as long as all of the

parents siblings are the same. Then for each detected leaf, we keep searching

its siblings and the siblings of its parent and also consider their corresponding

leaf data items. Finally we eliminate those sections in which the total number

of predefined keywords are bigger or equal than x% of all their items. We

set this threshold to 50%, which means that at least 50% of leaf nodes in that

block must belong to our predefined keywords. Figure 4.2(a) shows an ex-

ample of a block containing a noisy section identified by a group of siblings

tags. Also in Figure 4.2(b), a noisy section can be identified using identical

parent’s siblings.

20

(a) Sibling tags used
to detect a noisy sec-
tion

(b) Identical parent’s
sibling tags used to
detect noisy sections

Figure 4.2: Keywords and tags used in detecting noisy sections

After all these pre-processing, we normalize all the HTML tags. Normalizing

HTML tags means removing attributes and properties inside them. The reason is

that in our method, we need to work only with normalized HTML tags, not their at-

tributes. Figure 4.3 shows an example of an HTML normalized tag. Note that when

removing some noisy sections using predefined keywords, we also use normalized

tags, since we need to find identical sibling tags.

Figure 4.3: Example of a normalized HTML tag

4.2 Supervised Classification

Supervised classification, also called class prediction, involves assigning instances

to predefined categories. Algorithms used in a supervised classification are usu-

ally developed on a set of training data and would be tested on an independent test

data set to evaluate the accuracy of the algorithm. There are numerous classifier

paradigms to choose from. Support Vector Machines (SVM) are a group of su-

pervised learning algorithms based on statistic learning theory. Another group of

supervised methods are decision trees. Each node in the tree represents a feature

21

and the tree branches out based on the values in the node. The leaf nodes represent

classes. Unlike SVM classifiers, decision trees are directly interpretable.

4.3 Feature selection for classification: finding the
optimal features

In this section we study the task of classifying web pages into one of the list-

containing and non-list-containing categories. In order to perform a supervised

learning, we need to choose a set of appropriate features. We looked into various

features including structural and content based features inside web pages, carried

out experiments based on them, and analyzed the performance of the classifier with

each set of features.

4.3.1 Structural based Features

Structural based features depend mainly on the characteristics of the HTML tags

and their nesting structure. We would call each piece of non-empty text between

two tags, as PCDATA. Below is the list of structural based features used in our

method:

• Frequency of tag-sequences: We define a sequence of tags as follows:

All tags appearing between two pieces of data, are considered as the tag-sequence

for the second piece of data. The idea is to find out patterns based on the

sequences of tags and a repeating tag-sequence is more likely to identify

a list. For each piece of data, we obtain its tag-sequence, and also all the

sub-sequences of that sequence. For example for the the following sequence:

{<h2>PCDATA}

All the tag-sequences are:

– {<h2>}

– {<h2>}

– {<h2>}

22

We then count the frequency of each tag-sequence in the whole page. Since

all pages should be considered as equally important, independent of their size,

a normalization factor should be incorporated with the aim of normalizing

the frequency values. The tag-sequence frequency measure is extended to

incorporate the normalization factor, which is defined by Equation 4.1. The

normalization factor is based on the size of the corresponding web page and

an average page size, chosen to be the same for all pages.

Normalized-Tagseq-Frequency =
Tagseq-Freq · Avg-Page-Size

Page-Size
(4.1)

A tag-sequence should be repeated enough times to be considered a good can-

didate for identifying a set of items. Though, we can discard tag-sequences

which are not repeated more than a predefined number of times in the whole

page. By changing this value, we found out that the best number in our ex-

periment was 5. Finally we selected the first two most frequent normalized

tag-sequences as two separate features. The intuition is that the more a se-

quence of tags that have no data in between are repeated, the more likely they

would identify a set of related items. Also unlike a single tag, a pattern of a

sequence of two or more tags, such as the given example, is more likely to

identify related items. For the given example, if it identifies items of a list in

a page, probably the first two most frequent tag-sequences in the page would

be {<h2>} and {<h2>} , with a high value for both. However for a

negative page even if the first frequent tag-sequence is repeated many times

(some tags such as <a> might be repeated in many parts of a page), it is less

probable that the second frequent tag-sequence is repeated for a large num-

ber of time. As a result we chose two most frequent tag-sequences as two

separate features.

• Standard deviation (SD) of distances between all occurrences of a tag-sequence:

For each tag-sequence, first the distances between each pair of consecutive

occurrences of the sequence is calculated and then the standard deviation

23

(SD) of them is obtained. The intuition behind this heuristic is that tags are

more likely to identify a list, if the standard deviation of the size of the data

between all occurrences of them is low. Note that we assign a high value of

SD to a pattern which is repeated less than two times, since its SD would be

zero and we do not want to consider it as a candidate.

We then chose the corresponding standard deviations for the two frequent

tag-sequences, selected in the previous section, as two more separate fea-

tures.

• Ratio of frequency of tag-sequences to SD: Best candidate tag-sequences,

which identify a list of items, have a higher frequency and a lower standard

deviation between their occurrences. The ratio of frequency of tag-sequences

and its standard deviation for the two top selected tag-sequences are used as

two more features.

• Highest ratio of frequency of tag-sequences to SD: A weight is assigned

to each tag-sequence based on the ratio of its frequency and its standard de-

viation. We then rank all these weights and select the highest one as another

feature. Usually a higher weight identifies a denser section in the page.

• Normalized-Number-of-PCData: We count number of PCData in a web

page and normalize it based on the size of the page and the average page size.

The idea is that pages with a larger number PCData usually are more likely

to contain a list, since a list carry a group of items. On the other hand we

observed that pages which do not contain any list usually had few pieces of

data. An example is a page which contains a story or a letter.

• Average Length of PCData: For each web page the average size of PCdata is

calculated (in terms of the number of characters) and used as another feature.

The intuition behind this heuristic is that average length of data in web pages

which do not contain any kind of lists, is usually higher than pages containing

list. For example in a forum page, we usually see some chunks of long text.

24

4.3.2 Page Content and Title based Features

Terms from title and content usually contain useful information about the category

of a particular web page. For example, analyzing web pages manually revealed

that list-containing pages often contained words such as list, item, and table. We

followed the Bag-of-words (BOW) approach and extracted unigrams from the text

of the HTML pages. The reason for using Bag-of-words method for extracting

words from title and context is that, these parts are usually in the form of normal

texts with well-separated words. Description of Metadata tags are also added to the

BOW, and a set of keywords are selected based on the mutual information. We now

discus how we extract features from title and context:

• Titles: After using separators and tokenizing each title , the Bag-of-words

method is applied and unigramsin the are extracted. A title may contain mul-

tiple segments, which are separated by separators like ”—”, or ”-”. Among

all these segments, we only use the first segment, since it is the main seg-

ment showing the topic of the page, while other segments provide additional

information about the page.

• Context: A web page text without any HTML tags is considered as its con-

text. In order to extract this context, we first remove all HTML tags and then

the contexts is tokenized. Finally we applied the Bag-of-words approach to

extract unigrams from the context.

• Description from Metadata Tags: We gather words used in the content at-

tribute of the<META name=”keywords”> and<META name=”description”>

tags. The keywords mata element, identifies itself as containing the keywords

relevant to the document. While the meta description often appears in Google

search results to describe the link. We combine terms obtained from context

and also metadatatags together.

• Grammar of the headword in title: By applying Stanford CoreNLP on title

phrases, dependencies between terms and then the headword of the phrase is

obtained. The headword of a phrase is its most important word, which all of

25

the other words modify that. Having the headword, we use its grammar and

plurality as other features. Usually the head word in the title of a positive

page, is a Noun phrase and is plural (eg. List of all cellphones).

4.3.3 Dimensionality Reduction

Applying Bag-of-words on the data set, generates a high number of distinct words

and we need to reduce the number of dimensions. Dimensionality reduction is a

necessary process to avoid the over-fitting problem. Over-fitting generally occurs

when the model fits the training data in the sense that it will have poor predictive

performance for new unseen data.

We first use the most intuitive and simplest heuristics for dimensionality reduc-

tion by removing the following terms from the BOW:

• Numbers; Numbers are special terms not considered relevant to the task of

classification.

• Stop words; A standard stop word list is considered for removing general

terms such as prepositions, articles, conjunctions, pronouns and some ad-

verbs.

• Short terms; Terms with less than 3 characters in length are eliminated.

• Rare terms that occur two or fewer time; Based on Zipf’s law few terms

occurs frequently while many terms occurs rarely [11]. Therefore removing

rare terms would lead to a great saving in feature space.

• Terms used as queries in the Google search; Without removing search query

words, collection of top selected features might be biased towards those words.

Context Feature Weighting

Even after removing terms such as stop words, and rare terms, still number the of

dimensions is too high to be appropriate for the task of classification and we need

to perform more dimensionality reduction to elect the most informative features.

26

One of the main approaches for dimensionality reduction is feature selection. Gen-

erally feature selection methods aim at selecting some of features that have higher

importance to the classification process. Among several feature scoring methods,

we adapt expected Mutual Information (MI), as the utility function for selecting

useful terms. In probability theory, the mutual information is a quantity that mea-

sures the mutual dependence of two random variables. In this context, MI measures

how much information a term contains about a class compared to another class. If

a term distribution is the same in the class as it is in all pages, then MI=0. On the

other hand an ideal word which happens in all of the pages in one class, but not

in the other class, is a perfect indicator for that class. In such case MI reaches its

maximum value.

Formally, the Mutual Information of a term and class pair is calculated as shown

in Equation 4.3 [23]:

MI(T ;C) =
∑

et∈{0,1}

∑
ec∈{0,1}

P (T = et, C = ec)Log2
P (T = et, C = ec)

P (T = et)P (C = ec)
(4.2)

where T is the discrete random variable “feature” that takes the value et = {1, 0}

(feature T occurs in page or not), and C is the discrete random variable “class’ that

takes the values ec = {1, 0} (page belongs to class or not).

The probabilities can be estimated by using various page counts from the train-

ing data. Therefor Equation 4.3 is equal to Equation 4.2 [23]:

MI(t; c) =
N11

N
log2

NN11

N1.N.1

+
N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0

+
N00

N
log2

NN00

N0.N.0

(4.3)

Where N is the total number of samples, and Ns are counts of pages that have two

subscripts, showing values of 0/1 for term and class. For example N11 is the number

of pages that contain the term and are in the class. N1. = N10+N11 shows number of

pages that contain the term without considering the class.

MI measure the contribution of presence or absence of a term in the classifi-

cation task. This means that while the presence of a term like “list” in a positive

27

page is a good indicator for classifying that page in positive class, the absence of

the same term is also a good indicator for classifying the page in negative class.

Finally to select k terms for positive class, we rank all terms based on their

scores and select those with a score greater than a predefined threshold. The smaller

the threshold, the more features would be selected. For example, Table 4.2 shows

the top 10 terms for the list-containing web pages, obtained from the context.

Table 4.2: Top 10 terms obtained from the page context for list-containing Web
pages

list 0.1289
top 0.1128

products 0.1005
international 0.0911

cart 0.0817
corp 0.0705

company 0.0699
usa 0.0697
sale 0.0668

supplies 0.0666

4.3.4 Examining List-Related Tags

In order to investigate the efficiency of list-related HTML tags in distinguishing a

list-containing page, we tried to collect the set of all tags which are usually used for

defining a list or table in HTML pages. As far as we know, these tags are as below:

• HTML tags used in defining a Table: {table, th, tr, td, caption, colgroup, col,

thead, tbody, tfoot}

• HTML tags used in defining a list: {ol, ul, li, dl, dt, dd}

We defined a feature based on the normalized total number of these tags for each

data point. Further investigation and results showed that this is not a good feature,

since it causes less accuracy in classifying results. This shows that not all the web

pages which contain lists or tables, always contain these types of HTML tags. On

the other hand, there are many web pages containing these types of tags, but at

28

the same time they do not contain any list or table of similar items. Thus we can

point out that not all list-specific HTML tags such as and<lL>, are useful for

identifying a list-containing page.

4.4 Classification Experiments and Evaluation

For the classification task, we experimented with several classifiers provided by

Weka [15], namely decision tree based J48, SVM based SMO, and Logistic Re-

gression (LR). We set parameters of classifiers to their default values. Also we

report 10-fold cross validation results for these classifiers.

For comparison purposes, we considered two baselines. The first baseline (List/Table

HTML Tag baseline), treats pages that contain at least one list/table HTML tag as

positive class and others as negative. The most common HTML lists are ordered

and un-ordered lists. An un-ordered list starts with the tag, while an ordered

list is identified with the tag. We also consider description list, which is a list

of terms, with a description of each term. This baseline is based on the fact that the

most intuitive ways for creating multiple, similar items on a page, are using list and

tables tags. Second baseline (“List/Table” term baseline) treats pages that contain

list/table terms as positive class. It is different from the first baseline, as it only

considers terms in a page, not tags. It considers page terms after tokenization.

We evaluate the quality of classification in terms of F-measure, which is the

harmonic mean of precision and recall. Table 4.3 shows the confusion matrix for a

binary problem.

Table 4.3: Confusion matrix for a binary classification problem

True Class
Positive Negative

Test Predictions
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

• Precision (P): Precision is defined as TP
TP+FP

. In binary problems, precision

describes the proportion of actual positive examples that are correctly identi-

fied.

29

• Recall (R): Recall is defined as TP
TP+FN

. In binary problems, recall measures

the fraction of positive examples that are correctly retrieved.

• F-measure: F-measure is a harmonic measurement defined as:

2.Precision×Recall
Precision+Recall

There is a trade-off between precision and recall: an increase in precision can

lower recall, while an increase in recall lowers precision.

4.5 Classification Results and Discussion

Table 4.4 shows the results of the classification for our data set. Since having a large

number of dimensions causes over fitting, while a small number cannot represent

enough, we have to carefully choose a reasonable number of dimensions for context

and title features. We tried different numbers and found out that a number between

10-20 is a reasonable number. Results are based on the 15 features obtained from

context and title in total.

Table 4.4: Classification results using all features and 10-fold cross validation vs
baselines

Precision Recall F-measure Std deviation of F-measure
SMO 86.4 85.8 85.8 0.05
J48 83.6 83.6 83.6 0.06
LR 85 84.8 84.8 0.05
List/Table Tag 51.3 86.4 64.3 NA
“List/Table” Term 54 82.8 65.4 NA

As Table 4.5 shows, both baselines have a high recall compared to other meth-

ods. The List/Table Tag baseline has a higher recall than the “List/Table” Term

baseline but it also has a lower precision. We see that by combining context and

title based features with structural features higher accuracy is obtained. For each

classifier the standard deviation of F-measure results is also displayed.

In order to check if there is a significant improvement in our method or not, we

applied t-Test on results obtained from each classifier and each baseline method.

30

The null hypothesis is:

Our method has no significant improvement.

According to t-Test results, we reject the null hypothesis at α=0.01 for all our clas-

sifiers compared to the list/table baseline, meaning that the difference is significant.

Table 4.5 shows results based on different sets of features. SMO is performing

better for context and title features, while J48 is better for structural features.

Table 4.5: Classification results for combination of feature sets

Titles Context Structural

SMO
Precision 74.8 85.2 77.2

Recall 71.9 84.8 77.1
F-measure 71 84.8 77.1

J48
Precision 70.3 82.6 79.4

Recall 65.9 82.3 79.4
F-measure 64 82.3 79.4

LR
Precision 74.8 83.1 72.3

Recall 71.9 82.8 71.6
F-measure 71 82.8 71.4

4.6 Ranking Structural features

In order to analyze features correlation we run feature selection from the Select

attributes tab in Weka Explorer to see which features are more important. Table 4.6

illustrates the results after ranking structural features. It shows that the highest ratio

of frequency of tags to SD is the most impressive feature, while the least impressive

one is second SD of distance between tag-sequences.

31

Table 4.6: Ranking individual structural features

Feature’s Rank
1-Highest Freq-TagSeq/SD
2-First (Freq-TagSeq)/(SD)

3-AVG-PCdata-Length
4-First Freq-Tagseq

5-Second (Freq-TagSeq)/(SD)
6-Normalized-Number-of-PCData

7-First SD-Dist-TagSeq
8-Second Freq-Tagseq

9-Second SD-Dist-TagSeq

32

Chapter 5

Locating Lists in a Page

5.1 Locating lists in a page

Having web pages which contain one or more list of items, we next need to find and

extract lists inside the page. We would consider the problem of detecting lists in the

web page as a classification problem, unlike many other approaches which try to

identify record boundaries that allow determining which groups of data belong to

a same object/record. For this purpose we randomly choose 50 positive pages and

manually label start and end positions of lists in these pages (a page might contain

more than 1 list). Here are the statistics of lists and their length distribution. In our

sample set, %25 of lists included 10 items or less, about %60 of them contained

10-50 items, and only %15 of lists contained more than 50 items. Taking into

account the number of terms inside each list, Table 5.1 gives the number of terms

per each category (after tokenization and not including extra terms such as opening

and closing tags). It shows that the majority of lists contain between 100 and 500

terms. Only 5% of lists contain more than 10000 terms.

Table 5.1: Distribution of lists size based on the number of tokens for a random
sample of 50 pages

#Terms in lists Percentage of lists
Less than 100 26%

100-500 41%
500-1000 16%

1000-10000 12%
More than 10000 5%

33

Figure 5.1: Logarithmic distribution of lists size

We then apply our classifier on consecutive pieces of data inside each page to

locate the place of lists in that page. We start by breaking down each page into some

sub-pages and making a new set of training data, which consists of smaller parts of

pages. Having all these small pieces of pages, we then label them into positive and

negative classes. By choosing a window-size and a shift-size we divide pages into

these smaller sub-files. Window-size is the size of a section for which we apply

our classifier. In order to avoid having too many sub-files, a shift-size is introduced

and each window is shifted by the shift-size. Indeed shift-size is used to shift the

start position of the window. These two parameters can be set based on the number

of terms or characters. For example if window-size is set to 1000 characters, it

means that every time that we shift the window, it would scan next 1000 characters.

Each time we fix the window-size or the shift-size and build a set of test sample

of sub-files. By applying our classifier on these sets of sub-files, we are able to

calculate precision, recall and F-measure. As an example Figure 5.2 shows the

correlation coefficient of classifier when the shift-size is fixed at 200 terms and for

different values of window-sizes.

34

Figure 5.2: Correlation coefficient of the classifier for a fix shift-size and different
window-sizes

5.1.1 Experiments

We divided each of the 50 positive random pages to three sub pages and categorized

them into one of the 11 possible combinations of the labels given in Table 5.2. Note

that we use the same title for all the sub-files of a page. Here M refers to two lists or

more in that part of the page. N means that the sub-page doesn’t have a list in that

section, and Y means that sub-page includes a list in that section. Note that we do

not consider N N N , since there is no positive page which does not contain any list.

Results show that the classifier makes less mistakes in the beginning and at the end

of the page, while most of the mistakes are happening in the middle of the page.

In order to analyze the effect of sliding different windows on the same set of test

files, each time we need to label the generated sub-files with their real label. Even

though we know the exact location of lists for each file in the ground truth, building

the ground truth for sub-files needs more effort and explanations. Because of the

overlapping relationship between a window and a list, after shifting a window over

a page, the window can be placed in different positions according to the start and

the end positions of the list. Figure 5.3 shows four possible situations regarding

the positions of both a window and a list. Figure 5.3(a) shows a case where the

35

Table 5.2: 11 Possible combinations of the labels for 3 Sub-pages

set %Pages Accuracy
N N Y 4 70
N Y N 22 84
N M N 10 72
N Y Y 11 68
N M Y 7 72
Y N N 3 70
Y Y N 2 75
Y M N 9 65
Y N Y 2 60
Y Y Y 23 91
Y M Y 7 87

window covers the list, which means window size is larger than the list size. In

Figure 5.3(b), window size is smaller than the list size and the window sits inside

the list. In both cases we can easily determine the real label for the sub-file. Figure

5.3(c) shows the case in which the window starts after the starting point of the list

and ends after the ending point of that list. In Figure 5.3(d) the window starts before

the starting point of the list and also ends before its ending point. However in the

last two situations, labeling the sub-file depends on the length of the list that sits

in the window (l) ; if the window covers a very small portion of the list, we really

cannot assign Y label to the sub-file. As a result we carefully choose l and set l to

50 tokens if the size of the list is greater than 500 (based on the number of tokens);

for smaller lists at least %10 of the list should sit inside the window for receiving Y

label.

36

(a) Window covers
list

(b) Window falls in-
side List

(c) Window starts
and ends after list

(d) Window starts
and ends before list

Figure 5.3: Four possible situations of a window and a list

Table 5.3 shows the average of top three window sizes for different list sizes,

while windows ranges are set to 50. Here we do not mention lists greater than

1000, since more than %80 of lists are smaller than 1000. These results show that

for each set of lists, top window-sizes are almost in the same range as the size of the

list. Also our experiments show that in general, the best shift-size is the smallest

one.

Table 5.3: Top 3 window-sizes for different lists sizes, with a fix shift-size

Lists size Average of Top 3 window-sizes
Less than 100 50, 100, 200

100-500 150, 200 , 350
500-1000 700, 750 ,850

In order to compare results with a baseline, we consider a baseline based on

the presence of HTML list related tags in a page. As in the previous section we

consider , , and <table> as our list tags. Since these tags have both

opening and closing ones, they could easily identify the start and the end positions

of lists. Results show that this approach have a high recall, however comparing to

our method the precision is very low. Table 5.4 shows the results of locating lists

using our method and the baseline.

37

Table 5.4: Total results for locating lists vs baseline

Precision Recall F-measure
Our Method 75.1 74.3 74.7
List/Table Tag Baseline 50.1 85.3 63.17

38

Chapter 6

Increasing the Accuracy of Detection

In this chapter we study some of the properties of the sequences generated by the

classifier for each page. Since detecting lists in a page based on the proposed clas-

sifier is not always accurate, we would like to improve the accuracy of detection

by rejecting some of the sequences that are less likely to indicate a list. We model

the problem as a Markov Chain and try to optimize the likelihood of the predicted

sequences, therefore increasing the accuracy.

6.1 Markov Model

The assumption that the probability of a state depends only on the previous state, is

called Markov assumption. Given the Markov assumption for the probability of an

individual symbol, we can compute the probability of a complete symbol sequence

using Eq. 6.1

P (sn1) ≈
n∏

k=1

P (sk|sk−1) (6.1)

Maximum likelihood estimation (MLE) is used for estimating the bi-gram or

N-gram probabilities. The MLE estimate for the parameters of an N-gram model is

obtained by normalizing counts from the training data, and normalize them so that

they fall between 0 and 1 [18]. For example the bi-gram probability of a symbol y

given a previous symbol n is obtained by computing the count of the bi-gram (ny)

and normalizing by the uni-gram count for symbol n:

P (y|n) =
C(ny)

C(n)
(6.2)

39

We first augment each sequence of symbols with a special symbol <s> at the

beginning of the sequence, to give us the bi-gram context of the first symbol. We

also use the special ending symbol <e>, for the bi-gram context of the ending

symbol.

6.2 Rejecting Less Probable Sequences

Our target is predicting better sequences of symbols based on the best probability

suggested by the Markov model. According to a Markov Model of order one, the

next state depends only on the current state of the sequence of events that preceded

it. We first build a Markov Model, then pass the results predicted by our classifier to

the Markov Model and this model would suggest to change some symbols in each

sequence in order to get a better accuracy. The idea is that based on the ground truth

and the Markov Model which is built on the ground truth, some sequences are more

probable than others. For example the probability of seeing ’YYYYYN’ is more

than ’YYNYYN’. So the model would suggests to change the first sequence to the

second one.

We should note that the average length of sequences in our data set was 74

symbols (for the sequences obtained by the best fixed window-size and shift size).

Most mistakes in our predicted results (before applying the Markov Model) are

located in the middle of the sequence, but not in the beginning and at the end of the

sequence. The reason is that for most of the pages lists are mainly located in the

middle sub-file of the page. The MM could fix problems which are located in the

middle of the sequence easier than those located exactly in the beginning and at the

end of the sequence.

Figure 6.1 shows the average ∆Accuracy for all sequences, based on the per-

centage of symbol changes of sequences. This figure illustrates that on average

based on the suggested Markov model, best increment of accuracy is obtained when

%6 of symbols are changed in each sequence. In order to compare this result with

the ground truth we calculated the percentage of changes needed to convert the pre-

dicted sequence, which was obtained by our classifier, to the sequence built based

40

on the ground truth. We observed that based on all the test sequences an average of

%21 symbol changes was needed. This provides an upper bound threshold for our

experiments.

Figure 6.1: Average of ∆Accuracy for all sequences

Table 6.1 shows overall precision, recall, and F-measure obtained by changing

a specific percentage of symbols in the total sequences of symbols. It shows that

the overall accuracy are increasing due to using Markov predictions.

Table 6.1: Results for locating lists after applying Markov Model vs baseline

Precision Recall F-measure
Our Method + MM 80.4 82.8 81.58
List/Table Tag Baseline 50.1 85.3 63.17

41

Chapter 7

Conclusions and Future work

In this dissertation we mainly considered list-containing classification of web pages

using machine learning algorithms. We addressed that not all the web pages contain

a set of similar items and explored multiple feature sets that can correctly predict

the label of a web page and detect the location of lists in the page. We showed that

while previous methods handling record boundary detection only use heuristics for

locating groups of data records, structural features based on the HTML tags and

their structure provide strong clues about detection of a list-containing web page.

We also showed ways to combine context based features with structural ones to

achieve higher accuracy. We showed that when searching for the location of the

lists inside a Web page, dividing the page in to smaller sub-files and searching for

a set of similar items in each sub-file is effective. We fulfilled this goal by applying

a classifier on each sub-file and assigning a label to it. Finally we gained better

performance by changing some predicted labels using a probabilistic model based

on Markov Chain. Regarding our data set, one of the advantages of our method is

that it is domain independent.

7.1 Future work

Further work is required for increasing the accuracy of detecting lists in a Web page.

This might be achieved by investigating a Markov Model of higher order.

However our method mainly supports for semi-structured data, since the most

important features rely on the HTML source, it also can be a baseline for semi-

42

structured text. Semi-structured pages contain free text from which data items can

be inferred. The reason is that in our method page context attributes are used, which

exist and can be found in free text pages. Of course by using more semantic and

syntactic information, supporting for non-HTML pages would be also possible.

Some of the future work for distinguishing ambiguous list boundaries and iden-

tifying unwanted lists could be done by using semantic information. Further work

can also be done on filtering out irrelevant list items. As an alternative identifying

more clear and understandable lists could be taken in to account. Examples of these

types of enriched information are top-k lists, which are more interesting for human.

Another direction for future research could be identifying the Title of each list.

In this way each set of list items as well as its category, would be used as an impor-

tant source for further data mining tasks.

As an further application of this research, extracted lists might be used to an-

notate and extract relationships between entities in the world. Entities like people,

which are usually found together in a list, are more similar than those which are not

frequently found together.

43

Bibliography

[1] Z. Bar-Yossef and S. Rajagopalan. Template detection via data mining and
its applications. In Proceedings of the 11th international conference on World
Wide Web, pages 580–591. ACM, 2002.

[2] S. Brin. Extracting patterns and relations from the world wide web. In The
World Wide Web and Databases, pages 172–183. Springer, 1999.

[3] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction system for
the world wide web. In Distributed Computing Systems, 2001. 21st Interna-
tional Conference on., pages 361–370. IEEE, 2001.

[4] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:
exploring the power of tables on the web. Proc. VLDB Endow., 1(1):538–549,
Aug. 2008.

[5] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content structure for web
pages based on visual representation. In Web Technologies and Applications,
pages 406–417. Springer, 2003.

[6] C.-H. Chang, M. Kayed, M. Girgis, and K. Shaalan. A survey of web informa-
tion extraction systems. IEEE Trans. Knowl. Data Eng., 18(10):1411–1428,
2006.

[7] H.-H. Chen, S.-C. Tsai, and J.-H. Tsai. Mining tables from large scale html
texts. In Proceedings of the 18th conference on Computational linguistics-
Volume 1, pages 166–172. Association for Computational Linguistics, 2000.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: automatic data extrac-
tion from data-intensive web sites. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, SIGMOD ’02, pages 624–
624, New York, NY, USA, 2002. ACM.

[9] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational tables from
lists on the web. Proceedings of the VLDB Endowment, 2(1):1078–1089,
2009.

[10] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates. Unsupervised named-entity extraction from the
web: An experimental study. Artificial Intelligence, 165(1):91–134, 2005.

[11] G. Forman. An extensive empirical study of feature selection metrics for text
classification. J. Mach. Learn. Res., 3:1289–1305, Mar. 2003.

[12] D. Freitag. Information extraction from html: Application of a general ma-
chine learning approach. In AAAI/IAAI, pages 517–523, 1998.

44

[13] F. Fumarola, T. Weninger, R. Barber, D. Malerba, and J. Han. Extracting
general lists from web documents: A hybrid approach. In Modern Approaches
in Applied Intelligence, pages 285–294. Springer, 2011.

[14] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak. Towards
domain-independent information extraction from web tables. In Proceedings
of the 16th international conference on World Wide Web, pages 71–80. ACM,
2007.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. The
weka data mining software: An update. SIGKDD Explorations, 11(1), 2009.

[16] J. Hedley. Jsoup. http://jsoup.org/, 2009.

[17] C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Information systems, 23(8):521–538,
1998.

[18] D. Jurafsky and J. H. Martin. Speech and Language Processing (2nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

[19] N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, 118(1):15–68, 2000.

[20] A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief
survey of web data extraction tools. ACM Sigmod Record, 31(2):84–93, 2002.

[21] L. Li, Y. Liu, and A. Obregon. Visual segmentation-based data record extrac-
tion from web documents. In Information Reuse and Integration, 2007. IRI
2007. IEEE International Conference on, pages 502–507. IEEE, 2007.

[22] B. Liu, R. Grossman, and Y. Zhai. Mining web pages for data records. Intel-
ligent Systems, IEEE, 19(6):49–55, 2004.

[23] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[24] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Extracting
data records from the web using tag path clustering. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 981–
990, New York, NY, USA, 2009. ACM.

[25] R. Mooney. Relational learning of pattern-match rules for information ex-
traction. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 328–334, 1999.

[26] G. Penn, J. Hu, H. Luo, and R. McDonald. Flexible web document analysis
for delivery to narrow-bandwidth devices. In Document Analysis and Recogni-
tion, 2001. Proceedings. Sixth International Conference on, pages 1074–1078.
IEEE, 2001.

[27] D. Raggett. HTML tidy. http://tidy.sourceforge.net/, 2004.

[28] S. Sarawagi. Automation in information extraction and data integration. Tu-
torial at the Intl’ conf on Very Large DataBases 2002,Hongkong., 2002.

45

[29] H. Sleiman and R. Corchuelo. A survey on region extractors from web docu-
ments. 2012.

[30] S. Tong and J. Dean. System and methods for automatically creating lists,
Mar. 25 2008. US Patent 7,350,187.

[31] R. C. Wang and W. W. Cohen. Language-independent set expansion of named
entities using the web. In Data Mining, 2007. ICDM 2007. Seventh IEEE
International Conference on, pages 342–350. IEEE, 2007.

[32] Y. Wang and J. Hu. A machine learning based approach for table detection on
the web. In Proceedings of the 11th international conference on World Wide
Web, pages 242–250. ACM, 2002.

[33] T. Weninger, F. Fumarola, R. Barber, J. Han, and D. Malerba. Unexpected
results in automatic list extraction on the web. ACM SIGKDD Explorations
Newsletter, 12(2):26–30, 2011.

[34] L. Yi, B. Liu, and X. Li. Eliminating noisy information in web pages for data
mining. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 296–305. ACM, 2003.

[35] X. Yin, W. Tan, and C. Liu. Facto: a fact lookup engine based on web tables.
In Proceedings of the 20th international conference on World wide web, pages
507–516. ACM, 2011.

[36] Z. Zhang, K. Q. Zhu, and H. Wang. A system for extracting top-k lists from
the web. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1560–1563. ACM, 2012.

[37] Z. Zhang, K. Q. Zhu, H. Wang, and H. Li. Automatic extraction of top-k lists
from the web.

46

