
 
 
 
 

Distributed Estimation and Quantization Algorithms for Wireless Sensor Networks 
 

by 
 

Sahar Movaghati 
  
  

 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Doctor of Philosophy 
in 

Communications 
 
 
 
 
 

Department of Electrical and Computer Engineering 
University of Alberta 

 
 
 
 
 
 
 

  
 
 

© Sahar Movaghati, 2014 



Dedicated to my beloved parents,
and

my beautiful homeland, Iran.



Abstract

Wireless sensor networks (WSNs) consist of small sensor devices with limited power

and processing capability, which cooperate through wireless transmission, in order to

fulfill a common task. These networks are currently employed on land, underground,

and underwater, in a wide range of applications including environmental sensing,

industrial and structural monitoring, medical care, and etc. However, there are

still many impediments that hold back these networks from being pervasive, some

of which are characteristics of WSNs, such as scarcity of energy and bandwidth

resources and limited processing and storage capability of sensor nodes. Therefore,

many challenges still need to be overcome before WSNs can be extensively employed.

In this study, we concentrate on developing algorithms that are useful for WSN

estimation tasks. In designing these algorithms we consider the special constraints

and characteristics of WSNs, i.e., distributed nature of the measurements and the

processing resources, as well as the limited sensors’ energy. We first investigate

a general stochastic inference problem in a WSN. We design a non-parametric al-

gorithm for tracking a random process using sensors’ distributed and noisy mea-

surements. Next we narrow down the problem to parameter estimation in WSNs,

and design distributed quantizers to compress sensors’ data while maintaining an

accurate estimation of the unknown parameter.

The contributions of this thesis are as follows. In Chapter 3, we design an

algorithm for the distributed inference problem in WSNs. We first use factor graphs

to model the stochastic dependencies among the problem variables, and factorize

a centralized estimation problem to a number of local dependencies. A message

passing algorithm called the sum-product algorithm is then used on the factor graph

to determine local computations and data exchange that must be performed by

sensors in order to achieve the estimation goal. To tackle the nonlinearities in the

problem, we combine the particle filtering and Monte-Carlo sampling in the sum-

product algorithm and develop a distributed non-parametric solution for the general
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nonlinear inference problems in WSNs. We apply our algorithm to the problem of

target tracking using WSNs, and show that even with a few number of particles the

algorithm can efficiently track the target.

In Chapter 4, we focus on the parameter estimation problem in a WSN under

energy limitations. In such problems, each sensor sends a compressed version of its

noisy observation of the same parameter to the fusion centre, where the parameter

is estimated from the received data. In Chapter 4, we design a set of local quantizers

that quantize each sensor’s measurement to a few bits. We optimize the quantizers’

design by maximizing the mutual information between the quantized data and the

unknown parameter. At the fusion centre, we design the appropriate decoder that

incorporates the compressed data from all sensors to estimate the parameter.

In Chapters 5 and 6, we narrow down the problem to very stringent capacity

constraints, where each sensor quantizes its data to exactly one bit. In Chapter 5,

we find a set of local binary quantizers that together act as a multi-level distributed

quantization. In Chapter 6, we address inhomogeneous WSNs, where sensors have

different signal-to-noise ratios. We devise an algorithm using the Hungarian method

to find the best sensor-quantizer assignment that minimizes the estimation error.
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Chapter 1

Introduction

1.1 Motivation

A wireless sensor network (WSN) is a collection of autonomous sensor nodes with

limited power and processing capability, which are physically distributed in an area,

cooperating with each other to collect and process data from the surroundings [1].

Depending on the application of the WSN, the sensor nodes can observe one or

more physical properties, such as, temperature, sound, motion, electromagnetic ra-

diation, pressure, etc. WSNs have many applications such as environmental moni-

toring (e.g., air, water, soil, micro-climate, animals, etc.), medical care and health

monitoring, smart home and office, agriculture and irrigation management, intelli-

gent transportation and traffic monitoring, air quality and air pollution monitoring,

fire detection, object localization and tracking, intruder detecting, area surveillance,

etc. [1].

For performing wireless transmission and reception, sensor nodes in a WSN

are equipped with wireless communication devices, i.e. radio transceivers. De-

pending on the application, the transceivers could implement different protocols,

including ZigBee, 802.15.4, WiFi and RF, ranging from megahertz to gigahertz in

frequency spectrum [2]. The nodes usually have some capability of data process-

ing and computations. The energy source of the sensor is in the form of a battery

with limited power. Also, there is some memory unit in a sensor node for restor-

ing the observations and the processed data. Rapid progress in recent technologies

including Micro-electromechanical systems (MEMS) has enabled industrialization

of low-cost and smaller sensor devices. Today, the industrial sensor devices are

a few inches in dimension, including their battery and wireless transceivers. Fur-

thermore, the advances in communication technologies and network protocols pledge
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promising future for the large deployment of sensor networks, including the Internet-

of-Things [3]. It is predicted that there will be 25 billion devices connected to the

internet by 2015 and 50 billion by 2020 [4].

Despite all the progress, there are still many impediments which introduce chal-

lenges in the pervasive application of WSNs. Among them some important chal-

lenges include, limited power and bandwidth resources, limited processing and stor-

age capability of sensor nodes, and the random and distributed nature of these net-

works. Due to these unique characteristics of WSNs, there are more challenges for

designing WSN algorithms and protocols compared to conventional wired networks

or other fixed or mobile wireless networks.

Limited energy recourses is one of the most crucial limitations that confront

WSN applications. The energy resources are mainly consumed for the processing

tasks and wireless transmission. Therefore, it is necessary to design algorithms that

manage the data processing and data transmissions in the WSN in a way to preserve

network resources for long-term monitoring, while achieving a good quality for the

estimation tasks. In this thesis we have addressed the design of such algorithms.

To design appropriate algorithms for WSNs, we have to overcome an extra chal-

lenge. That is, the local observed data are by nature physically distributed over

the network, and are not available in one processing center. Therefore, many global

algorithms such as routing methods, data management methods, tracking and de-

tection algorithms, must be designed as distributed algorithms for WSNs. In a

distributed algorithm, each sensor performs some local processing as part of the

global task (e.g., estimation or tracking), and there is less dependence on a central

node or fusion centre (FC). In this thesis we devise distributed solutions for inference

problems in a WSN, while maintaining the desired accuracy in estimation. These

challenges are further explained in the following two sections.

1.2 Distributed Inference

In Chapter 3, we focus on the use of WSNs for distributed inference and design

some algorithms for this purpose. WSNs are distributed sensing systems because

they consist of a set of physically distributed measurement devices with wireless

communication capability. As a distributed sensing system they can be employed

as a set of humidity sensors that take measurements for an irrigation management

system, an antenna array that is deployed to locate and track a moving vehicle, the

2



wearable biomedical signal measurement devices that are used for health monitoring,

etc. In all these applications the sensors take some measurement of a physical

property, i.e., temperature, humidity, distance to an object, heart bit rate, etc.

The sensors’ measurement data must be processed in the sensors and/or in the FC

to achieve the common goal of the system, e.g., optimizing the plants’ watering

schedule, tracking a moving object trajectory, or assuring the health condition of

the patient. The signal processing algorithms of WSNs control the way sensors’

data are processed locally, how the sensors’ data are aggregated and communicated

to other nodes, and how these data are combined in a FC.

However, in many examples of WSNs, there is no anchor node or FC, which can

be reached by other sensors and be relied on for central processing tasks. In such ad-

hoc networks, the global task must be performed in a distributed fashion, i.e., sensors

must cooperatively perform all the processing tasks by doing local processing and

sharing data among each other through local communication links. In such WSNs a

distributed signal processing algorithm determines how to locally process the sensors’

measurements at the sensors, what to send to the other sensors, and how to combine

the received data from neighboring sensors, in order to achieve the global task of

the system.

There have been many studies for developing distributed signal processing al-

gorithms, such as, distributed consensus [5–7], distributed localization and track-

ing [8–10], distributed link loss monitoring [11, 12], distributed compression and

quantization [13, 14], distributed estimation [15–17], distributed detection [18], etc.

In all these algorithms the overall task is broken down to local processing tasks and

sensor collaboration.

In this study, we develop a distributed signal processing algorithm for WSNs

to enable them perform a general category of inference and estimation tasks. We

assume a model of a WSN consisting of a number of distributed sensors that aim to

collaboratively estimate the state of a random object in time, e.g., the trajectory of a

moving abject, the water level of a river, the production rate in oil wells, etc. In such

applications, sensors have local measurements of the object (i.e., a random process)

and need to cooperatively process these measurements to infer the state of the object

in time. Our distributed inference algorithm, achieves the global estimation task by

determining how each sensor processes its local partial measurement and the partial

measurements it receives form its neighboring sensors.
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The majority of the advanced tasks performed by WSNs, such as data fusion,

decision making, hypothesis testing, detection, etc., can be interpreted in the form of

a stochastic inference problem. In a stochastic inference problem, the phenomenon

of interest, i.e., target trajectory, water level of a river, production rate of a well,

heart bit rate of a patient, etc., are modeled as a random process. Each senor,

making some (generally noisy) measurements from some attributes related to this

random process, have some partial (and usually distorted) information about the

process. In this setup, a stochastic inference problem is about inferring the unknown

random process from the local distorted measurements of the sensors.

In our distributed algorithm for stochastic inference in WSNs, we benefit from

the factor graph (FG) modeling and a message passing algorithm (MPA), called the

sum-product algorithm (SPA) to factorize a centralized inference problem into local

computations plus some information passing among neighboring sensors. We com-

bine the particle filtering (PF) and Monte-Carlo sampling methods in the message

passing algorithm to develop a distributed non-parametric solution for the general

nonlinear inference problems in WSNs.

1.3 Distributed Quantization

In many WSN applications the FC has to estimate an unknown random parameter

based on some noisy observations received from the sensors. In these applications,

sensors’ measurement data need to be transmitted to the FC over the wireless links.

This wireless transmission is usually the most power-consuming task in the sensors

[19]. Since sensors’ power resources are limited, the tasks that involve frequent

communication between the sensors and the FC face a challenge. In fact, as the

sensors’ size shrink, the amount of energy they can store also reduces. Batteries are

normally the power source within a sensor for all its tasks, hence sensors performance

and lifetime is restrained to their battery. Therefore, research is ongoing for utilizing

the sensors’ energy efficiently without sacrificing the performance [20].

Due to these resource constraints, the distributed signal processing algorithms

need to be energy-efficient in a WSN. One way to achieve this efficiency is to com-

press the sensors’ local observations before transmitting to the FC [21]. As a solu-

tion, many studies are focused on reducing the number of transmitted bits from the

sensors to the FC via quantization. One way is to use the same approach as in the

centralized quantization. The optimal solution for the centralized quantization is
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given by the Lloyd-Max algorithm [22, 23]. It finds the optimum centralized quan-

tizer using an iterative algorithm that decreases the quantization distortion at each

iteration.

In a WSN, the centralized quantization techniques of [22–25] can be used for de-

signing a local quantizer for every sensor to compress its data before transmission.

However, since sensors’ measurement data are usually correlated (for example when

sensors measure the same parameter), optimum estimation performance can be ob-

tained through joint design of the local quantizers. Therefore, [26–29] jointly design

N local quantizers using cyclic algorithms based on alternating minimization [30].

These algorithms are computationally complex. Thus, less complex but not optimal

approaches have been studied in [13–17,31–38].

In Chapter 4, we jointly design N quantizers by using the mutual information

(MI) as the optimization measure instead of the estimation error as in [22–25]. We

design quantizers that maximize the MI of the quantized data and the unknown

parameter. Our motivation for using the MI is that it is a fundamental measure

showing how much information the quantized variables contain about the unknown

variable. Hence, we design a set of quantizers that quantize the noisy measurements

into a set of variables that together contain the most information about the unknown

parameter. MI allows to incorporate the effect of communication channels in the

design of quantizers. Therefore, we find optimal channel-aware local quantizers by

integrating the channel information in our design.

For very stringent capacity constraints in WSNs, each sensor is only allowed to

send one bit per measurement. In those cases we offer a design method that chooses

the quantization edges among a predetermined limited set of edges. Unlike iterative

approaches that usually find local optimum solutions we use brute-force search with

heuristic simplifications to find a global solution. Once the N quantization rules are

obtained, one needs to assign each quantization rule to a sensor. This assignment

of sensors and quantization rules can affect the estimation performance in inho-

mogeneous environments, where sensors measurement qualities are not the same.

Therefore, in Chapter 6, we propose an algorithm based on Hungarian method to

efficiently optimize the assignments for achieving the minimum estimation error.
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1.4 Thesis Organization

This thesis is organized as follows: The theoretical preliminaries of all the topics

covered in this thesis are explained in Chapter 2. The contributions are organized

in four chapters. In Chapter 3, we develop an algorithm based on factor graph mod-

eling and a message-passing algorithm for distributed estimation and inference in

WSNs. In Chapter 4 we focus on the design of distributed quantization scheme. The

optimum quantization rules are found by an iterative algorithm which maximizes

the mutual information. Later in this chapter, we improve our design algorithm

to integrate the channel error and achieve channel-aware distributed quantization

scheme. In Chapter 5 we narrow down the problem to binary quantization per sensor

and find the best N binary quantization rules. In Chapter 6, we find the optimum

assignment between the local quantizers and the sensor nodes, for inhomogeneous

environments. Finally, in Chapter 7, we conclude and discuss our contributions and

suggest some future research topics.
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Chapter 2

Background

2.1 Inference Problems

2.1.1 Setup

In recent decades stochastic approaches, such as Bayesian methods [39], have be-

come popular for solving many problems. In stochastic inference problems, the

phenomenon of interest as well as the sensors measurement data are represented by

random variables or processes. The resulting model is called a stochastic model for

the inference problem.

In a stochastic approach for solving the problems, all quantities involved in the

problem, such as the measurements (observed variables) and the unknowns (hidden

or unobserved variables) are treated as random variables. The uncertain/ambiguous

relations among the variables of the problem are modeled via stochastic relations

among the random variables. For example, assume that the random variables

y1, y2, · · · , yN represent N measurement quantities and x1, x2, · · · , xM stand for M

unknowns. The following implications are considered in stochastic approaches.

i) The knowledge or belief associated with each random variable is described by

a probability distribution function (pdf). For example, the pdf p(xm) explains some

a priori knowledge about the unknown xm. The more the variance of this pdf, the

more is the uncertainty about the value of xm.

ii) A joint probability distribution of the variables captures the stochastic rela-

tionship among the variables involved in the problem. For example,

p(x1, x2, · · · , xM , y1, y2, · · · , yN ). (2.1)

iii) The a posteriori belief about the set of variables x1, x2, · · · , xM is a condi-
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tional pdf like

p(x1, x2, · · · , xM |y1, y2, · · · , yN ), (2.2)

which encapsulates all the information that could be achieved about the unknowns

x1, x2, · · · , xM knowing the measurements y1, y2, · · · , yN [40, 41]. Normally, the

amount of uncertainty in the a posteriori distribution is less than the uncertainty in

the a priori distribution.

The goal in a stochastic inference is to find the marginals of the a posteriori

distributions. For example, the marginal a posteriori distribution of xm, i.e.,

p(xm|y1, y2, · · · , yN )

=

∫
p(x1, x2, · · · , xM |y1, y2, · · · , yN )dx1 · · · dxm−1dxm+1dxM , (2.3)

is the a posteriori belief about the unknown xm. If the pdf (2.3) is known, any

desired estimate of xm can be made regarding an estimation metric, for example, a

maximum likelihood (ML) or a minimum mean squared error (MMSE) estimation.

The above described stochastic setup can be applied to many problems ranging

from single, time-invariant parameter estimation to multi-variant time-varying pro-

cesses. To solve these problems, i.e., to find the a posteriori marginal pdfs (2.3),

many techniques have been developed, ranging from the Bayesian hypothesis testing

to the Kalman filter [42], PF [43–45], and graph-based methods such as belief prop-

agation [46] and the SPA [47]. In Section 2.1.2, we explain the graphical modeling

approach for solving inference problems.

2.1.2 Graphical Models

A graphical model is an appropriate tool that can be used to build a solution for

a general stochastic inference problem. Graphical models such as FGs have been

used to model stochastic relationships of the variables involved in various inference

problem. The FG takes advantage of the conditional independencies among the

variables to break down a global multi-variate stochastic relation like the pdf (5.11)

to smaller local functions. Therefore, a complicated global processing on the entire

set of variables can be broken down to smaller processing modules that involve only

some of the variables. Specifically, instead of calculating multi-variable integrals to

find the marginal beliefs (2.3), the FG representation of the stochastic problem helps

derive a set of simpler processing rules that together achieve the same performance
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as the centralized solution. To understand how FGs help in inference problems, the

concept of the FG and the message passing algorithm is briefly described here.

Assume a global function of a set of variables {x1, x2, · · · , xn}, i.e., ζ(x1, x2, · · · , xn),

factors into a product of several local functions, each having a subset of {x1, x2, · · · , xn}

as their arguments. In other words,

ζ(x1, x2, · · · , xn) =
∏
j

fj(Xj), (2.4)

where Xj is a subset of {x1, x2, · · · , xn}, and fj(Xj) is a function having the elements

of Xj as its arguments. The factorization in (2.4) can be shown using a bipartite

graph called factor graph, which has a variable node for each variable xi, and a

function node for each local function fj . There is an edge between the variable node

xi and the function node fj if and only if xi is an argument of fj [47]. For example,

if ζ(x1, x2, x3, x4, x5) can be expressed as

ζ(x1, x2, x3, x4, x5) = f1(x1, x2)f2(x3)f3(x2, x3, x4)f4(x4, x5), (2.5)

the FG corresponding to this factorization is shown is Fig. 2.1. In order to find all

marginal functions of a global function some calculations can be done on the FG

according to a MPA. A MPA is usually described by defining the messages that are

passed along the edges of the FG and the update rules associated with the messages

as they move through the nodes of the graph. A message sent along an edge is a

function of the connected variable node to that edge and usually carries information

about that variable. The message update rules are procedures performed in the

graph nodes to manipulate the incoming messages to the node in order to generate

output messages from the node. A very famous MPA called the SPA is introduced

in [47]. By running the SPA on a cycle-free FG, once a message is passed in both

directions on every edge, the marginal function of any variable can be found.

The SPA establishes the message update rules at the variable node x and the

function node f . We represent the message going from a variable node to a function

node as µx→f (x) and a message from a function node to a variable node as µf→x(x).

Note that both messages are functions of the particular variable node involved in

the transaction. Let ℵ(x) indicate the set of neighbors of the variable node x and

ℵ(f) indicate the set of neighbors for the function node f . Then the update rules

of the SPA are formulated as
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Figure 2.1: Factor graph representation for the function ζ in (2.5).

Update Rule 1:

µx→f (x) =
∏

λ∈ℵ(x)\f

µλ→x(x) (2.6)

Update Rule 2:

µf→x(x) =
∑
∼x

(f(X)
∏

y∈ℵ(f)\x

µy→f (y)) (2.7)

where X is the set of the arguments of the local function f which will be the same

as ℵ(f). The notation ℵ(x) \ f denotes the set of all the neighbors of x excluding

the function node f . Also, ∼ x means that the sum (or the integral in the case of

continuous variable) is taken on all the variables except x.

The applications of FG and the SPA are very extensive. Signal processing, digital

communication and artificial intelligence algorithms can be derived as instances of

the SPA. In the Bayesian estimation problems specifically, the goal is to infer some

information or “belief” about some hidden (unobserved) variables x1, x2, · · · , xM
based on some observed variables y1, y2, · · · , yN . In other words, we are looking for

marginal distributions of a pdf function like p(x1, x2, · · · , xM |y1, y2, · · · , yN ). We

can use the inter-dependencies of the variables to factorize this function into smaller

local functions similar to the scheme in (2.4). Once we do that, we can associate a

FG with the factorization and run the SPA update rules on the graph to find the

marginal pdfs of the unknown variables. The SPA determines the mechanism by

which local messages are exchanged between the neighboring nodes on the graph.

For inference problems in WSNs, this approach can be very beneficial, because it

breaks down the centralized calculations into smaller local update rules.
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The message update rules (2.6) and (2.7) specify a set of analytical calculations

which could be very complex in general. Therefore, The application of the SPA

for inference problems is often restricted to problems involving binary or discrete

variables or continuous variables with Gaussian distributions. In some applications,

such as coding or behavioral modeling [47], the variables are discrete and belong

to a limited alphabet. In those cases, the messages reduce to a numerical table

instead of continuous functions and the update rules become numerical calculations.

However, in a general continuous stochastic inference problem, the messages are

usually continuous functions which are pdfs or conditional pdfs. Working with

arbitrary pdfs and trying to solve (2.6) and (2.7) analytically is usually impossible or

very complicated. Some approaches to deal with the infeasible equations of message

update rules are suggested in [48]. For those inference problems that involve only

Gaussian posteriori distributions (linear and Gaussian models), the message update

rules of MPA reduce to simple calculations on mean and variance of the distributions.

For details of these calculations, see [47,49,50]. For general stochastic problems with

continuous pdfs, the integrals in rule 2 can be solved with the help of Monte-Carlo

integration. This is explained in Section 2.1.3. Also, the multiplication of the pdfs

can be done using a Gibbs sampler explained in Section 2.1.4.

2.1.3 Monte Carlo Integration

For non-Gaussian and non-linear inference problems, Monte-Carlo based solutions

have been conventionally used in the literature. Monte Carlo integration [43] is a

probabilistic method used to approximate an integral. In contrast to the Riemann

sum method which blindly divides the variable space, in Monte Carlo integration

a set of randomly chosen samples, called particles, represent the distribution of a

random variable in its domain. Owing to the wise selection of the particles, Monte

Carlo methods can be more accurate than Riemann sum approaches for the same

computational complexity. This difference is more pronounced when the dimension

of the integral is higher. In fact, an important property of Monte Carlo integration

is that its rate of convergence is independent of the dimension of the integral [50].

Suppose that we want to numerically evaluate the integral [43]

I =

∫
r(x)dx, (2.8)

where x ∈ Rn, n ≥ 0. Monte Carlo methods for numerical integration first factorize
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the integrand as r(x) = s(x)π(x), so that π(x) is a pdf. In other words it satisfies

the conditions π(x) ≥ 0 and
∫
π(x)dx = 1. Assume that it is practically possible to

draw N � 1 samples from the distribution π as xi; i = 1, · · · ,N . Therefore, the

Monte Carlo estimate of the integral I is the sample mean

I =

∫
s(x)π(x)dx = E{s(x)} ' IN =

1

N

N∑
i=1

s(xi). (2.9)

If the samples are independent IN is an unbiased estimation of I, converging to I as

N →∞. Ideally, we want to generate samples from π(x) and use (2.9) to estimate I.

However, suppose that we can only generate samples from another pdf q(x). Then,

we can still estimate I by applying some proper sample weighting, if the support of

π(x) and q(x) are the same, i.e., π(x) > 0 implies q(x) > 0 for all x. Then, any

integral of the form (2.8) can be written as

I =

∫
s(x)π(x)dx =

∫
s(x)

π(x)

q(x)
q(x)dx. (2.10)

Generating independent samples from q(x) as {xi; i = 1, · · · ,N }, I can be approxi-

mated by the weighted sum

IN =
1

N

N∑
i=1

s(xi)wi, where wi =
π(xi)

q(xi)
. (2.11)

wi are called the importance weights, q(x) is called the importance density, and the

method is called importance sampling [43].

2.1.4 Gibbs Sampler

At a variable node x of a FG, the incoming messages must be multiplied to form

the outgoing message. Assume that in a general structure, F + 1 function nodes,

f1, . . . , fF +1, are connected to a variable node x, as shown in Fig. 2.2. We now

explain an algorithm using Gibbs sampler [51] to find the outgoing message from x

to fF +1.

Suppose that each of the F incoming messages toward x are presented by a set

of N particles and their importance weights, i.e. µfl→x(x) = hl(x) = {xil, wil ; 1 ≤

i ≤ N }; 1 ≤ l ≤ F . We represent each incoming message hl(x) with a Gaussian

mixture of N weighted Gaussian kernels. The ith Gaussian kernel of the lth message

has its mean on xil and has a weight equal to wil . For simplicity we choose all the
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Figure 2.2: A variable node in a factor graph.

kernel variances of the lth Gaussian mixture equal to σ2
l

1. A rule of thumb is to

set σ2
l equal to the weighted variance of the samples of the lth message divided by

N 1/6 [52]. Hence, each incoming message is

µfl→x(x) = hl(x) =

N∑
i=1

wilN (x;xil, σ
2
l ) (2.12)

where N (x;xi, σ2
l ) is a Gaussian function of the variable x, with mean xil and vari-

ance σ2
l . According to (2.6), the outgoing message µx→fF +1(x) will be written as

µx→fF +1(x) = g(x) =
F∏
l=1

N∑
i=1

wilN (x;xil, σ
2
l ) (2.13)

Equation (2.13) is a product of F Gaussian mixtures, each with N components.

Since the product of any number of Gaussian functions is proportional to a Gaussian

function, by expanding (2.13), we have N F Gaussian components. Each component

has a new mean, variance and weight. Our goal is to find µx→fF +1(x) = g(x) as a set

of N weighted particles to send to the next node on the graph fF +1. More specif-

ically, we have to find a way to draw N samples from (2.13). Obviously, working

with N F components is not an efficient solution. Thus, we use the Gibbs sampling

method to draw the samples of g(x). The Gibbs Sampler has been previously used in

Bayesian networks to find the product of Gaussian mixtures [51]. It provides a way

to draw asymptotically unbiased samples from a product of F Gaussian mixtures,

each having N components.

The details of Gibbs sampler for message update at a variable node is given in

Algorithm 1. For further details about the Gibbs sampler, please see [51].

1If a random variable is not one dimensional, the variance is replaced by the covariance matrix.
The procedure remains the same.
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Algorithm 1 Gibbs sampler for message update at a variable node.

Let the lth incoming messages, 1 ≤ l ≤ F , be represented by a Gaussian mixtures
of N components, {wil , xil, σ2

l }
N
i=1

Construct the initial labels set B0 = {b1, ..., bF } by sampling bl according to the
lth mixture weights, p(bl = i) ∝ wil

repeat
for l = 1 to F do

Find the equivalent mean m̄ and variance ς̄2 of the product,∏
j 6=l
N (x;x

bj
j , σ

2
j )

according to

1

ς̄2
=
∑
j 6=l

1

σ2
j

m̄ = ς̄2
∑
j 6=l

x
bj
j

σ2
j

for i = 1 to N do
Find the equivalent mean m̃i and variance ς̃2

i of product
N (x; m̄, ς̄2) · N (x;xil, σ

2
l )

1

ς̃2
i

=
1

ς̄2
+

1

σ2
l

m̃i = ς̃2
i

(
m̄

ς̄2
+
xil
σ2
l

)
From the above, find the conditional weight for the ith component of

the lth mixture as

w̃il = wil
N (x; m̄, ς̄2) · N (x;xil, σ

2
l )

N (x; m̃i, ς̃2
i )

end for
Draw a new label for bl according to the weights {w̃il}

N
i=1 and update the

labels set by replacing bl instead of the previous label.
end for

until t iterations
Calculate the mean and variance of the equivalent Gaussian from the final set of
labels and draw a sample from this Gaussian distribution.
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2.2 Quantization and Estimation Theory

2.2.1 Quantization Theory and Rate-Distortion

A random source which has continuous amplitude requires infinite number of bits

to be described. However, due to practical constraints, e.g., limited storage or

channel capacity, only finite number of bits can be accommodated. To compress a

continuous-amplitude source into limited amount of information (bits) its amplitude

x should be quantized to Q(x) which takes values from a discrete finite set. The

average number of bits that is used to represent a quantized sample of X is called the

quantization rateR. A side effect of quantization is some loss of information aboutX

which depends on the quantization rate. This loss of information is defined in terms

of a distortion measure [53]. The rate-distortion theory, first introduced by Shannon

[54] and elaborated in [53], describes the relation between the amount of distortion

caused by the quantization, and the rate by which the quantized source can be

presented. Particularly, for a continuous-amplitude source with a specific known

pdf, the rate-distortion theory gives a lower bound on the amount of distortion

caused by a special quantization rate.

Assume that X̂ = Q(X) is the quantized representation of X. First a distortion

function d(x, x̂) → R+ must be defined as a cost of representing X with X̂. A

common distortion function is the squared-error distortion, i.e., d(x, x̂) = (x− x̂)2.

The distortion is the expected value of the distortion function, i.e., D = E{(X −

X̂)2}, which is also called the mean squared error (MSE) . For a random source, the

distortion-rate function D(R) is the infimum of distortions D that is achievable for

a given rate R [53]. The distortion-rate function for a random source X with pdf

p(x) is given by

D(R) = min
p(X̂|X)

I(X;X̂)≤R

E{(X − X̂)2}, (2.14)

where I(X; X̂) is the mutual information of X and X̂.

The distortion-rate function D(R), determines the minimum distortion that can

be achieved when an analog source is compressed with a rate R. The distortion-rate

function for centralized estimation of a Gaussian source from a noisy observation

under a rate constraint R is derived in [55], and is used as a lower bound for the dis-

tortion in the distributed estimation-quantization problem. For a scalar parameter

with Gaussian distribution N (0, σ2
X), which is observed through additive Gaussian
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noise with variance σ2, D(R) is calculated as [55]

D(R) = σ2
X −

σ4
X

σ2
X + σ2

(1− 2−2R). (2.15)

For distributed quantization as it appears in WSN applications, the rate distortion

theory should be modified to apply for such scenarios. In Chapter 4, we find a

distortion rate function for the distributed quantization problem.

2.2.2 Lloyd-Max Algorithm

The theoretical limits described by the rate distortion function can only be asymp-

totically achieved by optimal source coding [53], i.e., arbitrary long sequences of sym-

bols and random coding. On the other hand, representing a continuous-amplitude

source by a limited set of symbols is a challenge itself. For a random scalar, the

optimal quantization rule can be obtained based on a method introduced by Lloyd

and Max [22,23]. They propose an iterative algorithm for finding the best (local op-

timum) quantization rule for a random source to achieve the lowest distortion. The

distortion measure they use is the MSE. Using the Lloyd-Max algorithm, the opti-

mal2 L-level quantization rule which minimizes the estimation MSE can be found for

a random scalar X with pdf p(x). The joint quantizer design for multiple variables

has been studied under vector quantization [56,57].

Here, we describe the Lloyd-Max algorithm for the optimum L-level quantizer

of a random real-valued scalar X distributed according to pdf p(x). The quantizer

Q(·) assigns a value from the set of reconstruction points (or quanta or centroids)

q1, q2, · · · , qL to each x ∈ R. In that manner, the quantizer partitions R to L

disjoint subsets {S1, S2, · · · , SL}, associating each partition with a reconstruction

point. The quantization design problem is to choose the partitions {S1, S2, · · · , SL}

and reconstruction points q1, q2, · · · , qL that minimize the quantization noise (MSE),

defined as σ2
X̂

as follows

σ2
X̂

= E{(X −Q(X))2} =

L∑
i=1

∫
Si

(x− qi)2p(x)dx. (2.16)

By differentiating with respect to the unknown parameters, Lloyd and Max show

that minimizing (2.16) requires satisfying the following two conditions.

2It must be mentioned that all iterative algorithms for quantization design find a local optimal
solution which depends on the initial quantization rules.
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(i), Given a set of reconstruction points q1, q2, · · · , qL, the MSE is minimized

by choosing {S1, S2, · · · , SL} to be the Voronoi partitions associated with the re-

construction points. This means each value of X ∈ R must be mapped to the

reconstruction point that is closest to it. This means

Si = {x : |x− qi| ≤ |x− qj |}, 1 ≤ j ≤ L, j 6= i. (2.17)

(ii), Given a set of partitions {S1, S2, · · · , SL}, the reconstruction points must

be the center of mass of the corresponding partitions. That is,

qi =

∫
Si
xp(x)dx∫

Si
p(x)dx

. (2.18)

Unfortunately, it is not easy to find a closed form solution that can satisfy

both above conditions. However, a trial-and-error or iterative approach can be

used to find the quantization rule. The algorithm can start by an initial guess for

the partitions S
(0)
1 , S

(0)
2 , · · · , S(0)

L . Then, based on (2.18) the construction points

q
(0)
1 , q

(0)
2 , · · · , q(0)

L are found which result in an MSE of σ2
X̂

(0)
. The partitions are

updated using (2.17) to find S
(1)
1 , S

(1)
2 , · · · , S(1)

L and subsequently, the reconstruction

points are updated again. This procedure continues at successive iterations by

alternatively imposing conditions (2.18) and (2.17). The result of these successive

trials is such that [22]

σ2
X̂

(0) ≥ σ2
X̂

(1) ≥ σ2
X̂

(2) · · · (2.19)

Finally, σ2
X̂

(∞)
will converge to a local minimum of the MSE [22], and the final

partitions and reconstruction points will decide the quantizer.

In this thesis, we deal with the optimum quantizer design problem. However, it

defers from the basic Lloyd-Max problem in two ways. First, the quantizer is not

performing on the samples of the random parameter X, but on the noisy version of

the parameter, i.e., measurement Y . Another twist of the problem is the need to

design quantizers for a set of N noisy measurements of the unknown parameter, i.e.,

Y1, Y2, · · · , YN . In Chapter 4, we elaborate this problem and propose an iterative

algorithm to solve the quantizer design problem for distributed noisy measurements

of a random parameter.

2.2.3 Cramer-Rao Lower Bound

A basic problem in estimation is to determine a real (nonrandom) parameter X using

an estimator X̂ from a random variable Y . A better estimator is the one that has

17



lower estimation variance σ2
X̂

. The greatest lower bound of the variance of unbiased

estimators is determined by the Cramér-Rao lower bound (CRLB) [58]. The CRLB

can be used to investigate whether a particular estimator is the optimum estimator

or how close is to the optimum estimator. Assuming that the parametric pdf of

Y , i.e., p(Y,X), is differentiable with respect to X, and using the Cauchy-Schwartz

inequality ( E2{ZW} ≤ E{Z2}E{W 2} ), the variance of the unbiased estimator is

lower-bounded as

σ2
X ≥

1

IF
, (2.20)

where IF is called the Fisher information and is defined as

IF = E

{∣∣∣∣∂ log p(Y,X)

∂X

∣∣∣∣2
}

= −E
{
∂2 log p(Y,X)

∂X2

}
. (2.21)

When X is itself a random variable, the pdf p(Y,X) in (2.20) will represent the joint

pdf of X and Y , and the expected value is obtained over both X and Y [59].

In Chapter 5 we update the CRLB for the problem of binary distributed quan-

tization and use the resulting bound to design the quantizers, as well as to compare

with the final MSE performance.

2.3 Assignment Problem

The assignment problem is one of the fundamental combinatorial optimization prob-

lems. It translates into finding the minimum-weight perfect matching in a weighted

bipartite graph. The assignment problem is usually described as follows:

Assume that there are N tasks and N agents, and the cost of assigning task b

1 ≤ b ≤ N to agent n 1 ≤ n ≤ N is Γb,n. The goal is to perform all tasks by

assigning exactly one agent to each task in a way to minimize the total cost. In

a particular assignment, for task b the agent nb is selected, where 1 ≤ nb ≤ N .

Notice that for two different tasks b and c 6= b the agents nb and nc cannot be

the same, i.e., nb 6= nc. Therefore, an assignment π = n1, n2, · · · , nN is a permu-

tation of the numbers 1 through N . Consequently, we have N ! assignments. In

a linear sum assignment problem, it is assumed that the total cost of assignment

π = {n1, n2, · · · , nN} is the sum of the individual costs. Therefore, given an N ×N

cost matrix [Γb,n], the objective is to find the assignment with minimum total cost

C(π), i.e.,

π∗ = arg min
π
C(π) = arg min

π

N∑
b=1

Γb,nb
. (2.22)
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In Chapter 5, once we have designed the N binary quantizers, we need to assign

the N quantizers to the N sensors. In an inhomogeneous WSN, where sensors have

different noise qualities the assignment problem becomes important for getting the

optimum performance results.

An assignment problem can be viewed as a bijective mapping between two finite

sets U and V [60]. Let G = (U, V ;W ) be a bipartite graph with vertex sets U =

{u1, u2, · · · , uN} and V = {v1, v2, · · · , vN}, and edge set W . Every edge (u, v) ∈W

has one vertex in U and the other vertex in V and there is a cost Γu,v ≥ 0 associated

with it. A subset M of W is called a “matching” if every vertex of G coincides with at

most one edge from M . If every vertex of G coincides with an edge of the matching

M , the matching M is called a “perfect matching”. Thus, in a perfect matching

|M | = N , see Fig. 2.3. The objective of the assignment problem (2.22) translates

to finding a perfect matching in G with minimum sum of the weights. This form

of describing the assignment problem is used in Subsection 2.3.1 to explain the

Hungarian algorithm, which gives an iterative method for finding the minimum-

weight perfect matching in a bipartite graph.

1u 2u 3u 4u

1v 2v 3v 4v

:U

:V
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1 21
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Figure 2.3: Minimum-weight perfect matching on a complete weighted bipartite
graph.

2.3.1 Hungarian Algorithm

The Hungarian algorithm, first elaborated by Kuhn [61] and improved by Edmonds

and Karp [62], provides an efficient algorithm for determining the minimum-weight

perfect matching of a weighted bipartite graph. The Kuhn’s method is based on

finding the solution to a dual problem [60, 61]. The algorithm goes iteratively by
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finding a partial solution based on the dual problem and improving the solution at

every iteration. The dual problem can be described through the following definitions.

Definition 2.1. A “feasible vertex labeling” is a function ` : {U, V } → R such that

`(u) + `(v) ≤ Γu,v, ∀u ∈ U, v ∈ V. (2.23)

Definition 2.2. The “equality graph” is the graph G` = (U, V ;W`), where

W` = {(u, v)|`(u) + `(v) = Γu,v} (2.24)

The dual problem is constructed based on the following theorem

Theorem 2.1. (Theorem 6 in [61])

For any feasible labeling `, if G` contains a perfect matching M , then M is a

minimum-weight perfect matching of G.

The proof is straightforward [61]. The algorithm starts by choosing an initial

G` with few edges and finding the maximum matching on G`. At each iteration

it grows G` to include more edges and consequently augments the matching, until

the size of matching becomes equal to N . In order to describe how the algorithm

augments a matching and grows G` we need to define some more terms.

Definition 2.3. An edge in W is called a “matched” edge if it belongs to M , and

an “unmatched” edge otherwise. Likewise, a vertex is a matched vertex if it is an

endpoint of a matched edge, and is an unmatched vertex otherwise.

Definition 2.4. A path in the graph whose edges are alternately matched and un-

matched is called an “alternating path”.

Definition 2.5. An “augmenting path” is an alternating path whose initial and

terminal edges (and, hence, vertices) are unmatched.

Definition 2.6. An “alternating tree” rooted in a vertex u is a tree in which all

paths emanating from u are alternating paths.

The algorithm starts by constructing an initial equality graph G
(0)
` based on

an initial labeling `(0), and then choosing an initial matching M in G
(0)
` . Then

it searches for an augmenting path for M in G
(0)
` . If such a path is found, an

augmented (bigger size) matching is obtained by interchanging the matched and
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unmatched edges along the alternating path. If no augmenting path exists the

labeling and accordingly the equality graph are updated. The algorithm continues

iterating this procedure until a perfect matching (size N) is found in the current

equality graph. The method is shown in Algorithm 2. To find the augmenting paths

in an equality graph an efficient algorithm called the Hopcroft-Karp algorithm can

be used, which will be described in Subsection 2.3.2.

Algorithm 2 Hungarian Method for G(U, V ;W ) and cost matrix {Γu,v}
Initialize the feasible labeling:

`(0)(u) = min
v

Γu,v, ∀u ∈ U

`(0)(v) = 0, ∀v ∈ V (2.25)

Determine the equivalent graph G
(0)
` according to (2.24)

i = 0

while a perfect matching is not found do

Pick any matching M in G
(i)
`

while an augmenting path is found do
Find an augmenting path P with respect to M
Augment M by swapping the role of unmatched and matched edges in P
(Other matched edges of M which do not lie on P remain matched edges)

end while

if M is not perfect then
i = i+ 1
Find an unmatched vertex u ∈ U
Find an alternating tree rooted at u, partition its vertices to S ⊂ U and

T ⊂ V
Improve the labeling as:

α = maxu∈S ,v /∈T (`(u) + `(v)− Γu,v)

∀x ∈ {U ∪ V } `(i)(x) =


`(i−1)(x)− α ifx ∈ S
`(i−1)(x) + α ifx ∈ T
`(i−1)(x) otherwise

(2.26)

Determine the equivalent graph G
(i)
` from `(i)

end if

end while

2.3.2 Hopcroft-Karp Algorithm

The Hopcroft-Karp algorithm [63, 64] gives an efficient way to find a “maximum

matching” (a matching that cannot be augmented) in a bipartite graph, through
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finding augmenting paths. The complexity of the algorithm for a graph G =

(U, V ;W ) is O(N2.5), where N = |U | = |V |. Instead of finding just a single aug-

menting path, the algorithm finds a maximal set of disjoint shortest augmenting

paths with respect to a matching M . The Hopcroft-Karp algorithm consists of

two phases, a breadth first search (BFS) followed by a set of depth first searches

(DFS) [65]. The BFS partitions the graph into layers by traversing the matched

and unmatched edges alternatively at each layer. It start from the unmatched ver-

tices in U and stops at finding the first set of unmatched vertices in V . For each

unmatched vertex in V found through the BFS, the DFS computes an augmenting

path from that vertex to an unmatched vertex in U . The Hopcroft-Karp algorithm

is described in Algorithm 3. The disjoint augmenting paths that are found using

the Hopcroft-Karp algorithm for the given G
(i)
` are used in the Hungarian algorithm

(Algorithm 2) to augment the matching M . In Chapter 6, we use the Hungarian

method and the Hopcroft-Karp algorithm to find the best sensor-quantizer assign-

ment for the distributed quantization in WSNs.

Algorithm 3 Hopcroft-Karp Algorithm for Gl(U, V ;Wl) and a matching M
Make the first layer  L1 ⊂ U from the unmatched vertices in U
Traverse unmatched edges with an end point in  L1, put other endpoints in  L′1 ⊂ V .
i = 1

while no unmatched vertex in V is met do
i = i+ 1
Traverse matched edges with an end point in  L′i−1,
put the other endpoints (those not already met) into set  Li ⊂ U

Traverse the unmatched edges with an end point in  Li,
put the other endpoints (those not already met) into set  L′i ⊂ V .

end while

for each vertex v ∈  L′i do
Go back through the layers in order  Li,  L

′
i−1,  Li−1, · · · ,  L1,

pick one vertex from each layer at a time,
by alternatively traversing the unmatched and matched edges
(only pick vertices that are not already picked for other augmenting paths)

Save the traversed path as the augmenting path for v.
end for

2.3.3 Conclusion

In this chapter, we provided the theoretical benchmark for the algorithms and solu-

tions that are derived through the rest of this thesis. Specifically, the factor graph

model presented in subsection 2.1.2 is used in Chapter 3 to model large multivariate,
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nonlinear, estimation problems, and derive a distributed solution for them. This al-

gorithm is a nonparametric solution standing on basis of Monte-Carlo integration,

importance sampling, and Gibbs sampling methods presented in subsections 2.1.3

and 2.1.4. The fundamental theories of quantization presented in Section 2.2 are

used in Chapters 4 and 5 of this thesis, where we solve the distributed quantiza-

tion problem in a wireless sensor network. Finally, the Hungarian method and the

Hopcroft-Karp algorithm described in Section 2.3 are used in Chapter 6 to develop

an efficient solution for solving the bit-sensor assignment in inhomogeneous wireless

sensor networks.
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Chapter 3

Nonparametric Distributed
Inference

In WSNs with no fusion centre many of the network tasks such as, decision making,

hypothesis testing, detection, tracking, and etc, must be performed in a distributed

fashion. These tasks are some sort of an inference or estimation problem. The exist-

ing optimal distributed estimation algorithms are usually not practical for wireless

sensor networks, due to their high computational and data communication costs.

Thus, suboptimal algorithms that use quantized data and are based on linear and

Gaussian approximations have been proposed. Such approximations do not always

work. Here, we propose a distributed estimation algorithm based on the well-known

sum-product algorithm (SPA). To reduce computational complexity, we reformulate

the sum-product update rules using particle filtering. We consider the problem of

distributed target tracking based on quantized data in a WSN. By deriving the fac-

tor graph representation of this tracking problem, we apply our proposed algorithm

and study its performance based on the number of quantization bits, the number of

particles and the measurement noise.

3.1 Introduction

Recent improvements in software and hardware technology augments the employ-

ment of WSNs in different applications. In general, WSNs are used to monitor,

detect or track an event or process. To fulfill these goals, sensors’ local observation

data is used to estimate or infer knowledge about some hidden (unobserved) vari-

ables. In recent years, various tools have been developed to help the general task of

inference or estimation of hidden variables. Some of these tools have been used in
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WSNs applications after being adapted to the nature of the specific estimation task.

A powerful estimation tool which is commonly used to estimate the hidden vari-

ables based on the observed variables is the Kalman filter (KF) [42]. The optimum

performance of the KF is obtained when the dependency between the hidden and

observed variables are linear and the modeled noise is Gaussian. These conditions,

however, do not always hold.

In a WSN, according to the limitations in the network resources, e.g. energy

and bandwidth, it is desired to reduce the amount of intra-sensor communications.

Therefore, the observation data is usually severely quantized to be represented with a

few bits. Quantization violates the linear relations between the hidden and observed

states, hence disqualifies the KF. [32] and [8] modify the conventional KF equations

to handle quantized data instead of the precise measurement data. However, the

exact analytical solution has high computational cost. Therefore, they approximate

the non-Gaussian probability distributions with Gaussian distributions to derive

feasible calculations. These approximate equations are close to the exact solution

when the non-Gaussianity of a posteriori probability distributions is not severe.

The method, hence, is limited to cases where Gaussian and linear assumptions are

accurate.

In this chapter, we develop a new method for decentralized estimation of hid-

den variables from quantized sensors’ observations in a WSN. For this purpose, we

develop a stochastic inference algorithm based on factor graph (FG) modeling [47],

a powerful tool to model the stochastic dependencies among the variables involved

in an inference problem. Once the relations among the variables are derived as a

FG, a message passing algorithm (MPA) is run to find an estimation about the un-

known variables. The MPA determines the mechanism by which local messages are

exchanged between the neighboring nodes on the graph. The FG and MPA become

particularly useful in a WSN where we desire to break down the huge centralized

computations into local computations at the sensors and small messages transmitted

between neighboring nodes.

A famous MPA called the SPA is proposed by [47]. The FG and the SPA have

been widely used together in many inference problems, including WSN applica-

tions. [66] uses FG modeling to derive algorithms for detection in multiple-input

and multiple-output systems. [67] uses FG and the SPA to design a cooperative self

tracking algorithm. [11] proposes a method based on SPA for link loss monitoring
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in WSN, and [12] develops a link loss inference method for mobile ad hoc networks

based on the SPA. [18] presents a method based on SPA for location estimation

in mobile networks based on time-of-arrival measurements and [68] uses the FG

and SPA to design a framework for cooperative localization using ultra-wideband

ranging measurements in a wireless network.

The application of the SPA, however, is often restricted to problems involving

binary or discrete variables or continuous variables with Gaussian distributions, be-

cause the SPA is often analytically intractable in problems where we have arbitrary

functions as messages. In this chapter, we formulate a solution for the statisti-

cal estimation of continuous variables using FGs. We propose a non-parametric

method for the general non-Gaussian and nonlinear inference problems. We use FG

to model the stochastic relations between the hidden and observed variables. As for

the MPA, we reformulate the sum-product update rules using PF and Monte Carlo

method. In other words, using Monte Carlo method and importance sampling, we

solve the analytical intractable integrals of the SPA for continuous variables. We

combine two important tools, i.e. the SPA and the particle filtering, to enhance the

functionality of both. By using particle-based MPA, we extend the ability of FG to

efficiently cover many non-Gaussian, nonlinear frameworks with feasible complex-

ity. Our proposed particle-based MPA is applicable to many estimation problems in

WSNs, e.g. localization, tracking, link monitoring, etc. At each sensor, it performs

local processing on the quantized data received from neighboring sensors to come

to a general inference about the unknown variables.

The particle-based MPA is superior to the previous methods because it assumes

no limitations on the type of relations between the variables, neither it restricts

to Gaussian noise assumptions. Moreover, it is a low-cost algorithm in terms of

communication costs, i.e., it reduces the energy consumption. The algorithm re-

quires the sensors to broadcast only a low-bit quantized version of their data in

their neighborhood, instead of the high-precision raw values. We have applied our

algorithm for a problem of target tracking in a WSN. We achieved good results

even when the number of quantized levels were small and the measurement noise

was relatively large. Based on our experiments and comparison with some other

applicable algorithms, our particle-based MPA is a reliable algorithm for low-cost

distributed inference in WSNs.

In Section 3.2, we model the stochastic inference problems based on FG and the
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SPA. In Section 3.3 we describe our particle filter based message passing algorithm

(PF-based MPA) for continuous variables. In Section 3.4 target tracking problem

in a WSN using quantized sensors data is solved by applying our particle-based

message passing algorithm.

3.2 Factor Graph based Model

The FG framework [47] can be used to provide a graphical model for representing the

inter-dependencies of the variables involved in a stochastic inference problem. The

theoretical preliminaries are described in Section 2.1. The idea is to benefit from

the conditional independencies inherited in the variables set to factorize a global pdf

into local functions 1. The FG representation of this factorization helps use the in-

dependencies in order to design distributed algorithms. A distributed/decentralized

estimation algorithm is advantageous in WSNs where the observation data as well

as the processing units are spread all over the network.

Assume that we are given a joint pdf of a number of hidden variables conditioned

on a number of observed variables. Making use of the conditional independencies

among the variables set, the conditional joint pdf can be factorized to smaller local

functions and the factorization can be represented with a FG. In a FG, associated

with each variable, there is a variable node x, and associated with each local function

there is a function node f connected to its arguments, see Section 2.1.2. The FG

framework is especially useful when we seek marginal distributions of some hidden

variables conditioned on observed variables. For this, a MPA should operate on the

FG. A famous MPA called the SPA introduced in [47] was described in Section 2.1.2.

By running the SPA on a cycle-free FG, once a message is passed in both directions

on every edge, the marginal a posteriori distribution of any variable can be found.

For a continuous random variable x ∈ R, the message update rule of the SPA at

a function node involves a multi-dimensional integral in place of a summation. Let

us rewrite these rules for continuous random variables. Having ℵ(x) indicate the set

of neighbors of the variable node x and ℵ(f) indicate the set of neighbors for the

function node f , the update rules of the SPA are formulated as

1The FG framework is more general and can be used wherever a global function is factorized to
local functions. In this thesis, however, we limit the discussions to pdfs and their factorizations to
better connect to the estimation problem studied in the subsequent sections.

27



Update Rule 1:

µx→f (x) =
∏

λ∈ℵ(x)\f

µλ→x(x) (3.1)

Update Rule 2:

µf→x(x) =

∫
∼x

(f(X)
∏

y∈ℵ(f)\x

µy→f (y)) (3.2)

In many problems, the local conditional distributions are not Gaussian and thus,

we cannot work with simple mean and variance messages. One approach is to

approximate the integrals with a Riemann sum. The draw back is the computational

complexity which grows exponentially with the degree of the function nodes. In this

chapter, we have developed a particle-based MPA for the general non-Gaussian, non-

linear problems. The method is inspired by the concept of Monte Carlo integration

whose complexity is independent of the order of the integral. Our algorithm is

described in the next section.

3.3 Message Passing Based on Particle Filtering

To develop our PF-based MPA we make use of the Monte Carlo integration technique

to solve the multi-dimensional integral in (3.2). Monte Carlo integration [43] is

a probabilistic method used to approximate an integration, see Subsection 2.1.3

for theoretical details. Monte Carlo integration is the basis of PF [44] and [43].

PF has been widely used in a range of problems where the nonlinear and non-

Gaussian properties of the variables disqualifies the application of solutions such

as KF. The PF has been used in problems such as navigation, tracking and image

processing [69]- [70]. [71] has also developed a non-parametric belief propagation

method for a Bayesian network based on the concept of Monte Carlo integration,

and [72] has used PF in belief propagation to solve the localization problem in sensor

networks.

In this chapter, we formulate a message passing algorithm to be used with FGs.

A major difference between this work and [71] and [72] is that our framework is

developed to work on FGs with factor nodes of arbitrary degrees. However, the

Bayesian network considered in [71] and [72] is equivalent to a FG with degree-two

function nodes. In our proposed MPA, the messages, which are generally continuous

pdfs, are represented by a set of N random samples and their importance weights
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µ(x) = {xi, wi; 1 ≤ i ≤ N }. Our goal, therefore, is to formulate update rules at

variable nodes and function nodes of a FG for such messages. In other words, the

question is how to update xi and wi according to the SPA.

In order to formulate the update rule at a function node, we use the Monte Carlo

integration concept to calculate the integrals. Assume that there are V + 1 variable

nodes connected to a function node f , Fig. 3.1. Recalling (3.2), we rewrite the

outgoing message from the function node f to the (V + 1)th variable node xV +1 as

 

 

 

       

       

       

   

   

   

       

 

Figure 3.1: A function node in a factor graph.

µf→xV+1
(xV +1) = h(xV +1) =

∫
f(x1, ..., xV , xV +1)g1(x1)...gV (xV )dx1...dxV

(3.3)

In the above equation x1, . . . , xV are V variable nodes connected to the function node

f , and g1(x1), . . . , gV (xV ) are their corresponding messages2 toward f . Note that

in statistical inference problems, the FG is derived from the stochastic factorization

of an a posteriori joint pdf. Therefore, each message coming out of a variable node,

e.g. gm(xm); 1 ≤ m ≤ V , is a pdf conditioned on some observed parameters. While

in a general FG, messages may not represent pdfs or conditional pdfs, viewing the

messages as pdfs is instrumental to our PF-based MPA.

Defining vector X = [x1, ..., xV ]T , the V dimensional integral of (3.3) can be

written as a vector integral

h(xV +1) =

∫
f(xV +1, X)p(X)dX (3.4)

where p(X) can be viewed as the joint distribution of x1, . . . , xV , which according

to (3.3) is equal to
∏m=V
m=1 gm(xm). Using the concept of Monte Carlo integration,

2Please note that, in general the function nodes and messages of a factor graph represent ar-
bitrary functions and do not have to be pdfs. However, in stochastic inference problems and
throughout this chapter functions f , g and h represent pdfs.
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we can approximate the integral (3.4). The integral of (3.4) can be interpreted as

the expected value of the function f(X) with respect to X. The expected value can

be numerically approximated through N i.i.d. samples of the random variable X

drawn from its distribution p(X). Therefore we can write

h(xV +1) = EX{f(xV +1, X)} (3.5)

' 1

N

N∑
i=1

f(xV +1, X
i), here Xi ∼ p(X),

where Xi ∼ p(X) means that the samples Xi are drawn from pdf p(X). The

notation Xi ∼ p(X) indicates that the sample Xi is drawn from the distribution

function p(X).

The above equation is a function of xV +1 and can be regarded as the outgoing

message from the function node f , i.e. µf→xV+1
(xV +1). However, h(xV +1) is a

continuous function which should be represented as a particle-based message for

the next stage of our PF-based algorithm. Therefore, we need to build the particle

representation of h(xV +1) as {xiV +1, w
i
V +1; 1 ≤ i ≤ N }.

The best way to construct a particle representation is to directly draw N i.i.d.

samples from h(xV +1). However, it is not straightforward to sample from h(xV +1)

because it is a sum of N continuous functions. Hence, we use the importance sam-

pling method [43] to construct the particle representation of the message µf→xV+1
(xV +1).

As described in [43], we need to select an importance distribution function q(xV +1)

which can be any positive function with the same support as h(xV +1). The dis-

tribution q(xV +1) is chosen such that it is straightforward to sample from. Then

we draw N samples from q(xV +1) and assign an importance weight to each sample,

wiV +1. Thus,

µf→xV+1
(xV +1) = h(xV +1) ' {xiV +1, w

i
V +1} 1 ≤ i ≤ N (3.6)

where

xiV +1 ∼ q(xV +1) wiV +1 ∝
h(xiV +1)

q(xiV +1)

The importance weights should be normalized so that their sum is equal to one.

Here, without loss of generality, we choose the importance distribution function to

be f(xV +1, X
1). If it is not possible to sample from the function f(xV +1, X

1), one

must choose another appropriate function as the importance density function and

adjust the importance weights accordingly. Thus, to determine the ith particle and
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its corresponding weight, we set q(xV +1) = f(xV +1, X
1). By drawing the ith particle

xiV +1 from f(xV +1, X
1), the ith importance weight will be proportional to the ratio

of h(xV +1) to f(xV +1, X
1) evaluated at xiV +1. Therefore, the particle representation

of µf→xV+1
(xV +1) is

µf→xV+1
(xV +1) ' {xiV +1, w

i
V +1} 1 ≤ i ≤ N (3.7)

where

xiV +1∼f(xV +1, X
1) (3.8)

and

wiV +1 ∝
1
N
∑N

j=1 f(xiV +1, X
j)

f(xiV +1, X
1)

(3.9)

The procedure of the particle-based message processing at a function node is

represented in Algorithm 4. Note that any of the functions f(xV +1, X
i) where

1≤ i≤N can be chosen to be the importance function in (3.7). In a more general

FG setup, when the messages are not pdfs, our approach is still applicable as long as

the importance function is chosen to be a valid pdf and
∑N

j=1 f(xiV +1, X
j) is always

positive. For pdfs this condition is clearly satisfied.

As indicated in Algorithm 4, we need N (weighted) samples of X. According to

(3.3) the product of V incoming messages to f construct the distribution of X. Thus,

X can be viewed as an ordered V -tuple with independent entries. A sample of X,

therefore, can easily be constructed by putting together samples from x1, . . . , xm. In

our setup, however, samples are weighted. If all samples are equally weighted (i.e.,

all messages are represented by equally weighted particles), taking one particle from

each message at a time, we can build a particle for X. When particles have unequal

weights, we first use a resampling procedure to extract N equally weighted particles,

then continue with the normal procedure. This resampling algorithm (Algorithm 5)

draws i.i.d samples from a set of particles with nonequal weights. Notice that, if

V = 1 then X will be the same as x1. In this case, there is no need for resampling.

We can simply choose the sample set of X as {Xi, wi}N
i=1 = {xi1, wi1}

N
i=1.

At a variable node we use the method developed in [51]. Assume that F +

1 function nodes, f1, . . . , fF +1, are connected to a variable node x, as shown in

Fig. 2.2. The lth incoming messages is presented as hl(x) = {xil, wil}, 1 ≤ i ≤ N . To

compute the particle representation of the outgoing message form the variable node

µx→fF +1(x), we use the Gibbs sampling method described in Section 2.1.4.
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Algorithm 4 Message Passing at a Function Node

Having V messages from the nodes x1, x2, . . . , xV ,
Let the mth message, 1 ≤ m ≤ V , be represented by the particle set {xim, wim}

N
i=1

for m = 1 to V do
if all wim are not the same for 1 ≤ i ≤ N then

Draw N new equally weighted particles using Algorithm 5
end if

end for
for i = 1 to N do

Xi = [xi1, x
i
2, . . . , x

i
V ]T

end for
for i = 1 to N do

Sample a particle from the importance distribution

xiV +1 ∼ f(xV +1, X
1)

Assign the particles weight

wiV +1 =

1
N
∑N

j=1 f(xiV +1, X
j)

f(xiV +1, X
1)

end for
Calculate the weights sum W =

∑N
j=1w

j
V +1

for i = 1 to N do

wiV +1 =
wiV +1

W

end for

Algorithm 5 Resampling

Having the particle set {xi, wi}N
i=1

Construct the cumulative sum of weights as follows.

C(i) =
∑i

k=1w
k 1 ≤ i ≤ N

for n = 1 to N do
Take a sample from the uniform distribution [0, 1]→ u.

j = C−1(u)

Let the nth particle and weight be {xn, wn} = {xj , wj}

end for
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3.4 Target Tracking in Wireless Sensor Networks

3.4.1 System Model

In this section we focus on the problem of target tracking in a wireless sensor net-

work. The target is a moving object which is monitored at each time interval k,

by Sk ≥ 3 number of sensors . We assume that the sensors know the location of

themselves and all the other sensors in the surveillance area which is a common

assumption, e.g., [32], [8] and [9]. Also, We assume that data transmission is not

subject to errors.

The sensors quantize their measurements using a L-level quantizer and transmit

the quantized data bits over the wireless channel to their neighboring nodes. Each

node receives quantized measurement data from its neighbors. Then, it runs a local

tracking algorithm using its own measurement as well as the received data from its

neighbors to estimate the location of the target at time step k.

At the end of time step k, each sensor in the target area 3 has a local estimation

of the target’s state. Therefore, each sensor in the target area can identify the closest

sensor to the target based on its own estimation of the location of the target and

the sensors’ locations information. The sensor who finds itself the closest sensor to

the target broadcasts its estimation so that the sensors involved in the next step of

the estimation process have some knowledge about the target’s state at the previous

step. We choose the closest sensor to broadcast its estimation because it is more

likely to have the best estimation of the target’s state.

Due to inaccuracy of distance measurements the sensors’ estimations are not

perfect. Therefore, by acting based on the above autonomous algorithm it is possible

that no or more than one sensor broadcast their estimation. If more than one sensor

transmits, one can use only one of the received estimated data to start the next

step. On the other hand, to avoid no transmission, when sensors are listening to

the channel for data, if nothing is heard for a while, the sensor(s) who thinks is the

second closest neighbor is programmed to broadcast its data. Please notice that

for this part of the algorithm, other simple solutions can be suggested. For more

studies on how to choose the best sensor at each step see [73].

To develop the target tracking algorithm, first we have to model the problem.

The process who is being tracked is the dynamics of a moving target. We consider a

3A sensor is in the target area if it can have a measurement from the target.
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4-dimensional state vector, X, to describe the dynamics of the target and use a first

order Markov chain to model it as a random process. Assume that the 2-D position

of the target at time step k is defined as Pk = [xk yk]
T , and its velocity is defined

as Vk = [vxk vyk]
T . The target will also have an acceleration, Ak = [axk ayk]

T ,

whose elements take a discrete value from the set {0,−g,+g}. The location at time

step k will be related to the location at step k − 1 according to the following state

equation.

Xk =


xk
yk
vxk
vyk

 = F


xk−1

yk−1

vxk−1

vyk−1

+G

[
ax
ay

]
+G

[
ux
uy

]
(3.10)

where

F =


1 0 ts 0
0 1 0 ts
0 0 1 0
0 0 0 1

G =


t2s/2 0

0 t2s/2
ts 0
0 ts


and ts is the step size, [ux uy]

T is the process noise. Each of the two components

of the acceleration vector at time step k, is either 0,−g or +g with probabilities

modeled as a random Markov jump with the initial probability vector Pr0 and the

transition matrix Tr.

The next step is to define a measurement model which relates the measurements

data to the target states. In our tracking scenario, the sensors can only measure

their distance to the target. Having only distance measurements, we need at least

three measurement values to infer a 2-D location. Our algorithm can incorporate

the measurements of more than one sensor node to find the 2-D location from the

distance observation data. Let [nx ny]
T define the location of a sensor in a 2-D plain

then, the measurement model will be

zk =
√

(xk − nx)2 + (yk − ny)2 + vk, (3.11)

where vk is the measurement noise which stands for the error in measuring the

distance. Notice that at time step k, there are Sk sensors measuring the distance

of the target. Therefore, we have Sk measurement equations similar to (3.11) with

different nx and ny values. For the ease of notations, we have ignored the sensor

index in (3.11) and parts of the subsequent discussions.
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3.4.2 Solution Setup

As mentioned earlier, in WSN applications, sensor nodes are energy constrained.

Therefore, it is desired to transmit fewer data bits to reduce energy and bandwidth

usage. For this purpose, we quantize the high precision sensors measurements prior

to sending them on the channel. One way to do this, is to quantize the absolute

zk. This is not very efficient because zk ranges from zero to very large numbers and

hence, the quantization requires many bits to convey enough information. A better

way is to quantize a relative value instead of the absolute value. In our method we

quantize the normalized innovation data which is defined as

Ĩk =
zk − ẑk−1

Nf
(3.12)

where

ẑk−1 =
√

(x̂k−1 − nx)2 + (ŷk−1 − ny)2.

Also, Nf is a normalization factor which estimates the maximum value of zk − ẑk−1

and can be found to be

Nf = tsVmax +
t2s
2
g + 5

t2s
2
σvk . (3.13)

Here σvk is the measurement noise standard deviation and Vmax is a rough estimation

of the maximum velocity of the target.

Having the measurement at time k, each sensor calculates the innovation value

using (3.12). According to the definition of Nf , almost always Ĩk ∈ [−1, 1]. Thus, to

quantize Ĩk, we use a L-level quantizer which quantizes the range [−1, 1] to L levels.

This quantized value is referred to as qk. In rare cases that Ĩk is outside the range

[−1, 1], it is truncated to −1 or +1 accordingly.

Our goal is to infer the state of the target, Xk, at each time step k from the

quantized innovation data of Sk ≥ 3 sensors. We restate the problem as finding the

a posteriori pdf of Xk conditioned on the previous target state and acceleration. In

other words, we are looking to find the marginal distribution

f(Xk, zk, qk|Xk−1, X̂k−1, Ak−1). (3.14)

We assume that at time step k we already have the a posteriori pdf of Xk−1 from

which we decide the estimated state X̂k−1. The joint conditional pdf of (3.14) can

be factorized It must be mentioned that the choice of the a posteriori pdf, as well
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as the factorization process determines the FG and in turn the MPA calculations.

If the factorizations ends up with more but smaller factors the representing FG will

have more function nodes but with smaller degrees. Note that degree of a function

node determines the integral dimension in the message update rule. Therefore, if a

function cannot be further split into smaller factors the message update rule at the

corresponding node involves a higher dimensional integral. This is where our PF-

based MPA becomes specifically beneficial, since owing to the Monte Carlo method

the complexity of our message update rule will be independent of the node degree.

Factorization of (3.14) can be done based on the stochastic relations of the

variables inferred from (3.10), (3.11) and (3.12), and by using the probability rules.

First, using the Bayes’ rule, the joint a posteriori pdf can be written as

f(Xk, zk, qk|Xk−1, X̂k−1, Ak−1) = (3.15)

f(zk, qk|Xk, Xk−1, X̂k−1, Ak−1)f(Xk|Xk−1, X̂k−1, Ak−1).

The second factor in the right hand of (3.15) can be simplified to f(Xk|Xk−1, Ak−1).

This is justified because having Xk−1, knowledge of X̂k−1 will not give more infor-

mation about Xk. The first factor in (3.15) can be again broken into two factors

using the Bayes’ rule. Hence, the joint a posteriori can be written as

f(Xk, zk, qk|Xk−1, X̂k−1, Ak−1) = (3.16)

f(qk|zk, Xk, Xk−1, X̂k−1, Ak−1)f(zk|Xk, Xk−1, X̂k−1, Ak−1)f(Xk|Xk−1, Ak−1).

According to (3.12) qk is only a function of zk and X̂k−1. Also, according to (3.11)

zk is only dependent on Xk. Therefore,

f(Xk, zk, qk|Xk−1, X̂k−1, Ak−1) = (3.17)

f(Xk|Xk−1, Ak−1)f(zk|Xk)f(qk|zk, X̂k−1).

According to the factorization in (3.17), the factor graph associated with the

problem is sketched in Fig. 3.2. We now apply the PF-based MPA introduced in

Section 3.3 to the factor graph of Fig. 3.2. The details of the message processing

rules at each function node and variable node of the graph are explained in the next

subsection.

3.4.3 Particle-Based Message Passing Algorithm

The factor graph of Fig. 3.2 describes the inference problem at step k. The nodes

Xk−1 and X̂k−1 are also connected to the FG of the step k − 1. At step k, the
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Figure 3.2: Factor graph of the tracking problem in WSN.

message passing starts from Xk−1 and X̂k−1 whose messages are ready from the

previous time step. More specifically, at step k, we know the value of X̂k−1 and the

a posteriori pdf of Xk−1 which is represented by N particles and their importance

weights in the form of Xk−1 ' {xi, wi; 1 ≤ i ≤ N}. To find the marginal distribution

of Xk, we use the MPA described in Section 3.3.

The overall steps of the tracking method is given in Algorithm 6, where the MPA

of Section 3.3 is used at Step 5. In the following, we describe all message update

rules for this step.

Algorithm 6 Target Tracking in WSN based on Particle-based MPA

1. Mean and covariance of the final particle message at v5 is broadcasted by the
active sensor at step k − 1 and is received by the sensors in the target area.
2. Each of the Sk sensors in the target area measures its distance from the target
zjk, 1 ≤ j ≤ Sk.
3. Each of the Sk sensors computes its innovation data, Ĩ

j
k, 1 ≤ j ≤ Sk.

4. Each of the Sk sensors quantizes their normalized innovation data to qjk and

sends qjk to its neighbors.
5. Each of the Sk sensors runs a local version of particle-based MPA on a FG
similar to the one shown in Fig. 3.2. The number of measurement branches of the
FG at each sensor depends on the number of measurement data it receives from
its neighbors.
6. At the end of step k, each of the Sk sensors have an estimation of Xk. The
closest sensor to the target at this step broadcasts mean and covariance of its
estimation.

The message going from variable node v1 (Fig. 3.2) to the function node f1 is
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merely the value X̂k−1. Similarly, the message from variable node v2 to the function

node f1, µv2→f1(qk), is the value of qk. Having the two incoming messages, f1 can

compute its outgoing message towards v3. Since the two incoming messages are two

fixed numbers, the outgoing message can easily be computed using the relations in

(3.12) and the fact that qk is the quantized version of Ĩk.

Knowing qk, the conditional pdf of Ĩk can be assumed to be uniform between

[qk−∆/2 qk+∆/2], where ∆ is the length of the quantization interval. The uniform

assumption here is for simplicity. The actual conditional distribution depends on the

marginal distribution of Ĩk and also the method of quantization. The distribution

of zk conditioned on qk and P̂k−1 is easily found from (3.12) as below

f(zk|qk, ẑk) = U(ẑk(1 + qk −∆/2), ẑk(1 + qk + ∆/2)) (3.18)

where U(a, b) represents a uniform distribution between a and b. The outgoing

message from node v3 to f2 is the particle representation of the uniform distribution

in (3.18). To obtain this representation, we sample N particles from (3.18) and

assign equal weights. Thus

µv3→f2(zk) = {zik, wiz} 1 ≤ i ≤ N (3.19)

where for ∀i

zik ∼ U (ẑk(1 + qk −∆/2), ẑk(1 + qk + ∆/2))

and wiz = 1
N . Note that the particles have equal importance weights because the

samples have been drawn directly from the desired pdf.

At f2, the incoming message to the function node is µv3→f2(zk) represented in

(3.19) and the local function at f2 is f(zk|Xk) according to the factorization in (3.17).

The stochastic dependence between zk and Xk is inferred from the measurement

equation (3.11). Since the measurement zk is only affected by the target’s location,

the message from f2 to v5 is a function of only Pk and not the whole vector Xk.

In other words, the local function f(zk|Xk) reduces to f(zk|Pk) and therefore, at f2

only the particles of Pk will be generated and sent toward v5.

Based on the particle-based update algorithm described in Algorithm 4, for each

sample zik from the message µv3→f2(zk) we have to draw a sample of Pk = [xk yk]
T

from the local function f(zik|Pk). Noticing that all values of Pk are a priori equally

likely, f(zik|Pk) is proportional with f(Pk|zik). Thus, it suffices to draw samples from

f(Pk|zik). From (3.11) it is seen that the distribution of Pk = [xk yk]
T conditioned
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on zik is on a circle with a random Gaussian radius d = zik + vk, centered at sensor

location [nx ny]
T . Note that vk is the measurement noise in (3.11). Therefore,

Pk = [xk yk]
T conditioned on zik is described as

Pk =

[
xk
yk

]
=

[
d cos(θ)
d sin(θ)

]
+

[
nx
xy

]
(3.20)

θ ∼ U(0, 2π).

According to (3.20) we can draw a sample for Pk for each sample of zk. Finally

the message µf2→v5(Pk) will be

µf2→v5(Pk) = {P ik, w̃i} 1 ≤ i ≤ N (3.21)

where for ∀i

P ik =

[
xik
yik

]
=

[
di cos(θi)
di sin(θi)

]
+

[
nx
xy

]
(3.22)

di ∼ fVk(vk) + zik θi ∼ U(0, 2π).

Here, fVk(vk) is the pdf of vk. Now, we compute the particle weights according to

(3.7). Notice that, in this example, V = 1 therefore the vector X is simply equal to

zk. For each i, 1 ≤ i ≤ N , the weight w̃i is computed as

w̃i =

∑N
j=1w

j
zf(zjk|P

i
k)

f(zik|P ik)
=

∑N
j=1w

j
zfVk(zjk − d

i)

fVk(zik − di)

The last part of the equation has been written using the fact that evaluating the

local function f(zk|Pk) at the point (zjk, P
i
k) is the same as evaluation fVk(·) at zjk−d

i.

Note that this procedure is performed at each sensor node and for all the quan-

tized measurements received from their neighbors. At each sensor node, there are

Sk parallel copies of this procedure and there will be Sk number of µf2→v5(Pk), each

of them corresponds to the measurement of one sensor.

By this end, we are done with the message passing calculations on the lower

branch of the FG of Fig. 3.2 which corresponds to the measurement data. The upper

branch in Fig. 3.2 represents the progress of target acceleration through time. Based

on our earlier discussion in 3.4.1, the target’s acceleration is modeled as a Markov

jump. Therefore, one can easily find the pmf of the i.i.d random variables axk and

ayk by propagating the pmf of axk−1 and ayk−1 using the transition matrix, Tr.

The calculation at the function node f4 would be Prk = Prk−1 ·Tr. Let Prk have a
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general form of [p1k , p2k , p3k ] then the pmf of either components of acceleration will

be

fk(a) = p1kδ(a) + p2kδ(a− g) + p3kδ(a+ g) (3.23)

where δ(a) indicates the discreet delta function. The message going from variable

node v6 to the function node f3 is a set of N two dimensional vectors, Aik−1, 1 ≤

i ≤ N , randomly taken according to the pmf fk(a). Note that, the two components

of the acceleration, axk−1 and ayk−1, are assumed to be independent therefore, to

sample a vector Aik−1 we take two i.i.d samples from fk(a).

µv6→f3(Ak−1) = {Aik−1, w
i}, 1 ≤ i ≤ N (3.24)

where

Aik−1 =

[
axik−1

ayik−1

]
, axik−1 and ayik−1 ∼ fk(a), wi =

1

N
. (3.25)

For the middle branch, which represents the evolution of the process, we have a

root node v4 representing Xk−1. The a posteriori pdf of Xk−1 is approximated as

f(Xk−1) ' {Xi
k−1, w

i}, 1 ≤ i ≤ N by taking N samples according to the estimated

mean and covariance of Xk−1 from the previous step. The same a posteriori will

be transferred to the function node f3, i.e. µv4→f3(Xk−1) = {Xi
k−1, w

i}. At the

function node f3 we now have two incoming messages from which we have to find the

outgoing message toward v5. This message is calculated according to the particle-

based message update given in Algorithm 4, with V equal to 2. After resampling

the incoming message from v4, we make the ith outgoing particle, Xi
k, by drawing

a sample from f(Xk|Xi
k−1, A

i
k−1). According to (3.10) this sampling process will be

Xi
k = FXi

k−1 +GAik−1 +GU i (3.26)

where U i is drawn from the process noise distribution. The weight for each particle

Xi
k is computed according to Algorithm 4. Now we have the message toward v5 as

µf3→v5(Xk) = {Xi
k, w

i}, 1 ≤ i ≤ N .

At this point, we have Sk + 1 messages at node v5. One of them is from f3,

µf3→v5(Xk), which is a function of all the four components of the state vector. The

other Sk messages are of the form µf2→v5(Pk) computed for each sensor’s quantized

measurement. These are only functions of the first two components of the state vec-

tor which are the position values. Now, at v5, we multiply the first two components

of all of the Sk+1 messages using the Gibbs sampling algorithm of Section 2.1.4. For
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the second and third components which correspond to the velocity Vk, we transfer

the particles of the message µf3→v5(Xk) to construct the outgoing message from v5.

3.4.4 Numerical Results

The PF-based algorithm is tested in a simulated target tracking scenario in a WSN.

In our example, Sk = 5 sensors are located inside an area of size 20 × 20 and

every sensor can hear the other sensors’ transmissions. At each time interval, all

five sensors take a noisy measurement of the target’s distance to themselves and

broadcast the quantized version. The target is moving according to (3.10) where,

[uxuy]
T is a zero mean Gaussian noise with covariance matrix Σ2

d =

[
0.02 0

0 0.02

]
and also ts = 1. The acceleration vector is a Markov jump process described in

Section 3.4.1 with g = 0.1 and

Pr0 =
[
0.7 0.15 0.15

]
and Tr =

0.6 0.2 0.2
0.4 0.5 0.1
0.4 0.1 0.5

 .
The measurement noise in (3.11) is also assumed to be zero mean Gaussian with

variance σ2
m. The algorithm, however, works with any other noise distribution. In

the simulations, we have chosen σm proportional with the distance between the

sensor and the target. Therefore, a sensor farther from the target has a noisier

measurement of its distance than a closer sensor to the target. For a distance z, a

signal-to-noise ratio (SNR) is defined as SNR= z2

σ2
m
.

Since sensors have only distance measurements, at least Sk = 3 sensors are

required to find the target location. If at each time step more sensors can take

measurements and communicate their quantized data to each other the algorithm

will have better tracking performance. More number of sensors means having more

instances of the graph shown in Fig 3.2, connected to each other at node v5. Since

we use Gibbs sampling at variable nodes, whose complexity is linear with respect to

the number of Gaussian mixtures [51], the algorithm complexity will grow linearly

with the number of sensors.

We compared the PF-based MPA with two other applicable algorithms. The

first algorithm is the extended Kalman filter (EKF) which is fed by the quantized

data as the measurement values. The second one is a Gaussian MPA which is run

on the same FG as the FG in the PF-based MPA (Fig.3.2). In the Gaussian MPA,

we approximate all conditional distributions of variable on the graph with Gaussian
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distributions and therefore, replace all messages with their means and variances.

The means and variances are analytically tracked. Gaussian approximations for

MPA are common because of their low complexity. However, due to the nonlinear

measurement equation (3.11), the nonlinear quantization noise and the target ac-

celeration in the dynamic model in (3.10), the real distributions and therefore the

actual messages are not Gaussian. It is also worth to mention that in the absence

of these nonlinearities, the Gaussian MPA would reduce to an MPA representation

of the KF on the associated FG [47] which would be the optimum solution.

We ran the three algorithms for a case with four level quantization and SNR=

50dB. Fig. 3.3 depicts a sample outcome of target tracking with these algorithms.

In this instance, the object is moving from top to the bottom of the X−Y plane.

Specifically, at around (X,Y ) = (13, 15), the other two methods lost track of the

target while our algorithm followed the path correctly. This performance difference

is related to the high nonlinearity of the target dynamic around that location. In

order to have more reliable MSE values, we have run the three algorithms on 5

different target trajectories and averaged the location MSE over these runs. The

average mean square of the location error (location MSE) for the EKF is 0.315, for

the Gaussian MPA is 0.226 and for the PF-based MPA is 0.161.

Fig. 3.4 shows the performance of the PF-based MPA for L = 4 and different

values of N . It is seen that for N = 10 or higher the algorithm achieves small error

for location tracking. The result of an EKF is also depicted for comparison. The

straight line shows the MSE of the EKF algorithm when there is no quantization in

the measurement data.

Fig. 3.5 shows another comparison, where the non-quantized EKF is compared

with our quantized PF-based MPA. It is seen that with 4-bit quantization or more

the MSE of PF-based MPA is almost as good as the EKF without quantization.

For very high quantization bits, the results of PF-based MPA is slightly better

than EKF. This is because of the nonlinearity of (3.11) and also the presence of

acceleration which is another source of nonlinearity.

The performance of PF-based MPA in low SNR is not as good as in high SNR.

In fact, as SNR decreases the difference between the EKF curve and PF-based MPA

curve in Fig. 3.4 and 3.5 increases. For example for SNR= 30 and L = 4 by

increasing the number of particles, the MSE will improve from 0.776 for N = 3 to

0.595 for N = 30 and above. For this setup, MSE of the EKF without quantization
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is 0.330 which is much better than PF-based MPA. It is also observed that for low

SNR, increasing the number of quantization levels to more than 4 does not improve

the performance. This is quite expected because when the actual measurements are

very noisy, higher precision quantization (more bits) does not mean transmitting

more information.
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Figure 3.3: Result of tracking algorithm for L = 4,N = 40, SNR= 50dB.

3.5 Data Association in Multi-Target Tracking

The second inference problem is the more complicated scenario of multi-target track-

ing which involves the data association problem [10, 74, 75]. In this problem there

are a number of targets being tracked by a network of wireless sensors. At each

time step, each sensor has some observations related to some of the targets. The

challenging task is how to associate the measurements with the targets and track

all targets simultaneously. Most of the existing solutions treat the data association

task first and then apply conventional single-target tracking algorithms. Using the

PF-based MPA, these two steps can be solved in a conjunctive fashion.

Since a 2-D tracking scenario has been discussed in Section 3.4, to simplify the
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Figure 3.4: Performance of the algorithm versus the number of particles for L = 4,
SNR= 40dB.

equations in this example we assume a 1-D trajectory for each target. We consider

two targets being tracked by a single sensor. The extension of the algorithm to

multiple sensors is straightforward and identical to the approach of Section 3.4.

Assume the location of target 1 and 2, at time step k, is denoted by T 1
k and T 2

k ,

respectively. At each time step, the sensor has two distance measurements from the

targets, i.e., zA and zB, but it does not know which measurement is related to which

target. Having the 2 measurement values, there are 2 association hypotheses; H0:

zA is related to the 1st target and zB is therefore related to the 2nd target. H1:

zA is related to the 2nd target and zB is therefore related to the 1st target. We

define a hidden variable r which determines the association hypothesis. Therefore,

r is a Bernoulli random variable that takes either the value 0, indicating H0, or 1,

indicating H1. To finish the stochastic model setup, we also define z1
k and z2

k to be

the expected measurement value for target 1 and 2, respectively. We can factorize
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Figure 3.5: Performance of the algorithm versus log2 of the number of quantization
levels for N = 40, SNR= 50dB.

the joint a posteriori pdf p(T 1
k , T

2
k , z

1
k, z

2
k, r|T 1

k−1, T
2
k−1, z

A, zB) as

p
(
T 1
k , T

2
k , z

1
k, z

2
k, r|T 1

k−1, T
2
k−1, z

A, zB
)

=

p(r|z1
k, z

2
k, z

A, zB)p(z1
k|T 1

k )p(z2
k|T 2

k )p(T 1
k |T 1

k−1)p(T 2
k |T 2

k−1). (3.27)

The associated factor graph is shown in Fig. 3.6. In the factorization (3.27), the fac-

tors p(T 1
k |T 1

k−1) and p(T 2
k |T 2

k−1) can easily be derived based on the dynamic model

that we consider for target 1 and 2, respectively, similar to the approach in Sec-

tion 3.4. Also, the factors p(z1
k|T 1

k ) and p(z2
k|T 2

k ) are decided based on the measure-

ment models assumed for each target. The only remaining factor is p(r|z1
k, z

2
k, z

A, zB)

which basically is the probability of the hypothesis H0 or H1, knowing the values

of the expected measurements z1
k and z2

k, and the actual measurements zA and zB.

An appropriate probability function must be chosen to represent p(r|z1
k, z

2
k, z

A, zB),

e.g.,

p(r|z1
k, z

2
k, z

A, zB) =

{
tanh (KD) ; r = 0

1− tanh (KD) ; r = 1
, (3.28)

where D =
|z1
k − zB||z2

k − zA|
|z1
k − zA||z2

k − zB|
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where K is a constant which is chosen to be 0.55 in our simulations. The PF-based

MPA can now run on the factor graph of Fig. 3.6 to find the marginal a posteriori

pdf of T1(k) and T2(k). Two sample results are shown in Fig. 3.7. In this example,

both targets’ model is a 1-D Markov chain with model noise variance of 0.0001. The

measurement noise variance is 0.0001 for the top graph and 0.0004 for the bottom

graph.
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Figure 3.6: Factor graph of the multi-target tracking problem in a WSN.

3.6 Conclusion

In this chapter we introduced a particle-based message passing algorithm for general

non-Gaussian, non-linear stochastic estimation problems. Specifically, for those in-

ference problems that involve a large number of variables with arbitrary continuous

pdfs analytical solutions are infeasible. Non-parametric solutions that are based

on simple quantization and Riemann sum methods have high computational com-

plexity which grow exponentially with the number of variables in the problem. Our

particle-based message passing algorithm is based on Monte Carlo integration whose

complexity is independent of the dimension of integrals. Hence, the complexity of

our method does not exponentially increase by the number of variables.

An important application of such problems is the estimation task in WSNs. Our
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Figure 3.7: Sample results of multi-target tracking using PF-based MPA.

algorithm is suited to run in individual sensors in the WSN to do the distributed

estimation process from the sensors’ measurement data. It allows the sensors to work

with low precision quantized data, which is less costly to send on the wireless channel.

In the experiment of target tracking in a WSN, we achieved very good results by

only using 3-bit quantized data. Unlike KF-based algorithms, our algorithm can

work even when measurement data does not have a linear relation with the tracked

process or when the noise is not Gaussian.

While we focused on a specific WSN problem, our methodology can be applied

to other WSN estimation problems. Moreover, since we reformulated the sum-

product update rules using particle filtering, our approach is readily applicable to

problems with continuous variables, where the SPA is not analytically tractable.

The studies in this chapter and the related algorithm and simulations are published

in [49] and [50].
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Chapter 4

Optimum Distributed
Quantization

In distributed sensing systems with constrained communication capabilities, sen-

sors’ noisy measurements must be quantized locally before transmitting to the fu-

sion center. When the same parameter is observed by a number of sensors, the local

quantization rules must be jointly designed to optimize a global objective function.

In this chapter we jointly design the local quantizers by maximizing the mutual

information of the unknown parameter and the set of quantizers’ outputs. An itera-

tive approach is suggested for finding the local quantization rules. Using the mutual

information as the design criterion, we can easily integrate the effect of communi-

cation channels in the design, and consequently design channel-aware quantization

rules. We observe that the optimal design depends on both the measurement and

channel noises. Moreover, our algorithm can successfully be used to design quantiz-

ers for different applications, such as estimation and detection. We demonstrate this

through simulating an estimation and a detection application, where our method

achieves comparable estimation and detection errors to the methods that have been

specifically designed for those applications.

4.1 Introduction

A random source which has continuous amplitude requires infinite number of bits to

be described. However, due to practical constraints in communication systems, e.g.,

limited storage or channel capacity, only finite number of bits can be accommodated.

To compress a continuous-amplitude source X into limited amount of information

(bits) its amplitude should be quantized to Q(X), which takes values from a discrete
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finite set. A side effect of this quantization is some loss of information about X,

which depends on the quantizer’s quality and the compression rate.

Quantization theory has been studied for long [23, 76]. The rate-distortion the-

ory [53] describes the relation between the amount of distortion caused by the quanti-

zation, and the rate by which the quantized source can be presented. The theoretical

limits described by the rate distortion function can only be asymptotically achieved

by optimal source encoding.

The design of optimal quantizers cannot be achieved as a closed form solution for

a specific source distribution. Lloyd and Max [22,23] propose an iterative algorithm

for finding the best quantization rule for a random source to achieve the lowest

distortion. The distortion measure they use is the MSE. Using the Lloyd-Max

algorithm, the optimal1 L-level quantization rule, which minimizes the estimation

MSE can be found for a random scalar X with pdf p(X). The joint quantization of

multiple variables has been studied under vector quantization [56,57].

A more interesting scenario is when the continuous-amplitude source is not ob-

servable and only a noisy version of it can be measured as Y = X + W , where

W is some random noise. In this scenario, the observed quantity is quantized as

Q(Y ); however, the goal is to achieve the best description of X. It has been shown

in [24,25,77] that the optimal quantizer in this case can be achieved using the gen-

eralized Lloyd-Max algorithm, where the distortion measure is modified to include

both the quantization and measurement noises.

A relatively recent and more challenging problem appears in distributed sensing

systems, e.g., sensor networks. The problem can be described as distributed noisy

source quantization. In a distributed sensing system, the same unknown source

is observed by different measurement devices, each having a noisy observation as

Yn = X + Wn; 1 ≤ n ≤ N , where Wn is the measurement noise of the nth obser-

vation. Each observation has to be quantized according to a local quantization rule

Qn(Yn) and sent to the FC. At the FC, the quantized values are used for estimation,

detection, or classification purposes, based on the application of the distributed sen-

sor network. In order to achieve an optimal solution, the local quantization rules

have to be jointly optimized, making this problem more challenging than a central-

ized quantization. The rate-distortion bound is analytically untraceable in this case;

1It must be mentioned that all iterative algorithms for quantization design find a local optimal
solution, which depends on the initial quantization rules.
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however, upper and lower bounds have been derived in [55].

Designing the optimal quantizers for the above scenario has been considered

by [26–29]. They suggest cyclic algorithms based on alternating minimization [30]

to find the optimal N quantizers. The algorithm starts by initial guesses about the

N quantizers, i.e., Q0
1, · · · , Q0

N . During each iteration j, for each 1 ≤ n ≤ N , the

best quantization rule that optimizes a performance criterion (MSE [26,27], Fisher

information [28], or Ali-Silvey distances [29]) is found by fixing the other N − 1

quantizers, and is assigned to Qjn. A heuristic method based on Fisher information

is suggested in [33], which has lower complexity than optimal methods. For stringent

capacity-constrained WSNs, binary quantization per sensor is suggested and some

efficient techniques are proposed in [78–80].

Compared with the previous design algorithms for distributed quantization,

i.e., [26–29], in this chapter we use the MI as the optimization measure for the

distributed quantization design. We design quantizers that maximize the MI be-

tween the quantized data and the unknown parameter. Our motivation for using

the MI is that it is a fundamental measure showing how much information one

variable contains about another variable. We design for a set of quantizers that

quantize the noisy measurements into a set of variables that together contain the

most information about the unknown parameter.

The MI measure has the following benefits. It allows to design the quantizers

independent of the choice of a decoder or estimator in the FC. Also, as we will

discuss later, when using the MI measure the global optimization criterion can be

broken down into smaller criteria. Finally, it allows to incorporate intermediate

effects, such as the effect of the communication channels, in the design of optimal

quantizers. Using the MI measure, we find optimal channel-aware local quantizers

by integrating the channel in our design. To model the channel effect, the sensors’

quantized data are mapped to binary codewords and each bit is sent over a binary

symmetric channel (BSC). By maximizing the MI between the received data at the

FC and the unknown parameter, we observe that depending on the channel noise

the optimal quantizers can be different from the channel-unaware quantizers.

Designing distributed quantizers by maximizing the MI shows great results in

various applications. This is evaluated for two applications, i.e., estimation and

detection. We will show that the quantization rules obtained by maximizing the

MI achieve the same performance as the quantizers specifically designed for the
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estimation or the detection purpose.

This chapter is organized as follows. We first discuss the advantages of using

the MI for the design algorithm, in Section 4.2. In Section 4.3, the problem is

defined and formulated based on MI. Consequently, a design algorithm is devised in

Section 4.4, assuming ideal communication channels. In Section 4.5, the algorithm

is modified to include channel effect. Finally, the numerical results are presented

and discussed in Section 4.6.

4.2 Mutual Information as the Optimization Criterion

Most optimal quantizer designs have used distortion measures, such as MSE [22–26,

77]. However, other measures have also been used as criteria to design quantizers,

among them are the Ali-Silvey distances [29, 81, 82], Cramer-Rao lower bound and

Fisher information [28,33,83,84]. One motivation for using these measures is the fact

that they better fit some applications. For example, Ali-Silvey distance measures

are shown to design quantizers that result in lower detection errors, which is useful

for detection purposes [29,81].

A fundamental measure, showing how much information about the unknown is

conveyed in the quantized data, is the MI between the unknown and the quantized

data. In this chapter, we base the design of the distributed quantizers on maxi-

mizing the MI. Specifically, we jointly design the quantizers so that the quantized

data contain the highest information about the unknown. The MI criterion, to the

best of our knowledge, has not been studied for distributed quantizer design in the

literature.

A benefit of using the MI is to make the quantizer design independent of the

estimation method or decoder. In design solutions based on distortion measures,

such as squared-error or Hamming error [53], the estimation method is fixed, e.g.,

MMSE or ML, and the optimization of the quantizers is achieved depending on the

estimator type. Using MI, the quantizer design stage becomes independent of the

application. Depending on the application, an appropriate estimator/detector must

be used in the FC, but this will not affect the quantizer design. This enables the

designer to obtain a quantization algorithm useful for a range of applications such as

estimation, detection, classification or feature extraction. Specifically for estimation

purposes, the optimal quantizers designed based on minimizing the MSE (the Lloyd-

Max algorithm) are those also with high MI [23,85]. This makes sense, because when
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the quantized data carry more information about the unknown parameter, the FC

has a better representation of the unknown; hence, it can estimate it more accurately.

The successful performance of our MI-based algorithm in estimation and detection

applications are shown in Subsections 4.6.1 and 4.6.2, respectively.

Using the MI measure in the distributed quantization design enables breaking

down an N -sensor quantization problem into smaller problems. In fact, since the

formula of the MI can be recursively broken down using the chain rule of MI, a

simpler suboptimal solution can be derived by maximizing each component. Fur-

thermore, the MI allows the design complexity to be significantly reduced when the

sensors’ measurements are conditionally independent. Such simplifications cannot

be done when other measures, such as MSE, are used. This will be discussed in

Subsection 4.4.2.

4.3 Problem Formulation Based on MI

The distributed quantization problem addressed in this chapter is defined as follows:

Suppose X is a random scalar, which takes values in R with pdf p(X)2. A number

of noisy measurements of X are observed at some distributed locations as Yn =

h(X,Wn); 1 ≤ n ≤ N , where Wn is the measurement noise, and h is an arbitrary

function of variables X and Wn. The measurement noise at different sensors may

be correlated. It is assumed that the distribution p(Y1, · · · , YN |X) is known.

Due to communication constraints, the continuous-amplitude measurements have

to be quantized before transmission. Therefore, Yn is mapped to Zn ∈ Ln =

{1, 2, · · · , Ln} using a local quantization rule Qn : R → Ln, i.e., Zn = Qn(Yn).

A quantization rule Qn is defined by a set of real-valued numbers called break-

points, i.e., Γn, that divide R into partitions, and assign a value from Ln to each

partition. Each quantized value Zn, 1 ≤ n ≤ N , is then transmitted over a com-

munication channel, and the received symbol at the FC is called Tn . The complete

problem model is shown in Fig 4.1.

Let {Y1, · · · , YN}, {Z1, · · · , ZN}, and {T1, · · · , TN} be denoted by Y1:N , Z1:N ,

and T1:N , respectively. Then the random variables X, Y1:N , Z1:N , and T1:N make a

2For the brevity of notations, we use the same symbol to address a random variable and its
value.
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Figure 4.1: The complete model of the problem.

first-order Markov chain as X → Y1:N → Z1:N → T1:N , hence

p(X,Y1:N , Z1:N , T1:N ) =

p(X)p(Y1:N |X)p(Z1:N |Y1:N )p(T1:N |Z1:N ).
(4.1)

We will use this property to develop the design algorithm in Sections 4.4 and 4.5. We

first consider ideal communication channels between the sensors and the FC, and de-

rive an algorithm for designing the quantization rules in Section 4.4. In Section 4.5,

we extend the algorithm to consider the channel effect and design channel-aware

quantization rules.

From this point until Section 4.5, the communication channels are assumed ideal.

Therefore, the goal is to derive Q1(·), · · · ,QN (·) so that on average, the random

variables Z1, · · · , ZN are jointly a better representation of X. To achieve this goal,

we maximize the MI between X and the N quantized data, as

max
Q1,··· ,QN

I(X;Z1, Z2, · · · , ZN ). (4.2)

Due to the step-wise characteristic of the quantization rules, finding an analytical

solution to the problem in (4.2) is difficult. Therefore, in this chapter we find

numerical methods to tackle this problem.

While we can develop numerical methods that directly work with (4.2), we find

the following relaxation of (4.2) beneficial. As discussed in Subsection 4.4.2, this

relaxation reduces design complexity, but as seen in Section 4.6, it does not cause

any noticeable performance degradation. The main idea in this relaxation is to
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benefit from the chain rule of MI [53]. The MI in (4.2) can thus be written as

I(X;Z1, Z2, · · · , ZN ) =

N∑
m=1

I(X;Zm|Zm−1, · · · , Z1). (4.3)

Hence, a suboptimal solution can be derived based on this recursive breakdown as

Q∗1 = arg max
Q1

I(X;Z1)

Q∗2 = arg max
Q2

I(X;Z2|Z1)

...

Q∗n = arg max
Qn

I(X;Zn|Z1, Z2, · · · , Zn−1)

...

Q∗N = arg max
QN

I(X;ZN |Z1, Z2, · · · , ZN−1),

(4.4)

where in the nth line, 1≤n≤N , Z1, · · · , Zn−1 are quantized based on the previously

found Q∗1, · · · ,Q∗n−1, respectively.

Finding the nth quantization rule, for 1 ≤ n ≤ N , from (4.4) is less complex

than finding all quantization rules from (4.2), see Subsection 4.4.2. In the following

section, we develop a method to find a solution for the maximization problem in

(4.4).

4.4 Optimum Quantizers for Ideal Channels

4.4.1 Algorithm

To find Qn, 1 ≤ n ≤ N , one should solve the maximization in the nth line of (4.4).

However, since Qn is a discrete-valued function the optimization is not analytically

traceable. In this section we provide a numerical method to find a local optimal

solution for the nth quantization rule based on (4.4). Assume that Q∗1, · · · ,Q∗n−1 are

known. To find the nth quantization ruleQ∗n, according to (4.4) we need to maximize

I(X;Zn|Z1, Z2, · · · , Zn−1). When the n − 1 previous quantization rules are fixed,

this is equivalent to the following optimization (Note that Z1:n = {Z1, · · · , Zn}.)

Q∗n = arg max
Qn

I(X;Z1:n). (4.5)

Using the chain rule of MI and the definition of MI based on the entropy [53],

I(X;Z1:n) =I(X,Y1:n;Z1:n)− I(Y1:n;Z1:n|X)

=H(X,Y1:n)−H(X,Y1:n|Z1:n)−H(Y1:n|X) +H(Y1:n|X,Z1:n). (4.6)
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In (4.6), the entropy terms involving only X and Y1:n are independent of the choice

of quantizers. Therefore, we can reduce the optimization problem to3

Q∗n = arg max
Qn

[
−H(X,Y1:n|Z1:n) +H(Y1:n|X,Z1:n)

]
= arg max

Qn

∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n, Z1:n) log p(X|Z1:n)

= arg max
Qn

∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n)p(Z1:n|Y1:n) log p(X|Z1:n),

(4.7)

where the last equation is the consequence of the Markov chain property in (4.1).

We refer to this new objective function as I(X;Z1:n), i.e.,

I(X;Z1:n) =

∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n)p(Z1:n|Y1:n) log p(X|Z1:n). (4.8)

Note that maximizing I is equivalent to maximizing the MI in (4.5).

Since for each 1 ≤ j ≤ n, the jth quantized value Zj solely depends on the jth

measurement Yj , we have

p(Z1:n|Y1:n) = p(Z1|Y1) · p(Z2|Y2) · · · p(Zn|Yn).

Therefore, (4.7) can also be written as

Q∗n = arg max
p(Zn|Yn)

I(X;Z1:n)

= arg max
p(Zn|Yn)

∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n)× p(Z1:n−1|Y1:n−1)p(Zn|Yn) log p(X|Z1:n)

(4.9)

Note that, in the above formula, the maximization is on p(Zn|Yn). It is straightfor-

ward to see that the probability function p(Zn|Yn) is just another form of defining

the nth quantization rule. Since ∀y ∈ R the quantization rule maps y to a value

l ∈ Ln such that l = Qn(y), we have

p(Zn|Yn = y) = δlZn , (4.10)

where function δab is the Kronecker delta function, which is equal to one where a = b

and zero elsewhere. Note that in (4.9), p(X|Z1:n) also depends on the quantization

rule or p(Zn|Yn).

To solve the optimization problem in (4.9), motivated by [86] we use the double

maxima approach by converting (4.9) to a larger maximization problem. The max-

imization in (4.9) can be achieved through the next three steps, which is proven in

Appendix A.

3We have dropped dX, dY1, · · · , dYn from all the formulas to save space.
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i) The maximum of the objective function in (4.9), namely I∗, can be written as

I∗ = max
p

max
f
I(p, f) (4.11)

where p is a short term for p(Zn|Yn) and f is a short term for f(X,Z1:n), a function of

X and Z1:n, such that for all realizations of Z1:n ∈ L1×L2 · · ·×Ln,
∫
X f(X,Z1:n) = 1.

And,

I(p, f) =

∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n)× p(Z1:n−1|Y1:n−1)p(Zn|Yn) log f(X,Z1:n). (4.12)

ii) Now, for a fixed p, I(p, f) is maximized by

f∗(X,Z1:n) =

∫
Y1:n

p(X,Y1:n)p(Z1:n|Y1:n)∫
X

∫
Y1:n

p(X,Y1:n)p(Z1:n|Y1:n)
. (4.13)

iii) And, for a fixed f , p∗ that maximizes I(p, f) is obtained as

∀y∈R p(Zn|Yn = y) = δl∗y,

where l∗ = arg max
l

∫
X

∫
Y1:n−1

∑
Z1:n−1

p(X,Y1:n−1, y)

× p(Z1:n−1|Y1:n−1) log f(X,Z1:n−1, l),

(4.14)

where l ∈ Ln = {1, 2, · · · , Ln}.

It is shown in Appendix A that these procedures find I∗. Using i, ii and iii, an

iterative algorithm can be derived as Algorithm 7 to find the optimal nth quantiza-

tion rule. In Algorithm 7, ε determines the condition to stop the iterations. Since the

Algorithm 7 Iterative algorithm to find nth quantization rule

j = 0
initialize the quantization rule: p0

repeat
j = j + 1
maximize I(p, f) for fixed p, according to (4.13) or (4.20)

f j = max
f
I(pj , f)

maximize I(p, f) for fixed f , according to (4.14) or (4.21)

pj = max
p
I(p, f j)

until |I(pj , f j)− I(pj−1, f j−1)| > εI(pj , f j)

objective function I(X;Z1:n) is increased at each iteration and is upper-bounded4

4This is because in (4.6), the MI (left-hand side) is upper-bounded and the first and third term
on the right-hand side are fixed.
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the algorithm converges to a local maximum, which is also a local maximum for

I(X;Z1:n). This can be also investigated in Fig. 4.2.

4.4.2 Complexity

All optimum quantizer design algorithms, e.g., [22, 23, 26, 28, 29, 87], have an iter-

ative structure. At each iteration the objective function, which is a functional of

the quantizer Q(·), is changed by a small amount until the change is less than a

predefined threshold. At that point, the objective function is reached a local opti-

mum and the optimum quantizer is found. In particular, for distributed quantizers

design, where the objective function is a functional of Q1(·), Q2(·), · · · , QN (·), each

iteration involves calculating an N -dimensional integral [26,28,29].

Our algorithm also falls in the same complexity category; however, by basing

our method on (4.4) rather than (4.2) we reduce the integral dimensions. If we had

based our algorithm on (4.2) at each iteration, in order to find Q∗n, we would need

to solve arg maxQn I(X;Z1:N ) instead of (4.5). Consequently, for every 1≤n≤N ,

(4.13) would involve an N -dimensional integral. By basing our algorithm on the

relaxed problem (4.4) we are reducing the dimension of integrals from being N to

n, for each 1≤n≤N .

Numerical multidimensional integrations based on Fubini’s theorem [88] suffer

from a complexity growing exponentially with the number of dimensions. In such

cases, reducing the integral dimensions from N to n reduces the total complexity

from O(NKN ) in existing work to O(KN ) in our algorithm, where K is the com-

plexity of a 1-dimensional integral. This is consistent with our observations when

obtaining numerical results for Section 4.6.

In our MI-based algorithm, the computations can be further reduced when the

measurements are conditionally independent, which is a common assumption in

sensor networks [33, 78–80]. When measurements are conditionally independent

p(Y1, Y2, · · · , Yn|X) is factorized to p(Y1|X)p(Y2|X) · · · p(Yn|X). Therefore, the n-

dimensional integral in (13) and (14)
∫
Y1:n

, breaks into n 1-dimensional integrals
∫
Y1

· · ·
∫
Yn

, significantly reducing the complexity of the algorithm from exponential to

polynomial.
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4.5 Channel-Aware Optimal Quantizers

The discussions up to this point have assumed ideal communication channels be-

tween the sensors and the FC. In real distributed sensing systems, due to the non-

ideal communication channels the quantized data generated by the sensors might

not be received correctly at the FC. This will affect the overall performance of the

system. Hence, considering the channel effect in designing the quantizers is cru-

cial [18]. For centralized quantization, [87,89,90] revise the MSE formula to include

the channel effect. Then, they jointly optimize the source encoders and the re-

construction levels at the receiver by minimizing this new MSE. For distributed

quantization, channel-optimized quantizer design has been developed for hypothesis

testing by minimizing the Bayesian cost [91, 92]. Recently, the distributed channel-

aware quantizer design for multiple correlated sources has been addressed by [93,94],

where M source encoders are designed to quantize M correlated sources, in presence

of noisy communication channels.

In this section, we design optimal channel-aware quantizers for the distributed

quantization of a noisy source using MI measure. To model the communication

channel between the sensors and the FC, we assume that the quantizers’ outputs

are mapped to binary words and communicated to the FC through BSCs. We further

assume that the channels are independent. In presence of these noisy channels, we

now optimize the quantizers’ design by maximizing the MI between the unknown

parameter and the channels’ outputs. We use the Markov chain property in (4.1)

and follow an approach similar to Section 4.4 to solve the optimization problem.

The nth sensor quantizes its analog measurement Yn to Zn according to the

quantization rule Qn. The quantizer output value is mapped to its binary repre-

sentation, making a binary word of size log2 Ln. Each binary word is sent over a

BSC with crossover probability εn. The received binary word at the channel out-

put is mapped to its decimal representation Tn ∈ Ln. Due to the channel errors,

the received word might not be the same as the transmitted word, hence Tn could

be different from Zn. The channel transition probabilities, i.e., p(Tn = l|Zn = k);

1 ≤ l; k ≤ Ln, are derived based on εn.

Based on the channel transition probabilities, we can write the MI betweenX and

the received symbols at the channels’ output T1, T2, · · · , TN , i.e., I(X;T1, T2, · · · , TN ),

or in short I(X;T1:N ). Then we maximize I(X;T1:N ) to find the optimal N channel-
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aware quantizers. Similar arguments preceding (4.5) are applicable here. Hence, the

nth optimal channel-aware quantization rule is obtained as

Q∗n = arg max
Qn

I(X;T1:n). (4.15)

By substituting T1:n instead of Z1:n in (4.6) and proceeding similar steps, we get

Q∗n = arg max
Qn

I(X;T1:n)

= arg max
Qn

∫
X

∫
Y1:n

∑
T1:n

p(X,Y1:n)p(T1:n|Y1:n) log p(X|T1:n). (4.16)

Since Y1:n, Z1:n, and T1:n form a Markov chain Y1:n → Z1:n → T1:n, we have

p(T1:n|Y1:n) =
∑

Z1:n
p(T1:n|Z1:n)p(Z1:n|Y1:n), and therefore

Q∗n = arg max
p(Zn|Yn)

∫
X

∫
Y1:n

∑
Z1:n

∑
T1:n

p(X,Y1:n)p(Z1:n|Y1:n)

× p(T1:n|Z1:n) log p(X|T1:n).

(4.17)

Assuming that the channel between each sensor and the FC is independent from the

other channels, p(T1:n|Z1:n) can be obtained as
∏n
m=1 p(Tm|Zm), where each term

is the transition probability of the corresponding sensor-to-FC channel. Following

the same steps as in Subsection 4.4.1, we can derive similar results. Note that the

term p(X|T1:n) in (4.17) depends on the quantization rule p(Zn|Yn). First we write

I∗ch = max
p

max
f
Ich(p, f), (4.18)

where p is a short term for p(Zn|Yn) and f is a short term for f(X,T1:n), such that

for all realizations of T1:n ∈ L1 × L2 · · · × Ln,
∫
X f(X,T1:n) = 1. And,

Ich(p, f) =

∫
X

∫
Y1:n

∑
Z1:n

∑
T1:n

p(X,Y1:n)×

p(Z1:n−1|Y1:n−1)p(T1:n|Z1:n)p(Zn|Yn) log f(X,T1:n).

(4.19)

Then, for a fixed p, Ich(p, f) is maximized by

f∗(X,T1:n) =

∫
Y1:n

∑
Z1:n

p(X,Y1:n)p(Z1:n|Y1:n)p(T1:n|Z1:n)∫
X

∫
Y1:n

∑
Z1:n

p(X,Y1:n)p(Z1:n|Y1:n)p(T1:n|Z1:n)
. (4.20)

And, for a fixed f , p∗ that maximizes Ich(p, f) is obtained as

∀y ∈ R p(Zn|Yn = y) = δl∗y,

where l∗ = arg max
l

∫
X

∫
Y1:n−1

∑
Z1:n−1

∑
T1:n

p(X,Y1:n−1, y)

× p(Z1:n−1|Y1:n−1)p(T1:n−1|Z1:n−1)p(Tn|Zn = l) log f(X,T1:n),

(4.21)

where l ∈ Ln = {1, 2, · · · , Ln}. Finally, a similar iterative solution as Algorithm 7

can be proposed for finding N channel-aware quantization rules.
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4.6 Simulation Results

In this section the performance of our proposed algorithm is demonstrated and com-

pared with other methods using computer simulations. In particular, we examine

the performance of our MI-based quantization design for the estimation applications

and detection applications, in Sections 4.6.1 and 4.6.2, respectively. The effect of

non-ideal channels on the optimal quantization rules is investigated in Section 4.6.3.

4.6.1 Estimation Application

For a distributed sensing system with estimation purposes, the quantized values

are used in the FC to estimate the unknown. To compare with [28], where the

quantization rules are obtained by minimizing the MSE, we use a similar simulation

scenario. The unknown parameter X is distributed according to N (0, 1). Two

sensors are involved, i.e., N = 2. The measurement noises W1 and W2 are additive

Gaussian noises with correlation ρ and marginal distribution N (0, 1). The number

of quantization levels for both sensors is L. At the FC we use the MMSE estimator

to estimate X from the quantized measurements Z1 and Z2. Similar to [28], the

initial quantization breakpoints are chosen from the optimal quantization rules of

Lloy-Max algorithm [22], Γ 0
1 = Γ 0

2 = {−0.982, 0, 0.982}.

Our algorithm finds the optimal quantizers Q∗1 and Q∗2 by maximizing the MI

I(X;Z1, Z2). According to (4.4), I(X;Z1, Z2) can be broken down as I(X;Z1) +

I(X;Z2|Z1). Based on Algorithm 7, first I(X;Z1) is maximized to find Q∗1, and

consequently I(X;Z2|Z1) is maximized to find Q∗2. Due to this breaking down of

the task, the MI I(X;Z1, Z2), which is the sum of the two components is maximized

in two steps. Fig. 4.2 shows the value of MI at each iteration of the algorithm, for

L = 4 and ρ = 0.

At each iteration of the algorithm, the current quantization rules are used to

quantize the measurements Y1 and Y2 to Z1 and Z2, respectively. These values are

then used to estimate X using the MMSE estimator, i.e., X̂ = E{X|Z1, Z2}. The

estimation performance at each iteration is computed in terms of MSE and is shown

in Fig. 4.3. It can be seen from Fig. 4.2 and Fig. 4.3 that by increasing the MI, the

MSE of estimation is decreased.

The optimal quantization rules at the end of iterations are represented by the set

of breakpoints as Γ1 and Γ2 in Table 4.1. For different simulation scenarios the final
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Figure 4.2: Designing the quantization rules by maximizing the MI.

σ σ

Figure 4.3: MSE change at each iteration.
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ρ = 0, L = 4

method Optimal Quantization Rules MSE

MI Γ1 = Γ2 = {−1.37, 0, 1.37} 0.3879

Lam Γ1 = Γ2 = {−1.39, 0, 1.39} 0.3880

ρ = 0, L = 8

method Optimal Quantization Rules MSE

MI Γ1 =Γ2 ={−2.49,−1.51,−0.73, 0, 0.73, 1.51, 2.49} 0.3484

Lam Γ1 =Γ2 ={−2.48,−1.48,−0.71, 0, 0.71, 1.48, 2.48} 0.3487

ρ = 0.85, L = 4

method Optimal Quantization Rules MSE

MI Γ1 = {−1.15, 0, 1.15}, Γ2 = {−2.10, 0, 2.10} 0.5170

Lam Γ1 = {−1.13, 0, 1.13}, Γ2 = {−2.08, 0, 2.08} 0.5171

Table 4.1: MSE for estimation, σ2
1 = σ2

2 = 1.

quantization rules and the final MSE are shown and compared with the results of

Lam algorithm [28]. Comparing with [28], the final quantization rules are different,

but, the MSE performances are essentially the same.

We have also implemented the MI-based algorithm using the primal problem in

(4.2), and compared the performance results with the implementation based on (4.4).

For the three simulation scenarios in Table 4.1, the MSE results for the quantizers of

the algorithm based on (4.2) is 0.3878, 0.3482, and 0.5170, respectively. Comparing

with the MSE results shown in Table 4.1 it can be seen that the effect of relaxation

of the suboptimal problem (4.4) in the performance is negligible.

To investigate a scenario with non-identical measurement noise variances, we

have run a simulation where σ2
1 = 1, σ2

2 = 0.5, and ρ = 0. The resulting optimum

quantizers are shown in Table 4.2 for L = 4 and 8, and are compared with the

Lloyd-Max results [22]. It can be seen that the performance of the jointly designed

quantizers through our algorithm is better than that of the independent optimal

quantizers obtained by the Lloyd-Max algorithm.

For larger N , when the measurements are conditionally independent, i.e., ρ = 0,

the complexity is feasible. An example is shown in Table 4.3 for N = 9, σ2
n = 1;

1 ≤ n ≤ N , and L = 4, and is compared to Lloyd-Max [22] results.

It is worth mentioning that the performance of our quantization design algorithm

improves by increasing the number of quantization levels, as any other quantization

problem. This can be investigated by comparing the MSE results of L = 4 with
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L = 4

method Optimal Quantization Rules MSE

MI Γ1 = {−1.380, 0, 1.380}
Γ2 = {−1.135, 0, 1.135} 0.310

Lloyd Γ1 = {−0.982, 0, 0.982}
Γ2 = {−0.694, 0, 0.694} 0.332

L = 8

method Optimal Quantization Rules MSE

MI Γ1 = {−2.43,−1.45,−0.69, 0, 0.69, 1.45, 2.43}
Γ2 = {−2.05,−1.22,−0.58, 0, 0.58, 1.22, 2.05} 0.264

Lloyd Γ1 = {−1.75,−1.05,−0.5, 0, 0.5, 1.05, 1.75}
Γ2 = {−1.24,−0.74,−0.35, 0, 0.35, 0.74, 1.24} 0.281

Table 4.2: MSE for estimation, σ2
1 = 1, σ2

2 = 0.5.

method Optimal Quantization Rules MSE

MI Γn = {−1.275, 0, 1.275} 0.1233

Lloyd Γn = {−0.982, 0, 0.982} 0.1295

Table 4.3: MSE for estimation: N = 9.

L = 8 (see Table 4.2 and 4.1). However, in noisy observation scenarios the MSE per-

formance is also constrained by the SNR. Therefore, as the number of quantization

levels keeps increasing the MSE does not keep dropping with the same slope.

4.6.2 Detection Application

In a distributed sensing system with detection purposes, the FC uses the quantized

data to perform a hypothesis testing. We use our method of maximizing the MI

to find the optimal quantization rules for the detection scenario and compare the

performance with that of Poor algorithm [81], where Ali-Silvey distances [95] are

used as the optimization criterion.

To simulate the detection scenario the unknown X can be considered a Bernoulli

random variable, which represents the absence (H0) or presence (H1) of the signal

θ, i.e., P (X = θ) = Pθ and P (X = 0) = 1− Pθ. Each sensor makes an observation

of X in additive Gaussian noise and sends the quantized observation to the FC.

We use the algorithm in Subsection 4.4.1 to design the optimal rules for quantizing

the measurements. Note that since X takes its values from the finite set {θ, 0}, the

integral over X in all equations translates into a summation over this set. At the

FC, the Neyman-Pearson method is used to test the hypotheses.
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θ = 2 θ = 4

N = 5 MI: 1.7× 10−2 1.0× 10−5

Matsusita: 1.7× 10−2 1.1× 10−5

J-divergence: 1.7× 10−2 2.1× 10−5

Table 4.4: Probability of error for signal detection.

To compare with Poor [81], we assume equally likely H0 and H1, i.e., Pθ = 1/2.

Also, each sensor quantizes its observation to L = 4 levels. And, the measurement

noises are i.i.d. with pdf N (0, 1). The probability of detection error is shown in

Table 4.4 for two different signal energies. Our method is indicated by “MI” in the

table. The results based on Matsusita distance and J-divergence criteria from [81]

are also indicated in the table. It can be seen from the error probabilities that the

detection performance of the quantizers designed based on the MI is similar and in

some cases better than that found using [81].

4.6.3 Channel Effect

The presence of a non-ideal communication channel between each sensor and the

FC affects the design of optimal local quantizers for each sensor. Using the design

algorithm developed in Section 4.5, we find the channel-aware local quantizers. The

simulation results confirm that the optimal quantizers assuming ideal channels are

different from the optimal quantizers in the presence of non-ideal channels.

To compare the channel-aware and channel-unaware quantization schemes we

consider an estimation application. The simulation scenario is similar to Subsec-

tion 4.6.1. As stated in Section 4.5, we assume that sensors’ quantized data are

mapped to binary words and sent over a BSC. In the simulation examples we as-

sume that the crossover probabilities are the same for all channels, i.e., ε1 = ε2 = ε.

Figs. 4.4 and 4.5 show maximization of the MI and minimization of the MSE

during the iterations for different values of ε, respectively. The final quantizers are

given in Table 4.5. It can be seen from Table 4.5 that the optimal quantization

solution changes depending on the channel error probability. Consequently, if for

instance, one deploys the quantizers designed for ε = 0 in a scenario where ε = 0.05,

the MSE will be 0.497, while using the optimal quantizers designed for ε = 0.05, the

MSE is 0.485.
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ρ = 0, L = 4

ε = 0 Γ1 = Γ2 = {−1.370, 0, 1.370} MSE = 0.388

ε = 0.001 Γ1 = Γ2 = {−1.358, 0, 1.358} MSE = 0.391

ε = 0.01 Γ1 = Γ2 = {−1.260, 0, 1.260} MSE = 0.411

ε = 0.05 Γ1 = Γ2 = {−0.973, 0, 0.973} MSE = 0.485

Table 4.5: Optimal quantizers in presence of non-ideal channel.

ε
ε
ε
ε

Figure 4.4: Maximizing the MI in presence of non-ideal communication channels

4.7 Conclusion

In this chapter, we proposed an algorithm based on maximizing the MI measure for

jointly designing optimal channel-aware local quantization rules for a distributed

sensing system. The MI allows us to design general purpose quantizers that later

can be deployed for different applications, e.g., estimation or detection. We have

shown that the performance of the optimal quantizers based on the MI is essentially

the same as the performance of optimal quantizers designed based on other methods

that specifically target the estimation or detection application. We also observed

that the optimal local quantizers in the presence of non-ideal channels are differ-

ent from the local quantizers that are optimized without considering the channel
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ε
ε

Figure 4.5: MSE of estimation at each iteration of the algorithm.

effect. Our proposed MI-based quantizer design algorithm has significantly lower

complexity than other optimal design methods, specifically when the distributed

observations are conditionally independent. It can be used in various applications

and can integrate channel effects into the design. The studies in this chapter and

the related simulations and results are presented in [96].

66



Chapter 5

Binary Distributed
Quantization

In distributed (decentralized) estimation, an unknown must be estimated from its

noisy measurements collected at different locations. Due to limited data communi-

cation resources, these measurements are typically quantized to be sent to a fusion

center, which calculates the estimation of the unknown. In the most stringent con-

dition, each measurement is converted to a single bit for transmission. In this study,

we propose a method for generating binary data from analog measurements by intro-

ducing some functions called “local binary quantization patterns” (LBQPs). The

LBQPs are initially designed so that together they mimic the functionality of a

multi-level centralized quantizer. We also improve the design to include some error-

correcting capability, increasing the estimation accuracy. The distributed quanti-

zation formed by such LBQPs along with the proper estimator proposed in this

chapter achieve better estimation performance compared to the existing distributed

binary quantization methods.

5.1 Introduction

In this chapter we focus on estimating a random scalar from several noisy obser-

vations which have been compressed into one bit. Suppose N noisy measurements

of a random parameter X have the form Yn = X + wn; 1 ≤ n ≤ N , where wn are

independent zero-mean measurement noises. If all the measurements are available

in the estimator without any distortion, an unbiased estimation with error variance

as low as (
∑

1/σ2
n)−1 can be achieved, where σn is the variance of the measurement

noise for the nth observation. When the measurement device(s) and the process-
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ing device are not in the same location, the measurements should be transmitted

to the FC. Generally, the observations are quantized before transmission using a

local quantization rule. In distributed estimation using quantized data, the goal

is to design these local quantization rules, as well as the procedure to be used for

estimating X from the quantized data. The fundamentals of quantization theory

are described in Section 2.2 and an optimum distributed quantization design was

proposed in Chapter 4. In this chapter we address the distributed quantization and

estimation under very stringent capacity constraints.

Some existing distributed estimation algorithms are based on applying a uniform

quantizer to quantize each analog measurement into a few bits [13,15,35,36,97,98].

In all these algorithms, the number of quantization bits for each analog measurement

is decided based on the SNR. For example in [15], the number of quantization bits for

the nth measurement, 1 ≤ n ≤ N , is log2(1+V/σn), when X is bounded to [−V, V ].

In some applications such as WSNs, this means the sensors with higher SNR, i.e.,

smaller σn, will have to send more bits; hence, they consume more power for data

transmission. Consequently, the better sensors become more exhausted and die more

quickly, which in turn reduces the long-term performance of the estimation task.

Another technique has been proposed in [37] which is based on adding some deter-

ministic or random control input to the observation data, prior to the quantization.

Therefore, the quantized value of the nth observation is ỹn = Qn(Yn + vn), where

vn is a deterministic or random signal. To find the optimal control input a metric

based on the CRLB or equivalently the Fisher information is optimized [37,99,100].

Under severely stringent capacity constraints it is preferred to compress/quantize

each measurement into only one bit. Distributed estimation based on local binary

quantizations has been studied in [14, 34, 36, 78, 101, 102]. In [36], the local binary

quantization is performed by comparing the analog measurement value to a fixed

threshold in the middle of the analog data range. The estimation performance of

a set of local binary quantizers are studied in [102] for asymptotic condition, i.e.,

N → ∞. The local binary quantizers with a single fixed threshold are not very

efficient for high-SNR regime, especially when the number of measurements N is

small. To improve the performance, [101] and [14] suggest adaptive thresholds,

which are sequentially adjusted according to the previously generated bits. In their

approach, the threshold used for quantizing the ith measurement value is adjusted

based on the previous (i− 1) bits. In [14], to find the unknown parameter X a ML
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estimator must be derived every time based on the N generated bits and the N

adaptive thresholds.

The estimation based on local binary-quantized observations is further studied

in [78], where they show that the estimator performance improves when the local

quantizers’ threshold gets close to the actual value of the unknown parameter. A

way to benefit from this fact is to consider different thresholds τk on the analog

range to assure that there will always be a threshold close to the true parameter X.

Out of the N observations, Nk measurements are quantized according to threshold

τk, where
∑

kNk = N . Based on the CRLB, they find the set of optimal threshold

values τ∗k and their associated frequencies N∗k .

In the above distributed estimation methods based on binary data, the gener-

ation of each bit is performed using a single threshold. However, more advanced

local binary quantization schemes can be devised, improving the overall estimation

accuracy in the FC. This idea has been practiced by [34]. Based on the distributed

estimation method in [34], each measurement is used to estimate one of the bits

in the binary representation of the unknown parameter. According to [34], if N

measurements are available, N/2 of them estimate the first bit of the unknown pa-

rameter, N/4 estimate the second bit, and so on. So, the bth bit in the binary

representation of the unknown parameter is estimated N/2b times. Hence, the value

for that bit is determined by taking the average among the N/2b binary values,

and consequently, X is estimated by combining the final value of the individually

estimated bits.

In this work we propose a new method for distributed estimation based on

binary-quantized measurements. To do that, we introduce an efficient distributed

quantizer to compress each local binary measurement to a bit, and suggest a cen-

tralized estimator to infer the unknown from those bits. Therefore, our goal in this

chapter is to (i) first formulate the distributed quantization as a set of N LBQPs,

which together imitate an L-level quantization, (ii) jointly design these local binary

quantizers to find the optimal set of N LBQPs, which can maximize the estimation

accuracy of X, and (iii) find a centralized algorithm that combines these binary

quantized data to form an accurate estimate of X.

The N binary data generated using our proposed local binary quantizers collec-

tively represent the unknown parameter more accurately compared to the previous

binary quantization methods presented in [14,34,36,78], hence achieve a better MSE
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performance at the FC. Also, unlike the iterative methods in [26–28], our design of

the local quantization rules is globally optimal.

The rest of this chapter is organized as follows. In Section 5.2, the detailed

setup of the problem and the required definitions and assumptions are provided. In

Section 5.3, the design of a distributed quantizer based on different binary numeral

systems is introduced. Section 5.4 proposes optimal LBQPs to improve the estima-

tion performance. In Section 5.5, the appropriate decoder/estimator to be used in

the FC is formulated. Finally, in Section 5.7, the simulation results are shown for

performance evaluation.

5.2 Problem Setup

Suppose X is a random scalar distributed according to the pdf p(X). A number of

noisy measurements of X are observed as

Yn = X + wn 1 ≤ n ≤ N, (5.1)

where wn for 1 ≤ n ≤ N are i.i.d. additive noise. In this chapter, we assume that

p(X) is a uniform distribution in the interval [−V, V ], and the measurement noise

is Gaussian with zero mean and variance σ2. It is straightforward to modify the

proposed distributed estimation method to work with other signal and noise pdfs.

An example for Gaussian X is discussed in Section 5.4.3.

Considering the most stringent scenario, only single-bit data transmission is

allowed for sending each measurement to the FC. Therefore, each measurement Yn

is quantized to a bit zn, according to a local binary quantization pattern Pn(·).

Please note that in Chapter 4 the term Q describes a general quantization rule,

whereas in this chapter we have chosen a new term, i.e., P, to emphasize the binary

quantization rule.

Note that in this study, we do not consider any noise or error added by the

channel, i.e., the communication channel is assumed to be error-free. Therefore,

all errors discussed here are due to the measurement or quantization noise, not the

channel noise. Thus, the goal is to design a set of local binary quantization rules

Pn(·) to be used for quantizing the observations Yn and also, to design an estimation

algorithm that combines the quantized binary data zn to form an accurate estimate

of X at the FC, i.e., X̂ (see Fig. 5.1).
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Figure 5.1: The overall distributed estimation method.

Assume that the parameter range [−V, V ] is “partitioned” into L “divisions”

δl; 1 ≤ l ≤ L. Compressing the real-valued measurement Yn to a bit zn can be

performed through introducing a local binary quantization pattern Pn, which is a

function mapping each division δl; 1 ≤ l ≤ L to a binary value, i.e., 0 or 1. This,

quantization of each measurement can be described as

zn = Pn(l) iff Yn ∈ δl. (5.2)

Each LBQP (sometimes just called “pattern” for brevity in this chapter) is an

ordered sequence of L binary values, i.e., a binary vector of length L. Wherever the

binary value alters between two successive divisions the threshold between those

divisions is regarded as an edge in the pattern, see Fig. 5.2. Therefore, a LBQP Pn
is associated with a set of edges, i.e., {e1

n, e
2
n, · · · , eεnn }, where εn is the number of

edges in Pn. These edges define a new partitioning of [−V, V ] into εn + 1 “cells”,

see Fig. 5.2.

It must be mentioned that, due to the additive Gaussian noise, the analog mea-

surements Yn are in the range (−∞, ∞). However, since the desired parameter

which must be estimated in the FC is within the range [−V, V ], the quantization

patterns are defined over this range. Therefore, before quantization, if Yn is in

(−∞, −V ) or (V, ∞) it will be mapped to V or −V , respectively.

5.3 Binary Distributed Quantization

In this section we describe how a set of local binary quantization patterns are de-

signed. For now, assume that we have N = B noiseless observations of X. In

other words, each observation equals X, which must be quantized into one bit, zb;
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Figure 5.2: A sample local binary quantization pattern

1 ≤ b ≤ B. Since the combinations of B bits can specify maximum of L = 2B

values, one can generate zb; 1 ≤ b ≤ B, so that together they identify the division

of X among L distinct divisions within the range [−V, V ]. In order to achieve that,

B LBQPs must be appropriately designed.

Consider the analog range [−V, V ] to be partitioned into L equal-length divi-

sions1, δl; 1 ≤ l ≤ L. To identify to which division among the total L divisions

X belongs, B bits are provided for the FC, using B LBQPs, i.e., Pb, 1 ≤ b ≤ B.

These patterns can be designed so that for each division on the range [−V, V ], the B

bits together make the B-digit binary label/word assigned to that division. Fig. 5.3

illustrates B = 4 LBQPs that together assign 4-digit binary words to the 16 divi-

sions. This assignment is conducted using the “natural” binary numeral system. In

other words, reading vertically from left to right, the first division is assigned 0000,

the second is assigned 0001, the third is assigned 0010, and so on. If a different

binary numeral systems, referred to as the “labeling” scheme in this thesis, is used

for labeling the divisions, a different set of B LBQPs would result. This is why

the patterns in Fig. 5.3 are identified as PNr
b ; 1 ≤ b ≤ B, where the superscript

Nr stands for the natural labeling. If instead of the natural labeling, Gray labeling

is used, a set of LBQPs, i.e., PGr
b , will be produced, see Fig. 5.4. Clearly, other

labeling schemes can be considered.

Similarly, for the noisy scenario, we can quantize each local noisy measurement

Yb, 1 ≤ b ≤ B, using one of the patterns Pb, 1 ≤ b ≤ B. Depending on where Yb falls,

Pb decides the bth bit. Since there are N = B measurements, the bth measurement

provides the bth digit of the B-digit binary word, for 1 ≤ b ≤ B. At the FC, the B

bits are used to remake the B-digit binary word and locate an estimation of X.

1Considering equal-length divisions is intuitive when we have a uniform source. For non-uniform
sources a non-equal partitioning must be considered, see Section 5.4.3.
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Figure 5.3: The natural basis patterns for B = 4.

Figure 5.4: The Gray basis patterns for B = 4.

The above described method can be viewed as a distributed quantizer, since a

uniform L-level quantization is implemented using B separate binary quantizers. In

a noiseless scenario, the performance of this distributed quantizer is the same as

the centralized scalar quantizer, meaning that its MSE is Δ2/12, where Δ = 2V/L.

Moreover, when all observations are equal to X, using either PNr
b ; 1 ≤ b ≤ B, PGr

b ;

1 ≤ b ≤ B, or any other set of B patterns based on different labelings, results in

the same MSE, i.e., Δ2/12. However, in the presence of the measurement noise,

any of the B bits of the distributed quantizer might be quantized wrong, leading

to a larger estimation error in the FC. In this case, the overall MSE at the FC is

affected totally differently by different quantization patterns and also depends on

the position of the unknown X. Thus, writing the MSE in closed form will not have a

simple or insightful structure. Therefore, in Section 5.6, we derive some performance

bounds to compare to the simulation results of our method.

One way to reduce the final MSE is to use better labeling schemes, which results

in different LBQPs. In Section 5.4.1, the optimal LBQPs for achieving the best

performance are discussed. For uniform X, using the Gray labeling to design the

patterns achieves the optimal estimation performance. However, this is not the case

for other distributions of X. For Gaussian X, the optimal LBQPs are discussed in

Section 5.4.3.

It is possible to further enhance the estimation when more observations are
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available. In the same noise level, when N > B measurements are used for a L = 2B-

level quantizer, it is possible to estimate the division of X with more reliability. In

such cases, the extra measurements can be used to repeat some of the binary digits,

and reduce the bit error rate of those bits; i.e., a similar approach as [34]. However,

instead of simple bit repetition, one can better employ the extra measurements to

get the optimal estimation performance. This is further discussed in Section 5.4.2.

In the following sections, we introduce an algebraic approach to further explain

the distributed quantization. Through that, we find the optimal LBQPs to get the

best estimation performance when N = B or N > B. In particular, for N > B , an

analogy between error-correcting codes and the distributed quantization is used.

5.4 A Global Optimum Solution

Assume that there are N independent noisy measurements from the unknown X.

To achieve the best estimation, one needs to obtain the optimal set of LBQPs to be

assigned to the analog measurements. For a fixed B, if N = B, the solution to the

above problem results in the optimal labeling scheme. If N > B, the result is an

error-correcting distributed quantization. These two cases are studied separately in

the following sections.

5.4.1 Best Labeling Scheme

In Section 5.3, we discussed two sets of LBQPs, resulting from applying two different

labeling systems, i.e., natural and Gray. In this section we introduce a technique to

obtain many other sets of LBQPs. It is worth mentioning again that if no measure-

ment noise is present all of these sets of LBQPs will have the same performance.

However, in the presence of measurement noise, they have different performances in

terms of the estimation MSE.

To locate a variable in L distinct divisions (in the interval [−V, V ]), B bits are

needed, where B = log2 L. To generate such B bits, an eligible set of B local

binary quantization patterns can be chosen from a variety of choices. As mentioned

in Section 5.2, each pattern is basically a binary vector of length L. Choosing B

“eligible local binary quantization patterns” that can identify L different divisions

is analogous to choosing B linearly independent binary vectors2 of size L. The B

eligible local binary quantization patterns are called the “basis patterns”, for brevity.

2Please note that the algebraic calculations are done in the Galois field of 2.
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The set of natural quantization patterns in Section 5.3 gives one example set

of basis patterns, namely the “natural basis patterns” PNr
b , 1 ≤ b ≤ B, Fig. 5.3.

Taking the natural basis patterns as the reference and combining them to generate

another set of B linearly independent vectors, we can obtain different set of basis

patterns. A B × B binary matrix of rank B can represent linear combinations of

the B reference patterns into a new set of B linearly independent patterns. For

example, for B = 4 a special combination of natural basis patterns can be shown by

GBB =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 , (5.3)

which indicates a combination of the patterns as

PGr
1 = PNr

1

PGr
2 = PNr

1 ⊕ PNr
2

PGr
3 = PNr

2 ⊕ PNr
3

PGr
4 = PNr

3 ⊕ PNr
4 , (5.4)

where ⊕ means modulo-2 summation of the L-valued binary vectors representing

the patterns. The new set of basis patterns obtained as above are the Gray patterns,

Fig. 5.4.

We focus on the natural basis patterns as the original patterns, and their linear

combinations, in the form of GBB, for producing new patterns. By searching all

matrices of type GBB, one can find the best basis patterns with the lowest MSE,

for each SNR level. As mentioned above, GBB must be full rank. Moreover, a

permutation of the vectors of GBB results into the same set of patterns. Hence, the

size of the search space is

Ω1(B) =
1

B!

B∏
i=1

(
2B − 2i−1

)
. (5.5)

5.4.2 Error-Correcting Patterns

As mentioned earlier, having N > B measurements available, the estimation accu-

racy can be improved by repeating some of the local binary quantization patterns

or more effectively, by introducing new patterns. In the later approach, N patterns

are obtained from B basis patterns, which together generate N -bit words to identify
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Figure 5.5: LBQPs for the extra three bits.

L = 2B divisions. Obviously, using N -bit words instead of B-bit words is a redun-

dant way of labeling an L-division quantization. However, this redundancy enables

some error correction possibility in estimating the division of X. This property is

analogous to error-correcting property in channel coding, where some redundant

bits are added to the B-bit messages to make N -bit codewords. This happens by

adding extra vectors to the generator matrix [103].

For distributed quantization, among the N patterns used to quantize the N

measurements, there must be at least B linearly-independent patterns. Hence, the

N patterns are produced by linear combination of a set of B basis patterns according

to a B ×N matrix of rank B. For example, consider the matrix

GBN =

⎡
⎢⎢⎣

1 1 0 0 1 0 1
0 1 1 0 1 1 0
0 0 1 1 1 0 1
0 0 0 1 0 1 1

⎤
⎥⎥⎦ , (5.6)

which is used to produce N patterns from the B natural basis patterns. In this

example, the first part of GBN is a 4 × 4 matrix similar to (5.3). Therefore, there

will be the 4 Gray basis patterns among the 7 patterns produced by GBN . Fig. 5.5

shows the 3 extra patterns.

Different GBN matrices can be used to produce different sets of patterns, each

having a different estimation performance. A repetition strategy, in which some of

the basis patterns are repeated for quantizing the extra measurements, is a special

case of the explained approach. However, by searching among different matrices one

can find a set of N LBQPs that have better performance than a mere repetition

scheme. The optimal set of LBQPs for each values of N and B depends on the SNR,

and can be obtained by exhaustive search. The size of the search space is given by

Ω2(B,N) = Ω1(B)×
(
2B − 1 + (N −B − 1)

N −B

)
. (5.7)

In Section 5.7 some optimal results are shown and discussed. It is worth men-

tioning that, the search for finding the optimal patterns is done in the FC and
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happens only once. After the optimal set of LBQPs is obtained, each pattern is

assigned to each observation. As long as the measurement noise variance does not

change a lot, the patterns do not need to be updated.

It is worthwhile pointing that there is a difference between the functionality of

error-correcting codes when used against channel noise and when, in this case, used

in the distributed estimation problem. In channel coding, the source of bit error is

the additive channel noise which contaminates the coded bits after they are sent on

the channel. On the contrary, in the case of distributed quantization, the bit error

happens during the quantization process when the bits are being generated. The

main difference this causes is that unlike the channel coding, the a priori bit error

probability (BEP) is not the same for all bits. Even in a homogeneous scenario

with i.i.d. noise for all the observations, i.e., same σ, the probability of error for

each bit depends on its LBQP and how small are the cell lengths in that pattern.

Moreover, the BEPs also depend on the value of X. Because of these fundamental

differences, known optimal channel codes are no longer optimal for distributed esti-

mation. Also, a separate study is required for the decoder/estimator of the proposed

error-correcting quantization method.

5.4.3 Gaussian Source

Up to this end we had assumed that the unknown parameter X is uniformly dis-

tributed. Therefore, in Section 5.3, we had started our method by first assuming

a uniform partitioning of the range [−V, V ] into L equal divisions. If the param-

eter X is not uniformly distributed, the uniform partitioning of the range is not

optimal. However, still the same methodology described in Sections 5.4.1 and 5.4.2

can be used to design the optimal patterns, but with a different partitioning of the

range of X. As an example, we discuss the Gaussian source. The results of apply-

ing our distributed quantization method for Gaussian parameter are presented in

Section 5.7.

For a Gaussian source, we assume that the range of X, i.e., (−∞, ∞), is parti-

tioned according to the principals in the Lloyd-Max algorithm [22,23] for centralized

quantization. For example, for X ∼ N (0, 1), the optimal 3-bit centralized quantiza-

tion has the range of X partitioned into 8 divisions as {−∞,−1.748,−1.05,−0.5006,

0, 0.5006, 1.05, 1.748,∞}. To derive the B LBQPs for a Gaussian noise, we take the

same steps as in Sections 5.4.1 and 5.4.2, except that the value of edges for every
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pattern is a subset of the above edges.

5.4.4 Suboptimal Search Strategy

Due to the nature of the optimization problem, an exhaustive search must be per-

formed to find the optimal LBQPs. In many practical scenarios, B and N are

small quantities, and the search is feasible. For those values of B and N which the

search space size is too big, sub-optimal strategies can be suggested to reduce the

complexity. Some of those strategies are discussed here.

Strategy 1 : When a B-bit precision is practiced with N sensors, there must be

always B linearly independent patterns among the N LBQPs. Based on the simu-

lation results, it can be investigated that for uniform X and Gaussian noise, there

is always the same B independent patterns for every SNR value. In this scenario,

the B quantization patterns derived based on Gray labeling, i.e., PGr
1 , · · · ,PGr

B , are

always among the N optimal quantization patterns. Therefore, for uniform X and

Gaussian noise, to design the N patterns for any SNR, one can fix B of them to

be the Gray patterns. This reduces the size of the search space from Ω2(B,N) to

Ω′2(B,N), which is equal to the second term of the product in (5.7).

Strategy 2 : Another simplifying strategy can be practiced for big values of N .

During the simulations, it was observed that when N gets bigger while B is constant,

some patterns are repeated among the optimal patterns. Therefore, even for very

big N , one can limit the search to a smaller space, e.g., N0 < N , find the optimal

patterns for that subspace, and repeat the same N0 patterns for the rest of the

observations.

Both of the above strategies can be combined to reduce the search space. For

example, for a uniformly distributed unknown parameter with Gaussian measure-

ment noises, a suboptimal search method is explained as follows. For 1 ≤ n ≤ B,

one uses PGr
1 , · · · ,PGr

B . For B + 1 ≤ n ≤ N0, a search is performed on a space

with size Ω′2(B,N0). For N0 + 1 ≤ n ≤ 2N0, 2N0 + 1 ≤ n ≤ 3N0, · · · , the same

N0 patterns are repeated. A third strategy which further reduces the complexity is

presented in Section 5.6.

5.5 Decoding

In the FC, a decoding method must be used to estimate the unknown parameter

from the received binary-quantized measurements zn. Here, we explain two types
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of decoders, i.e., the discrete and continuous decoders, which estimate X based on

the discrete and continuous a posteriori distributions, respectively. For the sake of

better understanding the overall behavior of the distributed estimation method, we

first explain the discrete decoder. In both estimators the receiver only needs to do

the computations once at the beginning of the algorithm to build a lookup table,

which is used during the estimation procedure.

5.5.1 Discrete A Posteriori

The distributed quantization is used to locate X in one of the discrete divisions

δl; 1 ≤ l ≤ L. Therefore, to estimate X at the fusion centre, one can identify

the division of X from the received bits. In this section we propose a maximum a

posteriori (MAP) estimator that decodes the N received bits to estimate the division

of X among the L divisions.

As discussed in Section 5.4, for each value of X a set of N LBQPs together

generate an N -bit “codeword”. Assuming no measurement noise, there are L = 2B

different codewords, i.e., cl = [cl1c
l
2 · · · clN ]; 1 ≤ l ≤ L. There is a one-to-one

correspondence between these valid codewords and the L divisions, i.e., δl; 1 ≤ l ≤ L.

In the presence of measurement noise, each of the N bits, i.e., zn; 1 ≤ n ≤ N , might

be wrong, resulting in a “received word”3 z = [z1, z2, ..., zn], which might include

some bit errors. The discrete decoder’s function is to find the most likely valid

codeword based on the received N -bit word z, which in turn results into estimating

the division of X. This estimator can be reduced to a lookup table that can be

saved in the receiver.

To build the lookup table of the discrete estimator, the a posteriori probabilities,

of all the L valid codewords conditioned on the received word z are calculated. The

codeword with the maximum probability is chosen as the decoder’s decision corre-

sponding to each value of z. The center of mass [22] for that division is recognized

as the estimated value X̂. This decoder is therefore referred to as the discrete MAP

estimator. The a posteriori probability of each codeword can be written as

P(cl|z) ∝ P(cl)

N∏
n=1

P(zn|cl), (5.8)

where P(cl) is the a priori probability of codeword cl, which is equal to P(Γl−1 ≤
3Note that the notation “received” in this chapter does not imply a communication channel or

channel error.
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X ≤ Γl), where Γl−1 and Γl indicate the left and right edges of the lth quantization

division δl, corresponding to cl. For uniform X, Γl−1 = −V + (l − 1)∆, and Γl =

−V + l∆.

Since each valid codeword is associated with one of the L divisions δl; 1 ≤ l ≤ L,

each term of the product in (5.8) can be described as

P(zn|cl) = P(zn|Γl−1 ≤ X ≤ Γl) =

∫ Γl

Γl−1 P(zn|X)P(X)dX∫ Γl

Γl−1 P(X)dX
. (5.9)

The denominator in the second line is by definition P(cl), the a priori probability of

the codeword cl, which for uniform X is equal for every cl. Remembering that zn

can be either 0 or 1, (5.9) can be written as

P(zn|cl) =

∫ Γl

Γl−1

P1n(X)(zn) (1− P1n(X))(1−zn) P(X)dX, (5.10)

where P1n(X) is the probability that the nth bit is 1 when the parameter value is

X, i.e., p(zn = 1|X). The formula to calculate P1n(X) is given in Appendix B.3.

Using (5.10) and (5.8) one can find the a posteriori probability of the codewords.

At the beginning of the algorithm a decoding table is formed by calculating the a

posteriori probabilities for different values of the received word, i.e., zk; 1 ≤ k ≤ 2N ,

and different valid codewords cl, 1 ≤ l ≤ L. This calculation is done once in the

FC and does not need to repeat every time. The decoding table has 2N entries, one

for every possible value of z, associating it with a codeword which has the highest a

posteriori probability P(cl|z). For every estimation instance, based on the received

word, the decoder chooses the corresponding codeword from the table as the most

likely codeword and announces the center of mass of the associated division as X̂.

It is easy to see that he lookup table depends on the patterns set, as well as σ.

The discrete MAP decoder is based on finding the a posteriori probability of

the valid codewords, which have one-to-one correspondence with the division of X.

Therefore, they can only locate X with a limited precision. To better estimate

the analog parameter X, a continuous decoder can be used instead of the discrete

decoder, resulting in better estimation performance.

5.5.2 Continuous A Posteriori

The continuous decoder is designed based on the continuous a posteriori pdf of X.

Using the a posteriori pdf, a MMSE or a MAP estimator can be designed. The later
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is an unbiased estimator, as proved in appendix B.2. Again, similar to the discrete

decoder, the receiver only needs to do the computations once at the beginning of the

algorithm to build a lookup table, which is used during the estimation procedure.

The continuous a posteriori distribution of X, i.e., P(X|z), can be written as

P(X|z) ∝ P(X)

N∏
n=1

P(zn|X)

∝ P(X)

N∏
n=1

P1n(X)(zn)(1− P1n(X))(1−zn). (5.11)

The factorization in (5.11) is valid since the measurement noises as well as the quan-

tization procedures are independent for different measurements. Once the above a

posteriori conditional distribution is derived, one can find X̂ = arg max
X

P(X|z) or

X̂ = E{X|z} as a MAP or MMSE estimator of X, respectively. In the FC, the

following calculations are done once to build a decoding table. For each possible

received word zk; 1 ≤ k ≤ 2N , the MAP or MMSE estimation X̂k is calculated to

build an entry in the lookup table, mapping zk to X̂k. Every time an N -bit word

is received at the decoder this lookup table is used to find X̂.

It is easy to investigate that the MSE performance of the continuous decoder is

better than the discrete one. This is while the computational complexity of the con-

tinuous decoder is only slightly higher than the discrete decoder. The performance

of different decoders are studied through simulations in Section 5.7, and compared

with the CRLB for the optimal unbiased estimator.

5.6 Performance Bounds

Analyzing the MSE performance of the discrete MAP estimator is not straightfor-

ward. Even in the case of N = B, where the decoder is very simple, the MSE

equation derived in [104] is not in closed form. Therefore, we use some bounds as a

benchmark to study the performance of our method.

The first bound is based on the rate-distortion theory, which provides a lower

bound on the MSE of estimation. The distortion-rate function D(R), determines

the minimum distortion, in our problem the minimum MSE, that can be achieved

when an analog source is compressed with a rate R. The distortion-rate function

for centralized estimation of a Gaussian source from a noisy observation under a

rate constraint R is derived in [55], and is used as a lower bound for the distortion
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(MSE) in the distributed estimation-quantization problem. For a scalar parameter

with Gaussian distribution N (0, σ2
x), which is observed through additive Gaussian

noise with variance σ2, D(R) is calculated as [55]

D(R) = σ2
x −

σ4
x

σ2
x + σ2

(1− 2−2R). (5.12)

This distortion bound has been compared to the performance results of our method

for a Gaussian parameter, in Section 5.7.

For the case of uniform parameter, the distortion-rate function of an estimation-

quantization system is not well studied in the literature. Here, we have approximated

a lower bound for the distortion-rate function. The bound is calculated in Section 5.7

and compared with the results of our distributed estimation method. The details

can be seen in Appendix B.1.

To evaluate the performance of our estimator, we have also calculated the CRLB

for a set of LBQPs. In our distributed estimation method, for the case of Gaussian or

uniform X and Gaussian noise, the CRLB can be the indicator of the best estimation

performance if the estimator is unbiased. The proof of unbiasedness of our MMSE

estimator is given in Appendix B.2. The CRLB of the estimation method is given

by (
N∑
n=1

∫
X

{(∂P1n(X)
∂X )2

P1n(X)
+

(∂P1n(X)
∂X )2

1− P1n(X)

}
p(X)dX + J2

)−1

, (5.13)

where for a uniform X, J2 = 0, and for a Gaussian X with zero mean and variance

σ2
x, J2 = 1/σ2

x. See Appendix B.3 for derivation of (5.13).

The CRLB of three quantization methods are shown in Fig. 5.6, by numerically

evaluating the integral in (5.13). The first method is the fixed threshold quantization

[36], the second method is the set of LBQPs obtained by natural labeling, and the

third is the method based on Gray labeling. It can be seen that in general, the

relative performance of the quantization methods depends on the SNR. Therefore,

it can be inferred that at each SNR, a set of optimal LBQPs which has the best

performance can be found.

strategy 3: Based on the CRLB, a strategy can be devised to reduce the com-

putational complexity of the search method described in Section 5.4. As explained

there, the optimal patterns are found by minimizing the MSE. That is to say, for

every candidate set of N patterns, the MSE of estimation is found through simula-

tion, and finally the set of patterns with the lowest MSE is selected. To reduce the
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Figure 5.6: CRLB for the different local binary quantization patterns.

complexity, we suggest to use an MSE bound, i.e., the CRLB, instead of finding the

actual MSE. So, for every candidate set of LBQPs, the CRLB is calculated based

on (5.13), and the set with the lowest CRLB value is selected. Using this strategy

along with the other two strategies in Section 5.4.4, the complexity of finding the

LBQPs will be reduced greatly. The MSE results for the suboptimal patterns have

been compared with the optimal patterns in Section 5.7.

5.7 Numerical Results

In this section, different simulation results are discussed in order to study the per-

formance of the proposed distributed estimation method. Both scenarios in Sec-

tion 5.4.1, where N = B, and Section 5.4.2, where N > B, are considered. The

results are shown for two distributions of the unknown parameter, i.e., uniform and

Gaussian. For the case of uniform unknown parameter, X is uniformly distributed

in the interval [−1, 1]. For Gaussian X, it is distributed according to N (0, 0.1).

Comparison with other methods, such as [14, 34, 36, 78] are discussed. The perfor-

mance is evaluated in terms of the MSE. In all simulations, the measurement noise
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P1 0 0 0 0 1 1 1 1
P2 0 0 1 1 1 1 0 0
P3 0 1 1 0 0 1 1 0
P4 0 1 1 0 0 1 1 0
P5 0 1 1 0 0 1 1 0
P6 0 0 1 1 0 0 1 1
P7 0 1 0 1 0 1 0 1
P8 0 1 0 1 1 0 1 0

Table 5.1: Optimal patterns for uniform X, B = 3, N = 8, SNR= 18.2dB.

is i.i.d. zero mean Gaussian with variance σ2. Note that, this SNR is only related

to the measurement noise, while the channel is assumed error-free.

Fig. 5.7 shows the performance of the distributed estimation method for a uni-

form source. Since X is uniform, E{X2} = V 2/3; therefore, the average SNR is

10 log10(V 2/3σ2). At each SNR, the optimal set of local binary quantization pat-

terns was found by searching all matrices GBN for B = 3 and N = 3, 5 and 8.

For the case of N = 8, the results of the suboptimal search method based on both

strategy 1 and strategy 3 are also shown in the figure. Note that, for all cases, the

continuous MMSE estimator is used in the decoder. The results show that when

N = B the optimal pattern set for every SNR is the Gray basis patterns. When

N > B, for each SNR a different set of optimal patterns are found, reducing the

estimation error. For example, for the case of B = 3 and N = 8 the optimal pat-

terns for SNR= 18.2dB are presented in Table 5.1. From the table, we can see that

the patterns P1, P2 and P3 are the 3 Gray basis patterns, and the rest are linear

combinations of those.

For the case of N = 8 the performance of our algorithm is compared with

the distributed estimation proposed by Luo et al. [34]. Based on Luo’s algorithm,

N/2 = 4 measurements are quantized to the first bit in a natural binary system,

N/4 = 2 measurements are used to estimate the second bit, and the remaining 2

measurements are used for the third bit. As can be seen in Fig. 5.7, the optimal

sets of 8 LBQPs for different SNRs outperform the method of [34].

The three different decoding methods based on the discrete and continuous a

posteriori functions in Section 5.5 are compared in Fig. 5.8. The first decoding

method is the discrete MAP estimation based on the discrete a posteriori prob-

ability of the codewords discussed in Section 5.5.1. The other two methods are

the continuous MAP and MMSE estimations based on the continuous a posteriori
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Figure 5.7: Effect of error-correcting patterns in estimation performance.

P1 0 1 1 0 0 1 1 0
P2 1 0 0 0 1 1 1 0
P3 0 1 0 1 1 0 1 0

Table 5.2: Optimal patterns for Gaussian X, N = B = 3, SNR= 5.2dB.

density of X in Section 5.5.2. Also, the CRLB and the rate-distortion bound for

uniform X (Appendix B.1), have been shown for comparison.

For a Gaussian parameter with zero mean and variance σ2
x = 0.1, the results for

N = B = 3 are shown in Fig. 5.9. The average SNR in this case is 10 log10(σ
2
x/σ

2).

Please note that as explained in Section 5.4.3, the values for division edges of the

centralized quantizer, i.e., Γl; 1 ≤ l ≤ L are set to σx × {−1.748,−1.05,−0.5006, 0,

0.5006, 1.05, 1.748} [22]. As an example, the optimal patterns for SNR= 5.2dB are

presented in Table 5.2. Note that the patterns are lineally independent, but unlike

the case of uniform X, the optimal patterns are not the Gray basis patterns. The

MSE results are compared with the rate-distortion bound in (5.12).

Fig. 5.10 compares the performance of our proposed method with other binary

quantization methods, for N = 10. The circle points in Fig. 5.10 show the MSE for
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Figure 5.8: Performance of different decoding methods, for Gaussian X.

the suboptimal patterns found using the three suboptimal search strategies. For the

method proposed by Ribeiro [78], the CRLB for the optimal solution is indicated.

Two adaptive quantization methods proposed by Fang [14], i.e., AQ-VS and AQ-ML

are also shown in the figure. For the AQ-ML, before quantizing each measurement

a ML estimation must be calculated. It can be seen from Fig. 5.10 that for higher

SNRs our method has lower MSE compared to [78] and [14], while its complexity

for “each estimation job” (as long as the SNR does not change a lot) is less than

those algorithms.

5.8 Conclusion

In this study we proposed a new method for distributed (decentralized) estimation

from binary-quantized noisy measurements. The estimation method is based on

designing efficient local binary quantization patterns to generate a single bit from

each analog measurement and an appropriate decoder to be used at the processing

center for estimating the unknown. The results show that for Gaussian X, when B

measurements are used to achieve an estimation with B-bit precision, the optimal
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σ σ

Figure 5.9: Performance of our distributed estimation method for Gaussian param-
eter with σ2

x = 0.1, B = 3.

B patterns are those based on the Gray labeling for all SNRs. For scenarios where

N > B measurements are available, extra local binary quantization patterns are

designed to achieve an error correcting capability compared to the case when only

B measurements are available. We also proposed some suboptimal strategies to

reduce the complexity of the search especially for bigger values of N and B. The

performance results have been compared with other distributed estimation methods

with binary quantization. The studies in this chapter and the related simulations

and results are presented in [104,105].
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Figure 5.10: Performance comparison for different methods for N = 10.
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Chapter 6

Optimum Bit-Sensor
Assignment

6.1 Introduction

In a network where all sensors have the same measurement qualities, it does not

matter which sensor is assigned which local binary quantization pattern, i.e., the

bit-sensor assignment does not affect the final estimation performance. However, in

many practical WSNs, sensors do not have the same measurement quality (inhomo-

geneous environments), for instance, due to their different distance to the object of

interest. We will discuss that in such conditions the bit-sensor assignment affects

the estimation performance. We then propose an algorithm based on Hungarian

method [61] to find the best assignment that minimizes the MSE of estimation.

6.2 Problem Definition

Suppose the unknown parameterX is uniformly distributed within the range [−V, V ].

Each sensor n; 1 ≤ n ≤ N has a noisy measurement of X as Yn = X + wn, where

wn is the measurement noise of the nth sensor, which has Gaussian distribution

with zero mean and variance σ2
n. The measurement noises of different sensors are

assumed to be independent. Each sensor quantizes its measurement to one bit ac-

cording to its local binary quantization pattern, and sends it to the FC, where an

estimate of the parameter is made from N received bits. We assume that sensors’

transmitted data is received at the FC with no error. Upon receiving all bits at

the FC, a reconstruction point is calculated among the 2N possible values, and is

regarded as the estimation of X, i.e., X̂.

When sensors’ measurement qualities are not the same, the MSE of estimation
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depends on the order in which the N local binary quantization patterns are as-

signed to the N sensors. In this chapter, we propose a method to efficiently find

the optimum bit-sensor assignment that minimizes the MSE among the N ! possi-

ble assignments. Our proposed algorithm is run at the fusion centre. Having the

knowledge of sensors’ noise variances, the fusion centre decides a local binary quan-

tization pattern for each sensor. The quantizer information for each sensor is then

transmitted to that sensor by the fusion centre. The bit-sensor assignment is such

that exactly one quantization rule is assigned to each sensor, and exactly one sensor

is assigned for each quantization pattern. Therefore, Pb, 1 ≤ b ≤ N , is assigned

to sensor nb, where nb ∈ {1, 2, · · · , N}, and nb 6= nb′ , iff b 6= b′. We will discuss

that the MSE of estimation depends on the bit-sensor assignment and propose an

algorithm to find the optimum assignment that minimizes the MSE.

Suppose that N local binary quantization patterns, i.e., Pb; 1 ≤ b ≤ N , are

obtained based on Gray labeling (see Chapter 5). For each b, 1≤ b≤N , we assign

Pb to sensor nb. At sensor nb, depending on its measurement Ynb
, Pb decides the

value of the bth bit in the N -bit quantization. If there are no measurement noises

each sensor will quantize X to one of the bits of the N -bit word assigned to the

division of X. Consequently, the division of X can be recognized correctly at the

FC, resulting in the estimation MSE of ∆2/12. However, since each measurement

is a noisy version of X, any of the quantized bits can be wrong, causing higher

estimation error.

In inhomogeneous WSNs, the final estimation MSE depends on the bit-sensor

assignment. Each particular assignment, i.e., π = {n1, n2, · · · , nN}, is a permutation

of the numbers 1 to N . The assignment π means that bit 1 is assigned to sensor n1,

bit 2 is assigned to sensor n2, etc. We wish to find

π∗ = arg min
π
ψ(π), (6.1)

where ψ(π) is the estimation MSE as a function of the bit-sensor assignment. In

the distributed quantization based on the Gray labeling, the MSE does not have a

closed form in terms of π. Therefore, to find the optimum bit-sensor assignment π∗

one needs to work out the MSE as a function of σ1, · · · , σN for every possible π,

and then find the minimum of all MSEs. This approach is very cumbersome and

requires N ! complicated computations or simulations of the MSE.

If we can write the MSE as a summation of N terms in a way that the bth term,
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1≤ b≤N , depends only on pair (b, nb), we can apply the Hungarian method [61]

to find the optimum assignment with complexity order of O(N3). The Hungarian

method can be used for the following problem. Assume that there are N tasks and

N workers, and N ×N pair costs Γb,n, 1 ≤ b ≤ N , 1 ≤ n ≤ N , showing the cost of

assigning task b to worker n. The sum of costs for assignment π = {n1, n2, · · · , nN}

is defined as

C(π) =
N∑
b=1

Γb,nb
. (6.2)

The Hungarian method finds π∗ that minimizes (6.2). In the next section, we

approximate the estimation MSE to formulate it as (6.2).

6.3 Formulating the MSE

Since X is a random variable, the MSE is defined as

ψ = E{(X − X̂)2} = E{E{(X − X̂)2|X}}

=

∫
X

∫
X̂

(X − X̂)2p(X̂,X)dXdX̂. (6.3)

If all N bits are correctly generated, X̂ will be in the same division as X. However,

if one or more bits are wrong, X̂ could be in a different division. To formulate

the MSE we should consider all cases where any combination of the N bits are

wrong, and compute X̂ and the probability function p(X̂,X) for that case. We

derive an approximation for the MSE, by considering a high probable subset of these

cases. In particular, we consider the cases that at most one of the N bits is wrong.

This is a reasonable approximation when bit error probabilities are independent

conditioned on X, which is followed from the fact that sensors’ measurement noises

are independent. In section 6.5, we investigate this approximation for different

average SNRs.

Let β be the event where all N bits are correct, and γb, 1 ≤ b ≤ N , be the event

where only bit b is wrong. We can write an approximation for MSE as

ψ '
∫
X

∫
X̂

(X − X̂)2p(X̂,X, β)dXdX̂

+
∑
b

∫
X

∫
X̂

(X − X̂)2p(X̂,X, γb)dXdX̂. (6.4)

For a uniform quantization and a uniformly distributed X the first term is equal to

∆2/12 = 1/3(V/2N )2. In the event of γb, knowing the labeling method, X̂ can be
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Figure 6.1: Functions fb(X) for N=4, using Gray labeling.

written as a function of X which depends on b, i.e., X̂ = fb(X). Fig. 6.1 shows these

functions for N = 4, when the Gray labeling scheme is used. Substituting fb(X) in

(6.4), we have

ψ ' 1

3
(
V

2N
)2 +

1

2V

∫
X

∑
b

(X − fb(X))2p(γb|X)dX, (6.5)

where p(γb|X) is the probability that only bit b is wrong conditioned on X. Now,

we approximate p(γb|X) with the probability that bit b is wrong conditioned on X,

i.e., p(αb|X). This is a reasonable approximation when the probability that only bit

b is wrong is bigger than the probability that bit b and some other bits are wrong.

Hence, the approximation is close when sensors’ measurement noises are not very

high, and the network size in not very large. An example of a good condition is

when p(αb|X)� 1/N .

The probability p(αb|X) depends on Pb and the noise pdf of sensor nb, i.e.,

p(αb|X) = hb,nb
(X). For Gaussian measurement noise this can be written as a sum

of Q-functions that depend on Pb and σnb
(See Appendix C for details). Substituting

p(γb|X) ' p(αb|X) into (6.5) and computing the integral over X, MSE can be
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Figure 6.2: A complete bipartite graph.

summarized as

ψ(π) ' A+
N∑
b=1

Γb,nb
, (6.6)

where A = 1/3(V/2N )2, and

Γb,nb
=

1

2V

∫
X

(X − fb(X))2hb,nb
(X)dX. (6.7)

Investigating (6.6) we notice that except for the constant term A, (6.6) is the sum

of pair costs similar to (6.2), hence, to find the optimum assignment π∗ we use the

Hungarian method. The Hungarian algorithm can be implemented with complexity

as low as O(N3) using Blossom algorithm [64] or Hopcroft-Karp algorithm [63].

6.4 Hungarian Algorithm for Bit-Sensor Assignment

Since we have N sensors and N bits, there are N2 possible values of Γb,n. Given

N2 values of Γb,n, the Hungarian method is used to find π∗ that minimizes (6.6).

Assume a complete bipartite graph G(U, V,W ), where U = {u1, u2, · · · , uN} is a

set of vertices representing the N bits (the N quantizers), V = {v1, v2, · · · , vN} is

another set of vertices representing the N sensors, and W is the set of weights for

each edge (u, v), connecting vertex u ∈ U to vertex v ∈ V . The weight of edge (u, v)

is Γu,v, see Fig. 6.2. To find the optimum bit-sensor assignment that results in the

minimum MSE, we need to find a perfect matching of G which has the minimum

sum of weights (Please see Section 2.3 for the details). This can be achieved using

the Hungarian algorithm [61] shown in Algorithm 8. For details of the algorithm

please see Section 2.3 and [61].
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Algorithm 8 Hungarian method for best assignment

input: A bipartite graph G(U, V,W ), where U is the set of vertices representing
the bits, V is the set of vertices representing the sensors, and W is the set of
weights Γu,v, where u ∈ U and v ∈ V .

Initialize a feasible vertex labeling l.
Determine the equivalent graph Gl.
Pick any matching M in Gl
while M is not perfect do

if an augmenting path for M is found in Gl then
Upgrade M to increase its size.1

end if
if no augmenting path exists then

Improve l, and find the new Gl.
end if

end while

6.5 Simulation Results

We first explain the performance of our algorithm for a sample case of N = 8. The

measurement noise variances of sensors are shown in Table 6.1. A possible bit-sensor

assignment is to assign the highest-precision bit to the sensor with smallest noise

variance, the second high-precision bit to the sensor with the second smallest noise

variance, and so on. This is shown in Table 6.1 as Assign I. A second possible bit-

sensor assignment is the reverse form, i.e., to assign the highest-precision bit to the

sensor with the highest noise variance, the second high-precision bit to the sensor

with the second highest variance, and so on. This is shown as Assign II in the table.

The optimum bit-sensor assignment based on our proposed algorithm is also shown

in the table.

The estimation performance of different bit-sensor assignments are compared in

terms of MSE. Both the simulation results and the approximate MSE calculation

based on (6.6) are shown in the table. It can be seen that i) the approximate MSE

formula of (6.6) used in our algorithm is very close to the simulated MSEs, ii) The

performance of the optimum assignment resulted by our algorithm is better than

both other assignment cases.

The performance gain of employing the optimum assignment compared to other

assignments is more when there is higher inhomogeneity. The inhomogeneity can be

described as the variance of σ2
n, i.e., Λσ2 = E{(σ2

n)2 − µ2
σ2}, where µσ2 is the mean

of σ2
n defined as E{σ2

n} = 1/N
∑

n σ
2
n. For N = 4, Fig. 6.3 shows the performance
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Sensors’ Measurement Noise Variances
n 1 2 3 4 5 6 7 8

σn 0.04 0.03 0.02 0.01 0.008 0.006 0.005 0.001

Different Bit-Sensor Assignments
nb n1 n2 n3 n4 n5 n6 n7 n8

Assign I 1 2 3 4 5 6 7 8

Assign II 8 7 6 5 4 3 2 1

Optimum 5 6 7 8 4 3 2 1

Estimation MSE
MSE (simulation) MSE (approximate)

Assign I 0.0392 0.0374

Assign II 0.0098 0.0101

Optimum 0.0067 0.0068

Table 6.1: An example of bit-sensor assignment with N = 8.

of our algorithm, i.e., MSEalg, versus
√

Λσ2 , and compares it with other assignment

solutions. At each Λσ2 , the performance indicators have been averaged over 100

setups, where for each setup, σ2
n, 1 ≤ n ≤ 4, are randomly selected. However, for

all 100 setups µσ2 = 0.03, and Λσ2 is kept constant.

At each specific Λσ2 , all N ! assignments are tested and the average of their MSE

is denoted as MSEavg. As expected, by increasing Λσ2 , we see a larger gap between

MSEavg and MSEalg. To evaluate the performance, we have included the minimum

MSE of all assignments found through brute-force search, i.e., MSEmin. The small

deference between MSEalg and MSEmin is due to the approximation of Section 6.3.

The proximity of MSEalg and MSEmin provides another evidence for the accuracy of

our algorithm based on MSE approximation. We have also shown the performance

of Assign II solution as MSEII in Fig. 6.3. It can be seen that for all inhomogeneities,

the solution obtained through our algorithm performs better than Assign II. Fig 6.4

shows the same properties versus µσ2 , when Λσ2 = 0.0152.

6.6 Conclusion

We have addressed the problem of bit-sensor assignment for binary distributed quan-

tization in an inhomogeneous network of N sensors. Our algorithms is based on

approximating the MSE in order to formulate it as a sum of N bit-sensor pair

costs. This formulation allows us to use the Hungarian method for finding the best

95



0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.007 0.009 0.011 0.013 0.015 0.017

MSEavg 

MSEmin 

MSEalg 

MSEII 

Λ𝜎2  

M
SE

 

Figure 6.3: Performance of our algorithm versus
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Figure 6.4: The MSE of brute-force and the Hungarian algorithm versus µσ2 .

assignment that minimizes the MSE with O(N3) complexity rather than O(N !).

The simulation results show significant gains when using the optimal assignment

compared to simple-order or arbitrary assignments. The studies in this chapter are

published in [106].
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Chapter 7

Conclusion and Future Work

In this thesis, we addressed estimation and quantization problems in wireless sensor

networks, and developed some distributed algorithms for these applications. Here,

we summarize the contributions of each chapter. To conclude, we suggest some

possible research trends that can be done in the future.

7.1 Conclusion

Chapter 3 was focused on stochastic inference in WSNs with no fusion centre. In

this chapter, we formulated a non-parametric solution, by mixing the sum-product

algorithm with the particle filtering technique, for the general non-Gaussian and

nonlinear inference problems in WSNs.

We first used the factor graph to model the stochastic dependencies between

the variables involved in the inference problem. To estimate the unknown variables

of the problem a message passing algorithm, called the sum-product algorithm, is

run on the factor graph. However, except for problems that only involve binary

or discrete variables or Gaussian-distributed continuous variables, the message up-

date rules specified by the sum-product algorithm could be very complex in general.

Therefore, to maintain a feasible complexity for the general non-Gaussian, non-

linear problems, the sum-product update rules were reformulated using the particle

filtering. In other words, using Monte Carlo method and importance sampling, we

solved the analytical intractable integrals of the sum-product algorithm for continu-

ous variables, with the complexity which is independent of the order of the integral.

To achieve that, the messages, which are generally continuous pdfs, were represented

by a set of random samples and their importance weights. At variable nodes and

function nodes of the FG, we formulated the rules to update the samples and their
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importance weights.

Our proposed particle-based message passing algorithm is applicable to many

estimation problems in WSNs, e.g. localization, tracking, link monitoring, etc. For

each of these applications, we need to first determine the appropriate factor graph.

Then, the particle-based message passing algorithm decides each sensors’ processing

task. To implement our algorithm, we considered the problem of distributed target

tracking and the problem of multi-target tracking with data association in WSNs.

Because of considering the acceleration parameter in the target’s dynamic model

as well as the quantization of measurements the posterior pdfs and consequently

the factor graph messages would be non-Gaussian. Therefore, the particle-based

message passing algorithm was used and its performance was studied based on the

number of quantization bits, the number of particles and the measurement noise.

We compared our particle-based message passing algorithm with two other algo-

rithms. The extended Kalman filter and the Gaussian message passing algorithm.

The results showed that the estimation MSE of our algorithm was better than the

other two methods. Our particle-based message passing algorithm achieved reli-

able tracking results even when the number of quantized levels were as small as

4 and 8, with only 5 particles for representing the messages. The particle-based

message passing algorithm is superior to the existing methods also in the sense that

it assumes no limitations on the type of relations between the variables, neither it

restricts to Gaussian noise assumptions. It is a low-cost algorithm in the sense of

communication costs, which requires the sensors to broadcast only a low-bit quan-

tized version of their data in their neighborhood, instead of the high-precision raw

values.

In Chapter 4, we focused on parameter estimation in WSNs with constrained

communication capabilities. In such scenarios, sensors’ noisy measurements must

be quantized locally before transmitting to the fusion centre, where the unknown

parameter is estimated. In this chapter, we developed an algorithm to jointly design

N local quantizers given the pdf of the unknown parameter.

We designed the local quantizers by maximizing the mutual information be-

tween the unknown parameter and the quantizers’ outputs. We first formulated

the mutual information based on the N quantization functions. To find the nth

quantization function, assuming the other quantizers are fixed, we used the double

maxima approach to iteratively maximize the mutual information. In Section 4.5,
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we incorporated the effect of the communication channels in the design of optimal

quantizers, and designed channel-aware quantization rules.

Our design method has complexity benefits over the other methods. Unlike

other optimization measures, the mutual information measure allows the global

optimization criterion to be broken down into smaller criteria. In fact, by basing

our algorithm on the relaxed problem in Section 4.3 we reduced the dimension of

integrals, hence decreased the complexity. This was consistent with the simulation

results. Furthermore, our algorithm allows the design complexity to be significantly

reduced when the sensors’ measurements are conditionally independent, which is a

common assumption in sensor networks.

Using our algorithm one could design the quantizers independent of the choice

of the decoder or estimator in the fusion centre. This enables the designer to obtain

a quantization algorithm useful for a range of applications such as estimation, de-

tection, classification or feature extraction. We have shown this through simulating

an estimation and a detection application, where our method achieved comparable

estimation and detection errors to the methods that have been specifically designed

for those applications. The channel-aware quantizers were designed for the binary

symmetric channel. We observed that the optimal local quantizers in the presence of

non-ideal channels are different from the local quantizers that are optimized without

considering the channel effect.

In Chapter 5, we focused on parameter estimation in WSNs with very stringent

energy limitations, where only one bit quantization per observation is tolerated.

Unlike the iterative algorithm of Chapter 4, which achieves a local optimum solution,

in this chapter we aimed to find a global solution to the quantization problem.

Since sensors are only allowed one bit per measurement finding the global optimum

solution to the design problem largely affects the estimation performance.

We viewed the problem as if a set of B local binary quantizers together imitate a

B-bit quantization. Then, we used an algebraic approach to describe the distributed

quantization. Since an L = 2B level quantizer can assign a B-bit binary number

to each partition, a set of B binary quantizers can be obtained by mapping each of

the B bits to a local quantizer. In Chapter 5, we showed that besides the default

mapping, other sets of B binary quantizers can be obtained by searching all B ×B

binary matrices of rank B. The best of these choices that minimizes a performance

metric, i.e., Cramér-Rao lower bound, was chosen as the solution. When N >
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B measurements are available it is possible to estimate the unknown parameter

with more accuracy. The redundant measurements enable some error correction

possibility in estimating the unknown parameter. In this case, the optimum N

binary quantizers where found by searching all B × N binary matrices of rank B.

For scenarios where the search space size is too big, sub-optimal strategies were

suggested in Section 5.4.4 to reduce the complexity.

To estimate the unknown parameter in the fusion centre, two decoders, i.e.,

the discrete and the continuous maximum likelihood decoders, were derived based

on the discrete and continuous a posteriori distributions, respectively. Also, some

analytical performance bounds based on the rate-distortion theory and Cramér-Rao

lower bound where derived in Section 5.5.2. The performance of the method was

studied through different simulations. The estimation MSE was compared with the

performance bounds and other distributed quantization methods. We showed that

our method outperforms other binary quantization methods, specifically for higher

signal-to-noise ratios.

In Chapter 6, we addressed the binary quantization in inhomogeneous WSNs,

where sensors do not have the same measurement quality. We showed that in such

conditions, the order of assigning the local binary quantizers to the sensors af-

fects the estimation performance. We proposed an algorithm based on Hungarian

method to find the best assignment that minimizes the MSE of estimation. We first

approximated and formulated the MSE as a summation of N terms, each being a

function of only one sensor’s measurement noise. Consequently, we were able to

use the Hungarian method to find the optimum bit-sensor assignment. Through

simulations we confirmed that the assignment found by our algorithm has the MSE

performance which is very close to the optimum performance, and is superior to

heuristic assignment solutions.

7.2 Future Work

Particle-based Message Passing Algorithm for Other Applications

In our particle-based message passing algorithm introduced in Chapter 3, we com-

bined two important tools, i.e. the sum-product algorithm and the particle filtering,

to enhance the functionality of both. By using particle-based message passing al-

gorithm, we extended the ability of the FG to efficiently cover many non-Gaussian,
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nonlinear frameworks with feasible complexity. Therefore, the particle-based mes-

sage passing algorithm is a powerful framework that can be used in wide range of

stochastic inference problems, not limited to WSNs. The advantage of this method

can be noticed more in problems with complicated stochastic relations between

variables, including those involving nonlinear relations and non-Gaussian noises.

The factor graph helps model these relations and the particle-based message pass-

ing algorithm solves the analytically untraceable message update rules to enable

stochastic inference. These problems can appear in various disciplines of science,

including geostatistics, finance, and economics. For example, in geostatistics, the

particle-based message passing algorithm can be used in seismic interpretation and

reservoir modeling. In these applications, the relations in the state-space model

and the relations between the measurements and the states can be very complex,

therefore, the particle-based message passing algorithm is advantageous. To address

such problems, first, an appropriate stochastic model must be derived. The choice of

the model variables and a proper stochastic factorization affects the structure of the

resulting factor graph. Subsequently, the message processing rules can be derived

based on the particle-based message passing algorithm to find the marginal beliefs

of the state variables.

Extending the Design Method based on Mutual Information

In Chapter 4, an algorithm based on mutual information was suggested for de-

signing optimum distributed quantizers. The method was only practiced for scalar

parameters. In many situations, a vector of parameters needs to be quantized at

each sensor rather than a scalar parameter. The rate-distortion theory states that

the joint quantization of the variables is more efficient than separately quantizing

the single variables. Therefore, deriving optimum distributed quantizers can be ex-

tended to the problem of vector quantization, and a framework based on mutual

information can be derived for that.

Also, in Chapter 4, we derived channel-aware distributed quantizers by assuming

binary symmetric channel model. This is a basic assumption for a communication

channel. Taking similar principles, a method can be devised for more advanced

channel models. As long as the channels are independent and each quantization-

plus-channel branch can be modeled as a first-order Morkov chain, the steps are

similar to those introduced in Chapter 4.
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Combining the Global and Local Methods

In Chapter 5, we found the global solution for the set of local binary quantizers.

However, in that Chapter, we had limited the quantization edges to be chosen form

a predetermined list of L−1 fixed edges. Therefore, although the solution is globally

optimum among all sets of quantizers that can be represented as a B × B binary

matrix, the position of the quantization edges can still be improved. Now, we can

use the method of Chapter 4 to fine-tune the quantizers. In a few words, starting

with the set of quantizers resulted from the method of Chapter 5, the iterative

method based on maximizing the mutual information can find the local optimums.
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Appendix A

Proofs for Chapter 4

A.1 Double Maxima Method

Proof of i and ii. To prove i, it suffices to show that, under the constraint
∫
X f(X,Z1:n) =

1,

max
f
I(p, f) = I(X;Z1:n). (A.1)

To evaluate that, using the method of Lagrange multipliers, we need to solve

∂

∂f(X,Z1:n)

{
I(p, f(X,Z1:n)) +

∑
Z1:n

λ(Z1:n)
[ ∫

X
f(X,Z1:n)− 1

]}
= 0. (A.2)

Substituting I(p, f) from (4.12) and taking the above derivative, we get1.∫
Y1:n

p(X,Y1:n)p(Z1:n−1|Y1:n−1)p(Zn|Yn)
1

f(X,Z1:n)
+ λ(Z1:n) = 0. (A.3a)∫

X
f(X,Z1:n) = 1 (A.3b)

After finding λ(Z1:n) according to the above two equations, we have

f∗(X,Z1:n) =

∫
Y1:n

p(X,Y1:n)p(Z1:n|Y1:n)∫
X

∫
Y1:n

p(X,Y1:n)p(Z1:n|Y1:n)
= p(X|Z1:n). (A.4)

Furthermore, the second derivative of I(p, f) with respect to f is negative, hence

I(p, f) reaches its maximum at f∗, which proves ii. Substituting f∗ in I(p, f), we

can easily verify that I(p, f∗) = I(X;Z1:n) and hence (A.1) is proved.

Proof of iii. Finding the optimal p∗ that maximizes I(p, f) is equivalent to finding

the optimal function p∗(Zn|Yn = y) that maximizes I(p(Zn|Yn = y), f), for every

1For details of how (A.3) is derived from (A.2), please refer to Euler-Lagrange equations in
variational calculus [107].
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y ∈ R2. Substituting p(Zn|Yn = y) from (4.10), this means for every y ∈ R we must

find,

max
p(Zn|Yn=y)

I(p(Zn|Yn = y), f)

= max
l

∫
X

∫
Y1:n−1

∑
Z1:n

p(X,Y1:n−1, y)p(Z1:n−1|Y1:n−1)× δlZn × log f(X,Z1:n)

= max
l

∫
X

∫
Y1:n−1

∑
Z1:n−1

p(X,Y1:n−1, y)p(Z1:n−1|Y1:n−1)× log f(X,Z1:n−1, l),

(A.5)

where the last equality is the result of the property
∑

a δa0af(a) = f(a0). Hence, iii

is resulted.

2According to (4.10), p(Zn|Yn = y1) = δl1Zn and p(Zn|Yn = y2) = δl2Zn , where l1 = Qn(y1)
and l2 = Qn(y2). Since the values of Qn(y) at different points of Yn do not depend on each other,
p(Zn|Yn = y1) and p(Zn|Yn = y2) are also independent for every y1, yn ∈ R; y1 6= y2
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Appendix B

Proofs for Chapter 5

B.1 Rate-Distortion Bound for Uniform Parameter

Here, we suggest an approximate lower bound for the MSE of distributed estimation

problem from quantized measurements. The proposed lower bound can be numeri-

cally calculated for any distribution of the unknown scalar parameter. To derive the

lower bound, we consider a centralized scalar quantization/estimation system with

a rate distortion constraint of R. In this system, the noisy measurement Y = X+w

is first used to estimate X as X̂ and then this estimation is quantized as Q(X̂). The

distortion (MSE) resulting from this centralized system, i.e., D = E{(X−Q(X̂))2},

can be used as a lower bound for our decentralized system. The MSE, can be

approximated as

D ' E{(X − X̂)2}︸ ︷︷ ︸
D1

+E{(X̂ −Q(X̂))2}︸ ︷︷ ︸
D2

. (B.1)

In the above approximation, the cross term E{(X − X̂)(X̂ − Q(X̂))} is ignored

from the right hand side, assuming an ideal quantizer, where quantization error is

uncorrelated from the quantizer input. In the following, each of the two terms D1

and D2 are calculated.

The first term D1 is by definition,

D1 =

∫
x

∫
x̂
(x− x̂)2pX,X̂(x, x̂)dx̂dx. (B.2)

To calculate the above integral, we need to find the joint pdf pX,X̂(x, x̂). Notice

that x̂ is a deterministic function of the measurement value y, i.e., x̂= f(y). For

example, if the MMSE estimator is used, f(y) = E{X|y}. Therefore, we have

pX,X̂(x, x̂) = pX̂|X(f(y)|x)pX(x). The term pX̂|X(f(y)|x) can be calculated as

pX̂|X(f(y)|x) =
pY |X(f−1(x̂)|x)

|f ′(f−1(x̂))|
. (B.3)
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The conditional pdf pY |X(y|x), or equivalently the measurement noise pdf, is as-

sumed to be known. For example, for zero-mean Gaussian noise with variance σ2,

pY |X(y|x) = N (y;x, σ2), where the notationN (y;x, σ2) is defined as 1/(σ
√

2π) exp(−(y−

x)2/(2σ2)). Also, knowing the parameter and noise pdf, or equivalently pY |X(y|x)

and p(x), the function f(y) can be numerically calculated using the following formula

f(y) = E{X|y} =

∫
x
x pX|Y (x|y)dx

=

∫
x

pY |X(y|x)p(x)∫
x pY |X(y|x)p(x)dx

dx. (B.4)

Having f(y), its inverse and derivative, can also be numerically calculated and used

in (B.3) to find pX̂|X(x̂|x). Finally, D1 can be found from (B.2).

The second term in (B.1), i.e., D2, is the distortion function for quantizing

the random variable X̂ with a rate R. A lower bound for D2 can be found as

D̃2 = Q12−2R, where Q1 is found from the following equality [108]

h(pX̂(x̂)) =
1

2
log2(2πeQ1), (B.5)

where h(pX̂(x̂)) is the entropy of the random variable X̂. To calculate the entropy,

first the pdf pX̂(x̂) is calculated using a similar approach as in (B.3). Finally, having

calculated D1 and D̃2, the approximate lower bound D is found to compare to the

performance of our distributed estimation-quantization method.

B.2 Unbiasedness of the Estimator

The amount of bias for an estimator is defined as

E{X − X̂} = E{X} − E{X̂}, (B.6)

where X is the unknown random parameter and X̂ is its estimated value. In our

method, X is going to be estimated from N binary data using a MMSE estimator
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in the FC, i.e., X̂ = E{X|z1, · · · , zN}. Therefore,

E{X̂} = E{E{X|z1, · · · , zN}}

=
∑

z1,··· ,zN

E{X|z1, · · · , zN}p(z1, · · · , zN )

=
∑

z1,··· ,zN

(∫
X
X p(X|z1, · · · , zN )dX

)
p(z1, · · · , zN )

=

∫
X
X

∑
z1,··· ,zN

p(X, z1, · · · , zN )dX

=

∫
X
Xp(X)dX = E{X}. (B.7)

The last equality ensures the unbiasedness of the method, when an MMSE estimator

is used in the FC.

B.3 CRLB

The CRLB for estimating an unknown random variable X from a noisy measurement

Z is the inverse of the Fisher information metric, which can be obtained as

J = E
{[∂ ln p(Z,X)

∂X

]2}
(B.8)

where p(Z,X) is the joint probability distribution of X and Z, and E indicates the

expected value with respect to both X and Z. It can be proved that the above

definition is identical to [59]

J = −E
{[∂2 ln p(Z,X)

∂X2

]}
. (B.9)

Having p(Z,X) = p(Z|X)p(X), (B.9) can be written as

J = −E
{[∂2 ln p(Z|X)

∂X2

]}
︸ ︷︷ ︸

J1

−E
{[∂2 ln p(X)

∂X2

]}
︸ ︷︷ ︸

J2

, (B.10)

where the first term J1 is related to the likelihood of measurements and the second

term J2 depends only on the distribution of X.

Now, suppose that there are N binary measurements available from X. In other

words, Z=[z1, · · · , zN ]. The likelihood function p(Z|X) can be written as [109]

p(z1, · · · , zN |X) =

N∏
n=1

p(zn|X) (B.11)

=

N∏
n=1

P1n(X)(zn)P0n(X)(1−zn),
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Figure B.1: The probability p(zn=1|X).

where P1n(X) is the probability that the nth bit is 1 when the parameter value

is X, i.e., p(zn = 1|X). Similarly, P0n(X) = p(zn = 0|X). If the nth local binary

quantization pattern is defined by the set of cell edges {e1n, e2n, · · · , eεnn } mapping

the first cell to 0, for Gaussian measurement noise with variance σ, P1n(X) can be

written as (see Fig. B.1).

P1n(X) =

εn∑
i=1

(−1)i+1Q(
ein −X

σ
). (B.12)

Now, ln p(Z|X) can be written as

ln p(Z|X) =

N∑
n=1

(
(zn) lnP1n(X) + (1− zn) lnP0n(X)

)
. (B.13)

Therefore, its first and second derivative can be calculated as

∂ ln p(Z|X)

∂X
=

N∑
n=1

{
(zn)

∂P1n(X)
∂X

P1n(X)
+ (1− zn)

∂P0n(X)
∂X

P0n(X)

}
(B.14)

and

∂2 ln p(Z|X)

∂X2
= (B.15)

N∑
n=1

{
(zn)

{ ∂2P1n(X)
∂X2

P1n(X)
− ( ∂P1n(X)

∂X

P1n(X)

)2}

+(1− zn)
{ ∂2P0n(X)

∂X2

P0n(X)
− ( ∂P0n(X)

∂X

P0n(X)

)2}}
.

To find the first term, J1, in (B.10), the expectation of the second derivation of

p(Z|X), i.e., (B.15), is calculated as

J1 =− E
{[∂2 ln p(Z|X)

∂X2

]}
= (B.16)

−
∫
X

∑
Z

[∂2 ln p(Z|X)

∂X2

]
p(Z|X)p(X)dX.
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Inserting (B.15) in (B.16), and calculating the integral over Z, we have

J1 = −
N∑
n=1

∫
X

(∂2P1n(X)

∂X2
−

(∂P1n(X)
∂X )2

P1n(X)

)
p(X)dX (B.17)

−
N∑
n=1

∫
X

(∂2P0n(X)

∂X2
−

(∂P0n(X)
∂X )2

P0n(X)

)
p(X)dX.

To further simplify the above, note that for any binary local binary quantization

patterns,

P0n(X) = 1− P1n(X),

hence,

∂P0n(X)

∂X
= −∂P1n(X)

∂X

∂2P0n(X)

∂X2
= −∂

2P1n(X)

∂X2
(B.18)

Therefore, (B.17) is reduced to

J1 =

N∑
n=1

∫
X

{(∂P1n(X)
∂X )2

P1n(X)
+

(∂P1n(X)
∂X )2

1− P1n(X)

}
p(X)dX. (B.19)

For a random variable with uniform distribution, the second term, J2 in (B.10) is

zero; and therefore, the CRLB reduces to 1/J1. For a Gaussian random variable,

J2 can be easily calculated as

J2 = −E
{[∂2 lnN (x, σ2

x)

∂X2

]}
=

1

σ2
x

, (B.20)

and the CRLB will be 1/(J1 + J2).
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Appendix C

Details for Chapter 6

C.1 Conditional Bit-Error Probability

The probability that bit b is wrong conditioned on X, i.e., p(αb|X), is written as

p(αb|X) =

{
P1b(X) X ∈ U0

1− P1b(X) X ∈ U1

where P1b(X) is the probability that bit b is quantized to 1 conditioned on X. Also,

U1 is the union of all divisions in the quantization rule Pb that map to 1. And we

have U0 ∪ U1 = [−1, 1]. Defining Pb by the set of edges {γ1, γ2, · · · }, and assuming

sensor nb has Gaussian measurement noise with variance σ, P1b(X) can be written

as

P1b(X) =
∑
i

(−1)i+1Q(
γi −X
σ

), (C.1)

where Q(·) indicates the Q-function. In Fig. C.1, we have shown p(αb|X); 1 ≤ b ≤ 4,

for Gray labeling scheme, where all sensors have Gaussian measurement noise with

variance σ2 = 0.03.
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Figure C.1: Conditional bit error probabilities p(αb|X) for the first 4 local binary
quantization patterns of Gray labeling.

118




