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Abstract 

Cellular responses to stress are an integral part of cardiovascular physiology and pathology, 

and endoplasmic reticulum (ER) stress is the key component in the development and progression 

of various heart diseases. However, the relative contribution of ER stress pathways to muscle 

damage and molecular mechanisms governing muscle ER stress regulation are still unclear. The 

objectives of this thesis were to investigate a role and regulation of IRE1α, an ER membrane 

associated stress sensor, in skeletal and cardiac muscle and to determine structural and function 

features of catecholaminergic polymorphic ventricular tachycardia (CPVT) related Casq2 mutants 

and their role in heart pathology. 

We identified two distinct pools of IRE1α in skeletal muscle fibers and in cardiomyocytes. 

One pool localized at the perinuclear ER membrane system and other at the junctional 

sarcoplasmic reticulum (SR). We also discovered that, at the junctional SR, calsequestrin interacts 

directly with the ER luminal domain of IRE1α preventing its dimerization, an initial step in 

activation IRE1α signaling. We generated a mouse model with cardiomyocyte specific, inducible 

deletion of the IRE1α gene. Heart with silenced IRE1α developed dilated cardiomyopathy and 

impaired cardiomyocyte Ca2+ transient indicating important role of IRE1α in the heart physiology 

and potential functional impact on muscle excitation-contraction coupling. 

Mutations in the gene encoding for cardiac calsequestrin, CASQ2, cause a stress-induced 

arrhythmia, CPVT. We carried out functional and structural analysis of six CPVT related CASQ2 

mutations (R33Q, L167H, D307H, D351G, G332R, and P329S). The six mutations are distributed 

in diverse locations of the calsequestrin and impact on structure and function of the protein 

including folding, aggregation, and impaired or reduced Ca2+ binding. Remarkably these mutations 

are manifested in a similar phenotype in humans. 

Overall, in this thesis, we show that IRE1α is a new component of the junctional SR where 

it interacts with calsequestrin. This novel protein-protein interaction provides new insight into 

muscle specific regulatory mechanisms associated with IRE1α mediated UPR. We also provide 

the first direct evidence that IRE1α is required to maintain health of the heart. Finally, we provide 

the first evolutionary insights into the calsequestrin gene and showed that different Casq2 

mutations may have distinct underlying molecular mechanisms leading to CPVT. 
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Chapter 1: Literature review 

1.1 Endoplasmic reticulum and sarcoplasmic reticulum in the heart 

The endoplasmic reticulum (ER) is a large, dynamic membrane system that orchestrates 

many vital roles in the cell including Ca2+ storage, protein synthesis, folding and post-translational 

modification, phospholipid and steroid synthesis, and stress responses1-5. The diverse functions of 

the ER are performed by distinct domains consisting of bilayer membranes formed tubules, sheets, 

and the nuclear envelope2. ER continuously communicates with other cellular organelles including 

Golgi apparatus, nucleus, and mitochondria; mediates lipid synthesis and transfer, Ca2+ transfer, 

inflammatory signaling, and transcriptional regulation6, 7. ER also forms close contacts with 

plasma membrane that are involved in Ca2+ signaling8. Therefore, ER is a multifunctional 

organelle that coordinates energy metabolism, stress signals sensing and integration, and cell fate 

decisions to name a few.  

In cardiac muscle a highly specialized and unique ER called sarcoplasmic reticulum (SR), is 

dedicated to the regulation of Ca2+ homeostasis and excitation-contraction (E-C) coupling for 

activation of myofilament contraction9, 10. In muscle, the SR has two well defined structure and 

functional membrane networks: longitudinal SR and junctional SR (Figure 1-1)11, 12. The 

longitudinal SR consist of extended tubular membrane network around myofibrils and the 

mitochondria and it is enriched in Ca2+- ATPase (SERCA) responsible for Ca2+ uptake to initiate 

muscle relaxation12, 81, 82. The junctional SR is the membrane of extended sacs from the 

longitudinal SR and faces the T tubule11, 12. The junctional SR contains calsequestrin responsible 

for Ca2+ storage and ryanodine receptor/Ca2+ channels (RyR) responsible for Ca2+ release to trigger 

muscle contraction11, 13(Figure 1-1). Upon depolarization, voltage-gated L-type Ca2+ channels 

(Cav1.2), located primarily in the transverse T-tubular membrane, opens to increase local cytosolic 

Ca2+ concentration that triggers SR Ca2+ release from via RyR2, Ca2+ release from few RyR2 

promotes Ca2+ release of neighboring RyR2 channels to amplify Ca2+ signals (Figure 1-1).  This 

process is termed Ca2+ induced Ca2+ release. Released Ca2+ binds to troponin complex, activates 

contractile apparatus and initiate heart muscle contractions. Muscle relaxation cytosolic Ca2+ is 

taken up by SR via SERCA2a and removed to extracellular space via the Na+/Ca2+ exchanger 

(NCX) to trigger muscle relaxation. This process is referred to cardiac E-C coupling, where 
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electrical excitation of the myocyte (action potential) generates a mechanical contractile 

response14. 

 

 

Figure 1-1. Schematic view of SR and transverse tubules in cardiomyocytes.  

The longitudinal SR is occupied by high concentrations of Ca2+-ATPase (SERCA). At the 

junctional SR, the ryanodine receptor/Ca2+ release channel (RyR2) faces the transverse tubules, 

while in the lumen of the junctional SR RyR2 interacts with calsequestrin. Two membrane-

spanning junctional SR proteins, triadin and junctin, form complexes with calsequestrin and RyR2 

to regulate RyR2 Ca2+ channel activity. In the junctional SR, calsequestrin also interacts with the 

UPR stress sensor IRE1α and luminal Ca2+ sensor STIM1. Casq2, cardiac calsequestrin; Cav 1.2, 

voltage-gated L-type Ca2+ channels; IRE1α, Inositol-requiring enzyme 1α; STIM1, stroma 

interaction molecule 1; ORAI1, Ca2+ release-activated Ca2+ channel protein 1. 

  



3 

 

Cardiomyocytes also contain functionally independent ER to carry out vital cell processes9, 

15, 16. ER forms contiguous membrane system with SR, Golgi apparatus, and nuclear envelope17. 

Ultrastructure analysis of cardiomyocytes reveals 48% of rough ER appears in the interfibrillar 

and perinuclear sarcoplasm18. ER resident and integral membrane proteins including calreticulin, 

calnexin, immunoglobulin binding protein (BiP), protein disulfide-isomerase (PDI), and 

ribophorin II are all localized at perinuclear area, and along the I band areas whereas calsequestrin 

is localized at the junctional SR in the muscle cells15, 19-22. These ER proteins play critical roles in 

cardiomyocytes supporting Ca2+ and redox homeostasis, cardiogenesis, cardiac contractility and 

other functions that are essential for cardiomyocyte cell survival23-25.  

1.2 ER stress and Unfolded Protein Response  

Disruption of ER homeostasis create a cellular state referred to as ER stress. Many cellular 

disturbances can cause ER stress including nutrient deprivation, Ca2+ depletion, hypoxia, 

metabolic disturbances, mechanical pressure, and protein aggregation. These features are often 

observed in ischemic, hypertrophic, and failing hearts26-28.  Cells have developed a sophisticated 

surveillance system to sense and respond to ER stress with the goal of restoring ER homeostasis 

and ensuring cell survival. This process involves activation of complex cytoplasmic and nuclear 

signaling pathways collectively called unfolded protein response (UPR) (Figure 1-2). There are 

three ER transmembrane proteins functioning as ER stress sensors and signal transducers, 

including the ER kinase dsRNA-activated protein kinase-like ER kinase (PERK), activating 

transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). Activation of these three 

signaling arms of UPR trigger distinct cellular events to re-establish protein homeostasis in the 

ER, these include (i) translational attenuation to stop entry of new proteins to the ER, (ii) 

transcriptional activation of genes encoding proteins involved in protein folding (chaperones and 

folding enzymes) to assist protein folding and maturation, (iii) transcriptional activation of genes 

responsible for ER-associated degradation (ERAD) to degrade misfolded protein. However, when 

ER stress is prolonged and ER protein load greatly exceeds its fold capacity, continued activation 

of UPR will lead to (iv) apoptosis and cell death. Among the UPR signaling pathways, IRE1α is 

the key component that functions as master regulator in cell fate determination under ER stress27, 

28  
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IRE1α, the widely expressed IRE1 paralog of the most conserved UPR signaling branch, is 

a type I transmembrane protein containing a serine/threonine kinase and an endoribonuclease 

(RNase) domain on its cytosolic face. In response to ER stress, the luminal domain of IRE1α 

dimerizes/oligomerizes, initiates trans-autophosphorylation of its cytosolic domain inducing a 

conformational change that lead to activation of IRE1α RNase activity located in the cytoplasmic 

domain29, 30. RNase activity of IRE1α catalyzes excision of 26 nucleotides within mRNA encoding 

the X-box binding protein 1 (XBP1). This unconventional splicing event causes frameshift allows 

to generate a longer, stable, and activated transcription factor known as spliced XBP1 (XBP1s)31, 

32. XBP1s binds to a specific promoter element, known as the ER stress element and unfolded 

protein response element, turns on expression of genes encoding proteins that modulate protein 

folding, secretion, ERAD, protein translocation into the ER, and lipid synthesis32, 33. The RNase 

domain of IRE1α can cleave multiple mRNA targets with consensus sequences and secondary 

structure that are similar to the XBP1 mRNA, via process known as regulated IRE1-dependent 

decay (RIDD)34. Although the significance of RIDD activity is not fully understood, the function 

appears to play a role in adaptive response as well as inducer of apoptosis during prolonged ER 

stress34-36. In addition, IRE1α can interact and activate tumor necrosis factor (TRAF2) and 

apoptosis signal regulated kinase (ASK1) to initiate apoptosis37. 

Similar to IRE1α, PERK and ATF6 function as distinct ER stress sensors (Figure 1-2). They 

both are ER transmembrane proteins that contain an ER luminal stress sensing domain and 

cytoplasmic enzymatic domain. Upon ER stress, PERK phosphorylates the eukaryotic translation 

initiation factor 2α (eIF2α) to inhibit protein translation38-40. There is also a selective translation of 

mRNAs encoding ATF4 transcription factor that targets the UPR genes. ATF4 induces expression 

of CHOP/GADD153(transcriptional factor C/EBP homologous protein) and GADD34 (growth 

arrest and DNA damage-inducible 34), which activate ER stress-mediated apoptosis41. ER stress 

triggers relocation of ATF6 from ER to the Golgi, where its transcription factor domain cleaved 

by S1P and S2P proteases and released to nucleus for UPR regulation33, 42, 43.  
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Figure 1-2. The unfolded protein response (UPR) pathway. 

ER stress induces activation of three sensors located at the ER membrane: activating transcription 

factor 6 (ATF6), the ER kinase dsRNA-activated protein kinase-like ER kinase (PERK), and 

inositol-requiring 1 alpha (IRE1α). Figure adapted from 28. 

ATF6: Under stressed conditions, ATF6 translocated to Golgi complex, and undergoes specific 

cleavage by site-1 and site-2 proteases (S1P and S2P). Cleavage of ATF6 produces a 50 kDa 

soluble basic leucine zipper transcription factor (cleaved ATF6), which moves to nucleus and 

binds to ER stress response elements (ERSE-1 and –II) or to ATF/cyclic AMP (cAMP) response 

element to induce transcriptional activation of ER stress response gene. 

PERK: ER stress triggers dimerization and autophosphorylation of PERK, followed by targeted 

phosphorylation of the translation initiation factor eIF2α (eukaryotic translation initiation factor 

2α), preventing initiation of translation to reduce ER protein load. But allows translation of few 

specific mRNAs, such as transcription factor ATF4 (activating transcription factor 4). ATF4 

induction leads to expression of pro-apoptotic transcription factor CHOP (C/EBP-homologous 

protein).  
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IRE1α: IRE1α is the master regulator that is capable of cell fate determination under ER stress. 

Upon dimerization and autophosphorylation, IRE1α splices XBP1 mRNA (removes 26-nucleotide 

3’ intron) causes a frameshift allows translation of stable, and active transcriptional factor named 

spliced XBP1 (XBP1s). XBP1 binds to the specific promoter elements, ERSE and UPR element 

(UPRE), and triggers transactivation of downstream ER stress-responsive genes, including those 

involved in protein-folding and degradation machinery, all aimed at restoring ER homeostasis. 

IRE1α can also recruit TRAF2 and apoptosis signal-regulating kinase 1 (ASK1), leading to 

downstream activation of c-Jun NH2-terminal kinase (JNK) and p38 MAPK. Activated JNK 

translocate to mitochondrial membrane, promotes activation of Bim (Bcl2-like protein 11, pro-

apoptotic Bcl-2 members) and inhibition of Bcl-2 (B-cell CLL/lymphoma 2, apoptosis-

suppressing oncoprotein). p38 MAPK phosphorylates and activates CHOP. CHOP induces 

transcriptional activation of genes that contribute to cell death. 

The RNase domain of IRE1α also cleaves hundreds of ER-localized and cytosolic mRNA, 

ribosomal RNA, and microRNAs, a process known as regulated IRE1-dependent decay (RIDD). 

However, the biological significant of these targets are not fully understood. RIDD targeted RNA 

have been suggested to preserve ER homeostasis or induce cell death. RIDD can reduce ER protein 

load through mRNA degradation and global inhibition of protein synthesis by cleavage of 28S 

rRNA. Under chronic ER stress, IRE1α induce activation or upregulation of many pro-

inflammatory and pro-apoptotic proteins. Reduces levels of select microRNAs (miRNAs), for 

example miRNAs that normally repress pro-apoptotic targets, results in activation of downstream 

caspase-1 and/or caspase-2-dependent pro-death pathways, leading to sterile inflammation and 

pyroptotic cell death.  
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1.3 Unfolded protein response in heart disease 

ER stress and UPR plays an important role in cardiac health and pathology. In failing hearts, 

ER stress can be induced by enhanced protein synthesis, hypoxia, mechanical stress, nutrient 

starvation, and change in lipid metabolism. Activation of UPR has been observed in many 

cardiovascular diseases including myocardial infarction, oxygen starvation, ischemia/reperfusion 

injuries, hypertension/pressure overload, myocardium remodeling (hypertrophy and dilation), and 

heart failure 44-48. However, the role of ER stress signaling in these disease conditions remains 

unclear. 

ATF6 mediated UPR activation appear to be cardioprotective. Silencing ATF6 via 

knockdown or knockout in adult cardiomyocytes results in increased damage and decreased 

cardiac function upon ischemic/reperfusion injury49. Furthermore, transgenic mice expressing 

constitutively active N-terminal fragment of ATF6 in cardiomyocytes exhibit a better functional 

recovery from ex vivo ischemic/reperfusion with significantly reduced necrosis and apoptosis 49,50. 

Activation of IRE1α and PERK in heart disease is cardioprotective but can also activate cell 

death signaling pathways and contribute to cardiomyocyte apoptosis and heart failure. PERK-

deficient hearts show severe cardiomyopathy in response to pressure overload-induced heart 

failure, suggestive of a cardioprotective role of PERK51. However, inhibition of CHOP, a molecule 

downstream of PERK, can reduce cardiomyocyte apoptosis induced by aortic coarctation or 

proteasome inhibition52, 53. Overexpressing IRE1α in cardiomyocytes can protect the heart against 

pressure overload-induced heart failure54. XBP1 silencing leads to increased injury from 

ischemia/reperfusion, and overexpressing XBP1s, a spliced form of XBP1, protects hearts from 

ischemia/reperfusion injury55. On the other hand, inhibition of the apoptosis signal-regulating 

kinase 1 (ASK1) in IRE1α mediated apoptosis pathway reduces cardiomyocyte apoptosis after 

transverse aortic constriction56.  

1.4 IRE1α, a multifunctional protein 

IRE1α is the most ancient ER stress sensor, conserved from yeast to mammals57. It is an 

administrator/executor of cell fate determination under ER stress conditions as discussed above. 

IRE1α is able to initiate adaptive responses to enhance cell survival in response to ER stress but 

also able to trigger apoptosis signaling to induce cell death when ER stress is not resolved. Among 
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the three UPR signaling branches, IRE1α is the major trigger in ER stress-induced apoptosis, 

whereas PERK and ATF6 are dispensable in activation of apoptosis during prolonged ER stress36. 

Recent studies have shown diverse roles of IRE1α beyond unfolded protein response. IRE1-

dependent decay (RIDD) degrades RNAs, including mRNA encoding ER and cytosolic localized 

proteins, ribosomal RNA, and microRNAs, involved in many cellular functions such as energy 

metabolism, inflammation, and apoptosis34. Activation of RIDD can preserve ER homeostasis or 

induce cell death, although the mechanisms controlling the switch between cytoprotective to 

cytotoxic RIDD remains to be establish34. Sulfonation of IRE1α inhibits its signaling and activates 

p38/Nrf2 antioxidant responses under oxidative stress conditions58. Moreover, IRE1α interacts 

with an ER associated inositol-1,4,5-trisphosphate receptor/Ca2+ channels (InsP3R), affects InsP3R 

intracellular distribution and Ca2+ channel activity both important for formation of functional ER-

mitochondria contacts and for transport of Ca2+ from the ER to the mitochondria, respectively59. 

1.4.1 IRE1α and structure of ER luminal domain 

In mammals, there are two homologs of IRE1, IRE1α and IRE1β. IRE1α is the more 

predominant isoform ubiquitously expressed. IRE1α-deficiency in mice is embryonic lethal60. 

IRE1β is restrictively expressed in the gut and IRE1β knockout mice are viable61, 62 Both IRE1 

homologs are transmembrane proteins with kinase/nuclease activities triggered by oligomerization 

of IRE1 in response to ER stress61, 63. 

IRE1α contains an N-terminal ER luminal domain responsible for stress sensing and C-

terminal kinase and endoribonuclease domain in the cytosol involved in splicing of XBP1 mRNA 

and RIDD activities. A monomer of the luminal domain of IRE1α is composed of unique protein 

fold of a triangular shaped β-sheet clusters, which provide a dimerization interface stabilized by 

hydrogen bonds and hydrophobic interactions30 (Figure 1-3). Dimerization of IRE1α luminal 

domain initiates auto-phosphorylation of IRE1 cytosolic domain leading to activation of IRE1 

RNase activity30, 64 Moreover, dimerization of IRE1α creates a shared central groove that 

resembles a major histocompatibility complex-like fold allowing for peptide binding. This 

suggests that IRE1α is able to interact with peptides and misfolded peptides primarily composed 

of basic and hydrophobic residues that mimic misfolded proteins in ER30, 65. Mutation of amino 

acid residues within the groove prevents interaction with peptides in vitro65 and leads to impaired 

IRE1α signaling in yeast65, 66.  
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Figure 1-3. Structure of IRE1α dimer. 

IRE1α is a type I transmembrane protein that consists of N-terminus domain facing ER/SR lumen, 

a single transmembrane domain, and cytosolic domain with kinase and endoribonuclease activity. 

The figure shows two monomers of IRE1α, in purple and green, with solvent accessible surfaces. 

The luminal domain of IRE1α (PDB: 2HZ6) forms stable dimer by hydrogen bonds and 

hydrophobic interactions; the dimer interface is marked by the dashed line. The cytosolic domain 

of IRE1α (PDB: 2RIO) contains kinase domain in light purple/green and endoribonuclease (RNase) 

shown in dark purple/green. The location of the kinase and RNase active site is indicated by the 

arrows. ADP molecules bound to the kinase active sites are shown in cyan.  
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1.4.2 The ER/SR luminal modulators of IRE1α activity 

Several ER/SR resident proteins have been identified binding to the ER luminal domain of 

IRE1α and to modulate IRE1 stress sensing and ER stress response activity. These include BiP 

(immunoglobulin binding protein also known as GRP78), PDIA6 (protein disulfide isomerase A6), 

Hsp47 (heat shock protein 47), Cox2 (cyclooxygenase 2), and junctional SR protein calsequestrin. 

BiP, one of the most abundant ER localized chaperones, was the first identified modulator 

of the IRE1α luminal domain67, 68 BiP interacts with ER luminal domain of IRE1α and prevents its 

dimerization and UPR signaling. Dissociation of BiP from IRE1α triggers activation of IRE1α to 

mediate UPR responses67-69. BiP dissociation from IRE1α may be mediated by direct interaction 

of between BiP and misfolded proteins to sequester BiP away from IRE1α70, 71. BiP also binds to 

the luminal domain of PERK and ATF6 under resting conditions, and dissociates from PERK and 

ATF6 under ER stress67, 72. These observations indicate that BiP is a common negative regulator 

of UPR by binding to the luminal regions of ER stress sensors (IRE1α, PERK and ATF6) to 

maintain them in an inactive state.  

PDIA6 is an ER luminal oxidoreductase that catalyzes protein disulfide bond formation, 

assists with protein folding, and maintains redox homeostasis in the ER73. PDIA6 interacts with 

ER luminal domain of IRE1α and enhances IRE1α activity upon ER stress74. PDIA6 effects three 

UPR sensors differently, silencing PDIA6 does not affect PERK pathway but suppress IRE1α 

activity and increases ATF6 activity in response to ER stress induced by ER Ca2+ store depletion74. 

Interestingly, in ischemia/reperfusion injury, ATF6 protects cardiomyocytes by inducing 

expression of PDIA675. 

Hsp47 is an ER localized foldase that belongs to the family of heat shock proteins and 

functions as a specific carrier for different types of collagen. It assists the transport of triple-helix 

procollagen from ER lumen to the cis-Golgi76, 77. Upon ER stress, Hsp47 associates with the ER 

luminal domain of IRE1α, reduces binding of BiP to the IRE1α, promotes IRE1α 

dimerization/oligomerization and activates IRE1α-mediated UPR78. Importantly, Hsp47 enhances 

UPR upon ER stress specifically via IRE1α signaling branch. Overexpression or knockdown of 

Hsp47 does not alter PERK and ATF6-mediated UPR signaling78. 

Cox2, an inducible cyclooxygenase that drives inflammation, interacts with ER luminal 

domain of IRE1α and enhance its XBP1 splicing. Cyclosporine, a small polypeptide widely used 
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as an immunosuppressant in organ transplantation and treatment of autoimmune diseases, triggers 

activation of IRE1α through binding to Cox2, which forms complex with IRE1α79. Cox2-

dependent activation of IRE1α is via mechanism different from that described for ER stress 

induced by Ca2+ store depletion. Cyclosporine associates to Cox2 resulting in enhanced Cox2 

enzymatic activity that is required for IRE1α activation. This provide a novel mechanisms for 

cyclosporine-induced IRE1α signaling79.  

Calsequestrin is one of the most abundant SR proteins exclusively localized to the junctional 

SR in cardiac and skeletal muscle. This Ca2+ binding protein functions as Ca2+ storage and buffer 

to support muscle contraction. I discovered a novel interaction between ER luminal domain of 

IRE1α and calsequestrin80. Association between calsequestrin and IRE1α prevents IRE1α 

dimerization/oligomerization – an initiation step for its activation80. These findings indicate that 

calsequestrin is a muscle specific modulator of IRE1α (Chapter 2). 

While the ER luminal domain of IRE1α is important in stress sensing, IRE1α activation is 

tightly controlled by interacting with number of proteins with its cytosolic domain. A 

comprehensive list of IRE1α cytosolic domain interacting proteins have been reviewed 

previously81. Many of these interacting proteins involved in apoptosis, supporting fine-tuning of 

IRE1α mediated apoptosis activation. IRE1α cytosolic domain interacting proteins can enhance or 

inhibit IRE1α RNase activity, or act as a scaffold and recruit other proteins to activate apoptosis 

signaling81, 82. For example, the cytosolic domain of oligomerized IRE1α binds to the adapter 

protein TNFR-associated factor 2 (TRAF2), triggering the activation of apoptosis signal-

regulating kinase 1 (ASK1) and cJun-N-terminal kinase (JNK) pathway83, 84 (Figure 1-2).  

In conclusion, regulation of ER luminal and cytoplasmic domains of IRE1α involve a 

complex regulatory network. Multiple modulators may provide multiple level of regulation to fine-

tuning IRE1α stress sensing. Tissue-specific regulation of IRE1α maybe mediated by distinct 

regulatory protein complexes. However, exact integration of these modulators with complex ER 

stress-sensing mechanism and/or contribution to UPR-independent IRE1α functions is yet to be 

determined.  
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1.5 Calsequestrin 

Calsequestrin is the major Ca2+ binding protein in the SR where it serves as the main Ca2+ 

storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal 

and cardiac muscles. Calsequestrin is anchored at the junctional SR membrane through interactions 

with membrane proteins and undergoes reversible polymerization with increasing Ca2+ 

concentration. The protein provides high local Ca2+ concentration at the junctional SR and 

communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an 

essential component of E-C coupling. In this section, I focus on calsequestrin structure, function, 

and its role in cardiac arrhythmia – catecholaminergic polymorphic ventricular tachycardia 

(CPVT). 

1.5.1 Calsequestrin protein 

Calsequestrin was first isolated from skeletal muscle by MacLennan and Wang in 1971 as 

the most abundant Ca2+ binding protein in the SR85-88. The protein is localized exclusively in the 

lumen of junctional SR, where it interacts with other junctional SR membrane proteins and forms 

highly abundant, polymerized branches89-91. Calsequestrin binds up to ~40 mol of Ca2+ per mol of 

protein with relatively low affinity85, 86, 92-94 (Table 1-1). This allows high local Ca2+ storage at the 

junctional SR membrane to support fast Ca2+ release to trigger muscle contraction85, 86. Moreover, 

calsequestrin undergo reversible conformational change and polymerization upon Ca2+ binding 

(≥1mM) creating additional Ca2+ binding pockets for increased Ca2+ binding capacity94-96. Ca2+-

induced polymerization of calsequestrin plays an important role in regulation of RyR/Ca2+ release 

channel97, 98. 

There are two isoforms of calsequestrin encoded by two different genes, namely casq1 and 

casq2 (Figure 1-4)99, 100. In mammals, Casq1 (skeletal muscle calsequestrin) is exclusively 

expressed in skeletal muscle, and Casq2 (cardiac calsequestrin) is mainly expressed in the heart101-

104. Both isoforms of calsequestrin bind to Ca2+ with high capacity but low affinity (Table 1-1). 

When the total Ca2+ concentration increases, Ca2+ binding capacity of human Casq1 and Casq2 

increases non-linearly and plateaus at about 12 mM Ca2+ concentration92, 93, 105, 106. The aspartic 

acid rich C-tail domain of calsequestrin is the major Ca2+ binding site on the calsequestrin 

monomer, with deletion of the C-tail domain from Casq1 or Casq2 resulting in over 50% reduction 

in Ca2+ binding capacity92, 106, 107. In skeletal muscle, considering that calsequestrin (Casq1) 
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concentration in the rat extensor digitorum longus muscle at 36 ± 2 µmol per 1 fiber volume101 

and binding capacity of the protein at 40 to 80 mol Ca2+ per mol of protein (Table 1-1), Casq1 

would store up 80% of the SR Ca2+. Mammalian Casq1 and Casq2 are glycosylated, 

phosphorylated105, 108-111, and ubiquitinated 112, 113. Moreover, acetylated peptides from Casq2 were 

detected using anti-lysine antibodies followed by mass spectrometry112. 
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Table 1-1. Calsequestrin isoforms. 

 Casq1 Casq2 

Gene and chromosomal 

location 

CASQ1, chromosome 1q21 99 CASQ2, chromosome 1p23 100 

Number of amino acid 

residues (human) 

396 amino acids 399 amino acids 

Molecular mass 

(human) 

45.2 kDa 46.4 kDa 

Isoelectric point 

(human) 

4.03 4.22 

Tissue expression Fast-twitch skeletal muscle and 

<20% in slow-twitch skeletal 

muscle 101-104 

Heart and Slow-twitch skeletal 

muscle 101-103 

Ca2+ binding capacity 

(nmol Ca2+/nmol Casq) 

~80 Ca2+ 92, 70-80 93, 40 94, 43 
86, 41 85 

~60 Ca2+ 92, 12-13 114, 20 94 

Ca2+ binding affinity 

(Kd) 

1 mM 115,0.04 mM 86, 0.25 mM 
116 

0.872 mM117, 2.15 mM 118 

Polymerization state at 

1 mM luminal Ca2+ 

Mostly in a polymer form91 Mostly monomer and a dimer 119 

Regulation of RyR at 1 

mM luminal Ca2+ 

Inhibits RyR1, requires present 

of junctin alone or junctin and 

triadin 97, 119; activates RyR2 120 

 

Activates RyR1 and RyR2, 

requires triadin and/or junctin 119-

121 

 

Post-translational 

modification (in 

mammalian) 

Rabbit Casq1 is glycosylated 

(GlcNAc2Man1), enhance Ca2+-

dependent polymerization 111, 

122 

Rabbit Casq1 is phosphorylated 

to enhance Ca2+ binding 

capacity, but it does not affect 

RyR1 function, nor its 

interaction with junctin and 

triadin 97, 105, 108 

Ubiquitinated 112 

Glycosylated (GlcNAc2Man6) 

and phosphorylated at C-tail 

domain 108-110, 122, 123 

Acetylated (Lys180) 112, and 

ubiquitinated 113 
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Figure 1-4. The calsequestrin gene and the protein.  

A) The human skeletal muscle calsequestrin CASQ1 gene (top, gene ID: 844), and the human 

cardiac calsequestrin CASQ2 gene (bottom, gene ID: 845). The CASQ2 gene has longer intron 

sequences but a similar overall genomic organization when compared to the CASQ1 gene.  

B) X-ray crystal structure of CASQ1 (left, PBD: 5CRD), and CASQ2 (right, PDB: 2VAF). Both 

isoforms share high primary amino acid sequence identity and structural similarity. The highly 

conserved cysteine residues found only in CASQ2 are indicated as yellow dots. UTR, untranslated 

region; bp, base pair. 
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1.5.2 Functions of calsequestrin 

1.5.2.1 Ca2+ storage and buffering in the junctional SR 

The major function of calsequestrin is Ca2+ storage and buffering at junctional SR (Table 1-1 

and Figure 1-1)86, 88. In working muscle, about 75% of the releasable Ca2+ inside the SR is bound 

to calsequestrin124. In skeletal muscle fiber, deletion of Casq1 causes a 20-50 % reduction in total 

releasable SR Ca2+ induced by caffeine125-127. SR Ca2+ content increases with increased abundance 

of Casq1 in skinned skeletal fiber101, and overexpression of Casq1 in myotubule results in 

increased releasable SR Ca2+ 128. Casq2-deficient cardiomyocytes have decreased SR Ca2+ 

content129, 130, all supporting Ca2+ storage function of calsequestrin.  

Free Ca2+ concentration in the lumen of the SR does not change significantly during sustained 

contraction, but it varies in calsequestrin-deficient fibers124, 131, indicating that calsequestrin plays 

a role as Ca2+ buffer in the SR. In the resting muscle, there is a comparable level of free SR Ca2+ 

concentration in wild-type and Casq1-deficient fibers indicating that calsequestrin does not 

modulate free Ca2+ concentration at the junctional SR. However, with increased frequency of 

stimulation and induced contractions, the free SR Ca2+ concentration in wild-type cells does not 

change significantly, whereas Casq1-deficient fibers show rapid depletion of free SR Ca2+ 

concentration and highly reduced buffering power124, 131, supporting Ca2+ buffering function of 

calsequestrin 

1.5.2.2 Calsequestrin and regulation of the SR ryanodine receptor/Ca2+ channel (RyR) 

The roles of Casq1 and Casq2 in modulation of RyR Ca2+ channel activity have been 

extensively studied in vitro using single channel reconstitution approaches either using isolated 

SR vesicles that contain native RyR or with purified RyR protein incorporated into the lipid 

bilayer132. In skeletal muscle, Casq1 inhibits RyR1 at ≤ 1 mM [Ca2+] (Figure 1-5)97, 98, 133-135, but 

it dissociates from RyR1 at high Ca2+ concentration (≥ 5 mM)97, 134, 136. Removing Casq1 from the 

RyR1 complex containing junctin, triadin, leads to increased probability and duration of the 

opening of RyR1 channel97, 134. Re-addition of Casq1 back to native RyR1 leads to reduced channel 

opening duration97, 134 supporting a notion, that Casq1 inhibits RyR1 channel activity. 

Junctin plays an important role in Casq1-dependent regulation of RyR1. Casq1 does not have 

any effect on RyR1 incorporated into lipid bilayer in the absence of junctin106, 133, 134. The C-tail 
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Ca2+ binding domain of Casq1 involved in protein polymerization, and interactions with triadin 

and junctin, is necessary for Casq1-dependent effects on RyR1 activity106. Clearly, interplay 

between Ca2+, junctin, triadin, RyR1, and Casq1 is essential for Casq1-dependent modulation of 

RyR1 channel activity, and consequently skeletal muscle E-C coupling.  

Casq2 activates RyR2 at ≥ 250 µM Ca2+ concentration, and has an inhibitory effect on the 

channel at low Ca2+ concentration (≤20µM) (Figure 1-5)132, 135, 137, 138. The channel activity of the 

native RyR2 isolated from SR vesicles is enhanced by increasing Ca2+ concentration139, 140. 

Removing Casq2 from native RyR2 by a high Ca2+ concentration reduces the open probability of 

the RyR2, and it becomes insensitive to increasing Ca2+ concentration. Importantly, this is reversed 

by addition of Casq2132, 135, 137, 138. Re-association of triadin and junctin to purified RyR2 in the 

lipid bilayer enhances RyR2 open channel probability, but addition of Casq2 restores RyR2 

sensitivity to SR luminal Ca2+. In conclusion, several in vitro single channel reconstitution studies 

provided strong support for a regulatory role of calsequestrin on RyR, and this regulation requires 

calsequestrin interacting with junctional SR proteins such as triadin and junctin. 
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Figure 1-5. A model for calsequestrin-dependent regulation of the ryanodine receptor/Ca2+ 

channel (RyR). 

At the junctional SR, calsequestrin interacts with RyR, triadin, and junctin in a Ca2+ dependent 

manner. Changes in Ca2+ concentration induce a conformational change in calsequestrin. In 

skeletal muscle, Casq1 inhibits RyR1 at ≤ 1 mM Ca2+ concentration and dissociates from 

RyR1/junctin/triadin complex at [Ca2+] ≥ 5mM or ≤ 100 µM. In cardiomyocytes, Casq2 activates 

RyR2 at ≥ 250 µM Ca2+ concentration and inhibits the RyR Ca2+ channel at low Ca2+ concentration 

≤ 20 µM. Calsequestrin dissociates from the RyR2/junctin/triadin complex at a high Ca2+ 

concentration due to a Ca2+ dependent conformational change. SR, sarcoplasmic reticulum; RyR, 

ryanodine receptor/Ca2+ channel. 
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1.5.2.3 Calsequestrin and store-operated Ca2+ entry  

In response to Ca2+ depletion, the ER luminal Ca2+ sensor, STIM1, dimerizes and interacts 

with the plasma membrane Ca2+ channel (ORAI1) to trigger Ca2+ entry from the extracellular space 

via so called store-operated Ca2+ entry (SOCE)141, 142. SOCE is a major Ca2+ entry pathway in non-

muscle cells in response to depletion of Ca2+ in the ER and is used to maintain ER Ca2+ 

homeostasis141, 143. SOCE is also involved in refilling the SR Ca2+ store, and plays a role during 

skeletal muscle and heart development120, 144.  

In skeletal muscle, Casq1 has been proposed to inhibit SOCE128. STIM1 is co-localized with 

calsequestrin and RyR1 at the junctional SR/T-tubule interface145. During exercise, the ORAI1 

Ca2+ channel in the T-tubule makes contacts with STIM1 at the junctional SR (Figure 1-1)145. 

Overexpression of Casq1 in C2C12 myotubes inhibits SOCE under the conditions of thapsigargin-

dependent Ca2+ depletion of the ER Ca2+ store128. Knockdown of Casq1 (>80%) with shRNA, in 

mouse flexor digitorum brevis muscle, results in reduced abundance of STIM1 and ORAI1 and 

enhanced SOCE following depletion of SR Ca2+ 146. Furthermore, SOCE current is activated more 

rapidly during repetitive depolarization in skeletal myotubes from calsequestrin (Casq1 and Casq2) 

null mice when compared to wild-type muscle147. Casq1 effects on SOCE are intriguing, but it is 

not clear whether the protein exerts its effects on SOCE via direct interaction with STIM1, or 

indirectly by affecting junctional SR Ca2+ homeostasis and/or regulation of RyR1/Ca2+ channel. 

1.5.3 Cardiac calsequestrin and catecholaminergic polymorphic ventricular tachycardia 

Mutations in casq2 are linked to catecholaminergic polymorphic ventricular tachycardia 

(CPVT) (Table 1-2, Figure 1-6)148-150. Arrhythmia patients have been reported as homozygous 

carriers of frameshift or splicing Casq2 mutations causing very early premature stop codons 

(62delA, 532+1 G>A, and G112+5X), which results in nonfunctional Casq2. Patients have 

structurally normal hearts, but display a severe form of CPVT in the early stage of life (6-7 years 

old)118, 151. This indicates that the absence of functional Casq2 in humans is not lethal, and may 

have no effect on cardiac development, but affected individuals develop life threating arrhythmia 

conditions as early as in childhood. 

CPVT is an inherited arrhythmia characterized by polymorphic ventricular tachycardia 

induced by stress148, 152-154. Mutations in casq2 account for about 3-5% of all CPVT148, 155. There 

are 17 Casq2 mutations identified to date associated with CPVT in humans (Table 1-2). Five 
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homozygous mutation are autosomal recessive, six heterozygous mutations appear to be autosomal 

dominant mutations, three are compound heterozygous mutations, two single nucleotide 

polymorphisms, and one heterozygous mutation found from whole-exon-sequencing are predicted 

to be pathogenic and may be a candidate for autosomal dominant inheritance mutations (Table 

1-2). 

Casq2 mutations show different defects on protein structure, Ca2+ binding, polymerization, 

and RyR2 regulation in vitro (Table 1-2)114, 117, 118, 121, 156, 157, yet mutations knock-in mice all lead 

to stress-induced arrhythmia130, 158, 159. Different Casq2 mutations may have distinct underlying 

molecular mechanisms leading to CPVT, however, one unifying feature of Casq2 mutants 

associated with CPVT is dysfunction in the protein’s Ca2+-depend 

polymerization/depolymerization that affects filament formation.  
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Figure 1-6. Catecholaminergic polymorphic ventricular tachycardia related missense 

mutations in CASQ2.  

X-ray crystal structure adapted from PDB: 2VAF for human CASQ2. Mutated residues are labeled 

as red dots. 
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Table 1-2. Cardiac calsequestrin (CASQ2) mutations.  

Mutation 

type 

Mutation Phenotype Notes Knock-in mouse model 

Missense D307H CPVT - Homozygous carrier 

with symptoms, 

heterozygous carrier 

shows no 

symptoms160 

 

- Unaffected cardiac architecture, 

and normal ventricle function, but 

display catecholamine induced 

ventricular arrhythmia. Stable 

expression and targeting to 

junctional SR113, 159 

- Increased RyR2 leakiness when 

challenged with catecholamines159  

- No significant change in total SR 

Ca2+ content130, 159. 

- 95% reduction in protein 

abundance130 

Missense R33Q Arrhythmia, 

non-

sustained 

VT during 

exercise 

- Homozygous carrier 
161 

- Bidirectional VT on exposure to 

environmental stress in absence of 

pharmacological challenge158 

- Reduced SR Ca2+ capacity, dilated 

junctional SR but normal total SR 

volume 158 

- Reduced abundance of Casq2-

R33Q protein 158 

 

Non-sense R33X CPVT Heterozygous carrier, 

autosomal dominant 
151 

Arginine changed to a 

stop codon at position 

33 

Incorrect 

Splicing 

532+1G>A Severe 

CPVT 

Patient is 

homozygous carrier, 

heterozygous siblings 

show no symptom151. 

- Caused be a premature stop codon 

 

Null mice features: 

- structural normal heart with stress-

inducible arrhythmia129, 130 

- Unaffected SR Ca2+ content but 

increased SR volume129. Yet another 

research group reported >50% 

reduction in SR Ca2+ content 130 

- Spontaneous SR Ca2+ releases and 

SR Ca2+ leak through RyR2 upon 

stress 129 

Deletion 62delA Severe 

CPVT 

Patient is 

homozygous carrier, 

heterozygous siblings 

show no symptom151. 

Deletion G112 +5X Severe 

CPVT, 

Stress-

induced VT 

and cardiac 

arrest 118 

- Homozygous 

mutation 

- Does not bind 

Ca2+118 

Missense L167H Severe 

CPVT 118 

- Compound 

heterozygous with 

G112+5X 118 

Not available 
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Missense K180R Severe 

CPVT 

- Heterozygous 

dominant inheritance 
162 

- Structural normal heart but stress 

inducible VT  

Missense Y55C CPVT - Compound 

heterozygous163 

Not available 

Missense P308L CPVT 

Missense F189L CPVT 164 

Sudden death 

during 

struggle 165 

- Heterozygous 

carrier164-166 

Not available 

Missense E177Q - Sudden 

unexplained 

death 

victims 

-Heterozygous 

mutation, not 

characterized167 

Not available 

Missense K206N Cardiac 

arrest  

- Heterozygous 

carrier 168 

Not available 

SNP* T66A CPVT  

sudden 

unexplained 

death 

victims  

- Unknown clinical 

significance 

- Finnish families169 

& Asian 

population167 

 

Not available 

SNP* V76M 

Missense K289R, 

P308S, 

D310H 

In chickens, 

sudden 

death 

- Unknown clinical 

significance in 

human170 

 

Not available 

Missense D351G Two male 

infants with 

SIDS 

(sudden 

infant death 

syndrome) 

-Heterozygous 

variants determined 

from whole-exome 

analysis, likely 

pathologic166, 171 

Not available 

Missense S173I CPVT-like 

and Sudden 

unexplained 

death 

-Heterozygous carrier 

-Unknown 

pathogenicity96 

Not available 

* SNP: Single nucleotide polymorphisms 
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1.6 Objectives and hypothesis 

 

 

Objectives 

i) Examine the role and regulation of IRE1α in skeletal and cardiac muscle. 

ii) Investigate how mutations in Casq2 lead to stress-induced arrhythmia CPVT. 

Determine structural and functional features of the CPVT related Casq2 mutants and 

their role in heart pathology. 

 

 

 

 

Hypothesis:  

i) ER stress sensor IRE1α plays an important role in the physiology and pathophysiology 

of the heart, and IRE1α mediated signaling may be regulated via protein-protein 

interaction(s) in skeletal and cardiac muscle. 

ii) CPVT related Casq2 mutations may affect structure and function of the protein and this 

impacts SR Ca2+ store and control of Ca2+ in excitation-contraction coupling. 
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Chapter 2: Identification of two pools of IRE1α in cardiac and skeletal muscle cells 

2.1 Abstract 

The endoplasmic reticulum (ER) plays a central role in cellular stress responses via 

mobilization of ER stress coping responses, such as the unfolded protein response. The inositol-

requiring enzyme 1α (IRE1α) is an ER stress sensor and component of the unfolded protein 

response. Muscle cells also have a well-developed and highly subspecialized membrane network 

of smooth ER, called SR - surrounding myofibrils and specialized for Ca2+ storage, release, and 

uptake - to control muscle E-C coupling. Here we describe two distinct pools of IRE1α in cardiac 

and skeletal muscle cells, one localized at the perinuclear ER and the other at the junctional SR. 

We discovered that, at the junctional SR, calsequestrin binds to IRE1α inhibiting its dimerization. 

This novel interaction of IRE1α with calsequestrin, one of the highly abundant Ca2+ handling 

proteins at the junctional SR, provides new insights into the regulation of stress coping responses 

in muscle cells. 

2.2 Introduction 

Stress responses are central to cellular physiology and pathology and failure to adapt to stress 

leads to cell death. To mitigate cellular stress and re-establish homeostasis cells must activate stress 

coping response mechanisms1-3. In cells, including muscle cells, the ER plays a central role in 

cellular stress responses via mobilization of one of the stress coping responses, such as the UPR. 

The UPR involves three unique ER transmembrane signaling proteins: the inositol-requiring 1 

(IRE1), ER kinase dsRNA-activated protein kinase-like ER kinase (PERK), and activating 

transcription factor 6 (ATF6)1, 4, 5. Activation of ER stress-induced UPR signaling pathways result 

in translational attenuation, transcriptional activation of genes encoding proteins involved in 

protein folding, and transcriptional activation of genes for components of the ERAD pathway1, 4, 

5. Under optimal conditions IRE1, PERK and ATF6 are maintained in an inactive state by binding 

to BiP, an ER chaperone. Upon stress, BiP dissociates from these proteins resulting in activation 

of UPR signaling pathways1, 5. IRE1α is the most evolutionary conserved ER stress sensor and 

component of the UPR6. The protein has endoribonuclease activity that splices the mRNA 

encoding the transcription factor XBP1 to produce the stable form of the transcription factor that 

induces the expression of genes involved in many aspects of the protein secretory pathway, 

including protein folding, ERAD, and protein quality control 7. 
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In muscle cells, the ER is responsible for cellular housekeeping functions, among which are 

the synthesis, folding, posttranslational modification, and transport of proteins; the synthesis of 

lipids and steroids; the assembly and trafficking of membranes; stress signaling, and signaling to 

the nucleus, cytoplasm, mitochondria, and plasma membrane8-10. Muscle cells also have a well-

developed and highly specialized membrane network of smooth ER, called SR, surrounding 

myofibrils11, 12. The SR is specialized for Ca2+ storage, release and uptake, to control muscle E-C 

coupling13. The SR luminal Ca2+ binding proteins, calsequestrin, histidine-rich Ca2+-binding 

protein, junctate, and sarcalumenin, are responsible for Ca2+ storage, while ryanodine 

receptor/Ca2+ release channel (RyR) is responsible for Ca2+ release to trigger muscle contraction. 

Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps Ca2+ back to the lumen of the 

SR, driving muscle relaxation. Additionally, the SR forms two distinct regions in the muscle: the 

longitudinal SR which is enriched with the SERCA pump, and the junctional SR where the RyR 

and calsequestrin are localized14, 15. Calsequestrin is involved in binding and storing Ca2+ and it 

comprises approximately 27% by mass of all junctional SR proteins16. Two isoforms of 

calsequestrin exist and are encoded by two different genes: cardiac muscle calsequestrin (Casq2) 

and skeletal muscle calsequestrin (Casq1)17, 18. The crystal structures of cardiac and skeletal muscle 

calsequestrin indicates that the proteins contain three thioredoxin-like domains reminiscent of ER 

luminal oxidoreductases19.  

Disruption of ER functions triggers ER stress and activation of  IRE1α1, 20. In skeletal muscle, 

the IRE1α is activated during exercise20, starvation21, and a high fat diet22. Activation of IRE1α 

and other branches of the UPR pathway have been implicated in many cardiovascular diseases 

including hypoxia, ischemia/reperfusion, hypertrophy, pressure overload, and drug-induced 

insults1, 23. Previous studies have shown that inhibition of IRE1α signaling protects the heart from 

cardiac fibrosis24 and atherosclerosis25. How IRE1α signaling is regulated in the muscle by the SR 

luminal environment is not known. Understanding the molecular organization of IRE1α and events 

controlling its activation in skeletal and cardiac muscle is necessary to assess the connection 

between muscle stress coping response and cellular pathophysiology1. In this study we report that 

there are two pools of IRE1α in cardiac and skeletal muscle cells, one localized to perinuclear ER, 

and the other at the junctional SR, a site of Ca2+ release for myofilament activation. We also 

discovered that calsequestrin binds to the ER luminal domain of IRE1α and prevents its 

dimerization, and this may serve to squelch the activation of IRE1α at the junctional SR.  



41 

 

2.3 Materials and Methods 

2.3.1 Plasmids and site-specific mutagenesis 

The mammalian expression vector encoding human IRE1-NLD (luminal domain of IRE1α) 

cDNA in pED plasmid was generous gift from Dr. Randall Kaufman26. The triple cysteine mutant 

of the IRE1-NLD, (C109,148,332A) was described previously27. The cDNA encoding full-length 

or truncated (Δ350-390 and Δ316-390) canine cardiac muscle calsequestrin (Casq2) lacking the 

signal sequence was cloned into pET22b vector to generate pET-Casq2 or pET-Casq2 (Δ350-390 

and Δ316-390) for bacterial expression of the protein. The following expression vectors were used 

in this study: pcDNA3.1 expression vector containing cDNA encoding full-length Casq2, C-

terminus truncation of Casq2 (Δ350-390), and C-terminus plus partial thioredoxin domain III 

truncation of Casq2 (Δ316-390) for mammalian cell transfection28.  

2.3.2 Adenovirus construction 

Mammalian expression vector containing cDNA encoding red fluorescence protein (RFP) 

fused to full length mouse IRE1α was generated using ER-RFP (generous gift from Dr. Erik 

Snapp) and pcDNA3.1(+) mouse full length IRE1α plasmid (generous gift from Dr. Ko Miyoshi). 

EcoRI and NotI restriction enzyme sites were introduced by PCR. cDNA of full-length mouse 

IRE1α with the signal sequence omitted was cloned into ER-RFP expression vector with the C1-

GFP backbone at the C-terminus of RFP. Short and flexible linker sequences, encoding the amino 

acid sequence GGSGEFGGSG, were added between the RFP and IRE1α coding sequences. cDNA 

of RFP-IRE1α was cloned and packed into adenovirus by Vector Biolabs, USA. 

2.3.3 Protein purification 

The ER luminal domain of IRE1α (IRE1-NLD) and IRE1-NLD cysteine triple mutant 

(C109,148,332A) were expressed in COS-1 cells and purified by Ni-NTA agarose 

chromatography26, 27. COS-1 cells were transfected with a vector containing cDNA encoding 

IRE1-NLD or IRE1-NLD cysteine mutant using turboFect transfection reagent (ThermoFisher, 

R0531), harvested, and lysed in a buffer containing 25 mM Tris-Cl, pH 8.0, 150 mM NaCl, and 

1% NP-40. Cell lysates were centrifuged at 16,000 xg for 30 min at 4oC, and supernatant was 

processed for protein purification. Ni-NTA-agarose affinity chromatography was performed by 

following the manufacture’s protocol (QIAGEN Cat #30230) under native conditions in a binding 
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buffer containing 50 mM NaH2PO4, 500 mM NaCl, and 10 mM imidazole, pH 8.027. The IRE1-

NLD or IRE1-NLD cysteine triple mutant proteins were eluted with 250 mM imidazole27.  

Native cardiac muscle calsequestrin (Casq2) and skeletal muscle calsequestrin (Casq1) 

proteins were purified from pig hearts and rabbit skeletal muscle, respectively29, 30. In brief, 200-

250 g of muscle was homogenized in a buffer containing 0.1 M KH2PO4, pH 7.1, 1 mM EDTA, 

and 2.66 M ammonium sulfate (65% saturation) followed by ammonium sulfate (85% saturation) 

precipitation, DEAE chromatography with a column buffer containing 50 mM NaCl, 0.1 M 

KH2PO4, 1 mM EDTA, pH7.1. The protein was eluted at 300 to 400 mM NaCl. Eluted fractions 

containing calsequestrin were pooled and subjected to phenyl Sepharose CL-4B chromatography 

with a column buffer containing 50 mM NaCl, 0.1 M KH2PO4, 1 mM EDTA, pH7.129, 30. 

Calsequestrin containing fractions were eluted from phenyl Sepharose CL-4B with a buffer 

containing 10 mM CaCl2
29, 30. Fractions containing calsequestrin were pooled and stored at -80oC 

in a buffer containing 50 mM HEPES, pH 7.4, 150 mM KCl, 500 μM CaCl2, and 250 μM EGTA. 

All procedures were carried out at 4oC, and all buffers contained a cocktail of protease inhibitors31. 

Full-length recombinant Casq2, and truncated Casq2 were expressed in E. coli BL21 (DE3) cells 

(Invitrogen) and purified with Ni-NTA affinity column chromatography following the 

manufacture’s protocol (QIAGEN Cat #30230). 

2.3.4 Microscale thermophoresis 

Microscale thermophoresis analyses were carried out using a Monolith NT.115 instrument 

(Nano Temper Technologies, Germany) or Monolith NT.LabelFree instrument (Nano Temper 

Technologies, Germany). Proteins were labeled using the Monolith NT Protein Labeling Kit RED-

NHS (Nano Temper Technologies, cat# MO-C030) following manufacture’s protocol. All 

experiments were carried out at room temperature in standard capillaries (Nano Temper 

Technologies, cat# MO-K022, for fluorescence labeled IRE1-NLD or IRE1-NLD cysteine triple 

mutant) or in hydrophobic capillaries (Nano Temper Technologies, cat# MO-K025, for 

fluorescence labeled calsequestrin) with 20% LED power (fluorescence lamp intensity) and 40% 

microscale thermophoresis power (IR-laser intensity). The assay buffer contained 50 mM HEPES, 

pH 7.4, 150 mM KCl, 500 μM CaCl2, 250 μM EGTA, 0.05% Tween-20, and 2.5% glycerol. CaCl2 

and EGTA concentrations were adjusted to obtain the desired free Ca2+ concentration: 80 μM (350 

μM CaCl2 and 850 μM EGTA), 125 μM (175 μM CaCl2 and 50 μM EGTA), 1000 μM (1100 μM 
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CaCl2 and 100 μM EGTA). Free Ca2+ concentration was calculated using the Ca-EGTA Calculator 

TS v1.3 web tool32.  

Ca2+ binding to full-length Casq2 or Casq2 truncated were carried out using Monolith 

NT.LabelFree instrument in standard capillaries (Nano Temper Technologies, cat# MO-Z022) 

with 20% LED power and 40% microscale thermophoresis power. The proteins were incubated 

for 10 min in a buffer containing 50 mM HEPES, pH 7.4, 150 mM KCl, 0.1% pluronic F-127, and 

50 μM EGTA. An increasing concentration of CaCl2 (0.01-20 mM, in 50 mM HEPES, pH 7.4, 

150 mM KCl) was used. All microscale thermophoresis data were analyzed by Monolith Affinity 

Analysis v2.2.6 software. 

2.3.5 Surface plasmon resonance analysis 

Surface plasmon resonance (SPR) was performed to monitor the interaction between IRE1-

NLD and calsequestrin (BIACore, GE Life Sciences). The CM5 chip was activated using a 1:1 

dilution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide:N-hydroxysuccinimide (EDC:NHS) 

as previously described27. Purified IRE1-NLD protein was diluted in 10 mM sodium acetate, pH 

5, injected over the activated CM5 chip, and captured at a flow rate of 5 μl/min to a total of ~2000 

Response Units (RU). Uncoupled amine reactive sites on the CMD surface were then blocked by 

an injection of 1 M ethanolamine, pH 9.0. An uncoupled reference lane was generated to subtract 

background binding. The running buffer was composed of 10 mM HEPES, pH 7.2, 150 mM KCl, 

1 mM EDTA, and 0.005% surfactant P20. Purified IRE1-NLD triple cysteine mutant protein27 was 

coupled to a CM5 chip to a total of ~1500 RU followed by addition of increasing concentration of 

calsequestrin (10000 nM - 39 nM). For each measurement, the signal was corrected against the 

control surface response to eliminate any refractive index changes due to buffer change. The data 

was collected at 25°C at a flow rate of 30 µl/min to minimize mass transfer effects. Kinetic analysis 

was performed using the BiaEvaluation software (GE Life Sciences) with a 1:1 Langmuir binding 

model. Association and dissociation rates and affinity (Kd) were calculated for each experiment 

and averaged. The binding response signal in RUs was continuously recorded and presented 

graphically as a function of time. All experiments and analysis were conducted on a BIACore T200 

instrument (GE Life Sciences). 
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2.3.6 Immunoprecipitation 

COS-1 cells were co-transfected with pED-IRE1-NLD-6His expression vector and 

pcDNA3.1 expression vector containing cDNA encoding full-length Casq2 or truncated Casq2 

using TurboFect transfection reagent (ThermoFisher, R0531). At 48 hours after transfection, cells 

were washed and harvested into 600 μl of the lysis buffer containing 50 mM HEPES, pH7.4, 200 

mM NaCl, 2% CHAPS, and a mixture of protease inhibitors. The lysate was incubated on ice for 

30 min and centrifuged at 13,000 xg for 15 min at 4°C. Two μl of antibodies [control 

immunoglobulin G, or mouse anti-6xHis (ThermoFisher,MA1-21315), or rabbit anti-calsequestrin 

(Abcam ab3516)] were added to supernatant and mixture was incubated overnight at 4°C with 

rotation. A 10% slurry of protein A/G Sepharose CL-4B beads (100 μl) was added, and mixture 

were incubated for an additional 4 hours with rotation at 4°C. Beads were pelleted and washed 

three times with a buffer containing 50 mM HEPES, pH 7.4, 200 mM NaCl, 1% CHAPS; and then 

once with a buffer containing 50 mM HEPES, pH 7.4, 200 mM NaCl. Pellets were re-suspended 

in 30 μl of SDS-PAGE sample buffer and loaded on an SDS-PAGE followed by immunoblot 

analysis with mouse anti-6xHis or rabbit anti-calsequestrin antibodies, and then with goat anti-

mouse (Millipore, AP200P) or mouse anti-rabbit light chain specific horseradish peroxidase-

conjugated polyclonal antibodies. 

2.3.7 Skeletal muscle immunohistochemistry 

For histological analysis, paraffin sections of rabbit hind leg muscle were prepared and 

processed by the Alberta Diabetes Institute HistoCore Facility at the University of Alberta. Heat-

induced epitope retrieval was used to break potential protein cross-linking during fixation. Tissue 

sections were heated in 10 mM sodium citrate, pH 6.0, at 90-95oC for 20 min. Sections were 

permeabilized with 0.1% Triton X-100 in phosphate-buffered saline (PBS) for 5 min at room 

temperature, then blocked with a solution containing 5% bovine serum albumin (BSA) and 2% 

normal goat serum in PBS. Sections were incubated with primary antibodies (diluted in blocking 

buffer) for 18 hours, washed with PBS, and incubated with Alexa Fluor 488 conjugated goat anti-

rabbit IgG (ThermoFisher A11034, 1:200), or Alexa Fluor 546 conjugated goat anti-mouse IgG 

antibodies (ThermoFisher A11003, 1:200). Sections were washed with PBS and mounted with 

Prolong Diamond Antifade Mountant (Thermo Fisher Scientific, P36961), and visualized using a 

Leica TCS SP5 confocal microscope with Leica inverted DMI 6000 B microscope base. Images 
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were acquired with oil immersion objectives 40X/numerical aperture (NA) 1.25 or 

100X/numerical aperture (NA) 1.44 at 22.5°C. For Alexa Fluor 488 visualization (detects rabbit 

anti-RyR, anti-IRE1α, and anti-obscurin antibodies), the argon laser was used with excitation at 

488 nm and emission peak at 525 nm. For Alexa Fluor 546 (detects mouse anti-RyR, anti-α-actinin, 

and anti-Casq1 antibodies), the HeNe laser was used with excitation at 543 nm and emission peak 

at 573 nm. The following primary antibodies were used: rabbit anti-ryanodine receptor antibodies33 

at 1:500 dilution, mouse anti-ryanodine receptor 1 antibodies34 at 1:200 dilution, rabbit anti-IRE1α 

antibodies (Abcam, ab37073) at 1:200 dilution, rabbit anti-obscurin antibodies (Abcam, 

ab121652) at 1:2500, mouse anti-α-actinin antibodies (Sigma, A7811) at 1:800 dilution, mouse 

anti-Casq1 VIIID1-2C monoclonal antibodies at 1:40 dilution35 (generous gift from K.P. 

Campbell). Skeletal muscle sections were also stained with DAPI (ThermoFisher 62248) and FITC 

(Fluorescein isothiocyanate) conjugated Concanavalin A (1:50). Images were acquired with Leica 

Application Suite Advanced Fluorescence (Leica LAS-AF) microscopy software, exported as 

Leica Image File format (LIF) and processed using ImageJ software 

(https://imagej.net/Fiji/Downloads) with 8 bit image type. 

Overlap of IRE1α with calsequestrin or ryanodine receptor signals was analyzed using 

ImageJ software (https://imagej.net/Fiji/Downloads). A straight line was drawn along the triad 

(junctional SR + T-tubule) at the longitudinal axis of muscle fiber and identified as a region of 

interest (ROI). The fluorescence signal intensity of each channel (green for Alexa Fluor 488, red 

for Alexa Fluor 546) for each immunostained section was calculated using corresponding ROI and 

the values were plotted along the X axis (distance in μm) to identify regions of overlap.  

2.3.8 Cardiomyocyte isolation and immunostaining 

Ventricular myocytes from GFP-RyR2 knock-in mice36 were isolated using retrograde aortic 

perfusion as described previously37. Freshly isolated cells were collected by centrifugation; 

reintroduced with Ca2+ (0.5 mM); re-suspended in minimum essential medium (MEM) 

(Invitrogen) supplemented with 0.2% fetal bovine serum, insulin (1 g/ml), transferrin (0.55 

g/ml), selenium (0.5 ng/ml), penicillin (100 U/ml), streptomycin (100 g/ml), 2 mM glutamine, 

4 mM NaHCO3, 10 mM HEPES, pH 7.4, and 10 M blebbistatin; plated on glass coverslips pre-

coated with laminin (50 µg/ml); and cultured in 5% CO2 at 37°C in 6-well dishes. After 4-6 hours, 

unattached myocytes were gently removed by PBS wash, and fresh culture media was added to 

https://imagej.net/Fiji/Downloads


46 

 

the wells. The IRE1α encoding adenovirus was added to the culture media at a MOI 1000. Culture 

media was changed every day. After 5 days in culture, the coverslips were gently washed with 

PBS and mounted on an inverted Nikon A1R scanning confocal microscope system equipped with 

a Nikon 60X/numerical aperture (NA) 1.2 Plan-Apochromat water immersion objective and 

selective excitation and emission filters. Excitation light was provided by argon (488 nm; Coherent 

Sapphire) and yellow diode (561 nm; Coherent Sapphire) lasers to detect GFP (ExcitationMax 488 

nm/EmissionMax 510 nm) and IRE1α abundance (ExcitationMax 581 nm/EmissionMax 644 nm) in 

cardiomyocytes. Basic image processing and spectral fluorescence un-mixing for co-detection and 

analysis of GFP and IRE1α fluorescence signals were performed using the NIS Elements AR 4.13 

software (Nikon).  

2.3.9 Mouse embryonic fibroblasts confocal 

Ern1-/- mouse embryonic fibroblasts (IRE1α-deficient cells) and wild-type mouse embryonic 

fibroblasts (both a generous gift from Dr. Randal Kaufman) were fixed with 3.7% 

paraformaldehyde (Electron Microscopy Sciences 15710) and 0.1% Glutaraldehyde for 12 min at 

37oC. Cells were permeabilized with 0.05% Saponin diluted in PBS, washed with PBS, blocked 

with 5% goat normal serum in PBS with 0.05% saponin for 1 hour, followed by incubation with 

anti-IRE1α antibodies (Abcam, ab37073) at 1:200 dilution and Alexa Fluor 488 conjugated goat 

anti-rabbit IgG (ThermoFisher A11034, 1:200). Slides were mounted with Prolong Diamond 

Antifade Mountant (Thermo Fisher Scientific, P36961), and visualized with a Leica TCS SP5 

confocal microscope. 

2.3.10 Subcellular fractionation 

SR membrane fractions were isolated from rabbit skeletal muscle as previously described38. 

In brief, the hind leg muscle was collected from New Zealand white rabbits (1-3 kg weight), the 

muscle was homogenized in buffer containing 250 ml of 300 mM sucrose, 5 mM imidazole-HCl, 

pH 7.4. The homogenate was centrifuged at 7,700 xg for 10 min at 4°C. The supernatant was 

saved, and the pellets were re-homogenized with the same buffer. The supernatants from both 

homogenates were combined and centrifuged. The microsomal pellet (containing longitudinal and 

terminal cisternae of SR vesicles) was obtained by centrifugation of the low speed supernatant for 

90 min at 110,000 xg, at 4°C. The microsomal pellet was re-suspended in homogenization buffer 

and layered onto a sucrose gradient consisting of 45% (weight/weight) sucrose (1.6 M), 38% 



47 

 

sucrose (1.3 M), 32% sucrose (1.1 M), and 27% sucrose (0.8 M) in 5 mM imidazole-HCl, pH 7.4. 

The gradient was centrifuged overnight at 70,000 xg for 90 min, at 4°C. The membrane fractions 

at the interfaces between the gradients were collected and diluted with 5 mM imidazole-HCl, pH 

7.4, followed with centrifugation at 125,000 xg for 2 hours, at 4°C. The pellets were re-suspended 

in homogenization buffer and stored at -80°C until use.  

Two hundred µl of each fraction obtained from the sucrose gradient was further fractionated 

with the OptiPrep system (Sigma-Aldrich), an iodixanol-based density gradient for subcellular 

organelle separation and isolation. OptiPrep (60% iodoxanol in water) were diluted to 25%, 22%, 

19%, 16%, 10%, 7%, and 5% (% iodoxanol) in a homogenization buffer containing 10 mM 

HEPES, pH 7.4, 250 mM sucrose, 1 mM EDTA, and 1 mM EGTA. The OptiPrep gradient was 

centrifuged at 184,501 xg in a SW55 Ti swinging bucket rotor for 6 hours. Twelve fractions (300 

μl per fraction) were collected from the top of gradient followed by incubation overnight at -20°C. 

1.2 ml of 90% acetone was used to precipitate proteins. Precipitated proteins were centrifuged at 

16,100 xg for 10 min at 4oC. The pellets were washed with 200 μl of 100% ethanol and re-

centrifuged at 16,100 xg for 10 min at 4°C. The final pellets were dissolved in 100 μl of SDS-

PAGE sample buffer containing 40 mM Tris, pH 6.8, 1% SDS, 5% glycerol, 0.0003% 

Bromophenol blue, 50 mM DTT followed by SDS-PAGE and immunoblot analyses. 

2.3.11 IRE1α cross-linking 

The homobifunctional protein cross linker disuccinimidyl suberate (DSS) (Thermo Scientific 

Pierce, cat#:21555) was dissolved in DMSO at a final concentration of 10 mM. His-IRE1-NLD 

was diluted to a final concentration of 3.6 µM in a reaction buffer containing 50 mM HEPES, pH 

7.4, 150 mM NaCl, 250 μM EGTA, 500 μM CaCl2, 0.05% Tween-20, 5% Glycerol. Casq2 was 

added to a final concentration of 18 μM (1 to 5 molar ratio, IRE1-NLD to Casq2). Mixtures were 

incubated with 20-fold molar excess of DSS for 1 hour at 22.5°C. The reaction was then quenched 

for 15 min with 100 mM Tris pH 7.4 followed by SDS-PAGE (12% acrylamide). Proteins were 

transferred to nitrocellulose membrane follow by immunoblotting with mouse anti-6xHis 

antibodies (ThermoFisher, MA1-21315). 
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2.3.12 Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 7.0. The Student’s t-test 

was used to compare the mean of two independent groups, and one-way Anova was used to 

compare the mean of three or more independent groups, with a p-value determined to be significant 

if less than 0.05.  
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2.4 Results 

2.4.1 IRE1α is localized to the junctional SR and perinuclear space in skeletal muscle and 

cardiomyocytes 

We examined the intracellular distribution of IRE1α, an ER stress coping response sensor 

and signaling molecule1, 20-22, to address its molecular organization and regulation in muscle cells. 

Anti-RyR1 and anti-Casq1 (skeletal muscle calsequestrin isoform) antibodies were used as 

markers of the junctional SR membrane39, and anti-obscurin antibodies, a sarcomeric protein 

localized to the M-line40, as a marker for the region occupied by the longitudinal SR. As expected, 

RyR1 and calsequestrin were co-localized to the junctional SR (Figure 2-1A)41 but not to the 

longitudinal SR stained with anti-obscurin antibodies (Figure 2-1C). Next, we used anti-IRE1α 

antibodies (Figure 2-2) to localize IRE1α in muscle cells. Surprisingly, we discovered IRE1α 

positive staining in the junctional SR that overlapped with anti-calsequestrin staining (Figure 

2-1B). This was in addition to the anticipated IRE1α positive staining in the nuclear envelope and 

the perinuclear region containing ER membrane network (Figure 2-1D), a cellular region lacking 

any detectable staining for both calsequestrin and RyR1 (Figure 2-1D). Perinuclear region ER was 

identified using FITC conjugated Concanavalin A staining, a lectin binds specifically to high 

mannose N-glycans42 (Figure 2-3). 
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Figure 2-1. Immunolocalization of IRE1α in skeletal muscle. 

A) Immunostaining longitudinal sections of skeletal muscle with antibodies against RyR1 or 

Casq1. Right panel, graphic representation of overlap between RyR1 and Casq1. The white bars 

indicate the scanned area represented in the graphs. Location of the triad (T) (junctional SR + T-

tubule membrane) and the Z line are indicated in the graphs.  

B) Immunostaining of skeletal muscle sections with anti-obscurin antibodies (Obsc) indicating the 

location of the M-band or with anti-calsequestrin antibodies (Casq1). The white bars indicate the 

scanned area represented in the graphs.  

C) Immunostaining of skeletal muscle with antibodies against IRE1α or Casq1. Right panel, 

graphic representation of overlap between IRE1α and Casq1. The white bars indicate the scanned 

area represented in the graphs.  

D) Immunostaining of IRE1α and Casq1 in the perinuclear region of skeletal muscle. Right panel 

shows a large magnification of the perinuclear space section indicated by the rectangle. 
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Figure 2-2. Immunostaining of wild-type and IREα-deficient mouse embryonic fibroblasts. 

To determine the specificity of anti-IRE1α antibodies, wild-type and Ern1-/- mouse embryonic 

fibroblasts (IRE1α-deficient cells) were probed with anti-IRE1α antibodies (Abcam, ab37073) and 

visualized using a Leica TCS SP5 confocal microscope. IREα-deficient cells show minimum to 

no signal when stained with anti-IRE1α antibodies compare with wild-type confirming the 

specificity of anti-IRE1α antibodies to recognize IRE1α. 
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Figure 2-3. Perinuclear ER-like membrane network in skeletal muscle. 

Longitudinal sections of skeletal muscle were stained with fluorescein isothiocyanate (FITC) 

conjugated Concanavalin A (FITC-ConA) and 4’,6-diamidino-2-phenylindole (DAPI). 
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Next, we examined IRE1α localization in isolated cardiomyocytes that express green 

fluorescent protein (GFP) tagged-RyR236. Similar to the skeletal muscle (Figure 2-1), IRE1α co-

localized with RyR2 in the cardiac junctional SR (Figure 2-4) and was detected in the nuclear 

envelope and perinuclear ER membrane region, which did not show any detectable RyR2 signal 

(Figure 2-4). Thus, we concluded that both skeletal and cardiac muscle cells contained two pools 

of IRE1α, one localized at the perinuclear region and the other at the junctional SR containing 

calsequestrin and RyR1 (or RyR2).  
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Figure 2-4. IRE1α in isolated cardiomyocytes. 

Isolated rat cardiomyocytes from green fluorescence protein tagged ryanodine receptor (RyR2) 

knock-in transgenic mice36 were transduced with adenovirus packed with the red fluorescent 

protein tagged IRE1α (IRE1α). Large magnification of the sarcomere and perinuclear areas are 

shown as indicated by the boxes. Graphic representation of overlap between RyR2 and IRE1α is 

shown. The white bars indicate the scanned area represented in the graphs. 
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2.4.2 The luminal domain of IRE1α interacts with calsequestrin, an SR junctional protein 

Previously, the ER resident oxidoreductase PDIA6 was identified as an IRE1α binding 

protein that modulates IRE1α activity27 43. Calsequestrin contains three thioredoxin domains19 

typical for ER resident oxidoreductases44. Therefore, we asked whether in muscle cells 

calsequestrin can also form complexes with IRE1α at the junctional SR. To evaluate this, tissue 

purified skeletal (Casq1) and cardiac (Casq2) muscle calsequestrin and recombinant His-tagged 

cardiac muscle calsequestrin Casq2 (Figure 2-5A) were tested for direct binding to the ER luminal 

domain of IRE1α (IRE1-NLD). Using microscale thermophoresis, we discovered that native 

skeletal muscle Casq1 bound to IRE1-NLD with a Kd of 698 nM (Figure 2-5B). Both native Casq2 

and recombinant His-tagged cardiac muscle calsequestrin (Casq2) also bound to IRE1-NLD with 

a Kd of 2 μM (Figure 2-5C,D). Calreticulin was used as a negative control and showed no binding 

to IRE1-NLD (Figure 2-5E).  
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Figure 2-5. Calsequestrin (Casq1 and Casq2) binds to the ER luminal domain of IRE1α. 

A) SDS-PAGE analysis of proteins used for microscale thermophoresis.  

B) Casq1 protein was covalently labeled with a red fluorescent tag and incubated with increasing 

amounts of the purified IRE1-NLD protein followed by microscale thermophoresis. Each data 

point is the mean of 3 independent microscale thermophoresis measurements.  

C) Fluorescently labeled native Casq2 protein was incubated with increasing amounts of purified 

IRE1-NLD protein followed by microscale thermophoresis. Each data point is the mean of 3 

independent microscale thermophoresis measurements; error bars represent the standard error 

mean.  

D) Recombinant Casq2 protein was covalently labeled with a red fluorescent tag and incubated 

with increasing amounts of purified IRE1-NLD protein followed by microscale thermophoresis. 

Each data point is the mean of 6 independent microscale thermophoresis measurements. 

Normalized microscale thermophoresis time traces are shown in graphs B–D.  

E) Calreticulin does not bind to IRE1α luminal domain. Luminal domain of IRE1α (IRE1-NLD) 

was covalently labeled with a red fluorescent tag and incubated with increasing amounts of 

purified calreticulin followed by microscale thermophoresis. Normalized microscale 

thermophoresis time traces are shown above. Each data point is the average of three independent 

microscale thermophoresis measurements.  

F) IRE1-NLD was immobilized on a CM5 chip followed by flow of increasing concentrations of 

Casq2 as indicated in the figure and analyzed by SPR. 

G) His-tagged ER luminal domain of IRE1α (IRE1-NLD) and Casq2 were expressed in COS-1 

cells followed by immunoprecipitation with anti-His antibodies or IgG control. Immunoblot 

analysis was carried out with anti-His or anti-Casq2 antibodies. Immunoprecipitation experiments 

were performed in triplicate with representative blot shown.  

H) Iodixanol-based density gradient (OptiPrep) gradient fractionation of heavy SR vesicles 

(junctional SR) followed by immunoblot analysis with anti-IRE1α and anti-calsequestrin (Casq1). 

A.U., arbitrary units; R.U., relative units. 
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We used surface plasmon resonance (SPR) and immunoprecipitation techniques to further 

examine Casq2-IRE1α interactions (Figure 2-5F, G). SPR analysis revealed that cardiac muscle 

calsequestrin interacted with the luminal domain of IRE1α in a concentration-dependent manner 

(Figure 2-5F). Next, His-tagged IRE1-NLD and Casq2 were expressed in COS-1 cells followed 

by immunoprecipitation with anti-Casq2 antibodies (Figure 2-5G). Full-length Casq2 co-

immunoprecipitated with His-tagged IRE1-NLD (Figure 2-5G). Finally, Opti-Prep gradient 

fractionation of heavy SR vesicles (enriched in junctional SR) showed that calsequestrin and 

IRE1α were enriched in the fractions containing heavy SR vesicles representing the junctional SR 

(Figure 2-5H, fractions #6-11). These findings demonstrated that IRE1α co-localized with Casq1 

and Casq2 at the junctional SR and that calsequestrin formed complexes with the ER luminal 

domain of IRE1α. 

There are three cysteine residues in IRE1-NLD (i.e., Cys109, Cys148, and Cys332)45 that are 

essential for binding of the oxidoreductase PDIA6 to IRE1α 27. Since calsequestrin contains three 

thioredoxin domains19, typical for ER resident oxidoreductases 44, we asked whether the cysteine 

residues in IRE1α were involved in the binding of calsequestrin. Mutation of three cysteines in the 

ER luminal domain of IRE1α did not have any effect on calsequestrin binding to IRE1-NLD as 

measured by microscale thermophoresis (Figure 2-6A) nor by BIACore (Figure 2-6B) techniques, 

indicating that calsequestrin binding to the IRE1α luminal domain did not involve cysteine 

residues.  
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Figure 2-6. Calsquestrin binding to the IRE1α is independent of cysteine residues. 

A) cardiac muscle calsequestrin (Casq2) protein was covalently labeled with a red fluorescent tag 

and incubated with increasing amounts of N-terminus luminal domain of IRE1α (IRE1-NLD) or 

IRE1-NLD triple cysteine mutant (C109, 148, 332A IRE1-NLD) protein followed by microscale 

thermophoresis. Covalently labeled PDIA6 binding to the IRE1-NLD triple cysteine mutant was 

used as a control27. Normalized microscale thermophoresis time traces are shown to the right of 

the graph. Each data point is the mean of 3 independent microscale thermophoresis measurements.  

B) Casq2 was injected over immobilized IRE1-NLD or immobilized C109, 148, 332A IRE1-NLD. 

α-Actinin was used as a negative control.  

  



60 

 

Finally, we asked whether binding of calsequestrin to the IRE1α luminal domain was 

sensitive to changes in Ca2+ concentration. Microscale thermophoresis analysis indicated that 

complex formation between native Casq2 or recombinant Casq2 and the luminal domain of IRE1α 

was independent of Ca2+ at concentrations ranging from 80 to 1000 µM (Figure 2-7).  

 

Figure 2-7. Calsequestrin-IRE1-NLD interaction in the presence of Ca2+. 

A) Native cardiac muscle calsequestrin (Casq2) protein was covalently labeled with a red 

fluorescent tag and incubated in the presence of different Ca2+ concentrations as indicated in the 

Figure followed by microscale thermophoresis analysis.  

B) Labeled recombinant cardiac muscle calsequestrin protein was incubated with increasing Ca2+ 

concentrations as indicated in the Figure followed by microscale thermophoresis.  

C) Fluorescent labeled N-terminus luminal domain of IRE1α (IRE1-NLD) protein was incubated 

with native cardiac Casq2 and increasing Ca2+ concentrations as indicated in the Figure followed 

by microscale thermophoresis. Normalized time traces are shown in the graph. Normalized 

microscale thermophoresis time traces are shown to the right of the graphs. Each data point is the 

average of three independent microscale thermophoresis measurements.  
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2.4.3 Mapping of calsequestrin binding to IRE1α 

Structurally, in addition to the three thioredoxin domains, Casq2 contains an acidic C-

terminal domain19, a site of high capacity Ca2+ binding46, 47. To map the region of Casq2 protein 

involved in binding to IRE1α, we expressed in E. coli and purified two Casq2 truncated proteins 

(Figure 2-8A) then analyzed their ability to bind Ca2+ and the ER luminal domain of IRE1α. As 

expected, full-length calsequestrin bound Ca2+ with a Kd value of 1 mM (Figure 2-8B). The Casq2 

Δ350-390 protein, missing the 41 C-terminal acidic amino acid residues (Figure 2-8C), exhibited 

Ca2+ binding with a Kd value similar to that seen for a full-length protein (Figure 2-8B). In contrast, 

Casq2 Δ316-390 protein, containing only 11 acid amino acid residues of the third thioredoxin 

domain, showed no measurable Ca2+ binding (Figure 2-8D). 

 

Figure 2-8. Ca2+ binding to cardiac muscle calsequestrin. 

A) Schematic representation of truncated calsequestrin protein used for label free microscale 

thermophoresis analysis shown in panels B, C and D. The C-terminus truncations of cardiac 

muscle calsequestrin with deleted residues 350 to 390 (Casq2 Δ350-390) or residues 316 to 390 

(Casq2 Δ316-390). Right panel: Coomassie blue stained SDS-PAGE of purified full-length and 

truncated recombinant cardiac muscle calsequestrin used for microscale thermophoresis analysis.  

B, C, D) Recombinant cardiac muscle calsequestrin (B), residues 350 to 390 truncated 

calsequestrin (Casq2 Δ350-390) (C) or residues 316 to 390 truncated protein (Casq2 Δ316-390) 

(D) were incubated with increasing concentration of Ca2+. Each data point is the average of three 

to six independent microscale thermophoresis measurements.  
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We used microscale thermophoresis analysis to test whether truncated cardiac muscle 

calsequestrin could bind to the ER luminal domain of IRE1α. Calsequestrin truncated at the C-

terminal acidic region (Casq2-Δ350-390) bound to the IRE1-NLD (Figure 2-9A). Deletion of an 

additional 34 amino acid residues (Casq2-Δ316-390) resulted in loss of binding to IRE1-NLD 

(Figure 2-9B). This was supported by co-immunoprecipitation experiments showing that both full-

length cardiac muscle calsequestrin and Casq2-Δ350-390 expressed in COS-1 cells were 

efficiently pulled-down with His-IRE1-NLD (Figure 2-9C) whereas Casq2-Δ316-390 was not 

(Figure 2-9C). Thus, we concluded that the last 34 amino acid residues in the third thioredoxin 

domain of calsequestrin that forms two short α-helices and two short β-strands of calsequestrin 

(Figure 2-9D) were important for binding of Casq2 to the ER luminal domain of IRE1α. 
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Figure 2-9. Mapping of cardiac muscle calsequestrin binding to IRE1α. 

A) Labeled N-terminus domain of IRE1α (IRE1-NLD) was incubated with increasing 

concentrations of truncated cardiac muscle calsequestrin (Casq2Δ350–390) followed by 

microscale thermophoresis analysis. Normalized time traces are shown on the top of the graph.  

B) Recombinant IRE1-NLD protein was covalently labeled with a red fluorescent tag and 

incubated with increasing amounts of residues 316–390–truncated Casq2 (Casq2 Δ316–390) 

followed by microscale thermophoresis analysis. Normalized time traces are shown on the top of 

the graph.  

C) His-tagged ER IRE1-NLD (His-IRE1-NLD) and full-length or truncated (Casq2Δ350–390 or 

Casq2Δ316–390) Casq2 were expressed in COS-1 cells followed by immunoprecipitation with 

anti-His antibodies or IgG control. Immunoblot analysis was carried out with anti-His or anti-

Casq2 antibodies. Immunoprecipitation experiments were performed in triplicate with a 

representative blot shown. The location of full-length, Δ316–390 and Δ350–390 calsequestrin is 

indicated by the arrows. A.U., arbitrary units; ΔFnorm, normalized fluorescence unit, 1000 × 

[Fnorm(bound) – Fnorm(unbound)]; R.U., relative units. 

D) A model of the third thioredoxin-like domain in cardiac muscle calsequestrin binding to the ER 

luminal domain of IRE1α binding. Schematic representation of the cardiac muscle calsequestrin 

with red labeled 316-350 region of the Δ316-390 protein. Tx, thioredoxin domains. PDB ID: 2VAF. 
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2.4.4 Calsequestrin prevents dimerization of IRE1α via interaction with the IRE1a luminal 

domain 

The dimerization and oligomerization of the IRE1α luminal domain brings the cytosolic 

domains of IRE1α into close proximity48-50. The process reconstitutes IRE1α endoribonuclease 

activity, which is a key step in the activation of the IRE1α branch of the UPR pathway48-50. Based 

on our findings, we hypothesized that the binding of calsequestrin to IRE1α interferes with IRE1α 

dimerization. To test this hypothesis, we developed an IRE1α dimerization assay using microscale 

thermophoresis (Figure 2-10) and carried out an IRE1α dimerization/cross-linking assay. In the 

absence of calsequestrin, IRE1-NLD underwent dimerization with increasing concentrations of 

IRE1-NLD (Figure 2-11A, B, green traces). Strikingly, in the presence of either native (Figure 

2-11A) or recombinant (Figure 2-11B) cardiac muscle calsequestrin, the dimerization of IRE1α 

cytosolic domains was not detected. To further understand how calsequestrin prevented the 

oligomerization of the luminal domain of IRE1α, we carried out the dimerization/cross-linking 

analysis of IRE1α in the absence or presence of calsequestrin. Upon addition of cross-linker, there 

was a substantial decrease in IRE1α monomers and the corresponding appearance IRE1α dimers 

and tetramers (Figure 2-11C). In agreement with the microscale thermophoresis analysis, there 

was a large proportion of IRE1α protein remaining in monomeric form in the presence of Casq2, 

consistent with the reduced formation of IRE1α multimers (Figure 2-11C). Taken together, these 

findings demonstrate that the binding of calsequestrin to the luminal domain of IRE1α impeded 

oligomerization of IRE1α. 

 

Figure 2-10. Schematic representation of the IRE1α dimerization assay. 
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Figure 2-11. Calsequestrin prevents IRE1α dimerization. 

A) Fluorescent-labeled IRE1-NLD was incubated with increasing concentrations of unlabeled 

IRE1-NLD in the absence (no Casq2) or presence (+ Casq2) of native Casq2 followed by 

microscale thermophoresis analysis. Normalized microscale thermophoresis time traces are shown 

to the right of the graph. Each data point is the mean of 3 independent microscale thermophoresis 

measurements.  

B) Recombinant IRE1-NLD protein was covalently labeled with a red fluorescent tag and 

incubated with increasing concentration of unlabeled IRE1-NLD in the absence (no recombinant 

Casq2) or presence (+ recombinant Casq2) of recombinant Casq2 followed by microscale 

thermophoresis. Normalized time traces are shown to the right of the graph. Each data point is the 

mean of 3 independent microscale thermophoresis measurements.  

C) Cross-linking of IRE1-NLD in the absence and presence of Casq2 was carried out as described 

in Materials and Methods. The abundance of IRE1-NLD monomer relative to the total IRE1-NLD 

is shown in the graph; n = 3. *p = 0.0307. 
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2.5 Discussion 

In eukaryotic cells, including muscle cells, the ER is responsible for many basic cellular 

processes such as stress responses, protein synthesis and folding, synthesis of lipids and sterols, 

storage and release of intracellular Ca2+, and signaling to the nucleus, mitochondria, and plasma 

membrane1, 9, 51. In cardiomyocytes and skeletal muscle cells, many of the ER housekeeping 

functions are the responsibility of the perinuclear rough/smooth ER52. The ER of muscle is further 

structurally and functionally subspecialized into longitudinal and junctional SR, instrumental in 

the regulation of E-C coupling to facilitate muscle mechanical functions53, 54, but less involved 

with respect to cellular processes traditionally associated with the ER52. In this study, we 

discovered that there are two pools of IRE1α, one in the perinuclear area corresponding to the ER-

like network of intracellular membrane and the second one at the junctional SR. This specialized 

region of the SR membrane network (Figure 2-12) is enriched in RyR/Ca2+ release channel and 

Ca2+ binding and buffering protein calsequestrin, and the site of Ca2+ release for myofilament 

activation13-15. Importantly, we discovered that at the junctional SR the luminal domain of IRE1α 

interacts with calsequestrin preventing IRE1α oligomerization. The binding of IRE1α to 

calsequestrin at the junctional SR may represent a unique strategy for squelching IRE1α signaling 

under physiological conditions when junctional SR experiences repeated fluctuations of SR Ca2+ 

concentration. This strategy might serve to insulate IRE1α signaling and function in SR, leaving 

IRE1α in the perinuclear ER to remain responsive to cellular stress and to activate UPR 

independent of the constant fluctuations in Ca2+ concentration that occur in the SR.   
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Figure 2-12. A schematic representation of two pools of IRE1α in muscle SR or ER. 

In muscle ER, the membrane network is organized into a perinuclear ER and a highly specialized 

smooth ER called SR52. IRE1α is found in the perinuclear area corresponding to the ER-like 

network of intracellular membrane and at the junctional SR that is enriched in the RyR and Ca2+ 

release channel and Ca2+ binding protein calsequestrin and is the site of Ca2+ release for 

myofilament activation. 

 

Several proteins have been identified as components of junctional SR to support Ca2+ release 

to trigger muscle contraction, e.g., RyR/Ca2+ release channel, and the Ca2+ storage proteins 

calsequestrin, junctin, triadin, junctate, junctophilins and mitsugumin 5614. Calsequestrin interacts 

with RyR, triadin, and junctin in the junctional SR, and regulates RyR activity18, 55-60. Binding of 

calsequestrin to STIM1 has also been observed in non-muscle cells with forced overexpression of 

calsequestrin, and this interaction suppresses store-operated Ca2+ entry61. Calsequestrin binding to 

triadin, junctin, and STIM1 involves the C-terminal acidic high capacity Ca2+ binding domain of 

the protein. This site is independent from binding of calsequestrin to IRE1α since the deletion of 
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the calsequestrin C-terminal high capacity Ca2+ binding domain (Δ350-390) had no effect on the 

interaction between the truncated calsequestrin and IRE1α luminal domain.  

It is apparent that IRE1α signaling involves interaction with different proteins (including 

phosphatases, kinases, apoptosis-related proteins and the cytoskeleton) that modulate its activity 

through binding to its cytoplasmic domain1, 62, 63. It is well documented that in non-excitable cells 

BiP binds IRE1α directly inhibiting its activity under non-stress conditions, and dissociates from 

IRE1α to trigger its activity when ER stress is induced49, 64-66. However, deletion of the BiP binding 

domain of IRE1α does not cause constitutive IRE1α kinase activity67, 68, indicating there is 

additional complexity in BiP-dependent regulation of IRE1α. PDIA6, an oxidoreductase and ER 

luminal resident protein, has also been identified as an IRE1α binding partner27, 43 and modulator 

of IRE1α activity27, and more recently, Hsp4769 and COX-270 were identified as a regulator of 

IRE1α. Here we show that calsequestrin is a novel IRE1α interaction partner that constitute the 

complex regulatory network controlled by IRE1α, one that is specialized at the junctional SR in 

the muscle.  
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Chapter 3: Functional consequences of inositol-requiring enzyme -1α (IRE1α) deficiency in 

cardiomyocytes 

3.1 Abstract 

The endoplasmic reticulum (ER) stress and activation of unfolded protein response (UPR) is 

involved in the development and progression of various heart disease, such as cardiac hypertrophy, 

ischemic heart disease, and heart failure. The serine/threonine protein kinase/endoribonuclease 

IRE1α is a key component of UPR that can induce both adaptive UPR and apoptotic signaling 

pathways to determine cell fate. However, the specific role of IRE1α in the heart is unknown. In 

this study, we aimed to characterize the specific contribution of IRE1α in cardiac physiology and 

pathogenesis. We generated a mouse model with cardiomyocyte specific, inducible silencing of 

the IRE1α gene. We discovered that silencing the IRE1α gene in adult heart results in dilated 

cardiomyopathy with severely impaired cardiac function. Moreover, IRE1α-deficient 

cardiomyocytes show impaired Ca2+ transient, suggesting IRE1α deficiency in the heart leads to 

dysfunction in Ca2+ handling by cardiomyocytes. 

3.2 Introduction 

The ER is a specialized organelle composed of a single bilayer that forms the nuclear 

envelope, dynamic branched tubules, and a network of sheets1. It governs lipid and steroid 

synthesis, carbohydrate metabolism, Ca2+ storage, synthesis, folding and processing of over one 

third of all cellular proteins2. Disruptions to ER homeostasis, including oxidative stress, protein 

aggregation, Ca2+ flux, or accumulation of misfolded protein can cause ER stress and activate a 

highly conserved adaptive response namely UPR2. There are three major ER stress sensors and 

signaling transducers in UPR including ATF6, PERK, and IRE1α. Activation of these sensors 

leads to protein translational attenuation, transcriptional activation of chaperones and folding 

enzyme genes, and activation protein degradation pathway to reduce accumulation of misfolded 

protein and restore ER homeostasis2, 3. 

ER stress is an integral part of heart physiology and pathology. ER stress signaling is 

activated in response to many types of myocardial assaults, including ischemia, 

ischemia/reperfusion injuries, hypoxia, and mechanical overload4-9. However, the role of ER stress 

signaling in these disease conditions remains unclear. Different ER stress pathways appear to have 

specific roles in the heart. ATF6 activation can protect myocardium from ischemia/reperfusion 
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injury via inducing cytoprotective ER stress proteins: BiP, GRP94 (glucose-regulated protein 94), 

and oxidative stress response genes10, 11. PERK deficient heart shows more severe cardiomyopathy 

in response to pressure overload-induced heart failure, suggests PERK singling pathway is 

cardioprotective12. Overexpressing IRE1α in cardiomyocytes can protect the heart against pressure 

overload-induced heart failure13. Transcription factor XBP1, downstream of IRE1α activation, can 

protect heart from hypoxia during myocardium infarction by increasing BiP expression14. 

Inhibition of XBP1 in cultured cardiomyocytes significantly increases cardiac myocyte apoptosis 

and cell death in response to hypoxia/reoxygenation stress14. Moreover, XBP1 silencing led to 

increased injury from ischemia/reperfusion, and overexpressing spliced active form of XBP1 

(XBP1s) can protect hearts from ischemia/reperfusion injury with nearly 50% reduction in infarct 

sizes15. XBP1s deficient heart shows exacerbated heart failure progression under pressure overload 

(a common pathological condition in hypertensive patients), indicating XBP1 is part of adaptive 

response to protect heart in response to pressure overload16.  

ER stress can also activate cell death signaling pathways and contributes to myocyte 

apoptosis and heart failure17-21. The apoptosis signal-regulating kinase 1 (ASK1) in IRE1α 

pathway-mediated ER stress is essential for ER stress-induced apoptosis22, deletion of the ASK1 

gene in mice is cardioprotective with reduced cardiomyocyte apoptosis after transverse aortic 

constriction20. Moreover, IRE1α-XBP1 signaling mediates expression of key proatherogenic 

cytokines and chemokines that could drive the atherosclerotic process under metabolic stress. 

Inhibition of IRE1α-driven XBP1 splicing with small molecules alleviates atherosclerosis in 

apolipoprotein E-deficient mice (atherogenesis disease model)23, 24, 25. In a heart failure mice 

model with severe cardiac fibrosis, inhibiting IRE1α activity able prevents cardiac fibrosis26. These 

findings suggest that activation of IRE1α arm of UPR could contribute to disease progression. 

PERK mediated ER stress can also contribute to cardiomyocyte apoptosis. Inhibiting CHOP, 

downstream of PERK, can reduce cardiomyocyte apoptosis induced by aortic coarctation or 

proteasome inhibition21, 27. In heart failure mice model induced by transverse aortic constriction, 

CHOP-deficient mice do not develop as severe cardiac hypertrophy, fibrosis, and cardiac 

dysfunction as wild-type mice indicating that CHOP contributes to development of cardiac 

hypertrophy and failure induced by pressure overload28. Similarly, preventing eIF2α 

phosphorylation in PERK signaling pathway, can counteract disease progression in atrial 

fibrillation29 and improve cardiac pathology caused by parasitic infection30. These emerging 



79 

 

evidences show that ER stress contributes to both adaptive response and pathological remodeling 

of the heart. However, understanding a contribution of IRE1α to the heart physiology and 

pathology remains to be further established. 

In this study, we investigated the direct impact of IRE1α deficiency in cardiomyocytes using 

animal model with cardiomyocyte-specific, tamoxifen-inducible deletion of the IRE1α gene. In 

the absence of any external stress, silencing of IRE1α in cardiomyocytes of the adult hearts lead 

to severe dilation, systolic dysfunction, and cardiac fibrosis. Importantly, IRE1α-deficient 

cardiomyocytes show prolonged Ca2+ release response followed by oscillating and elevated 

cytosolic Ca2+ after stimulation, as well as increased premature spontaneous Ca2+ release events. 

This indicates that IRE1α plays a role in cardiomyocyte E-C coupling, and that IRE1α deficiency 

induced dilated cardiomyopathy is likely due to alternations in cardiomyocytes Ca2+ handling.  

3.3 Materials and Methods 

3.3.1 Ethics statement and animals 

All animal experiments were carried out according to the University of Alberta Animal 

Policy and Welfare Committee and the Canadian Council on Animal Care Guidelines. The 

approval for use of animals in research was granted by the Animal Care and Use Committee for 

Health Science, a University of Alberta ethics review committee. The protocol was approved by 

the Committee (AUP297).  

3.3.2 Generation of transgenic mice  

Heart-specific, inducible IRE1α deletion mice were generated using CRE/LoxP system. 

IRE1α flox/flox mice generously provided by Dr. Kenji Kohno31 from Department of Stem cell 

Biology, Kyoto University, Japan. Homozygous carrier for the loxP flank IRE1α exon 21 and 22 

with mixed (C57BL/6 x 129/SvJae) background. IRE1α flox/flox mice were cross-bred with 

αMHC (myosin heavy chain)-Cre mice (C57BL/6) single time to generate double transgenic mice 

(designated IRE1α cmc KO) which carried transgenes containing both MerCreMer driven by 

αMHC promoters and loxP-IRE1α-loxP. To induce deletion of the IRE1α exon 21 and 22, we 

delivered tamoxifen as food mixture32 (Figure 3-1). Wild-type and floxed single-transgenic (IRE1α 

flox/flox) mice treated with tamoxifen or double-transgenic IRE1α cmc KO mice treated with 
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standard chow (normal food) were used as controls. Both male and female mice age 12-14 weeks 

were included in the study. 

3.3.3 Echocardiography and electrocardiography  

Mice were anesthetized with 1.0% to 1.5% isoflurane with 1 to 1.5 l/min 100% oxygen, and 

in vivo cardiac function was assessed by transthoracic echocardiography using a Vevo 3100 high-

resolution imaging system equipped with a 30-MHz transducer (model RMV-707B, VisualSonics, 

Toronto, Ontario, Canada). The following measurements were obtained during both systole and 

diastole: inter-ventricular septal thickness (IVS), left ventricular posterior wall thickness (LVPW), 

left ventricular internal diameter (LVID), heart rate, ejection fraction (EF). Measurements were 

averaged from 3 to 6 cardiac cycles according to the American Society of Echocardiography. 

Percent ejection fraction (%EF) was calculated as follows: 100 * [(end-diastolic volume - end-

systolic volume)/end-diastolic volume)]. The Tei index (a measure of myocardial performance) 

was calculated as the ratio of time intervals (a-b/b), derived by pulsed Doppler echocardiography, 

where a is the time between the end and the start of transmitral flow, and b is the LV ejection time.  

For electrocardiography (ECG), mice were anesthetized with 1.0% to 1.5% isoflurane with 

1 to 1.5 l/min 100% oxygen, depilatory cream applied to chest area.  Animals were placed in dorsal 

recumbency and limbs gently taped down. ECGs were measured using surface electrode clips, and 

readings were recorded using Power Lab (ADInstruments). Microneedles attached to electrodes 

were inserted just under the skin. By convention, lead I has the positive electrode on the left arm, 

and lead II, the negative electrode on the right arm, and lead III on the left leg serves as a reference 

(ground). Record for1-3min using LabChart (version: 7.3, ADInstruments) 

3.3.4 Trichrome staining and fibrosis analysis 

Cardiac tissue was fixed in 10% formalin in phosphate buffered saline (137 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.2). Fixed tissues were embedded into paraffin, 

sectioned by 5 µm, mounted on to glass slide, and stained with Masson’s Trichrome for collagen 

in the Alberta Diabetes Institute HistoCore Facility at the University of Alberta. In brief, sectioned 

hearts were placed in filtered Bouin’s solution (1% saturated picric acid, 9% formaldehyde, and 

5% acetic acid) at 60oC for 30 minutes and let sit for another 30 minutes at room temperature. 

After washing the slide with water, the slide was stained with filtered trichrome for 20 minutes 
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and placed in 0.5% acetic water for 2 minutes. Slides were imaged using Zeiss COLIBRI 

fluorescence Microscope with 20x objective, 20-40 images were captured for each slice in random 

views. Total of 3 control heart (single transgenic floxed IRE1α mice fed tamoxifen for 3 weeks) 

and 3 IRE1α cmc KO mice fed tamoxifen for 3 weeks.  

Semiautomated image analysis of fibrotic areas were carried by Fiji ImageJ (version 1.52n, 

https://imagej.net/Fiji/Downloads) as described previously33. In brief, images were converted to 

RBG stacked providing grayscale pictures for the red, green, and blue channels separately. For the 

grayscale image corresponding to the green channels, the threshold was adjusted to detect collagen 

stained area (blue), and the detected regions were measured using measure tool.  

3.3.5 Cardiomyocyte and cardiac fibroblast isolation 

Adult mice fibroblasts were isolated from hearts of 6-8 weeks old C57BL/6J background 

male mice. The heart were perfused using a Langendorff-Free method34. In brief, immediately 

after cervical dislocation and opening the chest cavity, the descending aorta was cut, and 7 mL of 

EDTA buffer (130 mM NaCl, 5 mM KCl, 0.5 mM NaH2PO4, 10 mM HEPES, pH 7.8, 10 mM 

Glucose, 10 mM 2,3-butanedione monoxime, 10 mM Taurine, 5 mM EDTA) was injected 

immediately into the apex of the right ventricle. Then the ascending aorta was clamped using 

surgical hemostats, and the heart was transferred to fresh EDTA buffer. To digest the heart, the 

following buffers were injected sequentially to the apex of the left ventricle at 2 ml/mins: 10 mL 

EDTA buffer, 3 mL perfusion buffer (130 mM NaCl, 5 mM KCl, 0.5 mM NaH2PO4, 10 mM 

HEPES, pH 7.8, 10 mM Glucose, 10 mM BDM, 10 mM Taurine, 1 mM MaCl2), and 50 ml 

collagenase buffer (0.5 mg/ml collagenase 2 (Sigma-Aldrich C6885); 0.1 mg/ml collagenase 4 

(Sigma-Aldrich C5138); Protease type XIV, 0.05 mg/ml (Sigma-Aldrich P5147); dissolved in 

perfusion buffer. The right and left ventricle from digested hearts were then separated and gently 

pulled into about 1 mm pieces using forceps. Cells were dissociated with gentle trituration, and 

enzyme activity was stop by addition of 5 ml/heart stop buffer contains 5% FBS in perfusion 

buffer. Cell suspension was passed through a 100 µm cell strainer and centrifuged at 40 xg for 3 

mins and pellets enriched in cardiomyocyte were collected. Supernatant containing cardiac 

fibroblasts was collected and centrifuged again at 400 xg for 5 mins, and pellet was washed in 

DMEM (Gibco, 11995) with 10% FBS. The cell suspension was centrifuged again at 400 xg for 5 

https://imagej.net/Fiji/Downloads
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mins then the pellet was re-suspended in 10% FBS DMEM, 10 U/mL penicillin, and 100 μg/ml 

streptomycin and plated onto 10 cm culture dish (Corning, 430167).  

3.3.6 Calcium transient 

Cardiac ventricular myocytes were incubated with 1 μM Fluo-4 acetoxymethylester for 20 

min at room temperature and re-suspended in dye-free perfusion buffer with incubation at 37 °C 

for 20 min to allow complete de-esterification of AM esters. The Ca2+ imaging was performed 

using an Olympus IX83 inverted microscope and myocytes were perfused with Ca2+ imaging 

solution (in: 140 mM NaCl, 5 mM KCl, 10 mM HEPES, pH 7.4, 1.4 mM MgSO4. 7 mM H2O, 2 

mM CaCl2, 5 mM Glucose) with multi-channel superfusion system. The fluorescence of Ca2+ 

transient was emitted after excitation at 480 nm and 5 % intensity (X-cite 120 LED Boost Excelitas 

light source) for 10 ms and Ca2+ transients were measured at 20 Hz using 30X objective and Andor 

iXon Ultra 897camera. Electric field stimulation of myocytes was performed using Warner 

instruments SIU-102 stimulator with platinum electrodes. The region of interest (ROI) enclosing 

rod-shaped myocyte was selected and the cells were paced at 1 Hz using GRASS SD9 pulse 

generator for 60 seconds followed by 0.05 Hz for 2 min. The Ca2+ sparks and average fluorescence 

intensity of paced Ca2+ events evoked at 0.05 Hz were then analyzed. The time of peak and end of 

each event was analyzed using LabChart and Clampfit software (Molecular Devices, CA, USA) 

and 75% of time to reach baseline from peak was calculated. Statistical analyses were performed 

with unpaired Student’s t-test using Graphpad prism 5.0 software. 

3.3.7 Genomic DNA isolation and PCR 

Genomic DNA was isolated from cardiomyocytes and mouse tails using Qiagen DNeasy 

Blood & Tissue kits (Qiagen, 69504). Taq polymerase (FroggaBio, FBTAQM) was used for 

polymerase chain reaction (PCR) with thermocycling conditions as follows: 

Initial denaturation – 94oC for 5 minutes 

40 cycles of 94oC for 30 seconds 

58oC for 30 seconds 

72 C for 90 seconds  

Final extension – 72oC for 10 minutes 

PCR primers used for genotyping of the IRE1α exon 20-21 deletion: 
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Forward primer (5’ to 3’) AGCCAGTACACTGGTCATGCTA 

Reverse primer (5’ to 3’) ACCCCAAGACTAGCCCTTACA 

αMHC-MerCreMer primer:  

Forward primer (5’ to 3’): GCCAGCTAAACATGCTTCATC 

Reverse primer (5’ to 3’): ATTGCCCCTGTTTCACTATCC 

3.3.8 Real-time PCR  

Total RNA was isolated from cardiomyocytes or cardiac fibroblasts using Qiagen RNeasy 

mini kit (Qiagen, 74104) according to the manufacturer’s instructions. A Rotor-Gene RG-3000 

(Corbett Research) and iQ SYBR Green Supermix (Bio-Rad) were used for real-time PCR 

experiments. Five hundred ng RNA was used for reverse transcription by using iScript cDNA 

synthesis kit (Bio-Rad, 1708891), 20 ng cDNA was mixed with iQ SYBR Green Supermix (Bio-

Rad, 170-8882) for real-time PCR reaction. The final quantitation of the amount of target (Ct value) 

in a real-time PCR reaction was converted to the amount of transcript and normalized by 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). PCR primers used in this study is listed as 

follow: 

ERN1 (IRE1α) exon 21-22: forward (5’ to 3’) CGAGCCATGAGAAACAAGAAAC 

   reverse (5’ to 3’) GGAAGCGGGAAGTGAAGTAG 

Spliced XBP1 (XBP1s): forward (5’ to 3’) GAGTCCGCAGCAGGTG 

 reverse (5’ to 3’) GTGTCAGAGTCCATGGGA 

BiP:    forward (5’ to 3’) AAG CTC AAA GAG CGC ATT GAC ACC 

   reverse (5’ to 3’) AGT CTT CAA TGT CCG CAT CCT GGT 

Calreticulin:   forward (5’ to 3’) AAG ACT GGG ATG AAC GAG CCA AGA 

   reverse (5’ to 3’) AAT TTG ACG TGG TTT CCA CTC GCC 

CHOP:    forward (5’ to 3’) TCACACGCACATCCCAAA 

   reverse (5’ to 3’) CCTAGTTCTTCCTTGCTCTTC 

ATF4:    forward (5’ to 3’) TCG ATG CTC TGT TTC GAA TG 

   reverse (5’ to 3’) AGA ATG TAA AGG GGG CAA CC 

ATF6:    forward (5’ to 3’) CCA ATA GCC AAC AGA AAG CCC GCA 

   reverse (5’ to 3’) TGG TTT CTG TGT ACT GGA CAG CCA 

GAPDH:   forward (5’ to 3’) TTC ACC ACC ATG GAG AAG GC 

   reverse (5’ to 3’) GGC ATG GAC TGT GGT CAT GA 
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3.3.9 Immunostaining and confocal microscopy  

Paraffin embedded sections of mice hearts were prepared and processed at the Alberta 

Diabetes Institute HistoCore Facility at the University of Alberta. Sections were baked at 60oC for 

45 min to 1 hour to help tissue better stick to the glass slide. Then de-paraffined and rehydrated 

with 2x5 min 100% Xylene, 2x5 min 100% ethanol, 2x5 min 70% ethanol, and finally washed 

with tap water for 2x5 min. Heat-induced epitope retrieval was used to break potential protein 

cross-linking during fixation. Tissue sections were heated in 10 mM sodium citrate, pH 6.0, at 90-

95oC for 2x5 minutes. Sections were incubated with fluorescein isothiocyanate (FITC) conjugated 

wheat germ agglutinin (FITC-WGA, GeneTex GTX01502) at 100 µg/ml and 4',6-Diamidino-2-

Phenylindole, Dihydrochloride (DAPI, ThermoFisher Scientific 62248) at 3 µM final 

concentration both diluted in phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.2) for 30 minutes at room temperature in the dark. Sections were 

washed with PBS 2x5 minutes and mounted with Prolong Diamond Antifade Mountant (Thermo 

Fisher Scientific, P36961).  

Slides were visualized using a Leica TCS SP5 confocal microscope with Leica inverted DMI 

6000 B microscope base. Images were acquired with oil immersion objectives 40X/numerical 

aperture (NA) 1.25 or 100X/numerical aperture (NA) 1.44 at 22.5°C. For FITC-WGA 

visualization, the argon laser was used with excitation at 488 nm and emission peak at 525 nm. 

Images were acquired with Leica Application Suite Advanced Fluorescence (Leica LAS-AF) 

microscopy software, exported as Leica Image File format (LIF) and processed using ImageJ 

software (https://imagej.net/Fiji/Downloads) with 8 bit image type. 

3.3.10 Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 7.0. The Student’s t-test 

was used to compare the mean of two independent groups, and one-way Anova was used to 

compare the mean of three or more independent groups, with a p-value determined to be significant 

if less than 0.05. 

  

https://imagej.net/Fiji/Downloads
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3.4 Results 

3.4.1 IRE1α reduction in conditional knockout mice 

To elucidate IRE1α function in adult heart, we generated a transgenic mouse model with 

inducible and cardiac-specific IRE1α knockout using a Cre-loxP-mediated gene switch strategy 

(Figure 3-1A). Flox-IRE1α mice were cross-bred with αMHC-Cre mice containing a cardiac-

specific MerCreMer transgene where the Cre recombinase gene was under the control of the 

cardiomyocytes specific alpha-myosin heavy chain (αMHC) promoter. The Cre-dependent 

deletion of exons 20-21 from the floxed IRE1α allele was induced by administration of tamoxifen 

as described previously32. Tamoxifen binds to MerCreMer transgene product to promote nuclear 

translocation of the Cre recombinase in cardiomyocytes resulting in deletion of exons 20-21 from 

the IRE1α gene. We have previously shown that administration of tamoxifen alone does not have 

adverse effects, including no side effects on cardiac function, and optimal induction was achieved 

at 3 weeks post-tamoxifen feeding32. Deletion of the floxed IRE1α allele was seen only in heart 

tissue of transgenic mice carrying both MerCreMer and Flox-IRE1α (refer as cardiomyocyte 

specific IRE1α knockout, IRE1α cmc KO) (Figure 3-1B). Tamoxifen feeding for 3 weeks resulted 

in over 75% reduction in IRE1α mRNA as quantified by real-time PCR of mRNA isolated from 

cardiomyocytes (Figure 3-1D).  
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Figure 3-1. Generatingon of mice with IRE1α-deficient cardiomyocytes. 

A) A schematic diagram of strategy used for generation of cardiomyocytes specific silencing of 

the IRE1α gene. IRE1αflox/flox mice with loxP site flanking exon 20 and 21 were generated 

generously provided by Dr. Kenji Kohno31. Closed and open arrowheads indicate flippase 

recombinase target (FRT) and loxP elements, respectively, IRE1α flox/flox mice were cross-bred 

with the αMHC (myosin heavy chain)-Cre mice (C57BL/6) to generate transgenic mice 

(designated IRE1α cmc KO) with transgene encoding MerCreMer driven by the αMHC promoters 

and the loxP-IRE1α-loxP. To induce deletion exon 20 and exon 21 of the IRE1α gene mice were 

fed tamoxifen mixed in their food as described previously32. IRE1αflox/flox without Cre + tamoxifen 

was used as a control and it is referred to as IRE1αflox/flox.  

B) PCR analysis of genomic DNA isolated from control mice (IRE1α flox/flox fed tamoxifen) and 

IRE1α cmc KO mice after 3 weeks tamoxifen feeding.  

C) PCR analysis of genomic DNA isolated from heart or liver of IRE1α cmc KO mice. 

D) Real-time PCR analysis of IRE1α mRNA in control mice (IRE1α flox/flox fed tamoxifen) and 

IRE1α cmc KO mice after fed tamoxifen for 3 weeks. DNA primer were designed to target exon 

20 and exon 21 as shown in A). NS, not significant. Unpaired two tail student t-test was used for 

statistical analysis.  
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There were no differences in body weight (Figure 3-2), survival rate, and behavior between 

tamoxifen induced transgenic mice and control mice over 3 weeks of tamoxifen feeding 

(IRE1αflox/flox no Cre). Cardiomyocyte specific deletion of IRE1α did not cause transient activation 

of UPR as ATF6 and PERK and their downstream effectors (transcription factors CHOP and 

ATF4, chaperone calreticulin and BiP) showed no significant changes in the abundance of their 

mRNA in IRE1α-deficient cardiomyocytes as compared to IRE1αflox/flox control (Figure 3-3). 

 

 

Figure 3-2. Body weight of IRE1α mice. 

IRE1α cmc KO mice showed no significant changes in the body weight over 3 weeks of tamoxifen 

feeding as compared to control animal (IRE1αflox/flox without Cre). The percentage of change in 

body weight = 
body weight at day(x)tamoxifen−body weight at day(0)

body weight at day(0)
× 100%. Unpaired two tail student 

t-test was used for statistical analysis. Data shown are mean ± standard error. 
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Figure 3-3. Real-time Q-PCR analysis of XBP1 mRNA splicing and abundance of mRNA 

encoding UPR markers. 

RNA was extracted from isolated cardiomyocytes of control IRE1αflox/flox without Cre and IRE1α 

cmc KO hearts fed tamoxifen for 3 weeks. Unpaired two tail student t-test was used for statistical 

analysis - no significant differences were found for any of the analyzed targets. Unpaired two tail 

student t-test was used for statistical analysis. Data shown are mean ± standard error. 
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3.4.2 Cardiac-specific IRE1α deletion leads to severe dilated cardiomyopathy  

Echocardiography and four-lead electrocardiogram (ECG) were used to assess heart function 

of the IRE1α cmc KO animals. In these experiments, tamoxifen fed and normal food (chow) fed 

IRE1αflox/flox control mice showed similar parameters and, therefore, the data presented together as 

pooled parameters. M-mode non-invasive transthoracic echocardiography analysis of tamoxifen-

induced cardiomyocyte IRE1α knockout (IRE1α cmc KO) hearts shows severe left ventricle 

dilation and impaired systolic function (Figure 3-4B,C). The systolic function of the left ventricle, 

represented by ejection fraction (%EF), was significantly reduced after 3 weeks of tamoxifen 

administration (Figure 3-4C). Moreover, IRE1α cmc KO hearts displayed a significant increase in 

the left ventricle inner diameter (LVID), decreased left ventricle posterior wall thickness (LVPW), 

and increased left ventricle end-systolic volume all indicating cardiac dilation. Left ventricle 

diastolic function was assessed by left ventricle inflow doppler imaging (Table 3-1). Control 

(IRE1αflox/flox + tamoxifen) mice did not show any abnormal heart morphology (Figure 3-4A).  

Interestingly, IRE1α cmc KO hearts showed a very small to absent A wave, indicating a highly 

restricted pattern of transmitral flow velocity. Pulmonary pulse wave velocity (the velocity of 

pressure waves traveling through the arterial system) was also reduced in IRE1α cmc KO hearts 

likely due to weak systolic function of the left ventricle (Table 3-1). In summary, IRE1α deficiency 

in cardiomyocytes results in rapid development of dilated cardiomyopathy and heart failure. 
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Figure 3-4. Heart morphology and cardiac function of adult hearts with cardiomyocytes-

specific IRE1α deletion. 

A) Hematoxylin and eosin staining of hearts (longitudinal cross-section) of control (IRE1αflox/flox 

without Cre) and IRE1α cmc KO mice fed tamoxifen for 3 weeks. LV: left ventricle, RV: Right 

ventricle. 

B) Representative M-mode echocardiography images of control (IRE1αflox/flox without Cre) and 

IRE1α cmc KO fed tamoxifen for 3 weeks. ESD, end systolic diameter; EDD, end diastolic 

diameter. 

C) Representative images of transmitral flow velocity pattern in the pulmonary venous flow from 

echocardiography of control (IRE1αflox/flox without Cre) and IRE1α cmc KO hearts fed tamoxifen 

for 3 weeks. E, E-wave indicating early ventricular filling; A: A-wave indicating late filling caused 

by atrial contraction. Percentage of fractional shortening and percentage of ejection fraction 

measured from echocardiography were plotted below with mean ± standard error (n = 2 for control 

pooled from IRE1αflox/flox + tamoxifen mice and IRE1αflox/flox with Cre + chow mice, and n = 4 for 

IRE1α cmc KO). Unpaired two tail student t-test was used for statistical analysis. Data shown are 

mean ± standard error. 

D) Representative electrocardiography recording images of hearts from control (n=5) and IRE1α 

cmc KO (n=4) fed tamoxifen for 3 weeks. 
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Table 3-1. Echocardiography of control and IRE1α cmc KO mice after 3 weeks of 

tamoxifen administration. 

 unit Control (n=2) IRE1α (n=4) significance 

Body weight g 23.48 ± 0.58 21.22 ± 1.13 ns 

Heat rate bpm 368.63 ± 91.37 454.14 ± 23.28 ns 

LV dimensions and functions   

IVSd  mm 0.65 ± 0.01 0.60 ± 0.05 ns 

IVSs  mm 0.93 ± 0.01 0.66 ± 0.05 * 

LVIDd  mm 4.08 ± 0.23 4.94 ± 0.25 ns 

LVIDs  mm 2.81 ± 0.61 4.58 ± 0.26 * 

LVPWd  mm 0.72 ± 0.01 0.63 ± 0.04 ns 

LVPWs  mm 1.05 ± 0.08 0.70 ± 0.03 ** 

Vol.;d  µl 72.34 ± 9.63 119.13 ± 14.79 ns 

Vol.;s  µl 30.62 ± 14.33 96.47 ± 14.00 * 

Stroke Vol.  µl 41.73 ± 4.69 22.66 ± 1.49 ** 

% EF  58.29 ± 16.03 16.33 ± 1.47 * 

%FS  31.57 ± 11.00 7.35 ± 0.66 * 

Cardiac Output  (ml/min) 16.06 ± 5.79 10.23 ± 0.49 ns 

LV mass g 78.90 ± 8.80 98.68 ± 14.70 ns 

Mitral inflow     

E velocity mm/sec 540.5 ± 91.2 506.1 ± 54.8 ns 

A velocity mm/sec 349.7 ± 77.7 189.1 ± 58.4 ns 

Mitral E/A ratio mitral 1.56 ± 0.08 4.49 ± 2.2 ns 

Tei index  0.90 ± 0.03 1.43 ± 0.16 ns 

Pulmonary     

Pulse wave 

velocity 

mm/s 674.5 ± 45.5 432.75 ± 59.05 * 

LV = left ventricle 

IVSd = intraventricular septum wall thickness (diastolic) 

IVSs = intraventricular septum wall thickness (systolic) 

LVIDd = left ventricle inner diameter (diastolic) 

LVIDs = left ventricle inner diameter (systolic) 

LVPWd = left ventricle posterior wall thickness (diastolic) 

LVPWs = left ventricle posterior wall thickness (systolic) 

Vol:d = LV end-diastolic volume 

Vol:s = LV end-systolic volume 

%EF= percentage of ejection fraction 

%FS = LV fractional shortening = 
𝐿𝑉 𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛− 𝐿𝑉 𝑒𝑛𝑑 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛

𝐿𝑉 𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
× 100% 

LV mass = left ventricular mass 

LV diastolic function assess by mitral inflow doppler tracing, E velocity: measured from E wave, 

early left ventricle filling waves. A velocity: measured from A wave, late atrial contraction wave. 

Mitral E/A ratio: ratio of E wave to A-wave velocity 

Tei index, an index of myocardial performance in systolic and diastolic function 

Statistical significance: *p < 0.05 and **p < 0.01, ns: not significant. Analyzed by unpaired student 

t-test, two tail. Data presented are mean ± standard error.  
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Next, we carry out electrocardiogram to detect potential conduction delays and arrhythmias 

associated with dilated cardiomyopathy in IRE1α cmc KO mice. The P wave amplitude as a 

proportion of the QRS amplitude was increased in the IRE1α cmc KO hearts indicative of an 

enlarged cardiac chambers (Figure 3-4D). The QRS amplitude was also significantly reduced in 

IRE1α cmc KO hearts (Figure 3-4D, Table 3-2). Taken together, the ECG analysis further 

supported our conclusions that IRE1α deficiency in cardiomyocytes in adult heart leads to dilated 

cardiomyopathy with left ventricle enlargement and severe impairment of systolic function. 

Table 3-2. Electrocardigram of control and IRE1α cmc KO mice after 3 weeks of tamoxifen 

administration. 

 unit Control (n=5) IRE1α cmc KO (n=4) significance 

Body weight  g 22.9 ± 1.533   20.9 ± 1.451 ns 

Heart rate bpm 442.2 ±43.6 465.9 ± 31.444 ns 

RR interval  s 0.1414 ± 0.015 0.1308 ± 0.010 ns 

PR interval s 0.038 ± 0.002 0.03675 ± 0.004 ns 

P duration s 0.018 ± 0.003 0.01275 ± 0.001 ns 

QRS interval s 0.0102 ± 0.001 0.01125 ± 0.002 ns 

QT interval  s 0.0176 ± 0.0002 0.0225 ± 0.006 ns 

QTc s 0.047 ± 0.003 0.0635 ± 0.019 ns 

JT interval  s 0.0058 ± 0.001 0.011 ± 0.005 ns 

Tpeak Tend interval  s 0.0038 ± 0.001 0.00825 ± 0.004 ns 

P Amplitude  mV 0.1054 ± 0.012 0.1058 ± 0.013 ns 

Q Amplitude  mV -0.1404 ± 0.054 -0.02 ± 0.021 ns 

R Amplitude  mV 1.476 ± 0.195 0.4925 ± 0.032 ** 

S Amplitude  mV -0.2634 ± 0.163 -0.1943 ± 0.108 ns 

ST Height  mV 0.0526 ± 0.028 -0.1033 ± 0.066 * 

T Amplitude  mV 0.1086 ± 0.098 -0.02475 ± 0.114 ns 

Statistical significance: *p < 0.05 and **p < 0.01, ns: not significant. Analyzed by unpaired student 

t-test, two tail. Data presented are mean ± standard error. 
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3.4.3 IRE1α deficient hearts develop cardiac fibrosis 

Fibrosis remodeling is associated with non-ischemic dilated myopathy35, 36. Inhibiting IRE1α 

endonuclease activity prevents cardiac fibrosis with improved prognosis26. Surprisingly, IRE1α 

cmc KO hearts developed fibrosis. Trichrome staining of the myocardium and quantitative analysis 

of the fibrotic areas shows increased deposition of collagen in the IRE1α cmc KO hearts (Figure 

3-5) indicating that cardiomyocyte specific deletion of IRE1α lead to development of cardiac 

fibrosis. 

 

Figure 3-5. Cardiomyocytes-specific IRE1α deletion in adult mice develops cardiac fibrosis. 

Gomori’s trichrome staining for collage depositions of control (IRE1αflox/flox without Cre) and 

IRE1α cmc KO myocardium. IRE1α cmc KO mice without tamoxifen induction control 

(IRE1αflox/flox + Cre, fed with chow food) were also included. The arrows indicate the location of 

the blue staining for collage. Quantitative analysis of the percentage of areas with collagen 

deposition in all three groups were measured and analyzed by imageJ. Unpaired two tail student t-

test was used for statistical analysis. ****: p < 0.0001. n.s. not significant. Data shown are mean 

± standard error.  
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3.4.4  IRE1α deficient myocytes has reduced t-tubule and increased extracellular staining 

Cardiomyocytes from failing hearts have reduced number or even absence of T-tubules37, 38. 

To determine if T-tubule remodeling was associated with cardiomyocyte specific IRE1α deletion-

induced dilated myopathy, we use FITC conjugated wheat germ agglutinin (WGA) to stain 

sarcolemma and T-tubule within myocardium. WGA is a lectin that selectively binds to N-

acetylglucosamine-oligomers and sialic acid residues on glycoproteins39, including dystrophin-

associated glycoprotein complex localized at T-tubule40 and collagen in extracellular matrix41, and 

been used to label cell boundary and T-tubules of the cardiomyocytes42-44. Fluorescence probe 

conjugated WGA has been previously used as a tool for detecting T-tubule remodeling and 

measuring cardiomyocyte sizes within myocardium40, 45, 46. 

Confocal imaging of heart from IRE1α cmc KO mice showed significant reduction in the T-

tubule fractional area (7.9 ± 0.4%, mean ± standard error), quantified by FITC-WGA staining area 

versus longitudinal cross-section area of a single cardiomyocyte (14.6 ± 0.5 %)(Figure 3-6). 

Moreover, cardiomyocyte specific IRE1α deletion causes enlarged cardiomyocytes size. The mean 

cardiomyocytes cross-section area in IRE1αflox/flox control heart was 648.6 ± 22.5 µm2 

(longitudinal) and 243.6 ± 9.3 µm2 (short axis) compare to a significantly increased cardiomyocyte 

size in IRE1α cmc KO hearts - 833.9 ± 32.6 µm2 (longitudinal) and 291.6 ± 7.5 µm2 (short axis), 

p < 0.0001, 220 for control group and 280 cells IRE1α cmc KO hearts, and n = 3 for both groups 

(Figure 3-6).  
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Figure 3-6. T-tubule and extracellular matrixes in IRE1α cmc KO ventricle. 

FITC conjugated wheat germ agglutinin staining (green) of heart sections from control 

(IRE1αflox/flox) and IRE1α cmc KO hearts fed tamoxifen for 3 weeks. Representative images in the 

longitudinal-axis plane (i) and short-axis cross-section (iii). DAPI nucleus co-staining shown in 

blue. The binary images with manual adjusted threshold show stained area in black and non-stained 

area in white were produced for better visualization and analysis (ii and iv). Confocal images were 

taken from random regions of ventricle sections. Images were analyzed using Fiji ImageJ. 
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3.4.5 IRE1α deletion cause dysfunction in Ca2+ handling 

To determine whether IRE1α deletion in cardiomyocytes alters Ca2+ handling, we measured 

intracellular Ca2+ concentration ([Ca2+]i) in the isolated, field-stimulated ventricular 

cardiomyocytes loaded with the fluorescent, cell permeable, Ca2+ indicator fluo-4/AM. Global 

Ca2+ transient from IRE1α deficient cardiomyocytes shows frequently small transient rises in 

diastolic Ca2+ and after contractions following each paced beat (Figure 3-7A). These spontaneous 

premature Ca2+ release events occurred in a statistically significant higher frequency in IRE1α 

deficient cardiomyocytes (0.92 ± 0.13 versus 0.33 ± 0.10 spontaneous Ca2+ release events per 20 

seconds) than cells isolated from control hearts. This alternation in Ca2+ transient is typical in store-

overload-induced Ca2+ release, where SR Ca2+ overload leads to spontaneous Ca2+ release through 

RyR2 and triggers arrhythmias47. 

Moreover, IRE1α deficient cardiomyocytes shows significantly prolonged response in 

recovering cytosolic Ca2+ back to baseline (the pre-stimulation baseline value of the recorded 

signal), and random occurrence of a sustained, low amplitude phase of Ca2+ release after peak 

(Figure 3-7B). Similar to diastolic SR Ca2+ leaks caused by RyR2 mutations or Casq2 deletion48-

50. Interestingly, our preliminary result shows partial inhibition of RyR2 channels via ryanodine 

able to abolish Ca2+ oscillation in the isolated IRE1α cmc KO cardiomyocytes and recovery of 

transient duration comparable to control myocytes. This indicates that spontaneous Ca2+ releases 

seen in IRE1α cmc KO cardiomyocytes may be caused by enhanced RyR2 activity. 
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Figure 3-7. Ca2+ transient recordings in IRE1α cmc KO cardiomyocytes. 

A) Representative Ca2+ transient recording showing spontaneous Ca2+ release events at rest 

(without electrical stimuli) in cardiomyocytes isolated from IRE1α cmc KO hearts (left). 

Quantification of spontaneous Ca2+ release events per 20s of recording (right). IRE1α deficient 

cardiomyocytes shows increased unsynchronized spontaneous Ca2+ release events. n=8 and 13 for 

control and IRE1α cmc KO cardiomyocytes recordings respectively from three hearts each group. 

**, p < 0.01. 

B) Representative Ca2+transient recordings for cardiomyocytes isolated from control (IRE1αflox/flox) 

and IRE1α cmc KO hearts fed tamoxifen for 3 weeks (left). Ca2+ transients were recorded from 

fluo 4/AM loaded, field-stimulated myocytes at 0.05 Hz. Cardiomyocytes isolated from IRE1α 

cmc KO hearts showed prolonged [Ca2+]i transient and Ca2+ oscillations. n=30 cells from three 

IRE1αflox/flox control heart and n=36 cells from three IRE1α cmc KO hearts.  **, p < 0.01. 75% of 

time (transient duration) to reach baseline from the transient peak: the plateau duration measured 

at 75% below the peak level (right) 
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3.5 Discussion 

Although work presented in Chapter 3 is still part of an ongoing and active research project 

a few exciting conclusions can be drown from currently available data. We demonstrated here that 

IRE1α plays an important role in maintaining cardiac health and function. IRE1α silencing in adult 

heart results in a severe dilated cardiomyopathy with impaired systolic function (Figure 3-4 and 

Table 3-1). The hearts develop cardiac fibrosis, have reduced T-tubules, and enlarged 

cardiomyocytes (Figure 3-5 and Figure 3-6). Most importantly and surprisingly, IRE1α-deficient 

cardiomyocytes showed impaired Ca2+ handling, with a prolonged Ca2+ release response and 

increased spontaneous Ca2+ release events (Figure 3-7). 

IRE1α mediated UPR is essential for development and cell survival31, 51, 52. Whole body 

knockout of the IRE1α gene in mice results in embryonic lethality at 12.5 days of gestation due to 

placental malformation31. Whole-body knockout of the XBP1 gene, a well characterized adaptive 

response part of IRE1α pathway, in mice results in embryonic lethality at E12.5-14.5 due to 

impaired hepatocyte development53. In adult hearts, XBP1 deficiency leads to different phenotype 

when compared to the IRE1α gene knockout16, 54. Silencing XBP1 adult cardiomyocytes do not 

alter cardiac size and function, but exacerbated cardiac hypertrophy after isoproterenol infusion 

compare with wild-type mice54. XBP1 knockout in adult hearts have preserved cardiac function at 

young age (≤ 3 month) but shows progressive loss of cardiac contractility leading to mortality 

during aging, and exacerbation of heart failure progression under pressure overload16. This unique 

phenotype of XBP1-deficient adult hearts indicates that functions of IRE1α other than splicing of 

XBP1 mRNA, contribute to the phenotype of IRE1α-deficient hearts we generated in this study. 

Moreover, when compared to other UPR branches, whole body knockout of the ATF6 gene or 

cardiomyocyte specific knockout of the PERK gene in adult mice hearts exhibit normal cardiac 

structure and contractile properties under non-stressed conditions11, 12.  These animals, however, 

show increased cell damage and decreased cardiac function under stress conditions and 

ischemic/reperfusion damage11, 12. These findings indicate that adaptive UPR responses are 

cardioprotective under stressed condition, however, at rest, cardiac structure and function is not 

affected in the absence of UPR components, ATF6, PERK, and XBP1. Taken together, the severe 

cardiac remodeling and impaired cardiac systolic function seen by us in IRE1α gene knockout 

hearts under non-stressed conditions are unexpected, and we propose that a novel and unique 

function of IRE1α may be responsible for its effects on cardiac physiology. 
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Cardiomyocyte specific IRE1α knockout causes Ca2+ handling dysfunction during 

stimulated contraction (Figure 3-7). There is limited information on the link between UPR and 

arrhythmia 55. In human induced pluripotent stem cell-derived cardiomyocytes, activation of UPR 

induced by tunicamycin results in downregulation of multiple cardiac ion channels, including 

Nav1.5, Kv4.3, KvLQT1, and Cav1.2, leads to altered action potential morphology (prolonged 

duration and decreased upstroke velocity)56. To our knowledge, the functional association between 

IRE1α and electrophysiology of the heart have not been investigated We have previously shown 

that in cardiomyocytes, IRE1α is localized to both perinuclear ER and the junctional SR (Chapter 

2). IRE1α as a junctional SR component colocalized with RyR2/Ca2+ release channel and interacts 

with Ca2+ storage/buffering protein calsequestrin, both RyR2 and calsequestrin play important 

roles in the control of muscle EC-coupling. Can IRE1α interact with RyR2 and control RyR2 Ca2+ 

release properties? Recent study have shown that IRE1α interacts directly with inositol 1,4,5-

trisphosphate (InsP3R1) and controls InsP3R1 cellular distribution and enhance Ca2+ channel 

activity57. The InsP3Rs and RyRs are transmembrane proteins with similar functional 

characteristics, similar protein structures and membrane arrangement58-61. Similar to InsP3Rs, 

IRE1α may be able to interact with RyR2 and affect its Ca2+ release properties. To support this 

hypothesis, our preliminary result indicates that normal Ca2+ transient can be restored in IRE1α -

deficient cardiomyocytes with administration of ryanodine.   

ER stress have been implicated in many cardiovascular diseases2, 3. Adaptive UPR have 

shown be cardioprotective, but irremediable ER stress can push the UPR toward proinflammatory 

and proapoptotic signaling. IRE1α as master regulator that is capable of cell fate determination 

have shown both cardioprotective and ability to contribute to disease progression. For example, 

overexpressing IRE1α in cardiomyocytes can protect heart against pressure overload-induced heart 

failure13, on other hand, inhibiting IRE1α can protect heart from cardiac fibrosis26 and 

atherosclerosis25. A better understanding of the underlying physiological role of IRE1α in the heart 

can help us develop therapeutic strategies aimed at mitigating ER stress in heart diseases. Here, 

we show that IRE1α is essential for cardiac health and function, IRE1α deficient adult heart exhibit 

severe dilation and reduced cardiac function under non stressed condition, and this may be due to 

dysfunctions in cardiomyocytes Ca2+ handling. However, the underlying mechanism is yet to be 

uncovered. 
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Chapter 4: Phylogenetic and biochemical analysis of calsequestrin structure and 

association of its variants with cardiac disorders 

4.1 Abstract 

Calsequestrin is among the most abundant proteins in muscle SR and displays a high capacity 

but a low affinity for Ca2+ binding. In mammals, calsequestrin is encoded by two genes, CASQ1 

and CASQ2, which are expressed almost exclusively in skeletal and cardiac muscles, respectively. 

Phylogenetic analysis indicates that calsequestrin is an ancient gene in metazoans, and that the 

duplication of the ancestral calsequestrin gene took place after the emergence of the lancelet. 

Cardiac muscle calsequestrin (CASQ2) gene variants associated with catecholaminergic 

polymorphic ventricular tachycardia (CPVT) in humans are positively correlated with a high 

degree of evolutionary conservation across all calsequestrin homologues. We investigated the 

impact of CPVT associated mutations on protein structure and function and carried out 

biochemical and biophysical analysis of CPVT causing mutations including R33Q, L167H, 

D307H, newly discovery recessive dominant CPVT associated mutant K180R, and heterozygous 

variants recently discovered from whole exome sequencing (D351G, G332R, P329S). The 

mutations are distributed in diverse locations of the calsequestrin protein and impart functional 

diversity but remarkably manifest in a similar phenotype in humans. 

4.2 Introduction 

The SR is a high specialized membrane network that supports mechanical muscle functions 

requiring large fluxes of Ca2+. Consequently, the SR controls E-C coupling1-3 without 

compromising Ca2+ requiring cellular processes that are normally associated with the ER4. There 

are two well defined structural and functional regions of the SR in cardiac muscle: the longitudinal 

SR that runs parallel to the myofibrils and the junctional SR that forms multiple membrane contacts 

with T-tubule membrane contact sites5-7. The junctional SR is the primary site of Ca2+ release via 

the RyR/Ca2+ channel which triggers muscle contraction. The SR luminal Ca2+ binding protein 

calsequestrin is a high capacity, low affinity Ca2+ binding protein that forms oligomeric structures 

that regulate RyR activity via interactions with RyR, triadin and junctin1, 8-14. There are two 

isoforms of calsequestrin, which are encoded by two different genes: cardiac calsequestrin (Casq2) 

and skeletal muscle calsequestrin (Casq1)14, 15. The crystal structure of calsequestrin indicates that 
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the protein contains three thioredoxin-like domains reminiscent of ER luminal oxidoreductases16, 

17. 

CPVT is an inherited disease characterized by ventricular arrhythmias leading to sudden 

death18, 19. CPVT results from defects in intracellular Ca2+ handling by cardiomyocytes. Two major 

variants have been associated with the CPVT disorder. The autosomal dominant form is associated 

with mutations in the RyR2 gene and accounts for ~50% cases, while a recessive form with 

mutations in the cardiac isoform of calsequestrin (CASQ2) accounts for 2-5 % cases. Other 

mutations also found in the CALM1 (encodes calmodulin1) and TRDN (encodes triadin) gene 

account for <2% of CPVT cases20-24. Thirteen mutations in the CASQ2 gene have been identified 

in CPVT patients, in sudden death syndrome25, 26, and three of them are non-synonymous 

polymorphisms (cSNP)24, 27. Several biochemical and cell biological studies of R33Q, L167H, and 

D307H calsequestrin mutants indicate that these mutations lead to impaired Ca2+ storage and Ca2+ 

release from the SR22, 24-37. Recently new calsequestrin mutations have been identified including 

K180R, D351G, G332R, and P329S27, 36, 38-43. 

In this study, we examined the evolutionary constraints of the CPVT related calsequestrin 

mutations, and included Casq1, Casq2 and pre-duplicate calsequestrin in the phylogenetic 

analysis. We showed that calsequestrin is an ancient protein in the metazoan, and that the 

duplication of the calsequestrin gene took place after the divergence of the lancelet but before 

divergence of Chondrichthyes. We noted that calsequestrin mutations, associated with CPVT, 

positively correlated with an increase in the degree of evolutionary conservation of the mutated 

sites. Furthermore, we carried out biochemical and biophysical analysis of seven CPVT related 

mutants (R33Q, L167H, D307H, K180R), and whole exome sequencing variants (D351G, G332R, 

P329S), with a major emphasis on the mutation’s impact on the structure and function of the 

calsequestrin protein. The mutations are distributed in diverse locations of the calsequestrin protein 

but remarkably manifest in a similar phenotype in humans28, 30, 44-46. 

.  
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4.3 Materials and Methods 

4.3.1 Genome databases  

The genomes used in the comparative genomics and phylogenetics analyses are publicly 

available and include the following from NCBI: Homo sapiens, Canis lupus familiaris, Bos taurus, 

Oryctolagus cuniculus, Sus scrofa, Rattus norvegicus, Mus musculus, Xenopus tropicalis, Gallus 

gallus, Taeniopygia guttata, Crocodylus porosus, Latimeria chalumnae, Danio rerio, 

Callorhinchus milii, Leucoraja erinacea, Branchiostoma floridae, Ciona intestinalis, Helobdella 

robusta, Drosophila melanogaster, Apis mellifera, Manduca sexta, Daphnia pulex, Parhyale 

hawaiensis, Parasteatoda tepidariorum, Caenorhabditis elegans, Nematostella vectensis, 

Mnemiopsis leidyi, Trichoplax adhaerans, Amphimedon queenslandica, Monosiga brevicollis, 

Salpingoeca rosetta, Capsaspora owczarzaki. Ensembl: Helobdella robusta. Skatebase.org: 

Leucoraja erinacea. hymenopteragenome.org: Apis mellifera. wfleabase.org: Daphnia pulex 

4.3.2 Comparative genomics, phylogenetic and sequence alignments  

Using H. sapiens CASQ1 and CASQ2 sequences as queries, BLASTp (Basic Local 

Alignment Search Tool protein) searches were performed on the genomes of 28 metazoan 

organisms (Table 4-1). Reciprocal BLAST was performed to verify the homology of significant 

hits obtained via forward BLAST. Predictions regarding the homology of a sequence were based 

on both the E-value and identity score. Hits that displayed the lowest E-value and greatest identity 

score in both the forward and reciprocal BLAST were predicted as being homologous. In cases of 

multiple homologous hits, the hit with the greatest identity score was predicted as being potentially 

orthologous. When no significant hits could be obtained using a BLASTp search, tBLASTn was 

used to search inside of the genome scaffolds. Additionally, HMMer was also used to search for 

sequences without significant BLASTp hits. Any potential HMMer hits were then verified using 

reciprocal BLAST. 

For phylogenetic analyses, we used both RAxML consensus trees using 100 bootstraps and 

MrBayes Bayesian analysis trees with 10 million iterations achieving an average standard 

deviation of splits frequencies value of less than 0.01. Default parameters on CIPRES for RAxML-

HPC v0.8 and MrBayes v3.2.6 on XSEDE were used with the following change for the RAxML 

trees: an LG4X protein matrix was used with the PROTGAMMA protein substitution model. The 

clades generated by the RAxML consensus trees were considered significant with node values of 
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at least 50. MrBayes tree clades were considered significant with node probability values of at 

least 0.8. RAxML consensus trees were generated using Consensus v3.695, while the graphical 

representation of the phylogenetic results was generated using Figtree v1.3.1. The calsequestrin 

sequences found using comparative genomics were aligned using MUSCLE v3.8.31 and visualized 

using MESQUITE v3.2. 

4.3.3 Site-directed mutagenesis  

A pET22b E. coli expression vector containing full-length recombinant canine casq2 cDNA 

with a C-terminus 6xHis tag were used as template to obtain Casq2 mutants. Platinum pfx DNA 

polymerase (Invitrogen, 11708) was used for site-directed mutagenesis PCR with primers as 

follow with mutated residues shown in red: 

R33Q: Forward primer (5’ to 3’) - GATGGCAAAGACCAGGTGGTCAGTCTCACTG

 Reverse primer (5’ to 3’) -CAGTGAGACTGACCACCTGGTCTTTGCCATC  

L167H : Forward primer (5’ to 3’) - GAGGACCAGATCAAACACATTGGCTTTTTCAAG

 Reverse primer (5’ to 3’) -CTTGAAAAAGCCAATGTGTTTGATCTGGTCCTC 

K180R : forward primer (5’ to 3’) - GTCAGAGTATTATAGGGCTTTTGAGGAGGC

 Reverse primer (5’ to 3’) -GCCTCCTCAAAAGCCCTATAATACTCTGAC 

D307H : Forward primer (5’ to 3’) - GCATCGTGTGGATTCACCCGGATGACTTTC

 Reverse primer (5’ to 3’) -GAAAGTCATCCGGGTGAATCCACACGATGC 

P329S : Forward primer (5’ to 3’) - TTGACCTATTCAAGTCACAGATCGGGGTGGT

 Reverse primer (5’ to 3’) -ACCACCCCGATCTGTGACTTGAATAGGTCAA 

G332R : Forward primer (5’ to 3’) - TCAAGCCACAGATCCGTGTGGTGAATGTGAC

 Reverse primer (5’ to 3’) -GTCACATTCACCACACGGATCTGTGGCTTGA 

D351G : Forward primer (5’ to 3’) - TTCCTGATGATGATGGCCTGCCCACAGCTGA

 Reverse primer (5’ to 3’) -TCAGCTGTGGGCAGGCCATCATCATCAGGAA 

Methylated non-mutated template plasmids were digested with DpnI, and the correct mutations 

were confirmed by DNA Sanger sequencing. Seven CPVT-related Casq2 mutants (R33Q, L167H, 

K180R, D307H, P329S, G332R, D351G) were generated. 
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4.3.4 Protein purification  

cDNA encoding wild-type canine cardiac casq2 and casq2 mutants was cloned into pET22b 

expression vector. Proteins were expressed in E. coli BL21(DE3) and purified. Cells were grown 

in lysogeny broth (LB) medium until the A600 reaches 0.6 at 37oC, then induced with addition of 1 

mM IPTG at 37oC for 3 hrs. Cells were crashed by pressure homogenizer into a buffer containing 

50 mM Tris-HCl, pH 8.0, 300 mM NaCl, and 10% glycerol, then purified by using a HisTrap HP 

purification column (GE lifesciences, 17524701) and AKTA pure chromatography system (GE 

lifesciences 29018224). Purification was performed using binding buffer containing 50 mM Tris-

HCl, pH 8.0, 300 mM NaCl, and protein eluted with a buffer containing 50 mM Tris-HCl, pH 8.0, 

300 mM NaCl, and 250 mM imidazole. The 6xHis tagged ER luminal domain of IRE1α (IRE1-

NLD) was expressed in COS-1 cells and purified by Ni-NTA agarose chromatography47. 

4.3.5 CD Analysis  

CD spectra were recorded on a Jasco model J-810 spectropolarimeter. Far UV CD spectra 

were collected with 4.82 μM protein in buffer containing 10 mM NaH2PO4, pH 7.4, and 5 mM 

KCl, as NaCl interferes with CD analysis. CD scans were recorded using a quartz cell with a path 

length of 1 mm, response time of 2 s, scan speed of 10 nm/min, and band width of 1.0 nm. Ca2+-

induced changes in CD spectra were monitored in the presence of 1 mM of EGTA and 6 mM of 

CaCl2. CD spectra analysis was carried out at 24oC. The final spectra were an average of 5 

measurements, after baseline subtraction. Analysis of the spectra was performed using K2D348. 

The following calculations were performed for analysis: 

Mean residue ellipticity was calculated with formula:  

[𝜃] =  𝜃𝑜𝑏𝑠 ×
𝑀𝑅𝑊

(10 × 𝑙 × 𝑐)
 

Where [θ] with unit of Deg cm2dmol-1, θobs is the observed ellipticity in degrees, 𝑙 is the optical 

path-length in cm, 𝑐 is the protein concentration in g/ml, MRW is the mean residue molecular mass 

calculated with formula: 

𝑀𝑅𝑊 =  
𝑀

(𝑁 − 1)
 

where 𝑀 is a molecular mass of polypeptide chain in Da, and 𝑁 is the number of amino acids in 

the chain. 
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4.3.6 Microscale thermophoresis and thermal denaturation analyses  

Labelled microscale thermophoresis - Microscale thermophoresis analyses were carried out 

using a Monolith NT.115 instrument (Nano Temper Technologies, Germany) or Monolith 

NT.LabelFree instrument (Nano Temper Technologies, Germany). The ER-luminal domain of 

IRE1α (IRE1-NLD) was labelled using the Monolith NT Protein Labeling Kit RED-NHS (Nano 

Temper Technologies, cat# MO-C030) following the manufacture’s protocol. All experiments 

were carried out at room temperature in standard capillaries with 20% LED power (fluorescence 

lamp intensity) and 40% MST power (IR-laser intensity). The assay buffer contained 50 mM 

HEPES, pH 7.4, 150 mM KCl, 500 μM CaCl2, 250 μM EGTA, 0.05% Tween-20, and 2.5% 

glycerol. CaCl2 and EGTA concentrations were adjusted to obtain the desired free Ca2+ 

concentration: no Ca2+ (500 μM EGTA, 500 μM CaCl2), 5 mM (500 µM EGTA, 5.5 mM CaCl2). 

Free Ca2+ concentration was calculated using the Ca2+-EGTA Calculator TS v1.3 web tool49. 

Label-free microscale thermophoresis - Ca2+ binding to wild-type Casq2 or Casq2 mutants were 

carried out using a Monolith NT.LabelFree instrument in standard capillaries with 20% LED 

power and 60% Microscale thermophoresis power. The proteins were incubated for 10 min in a 

buffer containing 50 mM HEPES, pH 7.4, 150 mM KCl, 0.1% pluronic F-127, and 50 μM EGTA. 

An increasing concentration of CaCl2 (0.01-20 mM, in 50 mM HEPES, pH 7.4, 150 mM KCl) was 

used. All Microscale thermophoresis data was analyzed by Monolith Affinity Analysis v2.2.6 

software. 

Tycho NT.6 - thermal denaturation analysis of wild-type Casq2 or Casq2 mutants was carried 

out using Tycho NT.6. This label-free system is based on measurement of a protein’s intrinsic 

tryptophan fluorescence and records a protein’s unfolding profile in real-time as temperature is 

increased from 35 to 95oC. Ten µl of 0.25 mg/ml protein was used in buffer containing 50 mM 

HEPES, pH 7.4, 150 mM KCl, 500 μM CaCl2, 250 μM EGTA, 0.05% Tween-20, and 2.5% 

glycerol. 

4.3.7 Native polyacrylamide gel electrophoresis  

To determining the oligomerization state of Casq2 or Casq2 mutants in the presence of 

different free Ca2+ concentrations, a discontinuous Tris-glycine polyacrylamide gel system 

consisting of a 5% stacking gel and a 10% separation gel was used under non-denaturing 

conditions. Proteins were diluted 3x with non-denaturing loading dye (240 mM Tris-HCl, pH 6.8, 
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30% glycerol, and 0.03% bromophenol blue). Proteins were separated in a Mini-PROTEAN 

electrophoresis chamber (BioRad) in a running buffer containing 25 mM Tris, pH 8.8, and 192 

mM glycine, at 100 V, for 2 hr at 4oC. The proteins were stained with Stains-all solution50, 

Coomassie-blue, or transferred to nitrocellulose membrane for immunoblotting analysis. 

4.3.8 Limited proteolysis  

Cardiac calsequestrin (Casq2) and mutant proteins were subjected to proteolysis in a buffer 

containing 50 mM HEPES, pH 7.4, 150 mM KCl, 500 μM CaCl2, 250 μM EGTA, 0.05% Tween-

20, and 2.5% glycerol. CaCl2 and EGTA concentrations were adjusted to the desired free Ca2+ 

concentration: no Ca2+ (250 μM EGTA, 250 μM CaCl2), 5 mM (250 µM EGTA, 5.25 mM CaCl2). 

Free Ca2+ concentration was calculated using the Ca-EGTA Calculator TS v1.3 web tool 49. 

Proteins (150 μg of protein in 200 μl) were incubated in a reaction buffer with the desired free Ca2+ 

concentration for 20 min at 25oC before addition of trypsin at the trypsin/protein ration of 1:50 

(w/w), and samples were taken for SDS-PAGE analysis at 1, 2, 5, 10, 20, 30, 60, and 120 min. The 

samples were mixed with 4x SDS-PAGE sample buffer (Bio-Rad) containing serine protease 

inhibitor phenylmethylsufonyl fluoride (PMSF) and boiled at 100°C for 2 min before SDS-PAGE. 

All experiments were repeated 3 times with protein from 2 separate purifications. The gels were 

stained with Coomassie Blue R-250 (Bio-Rad). 

4.3.9 Cross-linking  

The homobiofunctional protein cross linker disuccinimidyl suberate (DSS) (Thermo 

Scientific Pierce, cat#:21555) was dissolved in DMSO at a final concentration of 10 mM47. Wild-

type Casq2 or Casq2 mutant proteins were diluted to a final concentration of 10 µM in a reaction 

buffer containing 50 mM HEPES, pH 7.4, 150 mM NaCl, 250 μM EGTA, 500 μM CaCl2, and 

0.05% Tween-20. Proteins were incubated with 20-fold molar excess of DSS for 1 hr at 22.5°C. 

The reaction was then quenched for 15 min with 100 mM Tris pH 7.4 followed by SDS-PAGE 

(10% acrylamide). Proteins were transferred to nitrocellulose membrane follow by 

immunoblotting with mouse anti-6xHis antibodies (ThermoFisher, MA1-21315) or anti-

calsequestrin antibodies (Abcam, 3516). 
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4.3.10 Statistical Analysis  

Statistical analysis was performed using GraphPad Prism version 7.0. The Student’s t-test 

was used to compare the mean of two independent groups, and one-way Anova was used to 

compare the mean of three or more independent groups, with a p-value determined to be significant 

if less than 0.05.  
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4.4 Results 

4.4.1 Emergence and specialization of calsequestrin within animals  

Phylogenetic analysis of the two calsequestrin genes (casq1 and casq2) was carried out with 

the aim of clarifying the distribution and conservation of each paralogue across animals. This 

allows us to deduce the timing of the gene duplication event and relate this information to 

calsequestrin mutants responsible for CPVT. Homology searching was undertaken in 23 metazoan 

genomes and three outgroup lineages to identify calsequestrin homologues. We identified 

unambiguous calsequestrin homologues in most of the vertebrate and invertebrate lineages (Table 

4-1). Furthermore, we revealed that Ciona intestinalis, B. floridae, and all taxa within the 

invertebrates possess a single calsequestrin gene, including taxa as deeply branched as Trichoplax 

and Nematostella (Figure 4-1). We did not identify a calsequestrin homologue in the sponge 

Amphimedon likely due to a database error or loss of calsequestrin in this lineage. Although the 

relative branching order of the basal lineages within animals is still disputed, with Nematostella or 

sponges as the deepest branch, calsequestrin is clearly an ancient protein within the metazoan 

(Figure 4-2 and Figure 4-3). 
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Table 4-1. BLASTp (Basic Local Alignment Search Tool protein) searches of the genomes of 28 

metazoan organisms by using H. sapiens CASQ1 (NP_001222.3) and CASQ2 (NP_001223.2) 

nucleoide sequences as queries. 

Subject 

database 

Forward 

BLAST hit 

name 

Forward 

BLAST hit 

accession 

numbers 

Forwa

rd 

BLAS

T e-

values 

Reverse 

BLAST hit 

names in 

[Homo sapiens] 

Reverse 

BLAST 

hit 

accession 

numbers 

Reve

rse 

BLA

ST e-

value

s 

Notes 

Forward query name: Homo sapiens CASQ1 

Rattus 

norvegicu

s 

calsequestrin-1 

precursor [Rattus 

norvegicus] 

NP_0011530

66.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Gallus 

gallus 

calsequestrin-2 

precursor [Gallus 

gallus] 

NP_989857.

1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 Reverse BLAST 

has identity 

score of 81 and 

91% query cover 

for CASQ2 

Gallus 

gallus 

calsequestrin-2 

precursor [Gallus 

gallus] 

NP_989857.

1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 Reverse BLAST 

has identity 

score of 71 and 

88% query cover 

for CASQ2 

Gallus 

gallus 

calsequestrin 

[Gallus gallus] 

AAA48674.1 0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 Reverse BLAST 

has identity 

score of 83 and 

91% query cover 

for CASQ2 

Gallus 

gallus 

calsequestrin 

[Gallus gallus] 

AAA48674.1 0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 Reverse BLAST 

has identity 

score of 71 and 

91% query cover 

for CASQ2 

Xenopus 

tropicalis 

hypothetical 

protein 

XENTR_v90022

392mg [Xenopus 

tropicalis] 

OCA27346.1 0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Xenopus 

tropicalis 

calsequestrin-2 

precursor 

[Xenopus 

tropicalis] 

NP_989136.

1 

8E-

177 

calsequestrin-2 

precursor  

NP_00122

3.2 

5E-

179 

CASQ2 

Xenopus 

tropicalis 

calsequestrin-1 

precursor 

NP_988894.

1 

8E-

162 

calsequestrin-1 

precursor  

NP_00122

2.3 

5E-

163 

CASQ1 
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[Xenopus 

tropicalis] 

Latimeria 

chalumna

e 

PREDICTED: 

calsequestrin-1 

[Latimeria 

chalumnae] 

XP_0060019

17.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Latimeria 

chalumna

e 

PREDICTED: 

calsequestrin-2 

[Latimeria 

chalumnae] 

XP_0060019

92.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Danio 

rerio 

calsequestrin-2 

precursor [Danio 

rerio] 

NP_0010026

82.1 

4E-

180 

calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Danio 

rerio 

calsequestrin-1 

precursor [Danio 

rerio] 

NP_0010701

92.1 

2E-

174 

unnamed 

protein product  

BAC8611

7.1 

0 CASQ1 

Danio 

rerio 

calsequestrin-1 

precursor [Danio 

rerio] 

NP_0010701

92.1 

2E-

174 

calsequestrin-1 

precursor  

NP_00122

2.3 

3E-

172 

CASQ1 

Callorhinc

hus milii 

PREDICTED: 

calsequestrin-2-

like 

[Callorhinchus 

milii] 

XP_0078897

83.1 

2E-

180 

calsequestrin-2 

precursor  

NP_00122

3.2 

0 Only one 

forward BLAST 

hit in NCBI - 

uncertain 

whether it is 

CASQ1 or 

CASQ2 

Callorhinc

hus milii 

PREDICTED: 

calsequestrin-2-

like 

[Callorhinchus 

milii] 

XP_0078897

83.1 

2E-

180 

calsequestrin-1 

precursor  

NP_00122

2.3 

0 tBLASTn did 

not yield any 

additional 

forward BLAST 

hits 

Leucoraja 

erinacea 

gnl|SkateBase|L

S-transcriptB2-

ctg62807 

ctg62807 6E-

160 

calsequestrin-2 

precursor  

NP_00122

3.2 

0 No hits in NCBI, 

used tBLASTn 

on skatebase.org 

Petromyzon marinus 
     

No hits 

identified in 

NCBI 

Branchios

toma 

floridae 

hypothetical 

protein 

BRAFLDRAFT

_122314 

[Branchiostoma 

floridae] 

XP_0026044

97.1 

7E-45 Chain A, Ca2+ 

Complex Of 

Human Skeletal 

Calsequestrin 

3UOM_A 8E-57 Related to 

CASQ 

Branchios

toma 

floridae 

hypothetical 

protein 

BRAFLDRAFT

XP_0026044

97.1 

7E-45 calsequestrin-1 

precursor  

NP_00122

2.3 

1E-56 
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_122314 

[Branchiostoma 

floridae] 

Ciona 

intestinali

s 

PREDICTED: 

calsequestrin-2 

[Ciona 

intestinalis] 

XP_0021306

64.1 

3E-

122 

Chain A, 

Human Skeletal 

Calsequestrin, 

D210g Mutant  

5CRE_A 5E-

121 

CASQ but 

uncertain 

whether it is 

CASQ1 or 

CASQ2 

Ciona 

intestinali

s 

PREDICTED: 

calsequestrin-2 

[Ciona 

intestinalis] 

XP_0021306

64.1 

3E-

122 

calsequestrin-1 

precursor  

NP_00122

2.3 

7E-

121 

 

Helobdella robusta 
     

No hits 

identified in 

NCBI nor 

Ensembl 

Drosophila melanogaster 
     

No hits 

identified in 

NCBI 

Caenorha

bditis 

elegans 

Calsequestrin 

[Caenorhabditis 

elegans] 

NP_510438.

1 

2.00E-

53 

Chain A, 

Human Skeletal 

Calsequestrin, 

D210g Mutant  

5CRE_A 3.00E

-51 

CASQ present 

Caenorha

bditis 

elegans 

Calsequestrin 

[Caenorhabditis 

elegans] 

NP_510438.

1 

2.00E-

53 

calsequestrin-1 

precursor  

NP_00122

2.3 

5.00E

-51 

 

Nematoste

lla 

vectensis 

predicted protein 

[Nematostella 

vectensis] 

XP_0016235

01.1 

9.00E-

55 

Chain A, 

Human Skeletal 

Calsequestrin, 

M53t Mutant 

High-calcium 

Complex 

5CRH_A 9.00E

-54 

 

Mnemiopsis leidyi 
     

No hits 

identified in 

NCBI 

Trichopla

x 

adhaerens 

hypothetical 

protein 

TRIADDRAFT_

56011 

[Trichoplax 

adhaerens] 

XP_0021117

04.1 

6.00E-

48 

calsequestrin-2 

precursor  

NP_00122

3.2 

2.00E

-50 

 

Amphimedon queenslandica 
     

No hits 

identified in 

NCBI 

Monosiga brevicollis 
     

Only 1 hit with 

e-value of 2.2 
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Salpingoe

ca rosetta 

hypothetical 

protein 

PTSG_02152 

[Salpingoeca 

rosetta] 

XP_0049966

35.1 

5.00E-

09 

protein 

disulfide-

isomerase 

precursor  

NP_00090

9.2 

3.00E

-86 

Not CASQ 

Capsaspora owczarzaki 
     

Not hits 

identified in 

NCBI 

Oryctolag

us 

cuniculus 

calsequestrin-1 

precursor 

[Oryctolagus 

cuniculus] 

NP_0010757

37.1 

0.00E

+00 

calsequestrin-1 

precursor  

NP_00122

2.3 

0.00E

+00 

CASQ1 

Mus 

musculus 

calsequestrin-1 

precursor [Mus 

musculus] 

NP_033943.

2 

0.00E

+00 

calsequestrin-1 

precursor  

NP_00122

2.3 

0.00E

+00 

CASQ1 

Apis mellifera XM_001121

993.4 

6.52E-

05 

   
No hits 

identified in 

NCBI 

Manduca sexta 
     

No hits 

identified in 

NCBI 

Canis 

lupus 

familiaris 

calsequestrin-1 

[Canis lupus 

familiaris] 

XP_850097.

1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Sus scrofa calsequestrin-1 

precursor [Sus 

scrofa] 

NP_0012301

98.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Bos taurus calsequestrin-1 

precursor [Bos 

taurus] 

NP_0010713

45.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Crocodylu

s porosus 

PREDICTED: 

calsequestrin-2 

[Crocodylus 

porosus] 

XP_0194042

88.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2? 

Taeniopyg

ia guttata 

PREDICTED: 

calsequestrin-2 

[Taeniopygia 

guttata] 

XP_0021885

12.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2? 

Parasteat

oda 

tepidarior

um 

calsequestrin-2-

like 

[Parasteatoda 

tepidariorum] 

XP_0210003

44.1 

4.00E-

21 

unnamed 

protein product  

BAG5842

2.1 

2.00E

-23 

Appears to be 

related to CASQ; 

similar to 

calsequestrin-2 

precursor 

Parasteat

oda 

calsequestrin-2-

like 

XP_0210003

44.1 

4.00E-

21 

calsequestrin-2 

precursor  

NP_00122

3.2 

4.00E

-22 

Appears to be 

related to CASQ 
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tepidarior

um 

[Parasteatoda 

tepidariorum] 

Daphnia pulex 
     

No significant 

hits in NCBI 

Parhyale hawaiensis 
     

No significant 

hits identified in 

NCBI 

Forward query name: Homo sapiens CASQ2 

Rattus 

norvegicu

s 

calsequestrin-2 

precursor [Rattus 

norvegicus] 

NP_058827.

3 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Rattus 

norvegicu

s 

calsequestrin-1 

precursor [Rattus 

norvegicus] 

NP_0011530

66.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Gallus 

gallus 

calsequestrin-2 

precursor [Gallus 

gallus] 

NP_989857.

1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Xenopus 

tropicalis 

calsequestrin-2 

precursor 

[Xenopus 

tropicalis] 

NP_989136.

1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

5E-

179 

CASQ2 

Latimeria 

chalumna

e 

PREDICTED: 

calsequestrin-2 

[Latimeria 

chalumnae] 

XP_0060019

92.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Danio 

rerio 

calsequestrin-2 

precursor [Danio 

rerio] 

NP_0010026

82.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Callorhinc

hus milii 

PREDICTED: 

calsequestrin-2-

like 

[Callorhinchus 

milii] 

XP_0078897

83.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Callorhinc

hus milii 

PREDICTED: 

calsequestrin-2-

like 

[Callorhinchus 

milii] 

XP_0078897

83.1 

0 calsequestrin-1 

precursor  

NP_00122

2.3 

0 CASQ1 

Leucoraja 

erinacea 

gnl|SkateBase|L

S-transcriptB2-

ctg62807 

ctg62807 3E-

177 

calsequestrin-2 

precursor  

NP_00122

3.2 

0 Possibly CASQ2 

Petromyzo

n marinus 

 
JL3244 0.0000

01 

protein 

disulfide-

isomerase A4 

precursor  

NP_00490

2.1 

0 Only 1 hit with 

tBLASTn in 

NCBI with e-

value of 7.6  
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Branchios

toma 

floridae 

hypothetical 

protein 

BRAFLDRAFT

_122314 

[Branchiostoma 

floridae] 

XP_0026044

97.1 

2E-38 Chain A, Ca2+ 

Complex Of 

Human Skeletal 

Calsequestrin 

3UOM_A 8E-57 CASQ; not 

obvious 

representing 

which paralog 

Branchios

toma 

floridae 

hypothetical 

protein 

BRAFLDRAFT

_122314 

[Branchiostoma 

floridae] 

XP_0026044

97.1 

2E-38 calsequestrin-1 

precursor  

NP_00122

2.3 

1E-56 
 

Ciona 

intestinali

s 

PREDICTED: 

calsequestrin-2 

[Ciona 

intestinalis] 

XP_0021306

64.1 

3E-

131 

Chain A, 

Human Skeletal 

Calsequestrin, 

D210g Mutant 

5CRE_A 5E-

121 

CASQ not 

obvious 

representing 

which paralog 

Helobdella robusta 
     

No hits in NCBI 

or JGI 

Drosophila melanogaster 
     

No hits on NCBI 

also no 

significant hits 

identified in 

flybase.org 

Caenorha

bditis 

elegans 

Calsequestrin 

[Caenorhabditis 

elegans] 

NP_510438.

1 

4.00E-

49 

Chain A, 

Human Skeletal 

Calsequestrin, 

D210g Mutant  

5CRE_A 3.00E

-51 

CASQ; not 

obvious 

representing 

which paralog 

Nematoste

lla 

vectensis 

predicted protein 

[Nematostella 

vectensis] 

XP_0016235

01.1 

2.00E-

52 

Chain A, 

Human Skeletal 

Calsequestrin, 

M53t Mutant  

5CRH_A 9.00E

-54 

CASQ; not 

obvious hit 

representing 

paralog 

Mnemiopsis leidyi 
     

No hits 

identified in 

NCBI; best 

tBLASTn hit e-

value of 2e-04 

Trichopla

x 

adhaerens 

hypothetical 

protein 

TRIADDRAFT_

56011 

[Trichoplax 

adhaerens] 

XP_0021117

04.1 

7.00E-

53 

calsequestrin-2 

precursor  

NP_00122

3.2 

2.00E

-50 

CASQ; not 

obvious 

representing 

which paralog 

Amphimedon queenslandica 
     

Only 1 hit with 

e-value of 0.49 

Monosiga brevicollis 
     

Best hit has e-

value of 0.027 
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Salpingoeca rosetta 
     

Best hit has e-

value of 0.027 

Capsaspora owczarzaki 
     

No hits in NCBI 

or ensembl 

Oryctolag

us 

cuniculus 

calsequestrin-2 

precursor 

[Oryctolagus 

cuniculus] 

NP_0010951

61.1 

0.00E

+00 

calsequestrin-2 

precursor  

NP_00122

3.2 

0.00E

+00 

CASQ2 

Mus 

musculus 

calsequestrin-2 

precursor [Mus 

musculus] 

NP_033944.

2 

0.00E

+00 

calsequestrin-2 

precursor  

NP_00122

3.2 

0.00E

+00 

CASQ2 

Apis mellifera XM_001121

993.4 

4.00E-

01 

Homo sapiens 

thioredoxin-

related 

transmembrane 

protein 3, 

BC107422

.1 

9.00E

-50 

No hits 

identified in 

NCBI 

Manduca sexta 
     

No hits 

identified in 

NCBI 

Canis 

lupus 

familiaris 

calsequestrin-2 

precursor [Canis 

lupus familiaris] 

NP_0013007

45.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Sus scrofa LOW QUALITY 

PROTEIN: 

calsequestrin-2 

[Sus scrofa] 

XP_0209456

54.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Bos taurus calsequestrin-2 

[Bos taurus] 

NP_0010304

51.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Crocodylu

s porosus 

PREDICTED: 

calsequestrin-2 

[Crocodylus 

porosus] 

XP_0194042

88.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Taeniopyg

ia guttata 

PREDICTED: 

calsequestrin-2 

[Taeniopygia 

guttata] 

XP_0021885

12.1 

0 calsequestrin-2 

precursor  

NP_00122

3.2 

0 CASQ2 

Parasteat

oda 

tepidarior

um 

calsequestrin-2-

like 

[Parasteatoda 

tepidariorum] 

XP_0210003

44.1 

3.00E-

23 

unnamed 

protein product  

BAG5842

2.1 

2.00E

-23 

Appears to be 

related to CASQ. 

similar to 

calsequestrin-2 

precursor 

Parasteat

oda 

tepidarior

um 

calsequestrin-2-

like 

[Parasteatoda 

tepidariorum] 

XP_0210003

44.1 

3.00E-

23 

calsequestrin-2 

precursor  

NP_00122

3.2 

4.00E

-22 

Appears to be 

related to CASQ 
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Daphnia 

pulex 

hypothetical 

protein 

DAPPUDRAFT

_305526 

[Daphnia pulex] 

EFX88084.1 1.1 
   

E-value not 

significant 

Parhyale hawaiensis 
     

No significant 

hits identified in 

NCBI,  
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Figure 4-1. Calsequestrin homologues in the vertebrate and invertebrate lineages.  

Empty circles indicate the gene is absent. Green circles indicate the presence of pre-duplication 

Casq, blue circles the presence of casq1, and red circles the presence of casq2.  



125 

 

 



126 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Phyolgenetic tree of calsequestrin.  

A phylogenetic tree was generated by combining MrBayes and RAxML consensus data with 

Branchiasotma floridae as an outgroup. The Danio rerio casq1 sequence was removed from the 

dataset used to generate the tree due to long branch attraction causing poor RAxML consensus 

bootstrap values in previous iterations. The presence of casq1 and casq2 is highlighted by 

different background colors. 
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Figure 4-3. Short-branch phylogenetic tree of calsequestrin.  

A phylogenetic tree was generated by combining MrBayes and RAxML consensus data as 

described in Figure 4-2. The presence of casq1 and casq2 is highlighted by different background 

colors. 
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Each of these lineages, as well the invertebrates and hemichordates, possess only a single 

calsequestrin gene, leaving the timing of when casq1 vs casq2 arose as an outstanding question. 

Preliminary phylogeny provided moderate support for the non-vertebrate sequences emerging 

basal to clades of the casq1 and casq2, thus being pre-duplicated versions (Figure 4-2 and Figure 

4-3). Further analysis focused on vertebrate gene sequences and using the lancelet sequences as an 

outgroup (Figure 4-1). The analysis robustly showed that the calsequestrin gene duplication giving 

rise to casq1 and casq2 occurred after the divergence of the lancelet lineage but before the 

divergence of the Chondrichthyes. We were unable to identify any calsequestrin genomic DNA 

sequences in the insect lineage. This likely represents a bona fide loss in this line given the positive 

identification of a homologue in the spider Parasteatoda tepidariorum. 

The Chondrichthyes and Avian taxa lost casq1 independently. We identified casq1 

paralogues in the Chondrichthyes despite robustly classifying casq2 being present and the 

duplication having taken place prior to this point (Figure 4-1). The same was observed for the 

avian taxa sampled, suggesting that casq1 was lost independently in these three lineages. In 

mammalian muscles the two calsequestrin isoforms exhibit tissue specific expression51-53. Casq2 

is expressed in cardiac and slow-twitch skeletal muscle, whereas Casq1 is expressed in adult fast-

twitched muscle51-53. Cartilaginous fish as well as avian animals have both fast-twitch and slow-

twitch skeletal muscles even though they appear to lack casq1. 

4.4.2 Conservation of CPVT associated Casq2 mutants throughout animal kingdom  

Having the evolutionary distribution of casq1 and casq2 allowed us to contextualize 

calsequestrin mutations in the human CASQ2, which have been associated with CPVT (Figure 

4-4)24, 54, 55. We selected the following seven Casq2 mutants for further analyses: R33Q, L167H, 

D307H, K180R, P329S, G332R, and D351G (Figure 4-4). Many mutations are scattered across 

the three thioredoxin-like domains of Casq2 (Figure 4-4), but remarkably they all lead to a similar 

clinical outcome24, 54. L167, and D351 are conserved in Casq1 and Casq2 paralogues found in 

vertebrates, but are variable in the pre-duplicated non-bilaterian (Figure 4-4). In contrast, positions 

R33, K180, D307, P329 and G332 are fully conserved across all calsequestrin homologues 

including pre-duplication Casq (Figure 4-4). 
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Figure 4-4. Amino acid sequence alignments and calsequestrin 3D structure. 

The 3D structure of the cardiac isoform of calsequestrin (Casq2) is shown (2VAF). The location 

of R33Q, L167H, K180R, D307H, P329S, G332R, and D351G Casq2 mutants are depicted in the 

structure. A scale of variable to conserved residues is indicated in the Figure. Mutants are shown 

as dot sphere. The highly conserved 4 beta-strands from the third thioredoxin-like fold is enlarged 

in the box and shown separately. The table shows the alignment of calsequestrin amino acid 

sequences. The degree of conservation of Casq2 sequences is color-coded using ConSurf 56. 

Multiple sequence alignments were input from the Casq1, Casq2, and Casqp alignment. Different 

colors represent similar/identical amino acid residues. The location of mutated residues is indicated 

in the Table. hCASQ2, human Casq2. 

  



132 

 

4.4.3 Ca2+ binding to Casq2 mutants  

Next, we carried out biochemical and biophysical analysis of the Casq2 mutants to gain 

insight into the contribution of these mutations to the development of CPVT. First, we used 

microscale thermophoresis (MST) to investigate Ca2+ binding to Casq2 mutants. Mutation of 

Casq2 residues R33Q, L167H, K180R and D351G had no significant effect on Ca2+ binding to 

calsequestrin (Figure 4-5A-D) with Kd values ranging from 0.872 ± 0.283 mM for wild-type to 

1.052 ± 0.154 mM for the D351G mutant (Figure 4-5H). However, P329S and G332R mutants 

exhibited altered Ca2+ binding affinities (Figure 4-5E,F). In agreement with previous 

observations17, the D307H Casq2 mutant showed no measurable Ca2+ binding (Figure 4-5G). Of 

the seven mutants associated with CPVT examined, only three exhibited altered Ca2+ binding 

properties.  
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Figure 4-5. Ca2+ binding to calsequestrin mutants. 

A-G) Microscale thermophoresis analysis of Ca2+ binding to mutants Casq2 (red line) and wild-

type Casq2 (black line).  

H) Calculated Ca2+ binding affinities of Casq2 mutants.  

I) 3D structure of human Casq2 (adapted from 2VAF) with the location of mutants indicated in 

the Figure. The red circle depicts the location of mutations that affected Ca2 binding to Casq2. 

All data are representative of more than two biological replicates each with three technical 

replicates. 
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4.4.4 Conformational changes and protein folding of Casq2 mutants  

Casq2 undergoes conformational change upon Ca2+ binding, and this was monitored by 

circular dichroism (CD) analysis57. Upon adding Ca2+, wild-type Casq2 lost 18.3% α-helix and 

gained 16.79% β-sheet conformation (Figure 4-6)57. CD spectra for K180R and D351G mutants 

overlapped with those of the wild-type Casq2 (Figure 4-6C,D,E,F), indicating no effect of the 

K180R and D351G mutation on the protein conformation. However, the G332R and P329S 

mutants, showed altered sensitivity to Ca2+-induced conformational changes (Figure 4-6E,F). This 

agrees with the reduced Ca2+ affinity of these mutants (Figure 4-5). In contrast, the CD spectra of 

mutants R33Q, L167H, and D307H revealed increased α-helix content that was not sensitive to 

addition of Ca2+ (Figure 4-6A,B,G; Table 4-2). 
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Figure 4-6. CD analysis of Casq2 mutants. 

A-G) CD analysis of Casq2 mutants (red solid line) and wild-type Casq2 (black solid line). CD 

analysis in the presence of 5 mM Ca2+ is indicted by black dotted lines for wild-type Casq2 and by 

red dotted lines for Casq2 mutants.  

H) Change in % of α-helix and β-strand content with the absence or presence of Ca2+ for wild-type 

Casq2 and each Casq2 mutant. Negative and positive values indicate a loss or gain of secondary 

structure content, respectively.  

I) Three-dimensional structure of human Casq2 (2VAF). Red circles depict the location of 

mutations with altered CD spectrum. All data are representative of more than two biological 

replicates each with three technical replicates. 
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Table 4-2. CD analysis of calsequestrin mutants 

Casq2 WT R33Q L167H K180R D307H P329S G332R D351G 

No Ca2+ 
% α-helix 26.18 28.83 26.71 23.7 24.06 21.36 20.37 24.31 

% β-sheet 19.65 17.93 19.5 21.78 20.98 22.66 23.41 21.01 

5 mM 

Ca2+ 

% α-helix 7.88 30.78 25.48 8.95 19.49 12.17 4.86 11.88 

% β-sheet 36.44 20.05 22.56 35.17 26.96 31.05 39.13 32.51 

Δ α-helix -18.3 1.95 -1.23 -14.75 -4.57 -9.19 -15.51 -12.43 

Δ β-sheet 16.79 2.12 3.06 13.39 5.98 8.39 15.72 11.5 

WT, wild-type 

Next, we tested susceptibility of the Casq2 and Casq2 mutants to trypsin digestion to further 

analyze the impact of Casq2 mutations on protein folding. K180R and D351G mutants showed 

trypsin digestion patterns similar to wild-type protein indicating no major folding differences 

between these proteins (Figure 4-7). In support of the CD analysis, R33Q, L167H, and D307H 

mutants showed limited trypsin susceptibility compared to wild-type protein both in the absence 

and presence of Ca2+ (Figure 4-7). R33Q, L167H, and D307H mutants showed more α-helix 

(Figure 4-6) and an increased sensitivity to trypsin digestion in the absent of Ca2+ (Figure 4-7), 

indicative of altered protein folding. In agreement with Ca2+ binding (Figure 4-5E,F) and CD 

analysis (Figure 4-6E,F) trypsin digestion of P329S and G332R mutants also showed increased 

kinetics of digestion in the presence of Ca2+ (Figure 4-7C,D), indicative of Ca2+-induced 

conformational changes of these mutants. 
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Figure 4-7. Limited trypsin digestion of Casq2 mutants. 

A, B) Wild-type Casq2 and Casq2 mutants were subjected to trypsin proteolysis in the absence (A) 

and presence (B) of 5 mM Ca2+ followed by SDS-PAGE. The tryptic fragments, which differed 

from that of wild-type Casq2 are indicated by the arrowheads.  

C) The rate of proteolysis of wild-type and mutant Casq2 as a function of time of trypsin digestion.  

D) The rate of proteolysis plotted as the first derivative of the fitted curve from (C). All data are 

representative of three technical replicates from two independent protein purifications.  
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Next, we used the Tycho NT.6 system to carry out thermal denaturation analysis of wild-

type Casq2 and Casq2 mutants in a label-free environment as another indicator of protein folding. 

The analysis is based on measurement of the protein’s intrinsic tryptophan fluorescence and 

records a protein’s unfolding profile in real-time. Casq2 has 5 tryptophan residues all located in 

the third thioredoxin-like domain16, 17 and fully buried in the hydrophobic core. K180R and D351G 

mutants showed an unfolding profile (Figure 4-8A) and inflection temperature (Ti, proportionally 

to protein melting temperature) values (Figure 4-8F,G; Table 4-3) similar to wild-type Casq2. Ti 

values for R33Q (52.55ºC) and G332R (47.23°C) mutants, although close to the wild-type Casq2 

(49.89ºC), were statistically different (Figure 4-8C,E). P329S, G332R and D307H mutants showed 

minimal (for P329S and G332R mutants) to no detectable (for D307H mutant) unfolding transition 

(Figure 4-8; Table 4-3). These mutants also showed a significantly higher initial ratio (350 nm/330 

nm at 35ºC), indicating that tryptophan residues in P329S, G332R and D307H mutants were 

exposed to solvent, and the polarity of the local tryptophan environment was unchanged upon 

denaturing at higher temperature. The L167H mutant had an intermediate unfolding profile and 

significantly increased Ti value (Figure 4-8; Table 4-3), indicating partially exposed tryptophan. 

The L167H mutation resulted in a partial disruption of the third thioredoxin-like domain, whereas, 

D307H, P329S, and G332R exhibited a large disruption in the third thioredoxin-like domain 

(Figure 4-8; Table 4-3). 
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Figure 4-8. Thermal denaturation analysis of Casq2 and Casq2 mutants. 

A-G) Thermal denaturation analysis of wild-type Casq2 (black lines) or Casq2 mutants (red lines) 

was monitored by intrinsic tryptophan fluorescence of proteins in response to increased 

temperature from 35oC to 95oC. Graphs represent 3 independent measurements.  

H) Inflection temperature for Casq2 and Casq2 mutants representing the temperature at which the 

transition from folded protein to unfolded state occurs.  

I) Human Casq2 crystal structure (2VAF). Mutants with significant difference in their protein 

folding are indicated by red circles. The location of tryptophan residues is depicted as yellow sticks. 

All data are representative of three technical replicates from two independent protein purifications. 

Error bars represent mean ± standard error. p values calculated from unpaired student t-test. 

  



143 

 

Table 4-3. Inflection temperature for Casq2 and Casq2 mutants 

Calsequestrin (Casq2) Ti value (oC) mean ± standard 

error  

Wild-type 49.9±0.16 (n=18) 

R33Q 52.5±0.73 (n=4) 

L167H 56.0±6.73 (n=4) 

K180R 49.4±0.29 (n=4) 

D351G 50.0±0.43 (n=4) 

P329S 64.5±8.82 (n=4) 

G332R 47.2±0.87 (n=3) 

D307H Not detectable 

Ti: inflection temperature, proportional to protein melting temperature 

4.4.5 Ca2+ dependent polymerization of Casq2 mutants  

Casq2 undergoes monomer to oligomer transition and oligomerization58. Upon binding to 

Ca2+, Casq2 undergoes reversible polymerization, and this affects Casq2 assembly to the junctional 

SR, which could have direct impact on SR Ca2+ supply and RyR2 regulation58. We tested for a 

Ca2+-dependent oligomerization of Casq2 mutants using disuccinimidyl suberate (DSS) cross-

linker (Figure 4-9) and native gel electrophoresis techniques (Figure 4-10). Addition of Ca2+ to 

wild-type Casq2 increased oligomerization of the protein (Figure 4-9). A similar pattern of Ca2+-

dependent oligomerization was seen for K180R, D351G and D307H mutants (Figure 4-9). 

Surprisingly, the D307H mutant that did not bind Ca2+ (Figure 4-5) and showed Ca2+-dependent 

oligomerization indistinguishable from the wild-type Casq2 (Figure 4-9) suggesting a role of Ca2+ 

in function of this mutant. R33Q, L167H, P329S and G332R mutants had increased Ca2+-

dependent oligomerization whereas R33Q mutant showed no dependence on Ca2+ for 

oligomerization (Figure 4-9). Under conditions of native electrophoresis, wild-type Casq2 and 

Casq2 mutants exhibited spontaneous oligomerization (Figure 4-10) with R33Q, L167H and 

G332R mutants having a greater proportion in oligomeric form as compared to wild-type protein 

(Figure 4-10). This was particularly evident for the R33Q and L167H mutants which existed 

predominantly (>80% and >60%, respectively) in an oligomeric form (Figure 4-10).  
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Figure 4-9. Ca2+-dependent polymerization of Casq2 and Casq2 mutants. 

A) Coomassie blue stained SDS-PAGE of Casq2 and Casq2 mutant incubated with or without 

cross-linker at increasing free Ca2+ concentration.  

B) Immunoblots were probed with anti-Casq2 antibodies.  

C) Quantitative analysis of Casq2 monomer (~50 kDa protein band) of wild-type or mutant 

proteins in the presence of cross-linker (from A) as a function of increased free Ca2 concentration. 

All data are representative of three technical replicates from two independent protein purifications. 

Error bars represent mean ± standard error. 
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Figure 4-10. Polymerization of Casq2 mutants. 

A) Polymerization of Casq2 or Casq2 mutants was carried out at 167 µM free Ca2+ followed by SDS-

PAGE or native gel electrophoresis. Immunoblots were probed with anit-Casq2 antibodies. A 

representative of four independent experiments is shown.  

B) Quantitative analysis of monomeric and oligomeric forms of Casq2 mutants.  

C) Human Casq2 crystal structure (2VAF). Red circles depict the location of Casq2 mutations with 

highly increased oligomerization. All data are representative of more than three technical replicates 

from two independent protein purifications. Error bars represent mean ± standard error.  P values 

calculated from unpaired student t-test 
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4.4.6 Casq2 binding to IRE1α, an ER/SR stress sensor  

Casq2 binds to IRE1α, an ER/SR stress sensor and squelches IRE1α activity47. We used MST 

thermophoresis to test whether Casq2 mutations affected Casq2 interaction with the luminal 

domain of IRE1α. R33Q, L167H, D307H, P329S, G332R and D351G bound to the luminal domain 

of IRE1α with similar kinetics and affinities as seen for wild-type protein (Figure 4-11). However, 

the K180R mutant showed increased binding affinity (Figure 4-11) indicating a stronger 

interaction between the K180R Casq2 mutant and the IRE1α luminal domain. We concluded that 

all other Casq2 mutants tested bound normally to the IRE1α stress sensor. 
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Figure 4-11. Casq2 mutants binding to the ER luminal domain of IRE1α. 

A-G) Recombinant N-terminus luminal domain of IRE1α (IRE1-NLD) protein was covalently 

labeled with a red fluorescent tag and incubated with increasing amounts of Casq2 or Casq2 mutant 

as indicated in the Figure. Normalized MST time traces are shown to the right of the graph. Each 

data point is the average of three independent microscale thermophoresis measurements.  

H) Bar graph depicts dissociation constants for different Casq2 mutants. *, p = 0.05.  

I) Human Casq2 crystal structure (2VAF). The red circle on the Casq2 3D structure depicts the 

location of mutation with altered IRE1-NLD binding. All data are representative of three technical 

replicates from two independent protein purifications. Error bars represent mean ± standard error.  

P values calculated from unpaired student t-test 
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4.5 Discussion 

Our phylogenetic analysis of the calsequestrin genes (Casq2, Casq1, and pre-duplication 

Casq) revealed that calsequestrin is an ancient protein within the metazoan, and duplication of the 

calsequestrin gene took place after the divergence of the lancelet but before divergence of 

Chondrichthyes (Figure 4-1). Duplication of the calsequestrin gene allowed for the eventual 

differentiation of a muscle-specific form of the protein, namely cardiac calsequestrin (Casq2) 

expressed in cardiomyocytes and Casq1 expressed in skeletal muscle. In the mammalian heart Ca2+ 

release from the calsequestrin (Casq2) rich junctional SR is initiated by the Ca2+-induced Ca2+ 

release mechanism. In skeletal muscle, where Casq1 is expressed, Ca2+ release from the junctional 

SR is initiated by the depolarization-induced Ca2+ release mechanism. Notably in mammalian 

species Casq1 is almost exclusively expressed in skeletal muscle (Figure 4-12). However, Gallus 

gallus appears to have lost the Casq1 gene and Casq2 highly expressed in both heart and skeletal 

muscle tissue (Figure 4-12). Other non-mammalian vertebrates also did not show the tissue-

specific expression patterns of Casq1 vs 2 observed consistently in mammalian species suggesting 

that this evolved later in mammalian-specific trait. 
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Figure 4-12. Abundance of Casq2 and Casq1 mRNA in selected tissues across species. 

Data obtained from Expression Atlas (https://www.ebi.ac.uk/gxa/home). TPM, transcripts per 

million.  

https://www.ebi.ac.uk/gxa/home
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Arthropoda do not have the calsequestrin gene (Figure 4-1), although they have transversely 

striated muscle similar to the vertebrate skeletal muscle59 with well-developed T-tubules 

associated SR cisternae60, 61. Considering that Arthropoda move by means of their segmental 

appendages, they may not require high capacity Ca2+ stores. Similar to the loss of the calsequestrin 

gene in Arthropoda, many genes encoding proteins involved in excitation-contraction coupling 

have been subject to expansions and losses in different vertebrate classes61. For example, 

amphibian lack the gene encoding RyR2, yet they express both forms of calsequestrin. These 

results support the notion of the appearance of multiple homologues of junctional SR proteins, 

including calsequestrin and RyR, which are associated with depolarization-induced Ca2+ release 

(skeletal muscle) or Ca2+-induced Ca2+ release (cardiac muscle) mechanisms61. 

Phylogenetic analysis of casq2 within the metazoan revealed a high level of conservation, 

especially in the four beta-strands in the hydrophobic core of the third thioredoxin-like fold (Figure 

4-4). The C-terminal Asp rich domain of Casq2, responsible for high capacity low affinity Ca2+ 

binding, remained highly conserved throughout many different species. Of note, the pre-duplicated 

calsequestrin C-terminal domain, however, contains limited numbers of acidic residues, indicating 

a relatively low Ca2+ binding capacity in this basal lineage62. There are many highly conserved 

amino acid residues distributed throughout Casq2 that may be under evolutionary constraints, and 

mutations in these regions of the protein are expected to impact protein structure and function63, 

64. Not surprisingly, Casq2 variants associated with CPVT are dispersed throughout different 

protein regions, but all are highly conserved throughout metazoans some (R33Q, K180R, D307H, 

P329S and G332R) even including pre-duplication calsequestrin (Figure 4-4). Because of a 

specific disease phenotype of Casq2 mutants an a priori prediction is that the mutations associated 

with CPVT would be in sites conserved in Casq2 but divergent in Casq1 and preduplicates. 

However, this was not what we observed. Instead we found strong conservation at these positions 

between the paralogues or indeed across all calsequestrin homologues (Figure 4-4). This suggests 

that the residues at these positions are critical for calsequestrin function. Specificity of cardiac 

disease seen with Casq2 mutants is likely due to the tissue-specific expression patterns of the 

paralogues. In humans there is little or no Casq1 paralogue expressed in cardiac tissue to 

compensate for Casq2 malfunction in CPVT.  

For our biochemical studies, we have selected mutants linked to the human CPVT phenotype 

and located within highly conserved positions, namely, R33Q, L167H, K180R, D307H and three 
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CASQ2 variants from whole-exome sequencing clinical testing, P329S, G332R, and D351G24-27, 

38, 43, 65, 66. In agreement with previous reports25, 31, 33, 46, 67, 68, our studies showed that Casq2R33Q, 

Casq2L167H, and Casq2D307H differed in their biochemical properties (Figure 4-13): Casq2D307H 

significantly reduced Ca2+ binding affinity and altered protein tertiary structure (Figure 4-5); R33Q 

and L167H mutants retained Ca2+ binding affinity (Figure 4-5), but had increased sensitivity to 

tryptic cleavage (Figure 4-7) and lost Ca2+-dependent polymerization (Figure 4-9 Figure 4-10). 

The Casq2R33Q and Casq2L167H mutants form large oligomers insensitive to Ca2+ (Figure 4-9 

Figure 4-10), indicating that they lost Ca2+ depend polymerization, and are not able to 

depolymerize in response to Ca2+ depletion, a critical function that affects the RyR2 channel gating 

response to depletion of Ca2+ during muscle contraction58. Amazingly, Casq2D307H substitution 

from aspartic acid to histidine, in the highly conserved hydrophobic core of third thioredoxin-like 

domain of Casq2, results in the loss of low affinity Ca2+ binding to Casq2 (Figure 4-5). This is 

likely due to disruption of the third thioredoxin-like domain, a highly conserved region in Casq2. 

Surprisingly, Casq2D307H polymerized in a Ca2+-dependent manner (Figure 4-9 Figure 4-10), and, 

just like the wild-type Casq2, it exhibited Ca2+-dependent confirmation changes28, 45(Figure 4-6). 

Nevertheless, the loss of low affinity and high capacity Ca2+ binding sites, due to severe Casq2D307H 

misfolding, results in reduced Ca2+ storage at the junctional SR, and impaired Casq2/Ca2+-

dependent regulation of RyR2 activity55, 69. 

K180R, P329S, G332R, and D351G mutants have not been previously studied with respect 

to their biochemical properties. K180R is a newly identified Casq2 mutant, and the first autosomal 

dominant mutant found of Casq227. Knollman’s group recently reported a CPVT-like phenotype 

in a K180R heterozygous knock-in mouse model43. Here we discovered that the Casq2K180R protein 

has indistinguishable biochemical properties from the wild-type Casq2, including Ca2+ binding 

affinity (Figure 4-5), secondary structure and conformation change in response to increased Ca2+ 

concentration (Figure 4-6), protein flexibility and conformation stability upon trypsin proteolysis 

(Figure 4-7), protein folding (Figure 4-8), and Ca2+ dependent polymerization (Figure 4-9 Figure 

4-10). Recently, crystal structure studies of the Casq2K180R maps the mutation to the filament-

forming interface70, and it was proposed that disrupted Casq2 polymer formation may be 

responsible for Casq2 mutant-associated CPVT. Casq2 binds directly to the luminal domain of ER 

stress sensor IRE1α at the junctional SR to prevent the activation of IRE1α47. Interestingly, of all 
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mutants tested in this study, only Casq2K180R showed altered binding to the luminal domain of 

IRE1α (Figure 4-11). Whether this is associated with CPVT remains to be established.  

Casq2D351G 38, 39, Casq2P329S 38 and Casq2G332R 38 are three novel Casq2 variants38, 39 located 

in a highly conserved third thioredoxin-like domain (Figure 4-4Figure 4-13). Casq2P329S and 

Casq2G332R have been identified as heterozygous carrier38. They are localized in the hydrophobic 

core of the highly conserved beta-sheet of the third thioredoxin-like domain and are highly 

conserved throughout the metazoan including Casq1 and pre-duplicate Casq. To our knowledge, 

there have been no reports on the biochemical and biophysical analysis of these mutants. 

Casq2D351G showed protein folding and function similar to wild-type protein, whereas Casq2P329S 

and Casq2G332R showed similar properties to Casq2D307H, including severe disruption in protein 

folding and impaired Ca2+ binding (Figure 4-5), indicative of an important structural and functional 

role for the highly conserved beta-strands in the third thioredoxin-like domain of Casq2.  

Overall, the three CPVT disease causing Casq2 mutants (R33Q, L167H, D307H) and two 

heterozygous variants (P329S and G332R) may lead to CPVT via different mechanisms (Figure 

4-13). The third thioredoxin-like fold domain contains four highly conserved beta-strands, which 

are essential for correct folding and Ca2+ binding, mutations in this region including D307H, 

P329S, and G332R, and all result in severely misfolded protein with reduced or lost Ca2+ binding. 

R33Q, L167H and K180R are located at the Casq2 front-to-front and back-to-back polymerization 

interface, causing dysfunction in the protein’s Ca2+ depend polymerization/depolymerization that 

would affect filament formation, as proposed by Titus et al 70. This may be the unifying feature of 

Casq2 mutants association with CPVT 70. 
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Figure 4-13.Summary of protein characteristics from disease related Casq2 mutants. 

Structure of human cardiac calsequestrin (2VAF) shown with surface electrostatic potential. Site 

of specific mutations is shown as cyan dots. In the Table, mutants with the highest, moderate, or 

small changes in each parameter measured compare with wild-type (wild-type Casq2) are 

marked with dark, medium, and light blue, respectively. 
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Chapter 5: General conclusions 

The ER stress is integral part of heart physiology and pathology. In skeletal and cardiac 

muscle, SR is a specialized ER that is responsible for E-C coupling to support muscle contraction, 

whereas ER is responsible for vital housekeeping functions. In this work, we identified two distinct 

pools of IRE1α in skeletal muscle fibers and cardiomyocytes. One localized at the perinuclear ER 

and other at the junctional SR localized with membrane channel RyR and SR Ca2+ binding protein 

calsequestrin (Figure 5-1). We discovered that, at the junctional SR, calsequestrin interacts directly 

with the ER luminal domain of IRE1α and inhibiting its dimerization – initiation step of IRE1α 

mediated UPR activation. However, the localization and regulation of other branch of UPR 

including PERK and ATF6 in skeletal and cardiac muscle remains to be established (Figure 5-1).  

 

Figure 5-1. Schematic representation of UPR component at the junctional SR. 

Ca2+ storage/buffering protein calsequestrin is shown to directly interact with IRE1α preventing 

IRE1α dimerization.  

Cav1.2: voltage-gated L-type Ca2+ channel 
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Inhibiting IRE1α have previously been shown to protect heart against cardiac fibrosis1 and 

atherosclerosis2. To investigate a role of IRE1α and its contribution to cardiac physiology and 

pathogenesis, we generated a mouse model with cardiomyocyte specific, inducible silencing of the 

IRE1α gene. Unexpectedly, we discovered that silencing the IRE1α gene in adult heart results in 

dilated cardiomyopathy with severely impaired cardiac function. This does not, however, cause 

activation of other branches of UPR including ATF6 nor PERK in cardiomyocytes under non 

stressed condition. Moreover, IRE1α-deficient cardiomyocytes show impaired Ca2+ transient, 

suggesting IRE1α deficiency in the heart leads to dysfunction in Ca2+ handling of the 

cardiomyocytes. However, the underlying mechanism requires further investigation.  

Calsequestrin is the major Ca2+ binding protein in the SR, functions as Ca2+ storage and 

buffering, and plays an important role in muscle excitation-contraction E-C coupling. Mutations 

in the gene encoding for cardiac calsequestrin, CASQ2, cause a stress-induced arrhythmia, CPVT. 

We investigated the functional impact of six CPVT related Casq2 mutations, including CPVT 

causing mutations R33Q, L167H, D307H22, 24-37, newly discovery recessive dominant CPVT 

associated mutant K180R, and heterozygous variants recently discovered from whole exome 

sequencing (D351G, G332R, P329S)3, 4. We investigated if the stress response role of calsequestrin 

and its novel interaction with ER stress sensor IRE1α could contribute to CPVT. We found Casq2 

mutants do not alter its binding kinetics with IRE1α. However, these mutants exhibit severe impact 

on Casq2 structure and function, might provide new insights on underlying molecular mechanism 

of Casq2 related CPVT suggesting that complex formation between calsequestrin and IRE1α may 

not directly contribute to CPVT pathogenesis. 

From phylogenetic analysis, we discovered that calsequestrin is an ancient protein in the 

metazoans, and these mutations are highly conserved throughout metazoans. Moreover, these six 

mutations are distributed in diverse locations of the calsequestrin protein and impart structure and 

functional diversity such as misfolding, aggregation, and severe impaired or reduced Ca2+ binding 

ability from biochemical and biophysical characterization (Figure 5-2). However, remarkably 

these mutations manifest in a similar phenotype in humans. Ca2+-dependent polymerization is 

important for regulating RyR2 channel activity, misfolding and aggregation can cause loss of 

RyR2 regulation and leads to RyR2 dependent arrhythmia. Mutations cause loss of Ca2+ binding 

ability can lead to reduced Ca2+ storage and buffering function of calsequestrin, which is important 

in maintaining free Ca2+ pool to sustain muscle contraction under stressed conditions. These 
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potential mechanisms that can leads to CPVT due to Casq2 mutations can be future research 

directions. 

 

Figure 5-2. Structure and functional impact of CPVT related cardiac calsequestrin 

mutations 
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Appendix I: IRE1α and Casq2 knockout in mouse embryonic stem cells 

To investigate function of IRE1α and stress response role of Casq2 in cardiomyocytes, I 

generated IRE1α or Casq2 knockout in mouse embryonic stem cells by using CRISPR/Cas9 

(clustered regularly interspaced short palindromic repeats) genetic editing tool. Embryonic stem 

cells able to differentiate to cardiomyocytes provide an important model to investigate mechanism 

and involvement of IRE1α in the cardiac development1. Cardiomyocytes derived from IRE1α-/- or 

Casq2-/- embryonic stem cells are useful tools to study functional impact of these two proteins in 

cardiomyocytes biology and pathology. 

 

Figure A-1. CRISPR/Cas9 knockout of the IRE1α or Casq2 gene in mouse embryonic stem 

cells.  

Sequencing confirmation of the gene deletions from genomic DNA. 
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Figure A-2. IREα-/- mouse embryonic stem cells lost RNase activity. 

Four clones selected after CRISPR/Cas9 gene editing and nucleotide sequence analysis confirming 

silencing of the IREα gene. Cells treated with thapsigargin, an inhibitor of sarco/endoplasmic 

reticulum Ca2+ ATPase (SERCA) to induce ER stress. n=3, Data presented are mean ± standard 

error. 

 

 

Figure A-3. IRE1α- and Casq2-deficient mouse embryonic stem cells able to differentiated 

into beating cardiomyocytes. 

R1: wild-type mouse embryonic stem cell (mESC).  

The embryonic bodies generated from mouse embryonic stem cells were plated onto 24 mm circle 

coverslip with gelatin coating. Cells were fixed with 3.7% paraformaldehyde (PFA) at day 12 of 

differentiation (counting start from embryonic body hanging drop). Embryonic bodies were 

stained with sarcomere protein α-actinin (Alexa 647) and imaged with Leica SP5 confocal (n=2).   
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Appendix II: The overexpression of Casq2 in non-muscle cells 

To investigate functional impact of Casq2 on IRE1α mediated UPR, I overexpressed Casq2 

in HEK293 cells and measured IRE1α mediated UPR activity under non-stress and stressed 

condition. 

 

 

Figure B-1. Overexpression of Casq2 in HEK293 cell induces activation of IRE1α mediated 

UPR as monitored by XBP1 mRNA splicing. 

HEK293 cells were transient transfected with pcDNA3.1 containing cDNA encoding full-length 

dog Casq2 or red fluorescent protein (RFP). Both Casq2 and RFP able to induce activation of 

IRE1α measured by increased spliced XBP1 activity in absence of addition stress agents. XBP1 

splicing activity of IRE1α can be further induced slightly by treating cells with tunicamycin 

(induce ER stress by inhibiting protein glycosylation) or thapsigargin (induces ER stress by 

depleting ER Ca2+ store). Since both Casq2 and RFP induced activation of IRE1α by transient 

transfection, indicating transient transfection can activate UPR may be due to ER protein overload. 

Data presented are mean ± standard error. 
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Figure B- 2. Transient transfection to overexpress proteins can induce ER stress in 

HEK293 cells. 

GM: Growth media, non-stress control (n=5) 

TG: Thapsigargin treatment for 8 hours, induced ER stress control (n=4) 

Tuni: Tunicamycin treatment for 8 hours, induced ER stress control (n=3) 

CCSQ7: Full-length Casq2 (n=4) 

CCSQ5: Truncated Casq2 with deletion of the third thioredoxin-like fold domain (n=3) 

CRT-GFP: Full-length calreticulin fused with green fluorescence protein (GFP) (n=2) 

CCSQ3: Truncated Casq2 with deletion of third and second thioredoxin-like fold domain. (n=1) 

CNX (N+P): Truncated calnexin containing calnexin globular N-domain and P domain (n=2) 

Turbo: TurboFect transfection regents (ThermoFisher, R0533) treatment without any plasmids 

(n=2) 

Data presented are mean ± standard error 

 

To eliminate ER protein overload induced ER stress due to transient transfection, I generated 

stable HEK293 cell line express full-length dog Casq2. HEK293 cells were transfected with 

pcDNA3.1 plasmid containing cDNA of full-length dog Casq2 with HA tag at the C-terminus by 

using TurboFect transfection regents (ThermoFisher, R0533). After 48 hours transfection, cells 

were selected with 0.4 mg/ml neomycin (G418) for 6 days. Single cells were selected by limited 

dilution. 
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Figure B-3. HEK293 cell line stable expressing Casq2 has elevated IRE1α-mediated UPR 

activation. 

TG: Thapsigargin treatment 

Tuni: Tunicamycin treatment 

Data presented are mean ± standard error 
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Appendix III: Unfolded protein response in Casq2 deficient cardiomyocytes 

 

 

Figure C-1. qPCR of mRNA isolated from wild-type and Casq2-/- cardiomyocytes. 

wt: Cardiomyocyte isolated from C57BL/6J wild-type hearts 

Casq2-/-: Cardiomyocytes isolated from mice with the whole body knockout of the Casq2 gene, 

where Casq2-/- allele consist of 1.1 kb deletion that removes entire exon 1 with 561 bp upstream 

and 107 bp downstream. 

DMSO: solvent for thapsigargin 

Thapsigargin: ER stress inducer by depleting ER Ca2+ store. Treated for 5 hr after cardiomyocyte 

isolation with 0.5 µM concentration. 

Cardiomyocytes were prepared by Kaylen Kor from laboratory of Dr. Bjorn C. Knollmann at 

Vanderbilt University School of Medicine, Nashville, U.S.A. global knockout of Casq2 mice were 

generated by Dr. Bjorn C. Knollmann’s group2. 

Data presented are mean ± standard error 
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Appendix IV: IRE1α and Calsequestrin co-localization using super-resolution imaging 

 

Figure D-1. Skeletal muscle tissue immunostaining imaged with Nikon structured 

illumination microscopy (SIM, N-SIM S system) 

IRE1α (Alexa 488) and Casq1 (Alexa 647) colocalized in skeletal muscle tissue. Fluorescence 

intensity profile were measured and plotted from indicated line. (n=1) 

RyR1 (Alexa 488) and Casq1 (Alexa 647) shown in right. (n=1) 
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