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ABSTRACT 

Material loading and hauling are crucial factors in the mining industry, comprising over 50% 

of the costs. Many studies covered optimization and improving the efficiency of truck-shovel 

operations. Decreasing operating costs is vital for mining companies to remain profitable and 

feasible. Truck-shovel operations efficiency affects the complete mining operation, from 

equipment performance through productivity to the final mill throughput. Autonomous 

trucks and shovels and the digitalization of mines are taking place now to reduce costs, 

increase safety and contribute to sustaining the environment. Operation uncertainties are a 

source of risk and pose a threat to the continuity of the operation. Enhancing mining and 

loading operation due to the high contribution in operating costs, which require mining 

projects to look for alternatives or real options when uncertainties are encountered; for 

example, equipment availability deteriorates with time or a queuing condition results in a 

change in mining operation. A proper decision should be involved in regarding the loading 

strategy. 

This research evaluates the alternative options under uncertain conditions related to the 

shovel in mine. In addition, the research tries to answer the question of what will happen if a 

specific loading scenario in operation is run for a set of time, by developing and implementing 

a framework that considers the loading strategies and accounts for material properties and 

operator efficiency. Then a decision on a proper loading strategy based on these inputs in a 

short-term period will be recommended. Next, the machine learning model predicts the 

proper strategy and evaluates the feature importance based on the provided data. Through 

this study, a truck-shovel model was simulated using the Haulsim simulation software to 

create the production rates, cycle times and anticipated costs for each loading scenario in 
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order to investigate the sweet spots between these scenarios and the controlling key 

performance indicators in an open-pit mine. 

The proposed operation concepts of loading strategies are full truck and full bucket, which is 

a term called on shovel passes to the truck; full truck requires the highest passes to fill the 

truck, so the truck travels full and full bucket lower passes truck travel under full due to 

queueing conditions or production issues. Equipment selected in a mine with a different fleet 

size are run in a simulation to understand the full truck and full bucket. 

The study results indicate a sweet point incorporated with changing the match factor between 

loading strategies; a huge decrease in haulage costs by ~ 25% and queueing trucks reduced 

by 50% in the simulation results. Moreover, the investigation of changing the capacity of the 

shovel, rolling resistance and haul roads is embedded as a sensitivity analysis in this work. 

Next, these outputs are trained and tested in a machine learning model in order to predict the 

loading strategy, whether full truck or full bucket. Moreover, signifying the most important 

feature affecting the prediction by using feature importance techniques, the feature was the 

cycle time in the case study. These conceptualized terms (full truck and full bucket) and the 

developed framework can integrate with autonomous trucks and shovels because decisions 

are easier to take than manually operated machines. 
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CHAPTER 1  

INTRODUCTION 

This chapter discusses the background of the research topic and how it is developed in the 

literature. Starting from introducing the research’s problem definition, then a summary of 

the related literature, followed by the general adapted methodology in addition to the scope 

and objectives of the study, which is also discussed. Finally, the scientific and industrial 

significance are elaborated, followed by a brief description of the thesis structure and 

contents. 
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1.1 Background 

Mining and hauling are significant components of a mining project. Whether a mining project 

is based on surface or underground, loading and hauling still contribute to a significant 

proportion of the running operation costs ranging from 50-60% (Upadhyay et al., 2021). 

Reducing these costs is a significant factor in sustaining operation time and operating costs, 

whether through equipment technological enhancement, operator skill efficiency, complex 

dispatch systems, or even modern clouding systems and various loading strategies; operation 

enhancement is essential and valuable for any mining project in the upcoming time. 

When considering loading strategies and practices in truck shovel system, investigating 

opportunities for enhancing and reducing these costs and productivity losses in the running 

operation is essential. This matter becomes more important when operations are run in 

unpredictable, uncertain conditions that cannot be determined or planned. This poses 

tremendous pressure and risk on the operation and the available optional alternatives for fleet 

configuration and loading strategies. For example, when shovel breaks down or its availability 

is reduced, and it is no longer serving the trucks for various operating reasons a decision should 

be made to enhance the operation. 

Uncertainty is not related to the equipment and fleet level alone. It expands to almost 

everything in the mining life; because high uncertainties with different magnitudes characterize 

mining. For example, commodity prices fluctuate from time to time due to various reasons that 

are related to supply and demand or due to unexpected events like COVID-19 and it is 

consequences, other factors like human factors (operators to the high management) and skills 

that are not as planned to perform its role. Other significant uncertainties are related to the 

material in the mine (geological level), whether ore or waste and how it is extracted. This 

material has in place characteristics that differ when disturbed and dug up, inheriting the 

original characteristics with more voids (swelling) and less density per volume. In order to 

liberate this material from undisturbed to disturbed situations, blasting is a usual operation 

associated with extracting the material; uncertainties and efficiency of the conducted blasting 

are common things that change the final material fragment size, type, ore-waste mix, dilution, 

density, roundness and other factors. Consequently, when the shovel bucket encounters the 

material in the bench face, these uncertain parameters affects the final material filled in the 

bucket; hence the final payload that is passed from the shovel to the truck in a certain number 

of passes is also affected, especially the last pass. 
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This thesis focuses on simulating the loading strategies using a truck-shovel fleet and analyzing 

the resulting data in a meaningful framework to understand better the impact of the full truck 

(FT) and full bucket (FB) loading strategies in open-pit mining operations and identify the 

sweet spots that follow the adaptation and switch between loading strategies. With a specific 

potential for further improvements and opportunities in development in light of mining 

automation and digitalization at levels 4 and 5, fully autonomous trucks, and the potentially 

autonomous shovel, this will identify and bring these concepts of the FT and FB to the high 

importance level in short-term operational level in daily mining activities and possibly the long-

term as policies, strategies and workflows. 

1.2 Statement of the Problem 

Truck shovel loading strategies have been a dilemma in loading payload and the number of 

passes; whether underloading or overloading the truck, each decision has its pros and cons and 

directly affects the efficiency. For instance, saturating a shovel to reach 100% efficiency or over 

results in queuing conditions, and undersaturation of the shovel below 100% results in higher 

costs.   

Equipment matching is problematic as well; whether accounting for performance, production 

rate, operating costs, environmental impacts or operation constraints (grade, weather, 

accessibility, facilities matching), there will be a difference in the final results of the passes 

(decimal passes) and whether these passes will be rounded up or down, depending on the 

number of trucks and shovels, Figure 1-1 depicts this struggle and gives an example on the 

hydraulic shovel with various trucks configurations. 

Payload is another essential concept; the final payload affects and contributes to payload policy, 

as in Figure 1-2, which determines whether the final truck’s load is good, under, over or even 

rejected. Some systems sometimes use conventional loading without any sensors monitoring 

the payload. Whether in shovel or truck, other systems are evolving. However, with a marginal 

payload accuracy of ~5%, new systems are now emerging to monitor the dig, payload, and 

material and send it to the clouding system for further monitoring and analysis. It is also 

important to mention that the final payload affects the cycle time and is affected by operator 

skill. Moreover, the higher payload values increases the maintenance costs of trucks and fuel 

consumption due to the high engine loading and mechanical fatigue frequency. At the time of 

loading, trucks' measurement accuracy can be reported after a few minutes of driving. This 

delay limits the shovel operator from quickly adapting to the loading practice. 
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Figure 1-1 Equipment and pass matching in a hydraulic shovel (Kenn Smart, 2011) 

 

 

Figure 1-2 Payload policy based on Caterpillar guidelines (CAT, 2021) 

Figure 1-3 illustrates the importance of loading practice in tire life, which is a major operating 

cost. These costs depend on the nature of the material loaded, i.e. fragmentation size, location 

of passes loaded in the truck’s tray, number of passes and final payload in the truck. 

Figure 1-4 illustrates the industrial and operational level point of view on truck-shovel passes. 

There is a debate in matching the passes that are required for loading the truck by shovel, the 
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classical industrial point of view; which explains that when an increasing number of passes, 

there will be more than 30% loss in tph while if adapting the three passes the tph will be more 

than 30%, but it is unrealistic, sticking to the baseline with four passes will result in the proper 

tph (ideal and economic). 

 

 

 

Figure 1-4 Example of pass matching and its effect on productivity (Kenn Smart, 2011) 

Figure 1-3 Payload, loading practice and load time effect tire life (Kenn Smart, 2011) 
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Literature shows various ways of adapting loading strategies from many perspectives. However, 

no research included a discrete event simulation (DES) that uses the concepts of FT and FB in 

a straightforward framework that is applicable in an open-pit mine. Furthermore, most of the 

previous literature covered the small truck categories (earthmoving) instead of large mining 

trucks. 

The following question will be investigated in the thesis: 

Can a discrete event simulation framework be developed to model the full truck and full bucket 

in truck shovel loading strategies in open-pit mining operations and be used to further decide 

between these strategies based on the resulted KPIs to achieve operational improvements and 

determine any sweet spots under operation uncertainty? 

1.3 Summary of Literature Review 

The DES was introduced by Bauer and Calder (1973), followed by Sturgul and Harrison (1987), 

who discussed the use of simulation models using GPSS programming language. The literature 

reveals that there are many approaches in simulation techniques in mining operation’s fleet 

and production analysis, including using the following techniques: 

• Regression analysis: the way of mathematically sorting out which variables have an 

impact, as defined by Gallo (2015). This technique was implemented as found in (Smith, 

1999; Chanda and Gardiner, 2010; Choudhary, 2015; Offei and Summers, 2010; 

Dindarloo and Siami-Irdemoosa, 2016). 

• Expert systems: a computer program that uses artificial intelligence technologies to 

simulate the behaviour of something of interest that has knowledge in a particular field, 

as Lutkevich (2022) defined. This approach was found in (Alkass and Harris, 1988; 

Amirkhanian and Baker, 1992; and Kirmanli and Ercelebi, 2009). 

• Using C programming language. This approach was adapted by Smith et al. (1995). 

• Queuing models, approaches of literature are found in (Ringwald, 1987; Zeng et al., 

2019). 

• Quantitative formulas: uses simulation to derive quantitative formulas accounting for 

the effect of some parameters in operation using the available required resources and 

durations as Morley et al. (2013a)  approach. 
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• Petri net or place transition net: a graph model (a mathematical technique) for 

controlling the behaviour of a system exhibiting concurrency in its operation, Dennis 

(2011). For example, Cheng et al. (2010) approach. 

• Real-time GPS, Alshibani and Moselhi (2012) approach. 

• Genetic algorithms, as adapted in (Marzouk et al., 2004;Shawki et al., 2009; and Hsiao 

et al., 2011). 

• Neural network systems, approaches in (Shi 1999; Chao, 2001; Chanda and Gardiner, 

2010; Soofastaei et al., 2016a). 

The Specialized approaches using MATLAB and other platforms, Askari-Nasab et al. (2007) 

implemented DES to capture random field processes in open-pit and material simulations 

using MATLAB. 

Kaboli and Carmichael (2016) covered underloading by examining truck parameters, including 

grade, payload and truck type. Their results indicated a small reduction in fuel consumption in 

overload trucks penalize trucks and mine roads maintenance, while it is important to strictly 

load trucks based on their capacity. 

Operation costs were covered starting from Hardy (2007) in his studies about overloading and 

the resulting costs to Marinelli and Lambropoulos (2012) who examined cost comparisons 

between loading and hauling. They concluded that a loading procedure could result in a 

significant cost decrease depending on the hauling distance and the volume of the last pass. 

Additionally, Morley et al. (2013b), utilized Monte Carlo Simulation in their production and 

loader prioritization. They evaluated the costs of the four to six passes rule in different 

equipment configurations and concluded that it is not applicable in earthmoving applications. 

Carmichael and Mustaffa (2018) evaluated the loading policies, operation cost and 

environmental impacts. 

In the literature that covers payload and passes, Schexnayder et al. (1999) emphasized 

matching the number of payloads to fill a truck as an integer number. Soofastaei et al. (2016a) 

thoroughly examined payload variance and mean. Kecojevic and Komljenovic (2010) related 

the payload with engine load factor and fuel consumption. Yaghini (2021) evaluated payload 

using operator behaviours and skills. In passes literature. Hays (1990) emphasized that the 

number of passes is a major in total loading time. Marinelli and Lambropoulos (2012) 

examined the passes per total loading time, partial passes, and the relations of last passes with 

hauling distance. 
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Summary of the related literature as found in Tapia et al. (2021) investigated loading 

methodologies in an open-pit mine. They used FT and FB scenarios by creating simulation 

models using Talpac software to understand cost and production analysis and how they relate 

to cycle and queuing time. Mustaffa (2021) investigated the impact of alternative loading 

practices on production and emission using Monte Carlo Simulation to compare these 

practices. The results showed that double-sided loading has the lowest effect on the 

environment.  

Based on findings from the previous literature, a significant part of the research is covered by 

earthmoving trucks in simulation. However, there are some similarities between earthmoving 

trucks and mining trucks; a real mining equipment evaluation and simulation that consider 

open-pit data and operator efficiency will add more realistic value to the FT and FB approaches. 

Other literature was conducted using different and old simulation approaches, which could be 

time-consuming, hard to learn and not flexible. 

The reviewed literature also reveals some discrepancies when dealing with the costs, utilization 

and production, which could be due to the adapted simulation method or operation properties. 

Which is still not fully understood, and there is no comprehensive framework available to 

understand the operation more thoroughly in open-pit mining loading practices. It is vital to 

note that no research used a machine learning (ML) system to understand and anticipate the 

data from an FT and FB analysis utilizing Haulsim software. Furthermore, no literature offered 

any guidance or suggestions for modifying loading techniques in developing autonomous 

trucks and shovels and future level 5 mining. 

1.4  Objectives of the Study 

The main objective of the research is to develop, apply and predict a theoretical simulation 

framework for short-term schedules in a mining operation. The framework aims to find a 

loading decision scenario that achieves improvement in the operation in various KPIs such as 

cycle time, lower material hauling costs and higher production based on the operation and 

input data in the simulation software. 

In order to achieve these improvements, this research includes developing multiple 

frameworks that focus on: 

• Develop a framework that helps to make the proper decision for loading strategies based 

on various sets of inputs in mining operations. 

• Identify where the sweet spot in making the decisions to change loading strategy. 
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• Develop a methodology for ML and exploratory data analysis (EDA) application on the 

resulted data. 

• Understand the operation in uncertainty under various match factors (MF). 

• Predict in high accuracy the loading strategy based on the resulted simulated data. 

• Understand and evaluate the most effective parameters in the prediction of the ML 

model to further evaluate and characterize the operation key performance indicators 

(KPI).  

• Conceptualize the FT and FB in DES and ML frameworks. 

• Estimate operations’ KPIs based on different loading strategies. 

1.5 Scope and Limitations of the Study 

The scope of this study is limited to truck shovel simulation analysis in an operating mine 

hauling material from a specific source to a destination. In order to start simple and understand 

the operation clearly and to develop a policy, the following assumptions are considered: 

• The dispatching system is simple and homogenous. 

• The input schedule parameters are deterministic. 

• There is a proposed change in MF that resulted in a changed fleet configuration. 

• Hauled material characteristics are deterministic as an input in simulation (density, 

swell factor, Excavatability, BFF). 

• Operator performance is deterministic. 

• Auxiliary machines are not involved in simulation. 

• Truck refuelling times are ignored. 

• Equipment operating data are deterministic except for the variability times mentioned 

in the results. 

1.6 Research Methodology 

The primary motivation for this research is to understand when to select the proper loading 

strategy in an open-pit mining operation, either FT or FB, by considering the uncertainty in the 

operating shovel and the resulted excessive trucks. The impact of the selected loading strategy 

is then evaluated and compared with another loading strategy in terms of costs, production 
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rates, cycle times and queued trucks. The framework initiates from the scheduling software and 

a short-term plan is imported into the Haulsim. Next, the operation is configured inside 

Haulsim to reflect the real mining operation equipment, material, and shifts. Then a framework 

for understanding the fleet size relation with loading strategies is developed by running 

multiple MF scenarios. The results are used in an ML for prediction and feature importance 

evaluation to further understand the data. Figure 1-5 summarizes the research methodology, 

and Figure 1-6 shows a detailed summary of DES. 

 

Figure 1-5 Summary of the proposed methodology 
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Figure 1-6 DES simulation methodology 

The following summarizes the research tasks that are considered to model the FT and FB 

loading strategies: 

• To understand when to select the optimal loading methodology (higher or lower passes 

or FT and FB will be discussed in the next chapters) based on mine changing operating 

conditions and the associated operation uncertainties. 

• To understand what are the parameters that trigger this switch between loading 

strategies. 
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• To conceptualize the FT and FB as a concept in ML algorithms and the deep learning 

(DL) potential. 

• Develop a framework or policy (guidelines) that honours the importance of loading 

trucks in full or partial full based on shovel availability and utilization, considering the 

uncertainties and normal running mining operation. 

• To introduce this concept in the digital transformation in mining engineering, especially 

in the emerging Autonomous trucks and level 4 and level 5 of mining digitalization. 

• To investigate the sweet spot between loading strategies and how or when to switch 

between these strategies in a basic form. 

• To develop a framework for ML and data analysis that embeds the simulated data from 

loading strategies and evaluates the important factors affecting the switch between 

these factors. 

• To create cycle time analysis, productivity curves and other operation KPIs for both 

loading strategies. 

1.7 Scientific Contribution and Industrial Significance of the Research 

This research is expected to contribute to research and industry with the following potential 

applications: 

• Small mines that have no advanced dispatching system or complex dispatching system. 

• Mines that predict and monitor the blasting properly, in a full integrable way. 

• Introducing material uncertainty in all aspects, including geomechanical 

characteristics, density, excavatability and diggability, relating these conditions with 

changing loading strategies might result in lower operating costs. 

• Carbon footprint and engine loading: where emissions rates are restricted, lowering the 

payloads might significantly reduce the total carbon emissions rate. (If old equipment 

emits carbon and other pollutants, this strategy might help). 

• In mines with a lot of material variability (ore classified based on hardness), this might 

help select the passes required based on material hardness and density. 

• Starting mines with a low cycle time requires hauling huge quantities, especially in the 

beginning when a lot of mine truck equipment and shovel has queuing conditions. 
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• Mines that adopt new facilities to reduce the cycle time of trucks and reduce trucks' 

travel times can be adapted to utilize more trucks and achieve the production target. 

• If integrated into the system, mining that adapts the autonomous trucks and level 4 and 

the upcoming level 5 will yield a clear impact. 

• Short cycle times and highly queuing situations, where many trucks are available and 

shovels are always queued. 

1.8 Organization of the thesis 

Chapter 1 is an introduction to the research topic. It explains the objectives behind this research 

and the scope of the research. Furthermore, a summary of the findings of the literature review 

and a summary of the proposed methodology is discussed in this chapter. 

Chapter 2 presents the previous studies related to truck and shovel loading strategies, including 

earth working trucks and related literature review. 

Chapter 3 explains the theoretical framework and steps followed for conducting this research, 

including software, followed steps, data analysis and machine learning. 

Chapter 4 examines the results of the simulation, including the operation KPI and other 

important parameters. 

Chapter 5 introduces the summary of the FT and FB research findings and discusses the results 

and ML analysis, then proposes a set of recommendations and future work. 
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This chapter discusses the literature findings related to the research topic, including different 

papers and literature overviews which are examined to fully understand the existing 

problems in loading strategies, associated costs, simulation history and approaches, queuing 

effects, production, match factor, fuel consumption and finally a brief review on machine 

learning in this regard. Lastly, the most related literature is discussed and summarized. 
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2.1 Simulation Types and Techniques 

This section discusses the concept of simulation that different researchers defined in addition 

to simulation purposes and the followed methodologies related to the mining fleet operation 

simulation. Banks and Nelson (2014) classified simulation models into static and dynamic 

models. A static simulation model represents a system at a particular point in time, while a 

dynamic simulation model represents a system that changes over time. It is further classified 

into the following: 

• Deterministic versus stochastic models: a deterministic simulation model contains no 

random variables, e.g., a linear programming model, while a stochastic simulation 

model has one or more random variables as inputs and outputs, e.g., a queuing model. 

• Discrete versus continuous models: a DES model represents a system in which the state 

variables change only at a discrete set of points in time. For example, a truck-shovel 

system is a typical discrete system. On the other hand, a continuous simulation model 

represents a system in which the state variables change continuously over time, such as 

a system associated with flowing fluids. 

Bauer and Calder (1973) defined simulation as a concept. They defined simulation as a 

modelling technique that can predict the change in the performance of a system. They divided 

simulation into probabilistic Monte Carlo Simulation and standard using mathematical 

equations. Sturgul and Harrison (1987) approached earlier methods of simulation techniques. 

They discussed the use of simulation models using GPSS programming language to simulate 

various situations, including coal mine dispatching and mine fleet for uranium mine expansion. 

Ataeepour and Baafi (1999) implemented Arena software in simulation models, improving 

mine productivity. The status of mine simulations in Canada, including software and case 

studies, was addressed in an earlier study of the simulation literature by Vagenas (1999). 

Then moving to robust and specialized approaches using MATLAB and other platforms, Askari-

Nasab et al. (2007) implemented DES to capture random field processes in open-pit and 

material simulations using MATLAB. Shawki et al. (2015) implemented Arena software to 

improve excavator performance indices. Tabesh et al. (2016) implemented a simulation 

approach by incorporating truck shovel operations, road networks, stockpiles and other 

operations. They integrated the DES model into MATLAB, Excel and VBA to understand 

operation scenarios and uncertainties. Soofastaei et al. (2016) developed a DES model to 

investigate the payload variability on trucks in order to improve productivity and energy. 
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The literature reveals that there are many approaches in simulation techniques in mining 

operation’s fleet and production analysis, including using the following: 

• Regression analysis: the way of mathematically sorting out which variables have an 

impact (Gallo, 2015). 

• Expert systems: a computer program that uses artificial intelligence technologies to 

simulate the behaviour of something of interest that has knowledge in a particular field 

(Lutkevich, 2022). 

• Using C programming language. 

• Queuing models. 

• Quantitative formulas: uses simulation to derive quantitative formulas accounting for 

the effect of some parameters in operation using the available required resources and 

durations Morley et al. (2013a). 

• Petri net or place transition net: a graph model (a mathematical technique) for 

controlling the behaviour of a system exhibiting concurrency in its operation (Dennis, 

2011). 

• Real-time GPS. 

• Genetic algorithms. 

• Neural network systems. 

2.2 Different Approaches to Fleet Simulation 

Earthmoving operation literature is considered due to the lack of related literature in mining 

engineering, especially in the early stages and the similarities between construction operation 

trucks, off-road trucks and mining trucks. Earthmoving productivity calculation was conducted 

by Smith (1999), who estimated the productivity by regression analyses; his findings showed a 

relationship between operating conditions and productivity. However, his analysis 

overestimated the operation’s productivity when resources were not well known. 

Several researchers have developed a system of earthmoving selection using an expert system 

technique (Alkass and Harris, 1988; Amirkhanian and Baker, 1992; and Kirmanli and Ercelebi, 

2009). Chanda and Gardiner (2010) compared three methods of cycle time analysis 

productivity. These methods are simulation, artificial neural networks, and multiple regression. 

They benchmarked the results with a monitoring system in a mine and found that simulation 
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underestimated and overestimated the results, and the other proposed methods showed better 

results. However, their data was case specific.  

Smith et al. (1995) customized higher-level DES models using a programming language. They 

developed a DES model that was translated into a computer program written in the C 

programming language. Morley et al (2013b). utilized DES by developing quantitative 

formulas; they reached that a decrease in production does not directly correlate with an 

increase in cost. Cheng et al. (2010) implemented optimization and simulation using Perei net 

for equipment allocation, considering cost and other parameters in a dynamic constraint.  

Alshibani and Moselhi (2012) integrated simulation with optimization using real-time GPS. 

Some researchers developed a framework using genetic algorithms for simulation-optimization 

of earthmoving operations (Marzouk et al., 2004;Shawki et al., 2009; and Hsiao et al., 2011). 

Neural network systems were developed by Shi (1999) and Chao (2001) for construction 

practitioners to forecast truck selection as well as earthmoving operations and performance. 

Price (2017) defined DES as “a modelling technique that is widely used to model complex 

systems”. He also implied that fleet management systems' comprehensive data is rarely used to 

model fleets. The advantages include stochastic delays due to breakdowns and meal breaks, 

load and travel time, where some variables are random and dynamic, involving models that 

change with time. DES has been used extensively in different industries such as manufacturing, 

service providers, warehouse distribution, cashier checkout lanes market, department stores, 

airports, and mining. Price (2017) summarized the purposes of DES in mining as follows: 

• Increase equipment utilization. 

• Reduce waiting time and queuing. 

• Study alternative investment ideas. 

• Evaluate cost reduction ideas. 

• Train operators in overall system operation. 

• Support day-to-day decision-making. 

• Minimize the effects of breakdowns. 

• Understand the impact of mixed fleet interactions. 
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2.3 Simulation Software 

There are several simulation software tools that one can use to model material loading and 

hauling in a mining operation. Some software programs involve learning the related 

programming language, while others have an interactive interface with pulldowns/command 

lines. Krause and Musingwini (2007) summarized the simulation software, programs and 

models for truck shovel analysis as follows: 

• Iterative models that fit discrete empirical values to cycle variables, e.g.: machine repair 

model. 

• Regressive models modify waiting time by using correction factors such as FPC ® by 

Caterpillar. 

• Stochastic Monte Carlo models by fitting probability distributions to cycle variables, 

e.g.: Talpac ® and Haulsim ® by Runge Software. 

• Stochastic graphic simulation following probability distributions within Monte Carlo 

simulation e.g.: Arena ® by Rockwell Software. 

• General purpose simulation programming languages system (GPSS/H ®) by Wolverine 

Software and SIMAN. 

• Simulation based on programming languages, C++ (C environments), Python and Java. 

2.4 Cost, Production and Cycle Times 

In payload and production analysis, the literature reveals many different claims, findings and 

disagreements in balancing the payload, production, cycle time and passes loaded. Smith et al. 

(1995) concluded that the additionally loaded bucket is an advantage provided the truck is not 

overloaded. Furthermore, they figured out that spotting and loading time similarly affect 

production; hence reducing operation cycle times is important for achieving maximum 

production. They also discussed the interactions of four factors in earthmoving operations: 

production, match factor, passes per load and load pass time. They concluded that adding 

trucks would not increase production. According to Schexnayder et al. (1999), payload weight 

affects incremental production; they emphasized matching the number of bucket loads to fill a 

truck as an integer number.  

Hardy (2007) claimed that overloading trucks would increase productivity associated with 

increasing unit costs. Marinelli and Lambropoulos (2012) examined cost comparisons between 

loading and hauling. They came to a conclusion that, depending on the hauling distance and 
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the volume of the last pass, a loading procedure could result in a significant cost decrease. 

Morley et al. (2013b)concluded that the four to six passes rule is not applicable when dealing 

with real earthmoving applications due to equipment combinations such as smaller excavators 

and larger trucks. They also concluded that considering trends, trucks and excavators must be 

analyzed separately. They also implemented that using a loader to satisfy production 

requirements and then selecting trucks after will result in a higher per unit cost; consequently, 

this may result in a high production cost to keep the loader always utilized.  

Carmichael and Mustaffa (2018) examined the loading policies and environmental impacts, 

including loading in zero waiting time and double loading. They concluded that the former had 

the least impact on the environment and optimal cost advantage while the latter had the highest 

environmental impacts and non-favourable costs.  

In the field of simulation and optimization in mining engineering, Moradi Afrapoli et al. (2019) 

developed a simulation-optimization framework that optimizes haul fleet size by implying 

heterogeneous and homogeneous fleets of various sizes and recommending that equipment 

failures and maintenance should be evaluated for the optimal fleet size. Moradi Afrapoli and 

Askari-Nasab (2019) explained in a review that connecting the strategic part of the mine plan 

to the operational part is difficult. However, the operation should achieve both the long-term 

and short-term goals. They also emphasized technical and geological uncertainty that are 

crucial components in fleet systems management, and the shovel relocation to new mining cut 

associated losses should be understood well. A multi-optimization model was created by 

Mohtasham et al. (2021) that determines the optimal production plan for the shovels and 

allocates the mine fleet in an optimal production target, head grade and fuel consumption. 

Upadhyay et al. (2021)  developed a simulation-based algorithm that estimates the productivity 

under technical uncertainties, giving a solution with higher accuracy and lower dependency on 

haulage distance. 

The number of passes required for loading and the shovel work cycle time determines the 

loading time, Hays (1990). Loading time has also attracted attention in the literature due to its 

impact on loading and material handling. Smith et al. (1995) found that the loader passing time 

has the greatest impact; by decreasing this time by three seconds, the cost per cubic metre will 

drop by almost nine percent, and production will rise by eleven percent. Kannan et al. (2003) 

created a statistical simulation model to account for payload and loading time variations.  

As Hardy (2007) demonstrated, if working-face constraints are permissible, decreasing loader 

waiting time with this type of loading can be applied in double-sided loading fields. However, 



Chapter 2: Literature Review                                                                                                                           20 

 

this application is only applied to mining in bulk operations, such as coal with a dragline and 

iron ore where selectivity is low. Mohtasham et al. (2021) classified cycle times in over trucking 

and under trucking circumstances. These concepts are demonstrated in Figure 2-1. In over 

trucking queueing time appears in operation, while in under trucking, shovel idling time is only 

incorporated. The remaining operational cycle times are found in both cases.  

 

Figure 2-1 (a) Over-trucking and (b) under-trucking times in mining operation (Mohtasham et al., 
2021) 
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2.5 Passes and Payloads 

Smith et al. (1995) developed a simulation model to comprehend the load pass time and 

production relationship with a specific number of trucks in earthmoving operations. They 

further prepared six-factor experiments that include the number of trucks, passes loaded, 

loading time, travelling time and their relationship with production, match factor and 

production cost. They also came up to the conclusion that an extra bucket per load is 

advantageous for safety considerations and plant operation. One of his conclusions was that 

spotting and loading time affects the output equally. Additionally, they concluded that the 

travelling time would be the most important factor with increasing road distance. However, it 

is crucial to minimize these times to achieve the target production. 

Marinelli and Lambropoulos (2012) investigated cost analysis for fleet loading practices and 

discovered different passes per total loading time. With their explanation that no reference 

considers the partially filled pass, their investigation assumed a MF equal to one and the same 

hauling distance. They finally concluded that partially and non-partially filled passes depend 

on the last pass percentage and hauling distance.  

Soofastaei et al. (2016a) calculated the energy and cost savings directly related to payload and 

fuel consumption, emission and costs. They stressed that payload standard deviation should be 

minimized in order to reduce its variance; hence the high variance in payload values is not 

advised or recommended. Soofastaei et al. (2016b) proposed a simulation for truck bunching 

and payload variance in order to improve fleet productivity and energy efficiency. They found 

that the relationship between cycle time and payload variance is not linear.  

The DRET energy model, which provides a trend for fuel consumption and road grade, distance, 

payload, and truck type, was used by Kaboli and Carmichael (2016); their results show that fuel 

consumption is decreased when overloading trucks up to a certain point. The amount of time 

it takes a truck to travel from its point of origin to its destination is referred to as its travel time. 

Factors like grades, truck power, GVW, speed, and the road's overall length all directly impact 

travel time.  

In their operational efficiency proposal about production, Pasch and Uludag (2018) argued that 

decreasing the number of passes will shorten loading time and increase hourly production. 

However, due to ineffective loader utilization, it will not add additional production if there is 

under trucking and a reduction in the loader cycle time. Soofastaei et al. (2018) suggested that 

additional passes loaded over specific passes waste cycle time and energy, a term he called 

payload controlling. He argued that many attempts have to reduce payload variance, including 
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technological and management systems and if payload variance persists, bunching phenomena 

will occur and the production will be reduced. 

2.6 Queueing and Bunching 

Queuing, over and under trucking conditions have also been examined in the literature, 

particularly at the operating loader or shovel, starting from Smith et al. (1995). This study 

focused on the idea that if trucks are waiting, then lower passes are required, which is reflected 

in a real situation when trucks are queued (over trucking situation). Instinctively, loader 

operators will naturally tend to underload the trucks to shorten the queue. According to 

Krzyzanowska (2007), increasing shovel passes will lengthen the time trucks must wait in 

queue at the shovel. And according to Hardy (2007), underloading a truck will extend the life 

of its tyres and truck components and reduce braking distance, bunching effect, and cycle time 

variability. He preferred underloading over overloading from a unit cost perspective. 

Focusing on literature related to queuing theory, Ringwald (1987) referred to queuing theory 

as a bunching theory. Although the term developed into a different meaning, he constructed 

economic curves to select the optimum hauler number per loader number. Ta et al. (2013) 

proposed a linear model to reduce the number of trucks required to meet the target throughput 

under constraints based on finite queues. They calculated the shovel idle probability. According 

to Burt and Caccetta (2013), queuing theory, simulation, and artificial intelligence are unable 

to handle the sheer volume of decisions that must be made over various time frames. 

Choudhary (2015) approached shovel and truck optimization by implementing overall 

equipment effectiveness and matching simultaneously, which minimizes the operating cost. He 

realized that the queue and waiting time were due to improper equipment matching. By 

creating a regression model, Kim and Bai (2015) identified the match factor, bucket loading 

cycle time, and the number of passes as important factors that affect earthmoving vehicle 

productivity. The bunching effect was also significantly influenced by these variables. 

Soofastaei et al. (2015) highlighted the importance of payload, its variability, and the ensuing 

travel time and bunching effect. 

In order to predict activity times in mining operations, Ristovski et al. (2017) implemented 

machine learning for truck allocation by addressing stochastic approaches in travel time and 

queuing effect. Additionally, their analysis compared with dispatching software has improved 

equipment effectiveness. Fisonga and Mutambo (2017) developed a model that reduced queue 

length, achieved a good match factor, and determined the number of trucks. Zeng et al. (2019) 

investigated the bunching and queuing effect and its relationship to production. Using a 
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multichannel queuing model, Elijah et al. (2021) determined that as the number of trucks is 

increased, the system's daily production will increase up to an optimal point with no further 

growth. However, it will be accompanied by a decrease in truck productivity and cost per tonne. 

2.7 Match Factor 

The match factor (MF) is an important indicator of a mining operation’s efficiency. Burt and 

Caccetta (2018) defined the match factor as a measure of fleet productivity. It is a ratio that 

matches truck arrival rate to loader service rate. Their definition included over-trucking 

(MF>1) in which the loader is 100% efficient, and trucks are queued. In contrast, when loaders 

are waiting for trucks, the MF is less than one. There is no queueing at the loader when the 

match factor equals 1; this is the optimal situation but not achievable realistically due to 

bunching and maintenance.  

Krause and Musingwini (2007) named terms over-equipped when trucks are more than 

required and under-equipped when there are few trucks. The consequences of an over-

equipped situation will substantially increase the capital cost, while the under-equipped 

situation will not achieve the planned short-/long-term production. Dabbagh and Bagherpour 

(2019) examined the MF in their analysis using the ant colony algorithm; however, they state 

that it is not correct enough. They suggest using a detailed match factor which increased the 

production by ten percent.  

Ozdemir and Kumral (2017) elaborated on some limitations of MF. Due to its simplicity and 

convenience, the match factor has significant limitations, which add uncertainty to fleet 

performance. These limitations are: 

1. It assumes all the loaders and trucks are fully available. Frequent equipment failures 

are inevitable random phenomena and the fleet is hardly fully available. Furthermore, 

the number of available equipment is not independent of a given time. As such, it is a 

stochastic time series as a function of failure and repair rates of equipment. Given that 

time between failure and time to repair are outcomes of random functions, they are 

uncertain. Therefore, the match factor of the fleet is uncertain and dynamically changes 

over time. 

2. Truck cycle times are also uncertain because of fluctuations in road conditions, 

equipment reliability, seasonal variations and driver habits, which are also affected by 

the outside environment Fang et al.  (2016). Furthermore, the performances of loader 

and truck will mutually affect each other. For example, delay (e.g., due to the road 
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conditions) or quickness (e.g., due to the driver’s habit) of a truck will result in waiting 

for loaders, or bunches/queues of trucks, respectively, such that cycle times vary. 

3. Like truck cycle times, loader swing times also fluctuate with respect to operator habits, 

loader reliability and ground conditions. 

4. Derivation of the match factor equation is basically based on the ratio of the maximum 

material quantity hauled by trucks to the maximum material quantity loaded by loaders. 

This assumes full utilization of loaders and their capacities. In addition to truck and 

loader availabilities associated with equipment failures, spaces within rock particles (fill 

factor) and carry-back (dead bed) in trucks may cause deviations from full fleet 

utilization. 

According to Afrapoli (2018), the MF has some limitations, including that the MF does not 

account for any uncertainties in the input parameters and assumes a general rigid dispatching 

system, hence no consideration of the operation decision tool. 

2.8 Energy and Fuel Consumption 

The amount of fuel and energy consumed is another crucial operation KPI. Starting with 

Kecojevic and Komljenovic (2010) investigation of fuel consumption, power, and engine load 

factors as well as emission under various load conditions, and their findings that there is a 

direct relationship between fuel consumption and engine load factor as they illustrated the 

benefits of reducing truckload, they are affected by the amount of payload passed. As a result, 

engine load will be reduced, which will lower fuel consumption, carbon emissions, and 

associated operating costs. 

By creating regressions of energy consumption and a stochastic simulation model, Awuah-Offei 

and Summers (2010) investigated operational strategies and produced high-impact energy-

saving improvements in the coal mining industry. As a result, they developed strategies like 

shortening haul roads and increasing shovel and bucket capacity. Klanfar et al. (2016) studied 

load factors from various equipment for estimating fuel consumption. To predict truck fuel 

consumption in the mining industry, Soofastaei et al. (2016a) created an artificial neural 

network for predicting fuel consumption that considered gross vehicle weight, truck velocity, 

and total resistance. They discovered that total resistance, maximum speed, and gross vehicle 

weight affect fuel consumption. Further classification of fuel and energy consumption in the 

mining operation is shown in Figure 2-2. 
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All the previously found literature dealt with the truck’s overloading point of view. However, 

Kaboli and Carmichael (2016) covered underloading by examining truck parameters, including 

grade, payload and truck type. Using the empirical model DRET/M, which gave trends for that 

parameter by comparing observed field data with data calculated from the model calculated. 

Their results indicated a small reduction in fuel consumption in overload trucks penalize trucks 

and mine roads maintenance, while it is important to strictly load trucks based on their 

capacity. 

Dindarloo and Siami-Irdemoosa (2016) used regression methods to determine the most fuel-

consumed elements. They found that truck empty idle time was an important factor in fuel 

consumption, resulting from queuing at loader. They added operator skills and driving styles 

too. Other factors showed a high correlation, including travelling empty-loaded times. In 

addition to road characteristics such as surface condition, grade and curvatures. 

Peralta et al. (2016) investigated the relationship between equipment reliability and energy 

consumption. As a result, a maintenance policy based on the reliability of the equipment has 

been created. It reduces energy consumption and gas emission by developing multiple 

regression models to estimate the contributions of reliability on fuel consumption. It showed 

that truck reliability, distance and weight are the most important parameters affecting fuel 

consumption. 

Topno et al. (2021) evaluated the energy of the electric shovel, and their results showed that the 

digging operation consumes the maximum power. They determined the specific power 

consumption by using the available operating time and actual power consumption; 

consequently, the potential for energy savings is evaluated. 

In their profitability analysis of low-quality deposits (limestone), Krysa et al. (2021) proposed 

technical road terms divided into (weak, base, good and optimal). These roads should be 

optimally maintained so the fuel cost decreases when the roadside is maintained enough. 
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Figure 2-2 Energy consumption in haul trucks (Soofastaei et al., 2016) 

2.9 Truck-Shovel Conventional Loading Types 

Spotting is the process where the truck maneuvers into a position for loading. Loading is the 

process of placing mined material into a truck. The gathering of material into the bucket and 

then unloading the material into the truck is called a pass. A number of passes are usually 

required to load the truck. The spotting time of the truck is influenced by the selected loading 

method. There are typically four loading methods (Caterpillar, 2013): 

1. Single-sided loading technique: the truck is spotted and loaded to one side of the shovel 

with a maximum swing of 90°. A second truck cannot be spotted and loaded until the 

first truck has pulled clear of the shovel. Therefore compared to double-sided loading, 

productivity is reduced, as shown in, Figure 2-3 (A). 



Chapter 2: Literature Review                                                                                                                           27 

 

2. Double-sided loading technique: the trucks are spotted and loaded alternately on both 

sides of the shovel. The shovel has a maximum swing of 90°. A sufficient working room 

at the rear and on both sides of the shovel should be ensured. Higher short-term 

productivity but higher risk of collisions. Requires well-trained operators, as shown in 

Figure 2-3 (B). 

3. Drive-by loading technique: the shovel tracks are parallel with the face and the truck 

(tractor-trailer truck) drives onto one access ramp and stops adjacent to the shovel. 

After being loaded, the truck drives past the shovel. The shovel has a maximum swing 

of 90, as shown in Figure 2-3 (C). 

4. Modified drive-by loading technique: the shovel tracks are parallel with the working 

face and when the truck drives under the shovel’s swing path, the shovel dumps before 

the truck stops, then the truck is spotted by backing and stopping near the working face. 

The shovel has a maximum swing of 120°, as shown in Figure 2-3 (D). 

 

 

Figure 2-3 Loading types in a mining operation (CAT, 2013) 

(C) Drive-By (B) Double-sided 

(A) Single-sided 

(D) Modified Drive-By 
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2.10 Other Approaches to Evaluate Payload 

Operators’ score was suggested by Yaghini (2021), who presented an approach to characterize 

and evaluate the payload using the operator ranking systems. The score is calculated based on 

the truck, shovel and mine productivity indices. He concluded that the operator with the 

highest score would typically load trucks to a higher capacity with less cycle time and load 

passes. Furthermore, he suggested a term called dynamic target loading (DTL), which modifies 

the conventional 10:10:20 rule by reducing term passes loading practices and giving the 

operator a flexible load range; consequently, the loading cycle and queue are reduced. This 

analogy, reducing trim passes, is comparable in concept to the FB analysis adopted in this 

research. Production is also covered as a project KPI that provides feedback about bucket 

payloads and cycle time enhancement opportunities. 

2.11 Literature Related to Research 

Recently, Tapia et al. (2021) investigated loading methodologies in an open-pit mine. They used 

FT and FB scenarios by creating simulation models using Talpac software to understand cost 

and production analysis and how they relate to cycle and queuing time. They further adapted 

Activity Based Costing (ABC) models, “which are built on the concept that resources usage is 

not a function of the amount of the final product, but rather, resources are consumed by the 

elementary tasks and processes required to produce a unit of the final product” as defined by 

Botín and Vergara (2015). In order to calculate production per cost, Tapia et al. (2021) 

concluded that a decision must be made when a situation requires a change. They argue that 

mining projects will favour the FT strategy over the FB till a specific transition point at which 

the operating cost of the FB is favoured. 

Mustaffa (2021) investigated the impact of alternative loading practices on production and 

emission using Monte Carlo Simulation to compare these practices. The results showed that 

double-sided loading has the lowest effect on the environment. However, it is not always doable 

because it is limited to specific mining conditions and cannot be generalized. In addition, filling 

one bucket more than the full load can result in greater overall productivity, lower emissions, 

and reduced truck cycle time, which may lead to a production increase. Other similar loading 

terminologies in earthmoving are fractional loading as in Mustaffa (2021), known as fractional 

loading practice, which indicates that each truck gets loaded to a minimum of passes. However, 

it could be filled to higher passes if additional time is allowed, the arrival of the next truck and 

varies between trucks. A similar term called multiplier loading practice assumes minimum 

passes are used, but there could be an extra pass depending on the loader's available time. This 
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will yield higher payloads and production rates associated with fuel consumption increases due 

to longer cycle time and loading time. 

2.12 Artificial Intelligence (AI) and Machine learning (ML) 

McCoy and Auret (2019) define ML as the development and application of mathematical and 

statistical models with an emphasis on using data rather than domain knowledge to determine 

the appropriate structure of the models. An ML model typically has a non-parametric structure 

in the sense that the number of model parameters is not defined on the basis of domain 

knowledge. They also emphasized that as machine learning techniques become more widely 

accessible as elements of software packages, applications of data-based modelling would 

probably increase in frequency and use more advanced techniques and analyses. Since most 

applications assume that observations are independent, modelling techniques for complex 

processes that consider time series data may be of particular interest. 

Another ML definition, according to Jung and Choi (2021), is the process by which a computer 

learns through algorithms. The use of computer algorithms to simulate human learning and 

identify knowledge from the world to improve the performance of specific tasks based on that 

knowledge. They further classified ML techniques into 12 types, as in Figure 2-4. Their review 

on ML application in equipment management, fault diagnosis studies, haulage operation, and 

navigation. ML studies were conducted to optimize transportation means, such as trucks and 

loaders and to indicate the travelling status of the equipment. Additionally, predictive 

maintenance was performed to enhance the mine operation efficiency by predicting equipment 

failure. 

 

Figure 2-4 Classification of ML techniques (Jung and Choi, 2021) 
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In their review, Noriega and Pourrahimian (2022) defined ML methods as algorithms that can 

uncover complex patterns in data and use them to predict future outcomes. Additionally, they 

mentioned that ML had been used in process optimization. However, the mining industry is 

considered lower in adapting to AI and digital technologies. They emphasized that DES is 

common for more operation and short-term planning where equipment cycles are concerned. 

The supervised ML applies to these operations. They also investigated that supervised ML is 

the most adapted because it requires a large and labelled dataset, which is easily found in 

mining operations, while unsupervised ML is the least adapted. In their review, they mentioned 

that DES has a positive trend and has been successfully used for a long time in strategic mine 

planning. They further classified ML learning into:  

• Supervised Learning (SL): function approximation from input vector data that 

accurately represents the issue to produce an output or specific prediction for the future. 

• Unsupervised Learning (UL): this method uses datasets without labels and does not 

record the target's outcome. 

• Reinforcement Learning (RL): this method uses interactions with the environment 

to teach computers how to map one situation to another. 

In their conclusion, Noriega and Pourrahimian (2022) recommend focusing on guidelines and 

good practices for handling mining operations in the best way to build DES or the digital twin 

model further to support decision making. SL, which depends on labelled data, is popular in 

short-term planning, cost analysis, grade control, and equipment management. Using neural 

networks, SL has been used to forecast fuel consumption per operating cycle of mining trucks 

based on truck payload, loading time, and idle times. 

Hyder et al. (2019) stated that ML started a decade ago. It provides many economic benefits for 

the mining industry, such as cost reduction, efficiency, high productivity, continuous 

production and improved safety. Nevertheless, they state that ML faces economic, financial, 

technological and social challenges. Mining sector growth can be through ML, which improves 

the industry's technological, economic and environmental perspective. They also imply that the 

rate of ML implementation is slow and faces many setbacks in the mining industry, and the 

biggest challenge is workers' and supervisors' resistance to different perspectives on ML 

technologies, from approving to disapproving realms. 
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The application field of ML in mining engineering is shown in Figure 2-5. It is subdivided into 

three categories, which are further divided into subcategories. Haulage operation under the 

equipment management category is one of the applications in the ML. 

 

Figure 2-5 ML application fields in mining engineering (Jung and Choi, 2021) 

GMG report (2019) defined terminologies of AI as follows: 

• AI: a collection of techniques that allow for task automation by machines. These tasks 

are ones that humans typically perform, and their automation implies that machines 

mimic certain aspects of human intelligence, an alternative definition as a theoretical 

machine with general human cognitive abilities. 

• ML: a subfield of AI that focuses on machines that take data related to a specific task 

and learn from that data in order to build a model. 

• DL: consists of algorithms that can take vast quantities of data and recognize patterns. 

• Data Science: analyze and extract insights from AI, ML and DL. It is a different 

activity from AI and ML. 

Figure 2-6 illustrates these concepts and how they relate to one another. 
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Figure 2-6 AI-related concepts (GMG, 2019) 

GMG report (2019) mentions that in order for any AI concept or project to succeed, it should 

have: 

• Coherent technological strategy: AI needs to be part of the organization’s larger strategy 

for evaluating and implementing new technologies. 

• Measuring and monitoring the quality of data: good data are the foundation of AI 

because poor data quality reduces the quality of project output. AI can also expose 

deficiencies in the data as the project progresses, so measuring and monitoring data and 

preparing plans to fill gaps are key to success. The data should be as complete as 

possible. 

• Evaluate regularly the quality of communications among those responsible: those 

affected by the change should be engaged in discussions surrounding it, and they should 

feel confident that their opinions and concerns are being heard, understood, and 

considered. 

• A return on investment: a clear understanding of its intended outcomes and the 

expected return on investment. 
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• Internal champion: ensuring that all relevant stakeholders are updated regularly and 

those developing and implementing the technology have the tools and resources they 

need to succeed. 

• Agile: budgetary and organizational changes often affect huge, pre-planned projects 

that have long timelines. This in a way to deliver the highest-value aspects of a project 

as quickly as possible and to ensure that at least some parts of the project do in fact 

come to fruition. 

• Focus on solving the problem for end users: whether target users are technicians taking 

notes on equipment or engineers making operational decisions, dashboards, key 

performance indicators (KPIs) and visualizations should be easy to use and understand. 

As a result, their use is more likely to become habitual, making daily decision-making 

more impactful. 

• Covering long-term plans: the new technology company-wide and ingraining it in the 

organization's policies, procedures, tools, and habits. Additionally, these should include 

provisions for any of the following: support, maintenance, change management, 

retraining and tuning algorithms, scaling, installation and setup, and acquiring or 

implementing new hardware. 

Further levels on AI maturity and levels as in Figure 2-7: 

 

Figure 2-7 AI levels in Mining engineering (GMG, 2019) 
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These levels could be defined as: 

• Level 1: organization is exploring what AI is, what it does, and how it can benefit them; 

examples: Facial feature recognition in driver safety systems. The use of cameras to 

determine particle size in digger and mill operations, automated planning and 

scheduling and autonomous vehicles. 

• Level 2: there is a degree of experimentation and investigation into what the benefits 

of the technology are and what the organization requires in order to realize them. 

People; in terms of understanding the AI and ML concepts, process; effect on the way 

they are working and technology; how AI and ML fit inside an organization. These are 

important concepts that should be considered. 

• Level 3: AI and ML are becoming integrated into business operations. AI and ML 

architecture is important at this level and investing in people and the right experts is 

also essential. 

• Level 4: advanced analytical tools in order to provide centralized decision-making 

capabilities and further improve the operation by achieving interdisciplinary 

collaboration instead of siloed work, adapting data-driven decision making instead of 

experience-based, and adapting agile and experimental practices. 

• Level 5: organization and most systems and processes are either fully automated or 

require minimal manual intervention. For example, the Automatic Haulage Systems 

(AHS) in Benjamin Miller (2019) article, these systems that are used by Caterpillar 

operating at Teck and Vale, while Komatsu operating at Codelco and Rio Tinto. 

Summing over 330 trucks worldwide. Caterpillar uses MineStar technology, accounting 

for more than 1 billion tons autonomously moved in less than a year and Komatsu uses 

FronRunner AHS. 

In summary, according to the GMG report (2019), the mining industry is increasingly using AI 

as a tool to optimize processes and safety and enhance decision-making. AI is a collection of 

techniques that allow for task automation by machines. Success factors for implementing AI 

include coherent technology, good data management, effective communication, clear 

expectation, internal support agility and adaptability, end users consideration and long-term 

plans repeatability. Challenges that face AI and ML could be overcome through a robust 

foundation of planning, research and assessment and by establishing well-defined 

infrastructure and platforms, clear communication practices and effective management. 
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2.12.1 Logistic regression (LR) 

Lee and Sambath (2006) and Yilmaz (2009) used the LR approach to create a landslide 

susceptibility map. Work injury predictions were studied by Paul (2009) to predict work 

injuries in underground mines using an LR model by identifying various factors responsible for 

work causing injuries in mines and risk estimation to the mine workers. 

As stated by (Lee and Sambath, 2006), LR is useful for predicting the presence or outcome 

based on a set of values of predictor variables. They also stated that the advantage of logistic 

regression is that the variables might be either continuous or discrete or in any combination. 

2.12.2 Random Forest (RF) 

(Choi et al., 2021) defined RF as a robust ensemble learning approach that uses decisions from 

multiple trees to make a final decision. The number of trees should be sufficient to ensure the 

accuracy of the final decision or final objective. RF is applied for classification and regression 

ML problems. RF uses the bootstrap technique to sample data; the sub-samples are divided 

randomly into small datasets and each tree represents a full growth tree base on each sub-

sample. Ohadi et al. (2020) determined the influential parameters in blasting designs using RF. 

They predicted the blast-induced outcomes based on rock mass conditions in the mine and 

blast design parameters.  

2.12.3 Shap Weighing Technique 

Shap (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any 

machine learning model. It connects optimal credit allocation with local explanations using the 

classical Shapley values from game theory and their related extensions as defined by Lundberg 

(2020). It analyzes the importance of features by interpreting the results, plus it offers a 

powerful and insightful measure of the importance of a feature in a machine learning model. It 

has a python developed package that calculates Shap values.  

Complicated models are often required to model natural settings, but they have low 

interpretability. Shapley values treat the model as a black box and use a data subset, known as 

background, with predictor features and model predictions to discover structures between each 

predictor feature and the model response, (Pyrcz, 2021). 

Shapley values are adapted from game theory (Pyrcz, 2021), where the approach is used to 

calculate: 
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• Allocating resources between ‘players’ based on a summarization of marginal 

contributions to the game. Dividing up winnings between all players. 

• The contribution of each predictor feature pushes the response prediction away from 

the mean value of the response over training. 

• Shapley values are based completely on the model and do not access the accuracy of the 

model, so a poor model will potentially lead to an incorrect interpretation of Shapley 

values. 

Feature ranking is a set of metrics that assign relative importance or value to each feature with 

respect to the information contained for inference and importance in predicting a response 

feature. There are a wide variety of possible methods to accomplish this. The general types of 

metrics that will consider for feature ranking: 

1. Visual inspection of data distributions and scatter plots. 

2. Statistical summaries. 

3. Model-based. 

4. Recursive feature elimination. 

Also, it should not neglect expert knowledge. If additional information is known about physical 

processes, causation, reliability and availability of features, this should be integrated into 

assigning feature ranks. 

2.13 Summary and Remarks 

The literature review showed shortcomings and a few research covered the FT and FB concepts 

in detail, especially in open-pit mining using the DES. Based on these findings, a potential 

opportunity for future work that is related to these terms is possible. Partially loading trucks 

were found in the literature but not on a wide scale. Moreover, most of the literature covered 

the earth working equipment instead of mining equipment, so there is a size difference and 

operating costs and capital costs that are incomparable to each other. 

There are no previous studies that focused on decision-making frameworks. Most of the 

literature focused on the theoretical side without answering the question of when a decision 

should be taken regards loading strategy under uncertainty. 

AI and ML are now being adapted by research in the last decade, as literature revealed, but it is 

still not versed in the area of loading strategies. Bringing the capability of predicting the loading 
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strategy and evaluating the feature importance is the beginning of the digital transformation in 

mining engineering and would be beneficial to understanding the loading strategies and 

making the operation decision more robust. 
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CHAPTER 3  

THEORETICAL FRAMEWORK 

 
 

 

 

 

The full truck and full bucket conceptual frameworks are covered in this chapter. From the 

framework's beginning at the shovel-bench interface, examining the material's general 

properties and the surrounding conditions. Followed by shovel-truck interaction as passes 

loaded, which is the main focus area of research when the higher and lower passes loading 

strategies are encountered. This is formulated in software concepts where equipment is 

matched and selected with a proper schedule and simulated. Moreover, the resulted simulated 

data with various scenarios are analyzed using exploratory data analysis and a machine 

learning model. 
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3.1 Introduction 

This chapter covers the theoretical framework of the proposed FT and FB simulation approach 

in both a holistic way in mining operation and a detailed approach is discussed with a profound 

explanation, as well as further analysis of the simulation results, starting from the data which 

is imported as schedule data from an external software, Haulsim. Then the equipment 

configured in Haulsim and the final Discrete Event Simulation (DES) results are interpreted 

and analyzed. More analysis of the operation parameters and the results from simulated data 

are analyzed using Python programming language, where exploratory data analysis is 

conducted. Lastly, a machine learning classification model is created to predict the loading 

strategies based on the provided data that more understands the operation parameters and 

evaluates these parameters that trigger switching between loading strategies based on the 

provided simulation data. 

Haulsim software is designed to have a set of options when dealing with loading strategies: a 

full bucket (FB) or full truck (FT). Prior to this software, the same commercial company 

released a similar previous software called Talpac that introduced this option in 1996, as 

mentioned by Ayres de Silva et al. (1996). But with fewer simulation options, operational 

configurations and equipment evaluation. Haulsim also allows for double loading strategies, 

but this is not discussed in this research because it is out of scope, and due to the nature of 

space constraints in the shovel-bench face area, exclusively the simulation is based on single-

sided loading practices. Other new software like Micromine packages also involves the analysis 

of FT and FB.  

3.2 Full Truck and Full Bucket Framework 

Starting from the broad frameworks to understand where the FT and FB are placed in the 

frameworks allows understanding where the research topic is focused. Figure 3-1 illustrates the 

general view of FT and FB loading in mining operations. When a shovel with force applied to 

the working bench excavates to scoop (tuck, engage, dig, release, swing and pass); the required 

material that has recently been blasted with characteristics reflecting the nature of that 

material; loose density, fragment size and excavatability, affect the final bucket fill factor (BFF). 

This stage is performed by an operator with a scalable average efficiency and equipment; shovel 

with a known average utilization and availability. The following sections discuss the material 

characteristics. 
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Figure 3-1 FT and FB flowchart in a mining operation 
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3.2.1 Shovel-Material Interaction 

Because loading and hauling are the following processes after blasting, assessing post blasting 

of material in the mining operation is necessary when the distribution of fragmented material 

controls truck and shovel production rates resulting from blasting. As the blasting efficiency 

increases, the final production increases. Blasting efficiency is increased by optimizing blasting 

design when the objective fragmentation size is determined. Fragmentation is affected by 

uncontrollable parameters, including the physical and geomechanical properties of the 

material. Coarser material led to higher energy consumption, an increase in wear rates and a 

decrease in the loading and hauling productivity, final crusher and mills throughputs. In 

addition, fragmentation size affects fill factors and payloads. Dotto and Pourrahimian (2018) 

mentioned that poor fragmented material results in boulder sizes that are too big to handle and 

affect productivity negatively. Therefore, optimal fragmentation is essential for truck and 

shovel productivity. Good fragmentation results in a good heap in the bucket, while over 

fragmentation makes material flow more due to fines and no heaping is formed in the bucket. 

Diggability is a term used to describe how easily the material can be dug by the shovel, 

measured by specific dig energy. Loadsman et al. (2013) mentioned that as digging material 

gets harder, the payload decreases and the energy to fill increases. 

BFF can be described as a measure of a particular material that fits in a bucket compared with 

the rated capacity of the bucket. Rated capacity is usually measured using struck or heaped 

ratings, while material has a particular angle of repose, as illustrated in the sketch in Figure 

3-2, (Haulsim, 2022). 

 

Figure 3-2 Concept of BFF (Haulsim, 2022) 
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The BFF is related to the material characteristics and geometry of the bucket loader, which 

could be calculated as the following equation (3.1): 

                                    𝐿𝑜𝑎𝑑𝑒𝑟 𝐵𝐹𝐹 =  
𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑜𝑠𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝐵𝑢𝑐𝑘𝑒𝑡
                            3. 1 

The BFF usually ranges between 0.5 and 1.5 and is displayed on a heaped or struck basis. 

Excavatability effect BFF; it is a description of the material’s ability to excavate. These values 

are illustrated in Table 3-1. Defining the swell factor, when the material is loaded from the 

ground, it swells, and the density of the material decreases due to swelling, which is called lose 

density. In-situ bank density is the material's density in the ground before it is disturbed 

(Haulsim, 2022). 

Table 3-1 BFF and excavatability definitions (Haulsim, 2022) 

Excavatability BFF Definition 

Very Hard Poor + 0% * (Good - Poor) 

Hard Poor + 25% * (Good - Poor) 

Medium to Hard Poor + 50% * (Good - Poor) 

Medium Poor + 75% * (Good - Poor) 

Easy Poor + 100% * (Good - Poor) 

Assessing the operational time in mining hauling and loading operation is important for 

measuring the operation’s key performance indicator (KPI). Equipment mechanical availability 

is the time the machine is mechanically operational and physical availability is the time 

machine is physically operating. Figure 3-3 illustrates the time production model from the 

Global Mining Guidelines Group, (GMG, 2020). The figure honours the value productivity and 

production loss for equipment with actual work rate (tonne or BCM) relative to what was 

forecasted. Additionally, accounting for reduced productivity due to equipment functional, 

operational and setup deficiencies. Table 3-2 shows the definitions and some calculations of 

these time categories. 
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Figure 3-3 Time usage model (GMG - Time Usage Model, 2020) 

3.2.2 Operator Skill and Efficiency 

Khorzoughi and Hall (2016) studied the effect of operator skills and loading efficiency. They 

compared operators’ KPIs in the loading and hauling operation, including passed payloads, 

productive cycle time, equivalent digging energy and loading rate. Yaghini (2021) emphasized 

that the operator’s role in truck shovel loading is important and greatly influences the 

operation’s productivity and efficacy. Through operator skills and loading habits, he quantified 

and proposed a scoring system for evaluating the operator skills in the operation, taking into 

consideration the operator’s payload, shovel’s cycle time and other KPIs to finalize the operator 

rank from best to worst. All the previous performance indicators affect the final payload in the 

shovel bucket, which has a specific capacity and range of filling material in the shovel bucket 

that varies from struck to heaped as a filling percentage of 90 to 110% of the bucket capacity, 

assuming average loading conditions. 

3.2.3 Shovel Loading Truck (Digging and Filling) 

After an operator fills the shovel's bucket, the payload is passed to the truck with a set number 

of passes, depending on the passes required to fill the truck and the pass and equipment 

matching configuration. It is common in mining operations that hauling trucks are at least 

100% loaded or exceeding their final load capacities depending on whether companies strictly 

apply the loading policy or not and their actual compliance with these policies and skilled 

operators.  
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Table 3-2 Time usage definitions (GMG - Time Usage Model, 2020) 

Term Definition 

Calendar Time (CT) The total time available. 

Scheduled Time (ST) The equipment is required to meet business plan objectives and is assigned to an operation, project, or job. 

Scheduled Time = Calendar Time – Unscheduled Time 

Unscheduled Time (UT) The equipment is not scheduled or assigned in the system because it is not required due to external events. 

Downtime (DT) The equipment is required but is not in a condition to perform its intended function. 

Available Time (AT) The equipment is required and is in a condition to perform its intended function. 

Available Time = Scheduled Time – Downtime 

Standby (SB) The equipment is available but is not operating. 

 

 

Operating Standby (SBO) The equipment is available but not operating, and there is no immediate intent to operate due to a 

management decision or reasons within management control. 

 

 

External Standby (SBE) The equipment is available, required, and committed to a project or site, but it cannot be operated 

for reasons that are out of the immediate influence of operating management control. 

Standby = Operating Standby + External Standby 

Operating Time (OT) The equipment is available and under the control of a human or system. 

Operating Time = Available Time – (Operating Standby + External Standby) 

Operating Delay (OD) The equipment is operating but temporarily stopped or prevented from performing work due to 

delays that are inherent to the operation or the immediate physical and environmental conditions. 

Working Time (WT) The equipment is operating as assigned, performing its intended function, and carrying out activities 

that do and do not directly contribute to production. 

Working Time = Operating Time – Operating Delay 

Non-Productive Time (NP) The unavoidable activities that do not directly contribute to production but are required to enable 

continued safe and efficient operation. 

Productive Time (PT) The equipment is performing its intended function and is carrying out activities that directly 

contribute to production. 

Productive Time = Working Time – Non-Productive Time 

In this step, the proposed loading strategies are involved and a proposed operational decision 

should be taken to proceed with the scenario of shovel’s loading strategy as a FT or FB. Before 

proceeding with these terms, there should be a definition for these concepts, which could be 

defined as the following: shovel that loads in a FB; the truck requires less than a full shovel 
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bucket load to reach its payload. Therefore, the truck will travel underloaded, and the additional 

pass time is not wasted (Haulsim, 2022). Another definition by Tapia et al. (2021) defines it as 

saving the additional pass of the loading equipment. While FT loading assumes the loader 

always tries to fill the truck, even if the last pass only requires a small portion of a bucket load. 

Therefore, this additional pass will consume more time in shovel loading and queuing 

conditions will occur (Haulsim, 2022). 

3.2.4 Passes Loaded 

Shovel load time depends on the number of passes to load the truck and Shovel cycle time. The 

number of passes 𝑁𝑝 is calculated as the following equation (3.2) (Kennedy, 1990): 

                                                              𝑁𝑝 =
𝐶𝑡

𝐶𝑙 × 𝐹𝑓 × 𝐹𝑠 ×  𝜌
                                                                     3. 2 

Where 𝐶𝑡 is the truck capacity (m3), 𝐶𝑙 is loader capacity (m3), 𝐹𝑓 is loader bucket fill factor, 𝐹𝑠 

is material swell factor, 𝜌 is material bank bulk density (t/m3). As a general rule, the number of 

passes should be an integer number. Mine operators typically target to load the truck in three 

to five passes from a rope shovel. 

3.2.5 Assigned Trucks 

The assigned trucks are based on match factor (MF) as a reference; the usual value for MF in 

mining operation is 1, which means 100% efficiency. However, MF is uncertain and varies 

through short-term operations due to various uncertainties. Therefore, this research analyzes 

multiple trucks (1 to 30) to determine MF values with shovel configurations. Then FB and FT 

loading strategies are evaluated based on the selected fleet. The methodology for determining 

MF is covered in more detail in section 3.3.1. 

3.2.6 Operation Parameters 

A set of operating configurations is usually prepared before running the simulation; this 

includes the hauled material, mining and hauling equipment data (capital costs, operating 

costs, operating data), shifts configuration as scheduled and unscheduled operating and non-

operating time and rolling resistance (RR). 

3.2.7 Operation Uncertainty 

Generally, the mining operation is classified as considerably uncertain and unpredictable with 

time. In the mining equipment arena, the uncertainty and unpredictability of equipment are 
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common, especially when equipment is getting older; this includes short and long delays, 

stoppages and breakdowns due to various reasons, whether related to the smallest scale mining 

operation or to the largest scale market situation that effect mining decision or any other 

reason. This research approach demonstrates shovel breakdown as an example of fleet 

uncertainty. Other reasons can be crusher reduced efficiency, stoppage, blasting efficiency, or 

variability in the material in mine. It is also known that any accident or unplanned incident 

affects the operation, and a feasible option is available when adapting a modified loading 

strategy; moreover, focusing on the scheduled and unscheduled delays that happen in the 

mining operation, the scheduled maintenance delay examples are as follows (Loadsman et al., 

2013): 

• Air systems 

• Axle repairs 

• Brake repairs 

• Cab repairs 

• Cleaning for maintenance 

• Cleaning to repair 

• Cooling system repairs 

• Daily service 

• Engine repairs 

• Hydraulic repairs 

• Inspection 

• Light vehicle check 

• Maintenance checks 

• Major cab clean 

• Major service 

• Major shutdown 

• Service break 

• Suspension repairs 

• Tyre inspection 

• Tyres scheduled 

• Tyres, tracks or frames 

• Fire suppression 

• Lube system repair 

• Maintenance inspection 

• Maintenance service 

• Planned repairs 

• Primary air system 

• Primary brakes 

• Primary cooling system 

• Primary fire supply system 

• Primary steering 

• Primary wash-down 

• Pre-Maintenance inspections 

• Accidental equipment damage 

Examples of the delays that result from unscheduled maintenance as the following (Loadsman 

et al., 2013): 
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• 2-Way radio 

• Accident damage 

• Accidental damage 

• Air filters 

• Air intake system 

• Awaiting diagnosis 

• Awaiting maintenance 

• Backup alarm 

• Battery 

• Bearings 

• Blade/bucket/bowl/ripper 

• Blade/cutting edges 

• Body/frame chassis 

• Body/tray 

• Fire suppression 

• Frame/structure - front axle 

• Front strut 

• Fuel filters 

• Fuel injectors 

• Fuel pump 

• Fuel system 

• Fuel tank 

• Gear shifting 

• General electrical 

• Hydraulic cylinders 

• Hydraulic oil cooler 

• Hydraulic oil level leaks 

• Hydraulic pump – main 

• Brake pump 

• Brake test 

• Brakes system 

• Breakdown – electrical 

• Breakdown – fleet management 

system 

• Breakdown – mechanical 

• Bucket 

• Bucket general 

• Bucket welding 

• Cab/walkways 

• Cab equipment 

• Cabin 

• Cabin controls 

• Cabin/decks 

• Chassis/body 

• Control system 

• Coolant system 

• Dispatch system 

• Drive brakes 

• Drive cooling system radiator 

• Lights/indicators 

• Electrical emergency stop 

• Main gearboxes 

• Maintenance inspections 

• Maintenance delay 

• Park brake 

• Power loss 
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• Electrical fail to start 

• Electrical general 

• Electrical fault - 24 volt 

• Engine system 

• Unplanned electrical 

• Unplanned mechanical 

• Filter system 

• Filters 

• Hydraulic valves 

• Hydraulic filters 

• Hydraulic pump 

• Hydraulic cylinders 

• Hydraulic general 

• Lighting 

• Lube system 

• Lube system electrical 

• Lube system mechanical 

• Retarder 

• Rock ejectors 

• Rock/tyre management 

• Starting system 

• Structural damage 

• Suspension 

• Suspension cylinders 

• Tray 

• Truck box cleaning 

• Tyre change 

• Tyres unscheduled 

• Undercarriage 

• Unscheduled maintenance 

• Wait electrician 

• Wait fitter 

• Wash-down equipment 

 

And lastly, the examples of delays resulted from the standbys (Loadsman et al., 2013): 

• Accident • Blast misfire 

• Blasting 

• Blocked access 

• Crib 

• Dust/no water cart 

• Electrical storm 

• Environment/coal fires 

• Environmental 

• Environmental incident 

• Equipment not required 

• No available hopper 

• No available shovel 

• No heavy hauler 

• No labour available 

• No loading unit 

• No operator - hot seating 

• No operator 

• No operator - other duties 

• Off-shift due to roster structure 
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• Floor cleanup 

• Fuel 

• Holidays (shutdown) 

• Idle 

• Idle -Safety 

• Illness 

• Industrial action 

• Loader delay 

• Long-term standby 

• No available crushers 

• No available dumps 

• No available shovels (auto) 

• No available shovels call dispatching 

• No available dump 

• No available employee 

• No available face 

• Operational/talk to the supervisor 

• Operator travel 

• Power down 

• Power outage site 

• Public holiday 

• Return from maintenance 

• Safety/meetings 

• Safety shutdown 

• Scheduled down 

• Scheduled off shift 

• Shift change 

• Site emergency 

• Smoke 

• Snow 

• Standby 

• Standby no production 

• Standby parked 

• Stopped for an emergency 

• Stop-work meeting 

• Talk to a supervisor 

• Toilet break 

• Toolbox/safety talk 

• Total operation shut down 

• Union meeting 

• Special public holiday 

• Wait on blast 

• Wait on dust 

• Weather 

• Wet roads 

• Work instructions 

3.3 Detailed Framework Flowchart 

This detailed flowchart focuses more on the methodology, and the approach followed in 

comparing FT and FB and generating the simulation results, as shown in Figure 3-4. At the 

beginning, a short-term production schedule created by Open Pit Metal Solution (OPMS) 

software is imported into Haulsim, which combines, adds data and runs the simulation. 

Moreover, integrating the shovel breakdown in the framework and comparing the simulation 
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results under different calculated MFs. Additionally, conducting operational sensitivity 

analysis in selected input features from the operation. Next, the outcomes are assessed using 

Python programming and ML algorithms for predicting loading strategy and understanding 

the operation KPIs. 

3.3.1 Match Factor (MF) 

The MF provides a measure of the productivity of the fleet. It matches the truck arrival rate to 

the loader service rate by omitting the equipment capacities and productivity and including the 

loading and truck cycle times, (Burt and Caccetta, 2018). Equation (3.3) represents the most 

common formula for the MF calculation of a homogeneous fleet  (Burt and Caccetta, 2018): 

                                                                  𝑀𝐹 =
𝑡𝑖,𝑖′ 𝑋𝑖

𝑡𝑥  𝑋𝑖′
                                                                                      3. 3 

Where 𝑋𝑖 is the number of trucks of type 𝑖 , 𝑋𝑖′ is the number of loaders of type 𝑖′ , 𝑡𝑖,𝑖′ is the 

time taken to load truck type 𝑖 with loader type 𝑖′ and 𝑡𝑥 is the average cycle time for all trucks. 

This formula accounts for the actual productivity of the equipment. If the ratio exceeds 1.0, 

trucks arrive faster than the service rate (over trucking), and the loader is working 100% and 

queueing will occur. A ratio below 1.0 means that the service rate is higher than the arrival rate 

(under trucking), and fleet efficiency will be low, including the loader efficiency, because of the 

truck's waiting time (Burt and Caccetta, 2018). The approach in this thesis assumes that the 

fleet is homogeneous (one truck type) due to the nature of desirability and simplicity in the 

mine. 

Mining operations tend to assume and stick to an MF equal one as a reference; however, this is 

not always possible due to the nature of the mining operation and the equipment, the fact that 

MF is stochastic and differs based on the operation KPIs, MF efficiency curve is shown in Figure 

3-5. 

In this thesis, the MF is calculated as a normal operation running assumption, with a set 

number of trucks assigned to a shovel to understand the effect of changing the number of 

trucks, which reflects on the final MF. However, when a shovel breaks down, MF surges to 1.5, 

accompanied by an increase in the number of trucks reassigned to the remaining working 

shovel, as shown in Figure 3-6. 
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Figure 3-4 Detailed proposed framework for comparing FT and FB 
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Figure 3-5 MF and truck-loader efficiency (C. N. Burt & Caccetta, 2018b) 

After the equipment matching for operation is done, a short-term plan for a specific period is 

imported into Haulsim. The production schedule includes the material, equipment, and time 

selected to mimic the operation. This schedule includes the sources (shovels), destination, 

material quantities, and time steps. Next, the operation’s simulation model is run at an MF of 

one. There are assigned trucks to each shovel that are homogeneous and dependent (same truck 

type and assigned to the same shovel) but with a similar destination target, the crusher. 

 

Figure 3-6 Reassigning trucks assumption in research methodology 



Chapter 3: Theoretical Framework                                                                                                                53 

 

The varying number of trucks to mimic the operation uncertainty and shovel stoppage changes 

the MF when operation uncertainty is encountered. For instance, if one of the shovels is no 

longer operating for a specific period of time due to major mechanical failure. As mentioned 

previously, other operation uncertainty can affect the fleet haulage. Therefore, unutilized trucks 

are redirected to the other shovel(s) (the working shovel) in a different mine road, and the MF 

increases. In this stage, a decision should be made to switch between the loading strategy from 

FT to the FB; the obtained operation KPIs control this switch. 

3.3.2 Cornering Speed Algorithm  
 

When a truck travels in a curve, the software uses a cornering speed algorithm to determine the 

final speed. Cornering speed is defined as the amount of force (centripetal force) needed to 

cause a vehicle to travel around a corner with a given radius. The maximum velocity of a vehicle 

can be calculated by calculating the force available to the vehicle through traction (friction 

between the vehicle and the road) and superelevation (banking of the road). The corner 

properties determine which road segments to include in a corner and the equivalent radius of 

the corner from that. The Road properties determine the speed limit for the equivalent radius. 

The cornering speed algorithm works in two phases; first, an equivalent radius is estimated for 

a corner, and second, the equivalent radius is used to calculate the speed limit for the corner 

(Haulsim, 2022). 

3.3.3 Equivalent Radius 

The road network in the 3D model consists of many straight road segments of various lengths 

and grades. Road segments that are grouped together to make a corner are used to calculate 

the equivalent radius by adding the total length of the road segments in the corner, in addition 

to the corner approach (in and out) and the total change in bearing of the road segments in the 

corner, (Haulsim, 2022). It is calculated as in equation (3.4): 

                  Equivalent Radius =
Length

Change in Bearing (Radians)
                                                                3. 4 

Limiting velocity by Lateral Traction Coefficient calculated as the equation (3.5): 

                Max Velocity (m/s) = Radius ×  9.81 ×  Lateral Coefficient of Traction                        3. 5 

Limiting velocity by Super Elevation calculated as in the equation (3.6): 

               Max Velocity (m/s)  =  Radius ×  9.81 ×  Tan(Super elevation)                                        3. 6  
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3.3.4 Equipment Selection Factors 

One of the important criteria in surface mine equipment selection is determining the truck fleet 

size. There is a range of factors that must be taken into consideration pertaining to each piece 

of mobile equipment: 

• Purpose and objective of each equipment. 

• Different types of each equipment. 

• Size and capacity. 

• Operating cycle time. 

• Turning radius/working radius. 

• The number of equipment required for an operation. 

• Health and safety considerations. 

Bench height and passes per cycle also affect mine equipment matching, which is useful for 

operation productivity. 

3.3.5 Cycle Time 

Shovel cycle time can be defined as the time that includes truck spotting time, digging, swinging 

and loading time, as shown in Figure 3-7. While truck cycle time consists of travelling, waiting 

time, queuing, spotting, dumping and loading that starts from a specified point to the same 

point in the next cycle, as detailed in Figure 3-8. 

 

Figure 3-7 Shovel cycle time (Loadsman et al., 2013) 
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Figure 3-8 Truck cycle time concepts (Chaowasakoo et al., 2017) 

The cycle time analysis in the running software assists in analyzing the mine hauling network 

on the road in the mine, which contains the following inputs: 

Loader or shovel: the loading equipment type. 

Truck: the hauler type. 

Start location: the required starting location for the equipment. 

End Location: the required ending location for the equipment. 

3.3.6 Que and Truck Arrival Rate 

Queuing system is defined as customers' arrival for service, waiting for their turn and moving 

to the next server. In mining operations, queuing is observed in the hauling cycle of trucks. 

When the trucks arrive at the shovel, wait for their turn in the queue until the truck ahead is 

finished. Also, it can happen on dumping sites and any other location that requires service (May 

et al., 2012). The queuing model and analysis that is incorporated in the simulation results use 

equation (3.7): 

                                                                                   𝑟 =  
𝜆

𝜇
                                                                                3. 7 

Where 𝑟 is the expected number of trucks in service, 𝜆 is the average arrival rate of new trucks, 

𝜇 is the average service rate per loader.  

The average number of trucks in a queueing system, 𝐿 and the average time a truck spends 

waiting in line for the shovel 𝑊, can be expressed as in equation (3.8): 
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                                                                                 𝐿 = 𝜆 𝑊                                                                              3. 8 

Equations (3.7) and (3.8) are applied to the simulation data to calculate the number of trucks 

queued at the shovel in both loading strategies: FT and FB. 

3.3.7 Software Concepts 

Software terms should be defined in order to understand the operation and analyze the 

simulation data; as the following explains these concepts (Haulsim, 2022) : 

Road networks: the road network provides a path for the equipment to move around in the 

model. Properties of the road network are used to determine the speed that the equipment 

moves across the network.  

Road properties: the road contains the following information for each segment: 

• Distance: the segment distance is the distance the truck travels within the segment. The 

sum of the segment distances should be the total length of the haul network. When a 

segment is on a grade, the distance should be the actual distance over which the truck 

travels, that is, the distance along the grade. 

• Grade: the grade of the haul segment is expressed as a percentage. The percentage 

represents the vertical rise divided by the horizontal distance. For example, a grade of 

10% represents a rise of 10 metres over a horizontal distance of 100 metres. An ascent 

has a positive grade, while a descent has a negative grade. Typical ramp grades range 

from 6% to 12% or -6% to -12%. 

• Bearing (degrees): the bearing defines the direction in which the road segment is 

heading. A bearing of 0° will be due north. 

• Bearing change (degrees): changing the bearing from one segment to the next. 

• Rolling resistance (RR): RR results from the frictional force between the truck tyres and 

the ground surface. This frictional force is directed at a tangent to the truck tyres, 

parallel to the ground surface, and acts in the opposite direction to the truck's motion. 

The greater the gross vehicle weight of the truck, the greater the rolling resistance. The 

rolling resistance is expressed as a percentage of the component of the gross vehicle 

weight that is normal (perpendicular) to the ground surface. The normal component of 

the gross vehicle weight changes within the haul profile as grade and truck payload 

change. The percentage rolling resistance also changes as the surface changes from 
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smooth to rocky and rough. Therefore, the force due to the rolling resistance changes 

along the haul profile. 

• Maximum speed full. 

• Maximum speed empty. 

• Delay: the delay time, in seconds, that the truck will wait in the middle of the segment 

before continuing the trip. 

• Final speed limited by corner: the maximum final speed a truck can reach in a segment 

due to an approaching corner. 

• Max speed limited by corner: the maximum speed a truck can travel through a segment 

due to cornering properties. 

• Equivalent radius (discussed previously in section 3.3.3). 

Other software concepts are defined as the following: 

Locations: At least one source, destination and ancillary location is required for a simulation 

to be completed. The locations define where the network material moves from and to. 

Ancillary: Locations are places where equipment goes when it is not productive.  

Sources: The place where the shovel (loader) is located and the hauling equipment are loaded. 

Destinations: Places where the material is dumped to waste or discarded in crusher or 

conveyor by hauling units. 

Equipment: The defined equipment used for hauling material in the mine. The loading unit 

works at a load and haul source location, where it loads payload and haul units. The load and 

haul units then take the material from the source location to a destination. 

Material: Properties of moving materials, such as density and swell factor, are essential to 

calculating load times. 

Tasks: Tasks represent a material movement from the source location to a destination. Tasks 

are a combination of equipment, source, destination and material type. Depending on the task 

type, it may also have other attributes. 

The software uses simple dispatching logic; the aim of the dispatcher is to allocate trucks to 

loading units. When the system is balanced, the loading units should achieve the dispatcher 

target rates with minimal queueing of trucks. The first allocation of trucks is based on the order 

that they appear in the load and haul list. 
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3.4 Data Analysis and Machine Learning 

The data analysis is conducted using Python programming language using Anaconda navigator, 

a GUI tool that installs and launches Jupiter notebooks. The navigator is used for creating 

documents that contain live codes, visualization and text using Python, in our case. The version 

that runs in the simulation is 3.9.7, and the libraries imported include pandas, NumPy, seaborn, 

matplotlib, SHAP and sklearn. The approach starts with cleaning and preparing the data for 

the exploratory data analysis, cleaning any outliers, if available and any wrong data. 

3.4.1 Exploratory Data Analysis (EDA) 

 The EDA is an important step in the proposed methodology. An EDA is conducted to 

understand the simulated data and to generate a statistical summary for the simulated data. It 

helps identify issues with the data and manage them before running and further analyzing and 

understanding the behaviour of the proposed input features used to predict loading strategies. 

In this stage, summary statistics, scatter plots, histograms and correlation matrices are 

generated. Correlation matrices are important in identifying relationships in the data set. There 

are two common correlation matrices; Pearson measures the strength of the linear relationship 

between variables and Spearman measures the monotonic, never decreases nor increases 

variables; the association between two variables in terms of ranks. 

3.4.2 Machine Learning (ML) 

ML is a method of data analysis that automates analytical model building. ML algorithms that 

iteratively learn from data allow computers to find hidden insights without explicitly being 

programmed where to look. The general ML approach is illustrated in Figure 3-9. The definition 

of terminologies used in the process is as follows: 

Dataset: A set of data that contain features important for solving the problem. 

Feature: Important pieces of data that help understand a problem. Features are fed into the 

ML algorithm to help in learning the process. 

Model: the representation of a phenomenon that the ML algorithm learned during the training 

process. The model is developed after training an algorithm. 
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Figure 3-9 Machine learning process 

For simulation data, the logistic regression analysis is used to model and predict the data and 

RF is used to prepare for the Shapley library, which is used to evaluate the importance of the 

operation’s features. 

3.4.3 Multiple ML Algorithms 

In order to observe the best results of what could be simulated in operation, a set of models is 

prepared to examine the best recall results for various ML algorithms using specific code 

APPENDIX B. Each model enters into train and test data. These models are selected from the 

supervised ML under classification and regression models because the data set is labelled and 

training is possible for further prediction. The selected models are: 

• LDA: Linear Discriminant Analysis; a linear model for classification and 

dimensionality reduction that is used for feature extraction in pattern classification 

problems (Sunil Kumar Dash, 2021). 

• KNN: K Neighbors Classifier; non-parametric, supervised learning classifier which 

uses proximity to make classifications or predictions of data (IBM, 2022)  

• CART: Decision Tree Classifier; predictive model, which explains how an outcome 

variable’s values can be predicted based on other values (Q Software, 2022). 

• NB: Gaussian NB; a type of Naïve Bayes classifier algorithm, used when the features 

have continuous values assuming all features have a gaussian (normal) distribution 

(Rahul Saxena, 2017). 

• SVM: Support Vector Machine; a supervised machine learning model that uses 

classification algorithms for two classification problems (Bruno Stecanella, 2017). 
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3.4.4 Random Forest (RF) 

The RF is a supervised ML algorithm that is used widely in classification and regression 

problems. It builds decision trees on different samples and takes their majority vote for 

classification and average in case of regression. It is based on the concept of ensemble learning, 

which is a process of combining multiple classifiers to solve a complex problem and improve 

the performance of the model. As the name suggests, RF is a classifier that contains a number 

of decision trees on various subsets of the given dataset and takes the average to improve the 

predictive accuracy of that dataset. Instead of relying on one decision tree, the RF takes the 

prediction from each tree based on the majority of predictions' votes and predicts the final 

output. The RF works in two-phase first is to create the RF by combining N decision tree, and 

second is to make predictions for each tree created in the first phase. 

3.4.5 Logistic Regression (LR)  

The LR allows predicting a categorical label based on historical feature data. Usually, two 

discrete class labels, by converting a LR into a classification model through the logistic function 

as shown in Figure 3-10. The zero values are assigned to the FB category and one value is 

assigned to the FT category. 

 

 

Figure 3-10 Logistic regression function 

3.4.6 Classification Metrics 

To calculate the accuracy of the resulted LR model, the following classification metrics are used:  
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• Precision: is the ratio of the number of all true positive over true positive plus false 

positive. 

• Recall: is the ratio of the number of all true positive over true positive plus false 

negative.  

• Accuracy: divides total true values over all values. 

Figure 3-11 illustrates these concepts of ML evaluations. 

 

Figure 3-11 Machine learning model evaluations (Saxena, 2018) 

3.4.7 Model Parameters 

A classification model is trained to predict loading strategy, which can then be added to SHAP 

to understand the parameters. Therefore, identifying parameters that predict in the models is 

critical for fully understanding the operation. 

3.4.8 Interpreting Model-SHAP Weighing Technique 

Features importance aims to assign a score for each input feature in the predictive model. Based 

on its importance in predicting the loading strategies by using SHAP values to rank the 

importance of features in predicting the outputs building on game theory concepts. Figure 3-12 

illustrates the SHAP as the explainer model for explaining these predictions. By indicating the 

relationships that combine to create the model’s output. Plotting the SHAP values of each 

feature for each sample enables users to quickly determine which features are most crucial for 

a given model. 



Chapter 3: Theoretical Framework                                                                                                                62 

 

 

Figure 3-12 Interpreting machine learning models using SHAP 

3.4.9 Gini map 

GINI importance (or mean decrease impurity) is a method computed from the RF structure. In 

any random forest, a set of Decision Trees is constructed. Each decision tree is a set of internal 

nodes and leaves. In the internal node, the selected feature is used to make a decision on how 

to divide the data set into two separate sets with similar responses within. The features for 

internal nodes are selected with some criterion, which for classification tasks can be Gini 

impurity or information gain, and for regression is variance reduction. It can be measured how 

each feature decreased the impurity of the split (the feature with the highest decrease is selected 

for the internal node). For each feature, collect how on average, it decreases the impurity. The 

average over all trees in the forest is the measure of the feature importance.  

3.5 Summary and Conclusion 

In summary, the chapter focuses on multiple frameworks developed to understand the loading 

strategies in open-pit mining operations, using DES techniques to mimic the real mining 

operation and generate results under the FT and FB loading scenarios.  

The approach begins with understanding the material characteristics and associated operator 

efficiency, configuring these data and defining the material type. The resulting passes matching 

between truck-shovel under both loading strategies is evaluated further with a different 

number of trucks to highlight the sweet spots and opportunities of switching under operational 

and short-term levels. Based on the previous approach, all associated hauling costs, cycle times, 

production rates and queueing conditions are compared as well. The approach assumes 

reassignments of trucks from another shovel due to lower efficiency and/or availability. 
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In the expanded methodological approach, queuing model and truck arrival rate are important 

in calculating the number of queued trucks. The MF formula is useful for identifying the 

number of trucks in various operating efficiencies. 

In the higher level approach, EDA and ML model, a set of data is generated to better understand 

the sensitivity of the operation, adding the rolling resistance effect, different shovel types and 

hauling roads. This is followed to yield meaningful data that is used in the ML prediction model. 

Furthermore, analysis of feature importance is reached by using the Shapley approach. Feature 

importance is critical in evaluating the most important parameter in predicting loading strategy 

for operation open-pit mining KPIs. 
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CHAPTER 4   

CASE STUDY AND DISCUSSION OF RESULTS 

 
 

 

 

 

This chapter discusses the simulation results of the FT and FB loading strategies in a selected 

mine after applying the proposed broad and detailed frameworks discussed in the previous 

chapter and following the software framework to generate the accurate simulation results. 

Next, interprets the results to get a more understanding. Finally, all results and operation 

KPIs are compared, presented, evaluated and discussed. Furthermore, the data is brought in 

Python programming language to apply in a ML model that predicts the loading strategy 

based on selected parameters and understands the most important parameters triggering 

that switch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Case Study and Discussion of Results                                                                                          65 

 

4.1 Introduction 

This chapter analyzes the FT and FB study results, implementing the proposed simulation 

methodology for FT and FB at proper levels. First, beginning from the broader simulation, 

which comprises the assumptions and the general understanding at the beginning of the 

problem, then going through the methodology that requires the software application and the 

methodology that evaluates and interprets the data. 

The related software used in the simulation is Haulsim which connects the fleet assessment 

mining operation plans to build a digital twin of mining operation delivering an accurate 

representation of the haulage operations, in addition to fundamental data analysis for the 

resulted outputs using Python programming language under Anaconda data science platform. 

Moreover, a ML model is run for traversing the operation parameters to understand the most 

influential parameters that trigger switching from FB to FT loading strategies. Section 4.2, 

deals with importing the schedule data to Haulsim software. Then section 4.3 presents the 

simulation environment configuration and sections 4.4 through 4.11 discuss various 

simulation results. Then data analysis using Python and ML is discussed in section 4.12 and 

section 4.13 concludes this chapter. 

4.2 Scheduling Data 

Scheduling data for a gold mine was exported from a scheduling software OPMS and imported 

into the Haulsim software. By using the software ability to import schedules, the schedular 

button in the get external toolbar, which gives the ability to build a model from any schedule 

data using external software source for various schedule configurations, including sources and 

destinations, resource (equipment) and mine layouts that vary throughout the schedule time. 

The data exported covered a specific interval for the sake of loading strategies evaluations and 

comparing; the total number of steps was seven and the total tonnage to be mined was 

2,023,945 tonnes from pushback 5 level 880m in in the eastern pit. Table 4-1 shows the details 

of steps Ids and quantities, the crusher was the final destination for all trucks. 

Figure 4-1 illustrates the general mine layout and the location of pushback 5. The original gold 

mine included two types of materials; waste material: non-acid forming material and potential 

acid forming material. Ore material: high-grade sulphide, low-grade sulphide and low-grade 

oxide. The mine has two pits; east and west pit. The eastern pit has four pushbacks, while the 

western pit has one pushback. 
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Table 4-1 Selected schedule used in running simulation 

Step Id 
Resource 
(shovel) 

Source Destinations 
Quantity 
(tonne) 

106,668 2802 EAST\PBack5\880\P48_54 CRUSHER 111,243.69 

106,693 2804 EAST\PBack5\880\P48_55 CRUSHER 113,467.23 

106,704 2804 EAST\PBack5\880\P47_58 CRUSHER 185,245.53 

106,737 2802 EAST\PBack5\880\P48_57 CRUSHER 384,398.62 

106,751 2802 EAST\PBack5\880\P49_57 CRUSHER 529,305.00 

106,762 2804 EAST\PBack5\880\P48_58 CRUSHER 614,780.46 

106,783 2804 EAST\PBack5\880\P48_58 CRUSHER 85,504.54 

 

 

Figure 4-1 Mine layout including pushback 5 coloured in purple 

4.3 Setting Up the Simulation Environment 

Before starting the simulation, a set of definitions and configurations are needed to run the 

simulation properly. These include mine hauling roads, equipment (truck and shovel) 

configuration (operating data and cost data), and hauled material characteristics (loose density 

and BFF). 

4.3.1 Material Characteristics 

The selected material in the simulation is high-grade sulphide (HGSx). Table 4-2  summarizes 

the material’s characteristics. 
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Table 4-2 Hauled material characteristics 

Material Characteristics Unit 

In-situ Bank Density 2.4 t/m3 

Swell Factor 1.25 - 

Loose Density 1.92 t/m3 

BFF-Heaped 97.5 % 

BFF-Struck 97.5 % 

4.3.2 Equipment Data 

Operating and costing data for the mining fleet are included in the simulation for both shovels 

and trucks. The shovels used in the simulation are P&H 2800 XPC and the trucks are CAT 793F. 

Table 4-3 presents shovel configuration data. Table 4-4 presents the configuration of the truck 

CAT 793 F. 

Table 4-3 P&H 2800 XPC shovel data in the simulation 

Shovel P&H 2800 XPC 

O
p

er
a

ti
n

g
 D

a
ta

 

Capacity 32.78 m3 

Bucket Cycle Time 40 sec 

Filled Capacity 31.96 lcm 

Filled Payload 61.49 t 

Maximum Production Rate 5533.95 t/h 

C
o

st
in

g
 D

a
ta

 Purchase price 19,714,300 $ 

Life 20 years 

Owning Cost 101.27 $/hour 

Operating Cost 129.95 $/hour 
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Table 4-4 CAT 793F truck data used in the simulation 

Truck Cat 793 F 

O
p

er
a

ti
n

g
 D

a
ta

 

Capacity 175 m3 

Actual Capacity 117.89 lcm 

Payload 226.8 t 

Dump Time 60 sec 

Spot Time @ Loading 24 sec 

Spot Time @ Dump 18 sec 

C
o

st
in

g
 D

a
ta

 

Purchase price 3,568,900 $ 

Life 15 years 

Owning Cost 24.44 $/hour 

Operating Cost 435.28 $/hour 

Figure 4-2 illustrates the distributions used for the shovel’s loading time and bucket payload. 

For shovel loading time, the mean value is 40 seconds, and the distribution is skewed to the 

right. At the same time, the payload factor is one and skewed to the left. Figure 4-3 illustrates 

the distributions used for trucks. For truck dump time, the mean value is 30 seconds. Moreover, 

for the truck’s load and carry time, the estimated mean of the value of which there is a 50% 

probability of occurrence is 40 seconds. 

 
Figure 4-2 Distribution data for P&H 2800 XPC 

 

Bucket Cycle Time Bucket Payload 
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Figure 4-3 Distribution data for CAT 793 F 

4.3.3 Shifts and Working Times 

Table 4-5 represents the time data for the simulation model. The non-operating shift delays 

and the operating delays are estimated to be 30 and 60 min in each shift, respectively. 

Therefore, the actual working time in a shift is 6.5 hours, and shovel and truck availability is 

assumed to be 85%.  

Table 4-5 Shifts data and effective working times 

Working Time 

Mon-Fri 5 days/week 

Shift Duration 8 hours 

Non-Operating Shift Delays 0.5 hour 

Shift Operating Time 7.5 hours 

Operating Shift Delays 1 hour 

Shift Working Time 6.5 hours 

Shovel Availability 85 % 

Truck Availability 85 % 

4.3.4 Simulation Model 

The material hauling operation in the mine is modelled using Haulsim software. Examples of 

the simulation animation in the software for loading trucks CAT 793F by P&H 2800 shovels at 

the ore source location and crusher destination are shown in the images in Figure 4-4 for single 

Dump Time Load & Carry Time 
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truck-shovel loading and Figure 4-5 representing the queueing conditions, Figure 4-6 for 

dumping at the destination which is the crusher and Figure 4-7 shows the trucks reducing speed 

at corner. 

 

 

Figure 4-4 CAT 793F trucks being loaded by 2800 rope shovel 

 

 

Figure 4-5 CAT 793F queued at shovel 
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Figure 4-6 CAT 793F dumping at crusher 

 

 

Figure 4-7 CAT 793F trucks travelling empty at road corner 
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4.4 Roads and Cycle Time Analysis 

Two mining haul roads were implemented for simulation (denoted as R1 and R2) as in Figure 

4-8. Each road begins in a bench face and ends in the crusher. Both working benches have high-

grade sulphide (HGSx). The lengths of R1 and R2 are 3.46 km and 2.65 km, respectively. The 

maximum grade in R1 is 10.6 %, and in R2, 8.76 %. Both roads have a rolling resistance (RR) 

of 2%. Each haul road segment's final cycle time is different due to varying distances and the 

accompanied cornering speeds. (more details on road segments and intersegment details are 

available in APPENDIX C).  

 

Figure 4-8 Layout of haul roads in the simulation model 

Rise and run are a visual display of the implemented roads that change in height across their 

length. The term rise means how many units move up or down from point to point on the graph 

that would change the y values. While run means how far left or right moves from point to point. 

For the two hauling roads, rise and run profiles are significantly different, as shown in Figure 

4-9 and Figure 4-10. It is clear that R1 has higher slope values over 0 to 175 m rise, which 

requires more cycle time due to reduced truck speed when loaded and travelling uphill. 

However, in R2 the slope changed within small segments (average downslope to 20m then 

upslope to 20m), accompanied by the segments total length that is less in road 2. Therefore, 

the total cycle time is much less over the road distance. 
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Figure 4-9 Rise and run profile for haul road 1 (R1) 

 

 
Figure 4-10 Rise and run profile for haul road 2 (R2) 

The cycle time analysis was done for one truck and one shovel to understand and analyze the 

differences between the haul roads. Table 4-6 presents the results for both the FT and FB 

scenarios in R1 and R2.  
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Table 4-6 Cycle time analysis for haul roads within loading strategies 

 
Haul Road 1 (R1) Haul Road 2 (R2)  

 
Shovel Truck Shovel Truck Unit 

 P&H 2800 XPC Cat 793 F P&H 2800 XPC Cat 793 F HGSx 

F
T

 L
o

a
d

in
g

  

Distance 3463.57 Distance 2064.89 m 

Travel Time 0:12:16 Travel Time 0:04:17 hh:mm:ss 

Reverse Travel Time 0:07:17 Reverse Travel Time 0:03:44 hh:mm:ss 

Total Distance 6927.13 Total Distance 4129.79 m 

Total Travel Time 0:19:33 Total Travel Time 0:08:01 hh:mm:ss 

Total Cycle Time 0:23:25 Total Cycle Time 0:11:53 hh:mm:ss 

Payload 226.80 Payload 226.80 tonne 

F
B

 L
o

a
d

in
g

  

Distance 3463.57 Distance 2064.89 m 

Travel Time 0:11:12 Travel Time 0:04:11 hh:mm:ss 

Reverse Travel Time 0:07:17 Reverse Travel Time 0:03:44 hh:mm:ss 

Total Distance 6927.13 Total Distance 4129.79 m 

Total Travel Time 0:18:29 Total Travel Time 0:07:55 hh:mm:ss 

Total Cycle Time 0:21:41 Total Cycle Time 0:11:07 hh:mm:ss 

Payload 184.17 Payload 184.17 tonne 

Results show that cycle time with a FB loading strategy (including truck travel times) is less 

than FT. This is due to the fact that the trucks have less payload in the FB scenario and 

consequently, they travel uphill faster. 

In R1, the cycle time in FT loading strategy is 23.42 min, while in FB loading strategy is 21.68 

min. There is a 7.4% difference between the two loading strategies. FT travelling time also has 

an 8.7% difference because of the same reason explained for the cycle time. The reverse time 

has no differences between the loading strategies because the trucks are empty and travel on 

the same road in both scenarios. Analyzing R2 cycle time shows a 6.83% difference between FT 

and FB loading strategies. Travelling time has the same case as R1 with a difference of 1.25%. 

The lesser difference can be interpreted as R2 has less distance, almost 40%, than R1. Another 

reason for the difference is the rise and run and grades that are higher in R1 over frequent 

segments; this affects the cycle time and travel time. 
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One of the important results in cycle time analysis is the average payload for both FT and FB. 

Due to the higher loaded pass tendency in the FT, the calculated average payload in cycle time 

analysis was 226.8 tonnes. In contrast, in FB, the average payload was 184.1 tonnes. The 

difference in final payload between loading strategies was 18%. Considering the payloads, the 

productivity per truck in R1 was higher for the FT at a rate of 581.15 t/h, while for FB, it was 

12.32% less (509.55 t/h) than FT.  

Other parameters, such as the basic site Tonne Kilometres per Hour (TKPH); which is an 

essential expression of the working capacity of a tire representing the load capacity in relation 

to heat generation, were lower in the FT with a value of 947.35, while in the FB, the value is 

978.57. Loading truck full affects the TKPH negatively and reduces the tires life and equipment 

reliability with time, with the general understanding that lower TKPH means lower heat 

resistance which is not recommended for truck hauling, and higher TKPH means higher heat 

resistance which means better truck hauling conditions. However, the lower TKPH has a higher 

cut and wear resistance.  

Additionally, the total fuel consumed was higher by 8% in FT (36.23 litre/trip) than in FB 

(33.47 litre/trip). The reason is the higher payload, which requires more engine power to move 

the truck hence more fuel consumption. 

4.5 MF Analysis  

To understand the operation correctly, MF criteria were selected as 1 and 1.5; the latter was 

selected because of increasing trucks and the availability of only one shovel in operation. These 

basic analyses are illustrated in Figure 4-11. 

The normal hauling in mining operation usually runs at MF equals 1. The case study resulted 

in 10 trucks when the loading strategy was FT. With changing the loading strategy to FB, the 

proper number of trucks (at MF=1) was 12. This difference in the number of trucks is due to 

lower passes affecting the MF formula. 
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Figure 4-11 MF analysis for FB and FT 

Detailed MF analysis and differences are available in Table 4-7. It can be seen that the 

difference between FT and FB becomes negative after the number of fleet equals 16. The highest 

MF difference between loading strategies was in fleet size 13. With the assumption that 2 

shovels were working at MF equal 1, and one of the shovels broken down and trucks were 

redirected to another shovel. Adding 10 trucks to the operating shovel, the MF surged to 1.475 

on an FT basis and 1.601 on an FB basis. Based on this sudden change, a decision should be 

made.  

4.6 Cycle Time Simulation Results  

Running the simulation with the correct configuration produces a range of cycle time results, 

as shown in Figure 4-12, where the FT loading strategy with a variable number of trucks on the 

x-axis always has a longer cycle time than the FB loading strategy. This is because, as previously 

mentioned, a loaded truck is heavier and requires more time to travel and load. 

When fleet sizes are between 1 and 15, the cycle times difference is less than 5 minutes between 

the FT and FB. The normal conditions based on MF equals 1, the number of trucks equals 10, 

and with FB scenarios, the number of trucks should be 12; after that, the gap between the two 

loading strategies increases after the number of fleet equals 15, inducing the privilege of the FB 

loading strategy over the FT. 
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Table 4-7 MF values for the different fleet in loading scenarios 

Hauler Fleet Size MF (FT)  MF (FB)  Difference 

1 0.112 0.089 0.023 

2 0.224 0.178 0.046 

3 0.336 0.267 0.069 

4 0.447 0.356 0.091 

5 0.557 0.444 0.113 

6 0.668 0.532 0.136 

7 0.777 0.619 0.158 

8 0.886 0.707 0.179 

9 0.994 0.794 0.2 

10 1.102 0.881 0.221 

11 1.209 0.967 0.242 

12 1.316 1.054 0.262 

13 1.418 1.139 0.279 

14 1.451 1.225 0.226 

15 1.457 1.311 0.146 

16 1.461 1.396 0.065 

17 1.465 1.48 -0.015 

18 1.468 1.554 -0.086 

19 1.472 1.598 -0.126 

20 1.475 1.601 -0.126 

21 1.479 1.604 -0.125 

22 1.482 1.606 -0.124 

23 1.486 1.609 -0.123 

24 1.489 1.611 -0.122 

25 1.492 1.614 -0.122 

26 1.496 1.617 -0.121 

27 1.5 1.62 -0.12 

28 1.503 1.622 -0.119 

29 1.507 1.625 -0.118 

30 1.51 1.627 -0.117 
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Figure 4-12 Simulated cycle time for loading strategies 

4.7 Production-Cost-Fleet Curves 

The simulation model was run for a different number of trucks to capture the effect of MF 

change from 1 to 1.5 in FB and FT loading strategies. Figure 4-13 and Figure 4-14 show the cost-

production fleet curves for the FT and FB, respectively.  

In the FT loading strategy (Figure 4-13), with increasing the number of trucks in the fleet, the 

production increases until the number of the truck is equal to 13; after this point, the production 

slightly increases until the number of trucks in the fleet reaches to 24. In the FB loading strategy 

(Figure 4-14), the fleet production has a similar trend to the FT strategy, but the production 

still increases till the fleet size is equal to 19. 

Moving to the cost curve (total cost of unit ownership is the cost to buy the trucks and shovels 

plus their operating costs), in Figure 4-13, the cost decreases with the increased number of 

trucks until number 13; then it increases steadily until the last truck. The cost of the FB loading 

strategy decreases until the number of trucks equals 18, increasing afterwards. The increase in 

cost occurs earlier in the FT loading strategy. Finally, a comparison of the number of trucks in 

queue shows that at the beginning, there is a slight increase in both loading strategies. In the 

FT strategy, the number of trucks in the queue is insignificant until the fleet size is equal to 13; 

after this point, the number of trucks in the queue increases steadily until the fleet size is equal 

to 24. The FB strategy has the same behaviour, but the prominent increase in the number of 

trucks in the queue is stated after fleet size 18.   
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Figure 4-13 Cost-Production-Fleet curves for FT loading strategy 

 
Figure 4-14 Cost-Production-Fleet curves for FB loading strategy 
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In Figure 4-13 and Figure 4-14, areas with average MF of 1 and 1.5 has been highlighted. For 

MF of 1, the sufficient number of trucks is between 10 and 12. For this area, in the FT strategy, 

the total cost for hauling is between 1.60 and 1.62 $/t, while in the FB strategy, it is between 

1.62 and 1.63 $/t, which is a small difference. Fleet production is the same case, 6.8 to 8.1 Mt/yr 

in FT and 6.7 to 8.0 Mt/yr in FB. Also, there is a negligible difference in queuing conditions 

between FT and FB strategies. Therefore, considering the cost, production, and number of 

trucks in the queue, the FT loading strategy is suitable when the MF is 1. 

In contrast, when the MF increases to 1.5, the FB strategy works much better. This increase in 

the MF happens because of the uncertainty and unplanned equipment breakdowns or any 

operation stoppage or unplanned queueing that significantly affects the operation. This 

research assumed that one of the shovels broke down for a time, and the trucks are sent to the 

other available shovel. When the MF is in 1.5, the shovel controls the operation. In this 

situation, the cost of FB strategy is much lesser than FT, ranging from 1.85 to 2.0 $/t, while in 

FT strategy, it varies between 2.45 and 2.65 $/t with a difference equal % 25. In addition, the 

production of FB strategy (12.25 Mt/yr) is much higher than the FT strategy. Another advantage 

for the FB when the MF is 1.5 is the number of trucks waiting for the shovel. The number of 

trucks in the queue for the FT strategy is double that for the FB strategy. 

Figure 4-15 and Figure 4-16 show the detailed operating costs for FT and FB loading strategies, 

including the fuel costs. The major difference is that in the FT scenario, the maintenance, fuel 

and other operating costs spike within a fleet size of more than 13, while in FB, theses costs 

spike when the fleet size is more than 18. Other important features of these curves are that they 

start similar in costs with fleet size 1 and end with higher costs in the FT scenario. Fuel costs in 

FT start to increase more than FB after fleet size 13. The difference reaches 25.6% in fleet fuel 

costs ($/t) when the fleet size reaches 30. 
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Figure 4-15 Operating Costs in FT Strategy 

 

Figure 4-16  Operating Costs in FB Strategy 

Figure 4-17 and Figure 4-18 shows the owning cost for FT and FB strategies. Both cost curves 

are similar in behaviour with slight differences, but the minimum owning cost for FB is at fleet 

size 18, while in FT, the minimum owning cost is at fleet size 13. The owning costs in FT increase 
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after fleet size 13 and reach more than 0.6 $/t after fleet size 21, while in FB, the owning cost 

doesn’t exceed 0.6 $/t after fleet size 18. And there is no difference in owning costs between the 

loading strategies when fleets size in a range of 10-13 trucks. 

 

Figure 4-17 Owning Cost in FT Strategy 

 

Figure 4-18 Owning Cost in FB Strategy 
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4.8 Hourly production Curves 

The production rate difference between FT and FB and the truck production rate in both 

scenarios are shown in Figure 4-19. Changing fleet size from 1 to 30 on the x-axis and 

production rate for each truck on the y-axis, at the beginning till fleet size equals 13, the 

difference between loading strategies is less than 25 t/h, and the difference decreases from 9 to 

fleet size 13, then the gap increases in the same amount between loading strategies, exactly at 

fleet size 17 and beyond. A flipping point appears when the number of trucks exceeds 13, 

resulting in higher truck production in FB strategy and decreasing hourly production rate with 

an increasing number of trucks. This is due to lost time in queueing and bunching effect, but 

when the number of trucks is less than 12, the production rate is much higher in FT, which 

supports that in real operation, the FT strategy is more favoured. Conservatively, FT has the 

higher hand, accompanied by MF equal 1 and operation efficiency of 100%. 

 
Figure 4-19 Trucks production rate results 

Figure 4-20 shows that the switching point was the same for the shovel hourly production rate 

case, but the curve had been inverted. From the case in trucks point of view, when MF 

approximated 1, the FT had higher hourly production than FB; the difference was 260 t/h, but 

when the number of trucks exceeded 13, FB strategy had a higher production when MF 

approximated 1.5; the difference between the strategies was 250 t/h. After the fleet size reached 

13, the difference between loading strategies started to widen steadily until the fleet size 

reached 19, and the difference almost continued past this point, favouring the FB strategy over 

the FT. 
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Figure 4-20 Shovel production rate results 

4.9 Tonne-Kilometers Per Hour (TKPH) 

To comprehend the impact of payload differences resulting from FT and FB loading strategies 

on tyres and tyre reliability. One of the common truck KPIs in operation, the TKPH (Tonne-

Kilometers Per Hour), was created. Both the simulated data for axle 1, the front axle, and axle 

2, the rear axle, were recorded. As shown in Figure 4-21, the TKPH analysis for axle 1 revealed 

that the FB strategy consistently had a higher TKPH than the FT strategy. This was because the 

trucks' lower payloads resulted in a lower load on the trucks' tyres. The difference between 

loading strategies is balanced till fleet size equals 13. The gap increases after trucks number 

exceed 13 steadily till fleet size equals 30. This poses a potential need and adds additional 

benefit to considering FB loading strategy when match factor change is encountered, and the 

fleet number increases significantly or when tire life is important at a specific time in the year. 

Axle 2 exhibits nearly identical behaviour for both strategies for TKPH. Axle 1 typically carries 

more dead weight loads than other rear axles (loads from the engine, mechanical drive, and 

chassis), with almost a 50 percent difference in TKPH values between axle 1 and axle 2 when 

taking into account both loading strategy scenarios. 
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Figure 4-21 Basic site TKPH for axle 1 and axle 2 

4.10 Fuel Consumption 

Another mining truck performance indicator is fuel consumption. Figure 4-22 illustrates how 

fleet size is represented using an x-axis for fleet size and y-axis for production in tonnes per fuel 

consumption. After fleet size 19, the production per fuel difference in the FB scenario was 25% 

higher. From fleet equal 1 to 13, there is a difference of less than 2% before FB flips and 

consumes more fuel. 

 
Figure 4-22 Truck production per fuel liter 
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4.11 Shovel Efficiency analysis 

In the shovel production per consumed electricity t/kWh analysis, the varying fleet size on the 

x-axis and the consumed energy KWh in shovel production are plotted against each other in 

Figure 4-23. The shovel electricity consumption in the FT strategy was higher until trucks 

number 13, where flipping occurs, and FB consumption increased. The gap widened once the 

number of trucks reached 18. This mean that in the case of FT shovel loading, the trucks 

needing 4 buckets to be fully loaded result in lower shovel level production and higher 

electricity consumption. However, once the FB strategy was adjusted, the productivity of the 

shovel increased because it is now operating at its highest efficiency and requires fewer passes 

to fill the trucks. 

 

Figure 4-23 Loader production per consumed electricity 

4.12 Machine Learning - Controlling Parameters in Loading Strategies  

The following topics discuss the implementation of ML algorithms using Python programming 

language in predicting and understanding the key features that affect the loading strategies. 

Starting with data preparation in a detailed explanation, moving on to exploratory data 

analysis, selecting the appropriate machine learning algorithms for predicting model and 

accuracy evaluation, and finally weighing the important factors that influence the choice of 

loading strategy. 
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4.12.1 Data preparation 

In order to run ML properly and evaluate the model, the data should be cleaned and reflect the 

real situation of hauling operations in a mine. For this purpose, the raw data obtained from 

simulation for MF of 0.75 and greater were selected. The data for MF<1 was selected to 

understand the behaviour of operation parameters even with lower efficiency (MF<1) in the 

hauling operation, as shown in Figure 4-24. 

4.12.2 Categorical Data 

FB data is less than FT in the implemented data amount because it is related to the MF that 

considers the number of passes affecting the loading times and shovel efficiency. In our 

reference to MF=0.75. This does not affect the ML model results because the difference in 

counted data between FT and FB is less than 15%, and the usual difference affecting the ML 

model is more than 40%. If this is the case, further data processing for the imbalanced 

classification is required to overcome this issue. 

 

Figure 4-24 Used simulation data categories 

4.12.3 Rolling Resistance (RR) Data 

Figure 4-25 shows the implemented data for RR. This data was included in the ML model in 

order to analyze the effect of increased RR (2%, 4% and 6%) in the loading strategy and 

understand more how the other operating parameters are affected, such as costs and cycle 

times, and how RR triggers the loading strategy.  
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Figure 4-25 Considered RRs in the simulation model 

4.12.4 Different Shovels Data 

Shovel types (different bucket capacities) were included in the simulation data, as shown in 

Figure 4-26. Changing the shovel types, including CAT 7395, CAT7495 and the original 

P&H2800, these shovels are included to honour the varying operating shovel parameters, 

mainly the bucket capacity, which was 32.1 m3 for CAT 7395, and 56 m3 for CAT7495 and 32.78 

m3 for P&H2800 and other shovel characteristics. 

 
Figure 4-26 Used simulation data for shovel type 
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4.12.5 Different Roads Data 

Additional mine road is added to understand the effect of different grades, lengths and 

geometries on the loading strategies, as shown in Figure 4-27. Combining the previous 

variabilities in the simulated data for loading strategies gives broader interpretable results of 

the machine learning model, including a simulation variety of grades, rolling resistance, roads 

and shovels. 

 
Figure 4-27 Used Simulation data with roads 

4.12.6 Exploratory Data Analysis (EDA) 

An EDA using Python programming language was conducted to understand and illustrate the 

resulting simulation data. Plus, the relationships between the input parameters in the hauling 

and loading operation and the parameters that control the switch between FT and FB strategies 

in the simulated loading and hauling operation.  

Starting from the original dataset containing 750 records with 22 attributes that resulted from 

Haulsim simulation and filtered out based on MF of 0.75 and above, each entry represents the 

adapted loading strategy and the associated input data from simulation in the EDA. Table 4-8 

summarizes the statistics of these values. 

A correlation matrix was generated to examine these relationships between operation loading 

strategies and selected parameters for the correlation approach, as in Figure 4-28. Some input 

parameters are linearly correlated, such as cycle time and fleet size, the number of trucks 

queued, cost and fleet size.  
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Table 4-8 Statistical summaries of the used simulation data 

Parameter Count Mean Std Min 25% 50% 75% Max 

Hauler Fleet Size 750 19.95 6.22 7.00 15.00 20.00 25.00 30.00 

Hauler Average Travel 
Time (min) 

750 22.56 1.78 19.36 21.27 22.21 23.79 25.97 

Hauler Average Load 
Queue Time (min) 

750 13.86 11.73 0.73 2.49 11.52 22.85 44.31 

Hauler Average Cycle 
Time (min) 

750 39.11 12.09 22.65 28.66 36.30 48.00 69.26 

Fleet Production / 
Year (Mt) 

750 7.81 1.73 4.36 6.98 7.21 8.75 12.52 

Trucks in Q 750 6.96 5.53 0.20 1.30 6.30 11.60 19.50 

Loading Strat (1 FT 0 
FB) 

750 0.53 0.50 0.00 0.00 1.00 1.00 1.00 

Loader Hourly 
Utilization 

750 2.79 6.28 0.00 0.00 0.00 0.00 30.60 

Match Factor 750 1.07 0.09 0.75 1.07 1.11 1.13 1.17 

Hauler Production Per 
Operating Hour (t/h) 

750 297.80 83.83 167.21 224.93 291.55 367.54 478.50 

Fleet Operating Unit 
Cost ($/t) 

750 1.61 0.46 0.94 1.20 1.51 1.95 2.63 

Fleet Total Cost of Unit 
Ownership ($/t) 

750 2.59 0.72 1.47 1.96 2.43 3.13 4.24 

Fleet Owning Unit 
Cost ($/t) 

750 0.63 0.16 0.33 0.51 0.60 0.75 1.03 

Fleet Fuel Unit Cost 
($/t) 

750 0.35 0.10 0.20 0.26 0.33 0.43 0.58 

Hauler Operating Unit 
Cost ($/t) 

750 1.59 0.46 0.91 1.18 1.49 1.94 2.60 

Hauler Total Cost of 
Unit Ownership ($/t) 

750 2.49 0.73 1.43 1.86 2.34 3.03 4.08 

Hauler Owning Unit 
Cost ($/t) 

750 0.55 0.16 0.32 0.41 0.52 0.67 0.90 

Hauler Fuel Unit Cost 
($/t) 

750 0.35 0.10 0.20 0.26 0.33 0.43 0.57 

Loader Operating Unit 
Cost ($/t) 

750 0.02 0.01 0.00 0.00 0.02 0.03 0.05 

Loader Total Cost of 
Unit Ownership ($/t) 

750 0.10 0.08 0.00 0.00 0.15 0.16 0.26 

Loader Owning Unit 
Cost ($/t) 

750 0.08 0.06 0.00 0.00 0.12 0.12 0.20 

Rolling Resistance 750 3.94 1.63 2.00 2.00 4.00 6.00 6.00 
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Figure 4-28 Spearman correlation matrix for simulated data 

In contrast, other parameters, such as shovel utilization, is reversely correlated with the other 

selected features especially when queuing condition occurs. It is reversely correlated but less 

strong with other operating parameters. Pearson correlation matrix has quite similar 

correlation values between the operating parameters, as illustrated in Figure 4-29. 

However, features such as trucks queued and fleet production have a big difference value 

between two correlation approaches equal to 0.27 in Queued truck and Fleet production, and a 

0.22 match factor has much difference between queued trucks and loader utilization, more of 

these differences summarized in Table 4-9. This difference is because Spearman correlation 

considers the monotonic relationships while Pearson evaluates the linear relationship between 

two continuous variables. 
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Figure 4-29 Pearson correlation matrix for simulated data  
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Table 4-9 Correlation matrices result differences 

 
Truck 
Fleet 
Size 

Truck 
Cycle 
Time 
(min) 

Fleet 
Production 
/ Year (Mt) 

Trucks 
in Q 

Match 
Factor 

Fleet Cost 
of Unit 

Ownership 
($/t) 

Shovel 
Hourly 

Utilization 

Fleet 
Operating 
Unit Cost 

($/t) 

Truck 
Fleet Size 

0.00 0.02 0.13 0.02 0.03 0.00 -0.05 0.00 

Truck 
Average 

Cycle Time 
(min) 

0.02 0.00 0.21 0.00 0.26 0.00 -0.21 0.00 

Fleet 
Production 

/ Year 
(Mt) 

0.13 0.21 0.00 0.27 -0.12 0.26 -0.02 0.25 

Trucks in 
Q 

0.02 0.00 0.27 0.00 0.22 -0.01 -0.22 -0.01 

Match 
Factor 

0.03 0.26 -0.12 0.22 0.00 0.24 0.22 0.24 

Fleet Total 
Cost of 

Unit 
Ownership 

($/t) 

0.00 0.00 0.26 -0.01 0.24 0.00 -0.18 0.00 

Shovel 
Hourly 

Utilization 
-0.05 -0.21 -0.02 -0.22 0.22 -0.18 0.00 -0.19 

Fleet 
Operating 
Unit Cost 

($/t) 

0.00 0.00 0.25 -0.01 0.24 0.00 -0.19 0.00 

4.12.7 Multiple ML Algorithms 

Figure 4-30 illustrates the comparison of the algorithms generated. Most algorithms showed a 

high accuracy median value except for the Gaussian NB algorithm, valued at 0.57. The LR 

showed the highest recall value at 0.9, followed by CART and the RF with accuracy values of 

0.83 and 0.795, respectively. Therefore, ML implementation was done based on the LR method 
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due to its higher accuracy and the tendency of dual categorical values. The final decision would 

be a FT or FB based on certain parameters. Additional RF analysis was used to weight the 

parameters based on their significance in the loading strategy. 

 
Figure 4-30 Analysis and comparison of multiple algorithms 

4.12.8 Logistic Regression (LR) 

The simulated data from various scenarios were implemented into the LR model to understand 

the effecting factors in the operation and to predict the loading strategy based on the selected 

data features. The training data feature included hauler fleet size, cycle time, trucks in the 

queue, MF and RR. The testing was based on 20% of the simulated data in 750 records. The 

confusion matrix illustrated in Figure 4-31 shows more than 90% accuracy in predicting the 

loading strategies. 
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Figure 4-31 confusion matrix for the logistic regression model 

In order to interpret the resulting logistic regression ML model, after training the data, 

parameter weights are evaluated, as shown in Figure 4-32. It is clear that the cycle time is the 

major effecting factor in predicting the loading strategies followed by MF, while the trucks in 

queue feature have the lowest feature importance. 

 

Figure 4-32 Logistic regression feature importance results 

4.12.9 Shap Values 

Shap values (SHapley Additive exPlanations) is a cooperative game theory method used to 

increase the transparency and interpretability of ML methods. In Figure 4-33, the order of 

columns represents the amount of information accountable for in ML prediction, colour reflects 

the real data, and the x-axis represents the shap value impact on the model categorical decision 

(FT or FB). Each dot corresponds to an individual loading strategy in the simulation. The dot's 
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position on the x-axis shows the feature's impact on the model's prediction for that strategy. 

When multiple dots land at the same x position, they pile up to show density. To get an overview 

of which features are most important for a model, the SHAP values of every feature for every 

sample can be plotted. The figure examines these values by sorting the sum of SHAP value 

magnitudes over all samples and uses SHAP values to show the distribution of each feature's 

impacts on the model. The colour represents the feature value; red for high values and blue for 

low values. Similar to logistic regression cycle time has the highest impact on model output and 

the queued trucks has the lowest impact. 

 
Figure 4-33 A set of bee swarm plots for the machine learning model 

Similarly, plotting the data in a different method, as shown in Figure 4-34 the cycle time 

contributes the most to the model prediction, followed by fleet size. Results of Gini map are in 

APPENDIX A. 

 
Figure 4-34 Bar plot Shapley feature importance in predicting model 
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4.13 Summary and conclusion 

This chapter demonstrated the case study in the application of loading strategies frameworks. 

By using DES at different levels for understanding and comparing the results in each case 

scenario under the assumption of uncertainty. Starting with material, equipment and shift 

configuration in the software and importing a schedule for examining the loading strategies. 

Next, selecting different fleet sizes based on referenced MF and running the simulation. 

In the results stage, simulation data showed that cycle time under the FT loading strategy is 

always higher than the FB strategy. FT strategy also showed that queueing conditions are 

always higher than FB using queueing theory and truck arrival rate formula in calculating the 

number of trucks queued at the shovel. In contrast, the production rates were higher in the FB 

scenario than in FT when the number of trucks increased; this might be useful in achieving 

higher production in a certain period of the mine plan. 

Simulation data showed that Production-Cost-Fleet curves were meaningful in reflecting the 

operation KPIs and determining the sweet spots. The cost difference between loading strategies 

might reach 25% if MF surged to 1.5 and the fleet was reassigned to a different shovel. 

Furthermore, queued trucks were almost half the number in FB. Based on these analyses, an 

opportunity that advantaged the FB over FT based on increasing the MF in hauling and loading 

operations, which were directly related to the impact of equipment availability, utilization, and 

operator skills. 

The results showed that it is possible to provide a recommended loading decision when planned 

and unplanned operation uncertainties occur. Furthermore, it is possible now to predict the 

proper loading strategy using ML algorithms with higher accuracy and evaluate the most 

valuable KPI in operation, which induce this change in loading strategy. The results confirmed 

that it is possible to provide a recommended decision when planned and unplanned operation 

stoppages resulting in queuing or shovel breakdown for a short time. 
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CHAPTER 5  

SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

 

 

This chapter covers the contribution and importance of the research. The conclusions of this 

research are emphasized, as well as recommendations for future work. 
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5.1 Summary of Research 

This research presents a simulation framework for adapting the full truck (FT) and full bucket 

(FB) loading strategies in an open-pit mine using the discrete event simulation (DES) approach 

and taking into consideration the equipment uncertainty in operation. 

The simulation framework starts by configuring the mining operation data from the shovel 

operator and shovel material perspectives. A set of assumptions is considered to conceptualize 

the simulation's loading strategies. Then embedding the decision of the loading strategies, 

whether FT or FB in operation. Next, generating the operational key performance indicators 

(KPIs) related to the fleet, such as cycle time, fleet production rate, number of queued trucks 

and material costs; and based on the final results, the preferred loading strategy is adopted.  

This research aimed to evaluate the advantages of considering FT or FB in the mining operation 

using DES under uncertain conditions. Moreover, the queueing conditions of the truck at the 

shovel were calculated based on queuing theory approach. The match factor (MF) was also 

introduced in this operation and was directly related between shovels and various trucks. 

The final results were brought in a machine learning (ML) model in order to predict the loading 

strategy based on a set of features. Features data was created from additional scenarios to adapt 

the real mine operation more. So it included various rolling resistance (RR), mine haul roads, 

and different shovel sizes. Feature data was also evaluated and ranked based on prediction 

importance; this would be useful in understanding the triggering element that induces the 

switch more. Based on the selected element, more potential studies on the selected element 

could be built to enhance the operation. 

5.2 Conclusions 

The main conclusions of this research are the following:  

• At match factor ≅ 1, the default loading strategy is the FT in normal circumstances. The 

reality in truck-shovel operation is that most operators try to fill the truck even if it takes 

longer loading times to achieve the production rate. Usually, the operation runs at MF 

equal to 1, which means 100% efficiency. 

• Shovel availability signifies the importance of switching between a FT and FB loading 

strategies. Therefore, shovel uncertainty is a significant factor that should be considered 

in loading strategies. 
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• When shifting from FT to FB, hauling costs can be reduced up to 25% in operation. The 

resulted difference in costs is based on a high service rate from the shovel point and 

more utilization of the trucks, i.e., no queueing, plus the trucks’ lower fuel consumption 

rate because they are underloaded. 

• Switching from FT to FB increases the production to a point where production 

stabilizes. However, it is wise to control to what extent the number of trucks will be 

reassigned to the shovel. The number of trucks should not exceed the saturation point 

of production. 

• Queuing conditions at shovel are reduced when switching from FT to FB. Due to the 

high service rate from adapting the FB strategy, the number of trucks queued at shovels 

is reduced and no time is wasted at the shovel. This can be beneficial for mining 

operations with high queueing conditions or constraints at the shovel. 

• Shovel production and utilization increase when the FB strategy is adapted due to lower 

passes (faster loading); hence, the loading time will be low. If a mining operation 

requires more production rates without changing the fleet size, then a FB strategy may 

help in achieving this target. 

• ML algorithms are useful and crucial in predicting and understanding how the 

operation is running. The implemented logistic regression was capable of predicting the 

loading strategy with higher accuracy based on a set of simulated data. The ML 

methodology handles any data at any stage in the life of mine, opening the area for 

different short-term analyses and potentially the long-term by understanding the 

operation as all; material changing characteristics, anticipated blasting, equipment 

availability and utilization, production rate requirements. All previous information 

could be utilized and used in prediction. This goes as well with feature importance and 

will evaluate the most contributing feature in ML prediction. 

• Cycle time is the primary factor affecting the adapted loading strategy based on the 

simulated data. The importance of cycle time makes it the controlling parameter in 

operation. Generally, shorter cycle times, queueing conditions and high production 

requirements will favour the FB loading strategy more. 

5.3 Contributions of the Research 

The main contribution of this research is in evaluating the FT and FB loading strategies in 

mining operations and providing the knowledge gained through each selected strategy as a 
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result of multiple operation KPIs. Developing a framework that places the loading strategies 

shows how the loading strategy influences the operation. Also, a DES model was created to 

understand the effect of the loading strategy where results indicated the sweet spots of each 

loading strategy in different circumstances. The contribution of the ML is that it can now 

predict the proper loading strategy with higher accuracy. The methodological approach could 

be integrated into more complicated dispatching logic and advanced autonomous trucks. 

5.4 Recommendations for Future Research 

The following suggestion is a set of recommendations for future research, taking into 

consideration the research limitations which can be improved more in future: 

• Incorporating the effect of fragmentation size of blasted material and geological 

uncertainty. Fragmentation size is a crucial element affecting the loaded bucket, which 

affects the final payload and the adapted loading strategy. It is also important to 

consider the optimization field in blasting outcomes that depend on blast design and 

the nature of the material. 

• Integrating with Autonomous trucks data will give valuable results and more 

understanding due to a reduction in uncertainties. 

• Investigate in reducing greenhouse gas (GHG) emissions by increasing production; with 

the new consideration of carbon footprints resulting from mining activities, reducing 

fuel consumption resulting from lower truck loading will reduce the emissions rate.  

• Investigate integrating with In-Pit Extraction Process IPEP in oil sands (ore hauling is 

shortened will affect cycle time) outcome would be reducing GHG. 

• Investigating the deep learning (DL) and reinforcement learning analysis can be done 

to optimize loading strategies, especially when huge data is available. 

• Integrating with autonomous trucks (level 4 and potentially level 5) data will give 

valuable results and more understanding due to a reduction in uncertainties (human 

factor, breaks, time losses) (involving sense, thinking and act). 

• Investigate the effect of shovel allocation plan on loading strategies. 
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APPENDIX B 

Python Codes 

##Importing Libraries## 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

import numpy as np 

 

## Reading and editing Dataframes## 

df = pd.read_csv('RR2_19022022_All__orig_filt_Drop_2.csv') 

 

df.columns.tolist() 

 

df.dtypes.tolist() 

 

df.describe().T 

 

df1 = df[['Hauler Fleet Size', 'Hauler Average Travel Time (min)', 'Hauler 

Average Load Queue Time (min)', 

          'Hauler Average Cycle Time (min)', 'Fleet Production / Year 

(Mt)', 'Trucks in Q', 'Match Factor',  

          'Rolling Resistance', 'Fleet Total Cost Of Unit Ownership ($/t)', 

'Loader Hourly Utilization',  

          'Fleet Owning Unit Cost ($/t)', 'Hauler Production Per Operating 

Hour (t/h)',  

          'Loader Production Per Operating Hour (t/h)','Fleet Operating 

Unit Cost ($/t)', 

          'Loader Total Cost Of Unit Ownership ($/t)','Loader Operating 

Unit Cost ($/t)', 

          'Hauler Operating Unit Cost ($/t)', 'Hauler Total Cost Of Unit 

Ownership ($/t)', 

          'Loading Strat (1 FT 0 FB)','Road','Shovel_type']].copy() 

 

df1b = df[['Hauler Fleet Size','Hauler Average Cycle Time (min)', 'Fleet 

Production / Year (Mt)', 'Trucks in Q', 'Match Factor',  

          'Fleet Total Cost Of Unit Ownership ($/t)', 'Loader Hourly 

Utilization', 

          'Fleet Operating Unit Cost ($/t)' ]].copy() 

 

##Exploratory Data Analysis## 

corrMatrix = df1b.corr('pearson') 

 

corrMatrix 

 

corrMatrix_spearman.to_excel('Pearson.xlsx') 
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plt.figure(figsize=(6, 6)) 

 

corrMatrix = df1b.corr('pearson') 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm',xticklabels=1) 

plt.title("Pearson Correlation") 

 

corrMatrix_spearman = df1b.corr('spearman') 

 

corrMatrix_spearman 

 

corrMatrix_spearman.to_excel('spearman.xlsx') 

 

plt.figure(figsize=(6, 6)) 

 

corrMatrix = df1b.corr('spearman') 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm',xticklabels=1) 

plt.title("Spearman Correlation") 

 

plt.figure(figsize=(15, 12)) 

corrMatrix = df1b.corr('spearman') 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm') 

plt.title("Spearman Correlation") 

ax.set_xticklabels(df1b,rotation=45) 

plt.savefig('Spearman_corr.png', bbox_inches='tight') 

 

plt.figure(figsize=(15, 15)) 

corrMatrix = df.corr('spearman') 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm') 

plt.title("Spearman Correlation") 

plt.savefig('Spearman_corr.png', bbox_inches='tight') 

 

plt.figure(figsize=(15, 15)) 

corrMatrix = df1.corr('spearman') 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm') 

plt.title("Spearman Correlation") 

 

 

plt.figure(figsize=(15, 15)) 

corrMatrix = df1.corr() 

sns.heatmap(corrMatrix, annot=True,cmap='coolwarm',vmin=-1, vmax=1, 

center=0,square=True) 

plt.title("Pearson Correlation") 

#ax.set_xticklabels( 

#    ax.get_xticklabels(), 

 #   rotation=45, 

 #   horizontalalignment='right' 

#) 

plt.savefig('Pearson_corr.png', bbox_inches='tight') 

 

df1.corr() 

 

def f(df1): 

    if df1['Loading Strat (1 FT 0 FB)'] == 1: 

        val = 'Full Truck' 

    else: 

        val = 'Full Bucket' 
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    return val 

 

df1['Loading Cat'] = df1.apply(f, axis=1) 

 

pd.set_option("display.max_rows", None) 

 

pd.set_option("display.max_columns", None) 

 

df_FT = df1[df1['Loading Cat']=='Full Truck'] 

 

df_FB = df1[df1['Loading Cat']=='Full Bucket'] 

 

##EDA Plotting## 

sns.countplot(x='Loading Cat',data=df1) 

 

sns.countplot(x='Loading Cat',data=df1,hue='Rolling Resistance') 

     

df1.info() 

 

sns.countplot(x='Loading Cat',data=df1,hue='Shovel_type') 

 

sns.countplot(x='Loading Cat',data=df1,hue='Road') 

 

df2 = df1 

 

df3 = pd.concat([df2,Load_strat],axis=1) 

 

df3.rename(columns={1: "Full Truck"}, inplace=True) 

 

df3.drop(['Loading Cat','Road','Shovel_type'],axis=1,inplace=True) 

 

df4 = df3 

 

df4.drop(['Full Truck','Loading Strat (1 FT 0 FB)','Loader Production Per 

Operating Hour (t/h)'],axis=1,inplace=True) 

 

##Machine Learning## 

df_train = df4[['Hauler Fleet Size','Hauler Average Cycle Time 

(min)','Trucks in Q' 

               ,'Match Factor','Rolling Resistance']] 

 

X = df_train 

 

y = df3['Loading Strat (1 FT 0 FB)'] 

 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=101) 

 

from sklearn.linear_model import LogisticRegression 

 

logmodel = LogisticRegression() 

 

logmodel.fit(X_train,y_train) 
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predictions = logmodel.predict(X_test) 

 

from sklearn.metrics import classification_report 

 

print(classification_report(y_test,predictions)) 

 

from sklearn.metrics import confusion_matrix 

 

confusion_matrix(y_test,predictions) 

 

cf_matrix = confusion_matrix(y_test,predictions) 

 

ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with labels\n\n'); 

ax.set_xlabel('\nPredicted Values') 

ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 

ax.xaxis.set_ticklabels(['False','True']) 

ax.yaxis.set_ticklabels(['False','True']) 

 

## Display the visualization of the Confusion Matrix. 

 

plt.savefig('LR_Confusion_matrix.png', bbox_inches='tight') 

 

ax = sns.heatmap(cf_matrix/np.sum(cf_matrix), annot=True,  

            fmt='.2%', cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with labels\n\n'); 

ax.set_xlabel('\nPredicted Values') 

ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 

ax.xaxis.set_ticklabels(['False','True']) 

ax.yaxis.set_ticklabels(['False','True']) 

 

## Display the visualization of the Confusion Matrix. 

 

plt.savefig('LR_Confusion_matrix_perc.png', bbox_inches='tight') 

 

from sklearn.datasets import make_classification 

from sklearn.metrics import plot_confusion_matrix 

from sklearn.model_selection import train_test_split 

from sklearn.svm import SVC 

 

ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with labels\n\n'); 

ax.set_xlabel('\nPredicted Values') 

ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 

ax.xaxis.set_ticklabels(['False','True']) 

ax.yaxis.set_ticklabels(['False','True']) 
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## Display the visualization of the Confusion Matrix. 

plt.show() 

 

ax = sns.heatmap(cf_matrix/np.sum(cf_matrix), annot=True,  

            fmt='.2%', cmap='Blues') 

 

ax.set_title('Seaborn Confusion Matrix with labels\n\n'); 

ax.set_xlabel('\nPredicted Values') 

ax.set_ylabel('Actual Values '); 

 

## Ticket labels - List must be in alphabetical order 

ax.xaxis.set_ticklabels(['False','True']) 

ax.yaxis.set_ticklabels(['False','True']) 

 

## Display the visualization of the Confusion Matrix. 

plt.show() 

 

from sklearn.model_selection import train_test_split, KFold, 

cross_val_score # to split the data 

from sklearn.metrics import accuracy_score, confusion_matrix, 

classification_report, fbeta_score #To evaluate our model 

 

from sklearn.model_selection import GridSearchCV 

 

# Algorithmns models to be compared 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.naive_bayes import GaussianNB 

from sklearn.svm import SVC 

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, 

random_state=101) 

 

 

 

# prepare models 

models = [] 

models.append(('LR', LogisticRegression())) 

models.append(('LDA', LinearDiscriminantAnalysis())) 

models.append(('KNN', KNeighborsClassifier())) 

models.append(('CART', DecisionTreeClassifier())) 

models.append(('NB', GaussianNB())) 

models.append(('RF', RandomForestClassifier())) 

models.append(('SVM', SVC(gamma='auto'))) 

 

 

 

# evaluate each model in turn 

results = [] 

names = [] 

scoring = 'recall' 
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for name, model in models: 

        kfold = KFold(n_splits=10) 

        cv_results = cross_val_score(model, X_train, y_train, cv=kfold, 

scoring=scoring) 

        results.append(cv_results) 

        names.append(name) 

        msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) 

        print(msg) 

         

# boxplot algorithm comparison 

fig = plt.figure(figsize=(11,6)) 

fig.suptitle('Algorithm Comparison') 

ax = fig.add_subplot(111) 

plt.boxplot(results) 

ax.set_xticklabels(names) 

plt.show() 

 

#Seting the Hyper Parameters 

param_grid = {"max_depth": [3,5, 7, 10,None], 

              "n_estimators":[3,5,10,25,50,150], 

              "max_features": [4,7,15,20]} 

 

#Creating the classifier 

model = RandomForestClassifier(random_state=2) 

 

grid_search = GridSearchCV(model, param_grid=param_grid, cv=5, 

scoring='recall', verbose=4) 

grid_search.fit(X_train, y_train) 

 

print(grid_search.best_score_) 

print(grid_search.best_params_) 

 

rf = RandomForestClassifier(max_depth=None, n_estimators=15, 

random_state=2) 

 

#trainning with the best params 

rf.fit(X_train, y_train) 

 

#Testing the model on 

#Predicting using our  model 

y_pred = rf.predict(X_test) 

 

# Verificaar os resultados obtidos 

print(accuracy_score(y_test,y_pred)) 

print("\n") 

print(confusion_matrix(y_test, y_pred)) 

print("\n") 

print(fbeta_score(y_test, y_pred, beta=2)) 

 

pip install shap 

 

from sklearn.datasets import load_boston 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.inspection import permutation_importance 

import shap 
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logmodel_rf = LogisticRegression() 

 

#random forest 

rf = RandomForestRegressor(n_estimators=100) 

rf.fit(X_train, y_train) 

 

rf.feature_importances_ 

 

mpl.rcParams.update(mpl.rcParamsDefault) 

 

shap.summary_plot(shap_values, X_test, plot_type="bar",show=False) 

 

plt.savefig('outputbar.png' ,bbox_inches='tight', dpi=200) 

 

shap.summary_plot(shap_values, X_test,show=False) 

 

plt.savefig('outputbar_shap.png' ,bbox_inches='tight', dpi=200) 
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APPENDIX C 

Rimpull data 

R1 FB 

Index From To 
Distance 

(m) 
Grade (%) Load 

1 (10,560.00, 10,837.50, 920.00) (10,660.00, 10,837.50, 920.00) 100 0 Full 

2 (10,660.00, 10,837.50, 920.00) (10,749.55, 10,838.64, 920.00) 89.56 0 Full 

3 (10,749.55, 10,838.64, 920.00) (10,809.95, 10,836.44, 920.00) 60.44 0 Full 

4 (10,809.95, 10,836.44, 920.00) (10,798.13, 10,762.40, 920.00) 74.98 0 Full 

5 (10,798.13, 10,762.40, 920.00) (10,795.87, 10,657.86, 930.00) 105.04 9.56 Full 

6 (10,795.87, 10,657.86, 930.00) (10,793.62, 10,553.31, 940.00) 105.04 9.56 Full 

7 (10,793.62, 10,553.31, 940.00) (10,805.99, 10,548.86, 940.00) 13.16 0 Full 

8 (10,805.99, 10,548.86, 940.00) (10,807.72, 10,548.24, 940.00) 1.83 0 Full 

9 (10,807.72, 10,548.24, 940.00) (10,822.95, 10,565.72, 940.37) 23.19 1.58 Full 

10 (10,822.95, 10,565.72, 940.37) (10,845.50, 10,660.87, 950.00) 98.26 9.85 Full 

11 (10,845.50, 10,660.87, 950.00) (10,868.92, 10,759.64, 960.00) 102 9.85 Full 

12 (10,868.92, 10,759.64, 960.00) (10,892.33, 10,858.41, 970.00) 102 9.85 Full 

13 (10,892.33, 10,858.41, 970.00) (10,904.04, 10,907.80, 975.00) 51 9.85 Full 

14 (10,904.04, 10,907.80, 975.00) (10,944.63, 11,035.54, 976.38) 134.05 1.03 Full 

15 (10,944.63, 11,035.54, 976.38) (10,943.26, 11,071.79, 980.00) 36.45 9.98 Full 

16 (10,943.26, 11,071.79, 980.00) (10,941.74, 11,112.31, 984.05) 40.75 9.98 Full 

17 (10,941.74, 11,112.31, 984.05) (10,914.97, 11,168.16, 989.48) 62.17 8.77 Full 

18 (10,914.97, 11,168.16, 989.48) (10,910.71, 11,172.03, 990.00) 5.77 9.04 Full 

19 (10,910.71, 11,172.03, 990.00) (10,859.82, 11,218.30, 996.22) 69.07 9.04 Full 

20 (10,859.82, 11,218.30, 996.22) 
(10,817.79, 11,227.05, 

1,000.00) 
43.09 8.81 Full 

21 
(10,817.79, 11,227.05, 

1,000.00) 
(10,813.87, 11,227.87, 

1,000.35) 
4.02 8.81 Full 

22 
(10,813.87, 11,227.87, 

1,000.35) 
(10,721.02, 11,201.05, 

1,010.00) 
97.13 9.98 Full 

23 
(10,721.02, 11,201.05, 

1,010.00) 
(10,646.56, 11,179.54, 

1,017.74) 
77.89 9.98 Full 

24 
(10,646.56, 11,179.54, 

1,017.74) 
(10,625.15, 11,171.72, 

1,020.00) 
22.91 9.93 Full 

25 
(10,625.15, 11,171.72, 

1,020.00) 
(10,530.55, 11,137.15, 

1,030.00) 
101.21 9.93 Full 

26 
(10,530.55, 11,137.15, 

1,030.00) 
(10,435.95, 11,102.58, 

1,040.00) 
101.21 9.93 Full 
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27 
(10,435.95, 11,102.58, 

1,040.00) 
(10,377.99, 11,081.40, 

1,046.13) 
62.02 9.93 Full 

28 
(10,377.99, 11,081.40, 

1,046.13) 
(10,340.13, 11,070.68, 

1,050.00) 
39.53 9.84 Full 

29 
(10,340.13, 11,070.68, 

1,050.00) 
(10,273.95, 11,051.94, 

1,056.77) 
69.12 9.84 Full 

30 
(10,273.95, 11,051.94, 

1,056.77) 
(10,241.55, 11,036.10, 

1,060.00) 
36.21 8.95 Full 

31 
(10,241.55, 11,036.10, 

1,060.00) 
(10,233.60, 11,032.21, 

1,060.79) 
8.89 8.95 Full 

32 
(10,233.60, 11,032.21, 

1,060.79) 
(10,199.98, 10,976.11, 

1,067.73) 
65.77 10.6 Full 

33 
(10,199.98, 10,976.11, 

1,067.73) 
(10,192.62, 10,949.74, 

1,070.00) 
27.47 8.3 Full 

34 
(10,192.62, 10,949.74, 

1,070.00) 
(10,160.24, 10,833.73, 

1,080.00) 
120.87 8.3 Full 

35 
(10,160.24, 10,833.73, 

1,080.00) 
(10,144.66, 10,810.58, 

1,080.00) 
27.9 0 Full 

36 
(10,144.66, 10,810.58, 

1,080.00) 
(10,140.35, 10,817.77, 

1,080.00) 
8.39 0 Full 

37 
(10,140.35, 10,817.77, 

1,080.00) 
(10,128.33, 10,837.81, 

1,080.00) 
23.37 0 Full 

38 
(10,128.33, 10,837.81, 

1,080.00) 
(10,140.68, 10,933.84, 

1,087.03) 
97.07 7.26 Full 

39 
(10,140.68, 10,933.84, 

1,087.03) 
(10,154.87, 10,999.78, 

1,090.00) 
67.51 4.41 Full 

40 
(10,154.87, 10,999.78, 

1,090.00) 
(10,174.10, 11,089.14, 

1,094.03) 
91.5 4.41 Full 

41 
(10,174.10, 11,089.14, 

1,094.03) 
(10,130.99, 11,109.32, 

1,090.91) 
47.7 -6.55 Full 

42 
(10,130.99, 11,109.32, 

1,090.91) 
(10,061.96, 11,127.76, 

1,088.82) 
71.48 -2.92 Full 

43 
(10,061.96, 11,127.76, 

1,088.82) 
(10,049.84, 11,132.15, 

1,088.47) 
12.89 -2.78 Full 

44 
(10,049.84, 11,132.15, 

1,088.47) 
(10,078.39, 11,232.96, 

1,086.74) 
104.78 -1.65 Full 

45 
(10,078.39, 11,232.96, 

1,086.74) 
(10,082.83, 11,408.66, 

1,084.89) 
175.77 -1.05 Full 

46 
(10,082.83, 11,408.66, 

1,084.89) 
(10,032.15, 11,495.34, 

1,082.45) 
100.44 -2.43 Full 

47 
(10,032.15, 11,495.34, 

1,082.45) 
(10,006.53, 11,524.93, 

1,079.89) 
39.23 -6.53 Full 

48 
(10,006.53, 11,524.93, 

1,079.89) 
(9,953.18, 11,512.28, 

1,080.33) 
54.83 0.81 Full 

49 
(9,953.18, 11,512.28, 

1,080.33) 
(9,818.04, 11,374.01, 

1,085.58) 
193.41 2.71 Full 

50 
(9,818.04, 11,374.01, 

1,085.58) 
(9,694.87, 11,268.84, 

1,087.16) 
161.96 0.98 Full 

51 
(9,694.87, 11,268.84, 

1,087.16) 
(9,669.77, 11,290.64, 

1,087.15) 
33.24 -0.04 Full 
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52 
(9,669.77, 11,290.64, 

1,087.15) 
(9,694.87, 11,268.84, 

1,087.16) 
33.24 0.04 Empty 

53 
(9,694.87, 11,268.84, 

1,087.16) 
(9,818.04, 11,374.01, 

1,085.58) 
161.96 -0.98 Empty 

54 
(9,818.04, 11,374.01, 

1,085.58) 
(9,953.18, 11,512.28, 

1,080.33) 
193.41 -2.71 Empty 

55 
(9,953.18, 11,512.28, 

1,080.33) 
(10,006.53, 11,524.93, 

1,079.89) 
54.83 -0.81 Empty 

56 
(10,006.53, 11,524.93, 

1,079.89) 
(10,032.15, 11,495.34, 

1,082.45) 
39.23 6.53 Empty 

57 
(10,032.15, 11,495.34, 

1,082.45) 
(10,082.83, 11,408.66, 

1,084.89) 
100.44 2.43 Empty 

58 
(10,082.83, 11,408.66, 

1,084.89) 
(10,078.39, 11,232.96, 

1,086.74) 
175.77 1.05 Empty 

59 
(10,078.39, 11,232.96, 

1,086.74) 
(10,049.84, 11,132.15, 

1,088.47) 
104.78 1.65 Empty 

60 
(10,049.84, 11,132.15, 

1,088.47) 
(10,061.96, 11,127.76, 

1,088.82) 
12.89 2.78 Empty 

61 
(10,061.96, 11,127.76, 

1,088.82) 
(10,130.99, 11,109.32, 

1,090.91) 
71.48 2.92 Empty 

62 
(10,130.99, 11,109.32, 

1,090.91) 
(10,174.10, 11,089.14, 

1,094.03) 
47.7 6.55 Empty 

63 
(10,174.10, 11,089.14, 

1,094.03) 
(10,154.87, 10,999.78, 

1,090.00) 
91.5 -4.41 Empty 

64 
(10,154.87, 10,999.78, 

1,090.00) 
(10,140.68, 10,933.84, 

1,087.03) 
67.51 -4.41 Empty 

65 
(10,140.68, 10,933.84, 

1,087.03) 
(10,128.33, 10,837.81, 

1,080.00) 
97.07 -7.26 Empty 

66 
(10,128.33, 10,837.81, 

1,080.00) 
(10,140.35, 10,817.77, 

1,080.00) 
23.37 0 Empty 

67 
(10,140.35, 10,817.77, 

1,080.00) 
(10,144.66, 10,810.58, 

1,080.00) 
8.39 0 Empty 

68 
(10,144.66, 10,810.58, 

1,080.00) 
(10,160.24, 10,833.73, 

1,080.00) 
27.9 0 Empty 

69 
(10,160.24, 10,833.73, 

1,080.00) 
(10,192.62, 10,949.74, 

1,070.00) 
120.87 -8.3 Empty 

70 
(10,192.62, 10,949.74, 

1,070.00) 
(10,199.98, 10,976.11, 

1,067.73) 
27.47 -8.3 Empty 

71 
(10,199.98, 10,976.11, 

1,067.73) 
(10,233.60, 11,032.21, 

1,060.79) 
65.77 -10.6 Empty 

72 
(10,233.60, 11,032.21, 

1,060.79) 
(10,241.55, 11,036.10, 

1,060.00) 
8.89 -8.95 Empty 

73 
(10,241.55, 11,036.10, 

1,060.00) 
(10,273.95, 11,051.94, 

1,056.77) 
36.21 -8.95 Empty 

74 
(10,273.95, 11,051.94, 

1,056.77) 
(10,340.13, 11,070.68, 

1,050.00) 
69.12 -9.84 Empty 

75 
(10,340.13, 11,070.68, 

1,050.00) 
(10,377.99, 11,081.40, 

1,046.13) 
39.53 -9.84 Empty 

76 
(10,377.99, 11,081.40, 

1,046.13) 
(10,435.95, 11,102.58, 

1,040.00) 
62.02 -9.93 Empty 
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77 
(10,435.95, 11,102.58, 

1,040.00) 
(10,530.55, 11,137.15, 

1,030.00) 
101.21 -9.93 Empty 

78 
(10,530.55, 11,137.15, 

1,030.00) 
(10,625.15, 11,171.72, 

1,020.00) 
101.21 -9.93 Empty 

79 
(10,625.15, 11,171.72, 

1,020.00) 
(10,646.56, 11,179.54, 

1,017.74) 
22.91 -9.93 Empty 

80 
(10,646.56, 11,179.54, 

1,017.74) 
(10,721.02, 11,201.05, 

1,010.00) 
77.89 -9.98 Empty 

81 
(10,721.02, 11,201.05, 

1,010.00) 
(10,813.87, 11,227.87, 

1,000.35) 
97.13 -9.98 Empty 

82 
(10,813.87, 11,227.87, 

1,000.35) 
(10,817.79, 11,227.05, 

1,000.00) 
4.02 -8.81 Empty 

83 
(10,817.79, 11,227.05, 

1,000.00) 
(10,859.82, 11,218.30, 996.22) 43.09 -8.81 Empty 

84 (10,859.82, 11,218.30, 996.22) (10,910.71, 11,172.03, 990.00) 69.07 -9.04 Empty 

85 (10,910.71, 11,172.03, 990.00) (10,914.97, 11,168.16, 989.48) 5.77 -9.04 Empty 

86 (10,914.97, 11,168.16, 989.48) (10,941.74, 11,112.31, 984.05) 62.17 -8.77 Empty 

87 (10,941.74, 11,112.31, 984.05) (10,943.26, 11,071.79, 980.00) 40.75 -9.98 Empty 

88 (10,943.26, 11,071.79, 980.00) (10,944.63, 11,035.54, 976.38) 36.45 -9.98 Empty 

89 (10,944.63, 11,035.54, 976.38) (10,904.04, 10,907.80, 975.00) 134.05 -1.03 Empty 

90 (10,904.04, 10,907.80, 975.00) (10,892.33, 10,858.41, 970.00) 51 -9.85 Empty 

91 (10,892.33, 10,858.41, 970.00) (10,868.92, 10,759.64, 960.00) 102 -9.85 Empty 

92 (10,868.92, 10,759.64, 960.00) (10,845.50, 10,660.87, 950.00) 102 -9.85 Empty 

93 (10,845.50, 10,660.87, 950.00) (10,822.95, 10,565.72, 940.37) 98.26 -9.85 Empty 

94 (10,822.95, 10,565.72, 940.37) (10,807.72, 10,548.24, 940.00) 23.19 -1.58 Empty 

95 (10,807.72, 10,548.24, 940.00) (10,805.99, 10,548.86, 940.00) 1.83 0 Empty 

96 (10,805.99, 10,548.86, 940.00) (10,793.62, 10,553.31, 940.00) 13.16 0 Empty 

97 (10,793.62, 10,553.31, 940.00) (10,795.87, 10,657.86, 930.00) 105.04 -9.56 Empty 

98 (10,795.87, 10,657.86, 930.00) (10,798.13, 10,762.40, 920.00) 105.04 -9.56 Empty 

99 (10,798.13, 10,762.40, 920.00) (10,809.95, 10,836.44, 920.00) 74.98 0 Empty 

100 (10,809.95, 10,836.44, 920.00) (10,749.55, 10,838.64, 920.00) 60.44 0 Empty 

101 (10,749.55, 10,838.64, 920.00) (10,660.00, 10,837.50, 920.00) 89.56 0 Empty 

102 (10,660.00, 10,837.50, 920.00) (10,560.00, 10,837.50, 920.00) 100 0 Empty 

Index Time (hh:mm:ss) Minimum Speed (km/h) 
Maximum 

Speed 
(km/h) 

Actual 
Initial 
Speed 
(km/h) 

Final 
Speed 
(km/h) 

1 0:00:25 0 20.02 0 20 

2 0:00:16 20 20.02 20 20 

3 0:00:11 14.04 20.02 20 14.04 

4 0:00:14 14.04 20.02 14.04 20 

5 0:00:24 15.2 20 20 15.2 

6 0:00:25 15.2 15.2 15.2 15.2 

7 0:00:03 15.2 18.11 15.2 16.81 
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8 0:00:00 16.22 16.81 16.81 16.22 

9 0:00:05 16.22 16.23 16.22 16.22 

10 0:00:24 14.84 16.22 16.22 14.84 

11 0:00:25 14.84 14.84 14.84 14.84 

12 0:00:25 14.84 14.84 14.84 14.84 

13 0:00:12 14.84 14.84 14.84 14.84 

14 0:00:18 14.84 33.8 14.84 30.49 

15 0:00:05 21.01 30.49 30.49 21.01 

16 0:00:09 15.15 21.01 21.01 15.15 

17 0:00:14 15.15 15.69 15.15 15.69 

18 0:00:01 15.6 15.69 15.69 15.6 

19 0:00:16 15.6 15.6 15.6 15.6 

20 0:00:10 15.6 15.68 15.6 15.68 

21 0:00:01 15.67 15.68 15.68 15.67 

22 0:00:24 14.68 15.67 15.67 14.68 

23 0:00:19 14.68 14.68 14.68 14.68 

24 0:00:06 14.68 14.73 14.68 14.73 

25 0:00:25 14.73 14.74 14.73 14.74 

26 0:00:25 14.74 14.74 14.74 14.74 

27 0:00:15 14.74 14.74 14.74 14.74 

28 0:00:10 14.74 14.85 14.74 14.85 

29 0:00:17 14.85 14.85 14.85 14.85 

30 0:00:08 14.85 15.63 14.85 15.63 

31 0:00:02 15.63 15.63 15.63 15.63 

32 0:00:17 13.82 15.63 15.63 13.82 

33 0:00:06 13.82 15.85 13.82 15.85 

34 0:00:27 15.62 15.85 15.85 15.62 

35 0:00:06 15.62 15.63 15.62 15.62 

36 0:00:02 15.62 18.29 15.62 18.29 

37 0:00:04 18.29 23.28 18.29 22.3 

38 0:00:17 19.06 22.3 22.3 19.06 

39 0:00:11 19.06 23.97 19.06 23.97 

40 0:00:13 23.72 25.98 23.97 23.72 

41 0:00:07 23.72 23.74 23.72 23.72 

42 0:00:10 18.61 28.99 23.72 18.61 

43 0:00:03 14.39 18.61 18.61 14.39 

44 0:00:15 14.39 36.51 14.39 36.43 

45 0:00:18 24.52 42.9 36.43 24.52 

46 0:00:12 24.45 33.79 24.52 24.45 

47 0:00:06 24.45 24.47 24.45 24.45 
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48 0:00:07 24.31 29.42 24.45 24.31 

49 0:00:23 24.31 32.73 24.31 32.73 

50 0:00:20 15.32 36.93 32.73 15.32 

51 0:00:13 0 17.23 15.32 0 

52 0:00:13 0 17.23 0 15.32 

53 0:00:19 15.32 44.54 15.32 44.54 

54 0:00:18 24.31 48.29 44.54 24.31 

55 0:00:07 24.31 29.84 24.31 24.45 

56 0:00:06 24.45 24.47 24.45 24.45 

57 0:00:12 24.45 33.79 24.45 24.52 

58 0:00:18 24.52 43.74 24.52 36.43 

59 0:00:15 14.39 36.51 36.43 14.39 

60 0:00:03 14.39 18.61 14.39 18.61 

61 0:00:10 18.61 28.99 18.61 23.72 

62 0:00:07 23.72 23.74 23.72 23.72 

63 0:00:10 23.72 39.38 23.72 39.38 

64 0:00:06 39.31 43.73 39.38 39.31 

65 0:00:11 22.3 39.31 39.31 22.3 

66 0:00:04 18.29 23.28 22.3 18.29 

67 0:00:02 15.62 18.29 18.29 15.62 

68 0:00:06 15.62 15.63 15.62 15.62 

69 0:00:16 15.62 38.49 15.62 37.6 

70 0:00:03 33.43 37.6 37.6 33.43 

71 0:00:09 21.21 33.75 33.43 21.21 

72 0:00:01 21.21 23.37 21.21 23.37 

73 0:00:05 23.37 30.61 23.37 30.61 

74 0:00:07 30.61 41.03 30.61 41.03 

75 0:00:03 41.03 43.51 41.03 43.48 

76 0:00:05 43.48 43.51 43.48 43.48 

77 0:00:08 43.48 43.51 43.48 43.48 

78 0:00:08 43.48 43.51 43.48 43.48 

79 0:00:02 43.48 43.51 43.48 43.48 

80 0:00:07 38.34 43.51 43.48 38.34 

81 0:00:12 20.51 38.34 38.34 20.51 

82 0:00:01 20.51 21.55 20.51 21.55 

83 0:00:06 21.55 27.76 21.55 24.72 

84 0:00:09 24.72 31.55 24.72 25.16 

85 0:00:01 23.89 25.16 25.16 23.89 

86 0:00:08 23.89 31.78 23.89 27.89 

87 0:00:05 27.89 34.9 27.89 34.9 
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88 0:00:04 30.49 35.65 34.9 30.49 

89 0:00:12 30.49 46.19 30.49 43.48 

90 0:00:04 43.48 43.51 43.48 43.48 

91 0:00:08 43.48 43.51 43.48 43.48 

92 0:00:09 36.39 43.51 43.48 36.39 

93 0:00:13 16.22 36.39 36.39 16.22 

94 0:00:05 16.22 16.23 16.22 16.22 

95 0:00:00 16.22 16.81 16.22 16.81 

96 0:00:03 15.84 18.38 16.81 15.84 

97 0:00:14 15.84 37.22 15.84 37.22 

98 0:00:13 20 38.21 37.22 20 

99 0:00:14 14.04 20.02 20 14.04 

100 0:00:11 14.04 20.02 14.04 20 

101 0:00:16 20 20.02 20 20 

102 0:00:25 0 20.02 20 0 

Index Average Speed (km/h) Elevation Change (m) 
Fuel 

Consumed 
(L) 

Fuel Burn 
Rate (L/h) 

Duty 
Cycle 
(%) 

1 14.6 0 0.66 95.7 32.96 

2 20.02 0 0.43 95.7 22.75 

3 18.98 0 0.3 95.7 14.86 

4 19.17 0 0.37 95.7 33.87 

5 15.88 10 0.63 95.7 100 

6 15.19 10 0.66 95.7 100 

7 16.9 0 0.07 95.71 43.01 

8 16.52 0 0.01 95.76 0 

9 16.23 0.37 0.14 95.7 35.65 

10 14.99 9.63 0.63 95.7 100 

11 14.84 10 0.66 95.7 100 

12 14.84 10 0.66 95.7 100 

13 14.84 5 0.33 95.7 100 

14 26.45 1.38 0.48 95.7 82.23 

15 25.39 3.62 0.14 95.69 100 

16 17.25 4.05 0.23 95.7 100 

17 15.64 5.43 0.38 95.7 100 

18 15.64 0.52 0.04 95.7 100 

19 15.6 6.22 0.42 95.7 100 

20 15.67 3.78 0.26 95.7 100 

21 15.67 0.35 0.02 95.68 100 

22 14.8 9.65 0.63 95.7 100 

23 14.67 7.74 0.51 95.7 100 
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24 14.7 2.26 0.15 95.7 100 

25 14.74 10 0.66 95.7 100 

26 14.74 10 0.66 95.7 100 

27 14.74 6.13 0.4 95.7 100 

28 14.82 3.87 0.26 95.7 100 

29 14.85 6.77 0.45 95.7 100 

30 15.46 3.23 0.22 95.7 100 

31 15.62 0.79 0.05 95.72 100 

32 14.21 6.93 0.44 95.7 100 

33 15.31 2.27 0.17 95.7 100 

34 15.85 10 0.73 95.7 99.66 

35 15.63 0 0.17 95.7 18.24 

36 16.95 0 0.05 95.68 63.46 

37 21.11 0 0.11 95.7 63.54 

38 19.98 7.03 0.46 95.7 100 

39 22.13 2.97 0.29 95.7 100 

40 25.07 4.03 0.35 95.7 90.89 

41 23.74 3.12 0.19 95.7 0 

42 24.66 2.08 0.28 95.7 13.77 

43 16.5 0.36 0.07 95.68 0 

44 25.49 1.73 0.39 95.7 68.21 

45 35.61 1.85 0.47 95.7 31.07 

46 29.14 2.44 0.33 95.7 25.14 

47 24.47 2.55 0.15 95.7 0 

48 26.99 0.44 0.19 95.71 53.43 

49 29.73 5.25 0.62 95.7 100 

50 28.68 1.59 0.54 95.7 29.12 

51 9.38 0.01 0.34 95.7 6.07 

52 9.38 0.01 0.34 95.7 15.95 

53 29.93 1.59 0.52 95.7 43.53 

54 37.67 5.25 0.49 95.7 4.98 

55 27.11 0.44 0.19 95.7 20.36 

56 24.47 2.55 0.15 95.7 57.08 

57 29.14 2.44 0.33 95.7 35.47 

58 35.77 1.85 0.47 95.7 49.78 

59 25.49 1.73 0.39 95.7 0.27 

60 16.5 0.36 0.07 95.68 41.28 

61 24.66 2.08 0.28 95.7 40.46 

62 23.74 3.12 0.19 95.7 56.37 

63 31.55 4.03 0.28 95.7 12.54 
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64 41.54 2.97 0.16 95.69 7.55 

65 30.8 7.03 0.3 95.7 0 

66 21.11 0 0.11 95.7 6.6 

67 16.95 0 0.05 95.68 0 

68 15.63 0 0.17 95.7 8.57 

69 27.46 10 0.42 95.7 0 

70 35.51 2.27 0.07 95.68 0 

71 27.63 6.93 0.23 95.7 0 

72 22.29 0.79 0.04 95.69 0 

73 26.99 3.23 0.13 95.69 0 

74 35.82 6.77 0.18 95.7 0 

75 42.89 3.87 0.09 95.69 0 

76 43.51 6.13 0.14 95.7 0 

77 43.51 10 0.22 95.7 0 

78 43.51 10 0.22 95.7 0 

79 43.51 2.26 0.05 95.7 0 

80 42.17 7.74 0.18 95.69 0 

81 29.43 9.65 0.32 95.7 0 

82 21.03 0.35 0.02 95.67 0 

83 25.17 3.78 0.16 95.7 0 

84 28.24 6.22 0.23 95.7 0 

85 24.53 0.52 0.02 95.65 0 

86 28.5 5.43 0.21 95.7 0 

87 31.4 4.05 0.12 95.7 0 

88 33.34 3.62 0.1 95.69 0 

89 39.3 1.38 0.33 95.7 47.05 

90 43.51 5 0.11 95.71 0 

91 43.51 10 0.22 95.7 0 

92 41.6 10 0.23 95.69 0 

93 26.3 9.63 0.36 95.7 0 

94 16.23 0.37 0.14 95.7 1.97 

95 16.52 0 0.01 95.76 29.45 

96 17.3 0 0.07 95.71 11.63 

97 26.53 10 0.38 95.7 0 

98 29.55 10 0.34 95.7 0 

99 19.17 0 0.37 95.7 7.67 

100 18.98 0 0.3 95.7 17.11 

101 20.02 0 0.43 95.7 10.69 

102 14.6 0 0.66 95.7 4.91 
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Index Velocity Limit Performance Limit 
Corner 
Speed 
(km/h) 

Equivalent 
Corner 
Radius 

(m) 

Actual 
Power 
Curve 

1 TopSpeed Rimpull 0 0 Rimpull 

2 TopSpeed FinalSpeed 0 0 Rimpull 

3 TopSpeed FinalSpeed 14.04 17.72 Rimpull 

4 TopSpeed Rimpull 0 0 Rimpull 

5 TopSpeed Rimpull 0 0 Rimpull 

6 TopSpeed Rimpull 15.84 22.55 Rimpull 

7 TopSpeed Retard 0 0 Rimpull 

8 TopSpeed FinalSpeed 16.22 23.64 Rimpull 

9 TopSpeed Retard 16.22 23.64 Rimpull 

10 TopSpeed Rimpull 0 0 Rimpull 

11 TopSpeed Rimpull 0 0 Rimpull 

12 TopSpeed Rimpull 0 0 Rimpull 

13 TopSpeed Retard 0 0 Rimpull 

14 TopSpeed FinalSpeed 30.49 83.56 Rimpull 

15 TopSpeed Retard 0 0 Rimpull 

16 TopSpeed Retard 27.89 69.94 Rimpull 

17 TopSpeed Rimpull 23.89 51.31 Rimpull 

18 TopSpeed Retard 0 0 Rimpull 

19 TopSpeed Rimpull 24.72 54.94 Rimpull 

20 TopSpeed Rimpull 0 0 Rimpull 

21 TopSpeed Retard 20.51 37.83 Rimpull 

22 TopSpeed Retard 0 0 Rimpull 

23 TopSpeed Rimpull 0 0 Rimpull 

24 TopSpeed Rimpull 0 0 Rimpull 

25 TopSpeed Rimpull 0 0 Rimpull 

26 TopSpeed Rimpull 0 0 Rimpull 

27 TopSpeed Rimpull 0 0 Rimpull 

28 TopSpeed Rimpull 0 0 Rimpull 

29 TopSpeed Rimpull 38.74 134.96 Rimpull 

30 TopSpeed Retard 0 0 Rimpull 

31 TopSpeed Rimpull 21.21 40.45 Rimpull 

32 TopSpeed Retard 33.43 100.44 Rimpull 

33 TopSpeed Rimpull 0 0 Rimpull 

34 TopSpeed FinalSpeed 15.62 21.92 Rimpull 

35 TopSpeed Retard 15.62 21.92 Rimpull 

36 TopSpeed MaximumAcceleration 0 0 Rimpull 

37 TopSpeed FinalSpeed 22.3 44.69 Rimpull 
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38 TopSpeed Retard 0 0 Rimpull 

39 TopSpeed Rimpull 0 0 Rimpull 

40 TopSpeed FinalSpeed 23.72 50.57 Rimpull 

41 TopSpeed Retard 23.72 50.57 Rimpull 

42 TopSpeed Retard 0 0 Rimpull 

43 TopSpeed Retard 14.39 18.61 Rimpull 

44 TopSpeed FinalSpeed 36.43 119.33 Rimpull 

45 TopSpeed FinalSpeed 24.52 54.07 Rimpull 

46 TopSpeed Retard 24.45 53.74 Rimpull 

47 TopSpeed Retard 24.45 53.74 Rimpull 

48 TopSpeed FinalSpeed 24.31 53.15 Rimpull 

49 TopSpeed Rimpull 0 0 Rimpull 

50 TopSpeed FinalSpeed 15.32 21.1 Rimpull 

51 TopSpeed FinalSpeed 0 0 Rimpull 

52 TopSpeed Retard 15.32 21.1 Rimpull 

53 TopSpeed MaximumAcceleration 0 0 Rimpull 

54 TopSpeed Retard 24.31 53.15 Rimpull 

55 TopSpeed FinalSpeed 24.45 53.74 Rimpull 

56 TopSpeed Retard 24.45 53.74 Rimpull 

57 TopSpeed Retard 24.52 54.07 Rimpull 

58 TopSpeed FinalSpeed 36.43 119.33 Rimpull 

59 TopSpeed Retard 14.39 18.61 Rimpull 

60 TopSpeed MaximumAcceleration 0 0 Rimpull 

61 TopSpeed Retard 23.72 50.57 Rimpull 

62 TopSpeed Retard 23.72 50.57 Rimpull 

63 TopSpeed MaximumAcceleration 0 0 Rimpull 

64 TopSpeed Retard 0 0 Rimpull 

65 TopSpeed FinalSpeed 22.3 44.69 Rimpull 

66 TopSpeed Retard 0 0 Rimpull 

67 TopSpeed FinalSpeed 15.62 21.92 Rimpull 

68 TopSpeed Retard 15.62 21.92 Rimpull 

69 TopSpeed Retard 0 0 Rimpull 

70 TopSpeed FinalSpeed 33.43 100.44 Rimpull 

71 TopSpeed FinalSpeed 21.21 40.45 Rimpull 

72 TopSpeed MaximumAcceleration 0 0 Rimpull 

73 TopSpeed MaximumAcceleration 38.74 134.96 Rimpull 

74 TopSpeed MaximumAcceleration 0 0 Rimpull 

75 TopSpeed Retard 0 0 Rimpull 

76 TopSpeed Retard 0 0 Rimpull 

77 TopSpeed Retard 0 0 Rimpull 
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78 TopSpeed Retard 0 0 Rimpull 

79 TopSpeed Retard 0 0 Rimpull 

80 TopSpeed Retard 0 0 Rimpull 

81 TopSpeed FinalSpeed 20.51 37.83 Rimpull 

82 TopSpeed MaximumAcceleration 0 0 Rimpull 

83 TopSpeed FinalSpeed 24.72 54.94 Rimpull 

84 TopSpeed Retard 0 0 Rimpull 

85 TopSpeed FinalSpeed 23.89 51.31 Rimpull 

86 TopSpeed Retard 27.89 69.94 Rimpull 

87 TopSpeed MaximumAcceleration 0 0 Rimpull 

88 TopSpeed Retard 30.49 83.56 Rimpull 

89 TopSpeed Retard 0 0 Rimpull 

90 TopSpeed Retard 0 0 Rimpull 

91 TopSpeed Retard 0 0 Rimpull 

92 TopSpeed Retard 0 0 Rimpull 

93 TopSpeed FinalSpeed 16.22 23.64 Rimpull 

94 TopSpeed Retard 16.22 23.64 Rimpull 

95 TopSpeed MaximumAcceleration 0 0 Rimpull 

96 TopSpeed FinalSpeed 15.84 22.55 Rimpull 

97 TopSpeed MaximumAcceleration 0 0 Rimpull 

98 TopSpeed Retard 0 0 Rimpull 

99 TopSpeed FinalSpeed 14.04 17.72 Rimpull 

100 TopSpeed Rimpull 0 0 Rimpull 

101 TopSpeed FinalSpeed 0 0 Rimpull 

102 TopSpeed FinalSpeed 0 0 Rimpull 

 

R1 FT 

Index From To 
Distance 

(m) 
Grade (%) Load 

1 (10,560.00, 10,837.50, 920.00) (10,660.00, 10,837.50, 920.00) 100 0 Full 

2 (10,660.00, 10,837.50, 920.00) (10,749.55, 10,838.64, 920.00) 89.56 0 Full 

3 (10,749.55, 10,838.64, 920.00) (10,809.95, 10,836.44, 920.00) 60.44 0 Full 

4 (10,809.95, 10,836.44, 920.00) (10,798.13, 10,762.40, 920.00) 74.98 0 Full 

5 (10,798.13, 10,762.40, 920.00) (10,795.87, 10,657.86, 930.00) 105.04 9.56 Full 

6 (10,795.87, 10,657.86, 930.00) (10,793.62, 10,553.31, 940.00) 105.04 9.56 Full 

7 (10,793.62, 10,553.31, 940.00) (10,805.99, 10,548.86, 940.00) 13.16 0 Full 

8 (10,805.99, 10,548.86, 940.00) (10,807.72, 10,548.24, 940.00) 1.83 0 Full 

9 (10,807.72, 10,548.24, 940.00) (10,822.95, 10,565.72, 940.37) 23.19 1.58 Full 

10 (10,822.95, 10,565.72, 940.37) (10,845.50, 10,660.87, 950.00) 98.26 9.85 Full 

11 (10,845.50, 10,660.87, 950.00) (10,868.92, 10,759.64, 960.00) 102 9.85 Full 

12 (10,868.92, 10,759.64, 960.00) (10,892.33, 10,858.41, 970.00) 102 9.85 Full 

13 (10,892.33, 10,858.41, 970.00) (10,904.04, 10,907.80, 975.00) 51 9.85 Full 
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14 (10,904.04, 10,907.80, 975.00) (10,944.63, 11,035.54, 976.38) 134.05 1.03 Full 

15 (10,944.63, 11,035.54, 976.38) (10,943.26, 11,071.79, 980.00) 36.45 9.98 Full 

16 (10,943.26, 11,071.79, 980.00) (10,941.74, 11,112.31, 984.05) 40.75 9.98 Full 

17 (10,941.74, 11,112.31, 984.05) (10,914.97, 11,168.16, 989.48) 62.17 8.77 Full 

18 (10,914.97, 11,168.16, 989.48) (10,910.71, 11,172.03, 990.00) 5.77 9.04 Full 

19 (10,910.71, 11,172.03, 990.00) (10,859.82, 11,218.30, 996.22) 69.07 9.04 Full 

20 (10,859.82, 11,218.30, 996.22) 
(10,817.79, 11,227.05, 

1,000.00) 
43.09 8.81 Full 

21 
(10,817.79, 11,227.05, 

1,000.00) 
(10,813.87, 11,227.87, 

1,000.35) 
4.02 8.81 Full 

22 
(10,813.87, 11,227.87, 

1,000.35) 
(10,721.02, 11,201.05, 

1,010.00) 
97.13 9.98 Full 

23 
(10,721.02, 11,201.05, 

1,010.00) 
(10,646.56, 11,179.54, 

1,017.74) 
77.89 9.98 Full 

24 
(10,646.56, 11,179.54, 

1,017.74) 
(10,625.15, 11,171.72, 

1,020.00) 
22.91 9.93 Full 

25 
(10,625.15, 11,171.72, 

1,020.00) 
(10,530.55, 11,137.15, 

1,030.00) 
101.21 9.93 Full 

26 
(10,530.55, 11,137.15, 

1,030.00) 
(10,435.95, 11,102.58, 

1,040.00) 
101.21 9.93 Full 

27 
(10,435.95, 11,102.58, 

1,040.00) 
(10,377.99, 11,081.40, 

1,046.13) 
62.02 9.93 Full 

28 
(10,377.99, 11,081.40, 

1,046.13) 
(10,340.13, 11,070.68, 

1,050.00) 
39.53 9.84 Full 

29 
(10,340.13, 11,070.68, 

1,050.00) 
(10,273.95, 11,051.94, 

1,056.77) 
69.12 9.84 Full 

30 
(10,273.95, 11,051.94, 

1,056.77) 
(10,241.55, 11,036.10, 

1,060.00) 
36.21 8.95 Full 

31 
(10,241.55, 11,036.10, 

1,060.00) 
(10,233.60, 11,032.21, 

1,060.79) 
8.89 8.95 Full 

32 
(10,233.60, 11,032.21, 

1,060.79) 
(10,199.98, 10,976.11, 

1,067.73) 
65.77 10.6 Full 

33 
(10,199.98, 10,976.11, 

1,067.73) 
(10,192.62, 10,949.74, 

1,070.00) 
27.47 8.3 Full 

34 
(10,192.62, 10,949.74, 

1,070.00) 
(10,160.24, 10,833.73, 

1,080.00) 
120.87 8.3 Full 

35 
(10,160.24, 10,833.73, 

1,080.00) 
(10,144.66, 10,810.58, 

1,080.00) 
27.9 0 Full 

36 
(10,144.66, 10,810.58, 

1,080.00) 
(10,140.35, 10,817.77, 

1,080.00) 
8.39 0 Full 

37 
(10,140.35, 10,817.77, 

1,080.00) 
(10,128.33, 10,837.81, 

1,080.00) 
23.37 0 Full 

38 
(10,128.33, 10,837.81, 

1,080.00) 
(10,140.68, 10,933.84, 

1,087.03) 
97.07 7.26 Full 

39 
(10,140.68, 10,933.84, 

1,087.03) 
(10,154.87, 10,999.78, 

1,090.00) 
67.51 4.41 Full 

40 
(10,154.87, 10,999.78, 

1,090.00) 
(10,174.10, 11,089.14, 

1,094.03) 
91.5 4.41 Full 

41 
(10,174.10, 11,089.14, 

1,094.03) 
(10,130.99, 11,109.32, 

1,090.91) 
47.7 -6.55 Full 
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42 
(10,130.99, 11,109.32, 

1,090.91) 
(10,061.96, 11,127.76, 

1,088.82) 
71.48 -2.92 Full 

43 
(10,061.96, 11,127.76, 

1,088.82) 
(10,049.84, 11,132.15, 

1,088.47) 
12.89 -2.78 Full 

44 
(10,049.84, 11,132.15, 

1,088.47) 
(10,078.39, 11,232.96, 

1,086.74) 
104.78 -1.65 Full 

45 
(10,078.39, 11,232.96, 

1,086.74) 
(10,082.83, 11,408.66, 

1,084.89) 
175.77 -1.05 Full 

46 
(10,082.83, 11,408.66, 

1,084.89) 
(10,032.15, 11,495.34, 

1,082.45) 
100.44 -2.43 Full 

47 
(10,032.15, 11,495.34, 

1,082.45) 
(10,006.53, 11,524.93, 

1,079.89) 
39.23 -6.53 Full 

48 
(10,006.53, 11,524.93, 

1,079.89) 
(9,953.18, 11,512.28, 1,080.33) 54.83 0.81 Full 

49 
(9,953.18, 11,512.28, 

1,080.33) 
(9,818.04, 11,374.01, 1,085.58) 193.41 2.71 Full 

50 
(9,818.04, 11,374.01, 

1,085.58) 
(9,694.87, 11,268.84, 1,087.16) 161.96 0.98 Full 

51 
(9,694.87, 11,268.84, 

1,087.16) 
(9,669.77, 11,290.64, 1,087.15) 33.24 -0.04 Full 

52 
(9,669.77, 11,290.64, 

1,087.15) 
(9,694.87, 11,268.84, 1,087.16) 33.24 0.04 Empty 

53 
(9,694.87, 11,268.84, 

1,087.16) 
(9,818.04, 11,374.01, 1,085.58) 161.96 -0.98 Empty 

54 
(9,818.04, 11,374.01, 

1,085.58) 
(9,953.18, 11,512.28, 1,080.33) 193.41 -2.71 Empty 

55 
(9,953.18, 11,512.28, 

1,080.33) 
(10,006.53, 11,524.93, 

1,079.89) 
54.83 -0.81 Empty 

56 
(10,006.53, 11,524.93, 

1,079.89) 
(10,032.15, 11,495.34, 

1,082.45) 
39.23 6.53 Empty 

57 
(10,032.15, 11,495.34, 

1,082.45) 
(10,082.83, 11,408.66, 

1,084.89) 
100.44 2.43 Empty 

58 
(10,082.83, 11,408.66, 

1,084.89) 
(10,078.39, 11,232.96, 

1,086.74) 
175.77 1.05 Empty 

59 
(10,078.39, 11,232.96, 

1,086.74) 
(10,049.84, 11,132.15, 

1,088.47) 
104.78 1.65 Empty 

60 
(10,049.84, 11,132.15, 

1,088.47) 
(10,061.96, 11,127.76, 

1,088.82) 
12.89 2.78 Empty 

61 
(10,061.96, 11,127.76, 

1,088.82) 
(10,130.99, 11,109.32, 

1,090.91) 
71.48 2.92 Empty 

62 
(10,130.99, 11,109.32, 

1,090.91) 
(10,174.10, 11,089.14, 

1,094.03) 
47.7 6.55 Empty 

63 
(10,174.10, 11,089.14, 

1,094.03) 
(10,154.87, 10,999.78, 

1,090.00) 
91.5 -4.41 Empty 

64 
(10,154.87, 10,999.78, 

1,090.00) 
(10,140.68, 10,933.84, 

1,087.03) 
67.51 -4.41 Empty 

65 
(10,140.68, 10,933.84, 

1,087.03) 
(10,128.33, 10,837.81, 

1,080.00) 
97.07 -7.26 Empty 

66 
(10,128.33, 10,837.81, 

1,080.00) 
(10,140.35, 10,817.77, 

1,080.00) 
23.37 0 Empty 
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67 
(10,140.35, 10,817.77, 

1,080.00) 
(10,144.66, 10,810.58, 

1,080.00) 
8.39 0 Empty 

68 
(10,144.66, 10,810.58, 

1,080.00) 
(10,160.24, 10,833.73, 

1,080.00) 
27.9 0 Empty 

69 
(10,160.24, 10,833.73, 

1,080.00) 
(10,192.62, 10,949.74, 

1,070.00) 
120.87 -8.3 Empty 

70 
(10,192.62, 10,949.74, 

1,070.00) 
(10,199.98, 10,976.11, 

1,067.73) 
27.47 -8.3 Empty 

71 
(10,199.98, 10,976.11, 

1,067.73) 
(10,233.60, 11,032.21, 

1,060.79) 
65.77 -10.6 Empty 

72 
(10,233.60, 11,032.21, 

1,060.79) 
(10,241.55, 11,036.10, 

1,060.00) 
8.89 -8.95 Empty 

73 
(10,241.55, 11,036.10, 

1,060.00) 
(10,273.95, 11,051.94, 

1,056.77) 
36.21 -8.95 Empty 

74 
(10,273.95, 11,051.94, 

1,056.77) 
(10,340.13, 11,070.68, 

1,050.00) 
69.12 -9.84 Empty 

75 
(10,340.13, 11,070.68, 

1,050.00) 
(10,377.99, 11,081.40, 

1,046.13) 
39.53 -9.84 Empty 

76 
(10,377.99, 11,081.40, 

1,046.13) 
(10,435.95, 11,102.58, 

1,040.00) 
62.02 -9.93 Empty 

77 
(10,435.95, 11,102.58, 

1,040.00) 
(10,530.55, 11,137.15, 

1,030.00) 
101.21 -9.93 Empty 

78 
(10,530.55, 11,137.15, 

1,030.00) 
(10,625.15, 11,171.72, 

1,020.00) 
101.21 -9.93 Empty 

79 
(10,625.15, 11,171.72, 

1,020.00) 
(10,646.56, 11,179.54, 

1,017.74) 
22.91 -9.93 Empty 

80 
(10,646.56, 11,179.54, 

1,017.74) 
(10,721.02, 11,201.05, 

1,010.00) 
77.89 -9.98 Empty 

81 
(10,721.02, 11,201.05, 

1,010.00) 
(10,813.87, 11,227.87, 

1,000.35) 
97.13 -9.98 Empty 

82 
(10,813.87, 11,227.87, 

1,000.35) 
(10,817.79, 11,227.05, 

1,000.00) 
4.02 -8.81 Empty 

83 
(10,817.79, 11,227.05, 

1,000.00) 
(10,859.82, 11,218.30, 996.22) 43.09 -8.81 Empty 

84 (10,859.82, 11,218.30, 996.22) (10,910.71, 11,172.03, 990.00) 69.07 -9.04 Empty 

85 (10,910.71, 11,172.03, 990.00) (10,914.97, 11,168.16, 989.48) 5.77 -9.04 Empty 

86 (10,914.97, 11,168.16, 989.48) (10,941.74, 11,112.31, 984.05) 62.17 -8.77 Empty 

87 (10,941.74, 11,112.31, 984.05) (10,943.26, 11,071.79, 980.00) 40.75 -9.98 Empty 

88 (10,943.26, 11,071.79, 980.00) (10,944.63, 11,035.54, 976.38) 36.45 -9.98 Empty 

89 (10,944.63, 11,035.54, 976.38) (10,904.04, 10,907.80, 975.00) 134.05 -1.03 Empty 

90 (10,904.04, 10,907.80, 975.00) (10,892.33, 10,858.41, 970.00) 51 -9.85 Empty 

91 (10,892.33, 10,858.41, 970.00) (10,868.92, 10,759.64, 960.00) 102 -9.85 Empty 

92 (10,868.92, 10,759.64, 960.00) (10,845.50, 10,660.87, 950.00) 102 -9.85 Empty 

93 (10,845.50, 10,660.87, 950.00) (10,822.95, 10,565.72, 940.37) 98.26 -9.85 Empty 

94 (10,822.95, 10,565.72, 940.37) (10,807.72, 10,548.24, 940.00) 23.19 -1.58 Empty 

95 (10,807.72, 10,548.24, 940.00) (10,805.99, 10,548.86, 940.00) 1.83 0 Empty 

96 (10,805.99, 10,548.86, 940.00) (10,793.62, 10,553.31, 940.00) 13.16 0 Empty 

97 (10,793.62, 10,553.31, 940.00) (10,795.87, 10,657.86, 930.00) 105.04 -9.56 Empty 

98 (10,795.87, 10,657.86, 930.00) (10,798.13, 10,762.40, 920.00) 105.04 -9.56 Empty 
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99 (10,798.13, 10,762.40, 920.00) (10,809.95, 10,836.44, 920.00) 74.98 0 Empty 

100 (10,809.95, 10,836.44, 920.00) (10,749.55, 10,838.64, 920.00) 60.44 0 Empty 

101 (10,749.55, 10,838.64, 920.00) (10,660.00, 10,837.50, 920.00) 89.56 0 Empty 

102 (10,660.00, 10,837.50, 920.00) (10,560.00, 10,837.50, 920.00) 100 0 Empty 

Index Time (hh:mm:ss) Minimum Speed (km/h) 
Maximum 

Speed 
(km/h) 

Actual 
Initial 
Speed 
(km/h) 

Final 
Speed 
(km/h) 

1 0:00:25 0 20.02 0 20 

2 0:00:16 20 20.02 20 20 

3 0:00:11 14.04 20.02 20 14.04 

4 0:00:14 14.04 20.02 14.04 20 

5 0:00:26 13.21 20 20 13.21 

6 0:00:29 13.18 13.21 13.21 13.18 

7 0:00:03 13.18 17.3 13.18 16.81 

8 0:00:00 16.22 16.81 16.81 16.22 

9 0:00:05 16.22 16.23 16.22 16.22 

10 0:00:27 12.67 16.22 16.22 12.67 

11 0:00:29 12.67 12.67 12.67 12.67 

12 0:00:29 12.67 12.67 12.67 12.67 

13 0:00:14 12.67 12.67 12.67 12.67 

14 0:00:19 12.67 32.34 12.67 30.49 

15 0:00:05 19.79 30.49 30.49 19.79 

16 0:00:09 13.38 19.79 19.79 13.38 

17 0:00:16 13.38 14.53 13.38 14.53 

18 0:00:01 14.41 14.53 14.53 14.41 

19 0:00:18 14.11 14.41 14.41 14.11 

20 0:00:11 14.11 14.47 14.11 14.47 

21 0:00:01 14.47 14.47 14.47 14.47 

22 0:00:27 12.49 14.47 14.47 12.49 

23 0:00:22 12.49 12.49 12.49 12.49 

24 0:00:07 12.49 12.55 12.49 12.55 

25 0:00:29 12.55 12.56 12.55 12.56 

26 0:00:29 12.56 12.56 12.56 12.56 

27 0:00:18 12.56 12.56 12.56 12.56 

28 0:00:11 12.56 12.68 12.56 12.68 

29 0:00:20 12.68 12.68 12.68 12.68 

30 0:00:10 12.68 14.04 12.68 14.04 

31 0:00:02 14.04 14.12 14.04 14.12 

32 0:00:20 11.7 14.12 14.12 11.7 

33 0:00:07 11.7 14.54 11.7 14.54 

34 0:00:29 14.54 15.19 14.54 15.19 

35 0:00:06 15.19 15.63 15.19 15.62 

36 0:00:02 15.62 18.29 15.62 18.29 

37 0:00:04 18.29 23.28 18.29 22.3 

38 0:00:19 16.17 22.3 22.3 16.17 

39 0:00:12 16.17 21.78 16.17 21.78 

40 0:00:15 21.78 22.71 21.78 22.71 
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41 0:00:07 22.71 23.74 22.71 23.72 

42 0:00:10 18.61 28.99 23.72 18.61 

43 0:00:03 14.39 18.61 18.61 14.39 

44 0:00:15 14.39 36.45 14.39 36.43 

45 0:00:18 24.52 42.42 36.43 24.52 

46 0:00:12 24.45 33.79 24.52 24.45 

47 0:00:06 24.45 24.47 24.45 24.45 

48 0:00:07 24.31 28.97 24.45 24.31 

49 0:00:25 24.31 29.84 24.31 29.84 

50 0:00:21 15.32 34.67 29.84 15.32 

51 0:00:13 0 17.23 15.32 0 

52 0:00:13 0 17.23 0 15.32 

53 0:00:19 15.32 44.54 15.32 44.54 

54 0:00:18 24.31 48.29 44.54 24.31 

55 0:00:07 24.31 29.84 24.31 24.45 

56 0:00:06 24.45 24.47 24.45 24.45 

57 0:00:12 24.45 33.79 24.45 24.52 

58 0:00:18 24.52 43.74 24.52 36.43 

59 0:00:15 14.39 36.51 36.43 14.39 

60 0:00:03 14.39 18.61 14.39 18.61 

61 0:00:10 18.61 28.99 18.61 23.72 

62 0:00:07 23.72 23.74 23.72 23.72 

63 0:00:10 23.72 39.38 23.72 39.38 

64 0:00:06 39.31 43.73 39.38 39.31 

65 0:00:11 22.3 39.31 39.31 22.3 

66 0:00:04 18.29 23.28 22.3 18.29 

67 0:00:02 15.62 18.29 18.29 15.62 

68 0:00:06 15.62 15.63 15.62 15.62 

69 0:00:16 15.62 38.49 15.62 37.6 

70 0:00:03 33.43 37.6 37.6 33.43 

71 0:00:09 21.21 33.75 33.43 21.21 

72 0:00:01 21.21 23.37 21.21 23.37 

73 0:00:05 23.37 30.61 23.37 30.61 

74 0:00:07 30.61 41.03 30.61 41.03 

75 0:00:03 41.03 43.51 41.03 43.48 

76 0:00:05 43.48 43.51 43.48 43.48 

77 0:00:08 43.48 43.51 43.48 43.48 

78 0:00:08 43.48 43.51 43.48 43.48 

79 0:00:02 43.48 43.51 43.48 43.48 

80 0:00:07 38.34 43.51 43.48 38.34 

81 0:00:12 20.51 38.34 38.34 20.51 

82 0:00:01 20.51 21.55 20.51 21.55 

83 0:00:06 21.55 27.76 21.55 24.72 

84 0:00:09 24.72 31.55 24.72 25.16 

85 0:00:01 23.89 25.16 25.16 23.89 

86 0:00:08 23.89 31.78 23.89 27.89 

87 0:00:05 27.89 34.9 27.89 34.9 
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88 0:00:04 30.49 35.65 34.9 30.49 

89 0:00:12 30.49 46.19 30.49 43.48 

90 0:00:04 43.48 43.51 43.48 43.48 

91 0:00:08 43.48 43.51 43.48 43.48 

92 0:00:09 36.39 43.51 43.48 36.39 

93 0:00:13 16.22 36.39 36.39 16.22 

94 0:00:05 16.22 16.23 16.22 16.22 

95 0:00:00 16.22 16.81 16.22 16.81 

96 0:00:03 15.84 18.38 16.81 15.84 

97 0:00:14 15.84 37.22 15.84 37.22 

98 0:00:13 20 38.21 37.22 20 

99 0:00:14 14.04 20.02 20 14.04 

100 0:00:11 14.04 20.02 14.04 20 

101 0:00:16 20 20.02 20 20 

102 0:00:25 0 20.02 20 0 

Index Average Speed (km/h) Elevation Change (m) 
Fuel 

Consumed 
(L) 

Fuel Burn 
Rate (L/h) 

Duty 
Cycle 
(%) 

1 14.6 0 0.66 95.7 37 

2 20.02 0 0.43 95.7 25.54 

3 18.98 0 0.3 95.7 16.68 

4 19.17 0 0.37 95.7 38.02 

5 14.33 10 0.7 95.7 100 

6 13.18 10 0.76 95.7 100 

7 15.43 0 0.08 95.69 56.23 

8 16.52 0 0.01 95.76 0 

9 16.23 0.37 0.14 95.7 40.02 

10 13.26 9.63 0.71 95.7 100 

11 12.67 10 0.77 95.7 100 

12 12.67 10 0.77 95.7 100 

13 12.66 5 0.39 95.7 100 

14 24.76 1.38 0.52 95.7 87.98 

15 24.7 3.62 0.14 95.69 100 

16 15.47 4.05 0.25 95.7 100 

17 14.22 5.43 0.42 95.7 100 

18 14.46 0.52 0.04 95.71 100 

19 14.17 6.22 0.47 95.7 100 

20 14.35 3.78 0.29 95.7 100 

21 14.47 0.35 0.03 95.74 100 

22 12.81 9.65 0.73 95.7 100 

23 12.48 7.74 0.6 95.7 100 

24 12.52 2.26 0.18 95.7 100 

25 12.56 10 0.77 95.7 100 

26 12.56 10 0.77 95.7 100 

27 12.56 6.13 0.47 95.7 100 

28 12.64 3.87 0.3 95.7 100 

29 12.67 6.77 0.52 95.7 100 

30 13.56 3.23 0.26 95.7 100 
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31 14.09 0.79 0.06 95.7 100 

32 12.13 6.93 0.52 95.7 100 

33 13.45 2.27 0.2 95.7 100 

34 15.11 10 0.77 95.7 100 

35 15.62 0 0.17 95.7 22.29 

36 16.95 0 0.05 95.68 71.24 

37 21.11 0 0.11 95.7 71.34 

38 18.18 7.03 0.51 95.7 100 

39 19.86 2.97 0.33 95.7 100 

40 22.28 4.03 0.39 95.7 100 

41 23.69 3.12 0.19 95.7 0 

42 24.66 2.08 0.28 95.7 15.46 

43 16.5 0.36 0.07 95.68 0 

44 25.48 1.73 0.39 95.7 76.33 

45 35.49 1.85 0.47 95.7 33.08 

46 29.14 2.44 0.33 95.7 28.22 

47 24.47 2.55 0.15 95.7 0 

48 26.75 0.44 0.2 95.7 57.93 

49 28.22 5.25 0.66 95.7 100 

50 27.82 1.59 0.56 95.7 38.45 

51 9.38 0.01 0.34 95.7 6.82 

52 9.38 0.01 0.34 95.7 15.95 

53 29.93 1.59 0.52 95.7 43.53 

54 37.67 5.25 0.49 95.7 4.98 

55 27.11 0.44 0.19 95.7 20.36 

56 24.47 2.55 0.15 95.7 57.08 

57 29.14 2.44 0.33 95.7 35.47 

58 35.77 1.85 0.47 95.7 49.78 

59 25.49 1.73 0.39 95.7 0.27 

60 16.5 0.36 0.07 95.68 41.28 

61 24.66 2.08 0.28 95.7 40.46 

62 23.74 3.12 0.19 95.7 56.37 

63 31.55 4.03 0.28 95.7 12.54 

64 41.54 2.97 0.16 95.69 7.55 

65 30.8 7.03 0.3 95.7 0 

66 21.11 0 0.11 95.7 6.6 

67 16.95 0 0.05 95.68 0 

68 15.63 0 0.17 95.7 8.57 

69 27.46 10 0.42 95.7 0 

70 35.51 2.27 0.07 95.68 0 

71 27.63 6.93 0.23 95.7 0 

72 22.29 0.79 0.04 95.69 0 

73 26.99 3.23 0.13 95.69 0 

74 35.82 6.77 0.18 95.7 0 

75 42.89 3.87 0.09 95.69 0 

76 43.51 6.13 0.14 95.7 0 

77 43.51 10 0.22 95.7 0 
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78 43.51 10 0.22 95.7 0 

79 43.51 2.26 0.05 95.7 0 

80 42.17 7.74 0.18 95.69 0 

81 29.43 9.65 0.32 95.7 0 

82 21.03 0.35 0.02 95.67 0 

83 25.17 3.78 0.16 95.7 0 

84 28.24 6.22 0.23 95.7 0 

85 24.53 0.52 0.02 95.65 0 

86 28.5 5.43 0.21 95.7 0 

87 31.4 4.05 0.12 95.7 0 

88 33.34 3.62 0.1 95.69 0 

89 39.3 1.38 0.33 95.7 47.05 

90 43.51 5 0.11 95.71 0 

91 43.51 10 0.22 95.7 0 

92 41.6 10 0.23 95.69 0 

93 26.3 9.63 0.36 95.7 0 

94 16.23 0.37 0.14 95.7 1.97 

95 16.52 0 0.01 95.76 29.45 

96 17.3 0 0.07 95.71 11.63 

97 26.53 10 0.38 95.7 0 

98 29.55 10 0.34 95.7 0 

99 19.17 0 0.37 95.7 7.67 

100 18.98 0 0.3 95.7 17.11 

101 20.02 0 0.43 95.7 10.69 

102 14.6 0 0.66 95.7 4.91 

Index Velocity Limit Performance Limit 
Corner 
Speed 
(km/h) 

Equivalent 
Corner 
Radius 

(m) 

Actual 
Power 
Curve 

1 TopSpeed Rimpull 0 0 Rimpull 

2 TopSpeed FinalSpeed 0 0 Rimpull 

3 TopSpeed FinalSpeed 14.04 17.72 Rimpull 

4 TopSpeed Rimpull 0 0 Rimpull 

5 TopSpeed Retard 0 0 Rimpull 

6 TopSpeed Rimpull 15.84 22.55 Rimpull 

7 TopSpeed Retard 0 0 Rimpull 

8 TopSpeed FinalSpeed 16.22 23.64 Rimpull 

9 TopSpeed Retard 16.22 23.64 Rimpull 

10 TopSpeed Rimpull 0 0 Rimpull 

11 TopSpeed Rimpull 0 0 Rimpull 

12 TopSpeed Retard 0 0 Rimpull 

13 TopSpeed Rimpull 0 0 Rimpull 

14 TopSpeed FinalSpeed 30.49 83.56 Rimpull 

15 TopSpeed Retard 0 0 Rimpull 

16 TopSpeed Retard 27.89 69.94 Rimpull 

17 TopSpeed Rimpull 23.89 51.31 Rimpull 

18 TopSpeed Retard 0 0 Rimpull 

19 TopSpeed Retard 24.72 54.94 Rimpull 
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20 TopSpeed Rimpull 0 0 Rimpull 

21 TopSpeed Retard 20.51 37.83 Rimpull 

22 TopSpeed Rimpull 0 0 Rimpull 

23 TopSpeed Retard 0 0 Rimpull 

24 TopSpeed Rimpull 0 0 Rimpull 

25 TopSpeed Rimpull 0 0 Rimpull 

26 TopSpeed Rimpull 0 0 Rimpull 

27 TopSpeed Retard 0 0 Rimpull 

28 TopSpeed Rimpull 0 0 Rimpull 

29 TopSpeed Retard 38.74 134.96 Rimpull 

30 TopSpeed Rimpull 0 0 Rimpull 

31 TopSpeed Rimpull 21.21 40.45 Rimpull 

32 TopSpeed Retard 33.43 100.44 Rimpull 

33 TopSpeed Rimpull 0 0 Rimpull 

34 TopSpeed Retard 15.62 21.92 Rimpull 

35 TopSpeed Rimpull 15.62 21.92 Rimpull 

36 TopSpeed MaximumAcceleration 0 0 Rimpull 

37 TopSpeed FinalSpeed 22.3 44.69 Rimpull 

38 TopSpeed Retard 0 0 Rimpull 

39 TopSpeed Rimpull 0 0 Rimpull 

40 TopSpeed Rimpull 23.72 50.57 Rimpull 

41 TopSpeed Rimpull 23.72 50.57 Rimpull 

42 TopSpeed Retard 0 0 Rimpull 

43 TopSpeed Retard 14.39 18.61 Rimpull 

44 TopSpeed FinalSpeed 36.43 119.33 Rimpull 

45 TopSpeed FinalSpeed 24.52 54.07 Rimpull 

46 TopSpeed Retard 24.45 53.74 Rimpull 

47 TopSpeed Retard 24.45 53.74 Rimpull 

48 TopSpeed FinalSpeed 24.31 53.15 Rimpull 

49 TopSpeed Rimpull 0 0 Rimpull 

50 TopSpeed FinalSpeed 15.32 21.1 Rimpull 

51 TopSpeed FinalSpeed 0 0 Rimpull 

52 TopSpeed Retard 15.32 21.1 Rimpull 

53 TopSpeed MaximumAcceleration 0 0 Rimpull 

54 TopSpeed Retard 24.31 53.15 Rimpull 

55 TopSpeed FinalSpeed 24.45 53.74 Rimpull 

56 TopSpeed Retard 24.45 53.74 Rimpull 

57 TopSpeed Retard 24.52 54.07 Rimpull 

58 TopSpeed FinalSpeed 36.43 119.33 Rimpull 

59 TopSpeed Retard 14.39 18.61 Rimpull 

60 TopSpeed MaximumAcceleration 0 0 Rimpull 

61 TopSpeed Retard 23.72 50.57 Rimpull 

62 TopSpeed Retard 23.72 50.57 Rimpull 

63 TopSpeed MaximumAcceleration 0 0 Rimpull 

64 TopSpeed Retard 0 0 Rimpull 

65 TopSpeed FinalSpeed 22.3 44.69 Rimpull 

66 TopSpeed Retard 0 0 Rimpull 



Appendix C                                                                                                                                                          139 

 

 

 

 

 

67 TopSpeed FinalSpeed 15.62 21.92 Rimpull 

68 TopSpeed Retard 15.62 21.92 Rimpull 

69 TopSpeed Retard 0 0 Rimpull 

70 TopSpeed FinalSpeed 33.43 100.44 Rimpull 

71 TopSpeed FinalSpeed 21.21 40.45 Rimpull 

72 TopSpeed MaximumAcceleration 0 0 Rimpull 

73 TopSpeed MaximumAcceleration 38.74 134.96 Rimpull 

74 TopSpeed MaximumAcceleration 0 0 Rimpull 

75 TopSpeed Retard 0 0 Rimpull 

76 TopSpeed Retard 0 0 Rimpull 

77 TopSpeed Retard 0 0 Rimpull 

78 TopSpeed Retard 0 0 Rimpull 

79 TopSpeed Retard 0 0 Rimpull 

80 TopSpeed Retard 0 0 Rimpull 

81 TopSpeed FinalSpeed 20.51 37.83 Rimpull 

82 TopSpeed MaximumAcceleration 0 0 Rimpull 

83 TopSpeed FinalSpeed 24.72 54.94 Rimpull 

84 TopSpeed Retard 0 0 Rimpull 

85 TopSpeed FinalSpeed 23.89 51.31 Rimpull 

86 TopSpeed Retard 27.89 69.94 Rimpull 

87 TopSpeed MaximumAcceleration 0 0 Rimpull 

88 TopSpeed Retard 30.49 83.56 Rimpull 

89 TopSpeed Retard 0 0 Rimpull 

90 TopSpeed Retard 0 0 Rimpull 

91 TopSpeed Retard 0 0 Rimpull 

92 TopSpeed Retard 0 0 Rimpull 

93 TopSpeed FinalSpeed 16.22 23.64 Rimpull 

94 TopSpeed Retard 16.22 23.64 Rimpull 

95 TopSpeed MaximumAcceleration 0 0 Rimpull 

96 TopSpeed FinalSpeed 15.84 22.55 Rimpull 

97 TopSpeed MaximumAcceleration 0 0 Rimpull 

98 TopSpeed Retard 0 0 Rimpull 

99 TopSpeed FinalSpeed 14.04 17.72 Rimpull 

100 TopSpeed Rimpull 0 0 Rimpull 

101 TopSpeed FinalSpeed 0 0 Rimpull 

102 TopSpeed FinalSpeed 0 0 Rimpull 

 

R2 FB 

Index From To 
Distance 

(m) 
Grade (%) Load 

1 (9,549.81, 9,892.64, 1,085.88) 
(9,370.73, 9,846.02, 

1,083.65) 
185.06 -1.21 Full 

2 (9,370.73, 9,846.02, 1,083.65) 
(9,329.64, 9,875.03, 

1,082.91) 
50.31 -1.47 Full 

3 (9,329.64, 9,875.03, 1,082.91) 
(9,237.07, 10,017.58, 

1,081.11) 
169.98 -1.06 Full 
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4 
(9,237.07, 10,017.58, 

1,081.11) 
(9,192.41, 10,091.88, 

1,078.81) 
86.72 -2.66 Full 

5 
(9,192.41, 10,091.88, 

1,078.81) 
(9,111.98, 10,292.13, 

1,076.78) 
215.81 -0.94 Full 

6 
(9,111.98, 10,292.13, 

1,076.78) 
(9,112.26, 10,429.70, 

1,074.17) 
137.6 -1.89 Full 

7 
(9,112.26, 10,429.70, 

1,074.17) 
(9,126.26, 10,548.51, 

1,072.97) 
119.63 -1 Full 

8 
(9,126.26, 10,548.51, 

1,072.97) 
(9,198.46, 10,774.38, 

1,068.85) 
237.17 -1.74 Full 

9 
(9,198.46, 10,774.38, 

1,068.85) 
(9,237.18, 11,005.34, 

1,065.43) 
234.2 -1.46 Full 

10 
(9,237.18, 11,005.34, 

1,065.43) 
(9,243.54, 11,011.75, 

1,065.41) 
9.04 -0.3 Full 

11 
(9,243.54, 11,011.75, 

1,065.41) 
(9,245.95, 11,016.34, 

1,065.24) 
5.18 -3.16 Full 

12 
(9,245.95, 11,016.34, 

1,065.24) 
(9,265.94, 11,057.53, 

1,064.69) 
45.8 -1.2 Full 

13 
(9,265.94, 11,057.53, 

1,064.69) 
(9,310.15, 11,079.41, 

1,066.02) 
49.35 2.69 Full 

14 
(9,310.15, 11,079.41, 

1,066.02) 
(9,506.48, 11,074.35, 

1,083.22) 
197.14 8.76 Full 

15 
(9,506.48, 11,074.35, 

1,083.22) 
(9,605.70, 11,108.26, 

1,088.46) 
104.99 4.99 Full 

16 
(9,605.70, 11,108.26, 

1,088.46) 
(9,694.87, 11,268.84, 

1,087.16) 
183.69 -0.7 Full 

17 
(9,694.87, 11,268.84, 

1,087.16) 
(9,669.77, 11,290.64, 

1,087.15) 
33.24 -0.04 Full 

18 
(9,669.77, 11,290.64, 

1,087.15) 
(9,694.87, 11,268.84, 

1,087.16) 
33.24 0.04 Empty 

19 
(9,694.87, 11,268.84, 

1,087.16) 
(9,605.70, 11,108.26, 

1,088.46) 
183.69 0.7 Empty 

20 
(9,605.70, 11,108.26, 

1,088.46) 
(9,506.48, 11,074.35, 

1,083.22) 
104.99 -4.99 Empty 

21 
(9,506.48, 11,074.35, 

1,083.22) 
(9,310.15, 11,079.41, 

1,066.02) 
197.14 -8.76 Empty 

22 
(9,310.15, 11,079.41, 

1,066.02) 
(9,265.94, 11,057.53, 

1,064.69) 
49.35 -2.69 Empty 

23 
(9,265.94, 11,057.53, 

1,064.69) 
(9,245.95, 11,016.34, 

1,065.24) 
45.8 1.2 Empty 

24 
(9,245.95, 11,016.34, 

1,065.24) 
(9,243.54, 11,011.75, 

1,065.41) 
5.18 3.16 Empty 

25 
(9,243.54, 11,011.75, 

1,065.41) 
(9,237.18, 11,005.34, 

1,065.43) 
9.04 0.3 Empty 

26 
(9,237.18, 11,005.34, 

1,065.43) 
(9,198.46, 10,774.38, 

1,068.85) 
234.2 1.46 Empty 

27 
(9,198.46, 10,774.38, 

1,068.85) 
(9,126.26, 10,548.51, 

1,072.97) 
237.17 1.74 Empty 

28 
(9,126.26, 10,548.51, 

1,072.97) 
(9,112.26, 10,429.70, 

1,074.17) 
119.63 1 Empty 
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29 
(9,112.26, 10,429.70, 

1,074.17) 
(9,111.98, 10,292.13, 

1,076.78) 
137.6 1.89 Empty 

30 
(9,111.98, 10,292.13, 

1,076.78) 
(9,192.41, 10,091.88, 

1,078.81) 
215.81 0.94 Empty 

31 
(9,192.41, 10,091.88, 

1,078.81) 
(9,237.07, 10,017.58, 

1,081.11) 
86.72 2.66 Empty 

32 
(9,237.07, 10,017.58, 

1,081.11) 
(9,329.64, 9,875.03, 

1,082.91) 
169.98 1.06 Empty 

33 (9,329.64, 9,875.03, 1,082.91) 
(9,370.73, 9,846.02, 

1,083.65) 
50.31 1.47 Empty 

34 (9,370.73, 9,846.02, 1,083.65) 
(9,549.81, 9,892.64, 

1,085.88) 
185.06 1.21 Empty 

Index Time (hh:mm:ss) Minimum Speed (km/h) 
Maximum 

Speed 
(km/h) 

Actual 
Initial 
Speed 
(km/h) 

Final 
Speed 
(km/h) 

1 0:00:33 0 34.51 0 19.59 

2 0:00:07 19.59 30.03 19.59 29.61 

3 0:00:15 29.61 48.14 29.61 48.14 

4 0:00:06 48.14 56.18 48.14 56.18 

5 0:00:18 29.46 56.27 56.18 29.46 

6 0:00:13 29.46 47.58 29.46 47.58 

7 0:00:09 41.58 50.5 47.58 41.58 

8 0:00:17 41.58 57.38 41.58 54.44 

9 0:00:22 20.84 54.44 54.44 20.84 

10 0:00:01 20.84 23.03 20.84 22.99 

11 0:00:01 22.99 24.17 22.99 24.17 

12 0:00:06 24.17 30.37 24.17 27.67 

13 0:00:06 27.67 27.69 27.67 27.67 

14 0:00:41 15.69 27.67 27.67 15.69 

15 0:00:18 15.69 22.84 15.69 21.29 

16 0:00:24 15.65 36.32 21.29 15.65 

17 0:00:13 0 17.38 15.65 0 

18 0:00:13 0 17.38 0 15.65 

19 0:00:24 15.65 36.62 15.65 21.29 

20 0:00:13 21.29 35.31 21.29 30.1 

21 0:00:20 27.67 43.59 30.1 27.67 

22 0:00:06 27.67 27.69 27.67 27.67 

23 0:00:06 24.17 30.37 27.67 24.17 

24 0:00:01 22.99 24.17 24.17 22.99 

25 0:00:01 20.84 23.03 22.99 20.84 

26 0:00:22 20.84 53.75 20.84 53.75 

27 0:00:16 41.58 57.22 53.75 41.58 

28 0:00:09 41.58 51.84 41.58 48.52 

29 0:00:13 29.46 48.52 48.52 29.46 

30 0:00:18 29.46 55.59 29.46 55.59 

31 0:00:06 52.08 56.23 55.59 52.08 
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32 0:00:15 29.61 52.08 52.08 29.61 

33 0:00:07 19.59 30.03 29.61 19.59 

34 0:00:33 0 34.51 19.59 0 

Index Average Speed (km/h) Elevation Change (m) 
Fuel 

Consumed 
(L) 

Fuel Burn 
Rate (L/h) 

Duty 
Cycle 
(%) 

1 20.21 2.23 0.88 95.7 37.28 

2 25.01 0.74 0.19 95.69 66.73 

3 39.73 1.8 0.41 95.7 99.58 

4 52.38 2.31 0.16 95.7 81.76 

5 43.01 2.03 0.48 95.7 1.05 

6 38.82 2.6 0.34 95.7 93.4 

7 47.09 1.2 0.24 95.7 34.97 

8 50.95 4.12 0.45 95.7 88.3 

9 37.64 3.42 0.6 95.7 0 

10 21.95 0.03 0.04 95.69 76.61 

11 23.58 0.16 0.02 95.7 32.19 

12 27.8 0.55 0.16 95.71 55.92 

13 27.69 1.32 0.17 95.7 73.59 

14 17.39 17.21 1.08 95.7 100 

15 20.85 5.23 0.48 95.7 95.76 

16 27.29 1.29 0.64 95.7 39.15 

17 9.4 0.01 0.34 95.7 5.62 

18 9.4 0.01 0.34 95.7 16.22 

19 27.33 1.29 0.64 95.7 28.86 

20 29.49 5.23 0.34 95.7 5.56 

21 36.19 17.21 0.52 95.7 0 

22 27.69 1.32 0.17 95.7 0 

23 27.8 0.55 0.16 95.71 18.33 

24 23.58 0.16 0.02 95.7 4.06 

25 21.95 0.03 0.04 95.69 0.76 

26 37.61 3.42 0.6 95.7 78.21 

27 51.75 4.12 0.44 95.7 36.78 

28 47.56 1.2 0.24 95.7 69.56 

29 38.99 2.6 0.34 95.7 0 

30 42.96 2.03 0.48 95.7 83.52 

31 55.07 2.31 0.15 95.69 53.42 

32 40.85 1.8 0.4 95.7 0 

33 25.01 0.74 0.19 95.69 2.57 

34 20.21 2.23 0.88 95.7 16.78 

Index Velocity Limit Performance Limit 
Corner 
Speed 
(km/h) 

Equivalent 
Corner 
Radius 

(m) 

Actual 
Power 
Curve 

1 TopSpeed FinalSpeed 19.59 34.5 Rimpull 
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2 TopSpeed Retard 29.61 78.82 Rimpull 

3 TopSpeed Rimpull 0 0 Rimpull 

4 TopSpeed Rimpull 0 0 Rimpull 

5 TopSpeed FinalSpeed 29.46 78.02 Rimpull 

6 TopSpeed Rimpull 0 0 Rimpull 

7 TopSpeed FinalSpeed 41.58 155.4 Rimpull 

8 TopSpeed Retard 0 0 Rimpull 

9 TopSpeed FinalSpeed 20.84 39.06 Rimpull 

10 TopSpeed FinalSpeed 22.99 47.5 Rimpull 

11 TopSpeed MaximumAcceleration 0 0 Rimpull 

12 TopSpeed FinalSpeed 27.67 68.81 Rimpull 

13 TopSpeed Retard 27.67 68.81 Rimpull 

14 TopSpeed Retard 30.1 81.43 Rimpull 

15 TopSpeed FinalSpeed 21.29 40.76 Rimpull 

16 TopSpeed FinalSpeed 15.65 22.02 Rimpull 

17 TopSpeed FinalSpeed 0 0 Rimpull 

18 TopSpeed FinalSpeed 15.65 22.02 Rimpull 

19 TopSpeed Retard 21.29 40.76 Rimpull 

20 TopSpeed Retard 30.1 81.43 Rimpull 

21 TopSpeed FinalSpeed 27.67 68.81 Rimpull 

22 TopSpeed Retard 27.67 68.81 Rimpull 

23 TopSpeed Retard 0 0 Rimpull 

24 TopSpeed FinalSpeed 22.99 47.5 Rimpull 

25 TopSpeed Retard 20.84 39.06 Rimpull 

26 TopSpeed Rimpull 0 0 Rimpull 

27 TopSpeed FinalSpeed 41.58 155.4 Rimpull 

28 TopSpeed Retard 0 0 Rimpull 

29 TopSpeed FinalSpeed 29.46 78.02 Rimpull 

30 TopSpeed Rimpull 0 0 Rimpull 

31 TopSpeed Retard 0 0 Rimpull 

32 TopSpeed FinalSpeed 29.61 78.82 Rimpull 

33 TopSpeed Retard 19.59 34.5 Rimpull 

34 TopSpeed FinalSpeed 0 0 Rimpull 

 

R2 FT 

Index From To 
Distance 

(m) 
Grade (%) Load 

1 (9,549.81, 9,892.64, 1,085.88) (9,370.73, 9,846.02, 1,083.65) 185.06 -1.21 Full 

2 (9,370.73, 9,846.02, 1,083.65) (9,329.64, 9,875.03, 1,082.91) 50.31 -1.47 Full 

3 (9,329.64, 9,875.03, 1,082.91) 
(9,237.07, 10,017.58, 

1,081.11) 
169.98 -1.06 Full 

4 
(9,237.07, 10,017.58, 

1,081.11) 
(9,192.41, 10,091.88, 

1,078.81) 
86.72 -2.66 Full 

5 
(9,192.41, 10,091.88, 

1,078.81) 
(9,111.98, 10,292.13, 

1,076.78) 
215.81 -0.94 Full 

6 
(9,111.98, 10,292.13, 

1,076.78) 
(9,112.26, 10,429.70, 

1,074.17) 
137.6 -1.89 Full 
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7 
(9,112.26, 10,429.70, 

1,074.17) 
(9,126.26, 10,548.51, 

1,072.97) 
119.63 -1 Full 

8 
(9,126.26, 10,548.51, 

1,072.97) 
(9,198.46, 10,774.38, 

1,068.85) 
237.17 -1.74 Full 

9 
(9,198.46, 10,774.38, 

1,068.85) 
(9,237.18, 11,005.34, 

1,065.43) 
234.2 -1.46 Full 

10 
(9,237.18, 11,005.34, 

1,065.43) 
(9,243.54, 11,011.75, 

1,065.41) 
9.04 -0.3 Full 

11 
(9,243.54, 11,011.75, 

1,065.41) 
(9,245.95, 11,016.34, 

1,065.24) 
5.18 -3.16 Full 

12 
(9,245.95, 11,016.34, 

1,065.24) 
(9,265.94, 11,057.53, 

1,064.69) 
45.8 -1.2 Full 

13 
(9,265.94, 11,057.53, 

1,064.69) 
(9,310.15, 11,079.41, 

1,066.02) 
49.35 2.69 Full 

14 
(9,310.15, 11,079.41, 

1,066.02) 
(9,506.48, 11,074.35, 

1,083.22) 
197.14 8.76 Full 

15 
(9,506.48, 11,074.35, 

1,083.22) 
(9,605.70, 11,108.26, 

1,088.46) 
104.99 4.99 Full 

16 
(9,605.70, 11,108.26, 

1,088.46) 
(9,694.87, 11,268.84, 

1,087.16) 
183.69 -0.7 Full 

17 
(9,694.87, 11,268.84, 

1,087.16) 
(9,669.77, 11,290.64, 

1,087.15) 
33.24 -0.04 Full 

18 
(9,669.77, 11,290.64, 

1,087.15) 
(9,694.87, 11,268.84, 

1,087.16) 
33.24 0.04 Empty 

19 
(9,694.87, 11,268.84, 

1,087.16) 
(9,605.70, 11,108.26, 

1,088.46) 
183.69 0.7 Empty 

20 
(9,605.70, 11,108.26, 

1,088.46) 
(9,506.48, 11,074.35, 

1,083.22) 
104.99 -4.99 Empty 

21 
(9,506.48, 11,074.35, 

1,083.22) 
(9,310.15, 11,079.41, 

1,066.02) 
197.14 -8.76 Empty 

22 
(9,310.15, 11,079.41, 

1,066.02) 
(9,265.94, 11,057.53, 

1,064.69) 
49.35 -2.69 Empty 

23 
(9,265.94, 11,057.53, 

1,064.69) 
(9,245.95, 11,016.34, 

1,065.24) 
45.8 1.2 Empty 

24 
(9,245.95, 11,016.34, 

1,065.24) 
(9,243.54, 11,011.75, 

1,065.41) 
5.18 3.16 Empty 

25 
(9,243.54, 11,011.75, 

1,065.41) 
(9,237.18, 11,005.34, 

1,065.43) 
9.04 0.3 Empty 

26 
(9,237.18, 11,005.34, 

1,065.43) 
(9,198.46, 10,774.38, 

1,068.85) 
234.2 1.46 Empty 

27 
(9,198.46, 10,774.38, 

1,068.85) 
(9,126.26, 10,548.51, 

1,072.97) 
237.17 1.74 Empty 

28 
(9,126.26, 10,548.51, 

1,072.97) 
(9,112.26, 10,429.70, 

1,074.17) 
119.63 1 Empty 

29 
(9,112.26, 10,429.70, 

1,074.17) 
(9,111.98, 10,292.13, 

1,076.78) 
137.6 1.89 Empty 

30 
(9,111.98, 10,292.13, 

1,076.78) 
(9,192.41, 10,091.88, 

1,078.81) 
215.81 0.94 Empty 

31 
(9,192.41, 10,091.88, 

1,078.81) 
(9,237.07, 10,017.58, 

1,081.11) 
86.72 2.66 Empty 
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32 
(9,237.07, 10,017.58, 

1,081.11) 
(9,329.64, 9,875.03, 1,082.91) 169.98 1.06 Empty 

33 (9,329.64, 9,875.03, 1,082.91) (9,370.73, 9,846.02, 1,083.65) 50.31 1.47 Empty 

34 (9,370.73, 9,846.02, 1,083.65) (9,549.81, 9,892.64, 1,085.88) 185.06 1.21 Empty 

Index Time (hh:mm:ss) Minimum Speed (km/h) 
Maximum 

Speed 
(km/h) 

Actual 
Initial 
Speed 
(km/h) 

Final 
Speed 
(km/h) 

1 0:00:33 0 34.31 0 19.59 

2 0:00:07 19.59 30.03 19.59 29.61 

3 0:00:16 29.61 46.44 29.61 46.44 

4 0:00:06 46.44 54.49 46.44 54.49 

5 0:00:18 29.46 55.01 54.49 29.46 

6 0:00:13 29.46 46.66 29.46 46.66 

7 0:00:09 41.58 49.68 46.66 41.58 

8 0:00:17 41.58 56.62 41.58 54.44 

9 0:00:22 20.84 54.44 54.44 20.84 

10 0:00:01 20.84 23.03 20.84 22.99 

11 0:00:01 22.99 24.17 22.99 24.17 

12 0:00:06 24.17 30.34 24.17 27.67 

13 0:00:06 27.67 27.69 27.67 27.67 

14 0:00:44 14.54 27.67 27.67 14.54 

15 0:00:19 14.54 21.47 14.54 21.29 

16 0:00:24 15.65 35.8 21.29 15.65 

17 0:00:13 0 17.38 15.65 0 

18 0:00:13 0 17.38 0 15.65 

19 0:00:24 15.65 36.62 15.65 21.29 

20 0:00:13 21.29 35.31 21.29 30.1 

21 0:00:20 27.67 43.59 30.1 27.67 

22 0:00:06 27.67 27.69 27.67 27.67 

23 0:00:06 24.17 30.37 27.67 24.17 

24 0:00:01 22.99 24.17 24.17 22.99 

25 0:00:01 20.84 23.03 22.99 20.84 

26 0:00:22 20.84 53.75 20.84 53.75 

27 0:00:16 41.58 57.22 53.75 41.58 

28 0:00:09 41.58 51.84 41.58 48.52 

29 0:00:13 29.46 48.52 48.52 29.46 

30 0:00:18 29.46 55.59 29.46 55.59 

31 0:00:06 52.08 56.23 55.59 52.08 

32 0:00:15 29.61 52.08 52.08 29.61 

33 0:00:07 19.59 30.03 29.61 19.59 

34 0:00:33 0 34.51 19.59 0 

Index Average Speed (km/h) Elevation Change (m) 
Fuel 

Consumed 
(L) 

Fuel Burn 
Rate (L/h) 

Duty 
Cycle (%) 

1 20.2 2.23 0.88 95.7 41.53 

2 25.01 0.74 0.19 95.69 74.91 

3 38.83 1.8 0.42 95.7 100 
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4 50.6 2.31 0.16 95.7 91.15 

5 42.96 2.03 0.48 95.7 5.81 

6 38.57 2.6 0.34 95.7 97.99 

7 46.69 1.2 0.25 95.7 41.41 

8 50.25 4.12 0.45 95.7 91.47 

9 37.64 3.42 0.6 95.7 0 

10 21.95 0.03 0.04 95.69 86.01 

11 23.58 0.16 0.02 95.7 36.14 

12 27.8 0.55 0.16 95.7 62.58 

13 27.69 1.32 0.17 95.7 82.62 

14 16.08 17.21 1.17 95.7 100 

15 19.42 5.23 0.52 95.7 99.56 

16 27.2 1.29 0.65 95.7 42.85 

17 9.4 0.01 0.34 95.7 6.31 

18 9.4 0.01 0.34 95.7 16.22 

19 27.33 1.29 0.64 95.7 28.86 

20 29.49 5.23 0.34 95.7 5.56 

21 36.19 17.21 0.52 95.7 0 

22 27.69 1.32 0.17 95.7 0 

23 27.8 0.55 0.16 95.71 18.33 

24 23.58 0.16 0.02 95.7 4.06 

25 21.95 0.03 0.04 95.69 0.76 

26 37.61 3.42 0.6 95.7 78.21 

27 51.75 4.12 0.44 95.7 36.78 

28 47.56 1.2 0.24 95.7 69.56 

29 38.99 2.6 0.34 95.7 0 

30 42.96 2.03 0.48 95.7 83.52 

31 55.07 2.31 0.15 95.69 53.42 

32 40.85 1.8 0.4 95.7 0 

33 25.01 0.74 0.19 95.69 2.57 

34 20.21 2.23 0.88 95.7 16.78 

Index Velocity Limit Performance Limit 
Corner 
Speed 
(km/h) 

Equivalent 
Corner 
Radius 

(m) 

Actual 
Power 
Curve 

1 TopSpeed FinalSpeed 19.59 34.5 Rimpull 

2 TopSpeed Retard 29.61 78.82 Rimpull 

3 TopSpeed Rimpull 0 0 Rimpull 

4 TopSpeed Rimpull 0 0 Rimpull 

5 TopSpeed FinalSpeed 29.46 78.02 Rimpull 

6 TopSpeed Rimpull 0 0 Rimpull 

7 TopSpeed FinalSpeed 41.58 155.4 Rimpull 

8 TopSpeed Retard 0 0 Rimpull 

9 TopSpeed FinalSpeed 20.84 39.06 Rimpull 

10 TopSpeed FinalSpeed 22.99 47.5 Rimpull 

11 TopSpeed MaximumAcceleration 0 0 Rimpull 

12 TopSpeed FinalSpeed 27.67 68.81 Rimpull 

13 TopSpeed Retard 27.67 68.81 Rimpull 
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14 TopSpeed Retard 30.1 81.43 Rimpull 

15 TopSpeed FinalSpeed 21.29 40.76 Rimpull 

16 TopSpeed FinalSpeed 15.65 22.02 Rimpull 

17 TopSpeed FinalSpeed 0 0 Rimpull 

18 TopSpeed FinalSpeed 15.65 22.02 Rimpull 

19 TopSpeed Retard 21.29 40.76 Rimpull 

20 TopSpeed Retard 30.1 81.43 Rimpull 

21 TopSpeed FinalSpeed 27.67 68.81 Rimpull 

22 TopSpeed Retard 27.67 68.81 Rimpull 

23 TopSpeed Retard 0 0 Rimpull 

24 TopSpeed FinalSpeed 22.99 47.5 Rimpull 

25 TopSpeed Retard 20.84 39.06 Rimpull 

26 TopSpeed Rimpull 0 0 Rimpull 

27 TopSpeed FinalSpeed 41.58 155.4 Rimpull 

28 TopSpeed Retard 0 0 Rimpull 

29 TopSpeed FinalSpeed 29.46 78.02 Rimpull 

30 TopSpeed Rimpull 0 0 Rimpull 

31 TopSpeed Retard 0 0 Rimpull 

32 TopSpeed FinalSpeed 29.61 78.82 Rimpull 

33 TopSpeed Retard 19.59 34.5 Rimpull 

34 TopSpeed FinalSpeed 0 0 Rimpull 

 


