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Abstract 
 
High-dimensional biological data have been increasingly made available for tackling 

complex health problems. As with any Big Data opportunities, this has led to 

methodological challenges for extracting relevant information from such data, 

particularly in settings where biologically-sensible and statistically-appropriate 

methodologies that are practical and effective in public health practice or healthcare 

delivery have not been established. 

 

This thesis aims at developing statistical methods specifically for two heath problems 

with high-dimensional biological data: I) A logic-regression-based genetic biomarker 

discovery method for environmental health, identifying the source/host of Escherichia 

coli using its genomic data; and II) An image analysis method for automatic 

tuberculosis (TB) detection in resource-limited settings, where the modern TB 

detection methods are not employable, using high-throughput sputum-culture images.  

 

My research has developed these methods that are aimed to be implemented in the 

respective fields to advance effectiveness of the public health practice. 
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1 Introduction 
 
1.1 Rationale 
 
Data collection and data analysis have experienced tremendous evolution in the 21st 

century as a result of accelerating development and involvement of advanced 

technology 1. As a result, high-dimensional data, wherein each observation is 

accompanied by thousands of measurements, have been becoming rapidly prevalent 

and easier/cheaper to obtain. Specifically, the application of advanced data-acquisition 

technologies in biology such as high-throughput imaging and high-throughput genomic 

and proteomic technologies have made high-dimensional biological data increasingly 

available for health research 1,2. 3. 

 

The introduction of high-dimensional biological data in health research has significant 

impact on tackling complex health problems providing rich information of study 

observations. However, as with any Big Data opportunities, this has also introduced 

the challenges of working with high-dimensional data in health research. For example, 

it has led to methodological challenges for statistically-appropriately extracting 

relevant information from such data 1,2, 3. High-dimensional data analysis requires new 

concepts and proper techniques. This is particularly crucial in settings where 

biologically-sensible and statistically-appropriate methodologies that are practical and 

effective in public health practice or health care delivery have not been established. 

 
1.2 Purpose 

 
The purpose of this thesis is to develop methodologies specifically for two health 

problems with high-dimensional data in settings where biologically-sensible and 

statistically-appropriate methodologies have not been established. 

 

The first problem is on a genetic biomarker discovery for contamination source 

tracking in environmental health. The major question is to identify the source/host of 

E. coli collected from the contamination site using the microbe’s high-dimensional 

genomic data. In addition to the high-dimensional issue, this problem is difficult to 



 2 

tackle due to complex hypotheses of E. coli host selection. This thesis will develop a 

logic-regression-based statistical methodology for analyzing the high-dimensional 

genomic data of E. coli in order to study E. coli’s evolution toward host selection, 

which involves two hypotheses of E. coli’s host-specificity and host-generality. 

 

For the second problem, the thesis aims to develop an image-analysis-based statistical 

methodology for automatic TB detection in resource-limited settings using high-

throughput microscopic sputum-culture images. The difficulty of this problem lies 

mainly in the quantitative characterization of culture-growth from the noisy high-

dimensional culture images. In this thesis, a fast and robust methodology will be 

developed to process the high-dimensional image data and to form an automatic 

computer-based TB detection in resource-limited settings. 

 

1.3 Thesis organization 
 
In this chapter, the rational and purpose of this thesis were introduced. The two 

problems related to high-dimensional biological data that are mentioned in Section 1.2 

will be presented in the following two chapters. In Chapter 2, the logic-regression-

based analysis of E. coli genome assessing its host-specificity will be presented. An 

image analysis automatic TB detection for the Automated MODS in resource-limited 

settings will be presented in Chapter 3, followed by a discussion section in Chapter 4. 

 

Bibliography 
 
1. D. L. Donoho (2000). High-dimensional data analysis: the curses and blessings of 
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2. R. Clarke, H. W. Ressom, A. Wang, et al. (2008). The properties of high-

dimensional data spaces: implications for exploring gene and protein expression 

data. Nature Reviews Cancer, 8(1): 37-49. 

3. J. Quackenbush (2007). Extracting biology from high-dimensional biological data. 

The Journal of Experimental Biology, 210: 1507-1517. 
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2 Logic-regression-based Analysis of E. coli Genome Assessing 

its Host-specificity 
 
2.1 Background 

 
This section is organized as follows. First, a brief review of E. coli and evidence for 

host specificity is given, followed by a review of tools for investigating host specificity 

of E. coli. The focus of this thesis is on statistical methods, in particular, methods for 

evaluating DNA sequence-based information. Two types of statistical methods are 

compared: supervised and unsupervised learning methods, and the reason for using 

supervised learning, as opposed to unsupervised learning, for this thesis is explained. 

Finally, the challenges associated with considering two hypotheses on E. coli host 

selection, namely, host-specificity and host-generality, are discussed, which motivate 

the use of a particular supervised learning method, logic regression, in this thesis.  

  
2.1.1 Review of E. coli and evidence for host specificity of E. coli 

 
Escherichia coli (E. coli), a Gram negative and facultative anaerobe, is widely 

distributed in the intestine of human and warm-blooded animals and is one of the best-

studied model microorganisms since its discovery in 1885. Most E. coli living in the 

gastrointestinal tract of humans and animals are commensal strains 1.  Only a small 

proportion of E. coli strains are pathogenic and which can cause intestinal or extra-

intestinal disease. Six well-characterized pathovars of E. coli have been described: 

enteroinvasive, enteropathogenic, enterohaemorrhagic, enterotoxigenic, 

enteroaggregative, and uropathogenic 1. 
 

Host preference and/or specificity are not uncommon in microbial world 2-5. For 

example, different mycorrhizal fungal species were found to be preferably associated 

with different genotypes of the orchid Corallorhiza maculate 3. Some Mycoplasma 

species isolated from different bird species were found to be serologically distinct 6. 

Evidence for some degree of host adaptation and preference of E. coli has also been 

observed. First, phylogenetic analysis of the E. coli strains using several typing 

methods have demonstrated that this species consists of four major phylogenetic 
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groups (A, B1, B2, and D) 7. The four phylogenetic groups differ in their ecological 

niches. It was observed that group A (40.5%) and B2 (25.5%) are more frequently 

isolated from humans while group B1 (41%) was most prevalent in animals 8. The 

distribution of E. coli phylogenetic groups in different hosts indicates that E. coli may 

display a certain level of host preference. Second, it was found that avian septicemia E. 

coli strains were more virulent to chicks than E. coli strains isolated from newborn 

human meningitis cases 9. A human-specific E. coli clone of the B2 lineage was 

recently reported by Clermont 10. In a study by Kim et al. 11, it was found that, based 

on pulsed field gel electrophoresis (PFGE) patterns, most human isolates (81.8%) can 

be typed into one group, and most bovine strains also clustered together (78%). 

Therefore, E. coli populations may be hypothesized to adapt and are selected for in the 

gastrointestinal tract of specific hosts.  

 
2.1.2 Review of tools for investigating host specificity of E. coli 

 
Several tools have been used to identify host specific patterns in E. coli, with the goal 

of identifying the host sources of fecal contamination in order to track and control 

human and animal fecal inputs in the environment. Collectively, these tools are often 

referred to as microbial source tracking (MST) tools.  Among these tools are multi-

spacer sequence typing (MSST), PFGE, ribotyping, multilocus sequence typing 

(MLST), carbon utilization profiling (CUP), and host-specific genetic marker 

identification.  

 

PFGE is a DNA fingerprinting method that uses rare cutting restriction enzymes to 

cleave bacterial genomic DNA (10 to 800kb in length), which is then electrophoresed 

under alternating electric currents to produce DNA fingerprints for each isolate. It was 

demonstrated that using PFGE, 89% of E. coli strains can be correctly assigned to its 

host source, though the specificity was only 50% 12.  Conversely, another study 

demonstrated little or no association between PFGE profiles and host sources 13.  

PFGE is renowned for its high sensitivity of detecting small genetic differences due to 

the specific and rare enzymatic cutting sites of the restriction enzyme on the bacterial 

genome. However, this high sensitivity to small genetic differences may be a 

disadvantage in discriminating host sources of the bacteria from diverse origins 
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ecologically and geographically. This defect is further exacerbated by the great 

plasticity of E. coli genomes 14.  

 

Ribotyping is also a DNA fingerprint method that uses restriction endonucleases to cut 

bacterial genomic DNA, followed by electrophoresis of the fragments on an agarose 

gel, and hybridization of the rRNA gene fragments with oligonucleotide probes. 

Ribotyping has been proven to be effective for microbial source tracking in multiple 

studies15,16. In a study by Carson et al. 15, ribotyping was used to classify E. coli 

isolates from eight known animal sources, the average rate of correct classification was 

73.6%. However, in other studies ribotyping performed less effectively12,17. In one 

study, only 27% of the indicator strains were correctly assigned to their sources 17. The 

limited diversity on ribosomal DNA due to its conservativeness in evolution may 

decrease its discrimination power. Moreover, as a restriction based DNA fingerprint 

method, only a portion of DNA sequence information can be utilized, which further 

challenge ribotying’s ability in subtyping the diverse E. coli population.   

 

MLST is a DNA-sequence-based molecular typing method, in which the sequences 

from several genes (usually housekeeping genes) are compared for genetic variations 

to classify strains, identify clonal groups and determine phylogenetic relationship. 

Several studies found that MLST had high levels of discriminatory power 18,19, while in 

others, MLST performed poorly. For instance, MLST showed the least discriminatory 

power in an evaluation study which used PFGE, rep-PCR and MLST to type E. coli 

O157:H7 isolates from cattle, food, and infected humans 20. In another study, Adiri et 

al 21 used MLST to study E. coli O78 strains from human, avian and cattle and no host 

specificity distribution was observed. DNA sequences in MLST are derived from 

housekeeping genes, which are highly conserved: therefore, it may offer limited 

sequence diversity in comparison to other genetic regions such as intergenic DNA 

sequence (discussed later in this section). 

 

CUP, another phenotypic method, is based on differences among bacteria in their 

ability to use a wide range of carbon and nitrogen sources for energy and growth from 

the diet of their host animals. Uzoigwe et al. 22 demonstrated that on average 89.5% of 

E. coli isolates can be correctly classified into host sources by CUP. However, in 
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another CUP based study, although the average rate of correct classification was 73%; 

the false positive rate was as high as 66% 23. When E. coli isolates from more diverse 

hosts were analyzed, no host specific pattern was found 24. Phenotypic traits of bacteria 

can vary as the environment changes. The environmental differences between culturing 

conditions and the bacteria’s original niches, as well as complexity of the genetic 

diversity of E. coli, challenge CUP’s discriminatory power on host specificity. 

 

Host-specific toxin genes in E. coli have also been identified and have the potential to 

be used as MST markers 25-27. In a study by Khatib et al. 26, heat liable toxin IIA 

(LTIIa) gene from enterotoxigenic E. coli was used in a cattle-specific PCR assay and 

87% of environmental samples from cattle waste and lagoons were LTIIa positive. In 

another study, a pig-specific heat stable toxin gene II (STII) was identified by Khatib et 

al.28, and was useful in distinguishing E. coli isolates between swine waste and other 

animal sources. Unfortunately, the fact that some organisms do not have these toxin 

markers hinders the application of these methods for identifying host sources of fecal 

contamination. Moreover, horizontal gene transfer enables toxin genes to be 

transferred among the microbes from different host sources making it difficult to 

attribute host sources of pollution to these genetic markers.   

 

Although evidence supports the emerging concepts of host-specificity within E. coli 

population, it is still generally believed that no perfect technique or method has been 

found to confirm or refute the concept. To study the relationships between E. coli and 

their host source, a new approach was used in this thesis, and based on MSST in 

combination with novel statistical tools applied during the analysis of DNA sequence 

data. MSST is a DNA sequencing based method targeting intergenic spacer regions in 

the genome. Intergenic regions, often containing promoter and enhancer elements, 

regulate the expression of genes and therefore relate to changes in cell phenotypes, 

functions, and sensation 29-32. Intergenic regions are under less stringent selection 

pressure; they carry more genetic variations that can be used for characterization when 

compared to gene coding regions. Additionally, intergenic sequences recruit factors 

coded on other loci of the genome to initiate and regulate transcription, so they may be 

more informative of general metabolic sensitivity to environmental conditions (i..e, the 

varying physiological conditions of different animal gastrointestinal systems). 
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Therefore, we believe intergenic regions represent a unique target for assessing DNA 

sequence polymorphisms associated with host specificity. 

 

Unlike host specific genetic marker methods, which can infer host source directly, 

MSST is a DNA-sequence-alignment-based method, which needs statistical 

classification to infer host sources. Therefore, selection of statistical methods is also 

critical step in applying MSST. 

 
2.1.3 Review of statistical methods of DNA phylogenetic sequence snalysis 

 
The commonly used methods for clustering fingerprints or DNA sequences alignments 

and constructing phylogenetic trees include unweighted pair group method using 

arithmetic average (UPGMA), neighbour joining (NJ), Fitch-Margoliash (FM), 

minimum evolution algorithms (MEA), maximum parsimony (MP), and maximum 

likelihood (ML) 33. UPGMA 34 and NJ 35 are clustering-type methods based on the 

pairwise similarities of samples computed on the basis of sequence alignment. This 

type of methods construct a tree to reflect the structure presented in the pairwise 

similarities of samples, starting from the most similar sequence pairs followed by step-

wise adding one sample to the tree. FM 36 and MEA 37 are also based on the pairwise 

similarities of samples comparing many alternative tree topologies and selecting one 

that has the best fit between estimated distances in the tree and the actual evolutionary 

distances. The major drawback of these methods is that the actual sequence 

information is lost when all the sequence variation is reduced to pairwise similarities 33. 

Another type of phylogenetic-tree-construction methods is based directly on the 

sequence characters rather than on the pairwise similarities of samples, called 

character-based methods. Maximum parsimony 38 and ML 39 methods are the two most 

popular character-based methods. They count mutational events accumulated on the 

sequences and study evolutionary dynamics of each character. Maximum parsimony 

chooses a tree that has the fewest evolutionary changes or shortest overall branch 

lengths. It works by searching for all possible tree topologies and reconstructing 

ancestral sequences that require the minimum number of changes to evolve to the 

current sequences. Maximum likelihood uses probabilistic models to choose the best 

tree that has the highest probability or likelihood of reproducing the observed data. 



 8 

This method searches every possible tree topology and considers every position in an 

alignment to find a tree that most likely reflects the actual evolutionary process. It 

works by calculating the probability of a given evolutionary path for a particular extant 

sequence, i.e., calculates the total probability of ancestral sequences evolving to 

internal nodes and eventually to existing sequences, where the probability values are 

determined by a substitution model.  

 
2.1.4 Two types of classification methods 

 
The clustering methods such as UPGMA, NJ, FM, MEA, MP and ML listed above, all 

belong to a type of classification methods called unsupervised learning. Unsupervised 

learning first discovers groups of patterns in data and then classifies samples into these 

groups: the group labels are not observed as data 40. Unsupervised learning is useful for 

finding hidden structure in unlabeled data. The other type of classification methods, 

often contrasted to unsupervised learning, is supervised learning. It is used to infer 

patterns in observed data associated with observed group labels 40. In supervised 

learning, each sample has an input set of data (typically a vector) and a label of the 

grouping. For data with known group labels, supervised learning methods are more 

powerful for finding the patterns/structures that is related to the group labels. In other 

words, the two types of classification methods, supervised learning and unsupervised 

learning, have some clear distinctions, these being: 1) the former aims to infer a 

classification function that can be used to classify new samples into the groups that are 

observed and known; while the latter aims to classify the samples into groups where 

the groups and their labels are not observed; and 2) the former requires labeled data, 

while the latter uses unlabeled data. In the microbial-source-tracking context, UPGMA, 

NJ, FM, MEA, MP and ML work similarly and they are all unsupervised learning 

methods. 

 

2.1.5 Use of supervised learning 

 
In this thesis, it is hypothesize that host-specificity and host-generality are present 

simultaneously in E. coli populations within any given host and consequently the goal 

of supervised learning methods are to try to find specific patterns of E. coli genes that 

are consistent with the host-specificity. We attempt to achieve this using a supervised 
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learning method since the E. coli can be labeled with respect to their host sources (i.e., 

group labels are based on the isolation of E. coli from fecal samples collected from 

specific hosts). This is a distinguishing feature from the methods described above that 

used unsupervised learning. 

 

There are multiple reasons for using a supervised learning method for this problem. 

First, the supervised learning will identify the most informative sites and patterns in E. 

coli DNA sequence pertaining to their hosts, and patterns formed by these sites can be 

used to infer the hosts of new samples; while the unsupervised learning will only 

cluster similar samples (or distinguish dissimilar samples) and the results will not 

necessarily inform which animal hosts are found within a set of new samples. Second, 

the group label of each sample, i.e., its host source, is provided as part of data. 

Unsupervised learning methods leave this useful information (i.e., host group labels) 

unutilized; Third, unsupervised learning uses the information of all single nucleotides 

in E. coli gene sequence alignments as a distinguishing characteristic between different 

hosts, but information in many single nucleotides are irrelevant to host-specificity. 

Using irrelevant information in all single nucleotides to infer the differences between 

E. coli’s hosts may be result in misleading, poor-performing classification. 

Conceptually, the genetic information on only a small number of genes, pieces of 

genes, or SNPs may be decisive for host-specificity. A supervised learning method can 

select the most relevant information on host specificity from the labeled data. 

 

There are many supervised learning methods available for classification problems. 

Some of these are analytical methods that give simple, yet explicit analytical functions 

for classification: these have good interpretability. These analytical methods include 

logistic regression, log-binomial regression, and logic regression. This thesis uses logic 

regression the motivation of which will be discussed in 2.1.7 below. Other supervised 

learning methods are non-analytical and that give complex classification functions and 

which are usually not interpretable. These methods include Boosting 41, Artificial 

Neural Network 42, and Support Vector Machines 43. An interpretable classification 

function is generally preferable for assessing a scientific hypothesis.  
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2.1.6 Challenges in assessing E. coli host specificity 

 
As discussed in 2.1.1, host specificity in E. coli implies that some E. coli may 

specialize towards colonization of one host, while host generality states that some E. 

coli may specialize in the colonization of multiple hosts. The two hypotheses have to 

be tested quantitatively. Towards this end, robust methodologies for testing these 

hypotheses are critically needed. The methods described in 2.1.3 cannot be used to 

handle the two hypotheses simultaneously. Even if these methods are useful for 

evaluating host-specificity, under the two hypotheses, it is not surprising to see the E. 

coli samples from the same host may not always cluster together. This is because the 

host-generalist E. coli will be present across different hosts or spread throughout the 

constructed phylogenetic trees. In this thesis, we try to fill this gap by proposing a 

statistical methodology for testing and exploring the two hypotheses of host selection 

in E. coli simultaneously 

 

A question relevant to E. coli host specificity might be: “Is this E. coli isolate from 

human or from other animal sources?” Under the hypothesis of host-specificity with 

MSST, this question can be rephrased as: “does the genetics of E. coli indicate whether 

its host is human or another animal?” Supervised learning is useful for addressing 

similar questions in a traditional classification problem setting, where E. coli genetics 

classifies the sample to be specific to either human or other animals.  

 

In our study, however, if host-specificity and host-generality operate simultaneously in 

E. coli host selection, the question stated above becomes more complex. For an E. coli 

isolate collected from a host such as a bovine, we precisely know that the E. coli 

sample can colonize in that host. However, we are not sure whether the E. coli sample 

can colonize only in that host or whether it can colonize in a group of hosts. This 

presents a major analytic challenge.  We address this challenge in separating the 

analysis into two stages.  In the first stage, we will identify genetic patterns of host-

specific E. coli by setting the classification specificity as close to 100% as possible: 

this will eliminate the likelihood that the genetic patterns discovered in the first stage 

represent host generalists.  In the second stage, we will eliminate the samples that were 

host-specific and search host-generalist patterns in the remaining samples.  
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Specifically, we consider host-generality as the potential to colonize more than 1 host 

(e.g., human and bovine), and repeat the high-specificity supervised 

learning/classification for the specific host generality group. 

 

Another challenge is the choice of the form of statistical association between E. coli’s 

genetic patterns and its host(s). E coli’s host selection is unlikely to be determined by a 

single single-nucleotide polymorphism (SNP): the host selection may involve multiple 

SNPs and genes. Thus, we also need to look into multiple SNPs/genes to find an E. 

coli genetic pattern associated with its host.  

 

Moreover, interactions of multiple SNPs/genes, instead of a simple sum of individual 

SNP/gene effects, may be critical in determining the host-selection of E. coli. In a 

statistical model, SNP interaction is often expressed quantitatively as a multiplication 

of two or more SNP-genotype indicators: this is one form of epistasis 44. Choosing 

biologically-plausible forms of SNP interaction or epistasis, which may be different 

from the standard form of interaction in statistical modeling, is important. 

 
2.1.7 Logic regression 

 
Logic regression is a supervised learning method that is used to model an outcome 

with Boolean combinations of potential predictors that are binary, such as the 

indicators of SNP genotypes 45.  It has been used in analyzing human genetics data for 

identifying genetic biomarkers that modify the risk of a phenotype. For example, it has 

been applied to the genome-wide association studies data to identify genetic markers 

for the risk of developing Crohn’s Disease 46. The rationale for method selection was 

motivated based on using a biologically sensible method, because the model uses 

specific forms of SNP-SNP interactions, i.e., SNP intersections and unions, which have 

biologically plausible interpretations 46. An SNP intersection requires that all of the 

SNPs in a specified group of SNPs must take their respective high-risk genotypes in 

order to increase the disease risk. This form is similar to a group of (sequential) 

mutations that must accumulate before a cell transforms into cancerous in the 

multistage carcinogenesis theory.  SNP union, on the other hand, allows disease risk to 
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be elevated through multiple independent ways: this form captures genetic 

heterogeneity.  

 

In this thesis, logic regression is used as a method of classification for distinguishing 

between E. coli samples from a certain host (or a certain group of hosts) and those 

from other hosts. The motivations for using logic regression include: it is a supervised 

learning method; it is an analytical supervised learning method which generates clear 

interpretable functions for classifications; and it incorporates biologically-plausible 

forms of SNP-SNP interactions in the classification function. In our context, SNP 

intersection captures a situation where two or more E. coli SNPs jointly influence 

biological functions related to host-selection, while SNP union captures a situation 

where two or more E. coli SNPs are redundant in their biological effects (i.e., genetics 

heterogeneity). In an SNP intersection, all of the relevant SNPs in the intersection set 

must take their respective specific genotypes for E. coli to live in a certain host, where 

one, or a subset, of the set is insufficient. On the other hand, in an SNP-SNP union, any 

SNP in the union set taking a specific genotype is sufficient for E. coli to live in a 

certain host.  

 
2.2 Data and materials 
 
The study uses 780 E. coli samples in total, which were samples with known sources, 

which includes human and 13 other animals, provided by Dr. Neumann (School of 

Public Health, University of Alberta). Human E. coli was obtained through the 

Provincial Laboratory for Public Health, Alberta, from stool samples submitted for 

clinical analysis. The animal E. coli samples were obtained from Dr. Ed Topp 

(Agriculture and Agri-Food Canada) and Dr. Tom Edge (Environment Canada). The 

host of each E. coli sample was labeled with its original source. 

 

All samples have been verified as E. coli through biochemical analysis using a Vitek 

Bacterial Identification System (BioMerieux). In order to avoid evolutionary selection 

associated with culture-based growth condition, all E. coli samples were grown in 

Tryptic Soy Broth (TSB) only once and three pellets were collected for each isolate to 
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maintain genetic stability. One pellet was used directly for DNA extraction and 

analysis and the other two will be archived at -80oC for future use.  

 

Genomic DNA was extracted from E. coli TSB cultures using DNeasy Blood & Tissue 

kits (QIAGEN) according to the manufacturer’s instructions. Three intergenic regions 

(agfD, ompF and flhDC) were amplified separately by polymerase chain reaction 

(PCR). All PCR products were sequenced bidirectionally by Macrogen Inc. (Korea) 

and The University of Calgary Genetic Analysis laboratory. All sequences were 

aligned using ClustalX 2. Each SNP’s genotype is coded with binary indicators for A, 

G, C, T, and – (notation for mutation). 

 

Three E. coli genes (agfD, ompF, and flhDC) were selected in the study based on 

previous research. The intergenic regions of the three genes were used. 

 
2.3 Method 
 
2.3.1 A logic-regression-based analytical approach 

 
In this thesis, logic regression is used as a supervised learning method of classification 

for distinguishing between E. coli samples from a certain host (or a certain group of 

hosts) and those from other hosts. SNP intersections and unions are expressed 

mathematically as Boolean logics such as (X1 ∧ X2) ∨ X3c, where X’s are indicators 

of SNP genotypes. “∧”, “∨” and “c” represents intersection (AND), union (OR), and 

complement (NOT), respectively.  The systematic part of the logic regression model 

applied here takes the form 

 

Logit (E[Y]) = β0 + β1 L1 + β2 L2 + … + βp Lp 

 

where Y is a binary variable, an indicator for being from one E. coli host versus being 

from the other hosts, β0, β1,… βp are the parameters, and L1, L2, …, Lp are Boolean 

combinations (called “trees”) of indicators of SNP genotypes in the E. coli genes 

(called “leaves”). A massive number of potential models can be built with varying 

sizes, i.e. the number of trees and leaves. Thus, the model building requires great 
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computing resources. A Simulated Annealing algorithm is used to select the trees and 

leaves adaptively based on deviance as the model fit measure for finding the model 

with the best. For further limiting computational burdens, the maximum size of the 

model is limited to two trees and 10 leaves. 

 

Since a complex hypothesis of simultaneous existence of host specificity and host 

generality, a logic-regression-based two-step analytical approach is proposed for 

studying host specificity and host generality of E. coli. 

 

In the data, each E. coli sample is labeled with the name of the host from which it was 

collected. Although each sample was collected from the labeled host, it may be able to 

live in other host(s) under the mechanism hypothesized by the host generality. Both of 

the hypothesized host-selection patterns, i.e. host specificity and host generality, need 

to be considered and tested simultaneously in the analysis. 

 

Considering potential existence of host specificity and host generality in E. coli (Table 

2.1), the proposed analytical approach consists of two steps. In the first step, the focus 

will be on the hypothesis of host specificity. In the second step, the focus will be on the 

hypothesis of host generality. In each step, logic regression model is used as a 

biomarker discovery tool to distinguish between E. coli samples from one host (or a 

group of hosts) and those from other hosts. The biomarkers to be identified are SNP 

interactions that are potentially important for the host-specific selection in E. coli. 

 
Table 2. 1 Two groups of samples under the host specificity and host generality 

 
 Host-specific Samples Host-general Samples 

Human H1: Samples that can only 

live with Human 

H2: Samples that can live with Human 

and some other hosts 

Bovine B1: Samples that can only 

live with Bovine 

B2: Samples that can live with Bovine 

and some other hosts 

Cat C1: Samples that can only 

live with Cat 

C2: Samples that can live with Cat 

and some other hosts 

Dog D1: Samples that can only D2: Samples that can live with Dog 
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live with Dog and some other hosts 

Deer E1: Samples that can only 

live with Deer 

E2: Samples that can live with Deer 

and some other hosts 

Goose G1: Samples that can only 

live with Goose 

G2: Samples that can live with Goose 

and some other hosts 

Chicken K1: Samples that can only 

live with Chicken 

K2: Samples that can live with 

Chicken and some other hosts 

Moose L1: Samples that can only 

live with Moose 

L2:  Samples that can live with Moose 

and some other hosts 

Muskrat M1: Samples that can only 

live with Muskrat 

M2: Samples that can live with 

Muskrat and some other hosts 

Horse O1: Samples that can only 

live with Horse 

O2:  Samples that can live with Horse 

and some other hosts 

Pig 
P1: Samples that can only 

live with Pig 

P2:  Samples that can live with Pig 

and some other hosts 

Coyotes 
Q1: Samples that can only 

live with Coyotes 

Q2: Samples that can live with 

Coyotes and some other hosts 

Gull 
S1: Samples that can only 

live with Gull 

S2:  Samples that can live with Gull 

and some other hosts 

Beaver 
V1: Samples that can only 

live with Beaver 

V2: Samples that can live with Beaver 

and some other hosts 

Sheep 
Y1: Samples that can only 

live with Sheep 

Y2:  Samples that can live with Sheep 

and some other hosts 

 
 

a. Step One 

 

In the first step, a logic regression model is built for each host distinguishing between 

the samples from the host under analysis and those from other hosts. In each of the 

analyses, 0/1 binary outcome is set up for each sample according to its host label and 

the host under analysis. For host X, the outcome would be 1=“sample that is collected 

from the host X” and 0=“sample that is collected from other hosts”. In the analysis for 
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host “Human”, specifically, E. coli samples in the set of H1 or H2 in Table 2.1 have 

outcome 1, and all other samples have outcome 0. 

 
In the following, it will be demonstrated that the SNP patterns identified in Step One 

with high specificity are host-specific. Assuming that host specificity and host 

generality exist simultaneously in E. coli host selection, it is reasonable to suppose that 

the host-specific E. coli samples (H1, B1, etc.) have their host-specific SNP pattern 

(Human-specific, Bovine-specific, etc.), and among the host-general E. coli samples 

(H2, B2 etc.), those can colonize in a particular group of multiple hosts have a host-

group-specific SNP pattern. For example, samples in H1 share a Human-specific SNP 

pattern and samples in B1 share a Bovine-specific SNP pattern. Samples in H2 and B2 

that can colonize in, for example, both human and Bovine but not in other hosts share a 

Human-Bovine-specific SNP pattern. Samples in H2, B2 and C2 that can colonize in 

Human, Bovine and Cat but not in other hosts share a Human-Bovine-Cat-specific 

SNP pattern, and so on. 

 

The SNP pattern identified by comparing samples from one host (e.g., H1 and H2) 

with the rest in Step One could be a SNP pattern that is either host-specific 

(corresponding to the host under analysis) or host-group-specific (corresponding to a 

particular group of hosts involving the host under analysis). However, a SNP pattern 

from Step One with very high specificity (close to 100%) could only be a host-specific 

pattern rather than a host-group-specific pattern. This is because if a host-group-

specific pattern is identified, E. coli samples collected from other hosts in the group 

rather than the host under analysis can also have the identified host-group-specific 

pattern. This would make its specificity lower than 100%.  

 

After identifying the SNP patterns for host-specific E. coli samples, the possibility of 

host generality involving human E. coli will be explored in the next step.  

 

b. Step Two 

 

Under host generality, host-general E. coli samples can transmit and colonize in 

multiple hosts. Host generality involving human E. coli is of particular interest for 
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contamination source-tracking. In the Step-Two analysis, the focus will be on 

exploring possible groups of multiple hosts including human within which host-general 

E. coli sharing specific SNP patterns can transmit and colonize. Unlike the analyses in 

Step One, It is not known exactly which hosts could form such a host group and which 

E. coli samples belong to a particular host group. In this step, a set of possible host 

groups that contain human and only one animal host, such as Human-Bovine, Human-

Cat, will be explored. This is an attempt to address host-generality with a limited 

scope, i.e., host-generality involving only human and one animal.  

 

Specifically, the E. coli samples collected from each host are partitioned into two sets, 

a host-specific set and a host-general set, based on the host-specific SNP patterns 

identified in Step One (Table 2.2). For each host, the host-specific set includes the E. 

coli samples that are classified as specific to that host by the Step-One model (H1’, 

B1’, etc.); the host-general set includes the E. coli samples that are classified as not 

specific to that host (H2’, B2’, etc.). Based on this partition, a potential host group for 

host generality is defined as the union of two host-general sets from human and one 

animal host, such as Human-Bovine group including all samples in H2’ and B2’. 

 
Table 2. 2 Partition of E. coli samples by the Step One classification into host-

specific and host-general sets 

 
 Classified as Host-specific in 

Step One 

Classified as Host-general in 

Step One 

Human H1’: Samples that are classified 

as specific to Human 

H2’:  Samples that are classified 

as not specific to Human 

Bovine B1’: Samples that are classified 

as specific to Bovine 

B2’: Samples that are classified 

as not specific to Bovine 

Cat C1’: Samples that are classified 

as specific to Cat 

C2’: Samples that are classified 

as not specific to Cat 

Dog D1’: Samples that are classified 

as specific to Dog 

D2’: Samples that are classified 

as not specific to Cat 

Deer E1’: Samples that are classified 

as specific to Dog 

E2’: Samples that are classified 

as not specific to Cat 
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Goose G1’: Samples that are classified 

as specific to Goose 

G2’: Samples that are classified 

as not specific to Goose 

Chicken K1’: Samples that are classified 

as specific to Chicken 

K2’: Samples that are classified 

as not specific to Chicken 

Moose L1’: Samples that are classified 

as specific to Moose 

L2’: Samples that are classified 

as not specific to Moose 

Muskrat M1’: Samples that are classified 

as specific to Muskrat 

M2’: Samples that are classified 

as not specific to Muskrat 

Horse O1’: Samples that are classified 

as specific to Horse 

O2’: Samples that are classified 

as not specific to Horse 

Pig P1’: Samples that are classified 

as specific to Pig 

P2’: Samples that are classified 

as not specific to Pig 

Coyotes Q1’: Samples that are classified 

as specific to Coyotes 

Q2’: Samples that are classified 

as not specific to Coyotes 

Gull S1’: Samples that are classified 

as specific to Gull 

S2’: Samples that are classified 

as not specific to Gull 

Beaver V1’: Samples that are classified 

as specific to Beaver 

V2’: Samples that are classified 

as not specific to Beaver 

Sheep Y1’: Samples that are classified 

as specific to Sheep 

Y2’: Samples that are classified 

as not specific to Sheep 

 
 

Then a logic regression model is build for each of the potential host groups that include 

Human. In each of these analyses, the 0/1 binary outcomes are 1=“E. coli sample that 

is in the potential host group” and 0=“E. coli sample that is not in the potential host 

group”. For example, for the analysis of Human-Bovine group, E. coli samples in set 

H2’ and B2’ have outcome 1, and all other E. coli samples have outcome 0. 

 

Similar to the logic in Step One, it can be demonstrated that a SNP pattern identified 

by logic regression in the Step-Two analysis with very high specificity (close to 100%) 

is host-group specific, i.e. it is specific to E. coli samples that can transmit and 

colonize in the group of hosts but not in other hosts. The rational is as follows. Under 

the diagram of Table 2.1, a SNP pattern identified by the logic regression in Step-Two 
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for a host group (such as Human-Bovine) could be specific to 1) “the host group under 

analysis” (such as Human-Bovine), 2) “one of the host in the group and some other 

hosts out of the group” (such as Human-Cat, or Bovine-Dog), and 3) “all hosts in the 

group plus some other hosts out of the group” (such as Human-Bovine-Cat). If the 

identified SNP pattern is not host-group-specific, i.e. it is specific to 2) or 3), then the 

E. coli samples that are collected from other hosts out of the group (Cat or Dog in 2); 

and Cat in 3) will make the specificity of the identified SNP pattern lower than 100%.  

 

The SNP patterns for all possible host groups involving Human and one other animal 

host are compared and discussed to find which host groups are likely to exist.  

 
2.3.2 Five-fold cross validation for evaluating the performance of the identified 

SNP patterns 

 
The logic-regression-based model building discussed above is a supervised-learning 

approach, which fits a model using a set of observations and their known outcomes. 

This approach may raise a common issue, for all supervised-learning methods, called 

model overfitting. Cross-validation is a commonly used approach to (1) prevent model 

overfitting and/or (2) evaluate the performance of the model unbiasedly. It involves 

randomly partitioning a set of data into mutually exclusive subsets and fitting and 

testing a model with different subsets.  

 

In this thesis, a 5-fold cross-validation approach was applied for evaluating the 

performance of the identified SNP patterns that is not inflated by overfitting. The 

training and testing of a model are performed in 5 rounds after the E. coli samples are 

randomly partitioned into five mutually-exclusive groups S1, S2, …, S5. For the i-th 

round (i=1, …, 5), all other groups except the i-th group are used as training data to fit 

a logic regression model. Then the i-th group is used as a test data to assess the 

performance of the model in this round. The final validation results of sensitivity and 

specificity are averaged over all the 5 rounds.  
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2.4 Results 

 
This analysis includes E. coli samples collected from 15 different sources (Table 2.3). 

Of the total 780 isolates, 120 (15.4%) were bovine E. coli isolates and 105 (13.5%) 

were human isolates, and the other 555 (71.1%) were collected from 14 other animal 

species (Table 2.3).  

 
Table 2. 3 Cross-validated results of Step One 

 
E coli 

Source 
Number of 

Samples Sensitivity Specificity 

Bovine 120 0.29 0.97 
Cat 21 0.04 0.99 
Dog 61 0.21 0.98 
Deer 48 0.82 0.98 
Goose 54 0.05 0.99 
Human 105 0.53 0.98 
Chicken 59 0.54 0.99 
Moose 14 0.67 0.99 
Muskrat 56 0.77 0.99 
Horse 44 0.36 1.00 
Pig 49 0.44 0.99 
Coyotes 44 0.61 0.99 
Gull 18 0.05 0.99 
Beaver 40 0.35 1.00 
Sheep 47 0.46 0.99 

 
2.4.1 Step one 

 
In the first step of the analyses, a very strong association was found between a certain 

E. coli SNP pattern, represented by a logic regression model, and the human E. coli 

samples (Table 2.3). Distinguishing between human E. coli samples and other E. coli 

samples, logic regression obtained 54% sensitivity and 99% specificity evaluated by a 

5-fold cross validation taking the overfitting problem into account. The SNP pattern 

identified by this logic regression model is Human-specific having a very high 

specificity. Host-specific patterns were also found for dog, deer, chicken, moose, 

muskrat, coyotes, and sheep with a moderately high sensitivity and a high specificity 

that is close to 100%.  
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2.4.2 Step two 
 
Associations were found in Step-Two analyses between some specific SNP patterns, 

identified by logic regression, and the E. coli samples from some potential host groups 

involving Human (Table 2.4), such as the union of H2’ and B2’, and the union of H2’ 

and E2’ (Table 2.2). The identified SNP patterns were able to distinguish between E. 

coli samples from the potential host groups and other E. coli samples with high 

specificity. The host-group-specific SNP patterns that showed good performance were 

those for the host groups of Human-Bovine and Human-Deer. Specifically, for groups 

of Human-Bovine and Human-Deer, the sensitivities were 41% and 42%, respectively, 

with specificities 94% and 100%, respectively. 

 
Table 2. 4 Analysis results for exploring host generality of E. coli 

 
Host Group 
(Involving 
Human) 

Cases and Controls * 
(Based on Step 1) 

Sensitivity and Specificity 
(Based on Step 2) 

# of Cases # of Controls Sensitivity Specificity 
Bovine 110 670 0.41 0.94 
Cat 36 744 0.25 0.99 
Dog 41 739 0 1.00 
Deer 19 761 0.42 1.00 
Goose 47 733 0.13 1.00 
Chicken 30 750 0 1.00 
Moose 14 766 0.07 1.00 
Muskrat 23 757 0 1.00 
Horse 35 745 0 1.00 
Pig 38 742 0.37 1.00 
Coyotes 25 755 0.28 1.00 
Gull 19 761 0.16 1.00 
Beaver 34 746 0 1.00 
Sheep 25 755 0.16 1.00 

* Cases are samples that are in the host group; controls are the samples 
that are not in the host group 

 

2.5 Discussion 

 

Subject to the limitations we describe below, the two-step approach proposed in this 

thesis nonetheless provides a possibility of being applied to the analysis of other 

microbial genetic data involving host-specificity and host-generality simultaneously. It 
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opens a door for exploring the complex patterns of microbial host-selection that 

involves multiple hypotheses. 

 

The logic-regression-based two-step data-analytical method proposed in this thesis can 

be useful for identifying important SNP patterns of E. coli’s host-selection. The 

question tackled in Section 2.1.6, namely, “does the genetics of E. coli indicate 

whether its host is human or other animals?” could be answered with the study findings 

in the Step-One analyses under simultaneous existence of host-specificity and host-

generality. The identified host-specific SNP patterns may have important implications 

in contamination source tracking using E. coli samples collected from an 

environmental sample (i.e., food or water).  

 

The host-group-specific SNP patterns identified in the Step-Two analysis for host 

groups involving human could be applied in studying human risk related to zoonotic E. 

coli. These identified SNP patterns can be used as biomarkers to identify E. coli 

samples that could transmit between human and other animals. The analytical methods 

mat be potentially useful for identifying the source of the pathogenic E. coli, which is 

especially significant in an E. coli outbreak. 

 

On the other hand, there are important limitations in our study. First, the identified 

host-specific SNP patterns may not be sufficiently robust in practice. Due to the high 

adaptability and short-term genomic evolution of E. coli, the E. coli samples collected 

from a contamination site may have significantly different genetic patterns compared 

to its original host-specific ancestors. This raises a concern that the identified SNP 

patterns may be specific to the environment of the contamination site from which E. 

coli samples were collected as well as their host. Thus, analyzing a small set of 

samples will fail to identify the patterns specific to an E. coli’s original host that is 

robust against the variety of environments of the contaminations sites and other factors 

unrelated to the host. In future research, the robustness of the findings needs to be 

assessed and it is critical to incorporate a large variety of samples from the same host 

in this regard.  
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The second limitation is that the identified SNP patterns, including those for host-

specificity in Step One and those for host-generality for Step Two, cannot classify all 

the samples we had into certain host-specific or host-generality groups. While our 

findings had appreciable proportions classified into these groups, it leaves a question 

as to whether a more broader host-generality analysis could classify the remaining 

samples or not.   

 

The logic regression model used in this thesis has a fixed tree size, which may not be 

appropriate for all the analyses. The logic regression uses a Simulated Annealing 

Algorithm to conduct a massive search in the high-dimensional space to fit a model. 

This may not always reach a globally optimal result, and the result may depend on the 

random seed used for originating the stochastic search.  
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3 Image Analysis Method for Tuberculosis Detection for 

Automated MODS in Resource-Limited Settings 
 
3.1 Background 

 
3.1.1 Review of Tuberculosis (TB) and TB diagnosis  
 
TB is an airborne infectious disease. It is the second leading cause of death from an 

infectious disease worldwide 1 being prevalent mostly in developing countries 2.  

According to the World Health Organization, about 2 billion people around the world 

were infected with TB, with an estimated global incidence rate of 139 cases per 

100,000 population and a mortality rate of 20 deaths per 100,000 population in 2008 3. 

More than 80% of estimated new cases and deaths occurred in developing countries 2, 4.  

 

Most TB cases are caused by Mycobacterium tuberculosis (M.tuberculosis). Latent TB 

(LTB) infection occurs when people carry small amount of M. tuberculosis bacilli in 

their body but the manifestation of disease is essentially controlled by an infected 

person’s immune system. TB disease, or active TB, occurs when the bacterial load 

overcomes the person’s immune defences and causes TB symptoms such as bad cough, 

chest pain and/or weight loss. People with LTB infection are not infectious and would 

be negative to most TB tests, due to the low levels of actively growing bacteria 4. 

Patients with active TB may be infectious, with infections most commonly spread by 

inhalation of infected droplets coughed up by patients 4. Although there are more LTB 

infections than active TB cases, identifying LTB is very difficult because LTB cases 

do not exhibit classical TB symptoms and the only test, the tuberculin skin test, is not 

accurate 6. But since LTB is generally not considered an infectious state, it is more 

important for public health to identify active TB cases in order to treat and curb the 

spread of TB bacteria. TB diagnostic tests include culture-based methods, smear 

microscopy, nucleic acid amplification tests (NAAT), or through chest x-rays.    

 
To curb the transmission of TB bacteria, the key is to detecting active TB accurately 

and quickly. Accurate and rapid TB diagnostic methods have been developed and are 

available mostly in the developed countries. Based on a systematic review by the 
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National Health Service’s Health Technology Assessment Programme, NAAT testing, 

has far superior accuracy when applied to respiratory samples and is also more rapid 

than most current culture-based methods 7.  The Mycobacteria Growth Indicator Tube 

(MGIT) is a fully automated liquid-culture-based instrument intended for the fast 

detection and recovery of mycobacteria from clinical specimens with high accuracy 8. 

However, these types of methods (NAAT and MGIT) are expensive and sometimes 

require highly trained technologists, which make them not widely accessible to 

resource-limited settings where TB is most prevalent but where financial resources and 

manpower are limited 9.  On the other hand, the low-cost TB diagnosis currently used 

in those settings, such as smear microscopy, have poor accuracy, and consequently 

new low-cost and accurate diagnostic mehtods for TB are urgently needed to replace 

those diagnostics used in those settings 9.   

 

The microscopic-observation drug-susceptibility (MODS) assay is a low-cost culture-

based TB diagnostic platform developed in 2006 10.  Comparative analysis with other 

automated mycobacterial culture systems such as the MBBacT system (bioMerieuX) 

and culture on LÖwenstein-Jensen medium with the proportion method, two reference 

methods commonly used in developing and industrialized countries, respectively, has 

demonstrated the utility of MODS for detection of M. tuberculosis infections.  The 

estimated sensitivity and specificity of detection for MODS was 97.8% and 99.6%, for 

the automated mycobacterial culture was 89.0% and 99.9%, and for LÖwenstein-

Jensen was 84.0% and 100.0%. 10.  Thus, the MODS system has the potential for being 

used in resource-limited settings 11. One principle for the MODS assay for detection of 

tuberculosis directly from sputum relies on the following principles: first, that M. 

tuberculosis grows faster in liquid medium than in solid medium; second, that 

characteristic TB cord formation can be visualized microscopically in liquid medium at 

an early stage 10. In MODS, 24-well tissue-culture plates are used for preparing MODS 

assay. The cultures are examined under an inverted light microscope at a magnification 

of 40× every day (except Saturday and Sunday) from day 4 to day 15, on alternate days 

from day 16 to day 25, and twice weekly from day 26 to day 40. Since the method 

relies on microscopic observation of TB characteristic formations in liquid culture, 

manually delivery of liquid sputum-culture causes two critical limitations for use in 

practice: (1) biosafety; and (2) efficiency in handling a large number of samples.  
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The Automated MODS, developed recently by the TB/HIV Research Foundation 

(THRF), Chiang Rai, Thailand, is an automated MODS system designed to address the 

needs for an inexpensive, rapid and efficient TB diagnosis in resource-limited settings, 

overcoming the limitations of the original MODS. Specifically, the Automated MODS 

minimizes the risk of biohazard and cross-contamination by isolating sputum cultures 

using individual culture tubes sealed with individual caps, and using an auto-image-

capture/reading system in an auto-running machine, which records culture images over 

time without manual handling of the culture. Of vital importance in the Automated 

MODS system is an automated image analysis program installed in a local computer or 

a network through which the recorded images can be reviewed and analyzed. Such an 

automated program can be used to detect TB growth without manual efforts and 

therefore reduces the laboratory workload  and training appreciably. 

 

3.1.2 Review of Image analysis methods for TB detection 

 

Image analysis is the extraction of meaningful information from images, especially 

from digital images, using digital image processing and pattern recognition techniques 
12. There are many different techniques used in automatically analyzing images, each 

of which may be useful for certain tasks. However, there still aren’t any known image 

analysis methods that are generic enough for wide ranges of tasks, compared to image 

analyzing capabilities of humans themeselves. The applications of digital image 

analysis are continuously expanding through all areas of science and industry including 

astronomy, materials science, machine vision, security, robotics, etc. as well as in 

microscopy.  

 

 Microscope image processing is the use of digital image processing techniques to 

process, analyze and present images obtained from a microscope. Analysis of images 

will vary considerably according to application. Typical analysis includes determining 

where the edges of an object are, counting similar objects, calculating the area, 

perimeter length and other useful measurements of each object. A common approach is 

creating an image mask that contains only those pixels that match certain criteria, and 

then performing simpler scanning operations on the resulting mask..  
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The use of image analysis techniques in automatic TB detection through culture 

images is quite new. A simplified automated image analysis method was used for 

detection and phenotyping of Mycobacterium tuberculosis on porous supports by 

monitoring growing microcolonies 13. A key success of the image analysis depends on 

the use of a porous support for microcolony to grow in a liquid culture. The image 

analysis itself then involves the identification of microcolonies (distinct black spots) on 

a relatively simple and light background using existing publically available algorithms, 

the details of which was not shown.  Another application of image processing 

techniques is for identifying M. tuberculosis in Ziehl-Neelsen stains, which is a solid 

culture method 13.  It involves recognition of ZN-stained AFB in digital images and 

using prior knowledge about the distinctive ZN stain color (red green blue values that 

were significantly different from non-TB objects) to label a given image pixel as a ‘TB 

object’ or a ‘non-TB object’, followed by shape/size analysis to refine detection.  Other 

work also identifies bacteria particles based on image segmentation 15�17, which 

separate the bacteria pixels and non-bacteria pixels based on color information as well 

as morphological information. They often involves multiple steps of image processing 

and pattern recognition techniques such as image segmentation (edge detection) to 

detect the borders of the suspected objects, morphological operation to fix broken 

structures belonging to the objects, classification (based on complex classifiers, 

statistical techniques) for identify the bacteria particles based on shape or other 

heuristic descriptors 18,19.    

 

The image analysis methods previously used in this area aim to automatically identify 

the distinctive morphology of microcolonies, requiring advanced techniques from 

segmentation and shape recognition. Some of them have shown great performance for 

detecting TB bacilli for solid culture or AFB stains. However, there is no duplicated 

mature image analysis method for detecting TB bacilli in liquid culture, which is more 

accurate in TB detection. The reason is that the liquid culture has very complex 

background so that the complex image segmentation and shape recognition tasks are 

difficult to automate for identification of floating and growing TB microcolonies with 

a high degree of sensitivity and specificity 20.  In addition to that, due to the special 

low-cost design of the Automated MODS, TB-specific microcolony formation was 
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hard to identified in the Automated MODS images with human visual observation 

alone. The method for identifying bacterial particles and then classification as TB or 

non-TB is not a current application for the Automated MODS.  New concept and 

image analysis methods for automatic TB detection for the Automated MODS need to 

be developed.  

 
3.2 Data and materials 

 
3.2.1 Sputum samples 

 
The study was conducted in collaboration with THRF, using 81 sputum samples from 

suspicious pulmonary TB patients who were seen at the Chiang Rai Provincial 

Hospital in October 2010. These sputum samples were cultured with the Automated 

MODS at the TB Laboratory in Chiang Rai Provincial Hospital for the study. The TB 

status of each sample is verified by AFB test using MODS culture as test sample, 

which is used as a reference standard of TB diagnosis in the study.  As verified by the 

reference standard, of the 81 sputum samples collected, 50 (61.7%) were positive, 29 

(35.8%) were negative for M.tuberculosis, and two were “indeterminate”: because the 

two indeterminate had both of the drug-free cultures contaminated by bacterial 

overgrowth, they were removed from the analysis. 

 

3.2.2 MODS assay 

 
In the TB laboratory, MODS assays were performed for each sputum sample according 

to the previously published MODS protocol [11]. Briefly, sputum samples were digested 

and decontaminated using N-Acetyl-L-Cysteine-sodium hydroxide for 15 minutes, 

dissolved with Phosphate Buffered Saline pH 6.8, and the mixture was centrifuged for 

15 minutes at 3,000 rpm at 4° Celsius. The supernatant was dispersed using 7H9-

OADC-PANTA (mixture of 7H9 (liquid Middlebrook broth), OADC (oleic acid, 

albumin, dextrose, and catalase), and PANTA (polymyxin B, amphotericin B, nalidixic 

acid, trimethoprim, and azlocillin)). The 900ul of the final mixture was inoculated in 3 

individual 2ml plastic tubes as follows: two drug-free tubes containing 100ul 7H9-

OADC-PANTA solutions, one drug tube containing 100ul p-nitrobenzoic acid (PNB), 

a drug used to kill M.tuberculosis. TB bacteria would grow in the two drug-free tubes 
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but not in the PNB tube since PNB kills TB bacteria; while other bacteria/fungus 

would grow in all three tubes. Therefore, a TB case can be identified by comparing 

culture growth in the drug-free tubes and the PNB tube. The culture tubes were kept at 

37° Celsius for 35 days in the closed transparent incubator of the Automated MODS.  

 

3.2.3 Image data 

 
Starting from the first day of incubation, cultures were imaged daily by an automated 

digital microscope of the Automated MODS with a total magnification of ×40 and a 

field size of 480×480 pixels. The digital microscope of the Automated MODS is 

installed at the end of a 3-axis moving head connected with a computer-controlled 

motor, which is programmed to automatically take the culture images from the center 

of each tube. A culture image covers the entire culture area (Figure 3.1) and saved as a 

JPG file. The digital images of all cultures were transferred from Chiang Rai to the 

research team at the University of Alberta to develop image analysis methods for 

automated TB detection.  

 

For each of the 79 patients, three sequences of culture images can be observed: ICL1, 

ICL2, IPNB, each containing 35 images taken daily from day 1 to day 35. ICL1 and ICL2 

denote the sequences of images for cultures in the two drug-free tubes, and IPNB 

denotes the sequence of images for the culture in the PNB tube. 

 

3.3 The proposed image analysis method 
 
The rational of proposing a new image analysis method for the Automated MODS is 

that the previously used image analysis methods (not necessarily for MODS) for TB 

detection are not suitable for MODS. Those methods typically focus on identifying 

distinctive morphology of microcolonies and TB-specific morphological 

characteristics in culture images. They can be implemented for some solid culture [5-8] 

that have very clean background and for microcolonies with very simple 

morphological characteristics. However, MODS, as a liquid-based culture test, presents 

complicated background and complex morphology of floating microcolonies in culture 

images. The previously used methods are not suitable for MODS since the noisy 
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background of MODS affect the robustness of their performances in detecting any 

microcolonies, not to mention identifying TB-specific morphological characteristics. 

Actually, identifying distinctive morphology of microcolonies and TB-specific 

morphological characteristics with such complicated MODS-culture images is difficult 

even for a visual inspection by an experienced technologist.   

 

 
Figure 3. 1 Examples of positive MODS culture images taken at inoculation (Day 

1) and between 6 to 14 days of inoculation 

 

The proposed image analysis method aims to identify TB-specific culture growth 

patterns in the culture images instead of identifying TB-specific morphological 

characteristics from floating microcolonies. Of crucial importance in the method is a 

successful mathematical characterization of the culture growth pattern via a newly 

defined function of pixel intensities in images, called the λ-function, which largely 
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reduces influences of image background, and overcomes the limitations of previously 

used image analysis methods. To describe the proposed image analysis method, the 

definition of the λ-function and the related λ-method will be given first in the 

following subsection. 

 

3.3.1 The λ-function 

 
To define the λ-function, two difference operators, ∇! and ∇! , which are used widely 

in image analysis to quantify the differences of intensities between adjacent pixels, will 

be introduced first.  A culture image 𝑢 is an N by N matrix of intensity levels with 

values in {0, 1, …, 255}, where N denotes the size of the image (in this case, 

N=480×480). Alternatively, an image 𝑢 is a function defined on  {1, 2, …, N} ×{1, 2, 

… , N} taking values in {0,1,… , 255}, and 𝑢 i, j  denotes the function value (image 

intensity value) at pixel (i, j). Given an image  𝑢, the difference operators ∇! and ∇! in 

x- and y-directions are defined by 

 

∇!  𝑢 i, j =    0                                                                if  i = 1
𝑢 i, j − 𝑢 i − 1, j                     if  2 ≤ i ≤ N   

                                                                                                                                               

∇!  𝑢 𝑖, 𝑗 =   
0                                                                if  j = 1  

𝑢 𝑖, 𝑗 − 𝑢 𝑖, 𝑗 − 1                   if  2 ≤ j ≤ 𝑁. 

 

 

Next, define  

𝑠! 𝑖, 𝑗 =
|∇!𝑢 𝑖, 𝑗 |

1 +min 𝑢(𝑖, 𝑗), 𝑢(𝑖 − 1, 𝑗)
+

|∇!𝑢 𝑖, 𝑗 |
1 +min 𝑢(𝑖, 𝑗), 𝑢(𝑖, 𝑗 − 1)

                    (3.1) 

 

where i, j=1,···, N, and set 𝑢(l, k)=0 if either l=0 or k=0. The definition of 𝑠! 𝑖, 𝑗   is 

based on the following two characteristics of microcolonies in culture images. First, 

microcolonies in a culture image normally appear at pixels with low intensity values, 

where both terms’ denominators in (3.1) are relatively small. Second, at least one of 

the two terms’ numerators of (3.1) will be relatively large at the pixels near the edges 

of colonies. Therefore, large values of 𝑠! 𝑖, 𝑗  tend to indicate the existence of a 
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microcolony with the pixel (i, j) being near the edge of the colony. On the other hand, 

the image background areas are much brighter than microcolonies. Pixels in the 

background areas have large denominators in the two terms in (3.1), which makes their 

𝑠!   tend to have small values. 

 

Now let us return to the definition of the λ-function. The pixels where their 𝑠! values 

are small, that is, they are unlikely to be the edge of microcolonies, will be ignored. 

This idea leads to the definition of the λ-function: 

 

Given an image u, let 𝑠!∗ 1 > ⋯ > 𝑠!∗ 𝑁!  be a sequence with descending order of 

the N2 numbers {𝑠! 𝑖, 𝑗 ; i, j=1, …, N}. An overall smoothness measure of image 𝑢 is 

defined as 

𝑆𝑆! = s!∗ j
𝒶!!

!!!
 

 

where 0 < a < 1 is a parameter to be determined: this allows us to ignore the smallest 

values of 𝑠!’s in a given image. How to optimize and determine this parameter will be 

discussed in Section 3.4.1. Then the λ-function is defined as follows: 

 

                                                                                                                𝜆 𝑢, 𝑣 =
𝑆𝑆!
𝑆𝑆!

                                                                                                      (3.2) 

 

The meaning of λ-function is a ratio of overall smoothness measures comparing a 

culture images 𝑢 to a reference culture image  𝑣. 

 

To conclude this subsection, there are a few remarks on the λ-function. First, the 

definition (3.2) does not use smaller values of 𝑠! 𝑖, 𝑗  and   𝑠! 𝑖, 𝑗 , which correspond 

to pixels near which microcolony is unlikely to exist. Thus, this definition allows us to 

ignore irrelevant information of the images. As a result, the influences of culture image 

background, which has relatively high intensity and is quite complex for culture 

images recorded automatically by digital microscopes, will be largely reduced in the 

ratio (3.2). Second, since smoothness measure 𝑆𝑆!  reflects the amount of 

microcolonies in a culture, λ-function can be used to monitor culture growth in a 
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culture by comparing the smoothness measure of an image to a reference image. In 

application a reference image is selected to be an image of a culture at its early 

inoculation time and compare the images of the same culture at later stages with it. 

Moreover, at the original stage, there are little inherent differences across different 

cultures. Therefore, λ-function can be used as a consistent measure of culture growth 

across cultures although different reference images need to be used. 

 

3.3.2 Proposed image analysis method 

 
The proposed method involves three steps, which will be described in details below. 

 

In the first step, the aim is to eliminate the influences of inherent differences across 

cultures on the smoothness measure  𝑆𝑆!. Based on the data, it can be observed that the 

center and the edge areas of different culture tubes have quite different structures in 

images, and even for the same culture tube, the images of those areas will be quite 

different under different illumination conditions on different days. To eliminate these 

differences, an image mask is applied to each image to exclude its center and edge 

areas from further analysis. The image mask (the black area in Figure 3.2.b) is defined 

as follows: a pixel (i, j) will be masked if its distance from the center of the image dc 

satisfy:  dc >Lmax or dc <Lmin,  where Lmax=235 and Lmin=90 are chosen based on the 

actual center and edge areas in images.   

 

 
(a) (b)      

Figure 3. 2 (a) An original image recorded by the Automated MODS and (b) the 

output image processed by masking and Gaussian filtering 
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Since culture images of the the Automated MODS were automatically recorded by 

digital microscopes, and they normally contain image noise caused by the digital image 

capture device. The image noise is random variation of intensity in images and not 

present in the object imaged: however, this added spurious and extraneous information 

may distort the smoothness measure. In the first step, a Gaussian filter is also applied 

to smooth such image noise. It works by filtering an image with a Gaussian function:  

 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎!
∙ 𝑒!

!!!!!
!!!  

 

where x is the distance from the origin in the horizontal axis, y is the distance from the 

origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution. 

In this application, an 18x18 Gaussian filter (18 is the number of rows and columns of 

the Gaussian filter) with standard deviation 3 is chosen. The size of the Gaussian filter 

was chosen so that it is smaller than the size of any useful information, a visible 

microcolony in this context, but larger enough to blur the noisy information. The 

output image is a modified image of the original one with the same size. The value of 

each pixel in the output image is a weighted average of all its neighbors in the input 

image weighted by the Gaussian filter centered at the pixel. The neighbor pixels 

involved contains all pixels in the input image corresponding to the Gaussian filter. 

The standard deviation determines the degree of blur. It is chosen to make the averaged 

pixel value weighted enough towards the value of the central pixels considering the 

size of the Gaussian filter. Figure 3.2 (b) shows the image after being processed by 

masking and filtering in the first step. 

 
In the second step, apply the λ-function to all sequences of processed culture images 

from the first step. Let I={  𝑢!, …, 𝑢!"} denote a sequence of 35 images of any 

incubated culture that are taken daily from day 1 to day 35, where 𝑢! denotes the 

culture image taken on the i-th day. Since the bacteria-irrelevant culture contents, such 

as debris and air bubbles, will be stabilized in the culture on about day 5 after 

incubation while bacterial growth usually will not be visible before day 5, the reference 

image, 𝑣!, is chosen to be the image taken on day 5; namely, 𝑣! = 𝑢!. The image 𝑣! 
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will be considered as a reference image in the λ-function applied to the sequence I. All 

the other images  𝑢!, starting with day 5, with the image 𝑣!  via the function  𝜆 𝑢! , 𝑣!  

are compared. A graph of the sequence of λ-function values  

 

𝜆 𝐼 =(𝜆 𝑢!, 𝑣! , 𝜆 𝑢!, 𝑣! ,… , 𝜆 𝑢!", 𝑣! )                                     (3.3) 

 

can successfully characterize the culture growth  pattern for  the sequence I (see Figure 

3.3 for an example).  

 

 
 

Figure 3. 3 Graphs of λ(I) 

 
For each sequence I={𝑢!, …, 𝑢!"} of 35 culture images in the dataset, the formula 

(3.2) is used to compute the sequence λ(I) using 𝑢!, the image on day 5 in each 

sequence, as the reference image 𝑣! for the sequence. 

 

Finally, in the third step, a decision for culture positivity is made, i.e., a significant 

culture growth based on the data 𝜆 𝐼  computed in the second step. A sequence I={𝑢!, 

…, 𝑢!"}  of  35 culture images is said to be culture positive if d consecutive days 

𝜆 𝑢!!!, 𝑣! ,… , 𝜆 𝑢!!! , 𝑣!  in the sequence 𝜆 𝐼  given in (3.3) satisfy simultaneously 

the condition: 

𝜆 𝑢! , 𝑣! > 𝜆! ,  j=i+1, i+2, …, i+d. 
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The sequence I is said to be culture negative otherwise. The decision rule contains 

three crucial statistical parameters: the parameter a in the definition of the λ-function 

and two new parameters 𝜆! > 1  and d≥2.   

 

Recall that, for each patient, three sequences ICL1, ICL2, and IPNB of 35 culture images 

are obtained. The decision rule for TB positivity is defined based on the principle of 

the three-assay laboratory design as follows. 

 

Decision Rule: On any given day, using image data up to that day, a patient is judged 

to be TB positive if the image sequences ICL1 and ICL2 for the cultures in the two drug-

free tubes are both culture positive, but the image sequence IPNB for the culture in the 

PNB tube is culture negative. The patient is judged to be TB negative if at least one of 

the two image sequences, ICL1 and ICL2, is culture negative, or all three image 

sequences, ICL1, ICL2 and IPNB, are culture positive.  

 

In the definition of TB positive image sequences, it is required that an interval {i+1, 

i+2, …, i+d} of d consecutive  days, rather than a single day, to satisfy a condition. 

This helps to reduce the chance that some temporarily unusual conditions, such as an 

illumination condition which can yield outliers of the image data, to create a false 

positive.  

 
3.4 Statistical analysis 
 
3.4.1 Selection of the values for parameters a, λt and d 

 
The decision rule in Section 3.3.2 relies on three parameters, a, λt, and d. The purpose 

of this section is to show the method for selecting the values of these parameters. 

 

Note first that 0<a<1, λt ≥ 1 and d can be any integer in the set A1={6, …, 35}.  Based 

on the data, an image with λt =5 corresponds to an image with a large amount of 

culture growth.  Thus, 1 ≤ λt ≤ 5 is considered. The parameter intervals (0, 1) and [1, 5] 

of the parameters a and 𝜆!  are partitioned as follows: 
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𝐴! = 0.05𝑘:    𝑘 = 1,… , 20 = 0.05, 0.1, 0.15,… , 0.95, 1 ,  

𝐴! = 1 + 0.05𝑘:    𝑘 = 0, 1,… , 80 = 1, 1.05, 1.1,… , 4.95, 5 . 

 

The main goal is to find the optimal values  𝑎,  𝜆!, and 𝑑, of the parameters a, λt, and d, 

respectively, subject to the conditions that d takes values in A1, a in A2 and λt in A3.  

The optimal values can be determined as follows. 

 

First, the training samples were selected by selecting randomly 50% of the samples: 25 

of the total 50 TB positive patients, and 15 of the total 29 TB negative patients. 

 

Next, for each given set of parameter values for d in A1, a in A2 and for λt in A3, the 

decision rule of Section 3.3.2 is applied to classify the training samples. Let N1(a, 𝜆!, 

d) denote the number of the TB-positive patients in the selected samples who are also 

judged correctly to be TB-positive using the decision rule with the parameter values a, 

λt and d. Let N2(a, λt, d) denote the number of the TB-negative patients in the training 

sample who are also judged correctly to be TB-negative. Finally, the optimal 

parameters 𝑎, 𝜆!, and 𝑑 is computed as follows: 

 

(𝑎,𝜆!, 𝑑) =  argmax!∈!!,!!∈!!,!∈!!   (
!!(!,      !!  ,      !)

!"
+ !!(!,    !!  ,      !)

!"
) 

 

That is, 𝑎, 𝜆!, and 𝑑 are the parameter values with which the sum of sensitivity and 

specificity, !!(!,!!  ,!)
!"

+ !!(!,!!  ,!)
!"

, attains its maximal value. Since the sets A1, A2 and 

A3 are all finite, this last step can be computed easily.  

 

In this study, the following values of 𝑎, 𝜆!, 𝑑 were obtained using the above mentioned 

method: 

 

𝑎 = 0.2, 𝜆! = 1.7, 𝑑 = 3.                                         (3.4) 

 

The sensitivity and specificity attained with these optimal parameter values will be 

studied in the next subsection. 
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3.4.2 Test-set validation 

 
In this subsection, the method of test-set validation is used to evaluate the performance 

of the decision rule with parameter values selected in the last subsection. 

 

Recall that the training sample consists of 25 randomly selected TB positive patients 

and 15 randomly selected TB negative patients. The remaining 39 patients, including 

N1=25 TB positive and N2=14 TB negative patients, are served as the testing samples. 

The decision rule with parameter values given in (3.4) is applied to these testing 

samples. Let N3 (resp. N4) denote the number of patients in the TB positive (resp. TB 

negative) testing samples that are ruled to be TB positive (resp. TB negative) as well 

according to the decision rule. Then the sensitivity and specificity of the test can be 

calculated as follows: 

 

Sensitivity = !!
!"
  , Specificity = !!

!"
 . 

 

In this context, sensitivity is the conditional probability that a sputum sample is 

identified as TB positive, given that the sputum sample is TB positive.  Specificity is 

the conditional probability that a sputum sample is identified as TB negative, given 

that the sputum sample is TB negative. Their confidence intervals are calculated using 

the standard exact method for binomial proportion.  

 

3.4.3 Comparison with manual image reading 

 
The culture images of the 79 samples were reviewed to identify TB cases by a medical 

technologist in THRF, who is also responsible for performing the diagnosis using the 

standard method. Similar decision rules for TB positivity based on the three-assay 

laboratory design were used by the technologist, except that the culture growth is 

identified by subjective human judgement. The time to positivity is also recorded by 

the technologist for each sputum sample.    
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Sensitivity and specificity were calculated for the λ-method and the manual image 

reading using the testing samples. The differences in sensitivity and specificity 

between the two methods were tested statistically.  Since the same testing samples 

were used, the results from λ-method and those from manual image reading are paired. 

The p-values of the differences in sensitivity and specificity were calculated using a 

McNemar’s exact test, taking this pairing into account.   

 

The two methods were also compared in terms of time to positivity. Time to positivity 

of case samples were plotted and compared for both methods.  

 
3.5. Results 
 
3.5.1 TB detection 

 
The results of automated TB detection on the testing samples obtained via the λ-

method, with parameter values 𝑎 = 0.2, 𝑑 = 3, and 𝜆! = 1.7, are listed in Table 3.1 

below. 

 
Table 3. 1 Results detected via λ-method 

 
 Reference method 
 Positive (+) Negative (-) 

λ-method Positive (+) 20 0 
Negative (-) 5 14 

  
Table 3. 2 Results obtained via manual image reading 

 
 Reference method 
 Positive (+) Negative (-) 

Manual image 
reading 

Positive (+) 24 1 
Negative (-) 1 13 

 
 

Based on table 3.1, the λ-method has an estimated sensitivity of 80% [95% CI: 58.7% - 

92.4%], and an estimated specificity of 100% [95% CI: 73.2% – 100%]. In 

comparison, the manual image reading has an estimated sensitivity of 96% [95% CI: 

77.7% - 99.8%] and an estimated specificity of 92.9% [95% CI: 64.2% - 99.6%] 
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(Table 3.2). P-values for the differences of sensitivities and specificities between two 

methods are 0.13 and 0.50, respectively, based on McNemar’s exact test (Table 3.3).  

 
 Table 3. 3 Comparison of sensitivity and specificity between λ-method and 

manual image reading 

(a) Results on true-positive testing samples 

Positive testing samples 
Manual image reading 

Positive (+) Conclusions different 
from those of AFB test 

λ-method 
Positive (+) 20 0 

Conclusions different 
from those of AFB test 4 1 

 
(b) Results on true-negative testing samples 

Negative testing samples 
Manual image reading 

Conclusions different from 
those of AFB test Negative (-) 

λ-method 
Conclusions different 

from those of AFB test 0 0 

Negative (-) 2 12 
 
 
The 25 TB positive testing samples verified by the standard method were included in 

the head-to-head analysis of time to TB positivity (Figure 3.4). For the λ-method, time 

to TB positivity for a true-positive subject was defined as the last day of the d 

consecutive days of TB positive by the λ-method.  The median time to TB positivity of 

the λ-method was 20 days [interquartile range 10 to 29 days], which is longer than that 

of the manual image reading’s 13 days [interquartile range 17 to 27] (Figure 3.4). 

 

3.6 Conclusions and discussions 

 
In this thesis, a novel image analysis method is proposed for the automated 

programming of the Automated MODS, i.e., for the objective detection of TB growth 

in the culture images recorded in the Automated MODS. The most important 

contribution of this thesis is the introduction of a new function of pixel intensities in 

images, called the λ-function, which can be used to successfully characterize the 

culture growth pattern in the culture images. Compared with many image analysis 
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Figure 3. 4 Time to TB positivity of the λ-method and manual image reading 

3.5.2 Time to TB positivity 

 

methods previously used in this area [5-8], the proposed method has the following 

advantages. First, it is simpler, faster, and can be easily implemented using any 

programming language. Second, many of the Automated MODS images recorded by a 

digital microscope have complicated background for which even a highly skilled 

technologist can have difficulties for identifying TB culture growth. Due to the 

introduction of the λ-function, the method largely reduces influence of the image 

background, and therefore, is more robust and enjoys high sensitivity and specificity in 

TB detection. 

 

The proposed automated image-analysis method for the Automated MODS has a high 

sensitivity and specificity evaluated against a standard TB diagnosis method. It is 

expected that this work will lead to an automated TB detection for the Automated 

MODS, being able to read and interpret culture images without medical technologists' 

time-consuming manual efforts. The new method significantly improves the efficiency 

of the Automated MODS, which uses a high-throughput imaging system. It makes the 

Automated MODS highly efficient and safe compared to the original MODS, with 

comparable sensitivity and specificity to manual image reading by an experienced 

medical technologist. Note that the manual reading used in this thesis was performed 

by a technologist who was aware of the sample’s true positive/negative status, i.e., the 

manual reading was not done with blinding. 
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The proposed image-based automated TB detection method is an objective method that 

does not need human intervention once applied. The three critical parameters in the 

method can be determined by sound statistical methods based on training data from 

practical settings. In this study, the parameter determinations were based on the 

training samples and the estimates of the sensitivity and specificity were obtained 

using independent test samples and are, therefore, unbiased. In other words, the same 

performance would be expected for the method when it is used on similar patients and 

on sputum culture images obtained with the same the Automated MODS system. 

 

The image analysis method shows a delay of 7 days in time to positivity, as compared 

to manual reading. Since TB is an infectious disease, taking longer time to perform the 

testing will leave longer time for TB bacteria to spread from TB cases to uninfected 

people. This remains a critical limitation of the Automated MODS compared to the 

advanced TB diagnostic such as NAAT. 

 

Future research will be mainly focused on improving the λ-method in terms of the time 

to positivity, that is, to make the λ-method to detect sample positivity faster (i.e., in 

fewer days). Another direction for future research would be improving the sensitivity 

of the λ-method through the application of a more sensitive decision rule for bacterial 

growth. 
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4 Conclusion and Discussion  
 
In Chapters 2 and 3, two biologically-sensible methodologies for analyzing high-

dimensional biological data, E. coli genomic data and sputum-culture image, were 

proposed for two complex public health problems. A common focus of the two 

methodologies was to extract information that is relevant for tackling the complex 

health problems utilizing high-dimensional biological data. Statistically-appropriate 

techniques were applied to this end. 

 

In the analysis of E. coli genomic data (Chapter 2), model fitting in a high-dimensional 

data space was achieved by using an adaptive Simulated Annealing Algorithm, and 

performance of the model fitting was evaluated statistically by cross-validation. This 

method is successful in reducing computational cost, which is one of the major issues 

in high-dimensional data analysis, using an advanced adaptive method. In analyzing 

the sputum-culture images (Chapter 3), high-dimensionality of the image data is 

reduced dramatically by introducing a non-linear function of culture image without 

loosing the relevant information for measuring the level of culture growth. A key 

success of this method was in the handling of complex background and other noise 

issues through proper image-analysis methods along with an introduction of a novel 

mathematical function that captures the biological features of culture growth in tubes.  

 

More importantly, the methodologies presented in this thesis considered the biological 

and clinical aspects of complex health problems, which are as important as the 

technical challenges caused by high-dimensionality of data. In Chapter 2, logic 

regression were carefully chosen as a basic model for analysis because of its special 

forms of SNP interactions, which are biologically more plausible than the commonly 

used multiplications of SNP indicators. Moreover, a two-step approach is adopted to 

incorporate the complex assumptions of E. coli host selection involving two distinct 

biological hypotheses. In Chapter 3, the high-dimensional sputum-culture images were 

transformed to measures of culture growth, which are clinically more meaningful for 

the problem than the high-dimensional intensity values in an image. The mathematical 

function constructed was based on the biological relationship between culture growth 

and image characteristics. Without considering these biological and clinical aspects of 



 50 

the complex health problems, the methodology development for the problems would 

have focused on technicality and would have produced methods that are hardly useful 

in practice.   

 

As high-dimensional data (or Big Data) are increasingly available for research, high-

dimensional data analysis is becoming more and more in demand: it is also becoming 

more difficult due to its increasing size. The advantages and disadvantages of high-

dimensional data have been discussed widely in literatures [1-2]. Analytical approaches 

for dealing with high-dimensionality of the data have also been suggested [3]. When 

conducting high-dimensional data analysis, people should be aware of the so-called 

“curse of high dimensionality”, in connection with the difficulty of optimization by 

exhaustive enumeration on high-dimensional spaces, and the effect of high 

dimensionality on statistical measures.   

 

On the other hand, the successful experiences in the two complex health problems took 

great advantage of the high-dimensional data. This is the reason why high-dimensional 

data is increasingly applied in health problems as well as in medical imaging, 

marketing, finance, economics, and so on. It is expected that the demand for 

methodologies for analyzing these data will continue to grow. In particular, medical 

images and genomic data have been broadly used for innovations in solving different 

health problems, where similar methodological issues are encountered. I hope that the 

methodologies proposed in this thesis will be useful in a broader context in the future.  
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