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ABSTRACT

¥ ‘ : "
Remforced concrete panels supported on four edges and subjected

sxmultaneously to 1nplane and lateral loads are encountered commonly in civil
~N

engineering structures In many cases one of the two load types can be neglected L

| or the co%lmg effect of the two loadings is not srgmﬁcant and their effects can be

treated separately. However, in some applications, such as bridge decks, offshore
structures, etc, inplane and transverse loads must be considered simultaneously to

adequately predict the“response and the ultimate carrying capacity of such
elements. ‘ A research program involving experiments and numerical modelling

has been undertaken at the University of Alberta to study thelbeliaviOr of-
reinforced concrete panels lcaded ax1ally and transversely. In the present study,

the. modellmg of rernforced concrete panels with the finite element method is.

described. e ' B VO

The development of an 1ncremental hypoelastlc plane stress material

model for rernforced concrete and its rmplementatlon in a-3D degenerated plate v'

- shell element are descnbed The matenal model for concrete. alloWs for straln
) softenmg after crackmg and crushlng and includes fixed and rotatlng crack
models A ratronal tension stlffen1ng relanonshrp 1S 1ntroduced in which the post

crackmgs\tress strain response is described in terms of the reinforcement ratlos

and the angle of the crack to the re1nforcement

‘The finite element model predictions are compared to the results of
various ¢xperimental investigations: reinforced concrete members loaded axially
" in tension, prestressed concrete wall segments loaded in” biaxial tension,

EX

reinforced concrete panels subjected to shear and combined shear and biaxial



&

' compre‘ssion, and finally, reinforced concrete pfates loaded axially and

transversely. ‘ - .

The finite element model is also used to carry out a parametric study on

reinforced concrete panels subjected to inplane and lateral loads, in which the

; geometry of the‘panels, their boundary conditions and the type, of loading are

varied.



N 1 .

Les panneaux en ‘béton 'armélsilpporxés sur les Quatre cOtés et soumis
simultanément 4 des charges dans leur plan et latérales se rencontrent
communement dans les structpres de Geme civil. Dans plu31eurs cas un des deux
types de charge peut etre négligé ou l'effect du. couPlage des deux chargements est
négligeable et leurs 'e_ffets peuvent étre gait€s séparément. Cependant, dans

certaines applications, comfne les dalles de ponts, les.structures offshofe, etc, les

charges dans le plan et latérales doivent étre considérées simultanément .afin de

pouvoir prédir adéquatement le comportement et" la capaeité ultime de tels
€léments. Un programme de recherche incluant des essais expérimentaux et de la
" modélisation numeérique a été entreprls a 'Université de I'Alberta pour étudier
le comportement de panneaux en béton armé charges dans leur plan et
latérallement. La présente étude décrit la modélisation de panneaux en béton

armé par la méthode des élément finis.

Le de’Veloppement‘ d'un modele incremental hypoélastiqire €n contraintes
planes pour le béton armé et de son implantation dans un €lément de coque

degenere 3D sont décrits. Le radoucissement des contraintes dans le béton aprés

la frssuranon et lecrasement sont mclus dans le modele a1ns1 que des flssures a
: orrentatlon fixe ou variable. Un .a0déle rationel decrlvant le raidissement en. :

tension apres la fissurarion, ou la relation contrainte- deformatlon est décrite &n’ »

. fonction du pourcentage. d'armature et de I'orientation des ﬁssures par rapport a

'armature, a été développé.
9

Les predrctlons du modele par elements finis sont comparees a divers

résultats expenmentaux des piéces en béton armé chargees a.x1allement des

L
vil

e
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‘segments de murs en béton prégamtraint soumis a des charges biaxialles en
tensmn des panneaux err Beton armé soumis a du cisaillement et a du c1sa111ement
T combme a des charges de compression blaxlalles et ﬁnallement des plaques en

chargees dans leur plan et latérallement.

- -

. . . o
\ AREIS :
f gc modele par elements finis est.€galement utlhse pour réaliser une étude
R
"v ﬁaramemque sur le comportement des panneaux en béton armé’ soumxs a des

J\“

charges ax1allesy?>s leur plan et latérales, .dans laquelle la® géométrie des

. * panneaux, les copditions de retenues et le type de chargement sont variés.

L St
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) 1.1 Problem statement

CHAPTER I

INTRODUCTION

\
N

ReinfOrced concrete or prestressed concrete panels supported on four
edges and loaded axially and transversely are found commonly in' Civil
Engineering Structures.‘ In many cases one of the two load types is small ‘with
respect to the other and can be neglected. Frequently, when the slenderness of the
structural element is not critical, the two load types can be treated separately.
However, there are some s1tuatrons such as bndge decks, offshore structures, |
barge hulls, precast panels, etc. (Figs. 1.1 to 1.4) where the two loading types:

have to be taken into account simultaneously. Transverse loads ‘can be

hydrostatic pressures point loads or uniform pressures whereas inplane loads are

usually umformly dlsmbuted along panel edges, and can be either uniaxial or

biaxial.

The sequence of application of combined inplane and lateral loads varies.
However two extreme cases can be 1dent1f1ed the inplane load may be applied
first and kept constant followed by a variable lateraioad or, inversely, the lateral
load may be applied first and maintained constant followed by a variable inplane
load. In between the two extreme cases, any load application sequence can be
imagined. Forexample, a bridge deck (Fig. 1.1) is subjected to an inplan? load at

midspan due to dead load effects. While this load is maintained, rheological

~ effects (creep, shrinkage) must be taken into account. When a truck travels-
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across the bridge, the inplane load builds up pfogressively, without 'any'
significant lateral load, until a truck wheel passes over the'region considered,

thus applying a lateral load.

The interaction between the two load types is a function of the relative
- importance of the these loads and the panel response to their combinatibn. The
. types 6f failure can also vary, being either by instability for slender panels with
large axial loads, or by material failuré,‘ which would be expected in stf)cky

panels or in panels with fligh lateral load.

Modelling such structural elements fequires experimental study and
analytical models to understand the behavior of panels subjected to various
combinations of inplane and lateral loads and to assess the failure mechanism and
the ultimate carrying capacity. A review of experimental work and numerical
models is presented in the following sections, together with the research

objectives.
1.2 Research scope

~ A'research program has been initiated at the Uni/vers‘ity of Alberta‘ where
both experimental and numeﬁcal approaches are being used to_investigaté the
problem. The work presented herein forms the numerical éspect of the research
( program. The experimental work was reported by Aghayere and MacGregor
(1988). Other experimental studies with varying degrees of generality have been
carnried out (Swartz et al, 1974; Kordina et al, 1973, 1979, 1982). A summéry of 4
availéble experimental investigations is briefly presented below, followed by a

survey of finite element studies on reinforced concrete panels.



hid

1.2.1 Existing experimental results and analytical,‘solutions’

Swartz et al (1974) tested slender rectangular panels with an aspect ratio
b/a equal to 2.0, S1mply supported along the boundaries and subjected to an
inplane compressive load apphed/along the short side. Based on these tests, they
proposed a design method to evaluate the carrymg capacity of slender panels

under inplane compression without eccentncny Oor any lateral loads.

Kordina et al (1973; 1979:; 1982) tested simply supported sqnare
reinforced concrete panels where' the axial load was applied eccentrically along
two opposite edges. In these tests, axial 1oads and bending moments were applied
simultaneously. In that investigation, with no truly lateral loads applied to the
panels, the maximum primary bending moments, without the second order
effects included, occur along the edges where the loads are apphed and the
moment at the center of the plate is only one quarter of the edge moment

®
. Various analytical solutlons for panels subjected to both inplane and

_transverse loads have been derlved for metallic miaterials such as steel and
alummlurn, mainly for the aeronauucs or ship industries (Conway, 1949). Some
of these analytical solutu&ns can be applied to remforced\cggnprete plates, with

some modifications. .

In 1986, an experimental program was initiated at the University of
Alberta by Aghayere and MacGregor to investigate slender reinforced concrete;
plates subjected to inplane and transverse loads. These tests prov1ded a first
insight into the behavior of such components. Of the nine panels tested, eight had

combined loadlng and one was loaded laterally only. All panels were simply

supported along the boundary. Based on thlS test senes an analytical mode! and a

<*



simple design procedure were proposed. This test series will be examined more

closely later in this study.
1.2.2 Exi.sting finite element models for reinforced concrete plates

The analysis of reinforced concrete structures by the finite element
" method was initiated two decades agd by Ngo and Scordelis (1967) for beams. A.
few years later, Jofriet and McNeice (1971) and Bell and Elms (1971) were

- among the first people to apply nonlinear finite element techniques to reinforced

concrete slabs. A global snffness method was used where an overall moment-
\ \
curvature relatlon reflectmg the various siages of material behavior, was

assumed

»

However, it was recognized rapidly that layered plate elements, where the

layers are used to perform an integration over the plate thickness, would
represent more adequately the plate stiffness. This approach, now widely
accepted was used by Hand et al (1973) and Scanlon and Murray (1974) who also

proposed one of the ﬁrst tension softening models for post cracking modelling of

concrete. _ : ’ -

 Time dependant effects such as creep and shrinkage have been
incorporated in various models by Scanlon and Murray (1974), and by Kabir
. (1976). The analysis of reinforced concrete shells, with‘coupling of membrané
and bending actions, was introduced_ by Lin and Scordelis’ (1975). Van Greulnen
(1979), adding to the work by Lin and Scbrde.lis‘('1975‘) and Kabir (1976),
analyzed the effects of prestressing and time dependent phenomena using a

triangvlar plate-shell element.

: ' ~



In the studies presented above, some use a hypoelastic description of
concrete whereas, in other studies, plasticity based concrete models are adopted.

Currently, the following characteristics describe the typical approach used to

model plate and shell type structures :

1. platé-shell elements with the ability to model the coupling between inplane

and bending effects are used (equilibrium in the deformed configuration);

2. the concrete is divided into layers over the element thickness and plane

EY

stress conditions are assumed in each layer:

3. reinforcing steel is modelled using additional layers with_unidirectional

'properties only; t
4. hypoelastic material models are commonly used;

5. punching shear failure, due to the effects of shear stresses in the transverse

direction (through the plate thickness) , is not accounted for.

These aspects summarize briefly the state-of-the-art in the modelling of
plate and shell structures made of reinforced or prestressed concrete. The
research undertaken in the present study incorporates the latest developments in

all the aspects mentioned above,
1.2.3 Objectives of the research

The ultimate objective of the research carried out at the University of
Alberta on rectangular reinforced concrete panels loaded axially and
trénsversely.is to provide a better understanding of the behavior, and hence

realistic design rules. The present work focuses on the predictiﬁh of panel
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response using the finite element method. The combination of experiméntal work

(Aghayere and MacGregor, 1988) and finite element analysis approaches an ideal

situation.

Once the validity of a finite element model is es‘tablishedbby comparison to -
fhé} experimental results, it becomes a powerful researct} tool which can be used
to study aspects related to the behavior;of panels. It;can élso be used to extend the
range of the experimental results. In some cases, 'i.t can be paft of a design
p ~cess for uncommon stn{ctur_e_s_.ﬁ \;Jith to;day's developments in microcomputer
tcchnology, the finite element method is becoming a more common design tool.
Depending on the type of element'used and its versatility, it should be possible to
extenc the type of pro'blerp to various structural elements other than pl'ates‘. This,
however, falls outside of the objectives of this study. The prediction of the
response of panels is the aspect on which all the attention will be focussed.” The
scope of this work is lifrﬁted to panels subjeated to uniaxial inplanelload in
compression and uniformly distributed lateral loads. Also, only panels supported
along four edges are considered. | L '

To fulfil this main goal, two ingredients are required: first, the type of

Plate element used m'ust have the capability of handling large deflections and
second order effects, and secondly, the material model must describe adequately
the reinforced concrete Cbeha_vior in plane stress conditions. The element used
and thé( features available in the finite element cbmputer program selected to
carry out this study are presented in the following section. The material model is

introduced in a subsequent chapter.



1.3 The finite element program

As mentioned in the previous.section, the prediction ‘of the behavior of
reinforced concrete ‘panels, subjected to any type of loads, reqtlires a valid
concrete material model and a suitable reinforcement representation in the
context of reinforced concrete plates. Then such a material model must be

o

embedded in a stltable plate bending finite element.

The typelof, ﬁnite element selected for the analysis reported in this study is

the plate—shell ement implemented in program NISA (Stegmiiller er al, 1983)
which was initially developed at the Instrtut fir Baustatik at Stuttgart University
in Germany and modified later at the University of Alberta. The description of
the finit¢ element model is presented under the four following aspects: the

* program NISA, the piate-shell element, the solution strategies adopted to follow
a nonlinear response and the technique adopted to follow the stress path in each

load step. A

)

1.3.1 NISA ' "

NISA (Stegmiiller, 1983) is a nonlinear incrernental finite eleme ..
structural analysis program, written in Fertran 77. Tnis program has various
types of finite elements: truss, sprmg (boundary and coupling), beam, thin walled
open section beam with warpmg, two drmensmnal element and the three
dimensional degenerated plate-shell element developed by Ramm (1976) and
used in this study. It is basically a nonlinear finite element program for large
strain and large displacement problems, where material nonlinearities can'be.v
_represented and where geome_trie nonlinearities are allvowed using either the

| . Total or the Updated Lagrangian formulations (Bathe, 1982). The program also

B



includes a capability for continuous eigenvalue analysis of the deformed

structure.”
1.3.2 The p_late-shell element

Among several elements available in NISA the 3D degenerated plate- shell
element (Fig. 1.6a) is'one of the main assets of the program. Degenerated 3D
plate shell elements, 1n1t1ally introduced by Ahmad et al (1;68) extended the
analysis of shells into the range of thick shells, not possible before w1th ¢lements
based on the Kirchhoff assumptions where shear strains are..issumed negligible.
Improvements to these elements were proposed by Pawvsey and Clngh (1971)
_with the concept of selective reduced integration for thin shells. Ramm (1977)
extende'd the domain of application.of 3D degenerated plate-shell elements into
large deformations and removed the preblem‘encountered by early users related
to the shear locking phenomenon "Ramm concluded that the shear locking
problem w1th this type of element was probably caused more by computer

1naccuracy than by the element formulatlon itself.

This plate-shell element has five degrees—of—fteedom per node, three
displacements (u, v 'w) and two rotations (a, B) as shown in Fig. 1.6a . The
dlspldcement of any pomt in the element is defmed as a function of the mldplane
dtsplacements and rotations. Independent interpolation functions are used for :

each of these degrees-of-freedom wh1ch allow for shear deformatlons and

membrane forces as 1llustrated 1n Flg 1 6b

This element can be used for shells with 9 or 16 nodes per element and,
in the case of plates, with 4 nodes or more (Fig. lv.6b). In this study, the 16 node

bicubic element is adopted. Stegmiiller et al (1983)‘s:uggest that although.

~3



elements with a smaller number of nodes should give good results, the rate of
convergence may be aproblem in”some cases. However the 16 node element is
reliable and cin be used with confidence. A full 4 x 4 Gaussé 1ntegratron rule
over the element ‘Plane is adopted Over the thlckness correspondmg to eachof
the integration pomts in the r-s plane of the element the element is d1v1ded into
layers in'which plane stress condrtrons are assumed (Fig. 1.7a). The strains are
’evaluated from the mterpolatron functions at each integration point through the |
thrckness and are used in the constrtutlve relationships to form the strffness

matrix and to evaluate the stress conditions at each layer In NISA a Srmpson s

type mtegranon is performed over the thickness.

In the case of re1nforced concrete, the element is assumed to be made of
concrete which is d1v1ded in layers over the thickness whereas the reinforcing
st_eel«.or prestressing tendons are represented by additional layers with uniform
thickness located at a copstant relative depth' inside the element (Fig. 1.7b). Eight
different reinforcement layers can be specified, leach having only unidirectional
properti‘es?\ The teinforcement layers. can be located anywhere in the thickness of
the concrete element. The program was modlﬁed at the Umversrty of . Alberta to
1nclude initial strams or temperature strams for concrete and remforcement
layers in the analysrs before loads a;re apphed In the case of m1t1al strains for

“concrete, an onentatron in the r-s plane of the element can be seleCted For the

reinforcement, initial strains allow modelling of prestressmg tendons w1th the-

limitation that over a given element the layer remains at the “sdme position

.
&

relative to the two faces of the element.



10

1.3.3 Solution Strategies )

t

Solutlon strategles can be divided in two leveis first, the solution
techniques, which determme the type of approach used to bring the analy51s to a
converged and adequate solution, and secondly, the iteration techniques, which
are related to the type of stiffness matn'x used during the iteration process. In the
.solution technique category one can mention methods such as the load contIol
method, the constant arc.-len‘gth method the Quasi-Newton methods (e.g. the
BFGS method) etc. A survey of those methods is presented by Cnsfleld (1982).

The 1teration techmques are limited to. the standard or modified Newton Raphson
| methods and both are used in any of the solutlon techmques mentioned before
With the standard Newton Raphson technique, the stiffness matrix is updated at
every iteration whereas, with the modified Newton Raphson, the stiffness matrix
at the beginning of the load step is used throughou‘t the 'iteration process. This
_second approach is usually more economlcal in terms of compt ter time but

requires more iterations to obtam convergence

Program NISA allows access to a load control method or a modified
~ constant arc—length method (C.ALM) introdnceﬂd by Ramm (1980). Both
approaches can be used with either the standard or the modified Newton Raphson'
L niques. The CALM is an 1mportant feature of NISA ‘This techmque allows
oh to trace a problem response near ‘limit points and on unloa,dmg paths which
cannot be obtalned with load control methods. Ba51ca11y with the CALM the
solution is forced to follow a plane perpendlcular to the ongmal arc AS as

illustrated in Fig. 1. 8 The load control method would be at point 2' at the end

o_f‘the second iteration whereas the CALM -forces the solution to reach point 2,
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located along the line normal to the initial .tangent atm . “The load vector P,

applied to the system at load step m is defined as ' : \\

= A Py | _ : : (1.1)
in Wthh P, isa 1 basic load vector and A, isan mdetermmate scalar called the
load factor The technique . evaluates k at each iteration to get closer to theA
~ converged solution. More detarls on this powerful technique are presented in the
: oriOinal paper by Ramm (1980) The CALM technique usually implies a
proportional loading hlstory Program NISA, however allows an addrtronal
constant load vector P, to cover certain nonproportlonal loadmg problems In

th.. case, Eq. 1.1 becomes
Pn = AyPy + P, S (12)

The vector ‘Pz is not affected by the value of A ‘and is added directly to - 4
the total load vector P, l. This feature is useful in problems where a load
remams constant, eg. the inplane load in axrally and transversely loaded panels
- (discussed insection 1.1), ‘while the second set of loads eg lateral loads in these )
panels, are varied by the load factor K . The CALM, with an additional

A

constant load when needed has been used throughout thlS study.
1.3.4 Tracing the.stress path in a load step

" One important modification made at the University of Alberta in the

solutlon strategy is the definition used for the 1n1t1al strain field 80 at each
iteration. The initial stram field is used to evaluate the 1ncr<'3mental strain Ae ,

\vhrch is used in the constitutive relations to evaluate the chan%e in stress ﬁeld as

> 3 - Ae =€ - g, . o S (1.3)
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in which € is the current strain field. Initially, in NISA , £, was kept constant
during the iteration process in a given load step, equal to the strain field at the last
converged load step. Referrmg to Fig. 1.8, 8 is the strain field corresponding
to point m whereas the current strain field is that which exists at points 1, 2, etc.
This approach means that the closer one gets to the conyerged solution, the larger
the incremental strain A€ one has to use in the constitutive relationship. Thus .
tracing the strain history within a load step becomes less accurate unless the
computational effort is proportionally increased. At the same time the strain
history is no longer corhpatible with the current tangent stiffness matrix. It
appeared rapidly in the first tests performed with the program that su‘ch method
could lead to erroneous solutions.. The technique adopted in NISA now updates
the strain field g, at'ever'y iteration which results in faster convergence and
~noticeable reduction in the computation time. Also the finite eiemen’t response, in

terms.of prediction of test results, becomes more reliable.
1.4 Organization of the Thesis

In addition to this chapter, five more chapters and tWo appendices form.
this thesis. -
SN
In Chapter 2, the behavior of plain concrete members and reinforced
. concrete members subjected to umaxlal tension are descnbed A method of .

descrrbmg the tension strffemng phenomenon is proposed and compared to

experimental results. o ’

In Chapter 3, the constitutive relatronshlps for concrete adopted in this.

study are presented. The post crackmg and, the post crushlng responses are
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described. The fixed and rotating crack models available with the model are

- described:

In Chapter 4, the results of validation tests, mvolvmg several series of
remforced concrete and prestressed concrete panels, are presented to verify the
reliability of the flmte element program and the material model introduced in

Chapter 3 .

In Chapter 5, a parametric study on the behavior of reinforced concrete
panels loaded axially and transversely isginitiated in which the geometry of the

panels , the boundary conditions and the type of loading are varied.

In Chapter 6, a summary of the research and the conclusions that can be

drawn are discussed. Recommendations for future work are also presented.

In Appendix A, a parametric description of a notched tension specimen

A3

for plain concrete is derived.

.. Finally, in Appendlx B, the modelhng of remforced concrete plates

loaded laterally and’ transversely with the finite element method 1s examined.



Figure 1.1 - Bridge

Figure 1.2 - Offshore structure

14



s

Irntrorrial plort

A Gopmenedetion

8 5 123500 « 100,000

Hysresielic wad q

Nz

Y

LOMGITUDINAL  SECTION OF MLOKTWG PLANT

=

P irndastrial ptare l . ‘ .
e w || Fe=
4—Cdtarvet ‘eent 0—-&m ¥
1 =
’L .

Ll

ISNENEEEEREREEED

Hydrosietic ned

4 @ 9000 « 3400

-l
-t

CROSS - STCTION OF FLOATING PLANT

Figure 1.3 - Barges

15



16

Nevert ElarpsESS

™~

Figure 1.4 - Precast panels



N\

Figure 1.5 - Plate dimensions, coordinates.and loading
1 .



18

B dw
\\ o dr
v
-1 ’
\ \\ \ 1 B dW
\ \ ' - —_—
Vo ! dr
‘ N \ |
! ol
N LR
N )
v uit) = u - tsinf
—”\\‘|
. W,
a7 o2
- R i T
———— -7
----- _—” [N
————— o Lo w :
———— -~ ) .
------ a -
e mm e s —9 ~,-----: —————————— P e, N1
__——" u '
- e
= 2

b) Displacement of a point

Figure 1.6 - 3D degenérated_platefshell element

’



19

_ ‘ 7 Simpson’s integration
[ ' ) T , ‘points alang the
’ thickness
6

Reinforcement
layer

b) Reinforcement layer

Figure 1.7 - Yayers in the plate-shell element =~ ™~



Normal plane

o

Tangent at load
step m

AS

Load factor A

New tangent

Displacement norm

Figure 1.8 - Constant Arc-Length Method



CHAPTER II

4

MODELLING OF REINFORCED CONCRETE MEMBERS

IN TENSION

2.1 Scope

The behavior of reinforced concrete members in tension is currently an
important research toplc There are several reasons for [hlS Among them is the

fact that ten51Ie behavior in concrete has been neglected until recently because- it

'usually does not swmﬁcantly affect member ultlmate strength However the

effect of ten51le stresses in concrete must be taken 1nto account when the load

deflection characteristics of a member are needed, whether this member

- primarily carries tensile forces or combined tensile and compressive stresses as

in flexural problems. Thus in the modelling of a reinforced concrete member
with the finite element method the effects of tension softemng and tension

stlffemng become important and a reahstlc model should be used in Lhe analysis.

The termrnology used to define the postcracking behavior of remforced

- concrete members is sometlmes confusrng Various terms are used to define the

same phenomenon, and a single expression may be used to define dlfferen
phenomena To av01d any confusion, the terms strain softening, tensxcm

softemn% and ten51on stiffening used in thlS study are defined as follows.

&

Strain softenmg refers to any matenal response where the rate of change

of 1ncremental work dw = do de is negative. This applies to concrete in the

21



postcracking or postcrushing response as illustrated in Fig. 2.1. The tension
softening phenomenon is associated with the crack process zone development
obs'erve_d in pldin concrete members after the tensile strength has been reached

(Fig. 2.2). .

On the other hand, the ten51on stiffening effect 1s a complex phenomerron '
encountered in remforced or prestressed concrete members In this case,
concrete progressrvely releases the stresses present at cracking and transfers the -
correspondmg forces to the surroundmg reinforcement by virtue of the bond
properties at.the concrete-reinforcement interface. As shown in Fig. 2.3a, th/
tension stiffening effect is measured by the ability of concrete to retain a part of
- the tensile force after cracking. However the portion.of the tensile force carried
by concrete after cracking exhibits , when isolated, what has been defined e_érlier_ )
. as a strain softening behavior, as il_lustrated in Fig. 2.3b. |

C

In the llteratu‘re pubhshed on tension softemng and tension stlffemn

“:» 4 f ;., xe element approach is considered, emphasis is mainly
placed on crackgf)%% {?1' :and localized effects (e.g. Bazant and Oh, 1983). 'In the 2
case of remforced "concrete bond propertles at the concrete- remforcement :
interface, shear force and bond slip have been investigated in detail, at a small
- scale (e.g. Gerstle er al, 1982). This type of research is important and.providee
insight into the mechanics of phenomena such as crack growth, bond slip, etc.

How‘ever. this approach is not yet app to full scale problems like bridges,

offshore structures, shear walls, etc in wh'ch a glcoal response is needed.

Several global alternatives to include the tension stiffening effect exist in

the literature, e.g.ﬂthe European Model Code apﬁroach (CEB, 1978 and 1985),.
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which deals with uniaxial tension and bending problems, and the Collins and

Mitchell (1987) method which deals with uniaxial tension only but can be applied
in bending cases. As illustrated in a recent report by the ACI Committee 224

(1986), there exist various approaches in the modelling of the global

postcraeklng behavior of reinforced concrete members in finite element

applications. The user is usually faced with the selection of a postcracking stress- .
strain curve ”for concrete and has to adjust the shape of the strain softening curve
in tension from one problem to anothef. Schnobrich (1985) pointed out that no
‘consensus exists on the value that should be assigned to the maximum strain of the
stress-strain curve in tension but suggests that, to be conservative, the yield strain
of the reinforcement should be used as an upper bound. He also indicated that the
inclusion of a realistic tension stlffenmg model i 1§ very 1mportant when analyzing

lightly reinforced sections.

A

In the work presented in this~study the zlobal behavior of reinforced
concrete structures is ¢onsidered and the approach used to describe the tension
stiffeniing phenomenon accgunts for the. average effects of many localized

phenomena on the overalllmember behavior.

This chapter.isdivided into four gections First, the behavior of plain

concrete members is analyzed followed by a new approach to define the tensxon

e

stiffening behav1or of reinforced concrete members. The concepts of effectlve

eoncrete area ynd effective re1nforcement ratios used with the preposed model
' ", N ° . ‘ ’ ' N .-

are discussed. Finally, the response of the model 1s compared to experimental

results from the literature.
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' . ’ .
2.2 Plain concrete members in tension ~ 2

In the last few years asignificant research eifort has been devoted to the

understanding of plain concrete behavior in tension. Some aspects of this subject -
are described in this sectién , particularly the energy dissipated in a crack. A
simple relationship is proposed to evaluate the cracking energy baied on several
experimental results. Finally, a stress-strain curve for plain concrete in tension is

presented.
© 2.2.1 Cracking energy

The cracking energy per unit of area Gy, alép called the fracture energy.

can be ‘definevd as the energy dissipated in the opening of a crack. For a plain

concrete specimen in direct tension (Fig. 2.4a), the expression for Gf can be -
writtin as “ - . . e '
A » WO , o ‘#/

G = Ojo dw | , e

in which G is the average stress over the considered area , W is the crack width
in the frac"ture process zone and w, lis the crack width when o reaches zero ;n
the end o'f vth'e" tension softening branch. The cracking energy is then equal to tf;é
area‘under a stréss-elongation curve, illustrated by the shaded area in Fig. 2.4b
- where the-elongation d is measured over the gége length L,. As stated by
Hillerbor_g'b(1985‘), Gy can be considered as ‘a material property, independent‘of
* the specimen dimensions and the gage length L, used to measure the elongation, = - 7 &

as long as L, is larger than the width of the fracture process zone, w, . For this

‘treason using different gage lengths L, changes the shape of the stress-elongatigy '

curve but not the crack width w and hence Gf'_ remains unaffected. The w'i'cﬁh

!
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‘_/{f the ﬁracture process zone, wg , is-a simplifying assumptlon used to define an

average cracl\ slram €m - This is illustrated in Fig. 2 5¢ . The expressmn for G¢

'

can be rehrranged and expressed as a function of a stress- stram law, more

common in the descnptlon of engineering materids. Thus Wf is defined as the
strain energy densrty (or work per unit of volume) d1551pated by cracklng

expressed as

. Emax
Gy

We

W =

Wf represents the area under a stress-strain curve for concrete in tension .

Hlllerborg (1985) pomted out that unlike metallic materials, the energy absorbed

by plain concrete members in tension is mainly associated with the descending

branch. Also damage consists rnainly of cracks perpendicular to the principal

" tensile stress and the o-w curve (F1g 2.4b) is not dependent on stresses in other

directions. Addmonally the independence of O-w curves with respect to

speci‘menvshapes allows gne to use Gf for any type of structure. This also -

permits measuring Gy from Yarious schemes. The most commonly used are

illustrated on Fig. 2.6 . In the next two SCCtIOI'lS A'some relationships relating the

tensile strength £ to Gy and W are denyed based on available experimental

results. - - | L

o
Fiur

- 2.2.2 ' Observatlon from- experﬂnents

Cangre

e ?’

To denve a stress stram:crgve for concrete n d1rect tension, the valies

“of at least two parameters are’ needed as far as Eq. 2.1 is concerned: Gf and We.

Expenmental 1nvest1gat1cens usually provrde G but w, must be assumed. Once

these parameters are known, W can be evaluated and subsequently the ‘Stress-

= Jou f ‘,' e
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~ strain curve, Wy being equal o the area underneath a Cgmplere stress-strain

S

curve with the ascending and descending branches. - P .

o .
i -

An exammatron of expenmental results for concrete in drrect tensron |
s' ws clearly that the ascendmg branch is almost linear whlle the descendmg ‘
branch is nonlinear, w1th a very steep slope just after crackmg which decreases
progressrvely as the strain 1ncreases Vanous types of softening branches after
cracking have been propose’d linear, brlmear exponentlal etc. Among all those,
the bilinear one, 51m11ar to Fig. 2.7, is probably the most desrrable, because it is
simple and repreS'enis well"the actual shape of the softening branch. Hillerborg
(1985) compared bilinea_r’ tension sbfrening curves to_different exberimental
results and noted good agreement between the assumed and measured curves. He
also observed that the change of slope in the softening region usually occurs at a
stress level of about one third of the cracking stress. However by adoptrng a
_ bilinear ten\sron softemng curve, two more slopes are neegedv.to define. eompletely

the behavior of concrete in direct tension. ' o

The stress-strain curve adopted herein is illgi.strated in Fig. 2.7. Itis
entirely defined by the tensile strength, f[', the initial modulus, E., the
descending branch moduli, E; and E, , and the stress ratio at the change in slope,

L. The evaluation of these parametersy 1s possible only by examining test results.

.A well documented test series on the behavior of plain conerete pri'smS-i.n-’
direct tension has been publlshed by Gopalaratnam and Shah (1985). A
paramemc descnptron of prisms, such as those tested by Gopalaratnam and Shah
(Fig. 2.8a), 1's presented in Appendix A. One of their tests» was reported in -

sn_ffic;ent detejl to al}ow the following bar‘ameters to be evaluated:
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* E./E, = -586;

-49;

* E./E,

-

e w =07in = 2d,;

-in which d, is the maximum aggregate size. These values indicate the order of

magnitude of the various terms.
B 1

\

: Bazant and Oh (1983) analyzed several test results from various
résearchers performed on different types of test set up. They concluded that the

ratio of w, to d, , ranges from 1.5 to 40 for various types of concrete and they

‘Suggest that w, equal to 3d, would generally be a good assumption. They also

proposed a relationship relatmg El .to EC , based on best fit on several

experimental results. Ratios of E; to E, evaluated using their eauation, are

- presented in Table 2.1 for tensile strengths varying from 1 to 4 MPa.

2.2.3 Proposed stress-Stnain curve in tension

Based on experimental observations mentioned in the previous sections, a

~ trilinear stress-strain curve is adopted, with a linear ascending branch and a

bilinear softening branch for concrete after cracking. Theﬂchange of slope in the
desceqd.ihg branch occurs at one ‘third of f,,as proposed by Hillerborg. The
value for w, proposed by Bazant and Oh where w, is equal to three times the

aggregate size d, is also adopted. Based on the analysis_ presented in Appendix

A the ratio of E_ to E; is taken as a constant value equal to - 6.0 . This value

corresponds to a tensile strength of 2.5 MPa if the Bazant and Oh equatioh is’

“used (see Table 2.1). For the evaluation of the cracking energy, it appears from

. Gopalaratnam and Shah (1985) and also from Bazam and Oh (1983) that Gf (or
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Wr)isa functlon of f; the higher £, the hlgher Gy . The type of relationship

adopted in this study x@
L ”*'z.,
e , |
Gr=Kw. 5= & (2.3)

4

Calculated values for K , based on available experimental results, are
presented in Table 2.2 . In most cases not all the information required to evaluate

, C
K - was available and some parameters had to be calculated or measured on

figures. Based on an average value for K of 5.26, it is reasonable to use a *

rounded off value of 5 as an estimate of K. This means that Wy is given by the

following €quation:

v

2
f[

Wp=5 g-=5fee | (2.4)

Hence the total area under the stress-strain curve in tension is equal to ten
times the area under the ascending branch. With W, given by Eq. 2.4, the ratio

of EC to E; is equal to 5 33 .0". The stress-strain curve for plain concrete in

XJoo

ten51on adopted in this sl‘ﬁ&y is shown in'Fig. 2.7 . The parameters defining the

- curve are summarized in Table 2.3 .

The value adopted for w, and used to evaluate )Wf from Gy corresponds
to measurements on concrete specimens. To model the response of plain concrete

specimens with the finite element method, where a smeared crack approach is

~used , w, must be taken equal to the spacing of the integrations points , but , if a

very fine mesh is used, w, should not be taken less than 3d, ; However, no finite

element mesh should be finer than 3d,



2.3 ReinforCed concrete members in tension

o

In the last section , the behavror of plaln concretemmbers in tension was

| dlscussed while, in this section, the behavror of reinforced concrete members is
examined. The term used to define the.concrete contributior of the tensile
behavior of reinforced concrete members after crackmg is the tensrorr stiffening

effecb \

In this section, the tension stiffening phenomenon is described
qualitatively and the CEB model is summaﬁzed. A new approach to consider the
tension stiffening effect.is then introduced and the various stages of the cracking
proce‘ss are described using this new model. The effect of cracks at an angle to
the relnforcement is also taken 1nto account - Finally, the results of a hmrted

paramemc study using the proposed approach are presented.
2.3.1 Qualitative description_ of tension stiffening

‘ The tension stiffening phenomenon can be defined as the in_crease in
stiffness in a reinforced concrete member due to the interaction between concrete
and reinforcement, as illustrated in Fig. 2.3. The reason for such behavior can be
- explained as follows. As a member cracks (Fig 2.9a), concrete between the
cracks tends to move back to its ori.ginal (unstressed) ,position. ! s is restrained

by the remforcement thus developmg some tensrle stresses in concrete (Fig.

2.9b).

-

The ability to restrain the concrete is a function of the existing bond
between reinforcem“ent and concrete. With perfect bond, no slip occurs between
concrete and relnforcement while with poor bond, relatlve dlsplacement can

- occur. Also, not all concrete develops (or mamtalns) some tensrle stresses but
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rather only a portion of the concrete area, calledgthe effective area A.er . More

explanations and relationships on the effective area are presented in section

- 237. ' S

Typical loa;ir—deformation curves are //iilustrated in Fig. 2.10 (adapted
from CEB, 1985). It can be seen that tension stifféning defca)is as the 10%5>
increases beyond the crgcking load and that good bond pfopértiebs increase thé
stiffening effect. ‘. Also, tension stiffening is more’signifidhnt‘f;or low

reinforcement ratios than for higher ones, as illustrated by the values of T, in

Fig. 2.10. This was also shown experimentally by Rao (1966) in case of beams.

Figure 2.11 show.s' ‘qu@litatively how -‘i’éﬁ
reinfoféement varies between the cracks. Itis assumed
may exist at the crack itself due to fhe tension softening effect described in the
previous section. As ill’ustratéd, the average stress in the steel is the same for

gdod or poor bond, only local stresses differ.
23.2 CEB modeul for tension stiffening

In the model for tension stiffening described by CEB (1985), the tensile

sfress in the concrete at the cYacks is assumed to be zero and the member is
divided i@o regions: region_I, uncracked, and region II, fully cracked (Fig; ,
2.12). In region I, both ‘th,e concrete and steel behave-as ifbthe concrete had an
infinite tensile str_ength whilé in region II the reinforcing steel carries;all the
tensile force on thve membér:after cracking. The relative length of the two '_
regions,  determined vby' a distriBution coefficient C , was derived'in case of
 beams by Rao (1966), and is deﬁr;ed for reinforced Concrete members in uniaxial .

tension as



where }333
v B; = 1.0 for hé&h b_ond bars ;
Bi = 0.5 for smooth (plain¥bars ;
and | |
| B, = 1.0 for first loading;,

B, = 0.5 for long term or cyclic loadin%”gf.’ '
. ) _

.
'Reinforcement stresses fser and fg are those existing i® region II at

cracking and after cracking respectively, assuming no stress in the concrete for

both cases. The average strains in the steel over the length S, are expressed as
=(1-Qegg + Leg (2:6)

w 1n which €; and €y, , corresponding to the reinforcement strains in regions |

and II respectively, are given by the folloWing_equation:

. T
t & = E A, TE.A, o (27)
i y -
== EA, : - @

This method can be used in design to evaluate the average behavior of a
member for a given axial load T. A similar approach is presented by CEB (1985)
for bendmg where the actual curvature of a section is expressed as a weighted

“average of the curvatures in region I and in region II. |
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3.3.3 Proposed approach for tension stiffening

The CEB model described in section 2.3.2 was derived for use in design
and is applied, for example, in crack width calculations. However this model
does not represent completely the actual beha\)io; of concrate and, in its presém
form, cannot be incliidted in a finite element environment. The CEB model for
tension stiffening is used to evaluate the fzive'rage strain (or curvature) in a
member for a given load level. In the case of finite element analysis,' the strain is

known from the displacement field while the average stress carried by concrete is

needed.

~ Since the CEB model describe% adequately the tension stiffening
phenomenon, the proposed approach keeps the essence of the CEB method and
incorporates new features like tension softening at cracks. Also the equations are
derived in termS of,a stress-stréin law based on equilibrium. The assumpﬁons

- for the model can be summarized into six points:

1) The CEB model regions I and II are used to determine the average strain
in the member ( €g7 ) and the relative weight of each region is described
by the distribﬁtion coefficient { defined in Eq. 2.5 . The average stress
in thé member is found from equilibrium conditions. For an ‘averagé

crack spacing S, ,'the lengths 1; and 1, . of regions [ and II , are defined
L = (1-8) Sp | 4 (2.9)
L={C(S, 20

2) 1In region II, governed by cracking, tension softening is assumed to take

.piace over the entire length of the region based on the stress-strain law



- 3)

4)

5)

6)
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defined in Fig. 2.7 and in Table 2.3 . The concrete stress in region II is |

referred to as fgq, since it follows the softening law of concrete.,

At cracking, perfect bond between concrete and reinforcement is assumed.

The strain in region I is then equal to g, for both concrete and steel. In

region II , the strain is governed by the strain Softening response of

concreate after cracking €., and is the same for the reinforcement (Fig.
. ’ i y

2.13a).

After cracking the average strain . the reinforcement Esm- between two

cracks is equal to the average strain in concrete €m over the same region

but locally the steel and concrete strains do not'coincide, allowing for

bond slip through the facggers B, and B,. This is expresséd in the
)

following equation: '

S Sm

m ' i
1 1 |
e = 5= Ojes dx = g = S Ojec dx (2.11)e:

The member reaches its maximum carrying capacity when yielding occurs
in the cracked region. No strain hardening is taken into account in the

‘nforcement.

11 effective reinforcement ratio, Pefr - as defined by CEB (1978), is
»deoted in this model. In the equations derived in this section , the term p
i sed for simplicity but it must be interpreted as ‘P ‘which must be

-2d in all cases.

In this model it must be realized that the stresses used in region I after

cracking do not correspond to actual values since concrete is allowed'to strain

; ~

e
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beyond f; (&, > g ) as in the CEB model where this region is assumed
+ ' uncracked at stress levels greater than f,.. However this assumption is used only
to evaluate the average strain on the member €gt and not the stress fgr which is

evaluated from actual equilibrium conditions.

. In all these \assumptiens, the introduction of a progressive releaseofd
stresses in the cracked region due to the tension sg)ftening behavior of concrete,
allows one to define more precisely the various stages involved in the tension
stlffenmg phenomenon The introduction of tension softening in region II °
affects the ratio of fScr to f used in Eq.2.5. Since stresses in the ebncrete are

d”OWCd at the crack, fy., in this model is 'smaller. than it would be with the CEB

model, hence affecting the distribution coeff_icient; .. !

The two main phases describing tension stiffening , the cracking condi‘tieri

~and the postcrackmg condmons can now be described. The relatlonshlps denved
in the next two sectlons are based on equ111bnum of forces between the cracked
and theémcracked regions. The subscnpt ST is used hereafter to descnbe stress *

il

Y
and strain coordmates oavthe tensmn stiffening curve for concrete

2.3.4  Stabilized racking condition-
e e ‘ . j v' ) ‘ . |
' Thistabilized cpaCking copdition prevails just after cracking when the axial load

on the member at crackmg Ter s is kept constant and stresses redistribute between

A ;.:#" concrete and rei orcement ThlS stage occurs durmg the formation of _primary

' cracks. After\a’crack has just formed, the stress in the concrete in reglon I1
decreases at a rate equal to -E. /6, as stated in the second assumption, while steel

at the same location is stressed at arate E,. If p is the reinforcement ratio, and
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n is the modular ratio, equal to the ratio of E to Ec_., the stabilized cracking

condition is found as

» the change in load carried by the concrete in region II for an increment

of strain Age is:

. R change 'in load carried by the steel in region II for the same strain

increment A€ is :
ATy = AE, Ae

* from the_ equilibn'um condition FAT + AT = 0, one can define the

m1n1mum efnforcemefit_ ratio required to maintain constant strain at the

crack when the loa" TcrIS applied to the member :

! - ' ,
1 -
Pstbl = g5 _ (2.12)

7\&”41,»

For pw.*:g?re%;ffér than or equal 10 Py the strain in region II will remain
- equal 10 £ @t a load Tcr In a stroke controlled test, the load on the member will

; stay constant foﬁ a given drsplacement ThlS could be interpreted also’ as the
m1mmum ar@a 6f steel needed for a test set up to measure accurately the tension
softemng branch in a plain concrete” tensron test (sectxon 2.2), based on the

~ assumption that concrete unloads at the crack atarate - E; /,6 .

| vFor p smaller than pg,, cra'ckjng‘is no"t-"lst”z'lble and the crack opens until
steel has picked up the tensile force re}eased by concrete In doing so the strain
- will increase beyond g, (see Flg 2 7) Hence concrete in reglon II will follow

the tension softemng branch along the second segment of the. stram softemng

PO



curve and can continue past the maximum strain of that” curve, €., , if the
amount of reinforcement is not sufficient to stabxhze the opemng of the crack.
From equilibrium, when' the strain in concrete is between Ep and emax-, the

conditions at crackmg are:

» force in the reinforced concrete member just before cracking:

T, = Ac\Ft + AsEgeq
» force at the cracked section after crack opening is stablhzed

6 '

Ta = Ac 33f B 'ﬁ'gd) * ASESEC2

* equating these two equatdans gives:
B (17 + 33 np ) :
% &TG3ap t 1) - @

S

Since éc;)_ expressed by the tension softening law is limited to 16 €. , the-
limit value for p corresponding to a value of €., equal to €max Would be=

1 . } n : . L :
Plim = 15n ! ‘ . (2.14).

h

For a reinforcement ratio smaller than py;, , tension softehing does not
contribute at cracking and all forces carried by concrete in region II before
cracking are transferred to the reinforcement; resulting in the following strain,

assuming no slip at cracking:

14

& = & (1 u+$) . (2.15)

This value of €, is limited by yxeldmg of reinforcement at the crack when

: crackmg occurs which defines pyld by isolating p in Eq. 2.15 with g, set to gyl
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& ' "n{ S
pyld— n (ey "‘Ecr) . '(2.16) ,

The average strain and stress for the member at-cracking are defined by:

N
.

eTer = ('1--Ccr)acr tlieg 28 @17
fsrcr—(l L fitlafozfo 0 @1y)

-~

“in which { from Eq. 2.5 becomes:

Cle=T-BBy 2 g (2.19)

m-

- The point defined by €gr., and. forer on-"tf‘le"*’%tr.css—strain curve for

e _goncrete with the tension st1ffen1ng effect included corresponds to the average

condmons prevalhng in a rernforced concrete member at a load T The
dr'stnbunon factor ¢, should be larger than the ratio of the width of the fracture
zone (w_) to the crack spacmg (Sm), as expressed in Eq 2. 19, the length of reg1on ;

I1 bemg at least equal to w,. .

- To illustrate the effect of p and € on the v variation of { fsTer and ESTcr

example Is. presented in wh1ch the various parameters denved in this section are

o 'evaluated in the case of an axially. loaded and axially reinforced prism. The

properties of the member selected and the values of parameters in the example

are Ol\ven in Table24 The remforcement ratios. Pabl » Pm and pyld were

N

. evaluated usmg Eqs 2.12, 2.14 and 2 16 respectrvely Three relnforcement
.vrat1os and three values for the BIBZ product were selected Results of the
“example are glven 'in Table 2.5 . As expected, for p larger than pgy, éSTC,

and fsTer. are equal to &, and f'; respectively. With a relnforcement ratio

between pslbl and Piim » there are some stresses at the crack and the strain €S Ter

w
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increases when 3,03, decreases while fgr., decreases with B1B,. For p sfnrf.ﬂer

. than py;y, the behav1or is similar to the previous case except no stress remams at,.

: N
the crack. : _ . o

i

2.3.5 'Postcrecking conditions o

The state of the member after cracking can be established from

equilibrium in t];ﬁ'same manner as for conditions at cracking. However, due to

- the nonlinear nature of the relationships involved, there is no closed form |

solution. For this reason‘ two‘ conditions related to th'e reinforcement are

-

examined: yielding in region II and average y1eld1ng of the member. In the flrst

- case the followmg relatlonshlps are obtamed

(/
‘J

. the force at the crack (reglon IT) with all concrete. stresses rele 1sed 1s:
T = AjEsg,

* the ferCe in the member in region I : - |
T = A E g, + A Esss;l

+ the average strain on fhe merﬁber whcn yielding occurs in region II is:

&sTy = (1 - C.»y) Esl + gyey

» using the basic assumptlon th’at in region I &, = &, one obtains:

P

(np + Cy) - :
&ty = —mal— ¥ (2.20)

in which - -

s

4EY

! Ca fscr . : : | | o »
&= 1Bk 670 , . ean

@

[
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The corresponding stress in the concrete is found from the equ111 yrium of

the forces in region II and the average force on the member .

s
) o at e crack:

T = AEge,

» force on the member from average strain: ¥

T = A, fsry + AEq €sTy

“» which leads to: .

.fsry=anc<ey'-eSTy> - | 2.22)

When steel yields at the crack, the member has reached its ultlmate tensﬂe

: strength and the st:raln value increases until average yteldlng at the remforcement

s attained. When the average strain in the member reaches €y, the stiffening
«>

effect of the concrete ends as illustrated in Fig. 2. 14 a, The three pomts deftnmo

the phases on the tension stlffemr_tg curve are illustrated in th 2. 14b.

To 1llustrate which stress and strain values .are associated with those
points, the examples presented in section 2.3.4 are used again and results are
given in Table 2.6 . These results show c_learly that tension sti‘ffening 1S
proportionally more important for lower reinforcement ratios and that hetter

bond quality (BB, closer to 1.0 ) increases the stiffening effect.

The equattons derived in thls section and in the previous section, provide
| TR rﬁ}\ “ the coordlnates of three pomts (Fig. 4.14b): the. crackmg condition (SSTcr » £s1e0)s

yleldtng at the crack (ESTy , fSTy) and” overall y1eld1ng (gy, O) The tensxon
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strffemng response between these pornts is assumed linear, except between the
k

cracking point and yielding at the crack copdltlons

It was mentioned earlier that the response is nonlinear in this portion of
the curve. For simplicity, a second order relationship is adopted which is

expressed as

: fSTy) ['1 i (€m - €sTcr)

2.23
(ESTy - ESTcr) 3 )

fst = fs1y + (s1er -

where €y is the average strain at which the concrete stress fgr 1s evaluated The '

CEB equatlon for tension stiffening, Eq. 2.5, also is a second order relationship. -

N

Using this equation the complete concrete stress-strain curves ‘for_'th_e“
example presented in this section and the previous s‘ection are illuStrated in FigS' :
2.153,2.15b and 2.15c¢ for P values of 2.5 %, 1 5 %. and 0.75 P respectlvely

In Fig..2. 16 stress-strain curves are shown for. the three remforcement ranos for:

o

BB, equal t0 0.9. As it can be secn on this figure, ten51on stlffemng stresses for :

thh p values are very close to the strain softemng curve Hence then '

relnforcement ratios are larger than or equal to pstbl , the straln softenmg law

can be used as a good approxrmauon for the tension stlffemng contnbutlon of

concrete. This rule is adopted in this study L
4

] e

2.3.6 Crack not orthogonal to ‘reinforcemeht LT )

7

Frequently, cracks 1n a reinforced concrete member do not form 1n an
orthogonal orientation with respect to the reinforcement. For one crack crossmg

one rebar (Frg. 2.17a) and assuming that only the strain perpendicular to the

crack is.non zero, the strain in the rebar (g,) is expressed as

e s
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& = €y COS2AD - | ) (2.24)

in which &, is the average strain in the direction normal to the crack and A8 s

:the angle between the reinforcement orientation (6,) and the normal to the crack

(6¢r). The component of the rebar force in the direction normal to the crack -

becomes

(2.25)

Based on Fig. 2.17b, the force normal to ,thé crack T;; can be expressed as

T, = A, fsT (1 +n p cost AB) - | (2.26) )
with
Ac = A" cos AB
As = p A
From Eq. 2.26, the equivalém réinforcement ratio P, , can be defined as
 Peg =pocost AB < i . k - (2.27)

» o R o )
- This value indicates the amount of steel required in the direction normal to
Cl B \
the crack to produce the same effect as the actual reinforcement. When yielding

s

occurs in the rebar, the equivalent yielding strain normal to the crack, Eyeq »18

given by: - B . . - 3

i @28)
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Eqs. 2.27 and 2.29 were derived for one rebar. More general
relanonshlps for more than one rebar can be given by the following equatlons in

which n, is the number of bars crossmg a crack:

~N

2 p; cos4 AB; , O (2.29)
i=1 ' ,
& 0igy
_ yi. . ,
= 3, rab - @30
¢ f
_ Yi
f_y“qv— 1=Zl cosZ A; (2.31)
where @; is a participation factor defined as
0, = p cos* AG; _ (2.32)
eq :

To avoid numerical problems, a iimit must be placed on A6 , since bars
almost parallel to a crack & not contribute significantly to the tensmn stiffening
‘behawor For example one can use an absolute limit such as 10 degrees

-In this model, only the strain in the direction of the normal to the'créck 1S
used to derive the relationships. However this simplificatioh should nct’-affect the
model significamly in a tension-compression case since the strain m the direction
of the compressmn stress is significantly smaller the the tensile stram In biaxial
tension, for.cracks at angle to the remt‘orcement the.actual strain in the

reinforcement c‘ouIQ'be‘ larger than what is assumed in this model. A more

"complete model which considers the actual strain field was presented by Link et al

(1988).
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2.3.7 Effective reinforcemen‘t ratio

As mentioned before, not all the concrete in a glven section is affected by
‘the presence of the reinforcement and maintains some tensﬂe stresses after
A

cracking. In this study the CEB Model Code (1978) concepts of effectwe

concrete embedment zone and effective remforcement ratio are adopted.

The effectlve concrete embedment zone in the vicinity of a remforcmg
bar after cracking is called A . and is defined as the area of concrete of wrdth
and height equavl‘to 15 times the bar‘ diameter ( 15'¢ ), centered on this bar. This_ .
area 1s however truncated by the geometrical limits of the rﬁember and .does not
overlap with effective~ ncrete area of other ‘bars. Flgure 2.18 1llustrates the

limits used to define th& -ﬁ‘ectrve concrete area for some apphcatrons

From the definition of A_.¢, the effective reinforcement ratio is expressed

P = A | 1 . (2.33)
in which Ay is the rebar area. Since pgg is always larger or equal than p,
tension strffemng effect would be reduced. For all occurrences of p in the

- equations presented in this chapter, the effective reinforcement ratio must be

used if Py 1S less than p. Not doing so can lead to unconservative results:
2.4  Comparison with experimental results .

Member behavior expressed by the tension stiffening model introduced in
the previous section must be compared to-experimental results. Three types of -

- tests will be used to verify the model: direct tension tests and flexural tests, where

A
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. cracks form perpendrcularly to reinforcement, and shear panels, where the

remforcement is at an angle with respect to the cracks.
2.4.1 Direct tension tests

| Rostisy ét al (1976) performed a series of direct tension tests on 6 meter
:_ long reinforced concrete members with 300 mm x 500 mm cross sections. The
five tests reported are called V l to V5. The spemmen propemes are 01ven in
Table 2.7. For each of these tests, a comparison is made in terms of ‘stress

quantities defined as

el i,: a~ B 20
FoTies = .T'AchseslT‘l' B @39
firhodel”‘: R fSTmédf&: Aabatsy - (2.36)
. =é‘—%§$-1 R - (2.37)

: S :
in which fsmeqel 1 evaluated using the equations of section 2.3 .
Results of the compartson are shown on Flgs .19 to 2.23, corresponding

" to tests Vlito V5 respectlvely Inall ﬁve cases experimental values and the model

aoree well

Rlzkalla et al (1983) camed put a ser1e)s of tests on rectangular panels

- loaded un1ax1ally The speC1men chosen is referred to as #2 in the paper and was
\762 mm (30 in.) long, 305 mm (12 in.). wide and 178 mm (7 in.) thick. The
'.‘"relnforcement ratio in the loaded dtreqtton was equal to 1.47% with no

' remforcement in the transverse dlrectton Data used in. the model are glven n
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Table 2. 7. Comparisons of the model predlcttons and expenmental results are

presented in Fig. 2.24, showing excellent agreement.
t,, R

“In these axial tension tests, remforcement ratios were below - Pt except
for Rizkalla's test and Rostasy s test V4 where p values were larger than pgy,. It A
should be mentioned that Bl and B, (Eq 2 5) were taken equal to one in. all cases
since deformed bars were used and no cyclic loads were applted to. these
specimens. Also a constant value for we /Sy equal to 0.1 was used and effective

reinforcement ratios were evaluated followmg the rules presented in section 2. 3 7 "
3

2.4.2 Bending test

Rostésy et al (1976) also tested a specimen subjected td ‘uniform mcment ~
without axial load. Thlsapecrmen had the same cross sectlonal drmensmns as the
un1ax1al tension series, with a 4 meter clear span between supports The test was
modelled using the proposed approach and companson w1th~ test results are
illustrated in Fig."-2.25 . The properties used for the analysis are given in Table

2.7. The agreement between experimental and analytical behavior is satisfacmry.
2.4.3 Shear pahels ‘ .
Several square reinforced concrete panels were tested by V€CCh10 and
Collrns (1982) at the University of Toronto many of them in pure shear. Frve°
panels were selected: namely panels ' PV3;.PV4, PV6, PV16 and PV23. These
panels were loaded in pure shear except for panel PV23 which was loaded in
combmed shear and biaxial compressmn All these panels had the same
relnforcement ratio in orthogonal directions and the actual reinforcement ratios

in the panels are equal to the equ1valent remforcement ratios defined in Eq. 2. 33 :

| Matenal properttes for these panels are glven in Table 2.8, parameter values used



" 46

ot
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Qle 2.9 and points along the tension stiffening

with the model are shownqk{ ;

0
Table 2.10 .

curve for concrete are presented;

ay

A comparison between tﬁe.l’tvgnsior'l stiffening curves derived from the
experimental results and the model is presented in Fig. 2.26 to Fig. 2.30 for tests
PV3 to PV23 respectively. The accuracy in this case_is not as good as for the
direct tension tests. This discrepancy is caused by several factors as explained
hereafter. First, the type of test itself"contribmes the major portion of-the
differences. In‘d'irect tension tests, cracks forming at one point propagate
through the entire cross section (Fig. 2.11), while in the case of the shear panels,
the cracks were ﬁot continuous, as illustrated in Fig. 2.31. Hence, the assumption
that cracks are completely open when reinforcement yields and thatvonly' the
reinforcement carries the load, gives 4 lower value for fgr which is
conservative. This assﬁmption is reasonable in most cases. However, in Vecchio
et al’ (1982) test series, the yield stress ( thus the yield strain) was small, often
around 250 MPa in the cases where the agreement between the model and the test
results is poor.

,

Another reason is the scale at which the experimental results are compared
to the model prediction. Fi.gu_res 2.26 to. 2.30 show the stresses due to the total |
load minus these for the steel, calculated from the average strain measurements
over the panel area. These strains varied co’nsiderably from one point to another,
depending on the gage length used to measure them and the location on the
panels. The steel stresses derived from these strain measurements were used to
compute the portion of the load carried by concrete. Since the tensile force
carried by concrete after cracking is relatively small when compared to the

global forces involved, a small error in the evaluation of the forces in the

g



47

reinforcement magnifies the errors. As it wil%‘be seen in Chapter 4 , the glcbal
response of these panels, when modelled with the finite element analysis using 'ne
model introduced in this chapter for tension stiffening, agrees much more clos v

with experimental measurements.
2.5 Design Equations

Relationships derived in sections 2.2 and 2.3 allow one to understand the
average behavior of tegnsion stiffening. These equations can easily be coded in a
finite element program fer example. However, their application in a design
smdanon 1S not appropriate and simplified relatlonshlps should be derived. |
| Cdllms and Mitchell (1987) and Vecchio and Collins (1986) proposed similar
eqe;.anons for postcracking behavior of concrete in tension. The Collins and

Ml!’.-_ewhell equation is suitable for direct tension and is expressed as o

f
g = = 2.38
ST l\l + m ( )
In the case of Vecchio and Collins equation, the term 500 is replaced by
200. This appears to be because it was derived based on expenmental results on
shear panels where the equivalent remforcement ratio , as deﬁned i Eq. 2.27, is
usually smaller than in direct tension tests, g1v1ng higher tenswn stlffemng

stresses. Both equatlons are shown in Fig. 2.32 .

Since Eq. 2.38 is simple and can represent correctly the tension stiffening
behavior, it is reasonable to keep it. The term inside the square root (200 or 500)
should be redefined ‘and a maximum limit for vaT should be established The
-proposed design equations are derived assuming that ey is equal to about 0.002

and n was taken equal to 8. The expression for for is
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fer

for = 2.39

ST 1+(1000p 5) V20 egp ( )
for

p = 0.005
with

(&y-8&s1) - | o
for < 2(@0—1———_ - pf, < fo (2.40)
y .

These two relationships are illustrated in Fig. 2.33 for p values of 1.0 %
1 5% and 2 % where €, was taken equal to 0.002 . These can be compared to
the theoretical curves presented in Fig. 2.16 . For cracks at angle to the
reinforcement, p.q and €yeq obtained with Eqgs. 2.27 and 2.28, should be .
utilized. The effective reinforcement ratio p,g (Eq. 2;33) must be used to stay

‘\
on the conservative side.
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Table 2.1 - E; to E, ratios
R B E./E"
(MPa) (psi)

1.0 : 145 2.89

1.5 218 3.93

2.0 290 4.96

25 - 363 6.00

3.0 435 7.03

35 508 8.09

4.0 580 9.11

(1) Evaluated using Eq. 27 in Bazant and Oh (1983).
Table 2.2 - Evaluation of factor K in Eq. 2.3
Reference . Kuin Km;x Kive Number -
n ‘ of tests

Gopalaratnam and Shah (1935) 4.20 6.21 5.08 12
" Hillerborg (1985) - 4.21 8.27 7.37 4 -
Guo and Zhang (1986) 548 1235 8.64 - 6"
~ Bazant and Oh (1983) (V. 2.15 5.04 3.43 20
Yankelevsky and Reinhardt (1987) — — 10

Global average . K = 5.26

(1) From tests reported by the authors
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. ’ & . .
‘Table. 2.3 - Coordinates for the adopted ‘strain softening curve in Fig. 2.7 .
L )
Parameter | Value
E -E /6
E, -E/33
H 1/3
&y SEg
Emax ¥ 166,
& F/E,
-
& .Table 2.4 - Data used to evaluate fgr., and gy, @Eﬁe example

« Parameter . ~ Value
A.- 10000 mm2
E. 25000 MPa
‘ £, 2.5MPa
€ 100 pe
E; 200000 MPa .
f, - 400 MPa
¥ psu , 2.08 %
Plim , 0.83 %

pyld 0.66 %




éﬁ}" .‘

.Q".v

51

Table 2.5 - Valum of fgr and EsTcr for axially loaded prisms with propemes .
' ’ gwen in Table 2.4 S
faa » 2 |
Ag P BIBZ | Tor o) - foer fSO_ fster €S Ter
(mm% (%) . (kN) . (ue) (MPa) (MPa) (MPa) (ug)
~Case 1 - p greater than Pstbl @ > . : N

" .

250 250 —D 3006 100 20 255 256 100

Case 2 - p between gy and pyi.

10150 090 280 708 142 054 230 61"
150 150 050 <280 708° 142 054 152 - 4p4
S150 150 025 280 708 142 054 . 103 556

& .

Casg 3 -lp'l‘ess Lh&ﬁ th ij}f

75 075 090 265 '1767‘ 353 0 225 27

75 .0.75 050 265 . 1767 353 0 125 - 934
75 025 - 035 265 1767 © 353 0 063 1350
) (I)JValues are identical forqany'~ B1B2 values:
. / — 7 v‘Q .
\
[ | -



Table 26 - Values- of fgry and g1, for axially loaded bﬁsms with properties
| © givenin Table 2.4 '

As _ p; ' B1B2 Cy EsTy fSTy ‘
. (mm?) (%) (we)  .MMPa)

Case 1 - p greater than pgy

250 - 2.50 0.90 0.998 1996 = 0.02

250 250 050 0999 1998 0.0l
S 250 250 025 0999 1999 0.01
y‘Cas'e 2 eﬁlp;:ﬁgmeen Pt and P & ‘ | |

| 150 150 090 0887 1797 0.62

150 1.50 050  -0.934 1887 0.35

150 150 025 0968, 1944 0.17

" Case 3-'p less than Plim )
| 75 075 . 090 . 0299 677 240
75075 050 0611 = 1265 . 111

75 075 . 025,  0.805 1634 056



‘Table 2.7 - Data™ for tension and bending tests
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T

Test . £, E, : fy p e
(MPa) (MPa)  (MPa) (%) (%)

v1® 104 10350 599 0.375 0.735
v2 @, 0.84 §350 534 0.333 0.559
v3 @ 1.15 9230 599 % 0.666 1.120
v4® 1.21 19650 . 534 10999 1676

-vs® o 143 420 599 0.375 10735,
H1 © 110 10020 . 527 0165~ 660
#2994 235 12500 455 . 147 1.47

- (1) Values as réported in the‘references
(2)*  Rostdsy et al (1976); axial-tension tests
(3)  Rostisy et al (1976), bending test )
(4) - Rizkalla e al (1983), axial tension.test

RO

Evaluated from Eq. 2.33; deformed bars were used in all tests. >
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" Table 2.8 - Data’" for shear panels

Test  f, of - B, p N

(MPa) (MPa) . (MRa) (%) (MPa)
PV3 266 . 167 24020 - 0483 662
PV4 266 193 24020 1.056 242
PV6 298 128 25020 1.785 266
PVI6 217 0.94 22370 0.740 255
PV23: 205 2.32 21930 1.785 518

(1) Values as reported in the reference

e Y. J'E). - '\
Table 2.9 - Parameters in the tension stiffening model
" \ - | . (4 | a4

Test | peq~ . &g’ - . 4.p§tbl Rlim = Pyud

(%) . (ue) ()T (%) (%)
PV 0242 6620 200 080 013
PV4 - 0528 - ] 2420 2.00 080 - 041"
PV6 0893 " 2660 209 © -083 .- 025

‘PVI6 0370 4550 - 1861 075 2019
PV23 © 0893 5180 .. 182 . 073 023

& ’ ) o - o

»t

i



Table 2.10. - Results obtained for the shear panels

. ™
Test ‘Ecr.. €2 €S Ter ﬁchr EsTy fSTy
- (hg) (ne) (ue)  (MPa) (He) .. (MPa)

PV3 70 3544 N7 150 4760 0.90
PV4 80 1900 262 1.74 958 071
- PV6 51 728 119 1.16 2412 - 045
PVI6e 42 1312 ’169 085 1897 . 049

PV23 106 1237 219 2.19 4701 0.86
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a) Notchedbeam
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'CHAPTER Tl

" REINFORCED CONCRETE MODEL .

3.1 Scope

The reinforced concrete model for planar structures descrrbed m this o

chapter has been developed mtendmg that it should be srmple me\(pensrve (1nv_“
terms of computer trme) .md accurate in ifs descrlptlon of concrete behavior. As‘
pomted out by Bahlis and Mirza (1987), a good compromlse between simplicity
2and accuracy is achieved with incremental hypoelastic. models. Several rhodelbs_

published in the literature fall into that category, with‘the_,most.widely used bevin'g' ‘

~ the Darwin and Pecknold (1977) concrete model.. Several -adaptations of this ) -

model have been used by many author&such as Elw1 and Murray (1979) Van
Greunen (1979) Ramm and Kpmpfner (1984), etc. In the model proposed here

‘some ot the characteristics of- the Darwin and Pecknold model are kept.

“
o

| Typlcal characterrstlcs and assumptrons on which the proposed model is.

,__.~<> .

. 13
based are summarrzed as

Tt 1S Wtic incremental model.

. Tt can be used in any plane stress situation and is adapted for thin plate-shell »

—_

to

type structures. =

3. Concrete is assumed isotropic up to either cracking or crushing.

After cracking concrete is treated as an orthotrop_ic material.

&

91
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5. Two cracks may form at one point in different directions.

6. After either crushmg or crackmg, stresses undergo strain softemng and

sthe tangent modulus is set to zero in the d1rect10n associated w1tlrfa11ure
7. When crushing occurs at one point failure is assumed in all directions.

"8. In any stress condition, concrete can unload (before and after cracking or

crushing)_ and the model is suitable for cyclic loading.

The proposed concrete model i 1s presented , followed by a description of
the postfdllure conditions. ‘The evaluation of the material properties used with
the model is described an‘d ﬁnally a discussion on modelling reinforced concrete-,
»plat'e.s and shells is presented.. ~Throughout this chapter, algebraic values are used
for» the stresses in concrete and the ssociated strains. Thus tensile stresses are

positive and compression stresses are negative.
3.2 Constitutive relationships

In this section the relationships used to wﬁne the material behav1or until
- either crackrng or crushmg occurs are presented. The incremental formulatron
and the stress-stram»relatlonshlps adopted are introduced. The biaxial failure
envelope is defined and the relationship used for Poisson's ratio is presented
~inally, the equ1valent uniaxial strain concept adopted for nonproportlonal
loading is derived, followed by a companson of the model response with respect

to expenmental results

3.2.1 ‘Incremental formilation

The inCrernental'_formul'ation is defined as follows:

v
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AG = Cpgle » 3.1)
3 . 4 . %
in which the stress inctement AG is defined as
Ac = < Ac#ho; Ao, At AT, Aty > < | (3.2)

‘where 1,5 and t are the element local axes as shown in Fig. 5.1 . The stres
increment Ao, is always equal to zero, based on the plane stress formulation for

plate type elements. The strain increment A€ islexpressed as
L Ae =< Ag Ay Ag Ay Ay, Ay > - (3.3)
The constitutive matrix C, is referred to the element local axes r-s-t as
L ‘
Crs = R CIZ- R (34)

in which Cy, is defined in the frame of reference of the principal axes of

orthotropy as

B . E1 E12 0 0 0 '0
R | E, E, 0 0 0 0
‘ 0 0 :
1 0 0 0 0
Co =— 0o 0 | 2 0 0 (3.5)
1-v - | 0 (-v)Gye
: 2
0 0 0 -0 (1-v G, 0
0 0 0 0 - 0  avke.
- -

Moduli Ey., E, , Eiy , Gy, , and Gy, , and the Poisson's ratio v will be
definec later. The coefficient & , taken as 5/6 , corrects the shear stress
resultants to their actual values to account for the parabolic shear stress

~distribution across the thickness. It is noted that the plane stress constitutive .
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relanonshrps adopted for this model mclude also shear terms encountered in
plate and shell problems and associated w1th the aéhlrd coordinate axis t .
However, the principal axes of orthotropy 1 and 2 confined to the plane r-s.

of the element. The transformation matrix R is thus deﬁned as

[ 2 2 S T
¢ s 0 . cs 0 0
2 - 2
s ¢ 0 s 0 0
07° 0 0 0 g
R = -2cs 2cs 0 s 0 0 (3'_6)
0 o0 0 1 0 *
0 ) 0 0 0 IJ
in which
c =cos 8
" s=sin 0

3.2.2  Prefailure stress-strain relationships

Rk

The uniaxial stres’s strain curve for compression proposed by Saenz

(1964) is adopted in thls study. If o, is the ultimate strength and g, the
associated strain (both negative) the stress-strain relatlonshlp is expressed as

G = _Ece 3

‘with

E, = R T 3.8)

»
I

(3.9)
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and in'which E_ is the initial tangent modutlus. Equation 3.7 describes the stress-
strain relationship of concreterup to the peak stress. The post peak felatioriship,
or the strain soitening branch beyond €, , will be described later in this chapter. |

The type of curve described by Eq. 3.7 is illustrated in Fig. 3.2a . The tangent

modulus’ E is given by

E = 'E°(1'R_€2)'T ; (3.107
[ 17+ ¢( Ee -2y R, +_R€2]‘2 .

™
ESCC

The Saenz equation describes adequately usual concrete stress-strain

curves. However this equatibn is valid only for ratios of E_ to Eg.. larger than

- or equal to 2.0 . It is common however to have steeper stress-strain curves for

S

high strength concrete (ACI Comr;xittee.363,‘ 1984). To overcome that situation

one can define the following pseudo ultimate strain:

gF = — EEC“ S (B -
: Cc ~cu
o o]

This strain is.obtained by isolating € in Eq. 3.7 for a ratio of E to Eg.
equal to 2.0 . The pseudo stress-strain curve obtained this way is illustrated on

Fig. 3.2b and only thcksolid‘lin\é portion of the curve is valid. Equations 3.7 to

3.10 can be used with €., replaced by €*.
3.2.3 Biaxial failuré envelope

In a plane stress situation, the biaxial stress failure envelope is defined in
three regions in the principal stress coordinate system: biaxial tension, biaxial

compression and tension-compression..



- In the biaxial tension region, it is usually assumed that concrete cracks at |
f,, for any stress ratio. Some researchers '(Ta_s.uji et al , 1978) have noticed a
_ slight increase in the tensile strength when the two princip'al ren51le stresses are
equal whereas other people (Kupfer et al, 1969) have observed the opposite. In

both cases the d1fference with f'; is not significant enough to necess1tate a more

- accurate failure envelope and this value is used for any stress ratio (Fig. 3.3a).

| In a biaxial compression state of stress, it is commonly accepted that the
‘failure envelope is a function of the stress ratio and the Kupfer and Gerstle
(1973) description is adopted in this study, being one of the most popular crileria.
With principal stresses G, and op , where Ga 2 Og, the Kupfer and Gerstle

telationship is expressed as

~ 1 + 3.65 a
et S Ga2)
with
a= =A< 10 | (3.13)

in which o, is the ultimate compressive strength (nvegative) The negative sign
in Eq. 3.12 is necessary because f'c is the umaxral compressive strength Wthh is

posmve The failure envelope is illustrated in Fig. 3. 3a.

In the case of tension-compression a bilinear failure envelope is adopted‘
as shown in Fig. 3.3b, similar to the envelope proposed by Balakrishnan and
Murray (1986). The limit of 0.5 f, for the ten51le strength at point ¢ and'the
intersection pomt of the two stra1ght lines located at -0.85f, (pomt b on Fig.
3.3b), were chosen on the basis of a fit ‘of Kupfer et al (1969) data in that region.

The value of o corresponding to point b is defined as
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Oy = -—-3-4—f—c— o - (3.14)

This ratio of 6A to op defines the transition point between tensile fa_iiure

and co’_mpreséion failure. Fdr a value of o larger than o, (algebraically), the

failure will be by crushing of concrete at a strength determined by the limit value

of ogy on the failure envelope between points a-b. For o values smaller than
Oy jjtensile failure will take place at a stress level determined by the failure
envelope between points b - d. In that case, the compressive strength o, is kept

¥
-constantto -0.85 .

3.2.4 Poisson's ratio

In tension and at low compres‘sive stresses, Poisson's ratib ( v ) remains
unchanged. However, when the compressive stress in an uniaxial test is above
approximately 0.75 f , Poisson's ratio increases. This increase of Vv near the
ultimate strength is due to micro cracking which bfbpagatcs through the mortar
at a stress level of approximately 0.75 f, called the critical stress (Hsu ef al ,
1963 ; Sturman et al, 1965). This phenomenon hdwever is more important for

L. . ‘ \ L. . )
uniaxial compression cases (oo = 0) than it is for biaxial compression  stress

conditions (& > 0) due to the confinement effect of the second stress on the
concrete expansion, as far as the Poisson's ratio between these two directions is
concerned. For o equal to unity (&, = Gg) Poisson's ratio remains equal to its

initial value up to failure.

Elwi and Murray (1979) proposed a 'third order polynomial equation
describing v in terms of the ratio of the uniaxial strain to the strain at failure.
This relationship was based on a fit of Kupfer et a/ (1969) results. However the

value obtained for v is a function of the number of experimental points used to
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evaluate \2 from the measured (or published) data. For smaller strain intervals,
Y mcreases while if fewer points are used (larger mtervals) VvV diminishes.

Theoretlcally, \Y mustbehrmted to 0.5.

~ Based on those considerations, -and for 51mphclty, the following

relationship for the Poisson's ratio in a biaxial stress state is adopted:

) v :v0+‘(0.5-v

l-a) (3.15)
N o3 ) ‘
in which "V, 18 the initial Poisson's ratio selected by the user, Og is the minimum
prmmpal stress and O, is the ultimate strength determined by the failure
envelope for the current value of the ratio o, to op . The factor (1-a)is.
equal to 1.0 in a uniaxial state of stress, and reduces progressively to zero for .

-equal stresses 04 and op. Ittakes into account the confinement effect produced

by 4 On og.

1

'3.2.5 Uniaxial stress-strain curve

So far the constitutive relatienships, the stress-strain lztw, the biaxial
failure envelope and the Poisson's ratio used in this model have been defined. In
this section the stress-strain_curves used in the model are introduced. As -
mentioned earlier, concrete is assumed isotiopic until ultimate stress levels in
tension or compression are reached. Two basic rules are followed in all

situations:

» the stress-strain curve assumed in the evaluation of the tangent modulus is

the one associated with the smallest (algebraically) principal stress, Op ; #
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* in case of nonproportional loading, only the stress-strain curve associated

‘with the current load step prevails.

AN

These two assumptlons follow the Darwin and Pecknold (1977) and the
‘ Ramm and Kompfner (1984) models with the exception that only one stress-
strain curve is used instead of two, as in the original Darwin and Pecknold
equivalent uniaxial‘strain model. In the first assumption the direction
corresponding to the absolute maximum compressive stress (Og) ié assumed to
govern the concrete behavior since it is causirig' most of the deficiencies in

concrete, giving rise to its nonlinear behavior.

In the biaxial compression state of stress, three stress-strain curvés
derived from Kupfer et al (1969) experimental résultsl are used, associated with
stress ratios & of 0.0,0.52 and 1.0. In all cases the uniaxial strength Oy is
evaluated from the failure énvelope defined in Eq. 3.12. The associéted strain
€y is interpolated linearly between €, values for o of 0.0, 0.52 and l.}O,
equal -g., , -1.65 g, and -1.5 €., Tespectively, as illustrated in Fig. 3.4 . The
three curves associated with values-fdr o of 0.0, 0.52 and 1.0 are'sllown in

Fig. 3.5 .

In b1ax1al tension, E, is used for any stress ratio until f', is reached. In
tension-compresswn, O, 18 found from the failure envelope. For a smaller
than o, O, 1s kept constant at -0.85 f'.. The ultimate strain related to ch is

- given by following linear rule:

o : _ | - ,
£y =_f‘.:: £y = . | (3.16)
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~ For all cases, once the stress-strain curve has been-detenmhed, the tangent
modulus at the current stress level is evaluated using Eq. 3.10. In case of
unloading, the initial tangent modulus E. is used. Hence moduli El,, E, and
E |7, in the constitutive matrix ( Eq. 3.5 ) are all set equal to the current tangent

modulus E.

Up to this point in this chapter, the selection ;)vf the uniéxial stress-strain
curves as a function of the stress ratio a has been discussed. The method
adopt'éd to follow the current stress-strain curve is described hereafter. At the
beginning of a load step, the constitutive matrix (Egs. 3.4 and 3.5) is evaluated as

~a function of the stress conditions prevailing at this'point, called the step 1. This
is used to evaluate the stress increment (Eq. 3.1) based oh the strain increment
(Eq. 3:3). If the total strain increment is used to evaluate the stress increment, the
resulting stress vector does not represent the actual situation with a nonlinear
stress-strain curve (Fig. 3.6a). To trace more closely the actual curve, the initial
strain increment is su®divided in smaller increments, called subincrements. This
procedure all_ows,the solution to follow the nonlinear response 6f the material but
forces it to iterate several times into the materiél model, which is time
consuming. To eliminate this iterative process, one can use the concepi of the
equivalent uniaxial strain and use only one subincrement. The [%;cedure
adopted in the model uses an equivalent uniaxial strain approach, different froh
the equivalent uniaxial, strain method proposed by Darwin and Pecknold (1977)
or by Elwi and Murray (1979) The concept used herein is 51m11ar to the

approach introduced by Ramm and Kompfner (1984).
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Assuming that AG; and Ag;; (not in tensor notation) are the incremental
(or subincremental) change between steps 1 and j, one has the following

relationships:

AC;

i = G Agy 4 @I

in which C; is evaluated using the tangent modulus  E; corresponding to the
A _

stress level op; on the stress-strain curve associated with the iteration i (Fig.
LS X .

3.6a). The stress field at iteration j is evaluated by

Gj = 0; + AG'J \ ‘ | ‘ ‘ - - (3.18)

Let the principal stresses of states G; and Cj be Gpi, Opj < Op; and
Caj» OBj< Oaj. If theratio of the two principal stresses at load step i is the
same as at step j , one would remain on the sarﬁe stress-strain curve. As
mentioned previously, the uniaxial stress-strain curve associated with  ©p
| governs the behavior. However, at the beginning of the load step the stress level

is known but not the corresponding uniaxial strain. Since the stress-strain curve

defined by Eq. 3.7 is a second order relationship, one can find the root associated

with the stress op; at step i, called Ejeq » defined as

eidqusecu | © . (3.19)

in which R, describes the_rovot of Eq. 3.7 equal to

o _-Ko- VK2-4K2 -
R, = —+— (3.20)

(3.21)
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- % (E . -
K = Em_(Em -2) - E, | (3.22)

The constitutive matrix -at load step i leads to'a principal stress in direction B
called the "initial op; " in.Fig. 3.6a . The increment of stress in direction B,
equal to the difference betweén Opj and Op; , divided by the tangent modulus at
load step 1, produces the equivalent increnie’nt of uniaxial strain Ae Smce g cq
1s known, the equivalent uniaxial strain at Step j, €jeq » is evaluatéd as

€oq = g + i]'BJ—EG“B' . (3.23)

1

Finally a new stress value for Opj corresponding to €jeq ON-the stress-

strain curve at step j is obtained from Eq. 3. 7 as illustrated in Fig. 3.6a where it

is called the " new Op; "

In the case of nonproportional ‘loading, the stress-strain curve obtained
from the ratio of the principal stresses at load step i is different than the curve at
load step j." In the concrete model, the stress-strain curve correspondmg to the
current stress ratio is used as the uniaxial stress-strain curve. In Fig. 3.6b , h
uniaxial stress-strain curves associated with steps i and j. are illustrated. The
procedure in this case is the sarhe as deser’ibed-previously except that the modulus

E; used in Eq. 3.23 must be replaced by E. | ~ .

This procedure reduces the number of subincrements within each load
step and only one submcrement can be used if the change of stress-strain curve is
smooth. Another reason resides in the fact that the magnitude of the first estimate

- for op; is usually too large which may cause pre_mature failure when a stress

envelope is used (Fig. 3.3). This procedure can also indicate a material failure at
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stress Op; if this stress on the step j curve is beyond the strength for this curve

when shifting from curve i to curve j in two subsequent steps.
3.2.6 Shear modulus

In Eq. 3.5, two shear moduli appear in the equation: Gy, and Gu , the
1nplane shear modulus for plane stress and the transverse shear modulus for

plate-shell elements respectively. Before failure these two shear moduli are

equal and expressed by

)
G -G = E [ (3.24)
Nip T 2(1+v) | T

The tangent modulus E and the Poisson's ratio v are those evaluated

from Egs. 3.10 and"3.15 respectively.
- 3.2.7 Comparison rvith éxperimental results

Stress-strain curves obtained with the relationships presented above were
compared to Kupfer et al (1969) experimental reéults for tension-compression
and biaxial compression states of stresses. For a meaningful comparison, one
must follow the stress strain-curve by‘ feeding the material model with strain
' increments Agj; . If a given constant stress ratio o is needed, the strain
increment must be adjusted until the stress ratio res,ulting from the stress-strain
relationships corresponds’ to the needed ratio. In the current case, at Newton-
Raphson procedure, working outside a finite element environment, is adopted'_
one strain increment (e.g. Ag, ) and a stress ratio a are given as input data to a
small computer program actlng as a front end to the matenal model subroutmes

The iteration proceeds over the second strain increment. This fapproach Is

helpful not only to compare the model to experimental re‘_sults, but also to look
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' closely at the model response under various conditions on which one has a better

control than if the model is used directly from a finite element program.

Results of the comparison for four different tension-compression‘ stress
ratios are presented in Fig. 37 For the biaxial compression state of stress,
results for three stress ratios are illustrated in Figs.3.8 to 3.10 for o values of -
O 0, 052 and 1.0 respectlvely In all cases the model response compares

satisfactorily w1th expenmental results.
3.3 Postfailure modelling

Concrete fails either in tension or in compression when the stresses reach
the failure envelope. The post ulumate behavior differs whether\\t is tensile or

-compresswe failure. Both cases are treated separately hereafter.

RN
: J
3.3.1 Tensile failure
In the case of tensile failure, only material properties .associated with the
direction normal to the crack are affected and the tangent modulus in this
direction is set to zero to for the stlffness matrix (Eq. 3.5) but the stress normal to -
the crack is released progresswely However the tangent modulus in the

direction parallel to the crack remains unaffected and concrete is then treated as

an orthotropic material. Poisson’s ratio is also set to zero after cracking.

The postcracking stre_ss-strain law adopted herein includes the tension
snffemng relationships.introduced in section 2.3 . An example of such a curve is
1llustrated in Fig. 3. 11. Here again the equivalent uniaxial strains are used and

€ is defined as the ratio of f,, to E,
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Unloading from the strain softening branch follows the secant path
- between the last point on the tension softening curve and the origin; reloading
follows the same path, which has been used by Rots et al (1987) Poisson's ratio
ls set back to its current value (Eq. 3 15) only when the principal strain becomes
negative and the crack is assumed to be closed at this stage. When concrete is on,
~ the unloading path, the tangent modulus is set equal to the slope of the unloading
branch but theconcrete remains orthotropic. The stress rebound in the other
direction is equal to v,AG where AG is the stress reduction at tne'crack along

the tension softening curve.

\

The shear modulus after cracking Gcr is reduced progressively as a

function of the stress reducnon at the crack. The postcracking shear modulus is

expressed as follows, assummg concrete is cracked in direction A onl)

E f . ) S
Ga= 7 ($£+1) 2 Gpy, =01G, (3.25)
with
G - E. 3 ' ' . (3 26)
o 2(1+v,) ' -

in which fgr is the aVerage tensile stress carried by concrete after cracking , f.;
is the cracking stress, both in direction A, and Eg is the tangent modulus in the
direction parallel to the crack. If two cracks are open, G, is thén equal to Gmln
which has a shear retention factor of 0.1 . The maxxmum value for G, in Eq
3.25 is limited to G . When the average stress normal to the crack reaches zero

at the end of the tension stiffening curve, the crack is assumed _completely open

and G, is reduced to Gy -
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- In the tension- compressmn region, the compressrve strength - 6, in the ’

direction parallel -to the crack is kept constant at -0.85 . until the crack’

becomes completely open at which point the compressive strength is reduced to

-0.6f.. A cracki 1s assumed .completely open in the model when the strain in the

d'trectlon of the normal to.the crack reaches the end of the tension stlffenmo

" curve. Starting at this this pomt cracks are assumed wide. At the same time the |

ultllmate strain €cy 1S 1ncreased o -I.SECO The rationale behind those

-~

modifications lies in- the fact that the compresswe strength reduces when cracks

parallel to the compressive stress become wider. The value of —0.6 £, is used

cornmonly in similar situations for the compressive strength of struts in truss
models. The increase of the strain g, is justified by the general-s'oftening of the

concrete response when several cracks parallel to the compressive stress

drrectlon open The value of 1.5 ¢, was chosen based on good agreement with

expenmental results This phenomenon was observed In the Vecchio and Collms

(1987) test senes and also mentloned by Collins and Mltchell (1987).

«

' 3.3.2 Multiple cracks g ( o,

In this model only two cracks can form at a point. However the

o

orientation of these cracks follow different rules and in this study four cracking

models are adopted, divided in two categories:ifixedcrack models and rotating

i

crack models.

b

B

For fixed crack models, two approaches are used. In the first case crack"s .
\
at a-point are orthogonal and the crack orlentatlon is determined: &y ,the

orientation of the f1rst crack, the second crack formmg perpendlcular tg the flrst
one. This is the fixed orthogonal crack model. In the second fixed crack model,

the second crack forms in the direction of the prmcrpal stress, as long as the

= \,,
e .
LT
A

. i ey )
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angle between the two cracks is larger than 45 degrees This is the fixed non
orthogonal crack model and this is essenually the type of cracking model present

in the initial concrete model of NISA ( Kornpfner , 1983).

’

In the rotating crack models, cracks are assumed orthogonal and or1ented7
in thedirection of either the pnncrpal stresses or the pnncrpal strains, whrch give
a stress rotating crack model and a strain rotatlng crack model respectively.
Usually rotatmg crack models represem more adequately the actual concrete
behavior (Milford and Schnobrich, 1984)™%. .7 *.

A _
3.3.3 Compression failure N \'\? . | . -

Unlrke tensrle fallure where only the properties perpendlcular to the crack |
change, when a compressron farlure occurs in one direction , all concrete at this
4p01nt is assumed crushed and the tangent moduli and the Porsson s ratio are setto
zero in the evaiuation of the stiffness matrix (Eq. 3.5) while the shear modulus 1s
reduced to Guin glven by Eq. 3.25. If both dlrectlons Were In compression
" before crushing, both undergo strain softening. The ultimate stresses in-each.
drrectlon are O, indirection B and Qg in-direction A (see Fig. 3.3a). The
‘normal strains in eachdlrect_lon define the_beginning'of‘the strain softening -
- curves. This gives two independent stress-strain curves, one in each direction’ A
“and B The assumed strain softemng curve in compressron 1n elther d1rect10n is
111ustrated in Fig. 3.12 . When compression failure occ_urs in a tension-
compression state of stress, only concrete stressed in _compr_essidn before the

failure occurred undergoes strain softening which is always direction B in the

model. ‘The stress normal to direction A is set equal to zero. : .
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Th C’ope of the strain softening branch in compression .1s a function of the
amount of conﬁnement the higher the conﬁnement the softer the curve. In this
| study only unconfmed concrete 1s assumed. It i is also commonly observed that_
high strength concrete, whrch has a steep ascendmg branch also has a steeper
softening branch than lower strength concrete with soft ascendmg and softening
branches, as illustrated by the ACI Committee 363 (1984). Based on this
observatlon the slope of the softenmg branch is adjusted as a function of the
' steepness of the ascending branch. If the coordmates of point "'a " in Fig. 3.12
are ch and €., (both negattve quantities), the coordinates of point "b" .are

obtained based on the ratio of E. to Eg,. of the uniaxial curve as

Eh . ) .‘ ;
Emax = 2 Ec €y 2 5£cu' . ' (3.27)
‘ sec o :
. E o N o
Oemax = 0.2 f— Oy 2 0.750, ‘ S (3.28)
. sec _ .
with
e . . :
E.. = —aL. ' N _ (3.29)
€y - » : : g

Hence for a ratio of E. to Eg. equalto 1.0, g, would be\tWice as big
a5 €y and Gpyay one fifth of G, , while for a ratio of ‘E, to E.c equalto 2.0,

€cmax and Gcméx' would be equal to 4_Ecu and 0.4 o, respecu'vely.

In the model, unloading from the softening branch is allowed Several

., - types of unloadmg paths are proposed 1n the l1terature Darwin and Pecknold

(1974), Yankelevsky and Reinhardt. (1987) among others. The complexrty in '
these models comes from the modellmg of hystereses produced in cyclic

loadings. In the present case, unloading and reloading are assumed to take place

-
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along the same path which is defined in function of a focal point of coordinates

or and €, where o, ans g, are negatives:

o= -0loy - ' (3.30)

g = gy - L1 =4 | 3.31)

f cu E. ( )

Some imloading paths are illustrated in Fig. 3.12 . This simplified model

in compression carrectly simulates concrete behavior without the energy

:ibsorption feature provided by hysteresis.
3.4 Material properties

In sophisticated concrete models, several material properties are needed.

For the current model, one needs E., fo . £, Yo » €o 5 Peff» We and Sp,.
Normally for concrete, only f. is known. The other variables are rarely

measured in practice and their values must be evaluated. ,Relationships are

;Sr\;semed hereafter to estimate these material properties.

Although the value of E_ in this study represents the initial tangent

modulus, the-secant value evaluated at about 0.4f . and proposed in deﬂsigrLcodes

can be used as a good estimate. For a stress-strain relationship like Eq. 3.7, the
value of the secant modulus at 0.4f, 1is about 4% smaller than the initial
modulus. The Canadian Code (CSA, 1984) equation for E. takes the following

form for normal weight concrete (in MPa):
E. = 5000 Vf. o | (3.32)

This equation was derived from best fit secant modulus at 0.4 to 0.5 f,

for compressive strcﬁngth varying from 3 to j‘40" MPa. . For high "s'tren‘gth
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concrete, this equation tends to overestimate E. and ACI Comrrtittee 363 (1‘984)

proposed a;new equation for compressive strengths ranging from 21 to 83 MPa

E. = 3320 \f. + 6900 | | (3.33) -
This expression is adopted in this report to evaluate Ec When it is not.

proviped.

' The tensile strength f, is almost never evaluated in practical cases.
| Several methods are avallable to estimate f', , and d(yfferent values of f, are
obtamed depending upon the method used. Raphael (1984) compared those
methods and concluded that the split cylinder test gives the best estimate of f,
since a large area of concrete is under relatively uniform tensile stress and also

because cylinders are almost unaffected by shrinkage effects. He also proposed

the followmg equation for f; when only f. is available (expressed in MPa) :

foo= 0324 NFy S (3.34)

'The value of f'; obtained from this equatlon can be considered to be close

to the "true” tensﬂe strength However since the concrete in a spllt cylmder test
isina b1ax1al state of stress (tens1on compressron) the tensile strength measured
would be slightly smaller than the actual value if .one refers to Fig. 3.3b .
Shrinkage and creep tensile stresses build up 1n concrete _beforevan..y external load
s applied especially for thin members.such asslabs?nd walls In these cases, a

lower value for f, should be used and Collms and Mitchell (1987) proposed the .

following relatlonshlp

f, = 033 \f, SR , . (3395)
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The initial value for the Poisson's ratio v, varies usually from 0.15 to

0.25 but can be as high as 0.32 (ACI Committee 363, 1984). In this s\tudy’ a

uniform value of 0.2 is adopted for v, as recommended by Kupfer et al (1969).

In the literature; the value for €, the strain at f' in uniaxial compression
tests, 1s seldom reporteJ and, to the adthdr’s knowledge, no relétionships relate
€. tO anyk‘other material properties. In this study a simple equation is proposed
based on approximate measurements made from the ACI Committee 363 (1984)

report on high strength concrete. The relationship takes the 'following form ,

with f. expressed in MPa:’

£.+60 ‘
= —W > 0.002 . (3.36)

8CO

This equation give.‘s' €co values of 0.002 and 0.003 for ', equal to 20 and
* MPa respectively.

-

Finally, in the tension sti'ffening model pfesented in Chapter 2, éffective
r»einforc'ement ratios are required; The CEB Model Code (1978) definition, as
described earlier in section 2.3.7 of this study, is adopted. In the case of slabs or
panels, CEB (1.9.85) proposes a limiting value for the effective depth used in the
calculation of pgg equal to half the depth of the portion of the slab in'tension.

" The evaluation of this value can be difficult and in this study the limiting value

for the effective depth is'taken as h/2)

. The ratio of - w, to S, is needed to define the point on the tension
" stiffening carve associated with the stabilized cracking (Fig. 2.14b). A constant
value for this ratio equal to 0.1 is adopted since there is no evidence of a

significant influence of this ratio on the response of a concrete member in

S A
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~ tension, In the comparison of the model to experimental results performed in

section 2.4, avalue of 0.1 was also used
3.5 Implementation in the plate-shell element

As mentioned in Chapter 1, the 3D degenerated plate-shell element was
selected to. perform the analysis and the material model describe above in this
chapter was implemented in the plate-shell element. In the case of reinforced
- concrete, both materials are treated separately, the element is made of concrete to
which the reinforcement is added. The calculations in the element are performed
at the integration points, defined in the volume of the element (e.g a4x4
Gaussian mtegratron rule in the plane of the element and 7 Stmpson s integration
points over the thickness, for a total of 112 integration points in one element).
For'a given element the material propemes are constant. However, in the
evaluation of the stiffness matrix and the stresses in the element each 1ntegrat10n
point has its own h1story and therefore the current tangent moduli and the
orientation of the axes of orthotropy can differ from one point to the next one .
(either in the plane of the element or through the thlckness) Each point behaves

rndependently and plane stress condmons are assumed at each pomt

" In the material model introducezi in this chapter, two cracks can form atél’
each 1ntegrat10n point and cracks do not need to have the same orientation wheﬁ/
going from one layer to the next one through the thlckness In the tensron

stiffening model presented in Chapter 2 and used in the concrete model, the
tension stiffening curve for concrete is a function of the reinforcement ratio and
of the angle of the cracks to the reinforc'ement.' As an inpnt to the concrete
rnodel, the area of the reinforcement which is e)tpected to be in tension and its

orientation in the plane of the element are also required. For members subjected
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to flexure, dnly the reinforcement located on the boftom side of a pénel 1s used. to
evaluate the effective reinforcement ratio. This is used in the concrete model
after a crack as formed to evaluate the equivalent reinforcement ratio in the
dlrecuon normal to the crack (see Section 2.3.6). Hence for each of the two
cracks that can form at one integration pomt the tension stiffening curves

dssociated with these cracks are different.

The actual reinforcement present in‘an element is treated sepeiatel_y as an
~ additional smeared layer having only unidirectional properties. For each layer,
its position over the thickness, its orientation in the element plane r-s and its
thickness are required. In NISA, up to eight layers of reinforcement can be used

0 B i
in each element. :

3.6. Plate problems - | ' B
BN - \
The plane stress incremental concrete model presented in this chapter;.
possesses all the features,required to model adequately the behavior of concrete
~ inian‘y plane stress situation. The stress-strain relationships adopted describe the
behavior of concrete before and after peak stresses'are reached , either in tension
or.in compression. The tension stiffening effeet is modelled correctly and strain
softening is allowed after the peak stress level in ‘compre_ssion. Fixed and rotating
crack models are available as options to. the user. The model is suitable for
nonp.roportional loading and‘ unloading: is allowed at any stage along the stress-

strain curve.

However, some aspects of what should include a complete material model
for plate type elements have. not been included in the current model. This.is

because these features are not essential to carry out the type of analysis planned

»
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but they should be included if a more general description of reinforced concrete

plate elements is required. These points are described briefly hereafter.
) v ‘

Rheological effects such as creep and shrinkage need to be considered in
dny realistic concrete model. Creep increases long term deflections and highly
stressed members could fail in compressmn under sustained stresses above 0.85
f. (Rusch 1960). Shrmkage affects the serviceability of structures and in case
of plates, cracking occurs at a lower load level since tensile stresses are already
present in the member before any external load has been applied to the member

(Jokinen and Scanlon, 1987).

In plate type structures, plane stress conditions are assumed. However
punchmg shear failure cannot be predicted using usual plate theory To.model -
_punching shear failures and shear reinforcement in slabs requires real 3D
constitutive models (Kotsovos, 1984) which would be more complicated and
more time cohsuming to use. An iriteresting feature in-such cases would be the
ability to identify within the coh’crere model wi]en a plane stress model is

satisfactory orvwhen a 3D model should be considered.

However these possible i improvements w1ll not affect the performance of
the model in the type of analysxs planned in this study In the fc. lowmg chapter,
the proposed concrete model, 1mplemented in program NISA, wrll be used in.

~various plate types problems where its reliability will be checked to experimental

) . ey 'S
results in a series of validation tests. : : -
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Figure 3.1 - Coordinate system - = .
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CHAPTER IV
PR o
VALIDATION OF THE FINITE ELEMENTMO!
' @ | {

The concrete model described in Chapter 3 and the element descnbed in
Chapter 1 contain mmphﬁcaﬂons and assumptions. Although thes ﬁgncrete model
is based on well establlshed knowledge of concrete behavior, one must, ensure

that the model pe‘rforms adequately 1n\51tuat10ns where the behav1or 1s known

experimentally before one can proceed with an extensive parametric study or use -

it to predict the response of actual reinforced concrete panels. -, -

Thus a senes of vahdatlon tests, involving various types of structural
~ elements and loading condltlons was performed | to measure the re11ab111ty of the
‘model. The selection of the test series was based on two criterion: first, the test
series selected must allow the verification of the model in various but well
defined conditions, and secondly, some of the tests rnust be similar to the type of
structural elements analyzed in this study. The selected test;series involve panels
subjected to various stress conditiens, prestressed concrete panels loaded in
biaxial tension, a laterally loaded slab and, finally, a series of thin reinforced

concrete panels subjected to inplane and transverse loads.
4.1 - Orthotropically reinforced concrete ‘panels
4.1.1 Experimental program

A series of orthotroplcally reinforced square concrete panels was tested at

the Umversny of Toronto by Vecchlo and Collins (1982, 1986). Most of the

128
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panels were loaded in monotonic pure shear but some specimens were subjected
to uniaxial ‘compression, combi‘ned biaxial compression and shear, combined
tension ‘and shear, reversed cyclic shear, and changmg load ratios.

Reinforcement ratlos 1n both d1rect10ns were also varied.

The test specimens weré 890 mm square and 70 mm thick. Th;y were
- reinforced with two layers of 50mm grid welded wire mesh, parallel to the
specimen edges Except for one test (PV3), the reinforcement was heat treated
and exhibited ductile behavior. The minimum clear cover to the outermost layer

of reinforcement was 6 mm whereas the maximum aggregate size was 6 mm.
4.1.2 Modelling with NISA s

-~ Among the thirty panels tested by Vecchto and Collins, six were selected’
based on the vanety of the loadmg conditions (pure shear shear and biaxial ¥
compression, nonproportional loading) and on the rangg of the relnforcement
ratios and the amount of reinforcement in each direction. Of the six panels, four
were part of an international competition. reported in Collins et al (1985). The
properties and the type of loading are summarized in Table 4.1. Experimental"
values of E; 'and £, were,not reported in the reference and were evaluated from .
Egs. 3.33 and 3.34 respectively. A four node element, with a 2 by 2 integration
rule, was used to discretize the panels since they were subjected to uniform states -
~of stresses“ The degrees-of—freedom associated with bending'and with the out-of-
plane dtsplacement were restrained. The remforcement was modelled by two
smeared reinforcement layers one 1n each direction located at the panel mid
depth with a Young s modulus equal to 200 000 MPa. The strain hardening

modulus was taken as 400 MPa, based on a typical stress-strain curve presented\
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| by Vecchlo and Collins (1982). In Table 4.2, experimental fallure loads and

fallure modes are compared to the model predictions.

In panels PV3, PV4 and PV27, subjected to pure shear, the amount of
relnforcement was the same in both directions. Hence no crack rotations are
expected and strams 1n the directions parallel to the edges (called here
longitudinal and transverse strains) are the same. In Figs. 4.1t0 4.3 the response
of tests PV3, PV4 and PV27 is presented for the longitudinal and the shear

strains. Panel PV3 was analyzed with two tensile ~trength values. In the analysis

_ with an f; value of 2.89 MPa, obtained with Eq. 3.34, the reinforcement

‘ yielded at onset of cracking whereas a value for f equal to 1.72 MPa, obtained

with Eq. 3.35, produced a better agreement with test results. For panel PV4, the
’ . e

value of f| was selected so that the cracking load corresponded to the value

" measured in the test. The value used was between those given by Eq. 3.34 and

3.35. For low reinforcement ratios, the crackmg load is important if one wants

to follow the postcracking spec1men response before onset of yielding in the:

remF ~rcement. However, the nltrmate load is not affected by the selection of £\,

€av Pt to.  >cimens with veryvlow r;infécement ratios where the tension

suffenirg ia the  onerete governs the behavior rather than the remforcement It
is worth mentionir that the value selected for f,is evaluated in terms of f

the case of Vecchic nd Collins panels, the specimens were cured only a few days
before testing (bet: zen 7-and 10 days for the six panels selected) while Eqs. 3.34 |
and 3.35 were ¢~ '1ved for mature concrete and hence m‘ight not be appropriate
for early age qcrete. In the VCCChIO and Collins (1982) report, there is no o

me “or o _gsured values of f
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- For the three tests, the model and the experimental results agree
"ﬁé\ i

sansfacmnly F;ulure by yielding of the reinforcement layers was adequately

predlcted by the flmte element model for panels PV3 and PV4. In the case of
pane the experimental ultimate strain is smaller than the predicted one
becau. . rebars in the panel broke at the cracks, where the local strain is larger
than the aver,age_slraih over the panel,used in the finite elemept analysis. This
premature failure occurred due to the lack of .vductility of the unannealed wire |

reinforcing steel used in this test. The reinforcement stress strain curve used in

. the analysis was based on a typical curve presented in Vecchio and Collins (1982) ,v

which might not repre$ent perfectly the actual stress strain response of the bars in

test PV3 . | - . |

For panels PV3 (with f,=1.72 MPa) and PV4, the failure was caused by

, yleldmg of the remforcement and the stress-strain curves in Figs. 4 1 and-4.2

show a ductile response of the panels after the peak load is reached. Such . -

behavior is due to t&‘e low .reinforcement raﬁos in these panels. In panel PV27,

~ which had a hlgher remforcement ratxpi me’failu're was caused by the cnishing of

concrete in compressmn prlor to the yleldmg of the reinforcement, leadmg to a

5 (oo Sl '
. , SERLT
. .

g

,4 h

Panel PV19 Was also loaded in pure shear but the reinforcement ratios in

“the longltudma@n ‘and transverse d1rect10ns were different, with aratioof p; to p, .

equal to 2.5.. Thus, in this case, cracks are expected to rotate. Before cracking,

the remfp"?&ement carries no forces since the longltudmal and the transverse

x'it*’ -
stran,& afe zero and cracks form at an angle equal to 45 degrees with reapect to

the #vo reinforcement directions. After cracking, the different suffnesses of the

reinforcement in the two directions causes a rotation of the principal strain field
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and the orientation of the subsequent damage tends to rotate‘ becoming more
parallel to thé direction of the highest remforcement ratio. In this case, one can
compare the response of the fixed crack and rotating crack models. Srnce only |
one crack forms at each point , the two frxed crack models presented in section'
33 produce the same answer. Stress rotating and °:ra1n rotatlng ‘crack models
are both used. Results. for test PV19 are illustrated in Figs. 4.4a to 4.4c for the
longitudinal, the trangerse and the shear strain response. The finite element
response for the two rotating crack models is satisfactory but the stress rotating
model prediction is shghtly ‘closer to the expenmental values than the stram'
rotatmg model. The stlffness of the plateau and the ultimate strain v, are also
better in the case of the stress rotatrng model. The predrcted ultimate shear stress -
and the failure mode were both predicted adequately by the rotatmg crack
models. The fixed crack model overesumaged the panel strength and stiffness in |
the postcracking regron Since panel: PV27 had a relatively low relnforcement
_ratio in one direction, the failure was first initiated by the yielding of the .
reinforcement in that duefﬁomxhrch explarns the ductile response illustrated in

Frg 4.4b'and 4.4c . How‘%veﬁ at the ultrmate load the failure was due to the

Uy l- : o 4 .
crushlng Of COI]CI'C[C R RN . )

:’l

.\v\

Panel PV25 had the same amount of remforcement in/both longitudinal
and transverse drrectrons but in addrtron to the- shear stress field, a braxral
_ ;compressron force equal to 69% of the shear force was apphed In this case there
is no crack rotations and the results for only one model are presented in Frg 45,
since all models would produce the same answer. The model response 1s again |

satisfactory but the test results show postcrackmg carrymg capacrty 15% hrgher

~ to the model or to the experiment itself has been found to explam the dlffe':ence



133

kbetwwn the te‘st and the model response. Similar discrepancies in the prediction
were obtalned by Vecchio and Collins (1982) in their analytical model and also
by Balakrishnan and Murray (1986) who analyzed this test w1th the ﬁmte element |
method For this panel, the failure was due to the crushing of concrete prior to

yielding of the relnforcement leading to a brittle farlure

Panel PV29, which had a ratio of reinioreement p; to p[ equal to 2.0,
was initially loaded in pure shear beyond the cracking load, up to a shear stress of
3.8 MPa . Above this point, for each additional shear stress 1ncrement an equal
biaxial compresswe stress increment was applied, causmg a nonproportlonal
loading situation. Here again fixed and rotating crack models were used and
comparisons between experimental and fifitte element results are presented in

Fig. 4. 6a to Fig. 4.6¢ for longitudinal, transverse and shear strains respect:rvely

Within the range where only a shear force was applied, all three models
used .in the analysis (fixed, .stress rotating, strain rotating) exhibjted the same
response and _were close to the test measurements. At the point where the loading
ratio was changed, the three models differed noticeably. The fixed crack model
showed a net ificrease in the stiffness and the failure load was larger than in the

test occurrmg at a smaller ultimate shear strain (Table 4, 2)

The two rotat.mg crack models predicted adequately the ultimate strength
and its associated shear strain. However ‘the path after the change in the load 7
ratio up to the failure point wére somewhat different. The model prediction was
- very sensitive to the postcrackmg modelhng of concrete. In the case of the stress
| rotating model, the ultimate strain Y, was sensitive to the rule adopted for the

equivalent uniaxial strain €., - The value for €y equalto -1.5 €.,, mentioned in

section 3.3.1 was selected based on this Vecehio and Collins test. However the
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ultimate strength was not affeCted noticeably by €ou or G, the cracked shear
modulus. In the case of-the strain rotatmg model the. mo%el response was

A extremely sensmve to-the postcrackmg definition adopted for G, and both the
ultlmate strain v, and the fa11ur¥ stress T, were affected The rule adopted for=: °

C, in Eq. 3.25 was based on the response of panel PV29 wrth the strain rotating
crack mqgel ‘The failure modes predlcted by the three cracking models was by

the crushing of concrete.
\

- Based on the model response illustrated in ‘Fig. 4.1 to 4.6 '(Summarized in
Table. 4.2), one can conclude'th"at the concrete model introduced in Chapter :3
v, performs adequately, especially when rotatmg cracks are used rather than fixed

crack orientations. It should be mentioned that the actual cracks do not rotate in |

the same way as modelled in the analysis. In cases with unequal reinforcement

rauos in the two d1rectlons Vecchro and Collins observed that at stages after
- 1n1t1a1 cracking, other cracks formed ata dlfferent angle than the initial crack

’_ orientation. This was not a contlnuous process as it is in the model however.
Finally, it should be mentloned also that the@m/odfs pred1cted by the model -
corresponded to: those observed in the tests — :

As mentioned earlier, four panels (PV19 PV:}25> PV27 and PV29) vvere
- part of an mtematlonal competmon (Colhns et al 1985) For these panels, the
, model pred1ct10n of the ultimate strength with the stress rotating crack model,

ranges from 0.99 to 1.12 of the test values, w1th an average error of 2 8% .

The ultlmate shear stratn obtamed with the model ranges from 0. 77 to 1 29 of

R

_the measured valuesg w1th an average error of 3.5% .
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4.2 Prestressed concrete wall segments
'~ 4,2.1 Experimental investigation

A series of fourteen prestressed concrete wall segments wds tested at the

i

University.of Alberta by MacGregor et al ( 1979), on which vari;E;us numerical h

i

studies were carried ou.t by Koziak and Murray (1979) and Chitnuyanondh etal
(1979). In this study, segments #1 and #3 were selected for combarison with the

current model predictions. ¥

The wall segment specimens #1 and #3 were 800 mm (31.5 in.) square
and 254 mm (10 in.) thick. Reinforcing consist_ed of two orthogonal meshes of

-

. \%;9.5;r}mdiameter (#3) bars at 76 mm (3 in.) on nter placgd_ at 13 mm (1/2 in.) ‘ ‘

from each face. The-prestressing tendons consisted of four 7 wire tendons in one <,

- direction and three 6 wire tendons in the othercil ection, called directions 1 and 2
réspectively. The prestressing tendons-had a cross sectional area of 39 mm?
(0.06 (in2)_per'téndon, for total préstress areas of 1081» mm? (1.676 in?) and 695

] mm2‘(1.077 in?) in directions 1 and 2 respeétively. Thg total rebar area was

equal to 1419 mm? (2.2 in?) in both directions.

Segments #1 and #3 were Biaxially prestressed With a 598.7 kN (134.6 ‘
kips) force in direction 1 and a 55 1.6 kN (124.0 .kips) force in direction 2 .

. Loading was applied through two indépendeni pef‘pendlcular systems attached to
b‘dth the reinforcement and the prestressing tendons Segménts #1 was tested
under biaxial‘tension with a 2:1 ioading ratio. Segmént #3‘wa5”é-.lSo tested under -
biaxial tension but the loading ratio was 1:1 up to 1668 kN (375 lcipsj at which

~ point the load in direction 2 was kept constant while the load in direction 1 was

5

increased.
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'4.2.2 Modelling with NISA

Segments #1 and #3 were modelled using the 3D degenerated pl:m:mhell

of-plane displacement, using only a four node element and a 2x2 integration rule

RN

in the same manner as the orthotropically remforcedﬂrconcrete panels reported in

se¢tion 4.1 . Reinforcement was modelled with two smeared layers located’at

mid depth one in each direction. The prestressmg steel was also modelled w1th '

two smeared layers at mid depth. To model the prestressing effects, initial strains

equal to -4.73 x 10 -3 and -4.28x 10° -3 in directions 1 and 2 respectwely were

applied to the prestressing tendons so that equilibrium between reinforced

concrete and tendons produced the desired brestressing force in both directions.
Material properties used to model segments #1 and #3 are given in Table 4.3
where  E., Ft , and €., were evaluated with Egs, 3.33, 3.35 and 3.36

' respectively. The.Youngﬂ's modulus for the rebars was taken as 200 000 MPa (29 »

000 ksi) wh‘e;zfgeas the elastic modulus for the tendons was 203 000 Ml;a (29 400
ksi) with an ujtimate tensile strength of 1174 MPa (264 ksi).

2 “ ‘ N

Results for segments #1 and #3 are illustrated in Figs. 4.7 and 4.8, and

agfeement between experimental and numerical result.s are adequate. The initial
stiffness, the cracking load, and the postcracking response were cortectly
predicted by the finite element model for both directions. The specimens were
not taken to failure and the comparison was stopjied at the last load level reported

in the referernce.

;
v & Ve
°|'}=“ A

£ element, without the ﬂegmes of-freedoms assoc1ated with bending and the out-

o/
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4.3 Reinforced concrete panels loaded axially and'transversely

In the last two sections, the reinforced coplcret;e:"rﬁh%del has been compared

to the Vecchio and Collins (1982) shear panels and to the MacGregor et al (1979)

wall segments. These tests had well defined stressc_onditions and were selecied as
two sets.of preliminary validation tests. One can conclude that the plane stress

| material model developed in Chapter 3 and used with NISA can predict correctly

the behavior of re'inforced concrete structural elements, within the limits of

accuracy one would expect in reinforced co*ncrete structures. Now the analysis
of more complex situations can be undertaken and the case of panel subjected to

Py
I

inplane and lateral loads is examined in the following section.
4.3.1 Experimental program

- An expenmental program was carried out at the Umversrty of Alberta by
Aghayere and MacGregor (1988), to study slender remforced concrete plates .
subjected to inplane and transverse loads. As mentroned in Chapter 1, thls test.‘ ‘ )
series is the only publlshed test series where both types of loadmgs are apphed

o
f

simultaneously and 1ndependently

4 r,i f

The experimental progratn cons1sted of n1ne relnforced concrete plates
simply supported on ;four edges. Seven of the spec1mens had an aspect ratxo of
1.0, while two had an aspect ratio of 1.50 . Various width to thrclcness ratios and
reinforcement ratios were considered. A total of eight platesv\rx'/ereﬁ tested under o
comblned in plane and lateral loads. One plate was tested under lateral load only |
to give an indication of the reduction in lateral load capacity for the plates loaded
within the same series. The maximum applied inplane load magnm’lde (I,) was

| 0.47, where I, is expressed as 5 . o

o
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, P . ’ '
= T ,. (4.1)

a" and h are the panel width

In this equation P is the total inplane load,

. and th1ckness respectively whereas . is the uniaxial concrete strength. The test

program was divided into four@e\rfe;: series A consisted of three square
specimens with side dimensions of 1829 mm. Two of these specimens were
 tested under combined loads whereﬁﬁgﬂ&p_ w&s tested under lateral load only:.

Series B consisted 'of two rectang%lar spetﬁlnﬁens 1829 mm by 2745 mm tested
under combmed loads with the mplane loads applred along the shorter edge.

Series C consisted of two square specimens with same side dimensions as series A
but with different reinforcement ratios in the two directions. Baoth specimens
were tested under combined loads. Series D consisted of two square specimens
having the same side dimensions as series A but with a different width to
thickness ratio. Both specimens were also tested under_ combined loads. The
actual plates tested overlapped the side dimensions given above by 152.4 mm all
around as shown in Fig. 4.9a. This was necessary for supportmg the plates and in

order to achieve a near uniform compresswe mprlane load at the support l1ne
&

- The spec1mens were:tested in a honzontal posmon supported above the

':'lwaboratory floor on steel beams spanning between columns. The testing frame |

‘was des1gned to accommodate-a maximum compressrve mplane load of 1000

' kN/m and a uniform lateral load equlvalent to 115 kPa. The inplane load was
applled using four hydraullc jacks at one epd of the specimen, reacnng against
four closed frames used to transfer the load to the opposite end of the specimen as

’1llustrated on Fig. 4.9b . At both ends, the inplane load was applied to the panel
by mean of 125 mm dlameter 125 mm long, high strength steel half cylmders

- -four along each edge bearing on four 381 mm long clamps attached to the edge

N
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of the specimen. A series of separate clamps were used to alldW'the edge of the
~specimen to twist to accommodate the slab deflections. Only uniaxial inplane

loads were applied in the y direction, along the short edges.’

. The lateral load was applied by means of hydra'ulic’ JQs located
und_erneath"the laboratory strong’vﬂoor, pulling on steel bars passing through
44.5 mm diar"neter holes in the specimen and attached to 125 mm square steel
plates:‘:lZ.? mm thick on the top .of the specimen . The load points, nine fer the

_ square specimens and twelve for the rectangular .ones,'were aligned on a 610 mm

o

square grid.

The lateral load reaction along the four edges of the spec1men was
:prov1ded by dlscrete roller-rocker supports spaced at 458 mm center to center,
with a clear gap of 333 mm between adjacent supports, for a total of 16 and 20
support points for square and rectangular specimens respectively. The supports |
were designed to allow free horizontal movement in any direction and free
rotation about an axis parallel to eacli edge. At the specrmen four corners, the
supports were 'located above the panel, instead of underneath, to restrain upward
movement at the corners when the plates were loaded transversely. These
supports were attached to the testing frame by mean of independent frarnes at

each corner as shown in Fig. 4.9¢ .

Four layers of re1nforcement were provided; two on each side in. each
direction. Reinforcement parallel to the inplane loa(l d1rect1on was placed
outermost on each side (Fig. 4.9a).” The reinforcement consisted of 6.35 mm
diameter deformed bars with an nltimate strength of 670 MPa. Test results of a

tension coupon are given in Fig. 4.10 along with the idealized stress-strain
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response adopted in this study. Concrete was poured In two phases Wthh gave _

cylinder compress1ve strength of about 32. 3 MPa and 40.2 MPa.

For seven of the specimens tested with both inplane and latetal loads the - -'
inplane load was applied first and was then kept constant while the lateral Ioadg o
was being apphed For spemmen C1, both types of loads were applied
51multaneously, whereas specimen A3 was subjected to transverse loads only All
the pertinent mformatron about specimen geometry and properues is given in
" Tables 4.4 to 4.7. A summary of the loadmg and behav1or of the nire spec1mens
tested is presented in Table 4.8.

4.3.2 Modelling with NISA

The Aghayere and MacGr)“‘Egor (1988) panels were modelled usmg the 16
' node 3D degenerated plate shell element with 5 degrees of freedom per node
described in Chapter 1. As shown in Fig. 4.11, the mesh described one quarter of
~ the specimens and the panel reglon within the center l1ne of the supports was -
discretized with 2 x 2 elements for the square specimens whereas a2x 3 element
mesh was used in the case of the rectangular series. The 152 mm portion
: -overhanglng the supports was modelled with an addmonal row of elements,
g1v1ng final meshes of 3 x 3 and 3 x 4 elements for the square and rectangular
series, respect1vely._ The A series panels and the two specimens of the B series
were selected for comparison with the numerical predictions. The geometries of

the two series are illusuated in Figs. 4.12 and 4.13 . L ’

The supports were located at nodes 34, 37, 40, 64 and 94 for’ the square
series while, for the rectangular senes the supports were located at nodes 34,37,

40, 64, 94 and 124, At each support the out-of-plane dlsplacement was

h ' . . . ‘ L
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restrained. The rotattion about an axis parallel to the panel edge was allowed but
the rotation in the other direction was restrained to model the actual s_upport
conditions and to a'ccount for the fact that the supports in the tests were 125 mm
long. The inplane load was modelled using a uniformly distributed load between
' 'nodes_4 and 10. 'The transverse loading points were located at nodes,56, 60, 96 -
: and IOO for ‘the square Series and at nodes 66, 70, 106 and 110 for the rectangular

S s‘eries B. Thjs corresponds closely to th,e actuai loading points in the test.

A 4 x 4 Gaussian integration rule was used over the plane of each element
wh11e 9 layers were used to dlscretlzed the element over its thickness in order to
perform the Slmpson s type mtegratlon ‘The selectlon of the number of elements
and the’ number of layers for. the 1ntegrat10n rule adopted over the thickness were
'based on a study presented in Appendix B in which the response of different

vmeshesaand number of layers are compared.

Reinforcing steel response was described using the idealized stress strain
~ curve of Fig. 4.10 and the four léYers of smeared reinforcement were located at
the actual positions mentioned in Tableds6 In the outside strip, which was not
“fully reinforced in the tests,‘ only 'a.Quarter of the reinforcement amount.present '
in the region located within the center line of the supports was provided to-
represent the actual spemmen remforcement A reduced compressive strength
f"C equal to 90% of f was also used to reflect the actual uniaxial compressive
strength compared to the compressrve strength measured in cyhnder test were
~some conﬁnement exists (Kotsovos 1983) The\value of 6 9 f ‘was chosen
based on judgement since, to.the author's knowledge no extenswe study is
- avarlable on the ratio of the compressrve strengths measured with different |

L techmques If the brush system dev,eloped .by‘ Kupfer et all (1969_) used on
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.cylmders is assumed to represent the actual uniaxial compresswe strength the
ratio of this strength to the usual cylmder test would probably be around 90 %.
One should mentlon that Todesclnm et al (1964) and Hognestad ( 1951) used

similar values for f'. . The material propert1es for concrete used in the analysis

are given in Table 4.9 where f, was evaluated with Eq. 3.35 and eco with Eq v

3.36 . Initial P01sson sratio v, was set to 0.2 in all cases

Of the nine specimens tested by Aghayere and MacGregor five were

selected. The three specimens of the A series were chosen because one panel had -
only lateral loads and the two other were subjected to combined 1nplane and

"j_lateral loads with a different inplane load level in the two cases. The B senes’ ‘

was also selected since the panels were rectangular The companson of the model_ :

response and the test measurements for specimen A3 is presented in Fig. 4.14, 1n -

Fig. 4.15 for specimens Al and. A2 and in Fig. 4.16 for the B series. The ‘k

modelling of laterally and ax1ally loaded panels includes the corner support
effects and the relative edge rotation at inplane load apphcatlon points, as
described in Appendix B. Aghayere and MacGregor ( 1988) did not measure the
out of-straightness of their specimens before any load was applled but they
recorded the out-of-plane dlsplacements produced when the 1nplane loads were

applied. To model those initial dlsplacements edge moments were, applied

together with the 1nplane loads i in the first load step. The value of these moments

was adJusted m 4 trial-and-error process -until' the central out- of—plane
dtsplacement corresponded to the value measured experimentally. It is assumed

that these edge moments account for the secondary effects and errors that take

- place in any test but which cannot be evaluated or isolated precrsely In the case .

analyzed the ratio of the edge moment to the mplane load, or the eccentricity of -

¢ 3
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' the inplane load measured from the pmgf@‘)ane ranged from -0.4 mum in the '

A

case of specimen Al to 6 3 mm in the case og'?s imen Bl as given in Table 4.9 .

For the five specimens analyzed wiit»h"{zprogr-am NISA, trheb model
performed satisfactorily, within what one would expect for reinforc';ad concrete
structures. In the case of specimen A3, the cracking load‘predicted by the model
was higher than the value measured experimer'ltally.‘ This may be due to tensile
stresses in the spegimen due to Shrinkage. These stresses were not considered in

. the analysis. This problem appeared only in the case of the latérally loaded panel .)
A3. For the five panéls ‘analyzed, the ultimate load and the corresponding
deflection at thé center of thé specimen agreed satisfactorily. The rectangular
pahéls (B series) were affected by the stiffness of the devices holdihg down the
corners. This is discussed more fully iﬁ A_ppéndix"B. If more tests are
performed on a similar test set-up,‘care' should be devoted to the stiffness of the

corner supports and their relative displacements with respect to the specimens

) shbﬁld be monitored and reported.
- 4.3.3 Analysis of the model results

Nonlinear finite element analyses generate a large amount of information
and some of the data obtained in the analysis of specimens A2 and B1 are

presented hereafter.

Pnncxpal moment orientations and magnitudes are illustrated in Fig. 4.17
for the specimen A2 at the max1mum load (Q = 119.5 kN). The moments are

about the axes shown in the individual rosettes. It can be observc‘*,d that in a large
' -~ .
portion of the plate, the axes of the major principal bending moment are

perpendicular to the direction of the inplane loads. The bending moment my ,



144

acting ahoutan axis parallel to the x axis, is equal to 16.89 kNem/m at the center
of the plate with the P-A effects included: However it reduces to a value of 2.10
'kN-m/m when the bending moment equal to the product ff the inplane load times
the deﬂectlon at the center of the plate is subtracted. The value of m, at the same
| location, acting about an axis p‘ar_allel to the panel y axis, is equal to 3.19
kNem/m, for a ratio of m, to m, equal to 1.52. This indicates that the a larger
portion of the lateral load is carried by reinforcement parallel to the x direction
than by the remforcement parallel to the mplane load direction. This aspect is

dlscussed 1in more detail in the following chapter

Flgutes 4 18 and 4.19 show the material damage on the bottom and top

sides respectlil"i'ly, at the maximum load level. As observed in the test, the bottom
side of the speclmen The reduct10n in the carrying capacity, observed after the
maximum load is reached (Fig. 4.15), is due to the progressron of crushing on the
top side near the corners of the slab which initiated at the maximum load level as
shown in Fig . 4.19 and spread along the diagonal as illustrated in Fig. 420. The
wide cracks observed along the panel edge (in element #7) were probably, due to
the anchorage of the membrane forces in the rernforcement oriented in the X

direction.

Figure 4.21 shows the reinforCement strains measured in the transverse
(x) direction at the center of specimen A2. Both the top and bottom bars undergo
tension and the test results are in good agreement with the model predich'on. Itis
interesting to note that both top and bottom strains increase with the increase of

the lateral load. This could be xplained by the restraining effect exerted by

concrete located on the panel periphery on the center region of the specimen
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AY

which is subjected to a net tensﬂe force throughout the test. However it is not
known at thlS stage of the study if this restrammg action wouid be observed to the

same extent for a specimen without the"overhangmg strip.

-Principal membrane forces in corierete for the last load step just pribr to
collapse are shown in Fig. 4.22 for the specimen B1. It can be observed that the =
membrane force tfajectories are slightly inclined,,principé(l stress directions
fanning toward the longitutiinal edges. The membrane forces at the center line
are smaller at the center of the plate than on the outS1de which mdlcates a
significant redlsmbutlon of the inplane loads from the edges where they are
applied to the center of the plate.«» On the other hand, forces in the reinforcement
are main_lyb oriented perpendic_ularly to the_ direction of the inplane load, as
illustrated in Fig. 4.23. Principal bending moments are plotted’ in Fig. 4.24,

showing the same tendency as observed for the specimen A2, with the major

_principal bending moments about axes in the direction perpendicular to the

. inplane load action due to the P-A effects. One should notice the relati;/e

magnitude of the bending moments near the corner support. In the test specimens

the region outside the supports was not heavily reinforced which could indicate

why the specimen behavior was sensitive to the restraint at this. point. The lack of

reinforcement at the corners reduces the stiffness of this region, increasing the
flexibility of the specimen. This can explain why the specimen behavior was

close to the unrestrained corner case presented inFig. B.10 .

4.3.4 Summary

Five of the nine reinforced concrete panels tested by Aghayere and
MacGregor (1988) were used to verify the concrete model and the finite clement

program. Four of these p'anels were subjected simultaneously to inplane and '



.two were rectangular W1th aspectratios b/a of 1.0 and 1.5 respecuvely The
modellmg with the finite element program was performed based on a study on
the optimal mesh and number of layers to provrde an adequate accuracy. The
interactions of the specimens with the test set up were con51dered in the analysis

in the cases where their effects could affect the specimen behavior.

In the five cases analyzed, the'ﬁnite element model reproduced

satlsfactonly the experimental measurements The peak loads and the assoc1ated o

deflections at the center of the spec1men are given and compared in Table 4.10 ‘j_;'
for the tests results and the model predlctlons The ultimate load predicted by
finite element ranged from 0.99 to 1. 07, with an average value of 1.02
compared to the tests results wh1le the average error for the center deflections is
equal to 1.04 ».the predlcted values varying between 0.91 and. 1.32 of the

expenmental results.

The behavior and the failure modes predicted' by the model agree with the ;
experimental observations. The ascending and descending branches of the load-
deflection diagrams obtained with the m'odel followed the tests measurements
The cracking and crushing patterns in the model predlctlons were close to the .

observatlons made in the tests.

Based on the validation tests performed with this test series, plus those on
the series on- remforced concrete panels’ and the wall segment series, one can
conclude that the reinforced concrete model 1mplemented in the finite element»
program can model satisfactorily plate type reinforced concrete structures and
can be used with confidence to predict the behavior and the ultimate carrying

capacity of these elements.
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Table 4.1 - Data of the Vécchio and Collins (1982) test series

Test Loading p;  f;  pr £y fo ey ED £
(%) (MPa) (%) (MPa) (MPa) (x10'3) (MPa) (MPa)

PV3  PS 0483 662 0483 662 266 230. 24020 2.89

PV4 PS 1056 242 1.056 Y 24020 2.89

PV19 PS 1785 458 0.713 21370 231

PV25 SBC 1.785 466 1.#5 21470 233

PV27 PS 1785 442" 1.785 21930 2.43

PV29 CLR 1785 441 0.885 22370 252

PS‘%“ Pure shear L\,

SBC  Combined shear and biaxial compression .

CLR  Changing load ratio |

(D Evaluated from Eq. 3.33

(2)  Evaluated from Eq.3.34



Table 4.2 - Failure characteristics of the Vecchio and Collins (1982) iest series

G

;@USQQ

Brittle failure of rebars {no yield plateau)

~ Yielding of rebar{(wnh yleld plateau)
: Crushmg of concrete
i‘Ductlle fa.llure
o _Brlttlc failure

4
Tx 3 L . Y _Tﬁt_
Test prenmental Model  Model
T, 'yu' Jerajlur,e T Failure 1, vy,
(MBa) (x107) Modes -(MPa) (x103) Modes
CPV3 302 562 RRD: 34102600 YRD. 089 0.28
o 3 3.41(2)@,‘4.17, FRB 089 0.72
PV4 271 1431 YRD 284 1515  YRD 095 . 0.95
PVI9 396 1051 YRCCD 4549 792 YRCOD 087 133
a 397 1363 YRicCD 1.00 077
397 892 YRCCD 1.00 1.8
PV2S 913 551 CCB 847 427 CCB . 112 129
PV27 624 454 CCB_ 636 471 COB 099 . 0.96 N
PV29 557 612 COB 670% 349 coB . 083 162
L S 556% 545 CCB - 1.60 1.12
/ © 5799 516 CcCB 096 119
‘2 - . ‘ ' L X " - .
. (1) M evaluated from Eq. 3.35
© (2) frevaluated from Eq. 3.34
. _ £3)"  Fixed crack model o
: (4) Stress rotating crack model - e
(5) .~ Strain rotating crack model

-

Ry
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Table v4‘3-3' - Con,crete; properties for prestressed wall segmerité

s

~~_ MacGregor et al (1979)

“149

Segment

f'e

£y

E

. [5.694]

(o €0 P1 P2
(MPa)  (MPa)  (MPa)  (x1079) (%) (%)
- [ksi] [ksi] (ksi]
1 73512 200. 26550 @ 238 120 - 099
[5.093] (0291 (3850 | . ,‘
2 3926 -2.07 27720 248 120 0.99
[030]  [4020]

L4

Table 4.4 - Nominal dimensions of Aghayere and MacGregor (198 8) test series

Series - b " h b/a b/h Py Pyl
| (m) (mm) (%)
A 183 635 10 288" 041  1.16.
"B 2.74 63.5 15 432 060 - 1.18
C 183 63.5: 10 - 288 052 210
D 54.0 10+ 339

183

0.48

- 1:16




Table"4.5 - Réinforcemént areal! in Aghayere énd MacGregor (1988) test series |

1

»
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‘Series Bar areain x direction Bar areain y direction
g Top Bottom Top - | Bottom
A 225 225 - 260 260
B 324 324 381 381
C 157 157 329 329
D 225 225 260 260

(): inmm?/m

Table 4.6 - Actual specimen thicknesses and rei‘nfdrcement positions(V

in Aghayere and MacGregZ)r (1988) test series

2

_ Specimen ’I'hicknesé

Bars in x direction

Bars in y direction

~ (mm) | |

.. Top Bottom Top - Bottom
Al 67.0 17.0 ' 51.3 '10.6 . 57.6
A2 642 181 *47.0 11.7 533
A3” 65.3 18.6 498 | 122 56.1
Bl. 645 17.1 .49.3 107 - 556
B2 64.8 17.1 511. 108 574
CL - 647" 167 . 474 103 . 537,

L@ 7 - 15t 4667 111 599
DI, 555 185 39.9 121 462 :.
D2 . 570. 182 41.7 119 - 480

(1) : 'in mm from the top face to the centroid of the bar |
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Table 4.7 - Concrete pr.op’.ef'tiesfin Aghayere and MacGregor (1988) test series

Specimen Age fe f',

~ (days) (MPa) (MPa) (MPa)

Al 113 +32.25 2.80
A2 111 32.25 2.80
A3 98 32.24 2.80
Bl 119 40.27 2.97

- B2 118 40.23 2.97
C1 122 32.26 2.80
2 117 32.25 2.80
D1 126 32.26 2.80
D2 112 40.00 . 2.97

-

Table 4.8 - Test results in Aghayere and MacGregor (1988) test series

|

g \ L )
SpeCilmen Pu N P s Qu Qu Amax 7 .Aul't
’ ~ (kN/m) o ~Y(kN). u‘,_:(kPa) ', (mm) (mm)
Al 962.0. 047 1530 - 457 158 34.0
A2 7650 037 1263 377 190 40.0
: A3 00 - 000  1962.7 3586 . 752+ ¢
. . BL 8743 034 1422 283 481 . 530°
B2 Y6389 025 - (i828 . 364 44 - L 49.0,
< (_‘m\ 8325 040  "1165 348 . 159 380
S @ 76507 037 1098 32.8 16.1 380
DIy 5246 030 898 268 151 4800
: 8526 039 1219 364 140 39.0

sl

¥~
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Table 4.9 - Concrete properties used in analyzing Agha ere and MacGregor

(1988) test series A and B

. v (1 3 4
Specimen £,V £, @ €0 Pettx.  Pety e
(MPa)  (MPa) (x10°%) (%) (%)  (mm)

Al - 2903  1.89 2.30 105 105  -04
A2 2903 1.89 - 230 - 105 1.05 2.5
A3 " 29,03 1.89 2.30 1.05 1.05 —
B1 3623 .. 2.11 250 102 117 6.3

B2 3623 . 2011 2.50 1.02 .17 30

(1) - 0.9f,

- (2) : fromEq. 335 < Py
(3) : fromEq.332
(4) : a posmve ‘number indicates an initial deflection in the same direction

as produced by the effect of the lateral loads
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Table 4.10 - Comparison of the finite element predictions to the test results

. ' _ ' Test
A S pecimen ExPerlmental | Model | _ Model

) Qu o Au Qu | Ay
Ny (mm o

1539 164
L 1987
Coa

1980 824" 2 091
133.1 364 1.07 132
182.7 429 100 104

1

o St:;‘téi?tics" )
‘ : | _  Average 1.02  1.04

c .~ Sanddev. 004 016
o | | . ~Coeff: of var.» 3.9% 15.8%

a™,

wm ST
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Figure 4 1 - C panson of mod%and Vecchio and Colhns (1982) test PV3
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CHAPTER V

BEHAVIOR OF REINFORCED CONCRETE PANELS

- 5.1 Solutions available

The behavior of reinforced concrete panels loaded transversely and
amally can be examlned from various methods. Aghayere and MacGregor
:(1988) addressed the problem by initiating an experimental program on thrn
rernforced concrete panels simply supported on four edges. They proposed a

crossing beam analogy to predict the panel response and a moment magnifier

design procedure to evaluate the ultimate strength of such panels.

The aim of the research initiated by Aghayere and MacGregor and
extended hereln is to provide a better understanding of the behavror of
re1nforced concrete panels and ultimately to propose a rational design method. ..
To achieve this objective one must proceed to more analysis and, perhaps more
experlments ‘on panels. However experimental investigations are more
expensrve than finite element analysrs which, in turn, is more tlme consuming

than calculatlon methods such as those proposed by Aghayere and MacGregor.

A limited parametric study has 'been carried out-using the finite element °
program NISA to extend the'range of the available test results. .This allows the
analyrical -procedure proposed by Aghayere et al (1988) to be verified and thus
provide a stronger basis for the developmen.t of a reliable and rational design
method. In the followmg sections, a paramemc study on panels loaded axially

and transversely is presented.
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i
5.2 Parametncstudy .

Many parameters affect the behavior of concrete panels supported on four
edges and subjected to mplane and transverse loads. ‘The main parameters B

' mvolved in the panel behav1or ¢an be enumerated as follows

1. the aspect ratio b/a -

"the slenderness ratios a/h or b/h; _ L B

3. the amount of remforcement Py > and the ratio of remforcement in both .
. derCthﬂS py -/ px, '

the mplane load magnitude Im as deﬁned 1n Eq 4 l;

the inplane and rotational edge restraints;

the sequence of loading;

= o o»n oA

the ratio of inplane load in each directions.

Aghayere and MaeGregor (1988), varied ‘these parameters except the
~edge restraints, which were simply supported and allowed inp'lane hoﬁz‘onta‘l‘f B
motion . In addition to the lateral loads, the panels were subjected to auniaxial-
. mplane load. A hrmted parametnc study on panels similar to those’ tested by
| A ghayere and MacGregor is initiated in thls study where the ﬁrst six parameters

mentioned above are varied, but only uniaxial inplane loads are con,51dered.

- Twenty six panels divided into eiéht series (’PSI to 'PS8) -Were analyzed' |
five square series and three rectangular series, with aspect ratios b/d equal to
- one and two respectlvely The width -"a" was 1800 mm in all eight senes The |
th1ckness h ‘was 60 mm in the first six series, 45 mm for the series PS7 and 90
~mm for the series PS% The reinforcement ratio Py was erther 04 or 0.8

- percent. ‘The fatio of the remforcement py to py ranged from 0.5 to 20.
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The panel dimensions selected for the parametric stud_ are summarized in Table

5.1

| The concrete uniaxial cormm ssive strength f. was selected equal t0-35
MPa and 90% of this value was usec 1n the analy51s for (see Section 4.3. 1)‘
Young's modulus, obtained from Eq. 3.33, was equal to 26 500 MPa, a tensile
strength f;, of 2.0 MPa was evaluated using Eq. 3.35 and ¢, was set to 0.0024,

based on Eq. 3.36. A constant Poisson's ratio of 0.2 was selected for all series. -

The reinforcement was assumed to have a bilinear elastic-strain hardening
. > N 3 ) .
stress-strain curve. The reinforcement yield stress fy, was set to 400 MPa with

an elastic modulus Eg of 200 000 MPa. The ultimate strength of the

reinforcement was selected at 500 MPa at a strain of 0.06 , which produces a

strain hardening rr.udulus equal to about a hundredth ‘of E;. The effective
remforcement ratlo based on the relatlonshlps grven in Sectlon 2.3.7, was eithers |
1.0% or 1.6%, c orrespondmg to actual remforcement ratios of 0. 4 % and 0.8
% used in this study. For a yield strength of 400 MPa, the minimum
reinforcement ratio for beams requlred by the CSA Code (CSA, 1984) is 0.35

7. The posrtlons of the centroid of the reinforcement in both dlrectlons

L]

measured from the, top surface were setequalto 0.15 h' and 0.85h for the top

¢ .
and bottom layers, respectively. -

-

~ The inplane load magnitude was also varied, with values for I, of 0.0,
0.2, O 4 and 0.6 . Four different type&of boundary condmons in the first two -

series were modelled : «
%
1) simply supported with rotation about the edges and inplane movement

. allowed;
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2) inplane movement restrained with edge rotations allowed; .
. - ] . Y
3) free inplane movements and fixed edge rotations; -

4) fixed vi%Planc movement and fixed edge %otations.

In seriles PS3 to PS8 the first type (simply supported edges) was adopted.
Finally, for all but two of the panels subjected to both inplane a\nﬁ lateral loads, .
the inplane load was appiied first to its selected value and kept constant while the
lateral load was being applic?d. However the effect of the loading sequence was
examined for }two panels of the PS1 series. . A summary of the variables

considered is given in Table 5.2 .
R o
5.3 Results of the parametric study

The failure ioads, the‘deflections and the failure modes are summarized in
~ Table 5.3 . The edge load p, is given as load per uhit length of loaded edge. The
transverse load q, is given as load per unit area‘. The bending momehts acting
»ét the center of the panels are given in Table 5.4 . The results of the vanalysi’s‘

performedv on the 26 panels selected are presented under five aspec;ts : the load
| tybe and the boundary conditions , the magnitude of th(; inplane load, the ratio of

Py to Py, the slenderness effect and the loading sequence.
5.3.1 Load type and boundary conditions

- In Figs. 5.1 and 5.2, the response of the first six panels of each of series '
PS1 and PS?2 are presented. It is clear that thelpanel ductility is sign;ficantlvy
reduced by the appliéation of iriplane loads, compared to the case with lateral
loads ouly. Cdmpa{e for example the curves for PS1-1 and PS1-3, or PS2-1 and |
PS2-3. 'fhe addition of edge restraints improves both the carrying cabacity and |

~ the ductility. Comparison of cases PS1-3 and PS1-5 or PS2-3 and PS2-5 shows
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the strong effect of the rotational edge restraint on _the ultimate lateral load, as
one would ex‘pect’ for clamped paneIL

The square and the rectangular series
exhibited essentia!’y the same trend for all cases analyzed with slightly more‘
ductility for the rectangular speci-mens. The to"talv'lat'eral 10adpam’ed by the
square panels and the rectangular ones are of .the same order of magnitude for
identical bounz;x conditions. Howeve~ when the lateral loads are evaluated in
terms of pressure, the plates with b/a 'ratios equal to 1.0 carried a larger
presgure q .i ultimate than the plates with an aspect ratio of 2.0 . For axi‘ally

loaded plates the maxrmum pressures on the square plates were 1.95 to 2.4

times those of the rectangular plates.

For the specimens loaded laterally only with the edges free to move
honzontally (e.g. PS1-1, PS2-1, PS7-1 and PS8-1), the membrane forces at the
center of the plates were in tension in the two directions whereas the regions in
the periphery of the panels formed a compression ring to equilibrate the tensile
forces at t}ne center of the panels. However, for the panels loaded laterally only
with restrat’hed honzontal movement at the supports (e.g. PS1-2 and PS2-2), the

_forces developed at the center of the panels were in compres‘sion until the
deflecuon at thls location became of the order of the p. ite thickness, at which

pomt the membrane forces Started to be in tension. Thus the panels exhlbrted

what is called compressive membrane action at the early loading stages.
5.3.2 Magnitude of the inplane load

Figures 5.3 and 5.4 illustrate the effect of the magnitude of the inplane
load on the panel response. It can be observed that the strength. and the ductility |
decrease with an increase of the ihplane load. The reduction is more significant,

h0wever,‘ for the rectangular series PS2. The type of failure changed from a
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e

ductile failure initiated by yleldmg of the reinforcement in the cases without
iuplane loads to stabihty failures resultmg from crushing of the concrete in the

direction of the mplane load for axially loaded plates with a value for I, of 0.6,
where I, of 0.351 corresponded to the balanced failure. However for the
square panels with small and moderate inplane load magmtude, the failure was

AN

"caused by material fallure All of the rectangular panels with inplane loads failed

by mstability

The classification of the type of failure, by material failure or initiated by

instability, is based on the ratio of the bending moment m, , acting at the center

y >
' ~of the plate at the maximum load level about an axis perpendicular to the inplane
load direction, to the resisting moment for a reinforced corcrete section
subjected to inplane load, obtained using the ACI stress block and called mycy.
Since the value calculated for myc; is.not based on the same assumriptions as those'
used in the the finite element analyfis one can consider that ratios of my 0 Mycy

greater than about 0.9 mdlcates a material type failure whereas for a ratio of the

bending moments smaller than O 9, the failure is assumed by instability. -

5.3.3 Reinforcement ratios p, and p,

" The effect of the reinforcement ratios in the two directions 1s presented in

Figs. 5.5 and 5.6 where it is shown clearly that the carrying capacityis affected

| more by the reinforcement tran"sveree to the inplane load direction than by the
ztmount of steel in'the direction of the inplane‘loa‘d. Thus, in Fig. 5.6 slabs PS2-3

and PS4-1 had almost identical behavior. Both slabs had identical values of Py =

0.004 while p, in PS4- IM twice as big as in PS‘?‘_-3'. In a panel loaded

uniaxid;ly there is a gradual tran~sfer of the lateral load carrying mechanism so

that at hign loads a larger portion of the lateral load applied at the  center of the

1
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plate is carried to the supports by strips spanning perpendicular to the direction
of the inplane load. This is pamcularly true for rectangular panels loadeﬁalong&

\
the short edges.

The change in vbehavior with a change in py/ p,; can be explained by two
things: first the inplane load affects the flexural strength more than the '
reinforcement parallel to the direction of the mplane load does, as can be seen if
‘one refers to an interaction diagram for axial load and bending moment on a
column section. On the other hand, in the direction transverse to the inplane
load; the strength is directly proBgrtional to the amount of reinforcement, thus
“an increase in the reinforcement ratio increases the flexural strength . This is

particularly noticeable for rectangular slab with Py/px equalto 2.0.

L4

© 5.3.4 ™anel slenderness

I'he effect of slenderness on the behavior of panels is illustrated in Figs. .
5.7,5.8 and 5.9 . It is interesting to notice that, in the case of the PS7 series
which had a slenderness ratio. a/le of 40, the lateral load carrying capacity was
reduced significantly by the inplane load due to the slenderness effect (Fig. 5.7).
However, for the PS8 series, with a slenderness half that of the PS7 case, the
carrying capacity is ipcreas"ed by the presence of the inplane load as shown in Fig.
5.8 . The presence of ;&ial load had'three effects: (a) the moment capacity
about an axis perpendicular to the inplane load is increased, (b) the occurrence of
craeking is delayed and (c) P-A effects magnify the bending moment in the
direction perpendicular to the inplane load direction. For the case shown in Fig.

5.8,(a) and (b) dominated while for the slender plate (Fig 5.7), (c) dominated |
| the behavxor Figure 5.9 shows the effect of the panel slenderness ratio a/h on

the ratio of the ultimate lateral load q, , obtained with an mplane load magnitude

'S “9‘\)
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of 0.4 ,to q, obtained with lateral load dnly. The Iateralload _cztrrying capacity
decreases linearlyfwith a/h in the cases studied. It is interestirig to note that for
* the case of a/h equal to 20 the iateral load carrying capacity increases with the
- presence of the inplane load in direction y . This is due to the increase in the
bending moment capacity in the direction of the inplane load which is 3.37 times |

higher with an inplane load magnitude of 0.4 than without inplane load.

]

“ Figure 5.10, shows the ratios of the ultimate lateral loads obtained by

dividing the lateral load at failure for various inplane load magnitudes (I, > 0.0 -
) by the faiiure load with lateral loads only ( I, :,O;O ) for the square and
rectangular panels with a/h of 30.0 and for the square panels with a/h of 20" -
and 40 . The ratios of the ultimate capacities obtained with no P;A effects
' included is shown for comparison for the square and rectanguler specimens. The i
ultimate lateral load values on this curve were obtained usitig a lower bound
solution with the Johansen's yield criterion (Park and Gamble,—-d 980) and the ACI |
stress block to evaluate tlie i’esisting moments. The results in Fig. 5.10 show the
effect df the slenderness ratio on the reduction in carrying capacity. For the
square and the rectangular series PS1 and‘ PS2 , with a slendgrness ratio a/h
| equal to 30.0, the two curves are similar showing, howe_ver, some dependance of
the panel interaction diagram on the ratio of b to "a” . On the other hand, the two
curves on tiie figure associated with slenderri(ess e"ﬁual to 45 and 90 (drawn for
[, of 0.0 and 0.4 only) illustrate the sensitivity of the ultimate capaeity to the
slenderness ratio. The buckling load level indicated on the figure was obtained
from an analytical solut@oposed by Swartz et al (1974) for similar panels

subjected to uniaxial inplane-toads only.
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The values glven in Table 5.4 prov1de more 1n81ght into the slenderness
effect. The bending moments measured at the center of the plates show that for
all the square specimens but two, the bendmg moments m, at fallure actlng
about an axis perpendicular to the dlrectwn of the inplane loads, were close to the
ultimate bending moments evaluated for\an axially loaded reinforced concrete

cross section using the ACI stress block. This indicates that the panel failure

tpode in-these cases were by material failure or in the vicinity of such a failure

mode. The two square paneis that did not have bending moments at failure close
to the material failure case were panel PSI-8,Uwhich was heavily loaded axialiy,
and panel PS7-2 which was moderately- loaded axially ‘but with a higher
slenderness. On the other hand, all the iectangular panels loaded axially had
bending moments m, noticeably smaller than the material failure values, which
indic_ates clearly that the ultimate carrying capacity was initiated by a stability

type failure.

The bending mornents niy in Table 5.4 include the P-A moments. If the
product of the inplane load aeting at the center of the plate by the deflections at
this point is subtracted from m, ', the resulting moment my* would (give an
indication of the portion of/tﬁe lateral load carried by bendlng action along the
direction of the 1nplane load When this is done itis observed that for all the
cases with a stability type failure the P-A moments are larger than the moments .
at the center of the plate. This shows that, at failure the lateral load is not carried
by bending action in the direction of the inplane load at this location, but also that
the strips in the direction of the inplane load are snpported by strip%spanning in
the other direction, at least in the central portion of the panels. This can be
associated to the strong strips used in the Hillerborg's simple strip method (Park
and Gamble 1980)
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)

Table 5.4 \also. indicatc;é the value of the internal membrane force Ny
- taking place—’ at the center of the plate. It is ob§ew¢d that ﬁof the square
specimens, the reductipn in the inplane load magnitude at the center of the plate is
s’malier than for the rectangular specime’ns which exhibited a higher
redistvribution of the inplane load. The amount of redistribution seems to be |
related to the deflections of the panels compared to the square ones, forcing the

inplane load to fan toward the longitudinal edges of the panel, in a similar manner

as observed in the post bucking behavior of metallic plates (Chajes, 1984). |
5.3.5 Loading sequence

Finally, Fig. 5.11 shows the effect of the loading sequence on the capacity
of the panel. In the first case, the inplane load P was applied first and kept
constant while the lateral load q was appiied, giving an ultimate value for q, of
30.15 kPa for I, equal to 0.40 . In the second case, P and q were applied
) proportionally, based on the ultimate values of the first analysis. This produced a
failure at a value for q, equalto 31.15kPaand an inpiane load magnitude I, of
0.413, close to the nonproportional loading performed in the fisst case. In the
third case, the lateral load‘ q was applied up to 30.15 kPa and kept constant
whi’le P ‘was'increased. In this case, the failure load for P corresponded to an
mplane load magnitude I, of only 0.124, compared to the first case value for I

m

" of O 4 , producing a reduction of 69% in the inplane load magmtude

‘The reason for such beha>0r is that the lateral deflections were
significantly larger after the application of lateral load alone.than‘ they were in
the first two slabs plotted in Fig. 5.11 due to more ex"iénsive }:racking of the
plate. Waen the inplane loads were applied the secoridary‘effect increased more

rapidly wish the application of P . Henc‘e, the panel r_esponsé can bé very
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sensitive to the loading sequence when the lateral load is applied first but less
sensitive or insensitive to loading history for proportional loadings or for cases
where the inplane load is applied first, provided the cracking history is similar.

This conclusion is the same as one would obtain for columns.

‘5.4 Summary of the parametric study

~

Twenty six panels were analyzed in the parametric study and based on the

behavior observed in these cases six conclusions are drawn.

1. The effects of edge restraints are significant and should be investigated

more deeply, together with the effects of partial restraints.

2. The ductility of panels is severely affected by the inplane ‘load magnitude.
The carrying capacity drops raprdly beyond the peak load level, ending
with a brittle failure. '

v e .
3. An increase of the carrying capacity is achieved more efficiently by
9 v
increasing the reinforcement ratio in the direction perpendicular to the

inplane load than it is by increasing the reinforcement parallel to the
) . ¢ ’
inplane load. }

\ %\

4. The slendemess of the panels affects significantly the value Df the bendmg

moments acting at the center of the plates and the failure mode 1s strongly

affected by the aspect ratio of the panels.

5. With the increase of the aspect ratio beyond one, the portion of the lateral
load applied at the center of the plate carried by bending actior, in strips

spanmng the drrectlon of the inplane load reduces rapidly and strips
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spanning in the transverse direction carry a larger portion of the lateral

load and also support the strips in the direction of thé inplane load.

6. In the cases studied, proportional loading or prior application of the
inplane load did not affect.the ultimate load of the panel.' However, prior
applicaiion of the lateral load changes the cracking history significantly

and causes a severe reduction in the inplane load capacity.

The- aim of fhis pardmet#t study was to provide more {nsight into the
behavior of panels subjected combined uniaxial inplane-loads and lateral loads.
The analysis n;f the results obtained with the finite element program can\be used
to verify the assumptions used in_the analytical method propdéed by Aghayere
and MacGregor (1988) which should allow to perform more analysis in the
future to extend the knowledge of the behavior of these panels and also improve:

the design procedures.
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Table 5.1 - Pahel specifications in the parametric study

Series b h b/a a/h Py - Py/Px Number

(mm) ' (mm) : (%) of panels

PS1 1800 ¢ 60 1.0 30.0 0.40 1.0 10

PS2 3600 60 20 - 300 0.40 1.0 8

PS3 1800 60 1.0 300 - 0.80 2.0 1

PS4 3600 60 2.0 30.0 0:80 2.0 ]
" PS5 1800 60 1.0 30.0 0.40 0.5 1
PS6 3600 60 2.0 300 © 0.40 0.5 1

PS7 1800 45 10 400 - - 0.40 1.0 2

-

PS8 1800 90 1.0 20.0 0.40 1.0

Note : a = 1800 mm for all series’ , Total : 26 panels
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Table 5.2-- Loading and boundary conditions used in the p‘arametﬁc study

~

Series Panel Load type Edge restraint

Im
number ~ Inplane/Rotational
PS1and PS2- 1 L. F/F - 0.0
2 L R(x;y) /F 0.0
3 L&I F/F 04
4 - ‘\}L&I' R(y)/F 0.4
5 1 L&l F/R(x;y) 0.4
6 - L&l R(y) / R(x;y) 0.4
7 L&I F/F 0.2
8 L&I F/F 0.6
PSI - 9 L&l F/F - M
10 L&I F/F @
PS3t0PS6 1 L&l F/F o 0.4
PS7and PS8 1 L F/F 0.0
, 2 L&l F/F 0.4

( 1) Lateral and inplane loads applied proportlonally

(2): Lateral load applied first and kept constant while the 1nplane load
applied

L: Lateral load
I:- Inplane load

F: Free .
R: Restrained X: along axes parallel to the x direction
y: along axes parallel to the y direction



201

Table 5.3 - Results of the parametric study

Series  Panel o Q A% Failure®
' ' (kN/m) (kPa) (mm) mode
PSI 1 0.0 32.47 39.1 D
2 - 0.0 40.38 23.2 - D
3 ° 8400 3015 171 M
4 840.0 38.50 16.0 M
5 840.0 89.26 14.8 M
6 840.0 12880  '18.6 M
7 4200 32.18 28.8 S
8 12600 2172 9.8 | M
9 867.3 3115 14.1 M
10 260.4 3015 65.1 M
PS2 1 0.0 20.72 86.1 D
2 0.0 17.85 1267 D
3 840.0 . 1323 303 'S
4 840.0 16.81 <~ : 203 S
5 848,0 37.19 27.4 S
6 8400 66.20 23.7 S
7.\ 4200 16.95 52.6 . S
8 1260.0 935 200 S
PS3 1 8400 3327 171 M
PS4 1 8400° 2708 - 318 S .
PS5 1 840.0 3760 172 M
PS6 1 8400 2164 409 s

&

-(see next page for the remaining part of the table)

~
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Table 5.3 - Results of the parafnelric study (continued)
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Series  Panel Pu dy Au(l) Failure?
| (kN/m) (kPa) = (mm) mode
. (

PS7 1 00 21.40 51.0 D

2 630.0 10.52 127 . S
PS8 - I 0.0 67.14 30.8 D

2 1260.0 93.19 12.9 M

o | _ - ‘ ‘.
(1): Deflection at ‘the'p'émel center corresponding to q, and Pu
2): D Ductile failure; no well defined ultimate point;

some carrying capacity left
M Material type failure; well defined ultimate point;
no carrying capacity left after peak load
) Stability type failure; well defined ultimate point;
no carrying capacity left'zifter peak load
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Table 54 - Bending moments at the center of the panels analj'zed in the

parametric study

L4

T o v
Panel Py A, Ny my  my  omg* my/myg
CkN/m) (mm)  (kN/m)  (kNemym) (kNem/m) (KNem/m)
- PSI3° 840 . 156 8142 475 _ 1605 335 095
' PSI-4 840 160 7670 924 1634 407 0.97
PSI-5 840 148 8048 564 1857 666  1.10
PSI-6  840. 186 7378 1196 . 1730 = 3.58 1.03.
. PSI-7 420 288 - 3489 285 © 1256 . 251 093
“PSI-8 - 1260 "~ 9.8 1287.0 3.67- 1161 -101  0.78
PS23 840 274" -7192 - 411 89 -10.74 053
. PS2-4° 840 203 7684 © 1010 - 7.63  -7.97 .. 0.45
 PS25 840 274 7579 452 1156 924 0.65
PS2-6 840- 237 .667.6 1707 1082  -5.00 0.64
PS2-7 420 526 1188 | 335 . 551 074 - 041
PS2-8 1260, 200 -12104 465 549 . -1872 037
PS3-1 ~ 840 = 17.1  807.7 428  19.05° 523 093
PS&1 840 318 6852 426 999 1180 04
PS5l 840 172 ‘78?7.6 ©7.81 1650 295 098
PS6-1 840 363  645.1 848 997 1345 - 059
PST-2 630 127 6195 191 68 -+ -101 068 .
PS8-2 1260 129 '1290.0 11.02 . : 1.06
) -3
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CHAPTER VI

SUMMARY , CONCLUSIONS AND RECOMMENDATIONS

6.1 “Summary

AL

A research program has been 1nmated at the Umversny of Alberta to
study the behavior of reinforced concrete panels loaded axially and transversely.

Both expenmental and numerical approaches were used to investigate the

problem. The present work describes the numerical aspect where the finite

element method was used to predict the response of remforced concrete panels.

In this study, an incremental hypoelastic plane stress concrete model has
been developed and implemented in a three dimensional degenerated plate shell
element to model the response of reinforced or prestressed concrete structures.

The formulatlon of the material model includes the most recent developments in

_ the modelling of remforced concrete. After both cracking and crushmg strain

softening is allowed. A rational tension stiffening model is developed where the
tension softemng of plain concrete is incorporated into the CEB description of

the tension’ stlffemng phenomenon for reinforced concrete members. - Based on.

the material properties and the amount of reinforcement, this new approach

eliminates the necessity for the user to make a dCClSlOl’l on -the shape of the

postcrackmg stress strain curve for concrete Stress stram relatlonshlps

’ modelhng the posteracking behavior of remforced concrete are then obtained

based on the remforcement ratio and the crack onentatlon to ‘the reinforcement.
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Fixed crack odels and rotating crack models were also implemented in the

program.
. N

To validate the model, the f1n1te element predictions were compared to
results of various experimental mvesugatlons remforced concrete panels loaded
'axrally In tension, prestressed concrete wall segments loaded biaxially in tension,
reinforced concrete pan subjected to pure shear or combined shear and blaxral
'compressron and, f1nally, remforced concrete panels loaded axially and

transversely. In all the cases studied, the model performed satlsfactorlly, e '

Finally, a limited parametric study where 26 problems Were oonsidered;
- was carried out to -exa'rnine'the behavior of reinforced concrete panels subjected

simultaneously to uniaxial inplane loads and uniformly distributed lateral loads.

6.2 Conclusions )

" .
KEN

Based on the ﬁ;sults obtamed w1th the finite element method usrng the
element a:nd tﬁtml'al}%tal model described prev1ously, it can be concluded that thf‘ |
behavror of plaﬁ’ar tte‘ﬁaforced structures can be predicted adequately with the
flmte element method w1th respect to e load deﬂectlon response, the ultimate

strength the failure mode and also, when apphcable the post ultimate response

Based on the analysis performed nn remforced concrete panels subJected
to 1np1ane and lateral loads in the cc =on with the expenmental. results of -
Aghayere and MacGregor (1988) and ir. the pa:amem'c study performedlater
two points appeared to have a striking effect on the panel behavior. First, the |
- boundary conditions of the slabs srgmflcantly affect the panel response. ThlS is

>

" true both when tife edges are restrained and when they are simply supported. It
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was observed that the vertical stiffness of the hold down points at the corners of
the simply supported test specrmens affected their response. As aresult special -
attention grust be devoted in the modelling of the actual boundary condmons for
verification purposes. On the other hand 1nterpretat10n of the experimental

results must also account for mterference from the boundary condltlons

The second significant factor is the loadlng sequence for panels subjected

to relatively large lateral loads. The carrying capacity of slab subjected to an
; 1nplane load depends largely on deflection and degree of cracking when the axial
loads are applied. Vanous possible loading histories should be 1nvest1gated n

' de31gn srtuatlons

\

6.3 Recommendations for future study

X

Several recommendanons can be made for the future development of the

modelhng of reinforced concrete structires witl: the finite elément method

*In future 1mprovements of the ‘material model some attent1on must be.
| ‘de’voted to the prediction of shear type fallure through the slab (punching shear).
Modelling of shear relnforcement (e.g. preslressed surrups) can be a srgmﬁcant
- rmprovement Also rheologrcal effects such as creep and shnnkage should be,
i 1plemented in the model to follow the time' dependency of the panel response in.
vanous conditions. The modelhng of reinforcement in the plate shell element is -
" limited to smeared layers of umform thlckness in each- element Var1able~~

thickness and- relat1ve posmon over the elem.nt thlckness snould be’ added,

together wrth an opnon for dlscrete remforcemen'

i

For the analysls of remforced concreic panels, other types of loadmg

condmons would be mterestmg to mvestlgate Cases w1th b1ax1al mplane loads
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1np1ane shear concentrated lateral loads or trapezoidal loads (varlable
hydrostatrc pressure) could also be considered. Analyses of panels with aspect
ratios b/a smaller than one or larger than two, with various thlcknesses
reinforcement ratios and with varying edge restramts would certalnly be of great

mterest as would further tests of such slabs.

\
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APPENDIX A

PARAMETRIC DESCRIPTION OF NOTCHED

TENSION SPECIMENS

In this appendlx the behavior of specimens similar to those tested by

Gopalaratnam and Shah (1985) is described in a parametric form. Using thel‘

‘relationships derived, conclusions on the modelling of tension softemng are

drawn.

A

A.l1 - Parametric description | . | ' S

The type of spe:ei'rrlen' used is illustrated in Fig. 2.8a where & ‘is the
elongation measured ‘over the gage length | L, and where w; is the_‘ width of the’

fractu@ pr‘oeess zone. B ;
S
e _.}53/

&y
The fracture prbcesé“ zone is called reglon A, whlle the unaffected

concrete outsrgle the fracture zone is assumcd td be in region B. The average:

KA

stress ,. O, “calculated at the notched Jse!c;tien‘ 1s equal to:

o * _,-_. T . ) - ) ' ‘
& ST, | | 3 A

‘in which T is the. tensrle force pulhng on the spemmen h the spe01men '

" thickness and b the dlstance between the notches. The average stress in region B

1s expressed as

%= b, | R R

228
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where b, is-the specimen width in region B. -
. R
The fracture process zone dimensions, b and wc , are assumed to remain

constant, w. being an unknown value at this stage. However, before cracking,
one can assume that the length of reglon A is equal to the notch depth , ¢y, and
the length of region B is then equal to L, less C,. This is based on the |
assumpﬁon that the stress trajectories in reglon A expand at a 45 degree angle

into region B and that the notch-width i 1s negligible compared to its depth.

Based on these assumpuons the stress- elongatwn relationship (o —8) of

the specrmen in Fig. 2.8a can be derived. Since the stress- stram curve is defined

®

by three segments three stages in the elongauon are considered, &,,.,, 9;, and

S ., corresponding to tho&ﬂ'tangent moduli in reglon A: E;, Ey and E,-

‘,.

respectively.- Let the fo

wing’ geometric parameters be defined

Vg =g~ < 10 ' | ¢A.3)
o ' .

3, %) .
‘9» f;‘?P L : - -
Tl =S (a4)
Pt 0 S
F I N |

To these parameters, one can add the material paramcters
Vi = £ T @

= =% I (AT
V2 E, v - i : L | ( )
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v Using the geometric and material para’meters }deﬁned in Eqs A3 to A. 7,
together w1th the stress deﬁnmons glven inEqs. A.land A2, the elongatlon d

of the specimen is described by the three followmg equatlons |

Ber = FLol wa+ Vol val E G
e f N ) '
& = golol viow VoW~ Vo) -wl\vd

+——Lo[ Wa + . VL (W1 - %)] @9
. ,\
& = ——L [wm+ VoW - Wio) - Wy WL+ 1Ly, - w?)]
+§Lo’fia Yo+ WL(ys- wol (A.10)
) |

The average strain €, over the gage length L, is defined as

- 5
€m=L

N
-

(A.11)

0

+

« where § can be replaced by either dyncr, 81, Or'8p'. Similarly, the average

‘tangent modulus in each case can be evaluated as
~de . | (A;lz) ~

From(equatlons A8 to A.10 the average tangent moduli correspondmg to |

the three phases are expressed as follow:

o E . ia
P = Y0 - Vo) T v B3
E; = e (A.14)

yL(y; - Va) + Wa

v ég-;)
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- c '
—‘Ez VLW - wg) + yg | ! . (A'{S)'

'I’-hese"equationsr‘epresent the slopes of a stress-strain curve for a tension
specimen with strains measured over.the gage length L and based on a material
law as 1llustrated in Fig. 2.7. Also ‘these equatlons assume that the length of

region ‘A is constant” before-and after cracking and equal to ¢y and W,

respectlvely

An example 1s presented here to 111ustrate the effect of selectrng wc and
L, on elongatlon measurements. The assumed values for the numerical
calculations are shown in Table A.1 while other - parameters needed were taken
| from Gopalaratnam and Shah (1985) and are summarized in Table A. 2 For the
example, the maxrmum value for 8yner, 6; and 82 were calculated and the
slopes Elm and E,; were evaluated. Also the crack width measured at one third
of f,after crackrng 1s given. Resuits are presented in Table A.3 and illustrated in
Fig. A.1 . As can be seen, the width of the fracture process zone, w,, hﬁas a
strong rnﬂuence on the specimen elongauon while, as assumed initially, the
‘cho1ce of the gage length affects only the slopes of the ¢ - 8 curve, has little

effecton w, and hence no s1gn1ﬁcant effect on Gy. It should be mentioned that‘

inatest & is measured and w, is unknown
A.2  'Observation from expe‘rime‘ntal investigation

The test series by Gopalaratnam and Shah (1985) coniains many
experlmenta’l results wh1ch can be used to evaluate parameters needed in the
analysrs They tested 12 In long by 3in. w1de and 3/4 in. or 11/, in. thrck notched
tension specimens made of concrete, mortar and cement paste with maximum

. aggregate sizes equal to‘3/8 in. and 3/16 in. for concrete and mortar respectively.

Ld

&
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At mid- length of the spe01mens 0.5in, long and 0.1 in. wide notches Vyge made

on both sides. Strams were measured over gage lengths of 3.25 in. and’ t0.5.in.
: N
and also by means of electric strain gages.- ;e LN

One experimental curve (see Fig. 721 in Ge;{alaratnartg\ and Shah, 1985)
shows the stress-strain behavior of a concrete specimen where_strains» are
measured over the 3.25 in. gage length (L,) and also by an electric strain gageé _
at the crack. *Fable A2 contains parameters measured fotm this'cmv've. Based on
those approximate measuremeﬁts, it is possible to eétiméte the following'

parameters:

from Eq. A.13, E. = 4080 [0.5/325(1-2/3)+23] = 2930ksi

'y
G
v

from Eq. A.6, wy; = 2930/-500 = -5.86

+ from Eq. A.14,
0 2930 @ 2 ]
: -4080 ~ '3 :
W = ) = 021
[-5.86 - 5

from Eq. AS, w, =021x325 = 0.7in.

.
L ]

fma.lly from Eq A.lS5,.

-300 3

2930"" ‘:'z'
[ I, |
¥ = ~0.21 3 =P

Since the values used in this derivation come from coarse measurements _
on a plot, the values of E. and the y's are only an 'indication of the order of
magnitude of the parameters.

& . ¢
i -
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- Table A.1 - Parameters assumed for the example

.
Parameter Value |
Vi : -6 .
‘ , 1
2} =33
Vi ' 23 -
B 1/3
E; ' | 2930 ksi

- Prareter Value
f, _ 530 ksi -
€mer - 130 pe
cn | . 05in.
E,. 4080 ksi
; Ejee - -4080 ksi
E o -300 ksi -
E; 500 ksi

" Table A.2 - Parameters measured in Gopalaratmam and Shah (1985) -
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- Table A3 - Specimen response in the example

234

L
Case w7 L, Suncr 81max Smax  Em Em w @
(in) (i) (Lin)  (in) (rin)  (ksi) (ksi) (i in)
1 05 3.25 422 563 1449 -8139 -649 - 422
2 20 325 4227 1768 5694  -853 -149 1627
3 20 6.50 814 1901 5704  -2113 -302 1630
(1) erack width for © équal to ft /3
5 /

s
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" Figure A.1 - Results for the exafnple
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APPENDIX B

MODELLING OF REINFORCED CONCRETE PANELS

&S

SUBJECTED TO AXIAL LOAD AND LATERAL LOADING
/\.

The Aghayere and MacGregor (1988) specrmens used it*the validation
tests of Chapter 4 are analyzed in thrs appendix. The effect of the mesh
reflnement the mfluence of the number of layers over the thickness and the
modelling of the test set up (and its interaction with the specimen) are discussed.
The results obtained with the finite element program treat the various |
refi'nemente mentioned above separately whereas the comparison with the

experimental results presented in Chapter 4 , incorporates all these aspects. '
B.1 Finite element modelling

In modelhng panels with the 3D degenerated 16 npde plate shell element
of NISA one must assess hcw many elements are requrred to discretize correctly
the specimen, or one quarter of the specimen when symmetry can be used, such as

the present case. Also, another important parameter is the number of layers used

to perform the numencal 1ntegrat10n over the thickness. As an 1nd1cat10n Ramm

(1976) modelled successfully one quarter &f a thin square plate undergorng large
drsplacements with a2 x2 mesh. These two parameters were vaned for the
.Aghayere and MacGregor (1988) specimens A3 , modelled up to the maximum
load level using a load eontrol scheme with either 5 or 9 layers‘and eithera2 x 2
ora3x3 mesh. ‘As illlustrated in Fig. Bl, the number of layers used for the

+
LA
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numerical integration over the thickness affects the solution more Signiﬁcantly -

than the mesh refinement. The nine layer elements modelled the measure‘d lo’ad -

deflection more closely. The ultimate load and the associated dlsplacement are -
&

similar for a four element mesh or a nine element mesh. Thus, a 2 x 2 element ‘

mesh (for a quarter of the specimen) W1th nine integration layers descnbes

adequately panels bent in smgle curvature. This rule i 1s adopted in this study and

used in the subsequent analyses presented in this append1x

As mentioned in chapter 1; there are two types of solution strategies Co
available in NISA: the load control method and the modiﬁed constant arc—lexi"gthv o
method (CALM). .\S emmen A3 is modelled again usmg the CALM (th 1.8).

9 ;-" K
') !

with two dﬁferentgﬁt*lengths AS , equal to 5.0 or 20.0, and usmg the. load ,‘

control method. With the small arc-length equal to 5.0, four ttmes more load

steps are necessary to trace the specimen response than with the longer arc-length

of 20.0. The results obtained with the three schemes are shown in Fig. B2 . As

illustrated, the three solution strategtes g1ve approx1mate1y the same solution up.

to ‘the first peak load The post peak behav1or can be followed by the CALM

whereas it is more difficult when th:j,ad control method is used, a large amount
th

of iterations being requtred to reach’the second ascending branch of the curve.
Therefore the CALM can be used to model the type of panels analyzed in this
research and the selected arc- length AS does not affect significantly the results

up to the failure load. The dlfference in the second ascending branch with the

two CALM analyses can be related to the norm used to measure the convergence.

The finite element response compare adequately to the expenmental results,
except near the ultimate. However the boundary cornditions in the analys1s do not

correspond to those in'the test, the horizontal movement in the analyzed panel
A L el : '
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being restrained and the overhanging portion of the slab present in the
experiment was not included in the analysis. This was done to avoid any
confusion in the interpretation of the response obtained with the two meshes and
the two number of layers. The post peak response modelled in the numerical
‘ ana’lysis were not recorded in the test which had to be stopped due to lack of

travel in the loading mecharl_jsm.

Four crackmg models are available in NISA: the fixed orthogonal the
flxed ngn orthogonal, the stress rotating and the stram rotatmg crack models.
Solutions obtained using these four models for the specimen A3 are presented in
Fig. B.3 and.tc'ompared to the test results. In these cases, the test ooundary

: conditions were ‘modelled, using discrete supports and with the overhanging -
portion of the_slab. It is shown 'clearly that the two rotating crack models givek
approximately the same results while‘ the fixed orthogo‘nal crack model
overestrmates the fallure load by about 10% compared to the predictions obtained
- by the two rotatmg crack models The fixed non orthogonal crack model does
:“ not behave- hke the three other models and should be avoided. In this study the
_ stress rotatmg model is selected but the stram rotating cracl' model could have
~ been selected also .The choice was based on the sensmvlty observed with the |
‘vstra.m rotatrng model in: the postcrackmg predlctlon of shear panel behavior with

réspect to the descnptron of the cracked shear modulus G, , especially for the

‘ specrmen PV29 in the Vecchlo and Collms (1982) series (see d1chss1on in section

-w .

412. 1‘ s R

/, C

In.tliese aualyses performed _witll NISA , the couvergence of the solution
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1ncrement of dxsplacement in the load step. No load norm was used in the -
analysis. ,The same rule is apphed in all analysrs performed on panels subjected to

inplane and lateral loads.
B.2 Test set up effects

This section treats the effects of test set up used. by Aghayere and
MacGregor (1988) in their expenmental investigation. The effects of the
overhangmg strip, the type of supports and the inplane load application system

are examined.
B.2.1 Overhanging strip and discrete supports . -

In order to support the slab adequately, the specimens had a 152 mm wide
overhanging strip all around. Also 125 mm long by 125 mm w1de discrete
supports spaced at 457 mm apart were used instead of a contlnuous support
system. These two effects are compared in Fxg B 4 where the actual slab
modellmg 1ncludes the overhanging smp and the discrete supports. In the
analysis the supports were modelled by restrammg the out-of-plane movement at
the node correspondmg the the actual support. - The rotation atbout an axis .
parallel to the panel edge was allowed but the rotation about an axis
perpendtcular to the edge was restralned as do the actual supports in the tests.
The overhanging reglon was modelled usmg an addltlonal row of element in each
. dlrectlon and only one quarter of the reinforcement of the central part of the slab
- was used to provide an amount of reinforcement comparable to the quantlty“

~ present in the actual specnnens

It can be observed that the overhangmg strip increases the panel carrying

- capacity by about 15% if the actual modelling is compared w1th the discrete
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with dlscrete point supports actual support conditions were between those
assumptlons.v Thus the actual slab with the overhanging strip and the discrete
supports behaves closely to what one wanted to model, a slab supported. all along
the edges without a suﬂounding strip, the effect of the overhanging strip

cancelling those caused by the discrete support system.

i 4

B.2.2 Inplane load application

As mentioned in ‘Chapter 4, the inplane load was applied through four
jacks, at one end, enclosed in‘a self contained frame which carried the reaction at
the other end (Fig. 4.9). Half round cyhnders where also prov1ded allowing for

the edge rotation while panels deflect. However when the edge rotations become

important, the point of application of the in plane load moves. As illustrated in

Fig. B.S, the downward movement (in this case) is function of the edge rotation

6, and the radius t of the cylinder. The eccentricity is expressed as

. €=T16, - (B.1)

where 6, is expressed in radiants. Thus this eccentricity induces a moment along

) the edge equal to Pe . To model this effect with NISA,'a rotational spring

element was used, with the spring stiffness derived with'the following equation:

Kog=Pr = | - (B.2)

where r was equal to 62.5 mm. This produces a bending moment along the

~edges equal to K¢ 8., equal to Pe.

A=
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. The e£fect of th1s edge rotation is illustrated in Figs. B.6 and B.7 for
Aghayere and MacGregor specimens Al and Bl respectwely The incr=ase‘in
strength is about 10% in the case of spgmmen Al whereas it is‘only 7% for
specimen B.1 This phenomenon is less i important for rectangular specime.  than
for square ones since the effect of the edge moments are damped out rapidly in
rectangular specimens. Timoshenko and Woinowsky- Kn'eger (1959) indicate a
bending moment at the center of the plate equal to 0.256 M,, for square plates and
only 0.046 M, for rectangular plates with an aspect ratio b/a of 1 -5, where M,

is the bendmg moment applied along the edges.

In Fig. B.8 Aghayere specimen Bl is modelled again with and without

::'*ffedge moments. In this case, constant eccent:ncuy values of -5.0, 0. 0 and +5 0 mm

R

’z;}}‘where used. Compared to the case w1thout eccentricity, the effect of as mm

ecc:entncny changed the strength by 20% , either side, for the case studied.

B'.2.3 Corner ‘support

Another peculiar aspect of the test set up used by Aghayere and
MacGregor was the corner supports. Since the corners of a uniformly loaded
panel loaded laterally want to lift up, the corner support was placed on the top

s1de of the specimen rather than undemeath the panel. - So far, all analyses

- presented in this Append1x assumed an infinitely stiff corner support, the degree -

of freedom associated with the vertical movement at each corner (in the center
line of supports) being suppressed. However, if the actual stiffness of the frame
holding the corners is evaluated, one obtains an equivalent spring stiffness in the

direction of the vertical corner niovement (w) of 25000 N/mm. This value is a

~ maximum value since only one displacement at the corner (w) was assumed. The

effect of the corner support, replaced by a spring at the associdted degrée—of—
3 ‘ . : .

b
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freedom g1ve the results presented in Figs. B.9, B.10 and B.11 for spemmens
A2, B1 and B2 respectwely

The effect of that detail on the panel behavior is not significant for square
panels since deflections (and thus the upward movement at the corner) are not as
important as for rectangular specimens where a striking effect of the eorner
support on the ultimate load and on the panel behavior can be observed In Fig.
B.10 the progressmn from the st1ff support case to the case w1thout any restraint
illustrates the importance of this detail. The corner support displacements were .
not monitored in Aghayere s test series but this aspect should be exammed more

‘closely in future test series.
B.3 Summary

‘Based on the effect of the discretization by finite element and the
interaction of the tested panels with the test set up, the modelhng of the Aghavere

and MacGregor (1988) panels include the followmg features:

1. a 2x 2 or a 3 x3 mesh (for the square or the rectangular specimens :
| respecﬁs/ely) models the interlor portion of the panels“within the support
center line; . t
2.9 concrete layets are used through the thickness;
3. the panels are supported at d1screte points;
4. . the overhangmg slab is modelled with one quarter of the interior slac
reinforcement;
- 5. the lécation of the inplane loads on the edges of the spe01men is modelled

with rotational springs;
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6. the finite stiffness of the.corner supports is included for the panels with

inplane and lateral loads.

p
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