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Abstract

Through a combination of texture and porosity. the intrinsic anisotropy of
many rocks is orthorhombic. Experimentally determining the nine required in-
dependent elastic coefficients for this case remains challenging and there remains
room for new methodologies. Elastic coefficients are most often found from mea-
surements of the phase-velocity in a variety of directions throughout a material.
Finding this phase-velocity. which most simply corresponds to the propagation
speed of a plane wave. is problematic. The 7 — p method is used to directly ob-
tain quasi-P and quasi-S wave phase-speeds within a number of planes through
a composite material of orthorhombic symmetry. Arrays of specially constructed
transducers (0.65 MHz). designed to preferentially stimulate and receive the one
q-P and two q-S propagation modes. were placed on a rectangular prism of the
material. Over 680 individual measures of phase specd were obtained and sub-
sequently used in a generalized least-squares inversion for the required elastic
coefficients. Corresponding tests on isotropic soda-lime glass indicated that the

coefficients can be determined with an uncertainty of 5 %.
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Chapter 1

Introduction

1.1 Background

It is well known that most rocks are anisotropic to some degree. Despite this fact
velocity isotropy remains the usual assumption in conventional seismic reflection
and rock physics analyses. This velocity anisotropy may be the result of prefer-
ential orientation of mineral grains. the presence of orientated cracks of various
sizes. or the occurrence of thin lavering. Neglecting to incorporate anisotropy
leads to incorrect seismic analyses and the introduction of error. However. our
understanding of the anisotropic properties of many sedimentary rocks is limited
and this ignorance hinders application of more realistic seismic investigations.
Given that our increased capacity to acquire seismic data allows for greater
spatial resolution required for subtle stratigraphic and production related geo-
physics. it is of increasing importance that the intrinsic properties of the materi-
als through which the seismic waves pass are better understood. In particular, a
more complete elastic description of the materials forming the earth is required.
Many workers have attempted to do this previously. but obtaining sufficient in-
formation on the anisotropy of rocks can be prohibitively costly. In this thesis,
I describe and test a new methodology which will make determination of the

complete set of elastic constants more practical.
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1.1.1 Sources of velocity anisotropy

As mentioned before. anisotropy in rocks can be caused by a number of different
factors and only a few will be reviewed briefly here. In sedimentary rocks such as
shales. the presence of kerogen (the organic material from which oil is derived)
causes anisotropy which is detectable by the transmission of both compressional
and shear waves (Vernik & Nur. 1992). As the organic-rich shales are compacted
over time. the kerogen forms thin bedding parallel laminations that may be
observed in back-scatter SEM images. It was found that these thin laminae
induce a strong velocity anisotropy in the samples taken. In carbonate-bearing
deep-sea sediments the presence of oriented calcite. a highly anisotropic mineral,
gives rise to transverse isotropy in the rocks (Carlson et al.. 1984).

Seismic anisotropy is also observed in shallow crustal rocks and in the upper-
most mantle (Kawasaki & Konno. 1984: Brocher & Christensen. 1990: Levin et
al.. 1996). In the mantle. anisotropy is thought to be caused by the systematic
orientations of olivine and pyroxenes. The alignment of olivine grains is thought
to occur during the process of deformation which produces preferential crystal-
lographic crystal alignment (Christensen & Salisbury. 1979) and manifests itself
in the form of significant teleseismic compression and shear wave travel time
anomalics (Levin et al.. 1996). Due to the distribution of mineral grains. az-
imuthal anisotropy occurs. This azimuthal anisotropy is observed also in the
uppermost mantle from Rayleigh and Love waves. The correlation between seis-
mic anisotropy and preferred mineral orientation is supported by the comparison
of seismic reflection data with laboratory measurements on cores taken from the
study area (e.g., Christensen & Salisbury, 1979).

Laboratory measurements of ultrasonic wave velocities in most rock samples
demonstrate that velocity increases with confining pressure. This effect is at-

tributed to the closure of microcracks with increasing pressure (Savers, 1988:
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Vernik & Nur. 1992; Vernik 1993; Johnston & Christensen. 1995). These cracks
may be formed due to overpressuring in the process of oil and gas generation
(Vernik. 1993). by jointing within the regional stress fields (Schoenberg & Hel-
big. 1997) or by drilling induced damage (Li & Schmitt. 1998). If the cracks are
preferentially aligned. some forms of anisotropic symmetry are produced. For
example. introduction of a vertical crack set into a horizontally lavered medium
will result in three planes of symmetry and produce orthorhombic anisotropy-
Indeed. observed azimuthal variations in the ratio of arrival times of shear and
compressional waves (P-wave) and shear wave (S-wave) birefringence (splitting)
from large earthquakes have been taken as evidence of such cracks in the crust
(Crampin. 1978).

It has long been known that the ratio of the wavelength of the wave prop-
agating through the medium to the thickness of the layvers through which it is
passing can have a noticeable effect (Backus. 1962: Levin. 1979: Helbig. 1981:
Helbig. 1984: Melia & Carlson. 1984: Carcione et al.. 1991: Hornby et al.. 1994:
Marion et al.. 1994: Hovem. 1995). This layvering induced effect is manifest in
the form of transverse isotropy with a rotational axis of symmetry perpendicular
to layering (Backus. 1962: Helbig, 1981: Helbig. 1984: Melia & Carlson. 1984).
The existence of such anisotropy was known prior to Backus® (1962) theoretical
study and has been confirmed experimentally by Melia & Carlson (1984) who
measured the P-wave velocity both perpendicular and parallel to the layering.
These experiments showed that differing layers of isotropic homogeneous materi-
als can create an anisotropic medium. This result is supported by vertical seismic
profiles (VSP) which show a velocity variation with angle of propagation through

a layered geology (Ricker. 1953: Uhrig & Mettle. 1995: Kebaili & Schmitt, 1996).
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1.1.2 Methods of determining anisotropy

There have been many previous attempts at determining the anisotropy of vari-
ous materials. Use of ultrasonic methods of measuring compressional and shear
elastic wave velocities has been the preferred method. One of the earlier at-
tempts at determining the anisotropy of a material was by Markham (1957) who
determined the elastic constants of various metals of cubic and hexagonal crys-
tal symmetry through the use of the pulse transmission method. Simply. in the
pulse transmission method the travel time of a disturbance transmitted through
a known thickness of the sample is measured in order to provide the velocity-

Due to their increasing importance in manufacturing. the anisotropy of arti-
ficial composite materials has also been well studied. Okoye et al. (1996) studied
a composite consisting of layers of paper and epoxy called phenolite. This lay-
ered material should be transversely isotropic. Okoyve et al. (1996) measured
96 P-wave velocities in a direct pulse transmission experiment where the source
transducer was centrally positioned while the receiver was moved along a profile
centered over the source transducer. Okoye et al. (1996) also developed an inver-
sion procedure to convert the velocities to elastic constants under the assumption
of transverse isotropy.

Another well studied artificial composite material is phenolic composed of
layers of fibre mats in epoxy. This material is similar to phenolite but has an
orthorhombic symmetry. Phenolic has been studied by Cheadle et al. (1991).
Vestrum (1994). and Kebaili & Schmitt (1997). Cheadle et al. (1991) used the
pulse transmission technique on a specially machined prism of phenolic in order
to obtain group velocities. Vestrum (1994) took a different approach of measuring
both group and phase velocities on a sphere and cube of phenolic respectively-
These measurements were used in separate inversions to the elastic constants

of the stress-strain tensor. which compared well with each other. Kebaili &
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Schmitt (1997) took a more indirect approach by obtaining a series of miniature
seismograms on a block of phenolic then converting these data to the 7—p domain
using a Radon transform from which plane wave velocities were directly found. A
slant-stack (Radon) transform is a mapping of a two-dimensional function f(z.t)
from the offset-time (z.¢) domain into the intercept time-horizontal slowness
(7 — p) domain. The slant stack (Radon) transform is defined by Robinson

(1982) and Tatham (1984):

F(r.p)= /_Zf(r.r-f—pr) dx (1.1)

where F is the integration of the amplitudes f (r.t) along the line y = 7+pzr. As
only P-wave or compressional wave phase velocities were obtained. these could
not be inverted to obtain the elastic constants.

Naturally occurring rock has also been studied. One of the earliest studies
was that of Kaarsberg(1959) where seismic travel time and x-ray measurements
were done on sediments and shales. Kaarsberg (1959) found that the velocities
both parallel and perpendicular to the bedding increase with density. This in-
crease may be caused by preferred orientation of the basal planes of clay minerals
parallel to bedding. Another study, which involved cores being taken at various
angles to the axis of symmetry of some shales, is that of Johnston & Christensen
(1995). Using the pulse transmission technique. the phenomenon of shear wave
splitting was observed and phase velocities were measured. Through the use of
phase velocity measurements, the elastic constants of the rocks were determined.
Vernik & Nur (1992) and Hornby (1995) similarly measured P-wave and S-wave
velocities taken in cores parallel. perpendicular, and at 45 degrees to bedding
and determined the elastic constants of the rocks with pressure.

Arts et al. (1991) and Arts (1993) measured P and S wave velocities on

specially machined cubes of marble and limestone using a method very similar to
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the one theoretically described by van Buskirk et al. (1986). Large piezoelectric
transducers measured phase velocities for both P and S waves. An advantage of
the method used is that no e priori knowledge of the symmetry or orientation of

the material is required.

1.1.3 Ambiguities in determining anisotropy

A problem encountered is whether group or phase velocities are being measured.
Briefly. phase velocities are associated with the propagation speed of a hypotheti-
cal plane wave through the material. Group. or ray. velocities are associated with
the path of the energy flow from the source to the receiver. This will be discussed
in more detail in Chapter 2. Phase velocities are usually needed for inversion
back to the elastic constants. In an anisotropic medium. group velocity is not
necessarily equal to phase velocity. Velocities taken in directions that are nei-
ther parallel nor perpendicular to axes of symmetry may be neither group nor
phase velocities. Typically. group velocities are measured from a point source to
a point receiver. Experimentally, sources and receivers are of finite size calling
into doubt whether group velocities are truly being measured. Similarly. phase
velocities are made from plane wave sources to plane wave receivers. Tvpically.
this is difficult to achieve in experiments and may vield velocities which are not
phase velocities. In may cases it may be difficult to know what tyvpe of velocities
are being measured.

Dellinger & Vernik (1994) have attempted to address this issue. They found
that rock cores that were neither parallel nor perpendicular to symmetry axes
vielded apparent velocities which were lower than phase velocities but greater
than group velocities. Dellinger & Vernik (1994) showed that in order to measure
phase velocities in cores, the ratio of the height of the core to the transducer width

must be less than 3 and to measure group velocities the ratio must be greater
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than 20. So long as these rules of thumb are followed. one can be reasonably
certain of the type of measurement being taken. Another example is the work
of Hornby (1996). Cores were cut parallel. perpendicular and at off-axis angles
to the symmetry of a shale. At off-axis angles. not only are the cores difficult
to acquire and require a priori knowledge of symmetrs axes but the velocities
measured may be neither group nor phase. This ambiguity may lead to large and
unquantifiable errors in the determination of the critically important parameters
that control the wave shape away from the axes of symmetry. According to
Dellinger & Vernik (1994) and Kebaili & Schmitt (1997). in order to obtain direct
phase velocity measurements, large transducers must be used relative to sample
size. This constraint limits the number of phase velocity measurements that can
be practically taken. which are necessarv to determine the elastic constants of
the material. One method of addressing this problem is described by Kebaili
& Schmitt (1997). They used a Radon transformation to put a series of r — ¢
arrivals into the 7 — p domain. The shape of this arrival curve in the 7 —p domain
contains substantial information on the anisotropy of the medium. as the phase
velocities are obtained as a function of the direction of propagation.

In this thesis. the methodology described by Kebaili & Schmitt (1997) is
extended and improved with the development of shear wave transducers. Phase
velocity measurements are made on the orthorhombic medium phenolic for a
number of different orientations and an inversion to the elastic constants of the

material is performed.

1.2 Theory

The following is a brief summary of the mathematical work and a more complete
description can be found in Lay & Wallace (1995) and Musgrave (1970). It is

important to discuss the underlying theory of elasticity as it applies to elastic
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wave anisotropy.
To begin. the stress is related to strain by the stress-strain relationship which

is given by the generalized Hooke’s Law where the Einstein summation conven-

tion will be used:

Oij = Cijki€kt (1.2)
where
t=1.2.3:
J=1.2.3:
A=1.2.3:
[=1.2.3

d;, is the second order stress tensor,
€r: is the second order strain tensor. and

¢.jkt 1s the fourth rank elasticity tensor with components of stiffness.

Since the elasticity tensor c,jx, has 4 indices. each of which goes from 1 to 3.
the elasticity tensor has 81 elements present.

If one takes the unit cube as an example then o;; is the stress or pressure on
the i** face in the r; direction as shown in Figure 1.1. The i® face is the face on
the unit cube whose outward normal is parallel to z; direction as can be seen in
Figure 1.2. For convenience. in chapter 2 x. y. and z will be used for z,. z». and
I3 respectively.

The strain €4 is defined in a similar manner to the stress o;j. The strain
ek is the strain on the k'® surface in the z; direction and will be defined by the

following formula (Lay & \Wallace. 1995) as:

oo L (aok N ao,) (13)

~2\0n T 9z
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where U} is the displacement in the z; direction.
A closer look at €;;. €29. and €33 shows that these strains are distortions in

the size of the unit cube.

enr = 24 which is an elongation of
11 a1,

the unit cube in the x, direction
These are strains normal to the surface. €0 = %: which is an elongation of
(i.e. compression or elongation) the unit cube in the x, direction
— 33 which ic . .
€33 = 52 W hich is an elongation of

\ the unit cube in the x; direction

A closer look at €5. €;3. and €23 shows that these are distortions in the shape

of the unit cube.

€12 = 5 (&1 + 9L2) 5 the shearing on surface 1
2 ar,

Ir2
in the x, direction
These are strains parallel | €3 =1 (%31 + ‘5—%}) is the shearing on surface 1
to the surface.(i.e. shear) in the x3 direction
€23 = 1; (3—;; + %%:) is the shearing on surface 2

\ in the x3 direction

As can be easily seen from Equation 1.3. €4 is equal to €. (i.e.. €;3=€»; and

so forth.) This symmetry implies:

Cijkl = Cijik - (1.4)

A similar symmetry exists for the stress tensor as well where o;; i1s equal to

0j;. This symmetry of stresses implies:

Cijkl = Cjigt - (1.5)
Using the symmetries in the stress and strain tensors reduces the 81 element

stress-strain tensor c;jx to only 36 independent elements.
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Arguments of symmetry and thermodynamics (i.e., internal energyv of the
material must increase with a strain) reduces from 81 to 21 the components of
stiffness (Musgrave. 1970). For the sake of convenience. the cijrt stiffness tensor
can be represented as a svmmetric 6 x 6 matrix C,,,.

The stiffness c;jx; can be transformed to Cp,,, according to the rule (Vestrum.
1994):

if i=j

l
rn:{g_(i+j) ifi ] and (1.6)

k if k=1 )
”2{9 k+1) ifks£l - (1.7)

Using this formula translates the generalized Hooke's Law from Oij = Cijki€l

to the following form:

[ o1 ] [ Ciy Ci2 Ci3 Cuy Cis Cis | [ enn ]
T2 Cor Cyp Coz Coy Cys Cog €22
033 — Cs1t C32 C3z C3y Css C3s €33 (1.8)
023 Cy Cp Ciy Ciy Cis Cys 2653 )
013 Cs1 Cso Csz3 Csi Css Cse 263
L T12 | Cs1 Co2 Cez Cey Cos Ces 1L 262 |
where C';n = Cpy, and by examination it may be noted that only 21 independent

stiffnesses exist. However. this is the most general case where there is no syvm-
metry. It is useful to examine briefly how the elastic tensor C,,, appears with
increasing symmetry.

For isotropic symmetry there are 2 independent constants given as the Lame’s

parameter A and g (Musgrave, 1970) such that:

A+2u A A 00 0
A A+22 A 00 0
oo A A+22 00 0
Al 0 0 4 00 (1.9)
0 0 0 0 u O
0 0 0 00 p
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Materials of cubic symmetry have 3 independent constants (\Musgrave. 1970):

(1.10)

oSO oD
C OO T R o
S oo oo
cCoOoOnNn OO0 O
o0 OO OO
o oo oo

For hexagonal symmetry (transverse isotropy) 5 independent constants are

required (Musgrave. 1970).

(1.11)

O N OO0
o0 O oo
N OO OO O

SO O "N AN o
oo oA nn

Soon o

where r = 252,

Orthorhombic symmetry is characterized by 3 mutually orthogonal planes of

symmetry and 9 independent elastic constants (Musgrave. 1970).

a b ¢c 000

b d e 0 00
_|ce fOO00O 5
Ci=1000 40 0 (1.12)

0 00O0A KD

0 0 00 O0 :
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In contrast to the previous cases, if no symmetry is present the material is
treated as triclinic which is characterized by 21 independent elastic constants

(Musgrave, 1970).

a b ¢ d e f
b g h 1 j k
c h Il m n o
Ciy d { m p q r (1.13)
e J n q s t
f k o r t u

For a variety of reasons. one might expect the symmetry of many rocks to
be rather low. with orthorhombic svinmetry being that of the highest svmmetry.
However in natural crystals less symmetry can exist. as in the cases of calcite and
plagioclase feldspar in order of decreasing symmetry and requiring an increasing
number of elastic constants of 7 and 21. respectively.

Determining the stiffness tensor directly by actually applying large pressures
and shears to the sample and determining the infinitesimal compressions can be
difficult. Instead. it is often simpler to determine these properties indirectly by

measuring the elastic wave velocities and densities of the material.

1.3 Relationship between stiffness and anisotropic
velocities

Newton’'s second law states that the sum of the forces applied to the unit cube will
be equal to the mass times the acceleration. In other words, the mass multiplied
by the acceleration in the r; direction is equal to the sum of the forces in the r;

direction:

F=ma (1.14)
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Take for example in the r; direction ¥ F;, = ma,, = mU}.

r -
ZFIL = oy — (0’11 + %(—_\Il)) AI2AI3 (115)
R 1

doy,
31‘2

J

+ 0921 — (0’21 + (—A.l'z))-J AI[A.‘L‘:;

[ o 1
+ g31 — (0'31 -+ a1 (—AI;;)) AIlAIQ
3:1_73 ]

This equation simplifies to the following:

) A:rlAIQA.L‘:}

> Fr

Bau 80’2[ 30'31
(61:1 T o, or,

O (Cr1ri€xt) . 9 (Ca1k1€k1) N 9 (c31k1€x1) Az AzsAz; (1.16)
a.’l‘l 81'2 31.'3

3 . .
But 524 = 0 for m=1.2.3 since the material is assumed to be homogeneous
and the elastic constants cannot change with position.

This means:

Oex Oex O¢s. -
Z fr = Cukt—Eﬁ + Cotkt s + Catkm | AT AT AT (1.17)
81'1 8:1:2 8133
However.
> Fry = mly = pAr Az, An 0y (1.18)

where p is the density for the unit cube.
When Equation 1.17 and Equation 1.18 are combined. onc obtains the fol-

lowing:

pA.l’lA.’l'zAl‘;;(:/'l = Cﬂklfk[_,'AI[A.’L"_)AI;; (1.19)

which can be simplified to:
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pU; = Cijki€kij - (1.20)
But. as defined before:
w = (2 o)
2\ Jxy oy,
= %([/—k.l“f‘[/—l.k) . (1.21)
which implies:
€kl; = % ( 02(;1. + 820’1 )
2\90r0zx; Oxidz;
= é (Ckay + Urgy) - (1.22)

So. when Equation 1.22 is substituted into Equation 1.20. one obtains the

following:

1 )
pl: = ciju (3 (Ukaj + (-'l.kj))

1 . .
= 5 (culis; + cijulizg)
= il - (1.23)
Due to the simplicity of using plane waves. if one assumes that the plane

wave solutions to this equation are of the form:

U; = At x(nrze—vt) (1.24)

where v is the phase velocity. @ = (n,, n,. n3) is the wave front normal. A =
(A1, As. 43) is the amplitude vector, and T = (r,. 2. z3) is the position vector.

From this ansatz
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and
A 2
U, = (—z/ z:X-) 4t 3 (reze—vt)
27\ 2 2z ¢
- _ (l/ \ ‘4ielT(nrtr“U) . (1 26)
Similarly.
L, = .-{(eig-\l("’r’_"” . (1.27)
- .27‘— iZZ(n.c —ut)
Lll.j = lTnj:l[C A rer . and (128)
2‘— 2 2T
Ui = (LT) n,ng et X rEr vy
27\ * 22 0
= —(F) mmeAeFime. (1.29)

When Equation 1.26 and Equation 1.29 are substituted in Equation 1.23 one

gets the following:

271— 2 ;2 2 2 j 2T
—p (VT) ‘_1iel'.T'(anr—Ut) = —Cijkt ( ) njn.k.-lle'T("'I"”‘) (130)

Equation 1.30 simplifies to:

p’ A = Cijral N (1.31)

The following substitution [';; = ¢;;n;nx is used where I';; are the Christoffel
equations (Musgrave, 1970). When this substitution is made into Equation 1.31

one obtains the following:
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prid; =Ty, (1.32)

which implies

(ril - PV25i1) 4r=0. (1.33)

When written in matrix form. this equation is an eigenvalue problem, Br =
Ar. where the eigenvalues and eigenvectors of the system are equivalent to the

phase velocities and amplitude vectors respectively.

'y T I Ay A
Fay Tao Ty A [ =p2 | A2 | . (1.34)
I3 32 D33 As Az

For example. the case of the orthorhombic medium has the following 2-

dimensional stiffness matrix:

a b ¢ 00 0
b d e 00O
C.=|¢ ¢ f 0 0 0O
710 00 g 0O
0000 R O
000 00 2

where the letters a through i represent the 9 independent elastic constants.

For the direction 7 = (1.0.0) Equation 1.34 becomes:

a 0 O :11 .'11
0 i 0||4|=p?| Ao (1.35)
0 0 h As Az

Three eigenvectors and corresponding eigenvalues are determined as follows:

.-—l_{:(l.0.0) pri2=a
T =(0.1,0) pr?=3i
T =(0.0.1) prs®=h
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where _-{—: is the P-wave or compressional wave polarization while T; and T; are
the two S-wave or shear wave polarizations.

By being able to forward calculate the phase velocities from the elastic con-
stants one is able to determine the elastic constants from the phase velocities.
However. one must still be able to calculate the phase velocities from the group
velocity data. In order to do this operation. the Radon transform will be em-

ploved.

1.4 Radon transform

As mentioned previously. a slant-stack (Radon) transform is a mapping of a two-
dimensional function f(z.t) from the offset-time (z.¢) domain into the intercept
time-horizontal slowness (7 — p) domain. The slant stack (Radon) transform is

defined by Robinson (1982) and Tatham (1984) as :

F(r.p) =/_zf(r,r+pr)dl (1.36)

where F is the integration of the amplitudes f (z.t) along the line y = 7 + pr.

This equation basically means the data are decomposed into different plane
wave components where for each 7 value on a given horizontal slowness p. the
amplitudes of all the samples along the line given by the line y = 7 + pr is
summed. Since this summation is performed over slanting lines. the Radon
transform is occasionally called a slant stack.

To summarize, offset-time data are converted to 7 — p space by the appli-
cation of the Radon transform where the intercept time 7 is a function of the
horizontal slowness p. By combining the information gathered from the two 7 —p
curves obtained from data gathered in the same plane, the phase velocity v is

determined as a function of the propagation angle or direction of propagation.
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This methodology is described in more detail in Chapter 2.
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» Xo

Figure 1.1: o;; is the stress on the " face in the z; direction. o}; is the stress on
the face opposite the i* face on the unit cube and is defined as o;; + %";‘1- (=Azx;).

Axr; is the width of the unit cube in the z; direction.
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Face 2

Face 1

X1

Figure 1.2: Face 1 is the face on the unit cube whose outward normal is parallel
to direction x,. Face 2 is the face on the unit cube whose outward normal is
parallel to direction ro. Face 3 is the face on the unit cube whose outward
normal is parallel to direction rj.



Chapter 2

Experimental Determination of
the Elastic Coefficients of
Anisotropic Materials With the
Slant-Stack Method

2.1 Introduction

Wave speed isotropy is the usual assumption in reflection seismic profiling. How-
ever. most rocks are somewhat intrinsically anisotropic due to texture or aligned
microcrack damage. Even simple consideration of this anisotropy improves the
resolution of seismic images. Indeed. neglecting to incorporate anisotropy can in-
troduce substantial error in the positioning of subsurface reflectors. Despite this
concern, the lack of understanding of the wave speed anisotropy of many rocks
hinders in part more realistic seismic imaging and modeling. However, obtaining
the elastic coefficients required for more realistic modeling remains difficult.

In this chapter. I describe further development of an experimental method
for measuring anisotropic phase velocities in complex media (Kebaili & Schmitt.
1997) which allows for the complete determination of the set of elastic coef-
ficients in materials of orthorhombic symmetry. The method employs arrays

of small, specially constructed transducers that impart and receive the quasi-P

25
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(quasi-compressional) and two quasi-S (quasi-shear) modes. Gathers of traces
so obtained. in a geometry reminiscent of a walk-a-way vertical seismic profile
(VSP) (Kebaili & Schmitt. 1996). are analyzed in the 7 — p domain. The advan-
tage of this procedure is that phase (plane-wave) velocities. sometimes difficult
to measure experimentally. but necessary to charactere a material’s elasticity.
are directly obtained. The results of tests of the method on isotropic glass and
anisotropic composite material indicate its utilitv. However. certain shear wave
arrivals suggest that in complex. layered materials dispersion may need to be

considered.

2.2 Background
2.2.1 Pulse Transmission and Elasticity

A number of scale dependent factors such as the heterogeneity of lavering and the
orientation of fractures influence seismic wave anisotropy. The intrinsic elastic
properties of the rock are also essential factors needed to describe anisotropy.
In the most general case. twenty-one independent coefficients define a material’s
elasticity. Such a complete description is difficult to achieve experimentally.
however. and most studies on rock presume on the basis of texture that the rock
is cither isotropic. transversely isotropic (TI). or orthorhombic with 2. 5. or 9
independent constants. respectively (e.g.. Musgrave. 1970).

These elastic constants may in principle be found by measuring the static
deformation of a test sample. However. quasi-static measurements can be subject
to substantial error due to the difficulties encountered in applying stress and
measuring strain: instead, ultrasonic pulse transmission methods have become
popular in characterizing complex composite materials and rock since the work
of Markham (1957). Briefly in review, one quasi-P wave and two quasi-S plane-

waves propagate in any direction through a general homogeneous anisotropic
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medium obeying the general Hooke’s law (e.g.. see Neighbours & Schacher. 1967).

Oij = Cijki€kl (2.1)

where the c;;x; are the elastic stiffness constants.
If these are plane waves. the phase velocities and polarization directions are

the eigenvalues and eigenvectors of :

TuA = pr*4, (2.2)

where [';; are the Christoffel equations dependent on the elastic constants via:

Fu = cijun;ng (2.3)

When the elastic coefficients are known. the wave speeds in anyv direction
are determined by solving Equation (2.3). Conversely. the elastic coefficients
may be determined by measuring a sufficient number of wave speeds. If the
material is known to be isotropic. the elastic coefficients are found by measuring
only a P and an S wave speed in any direction. The minimum number of wave-
speed measurements required increases for materials of lower symmetry (more
independent coefficients) and if the directions of symmetry in a given test piece
are unknown.

Since the early measurements of Markham (1957) on cubic and hexagonal
metals. numerous methods have been developed for geophysical application. A
few methods include pulse transmission through specially machined spheres (Pros
& Babuska, 1967: Thill et al.. 1969: Pros & Podrouzkova, 1974: Vestrum, 1994)
or multifaceted prisms (Markham. 1957; Carlson et al., 1984: Arts et al.. 1991;
Cheadle et al., 1991; Vestrum, 1994) but most commonly through carefully
oriented cylindrical core samples (e.g.. Kaarsberg, 1959; Vernik & Nur, 1992:

Vernik, 1993: Johnston & Christensen, 1995: Hornby, 1996).
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One complication in such analyses is that the phase. or plane wave, veloc-
ity necessary to determine the elastic coefficient may often differ from the more
easily obtained group (or ray) velocity. Essentially. an observer at P (Figure
2.1). detecting the arrival of the wavefront W. curved due to the anisotropy of
the medium. at time t after excitation of a source at the origin O. determines a
group velocity d/t for the ray along the line between O and P described by angle
©. However. this observer cannot distinguish the wavefront W from a plane wave
front F with normal at angle @ that passed through O at the time of excitation.
The speed of this plane wave is the same as the corresponding phase velocity the
magnitude of which is given by D/t. The physical consequences of this difference
are well documented (e.g.. see Musgrave, 1970; Auld. 1973) and introduce am-
biguity to experimental velocity measurements in anisotropic media (Dellinger
& Vernik. 1994: Vestrum. 1994. Kebaili & Schmitt. 1997). Without careful con-
sideration of the sample and transducer geometries. it can be difficult to know
whether group. phase. or some intermediate velocity is measured. Group veloc-
ities may be converted to phase velocities if a sufficient number of the former
are measured to allow a smooth differentiation with respect to the propagation
angle (see Thomsen. 1986). Indeed. Vestrum (1994) developed a specialized pro-
cedure to invert the group velocities obtained in pulse transmission experiments
over a sphere and a multifaceted prism of an orthorhombic composite similar
to that employed here. Okoye et al. (1996) resorted to smooth polynomial fit-
ting of phase velocities observed obtained through a bar of transversely isotropic

material in order to minimize the errors.

2.2.2 Plane-wave Decomposition

Not being able to measure phase velocities, in Equation 2.2, adds error to. or

substantially complicates, the determination of the elastic coefficients in pulse
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transmission measurements (Vestrum, 1994; Okoye et al.. 1996). One approach
to reduce these problems is to implement a plane-wave decomposition via the 7—p
analysis (Kebaili & Schmitt. 1996, 1997) which provides directly the phase veloc-
ity as a function of the ray parameter (or horizontal slowness) p(8) = sin(6)/v(6)
where 6 defines the direction of the normal to the plane wave propagating with
directionally dependent phase velocity v. The slowness parameter p is equivalent
to the raypath parameter as described by the Snell’s law in Equation 2.4 where
6, and | are the incident angle and velocity in medium 1 and 6> and 13 are the

incident angle and velocity in medium 2.

sinf; _ sin6,
I, TG

The essential components of the phase velocity determination method are

=p (2.4)

previously described (Kebaili & Schmitt, 1997) and are only outlined here. In the
technique. the pulsed elastic wave energy produced from a minimum of two source
transducers are detected by a coplanar array of receiving transducers mounted
on the adjacent side of the test piece (Figure 2.2a). The sets of arrival times
from each of the two transducers vield hvperbolic-like offset versus travel-time
curves in the r — ¢ domain (Figure 2.2b) which transform to ellipse-like curves
in the 7 — p domain (Figure 2.2¢). If the block of material is homogeneous. then

at constant horizontal slowness p the vertical slowness ¢ is (Kebaili & Schmitt.

1997):

72 (p) — 71 (p) (2.5)

9 — Zg

q(p) =

where 7 and 7> are the intercept times at constant p corresponding to the 7 —p
curves for the sources at offsets z; and z». respectively (Figure 2.2c). It is worth
noting that ¢ in an anisotropic material depends on the horizontal slowness p and

is hence also implicitly dependent on the propagation angle # within the plane.
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The phase velocity v is then

v(6) = (¢0) +p* ()" (2.6)

at the phase propagation angle:

f# = arctan (B)
q

2.2.3 Experimental Method

Experiments were carried out on blocks of soda-lime glass and an industrial
composite of laminated fibre mats in a phenolic epoxy. The symmetries of such
composites are relatively well controlled and as such thev have been used in tests
by numerous authors (Cheadle et al., 1991: Karayaka & Kurath. 1994: Vestrum.
1994: Okoye et al.. 1996; Kebaili & Schmitt. 1997)

Silicate glasses are essentially frozen fluids with no preferred textural direction
and provide a highly isotropic and homogeneous mechanical medium. The 20
cm X 20 cm x 8 cm block employed was prepared from materials used in wall
construction. Two adjacent perpendicular surfaces were prepared using a surface
grinder. the flatness of the surfaces was measured to be better than 0.1 mm. In
simple direct pulse transmission, the P- and S-wave velocities were measured to
be 5690 = 60 m/s and 3440 £+ 26 m/s, respectively. The error was determined
from the standard deviation in the data. The bulk density was 2600 + 100
kg/m3.

The composite consists of layers of woven fibre mats bonded with the epoxy.
Two directions are defined by the weave of the mats with the directions of the
straight and the woven fibres are termed the warp and weft. respectively. The
layering. warp. and weave reduce the symmetry to orthorhombic (Karayaka &

Kurath, 1994) with a substantial anisotropy in planes parallel to the z axis (Fig-
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ure 2.3) but with weaker anisotropy within the x-y plane. A large block 66 x
27 x 17 cm of this material (grade CE phenolic) was milled to provide flat and
perpendicular surfaces paralleling the layvering. the warp. and the weave. The
mass density of this composite is given by the manufacturer as 1395 kg/m?® and
there are approximately 20 fibre mats per cm thickness within the material.
One P and two S wave transducers that acted as both sources and receivers
were prepared from piezo-electric ceramics. The transducers were made as small
as possible in order that the transducer dimension effects could be minimized. P-
wave transducers were prepared from commonly available PZT-5 (lead zirconate)
sheets by cutting into 2.0 mm squares using a computer controlled diamond saw
used in electronic chip manufacturing. These transducers predominantly expand
in the direction perpendicular to the block (Figure 2.4a). The nominal resonant
frequency of these transducers is 1.0 MHz. S-wave piezo-electric ceramics (EBL
#3 - Stavely Sensors) with a resonant frequency of 0.65 MHz were cut into 2 mm
X 3 mm rectangles in two perpendicular directions to make transducers prefer-
entially sensitive to the different quasi-S wave polarizations. The two differing
cuts of S-wave transducers produce displacements parallel to the surface of the
test piece. referred to hereafter as S\" and SH. that are also parallel (Figure 2.4b)
and perpendicular (Figure 2.4c) to the source-receiver array plane. respectively.
These designations of P. S\, and SH polarization should not be taken too lit-
erally especially when employed over complex anisotropic media with quasi-P
and quasi-S polarizations, these designations simply refer to the mode which is
attempted to be preferentially generated given the experimental limitations.
Due to directionality constraints in the outward propagation of energy from
the source, the S\" transducers were poor transmitters although they were still
used in reception. The P transducers were found to better generate SV-like

polarizations and were consequently used for transmitting in both the P and SV
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arrays. This effect is expected as the P transducers act as vertical point sources
that also generate an SV radiation pattern with substantial energy at oblique
angles.

All the transducers were mechanically damped to increase their bandwidth
by potting in a urethane-metal powder mixture. The P-wave transducers were
mounted on a conductive. malleable, removable substrate that was clamped to
the block. Both S\ and SH transducers were directly glued to the samples using
conductive silver paint.

The transducers were placed on the sample in a coplanar array as shown
in Figure 2.2a with two transmitters on one side at a spacing of 2.0 cm + 0.1
cm. The receiving transducers were mounted in a linear array on the adjacent
perpendicular surface at a spacing of 0.5 cm + 0.1 cm. The source transducers
were activated with a 300 Volt, 10 ns rise time spike. The response of the
receiver transducers to the resulting elastic waves were digitally acquired by a
high speed sampling oscilloscope at a rate of 8 ns/sample for 120 us with the
waveforms transferred via a GPIB bus to a computer for archiving and analysis.
Nonetheless. random noise was a significant problem due to the small sizes of
the transducers. The sample was shielded in a grounded steel box and high
frequency line filters were included on all electrical equipment to reduce this
noise. Approximately 2000 individual pulses were stacked on the oscilloscope to
improve the data quality.

Only simple processing of the waveforms was carried out to reduce the effects
of trigger noise and spurious reflected and other mode arrivals. The high am-
plitude trigger noise was simply muted as were portions of the trace before and
after the desired arrivals by modulation with a simple tapered window. These
data were then bandpass filtered (bandpass = 0 MHz - 0.15 MHz - 1.20 MHz -

1.70 MHz) to remove any of the remaining high frequency noise.
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Examples of the processed waveforms acquired on the glass block are shown
in Figure 2.5. These data generally show that in the isotropic. low-attenuation
glass the waveforms retain much of the same character with offset and indicate
that consistent signals are generated and received. The 7 — p transform was
accomplished by a conventional r — ¢t domain slant-stack (Appendix C). The
slant-stack of the P-wave r — ¢ traces obtained on the glass block at the depth
of 2.0 cm is shown in Figure 2.6. The 7(p) values at the first amplitude peak.
used in A7 (p) = 72 (p) — 71 (p) in Eqn. 2.5. were picked iteratively. Analyvsis of
the shape of this 7 — p curve using Eqns. 2.5 to 2.7 vields velocities of 5724 + 64
m/s and 3467 = 15 m/s for the P and SH mode transducers. respectively. The P
and SH velocities agree to better than 1% with P (5690 = 60 m/s) and S (3440
+ 26 m/s) velocities measured directly through the block as noted earlier. This
agreement suggests that uncertainties of better than 1.0 % may be expected using
the 7 — p technique under well controlled conditions for a homogeneous material

which. for practical purposes. may be considered lossless (i.e.. nondispersive).

2.3 Results and Discussion
2.3.1 Phase Velocities

Arrays were constructed within 4 different planes on the composite material
oriented with respect to the texture in the x-z. the y-z. the x-y and xyv-z. a
diagonal plane containing the z axis rotated 45° from the x axis (Figure 2.7).
The three different P. SV, and SH polarizations were obtained at two different
source depths in each of these planes resulting in a total of 24 individual sets
of data composed of 920 source receiver combinations. Analysis of the resulting
7—p curves yielded 624 high-quality measurements of the phase velocity of which
only the portion of the results for the x-z plane is presented for illustration.

The P-wave transducers for the x-z array were arranged with the sources at
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2 cm and 4 cm depth on the y-z plane and the receivers mounted on the x-y
plane (Figure 2.4a). The processed waveforms (Figure 2.8) display a hyperbolic-
like moveout with increasing offset and show only a modest degree of dispersion.
The resulting 7 — p transforms (Figure 2.8) have ellipse-like shapes as expected.
However. at 7 = 0 (i.e.. when the vertical slowness ¢ = 0) both ellipses intersect
at 300 us/m and 310 us/m which vield at face value horizontal velocities of 3333
m/s and 3226 m/s. respectively. This discrepancy is not unexpected as such
angles cannot be truly illuminated within the given experimental configuration
and should be taken as indicative of edge effects in the transformation. Modeling
and experience with the data suggest that with the present arrangement of the
arrays the phase velocities obtained between phase propagation angles 8 from 5°
to 70° will be valid. In this plane of investigation. the phase propagation angle is
the angle from the z axis which describes the direction the plane wave propagates
in.

The x-z plane P vertical slowness g versus horizontal slowness p (Figure 2.9a)
obtained from the 7 — p transforms shows substantial divergence from isotropic
behaviour. The high degree of velocity anisotropy within the material is shown
when the ¢ — p plot is converted to v — @ (Figure 2.9b) where over the range
of phase propagation angles where the results are valid (5° to 70°) the velocity
increases from 2650 m/s to 3450 m/s as the propagation direction varies from
near vertical to subhorizontal.

While analysis of the P mode transducers is relatively straightforward, ob-
taining results from the S\' mode is complicated by the strong coupling between
the P and SV mode with both unavoidably generated at the same time. As noted
earlier. P mode transducers were used for SV wave generation and this arrange-
ment introduces problems of directionality (Figure 2.10a) in which a strong P

wave arrival exists over much of the array. This arrival is followed by a later
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SV mode that is substantially weaker at greater offsets. Again. this result is not
unexpected as the radiation pattern for a vertical point source has strong P am-
plitudes in the direction of particle motion and SV amplitudes at more oblique
angles (e.g.. White, 1983). For this mode. the P and S\' modes produced at
the 2.0 cm depth were not sufficiently separated in time to allow for accurate
velocity determination and the results shown were obtained from sources at 4.0
and 6.0 cm depths. There is little that can be done to ameliorate this aspect as
the P-SV coupling is intrinsic to wave propagation in elastic materials. At the
greater depths. however. the two modes are sufficiently distinct to allow the P
mode to be muted. isolating the SV arrivals (Figure 2.10b) for transformation
to the 7 — p domain (Figure 2.10c). The 7 — p curve in Figure 2.10c is quite
continuous but straightens towards the end. Judging from the continuity of the
the 7 — p curve and the level of error in the data caused by transducer placement
problems or heterogeneities within the sample. it seems the slant-stack Radon
transform contains a degree of averaging to reduce this error. Also the 7 — p
curve straightens out towards the end because the slant stack Radon transform
was performed past the physical limits of the data. In other words. the array
of receivers extended out a finite distance allowing only a range of angles to be
investigated. This means a limited the range of p or slowness values may be
investigated.

A further complication is the shape of the S\" mode waveforms that dis-
play substantial waveform stretching and increasing complexity with offset. This
waveform stretching is attributed to dispersion whereby the different frequencies
of the waveform travel at differing velocities. Some of this complexity is likely
due to cross-talk between the S\ and SH mode particle motions. However. the
composite is primarily a layered medium in which the scale of the layvering rela-

tive to the wavelengths introduced can be important (e.g., Helbig, 1984: Marion
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et al.. 1994: Rio et al., 1996). The observed waveform complexities may be a
manifestation of the influence of the layering on wave propagation. Examina-
tion of these waveform effects is deferred in order to focus on the anisotropy
determination strategy.

The SH mode traces are cleaner with a sharp waveform (Figure 2.11a) allow-
ing for a clear 7 — p transformation (Figure 2.11b). The SH mode transducers
were not subject to the same cross-talk as seen for the SV records above. How-
ever. there is noticeable spreading of the waveforms with propagation distance
which is not seen in the case for the glass indicating that there is substantial
dispersion for the SH mode also. Though difficult to quantify. there appears to
be slightly less dispersion for the SH mode in the x-y plane.

P. SV, and SH phase velocities obtained from the analyses of the complete set
of 7—p transformations are shown in Figures 2.12 to 2.15. As expected. the planes
containing the z-axis perpendicular to the lamination are highly anisotropic for
both P and S modes. The greatest P anisotropy is 23 % in the v-z plane whilst
the greatest SH anisotropy is seen in the y-z plane with 13 %. Both the P and
SH modes show extremum at phase angles approaching the principle directions.
Interestingly, within the x-y plane the greatest phase velocity is observed near

15,
2.3.2 Inversion for Elastic Coefficients

A generalized least-squares inversion method was developed to obtain the elas-
tic coefficients from observed phase velocities and propagation angles. Rela-
tively straightforward inversion methodologies were emploved (Kincaid & Ch-
eney, 1996) and the strategy need only be briefly outlined here. Further details
on the computer code employed may be found in Appendix C. The inversion

strategy begins with an initial guess at the elastic coefficients with the assump-
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tion that the density is already well known. Phase velocities with propagation
angle are calculated from this seed and the residuals of these with those observed
are minimized using an L2 norm. Both nearest-neighbor and secant methods
(Kincaid & Cheney. 1996) are iteratively employed. Pseudo-random jumps in
the values are included to prevent trapping of the inversion in a local minimum.
This method was first tested on a number of synthetic results in which the phase
velocities were first forward modeled on a hypothetical orthorhombic material.
In the noise-free case. the elastic coefficients were reproduced to better than
0.01 %. The influence of various levels of noise. in the sense of both electrical
effects and transducer misplacement. was modeled by the addition of random
noise to synthetic data. This method showed the inversion to be accurate within
an average of 3 % for random errors in velocity of up to 10 % (Appendix C).

This inversion methodology was applied to the 624 obtained values of phase
velocity versus phase angle summarized in Figures 2.12 to 2.15. The inversion
assumed the material was orthorhombic and that the x-z. x-v. and v-z planes were
planes of symmetry. Two greatly different seed values were used: one in which
all the elastic coefficients were initially zero and another provided by Vestrum
(1994) on a similar material. The procedure was stopped once 3500 iterations of
the inversion were performed. The calculation typically required only 448 seconds
on a 170 MHz machine using a high level programming language. The inverted
results are shown in Table 2.1 in the notational style used by Vestrum (1994)
and a statistical analysis of the results indicate they are accurate to within 2 %.
The choice of the seeds was not important as both initial guesses approached
the solution within 300 iterations and the final difference between the solutions
differed by only 5 MPa or by less than 0.2 %.

One way to test the reliability of the method is to use the resulting elastic

coefficients to calculate in a forward sense what the phase velocities would be.
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These theoretical phase velocity values are shown as lines in Figures 2.12 to 2.15
for the sake of comparison. The SH wave velocities are generally well determined
with a maximum discrepancy of 87 m/s between the calculated and observed
values. The P and SV mode phase velocities are less well determined with the
greatest error of 182 m/s seen for the P mode in the y-z plane. The reasons
for this discrepancy are not fully understood but may be due to the dispersion
present for both the P and SV waveforms. Further. the degree of error is expected
to be higher for the SV mode due to the problems already indicated and because,
even in the anisotropic medium. these two modes will preferentially be coupled
relative to the SH mode it might be expected that this coupling will introduce
error into the P mode determinations.

Various types of inversions done by others with important differences when
compared with the type of inversion used in this thesis. Arts et al. (1991) solved
for all 21 elastic constants of the stress-strain tensor in the least-squares sense us-
ing the measurements of the phase velocities and the corresponding polarizations
for various directions of propagation. Okoye et al. (1996) assumes that the mate-
rial is transversely isotropic and applies a smooth polynomial fitting to the phase
velocities before applying the least-squares method iteratively. Vestrum (1994)
treats the material being studied as triclinic even though studies have shown
that it is orthorhombic in nature. Vestrum'’s (1994) inversion used is an iterative
application of Newton’s method. The inversion used in this thesis treats the
material as orthorhombic though it can handle the triclinic case. The inversion
requires the phase velocities with the corresponding polarizations for differing
directions of propagation. The inversion is applied without the application of a
smooth polynomial fitting unlike Okoye et al. (1996). The inversion does use the
application of an iterative least-squares inversion similar to Arts et al. (1991) and

Okoye et al. (1996) as well as the secant method, similar to Newton’s method
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used by Vestrum (1994). The inversion makes use of pseudo-random jumps in
order to prevent entrapment in localized minima in the residuals unlike the use
of damping factors in Vestrum (1994).

For an orthorhombic medium. four distinct planes on the sample are investi-
gated in Figure 2.7. The three non-diagonal planes are the only ones necessary
to determine the 9 elastic constants of the stress-strain tensor if the planes are
oriented along known axes of symmetry. The diagonal plane is investigated in
order to help localize the results because axes of symmetry may not be well de-
fined. If the situation arises that no information about the axes of symmetry
of the orthorhombic material is known or that the material is indeed triclinic, a
more general approach needs to be taken. The most general approach in order
to determine the elastic constants requires three planes orientated along an ar-
bitrary set of axes and two perpendicular planes running diagonally to this set
of axes. It is recommended to use an additional third diagonal plane. in order to
help constrain the results better, for a total of six distinct planes to accurately
determine the 21 independent elastic constants of the stress-strain tensor.

Although the elastic coefficients were readily determined from a number of
phase velocities in the above inversion. some experimental problems remain. The
most important is the observation of substantial dispersion. This dispersion is
evident all the records of the P. SV, and SH mode waveforms seen in Figures
2.5. 2.8. and 2.10. This dispersion is only weakly, if at all, detectable in the
measurements on glass. a nearly ideal. high Q, elastic medium suggesting that
the dispersion may in part be a consequence of the structure or composition of the
material. Another possible cause is that of a wave travelling through a layered
medium where the ratio of the wavelength of the propagating wave to the layer
thickness becomes an important factor. Attenuation is another possible cause

of the spreading of waveforms with offset where the higher frequencies would
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be attenuated more than the low frequencies. This dispersion must have some
influence on the accuracy of the 7 — p method of phase velocity determination
and needs to be considered in the future (see Martinez & McMechan, 1984).
Other potential problems reside with the difficulties of cleanly separating different
arrivals and the unavoidable P-S\" mode coupling. This is due to the complexities
in polarization of the different modes in an anisotropic medium (e.g.. Crampin.
1978) and the related imperfections of the transmitting and receiving transducers.
A final problem is that only a limited range of angles may be covered with
the transducer arrays and for equal spacing of transducers this will introduce a

sampling bias towards the far offset transducers.

2.4 Conclusions

Phase velocities were determined directly as a function of phase propagation
angle on an anisotropic composite material of orthorhombic symmetry. Special.
near-point transducers were developed to impart and receive different elastic wave
energies. These transducers were designated as P. SV. and SH to indicate the
primary mode of particle motion to which each different transducer was sensitive.
However. it must be noted that such pure modes do not generally propagate in
anisotropic media where more complex polarizations exist and the designations
should only be considered as approximate. Clean P and SH modes could be gen-
erated and received in both glass and the test anisotropic composite. However.
the SV mode is complicated by the coupled nature of P and SV waves and by
difficulties the directionality of SV mode receivers to impart the desired wave en-
ergy into the medium. Twenty four arrays of these transducers were constructed
along 4 strategic planes of the composite material allowing 624 individual P, SV.
and SH mode phase velocities to be obtained. When the experimental approach

was tested on a block of soda-lime glass, an essentially isotropic, low loss, elastic
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medium. the P and S velocities were recovered to better than 1 % relative to
conventional pulse transmission tests. In the glass it was difficult to detect any
dispersion by spreading of the observed waveforms with increasing propagation
distance.

Under the assumption that the test composite material was orthorhombic.
nine independent elastic constants were obtained by a nonlinear least-squares
inversion procedure. Phase velocities. calculated in a forward manner using the
obtained elastic constants. indicate that these elastic constants are in generally
good agreement with the observed phase velocities. However, some discrepancies
remain and these may be due. in part. to the fact that there is very noticeable
dispersion in all the waveform modes (i.e.. pulse spreading with increasing prop-
agation distance) particularly for the S\  mode. This dispersion is not accounted
for in the present 7 — p velocity determination method. Further. because of
experimental constraints. the predominant frequencies of the compressional and
the shear mode transducers differed at 1.0 MHz and 0.65 MHz. respectively. The
band difference together with the observed dispersion effects possibly account.
in part. for the discrepancies. Further. it is highly likely that there is some
small scale heterogeneities within the laminated composite as a consequence of
its construction and these structures could also introduce additional errors to
the measurements. However. the smoothing intrinsic to the 7 — p method should
alleviate the effects of small scale heterogeneities to some degree.

Although part of the waveform spreading with offset may possiblely be due to
intrinsic attenuation. it is also likely that part of the effect may be a consequence
of wave propagation through the layered structure of the composite. Although
difficult to quantify, there appears to be less dispersion in the x-v plane waveforms
suggesting that the observed dispersion is symptomatic of the layering. Indeed,

such layering induced dispersion is not unexpected especially once the dimensions
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of the layers approach the wavelength of the illuminating elastic wave energy
(e.g.. Helbig. 1984). This situation may be the case in the present material as
the wavelength of the shear waves approach 2 mm which is onlyv a factor of 4
greater than the nominal 0.5 mm scale of the layering. Such effects were first
hinted at experimentally by Melia & Carlson (1984) on plastic-glass composites.

Future work will focus on technical development of the technique in order to
make it less cumbersome and so it can be employed under pressurc. One great
advantage of the present methodology is that it can be applied to samples of
simple shape such as rectangular prisms and even cvlinders. The latter will be
particularly useful in the context of determining anisotropy in shales which may
often assumed to be transversely isotropic using core samples with a minimum
of additional preparation. Of more fundamental concern. however, is the po-
tential for experimental tests of the trade-off between wave velocity anisotropy.,
dispersion. and scale in layered anisotropic media: these future experiments have
implications beyond laboratory determination of elastic properties. The 7 — p

method will aid in such fundamental studies of layered media.
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| Ci; (GPa) [j=1 [j=2 [j=3 [j=4 |j=5 |j=6 B
i=1 16.351] 7.085 | 6.621 | O 0 0

+ + +

0.166 | 0.079 | 0.142
i=2 7.085 | 15.391] 6.584 | 0 0 0

+ + +

0.079 | 0.017 | 0.115
i=3 6.621 | 6.584 | 10.593| 0 0 0

+ + +

0.142 { 0.115 | 0.079
i=1 0 0 0 3.399 [0 0

+
0.018
i=5 0 0 0 0 2974 0
+
0.024
i=6 0 0 0 0 0 3.813
+
0.005

43

Table 2.1: Elastic constants of the stress-strain tensor for a sample of the or-

thorhombic material phenolic.
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Figure 2.1: Distinction between group and phase velocities in anisotropic media
(after Kebaili & Schmitt, 1997).
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(a) Plan view of the plane containing sources and receivers with
ray paths for a homogeneous anisotropic medium.
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(b) Composite travel-time versus offset
(x) curves obtained for the two different
source positions in a).

Intercept Time (js)
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(c) Composite of the 7 — p transform of
the travel-time curves in b) with the de-
termination of Ar at a given constant
horizontal slowness p illustrated.

Figure 2.2: Outline of phase velocity determination method.
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layer

Figure 2.3: Orientation of the principal directions of the phenolic block relative
to the x-y-z co-ordinate reference axes employed.
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Figure 2.5: Observed amplitude versus time traces with offset on the glass block
for various transducers.
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Figure 2.7: The four planes on the composite block in which arrays were prepared
and designated as x-z, x-y. y-z. and xy-z (i.e.. diagonal).
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Chapter 3

Conclusions

3.1 Determination of phase velocities and the
elastic coefficients

In this thesis. the technique for determining wave speed anisotropy. first pre-
sented by Kebaili & Schmitt (1996) was further extended to include two shear
wave modes. The technique was later employved on a block of composite material
which was known to be anisotropic by Kebaili & Schmitt (1997). The technique
was employved on a similar block of material and the observed results were further
inverted to obtain the complete elastic description of the material.

The velocities were determined using Kebaili & Schmitt’s (1996) slant-stack
technique. To do this the arrival times were measured for two coplanar source-
receiver arrays using three differing polarizations in four different planes: this
corresponds to 920 source-receiver combinations. The application of the 7 —
p transform to the resulting data sets provided 624 high quality independent
phase velocity measurement dependent on the phase propagation angle. Aside
from providing a direct measure of the phase or plane wave velocities, usually
otherwise difficult or impossible to determine. the slant-stack methodology has
a number of additional advantages. First. the measurements can be carried

out in a non-destructive manner on relatively easily machined shapes such as
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rectangular prisms and cylinders. Second, the slant-stack methodology implicitly
contains a degree of averaging over the entire set of waveforms acquired. This
stacking help reduce the effects of small heterogeneities within the sample and
errors in transducer placement. The advantage of the method in measuring the
interval anisotropy in vertical seismic profile (V'SP) experiments has aiready been
presented in Kebaili & Schmitt (1996).

Kebaili & Schmitt (1997) measured the P-wave anisotropy only on a similar
composite material. The present work included these measurements but ex-
tended them with small shear ‘SH™ and ‘S\” orientation transducers. Under the
assumption that the test material (phenolic) has orthorhombic symmetry. the
nine independent elastic constants were obtained by a nonlinear least-squares in-
version of the observed phase velocities to an uncertainty of better than 2 %. The
nonlinear least-squares inversion procedure developed in this work is able to in-
vert for the full 21 independent elastic constants that occur for the triclinic case.
Limitations in transducer coverage allowed inversion of the 624 phase velocities
only for the orthorhombic case.

An unexpected and additional observation is the waveform spreading or
stretching seen with increasing offset. This pulse broadening is symptomatic
of a wave speed dispersion and hence attenuation. The effect appeared to be
particularly severe for the SV mode propagating in the vertical plane at oblique

angles to the layers.

3.2 Future Work

There are a number of interesting areas of research made possible with devel-
opments in this thesis. Immediate and direct future work should include the
acquisition of data in two additional diagonal planes over the existing phenolic

sample in order to determine the most general elastic constants for the triclinic
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case where no material symmetry is assumed. Such an experiment would confirm
whether or not the phenolic sample is truly orthorhombic. or more importantly
resolve whether the material can be considered as nearly orthorhombic. After
this application of this methodology to synthetic samples. the next logical step
would be to apply this methodology to a series of already well-characterized
rock. Unfortunately, the elastic properties of rock are often highly dependent
on the type of porosity and on the external confining pressure. Further. when
rock samples are removed from their native environment. some drilling induced
damage and stress relief will tend to damage the core. This may lead to changes
in the characteristics of the rock. One way to partially overcome this problem is
to carry out the measurements under pressure. Future work should focus on the
technical development of the technique in order to make it less cumbersome so
that these experiments can be carried out efficiently under confining pressures
(to atleast 300 MPa) in order to evaluate the effects of anisotropy change with
pressure. Many different types of both sedimentary and igneous rocks need be
tested.

Another area of future work is studying the properties of rocks in the borehole
through the use of vertical seismic profile (VVSP) data. The results from the
experiments performed under confining pressure should be compared with the
results from V'SP data in order to determine possible effects caused by removal
of the rock samples from their native environment.

On a more fundamental level. it was noted that there is spreading in the
waveform with offset. How this spreading of the waveforms with offset affects
the 7 — p transform should be studied. possibly through numerical modeling, in
order to better improve the determination of phase velocities.

As mentioned previously. the spreading of the waveform may be due to both

dispersion and attenuation. Such effects should be studied theoretically and



CHAPTER 3. CONCLUSIONS 66

supported by numerical modeling. One of the most interesting areas for future
application of this technique is in the study of layered media and how elastic
waves of various frequencies are influenced by propagation through the medium.
One crucial topic relates to what may be observed when-the wavelength becomes
similar to the thickness of the layer. In such a situation. the material behaviour
is no longer employ the existing effective medium theories. When the wavelength
of the propagating wavelet approaches or exceeds the laver thickness. one must
worry about the scale effects of the propagation through lavered media. We
hope to make new contributions to the understanding of the trade-off between
anisotropy and geological scale.

Anisotropy in rocks may be the result of preferential orientation of mineral
grains. the presence of oriented cracks of various sizes. or the occurrence of thin
layering. One should investigate how these differing sources of anisotropy con-
tribute to observable effects such as dispersion and attenuation. These differing
sources of anisotropy may even contribute to a directional dependence in the dis-
persion and attenuation. This should be investigated by studving materials with
similar symmetry but differing sources of anisotropy. The slant-stack technique
developed here is ideal for such studies.

Perhaps most importantly will be the studies of the trade-off between wave
velocity anisotropy. dispersion. and scale in layered anisotropic media. A better
understanding of the characteristics of elastic waves in this regime is crucial
to better interpretation of seismic observations. Some of the results may have

implications towards our view of the earth’s structure.
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Figure B.8: P-polarization results from a 4.0 cm depth source on the phenolic

block in the v-z plane.
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Figure B.10: SV-polarization results from a 6.0 cm depth source on the phenolic

block in the y-z plane.
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Figure B.12: SH-polarization results from a 4.0 cm depth source on the phenolic
block in the v-z plane.
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Figure B.13: P-polarization results from a 2.0 cm depth source on the phenolic
block in the xy-z plane.
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Figure B.14: P-polarization results from a 4.0 cm depth source on the phenolic
block in the xy-z plane.
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Figure B.15: SV-polarization results from a 4.0 cm depth source on the phenolic
block in the xy-z plane.



APPENDIX B. RESULTS FROM THE PHENOLIC BLOCK. 93

0.12

‘,./\/Wﬁ
JVW
N\ ]
N
ﬁ_/\ﬁmm
Ne—~——————
— }
50.08 ~/ v\’\/\m——,
30.06 Y S i
& R :
A '
0.04 st !
N J

0.02 Wam

M

e ————
0 20 40 60 80 100 120

Travel Time {1s)

(a) Amplitude versus time traces with offset.

Og

[4)]

O_' (.ﬂ‘ ‘O

Intercept Time
[\V]
N

W
[9))

W
o pes

H
[=]

H
n

00
Horizontal Slowness (us/m)

{b) Peak amplitude normalization of the 7 — p transform
via slant-stack of (a).

Figure B.16: SV-polarization results from a 6.0 cm depth source on the phenolic
block in the xy-z plane.
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Figure B.17: SH-polarization results from a 2.0 cm depth source on the phenolic

block in the xy-z plane.
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Figure B.18: SH-polarization results from a 4.0 cm depth source on the phenolic

block in the xy-z plane.
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Figure B.19: P-polarization results from a 2.0 cm depth source on the phenolic
block in the x-v plane.
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Figure B.20: P-polarization results from a 4.0 cm depth source on the phenolic
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Figure B.21: SV-polarization results from a 4.0 cm depth source on the phenolic
block in the x-y plane.
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Figure B.22: SV-polarization results from a 6.0 cm depth source on the phenolic
block in the x-y plane.
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Figure B.23: SH-polarization results from a 2.0 cm depth source on the phenolic
block in the x-y plane.
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Appendix C

Radon transform and inversion

C.1 Radon transform

A slant-stack (Radon) transform is a mapping of a two-dimensional function
f(z.t) from the offset-time (z.t) domain into the intercept time-horizontal slow-
ness (7 — p) domain. The slant stack (Radon) transform is defined by Robinson

(1982) and Tatham (1984):

F(T.p)z/_if(.r.r-i—pr)dr (C.1)

where £’ is the integration of the amplitudes f (z.¢t) along the line y = 7 + pz.

This equation basically means the data is decomposed into different plane
wave components where for each 7 value on a given horizontal slowness p the
amplitudes of all the samples along the line given by the line y = 7 + pz is
summed.

The 7 — p transform used was that described in Equation C.1 where an
intercept 7 and slope p is chosen and the amplitudes from the r — ¢t domain
along the line t = 7 + pz are summed. No special hyperbolic velocity filtering or
ratio filtering was applied (see Kebaili and Schmitt, 1997). The 7 — p transform

program was written in the programming language of Matlab and is shown as
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follows:

C.1.1 Computer program for 7 — p transform

%
A
%
%
A
%

%

A

%

yA

taupeetr.m

Written by Marko Mah (May 1997)
The purpose of this program is to perform a tau-pee

transform on the offset-time data.

First we must load in the data
To do this we must determine which files need to be

loaded in and how many

nfiles is the number of files to be loaded

nfiles=input (’How many traces are to be loaded?’);

A
%

the following determines the filename

count is simply a counter

% filename is the name of the file to be loaded

for count = 1:nfiles

temp=int2str(count) ;
if count <= 9

filename=[’or03tr0’,temp,’.flowl’];
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else
filename=[’or03tr’,temp,’.flowl’];

end

fid=fopen(filename) ;
traceloaded=fread(fid, *float’);

fclose(fid);

% the following puts traceloaded into a matrix

% where the all the traces will be stored

if count==
data=traceloaded;

else
data=[data,traceloaded];

end

end

clear traceloaded;

% the following figures out the size of the data
[lengthdata,templ=size(data);

% the following asks for the sampling rate in microsecond (10°-6

secs)

% srate is the sampling rate in seconds
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srate=input (’What is the sampling rate in microseconds? ’);

srate=sratex0.000001;

% offsetl is the offset at the first trace in metres

% offsetinc is the distance between each trace in metres

offsetl=input(’What is the offset at the first trace in metres?
:);
offsetinc=input(’What is the distance between each trace in metr

es? ’);

% The following asks for input parameters for the tau-pee calcul
ations

% taustart is the tau value you wish to start at

% tauinc is how large of an increment you want in tau

% taunum is the number of tau increments you want

% pstart is the p value you wish to start at

% pinc is how large of an increment you want in p

% pnum is the number of p increments you want

taustart=input (’At what tau do you want to start at in secs? ’);
tauinc=input ('How large of an increment in tau do you want in se
cs? ?);

taunum=input (’How many increments do you want in tau? ’);
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pstart=input (’At what p value do you want to start at in secs/me
tre? ’);
pinc=input (’How large of an increment in p do you want in secs/m
etre? ’);

pnum=input (’How many increments do you want in p? );

taunum=round (taunum) ;

pnum=round (pnum) ;

% tpmatrix is the matrix where all the tau-pee values will be held

tpmatrix=zeros (taunum+1,pnum+1) ;

% offset is the offset of each trace in metres

offset=[0:1:nfiles-1];

offset=offset*offsetinc+offsetl*ones(1,nfiles);

% first we select a tau value and do the tau-pee transform
% for all values of p before doing the next value of tau

% We are going to keep the calculations in the time domain
% as long as possible to prevent round off error.

for counti=0:taunum

% tau is the tau in seconds
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tau=(taustart+tauinc*countl)+*ones(1,nfiles);

for count2=0:pnum

% p is the p in seconds/metre

p=pstart+pinc*count?2;

% time is the time in seconds at which the

% amplitudes will be extracted from the data

time=tau+p*offset;

% sample is the sample number at which the

% amplitudes will be extracted from the data

sample=round(time/srate+ones(1,nfiles));

% the following calculates the tau-pee value

% tpvalue is the tau-pee value for this

% particular value of tau and pee

tpvalue=0;

for count3=1:nfiles

% the following if statement checks to see if
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% the sample number is less than the length of

% the data and if so extracts the amplitude

if sample(l,count3) <= lengthdata
tpvalue=tpvalue+data(sample(1,count3),count3);
end

end

% now that the tpvalue has been calculated, the

% tpvalue must be put into tpmatrix

tpmatrix(counti+1,count2+1)=tpvalue;

end

end

% Now that tpmatrix has been created and filled we must now outp

ut the data

for count=1:pnum+1
if count<=9
temp=int2str(count) ;
name=[’or03tr0’,temp,’.tp’];
else
temp=int2str(count) ;
name=[’or03tr’,temp,’.tp’];

end
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fid=fopen(name,’w’);
fwrite(fid, tpmatrix(:,count), ’float’);
fclose(fid);

end

time=sratex10~6*[1:1:lengthdata];
figure

imagesc(offset,time,data);
xlabel(’0ffset (m)’);
ylabel('Time (microseconds)’);
title(’Offset-Time data’);
colormap(gray)

colorbar

pend=pstart+pinc*pnum;
pvalues=[pstart:pinc:pend];
tauend=taustart+tauinc*taunum;

tauvalues=[taustart:tauinc:tauend];

figure

imagesc(pvalues,tauvalues, tpmatrix);
xlabel(’P (sec/metre)’);
ylabel(’Tau (sec)’);

title(’Tau-P data’);

colormap(gray)

colorbar
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This 7 — p transform was tested on data acquired on a glass block as shown
in Figures A.1 to A.6. The average phase velocities calculated from the 7 — D
transform for the glass blocks are 5724 + 64 m/s. 3647 = 77 m/s. and 3467 +
15 m/s for the P. SV. and SH mode transducers respectivelv. The P and SH
velocities match the simple direct pulse tranmission P- and S-wave velocities of
5690 £ 60 m/s and 3410 + 26 m/s respectively to within 1 %. The SV velocities
had large errors due to problems with errors in the placement of the source

transducers.

C.2 Inversion

The inversion strategy begins with an initial guess at the elastic coefficients with
the assumption that the density is already well known. Phase velocities with
propagation angle are calculated from this seed and the residuals of these with
those observed are minimized using an L2 norm. An L2 norm is where the square
of the differences are used as opposed to an L1 norm where the absolute values of
the differences are used. The residual represented by ¢ is defined by the following

formula:

€ = Z (Theoretical Phase Velocity — Observed Phase Velocity)? (C.2)

i=1
where n is the number of observed phase velocities.

After this first initial guess, 3 different methods were employed to reduce the
residual. The first is a pseudo-least squares method applied iteratively where
small increments and decrements to the elastic constants are applied in steps.
The second is where pseudo-random increments or decrements to the elastic

constants are applied. The random increments or jumps are incorporated in
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order to prevent entrapment in localized minima within the residuals. The third

is the secant method which is defined by the following formula:

In — Tn-1

Flon) = f (@nsh) (C-3)

Tpn+y = ITn — f(l'n) l:

where n is the position number

In order to try to determine where the function f(r,) equals zero. the guess
In- is determined by putting a secant line throught points (r,_;. f(z,_,)) and
(rn. f(rn)) and determining where the line intersects zero. This method only
works if two points f(z,_;) and f(x,) are already calculated. After apply these
various methods. a unique solution will more than likely be determined.

The following is a summmary of how the inversion works for the orthorhombic

case where there are 9 independent elastic constants:
Step 1: Read in data.

Step 2: Calculate residual from initial guess or seed and set as lowest residual

case.

Step 3: If there is no change in the clastic constants for 3 iterations or if the

residual is small enough. then reduce step size for Step 4.

Step 4: Increase and decrease each independent elastic constant for the lowest

residual case by 1 step and calculate residuals.

Step 5: Increase or decrease each independent elastic constant by a pseudo-

random step and calculate the residuals.
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Step 6: If residuals from Step 4 and Step 5 are less than the lowest residual case.

then apply secant method and recalculate residual.

Step 7: Use the elastic constants with the lowest residual as the seed for the next

loop.

Step 8: If 500 iterations are performed or residual is lower than set mark. then

go to Step 9. If not. go to Step 3.
Step 9: \Write out elastic constants and exit.

The inversion was written in the programming language C with the routines
Jacobi.c. nrutil.c and nrutil.h being programs based on routines from Numerical

Recipes (Press et al. 1989).

C.2.1 Computer Programs for Inversion.

Main Inversion Program

/* apr28invold.c */
/* written by Marko Mah April 28, 1999 =/

/* for the inversion of phase velocities in an orthorhombic mate

rial */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#include <string.h>
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#include "nrutil.h"

#define pi 3.1415926535897;

void jacobi(float **a, int nd, float d[], float **v, int #*nrot);

void main(int argc, char *argv[])

{
float rho; /+* rho is the density of the material in kg per m~3
*/
double c2d[6][6]; /* c2d is the 2nd order stiffness tensor in
pascals */
double c4d[3][3]1[3]1([3]; /* c4d is the 4th order stiffness tens
or in pascals */
int i,j,k,1,m,n,o0,p; /* i,j,k,1,m,n,0,p are counters */
int nd; /* nd is the size of the dimension */
double temp[3]; /* temporary variables */
float planenorm(3][624]; /* contains vector normal to the plan
e in which data lies =*/
float norm([3][624]; /* contains vector describing direction of
propagation */
float **ch; /* *xch stores the Christoffel symbols #*/
float **partmot; /# #**partmot is the matrix which will store t
he particle motions (eigenvectors) =/
float rhophvelphvel([4]; /* rhophvelphvel is the vector which w
ill store the eigenvalues */
int nrot; /* nrot is where the number of jacobi rotations need

ed is stored */
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float phvel[3]; /* phvel is the vector which will store the ph
ase velocities =/

float pwavevell[624], svwavevel[624], shwavevel[624]; /* phase
velocities for each polarization */

float fileres([624],filevel[624];

double tempa(3], tempb[3], tempc(3], tempv[3]; /* temporary so
rting variables =/

double decl, dec2; /+* temporary sorting variables */

char tempname (6] ;

int wavetype[624];

double seed[9]; /* what values you start the inversion off at =*/
double guess[29][9];

float stepsize;

int numint;

float randsteplimit;

int repeatO;

int change[28]; /* which elastic constant is being changed */
float epsilon[29]; /* a measure of the discrepancies squared =/
int smallest;

float templ; /#* a temporary variable =/

float slope, intercept; /* slope and intercept as calculated b

y the secant method x/

int whichint[501]; /* which iteration is it */
int whichsmallest([501]; /* which is the smallest epsilon for t
his iteration */

float whichepsilon[501]; /* what is the value of this smallest
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epsilon */

FILE *inputfile, #*outputfile;

/* the following reads in the data */

inputfile=fopen("realdata.txt", "r");
for (i=0;i<624;i++){
fscanf (inputfile, "%s\t %4f\t %f\t %f\t %f\t %f\t %f\t %f\n",
tempname,&planenorm[0] [i] ,&planenorm{1] (i],&planenorm([2] [i],
&norm[0] [i] ,&norm{1] [i], &norm[2] [i] ,&filevel[i]):
/* fprintf (stderr, "%s\t %f\t %f\t %f\t 4f\t %f\t %f\t %f
\n", tempname,planenorm[0] [i],planenorm[1] [i] ,planenorm[2] [i]
,norm[0]1[i] ,norm{1] [i] ,norm[2][i],filevel[i]); =*/
if (strcmp(tempname, "pwave")==0){
wvavetypel[i]=1; /#* wavetype=1 is a P-wave =/
}
else if (strcmp(tempname,"shwave")==0){
wavetype[i]=2; /* wavetype=2 is a sh-wave =/
}
else if (strcmp(tempname,"svwave")==0){

wavetype[i]=3; /* wavetype=3 is a sv-wave */

}

fclose(inputfile) ;

/* this is where we initialize many of the variables */
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rho=1395; /#* sets the density of the material */

printf(“rho is %f\n", rho);

nd=3; /* sets the size of the dimension */

stepsize=1E9; /* assigns the initial stepsize */

numint=0; /* initializes the number of iterations the program
has gone through */

randsteplimit=1E9; /+* assigns the limit of the random guess */
repeat0=0; /* initializes the number of consecutive repeated r

esults the program has obtained =*/

/* tells the program which of the 9 (i.e. 0 to 8) elastic conms
tants to change */
change[0]=0;
change[1]=0;
change [2]=0;
change (3]=1;
change [4]=1;
change[5]=2;
change[6]=2;
change[7]=3;
change [8]=3;
change [9]=4;
change[10]=4;
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change[11]=5;
change[12]=5;
change[13]=6;
change[14]=6;
change[15]=7;
change[16]=7;
change[17]=8;
change[18]=8;
change[19]=0;
change[20]=1;
change[21]=2;
change[22]=3;
change([23]=4;
change[24]=5;
change[25]=6;
change [26]=7;
change[27]=8;

epsilon[0]=0.0;

/* the following calculates the residual epsilon for the seed
(start value) as taken from Vestrum(1994)*/

seed[0]=17.522E9;

seed[1]=7.220E9;

seed[2]=6.609E9;

seed[3]=15.777E9;

seed[4]=6.197E9;
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seed[5]=11.751E9;
seed[6]=3.127E9;
seed[7]=3.484E9;
seed[8]=3.804E9;

/* initializes c2d (0->8) with the 9 seed values */
c2df0] [0]=seed[0];
c2d[0] [1]=seed[1];
c2d[0] [2]=seed[2];
c2d[0] [3]=0;
c2d[0] [4]=0;

c2d (0] [5]1=0;
c2d[1] [1]=seed[3];
c2d[1] [2]=seed[4];
c2d[1] [3]=0;
c2d[1] [4]=0;
c2d[1] [5]1=0;
c2d[2] [2]=seed[5];
c2d[2] [3]=0;
c2d[2] [4]1=0;
c2d[2] [6]1=0;
c2d[3] [3]=seed[6];
c2d[3] [4]=0;

c2d [3] [5]=0;

c2d[4] [4]1=seed[7];
c2d[4] [5]=0;
c2d[5] [6]=seed[8];
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/* sets c_ij -> c_ji */
c2d[1]1[0]=c2d[0] [1];
c2d[2] [0]=c2d [0] [2];
c2d[2][1]=c2d[1][2];
c2d[3][0]=c2d[0] [3];
c2d[31[1]=c2d[1][3];
c2d (3] [2]=c2d[2] [3];
c2d (4] [0]=c2d[0] [4];
c2d[4]1[1]1=c2d[1]1[4];
c2d[4] [2]=c2d[2] [4];
c2d[4][3]=c2d[3][4];
c2d [5] [0]=c2d[0] [5];
c2d[5][1]1=c2d[1][5];
c2d [5] [2]=c2d[2] [5];
c2d [5] [31=c2d[3] [5];
c2d[5] [4]=c2d[4][5];

/* the following converts the 2nd-order stiffness tensor to a
4th-order stiffness tensor */

for (i=1; i<=3; i++){

for (j=1; j<=3; j++){
for (k=1; k<=3; k++){
for (1=1; 1<=3; 1++){
if (i==j)
m=j;

else
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m=9-(i+j);

if (k==1)
n=k;
else

n=9-(k+1) ;

c4d[i-1][j-11[k-1] [1-1]=c2d[m-1] [n-1];

}

/* end of converting the 2nd-order stiffness tensor to a 4th-o

rder stiffness tensor %/

/* ch is the matrix that will contain the christofell symbols */
/* initialize ch to a 3 by 3 matrix =/

ch=dmatrixf(1,3,1,3); /* dmatrixf is a float pointer */

/* initalize partmot to a 3 by 3 matrix =/

partmot=dmatrixf(1,3,1,3);

/* start of first loop to initialize many of the values */

for (0=0;0<624;0++){

/* first must initialize ch */

for (i=1; i<=3; i++){
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for (j=1; j<=3; j++){
ch[i]1[j1=0.0;

/* calculates the christoffel symbols */
for (i=0; i<=2; i++){
for (j=0; j<=2; j++){
for (k=0; k<=2; k++){
for (1=0; 1<=2; 1++){
ch[(i+1)][(1+1)]=ch[(i+1)1[(1+1)]I+c4d [i][j] [k] [1]1*no
rm[j] [o]l*norm(k] [o];

/* Now we must figure out the eigenvalues and eigenvectors =/
/* the inputs into jacobi are ch and nd */

/* ch are the christoffel symbols and nd contains length of
a dimension */

/* rhophvelphvel, parmot, and nrot are the outputs */

jacobi(ch, nd, rhophvelphvel, partmot, &nrot);

/* the following determines the phase velocity */

for (i=0;i<=2;i++){
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phvel[il=sqrt (rhophvelphvel[i+1]/rho);

/* the following normalizes the particle motions */

for (i=1;i<=3;i++){
temp[i-1]=sqrt(partmot[1] [i]*partmot[1] [i]+partmot [2] [i]*p
artmot {2] [i] +partmot {3] [i]*partmot [3] [il);

}

for (i=1;i<=3;i++){
for (j=1;3<=3;j++){

partmot [i] [jl=partmot (il [j]/temp[j-1];

}

/* end of normalization of particle motions */

/* the following sorts the polarizations */
if ((phvel[0] > phvel[1]) &% (phvel[0] > phvel[2])){
/* case for if P-wave is first entry */
tempv [0]=phvel[0];
tempv([1]=phvel([1];
tempv[2]=phvel([2];
for (i=0;i<=2;i++){
tempa[i]=partmot [i+1] [1];
tempb{i]=partmot [i+1] [2];
tempc[i]=partmot [i+1] [3];
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else if (phvel[1]>phvel[2]){
/* case for if P-wave is second entry #/
tempv [0]=phvel[1];
tempv [1]=phvel[0];
tempv [2]=phvel[2];
for (i=0;i<=2;i++){
tempa [i]=partmot [i+1] [2];
tempb [i]=partmot [i+1] [1];

tempc [il=partmot [i+1] [3];

}
elseq{
/* case for if P-wave is third entry =/
tempv [0]=phvel[2];
tempv[1]=phvel([1];
tempv [2]=phvel [0] ;
for (i=0;i<=2;i++){
tempa [i]=partmot [i+1] [3];
tempb [i]=partmot [i+1] [2];
tempc [il=partmot [i+1] [1];
}

} /* end of if-elseif-else loop */

pwavevel[o]=tempv[0]; /* sets the P-wave velocity */

/* takes the dot product between the direction of propagatio

n and the particle motion */
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for (i=0;i<=2;i++){
temp[i]=planenorm[i] [o]*tempb[i];

}

decl=fabs(temp[O]+temp[1]+temp[2]);

for (i=0;i<=2;i++){
temp[il=planenorm[i] [o]*tempc[i];
}
dec2=fabs(temp[0]+temp[1]+temp[2]);

/* determines which of the 2 remaining polarizations are SH-wave
and SV-wave*/
if (decil < dec2){
svwavevel [o]=tempv[1];
shwavevel [o] =tempv[2];
}
else {
svwavevel [o] =tempv[2];
shwavevel [o]=tempv[1];
} /*end of if-else loop */

/* end of sorting out polarizations #*/

/* determines and calculates the residual squared#*/
if (wavetypelol==1){
fileres[o]=(pwavevel[o]-filevel[o])=*(pwavevel[o]-filevel[o

;
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}
else if (wavetypel[o]==2){

fileres[o]=(shwavevel[o]-filevel[o])*(shwavevel[o]-filevel
[o1);

}

else if (wavetypel[ol==3){

fileres[ol=(svwavevel[o]-filevel[o])*(svwavevel[o]l-filevel

[01);
} /* end of if-elseif-elseif loop */

epsilon[0] += fileres[o]; /* determines the total residual s

quared for the initial guess */
} /* end of loop for o to initialize many of variables#*/
fprintf(stderr,“epsilon[0] is %f\n",epsilon[0]);
/* the following stores some data to be written out later */
whichint[0]=0;
whichsmallest [0]=0;

whichepsilon[0]=epsilon([0];

/* stop criterion to be used#*/

while ((epsilon[0]>10) && (numint <500)){

numint += 1; /* number of iterations plus 1 */
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fprintf(stderr, "\nnumint is %d\n",numint);

/* adjusts the step size */
if (stepsize > 1E8){
if ((epsilon[0]<5000000) || (repeat0>3)){

stepsize=1ES8;

/* adjusts the step size */
if (repeat0>5){
if (epsilon[0]<3000000){
stepsize=1E7;
}
if (epsilon[0]<2000000){
stepsize=1E6;
}
if (epsilon[0]<1000000){

stepsize=1ES;

/* initialize your guesses with the seed */
for (i=0; i<29; i++){
for (j=0; j<9; j++){
guess[i] [j1=seed[j];

[{v}
=1
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}

/*

initializes epsilon which holds the residual squared#*/

for (i=1; 1i<29; i++){

/*
/*
8]
/*
8]
/*

epsilon[i]=0.0;

guess[0] [:] contains the original guess */

guess[1] [0] will be increased by stepsize and guess[1][1-
will remain unchanged */

guess[2] [0] will be decreased by stepsize and guess[2][1-
will remain unchanged */

guess[3][1] will be increased by stepsize and guess([3][0,

2-8] will remain unchanged */

/*

2_

/*

guess[4] [1] will be decreased by stepsize and guess([4] [0,
8] will remain unchanged */

. etc ... %/

/* guess[18] (8] will be decreased by stepsize and guess[18][

o_

7} will remain unchanged */

/* change guesses[1-18][:] =*/

for (i=0; i<9; i++){

k=1%2+1;
1=1%2+2;

guess[k] [i]+=stepsize; /* guess #/
fprintf (stderr, "guess([%d] [%d]=%f\n" k,i,guess[k] [i]);



APPENDIX C. RADON TRANSFORM AND INVERSION 129

guess[1] [i]-=stepsize;
fprintf(stderr, "guess[/d] [%d]=%f\n",1,1i,guess[1] [i]);

/* initialize the random guesses */

/* guess[19] [0] will be increased or decreased by a random s
tep and guess{19][1-8] will remain unchanged */

/* guess[20] [1] will be increased or decreased by a random s
tep and guess([20][0,2-8] will remain unchanged */

/¥ ... etc ... */

/* guess[27] [8] will be increased or decreased by a random s

tep and guess[27][0-7] will remain unchanged #*/

for (i=0; i<9; i++){
temp1=((rand())/32767.0)-0.5;
guess[19+i] [i] += randsteplimit*tempi;
fprintf(stderr, "random guess([%d][%d] is %f\n",19+i,i,guess
(19+i1[i1);

/* calculates the epsilons for guess[1-27]1[:] =/
for (p=1; p<28; p++){

/* the following initializes c2d with the guesses */
c2d[0] [0]=guess [p] [0];
c2d[0] [1]=guess [p] [1];
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c2d [0] [2]=guess[p] [2];
c2d 0] [3]=0;
c2d (0] [4]=0;
c2d (0] [5]1=0;
c2d[1] [1]=guess [p] [3];
c2d[1] [2]=guess [p] [4];
c2d[1][3]=0;
c2d (1] [(4]=0;
c2d[1][51=0;
c2d [2] [2] =guess [p] [5];
c2d[2] [3]=0;
c2d[2][4]=0;
c2d [2] [5]=0;
c2d [3] [3]=guess [p] [6];
c2d [31[4]=0;
c2d (3] [5]=0;
c2d (4] [4]=guess [p] [7];
c2d [4] [5]1=0;
c2d [5] [5]=guess[p] [8];

/* the following sets c_ij—>c_ji */
c2d[1] [0)=c2d[0][1];
c2d[2]1[0)=c2d[0] [2];
c2d[2] [1]=c2d[1][2];
c2d[3] [0]=c2d[0] [3];
c2d[3]1[1]=c2d[1] [3];
c2d[3]1[2]=c2d[2] [3];



APPENDIX C. RADON TRANSFORM AND INVERSION 131

c2d[4] [0]=c2d [0] [4];
c2d 4] (1]1=c2d (1] [4];
c2d[4] [2]1=c2d[2] [4];
c2d[4] [3]1=c2d (3] [4];
c2d [5] [0]=c2d[0] [5];
c2d[5]1[11=c2d[1][5];
c2d 5] [2}=c2d[2] [5];
c2d [5] [3]1=c2d[3] [5];
c2d [5] [4]1=c2d[4] [5];

/* the following converts the 2nd-order stiffness tensor t
0 a 4th-order stiffness tensor */
for (i=1; i<=3; i++){
for (j=1; j<=3; j++){
for (k=1; k<=3; k++){
for (1=1; 1<=3; 1l++){
if (i==j)
m=j;
else

m=9-(i+j);

if (k==1)
n=k;
else

n=9-(k+1) ;

c4d[i-1][j-1] [k-11[1-1]=c2d[m-1] [n-1];
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}

for (0=0;0<624;0++){
/* first must initialize ch */
for (i=1; i<=3; i++){
for (j=1; j<=3; j++){
ch(il[j]1=0.0;

/* calculates the christoffel symbols =*/
for (i=0; i<=2; i++){
for (j=0; j<=2; j++){
for (k=0; k<=2; k++){
for (1=0; 1<=2; 1++){
ch[(i+1)1[(1+1)]1=ch[(i+1)][(1+1)]+c4d[i][jI k] [1
1*norm(j] (o] *norm[k] [o];

/* Now we must figure out the eigenvalues and eigenvecto

rs */
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/* the inputs into jacobi are ch and nd */
/* ch are the christoffel symbols and nd contains length
of a dimension */

/* rhophvelphvel, parmot, and nrot are the outputs */

jacobi(ch, nd, rhophvelphvel, partmot, &nrot);

/* the following determines the phase velocity */
for (i=0;i<=2;i++){

phvellil=sqrt (rhophvelphvel [i+1]/rho);

/* the following normalizes the particle motions */

for (i=1;i<=3;i++){
temp[i-1]=sqrt(partmot[1] [i]*partmot [1] [i]+partmot [2] [
il*partmot (2] [i]l+partmot [3] [i] *partmot [3] [i]);

}

for (i=1;i<=3;i++){
for (j=1;j<=3;j++){

partmot [i] [jl=partmot [i] [j1/temp(j-1];

}

/* end of normalization of particle motions */

/* the following sorts the polarizations =/
if ((phvel[0] > phvel[1]) && (phvel[0] > phvel[2])){

/* case for if P-wave is first entry */
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tempv [0]=phvel[0];

tempv[1]=phvel[1];

tempv [2]=phvel (2] ;

for (i=0;i<=2;i++){
tempa [i]=partmot [i+1] [1];
tempb [i]=partmot [i+1] [2];
tempc[i]=partmot [i+1] [3];

}
else if (phvel[1]>phvel[2]){
/* case for if P-wave is second entry */
tempv [0]=phvel[1];
tempv[1]=phvel[0];
tempv [2]=phvel[2];
for (i=0;i<=2;i++){
tempal[i]l=partmot [i+1][2];
tempb[i]l=partmot [i+1] [1];

tempc [i]=partmot [i+1] [3];

}
else{
/* case for if P-wave is third entry */
tempv[0]=phvel[2];
tempv[1]=phvel[1];
tempv[2]=phvel[0] ;
for (i=0;i<=2;i++){

tempa[il=partmot [i+1] [3];
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tempdb [i]=partmot [i+1] [2];
tempc [il=partmot [i+1] [1];
}
} /* end of if-elseif-else loop */

pwavevel[o]=tempv[0]; /* sets the P-wave velocity */

/* takes the dot product between the direction of propag

ation and the particle motion */

for (i=0;i<=2;i++){
temp[i]J=planenorm[i]lo] *tempb[i];

}

deci=fabs(temp [0]+temp[1] +temp[2]);

for (i=0;i<=2;i++){
temp[i]=planenorm[i][o] *tempc[i];

}

dec2=fabs (temp [0] +temp[1]+temp[2]) ;

/* determines which of the 2 remaining polarizations are
SH-wave and SV-wavex/
if (decl < dec2){
svwavevel [o]=tempv[1];
shwavevel [o] =tempv[2];
}
else {
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}

svwavevel [o]=tempv[2];
shwavevel [o]=tempv[1];
} /*end of if-else loop */

/* end of sorting out polarizations */

/* determines and calculates the residual squared*/

if (wavetypelol==1){
fileres[o]=(pwavevel[o]l-filevel[o])*(pwavevel[o]l-filev
ello]);

}

else if (wavetypel[o]l==2){
fileres[o]l=(shwavevel{o]l-filevel[o])*(shwavevel[o]-fil
evello]l);

}

else if (wavetypelo]l==3){
fileres[o]=(svwavevel[o]l-filevell[o])*(svwavevel[o]-fil
evello]);

} /* end of if-elseif-elseif loop */

epsilon[p] += fileres[o]; /* determines the total residu

al squared for the initial guess */

/* end of loop for o */

fprintf(stderr,"epsilon[%d] is %f\n",p,epsilon[p]);

136
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}
/* end of loop for p which checks over guess[1-27]1[:] */

/* now to choose the smallest epsilon */
smallest=0;
for (i=1;i<28;i++){

if (epsilonf[i]<epsilonfsmallest]){

smallest=i;

/* the following determines a guess using the secant method
based on the smallest epsilon and then calculates an epsilon
*/
if (smallest != 0){
slope=(epsilon[smallest]-epsilon[0])/(guess[smallest] [chan
ge[smallest]]-guess[0] [change [smallest]]);
fprintf(stderr,“slope is %f\n", slope);
intercept=epsilon[smallest]-slope*guess[smallest] [change[s
mallest]];
fprintf(stderr,"intercept is %f\n",intercept);
guess [28] [change[smallest]]=(-intercept/slope) ;
fprintf(stderr,"guess[28] [%d] is %f\n",change[smallest],gu
ess[28] [change(smallest]]);

c2d[0] [0]=guess [28] [0];
c2d[0] [1]=guess[28] [1];
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c2d[0] [2]=guess [28] [2];
c2d[0] [3]=0;
c2d[0] (4]=0;
c2d (0] [5]1=0;
c2d (1] [1]=guess[28] [3];
c2d[1] [2]=guess[28] [4];
c2d[1] [3]=0;
c2d(1] [4]=0;
c2d[1][5]=0;
c2d[2] [2]=guess[28] [5];
c2d[2][3]=0;
c2d[2] [4]=0;
c2d [2] [5]=0;
c2d[3] [3]=guess (28] [6];
c2d[3] [4]=0;
c2d (3] [5]=0;
c2d[4] [4]=guess[28] [7];
c2d[4] [5]=0;
c2d[5] [5]=guess[28] [8];

c2d 1] [0]=c2d[0] [1];
c2d[2] [0]=c2d[0] [2];
c2d[2][1]=c2d[1][2];
c2d [3] [0]=c2d[0] [3];
c2d[3]1 [1]=c2d[1] [3];
c2d (3] [2]=c2d[2] [3];
c2d (4] [0]=c2d[0] [4];
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c2d[4](1])=c2d[1]1[4];
c2d[4] [2]=c2d[2]1[4];
c2d[4] [3]=c2d[3][4];
c2d [5] [0]=c2d [0] [5];
c2d (5] [1]=c2d[1][5];
c2d[5] [2]=c2d[2] (5] ;
c2d[5] [3]=c2d[3][5];
c2d[5] [4]=c2d [4][5];

/* the following converts the 2nd-order stiffness tensor t
0 a 4th-order stiffness tensor */
for (i=1; i<=3; i++){
for (j=1; j<=3; j++){
for (k=1; k<=3; k++){
for (1=1; 1<=3; 1++){
if (i==j)
m=j;
else

m=9-(i+j);

if (k==1)
n=k;
else

n=9-(k+1);

c4d[i-1] [j-1] [k-1] [1-1]=c2d [m-1] [n-1];
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}

for (0=0;0<624;0++){

/* first must initialize ch */
for (i=1; i<=3; i++){
for (j=1; j<=3; j++){
ch[i] [j]=0.0;

/* calculates the christoffel symbols */
for (i=0; i<=2; i++){
for (j=0; j<=2; j++){
for (k=0; k<=2; k++){
for (1=0; 1<=2; 1++){
ch[(i+1)][(1+1)]=ch[(i+1)I [(1+1)]+c4d[i] [jI[k][1
J*norm[j] (o] *norm(k] [o] ;

/* Now we must figure out the eigenvalues and eigenvecto

rs */
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/* the inputs into jacobi are ch and nd */
/* ch are the christoffel symbols and nd contains length
of a dimension */

/* rhophvelphvel, parmot, and nrot are the outputs #*/

jacobi(ch, nd, rhophvelphvel, partmot, &nrot);

/* the following determines the phase velocity */
for (i=0;i<=2;i++){

phvel[i]=sqrt(rhophvelphvel [i+1]/rho);

/* the following normalizes the particle motions */

for (i=1;i<=3;i++){
temp[i-1]=sqrt(partmot[1] [i]l*partmot[1] [i]l+partmot [2] [
il*partmot[2] [i]+partmot [3] [i]*partmot [3] [i]);

}

for (i=1;i<=3;i++){
for (j=1;j<=3;j++){

partmot [i] [jI=partmot [i] [j]/temp[j-1];

}

/* end of normalization of particle motions */

/* the following sorts the polarizations */
if ((phvel[0] > phvel[1]) && (phvel[0] > phvel[2])){

/* case for if P-wave is first entry */
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tempv [0] =phvel[0];

tempv[1]=phvel([1];

tempv [2] =phvel[2];

for (i=0;i<=2;i++){
tempa[il=partmot[i+1] [1];
tempb[i]=partmot[i+1] [2];
tempc[i]=partmot[i+1] [3];

}
else if (phvel(1]>phvel[2]){
/* case for if P-wave is second entry */
tempv[0]=phvel[1];
tempv[1]=phvel[0];
tempv[2]=phvel[2];
for (i=0;i<=2;i++){
tempa[i]=partmot[i+1] [2];
tempb[i]l=partmot[i+1] [1];

tempc[i]=partmot[i+1] [3];

}
else{
/* case for if P-wave is third entry #*/
tempv [0]=phvel[2];
tempv[1]=phvel[1];
tempv[2]=phvel[0];
for (i=0;i<=2;i++){

tempa[i]=partmot[i+1][3];
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tempb [i]=partmot [i+1] [2];
tempc [i]=partmot[i+1] [1];
}
} /* end of if-elseif-else loop */

pwavevel[o]=tempv[0]; /* sets the P-wave velocity */

/* takes the dot product between the direction of propag

ation and the particle motion */

for (i=0;i<=2;i++){
temp[i]=planenorm[i] [o] *tempb(i];

}

deci=fabs(temp[0]+temp[1]+temp[2]);

for (i=0;i<=2;i++){
temp(i]l=planenorm[i] [o]*tempc[i];

}

dec2=fabs (temp[0]+temp[1]+temp[2]);

/* determines which of the 2 remaining polarizations are
SH-wave and SV-wave*/
if (decl < dec2){
svwavevel[o]l=tempv[1];
shwavevel [o]=tempv[2];
}
else {
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svwavevel [o]=tempv[2];
shwavevel[o]=tempv([1];
} /*end of if-else loop */

/* end of sorting out polarizations */

/* determines and calculates the residual squared*/

if (wavetypelo]l==1){
fileres[o]=(pwavevel[o]-filevel[o])*(pwavevel[c]-filev
elfo]);

}

else if (wavetypel[o]==2){
fileres[o]=(shwavevel[o]-filevel[o])*(shwavevel [0]-fil
evel[o]);

}

else if (wavetypelo]==3){
fileres[ol=(svwavevel[o]-filevel[o])*(svwavevel[o]-fil
evel(lol);

} /* end of if-elseif-elseif loop */

epsilon[28] += fileres[o];

}
/* end of loop for o */

fprintf(stderr,"epsilon[28] is %f\n",epsilon[28]);

if (epsilon([28]<epsilon[smallest]){
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smallest=28;

fprintf(stderr,“epsilon(28] is %f\n",epsilon[28]);
}
else {

epsilon([28]=epsilon(0];
}

/* end of epsilon determined by secant method */

/* the following counts how many times the seed HAS NOT cha
nged */
if (smallest==0){
repeat0 += 1;
}
else {

repeat0=0;

fprintf(stderr,"smallest is %d\n", smallest);

/* the following initializes the new seed */

for (i=0; i<9; i++){

seed[il=guess{smallest] [i];
fprintf(stderr, "seed[/d]=%f\n",i,seed[i]);
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epsilon[0]=epsilon(smallest];

/* the following stores some data to be written out later */
whichint [numint]=numint;
whichsmallest [numint]=smallest;

whichepsilon[numint]=epsilon([0];

}
/* end of while loop */

/* now to write out whichint, whichsmallest, and whichepsilon */
outputfile=fopen("apr28invold.epsilon","w");
for (i=0; i<501; i++){
fprintf (outputfile,"%d\t %d\t %f\n",whichint[i],whichsmalles
t[i],whichepsilon([i]);
}
fclose(outputfile);

/* now to write out the seeds */
outputfile=fopen("apr28invold.seed","w");
for (i=0; i<9; i++){

fprintf (outputfile, "seed[%d]=%f\n",i,seed[i]);
}
fclose(outputfile);
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Subsidiary Computer Programs

/* jacobi.c (Modified from Numerical Recipes) */
#include <math.h>
#include <stdio.h>
#include "nrutil.h"
#define ROTATE(a,i,j,k,1) g=alil[jl; h=alk][11; ali] [jl=g-s*(h+g
*tau); alk][1]1=h+s*(g-h*tau);
void jacobi(float #**a, int n, float d[], float **v, int *nrot)
{
int j,iq,1ip,1;
float tresh, theta, tau, t, sm, s, h, g, c, *b, *z;
b=vector(1,n);
z=vector(1l,n);
for (ip=1;ip<=n;ip++){
for (iq=1;iq<=n;iq++){
v[ip] [iq]=0.0;
}
v[ip]l [ipl=1.0;
}
for (ip=1; ip<=n;ip++){
blipl=d[ipl=alip] [ip];
z[ip]=0.0;
}
*nrot=0;
for (i=1;i<=50;i++){
sm=0.0;

for (ip=1;ip<=n-1;ip++){
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for (ig=ip+1;iq<=n;iq++)
sm += fabs(alip][iql);
}
if (sm==0.0){
free_vector(z,1,n);
free_vector(b,1,n);
return;
}
if (i<4)
tresh=0.2*sm/ (n*n) ;
else
tresh=0.0;
for (ip=1;ip<=n-1;ip++){
for (ig=ip+1;iq<=n;iq++){
g=100.0*fabs(alipl [iql);
if (i>4 && (float)(fabs(d[ipl)+g)==(float)fabs(d[ip])
&% (float) (fabs(d[iql)+g)==(float)fabs(d[iql))
alip] [iq]=0.0;
else if (fabs(alip]lliq])> tresh){
h=d(iq]-d[ip];
if ((float) (fabs(h)+g)==(float)fabs(h))
t=(alipl [iq]l)/h;
else {
theta=0.5+h/(alip] [iq]);
t=1.0/(fabs (theta) +sqrt (1.0+theta*theta));

if (theta < 0.0) t = -t;
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c=1.0/sqrt(1+t*t);

s=t*c;

tau=s/(1.0+c);

h=t*alip] [iq];

z[ip] -= h;

z[iq] += h;

dlip] -= h;

dliq] += h;

alip] [iq]=0.0;

for (j=1;j<=ip~1;j++){
ROTATE(a, j,ip,j,1q)

}

for (j=ip+1;j<=iq-1;j++){
ROTATE(a,ip,j,j,1iq)

}

for (j=ig+1;j<=n;j++){
ROTATE(a,ip, j,iq,j)

}

for (j=1;j<=n;j++){
ROTATE(v, j,ip,j,iq)

}

++(*nrot) ;

}

}
for (ip=1;ip<=n;ip++){
blip] += z[ip];
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dlip]=blip];
z[ip]=0.0;

}

nrerror("Too many iterations in rountine jacobi");

/* nrutil.c =/

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#define FREE_ARG char =

#define NR_END O

/* a modification of the nrutils.c as found in Numerical Recipes
*/

void nrerror(char error_text[])

/* Numerical Recipes standard error handler */

{
fprintf (stderr,"Numerical Resipes run-time error...\n");
fprintf(stderr,"%s\n" ,error_text);
fprintf(stderr,"...now exiting to system...\n");
exit(1);

}

float #*vector(long nl, long nh)
/* allocate a float vector with subscript range v[nl...nh] #/
{

float *v;

v=(float *)malloc((size_t) ((nh-nl+1-NR_END)=*sizeof(float)));
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}

if (!'v) nrerror(“"allocation failure in vector()");

return v-nl+NR_END;

double **dmatrix(long nrl, long nrh, long ncl, long nch)

/* allocate a double matrix with subscript range m[nrl...nrh] [nc

1.

{

}

..nch] =/

long i, nrow=nrh-nrl+1, ncol=nch-ncl+i;

double *#*m;

/* allocate pointers to rows */

m=(double *=*) malloc((size_t) ((nrow+NR_END)*sizeof (double*)));
if (!m) nrerror("allocation failure 1 in matrix()");
m+=NR_END;

m-=nrl;

/* allocate rows and set pointers to them */

m[nrl]=(double *) malloc((size_t) ((nrow*ncol+NR_END)*sizeof (do
uble)));

if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
m(nrl1]+=NR_END;

m[nrl]-=ncl;

for(i=nrl+1l; i<=nrh;i++) m[i]J=m[i-1]+ncol;

/* return pointer to array of pointers to rows */

return m;

float **dmatrixf(long nrl, long nrh, long ncl, long nch)

/* allocate a float matrix with subscript range m[nrl...nrh][ncl

.nch] =*/
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{
long i, nrow=nrh-nrl+1, ncol=nch-ncl+i;
float **m;
/* allocate pointers to rows */
m=(float **) malloc((size_t) ((nrow+NR_END)*sizeof (float*)));
if (!'m) nrerror(“allocation failure 1 in matrix()");
m+=NR_END;
m-=nrl;
/* allocate rows and set pointers to them */
m[nrll=(float *) malloc((size_t) ((nrow*ncol+NR_END)*sizeof (flo
at)));
if ('m[nrl]) nrerror("allocation failure 2 in matrix()");
m[nrl]+=NR_END;
m{nrl]-=ncl;
for(i=nrl+1; i<=nrh;i++) m[il=m[i-1]+ncol;
/* return pointer to array of pointers to rows */
return m;
}
void free_vector(float *v, long nl, long nh)
/* free a float vector allocated with vector() #*/
{
free ((FREE_ARG) (v+nl-NR_END));
+
void free_dmatrixf(float **m, long nrl, long nrh, long ncl,
long nch)

/* free a float matrix allocated by dmatrixf() =/
{

V]
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free((FREE_ARG) (m[nrl]+ncl-NR_END));
free((FREE_ARG) (m+nrl1-NR_END));

/* nrutil.h (Modified from Numerical Recipes) */

#ifndef _NR_UTILS_H_

#define _NR_UTILS_H_

float *vector(long nl, long nh);

double **dmatrix(long nrl, long nrh, long ncl, long nch);
float **dmatrixf(long nrl, long nrh, long ncl, long nch);
void free_vector(float *v, long nl, long nh);

void nrerror(char error_text[]);

void free_dmatrixf(float #**m, long nrl, long nrh, long ncl,
long nch);

#endif /+ _NR_UTILS_H_ =*/

C.2.2 Testing of inversion program

A number of synthetic results in which the phase velocities were first forward
modeled on hypothetical isotropic and orthorhombic materials were gathered.
The inversion was then performed on these synthetic. noise-free results. The
elastic coefficients for both materials were determined to better than 0.01 % as
shown in Tables C.1 and C.2. In the real world. effects such as random electrical
noise and transducer misplacement are present. This noise was modeled by the
addition of the random noise to the synthetic data. The results of the inversion
of this synthetic data are shown in Table C.1 and Tables C.3 to C.12.

For Table C.1, the elastic constants A and p are Lamé’s constants where the
compressional and transverse wave velocities are defined by Equations C.4 and

C.5 respectively.
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A+ 2\ V2
- (22)

u 1/2
- (—) (C5)
p

Instead of Lamé’s constants. the compressional and transverse wave velocities
may also be expressed in terms of the bulk modulus k and Poisson’s ratio ¢ in

Equations C.6 and C.T respectively.

- _(3(k-o) 3

e = ((1+0)p) (¢0)
/3K /1—20\\? }
- (2(52)

[n an orthorhombic medium. the material can be described by 9 independent
constants represented by letters a to ¢ which are arranged as follows in the 2-

dimensional stress-strain tensor:

C,’j =

o o0 oR
OO O n A o
OO N
oL oo o
OO0 OO0
~ O O O OO0

L ]

For the orthorhombic medium. noise was added to the phase velocities and
the corresponding elastic constants are calculated and summarized in Tables C.3
to C.12. From analysis of Table C.1 and Tables C.3 to C.12. it was found that
for the noise-free case the elastic constants can be determined with an accuracy
of better than 0.01 % and that for random errors in velocity of up to 10 % the

clastic constants can be determined with average errors of less than 3 %.
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This inversion method was then performed on data acquired on an isotropic
glass block. There were 131 phase velocities calculated for the glass block which
when inverted and the corresponding statistical analysis vielded the following
results for the elastic constants: A = 19.225 + 0.961 Gpa and p = 32.780 +
0.221 GPa. These elastic constants can be similarly expressesed in terms of bulk
modulus & and Poisson’s ratio g as 41.1 + 1.1 GPa and 0.184 £ 0.013 respectively.
These results compare fairly well with the constants of A = 22.643 + 3.584
GPa and p = 30.767 £ 1.648 GPa as calculated from direct pulse transmission
measurements. For an isotropic medium such as glass. the elastic constants can
be calculated with an error of less than 5 %. The inversion converged quickly in
the first 20 iterations and then converged much more slowly before stabilizing at
170 iterations (Figure C.1).

The same inversion method was performed on data acquired on an orthorhom-
bic phenolic block. There were 624 phase velocities calculated for the phenolic
block which when inverted and the corresponding statistical analysis vielded the
clastic constants as seen in Table 2.1. For an orthorhombic medium such as phe-
nolic. the elastic constants can be calculated within an error of 2 % based upon
comparison with an ideal case where errors are added. The inversion converged
quite quickly in the first 20 iterations and then converged much more slowly

before stabilizing at 450 iterations (Figure C.2).
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Noise A (GPa) © (GPa) oA (GPa) i (GPa)
Added

0% 19.22472 3277794 0.00004 0.00004
1 % 18.954 32.841 0.270 0.061
2% 18.673 32.905 0.552 0.125
3% 18.393 32972 0.832 0.192
1% 18.107 33.036 1.118 0.256
5% 17.817 33.103 1.407 0.323

6 % 17.534 33.169 1.691 0.388
T% 17.271 33.227 1.953 0.447

8 % 16.969 33.300 2.256 0.521

9 % 16.696 33.361 2.528 0.581
10 % 16.435 33.423 2.790 0.643
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Table C.1: Inverted elastic constants for an isotropic material as noise is added.

Elastic Inverted Value | Difference from | Difference from

Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 15.9796 0.0001 0.0006

b 7.16869 0.00001 0.0001

c 7.19554 0.00006 0.0008

d 15.5980 0.00002 0.0001

e 7.31445 0.00006 0.0008

f 11.57869 0.00001 0.00009

g 3.40242 0.00002 0.0006

h 3.00035 0.00004 0.00001

i 3.85498 0.00002 0.0005

Table C.2: Inverted elastic constants for an orthorhombic material with 0 %

noise added.
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Elastic Inverted Value | Difference from | Difference from

Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.031 0.051 0.3

b 7.191 0.022 0.3

C 7.240 0.044 0.6

d 15.600 0.002 0.01

e 7.278 0.036 0.5

f 11.555 0.024 0.2

g 3.408 0.006 0.2

h 2.993 0.007 0.2

i 3.853 0.002 0.05

Table C.3: Inverted elastic constants for an orthorhombic material with 1 %

noise added.

Elastic Inverted Value | Difference from | Difference from

Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.078 0.099 0.6

b 7.213 0.044 0.6

¢ 7.282 0.087 1.2

d 15.607 0.009 0.06

e 7.246 0.068 0.9

f 11.534 0.043 0.4

g 3.413 0.010 0.3

h 2.985 0.015 0.5

i 3.852 0.003 0.08

Table C.4: Inverted elastic constants for an orthorhombic material with 2 %

noise added.



APPENDIX C. RADON TRANSFORM AND INVERSION

Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.128 0.148 0.9

b 7.241 0.072 1.0

c 7.323 0.128 1.7

d 15.616 0.018 0.1

e 7.211 0.104 1.4

f 11.505 0.073 0.6

g 3.418 0.016 0.5

h 2.979 0.021 0.7

i 3.851 0.004 0.1
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Table C.5: Inverted elastic constants for an orthorhombic material with 3 %

noise added.

Elastic Inverted \Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.183 0.203 1.3

b 7.262 0.093 1.3

¢ 7.368 0.173 2.3

d 15.612 0.014 0.1

e 7.173 0.141 2.0

f 11.487 0.092 0.8

g 3.424 0.022 0.6

h 2.970 0.030 1.0

i 3.848 0.007 0.2
Table C.6: Inverted elastic constants for an orthorhombic material with 4 %

noise added.
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Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.240 0.260 1.6

b 7.288 0.120 1.6

c 7.413 0.217 2.9

d 15.616 0.018 0.1

e 7.138 0.176 2.5

f 11.464 0.115 1.0

g 3.431 0.028 0.8

h 2.961 0.040 1.4

i 3.845 0.010 0.3
Table C.7: Inverted elastic constants for an orthorhombic material with 5 %

noise added.



APPENDIX C. RADON TRANSFORM AND INVERSION

Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.284 0.304 1.9

b 7.313 0.144 2.0

c 7.451 0.255 3.4

d 15.620 0.021 0.1

e 7.103 0.212 3.0

f 11.438 0.141 1.2

g 3.133 0.031 0.9

h 2.958 0.043 1.5

i 3.844 0.011 0.3
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Table C.8: Inverted elastic constants for an orthorhombic material with 6 %

noise added.

Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.337 0.358 2.2

b 7.335 0.166 2.3

c 7.492 0.296 4.0

d 15.623 0.025 0.2

e 7.068 0.246 3.5

f 11.421 0.158 1.4

g 3.439 0.037 1.1

h 2.946 0.034 1.8

i 3.840 0.015 0.4

Table C.9: Inverted elastic constants for an orthorhombic material with 7 %

noise added.
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Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.383 0.403 2.5

b 7.339 0.190 2.6

C 7.532 0.337 4.5

d 15.630 0.032 0.2

e 7.034 0.281 4.0

f 11.393 0.186 1.6

g 3.445 0.042 1.2

h 2.943 0.057 1.9

i 3.842 0.013 0.4
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Table C.10: Inverted elastic constants for an orthorhombic material with 8 %

noise added.

Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.443 0.463 2.8

b 7.386 0.217 2.9

c 7.575 0.380 5.0

d 15.626 0.028 0.2

e 6.993 0.321 1.6

f 11.372 0.207 1.8

g 3.450 0.048 1.4

h 2.931 0.069 2.4

i 3.840 0.015 04

Table C.11: Inverted elastic constants for an orthorhombic material with 9 %

noise added.
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Elastic Inverted Value | Difference from | Difference from
Constant (GPa) Theoretical Theorectical
Value (Gpa) Value (%)

a 16.490 0.510 3.1

b 7.411 0.242 3.3

¢ 7.613 0.418 3.9

d 15.635 0.037 0.2

e 6.957 0.357 5.1

f 11.348 0.230 2.0

g 3.455 0.053 1.5

h 2.921 0.079 2.7

i 3.837 0.018 0.5

Table C.12: Inverted elastic constants for an orthorhombic material with 10 %

noise added.
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Figure C.1: Inversion residuals on data acquired on a glass block.
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Figure C.2: Inversion residuals on data acquired on a phenolic block.



