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ABSTRACT 

This thesis studies the travel speed estimation at road link level using sparse transit GPS 

data. A link travel speed estimation method is first proposed, which estimates link travel 

speeds by inferring the timestamp when probe vehicles are passing specific locations along 

roadways. A field test is conducted on an urban freeway to evaluate the performance of 

transit bus-based link travel speed estimation using this method, and the impact of probe 

vehicle type and GPS update interval upon the estimation accuracy are analyzed. The test 

results suggest that the proposed method can provide reliable link travel speed estimates, 

with a mean absolute speed difference of 7.0 km/h compared to loop detectors. This 

approach assumes that the travel speed between two consecutive GPS points of a probe is 

similar, which is not reasonable when applying to urban arterials, as the existence of 

intersections and bus stops makes the travel time between two neighbor GPS points not as 

homogeneous as on freeways. Therefore, a link travel time allocation method for individual 

probes is developed to overcome this difficulty. The proposed travel time allocation 

method decomposes travel time into several parts and uses probability functions to estimate 

travel times of traversed links. A field test is conducted on an urban road corridor to 

evaluate the performance of the link travel time allocation method using transit bus probe 

data, which is compared with the previously mentioned link travel speed estimation method. 

The results show that the proposed link travel time allocation method can improve the 

estimation accuracy of individual link travel times, especially under congestion condition. 

It can also provide a good estimation of the travel delay caused by vehicles stopping at 

intersections or bus stops, which can be used to analyze the dwell time of transit probes at 

bus stops in the future.  
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1 INTRODUCTION 

Travel speed is one of the most commonly applied measures of performance for traffic 

facilities and networks. It has been used in transportation operation analysis, traffic 

simulation models, incident detection and analysis, economic studies, and many other areas 

of transportation engineering and planning. Moreover, some important decision-making 

variables such as travel time can be further calculated based on the speed information. 

Speed information is also relevant for real-time transportation applications. These 

applications include Advanced Traffic Management Systems (ATMS) and Advanced 

Traveler Information Systems (ATIS), which are part of the Intelligent Transportation 

Systems (ITS). Therefore, providing timely and accurate speed information is essential for 

improving traffic management and control. 

Speed data can be collected via manual or automatic ways, while the manual method is 

less practical and efficient than the automatic method when a large amount of speed data 

is required for a network. Besides, manual speed measurement apparently cannot meet the 

need of extensive and continuous real-time data for transportation operation and 

management. A variety of traffic detecting systems have been applied to automatically 

collect real-time traffic data, among which probe detecting technology has captured more 

and more attentions in these years. This technology uses vehicles equipped with positioning 

devices as probes, and the speed data can be easily obtained by tracking vehicles' 

trajectories. Comparing to the traditional point-fixed detectors, whose applications are 

limited by the expensive cost of installation and maintenance, the probe technology has 

more flexible detection range and is more cost-effective. 
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1.1 Travel Speed Detectors 

Recent progress in advanced technologies for intelligent transportation systems has 

enabled the extraction of traffic information from many different sources and in multiple 

formats. Except manual works, traffic data sources can be classified in several ways, while 

in this thesis the classification presented by Mori et al. (2015) has been applied. The traffic 

data sources are split into two main groups: point detectors and interval detectors. 

 

         (a) Point detector                     (b) AVI detector                     (c) AVL probe 

FIGURE 1.1 Traffic Data Sources 

Point detectors (Figure 1.1(a)) are set in fixed points of the road and capture traffic 

variables in these specific points. Conventional point detectors include single-loop 

detectors (Coifman, 1996; Hellinga, 2002; Coifman and Kim, 2009b), dual-loop detectors 

(Lucas, Mirchandani and Verma, 2004; Coifman and Krishnamurthy, 2007; Sun, Yang and 

Mahmassani, 2008; Yeon, Elefteriadou and Lawphongpanich, 2008; Li et al., 2013), 

radars, video cameras (Dailey, Cathey and Pumrin, 2000; Schoepflin and Dailey, 2003) 

and so on. In general, point detectors can provide vehicle speed data with high accuracy, 

and the sample penetration rate of these detectors are usually very high. Besides, point 

detectors have already been deployed on most roadways, especially on freeways, and 

previous literature regarding using point detector data for travel speed estimation is rich. 

However, point detectors can only collect time-mean-speed of traffic flows on fixed 
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locations, which can hardly reflect traffic conditions of road links. Another disadvantage 

is that, due to the expensive costs of installation and maintenance, point detectors are 

difficult to be widely applied, thus the detection range of them is relatively limited, 

especially on arterials. 

 Interval detectors capture traffic data between two points on the road. The interval 

detectors can be further divided into two groups: automatic vehicle identification (AVI) 

techniques and automatic vehicle location (AVL) techniques. AVI detectors (Figure 1.1(b)) 

collect traffic data of road segments by identifying individual vehicles that pass specific 

points on the road. Typical AVI detectors include license plate recognition (LPR) 

technology (Dion and Rakha, 2006; Ma and Koutsopoulos, 2008; Tam and Lam, 2008), 

Bluetooth sensors (Barceló et al., 2010; Haghani et al., 2010) and electronic toll collection 

(ETC) system (Soriguera, Rosas and Robusté, 2010), and some researches use multiple 

point detectors to imitate AVL detectors as well. Compared to point detectors, AVL 

detectors can directly measure space-mean-speed for roadway segments, and the data 

accuracy and quality are relatively high. However, speed data from AVI detectors may 

suffer from sample bias. For example, the ETC system can only collect data from vehicles 

equipped with certain devices, and Bluetooth detectors can only collect data from vehicles 

turning on in-car Bluetooth, so the representativeness of the detected vehicles could be 

questioned. Another issue is that, similar to point detectors, AVI detectors are usually 

location-fixed, which limits their detection range. Furthermore, the cost of AVI detectors 

is relatively high, resulting in limited deployment and researches. 

AVL technology (Figure 1.1(c)), on the other hand, utilize mobile probes that can 

continuously report their location information to obtain moving trajectories, and the vehicle 
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link travel time and travel speed can be directly extracted from the trajectory data. Typical 

AVL detectors include GPS-enabled smartphones (Herrera et al., 2010), GPS-equipped 

vehicles (Deng et al., 2015; Zhan, Ukkusuri and Yang, 2016), cellular phone probes (Qiu, 

Cheng and Ran, 2007; Gao and Liu, 2013), etc. AVL probes have been considered as the 

most promising detection technology in recent years for several reasons. First, the costs of 

AVL probes are relatively low. Global Positioning System (GPS) is the most commonly 

applied AVL devices, and its price has been sharply dropped in the past decades, and many 

vehicles, such as taxis, transit buses, and trucks, have already equipped GPS devices for 

safety or operation reasons. Second, AVL probes can provide large and flexible spatial-

temporal detection range. For instance, taxis move around urban areas, and truck probes 

can cover major intercity highways. Third, as a subtype of interval detector, AVL probes 

provides direct space-mean-speed measurement. However, there also exist practical 

limitations of AVL probes. First of all, most studies cannot provide sufficient probe sample 

size for traffic estimation, which harms the accuracy and reliability of estimation results. 

Besides, like AVI detectors, AVL probes also have to overcome the sample bias issue, e.g. 

commercial vehicles or transit vehicles. Thirdly, in practice, the update interval of probes' 

location reports is pretty long, i.e. longer than 30 seconds, due to limited data processing 

capability, which brings the challenge of inferring the correct traveled path between two 

consecutive location reports of an individual probe. Last but not the least, for some special 

types of probes, such as GPS-enabled smartphones, it is necessary first to filter AVL 

reports that may not be recorded when the users are in on-road vehicles, yet such process, 

namely probe filtering, is difficult to develop as it relates to complicated map-matching 

and inference of motion status.    
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1.2 Transit Buses as Probes 

An alternate source of the travel speed data is using transit buses as probe vehicles. 

Comparing to the other types of AVL probes, such as GPS-equipped taxis and GPS-

enabled smart phones, using transit buses has the following advantages. First, practically 

most vehicle location data is provided with relatively long update interval, which makes it 

difficult to know the traveled path between two consecutive reports of a probe. However, 

transit buses operate along scheduled routes. Hence the process of path identification can 

be simplified if the route number of the bus probe is known. Second, for some types of 

probes, e.g. GPS-enabled smartphones, it is necessary to first determine what kind of traffic 

mode a user is using, otherwise, the result may suffer from sample bias. For transit buses, 

as the positioning devices are installed on the vehicles, it is unnecessary to do such filtering 

for them. Third, since the departure time of bus routes is easy to access, the number of 

samples on a certain road link is relatively constant, which can be used as a reference to 

infer the available scope for its use. Finally, transit buses usually run on major urban roads 

so that it can provide good detection coverage for the urban road network. 

However, using transit buses as probes also has limitations. As a special type of vehicles, 

the driving behavior and speed characteristics of transit buses are usually different from 

general vehicles. First, the acceleration and deceleration of transit buses are different from 

passenger vehicles. Second, when moving on arterials, transit buses have to stop at bus 

stops for passenger boarding or alighting, causing additional delays known as bus dwell 

times. Third, buses operate according to schedules and drivers may adjust their driving 

when running ahead or behind schedule. The above three main travel characteristics of 

transit buses cause changes in their travel speeds (or travel times) that are irrelevant to the 
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general traffic conditions, and they are hard to be identified from the AVL data alone. This 

means that the interrelation between bus and car traffic is inevitable and needs to be 

adjusted. Another challenge of using transit buses as probes is that the limited amount of 

buses and usually cannot provide sufficient sample size for reliable traffic estimation. 

Therefore, it is necessary to investigate the concept of using transit buses as probes for 

travel speed estimation at the link level. 

 

1.3 Objectives 

This thesis has two main objectives as follows: 

1. To estimate link travel speeds from transit probe AVL data, and investigate factors 

that may influence the estimation accuracy; 

2. To propose a link travel time estimation method for individual probe vehicles on 

urban arterials based on low-frequency AVL data. 

For the first objective, a length-based link travel speed estimation method is proposed. A 

link represents a road segment connecting two geographical features (namely nodes, such 

as intersections, road ends, ramps, etc.). This method is first to estimate the timestamp 

when a transit probe passes a node; then the link travel time can be calculated as the time 

interval between the estimated timestamps when a vehicle passes the link's upstream and 

downstream nodes. A field test is then conducted on a typical urban freeway for 

performance evaluation, and it should be noted that in the past literature there is little 

research focusing on transit bus-based freeway link travel speed estimation. This thesis can 

help fill such gap. From the field test results, the impacts of probe vehicle type (as transit 

bus) and data update interval upon the speed estimation accuracy are studied as well.  
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For the second objective, a probabilistic travel time estimation method is proposed. Due 

to the existence of traffic control devices (e.g. signals and stop signs) and bus stops, 

estimating individual probes' travel states on arterials is more challenging than on 

freeways. The proposed method aims to allocate the travel time between two consecutive 

AVL reports of a probe vehicle into each traversed link so that the link travel time 

estimation can be improved. Another advantage of this method is that it can capture the 

time interval when a vehicle stops on the road, so it has the potential for estimating bus 

dwell times at bus stops for transit buses. 

 

1.4 Outlines 

The remainder of this thesis is organized as follows. Chapter 2 reviews the prior studies on 

(1) traffic estimation using transit bus probe data, and (2) link travel time/speed estimation 

using low-frequency probe data. Chapter 3 describes the transit bus AVL data applied for 

field tests, and the road network used in this research. Chapter 4 introduces the 

methodology and field test results of estimating transit bus-based link travel speeds; this 

chapter also includes the analyses of the impact of probe vehicle type and data update 

interval on the estimation results. Chapter 5 proposes a link travel time estimation method 

for individual probes on urban arterials, and its evaluation results through a field test using 

transit bus data. Finally, chapter 6 gives the summary and conclusions of the work in this 

thesis.    
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2 LITERATURE REVIEW 

The following literature review has two main parts. Section 2.1 summarizes primary case 

studies of using transit buses for travel time/speed estimation, and section 2.2 reviews 

researches on link travel time/speed estimation using low-frequency probe data. 

 

2.1 Traffic State Estimation Using Transit Buses as Probes 

Compared with the rich body of literature in travel speed estimation or travel time 

estimation based on loop detectors, AVI technologies and other types of probes, the 

literature of bus probes is relatively limited, and eight major case studies are introduced in 

this thesis.  

To the best of the author’s knowledge, the first attempt of investigating the potential of 

using transit buses as probes was provided by Bae in his thesis dissertation, and a field test 

was conducted in Virginia (Bae, 1995). Later a bus probe project was launched by the 

Orange County Transportation Authority (OCTA) in California (Hall et al., 1999; Hall and 

Vyas, 2000). In the late 1990s, Dailey et al. used AVL-enabled buses as speed sensors for 

real-time traffic condition estimation for both freeway and arterial in King County, WA 

(Elango and Dailey, 2000; Cathey and Dailey, 2001, 2003; Dailey and Cathey, 2002). In 

the early 2000s, two other case studies were conducted, one was the Tri-County 

Metropolitan Transit District (Tri-Met) in Portland, Oregon (Tantiyanugulchai and Bertini, 

2003; Tantiyanugulchai and Bertini, 2003; Bertini and Tantiyanugulchai, 2004; Berkow et 

al., 2007, 2008; Glick et al., 2015), and the other one was supported by the Delaware 

Department of Transportation (Chakroborty and Kikuchi, 2004). Soon after, Coifman and 

his colleagues started a bus probe study on freeways in Central Ohio (Coifman and Kim, 
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2006, 2009a; Redmill et al., 2011). In 2008, Pu and Lin introduced a case study in Chicago 

for bus-probe-based route travel time estimation (Pu and Lin, 2008; Pu, Lin and Long, 

2009), and almost at the same time there was another one conducted in the city of 

Cambridge, UK, which is the most recent study (Bejan et al., 2010; Bacon, Bejan and 

Beresford, 2011; Bejan and Gibbens, 2011). 

TABLE 2.1 Summary of Bus Probe Studies 

Study Road Type Data Updating Methodology 

Virginia Arterial Space-sampled Linear regression; ANN 

Orange County Arterial Time-sampled Linear regression 

King County 
Freeway; 

Arterial 
Irregularly-sampled* 

Maximum likelihood; 

Kalman Filter 

Delaware DOT Arterial Space-sampled Linear regression 

Portland Arterial Space-sampled Linear regression 

Central Ohio Freeway Time-sampled* Directly measured 

Chicago Arterial Time-sampled* 
State-space model; 

Bayesian updating 

Cambridge Arterial Time-sampled* Analytical model 

*the resolution of time-sampled probe data is low, e.g. longer than 30 seconds. 

Table 2.1 summarizes the key information about these case studies, including study 

objectives, roadway types, data collection methods, data sampling features and 

methodologies. In general, most case studies were conducted on urban arterials, and only 

two cases investigated the use of bus probes on freeways. This is reasonable because most 

transit buses operate on urban road networks. Regarding the mechanism of updating bus 

AVL data, there are two major types: space-sampled and time-sampled. Space-sampled 

AVL data sends out location reports when a probe passes a predefined location, e.g. bus 

stops in most cases, or a probe has traveled through a certain distance since the last update. 

On the other hand, Time-sampled means the AVL reports update for every predetermined 
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time interval. One thing should be noticed is that for both types of AVL data updating 

mechanisms, the update interval could variate due to several causes, such as locating device 

accuracy or weather conditions. The methodology applied in each case study is discussed 

in detail next. 

Bae (1995) first used a simple linear regression model to build the bus-car speed and 

travel time relationship as follows: 

 𝐶𝑇𝑆 = 𝑎 + 𝑏𝐵𝑇𝑆  ...................................................... (2.1) 

 𝐶𝑇𝑇 = 𝑐 + 𝑑𝐵𝑇𝑇  ...................................................... (2.2) 

where CTS and CTT refer to car travel speed and car travel time respectively, and BTS and 

BTT refer to bus travel speed and bus travel time respectively. Then a three-layer Artificial 

Neural Network (ANN) model was applied for link travel time estimation. In the ANN 

model, the static input included spatial features (e.g. link length, number of lanes, speed 

limit, number of passed intersections and bus stops, etc.) and temporal features (e.g. peak 

hour factor), and the dynamic input included bus travel time, number of stops, number of 

boarding and alighting passengers, weather conditions and so on. The result suggested that 

ANN can provide reasonable speed estimates, however it is difficult to interpret the impact 

of each input variable upon the estimation result due to the black box process. 

In the Orange County study (Hall et al., 1999; Hall and Vyas, 2000), the car link travel 

speed was estimated by the following equation: 

 𝐶𝑇𝑆 = (𝑁1 ∗ 𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)/(𝐵𝑇𝑇 − 𝐵𝑆𝑇 − 𝑁2)  .............................  (2.3) 

where BST denotes the total stopping time of a transit probe at bus stops on a certain road 

link, and 𝑁1  and 𝑁2  are empirical adjustment factors accounting for the bus-car speed 
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relationship. Unlike the other literature, the researchers concluded that transit bus is an 

imperfect kind of probe vehicle, the main reason is that transit buses operate following 

predetermined schedules, and bus drivers adjust driving speeds when running ahead or 

behind schedule. Such speed change is irrelevant to actual traffic conditions yet hard to be 

identified. Another important issue relates to data quality, as the number of missing 

observations or false location reports in this study is nonignorable. Furthermore, the large 

bus headway (e.g. 30 minutes) limited the sample rate. 

In the King County study, the researchers first adopted a maximum likelihood method 

to fit the bus-car speed relationship (Elango and Dailey, 2000), then a Kalman Filter model 

was proposed for speed estimation. Later, a virtual speed sensor system was built for the 

mass-transit vehicle tracking system, and a complete transit AVL database was defined 

(Cathey and Dailey, 2001, 2003; Dailey and Cathey, 2002). The virtual sensor system 

consists of three components, a tracker, a probe speed estimator, and a display application. 

The database is described in terms defined by the ITS Transit Communications Interface 

Profile, relevant terms including time point, time point interval, pattern, trip and block. In 

the tracker component, a Kalman filter was used to transform a sequence of AVL 

measurements into smooth estimates of vehicle dynamical state, including vehicle speed 

(Cathey and Dailey, 2001). The probe estimator component contains two subcomponents: 

a covering arcs builder, which provides an index with which to map the road segments into 

the spatial schedule information, and a virtual sensor builder. The transit probe-based speed 

estimation was compared with inductive loop detectors, and the result from the King 

County study revealed that bus speeds were on average 12.8 km/h lower than car speeds 

on freeways and 1.6 km/h lower on major arterials.  
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In the Delaware study (Chakroborty and Kikuchi, 2004), a simple linear regression was 

developed for modeling the bus-car speed relationship and estimating link travel times. 

One thing should be noted is that in this study the researchers suggested that for meaningful 

and reliable travel time estimation or prediction, the length of a link should be not less than 

the travel distance of a vehicle driving at average speed for 5 minutes. For example, if the 

assumed average speed is 55 km/h, then the minimum link length should be 4.6 km. For 

the linear regression model, the authors first considered the number of times bus stops at 

bus stops as a variable, which can reflect the travel time loss due to acceleration and 

deceleration, yet the initial analysis showed that its coefficient is not significant, hence the 

conclusions were given by 

 𝐶𝑇𝑇 = {

𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑
+ 0.14(𝐵𝑇𝑇 − 𝐵𝑆𝑇), 𝑙𝑒𝑠𝑠 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑   

𝑙𝑖𝑛𝑘 𝑙𝑒𝑛𝑔𝑡ℎ

𝑓𝑟𝑒𝑒−𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑
+ 0.18(𝐵𝑇𝑇 − 𝐵𝑆𝑇),   𝑚𝑜𝑟𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑 

 (2.4) 

Equation (2.4) suggests that, first, although there are other factors that may differentiate 

bus speed from car speed, the dwell time at bus stops has the most significant impact; 

second, the bus-car speed relationship is sensitive to the dynamics of traffic condition.  

In the Portland study (Tantiyanugulchai and Bertini, 2003; Bertini and 

Tantiyanugulchai, 2004; Berkow et al., 2007; Ou et al., 2011), the bus probes were further 

processed as hypothetical buses, pseudo buses and modified pseudo buses. The 

hypothetical bus concept considers a potential non-stop bus trajectory by subtracting the 

dwell times. A pseudo bus trajectory was created by stringing together segments of a trip 

where the pseudo bus traveled at its maximum speed between each pair of stops (the bus 

AVL data was recorded for every stop at bus stops). A modified pseudo bus was created 
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by taking into consideration the dwell times of the actual bus. After analysis, the final bus-

car speed relationship developed in this study is given by  

 𝐶𝑇𝑆 = 0.72 ∗ (𝑝𝑠𝑒𝑢𝑑𝑜 𝑠𝑝𝑒𝑒𝑑) + 𝜀 ........................................ (2.5) 

where 𝜀 denotes the random error. Equation (2.5) is applied for the whole test corridor, and 

the coefficient changes from 0.72 to 0.94 when it is applied to a bridge within the corridor 

(on the bridge there is no intersection or bus stop). This is similar to the scenarios in the 

Delaware study, while the roads are classified into less and more frequently congested. 

Later in 2015, a new 5-second resolution bus AVL data was introduced (Glick et al., 2015), 

and by comparing the vehicle trajectories, trip speeds and trip times, the authors concluded 

that the new high-resolution can provide richer information for improving bus travel speed 

detection, identifying speed drops, and estimating intersection signal and queuing delays.  

In the Central Ohio study (Coifman and Kim, 2006, 2009a; Redmill et al., 2011), the 

field test was conducted only on freeways for travel time and travel speed estimation. Note 

that the concept of link in the study refers to the traveled roadway segment between two 

consecutive AVL reports of a bus probe, so the links are not predefined by roadway 

facilities. In this way, the link travel time can be directly measured and the link travel speed 

is the quotient of the travel distance and time. The estimates were compared with the travel 

speed and travel time collected from loop detectors (Coifman and Kim, 2006, 2009a) and 

test vehicles (Redmill et al., 2011), and the result suggested that on freeways the bus probes 

can provide reliable traffic estimates, since the impact of intersections or bus stops upon 

estimation accuracy is not an issue for freeways.  

In the Chicago study (Pu and Lin, 2008), Pu and his colleagues studied urban corridor 

travel time estimation using transit buses as probes. A state space model was used for travel 
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time estimation. The authors found that, first, the model calibration result suggested that 

the state space models were space-specific and time-specific, for example the model 

parameters for four different scenarios (eastbound morning, eastbound evening, westbound 

morning, westbound evening) are significantly different. Second, when traffic is heavier, 

bus and car speeds are more significantly interrelated and the experienced travel delays are 

more similar. Furthermore, the small standard deviations of speed estimates suggest good 

performance of the proposed state space model. Later in 2009, Pu’s team used a simple 

linear regression model to describe the bus-car speed relationship and proposed a Bayesian 

updating method to improve speed estimation, and the results showed the promise of using 

bus probes to catch recurrent traffic congestions (Pu, Lin and Long, 2009). 

The Cambridge is the most recent bus probe study (Bejan et al., 2010; Bacon, Bejan and 

Beresford, 2011). In this study, to eliminate the travel delay caused by bus dwell times 

from the route travel time, a bus stop gate technique was proposed. A bus stop gate is a 

roadway section where a bus stop is at. While a bus probe has two consecutive AVL reports 

between which a bus stop gate exists, the estimated travel time between the two reports can 

be drawn as 

 𝐵𝑇𝑇′ = 𝐵𝑇𝑇
𝑃1𝑀

𝑃1𝑃2
  ...................................................... (2.6) 

where 𝑃1 and 𝑃2 denote the on-road positions of the two AVL reports and 𝑀 denotes the 

position of the bus stop gate. Then the researchers developed a so-called local time profile 

(described detailly in  (Bejan et al., 2010)) for gaining time-space diagrams of bus probe 

trajectories and analyzing sources of traffic delays. The result from this study confirms the 

promising use of transit buses as probes.  
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2.2 Link Travel Time/Speed Estimation on Arterials Using Low-

Frequency Probe Data 

Hellinga et al. (2008) summarized five steps for inferring traffic conditions from low-

frequency probe AVL data: 

1. Map-matching: to project raw AVL locations into the road network map; 

2. Path identification: to infer the traveled paths between adjacent reported locations; 

3. Probe filtering: to identify if the probes represent a vehicle;  

4. Travel time allocation: to estimate link travel times for individual filtered probes; 

5. Travel time aggregation: to estimate travel times of road links from combined 

probe travel times. 

Most literature reviews of probe-based link travel time/speed estimation focus on one 

or two of the above five process, especially the map-matching, path identification and 

travel time allocation. 

Sananmongkhonchai, Tangamchit and Pongpaibool (2008) proposed an incremental 

weighted update algorithm to improve road segment speed estimation from historical speed 

profile and real-time probe vehicle point speeds. The field test was conducted on a 

frequently congested bridge segment, and the speed estimates from the algorithm were 

compared with the position-based probe speeds (i.e. the average speed between two 

consecutive probe location reports on the segment). Results show that the algorithm yields 

more accurate speed estimation on a road segment than the statistical average speed 

method. However, the selected road segment is on a bridge that the probe vehicles are little 

likely to stop, which is impractical for signalized urban network.  
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Hellinga et al. (2008) developed an analytical model for probe-based link travel time 

estimation on arterials using low-frequency data. The travel times are decomposed into 

three parts, namely free-flow travel time, stop time and congestion time, then a 

probabilistic model was built to capture the likelihood of a vehicle experiencing certain 

level of congestion and the likelihood of a vehicle stopping on a certain road link. This 

method can significantly improve the accuracy of link travel time estimation for individual 

probes, especially when the location update interval is between 30 to 60 seconds. However, 

the estimation error is generally larger for links not controlled by a traffic signal. 

Liu, Yamamoto and Morikawa (2006) investigates the cost efficiency of probe vehicle data 

at different update intervals, ranging from 5 seconds to 60 seconds. By assuming uniform 

motion, i.e. the travel speed between two consecutive location reports is constant, the link 

travel time can be simply calculated by estimating the timestamp when a probe vehicle 

enters and leaves road links. They suggested that, in terms of cost efficiency, 30-second 

update interval may be the best choice as it can provide reliable travel time estimation for 

all trips with different travel speeds and different link lengths with 95% accuracy. 

However, as location update interval increases, the accuracy of map-matching drops, which 

may influence the final result. 

Fabritiis, Ragona and Valenti (2008) used large-scale floating car data from privately 

own vehicles for traffic estimation and prediction. The AVL data was updated every 100 

km or every 12 minutes, and a case study was conducted on a motorway with 33 entry/exit 

junctions. As the main focus of their research was on traffic prediction, they did not give 

many details about the method they applied for individual link travel speed, while they 

mentioned that the aggregated link travel speeds are exponentially weighted. After 
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investigating the relationship between travel speeds of adjacent links, they confirmed that 

the correlation between neighboring links decreases as the physical distances increase and 

the number of time lags grows. 

In 2010, Shi and Liu (2010) calculated estimated link space mean speeds and road traffic 

condition indexes using taxi probes. The main focuses of their research are map-matching 

process for low-frequency AVL data and space mean speed estimation method. They first 

proposed a point-to-curve map-matching method based on fuzzy logics, which used point 

projection distance and vehicle traveling angle as the input. Then, for link space mean 

speed estimation, they suggested that the speed profile of an individual probe vehicle 

travelling through a road segment can be classified into four types: (1) constant speed, (2) 

accelerate at the segment entry and then leave at constant speed, (3) enter the segment at 

constant speed and then decelerate near the exit, and (4) accelerate at the segment entry 

and decelerate near the exit. Hence, the individual speed profiles can be described by 

quadratic curves with trajectory-specific parameters 𝑎0, 𝑎1 and 𝑎2, 

 𝑣(𝑙) = 𝑎2𝑙2 + 𝑎1𝑙 + 𝑎0 .................................................. (2.6) 

where l is the travel route measured from road segment entry. Further, to reduce the 

estimation error caused by vehicle slowing down or stopping due to traffic control, the link 

average travel speeds are calculated only based on the flat parts of individual speed profiles. 

Results show that in urban signalized network, link speed estimates from their proposed 

method are reliable, with a 10% difference compared with speeds detected from traffic 

surveillance video checking. However, to calibrate the parameters in Equation (2.6), it 

requires at least three AVL location reports that are on the road segment, and the only way 
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to solve this issue, quoting the word from the researchers, is to boost the AVL update 

frequency. 

Hofleitner et al. (2012) presented a Dynamic Bayesian Network (DBN) model for urban 

link travel time estimation. A graphical model was first presented representing the 

dependence between the travel-time observations and the congestion state of each link at 

each time interval and their spatiotemporal evolution. Next, they developed an arterial 

traffic flow model, in which the traffic conditions are divided into two types, namely the 

undersaturated regime and the congested regime, and the probability distribution functions 

of vehicle locations are set for each regime. Finally, for calibrating the parameters of the 

DBN model, an expectation-maximization algorithm was introduced. The field experiment 

was conducted in San Francisco, and the AVL data update interval is 60 seconds. 

Compared with a simple baseline approach, the DBN model provides an increase in 

estimation accuracy of 35%.  

Zheng and Van Zuylen (2013) proposed an ANN model for urban link travel time 

estimation. The ANN model contains one hidden layer with 20 neurons, and the input 

information in the model includes vehicle positions, timestamps, speeds and link IDs 

(which represent link-specific geographical features). The performance of the ANN model 

was compared with the aforementioned Hellinga's model, and the results from both 

simulation scenarios and field tests prove that the ANN model outperforms the Hellinga's 

model, especially when the traffic is becoming heavier. A possible reason is that the input 

information for the ANN model is richer than the Hellinga's model (e.g. speeds and link 

IDs). The researchers also did a sensitivity test to evaluate the impacts of input parameters 

on the accuracy of the ANN model, and they suggested that the position information is the 
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most important factor. One thing worths mentioning is that although the ANN model can 

give relatively good link travel time estimates, such data-based models are hard to explain 

as the calculation process is a black box. Another limitation is that such models require 

large-scale data and ground truth for training and model validation. 

Jenelius and Koutsopoulos (2013) proposed a complex statistical regression model. This 

model contains two layers; a network model that specifies the joint distribution of link 

travel times, and a observation model that specifies the information included in sequences 

of probe vehicle location reports. Various parameters that may influence link travel times 

are investigated, including geographical features (e.g. speed limit, functional class, link 

length and traffic control type), trip conditions (e.g. time-of-day, weekday, holiday, etc.) 

and weather conditions (e.g. temperature and precipitation), and the correlations were 

estimated using a maximum likelihood algorithm. Based on the estimation results, they 

summarized several attributes that have significant impact on the estimation accuracy, and 

the most important contribution is the use of correlations between traversed links for 

generalizing the low-frequency probe data. 

Zhan et al. (2013) tried to use limited information trip-based data for urban link travel 

time estimation. Unlike the other probe data collected from taxis as mentioned above, the 

dataset applied in their research only provides locations and timestamps of trip origin and 

destination and trip fares. At first, they estimated link travel times by minimizing the square 

difference between the expected path travel times and the actual path travel times, yet 

historical data were not considered in the model (Zhan et al., 2013). Later, they developed 

a Bayesian mixture model that can incorporate temporal correlation from historical 

estimation results and the spatial dependencies among neighboring links (Zhan, Ukkusuri 
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and Yang, 2016). However, the performance of the model was evaluated by comparing the 

estimation results with the predicted results, which makes the model validation not very 

solid due to the lack of ground truth. 

Recently, Li, Ahmed and Smola (2015) used anonymous low-frequency vehicle GPS 

data for estimating and predicting link travel speeds, and the focus of their research is to 

infer trajectories of individual probe vehicles as accurate as possible. Due to the privacy 

issue, the applied GPS data did not include user IDs. To overcome this difficulty, they 

developed a model that consists of two parts. The observation model is to infer true 

locations by using a quadratic log-likelihood function, and the motion model is a likelihood 

model for a sequence of observations and on-road locations. In their model, a first-order 

Markov assumption was made, that is the current state is only correlative to the last state, 

hence the correlation between adjacent probe GPS reports can be taken into consideration. 

Although the qualitative results suggest good estimation accuracy of the model, their test 

also lack ground truth data for quantitative comparison. 

 

2.3 Summary 

This chapter reviews two main aspects of research. For traffic estimation using transit buses 

as probes, eight major case studies are introduced. It is found that, first, as a special type 

of vehicle, the travel characteristics of transit buses is significantly different from general 

vehicles, reasons of which include the dwelling times at bus stops, different acceleration 

and deceleration, the requirement of following scheduled departure headways, etc. 

However, few researches took a deep look into the features of such travel speed differences, 

e.g. the variance or the distribution of the speed differences. Second, most case studies 
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were conducted on urban arterials instead of the King County study and the Central Ohio 

study, yet the King County study suggests a fail of using buses as probes, and the links 

defined in the Central Ohio study is actually the traveled paths between two consecutive 

location reports. For arterial link travel time estimation based on low-frequency AVL data, 

most studies focus on map-matching or path identification, and for travel time allocation, 

regression models and maximum-likelihood models are widely applied, while only few can 

propose analytical models.  
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3 DATA PREPARATION  

This chapter describes the data used in this study. Section 3.1 introduces the applied transit 

bus data in the following case studies, and section 3.2 describes the road network built for 

the proposed link travel speed estimation method and the link travel time estimation 

method.  

 

3.1 Transit Bus AVL Data 

In this thesis, the transit bus AVL data is provided by Edmonton Transit Service (ETS). In 

Edmonton, Alberta, Canada, most transit buses have been equipped with GPS devices that 

can send real-time bus location reports to the transit center and help operators monitor and 

evaluate the performance of transit network. ETS offers free real-time bus AVL data feeds 

on Edmonton Open Data Portal for developers and researchers to promote the use of transit 

and information related to transit. The bus AVL data follows the Realtime General Transit 

Feed Specification (GTFS) data format defined by Google, and the data feed consists of 

two parts, namely Trip-Update and Vehicle-Position.  

Trip-Update provides trip information. Defined by GTFS, a trip is a sequence of two or 

more stops that occurs at specific time, and there should be at most one trip update for each 

scheduled trip at one time. A trip is described by trip ID, bus route number, ID of assigned 

bus, scheduled trip start time, bus stop sequence number, bus stop ID, scheduled bus stop 

departure time, real-time predicted bus stop departure time, and actual bus stop departure 

time. Vehicle-Position provides automatically generated information on the location of a 

vehicle, including bus ID, trip ID, AVL timestamp and two-dimension geographical 

coordinates (longitude and latitude).  
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Trip-Update and Vehicle-Position are synchronously updated every 30 seconds. It 

should be noted that the timestamps of updated bus AVL reports are not the same as the 

data feed update timestamp. For example, if the last update of bus AVL data feed happens 

at 2:00:30 PM, and the most recent AVL update of a bus happens at 2:00:18 PM, then the 

data feed update timestamp is 2:00:30 PM and the bus AVL timestamp reported in the data 

feed is 2:00:18 PM. A software was developed to collect and archive the real-time bus 

AVL data. Trip-Update and Vehicle-Position are first downloaded and archived separately, 

then based on the data feed update timestamp, trip ID and bus ID, the two datasets are 

combined in one table, which includes bus ID, trip ID, bus route number, AVL timestamp 

and geographical coordinates. It should be noted that the provided predicted and actual bus 

stop departure time information is measured in minutes, which is not sufficiently accurate 

for link-level traffic estimation and hence they are not taken into consideration in this 

thesis. 

Besides the bus AVL data, there are two additional transit-related data that can be easily 

obtained and support this research. The bus route schedule brochures can be found on the 

ETS website, and it provides bus routes’ headway and travel routes, which can be used for 

inferring sample size on road links. The bus stop locations can be downloaded from the 

Edmonton Open Data Portal website, including bus stop ID, landmark and geographical 

coordinates. 
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3.2 Road Network 

In this research, the detailed information of road construction, such as road width or 

number of lanes, is assumed to be unknown. Therefore, the road network can be abstracted 

into a network consisting of a set of nodes and a set of links (see Figure 3.1).  

 
FIGURE 3.1 Road Network 

A node 𝑛𝑎 is a network feature representing a specific geographical location, including 

road junctions, signalized or un-signalized intersections, crosswalks, bus stops, dead ends 

of a road, and so on. Sometimes nodes are set to break a long link into shorter sub-links for 

the convenience of map-matching or path identification. A node 𝑛𝑎 can also be defined by 

𝑛(𝑥𝑎, 𝑦𝑎), where 𝑥𝑎 and 𝑦𝑎 are the two-dimension coordinates. 

A link 𝑙𝑏 is a network feature representing a specific roadway segment. A link can also be 

represented by 𝑙(𝑛𝑠𝑡𝑎𝑟𝑡, 𝑛𝑒𝑛𝑑), where 𝑛𝑠𝑡𝑎𝑟𝑡 and 𝑛𝑒𝑛𝑑 are the nodes that are at the start and 
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end of the link respectively. It should be noted that (1) 𝑙𝑏 does not have to be a straight 

line, as the link length 𝑙𝑒𝑛𝑔(𝑙𝑏)  is assumed to be known; and (2) 𝑛𝑠𝑡𝑎𝑟𝑡  and 𝑛𝑒𝑛𝑑 

determines the direction of a link, hence a two-way road link should be represented by two 

links. 

The transit probes report their locations periodically. The ith GPS report (termed as GPS 

points in the following discussion) sent from transit bus k at time 𝑡𝑘,𝑖 is defined by 𝑔𝑘,𝑖 =

(𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷𝑘,𝑖, 𝑡𝑘,𝑖, 𝑥𝑘,𝑖, 𝑦𝑘,𝑖), where 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷𝑘,𝑖 is the unique identity of the transit probe, 

𝑡𝑘,𝑖 is the timestamp of the report, 𝑥𝑘,𝑖 and 𝑦𝑘,𝑖 are the two-dimension coordinate indicating 

the vehicle’s position. Before applied to the proposed method, the GPS points should be 

first map matched with the road network and the two-dimension coordinates need to be 

transferred into one-dimension coordinates. As the focus of this paper is on link travel 

speed estimation, it is assumed that the reported locations are error-free and the map 

matched results are perfect. The map matched probe location is represented by �̃�𝑘,𝑖  =

(𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐼𝐷𝑘,𝑖, 𝑡𝑘,𝑖, 𝑙𝑘,𝑖 , 𝑑(𝑙𝑘,𝑖)), where 𝑙𝑘,𝑖 is the link that the probe is on, and 𝑑(𝑙𝑘,𝑖) is the 

distance from the location of the probe to the beginning of 𝑙𝑘,𝑖.  

The traveled route between two consecutive map matched GPS points of a transit probe 

is termed as a path, 𝑝𝑘,𝑖 = (�̃�𝑘,𝑖−1 , �̃�𝑘,𝑖 ). A path can also be described by its included links, 

 

 𝑝𝑘,𝑖 = (�̃�𝑘,𝑖−1 , �̃�𝑘,𝑖 ) = {𝑙𝑘,𝑖,𝑗(𝛼, 𝛽)| 𝑗𝜖𝐽 }, 0 ≤ 𝛼 ≤ 𝛽 ≤ 1    ................... (3.1) 

 𝛼 = {
0             ,       𝑗 ≠ 1
𝑑(𝑙𝑘,𝑖,𝑗)

𝑙𝑒𝑛𝑔(𝑙𝑘,𝑖,𝑗)
 ,       𝑗 = 1   

,   𝛽 = { 

𝑑(𝑙𝑘,𝑖,𝑗)

𝑙𝑒𝑛𝑔(𝑙𝑘,𝑖,𝑗)
,     𝑗 = 𝐽         

1      ,      𝑗 ≠ 𝐽  
 ...................... (3.2) 
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where  

𝑝𝑘,𝑖  Path between position �̃�𝑘,𝑖−1 and �̃�𝑘,𝑖  

𝑙𝑘,𝑖,𝑗  The jth traveled link on path 𝑝𝑘,𝑖 

J number of links included in a path 

𝛼  Location where probe k first appears on a link  

𝛽  Location where probe k last appears on a link  

𝑙𝑒𝑛𝑔(𝑘𝑘,𝑖,𝑗)  Length of link 𝑙𝑘,𝑖,𝑗 

𝑑(𝑙𝑘,𝑖,𝑗)  traveled distance on link 𝑙𝑘,𝑖,𝑗 of path 𝑝𝑘,𝑖  

 

and an example is given on the bottom of Figure 3.1. 
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4 LINK TRAVEL SPEED ESTIMATION USING TRANSIT 

BUSES AS PROBES 

In this section, a transit bus-based link travel speed estimation method is introduced. This 

method is to estimate link travel speed from low-frequency AVL data. A field test 

conducted on a typical urban freeway is then introduced to evaluate the performance of the 

proposed method. As transit bus is a special type of vehicle, the impact of the probe vehicle 

type on the estimated link travel speed is investigated. Besides, considering that the GPS 

update interval, which is the time interval between two consecutive GPS points, has been 

proved to have significant influence on probe-based traffic estimation, the impact of GPS 

update interval on the proposed method is studied as well. 

 

4.1 Link Travel Speed Estimation Method 

The time interval between two consecutive GPS points of one transit probe, namely the 

GPS update interval, is one of the key factors that influence the accuracy of link travel time 

estimation. When the GPS update interval is very short, e.g. less than 5 seconds, it is 

reasonable to assume that the probe is moving at relatively constant speed, and the average 

speed can be obtained by dividing the traveled distance by the time interval. Besides, with 

such very short update interval, even if there is more than one link included in the path, 

assigning travel time to each link does not require complicated methods as the error of 

estimated link travel time would be within this short time interval and does not create a 

problem. 

However, in practice, due to limited data technology, the update interval of most real-

time vehicle tracking data is relatively long, i.e. longer than 30 seconds. With the GPS 
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update interval increasing, the number of links traveled by a probe during one interval 

increases, and the errors of estimated link travel times from simple methods may become 

significant. Therefore, to estimate link travel speed, the path travel time should be first 

allocated to each included link, then by dividing the traveled distance on links by the link 

travel time, the probe link travel speed can be obtained. 

 
FIGURE 4.1 Cases of GPS Paths 

According to the number of included nodes, paths can be categorized into three cases: 

• Case 1: there is no node on the travel path, that is the two GPS points are on the 

same link (see case 1 in Figure 4.1); 

• Case 2: there is one node on the travel path, that is the two GPS points are on 

adjacent links (see case 2 in Figure 4.1); 

• Case 3: there are at least two nodes on the travel path, that is at least one complete 

link exists between the two GPS points (see case 3 in Figure 4.1). 

The proposed link travel speed estimation method is to first estimate the timestamp 

when a probe vehicle passes a node, then the link travel time can be represented by the 

time interval between the estimated timestamp when the probe vehicle passes the link’s 

start node and end node.  
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Considering a path 𝑝𝑘,𝑖 which includes at least one node (e.g. case 2 and 3 in Figure 

4.1), by assuming that the average travel speed of each link is not substantially different, 

the timestamp when the probe k passes the node 𝑛𝑚 can be calculated by  

 𝑡(𝑘, 𝑛𝑚) = 𝑡𝑘,𝑖 −
𝑑(𝑛𝑚,�̃�𝑘,𝑖)

𝑙𝑒𝑛𝑔(𝑝𝑘,𝑖)
(𝑡𝑘,𝑖 − 𝑡𝑘,𝑖−1) .................................... (4.1) 

where 

𝑡(𝑘, 𝑛𝑚)  Timestamp when probe k passes node 𝑛𝑚 

𝑑(𝑛𝑚, �̃�𝑘,𝑖)  Traveled distance between node 𝑛𝑚 and position �̃�𝑘,𝑖 

𝑙𝑒𝑛𝑔(𝑝𝑘,𝑖)  Length of path 𝑝𝑘,𝑖 

 

Then the estimated travel time of probe k on link 𝑙(𝑛𝑚, 𝑛𝑚+1) , termed as 

𝑡(𝑘, 𝑙(𝑛𝑚, 𝑛𝑜)), is then obtained by calculating the time interval between the timestamp 

when the probe enters and leaves the link, and the individual link travel speed 

𝑣(𝑘, 𝑙(𝑛𝑚, 𝑛𝑚+1)) of probe k is calculated using the following equations: 

 𝑡(𝑘, 𝑙(𝑛𝑚, 𝑛𝑜)) = 𝑡(𝑘, 𝑛𝑜) − 𝑡(𝑘, 𝑛𝑚)  ...................................... (4.2) 

 𝑣(𝑘, 𝑙(𝑛𝑚, 𝑛𝑜)) =
𝑙𝑒𝑛𝑔(𝑙(𝑛𝑚,𝑛𝑜))

𝑡(𝑘,𝑙(𝑛𝑚,𝑛𝑜))
 ............................................ (4.3) 

where 

𝑡(𝑘, 𝑙(𝑛𝑚, 𝑛𝑜))  Travel time of probe k on link 𝑙(𝑛𝑚, 𝑛𝑜) 

𝑣(𝑘, 𝑙(𝑛𝑚, 𝑛𝑜))  Travel speed of probe k on link 𝑙(𝑛𝑚, 𝑛𝑜) 

 

Given a time interval 𝑆𝑢, if there are in total K probes passes link 𝑙(𝑛𝑚, 𝑛𝑚+1) during 

𝑆𝑢 , the mean speed of these K probes is used to represent the travel speed of link 

𝑙(𝑛𝑚, 𝑛𝑚+1) during 𝑆𝑢, 
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 𝑉(𝑆𝑢, 𝑙(𝑛𝑚, 𝑛𝑜)) =
∑ 𝑣(𝑘,𝑙(𝑛𝑚,𝑛𝑜))𝐾

𝐾
 .......................................... (4.4) 

where 

𝑆𝑢  The uth time interval for speed estimation 

𝑉(𝑆𝑢, 𝑙(𝑛𝑚, 𝑛𝑜))  Travel speed on link 𝑙(𝑛𝑚, 𝑛𝑜) during time slot 𝑆𝑢 

K Number of probes that travel through a link 

 

4.2 Field Test  

To evaluate the performance of the proposed link travel speed estimation method, a field 

test was conducted on an urban four-lane freeway, Whitemud Drive, in Edmonton (see 

Figure 4.2).  

 
FIGURE 4.2 Selected Freeway for Case Study 

The transit GPS data was collected from December 5 to 16, 2016, including 10 

weekdays. Figure 4.3 illustrates the daily average sample size on Whitemud Drive for every 

15-minute time interval. The X axis denotes the time of day and the Y axis denotes 

landmarks along the corridor, as shown in Figure 4.2. It can be clearly seen that the transit 

GPS data generates more samples on the freeway segments between 170 Street and Fox 

Drive, especially during AM and PM peak hours. This is because there are more bus routes 
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that operate on these freeway segments, and the departure headways of these routes are 

shorter during peak hours for serving more passengers.  

(a) Eastbound                                            (b) Westbound          

FIGURE 4.3 Sample Sizes from Transit GPS Data on Whitemud Drive 

As shown in Figure 4.4, two links on Whitemud Drive, 42896 and 2554, are chosen for 

the performance evaluation for three reasons. First, they are between 170 Street and Fox 

Drive, and according to the above sample size analysis, there are more transit buses run on 

these links every day. Second, there are two dual-loop detectors, 1034 and 1035, deployed 

on each link respectively, which can provide another travel speed measurement for 

comparison. Finally, recurrent congestions have been observed on these links, hence we 

can examine if the transit bus-based link speed estimates can well capture congestions and 

speed drops. 

In this test, the point speed from loop detectors are used as the reference for evaluating 

the accuracy of speed estimation from the proposed method. The loop detectors constantly 

record the speeds of passing vehicles in a 20-second interval for all lanes. If more than one 

vehicle passing a loop detector, their average speed will be noted as the estimated speed 

within this interval. In this study, the speed data from loop detectors are aggregated into 1-

minute time interval, which means that the average speed of all vehicles passing through 
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one loop detector within 1 minute is noted as the estimated speed. Furthermore, a 5-minute 

moving average window is implemented to further smooth out the curve, otherwise the 

speed profile will be very difficult for identifying speed drops. 

 
FIGURE 4.4 Locations of Dual-Loop Detector on Whitemud Drive 

The link travel speed estimated from transit GPS data is aggregated into 15-minute time 

interval. For every 15 minutes, the average speed of all the sampling records is noted as 

the estimated speed. This time window for aggregation considers the fact that most bus 

routes passing the selected links have a scheduled 30-minute headway, and during morning 

and evening peak hours some routes decrease headways to 15 minutes. 

In evaluating the speed estimation, the Mean Absolute Speed Difference (MASD) and 

Mean Absolute Percentage Speed Difference (MAPSD) are used to evaluate the accuracy 

of speed estimation. The reason to use MASD is that the positive and negative speed 

difference can offset the absolute difference between the speed estimations. MAPSD, on 

the other hand, can help to demonstrate the percentage of the deviation given the reference 

speeds.  
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 𝑀𝐴𝑆𝐷 =  
1

𝐾
∑ |𝑣𝑏𝑢𝑠 − 𝑣𝑙𝑜𝑜𝑝|𝐾

𝑘=1  ............................................ (4.5) 

 𝑀𝐴𝑃𝑆𝐷 =  
1

𝐾
∑ |

𝑣𝑏𝑢𝑠−𝑣𝑙𝑜𝑜𝑝

𝑣𝑙𝑜𝑜𝑝
|𝐾

𝑘=1 × 100% ..................................... (4.6) 

where 

𝑀𝐴𝑆𝐷  Mean absolute speed difference 

MAPSD Mean absolute percentage speed difference 

𝑣𝑏𝑢𝑠  Estimated link travel speed from Transit GPS data 

𝑣𝑙𝑜𝑜𝑝  Travel speed from loop detector data 

 

4.3 Travel Speed Estimation Results 

The transit GPS data collected on link 25544 and 42896 contains 2,407 samples within 10 

weekdays. there are in total 1,280 15-minute time intervals, 1,046 of which have at least 

one sample (see Table 4.1). One thing should be noticed is that, the general traffic flow on 

the target links is usually around 2,000 vehicles per hour, and can be over 3,000 vehicles 

per hour during congestion times, meaning that the transit bus penetration rate is very 

small, far less than 1%. This could damage the estimation accuracy as the probe speeds 

may fail to represent the general traffics. In this thesis, the impact of probe penetration rate 

is not discussed because the limited data is unable to support the analysis, but its influence 

should be taken into consideration when analyzing the estimation results. 
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TABLE 4.1 Sample Sizes of 15-Minute Time Intervals 

Sample Size Number of Time Intervals 

0 234 (18%) 

1 362 (28%) 

2 343 (27%) 

3 176 (14%) 

4 68 (5%) 

5 44 (3%) 

6+ 53 (4%) 

Total 1,280  

 

In the following Figure 4.5 to 4.7, the travel speeds from transit GPS data and loop 

detector data on December 5, 6, and 16 on link 42896 have been chosen as the examples 

to show the comparison results. I select the estimated speed between 6 AM and 10 PM to 

do the comparison. The black solid lines represent the travel speeds from loop detector 

data, and the black dot lines represent the link travel speeds from transit GPS data. As the 

figures show, the travel speed estimated from transit GPS data can represent the general 

trend of speed profile compared to the loop data with some variations. For instance, during 

the AM peak hours on December 6 (Figure 4.6), the GPS speed estimation results do 

capture the significant speed drop between 8 AM and 9 AM On December 5 (Figure 4.5) 

and December 16 (Figure 4.7), during the PM peak hours, the GPS speed can also capture 

the congestions. Nevertheless, there exist some discrepancies in speed estimation at 

specific times, such as pinnacles of transit bus speed profiles during 10 AM to 12 PM on 

December 5 (Figure 4.5), which may due to human factors and the specialty of transit bus. 

But in general, this transit GPS data can provide a valid estimation of link travel speed.  
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FIGURE 4.5 Speed Comparison on Link 42896 (December 5, 2016)  

 
FIGURE 4.6 Speed Comparison on Link 42896 (December 6, 2016) 
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FIGURE 4.7 Speed Comparison on Link 42896 (December 16, 2016) 

 

The results of MASD and MAPSD are shown in Table 4.2. The overall MASD is 7.0 

km/h, and the MAPSD is 9.2%, which is acceptable considering that the free-flow speed 

on the selected freeway is usually around 80 km/h. During AM and PM peak hours, both 

MASD and MAPSD are higher, and a possible reason for it is that during peak hours traffic 

congestions are more likely to occur on the links, which makes it harder to accurately 

capture the speed of traffic flows with small sample size (i.e. less than 1% per interval). 

Nevertheless, the difference is not significant, and the MASD for both peak hour periods 

are under 8 km/h. To improve the current speed estimates without changing the estimation 

method, we can either increase the number of bus probes to reduce the variance of 

aggregated link travel speeds, or apply post-processing algorithm to smooth the speed 

profiles. 
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TABLE 4.2 Speed Estimation Results for All Samples 

Period Observations MASD (km/h) MAPSD (%) 

AM Peak  (7 a.m. - 10 a.m.) 715 7.3 9.7 

PM Peak  (4 p.m. - 7 p.m.) 556 7.5 10.4 

Total  (6 a.m. - 10 p.m.) 2,407 7.0 9.2 

 

4.4 Impact of Probe Vehicle Type 

Transit bus is a special type of vehicle, and previous researches suggest that the travel 

speeds obtained from transit buses are different from the travel speeds of general traffic 

flow (Pulugurtha et al., 2014; Kieu, Bhaskar and Chung, 2015). Hence, it is necessary to 

examine the relationship between the speed estimated from transit buses and the speed 

from loop detectors (considered as the speeds of general traffic flow), aiming to reduce the 

bias of link travel speed estimated from transit probes. 

The speed difference between the speed from transit GPS data and that from loop 

detector data is shown in Figure 4.8. Speed difference larger than zero means that the 

estimated speed from transit probes is less than the speed from loop detector data. The 

speed differences between the two data sources are shown in a standard normal distribution 

where the mean difference value is 7.0 km/h. This could be due to the bus traffic speed, in 

general, is slower than the overall traffic speed for safety reasons. And the general 

distribution is not significantly skewed to the right or left, which means that the variance 

of speed difference is mostly due to other factors, such as people’s driving behaviors. 
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FIGURE 4.8 Distribution of Speed Differences  

A one-sample Kolmogorov-Smirnov Test (K-S Test) is then conducted to further testify 

if the speed difference follows a normal distribution. The one-sample K-S Test is a 

nonparametric test of the equality of continuous, one-dimensional probability distributions 

that can be used to compare a sample with a reference probability distribution.  

The result of the one-sample K-S test is shown in Table 4.3. The most important 

measurement of the test is the asymmetric significance; the lower value of it means the 

tested sample is more likely follows the hypothetical distribution (normal distribution in 

this case). As the asymmetric significance in the table is less than 0.000, it proves that the 

distribution of the speed difference follows a good normal distribution, and the mean and 

the standard deviation of the followed normal distribution are 5.43 and 6.41 respectively.  
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TABLE 4.3 Result of One-Sample Kolmogorov-Smirnov Test  

One-Sample Kolmogorov-Smirnov Test 

  Speed Difference 

N 1046 

Normal Parametersa,b 
Mean 5.436 

Std. Deviation 6.414 

Most Extreme Differences 

Absolute 0.041 

Positive 0.024 

Negative -0.041 

Test Statistic 0.041 

Asymmetric significance  
(2-tailed) 

.000c 

a. Test distribution is Normal. 

b. Calculated from data. 

c. Lilliefors Significance Correction. 

 

4.5 Impact of GPS Update Interval  

GPS update interval can influence the accuracy of estimated sample speed. With longer 

GPS update interval, probe vehicles are more likely to travel a significant distance between 

two neighbor GPS points, which creates difficulties in inferring the true path of the 

vehicles. Furthermore, the fraction of the reported travel time that is spent on each 

individual road link is not observed, which creates challenges for travel speed estimation. 

Because the GPS update interval of the transit GPS data is relatively long (around 30 

seconds), it is difficult to measure the influence of GPS update interval using transit GPS 

data directly. In this section, the SmartTravel data of five weekdays (from September 19 

to September 23, 2016) is used to evaluate the impact of GPS update interval. SmartTravel 

is a mobile application aimed to provide various road and traffic information for drivers 

and improve road safety. The customers can choose to be a volunteer and let the application 
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collects data from their mobile phones, including encrypted user ID, timestamp, 

coordinates, instantaneous speed, direction and else, while the application is active. When 

the mobile phones are connected to the Internet via Wi-Fi, the collected data will be 

uploaded to the data server.  

The SmartTravel mobile application records vehicle position every 1 second, which 

offers very accurate vehicle trajectories. Due to environmental impacts or network 

connectivity, however, sometimes the GPS update interval of SmartTravel probes could be 

longer than 1 second. To build up a reference dataset and provide samples as errorless as 

possible, the original vehicle trajectories with long GPS update interval are split into 

several sub-trajectories with reassigned vehicle ID. Figure 4.9 gives an example 

demonstrating this process: for a complete vehicle trajectory, when there are two GPS 

points with GPS update interval longer than the predefined threshold (in this case, the 

threshold is set as 10 seconds), this trajectory is split into two shorter trajectories. Each 

trajectory is assigned with a new virtual vehicle ID, hence in the processed data the GPS 

update intervals of all virtual vehicle trajectories are shorter than the threshold value. 

Besides, the total travel time of the virtual vehicle trajectory have to be longer than 5 

minutes, and those with total travel time less than 5 minutes are removed. After such data 

processing, the processed SmartTravel data is applied as the reference dataset, and link 

travel speed generated from the reference dataset is considered as the ground truth for 

comparison. 
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FIGURE 4.9 Process to Obtain Reference Dataset 

To evaluate the impact of GPS update interval on the accuracy of link travel speed 

estimation, by removing partial GPS points of each SmartTravel probe from the reference 

dataset, we can obtain several GPS datasets with different GPS update intervals, e.g. 10 

seconds or 60 seconds. These datasets are considered as the test groups and the travel 

speeds estimated from each test dataset using the proposed link travel time estimation 

method will be compared with the speed from the reference dataset. 

 
FIGURE 4.10 Scope of SmartTravel Data Collection 
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The SmartTravel data is collected on four corridors: Anthony Henday Drive, Whitemud 

Drive and Highway 2 and Yellowhead Trail (see Figure 4.10). The first three corridors are 

freeways, and the last one is an urban arterial road with 5 signalized intersections.  

Figure 4.11 shows the distribution of speed difference for each test datasets, and Figure 

4.12 shows the standard deviation of speed differences for each test datasets. For both 

freeway and arterial, the speed differences of most samples are within -2~2 km/h, and as 

the GPS update interval increases, the standard deviation of speed difference tends to 

increase, meaning the variance of the sample speed error increases as the GPS update 

interval increases. This is reasonable because as the update interval becomes longer, paths 

are more likely to include more links. In reality, the traffic conditions on links may be 

different, so the homogeneous travel speed assumption become less reliable, resulting in 

worse estimation accuracy. We can also see from Figure 4.12 that, the standard deviation 

of speed differences on freeways are generally lower than that on arterials for all tested 

GPS update intervals. This can be explained that the traffic conditions on arterials are more 

complicated than on freeways due to traffic signals, and the basic assumption of the 

proposed method, that the travel speeds of traversed links on a path are similar, becomes 

less reasonable.  
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(a) Arterial 

 
(b) Freeway 

FIGURE 4.11 Distribution of Speed Differences of Test Datasets 
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FIGURE 4.12 Standard Deviation of Speed Differences of Test Datasets 

Figure 4.13 illustrates the MASD for each test dataset. As the sampling interval 

increases from 10 seconds to 60 seconds, the MASD increases from 3.9 km/h to 6.1 km/h 

on freeways and from 5.2 km/h to 8.0 km/h on arterials; when compare the MASD of 60-

second and 90-second update interval, even though the GPS update interval increases by 

30 seconds, the MASD does not increase significantly on both freeway and arterial. 

However, as the sampling interval rises to 120 seconds, the MASD of both freeway and 

arterial datasets significantly increases. This suggests that the proposed travel speed 

estimation method performs well for those GPS data with GPS update interval shorter than 

90 seconds. Besides, generally the proposed method performs better on freeways than 

arterial, which, considering the difficulty of estimating travel delay caused by intersections, 

is reasonable. 
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FIGURE 4.13 Mean Absolute Speed Differences of Test Datasets 

 

4.6 Summary 

This chapter presents the application of using transit buses as probes for link travel speed 

estimation. A length-based speed estimation method is proposed, and the performance is 

evaluated through a field test on urban freeway links. Results show that transit buses can 

provide good link travel speed estimates with an average 10% difference compared with 

loop detector data, which is considered acceptable. When traffic jam occurs, the speed 

difference increases but not significant. The impact of probe vehicle type on estimation 

results is significant, as transit bus speed is in average 7.0 km/h lower than the general 

traffic flow (represented by the loop detector speed), and the speed difference follows a 

good normal distribution in the field test. Besides, the impact of GPS update interval is 

investigated as well, and the results suggests that for the proposed link travel speed 

estimation method, it performs better on freeways than on arterials as the homogeneous 
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path travel speed assumption is not reasonable for links where traffic signals or bus stops 

exist, and the performance of the proposed model significantly changes only when the GPS 

update interval is over 60 seconds. However, the penetration rate of most speed estimates 

in the field test is very low, as 69% estimates are from 1~3 bus probes, which could damage 

the estimation accuracy, which should be noticed in the future research. 
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5 LINK TRAVEL TIME ALLOCATION METHOD FOR 

INDIVIDUAL PROBES 

Even though the proposed travel speed estimation method performs well on freeways, 

when it is applied on arterials, the existence of intersections and bus stops makes it more 

difficult for accurate estimation. When vehicles are driving on arterials, they may be forced 

to stop caused by traffic signals, pedestrian crossing streets or stop signs at intersections. 

Specifically, for transit buses, they have to stop at bus stops when there are passengers 

boarding or alighting. Hence, the assumption that transit probes are moving with similar 

speed on each link of a path is not reasonable for arterial. Another practical issue is that, 

most existing AVL systems can only provide real-time data stream with a low resolution. 

When the GPS update interval is relatively high, for instance 30 seconds, the probe vehicles 

are more likely to traverse multiple links within one interval, and the travel time on each 

link could be significantly different. To improve the performance of transit bus-based 

estimation, a link travel time allocation method for individual probes was proposed in this 

chapter. This method aims to identify the components of path travel times, and allocate 

travel time by inferring the most probable distribution of the decomposed travel times on 

each link, and a field test is conducted to evaluate the performance of the proposed travel 

time allocation method. 

 

5.1 Basic Assumptions 

The proposed link travel time allocation method is based on the following assumptions: 

1. The map matching and path identification results are perfect, thus the errors 

produced by the two processes are not considered; 
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2. The free-flow travel speed of each link is known; 

3. There are sufficient historical GPS data which will be used for parameter 

calibration; 

4. A transit probe stops at most once on each path; 

5. The traffic condition of each link on the same path is similar to each other; 

6. The GPS update intervals of transit probes are substantially constant. 

5.2 Travel Time Decomposition 

Before introducing the proposed method, it is necessary to understand the general 

characteristics of travel times experienced by individual vehicles on arterials. Hellinga et 

al. (Hellinga et al., 2008) suggested that, on arterials, travel times can be decomposed into 

three parts: 

1. Free-flow travel time 

2. Stop time 

3. Congestion time 

 

Free-flow travel time is defined as the travel time for a vehicle moving through a road 

section at free-flow speed plus the necessary transition times (e.g. turning at intersections). 

for most cases, the actual travel time is larger than free-flow travel time, and the residual 

time is considered as travel delay. An inverse case is that the actual travel time is smaller 

than the free-flow travel time, which is assumed that the vehicle is driving at the speed 

exceeding the free-flow speed, and the travel time can be assigned to each traversed link 

based on the proportion of traversed link length to the total traveled distance.  

Stop time is defined as the interval that vehicles are forced to stop at a location. As the 

transit probe applied in this research is transit bus, there are three common causes of stop 

time: (1) stopping near the downstream intersections of links due to traffic control, (2) 
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stopping at bus stops due to boarding and/or alighting passengers, and (3) stopping on the 

road due to irregular events such as accidents or road maintenance. It should be noted that 

the acceleration and deceleration time due to vehicles stopping on roads are included in 

stop time. 

Congestion time is defined as the travel delay caused by vehicle driving at a speed lower 

than the free-flow speed, which is assumed to be caused by traffic congestions.  

Figure 5.1 illustrates the decomposed travel time on time-space diagrams. The dashed 

gray line is the trajectory of a vehicle driving at free-flow speed, which is used for 

measuring the free-flow travel time, and the black solid line is the actual vehicle trajectory. 

In Figure 5.1(a), the vehicle drives at a speed lower than the free-flow speed, and it travels 

through the link without stopping, hence the link travel time only consists of free-flow 

travel time and congestion time. In Figure 5.1(b), the vehicle enters and leaves the link 

with free-flow speed, and it stops at a location on the link, hence the link travel time only 

consists free-flow travel time and stop time, noticing that the acceleration and deceleration 

time is included in the stop time. 

 
FIGURE 5.1 Example of Travel Time Decomposition 
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Given a path 𝑝𝑘,𝑖 of a probe vehicle k, the path travel time can be decomposed into the 

three components mentioned above, 

 𝑇(𝑝𝑘,𝑖) = t𝑘,𝑖 − 𝑡𝑘,𝑖−1 = 𝑇𝑓(𝑝𝑘,𝑖) + 𝑇𝑠(𝑝𝑘,𝑖) + 𝑇𝑐(𝑝𝑘,𝑖) ......................... (5.1) 

where 

𝑇(𝑝𝑘,𝑖)  Travel time of path (𝑝𝑘,𝑖) 

𝑇𝑓(𝑝𝑘,𝑖)  Free-flow travel time of path (𝑝𝑘,𝑖) 

𝑇𝑠(𝑝𝑘,𝑖)  Stop time of path (𝑝𝑘,𝑖) 

𝑇𝑐(𝑝𝑘,𝑖)  Congestion time of path (𝑝𝑘,𝑖) 

 

The path travel time 𝑇(𝑝𝑘,𝑖) can also be represented by the sum of travel times on all 

traversed links, 

 𝑇(𝑝𝑘,𝑖) = ∑ 𝑡(𝑙𝑘,𝑖,𝑗)𝐽 = ∑ (𝑡𝑓(𝑙𝑘,𝑖,𝑗) + 𝑡𝑠(𝑙𝑘,𝑖,𝑗) + 𝑡𝑐(𝑙𝑘,𝑖,𝑗))𝐽  .................... (5.2) 

where 

𝑡(𝑙𝑘,𝑖,𝑗)  Travel time on link 𝑙𝑘,𝑖,𝑗  

𝑡𝑓(𝑙𝑘,𝑖,𝑗)  Free-flow travel time on link 𝑙𝑘,𝑖,𝑗  

𝑡𝑠(𝑙𝑘,𝑖,𝑗)  Stop time on link 𝑙𝑘,𝑖,𝑗  

𝑡𝑐(𝑙𝑘,𝑖,𝑗)  Congestion time on link 𝑙𝑘,𝑖,𝑗  

 

According to the second assumption in section 5.1 (the free-flow travel speed of each 

link is known), the link free-flow travel time can be directly calculated using the following 

equation: 
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 𝑡𝑓(𝑙𝑘,𝑖,𝑗) =
𝑑(𝑙𝑘,𝑖,𝑗)

𝑣𝑓(𝑙𝑘,𝑖,𝑗)
 ...................................................... (5.3) 

where 

𝑣𝑓(𝑙𝑘,𝑖,𝑗)  Free-flow travel speed of link 𝑙𝑘,𝑖,𝑗 

 

It is hard to directly estimate the traffic condition experienced on a path, which brings 

the difficulty of determining link stop time and link congestion time. However, the traffic 

condition can be estimated by estimating the degree of congestion from probability 

methods. Inspired by the research of Hellinga et al. (Hellinga et al., 2008), a term w is 

introduced to represent the degree of congestion experienced by probe k on path 𝑝𝑘,𝑖 , 

namely the congestion degree, 

 𝑤 =
𝑇𝑐(𝑝𝑘,𝑖)

𝑇𝑐(𝑝𝑘,𝑖)+𝑇𝑓(𝑝𝑘,𝑖)
  ..................................................... (5.4) 

The value of w is between 0 and 1. When there is no congestion along the path and 

vehicles can pass through it with free-flow speed, the path congestion time is 0 and w 

reaches its minimum value; as the traffic condition becomes worse, the congestion time 

increases and w is getting close to 1. A special case is that, if a transit probe stops at a 

location over the whole path travel time, the path free-flow travel time would be 0, and the 

value of w would always be 1 when the congestion time is larger than 0. However, in such 

case the travel time experienced by the transit probe can be supposed to consist of only 

stop time, hence this exception case would be handled separately from the following 

discussion. 

The maximum value of w on path 𝑝𝑘,𝑖, denoted by 𝑤𝑚𝑎𝑥(p𝑘,𝑖), is obtained when the 

travel delay is composed only by congestion time, which means the stop time is 0. 
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 𝑤𝑚𝑎𝑥(p𝑘,𝑖) =
𝑇(𝑝𝑘,𝑖)−𝑇𝑓(𝑝𝑘,𝑖)

𝑇(𝑝𝑘,𝑖)
 ............................................... (5.5) 

Equation (5.4) also implies that, a unique value of w can determine a unique value of 

the path congestion time, therefore the path congestion time and path stop time can be 

represented by  

 𝑇𝑐(𝑝𝑘,𝑖) =
𝑤

1−𝑤
𝑇𝑓(𝑝𝑘,𝑖) .................................................. (5.6) 

 𝑇𝑠(𝑝𝑘,𝑖) = 𝑇(𝑝𝑘,𝑖) −
1

1−𝑤
𝑇𝑓(𝑝𝑘,𝑖) .......................................... (5.7) 

According to the fifth assumption mentioned in section 5.1 (the traffic condition of each 

link on the same path is similar to each other), similar to Equation (5.6) and (5.7), the link 

congestion time can be represented by  

 𝑡𝑐(𝑙𝑘,𝑖,𝑗) =
𝑤

1−𝑤
𝑡𝑓(𝑙𝑘,𝑖,𝑗) .................................................. (5.8) 

 

5.3 Link Travel Time Allocation Method 

When the road network is uncongested, vehicles are assumed to be able to drive at 

relatively high speed, and the travel delay consists mainly of stop time, and transit probes 

are more likely to stop near the downstream intersections of links or near the bus stops. On 

the other hand, when the road network is experiencing heavy congestion, the traffic queue 

caused by downstream traffic control devices is expected to be longer than in uncongested 

condition. Besides, considering that the vehicle flow can reflect the passenger flow along 

the road, the transit dwell times at bus stops are supposed to be longer as well. Furthermore, 

the average vehicle speeds would be lower than the free-flow speed, and the proportion of 

congestion time increases as the traffic condition becomes worse. Therefore, under 
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congested situations, the likelihood of transit probes stopping at locations far from link 

downstream intersections are larger than under uncongested situation. 

However, it is difficult to directly measure the ratio of stop time and congestion time in 

the travel delay, as the level of congestion is still unknown. For instance, given a path 

which includes more than one link, the total path travel time is 30 seconds and the free-

flow travel time is 20 seconds, as we do not know the types of traffic control devices neither 

the signal phase and timing information, it is hard to determine if the 10-second travel delay 

is totally stop time, totally congestion time, or the mixture of both kinds of delays. 

Nevertheless, a likelihood function can be applied to infer the level of congestion 

experienced by the transit probes, and gives an estimation of link travel times. 

Two probability functions are developed for the proposed link travel time allocation 

method. The first one is called the congestion probability function, which represents the 

probability that a certain degree of congestion (w) is experienced by a probe vehicle on a 

path. The second one is called the link stopping probability function, which represents the 

probability that a probe stops on a certain link on a path. 

 

5.3.1 Congestion probability 

It is assumed that the likelihood of a certain degree of congestion (w) experienced by a 

transit probe k on path 𝑝𝑘,𝑖 , denoted by 𝑓(𝑤, 𝑝𝑘,𝑖) , follows a normal distribution, 

𝑓(𝑤, 𝑝𝑘,𝑖)~𝑁(𝜇, 𝜎2) (see Figure 5.2 for an example). The mean value 𝜇 represents the 

expected degree of congestion occurred on traversed links, and the standard deviation 𝜎 

measures how the congestion degree fluctuates. Then, the probability that a certain degree 

of congestion is experienced on path 𝑝𝑘,𝑖 is given by integrating the likelihood function, 
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 𝑃𝑤(𝑤, 𝑝𝑘,𝑖) =
𝑓(𝑤,𝑝𝑘,𝑖)

∫ 𝑓(𝑤,𝑝𝑘,𝑖)𝑑𝑤
𝑤𝑚𝑎𝑥

0

 ............................................. (5.9) 

where 

𝑓(𝑤, 𝑝𝑘,𝑖)  Likelihood of probe k experiencing a certain congestion degree 

w on path 𝑝𝑘,𝑖 

𝑃𝑤(𝑤, 𝑝𝑘,𝑖)  Congestion probability on path 𝑝𝑘,𝑖 given congestion degree w 

  

 
FIGURE 5.2 Example of the Congestion Probability 

 

5.3.2 Link Stopping Probability 

A point stopping likelihood function is first introduced to capture the likelihood of a transit 

probe stopping at a certain location on a link: 

 ℎ𝑠(𝑙𝑘,𝑖,𝑗, 𝜆, 𝑤) = (1 − 𝑤)𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) + 𝑤 ................................... (5.10) 
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where  

𝜆  location on a link 

ℎ𝑠(𝑙𝑘,𝑖,𝑗, 𝜆, 𝑤)  Likelihood of probe k stopping at location 𝜆 on link 𝑙𝑘,𝑖,𝑗 given 

congestion degree w 

𝑔(𝑙𝑘,𝑖,𝑗, 𝜆)  Likelihood of probe k stopping at location 𝜆 on link 𝑙𝑘,𝑖,𝑗 under 

free-flow condition (w = 0) 

 

𝜆 is a parameter used to determine the location of a probe on a certain link, and it is 

equal to the distance of the location to the start of the link divided by the link length, so the 

value of 𝜆 is between 0 and 1. 

The likelihood of probe k stopping on link 𝑙𝑘,𝑖,𝑗 given congestion degree w, denoted by 

Hs(𝑙𝑘,𝑖,𝑗, 𝑤),  can be determined by integrating the point stopping likelihood function along 

the traveled distance of the link: 

 𝐻𝑠(𝑙𝑘,𝑖,𝑗, 𝑤) =
1

𝛽−𝛼
∫ ℎ𝑠(𝑙𝑘,𝑖,𝑗 , 𝜆, 𝑤) 𝑑𝜆

𝛽

𝛼
 ................................... (5.11) 

Recalling that α and β denote the locations where the probe first and last appears on a 

link (see Equation (3.2)), hence they are the minimum and maximum value of 𝜆. By 

assuming that a transit probe stops at most once on a path (the fourth assumption in section 

5.1), the probability of a vehicle stopping at link 𝑙𝑘,𝑖,𝑗 of path 𝑝𝑘,𝑖 is given by  

 𝑃𝑠(𝑙𝑘,𝑖,𝑗, 𝑤) = {
𝐻𝑠(𝑙𝑘,𝑖,𝑗, 𝑤)                                                      𝐽 = 1      

𝐻𝑠(𝑙𝑘,𝑖,𝑗, 𝑤) ∏ (1 − 𝐻𝑠(𝑙𝑘,𝑖,𝑗′, 𝑤))𝑗′≠𝑗     𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
 .............. (5.12) 

where 

Ps(𝑙𝑘,𝑖,𝑗 , 𝑤)  Link stopping probability on link 𝑙𝑘,𝑖,𝑗 given congestion degree w 
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5.3.3 Allocating link travel times  

The link free-flow travel time can be calculated using Equation (5.3). As the congestion 

probability and link stopping probability is given, the link stop time can be estimated by 

integrating the whole range of possible congestion degree (w) on the link, 

 𝑡𝑠(𝑙𝑘,𝑖,𝑗) = ∫ 𝑇𝑠(𝑝𝑘,𝑖)
𝑃𝑤(𝑤,𝑝𝑘,𝑖)𝑃𝑠(𝑙𝑘,𝑖,𝑗,𝑤)

𝑄𝑠(𝑝𝑘,𝑖)
𝑑𝑤

𝑤𝑚𝑎𝑥(𝑝𝑘,𝑖)

0
 ......................... (5.13) 

 Qs(𝑝𝑘,𝑖) = ∫ 𝑃𝑤(𝑤, 𝑝𝑘,𝑖) ∑ Ps(𝑙𝑘,𝑖,𝑗, 𝑤)𝐽 𝑑𝑤
𝑤𝑚𝑎𝑥(𝑝𝑘,𝑖)

0
 ......................... (5.14) 

In Equation (5.13), Qs(𝑝𝑘,𝑖) is a term used to normalize the probability, ensuring that 

the value of it is between 0 and 1. Once the link free-flow travel time and link stop time 

are obtained, the link congestion time can then be calculated by  

 𝑡𝑐(𝑙𝑘,𝑖,𝑗) =
𝑡𝑓(𝑙𝑘,𝑖,𝑗)

𝑇𝑓(𝑝𝑘,𝑖)
(𝑇(𝑝𝑘,𝑖) − 𝑇𝑓(𝑝𝑘,𝑖) − ∑ 𝑡𝑠(𝑙𝑘,𝑖,𝑗)𝐽 ) ........................ (5.15) 

Equation (5.15) is based on the fifth assumption mentioned is section 5.1, that the traffic 

condition of each link on the same path is similar to each other. Hence, the congestion time 

is allocated to each traversed link weighted by the free-flow travel time of each link. 

Finally, the allocated link travel time is the sum of the estimated link free-flow travel time, 

link stop time and link congestion time,  

 𝑡(𝑙𝑘,𝑖,𝑗) = 𝑡𝑓(𝑙𝑘,𝑖,𝑗) + 𝑡𝑠(𝑙𝑘,𝑖,𝑗) + 𝑡𝑐(𝑙𝑘,𝑖,𝑗) ................................. (5.16) 

 

5.4 Parameter Calibration 

The performance of the proposed link travel time allocation method relies on the accuracy 

of the congestion probability and the link stopping probability. For the congestion 
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probability, as it is assumed that the likelihood function 𝑓(𝑤, 𝑝𝑘,𝑖)  follows a normal 

distribution, the mean and the standard deviation of the distribution are two key parameters 

for the congestion probability function. For the link stopping probability, the basics of it is 

the function 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆), which describes the likelihood that probe k stops on a certain 

location 𝜆  on link 𝑙𝑘,𝑖,𝑗  under free-flow condition. Currently, the standard deviation of 

𝑓(𝑤, 𝑝𝑘,𝑖) is hard to obtain, but the mean of 𝑓(𝑤, 𝑝𝑘,𝑖) and function 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) can be 

calibrated from historical GPS data.  

A link is first split into smaller segments, and the xth segment of link 𝑙𝑘,𝑖,𝑗 is denoted by 

𝑠𝑘,𝑖,𝑗,𝑥. Supposing that there are N transit probes traveled through link 𝑙𝑘,𝑖,𝑗 during a time 

period, their GPS points are located randomly on the link. However, the number of GPS 

points of each segment could be significantly different. Figure 5.3 gives an example 

showing the GPS point counts of each segment on a link. It can be clearly seen that those 

segments near the bus stop or in the front of the downstream intersection stop line have 

more GPS point counts than the other segments. This is because that the transit probes are 

more likely to stop or slow down at these segments, and the average travel time on these 

segments are significantly longer than on the others.  
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FIGURE 5.3 Example of GPS Point Counts on A Link 

According to the sixth assumption in section 5.1 (the GPS update intervals of transit 

probes are substantially constant), denoting the average GPS update interval as 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, 

the relationship between segment GPS point counts and average segment travel time can 

be represented by the following equation: 

 𝑛(𝑠𝑘,𝑖,𝑗,𝑥) = 𝑁
𝜏(𝑠𝑘,𝑖,𝑗,𝑥)

𝑇𝑢𝑝𝑑𝑎𝑡𝑒
 ................................................. (5.17) 

where 

𝑠𝑘,𝑖,𝑗,𝑥  The xth segment on link 𝑙𝑘,𝑖,𝑗 

𝑛(𝑠𝑘,𝑖,𝑗,𝑥)  Number of GPS points located on segment 𝑠𝑘,𝑖,𝑗,𝑥 

𝑇𝑢𝑝𝑑𝑎𝑡𝑒  Average GPS update interval 

N Number of probes that travel through a link in the historical 

data 

𝜏(𝑠𝑘,𝑖,𝑗,𝑥)  Travel time on segment 𝑠𝑘,𝑖,𝑗,𝑥 
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Based on the positions and the number of GPS points, segments can be classified into 

three types (Figure 5.3): 

• Type A: segments where transit probes are less likely to stop. Type A segments are 

usually in the middle of a link or near the upstream of a link, and their GPS point 

counts are relatively small. 

• Type B: segments where transit probes are more likely to stop. Type A segments 

are usually near the bus stops or in the front of the stop line of downstream 

intersections, and their GPS point counts are relatively large.  

• Type C: segments that are within the area of intersections. On these segments, the 

speeds of transit probes are not stable, as they may stop at the intersection and need 

to accelerate and recover the driving speed. 

The segment travel time can also be decomposed as 

 𝜏(𝑠𝑘,𝑖,𝑗,𝑥) = 𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥) + 𝜏𝑠(𝑠𝑘,𝑖,𝑗,𝑥) + 𝜏𝑐(𝑠𝑘,𝑖,𝑗,𝑥) ........................... (5.18) 

where 

𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥)  Free-flow travel time on segment 𝑠𝑘,𝑖,𝑗,𝑥 

𝜏𝑠(𝑠𝑘,𝑖,𝑗,𝑥)  Stop time on segment 𝑠𝑘,𝑖,𝑗,𝑥 

𝜏𝑐(𝑠𝑘,𝑖,𝑗,𝑥)  Congestion time on segment 𝑠𝑘,𝑖,𝑗,𝑥 

 

The segment free-flow travel time can be directly calculated by  

 𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥) =
𝑙𝑒𝑛𝑔(𝑠𝑘,𝑖,𝑗,𝑥)

𝑣𝑓(𝑙𝑘,𝑖,𝑗)
 ................................................ (5.19) 

where 

𝑙𝑒𝑛𝑔(𝑠𝑘,𝑖,𝑗,𝑥)  Length of segment 𝑠𝑘,𝑖,𝑗,𝑥 
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As the transit probes are more likely to stop on Type B segments, it is hard to estimate 

congestion times on these segments. However, for Type A segments, as probes are little 

likely to stop on them, it can be assumed that the stop time on Type A segments is 0, and 

their segment congestion time can be calculated based on Equation (5.17) and (5.18): 

 𝜏𝑐(𝑠𝑘,𝑖,𝑗,𝑥) = min (0,
𝑇𝑢𝑝𝑑𝑎𝑡𝑒

𝑁
𝑛(𝑠𝑘,𝑖,𝑗,𝑥) − 𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥)) ........................ (5.20) 

It is further assumed that the degree of congestion on Type A segments are similar to 

the degree of congestion on the whole link. Therefore, the segment congestion time can be 

extended to the link congestion time, 

 𝑡𝑐
′ (𝑙𝑘,𝑖,𝑗) =

𝑙𝑒𝑛𝑔(𝑙𝑘,𝑖,𝑗)

∑ 𝑙𝑒𝑛𝑔(𝑠𝑘,𝑖,𝑗,𝑥)
𝑥∈𝑆𝐸𝐺𝐴(𝑙𝑘,𝑖,𝑗)

∑ 𝜏𝑐(𝑠𝑘,𝑖,𝑗,𝑥)𝑥∈𝑆𝐸𝐺𝐴(𝑙𝑘,𝑖,𝑗)  .................... (5.21) 

where 

𝑡𝑐
′ (𝑙𝑘,𝑖,𝑗)  Congestion time on link 𝑙𝑘,𝑖,𝑗 estimated from historical data 

𝑆𝐸𝐺𝐴(𝑙𝑘,𝑖,𝑗)  Set of Type A segments on link 𝑙𝑘,𝑖,𝑗 

 

After  𝑡𝑐
′ (𝑙𝑘,𝑖,𝑗) is obtained, the stop time of Type B segments can be estimated by 

 𝜏𝑠
′ (𝑠𝑘,𝑖,𝑗,𝑥) = min (0,

𝑇𝑢𝑝𝑑𝑎𝑡𝑒

𝑁
𝑛(𝑠𝑘,𝑖,𝑗,𝑥) − 𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥) − 𝑡𝑐

′ (𝑙𝑘,𝑖,𝑗)
𝑙𝑒𝑛𝑔(𝑠𝑘,𝑖,𝑗,𝑥)

𝑙𝑒𝑛𝑔(𝑙𝑘,𝑖,𝑗)
) ....... (5.22) 

where 

𝑡𝑠
′(𝑠𝑘,𝑖,𝑗,𝑥)  Stop time on segment 𝑠𝑘,𝑖,𝑗,𝑥 estimated from historical data 

 

𝑡𝑐
′ (𝑙𝑘,𝑖,𝑗) can represent the average link congestion time, which can be used to calibrate 

the mean of 𝑓(𝑤, 𝑝𝑘,𝑖). Because 𝑓(𝑤, 𝑝𝑘,𝑖) reflects the congestion probability of a path, the 
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mean of it can be calculated as the weighted average degree of congestion of traversed 

links, 

 𝜇(𝑝𝑘,𝑖) =
∑ (𝜇(𝑙𝑘,𝑖,𝑗)𝑑(𝑙𝑘,𝑖,𝑗))𝐽

∑ 𝑑(𝑙𝑘,𝑖,𝑗) 𝐽

 .............................................. (5.23) 

 𝜇(𝑙𝑘,𝑖,𝑗) =
𝑡𝑐

′(𝑙𝑘,𝑖,𝑗)

𝑡𝑐
′(𝑙𝑘,𝑖,𝑗)+𝑡𝑓(𝑙𝑘,𝑖,𝑗)

 .............................................. (5.24) 

where 

𝜇(𝑝𝑘,𝑖)  Mean of congestion degree on path 𝑝𝑘,𝑖 

𝜇(𝑙𝑘,𝑖,𝑗)  Mean of congestion degree on link 𝑙𝑘,𝑖,𝑗 

 

In Equation (5.23), the traveled distance on each link is used as the weight. 

For the calibration of function 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆), the first step is to obtain the point stopping 

likelihood function ℎ𝑠(𝑙𝑘,𝑖,𝑗 , 𝜆, 𝑤). As we already get the segment stop time from Equation 

(5.22), the point stopping likelihood of location 𝜆 estimated from historical GPS data can 

be described as 

 ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗 , 𝜆, 𝜇(𝑙𝑘,𝑖,𝑗)) =

τ𝑠
′ (𝑠𝑘,𝑖,𝑗,𝑥)

τ𝑠
′ (𝑆𝑘,𝑖,𝑗,𝑥)

,    𝜆 ∈ 𝑠𝑘,𝑖,𝑗,𝑥 ............................... (5.25) 

where 

ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗 , 𝜆, 𝜇(𝑙𝑘,𝑖,𝑗))  Point stopping likelihood on location 𝜆 estimated from 

historical data 

𝑆𝑘,𝑖,𝑗,𝑥  Segment with the maximum value of segment stop time on link 

𝑙𝑘,𝑖,𝑗 

  

Then ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗, 𝜆, 𝜇(𝑙𝑘,𝑖,𝑗)) and 𝜇(𝑙𝑘,𝑖,𝑗) can be substituted into Equation (5.19) with 

ℎ𝑠(𝑙𝑘,𝑖,𝑗, 𝜆, 𝑤) and w, and we can get the following equation:  
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 ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗 , 𝜆, 𝜇(𝑙𝑘,𝑖,𝑗)) = (1 − 𝜇(𝑙𝑘,𝑖,𝑗)) 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) + 𝜇(𝑙𝑘,𝑖,𝑗)  .................. (5.26) 

And 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) can be finally obtained by transferring Equation (5.26) as 

 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) = (ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗, 𝜆, 𝜇(𝑙𝑘,𝑖,𝑗)) − 𝜇(𝑙𝑘,𝑖,𝑗)) / (1 − 𝜇(𝑙𝑘,𝑖,𝑗)) ............... (5.27) 

It should be noticed that, the calibrated value of 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) is influenced by the length 

of segment, since ℎ𝑠
′ (𝑙𝑘,𝑖,𝑗, 𝜆, 𝑤)  is calculated using segment stop time, and the point 

stopping likelihood on the same segment have the same value. If the segment length is 

short, the calibration result is expected to be more accurate. However, when the segment 

length is too short, fewer GPS points are distributed to each segment when the GPS data 

size does not change, and the estimated segment congestion time and segment stop time 

may be less accurate as the sample size decreases.  

 

5.5 Field Test 

A field test was conducted on 23 Avenue in Edmonton, Canada to test the proposed link 

travel time allocation method. The selected corridor, 23 Avenue, is a 3.9 km long arterial, 

from Leger Gate NW to 111 Street NW (see Figure 5.4). The speed limit of the selected 

corridor is 60 km/h. There are three transit routes, 23, 30 and 36, that operates on the whole 

corridor, and their departure headway is around 30 minutes. The selected corridor is 

between two transit centers, namely Leger Gate Transit Center and Century Park Transit 

Center. In Figure 5.4, link 1 to 7 represent eastbound road links, and link 8 to 14 represent 

westbound road links. The detailed information of each link is listed in Table 5.1.  
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FIGURE 5.4 Selected Corridor for Field Test 

TABLE 5.1 Link Information 

Link ID Direction Length (m) Link ID Direction Length (m) 

1 EB 602.5 8 WB 609.6 

2 EB 533.1 9 WB 328.3 

3 EB 423.5 10 WB 239.0 

4 EB 1794.6 11 WB 1792.6 

5 EB 239.1 12 WB 423.7 

6 EB 328.4 13 WB 532.3 

7 EB 609.8 14 WB 594.3 

 

5.5.1 Data description 

The ground truth data was collected using GPS-enabled mobile phones. The volunteers 

install a GPS recording app named Geo Tracker in the mobile phones and take the transit 

buses from the transit centers. The mobile app records the user’s location information for 

every 1 second, which can ensure the accuracy of the obtained link travel time and link 

stop time for these transit buses. The details about the collected field data was provided in 

Table 5.2. All field data was collected during PM peak hour, when traffic congestions are 

more likely to occur, especially on the westbound links.  

As the timestamp when the bus enters or leaves a road link is known, the link travel time 

of each sample can be easily calculated. The ground truth link stop time is calculated as 



64 

 

follows: the average travel speed between two consecutive GPS points is first calculated 

by dividing the traveled distance by the travel time (1 second), and if the speed is lower 

than 10 km/h, it is assumed that the bus is stopping and the travel time is added into the 

link stop time.  

In the sampling procedure, 30-second GPS update interval was applied to extract GPS 

data from the original high-resolution dataset, which would then be used as the input of the 

proposed method for estimating link travel time and link stop time. 

TABLE 5.2 Records of Field Collected Transit Data 

Date Vehicle ID Direction Start Time End Time 

2016-07-06 4666 EB 17:06:12 17:15:00 

2016-07-06 4589 EB 17:48:12 17:56:32 

2016-07-07 4857 EB 16:16:11 16:22:41 

2016-07-07 4369 EB 17:07:47 17:16:42 

2016-07-07 4758 EB 17:46:27 17:55:22 

2017-06-15 4861 EB 16:51:25 16:59:14 

2017-06-15 4064 EB 17:31:31 17:38:32 

2017-06-15 4632 EB 18:15:14 18:22:23 

2017-06-19 4486 EB 17:32:02 17:38:25 

2017-06-19 4880 EB 18:15:42 18:21:14 

2016-07-06 4626 WB 16:45:53 16:53:56 

2016-07-06 4363 WB 17:33:46 17:40:35 

2016-07-07 4861 WB 16:53:44 17:01:14 

2016-07-07 4637 WB 17:35:49 17:43:15 

2017-06-15 4370 WB 16:37:52 16:45:53 

2017-06-15 4543 WB 17:16:08 17:28:12 

2017-06-15 4488 WB 17:55:58 18:11:44 

2017-06-19 4072 WB 16:46:07 16:53:50 

2017-06-19 4862 WB 17:16:18 17:25:39 

2017-06-19 4291 WB 18:00:17 18:10:30 
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5.5.2 Parameter setting 

Before applying the proposed method, there are five parameters need to be set first:  

1. link free-flow speeds 𝑣𝑓(𝑙𝑘,𝑖,𝑗),  

2. the standard deviation of the congestion likelihood function,  

3. the length and classification of segments,  

4. the mean of the congestion likelihood function, and  

5. the link stopping likelihood function 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆). 

The free-flow speed 𝑣𝑓(𝑙𝑘,𝑖,𝑗) is set to be 60 km/h for all links, which is the speed limit 

of the selected corridor. Note that the actual free-flow speed is usually lower than the speed 

limit and specific to time-of-day, hence in this test the free-flow travel times may be 

underestimated, and the congestion time and stop time may be overestimated. 

The value of 𝜎, as mentioned in section 5.4, cannot be directly obtained due to the 

limitation of the proposed model. Nevertheless, by assuming that the variance of 

congestion levels of all links on the corridor are similar, 𝜎 is considered as a parameter and 

set to be 0.1 and 0.2 for the whole corridor respectively to initially test its impact. 

The segment length was set to be 10 m. To simplify the process of segment 

classification, the first and the last segment of each link are defined as Type C segments, 

segments with (𝜏(𝑠𝑘,𝑖,𝑗,𝑥) − 𝜏𝑓(𝑠𝑘,𝑖,𝑗,𝑥)) / 𝜏(𝑠𝑘,𝑖,𝑗,𝑥) less than 0.4 are defined as Type A 

segments, and the remaining segments are defined as Type B segments.  

𝜇(𝑝𝑘,𝑖) and 𝑔(𝑙𝑘,𝑖,𝑗, 𝜆) can be calibrated as mentioned in section 5.4. The historical GPS 

data used for the calibration was collected from 6 AM to 6 PM between March 28, 2017 

and May 19, 2017, including 5,682 transit probe trajectories in 35 weekdays. Figure 5.5 

illustrates the distribution of GPS update intervals of all collected historical GPS points. 
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65.8% of GPS points have update interval less than 40 seconds, and the average update 

interval is 40.3 seconds, which would then be applied as the average GPS update interval 

𝑇𝑢𝑝𝑑𝑎𝑡𝑒. One thing should be noticed is that, due to the limited size of the transit GPS data, 

for this test the historical transit GPS data collected for parameter calibration was between 

6 AM and 6 PM, while the field data was collected only during PM peak hours, so the 

calibrated parameters and probability functions may not reflect the general traffic 

conditions during PM peak hours. If the data is sufficient, the calibration process can be 

applied for a shorter time interval to capture the impact of time-of-day upon link travel 

times. 

 
FIGURE 5.5 Distribution of GPS Update Interval  

 

5.5.3 Test results  

To quantify the performance, the mean absolute error (MAE) and mean absolute 

percentage error (MAPE) are applied to examine the accuracy of the link travel times and 

link stop times estimated by the proposed model. The link travel speed estimation method 

introduced in chapter 4 are chosen as the benchmark method, and the estimated link travel 

time results from it is used for comparison. 
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Table 5.3 and Table 5.4 give the results of MAE and MAPE of travel time estimation 

for each link respectively. The bold numbers in the tables indicate the best estimates among 

the estimation methods. For the eastbound links (link 1 to 7), the performance of the 

proposed method is slightly better than the benchmark method on link 1 to 3, with less 

MAE and MAPE, while after link 4 the benchmark method has better performance. A 

possible reason for it is that, the congestion degree used in the proposed method is adopted 

for all links along the corridor, while in fact the traffic conditions on each link could be 

different, and the estimated errors may be accumulated to the downstream links. On link 

5, both methods have relatively large MAPE, even though the MAE of them are under 10 

seconds. This is because that link 5 is the shortest link on the corridor (about 230 m long), 

hence the average travel time of this link is shorter than the others, which makes the 

percentage errors look larger. Furthermore, the downstream node of link 5 is an un-

signalized intersection, which infers that both methods could have worse performance 

when the downstream nodes of links are not controlled by traffic signals.  

For the westbound links (link 8 to 14), the proposed model performs better than the 

benchmark method on all links. Considering that during PM peak hours the westbound 

links have recurrent traffic congestions, the results suggest the proposed method performs 

better than the benchmark method under congestion condition. It should be noted that, 

similar to link 5, as the downstream node of link 9 is an un-signalized intersection, the 

estimation errors of both methods on this link are significantly larger than on the others. 
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TABLE 5.3 Mean Absolute Error of Link Travel Time Estimation 

Link ID 
Benchmark 

Method 

Proposed 

Method (σ=0.1) 

Proposed 

Method (σ=0.2) 

1 1.1 0.9 0.9 

2 4.1 2.7 2.6 

3 5.8 5.7 5.7 

4 6.5 7.9 7.9 

5 6.7 7.8 7.8 

6 4.3 4.4 4.2 

7 2.5 2.9 2.9 

8 4.3 2.8 2.7 

9 5.9 5.0 4.8 

10 7.3 4.4 4.4 

11 3.9 4.9 4.8 

12 8.1 5.5 5.2 

13 7.6 7.5 7.4 

14 4.7 4.3 4.2 

 

TABLE 5.4 Mean Absolute Percentage Error of Link Travel Time Estimation 

Link ID 
Benchmark 

Method 

Proposed 

Method (σ=0.1) 

Proposed 

Method (σ=0.2) 

1 5.9% 4.6% 4.9% 

2 4.8% 3.9% 3.8% 

3 11.1% 10.1% 10.1% 

4 4.5% 5.6% 5.6% 

5 30.9% 33.9% 34.3% 

6 11.5% 11.7% 11.2% 

7 2.8% 3.1% 3.1% 

8 5.9% 3.7% 3.5% 

9 20.3% 17.3% 17.0% 

10 11.1% 6.8% 6.6% 

11 2.8% 3.0% 3.0% 

12 12.2% 7.2% 6.9% 

13 12.8% 12.7% 12.5% 

14 14.5% 11.4% 11.2% 
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For the proposed models with different 𝜎 values, the estimation errors of them are very 

similar. However, as in this study only two values of 𝜎 are applied for the test, more 

researches are needed in the future to examine if the estimated link travel time of the 

proposed method is sensitive to the value of 𝜎. 

TABLE 5.5 Mean Absolute Error of Link Stop Time Estimation 

Link ID 
Benchmark 

Method 

Proposed 

Method (σ=0.1) 

Proposed 

Method (σ=0.2) 

1 

N/A 

1.0 1.0 

2 5.8 5.5 

3 7.4 6.2 

4 11.0 9.4 

5 7.1 6.8 

6 4.2 4.2 

7 9.5 8.6 

8 

N/A 

11.5 10.2 

9 6.9 6.0 

10 7.0 6.5 

11 35.2 30.2 

12 7.8 5.9 

13 5.0 4.8 

14 3.2 2.2 

 

Besides the link travel time estimation, another advantage of the proposed method is 

that it is capable to estimate link stop times while the benchmark method is not. By 

decomposing the travel time, the proposed method can provide a deeper view of link travel 

time, which can later be applied for reducing travel time estimation bias caused by bus 

dwell time. Table 5.5 lists the MAEs of link stop times estimated from the proposed models 

with different values of 𝜎 . The figure clearly depicts that the estimation error of the 

proposed model with 𝜎=0.2 outperforms the model with 𝜎=0.1 on all links, suggesting that 
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in average the variance of congestion degree of the selected corridor has more influence on 

the link stop time estimation rather than the link travel time estimation.  

Figure 5.6 illustrates the distribution of the estimation errors. Error larger than 0 means 

that link estimated stop time is larger than the ground truth stop time. Figure 5.6 suggests 

that, first, 51.0% and 59.7% observations of the proposed methods with 𝜎=0.1 and 𝜎=0.2 

have estimated errors within the range of (-6,6] seconds. This result infers the promising 

potential of the proposed method for link stop time estimation. Second, 77.9% and 74.1% 

of observations of observations of the proposed models with 𝜎 =0.1 and 𝜎 =0.2 have 

estimated errors larger than 0, meaning that in general the proposed method tends to 

overestimate the link stop times.  

 
FIGURE 5.6 Distribution of Link Stop Time Error 

Recalling that for the proposed method the free-flow speed is set to be the same as the 

speed limit, which is usually higher than the actual average free-flow speed, hence the 

proportion of the sum of congestion time and stop time may be overestimated, resulting in 

a positive average error. Another factor that may contribute to the positive estimation error 
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is the congestion probability function. When free-flow speed is known, the sum of 

congestion time and stop time is constant, and inferring the proportion of the two travel 

time components is the key function of the proposed method. In this test, the congestion 

probability is assumed to follow a normal distribution, which may not be the best fit for it, 

as the congestion index is not linearly correlated with the congestion time. Therefore, a 

general overestimation of link stop times can also be described as an overall 

underestimation of link congestion times, hence one effort to improve stop time estimation 

accuracy can be replacing the current normal distribution assumption of the congestion 

probability, or at least testing more values of 𝜎 to find the best fit one. 

 

5.6 Summary 

A method for allocating link travel times from path travel times using low-frequency probe 

AVL data is proposed in this chapter. This method uses two probability functions to infer 

the variation of real-time traffic conditions and the delays on traversed links, and the 

parameters can be calibrated from historical AVL data. Results from the field test prove 

that the proposed method can improve the accuracy of link travel time estimation, 

especially when the road links are under congestion. Furthermore, this method can provide 

a deeper view for probe link travel delays with overall good performance, which is critical 

for future eliminating the estimation bias caused by bus dwell times and stopping at 

intersections. 

Some limitations still exist in this study. First, parameters such as free-flow speeds and 

congestion probabilities are assumed to be the same for all links, which can be improved 

by setting them as link-specific. Second, the congestion probability function applied in this 
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thesis is assumed to follow a normal distribution, yet the verity of this assumption remains 

unknown, and a better description of the congestion probability can be helpful for more 

accurate link travel time allocation. Third, the historical data used for parameter calibration 

does not consider temporal variation of traffic conditions due to the current limited size of 

data, which can be solved by using a larger historical dataset in the future.     
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6 CONCLUSIONS 

Travel speed is one of the most commonly applied performance measurements for traffic 

facilities and networks. It is essential for the public understanding traffic conditions and 

planning for route planning and for the government improving traffic mobility. With the 

development of positioning technology, more vehicles are equipped with positioning 

devices, among which transit buses are considered as a promising probe vehicle type for 

real-time travel speed estimation.  

In this thesis, a travel speed estimation method is first proposed for using transit buses 

as probes to estimate link-level travel speeds. This method is based on the assumption that 

the travel speed between two consecutive GPS points of a transit probe is not substantially 

different. A field test is conducted on a typical urban freeway, and the estimation results 

are compared with speed from loop detector data. the results reveal that the proposed link 

travel speed estimation can provide good link travel speed estimates, with a mean absolute 

speed difference of 7.0 km/h compared with the travel speed from loop detector data, and 

the traffic congestions can be well captured with relatively small sample size (less than 10 

probes per time interval). The impact of probe vehicle type and GPS update interval upon 

estimation accuracy are also analyzed. the estimated link travel speed from transit GPS 

data is generally lower than the speed from loop detectors. The speed difference between 

transit GPS data and loop detector data on freeways follows a normal distribution, with the 

mean value of 5.4 km/h and the standard deviation of 6.4 km/h. In terms of the GPS update 

interval, it influences both the mean and the standard deviation of the speed difference, 

especially when the GPS update interval is longer than 90 seconds. Furthermore, the 

proposed link travel speed estimation method performs better on freeways than on arterials, 
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as the basic assumption of the method is not reasonable for arterial considering the 

existence of intersections and bus stops. 

An arterial link travel time allocation method for individual probes is then proposed to 

complement the link travel speed estimation method, since the basic assumption of the 

speed estimation method is not reliable on arterials. This method decomposes travel time 

between two neighbor GPS points into several components, and probability functions are 

used to infer the decomposed link travel times. Besides, historical transit GPS data is used 

for calibrating parameters, which, with sufficient data size, can capture the temporal traffic 

characteristics of road links. A field test is then conducted on an urban arterial for 

performance evaluation, and the estimated results are compared with the previously 

mentioned link travel speed estimation method. The test results show that the link travel 

time allocation method performs better especially when the traffic is congested, and it has 

the promising potential of estimating link stop times, which can be applied for estimating 

the dwell times at bus stops for transit probes and reducing speed estimation bias in 

signalized network. 

There are several limitations existed in this thesis, which should be carefully considered 

in my future work. First, although the analysis results reveal the interrelation of travel speed 

between transit buses and general traffic, the bus-car speed relationship has not been 

integrated into the proposed link travel speed estimation method for improvement. Second, 

in the field test, the probe penetration rate is lower than 1%, hence the bus probes’ speed 

variance due to driver behavior or other factors can have significant negative effect on the 

speed estimation accuracy; however, because the available data in this research is limited, 

the impact of probe penetration rate upon estimation accuracy is not investigated. Third, 
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for the proposed link travel time allocation method, the congestion likelihood function is 

assumed to follow a normal distribution, which has not been verified yet. There might be 

other statistical distributions that can better fit the congestion likelihood function. 

Furthermore, although the link travel time allocation method can estimate link stop time, 

how to use this advantage to estimate bus dwell times at bus stops and to improve the speed 

estimation accuracy is not discussed. More researches are required in the future for 

improving the accuracy of the proposed link travel speed estimation method using transit 

GPS data, especially when applying on arterials. 
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