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Abstract 

 

    Fuzzy Rule-based Systems (FRBS) form a commonly encountered category of fuzzy models 

and play an essential role by developing a human-centric modeling framework. Fuzzy rule-based 

modeling aims at identifying the structure and the parameters of “if-then” fuzzy rules so that a 

desired input/output mapping is achieved. One of the most widely-used architectures in fuzzy 

modeling come in the form of Takagi–Sugeno–Kang (TSK) rules (“if-then” rules), which use 

linear or, more generally, local polynomial functions in the conclusions (consequences) of the 

rules, rather than linguistic terms (fuzzy sets). 

    This dissertation's primary aim is concerned with the structural identification and parametric 

optimization of data-driven fuzzy models using some population-based optimization methods. 

Three different architecture are introduced and studied. 

    In the first architecture, the TSK model's structural optimization is achieved by the particle 

swarm optimization (PSO), with the intent of its complexity management. This is accomplished in 

two ways: (i) by structuralization of the antecedents and (ii) by structuralization of the 

consequences of the fuzzy rules. More specifically, this study contributes to the complexity 

management of fuzzy models by focusing on (i) the efficient arrangement (reduction) of the input 

spaces over which the antecedents of rules are formed and (ii) allocating the orders of local 

polynomial functions across the consequences of the rules. This architecture's originality comes 

with the flexibility of FRBS that is endowed by admitting variability of input spaces standing in 

the antecedents of different rules and the variability of orders of polynomials (local functions) 

forming the consequences of the rules. PSO as an optimization vehicle is guided by the root mean 

squared error (RMSE) accuracy criterion to realize the efficient arrangement of input spaces and 
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an allocation of the orders of the individual polynomials. In this optimization process, the Fuzzy 

C-Means (FCM) algorithm is employed to create fuzzy sets in the rules' antecedents, while the 

standard Least Square Error (LSE) optimization criterion is minimized to determine the 

coefficients of the polynomials in the consequences. The proposed model's performance is 

quantified using numeric data, including both synthetic and machine learning datasets. 

    The second architecture in this dissertation is realized with the aid of genetic programming (GP). 

The proposed architecture employs GP to form fuzzy logic expressions involving logic operators 

and information granules (fuzzy sets) located in the input space, and used to predict information 

granules in the output space. We propose an architecture realizing logic processing, with the 

structural optimization of the model accomplished by multi-tree genetic programming and the 

parametric optimization completed by gradient-based learning. The granulation of information 

used in this architecture is developed using the FCM clustering algorithm. The novelty of this 

study is two-fold: (i) it comes with the flexibility of the logic-oriented structure of fuzzy models, 

and (ii) our architecture is designed to handle high-dimensional data by alleviating the detrimental 

effect of distance concentration hampering the effectiveness of standard TSK FRBS. The study is 

illustrated through some experiments that give a detailed insight into the fuzzy models' 

performance. A comprehensive comparative analysis is also covered. 

    The third architecture in this dissertation aimed at the generalization of the TSK FRBS. In the 

current literature, most of the TSK models with polynomial (linear) consequences have been 

studied; however, the TSK models' design with non-linear consequences has not been discussed 

to a great extent. The originality of the introduced architecture comes with the TSK model's 

generalization, which employs a family of non-linear and linear local models rather than only 

linear models forming the rules’ consequences. The proposed modification reduces the model’s 
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complexity (number of rules) while preserving the desired accuracy. The introduced architecture 

benefits from PSO and LSE to extract the consequences, whereas fuzzy sets standing in the 

antecedents of rules are formed by the FCM clustering algorithm. 
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Chapter 1  Introduction 

 

    The primary purpose of fuzzy modeling is to achieve a set of local input-output relations that 

describe a process. The most commonly used fuzzy models are fuzzy rule-based systems (FRBS), 

consisting of a collection of fuzzy rules with a certain model structure. There are two main 

approaches for generating fuzzy rules, which rely on: (i) knowledge acquisition from human 

experts and (ii) knowledge discovery from data (data-driven). In the first approach, we can perform 

fuzzy modeling by extracting knowledge from human experts and transforming the expertise into 

membership functions and rules. The resulting system can then be tuned by monitoring its 

performance through trial and error. However, the dependency of the system on human experience 

results in some issues. First, even when human experts exist, their knowledge is often incomplete 

and episodic rather than systematic. Second, there is no formal and effective way of knowledge 

acquisition. For example, determining the proper number of rules and partitioning the input feature 

space remain challenging. Third, we want a system to have the learning ability to update and fine-

tune itself based on newly arriving information. Therefore, in the second approach, data-driven 

FRBS, the researchers have been trying to automate the modeling process based on numerical 

training data. 

 

1.1. Motivation  

    Among the variations of FRBS, Takagi–Sugeno–Kang (TSK) fuzzy systems [1] provide a 

helpful framework to model by decomposition of a nonlinear system into a collection of local 

linear models. Traditional mathematical models may fail to describe many complex nonlinear 
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systems' behaviors, while the potential applications of TSK fuzzy models for complex systems are 

vast. However, establishing the TSK fuzzy systems on the basis of data has its own concerns. 

Identifying the model is one of the critical issues in fuzzy modeling, which requires two main 

stages: (i) structural identification and (ii) parametric optimization. Structural identification is 

mainly concerned with the number of rules, selection of variables forming the antecedents of the 

rules, proper partition of the input feature space, and determination of membership functions for 

each variable in the antecedent parts. On the other hand, parametric optimization deals with the 

adjustment of system parameters, such as the coefficients of local polynomial functions in the 

consequences of rules, the modal values of each membership function in the antecedents. From 

another point of view, identifying a fuzzy model can be formulated as a search problem in 

multidimensional space, where each point represents a potential fuzzy model with different 

structures and the corresponding parameters. Due to the capability of searching multidimensional 

solutions, evolutionary algorithms (EAs) [2], such as genetic algorithms (GAs) [3], differential 

evolution (DE) [4], and genetic programming (GP) [5], have been utilized in evolutionary fuzzy 

modeling. 

    One of the motivations for structural and parametric optimization of TSK fuzzy models in this 

thesis is to obtain a TSK model of less complexity which retains accuracy. One alternative to 

achieve this aim is structuralization of fuzzy rules on both the antecedents and consequences 

through the efficient arrangement of input spaces together with the allocation of orders of 

polynomials [64]. Two modeling resources are employed, namely, (i) the total order of 

polynomials and (ii) the fraction of the overall number of input variables in the original space. 

Under the given modeling resources, this methodology involves the design of a TSK model, 

focusing on selection of subsets of input variables in antecedents and assignment of orders of 
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polynomials in consequences of the rules, in such a way that the performance index of the root 

mean squared error (RMSE) becomes minimized. On the one hand, structural arrangements 

(structural optimization) of the input spaces, over which the antecedents of rules are formed, reflect 

the nature of data located in the original input space. In other words, structural optimization of 

antecedents leads to the retention of the most influential input variables across different rules. 

Arranging the orders of polynomials in the consequences is also nicely reflective of the 

characteristics of the local input-output relationships. The structuralization helps to better express 

important input variables as well as less complex (more readable) local functions because they 

consist of low orders, say, 0, 1, 2, or 3, instead of higher orders. Unlike the literature, the 

arrangement of input spaces may result in variability of dimensionality of input space in different 

rules. On the other hand, this process is driven by the RMSE accuracy criterion that is treated as a 

fitness function. Therefore, both accuracy and complexity of the model is improved.  

    The functional fuzzy models (TSK) are utilized to describe complex non-linear systems by a 

collection of rules whose consequences are local functions. These functions could be linear, non-

linear, differential equations, or neural networks [6]. Although the model with linear consequences 

possesses the universal approximation property, but in practice, the number of rules to achieve the 

desired accuracy is high. In the current literature, most of the TSK models with polynomial (linear) 

consequences have been studied; however, the TSK models' design with non-linear consequences 

has not been discussed notably. Another motivation in this thesis is concerned with the 

development of data-driven FRBS by involving a family of non-linear and linear local models 

rather than only linear models. The main advantage of using non-linear consequences is its 

capability to approximate highly non-linear functions using a small number of fuzzy rules. In other 
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words, the proposed modification can reduce the model’s complexity preserving the desired 

accuracy. 

    Applying TSK fuzzy models to real-world problems raises more challenges. While traditional 

machine learning datasets have been low in feature dimensionality, many high-dimensional 

datasets have been used due to data analysis requirements and information technology. Examples 

of such application domains include geographic information systems (GIS), text documents, DNA 

microarray data, and image processing. High-dimensional data exhibit characteristics that differ 

from low-dimensional data, and these characteristics sometimes seem counterintuitive. One of the 

leading causes of high-dimensional data's differing properties is the phenomenon of distance 

concentration [7-8]; that is, all pairwise distances between the data points tend to be very similar 

or identical in higher dimensions. Thus, any algorithm that uses a distance function is strongly 

affected by this issue; e.g., membership degrees of observations be proportionally distributed 

across all the clusters in the Fuzzy C-Means (FCM) clustering algorithm. As the development of 

TSK models is fundamentally based on the FCM algorithm, this phenomenon negatively impacts 

the model's performance. Motivated by this idea, we want to form more distinct and meaningful 

clusters in the TSK models' design to cope with the issue of distance concentration. This is 

achieved by utilizing FCM algorithm independently to each variable rather than to all variables at 

once [65]. 

 

1.2. Objectives and Originality  

    The main objectives of this dissertation are outlined as follows: 
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 Developing a data-driven fuzzy rule-based modeling via efficient arrangement (reduction) 

of the input spaces over which the antecedents of rules are formed and allocating the orders 

of local polynomial functions across the consequences of the rules. 

 Stressing complexity management and maintaining the approximation abilities of the 

FRBS using structural arrangements of antecedents and consequences across the rules. 

 Investigating the impact of structuralizing the antecedents or the consequences of rules on 

the model performance and deciding which one is more efficient. 

 Introducing a design procedure realizing logic processing through genetic programming in 

the form of both structural and parametric optimization. 

 Development of data-driven fuzzy models based on high-dimensional data. 

 Addressing the structural and parametric optimization of fuzzy rules with non-linear 

consequences, rather than only linear consequences. 

    The originality of this dissertation can be identified as follows: 

 Bring design flexibility to the FRBS by admitting variability of input spaces in the 

antecedents of different rules and variability of orders in the local functions forming the 

consequences. 

 The rules are refined/revised based on the newly introduced modeling resources, namely, 

the total order of polynomials over all the rules and the fraction of overall number of input 

variables in the original space. 

 Bring flexibility to the logic-oriented structure of fuzzy models involving logic operators 

such as Xor, Nor, Nand, Equivalence, and Implication. 

 A variety of t-norms and t-conorms are employed in the evolutionary process to form the 

optimal model. 
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 Although it is essential, high-dimensional data has not yet been discussed enough in the 

literature of TSK models. Independent clustering of single variables rather than all 

variables at once, and then their combination using GP is a new methodology for the 

formation of useful fuzzy models. 

 Linear functions in the consequences of fuzzy rules are replaced with affine non-linear 

consequences to generalize the traditional TSK FRBS. This is performed based on 

allocating some non-linear functions such as sine, cosine, exponential, and square root 

across various fuzzy rules as their consequences. 

 In contrast to traditional TSK models, which have the same type of functions in all the 

consequences of rules, there is a variability of local models standing in the model's 

consequences proposed here. 

 The main advantage of using non-linear consequences is its capability to approximate 

highly non-linear functions using a small number of fuzzy rules. In other words, the 

proposed modification can reduce the model’s complexity preserving the desired accuracy. 

 

1.3. Dissertation organization 

     This dissertation is structured into the following chapters: 

    Chapter 2 briefly reviews some helpful background involved in this thesis, including fuzzy 

clustering, fuzzy modeling, distance concentration issue in high-dimensional data, and population-

based optimization methods. 

    Chapter 3 covers the development of different TSK models through PSO. This framework 

stresses the need for and benefits of structural refinement of fuzzy rules to make the model less 

complex while still retaining its accuracy. Two different ways of structuralizing the antecedents 
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and consequences of the rules, based on the newly introduced modeling resources, are proposed: 

(i) the arrangement of input spaces in the antecedents of the rules and (ii) the arrangement of the 

orders of polynomials in the consequences of the rules. 

    Chapter 4 proposes a design procedure based on genetic programming realizing logic processing 

in the form of structural and parametric optimization. This chapter also addresses the distance 

concentration issue in the design of high-dimensional fuzzy models, where the increase of 

dimensionality may converge all the pairwise distances (dissimilarities) to the same value, leading 

to failure of the fuzzy model. 

    Chapter 5 introduces an identification framework to generalize Takagi–Sugeno–Kang (TSK) 

fuzzy rule-based systems (FRBS). This framework stresses the need to use non-linear functions 

(rather than linear) standing in the fuzzy rules' consequences. The proposed modification reduces 

the model’s complexity (number of rules) while preserving the desired accuracy. 

    Finally, the work presented in this dissertation is summarized in chapter 6, and we identify some 

promising directions for future research. 
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Chapter 2  Preliminaries 

 

    This chapter briefly covers some essential prerequisites that make this thesis self-contained and 

easy to follow. In Section 2.1, we elaborate on fuzzy clustering, in particular the FCM algorithm. 

Then, in Section 2.2, we cover fundamental aspects of fuzzy modeling, particularly fuzzy rule-

based models. Next, the distance concentration issue in high-dimensional data is elaborated in 

Section 2.3. Finally, in Section 2.4, we detail the population-based optimization techniques utilized 

in our research. 

 

2.1 Fuzzy clustering 

    Data clustering is the task of grouping a set of data in such a way that data in the same group, 

so-called cluster, are more similar (in some sense) to each other than to those in other clusters. In 

granular computing, clustering is one of the most widely used methods of forming information 

granules. Depending upon the nature of the underlying clustering method, the information granules 

produced arise as sets, fuzzy sets, or rough sets. The FCM [9] is one of the mostly-used clustering 

algorithms which forms a collection of fuzzy sets. Let us discuss the formulation of the FCM and 

its development in a nutshell. The FCM algorithm starts with a desired number of clusters and 

random assignment of the data points to the clusters. Thus, all the data points have a membership 

value for each cluster. By iteratively updating prototypes (i.e., cluster centers) and membership 

values, the algorithm aims to guide the prototypes to the optimal locations in the data space. 

Suppose we have the data set as X = (x1, x2,…, xN)T, xk is the kth data point in the n-dimensional 
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space Rn. The generic version of the FCM algorithm minimizes the following objective function 

Q with the weighted Euclidean distance as  

Q = ∑ ∑ uik
mN

k=1
c
i=1 ∥xk-vi∥

2                                                     (2.1) 

with the distance is expressed as 

∥xk-vi∥
2 = ∑

(xkj-vij)
2

σj
2

n
j=1                                      (2.2) 

where σj is a standard deviation of the jth variable of the data, and fuzzification coefficient m is 

usually greater than 1. Obviously, the distance function's choice impacts the geometry of the 

clusters, which entails modeling capabilities supported by the ensuing rule-based models. The data 

is partitioned into c clusters come in the form of the partition matrix U = [uik]c×N, i = 1, 2,…, c; 

k=1, 2,.., N, and a collection of prototypes represented as V=(v1, v2, …, vc)T. The kth data item is 

described in terms of the kth column membership grades in the partition matrix. The algorithm 

proceeds iteratively by first updating the cluster prototypes: 

vit=
∑ uik

m xkt
N
k=1

∑ uik
m N

k=1

                                                                             (2.3)                                                                                                

where t = 1, 2,…, n, and then followed by the re-computation of the partition matrix with the new 

prototypes using the following membership function: 

uik=
1

∑ (
∥xk-vi∥

∥xk-vj∥
)

2
(m-1)c

j=1

                                                                     (2.4)                                                        

    The algorithm is terminated once the given termination criterion is met, commonly when the 

change in the partition matrix is less than some specified threshold value. 
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    When the data are in the form of (xk,y
k
), k=1, 2, …, N, where xk is the kth data point in the n-

dimensional input space Rn and y
k
 is its corresponding single output, they are combined into (n+1)-

dimensional vectors p
k
=[x

k
, y

k
]. Then the FCM algorithm is completed in n+1 dimensional space 

and produces the prototypes expressed in the form of (vi,wi)∈Rn+1, i = 1, 2,…, c, where vi and wi 

are the prototypes positioned in the input and output spaces, respectively [6]. 

 

2.2 Fuzzy modeling 

    In general, fuzzy models operate at a level of information granules, i.e., fuzzy sets. In this way, 

they constitute highly abstract and flexible constructs that provide many modeling advantages 

compared to the traditional computing techniques that deal directly with numerical information. 

The combination of approximation and interpretability capabilities of fuzzy models makes them 

powerful machine learning tools, particularly for research areas where the need to understand the 

reasoning behind model behavior is crucial. Fuzzy models are inherently able to represent and 

process uncertainty with this processing of information granules, which are apparent in all parts of 

the real world. 

    We focus on the fuzzy model's general architecture in this section to elaborate on its functional 

elements. A general fuzzy model has two essential functional parts: (i) input and output interfaces 

and (ii) a processing core. The interfaces enable communication between the fuzzy model's 

conceptual structure and the physical world of measured variables. The input interface realizes 

perception, where input variables are transformed into an internal format of information granules 

(fuzzy sets) understood by the logic-processing core. The output interface communicates the 

processing results in a form understood by the external world (modeling environment). These 
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actions can be referred to as fuzzy encoding (input interface) and decoding (output interface) or, 

more traditionally, fuzzification and defuzzification. The logic-processing core forms the most 

crucial component of the fuzzy model, composed of a knowledge base containing the structure and 

details of system behavior, realizing inference through granular computation. The overall model 

is shown in Figure 2.1. 

Processing core

Input interface Output interface

Data Numeric Output, 

Class assignment ,...

 

Figure 2. 1. A general view at the underlying architecture of fuzzy models [6] 

 

    Rule-based models play a central role in fuzzy modeling. These models are mainly used to 

describe and handle complex nonlinear relationships by formulating “if-then” rules that are 

overlapped through input and output space and contain extractions of knowledge in the following 

form: 

If antecedent proposition then consequent proposition                           (2.5) 

    In terms of taxonomy, fuzzy rule-based models can be roughly divided into several families, 

depending on the type of fuzzy sets used in the rules. The two most widely-used architectures are 

Linguistic (Mamdani) [10] and Functional Takagi–Sugeno–Kang (TSK) fuzzy models [1]. The 

main difference between these two is in the form of the consequent part of rules. The Mamdani 
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model employs linguistic terms (fuzzy sets), whereas the TSK model uses the polynomial local 

function of antecedent variables in the consequent part. 

 

2.2.1 Linguistic (Mamdani) fuzzy models  

    The following expression is the common form of linguistic fuzzy model: 

Ri : if X is Ai and Y is Bi then Z is Ci                                                                                (2.6) 

where Ri denotes the ith rule, i=1, 2,…, c, and c is the total number of rules. X, Y, and Z are linguistic 

variables with base variables x, y, and z. Ai, Bi, and Ci are fuzzy sets on X, Y, and Z, respectively. 

The aggregation of the rules is realized as a union of the Cartesian products of the fuzzy sets 

standing in the antecedents and consequents parts of the individual rule. There are several options 

to aggregate the rules, but often rule aggregation is carried out using minimum or product t-norms. 

Here, “if-then” rules are defined as Cartesian products using the minimum or product t-norms and 

the maximum t-conorms to perform aggregation rules. In what follows, we illustrate one of the 

essential linguistic models is called the min-max models. 

    Figure 2.2 illustrates the main processing steps of the min-max linguistic model. As this figure 

displays, the principal stages of the model are as follows: (i) antecedent matching: for each rule Ri, 

i=1,2,….c, compute the degree of matching by using possibility measure, i.e. mi = max [min(A (x), 

Ai(x))] and ni = max [min(B(x), Bi(x))], (ii) antecedent aggregation: for each rule Ri, compute the 

rule activation degree by conjunctively or disjunctively operating on the corresponding degrees of 

matching: λi = min(mi , ni), (iii) rule result derivation: for each rule Ri, , compute the corresponding 

inferred value based on its antecedent aggregation and the rules semantics chosen. Ci’ = min(λi , 

Ci), and (iv) rule aggregation: compute the inferred value from the complete set of rules by 
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aggregating the result of the inferred values derived from individual rules, C(y) = max i=1,2,…,c  

(Ci’). In case a numeric outcome of inference is required, a certain decoding is completed. Despite 

the evident simplicity of the overall construct outlined above, it supports efficient nonlinear input-

output mapping. 

Poss

Poss

Poss

λ1 

λi 

λc 

Min 

Min 

Min 

Max
       

(A,B)

A1, B1

Ai, Bi

Ac, Bc

C1

Ci

Cc

C

C 
1

C 
i

C 
c

.

.

.

.

.

.

 

Figure 2. 2. Min-max fuzzy linguistic model [6] 

 

2.2.2 Functional TSK fuzzy models  

   The most established and well-studied form of FRBS is the TSK model. The TSK fuzzy model 

provides a systematic approach for generating fuzzy rules from a given input-output data set. The 

following expression is the common form of TSK style rules: 

Ri : if x1 is Ai,1 and … xn is Ai,n then yi= fi(x, ai )                             (2.7) 

where i = 1, 2,…, c, and c is the number of rules, x is a n-dimensional input variable. Ai is the 

membership function of ith fuzzy set in the input space and ai is a vector of coefficients in the local 

function fi(x, ai). As earlier mentioned, the membership functions can be estimated relying on 

expert experience or by admitting a data-driven approach. In the second alternative, the clustering 

algorithm plays an essential role in generating clusters (prototypes) and determining the model's 
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rule structure. In the consequent part, yi is the output of the ith rule described by some local function 

fi(x, ai), which is typically regarded as a linear function or simply as some constant values. 

    When arranging all the rules together involving their antecedent parts, the output of the model, 

say ŷ , is aggregated by taking the weighted average of the output of each rule as follows, 

ŷ=
∑ Ai(x) fi(x, ai)                c

i=1

∑ Ai(x)c
i=1

                                                    (2.8) 

    If we consider utilizing FCM clustering to form the membership functions, it holds that 

∑ Ai(x)c
i=1 =1. The output of the fuzzy models can be rewritten in the following expression, 

ŷ= ∑ Ai(x) f
i
(x, ai)

c
i=1                                                               (2.9) 

    Some orders (types) of the polynomials are considered: 

Type 0 (constant ): f
i
(x,ai)=ai0                    (2.10) 

Type 1 (linear): f
i
(x,ai)=ai0 + ai1

Tx         (2.11) 

Type  2 (quadratic): f
i
(x,ai)=ai0 + ai1

Tx + ai2
T x2       (2.12) 

Type 3 (cubic): f
𝑖
(x,ai)=ai0 + ai1

Tx + ai2
T x2 + ai3

T x3,                                            (2.13) 

where aij is a vector of coefficients in jth term of rule i, and  xk= x⊙x …⊙x=[x1
k , x2

k  ,…, xn
k]

T
, k=2, 

3,... The symbol ⊙ denotes an element-wise multiplication operator of two vectors. Take, for 

example, vector x=[x1, x2, x3]
T
, so x2= x ⊙ x =[x1

2, x2
2 , x3

2]
T
and x3= x ⊙ x ⊙ x =[x1

3, x2
3 , x3

3]
T
.    

    In the original TSK fuzzy model, fi(x,ai) in the consequent parts of the rules is adopted as a 

linear function as follows, 
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fi(x,ai)=ai0+ai1xi1+ai2x2+…+ainxn                                                               (2.14) 

    The parameters of the local function are identified by minimizing the Least Square Error (LSE) 

optimization criterion [9]. In some cases, for the sake of simplification, ai1, ai2,…, and ain can be 

defined as zeros so that the function is simplified as a constant value. 

    Let us see the process of determining parameters in detail. The parameters of a linear local 

function can be shown in the form of  ai= [ai0, ai1,…, ain]. The output of the model is expressed in 

the following form: 

ŷ= ∑ Ai(x)c
i=1 .ai

T [
1

x
] = ∑ ai

Tc
i=1 [

Ai(x)

Ai(x)x
]                      (2.15) 

    Suppose  

   zi(x)=

[
 
 
 
 

Ai(x)

Ai(x) x1

Ai(x) x2…

Ai(x) xn]
 
 
 
 

                                (2.16) 

so 

ŷ= ∑ ai
Tc

i=1 zi(x)= ∑ zi
T(x)c

i=1 ai                (2.17) 

    Let us use the following vector notation to collect all parameters of the models  

a = [

a1

a2
a3…

ac

]                                                          (2.18) 

and 
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 f(x) =

[
 
 
 
 
z1(x)

z2(x)

z3(x)
…

zc(x)]
 
 
 
 

                                 (2.19) 

    The collection of N-input-target data is then organized in the following matrix format: 

y= 

[
 
 
 
 
y

1
y

2
y

3…

y
N]
 
 
 
 

                                                 (2.20) 

and 

F= [
f
T
(x1)

f
T
(x2)
…

f
T
(xN)

] = [

z1
T(x1) z2

T(x1)

z1
T(x2) z2

T(x2)

… zc
T(x1)

… zc
T(x2)

… …
z1

T(xN) z2
T(xN)

… …
… zc

T(xN)

]             (2. 21) 

so   

 ŷ=Fa                                         (2.22) 

    With the sum of squared error Q=||y-y|̂|
2
=(Fa-y)T(Fa-y) and its minimization with respect to 𝒂, 

the optimal estimated parameters are expressed in the following format: 

aoptimal = (FTF)-1FTy                                (2.23)     

    Another variation of the TSK model is involving the prototypes obtained from clustering to the 

local function. Namely, fi(x,ai) stands for a local linear function interpreted as a hyperplane 

governed by the following expression, 

f
i
(x,ai) = wi + ai

T(x-vi)                                             (2.24)  
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where vi is a cluster (prototype) capturing the location of the rule in the input space Rn and wi is the 

corresponding value in the output space, then 

ŷ = ∑ Ai(x) (wi + ai
T(x-vi))

c
i=1                              (2.25) 

    Let us introduce some auxiliary notation as shown below, 

Zi =Ai(x)(x-vi)                                                                  (2.26) 

q = ∑ Ai(x)wi
c
i=1                                                                   (2.27) 

    Then, the above model is concisely described in the form of  

  ŷ = q+ ∑ ai
TZi

c
i=1                                                                  (2.28) 

    We introduce the following concise notation, 

p = [y1-q1, y2-q2, …, yN -qN]T                       (2.29) 

    In the sequel, the parameters of the model are arranged into the cn-dimensional vector. 

a = [a11, a12,…., a1n, a21, a22…, a2n, ,…, ac1, ac2,… acn]T             (2.30) 

    Furthermore, the data are structured in the matrix format 

Z = [

𝒛11 𝒛12

𝒛21 𝒛22
⋯

𝒛1𝑐

𝒛2𝑐

⋮ ⋱ ⋮
𝒛𝑁1 𝒛𝑁2 ⋯ 𝒛𝑁𝑐

]                  (2.31) 

    Then 

Q=||y-y|̂|
2
= ∑ (y

k
-q

k
- ∑ ai

Tzki
c
i=1 )

2N
k=1 = (p-Za)T(p-Za)        (2.32) 
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    Minimizing (32), we estimate the parameters a by minimizing the LSE as, 

aoptimal = (ZTZ)-1ZTp                           (2.33)  

  

2.2.3 Other forms of fuzzy models 

    Depending upon the nature of the problem and properties of the domain knowledge, rules may 

come in the different formats, such as certainty-qualified and gradual rules [6]. In the certainty-

qualified rules, instead of allocating full confidence in the rules’ validity, we allow to treat them 

as being satisfied (valid) at some level of confidence. The degree of uncertainty leads to certainty-

qualified expressions of the following form: 

if X is A and Y is B then Z is C with certainty µ                                              (2.34) 

where µ∈[0,1] denotes the degree of certainty of this rule. If µ =1, we say that the rule is certain. 

    Rules may also involve gradual relationships between objects, properties, or concepts. For 

example, the rule 

             The more X is A; the more Y is B                                                                                (2.35) 

expresses a relationship between changes in Y triggered by the changes in X. In these rules, rather 

than expressing some association between antecedents and consequences, we capture the tendency 

between the information granules; hence the term of graduality occurring in the antecedent and 

consequent part. For instance, the graduality occurs in the rule “the higher the income, the higher 

the taxes’’ or typically, “the higher the horsepower, the higher the fuel”. 
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2.3 Distance concentration issue in high-dimensional data 

High-dimensional data analysis gives rise to many challenges. One such that has come to gain 

much attention recently is the distance concentration phenomenon, which is the inability of 

distance functions to distinguish data points well in high dimensions. That is, as the data 

dimensionality increases, all the pairwise distances (dissimilarities) may converge to the same 

value [7]. The lack of contrast between the nearest and the furthest points affects each machine 

learning area where high-dimensional data processing is required, e.g., data clustering. It can be 

formally described in the following way: Let Xn be an n-dimensional random vector with i.i.d. 

(independent and identically distributed) components of any distribution, and let dn(x) denote the 

distance of x∈Rn to the origin of the coordinate system with a suitable distance measure; for 

instance, Euclidean distance. Let dn
(max) and dn

(min) denote the largest and smallest distance of a point 

in a sample toward the origin of the coordinate system. Then, the following holds, 

lim
n→∞

var (
dn(Xn)

E(dn(Xn ))
) = 0   ⇒   (dn

(max)
−dn

(min)
)

dn
(min)   →p 0                              (2.36) 

where →p  denotes convergence in probability. In other words, when the relative variance (i.e., 

relative with respect to the mean distance) converges to zero with increasing dimensionality of the 

variables, then the relative difference of the closest and farthest point in the data goes to zero, 

where the number of variables increases [8]. Consequently, clustering algorithms based on the 

spatial structure of the data (quantified in some distance) cannot work well if all data tend to be 

equally distant. 
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2.4 Population-based optimization 

    There are several problems, particularly in the area of engineering, whose objective functions 

are complex and non-differentiable. Although there are some analytical and numerical 

optimization methods, there are no universal approaches. For FRBS, using gradient-based methods 

is not of much use, primarily due to their non-linear nature. This deficiency implies using 

population-based optimization approaches, such as evolutionary algorithms (EAs) or swarm 

intelligence. Despite gradient-based algorithms, population-based approaches can escape from the 

local optimum due to their exploration characteristic. As these methods have both exploration and 

exploitation potentials, they are suitable methods of constructing fuzzy models. In light of this, 

some of those approaches, such as genetic algorithm (GA), Genetic programming (GP), 

differential evolution (DE), and particle swarm optimization (PSO), are introduced in this section. 

 

2.4.1 Genetic algorithm (GA) 

    GA is a population-based technique of optimization which belongs to the class of evolutionary 

algorithms [11]. GA explores the search space by using the mechanisms encountered in natural 

evolution: mutation, crossover (recombination), and selection. In nature, individuals' fitness 

depends on their phenotype, which is directly influenced by their genotype (chromosome). 

Individuals with greater fitness have a greater chance of survival and also a more comprehensive 

range of mating partners to choose from within the population. The new individuals are generated 

by genetic operators, namely crossover and mutation. The space of feasible solutions is called 

search space. Each point in the search space represents one feasible solution. The coding of 

solutions is problem-dependent, say real, integer, and binary encoding. The implementation of GA 
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requires determining some fundamental issues, say, chromosome representation, selection 

function, genetic operators, and fitness function. The basic structure of GA includes three main 

steps: (i) forming the initial population, (ii) evaluating the fitness of the individuals, and (iii) the 

construction of an intermediate population through the selection and recombination process. The 

chromosome representation of the population is the primary concern in GA. The common 

representation uses fixed-length and binary coded strings. However, for more complex problems, 

using a real-coded string is favorable as the representation is more natural to domains' nature. 

Some of the most well-known selection methods are proportional selection, tournament selection, 

and ranking selection. After the selection process has been carried out to determine the parent 

chromosomes, the intermediate population's construction is handled over the recombination 

process, which involves two operators called crossover and mutation. The crossover operator plays 

a vital role in GA, where this operator is involved in the sharing of information between the 

chromosomes (i.e., exploitation); it combines the features of parents to form offspring, with the 

possibility that the good parent may generate better chromosome. Next, the mutation operators' 

role is to prevent GA's premature convergence to local solutions (i.e., exploration). The mutation 

operator restores lost or unexplored genetic material into the population. These two operators are 

not usually applied to all pairs/single chromosomes in the immediate population. A random choice 

is made according to the probability defined by the mutation rate (e.g., 0.1) and crossover rate 

(e.g., 0.85). Finally, another selection technique called the elitist strategy is usually implemented 

after crossover and mutation. By using the elitist strategy, we assure that the best performing 

chromosome always survives intact from one generation to the next. 
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2.4.2 Genetic programming (GP) 

    GP [12] is a population-based method that optimizes a problem using the iterative improvement 

of candidate solutions. It employs a population of non-fixed length possible solutions, so-called 

programs, to the given problem. These programs can be expressed as parse trees rather than strings. 

GP uses a set of predefined functions and terminals to construct individuals. For example, the 

function set can contain the basic arithmetic operations (+,-,*, /, etc.), Boolean logic functions 

(and, or, not, etc.), or any other mathematical functions. The terminal set contains the arguments 

for the functions and can consist of numerical constants, logical constants, variables, etc. 

Generally, a GP algorithm follows the coming process. An initial population of GP individuals is 

developed randomly, and a predefined fitness function is employed to evaluate their individuals’ 

finesses. The fittest individuals of the current population are selected then as the parents using a 

selection method. Next, genetic operators (crossover and mutation) are applied to the parents to 

generate offspring. Following that, the current population is replaced by a population of offspring. 

This process proceeds iteratively until a termination condition has been met and the individual 

with the best fitness returned. Koza [12] suggested three methods for initial population generation: 

the full, grow and ramped half-and-half methods. The initial individuals in both full and grow 

methods are formed not to exceed a user-specified maximum depth. The full method forms full 

trees (i.e., all the leaves are at the same depth) in which nodes are randomly taken from the function 

set until the full tree set is reached. Beyond that depth, only terminals can be chosen, whereas in 

the grow method, nodes can be taken from both function and terminal sets until the depth limit is 

met, then the leaves can be chosen from terminals. Because neither grow or full method provides 

a vast array of sizes or shapes on their own, a combination called ramped half-and-half was 

proposed. Half the initial population is constructed using the full, and half is constructed using the 
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grow method. This is done using a range of depth limits (hence the term “ramped”) to help ensure 

that the trees have various sizes and shapes. 

 

2.4.3 Differential evolution (DE) 

    Differential Evolution (DE) [11] is another popular EA strategy with a clear resemblance with 

GA and GP, but it differs considerably in the sense that distance and direction information from 

the current population is issued to guide the search process. Another difference is that mutation is 

applied first to generate a trial vector, and then a crossover operator is utilized to produce offspring. 

In DE, the population evolves towards an optimum solution through a series of evolution 

operations, such as mutation, crossover, and selection; that is, DE is looking for some solutions, 

which are the best. In the beginning, the population pop is initialized randomly. Then, in each 

generation, a mutant vector is generated for the ith individual in pop denoted as 

mvi=pop
q1

+F. (pop
q2

- pop
q3

)                                                   (2.37)                                                                                         

mvi=rbest+F. (pop
q1

-pop
q2

)                                                        (2.38) 

where q1, q2, and q3 are random integer indexes for the individuals in the population, and F is the 

differential weight positioned in the interval [0, 2] and treated as control parameters. rbest is the 

best individual of the current generation. Formulas (2.37) and (2. 38) are two common mutation 

strategies used in DE. 

    The crossover operation is used to increase the diversity of the produced mutation vector, which 

tries to adjust the jth variable in the ith mutation vector as 
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 p
ij
= {

mvij          , rand(0,1) ≤ CR or j = j
rand

rij , otherwise.
                                                                             (2.39)                                               

where rand(0,1) stands for a random number coming from the uniform distribution within the 

range [0, 1] and jrand is an integer index that is selected randomly from the uniform distribution 

over the range [1, n], where n is the number of features. CR is the crossover rate, which is randomly 

generated between 0 and 1. Individual r is either popq1 or rbest, depending on the used mutation 

strategy. Once the crossover operation has been done, a selection process determines the survivors 

for the next generation. In that process, better individuals (evaluated by a fitness function Q, and 

minimization of Q is pursued) obtained by mutation and crossover operations are selected as 

pop
i
= {

p
i

           , Q(p
i
)<Q(pop

i
)

pop
i

, otherwise.
                                                                      (2.40) 

 

2.4.4 Particle swarm optimization (PSO) 

    The PSO [11] is a well-known strategy in swarm computation that optimizes a problem using 

the iterative improvement of candidate solutions, so-called particles. Cooperation is one of the 

essential characteristics of this algorithm; that is, each particle of the population moves in search 

space in the current direction influenced by two factors: (i) the position of the best particle in the 

swarm and (ii) the best position that is experienced so far by the particle itself. Cooperation helps 

in moving the particle towards the best positions. During this process, the position and velocity of 

the particle are updated as follows: 

pos
i
(t+1)=pos

i
(t)+veli(t+1)                                                      (2.41)  

veli(t+1)=w veli(t)+c1 r1 . (p
besti

(t)-pos
i
(t)) +c2 r2 . (g

besti
(t)-pos

i
(t))                  (2.42) 
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    The index of the particle is represented by i, and the position and velocity of particle i at the 

time t are respectively described by the vectors pos
i
(t) and veli(t). The parameters w, c1, and c2 

(0≤w≤1.2, 0≤c1≤2, and 0≤c2≤2) are user-defined coefficients. The values of r1 and r2 are vectors 

of random numbers between 0 and 1, generated for each particle. p
besti

(t) and g
besti

(t) are the 

personal best solution found so far by the particle i, and the global best solution at the time t, 

respectively. The symbol “.” denotes an element-wise multiplication operator of two vectors. 

 

2.5  Conclusions 
 
    This chapter covers the fundamental concepts and algorithms essential in designing fuzzy 

models introduced in this dissertation. The fuzzy clustering algorithm (particularly FCM) is used 

as the foundation to form fuzzy rule-based models and was employed in all the architectures 

introduced in this thesis. This chapter has also elaborated in detail the fundamental aspects of fuzzy 

modeling, particularly rule-based models, and the population-based methods for solving the 

optimization problems. The issue of distance concentration in high-dimensional data is also 

discussed in this chapter. This issue leads to the failure of the standard TSK models in high 

dimensions. 

 

 

 

 

 



26 
 

Chapter 3  Structural Optimization of Fuzzy Rule-based 

Models: Towards Efficient Complexity Management 

 

    This chapter's primary aim is concerned with the structural optimization of data-driven fuzzy 

rule-based systems (FRBS), with the intent of their complexity management. This is accomplished 

in two ways: the first one involves a structuralization of the antecedents and the second one deals 

with a structuralization of the consequences of the fuzzy rules. More specifically, this chapter 

contributes to the complexity management of fuzzy models by focusing on (i) the efficient 

arrangement (reduction) of the input spaces over which the antecedents of rules are formed and 

(ii) allocating the orders of local polynomial functions across the consequences of the rules. The 

originality of the study comes with the flexibility of FRBS that is endowed by admitting variability 

of input spaces standing in the antecedents of different rules and the variability of orders of 

polynomials (local functions) forming the consequences of the rules. 

    Particle swarm optimization (PSO) is guided by the root mean squared error (RMSE) accuracy 

criterion to realize the efficient arrangement of input spaces and an allocation of the orders of the 

individual polynomials. In this optimization process, the FCM clustering algorithm is employed 

to create fuzzy sets in the rules' antecedents, while the LSE optimization criterion is minimized to 

determine the coefficients of the polynomials in the consequences. The proposed model's 

performance is quantified using some numeric data, including both synthetic and machine learning 

datasets. 



27 
 

3.1. Structural and parametric optimization of fuzzy rule-based systems 

    The design of the TSK FRBS can be regarded as an optimization task. This task is divided into 

two steps: (i) structural optimization and (ii) parametric optimization of fuzzy rules. Structural 

identification is mainly concerned with the number of rules, selection of variables forming the 

antecedents of the rules, and determination of membership functions for each variable in the 

antecedent. On the other hand, parametric identification involves estimating local polynomial 

functions' coefficients in the consequences and identifying each membership function's modal 

values in the antecedents. 

    Due to the ability to explore large search space, swarm and evolutionary computation have been 

employed to construct TSK FRBS. Setnes and Roubos [13] described a genetic algorithm (GA) to 

construct accurate FRBS of TSK. This method was also equipped with the rule base simplification 

capability to merge similar fuzzy sets and remove the redundant fuzzy sets [14]. Chen and Wong 

[15] proposed a binary GA to find a fuzzy system with a low number of rules and predetermined 

acceptable performance. However, this method could not detect input variables of little 

significance (relevance). To address this issue, Teng and Wang [16] employed a GA-based fuzzy 

system that had a dynamic structure; that is, a different number of membership functions was 

assigned to input variables according to their significance. If any input variables did not have extra 

membership functions assigned, they were discarded as dummy input variables to assure efficient 

fuzzy systems. Pedrycz and Song [17] presented some identification methodologies of fuzzy 

models based on information granulation and GA. They even determined the orders and 

parameters of polynomials occurring in the consequent parts in the literature [18-19]. Indeed, they 

incorporated the order of polynomial as a part of the optimization process. Although the fuzzy 

rules generated by their approaches might have various coefficients of polynomials at 
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consequences of different rules, the limitations were that all the rules had the same order of 

polynomials, and the input spaces specified by the GA were the same for all the individual rules. 

Other swarm and evolutionary methods such as particle swarm optimization (PSO) [20], 

differential evolution (DE) [21], and genetic programming (GP) [5] are also available in the 

literature. Tsai and and Chen [22] proposed an identification method for the TSK model by 

utilizing PSO. Most of the models encountered in the literature did not provide an efficient way to 

determine the number of fuzzy rules; however, in the mentioned work, Xie–Beni indices with a 

FCM clustering algorithm were adopted to find the rule number of the TSK model; then, by 

utilizing the PSO algorithm, the initial membership function and the consequent parameters of the 

fuzzy model were obtained. Tsakiridis et al.  [4, 23] designed a Mamdani FRBS so-called 

DECO3RUM (Differential Evolution based Cooperative and Competing learning of Compact 

Rule-based Models) for the prediction of soil properties from soil spectral libraries. A complete 

overview of evolutionary methods encountered in the automatic synthesis of fuzzy systems is 

given in [2, 5]. 

    A multi-objective evolutionary algorithm (MOEA) is another suitable alternative for structural 

optimization of FRBS which mostly focuses on the trade-off between accuracy and interpretability 

of model. In general, accuracy and interpretability of fuzzy systems are two contradictory 

objectives. Accuracy is the capability of the model to truly represent the real systems (data), 

whereas interpretability is the potential to express the behavior of the real model in an easily 

understandable way. The ideal model has both high accuracy and interpretability, but the 

contradictory natures of these requirements makes building an ideal model highly unlikely if not 

infeasible. Thus, it becomes essential to strike a sound balance between accuracy and 

interpretability. Ishibuchi and Nojima [24] demonstrated, using simple testing problems, which 
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the minimization of complexity of a model does not always lead to the maximization of 

interpretability in FRBS. A longer rule may be more meaningful than a shorter (more compact) 

rule without explicit semantics embedded in the fuzzy rules. However, in the literature of multi-

objective FRBS design, interpretability maximization is mostly handled as complexity 

minimization using complexity measures (often termed as readability), such as the number of 

fuzzy rules, the total number of antecedents (i.e., total rule length), and number of inputs for each 

rule. Based on the existing studies, different approaches, namely, (i) rule generation, (ii) rule 

selection, and (iii) tuning of fuzzy sets from existing FRBS are some options used by MOEA to 

achieve the complexity-accuracy trade-off. In [25], a three-objective evolutionary algorithms 

(EAs) was proposed to generate Mamdani FRBS with the trade-off among accuracy, complexity 

of the rule base (i.e., the number of rules in the rule base and number of linguistic terms in 

antecedents of rules), and partition integrity (i.e., measures how much the partition is different 

from an initial interpretable partition). The rule base and membership function parameters were 

learned concurrently during the evolutionary process. Casillas et al. [26] proposed a genetic fuzzy 

system for regression problems. This method dealt with the issues, such as lack of completeness, 

inconsistency, redundancy, or over-generalization, which are common when the fuzzy rules come 

in the conjunctive normal form as antecedent for a compact knowledge representation capability. 

Another method of achieving this trade-off is to improve the existing FRBS focusing on rule 

selection. MOEAs with this idea are proposed in the literature [27] and [28]. Indeed, the initial 

model is usually made of a high number of rules; then, a subset of rules is selected by removing 

redundant and inconsistent rules to represent a more compact fuzzy model. Ishibuchi et al. [29] 

constructed a compact fuzzy classification system by formulating a rule selection problem with 

two objectives: (i) maximization of the number of correctly classified training patterns and (ii) 
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minimization of the number of selected rules. Later, Ishibuchi and Nojima [27] employed a hybrid 

version of the Michigan [30] and Pittsburgh [31] approaches to examine the complexity-accuracy 

trade-off in fuzzy rule-based classifiers. Unlike Ishibuchi and Nojima [27], the complexity was 

measured by the number of fuzzy rules and/or the total number of antecedents of fuzzy rules. These 

measures worked well as a safeguard against the overfitting of fuzzy rule-based classifiers in 

training patterns. Lahsasna and Seng [32] aimed at improving the model proposed by Ishibuchi 

and Nojima [27]. They proposed two variants, namely (i) employed an enhanced version of non-

dominated sorting GA II (NSGA-II), so called Controlled Elitism NSGA-II for accuracy-

complexity trade-off optimization, (ii) improved the selection of the antecedents of the rules 

generated in the initial population of GA algorithm using a feature-based selection of the most 

important features instead of random selection. Márquez et al. [33] utilized adaptive 

defuzzification methods in linguistic fuzzy rules; weight associated with each rule was introduced 

to prune FRBS. In that method, the aim of interpretability was reducing the number of rules. 

Tuning of fuzzy sets from the existing FRBS, assumes a predefined rule base and has an objective 

of finding a set of optimal parameters for the membership functions. MOEA-based rule selection 

and tuning were used in the literature [34] and [35]. Gacto et al. in [35] proposed an index, namely 

GM3M that preserved the semantic interpretability of linguistic fuzzy models. Additionally, rule 

selection mechanisms can be used to reduce the model complexity. To achieve this, a MOEA is 

used for accuracy, semantic interpretability maximization, and complexity minimization. Saad, et 

al. in [36] proposed a robust structure identification method (RSIM) based on incremental 

partitioning learning. RSIM proceeded with an open region (initial domain) that covered all input 

samples. The initial region started with one fuzzy rule without fuzzy terms and then evolved 

through incremental partitioning learning, which created many sub-regions for system error 
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minimization. It located sufficient splitting points provided through a robust partitioning 

technique, determined the optimum trade-off between accuracy and complexity through a 

partition-selection technique, minimized global error through global least square optimization. 

This method sought to produce a few rules with a low number of conditions to reduce system 

complexity. A review of the application of MOEA for fuzzy systems is available in the literature 

[37-38]. 

    However, most of existing MOEA for the development of fuzzy models generate all the fuzzy 

rules in the same feature space, which is analogous to making decision based on the view of only 

one expert, yet  admitting variability of input spaces in the antecedents of different rules as well as 

variability of orders in the local functions forming the consequences allows the fuzzy model 

possesses a more human-like inference mechanism; in other words, that is analogous to making a 

decision based on the views of different experts. In the model proposed in chapter, this variability 

is provided by an architecture composed of integration of PSO and LSE methods. 

 

3.2. Problem formulation 

    In this dissertation, two structural arrangements for the rules with the intent of complexity 

management are used, namely, (i) structuralization of local functions forming consequences of the 

rules and (ii) structuralization of the input spaces of the antecedent parts. 

    Structuralization of local functions forming consequences of the rules: The order of each 

function ranges from 0 (a constant function) to 3. Thus, the cumulative order of c rules is pc, where 

p assumes values from 0 to 3. In other words, we have  
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order1+order2+…+orderc= pc                                                       (3.1) 

where the orderi is the order of ith rule, c is the number of rules, and the parameter p is used to 

adjust the cumulative order of polynomials forming the consequence of the rules. If p =0, this 

implies that all consequences are just constant functions. If p =3, this means that all rules have 

consequences in the form of the polynomials of order 3. There are values of p located in-between 

when there are rules of consequences exhibiting orders between 0 and 3. 

    The objective of structuralizing local functions is forming a fuzzy rule-based model that 

involves the allocation of orders to the local polynomials of individual rules in such a way that the 

performance index of the model (e.g., the RMSE) becomes minimized, and the total order of 

polynomials across all the rules is constrained to pc. Assuming that ŷ
k
 is the result produced by 

the fuzzy rule-based model for kth input, the RMSE index Q is expressed as follows: 

Q =√
1

N
∑ (y

k
-ŷ

k
)
2N

k=1                                           (3.2) 

    Structuralization of the input spaces of the antecedent parts: The cumulative dimensionality 

of the input spaces of all rules (viz. the total number of input variables over all rules in the original 

format)) is n+n + …+n= n×c, where n is the original dimensionality of the input space. We admit 

variability of these spaces across different rules, ranging from n to n×c. To model this relationship, 

we introduce reduction parameter β which satisfies the relationship 

n1+n2+…+nc = βn                                         (3.3) 

where n1, n2, …, and nc are the numbers of variables in the corresponding rules. The values of β 

positioned in the range [1, c] help capture the range of admissible values of the dimensionalities 

of the input spaces. Structural arrangements of the input spaces in the antecedents are aimed at 
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selection of the most influential input variables of individual rules whose total dimensionality is 

constrained to βn. 

3.3. Proposed architecture for optimizing the structural refinements of rules 

    We develop a hybrid approach based on PSO, information granulation (e.g., Fuzzy clustering), 

and the standard LSE to form a fuzzy rule-based model based on the resources already discussed 

(p, c, and β) in Section 3.2. The overall architecture of this methodology is shown in Figure 3.1. 

In this architecture, three main modules are responsible for forming the fuzzy model directly from 

input/target data. These components are as follows: (i) the FCM, which is responsible for the 

creation of the fuzzy sets in the antecedent parts of rules, (ii) the optimization engine, which is 

composed of PSO and standard LSE (The PSO is used to achieve the optimal arrangements of the 

input spaces in antecedent parts and the orders of polynomials in consequences, while the LSE is 

in charge of estimating the optimal coefficients of polynomials), and (iii) the evaluation module 

which is employed to calculate the cost function, viz, the RMSE of the fuzzy model over the 

evolution process. 

 
Figure 3. 1. The overall scheme of the proposed design methodology of FRBS 

 



34 
 

     
    In the fuzzy model, suppose that the linear polynomials in the rules' consequences employ the 

original input space, while antecedents use subsets of input space (e.g., the reduced input space). 

Fuzzy rules are modified in the following form. 

Ri:   if  xreduced is Ai(xreduced)  then y=f
i
(x,ai)   , i=1, 2,…, c                                              (3.4) 

where xreduced is a reduced subset of input space in the antecedent of ith rule. However, to preserve 

accuracy, the input space in the consequent part retains the original x. 

    The degree of activation of each rule is calculated based on the reduced input data, while the 

local function's value is computed from the original data. Thus, the activation level is computed as 

follows: 

Aik=
1

∑ (
||     xreducedk

-vreducedi
||

||xreducedk
-vreducedj

||
)

2
m-1

c
j=1

                                                              (3.5)  

where xreducedk
 and vreducedi

 are respectively kth data in the reduced space and the corresponding 

prototype of the ith cluster (rule). While calculating optimal coefficients of local functions, the 

whole process is the same discussed in chapter 2 for the standard fuzzy rules. However, there are 

two changes regarding the notation: (i) symbol x is replaced with xreduced only in the antecedents 

of rules, and (ii) the polynomials on the consequences of the rules can vary to constant, linear, 

quadratic, or cubic, despite the standard TSK model in which all the local functions are of the same 

type. This variable degree of polynomials in the new model resulted from the structural 

optimization process by the PSO. 

    The concept of a particle in the context of structuralization of local functions and input spaces 

to create fuzzy rules can now be discussed. Three different alternatives are proposed in this work 

to form optimized fuzzy rule-based models. The first model is built based on only optimizing the 
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arrangement of input variables in the antecedents of rules, while all the rules have the same orders 

of polynomials. The second model is created based on only optimizing the arrangement of orders 

of the polynomials forming consequences; however, the input spaces of antecedents retain the 

original input space. The last model is formed based on the optimization of both the antecedents 

and consequences of rules. 

    As the PSO is carried in the continuous search space, the contents of each particle are real-

valued. The velocity and position values are supposed between zero and one in the design of our 

fuzzy model. The size of each particle (i.e., fuzzy model) in the third alternative is c×(n+1), where 

c is the number of rules and n is the original input space's dimension. However, the position size 

in the first and second alternatives are c×n and c, respectively.  

     We are focusing on the third model as it is a generalization of the first and second models. The 

scheme of coding candidate solution (i.e., particle position) is visualized in Figure 3.2. 

 

Figure 3. 2. Scheme of coding candidate solutions 

 

    The contents of cells are real-valued in the [0, 1] interval. Each solution is composed of two 

parts: the first part is used for structural identification of antecedents, and the second part is 

employed for structural identification of consequences. Thus, it is transformed over two steps into 

(i) reduced input spaces and (ii) the orders of corresponding polynomials. 
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    In step one, the first c×n values of the candidate solution are transformed into subsets of input 

variables standing in the antecedents of rules. Algorithm 3.1 shows the pseudocode to form subsets 

of variables in each rule. 

 
Algorithm 3.1. Decoding the antecedent of rules 

Input: Candidate solution, number of rules (c), original dimension of input space (n), 

Reduction Parameter (β) 

Output: A two-dimensional list S composed of the rule’s number (#rule) and its 

corresponding variables’ number (#variable) 

1:   S=[] 

2:   Sort the first c×n values of the candidate solution in ascending order 

3:   Retrieve the first β×n sorted indices of the candidate solution 

4:   foreach index in the retrieved indices 

5:       #rule=⌈
 index

n
⌉ 

6:       if  index mod n == 0 

7:            #variable=n  

8:       else 

9:            #variable= index mod n                     

10:     end if 

11:     append #variable into S[#rule] 

12: end for 

13: return S 

 

    Take for example a rule-based model with c=3, n=4, β=3

2
 and p=5

3
.  Suppose that the content of 

the candidate solution is as shown in Figure 3.3. Ranking the 12 elements of the solution leads to 

the order of indices [10, 2, 8, 1, 12, 4, 7, 3, 5, 11, 6, 9]. With β=3

2
=

c

2
 (i.e., half of the original input 
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space), the selected indices are [10, 2, 8, 1, 12, 4]. As the size of the original input space is n=4, 

the reduced input spaces are as follows: 

    1th rule: x1, x2, x4 

      2th rule: x4 

       3th rule: x2, x4. 

    The last c values of the candidate solution are utilized in the second step to form the orders of 

polynomials. Given the total order of p×c, we normalize the values so that their sum becomes p×c. 

The normalized values may need to be rounded off to the nearest integer. For the particle’s position 

mentioned in Figure 3.3, p×c =5 makes the polynomials in the first, second, and third rule 

quadratic, linear, and quadratic, respectively.  

0.23  0.11 0.48 0.37 0.56 0.61 0.47 0.13 0.71 0.09 0.47 0.25 0.40  0.20 0.40 

Figure 3. 3. A representation of particle’s position in the structural optimization of FRBS 

 

    Note that the process of optimization for both first (only optimized antecedent) and second 

alternatives (only optimized antecedent) is the same as the third option explained above, whereas 

there is no structuralization of the orders in the first model and no structuralization of the input 

spaces in the second model. 

    Two commonly encountered requirements to retain the semantics of fuzzy sets concern (i) 

coverage of the input space and (ii) distinguishability of fuzzy sets. Regarding (i), this antecedent 

is met given the constraint imposed by the FCM algorithm, namely 

∑ Ai(x)=1c
i=1                                           (3.6) 
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that is, for any x at least one rule (cluster) becomes active. In the case of (ii), the fuzzy sets' 

distinguishability is related to the prototypes' closeness (modal values of the fuzzy sets). Two fuzzy 

sets positioned too close to each other entail a significant degree of overlap, reducing the semantics 

of the rules (implies their redundancy). This effect can be controlled by limiting the number of 

rules, viz. the number of clusters, by imposing the following requirement: 

mini,j=1,2,…,c||vi-vj||≥t                                                                                                       (3.7) 

where vi stands for the prototype of ith cluster and t is a certain threshold. That is, the number of 

rules should not exceed the upper limit cmax beyond which the smallest distance between the 

prototypes is not lower than t. 

 

3.4. Experimental studies 

    Numerical instances for the performance evaluation of the proposed approaches are provided 

here. Synthetic data, either one-dimensional or multi-dimensional, and some regression datasets 

from the UCI Machine Learning Repository, the Bilkent University Function Approximation 

Repository, and the KEEL Datasets are utilized in this chapter. In this section, we investigate the 

impact of structuralizing the antecedent and consequence of the rules on the model performance. 

There is a possible interest to determine whether (or not) the arrangement of antecedents is more 

efficient than the arrangement of consequences. Thus, four different alternatives in this work are 

compared to find a possible answer to the question raised here. 

    For the model formed based on one-dimensional data, only the consequent part is optimized, 

whereas, for multi-dimensional data, both the antecedent and consequences are optimized. In the 
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experiments, we use a 10-fold cross-validation method. The data set is divided into ten subsets of 

equal size. For each case, a subset is selected as the test dataset, and the remaining part of the data 

serves as the training dataset used to construct the model. 

 

3.4.1. One-dimensional synthetic data 

    We consider a single-variable non-linear function of the following form 

y=0.6 sin (πx) + 0.3 sin (3πx) + 0.1 sin (5πx), where input x is defined in the [-1, 1] interval. 500 

pairs of input-output data are generated by the given function y, where the inputs are evenly spaced 

points in the range [-1, 1]. Because there is only a single input variable, there is no need to reduce 

input space; thus, the PSO is used to distribute only polynomials' orders. 

    In this experiment, the modeling information is supposed to be as follows: c=6, p=13

6
 (i.e., the 

total order of polynomials=13). For the PSO and FCM algorithms, the following parameters after 

a fine-tuning have been chosen: swarm size=50, the maximum number of iterations=50, inertia 

weight damping ratio=0.99, w=1, c1=2, c2=2, and the fuzzification coefficient as m=1.9.  

    The allocation of orders achieved by the proposed approach is displayed in Figure 3.4.a. This 

figure visualizes the prototypes made by the FCM algorithm and the outputs of each local model 

in a subspace. The values written on top of the prototypes indicate the orders which are allocated 

to the local functions. Local models can predict outputs relatively well in the given neighborhood; 

in other words, this leads to forming a locally well interpretable model. Indeed, local models 

express good interaction with the global model, and each polynomial depicts nicely the 

characteristics of the input-target relationship in the corresponding subset. 
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    Figure 3.4.b illustrates the overall output of the proposed model on the given data. Based on the 

figure, the model output is usually similar to the original output. The overall performance index 

(RMSE) achieved by the model is 2.2925e-04.  

  
(a) (b) 

Figure 3. 4. Output of the model on one-dimensional data: (a) local models and their 
corresponding prototypes (b) overall output of the model 

 

3.4.2. Multi-dimensional synthetic data 

    A 5-D random input data x1, x2, ..., x500 is generated over [-10, 10] using a uniform distribution. 

Six prototypes in input space are formed, and then five linear polynomials and one constant are 

created as local functions of individual rules. The rules are formed as follows: 

R1: If x is A1 with v1=[x2=-0.59, x3=0.55, x5=0.52] then 

f
1
=-0.91-0.26x1+0.02x2-0.72x3+0.27x4-0.31x5 

R2: If x is A2 with v2=[x2=0.08,x3=-0.59, x5=0.55] then 

f
2
=-0.26-0.72x1+0.98x2+0.03x3-0.66x4-0.91x5 

R3: If x is A2 with v3 =[x
2
=-0.59, x4=0.28] then  f

3
=0.31+0.83x1+0.77x2+0.94x3+0.36x4-0.08x5 
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R4: If x is A4 with v4=[x
1
=-0.09, x2=-0.59] then  f

4
=-0.28 

R5: If 𝒙 is A5 with v5=[x1=0.08, x2=-0.59, x4=0.27, x5=0.52] then 

f
5
=0.26+0.87x1-0.24x2-0.69x3-0.92x4-0.18 

R6: If x is A6 with v6=[x3=0.55]  then  f
6
=-0.74 

     Following that, the outputs of synthetic data are generated using the abovementioned rules and 

(2.9). The generated data, along with the system’s resources (c=6, p=1, and β=3; i.e., cumulative 

dimensionality is 50% of the original input spaces) are then employed to develop four different 

fuzzy models. 

    In the first model, the original input space is preserved in antecedents of rules, and the 

polynomials in the consequences of all the rules are of the same order. However, for the rest of the 

three models, the PSO is used to optimize the antecedent or consequence of rules. That is, the 

second model is built based on optimizing the arrangement of orders in the polynomials, while the 

third model is created based on optimizing the arrangement of input variables in the antecedents. 

The last model is formed based on the optimization of both the antecedent and consequence. In 

this experiment, the parameters of PSO and FCM are chosen as: swarm size=50 (10n), maximum 

number of iterations=50 (10n), inertia weight damping ratio=0.99, w =1, c1=2, c2=2, and m=2. 

Performance comparison of the models is detailed in Table 3.1.  

Table 3. 1. Performance comparison of four models on synthetic data (c=6, p=1, and β=3) 

 No 
optimization 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized antecedent 
and consequence 

Training data 0.0075±0.0017 0.0020±0.0001 0.0045±0.0032 0.0018±0.0021 

Testing data 0.0018±0.0221 0.0023±0.0011 0.0031±0.0025 0.0012±0.0014 
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    Among the models illustrated in Table 3.1, the model with both the optimized antecedent and 

consequence performs better than others regarding the accuracy criterion. The model with the only 

optimized consequence has a relatively similar performance; that is, it is seen that the values of 

the performance indices achieved by the only optimized consequence, particularly for the training 

data, are very close to the performance of the model with both the optimized antecedent and 

consequence. The complexity of rules in the model with the antecedent and consequence both 

optimized are visualized in Figure 3.5. The values of the pairs (orderi, ni) in this figure demonstrate 

the complexity of the ith rule, wherein orderi and ni are the order of polynomial and the 

dimensionality of input space in the ith rule, respectively. 

 

Figure 3. 5. The complexity of rules created based on synthetic data (with β=3) 

        

    In the next experiment, keeping all the parameters fixed, the value of β changes to 4.8 (i.e., 80% 

of the original input space); the performance comparison results are illustrated in Table 3.2. This 

table indicates a quite similar tendency to Table 3.1; here, optimization in both the antecedent and 

consequence also leads to superior performance on the training data. Optimization on only the 
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consequence also achieves better results, particularly on the testing data, than optimization on only 

the antecedent or no optimization. Thus, the models formed by these two optimization processes 

(both optimized antecedent and consequence, and only optimized consequence) not only indicate 

the improvement of complexity of the models (due to input space reduction and allocation of the 

low orders to the polynomials), but also help in retention of approximation abilities. The 

complexity of the fourth model is displayed in Figure 3.6. 

Table 3. 2. Performance comparison of four models on synthetic data (c=6, p=1, and β =4.8) 
 

 No 
optimization 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized 
antecedent and 

consequence 
Training data 0.0079±0.0018 0.0018±0.0005 0.0040±0.0004 0.0005±0.0001 

Testing data 0.0270±0.0015 0.0019±0.0001 0.096±0.0021 0.0030±0.0013 

 
 

 
Figure 3. 6. The complexity of rules created based on synthetic data (with β=4.8) 

 
    The comparison of the results included in Table 3.1 and Table 3.2 reveals an interesting 

relationship whereby the increase of β for the generated synthetic data leads to the outputs with a 

performance index that is quite less. This improvement of performance is intuitively appealing; 
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one possible reason is that presence of more subset of inputs increases the accuracy of model. This 

higher β value becomes more vital, especially when the original input space is of the low 

dimensionality. 

3.4.3. Publicly available datasets 

    Several datasets, with different sizes and dimensions, from the UCI Machine Learning 

Repository, the Bilkent University Function Approximation Repository, and the KEEL Datasets 

are employed to evaluate the performance of the models. The first dataset, the Yacht 

Hydrodynamics, is used from the UCI. This dataset comprises 308 instances with six input 

variables and a single continuous output. The residuary resistance of sailing yachts per unit weight 

of displacement is the output of the model. The experiments are performed with different values 

of β, e.g., β=1.8, 3, and 4.8. The number of rules is set to 6, and the total order to 6 (e.g., p=1). The 

weighted Euclidean distance is used as the distance function in our experiment. Four different 

fuzzy models mentioned in Section 3.4.1 are performed on the Yacht Hydrodynamic dataset, and 

the results are recorded in Table 3.3. Parameters used for PSO and the fuzzification coefficient are 

like the ones employed for the multi-dimensional synthetic data. It is expressed in Table 3.3 that 

for the Yacht Hydrodynamics dataset, optimizing the arrangement of orders standing in the 

consequences leads to a more accurate model than optimizing the input spaces in the antecedents. 

The possession of the whole input variables and the proper allocation of orders achieved through 

the optimization process, instead of the uniform allocation of orders, gives the possibility of 

increasing the accuracy of the model compared with possession of the reduced (optimized) input 

spaces. However, optimization on both the antecedent and the consequence is still a promising 

alternative in the given dataset. This optimization creates a model which is accurate enough yet 

more compact, in particular when β=1.8. 
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Table 3. 3. Performance comparison of four models on the Yacht Hydrodynamics dataset (c=6, 
and p=1) 

Dataset 
(Size) 

β  No 
optimization 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized 
antecedent and 

consequence 
Yacht 

Hydrodynamics 
(308*7) 

4.8 Training data 2.23±0.17 0.55±0.11 1.10±0.21 0.61±0.12 

Testing data 2.78±0.47 0.94±0.12 1.41±0.24 1.11±0.56 

3 Training data 2.24±0.23 0.53±0.15 1.30±0.14 0.65±0.08 

Testing data 2.85±0.32 1.16±0.21 1.43±0.11 1.12±0.09 

1.8 Training data 2.23±0.12 0.56±0.13 1.38±0.09 0.73±0.15 

Testing data 2.76±0.16 1.11±0.12 1.25±0.16 1.16±0.14 

     

    The second dataset from the UCI is Boston Housing, which concerns housing values in Boston's 

suburbs. This dataset includes 506 instances where the input space is 13, and the output is a 

continuous singleton. The performance indices of the four different models are shown in Table 4. 

The model that uses the whole original space and optimizes order allocation obtains superior 

results compared to the other models. Table 3.4 illustrates that optimizing order allocation for this 

dataset performs better than optimizing input spaces. 

Table 3. 4. Performance comparison of four models on the Boston Housing dataset (c=6, p=1) 

Dataset 
(Size) 

β  No 
optimization 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized 
antecedent and 

consequence 
Boston 

Housing 
(506*14) 

4.8 Training data 2.82±0.23 1.04±0.08 2.52±0.16 1.20±0.08 

Testing data 2.70±0.10 1.32±0.21 2.23±0.18 1.63±0.17 

3 Training data 2.87±0.12 1.07±0.20 2.60±0.23 1.35±0.14 

Testing data 2.94±0.25 1.36±0.14 2.53±0.13 1.81±0.07 

1.8 Training Data 2.84±0.18 1.06±0.12 2.68±0.13 1.55±0.17 

Testing data 2.80±0.33 1.66±0.13 2.88±0.32 
 

1.76±0.24 
 

   
    The concrete compressive strength is another dataset from the UCI that is employed in our 

experiments. This dataset is a highly nonlinear function of age and ingredients and comprises 1030 
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instances with nine input variables and one real output. Like previous datasets, the models' 

performance indices are measured for the concrete compressive strength dataset and displayed in 

Table 3.5. This table still indicates the dominance of the model with optimized consequences. 

Nevertheless, simultaneous optimization of the antecedents and consequences is also an 

encouraging method to create an interpretable yet accurate fuzzy model. 

Table 3. 5. Performance comparison of four models on the Concrete Compressive Strength 
dataset (c=6, p=1) 

Dataset 
(Size) 

Β  No 
optimization 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized 
antecedent and 

consequence 
Concrete 

Compressiv
e Strength 
(1030*9) 

4.8 Training data 6.21±0.17 4.84±0.13 5.73±0.25 4.93±0.31 

Testing data 6.34±0.18 6.05±0.21 5.90±.14 5.24±0.31 

3 Training data 6.19±0.24 4.86±0.21 5.96±0.19 5.33±0.14 

Testing data 6.10±0.17 5.89±0.15 5.95±0.24 5.55±0.12 

1.8 Training Data 6.23±0.14 4.80±0.09 6.14±042 5.41±0.24 

Testing data 6.27±0.20 6.16±0.31 5.92±0.12 5.67±0.31 

     

    Further datasets from the UCI, Bilkent, and KEEL repositories are utilized to compare the 

effectiveness of the arrangement of input spaces in antecedents and polynomials’ orders in 

consequences. Experiments are performed with β=4.8, c=6, and p=1. The ratio of Q'

Q
 in Table 3.6 

is recorded for the optimized models in testing and training data. Q’ and Q are, respectively, the 

performance indices achieved by the optimized model and the model in which orders of all the 

polynomials are of the same type. For the training data, in 53% of the cases, optimization in 

consequences contributes to better results, while this value decreases to 10% when the 

optimization is only on the antecedents of rules. This information stresses that the design of fuzzy 

rules based on allocating orders of polynomials performs mostly better than the reduction of input 

space with respect to the accuracy.  
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Table 3. 6. Performance Comparison of the optimized models 

 
Dataset 

 
Size 

Q

Q'
 

Optimized 
consequence 

Optimized 
antecedent 

Both optimized 
antecedent and 

consequence 
Forest Fires 517*13 0.72±0.11 0.83±0.13 0.52±0.08 

0.93±0.14 1.18±0.08 1.06±0.13 
Combined Cycle Power planet 9568*4 0.93±0.12 1.35±0.10 1.12±0.16 

1.00±0.06 1.80±0.12 1.04±0.13 
Auto MPG 398*8 0.94+0.07 0.98±0.14 0.85±0.07 

0.96±0.13 1.02±0.13 0.97+0.10 
Airfoil Self-Noise 1503*6 1.00±0.05 0.97±0.17 0.95±0.08 

  1.00+0.11 0.98±0.15 1.00±0.11 
Mortgage 1049*16 0.90±0.07 0.98±0.17 0.97±0.13 

  1.00±0.06 0.97±0.13 0.97±0.09 
Treasury 1049*16 0.98±0.14 0.98±0.17 0.97±0.09 

  1.00+0.09 1.11±0.14 1.09±0.13 
Weather Izmir 1461*10 0.91±0.04 1.15±0.10 0.97±0.18 

  0.95±0.10 1.18±0.16 1.08±0.14 
Weather Ankara 1609*10 0.91±0.07 1.03±0.12 0.98±0.10 

  1.26±0.10 1.13±0.11 1.10+0.13 
Villages 766*32 0.85±0.08 0.95±0.13 0.90±0.08 

  0.15±0.17 0.42+0.10 0.33+0.10 
Stock Prices 950*9 0.72±0.05 1.12±0.18 0.75±0.13 

  1.03±0.11 1.09±0.12 2.33±0.18 
Sleep 57*7 0.01±0.00 0.12±0.03 0.03±0.00 

  0.40±0.04 0.58±0.09 0.25±0.06 
PW Linear 200*10 0.02±0.00 0.62±0.06 0.00±0.00 

  1.00±0.12 1.45±0.12 1.00±0.10 
Pollution 60*15 0.90±0.15 0.17±0.02 0.20±0.03 

  1.05±0.13 0.95±0.13 0.41±0.11 
Northridge Earthquake 2929*10 0.95±0.14 0.93±0.10 0.85±0.07 

  1.10±0.12 0.94±0.14 0.94±0.15 
Elevators 16599*18 1.00±0.06 0.97±0.12 0.99±0.09 

  1.00±0.13 0.99±0.10 0.99±0.13 
Pole Telecomm 9065*48 0.90±0.17 0.97±0.16 0.95±0.09 

  0.93±0.21 0.98±0.18 0.98±0.13 
2Dplanes 40768*10 0.93±0.03 1.05±0.15 0.91±0.08 

  0.95±0.10 1.13±0.17 0.98±0.14 
Ailerons 13750*40 0.90±0.10 0.95±0.04 0.92±0.08 

  0.97±0.05 0.98±0.08 0.97±0.14 
Pumadyn 8192*32 0.91±0.10 0.91±0.09 0. 87±0.03 

  1.00±0.12 1.21±0.11 1.01±0.13 
Note: the entities in boldface represent the best performance obtained for two methods 
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    Different clustering schemes in the literature can be adopted in the TSK model design, e.g., 

subtractive clustering [62], Gustafson Kessel clustering [63]. As subtractive clustering is primarily 

dependent on the clusters' radius, not the number of clusters, it is difficult to be employed for the 

TSK model's structural arrangement based on the modeling resources (e.g., the total number of 

orders across all the rules; i.e., p×c). Gustafson-Kessel algorithm is used as an alternative to form 

the antecedents of fuzzy rules. This algorithm uses the correlation of the variables and, 

consequently, the Mahalanobis distance instead of Euclidean distance, so it needs to calculate the 

inverse of the Covariance matrix, leading to an increase in the algorithm's cost. Each iteration of 

Gustafson-Kessel algorithm is O(cNm2) compared to the O(cNm) for FCM, where c, N, and m are 

the number of clusters, the number of data items, the dimensionality of the dataset, respectively. 

We are forming TSK models in which both antecedents and consequences are optimized. 

    Table 3.7 illustrates the performance index (PI) and running time (in seconds) of TSK models 

(both optimized antecedent and consequence models), whose antecedents are built upon the FCM 

or Gustafson Kessel schemes. Table 3.7 clearly shows that the PIs of both models are very close 

to each other for different datasets, but the running time for the TSK design by FCM is lower than 

the one for TSK by Gustafson Kessel scheme. Thus, the low time complexity is the reason why 

we have chosen FCM in our experiments.  

Table 3. 7. FCM vs Gustafson Kessel clustering 

Dataset  FCM Gustafson Kessel 
 PI Time(s) PI Time(s) 

Boston Housing Training data 1.20±0.08 92.73±2.15 1.22±0.15 100.63±3.10 
  Testing data 1.63±0.17  1.60±0.14  

      
Yacht 

Hydrodynamics 
Training data 0.61±0.12 69.13±3.76 0.63±0.14 82.24±4.34 
  Testing data 1.11±0.16  1.14±0.09  

      
concrete compressive 

strength 
Training data 4.93±0.31 165.32±4.78 4.90±0.24 187.18±5.32 
Testing data 5.24±0.31  5.20±0.20  

 

https://en.wikipedia.org/wiki/Mahalanobis_distance
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3.4.4. Comparative analysis 

    Finally, Table 3.8 provides the comparative analysis of the proposed model with those existing 

in the literature. The experiments are conducted on a 1.30 GHz core i7 PC with 16 GB of RAM 

under the Matlab environment. PSO with only optimized consequence is used as the representative 

of the proposed models in this study. 

    Along with the use of PSO as the optimization vehicle, we experiment with GA that adopts the 

same scheme of coding candidate solutions that PSO in Section 3.3 uses. The proposed models are 

compared with two different GAs from the literature, the GA with binary encoding [15] and the 

GA with real-encoding [19]. To arrive at a sound comparative framework, the numbers of 

generations and the population's size are kept the same as those being used in the case of PSO. We 

intend to compare the quality of results produced by the different methods and look at the 

computational effectiveness of the methods themselves, so we record minimum PI and its running 

time (in seconds) for each model in Table 3.8. 

 
Table 3. 8. Results of comparative analysis 

  Binary GA [15] Real-encoded GA [19] 
 

proposed GA proposed PSO 

Dataset 
 

PI Time(s) PI Time(s) PI Time(s) PI Time(s) 

Boston 
Housing 

 

Training 
data 

2.46±0.23 120.78±4.5 3.13±0.31 100.63±3.33 1.06±0.10 98.13±2.10 1.04±0.08 80.13±3.22 

Testing 
data 

2.60±0.18 3.17±0.34 1.27±0.17 1.32±0.21 

          

Yacht 
Hydrodynami

cs 

Training 
data 

2.22±0.13 100.12±3.3 1.10±0.13 83.36±2.94 0.57±0.08 78.10±2.02 0.55±0.11 60.45±2.67 

Testing 
data 

2.79±0.18 1.96±0.22 0.91±0.10 0.94±0.12 

          

concrete 
compressive 

strength 

Training 
Data 

6.36±0.20 220.64±5.1 4.32±0.12 190.14±5.22 4.88±0.10 182.37±3.29 4.84±0.13 150.36±4.16 
 

Testing 
data 

6.94±0.18 5.94±0.14 6.22±0.14 6.05±0.21 

    Note: the entities in boldface represent the best performance obtained for two methods 
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    We note that the results produced by the proposed PSO outperform both the GAs in the literature 

in terms of approximation capabilities and computational time (primarily due to the intrinsic 

simplicity of PSO) for the Boston Housing and Yacht Hydrodynamics datasets. In the concrete 

comprehensive strength dataset, real coding GA archives better performance than the proposed 

models, but its running time is more than the proposed models in this study. Furthermore, the 

proposed GA results in this study are not substantially different from the results of PSO, but from 

the computational point of view, PSO is still more efficient than GA. Thus, it is concluded that the 

proposed model based on PSO achieves a balanced performance index and running time. 

     

3.5. Conclusions 

    In this chapter, an identification framework for fuzzy rule-based models has been developed. 

This framework stresses the need for and benefits of structural refinement of fuzzy rules to make 

the model less complex while still retaining its accuracy. Two different ways of structuralizing the 

antecedents and consequences of the rules, based on the newly introduced modeling resources, are 

proposed: (i) the arrangement of input spaces in the antecedents of the rules and (ii) the 

arrangement of the orders of polynomials in the consequences of the rules. The modeling resources 

are concerned with (i) the total order of polynomials encountered across all the rules and (ii) the 

fraction of an overall number of input variables of the original space. A hybrid methodology is 

proposed in which the PSO guided by the RMSE accuracy criterion is employed to find the 

efficient arrangements of input spaces and polynomials' orders. In this method, fuzzy sets standing 

in the antecedents of rules are created by the FCM, while the polynomials' coefficients are 

estimated by the standard LSE method. 
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    Different TSK models formed in this study are based on the optimization of antecedents or 

consequences of fuzzy rules. The experimental studies, involving synthetic datasets and some 

well-known datasets from the UCI, Bilkent, and KEEL repositories, demonstrate the dominance 

of the model with optimal allocation of orders of polynomials in consequences over the reduction 

of input space in antecedents of fuzzy rules in most of the datasets. Based on the experiments, 

simultaneous optimization on both antecedents and consequences of fuzzy rules is also a promising 

avenue of creating fuzzy models for both complexity and accuracy criteria. The model's 

performance is also influenced by some crucial parameters of the model, such as the fraction of 

original input space employed in the model.   
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Chapter 4  Genetic-Programming Based Architecture of Fuzzy 

Modeling: Towards Coping with High-Dimensional Data 

 

    This chapter is concerned with developing fuzzy models realized with the aid of genetic 

programming (GP). The proposed architecture employs GP to form fuzzy logic expressions 

involving logic operators and information granules (fuzzy sets) located in the input space, used to 

predict information granules located in the output space. We propose an architecture realizing logic 

processing, with the structural optimization of the model accomplished by multi-tree genetic 

programming and the parametric optimization completed by gradient-based learning. The 

granulation of information used in this architecture is developed using the FCM clustering 

algorithm. The novelty of this study is two-fold: (i) it comes with the flexibility of the logic-

oriented structure of fuzzy models, and (ii) our architecture is designed to handle high-dimensional 

data by alleviating the detrimental effect of distance concentration hampering the effectiveness of 

standard Takagi–Sugeno–Kang (TSK) fuzzy rule-based models. The study is illustrated through 

some experiments that provide a detailed insight into the fuzzy models' performance. A 

comprehensive comparative analysis is also covered. 

 

4.1. High-dimensional data in the design of TSK models 

    One of the concerns related to high-dimensional computing is the phenomenon of distance 

concentration [7-8], where distances between the data items become very similar or identical. 

Thus, any machine learning algorithm which uses a distance function can be strongly affected by 

this issue; e.g., in FCM clustering, membership degrees of observations are proportionally 
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distributed across all the clusters. As the development of TSK models is fundamentally based on 

FCM, this phenomenon negatively impacts the model's performance. Motivated by this idea, this 

chapter's objective is to form more distinct and meaningful clusters in the design of the fuzzy 

models to cope with the issue of distance concentration. This is achieved by utilizing FCM 

independently to each variable rather than to all variables at once. We then form the fuzzy model 

employing GP as the logic processing core to form the model's structure, followed by the gradient 

descent to optimize parameters. 

    The research in evolutionary fuzzy systems (EFSs) has been experiencing rapid growth since its 

inception in the 90's. Generally speaking, an EFS [2] involves two aims: (i) parametric 

optimization and (ii) structural optimization. 

    After the pioneering work of Koza [12], GP gradually started to be used by the EFS’s society 

due to its readable representation of fuzzy rules. Based on the literature concerning GP-based 

EFSs, the existing approaches can be categorized into two major groups: (i) grammar-based and 

(ii) symbolic-centered [5]. A context-free grammar is used in a grammar-based GP that allows 

forming fuzzy rules following a specific pattern (grammar). In general, the fuzzy rules developed 

by this approach are more transparent and can be incorporated into a fuzzy system as a slight 

adjustment is made in its reasoning mechanism. This group's representative model is the so-called 

GP-COACH [39], a compact classification model for high-dimensional problems. This EFS 

follows the genetic cooperative-competitive learning (GCCL) approach [5] that encodes a single 

rule per individual. However, the symbolic-centered methods employ the Koza-style GP, which 

uses a set of terminals and functions instead of a context-free grammar. The terminals are a set of 

features that have been already converted into fuzzy sets, and the functions are constrained to 

certain mathematical operators and serve as t-norms, t-conorms, and linguistic modifiers, such as 
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product, minimum, and square-root. A Koza-style GP was used in [41] to find a suitable structure 

of a fuzzy model for regression problems. In this fuzzy modeling method, the model's structure is 

determined by fuzzy neural networks, which are architectures governed by fuzzy logic. However, 

this model's logic-oriented structure is limited to basic fuzzy operators, specifically, the t-norms 

and t-conorms. 

    As mentioned earlier, high-dimensional data continues to pose challenges to the design of 

FRBS. Therefore, several approaches based on dimensionality reduction have been proposed in 

the design of FRBS to prevent the degeneration of such models' interpretability and accuracy. 

Feature extraction techniques, such as Principal Component Analysis (PCA), have been used to 

capture the critical components from the training data to enhance the interpretability of TSKs with 

concise fuzzy rules. For example, a research based on PCA was conducted in [42] to form a Type-

2 hierarchical fuzzy system for handling high-dimensional data. However, the interpretability may 

be reduced since the physical meaning of the original features is lost. Feature selection is mainly 

used in the high-dimensional data-driven development of fuzzy models. In [43], GA and integer 

programming are integrated into the classification of high-dimensional data, in which the GA 

allows the absence of some input features in each rule. In this method, many rules are generated 

heuristically for each class, which are then selected to form a pool of rules using integer 

programming. However, the selection of features for the subsets is conducted quite randomly, 

which reduces the proposed model's effectiveness. 

    Another issue with most existing data-driven FRBS concerning high-dimensional data is that 

such models have been developed to generate all the fuzzy rules in the same feature space [44-46], 

which is not always compatible with human reasoning mechanisms. Using an elastic feature space 

is more appropriate for characterizing different views to better simulate the human reasoning 
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mechanisms. To achieve this aim, an elastic TSK fuzzy logic system (ETSK-FLS) [47] was 

proposed for the construction of TSK models based on high-dimensional data. In the ETSK-FLS, 

the soft subspace clustering (SSC) technique [48], [53] is first employed to determine the optimal 

partition of the input space and selection of the essential feature subsets for the antecedents of 

different rules. Then, the L2-norm penalty and structural risk minimization-based techniques are 

used to optimize the parameters of consequences. Indeed, the ETSK-FLS is primarily concerned 

with forming concise rules and creating a human-like reasoning mechanism for modeling systems 

based on high-dimensional datasets. However, the limitation of this approach is that the removal 

of redundant rules is not addressed. To deal with the issue mentioned for ETSK-FLS, a concise 

TSK construction method, called ESSC-SL-CTSK-FS [51], was proposed. In this method, the 

enhanced soft subspace clustering (ESSC) [49] is employed to create different sparse subspaces 

for the antecedents of fuzzy rules, while the sparse learning (SL) technique [50] was used to 

optimize the parameters of consequences of rules. Using the SL helps the construction method to 

reduce the number of fuzzy rules effectively in the model. Unlike most SSC algorithms that focus 

only on the within-cluster compactness, the ESSC presents an advantage as it considers not only 

the within-cluster compactness but also the between-cluster separation, which leads to creating 

rules which are more distinctive from each other. 

    To the best of our knowledge, the issue of distance concentration in high-dimensional data has 

not been discussed in any of the approaches mentioned above. Although those methods have been 

adopted for the high-dimensional data, the data dimensionality has often been limited to about 100 

and fewer variables; that is, the trained fuzzy models' performance may deteriorate for real high-

dimensional applications. 
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4.2. The architecture of the proposed fuzzy model and its underlying concepts 

    We develop a hybrid approach based on information granulation (fuzzy clustering), GP, and 

gradient descent algorithms. This architecture's motivation is the use of information granules 

(fuzzy sets) located in the input space and forming fuzzy logic expressions that predict the 

information granules located in the output space. In the sequel, the output information granules are 

used to generate numeric output through the process of degranulation (decoding, defuzzification). 

    In the proposed architecture, three primary components are recognized in the fuzzy model. 

These modules adhere to the standard fuzzy modeling architecture composed of: (i) input interface, 

(ii) logic processing core, and (iii) output interface. The overall architecture of the model is 

displayed in Figure 4.1. 

    Input interface (fuzzification) transforms the input data from a numerical level into the internal 

level of information granules understood by the logic-processing core. In this architecture, FCM, 

which is a representative clustering algorithm, forms the fuzzy sets. FCM is applied independently 

to each variable, rather than to all variables at once, to cope with the issue of distances 

concentration in high-dimensional data. This is used to split (partition) input and output data 

respectively into nc1 and c2 fuzzy sets, where n is the dimensionality of input space, c1 and c2 

denote the number of clusters defined for a single input and the output space, respectively. The 

logic processing core (i.e., GP), the most crucial module of the fuzzy model, benefits from a multi-

tree GP [40] to form an optimal fuzzy logic expression as the structure of the fuzzy model and 

details of system behavior. This module is looking for the optimal structure among the space of all 

possible model structures. The structure of the model is represented in the form of tree-like 

expressions composed of fuzzy operators and input fuzzy sets. Finally, the output interface 

(defuzzification) communicates the results of the processing module in a form acceptable by the 
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external world, viz., numeric values. The output interface is also equipped with gradient descent 

which is applied to add parametric flexibility to the model. 
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Figure 4. 1. The overall architecture of the proposed design methodology of the fuzzy model, 

with c1 = 4, and c2 = 3. Notation detailed in the text. 

 

    In detail, consider the data in the form of (xk,target
k
), k=1, 2, …, N, where xk=(x1k, x2k,…, xnk) 
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and y
k
 is a numeric output. We require that yk, the output of the fuzzy model for the input xk, be as 

close as possible to targetk; viz., yk≈targetk. In the first step of the development process, the 

training data, (xk,target
k
) , k=1,…, N, are converted through the input interface (FCM) into fuzzy 

sets, that is (ak,tk), where ak denotes a vector composed of nc1 input fuzzy sets formed from xk, and 

tk denotes a vector of c2 output fuzzy sets generated from targetk. In the next step, the GP is 

employed to map an input fuzzy set ak to bk, where bk is the output fuzzy sets generated by the GP. 

The GP module, as the processing core of the model, is trained to meet the requirement bk≈ tk. As 

Figure 4.1 shows, the structure of the model is represented as a collection of trees composed of 

input fuzzy sets and fuzzy operators. Fuzzy operators in these trees belong to a set of basic 

operators so-called t-norms (simply noted t), t-conorms (denoted as s), negations (Neg), and 

augmented operators such as Xor, Nor, Nand, Implication (Imp), and Equality (Eq). Finally, the 

decoding module, which is equipped with gradient descent optimization, is employed to represent 

the numeric output yk of the fuzzy model. This module takes the output granules formed by the 

GP, say bk, then optimizes the weight connections (W) using the gradient descent in order to 

calculate the numeric output of the model, yk. The design details of the proposed fuzzy model 

based on GP and gradient descent are given in Section 4.3. 

 

4.3. Design/Optimization of fuzzy model 

The identification of a fuzzy model can be formulated as a search problem in multidimensional 

space, where each point represents a potential fuzzy model with a given structure and related 

parameters. This section covers the optimization details of the proposed model. 
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4.3.1. Structural optimization of the fuzzy model with multi-tree GP 

    The processing core receives information granules formed from the numeric inputs by the input 

interface. The primary role of processing is to optimize a logic approximation of the experimental 

data. This is accomplished by building a model with the use of basic fuzzy logic operators (namely 

t-norm, t-conorm, and negation operations) and expanding them to the other operators, namely 

Xor, Nor, Nand,  Implication, and Equivalence, which are tailored for fuzzy computing. We focus 

on the use of GP in this study as GP seems to have a straightforward and readable genotype-

phenotype mapping for the structural optimization done here. In the following section, we will 

illustrate briefly the notion of GP and its application in structural optimization of the fuzzy model. 

     

4.3.2. Genetic representation of the fuzzy model 

    The initial population is generated by the grow method [52] in which nodes can be randomly 

taken from both functions and terminals sets until the pre-defined depth limit is reached. Beyond 

that depth, only terminals can be chosen. Each individual in a population, viz. a single fuzzy model, 

is represented in a multi-tree form [40] composed of a set of tree structures; that is, each individual 

consists of c2 tree structures that map a∈[0,1]
nc1 to b∈[0,1]

c2. The terminal set is composed of 

membership values in input spaces, whereas the function set consists of basic fuzzy operators, so-

called t-norm (t), t-conorm (s) and negation (Neg). Combining the basic operators adds further 

diversity to the function set by forming additional operators in the function set. These additional 

operators are as follows; negation is expressed by the bar symbol (overbar). 

    x Xor y = (x t y̅) s (x̅ t y) 

    x Nand y= (x t y̅̅ ̅̅ ̅) 
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    x Nor y= (x s y̅̅ ̅̅ ̅̅ ) 

    x Imp y= (x̅ s y) 

    x Eq y=(x̅ s y) t (x s y̅) 

    Figure 4.2 illustrates an example of the representation of a fuzzy model with three outputs in 

the form of a multi-tree individual composed of the following expressions: 

    b1= (a1 t a2) s (a3̅); b2= (a1 Xor a3); b3= (a1 Imp a2) s (a3), where a1 to a3, and b1 to b3 are 

input and output fuzzy sets, respectively. 

1a a2

t

a3

Neg

s

                  

a1 a3

xor

b1  b2  b3

a1 a2

imp a3

s

 

Figure 4. 2. Representation of the fuzzy model by a multi-tree individual. 

 

4.3.3. Fitness function 

    A fitness Function determines how fit a solution is with respect to the problem in consideration. 

In our case, it assesses how well the information granules formed by the GP match the target 

information granules. This simply means that the optimization of the processing core (structural 

optimization) is guided by the performance available at the fuzzy model's internal level (level of 

the membership values). The internal level of accuracy quantification is schematically visualized 

in Figure 4.3. The fitness function, f, is determined in the following form,  
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f = - ∑ (bk-tk)
T
(bk-tk

N
k=1 )                                                                   (4.1) 

where N is the number of training data, bk is the output fuzzy set produced by the GP for the given 

data xk, and tk is the target fuzzy set of xk. 

Processing

Input 
interface

Output 
interfacexk targetktkbk

Minimized 
error

ak

 

Figure 4. 3. Quantification of the fuzzy model’s accuracy at the internal processing level [6]. 

 

4.3.4. Genetic operators 

    Genetic operators are used in GP to guide the algorithm towards a solution for a given problem. 

The GP uses three genetic operators to construct new programs (fuzzy models): two different 

crossover operators and one mutation. Crossover can be applied at two levels: (i) high level and 

(ii) low level. The low level is the space for manipulating the terminals and functions, whereas the 

high level is the space where the expressions can be exchanged. One-point high-level crossover is 

performed as illustrated by the following example. Suppose the first and second parent consists of 

four trees, say (G1, G2, G3, G4) and (g1, g2, g3, g4), respectively. First, a crossover point is randomly 

selected, e.g., the third three in this example. Thereafter, the trees beyond the crossover point in 

two parents are exchanged, and the following two new individuals are resulted: (G1, G2, g3, g4) 

and (g1, g2, G3, G4). However, in the case of low-level crossover, a tree is chosen at random from 

each parent. Then, the standard sub-tree crossover is applied, and the subtrees replace the parent 

trees; otherwise, the parents are transferred as unaltered individuals in the next generation. Figure 



62 
 

4.4 presents an example of the crossover operators on the multi-tree individuals with five 

expressions (trees). The dashed lines indicate the subtrees that have been exchanged between two 

parents.  

(a) High-level crossover 

                  b1  b2  b3                    b4  b5

b2                    

Parent 1

Parent 2

                  b1  b2                    b5 

Offspring1

                  b2  b3                    
Offspring2

b1  b3  b4  b5  b1  b4  b5  

b3 b4  

 

(b) Low-level crossover 

                  b1    b2  b3                    b4  b5  

                  b1  b2  b3                    b4  b5  

Parent 1

Parent 2

b2  b1  b3                    b4  b5  
Offspring1

                  b3                    b5    
Offspring2

b1  b2  b4  

 

Figure 4. 4. Examples of crossover operators, (a) high-level and (b) low-level crossover. 
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    The point mutation is performed as follows: a randomly selected node in the offspring is 

replaced with another random primitive (terminal or function) of the same arity; that is, a randomly 

selected terminal (say fuzzy set) is substituted with another terminal, and a randomly selected 

operator is replaced with an operator from the function set. Figure 4.5 visualizes an example of the 

mutation operator, in which fuzzy set a1 and fuzzy operator t are mutated randomly to fuzzy set a3 

and operator s, respectively. Intuitively, high-level crossover affects the output more profoundly 

than low-level crossover or mutation operator.  

                  

a1

b1  b2  b3

t

                  b4  b5  
Offspring1

Mutate a1 
randomly to a3

Mutate 
operator t 

randomly to s

                  

a3

b1  b2  b3  

s

                  b4  b5  
Offspring1

 

Figure 4. 5. An example of the point mutation operator. 

 

4.3.5. Parametric optimization of the fuzzy model with gradient descent learning 

    Suppose bk ∈[0,1]
c2 is the vector of membership achieved by the logic processing core (GP) in 

the previous step. It is transformed as zk= f(W. bk) where W is a c2×c2 weight matrix, and f is a 

nonlinear sigmoidal function. Then the output of the model is calculated by the center of gravity 
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mechanism, so yi=zi
T.V, where V =[v1, v2 ,…, vc2

] are the representatives of the output space which 

are achieved by FCM in the first step of architecture explained in Section 4.2. A gradient-based 

method of learning is desirable to optimize the entries of W. Following the notation presented in 

Section 4.2, the learning process can be described as follows: 

    For a given set of N training data (xk,target
k
), k=1, 2, …, N, adjust the network’s connections 

to minimize the performance index of the model (Q). Here performance index is expressed at the 

external (numeric) level of processing as visualized in Figure 4. 6. As we are working on the 

regression problems in this study, Root Mean Square Error (RMSE) is used as the performance 

index (Q) which is defined as follows: 

Q =√
1

N
∑ (y

k
-target

k
)
2N

k=1                                  (4.2) 

where yk is the output of the model for the given input xk. The network’s connections are updated 

as follows: 

W(iter+1)=W(iter) -α ∂Q

∂W
                              (4.3)          

where W(iter) is the network’s connections in the iterth iteration of the algorithm. 
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xk targetkyk

Minimized 
error

ak bk

 
Figure 4. 6. Quantification of the fuzzy model’s accuracy at the external processing level [6]. 
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4.4. Experimental results  

     Numerical instances for the performance evaluation of the proposed approach are provided 

here. Synthetic data and two high-dimensional regression datasets come from the Penn Machine 

Learning Benchmarks (https://github.com/EpistasisLab/penn-ml-benchmarks). Eight benchmarks 

are also taken from the ICOS PSP Benchmarks Repository 

(http://ico2s.org/datasets/psp_benchmark.html). The experiments are conducted on a 1.30 GHz 

core i7 PC with 16 GB of RAM under the Matlab environment. 

 

4.4.1. Synthetic data 

    The following experiment illustrates adjusting the GP for the automated design of logic function 

by a 3-D synthetic data. A 1000 3-D input dataset is generated over [0, 1]2 using a uniform 

distribution. Then, the outputs of the dataset are formed by the logic expression which is shown in 

Figure 4.7. Next, the GP is employed to form a combinational logic expression. Function and 

terminal sets are composed of fuzzy operators {t, s, Negation, Xor, Eq, Imp, Nand, Nor}, and {x1, 

x2, x3}, respectively. In this implementation, min and max are respectively used for t-norm (t) and 

t-conorm(s). Note that because of the nature of data that is already in the range [0, 1], encoding 

(fuzzification) and decoding (defuzzification) are not required in this example; thus, the GP is 

employed for the numeric values rather than the membership grades. In the experiments, we use 

10-fold cross-validation. The parameters of GP after a fine-tuning have been chosen, as illustrated 

in Table 4.1. Standard sub-tree crossover and point mutation [52] are employed in this experiment. 

https://github.com/EpistasisLab/penn-ml-benchmarks
http://ico2s.org/datasets/psp_benchmark.html
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Figure 4. 7. The logic expression shown in the form of the outputs of the synthetic dataset. 

 

Table 4. 1. Parameters of the GP 

Parameter Range Selected value 

Population size [15-20] 20 

Depth of solution in the initial generation [3-6] 5 

Crossover probability [0.5-1] 0.8 

Permutation probability (per node) [0.05-0.2] 0.1 

No. of generations [30-60] 40 

Tournament size [2-5] 5 

Population size [15-20] 20 

 

    Figure 4.8 shows the values of performance indices resulting over the different generations of 

the GP. This figure indicates the evolutionary process performed by the GP over all generations. 

    The best logic expression achieved by the GP is visualized in Figure 4.9. The values of RMSE 

for training and testing data formed by this expression are 1.651E-17 and 3.73E-17, respectively. 

Although the expression formed by the GP seems different from the expression shown in Figure 

4.7, the RMSE values achieved by the GP are very small for both the training and testing data. 
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These small values notably indicate the equivalence of the expression generated by the GP and the 

original expression formed in Figure 4.7. 

 

Figure 4. 8. The values of performance index for the training data over the generations. 

Eq

Imp t

Eq

x2

Nor

x1

Negx1

Eq

x2

x1
x2

y

x3Neg

 

Figure 4. 9. The logic expression formed by the GP for multi-inputs single output data. 

 

4.4.2. Synthetic high-dimensional datasets 

    As mentioned previously, one of the issues in the design of high-dimensional TSK models is 

the distance concentration problem. Two datasets (generated from the Friedman function) have 

been taken from the Penn Machine Learning Benchmarks to observe this issue. 
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    The first data set is fri_c4_1000_100 composed of 1,000 instances with 100 features. We 

perform FCM on the input features with c=3 (the number of clusters) and m=2 (fuzzification 

coefficient) and portray distance among the clusters' prototypes in Figure 4.10. This figure 

illustrates how the increase of dimensionality impacts the distances among the prototypes. The x-

axis represents dimensionality, and the y-axis visualizes the average distance among the 

prototypes. The destructive effect of high-dimensionality to the FCM is noticeable as the 

prototypes tend to position close to each other with the increase of dimensionality; that is, the 

distance among them goes to zero with increasing dimensionality of space; thus, the membership 

values would be uniformly distributed among all clusters. 

 

Figure 4. 10. Impact of high-dimensionality on the average distance among the prototypes in 
fri_c4_1000_100 dataset. 

 

    Generally, fuzzy sets in the antecedent of a standard TSK model are built using FCM. Thus, the 

failure of FCM to find suitable clusters (fuzzy sets) in high-dimensional data will intuitively have 

a negative impact on the performance of the TSK model. To observe this issue, we form a zero-

order TSK model directly from training data in fri_c4_1000_100; the rule’s antecedents in the 

TSK are built using FCM with c=3, m=2, and the consequences are constants estimated by 
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minimizing LSE criterion [6]. 70% of the data is selected randomly as training data to construct 

the model, and the remaining data are used for testing purposes. Figure 4.11 visualizes the 

performance of the TSK model on the training and testing data. In this figure, the x-axis and y-axis 

represent the target and model output values, respectively. It is shown that the model has poor 

performance for both training and testing cases; that is, the output is relatively constant and mostly 

far from the target. This limitation is caused by the distance concentration problem and its negative 

influence on FCM and, consequently, the TSK. 

  

(a) (b) 

Figure 4. 11. Performance of the TSK model on the fri_c4_1000_100 dataset, (a) training data, 
and (b) testing data 

 

    In the next experiment, FCM is applied independently to each variable to partition both input 

and output variables into three clusters, i.e., c1=3, c2=3. Then, the GP-based fuzzy model is formed 

after fine-tuning using the parameters given in Table 4.2. 

    Figure 4.12 illustrates the performance of the GP-based fuzzy model with respect to the training 

and testing data. The results show that using FCM on the individual variables improves the results 
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compared to the standard TSK. The performance index of the optimal structure obtained by the 

GP-based model for the training data is 0.64 as opposed to 0.99 for the TSK model and 0.69 versus 

0.98 for the testing data. This is reasonable because we have eliminated the issue of distance 

concentration in the proposed GP-based model; that is, we now are dealing with single features 

rather than whole high-dimensional space. 

Table 4. 2. Parameters of the GP and gradient descent 

Parameter Range Selected value 

Population size {500,1k,2k} 2k 

Depth of solution in the initial generation [3-6] 6 

Crossover probability [0.5-1] 0.85 

Permutation probability (per node) [0.05-0.2] 0.2 

No. of generations [30-70] 50 

Tournament size [2-5] 5 

Learning rate {0.01, 0.1, 0.2} 0.01 

No. of iterations of gradient descent {30k, 40k, 50k} 50k 

m: fuzzification coefficient {1.1,1.5,2,2.5,3} 2 

 
 

(a) (b) 
Figure 4. 12. Performance of the GP-based fuzzy model on the fri_c4_1000_100 dataset, (a) 

training data, and (b) testing data 
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    The optimal structure of logic expressions derived through structural and parametric 

optimization can be interpreted in the form of Figure 4.13. As previously stated, the number of 

fuzzy sets for each individual input and output variable is set to 3, say S (Small), M (Medium), 

and L (Large). These expressions can also be represented in the form of fuzzy rules. 

Or
x64 is M
x31is L And

x53 is L

x2 is S

And
Or

x10 is ~M

x34 is M

Or
And

x10 is M

x65 is ~S
And

Or
x2 is L

y is S

Andx5  is  ~L

x2  is  S
And

x10  is  
~L

y  is  M

 

Or
x43 is M

x3 is M And

x78 is L
y  is  L

And
x1 is M

x2 is S

Or
And

x4 is M
 

Figure 4. 13. Expressions derived through the GP-based model for the fri_c4_1000_100 data 

     

    Note that the optimal structure contains only some of the input variables from the 

fri_c4_1000_100 data, not all of them. In other words, the GP can select some variables that are 

viewed as essential, performing implicit feature selection guided by the RMSE criterion. Also, the 

trees' depths are limited to a maximum depth of 6, which is set in the initial configuration. 

    The following dataset is fri_c4_500_100, composed of 500 instances with 100 features. The 

same experiments as those carried out on fri_c4_1000_100 are performed on this dataset, and 

comparison results are visualized in Figure 4. 14. This figure illustrates a similar tendency to the 

previous dataset. That is, in this high-dimensional dataset, the TSK shows poor performance 
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compared to the GP-based fuzzy model. In other words, the RMSE error for the GP model is far 

smaller than the TSK model for the training data (0.60 versus 1.01) and for the testing data (0.97 

versus 0.73). These two experiments indicate the proposed architecture's suitability to form fuzzy 

models built for handling high-dimensional data. 

 

(a) The TSK model 

 

(b) The GP-based model 

Figure 4. 14. Comparison results for the fri_c4_500_100 dataset, (a) the TSK model, and (b) the 
GP-based model 
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4.4.3. Real-world high-dimensional datasets 

    We use eight real-world high-dimensional datasets (Window2 to Window9) that are available 

in the ICOS PSP Benchmarks Repository. These datasets are derived from the same problem, 

Protein Structure Prediction (PSP), which predicts the 3-D structure of a protein relying on amino-

acid structural variables. These datasets differ from each other based on the number of input 

variables, varying from 100 (Window2) to 380 (Window9), increasing in steps of 40. There are 

257,560 instances in all the datasets. 

    The proposed GP-based fuzzy model, which employs augmented logic operators such as Xor, 

Nor, Nand, Equivalence as well as basic fuzzy operators, say t-norms, t-conorms, and negation, is 

compared with two other models: (i) the GP model utilized only basic fuzzy operators, namely t-

norm, t-conorm, and negation, and (ii) zero-order TSK. The results are recorded in Table III. The 

number of clusters is set to c1=3 and the number of clusters in output spaces (c2) is varied between 

3, 5 and 7. Product and probabilistic sum are used as the t-norm and t-conorm operators, 

respectively. Table 4.3 shows that using FCM on the individual variables in the GP models 

improves the results compared to the standard TSK; this table indicates the dominance of the 

proposed GP fuzzy model (with augmented logic operators) over the standard TSK and the GP 

model (with only basic logic operators) regarding the RMSE performance index; however, the 

running time of GP methods are naturally far higher than the TSK. Also, Table 4.3 intuitively 

illustrates that increasing the number of clusters in the output space leads to the improvements of 

performance indices in both models (mainly in the training data). 

    The optimal structure of logic expressions achieved by the proposed GP-based fuzzy model is 

visualized in Figure 4.15. This model is built based on the Window2 dataset and c1=3, c2=3. Still, 

it is noticeable that the GP can select only some of the variables which are viewed as essential. 
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Table 4. 3. The comparative analysis for the real-world datasets 

Algorithm No. of 
clusters 

TSK Proposed GP(with 
augmented logic operators) 

Proposed GP( with basic logic operators) 

Dataset C1 C2 RMSE 
(train) 

RMSE 
(test) 

Time (s) RMSE 
(train) 

RMSE 
(test) 

Time (s) RMSE  
(train) 

RMSE 
(test) 

Time (s) 

Window2 3 3 5.20 5.23 279.84 4.70 4.66 2540.14 4.80 4.93 2200.14 
Window3 3 3 6.23 5.76 280.25 5.12 4.98 3089.12 5.21 5.02 2870.66 
Window4 3 3 5.68 5.77 292.57 4.61 5.07 2670.33 4.68 5.11 2600.06 
Window5 3 3 5.82 5.70 310.12 4.54 4.81 3560.13 4.60 4.86 3331.12 
Window6 3 3 5.51 5.63 300.17 4.94 5.11 2960.14 4.90 5.08 2900.18 
Window7 3 3 5.93 5.87 320.14 4.53 4.59 3180.12 4.55 4.66 3050.43 
Window8 3 3 5.44 5.56 300.16 5.16 5.23 2870.77 5.22 5.43 2840.15 
Window9 3 3 6.19 6.78 353.15 5.50 5.48 3660.07 5.66 5.52 3600.71 
Window2 3 5 5.15 5.20 469.41 4.72 4.77 3300.14 4.75 4.83 3050.71 
Window3 3 5 6.09 6.23 517.82 4.94 4.87 3240.05 5.10 5.02 2980.14 
Window4 3 5 5.53 5.63 532.13 4.53 4.64 3129.91 4.58 4.78 3030.63 
Window5 3 5 5.93 5.87 555.76 4.53 4.58 3643.61 4.55 4.63 3345.05 
Window6 3 5 5.43 5.51 593.14 4.81 4.91 3730.14 4.84 4.96 3350.19 
Window7 3 5 5.97 6.03 600.93 4.43 4.50 3757.91 4.35 4.41 3300.93 
Window8 3 5 5.31 5.49 612.14 5.15 5.21 3960.17 5.20 5.42 3512.23 
Window9 3 5 6.05 6.45 503.29 5.38 5.37 3800.18 5.50 5.64 3700.18 
Window2 3 7 5.08 5.10 921.18 4.65 4.63 3618.13 4.75 4.78 3440.37 
Window3 3 7 5.96 5.74 806.21 4.90 4.93 3630.16 4.97 4.95 3100.05 
Window4 3 7 5.60 5.68 879.11 4.45 4.55 3790.46 4.58 4.60 3390.22 
Window5 3 7 5.77 5.78 913.13 4.49 4.55 3903.82 4.53 4.67 3601.10 
Window6 3 7 5.38 5.70 950.14 4.73 4.81 4009.54 4.80 4.89 3367.17 
Window7 3 7 5.76 5.85 946.66 4.51 4.66 3780.17 4.44 4.50 3600.16 
Window8 3 7 5.25 5.57 1020.11 5.02 5.13 3876.23 5.22 5.36 3612.18 
Window9 3 7 5.93 6.21 1003.13 5.29 5.27 3954.03 5.37 5.57 3800.91 
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Figure 4. 15. Expressions obtained through the GP-based model for the Window2 dataset  
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    In what follows, the influence of different t-norm and t-conorm operators on the performance 

of the fuzzy model formed by the GP is examined. Some widely used t-norms (minimum, product, 

Lukasiewicz and drastic product) and t-conorm (maximum, probabilistic sum, Lukasiewicz and 

drastic sum) are employed in this study. See Table 4.4. 

Table 4. 4. Selected examples t-norms and t-conorms 

t-norms                                 t-conorms  

Minimum a tm b= min(a,b) Maximum a sm b= max(a,b) 

Product a tp b= ab Probabilistic sum a sp b= a+b-ab 

Lukasiewicz a tl b= max(a+b-1,0) Lukasiewicz a sl b= min(a+b,1) 

Drastic product 
a td b={

a, if b=1

b, if a=1

0, otherwise

 
 

Drastic sum 
a sd b={

a, if b=0

b, if a=0

0, otherwise

 

  

    We present the results for the commonly used t-norms and t-conorms in Table 4.5. The table 

illustrates that, for the Window 3 dataset, using the product and the probabilistic sums as the 

representative of t-norm and t-conform in the design of the GP-based fuzzy model leads to 

improved performance compared to the other dual norms. 

Table 4. 5. The performance of model using t-norms and t-conorms 

t-norm t-conorm Q (training) Q (testing) 

Minimum Maximum 5.33 5.14 

Product Probabilistic sum 5.12 4.98 

Lukasiewicz Lukasiewicz 5.14 5.03 

Drastic product Drastic sum 5.35 5.42 

 



76 
 

    The logic expression obtained by the product and the probabilistic sum as t-norm and t-conorm, 

respectively, is visualized in Figure 4.16. It is seen that the structure of the fuzzy model involves 

logic operators such as Xor, Nor, Nand, Equivalence, and Implication as well as basic operators. 

Also, as the initial population is generated by grow method, the evolved individuals are less likely 

to be full trees. In other words, nodes at the intermediate levels are taken from both function and 

terminal sets, but after the depth limit, say maximum 6, is met, the leaves are chosen from 

terminals. 
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Figure 4. 16. Expressions obtained through the GP-based model for the Window3 dataset 

 
    To sum up, four major aspects have been explored in this experimental study. 

    (1) The distance concentration issue in high-dimensional data and, consequently, its destructive 

effect on the TSK model's performance has been examined. 

   (2) A new architecture based on integrating the FCM, the GP, and gradient descent has been 

proposed. This model comes with the flexibility of a logic-oriented structure of fuzzy models and 

is carried out for high-dimensional data alleviating the detrimental effect of distance concentration. 
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   (3) The proposed model is compared with two other models: (i) the GP model utilized only basic 

fuzzy operators, namely t-norm, t-conorm, and negation, and (ii) zero-order TSK. The 

experimental results illustrate the proposed model's superiority (in terms of accuracy) over the 

other models in benchmark problems. 

   (4) Several combinations of t-norms and t-conorms have been employed in the evolutionary 

process, and the influence of different operators on model performance has been examined. 

 

4.5. Conclusions 

    In this chapter we proposed a GP-based method for the automatic extraction of the fuzzy models 

from input-output data. In the proposed method, the structure of a fuzzy model is represented by a 

multi-tree individual, and GP is utilized to find the optimal fuzzy model. The idea of admitting 

augmented fuzzy operators (e.g., Xor, Nor, Nand, Equivalence, and Implication) in addition to 

basic operators (viz., t-norm, t-conorm, and negation) is also introduced, and then the effects of 

using different t-norms and t-conorms on the model’s performance are discussed. 

    This chapter also addresses the distance concentration issue in the design of high-dimensional 

fuzzy models, where the increase of dimensionality may converge all the pairwise distances 

(dissimilarities) to the same value, leading to failure of the fuzzy model. In this chapter, FCM is 

applied independently to each variable, rather than to all variables (dimensions) at once, to 

eliminate the problem of distance concentration. Subsequently, the model's structural optimization 

is accomplished using multi-tree genetic programming, and parametric optimization is performed 

via gradient-based learning. 

    We applied our GP-based fuzzy model to synthetic datasets, specifically, some regression 

datasets from the Penn Machine Learning Benchmarks and the ICOS PSP Benchmarks Repository, 
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and we compared our methodology with other approaches. In the experiments, our GP-based 

model (with the augmented logic operators) attained higher performance compared to the GP 

model with the basic logic operators and the standard TSK fuzzy model available in the literature. 
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Chapter 5  A PSO-aided Development of TSK Fuzzy Models 

Employing Various Non-linear Consequences 

 

    This chapter's primary aim is to generalize Takagi–Sugeno–Kang (TSK) fuzzy rule-based 

systems (FRBS) by involving non-linear functions in the rules’ consequences. In the current 

literature, most of the TSK models with polynomial (linear) consequences have been studied; 

however, the TSK models' design with non-linear consequences has not been discussed to a great 

extent. This chapter's originality comes with the generalization of the TSK model, which employs 

a family of non-linear and linear local models rather than only linear models forming the rules’ 

consequences. The proposed modification reduces the model’s complexity (number of rules) while 

preserving the desired accuracy. 

    In this chapter, we develop an architecture in which information granules (fuzzy sets) in the 

antecedents of the rules are created by the FCM clustering algorithm. The structure of non-linear 

consequences is also identified by Particle Swarm Optimization (PSO) and the parameters of 

consequences are realized by minimizing the LSE optimization criterion. A number of 

experimental studies, along with the comparative analysis including synthetic and publicly 

available datasets, are provided to demonstrate the effectiveness of the proposed approach. 

 

5.1. Non-linear TSK models 

    The functional fuzzy models (TSK) are utilized to describe complex non-linear systems by a 

collection of rules whose consequences are local functions. These functions could be linear, non-
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linear, differential equations, or neural networks [6]. Although the model with linear consequences 

possesses the universal approximation property, but in practice, the number of rules to achieve the 

desired accuracy is high. In the current literature, most of the TSK models with polynomial (linear) 

consequences have been studied; however, the TSK models' design with non-linear consequences 

has not been discussed notably. This study's motivation is concerned with the development of data-

driven FRBS by involving a family of non-linear and linear local models rather than only linear 

models. This modification reduces the model complexity (number of rules) while preserving the 

model's desired accuracy. 

    The idea of using non-linear functions in the consequences of fuzzy rules was already discussed 

in the literature, but they are limited only to particular control systems [58-61].  In this context, 

non-linear TSK has been employed to avoid using an excessive number of rules to approximate 

the system dynamics. Two methods come up: (i) the first one involves using TSK models with 

polynomial consequence [54-55], and (ii) the other one is the method introduced in the literature 

[56-57], in which linear parts plus a sector-bounded non-linearity are considered to generate non-

linear local models. 

    Despite these works, to the best of our knowledge, there are no studies so far addressing the 

structural and parametric optimization of fuzzy rules with non-linear consequences; in other words, 

an allocation of various non-linear functions for the consequences of rules has not been discussed 

enough. In this study's proposed architecture, PSO is utilized to obtain the optimal arrangement of 

non-linear functions standing in the consequences of rules whereas the parameters of consequences 

are estimated by the minimizing LSE optimization criterion. In this development, the FCM 

clustering algorithm is employed to develop fuzzy sets in the antecedents of rules. 
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5.2. Functional fuzzy rules 

    As we already discussed in chapter 2, a well-studied form of FRBS is a TSK model. The design 

of the TSK fuzzy model provides a systematic approach for generating fuzzy rules from a given 

input-output data set. The following expression is the common form of TSK style rules: 

IF x is Ai THEN y is fi(x,ai)                                            (5.1)                                                                                 

where i = 1, 2,…, c, and c is the number of rules, x is a n-dimensional input variable, Ai is the 

membership function of ith fuzzy set in the input space, y is the predicted output by the numeric 

function fi(x,ai). The function fi can take any format, say, linear, non-linear, differential equations, 

or neural networks. Several types of consequences are used in our study. 

Type 1(constant ): f
i
(x,ai)=ai0                                                 (5.2) 

Type 2 (linear): f
i
(x,ai)=ai0+ ai1

Tx           (5.3) 

Type  3 (quadratic): f
i
(x,ai)=ai0+ ai1

Tx + ai2
T x2            (5.4) 

Type 4 (exponential): f
i
(x,ai)=ai0 + ai1 exp ( x)                           (5.5) 

Type 5 (square root): f
i
(x,ai)=ai0 +  ai1 sqrt( x)                           (5.6) 

Type  6 (sine): f
i
(x,ai)=ai0 + ai1 sin(x) + ai2  sin(2 x) + … +  ait sin(t x)                         (5.7)                              

Type  7 (cosine): f
i
(x,ai)=ai0 + ai1 cos(x) + ai2 cos(2 x) + … +  ait cos(t x)                    (5.8) 

where the vector aij and singleton aij represents jth vector of coefficients and a scaler coefficient in 

the ith rule, respectively. x2 denotes an element-wise multiplication of vector x. The variable t is 

the number of terms (harmonics) extended by the consequences types 6 and 7. These functions are 

similar to how Fourier transform decomposes signals onto a bank of sine and cosine functions. 
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    By forming a number of fuzzy rules and combining them as a set of “if-then”, we build a fuzzy 

rule-based model. When arranging all the rules together involving their antecedents, the output of 

the model, say ŷ , is aggregated by taking the weighted average of the output of each rule as 

follows, 

ŷ= ∑ Ai(x) f
i
(x,ai)                c

i=1                                                       (5.9)                                                            

    To form the fuzzy sets, Ai which define the antecedents of the fuzzy rules, a common strategy 

and the one used in this study is FCM clustering, which takes the fuzzy partitions defined by cluster 

prototypes and the partition matrix U. In the standard TSK fuzzy model, fi(x,ai) in the 

consequences of the rules is adopted as a linear function, and in some cases, the function is 

simplified as a constant value. However, the consequence could also be any non-linear function. 

Suppose that the consequences of rules are a finite combination of some non-linear sine functions. 

Ri : IF x is Ai, THEN f
i
(x,ai)=ai0 + ai1 sin(x)+ ai2 sin(2 x) + … +  ait sin(t x)               (5.10)                       

where local models are non-linear regarding input-output mapping; however, they are still linear 

models of parameters, so the parameters of local functions can be identified by using the LSE 

performance index. Let us see the process of determining the parameters in detail. The parameters 

of a local function can be shown in the form of  ai = [ai0, ai1, … , ait]. The output of the model is 

expressed in the following form: 

ŷ= ∑ Ai(x)c
i=1 .ai

T

[
 
 
 
 

1

sin(x)

sin(2. x)

…
sin(t. x) ]

 
 
 
 

= ∑ ai
Tc

i=1

[
 
 
 
 

Ai(x)

Ai(x)sin(x)

Ai(x)sin(2. x)

…
Ai(x)sin(t . x)]

 
 
 
 

         (5.11)                                        

Suppose 
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 zi(x)=

[
 
 
 
 

Ai(x)

Ai(x)sin(x)

Ai(x)sin(2. x)

…
Ai(x)sin(t . x)]

 
 
 
 

                                                                                               (5.12)      

so 

 ŷ= ∑ ai
Tc

i=1 zi(x)= ∑ zi
T(x)c

i=1 ai                                        (5.13) 

    Let us use the following vector notation to arrange all parameters of the models.  

a = [

a1

a2
a3…

ac

]                                                                  (5.14) 

and 

  f(x) =

[
 
 
 
 
z1(x)

z2(x)

z3(x)
…

zc(x)]
 
 
 
 

                                                (5.15) 

    The collection of N-input-target data is then organized in the following matrix format: 

y= 

[
 
 
 
 
y

1
y

2
y

3…

y
N]
 
 
 
 

                                                                               (5.16) 

and 

 F= [
f
T
(x1)

f
T
(x2)
…

f
T
(xN)

] = [

z1
T(x1) z2

T(x1)

z1
T(x2) z2

T(x2)

… zc
T(x1)

… zc
T(x2)

… …
z1

T(xN) z2
T(xN)

… …
… zc

T(xN)

]                (5.17) 

so    ŷ=Fa                                                      (5.18) 
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    With the sum of squared error Q=||y-y|̂|
2
=(Fa-y)T(Fa-y) and its minimization with respect to 𝒂, 

the optimal estimated parameters are expressed in the following format: 

aoptimal = (FTF)-1FTy                                     (5.19) 

    Another variation of the TSK model is involving the prototypes obtained from clustering to the 

local function. Namely, fi(x,ai) stands for a local function interpreted as a hyperplane governed by 

the following expression, 

f
i
(x,ai)=wi+ai1sin(x-vi)+ai2sin(2(x-vi))+…+aitsin(t(x-vi))           (5.20) 

where vi is a cluster (prototype) capturing the location of the rule in the input space Rn and wi is the 

corresponding value in the output space. As already discussed, the parameters of local functions 

can be similarly estimated using the (LSE) method. 

 

5.3. Architecture of proposed fuzzy model 

    We develop an integrated architecture based on information granulation (fuzzy clustering) and 

PSO algorithm. The overall architecture of this methodology is shown in Figure 5.1.In this 

architecture, four main modules are responsible for forming the fuzzy model directly from 

input/targets data. These components are as follows: (i) the FCM, which is responsible for forming 

the fuzzy sets in the antecedents of rules. (ii) The optimization core, the most crucial module of 

the proposed architecture, benefits from a PSO to form optimal non-linear or linear consequences 

of rules as the structure of the fuzzy model. This module also employs the LSE method to 

determine the parameters of consequences. (iii) Rules aggregation module forms the numeric 

output of the model using (5.9) by aggregating the inferred values from individual rules. (iv) The 
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evaluation module which is used to calculate the cost function, viz, the root mean squared error 

(RMSE) of the fuzzy model over the evolution process. 

    In the introduced architecture, the optimization core receives information granules formed by 

the clustering module (FCM) from the numeric inputs. This module's primary role is to optimize 

the fuzzy model's structure by allocating diverse linear and non-linear local functions to the 

consequences of rules from the given input data as well as optimizing the parameters of the model. 

This is accomplished by building a model using various linear and non-linear functions (constant, 

linear, quadratic, sine, cosine, exponential and square root). This problem is combinatorial; thus, 

using the evolutionary (or swarm) computation is a compelling alternative to solve it. We focus on 

employing PSO in this study because of its less significant computing overhead for optimizing 

model structure compared to the other evolutionary methods. 

 

                  
f1 =a10+a11sin(x)+ 
  +a12sin(kx)

f2 =a20+a21cos(x)+ 
  +a23cos(kx)

f3 =a30+a31exp(x)

Structural Optimization(PSO)

Parametric  Optimization(LSE)

(Determine the parameters aij)
+

Clustering 
Module (FCM)

Optimization Core

RMSE

             
x ԑ R          

Ac

A2

A1

...

× 

× 

× 

  
             
y ԑ R        

Evaluation Module

Rules Aggregationf1 f2
f3

 

Figure 5. 1. Overall scheme of the proposed design methodology of the fuzzy model 
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    In the proposed architecture, the allocation of diverse local functions to the TSK model’s rules 

is represented by the particles. Each particle represents a vector of real values in the [0, 1) scale. 

The size of each particle (i.e., fuzzy model) is c, where c is the number of rules. As PSO is naturally 

working in real-valued representation, we need to decode the particle to an appropriate solution to 

calculate the particles' fitness over the evolution process. We consider several subintervals whose 

number depends on the number of functions as already discussed in Section 5.2. As seven various 

functions are used in this study, we arrive at the mapping of intervals to functions as follows: 

constant:[0,1/7), linear:[1/7,2/7], quadratic:[2/7,3/7), sine:[3/7,4/7), cosine:[4/7,5/7), 

exponential:[5/7,6/7] and square root[6/7,1). Suppose that we want to build a TSK model with four 

rules given seven functions that can be assigned as the consequences of rules. Assume that the 

position's content for the candidate solution (particle) is [0.78, 0.50, 0.70, 0.0.41], so for the given 

position the consequences of rules will be exponential, sine, cosine, and quadratic, respectively. 

    The objective in this study is forming a fuzzy rule-based model that involves the allocation of 

different linear and non-linear functions to the consequences of individual rules in such a way that 

the cost function of the model (e.g., the RMSE) becomes minimized. Assuming that ŷ
k
 is the result 

produced by the fuzzy rule-based model for kth input and yk is kth target output, the RMSE index Q 

is expressed as follows: 

Q =√
1

N
∑ (y

k
-ŷ

k
)
2N

k=1                                                           (5.21) 
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5.4. Experimental studies 

    Numerical experiments completed for the performance evaluation of the proposed approach are 

provided here. Synthetic data and some publicly available regression datasets from different 

repositories are utilized in this study. In the experiments, we use a 5-fold cross validation method. 

The data set is divided into five subsets of equal size. For each case, a subset is selected as the test 

dataset and the remaining part of the data serves as the training dataset which is used to construct 

the model. The experiments are conducted on a 1.30 GHz core i7 PC with 16 GB of RAM under 

the Python environment. 

 

5.4.1. Synthetic dataset 

    In this subsection, we demonstrate the proposed model's performance on two non-linear 

synthetic data sets which are defined in Table 5.1. We sample 600 data points from input space 

x in a uniform manner. 

 

Table 5. 1. Synthetic datasets 

Dataset Function Range 

Synthetic dataset #1 
y=

sin(2x)

x
 x ∈ [-4π, -4π] 

Synthetic dataset #2 y = 0.2 sin(2πx) + 0.2 x3 + 0.3 x ∈ [0, 2] 

     

    First, we develop the rule-based model, composed of c=7 rules, based on the synthetic dataset 

#1. The parameters of FCM and PSO after a fine-tuning have been chosen, as illustrated in Table 

5.2. As already mentioned, seven various types of consequences form the search space of PSO in 
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our study. These functions are constant, linear, quadratic, exponential, square root, sine and cosine. 

In our experiments we consider only a finite family of harmonics, usually relatively small, so the 

variable t, which is the number of terms extended by the consequences of types 6 and 7, is set to 

4. 

Table 5. 2. Parameters of the model 

Parameter Range Selected value 

Swarm size [30-50] 50 

Number of iterations [20-50] 30 

inertia weight damping ratio [0.6-0.95] 0.9 

c1 {0.3,0.4,0.5,0.6, 0.7} 0.5 

c2 {0.3,0.4,0.5,0.6, 0.7} 0.3 

m:Fuzzification coefficient {1.7, 1.9, 2, 2.2, 2.5} 2 

 

    In Figure 5.2, we visualize the values of performance index obtained in successive generations 

of the PSO. The model's evolution reaches a plateau after almost 30 iterations (early stopping), so 

we select 30 as the maximum number of iterations in this experiment. 

 
Figure 5. 2. The values of performance index over the generations 
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The allocation of consequences achieved by the PSO is also displayed in Figure 5.3(a). This 

figure visualizes the prototypes produced by the FCM and the outputs of each local model in the 

corresponding subspace. The allocated consequences for the rules are some sinusoidal and 

cosinusoidal functions among the seven types of linear and non-linear functions which we used in 

this study. These rules which are generated by the proposed architecture are as follows: 

f1= 0.01– 0.10 cos(x) + 0.01cos(2x)+ 0.04cos(3x) - 0.01cos(4x) 

f2= -0.04 - 0.05 sin(x) - 0.14 sin (2x) - 0.02 sin(3x) - 0.01 sin(4x) 

f3= 0.02 - 0.03 sin(x) - 0.33 sin (2x) - 0.04 sin(3x) + 0.01 sin(4x) 

f4= -0.05 + 2.14 cos(x) + 0.08 cos (2x) - 0.17 cos(3x) + 0.14 cos(4x) 

f5= 0.02 + 0.03 sin(x) + 0.33 sin (2x) + 0.04 sin(3x) + 0.01 sin(4x) 

f6= -0.05 + 0.05 sin(x) - 0.15 sin (2x) - 0.01 sin(3x) - 0.01 sin(4x) 

f7= 0.01 – 0.10 cos(x) + 0.01 cos (2x) + 0.04 cos(3x) - 0.01 cos(4x) 

    Fig 5.3(a) visualizes affine non-linear consequences which are generated by the proposed 

architecture. Local models can predict original outputs relatively well in the given neighborhood; 

in other words, this leads to forming a locally well interpretable model. Indeed, local models 

express good interaction with the global model, and each non-linear function depicts well the 

characteristics of the input-target relationship in the corresponding subset. Fig. 5.3(b) illustrates 

the overall output of the proposed model on the given data. Based on the figure, the model output 

is almost the same as the original output. The model's overall performance index (RMSE) is 0.0032 

and 0.0034 for training and test data, respectively. 
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         (a) 

 

 
                                                 (b) 

Figure 5. 3. Model’s output on one-dimensional synthetic dataset #1: (a) local models and their 
corresponding prototypes, (b) overall model’s output 

 
 

    Figure 5.4 illustrates the impact of changing the value of c (number of clusters) on the model's 

performance for both training and test data. This figure reveals an intuitively appealing tendency: 

the model's performance improves when the number of fuzzy rules increases. Furthermore, a 

plateau appears for the model performance after the number of clusters becomes seven. That is 

why we already set the number of clusters to c=7 in our experiments. 
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Figure 5. 4. Impact of number of clusters on the model’s performance in the synthetic dataset #1 

 

    Figure 5.5 depicts the impact of the number of rules (clusters) on the TSK model's performance. 

This figure stresses that to achieve the desired accuracy, we need to increase the number of rules 

compared to our proposed nonlinear model. For instance, to obtain the same accuracy of 0.0032 

as achieved by the non-linear consequences, the TSK model needs to have about seventeen rules 

rather than seven rules. 

 

Figure 5. 5. Impact of number of clusters on the TSK’s performance in the synthetic dataset #1 
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    Figure 6.6 demonstrates the local models generated by the proposed architecture and the overall 

model’s performance for synthetic dataset #2. The model’s overall performance index is 0.0057 

and 0.0058 for the training and test data, respectively. These values indicate that the model can 

predict the targets very well. The rules’ consequences are a combination of non-linear (sine) terms 

for the first third rules, but linear function for the last rule. The consequences are still locally well 

interpretable and illustrate the input-target relationship in the corresponding subset. They come as 

follows: 

f1= 0.01+ 8.13 sin(x) - 0.53 sin (2x) - 8.03 sin (3x) + 4.58 sin(4x) 

f2= -0.14 - 2.62 sin(x) + 0.58 sin (2x) + 2.38 sin (3x) + 0.71 sin(4x) 

f3= 2.62 -2.39 sin(x) + 1.18 sin (2x) - 2.12 sin (3x) + 2.10 sin(4x) 

f4= -4.42 + 3.29 x 

  

(a) (b) 

Figure 5. 6. Model’s output on synthetic dataset #2: (a) local models, and (b) overall model’s 

output 
 

    Figures 5.7 and 5.8 illustrate the influence of changing the number of rules on the model’s 

performance for training and testing data in synthetic dataset #2. There is a similar tendency, as 

we have already seen in Figure 5.4. The model’s performance improves intuitively with the 
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increase in the number of rules. Comparison of Figure 5.7 and 5.8 also indicates that the TSK 

model needs more rules to achieve the same performance of the proposed model. For instance, to 

obtain the same accuracy of 0.0057 as achieved by the non-linear consequences, the TSK model 

needs to have nearly eighteen rules rather than four rules. 

 

Figure 5. 7. Impact of number of clusters on the model’s performance achieved in the synthetic 

dataset #2 

 

 

Figure 5. 8. Impact of number of clusters on the TSK model performance obtained in the 
synthetic dataset #2 
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5.4.2. Publicly available datasets 

    To further investigate the usefulness and quantify the performance of the introduced model, we 

perform experiments over publicly available real-world data sets. Some datasets, with different 

sizes and dimensions, from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml), 

the KEEL Datasets (https://sci2s.ugr.es/keel/datasets.php), the StatLib dataset, 

(http://lib.stat.cmu.edu/datasets), and the Bilkent University Function Approximation Repository 

(http://funapp.cs.bilkent.edu.tr/DataSets) are employed here. Similar to synthetic data sets, we use 

a 5-fold cross validation method to evaluate the models. 

    The concrete compressive strength is the first dataset from the UCI that is employed in our 

experiments. This dataset is a highly non-linear function of age and ingredients, and comprises 

1030 instances with eight input variables and one real output. In this experiment, the proposed 

model's performance indices are measured for both train and test data and displayed in Figure 5. 

9. The parameters used in this experiments after tuning are shown in Table 5.3. 

 
a) Train data                                  (b) Test data 

Figure 5. 9. Performance of the proposed model on the concrete compressive strength dataset 

 

https://archive.ics.uci.edu/ml
https://sci2s.ugr.es/keel/datasets.php
http://lib.stat.cmu.edu/datasets
http://funapp.cs.bilkent.edu.tr/DataSets
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Table 5.3. Parameters of the model 

Parameter Range   Selected value 

Swarm size [30-50]   50 

Number of iterations [20-50]   40 

inertia weight damping ratio [0.6-0.95]   0.8 

c1 {0.3,0.4,0.5,0.6, 0.7}   0.5 

c2 {0.3,0.4,0.5,0.6, 0.7}   0.5 

m:Fuzzification coefficient {1.7, 1.9, 2, 2.2, 2.5}   2 

 

    The consequences of rules which are generated by our proposed approach are some quadratic 

functions as follows: 

f1= 0.01 

+ 8.54 x1 -11.3 x2 + 2.87x3+ 5.91x4 + 0.56 x5 -21.8 x6+ 25.4 x7 +1.56 x8  

+ 0.02 x1
2 + 0.07 x1 x2 - 0.005 x1 x3 + 0.05 x1 x4 +0.06 x1 x5 - 0.3 x1 x6 - 0.05 x1x7  

+ 0.3 x1 x8  -0.06 x2
2 + 0.03 x2 x3 +0.007 x2 x4 + 0.02 x2 x5  + 0.02 x2 x6 -0.00005 x2 x7 - 0.004 x2 x8 

+ 0.002 x3
2 + 0.009 x3 x4 + 0.007 x3 x5 + 0.01 x3 x6 + 0.01 x3 x7 + 0.06  x3 x8  

+ 0.0001 x4
2 - 0.007 x4 x5

 + 0.002 x4 x6 - 0.05 x4 x7 + 0.02 x4 x8  

+ 0.01 x5
2 + 0.06 x5 x6 -0.07 x5 x7 -0.0004 x5 x8  

- 0.02 x6
2 - 0.006 x6 x7 - 0.04 x6 x8  

+ 0.02 x7
2 + 0.06 x7 x8 

- 0.07 x8
2  



96 
 

f2=-0.40  

+ 0.006 x1+ 0.01 x2 + 0.008 x3 + 0.28 x4 + 0.0005 x5 + 0.0009 x6 - 0.0002 x7 + 0.001 x8  

+ 0.002 x1
2 -0.01 x1 x2 - 0.001 x1 x3 + 0.03 x1 x4 - 0.003 x1 x5 - 0.01 x1 x6 - 0.02 x1 x7 + 0.01 x1 x8  

- 0.01 x2
2 + 0.01 x2 x3 + 0.0010 x2 x4 - 0.03 x2 x5 +0.002 x2 x6 + 0.002 x2 x7 -0.01 x2 x8  

+ 0.01 x3
2 -0.001x3 x4 + 0.001x3 x5 + 0.03 x3 x6 + 0.001 x3 x7 -13.1 x3 x8  

-16.8 x4
2 + 14.06 x4 x5 +14.86 x4 x6- 0.02 x4 x7 + 13.01 x4 x8  

- 15.43 x5
2 - 5.57 x5 x6 + 0.002 x5 x7 +0.01 x5 x8  

- 0.02 x6 + 0.004 x6 x7 + 0.003 x6 x8  

+ 0.001 x7
2 + 0.01 x7 x8 

+ 0.002 x8
2 

f3= 0.01 - 0.01 x1 + 0.01 x2 + 0.01x3 - 0.02 x4 + 0.001 x5 + 0.01 x6 + 0.001 x7 -0.001 x8  

+ 0.02 x1
2 + 0.02 x1 x2 -0.01 x1 x3 - 0.03 x1 x4 +0.01 x1 x5 - 0.001 x1 x6 + 0.01 x1x7 + 0.003 x1 x8  

- 0.01 x2
2 - 0.01 x2 x3 - 0.01 x2 x4 + 0.04 x2 x5 - 0.01x2 x6 + 0.01 x2 x7 0.01 x2 x8  

+ 0.002 x3
2 + 0.009 x3 x4   + 0.007 x3 x5 + 0.28 x3 x6 + 0.01 x3 x7 + 0.06  x3 x8  

+ 0.0001 x4
2 - 0.007 x4 x5

 + 0.002 x4 x6 - 0.05 x4 x7 + 0.02 x4 x8  

+ 0.01 x5
2 + 0.01 x5 x6 - 0.01 x5 x7 + 0.0001 x5 x8  

+ 0.002 x6
2 - 0.01 x6 x7 - 0.01 x6 x8   
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+ 0.001 x7
2 + 0.01 x7 x8

  

- 0.01 x8
2  

f4= 0.01 +1.54 x1 2.1 x2 + 2.87x3+ 0.01x4 + 0.12 x5 - 0.15 x6 - 0.04 x7 + 1.56 x8 

    We then build the standard TSK model with four linear consequences. These linear functions 

are as follows: 

f1= -260.28 - 0.008 x1 + 0.09 x2 + 0.04x3 + 0.49x4 + 1.69 x5 + 0.11 x6 + 0.08 x7 +0.06 x8 

f2= 166.82 - 0.06 x1 - 0.14 x2 - 0.17x3- 0.34x4 – 0.26 x5 + 0.06 x6 - 0.15 x7 - 0.08 x8 

f3= -644.66 +0.12 x1 - 0.05x2+ 0.06x3– 1.13 x4 -1.83 x5 - 0.31 x6 - 0.13 x7 + 0.19 x8 

f4= -687.30 + 0.42 x1 + 0.51x2+ 0.44x3+ 0.39 x4 +1.23 x5 + 0.22 x6 + 0.31 x7 + 0.29 x8   

    The results of the TSK model are also recorded in Figure 5.10. The results show that the 

proposed architecture improves the results compared to the standard TSK. The optimal structure's 

performance index obtained by the proposed model for the training data is 5.35 as opposed to 9.52 

for the TSK model, and 7.27 versus 9.56 for the test data. This is intuitive because the proposed 

architecture benefits from the use of PSO, which optimizes the allocation of different non-linear 

and linear consequences rather than only using linear functions. If we want to improve the TSK 

model's performance index as the same as the proposed model, we need to increase the number of 

rules to nearly sixteen instead of four rules. 
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                                         (a)Train data                                                (b) Test data       

Figure 5. 10. Performance of the TSK model on the concrete compressive strength dataset 

 

    Table 5.4 depicts the performance comparison (training and testing error) of the proposed model 

and standard TSK for various number of clusters (rules). This table indicates the improvement of 

our proposed model’s performance with the optimized nonlinear and linear consequences 

compared to the standard TSK with only linear consequences. This table reveals that the number 

of rules to achieve the desired accuracy is lower in the proposed model compared to the standard 

TSK. In other words, the proposed modification can reduce the model’s complexity while 

preserving the desired accuracy.  

    Other real-world are utilized to assess the effectiveness of arranging non-linear consequences 

in the rules. As datasets features come from different ranges, we do feature-wise normalization; 

for each feature in the input data, we subtract the mean of the feature and divide by the standard 

deviation so that the feature is centered on around zero and has a unit standard deviation. Along 

with the use of PSO as the optimization vehicle, we experiment with DE and GA that adopt the 

same scheme of coding candidate solutions that the PSO uses in Section 5.3. The numbers of 



99 
 

generations and the population's size are kept the same as those used in PSO (population size=20, 

and No. of iterations=20) to arrive at a sound comparative framework. We intend to compare the 

quality of results produced by the different methods and look at the methods' computational 

effectiveness, so we record a performance index (Q) and its running time (in seconds) for each 

model in Table 5.5. The number of clusters varies from 3 to 9. This table shows that the 

arrangement of non-linear consequences using the proposed evolutionary methods improves the 

results compared to the standard TSK. In other words, the structural optimization which is done 

by the proposed evolutionary methods improves the performance and reduces the model's 

complexity (number of rules) compared to the standard TSK model. 

    Although the performance index achieved by the proposed PSO-aided fuzzy model is not 

substantially different from the results of proposed DE and GA-aided models, from the 

computational point of view, PSO is still more efficient than DE and GA. Thus, it is concluded 

that the proposed model based on PSO achieves a balanced performance index and running time. 

Table 5. 4. Performance comparison of the proposed model and standard TSK for the concrete 
compressive strength dataset (denoted by Mean ± Std. Dev. of 5 runs) 

 
No. 
of 

rules 

                    Standard TSK                                         Proposed model 
                           Qtrain Qtest Qtrain Qtest 

c=2 10.16 ± 3×10-3 9.49 ± 2×10-2 6.47 ± 8×10-2 7.57 ± 2×10-2 
c =3 9.86 ± 2×10-5 9.43 ± 4×10-2 5.88 ± 3×10-2 8.03 ± 1×10-1 
c =4 9.65 ± 2×10-5 9.56 ± 3×10-1 5.35 ± 7×10-1 7.26 ± 2×10-2 
c =5 9.53 ± 3×10-3 9.63 ± 2×10-1 4.76 ± 5×10-2 7.98 ± 5×10-1 
c =6 8.84 ± 5×10-2 8.82 ± 5×10-2 4.27 ± 3×10-3 7.10 ± 2×10-1 
c=7 8.93 ± 2×10-5 9.32 ± 8×10-2 4.07 ± 2×10-2 7.11 ± 5×10-2 
c =8 8.71 ± 2×10-5 9.05 ± 2×10-4 3.66 ± 6×10-3 8.00 ± 2×10-1 
c =9 8.58 ± 3×10-4 9.01 ± 4×10-4 3.36 ± 2×10-2 8.01 ± 8×10-1 
c=10 8.11 ± 6×10-2 9.47 ± 6×10-2 2.62 ± 2×10-2 8.83 ± 8×10-1 
Note: the entities in boldface represent the best performance obtained for two methods 
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Table 5. 5. Results of comparative analysis (denoted by Mean ± Std. Dev. of 5 runs) 

 

Dataset No. of 
rules 

Standard TSK Proposed PSO Proposed DE Proposed GA 

  Q Time 
(s) 

 

Q Time 
(s) 

Q Time 
(s) 

Q Time 
(s) 

  Train Test  Train Test  Train Test  Train Test  
Airfoil 
Self-Noise 
(1503*6) 

c=3 0.48±5×10-5 0.48±4×10-5 0.20 0.21±7×10-6 0.12±8×10-6 3.79 0.21±1×10-5 0.21±1×10-5 31.49 0.44±2×10-2 0.25±3×10-2 19.48 
c=5 0.44±2×10-6 0.44±2×10-6 0.44 0.18±7×10-3 0.12±6×10-3 7.84 0.18±6×10-7 0.20±1×10-5 106.21 0.44±2×10-1 0.21±2×10-3 26.27 
c=7 0.43±2×10-6 0.43±2×10-6 0.84 0.17±5×10-2 0.11±1×10-2 10.76 0.13±9×10-7 0.15±1×10-6 287.64 0.32±2×10-2 0.18±4×10-3 21.74 
c=9 0.37±2×10-5 0.38±1×10-5 2.05 0.13±5×10-3 0.06±3×10-3 14.13 0.11±1×10-4 0.12±3×10-2 476.87 0.34±1×10-1 0.14±1×10-1 15.46 

              
Yacht 
Hydrodyn
amics 
(308*7) 

c=3 0.40±5×10-9 0.37±1×10-4 0.20 0.08±3×10-2 0.12±3×10-2 0.75 0.09±3×10-2 0.14±4×10-2 5.34 0.15±6×10-2 0.14±5×10-2 1.57 
c=5 0.33±0.0 0.42±5×10-3 0.18 0.05±1×10-3 0.10±1×10-2 1.09 0.05±3×10-4 0.10±2×10-3 13.13 0.25±3×10-1 0.12±2×10-2 1.92 
c=7 0.29±0.0 0.56±3×10-4 0.25 0.04±2×10-4 0.11±1×10-2 1.82 0.04±2×10-3 0.11±2×10-2 33.65 0.20±3×10-1 0.10±1×10-2 2.57 
c=9 0.30±0.0 0.49±1×10-3 0.25 0.03±5×10-3 0.10±1×10-2 3.87 0.03±6×10-4 0.05±4×10-3 104.88 0.10±8×10-2 0.06±2×10-3 2.76 

              

Stock 
(950*10) 

c=3 0.17±1×10-7 0.18±1×10-7 0.08 0.08±1×10-2 0.10±1×10-7 5.13 0.08±7×10-7 0.10±5×10-6 91.52 0.16±7×10-2 0.10±4×10-9 22.62 
c=5 0.14±2×10-3 0.15±2×10-3 0.14 0.06±5×10-3 0.07±1×10-3 9.43 0.04±4×10-3 0.07±5×10-3 261.50 0.07±2×10-1 0.08±1×10-2 25.46 
c=7 0.13±2×10-3 0.14±5×10-3 0.20 0.03±3×10-3 0.07±1×10-3 15.88 0.03±7×10-4 0.08±3×10-3 241.22 0.05±1×10-1 0.08±5×10-3 24.74 
c=9 0.12±8×10-7 0.14±2×10-6 0.19 0.02±3×10-3 0.09±2×10-3 21.53 0.02±1×10-3 0.10±±3×10-3 325.35 0.07±1×10-1 0.11±1×10-2 28.12 

              

Baseball 
(337*17) 
 

c=3 0.45±3×10-8 0.54±2×10-7 0.10 0.49±5×10-8 0.50±2×10-3 7.01 0.43±5×10-4 0.52±4×10-2 6.93 0.73±2×10-1 0.50±1×10-3 2.17 
c=5 0.38±6×10-3 0.53±2×10-3 0.23 0.24±2×10-1 0.49±1×10-2 19.25 0.28±2×10-6 0.50±1×10-6 26.22 0.25±2×10-1 0.49±1×10-3 5.27 
c=7 0.33±3×10-3 0.63±1×10-2 0.25 4×10-3±0.02 0.55±2×10-3 28.49 0.04±2×10-1 0.56±5×10-1 176.05 0.04±1×10-1 0.57±2×10-2 138.4

1 
c=9 0.31±4×10-3 0.56±2×10-2 0.37 3×10-5±0.01 0.51±7×10-3 78.83 3×10-3 ±0.02 1.03±3×10-2 650.30 0.10±2×10-1 0.89±7×10-2 51.16 

              
 
Body Fat 
(252*15) 

c=3 0.49±3×10-7 0.56±2×10-6 0.01 0.42±3×10-6 0.52±1×10-7 3.21 0.44±5×10-3 0.52±5×10-2 7.81 0.45±2×10-1 0.52±2×10-2 1.12 
c=5 0.42±2×10-8 0.68±2×10-8 0.03 0.40±7×10-3 0.54±2×10-1 8.56 0.39±4×10-1 0.62±5×10-1 130.76 0.39±3×10-1 0.62±5×10-1 12.54 
c=7 0.38±3×10-5 0.86±4×10-4 0.02 0.05±2×10-8 0.65±8×10-2 15.02 0.10±5×10-1 0.69±7×10-2 140.44 0.10±2×10-1 0.69±4×10-2 3.01 
c=9 0.33±8×10-4 0.98±1×10-2 0.04 4×10-5±0.01 0.90±3×10-2 21.19 0.01±9×10-2 0.93±2×10-2 330.47 0.03±9×10-2 0.95±2×10-2 48.41 
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Boston 
Housing 
(506*14) 

c=3 0.34±7×10-7 0.48±2×10-6 0.01 0.12±5×10-3 0.44±6×10-3 2.89 0.12±3×10-3 0.44±6×10-3 9.07 0.18±2×10-1 0.42±1×10-2 0.78 
c=5 0.30±3×10-5 0.48±1×10-4 0.02 0.12±8×10-2 0.53±6×10-3 7.28 0.15±5×10-2 0.53±2×10-3 154.58 0.15±2×10-1 0.13±2×10-6 1.12 
c=7 0.28±1×10-5 0.51±4×10-6 0.05 0.12±8×10-2 0.68±1×10-2 11.12 0.12±3×10-2 0.68±3×10-2 148.34 0.12±2×10-1 0.62±5×10-3 2.24 
c=9 0.25±3×10-3 0.52±1×10-2 0.06 2×10-8±0.08 0.51±6×10-2 16.94 0.15±2×10-2 0.50±4×10-2 51.54 0.10±2×10-1 0.49±2×10-2 15.80 

              
Weather 
Izmir 
(1461*10) 

c=3 0.08±5×10-9 0.07±1×10-7 0.02 0.07±4×10-9 0.08±1e-7 8.09 0.04±1×10-8 0.06±2×10-8 68.88 0.15±1×10-1 0.05±3×10-7 17.21 
c=5 0.08±3×10-8 0.06±3×10-8 0.07 0.07±1×10-3 0.07±4×10-3 30.68 0.03±×10-6 0.05±2×10-5 391.91 0.23±2×10-1 0.05±6×10-4 32.10 
c=7 0.07±3×10-7 0.06±3×10-6 0.19 0.07±2×10-3 0.09±2×10-3 37.70 0.03±2×10-3 0.07±3×10-3 743.28 0.18±2×10-1 0.06±1×10-3 38.01 
c=9 0.07±4×10-5 0.07±2×10-5 0.14 0.08±8×10-4 0.07±8×10-3 36.69 0.03±4×10-3 0.07±5×10-4 1410.8

4 
0.03±8×10-2 0.06±3×10-5 44.89 

              
Auto MPG 
(398*7) 

c=3 0.57±1×10-4 0.53±8×10-5 0.01 0.45±5×10-2 0.52±0.04 3.47 0.33±7×10-6 0.51±9×10-6 8.5 0.51±2×10-1 0.51±7×10-5 7.16 
c=5 0.39±2×10-2 0.39±1×10-2 0.01 0.27±4×10-2 0.37±0.05 4.99 0.14±1×10-3 0.29±1×10-3 27.82 0.34±2×10-1 0.27±1×10-2 7.99 
c=7 0.35±5×10-3 0.35±2×10-3 0.03 0.27±6×10-2 0.36±0.07 6.66 0.27±2×10-2 0.25±2×10-2 63.39 0.35±2×10-1 0.24±6×10-2 9.17 
c=9 0.28±1×10-2 0.30±7×10-3 0.03 0.24±4×10-2 0.34±0.08 8.86 0.25±2×10-2 0.48±2×10-2 82.66 0.33±2×10-1 0.42±1×10-2 6.02 

              
Forest 
Fires 
(517*13) 

c=3 1.04±5×10-6 0.46±3×10-4 0.01 1.02±4×10-2 0.31±1×10-2 7.20 1.02±3×10-2 0.31±4×10-4 6.93 1.02±5×10-6 0.30±7×10-4 2.47 
c=5 1.04±8×10-6 0.59±1×10-2 0.01 1.10±6×10-7 0.31±7×10-6 12.50 1.02±3×10-3 0.31±5×10-4 26.22 1.02±8×10-6 0.31±9×10-4 2.66 
c=7 1.04±7×10-6 0.59±1×10-2 0.01 1.02±3×10-3 0.31±1×10-2 20.51 1.02±5×10-2 0.31±3×10-4 176.05 1.02±7×10-6 0.31±7×10-4 3.59 
c=9 1.04±9×10-6 0.59±1×10-2 0.02 1.02±4×10-3 0.36±1×10-2 21.70 1.02±5×102 0.31±3×10-4 650.30 1.02±9×10-6 0.31±6×10-4 2.55 

              
Note: the entities in boldface represent the best performance obtained for four methods
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5.5. Conclusions 

    In this chapter, an identification framework has been proposed for fuzzy rule-based models. 

This framework stresses the need to use non-linear functions (rather than linear) standing in the 

fuzzy rules' consequences. The proposed architecture benefits from PSO and LSE to extract the 

consequences, whereas fuzzy sets standing in the antecedents of rules are formed by the FCM 

clustering algorithm. In this integrated architecture, the TSK model is developed based on the 

allocation of diverse non-linear functions such as sine, cosine, square root, and exponential 

functions as well as linear functions to form the consequences of rules. We applied our proposed 

fuzzy model to some synthetic and real-world datasets with different sizes and dimensions and 

then compared it with the standard TSK model with linear consequences. The experimental results 

indicate some improvements in the performance of the introduced fuzzy model compared to the 

standard TSK’s performance. The results also reveal that the number of rules to achieve the desired 

accuracy is lower in the proposed model than the number of rules in standard TSK. In other words, 

the proposed modification can reduce the model’s complexity preserving the desired accuracy. 
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Chapter 6  Conclusions and Future Studies 

 

    This dissertation is concerned with the development and analysis of fuzzy models using 

population-based algorithms. Three different architectures have been proposed, and these 

architectures focused on the need for structural and parametric optimizations of fuzzy models, 

particularly rule-based models, to make a less complex but accurate model. Overall, the 

approaches introduced in this dissertation exhibited some impressive highlights. This chapter 

briefly summarizes the significant contributions and points out some interesting research topics 

for future studies. 

 

6.1. Major Contributions 

    In the first work of this thesis, an identification framework for fuzzy rule-based models has been 

developed. This framework stresses the need for and benefits of structural refinement of fuzzy 

rules to make the model less complex while still retaining its accuracy. Two different ways of 

structuralizing the antecedents and consequences of the rules, based on the newly introduced 

modeling resources, are proposed: (i) the arrangement of input spaces in the antecedents of the 

rules and (ii) the arrangement of the orders of polynomials in the consequences of the rules. The 

modeling resources are concerned with (i) the total order of polynomials encountered across all 

the rules and (ii) the fraction of overall number of input variables of the original space. A hybrid 

methodology is proposed in which the PSO guided by RMSE accuracy criterion is employed to 

find the efficient arrangements of input spaces and orders of polynomials. In this method, fuzzy 

sets standing in the antecedents of rules are created by the FCM, while the coefficients of the 



104 
 

polynomials are estimated by the standard LSE method. Different TSK models formed in this 

study are based on the optimization of antecedents or consequences of fuzzy rules. The 

experimental studies, involving synthetic datasets and some well-known datasets coming from the 

UCI, Bilkent, and KEEL repositories, demonstrate the dominance of the model with optimal 

allocation of orders of polynomials in consequences over the reduction of input space in 

antecedents of fuzzy rules in most of the datasets. Based on the experiments, simultaneous 

optimization of both antecedents and consequences of fuzzy rules is also a promising avenue of 

creating fuzzy models with respect to both complexity and accuracy criteria. The performance of 

the model is also influenced by some crucial parameters of the model, such as the fraction of 

original input space employed in the model. 

    In the second work, a GP-based architecture has been proposed for the automatic extraction of 

the fuzzy models from input-output data. In the proposed method, the structure of a fuzzy model 

is represented by a multi-tree individual and GP is utilized to find the optimal fuzzy model. The 

idea of admitting augmented fuzzy operators (e.g. Xor, Nor, Nand, Equivalence, and Implication) 

in addition to basic operators (viz., t-norm, t-conorm and negation) is also introduced, and then the 

effects of using different t-norms and t-conorms on model performance is discussed. This study 

also addresses the distance concentration issue in the design of high-dimensional fuzzy models, 

where the increase of dimensionality may converge all the pairwise distances (dissimilarities) to 

the same value, leading to failure of the fuzzy model. In this study, FCM is applied independently 

to each variable, rather than to all variables (dimensions) at once, to eliminate the problem of 

distance concentration. Subsequently, the structural optimization of the model is accomplished 

using multi-tree genetic programming, and parametric optimization is performed via gradient-

based learning. We applied our GP-based fuzzy model to synthetic datasets; specifically, some 
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regression datasets from the Penn Machine Learning Benchmarks and the ICOS PSP Benchmarks 

Repository, and we compared our methodology with other approaches. In the experiments, our 

GP-based model (with the augmented logic operators) attained higher performance compared to 

the GP model with the basic logic operators, and the standard TSK fuzzy model available in the 

literature. 

In the third work, an identification framework has been proposed for fuzzy rule-based models. 

This framework stresses the need to use non-linear functions (rather than linear) standing in the 

fuzzy rules' consequences. The proposed architecture benefits from PSO and LSE to extract the 

consequences, whereas fuzzy sets standing in the antecedents of rules are formed by the FCM 

clustering algorithm. In this integrated architecture, the TSK model is developed based on the 

allocation of diverse non-linear functions such as sine, cosine, square root, and exponential 

functions as well as linear functions to form the consequences of rules. We applied our proposed 

fuzzy model to some synthetic and real-world datasets with different sizes and dimensionality, and 

then the model is compared with the standard TSK model which uses linear consequences. The 

experimental results indicate some improvements in the prospered fuzzy model's performance 

compared to the standard TSK fuzzy model. The results also reveal that the number of rules to 

achieve the desired accuracy is lower in the proposed model compared to the standard TSK. In 

other words, the proposed modification can reduces the model’s complexity retaining the desired 

accuracy. 

 

6.2. Future Studies 

    Although many interesting and essential topics have been investigated so far, we point out that 

there are still many ideas worth further investigating. We list several directions which are of 
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interest to be explored in our future studies. 

(1) Structure discovery of fuzzy models using logic minimization 

    The idea in this work is using binary logic minimization in the structure discovery of fuzzy 

models. The essence is to consider numeric data, transform them to logic-based (Boolean) 

counterparts, develop logic–oriented mapping (Boolean functions), and finally convert logic 

results to numeric equivalents. The crux is to cast the problem in its underlying logic setting and 

exploit well-known algebraic methods in digital systems to minimize Boolean functions. By 

understanding the logical nature of real-world data from the beginning of the design, they can 

reveal a structure that can produce accurate and highly interpretable models. 

   (2) Structural Optimization of evolvable fuzzy models 

    In the real world, we often encounter systems that change over time and/or space. The systems 

(models) have to evolve as the real world is often non-stationary. An essential category of non-

stationary systems concerns situations when data behind the model are coming in temporal 

segments (week, month, year, etc.) so that the resulting model evolves from one time segment to 

another. In processing temporal segments of multi-variable data such as data coming from sensor 

networks, stock market, currency exchange rate, etc., readings are analyzed over some time slices, 

and for each time slice, a fuzzy rule-based model is constructed. As data could fluctuate by moving 

up and down in consecutive time segments, the models built in successive steps can change their 

granularity (level of detail). In other words, as fuzzy models are mainly created based on 

information granulation (clusters), the number of information granules can either increase or 

decrease to reflect the varying complexity of streams of data. This change of clusters is carried out 

by merging clusters (local models) with solid performance or splitting the clusters with weak 

performance. 
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    Other types of structural optimization of fuzzy models for each data segment can be completed 

to increase the interpretability of models. The number of fuzzy sets, type of membership functions, 

and type of aggregation operators in the fuzzy models could be optimized using global 

optimization methods like evolutionary algorithms. The importance of such models becomes more 

evident in complex system modeling, especially in case of problems of high-dimensionality. This 

project's fundamental objective is to develop a new design methodology of evolvable fuzzy rule-

based models based on the principles of information granulation and evolutionary algorithms for 

predicting aims, stressing on the increase of interpretability and approximation performance and 

striking a sound compromise between these two requirements. 

    (3) Dealing with high-dimensional data with the development of accurate-interpretable fuzzy 

model with integration of soft subspace clustering and evolutionary methods  

    This work's motivation is to form a fuzzy model that strikes a sound balance between accuracy 

and interpretability. Soft subspace clustering (SSC) is used to extract the optimal partition of input 

space to obtain important feature subsets for different clusters. This kind of clustering allows the 

fuzzy model to possess a variable number of features in each rule. With the SSC results, which 

form the antecedents of fuzzy rules, the orders and parameters of polynomials in consequence of 

fuzzy rules are determined by an evolutionary algorithm and minimizing LSE optimization 

criterion, respectively. On the one hand, feature selection over the antecedents of rules and efficient 

arrangement of polynomials' orders in the consequences leads to an interpretable model. 

    On the other hand, this process is driven by the RMSE accuracy criterion treated as a fitness 

function of the evolutionary algorithm. Thus, both the accuracy and complexity of the model are 

enhanced. Due to the reduction of input spaces by SCC, this architecture can also be utilized to 

form high-dimensional data-driven TSK models.  
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    (4) Design of Explainable Deep Neural Networks Using Fuzzy Computing 

    Deep neural networks (DNN) have become the most effective approach to a wide variety of 

industry domains, including image recognition tasks, natural language processing, speech 

recognition, and many others; however, those models remain incomprehensible black boxes, 

composed of millions of connections in several layers. This makes the model uninterpretable for 

humans, and mostly the users are not willing to trust such a model for critical decisions, such as 

health care, finance, so the need for an Explainable AI becomes essential. 

    On the other hand, fuzzy rule-based models are by design much more interpretable. By 

introducing an additional machine learning process, fuzzy inference, an explainable rule-based 

structure can be realized in Deep Learning (DL) systems alleviating the lack of interpretability 

issue. The fuzzy inference step allows a user to generate rule-based structures. By creating these 

rules, it is possible for the user (analyst) to understand better the features developed by the DL 

system. The importance of such models becomes more evident in complex system modeling, 

especially in case of problems of high-dimensionality. 
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