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NOTAT I ON 

Symbol Unit 

A - - 
Definition 

Coefficient for ultimate soil resistance 

(p-y curve :sand) 

Coefficient for moment (Matlock-Reese) 

Coefficient for slope (Matlock-Reese) 

Coefficient for deflection due to shear 

(Matlock-Reese) 

Coefficient for soil resistance (p-y 

curve:sand) 

Coefficient for moment (Matlock-Reese) 

Coefficient for slope (Matlock-Reese) 

Coefficient for deflection due to moment 

(Matlock-Reese) 

Coefficient in the parabolic section (p-y 

Undrained shear strength 

Shape factors for steel piles (Broms) 

Coefficient for deflection (Matlock-Reese) 

Diameter or width of pile 

Modulus of elasticity - Youngs modulus 
Modulus of elasticity of pile 

Soil modulus (Matlock-Reese) 

Eccentricity of load 

Distance from ground surface or 1.5 pile 

diameter below ground surface to location 

of maximum bending moment (Broms) 



Yield stress of pile material (Broms) 

Moment of inertia 

Moment of inertia of pile section 

Displacement influence factor for applied 

horizontal load (Poulos) 

Displacement influence factor for applied 

moment(Pou1os) 

Displacement influence factor for fixed 

head pile (Poulos) 

Rotation influence factor for applied 

horizontal load (Poulos) 

Rotation influence factor for applied 

moment (Poulos) 

Empirical adjustment factor (p-y curve 

soft clay) 

Coefficient fo earth pressure 

Coefficient of active earth pressure 

Coefficient of earth pressure at rest 

Coefficient of passive earth pressure 

Pile flexibility factor 

Coefficient of horizontal subgrade 

reaction 

Coefficient of soil modulus (Matlock 

-Reese ) 

Embedded length of pile 

Moment 



Yield or ultimate moment resistance of 

the pile section 

ratio between coefficient of horizontal 

subgrade reaction and depth below surface 

slope of line between points m and u (p-y 

curve:sand) 

Coefficient of ultimate resistance 

(p-y curves) 

Power of the parabolic section (p-y curve 

sand) 

Coefficient, function of the unconfined 

compressive strength (Broms) 

Coefficient, function of the pile 

material (Broms) 

Lateral load 

Working load for single pile (Broms) 

Maximum allowable working load (Broms) 

Ultimate lateral load 

Load per unit length of pile 

Ultimate resistance from theory (p-y 

curve:sand) 

Ultimate resistance well below ground 

surface (p-y curve:sand) 

Ultimate resistance near ground surface 

(p-y curve:sand) 

Contact pressure corresponding to earth 

pressure at rest 



J'm m 

il: m 

Contact pressure on vertical face for 

horizontal displacement y o  

Contact pressure on area acted upon by 

active earth pressure 

Contact pressure on area acted upon by 

passive earth pressure ( =  pi + p) 

Axial load 

Unconfined compressive strength 

Slope of the pile 

Section modulus about an axis perpendicular 

to the load plane 

Relative stiffness factor (Matlock-Reese) 

Shear force 

Depth below ground surface 

Depth below ground surface to transition 

in coefficient of ultimate resistance 

equation (p-y curve:soft clay) 

Depth below ground surface to transition 

in ultimate soil resistance equation (p-y 

curve: sand) 

Displacement of pile 

Initial displacement, required for 

increasing the coefficient of earth 

pressure on a vertical wall from K O  to K. 

Deflection at point m (p-y curve: sand) 

Deflection of point k (p-y curve: sand) 



Deflection at one half the ultimate soil 

resistance 

Depth coefficient (Matlock-Reese) 

Unit weight of the soil 

Poisson's ratio 

Factor for cohesive soil (Broms) 

Factor for cohesionless soil (Broms) 

Dimensionless length factor for 

cohesive soil 

Dimensionless length factor for cohesion- 

less soil 

Strain corresponding to one ha.lf the 

maximum principal stress difference 

Angle of internal friction 

Overburden pressure. 

Pile rotation 



1. INTRODUCTION 

Large lateral loads and moments on superstructures 

caused by waves, winds, seismic forces, surcharges etc. are 

transferred to the desired soil strata by means of a single 

pile or a pile group. 

In designing piles for lateral load, the designer 

should avail himself of more than one method whenever 

possible. 

In this project a single active pile will be 

investigated. The deflection at the ground surface and the 

maximum moment in the pile will be calculated. This will be 

done for three different methods and the results will be 

compared for different types of cohesive soil 

(overconsolidated clay and normally consolidated clay), and 

for cohesionless soil (medium dense sand). However 

comparison with test result for calculated values is not 

possible because the examples are calculated by taking 

representative values for the properties of each type of 

soil . 
Many different methods for calculating the lateral 

capacity of piles are presented in the literature. Those 

selected here are the ones developed by Broms (1964a) and 

(1964b), Matlock-Reese (1961) and Poulos (1971). All these 

methods are well known and are widely used. 

In chapter two the methods are introduced and 

described. The theory on which they are based is reviewed, 

togerther with how the parameters are used in each method. 



In chapter three the example design problem is 

introd,uced and used are given. The deflection at the ground 

surface and the maximum moment in the pile are calculated 

for these methods. 

In chapter four the results are discussed and compared 

and explanation is sought when they do not agree. 



2. DESCRIPTION OF METHODS 

2.1 Introduction 

In this chapter the methods used are reviewed. First 

the subgrade reaction coefficient is explained, based mainly 

on the work of Terzaghi (1955) and McClelland and Focht 

(1958). The differential equation which the subgrade 

reaction method has as its basis is presented, togerther 

with how it is used for both the Broms method and the 

Matlock-Reese method. 

Broms (1964a and b) method is outlined both for 

cot.esive and cohesionless soil. The Matlock-Reese (1961) 

hacd solution is reviewed, and also the construction of p-y 

(soil reaction-pile deflection) curves which is necessary to 

use that method. Construction of p-y curves is based on 

Recse et.a1.(1975) for overconsolidated clay or stiff clay, 

on Matlock (1970) for normally consolidated clay or soft 

clay, and on Reese et.al. (1974) for cohesionless soil. The 

last method that is reviewed is the one by Poulos (1971) 

which is based on an elastic solution. The elastic analysis 

is discussed, followed by a description of how calculation 

is done by this method. 



2.2 Subgrade reaction method 

The coeffient of horizontal subgrade reaction k, is 

defined as the ratio between a horizontal pressure per unit 

area of vertical surface and the corresponding horizontal 

displacement. Thus it is a measurement of the ability of the 

soil to resist horizontal deformation. The value of k, 

depends on the elastic properties of the subgrade and on the 

dimension of the area acted upon by the subgrade pressure. 

Consider a pile which has been driven into or is buried 

in subgrade. Before any horizontal force has been applied to 

the pile, the surface of contact between the pile and the 

subgrade is acted upon at any depth x below the surface by a 

pressure p. which is equal to or greater than the earth 

pressure at rest. If the pile is moved to the right the 

pressure at the left side will drop to very small value and 

on the right side will increase from p, to pb. The lateral 

displacement y, required to produce this change is very 

small and can be neglected. After the pile has moved a 

distance y ,  the pressure at each side will be: 

left side (active state) p = O  (2.1) 

right side (passive state) p =pb+k,y, (2.2) 

The subgrade modulus of a stiff clay, k h ,  is generally 

considered to have the same value at every point of the 

subgrade contact, independent of depth. Therefore, at any 

time, the subgrade reaction p is almost uniformly 

distributed over the right hand face of the pile. However, 

due to progressive consolidation of clay under constant 



load, y, increases and k decreases with time. Both 

quantities approach an ultimate value, which is the value 

that Should be used in design. 

For cohesionless subgrade material the values of k,, and 

y, are independent of time. However, the elastic modulus of 

sand increases with depth, therefore the coefficient of 

subgrade reaction is determined by kh=mhx where x is the 

depth below subgrade and m is the ratio between coefficient 

of horizontal subgrade reaction and depth below surface. The 

value mh is assumed to be the same for every point of the 

surface contact (Figure 2 .1 ) .  

The width D of the pile also influences the horizontal 

displacement. For piles of diameter D, and nD, the lengths 

of the bulbs of pressure measured in the direction of 

movement of the pile are L and nL respectively (see Figure 

2 . 1 )  Furthermore in both clay and sand the modulus of 

elasticity is constant in the horizontal direction. Hence in 

clay as well as in sand the horizontal displacement y ' 

increases in direct proportion to the width D. 

2.3 Analytical design methods by subgrade reaction 

For solving laterally loaded piles the pile-soil system 

is treated as analogous to a beam on an elastic foundation. 

These analyses have as their basis the Winkler model, which 

assumes that a medium can be approximated by an infinite 

series of closely-spaced, independent springs. 



If we look at the elementary theory of bending, it is 

found that stresses and deflections in beams are directly 

proportional to applied loads. Looking at one element of the 

beam in Figure 2.2 and taking equilibrium, summing forces 

gives: 

which is the rate at which the shearing force changes with 

the distance x from the midpoint of the length of the beam. 

Summing moments about point n gives: 

If the effects of shearing deformation and shortening of the 

beam axis are neglected, the expression for the curvature of 

the axis of the beam is: 

dZ EI Y = -M 
dx' 

Combining these equations by substituion and differentiation 

yields: 

which is the basic differential equation for bending of beam 

columns. It is also used for laterally loaded piles where 

the shear force is corrected by subgrade reaction theory, 



and y increases approximately in proportion to the applied 

load. 

For cohesive soil the shear force is the horizontal 

pressure and is equal to: 

For cohesionless soil it becomes: 

bkcause modulus of elasticity increases approximately in 

direct proportion to depth. Therefore it is assumed without 

serious error that the pressure p required to produce a 

given horizontal displacement y increases in direct 

proportion to the depth as shown. Equation 2.6 then becomes: 

To solve this equation one must make assumptions concerning 

the end conditions and then determine the constants. 

Both Broms and Matlock-Reese use this equation for 

their solution. Broms assumes that the axial load is 

negligible compared to the buckling load, and he uses the 

shear force as previously described. Matlock-Reese use an 

iterative procedure to account for the non-linear behaviour 

relationship between pile deflection and soil resistance, 



until satisfactory compatibility is obtained between the 

predicted behaviour of the soil and the load-deflection 

relationship required by an elastic pile. 

2.4 Broms' theoretical-empirical method 

For the coefficient of horizontal subgrade reaction, 

Broms uses Terzaghi's values for cohesionless soils. For 

cohesive soil he established the following expression: 

The use of 80q, gives good agreement with Terzaghi's values 

The value n, is a function of the unconfined compressive 

strength q,,n, is a function of the pile material, and D is 

the pile diameter. The values of n, and n, are given in 

Table 2.1. The values of k, for cohesionless soil are given 

in Table 2.2 for both Terzaghi's and Reese's 

recommendations. 

For design Broms developed two basic design conditions, 

which are discussed below. 

2.4.1 Allowable lateral deflection at working loads 

Broms made the simplifying assumption that the axial 

load is negligible compared to the buckling load, and 

equation (2.6) thus reduces to 



He solved this 'equation for three pile conditions: 

1 )  Fixity: free-headed or restrained, 

2 )  Length: short, intermediate or long, 

3 )  Soil type: cohesive or cohesionless. 

He incorporated the criteria for various pile conditions in 

the corresponding equations and developed graphical 

relationships. From these curves it is possible to determine 

either the theoretical lateral deflection or the theoretical 

applied load if the other is known. Allowable lateral 

deflection or allowable load can then be determined by 

applying the appropriate adjustments. 

2.4.2 Ultimate or failure load 

This criterion assumes two modes of failure: 

1 )  shear in the soil in the case of short stiff piles, 

2 )  bending of the pile in the case of long piles (as 

governed by the plastic yield resistance of the pile 

section). 

In the case of long piles Broms assumed that the pile 

developed plastic hinges permitting sufficient rotation to 

mobilize the bending moments along the pile length. Based on 

these assumptions he treated the pile as a statically 

determinant beam with a distributed load corresponding to 

the particular condition. Below is a summary of the design 



procedure for Broms' method. Figures that are referred to 

are at the end of the chapter. 

Summary of Broms design method. 

STEP 1: 

Determine the general soil type (cohesive or cohesionless) 

within the critical depth below the surface (about four to 

five pile diameters D) 

STEP 2: 

Determine the horizontal coefficient of subgrade reaction k 

within the critical depth from equation (2.8) for cohesive 

soil, or by selecting an appropriate value from Table 2.2 

for cohesionless soil. 

STEP 3: 

Adjust kh for loading and soil conditions: 

a. Cyclic loading in cohesionless soil: 

1. k,= 1/2k, from Step 2 for medium to dense sand 

2. k,= 1/4k, from Step 2 for loose soil 

b. Static loads resulting in soil creep: 

1. Soft and very soft normally consolidated clays 

k,= (1/3 to 1/6) k, from Step 2 

2. Stiff to very clays 

kh= ( 1 / 4  to 1/2) kh from Step 2 

STEP 4: 

Determine pile parameters: 

a. Modulus of elasticity E 

b. Moment of inertia I 



c. Section modulus S about an axis perpendicular to the load 

plane 

d. Yield stress of pile material fy 

e. Embedded pile length L 

f. Diameter or width D 

g. Eccentricity of applied load e for free-headed piles 

- - i.e., vertival distance between ground surface and 

lateral load 

h. Dimensionless shape factor C, (for steel piles only): 

1. Use 1.3 for piles with circular cross-section 

2. Use 1.1 for H-section when the applied load is in the 

direction of the pile's maximum resisting moment 

(normal to pile flanges). 

3. Use 1.5 for H-section piles when the applied load is 

in the direction of the pile's minimum resisting 

moment (parallel to pile flanges) 

i. M , the resisting moment of the pile = C,f,S 

STEP 5: 

Determine factor B or 1:  

a. B = d m  for cohesive soil, or 

b. 9 = d z  for cohesionless soil 

STEP 6: 

Determine the dimensionless length factor: 

a. BL for cohesive soil, or 

b. qL for cohesionless soil. 

STEP 7: 

Determine if the pile is long or short: 



a. Cohesive soil 

1. ,!3L > 2.5 (2.25) (long pile) 

2. flL < 2.0 (2.25) (short pile) 

3. 2.0 < ,!3L < 2.5 (intermediate pile) 

b. Cohesionless soil 

1. YL > 4.0 (long pile) 

2. qL < 2.0 (short pile) 

3. 2.0 < qL < 4.0 (intermediate pile) 

STEP 8: -- 
Determine other soil parameters: 

a. Rankine passive pressure coefficient for cohesionless 

soil Kp=  tan2(45 + 6/2), where 6 = angle of internal 

friction. 

b. Average effective soil unit weight y over embedded 

length. 

c. Cohesion Cu= one-half the unconfined compressive 

strength q,/2. 

STEP 9: 

Determine the ultimate (failure) load P, for a single pile: 

a. Short Free- or Fixed-Headed Pile in Cohesive Soil 

Using L/D (and e/D for free-headed case), enter Figure 

2.5a, select the corresponding value of PU/C,D2, and 

solve for P, . 
b. Long Free- or Fixed-Headed pile in Cohesive Soil 

Using My;.ld/CuD3 (and e/D for free-headed case), enter 

Figure 2.5b, select the corresponding value of Pu/C,D2, 

and solve for P, . 



c. Short Free- or Fixed-Headed Pile in Cohesionless Soil 

Using L/D (and e/L for the free-headed case), enter 

Figure 2.6a, select the corresponding value of Pu/ KpD3y, 

and solve for P, . 
d. Long Free- or Fixed-Headed Pile in Cohesionless Soil 

Using Myield/D'yKp, (and e/D for the free-headed case), 

enter Figure 2.6b select the corresponding value of P,/ Kp 

D3y, and solve for Pa. 

e. Intermediate Free- or Fixed-Headed Pile in Cohesionless 

Soil 

Calculate P for both a short pile (Step 9c) and a long 

pile (Step 9d)  and use smaller value. 

STEP 10: 

Calculate the maximum allowable working load for a single 

pile P, from the ultimate load P, determined in Step 9: 

P,= Pu/2.5 

STEP 1 1 :  

Calculate the working load for a single pile Pa 

corresponding to a given design deflection y at the ground 

surface, or the deflection corresponding to a given design 

load. If P, a n d y  are not given, substitute the value of Pm 

from Step 10 for Pa in the following cases and solve for y,: 

a. Free- or Fixed-Headed Pile in Cohesive Soil 

Using pL (and e/L for the free-headed case),enter Figure 

2.3, selecting the corresponding value of ykhDL/P,, and 

solve for Pa or y. 



b. Free- of Fixed-Headed Pile in Cohesionless Soil 

Using nL (and e/L for the free-headed case), enter Figure 

2.4, select the corresponding value of y (EI ) d5k'fS/pa L, 

and solve for Pa or y. 

STEP 12: 

If Pa> P,, use P, and calculate y, (Step 1 1 )  

If Pa < P,, use Pa and y. 

If Pa and y are not given,use P, and y,. 

STEP 13: 

Reduce the allowable load selected in Step 12 to account for 

method of installation: for driven piles use no reduction, 

and for jetted piles use 0.75 of the value. 

2.4.3 Moments by Broms method 

The mode of failure of laterally loaded pile depends on 

the depth of embedment and on the degree of end restraint. 

For short piles failure takes place when the soil 

yields along the total length of the pile, and the pile 

rotates as a unit around a point located at some depth below 

ground surface (in the case of a free head pile) Restrained 

failure takes place when the applied load Is equal to the 

ultimate lateral resistance of the soil, and the pile moves 

as a unit through the soil. 

For long piles the mechanism of failure is when a 

plastic hinge forms at the location of the maximum bending 

moment. Failure takes place when the bending moment is equal 



to the moment resistance of the pile section (for free-head 

piles). Restrained pile failure takes place when two plastic 

hinges form along the pile. The two plastic hinges form when 

the maximum positive bending moment at depth f or (1.5D + f) 

below ground surface, and the maximum negative bending 

moment at the bottom of the pile cap or lateral bracing 

system, both reach the yield resistance of the pile section. 

For the case of a restrained pile, an intermediate 

length of pile has also to be taken into account. In this 

case failure takes place when the restraining moment at the 

head of the pile is equal to the ultimate moment resistance 

of the pile section, and the pile rotates around a point 

located at some depth below the ground surface. 

The maximum moment occurs at the depth below surface 

where the shear force in the pile is equal to zero, at depth 

(f + 1.5D) for cohesive soil and f for cohesionless soil. 

Cohesive soil: 

The distance f and the maximum bending moment M,,, can 

be calculated from the two equations 

P f = -  and = P(e + 1.5D + 0.5f) (2.9) 
9Cu D M,,, 

Cohesionless soil: 

Here it has been assumed that lateral deflections are 

sufficiently large at failure to develop the full passive 

resistance (equal to three times the passive Rankine earth 

pressure), from the ground surface to the location of 



maximum bending moment. Thus we have for free-head piles: 

£ = 0 . 8 2 J m  and ME= P(e + 0.67f) + Qa (2.10) 

2.5 Matlock-Reese hand solution 

2.5.1 Deflections 

When using this method a set of p-y curves are needed. 

Here they will be constructed semi-empirically for a static 

loading condition and will be described in next section. 

The primary solution will consist of finding the set of 

elastic deflections of the pile (including the short jacket 

leg extension) which will simultaneously satisfy: 

1 )  the non-linear resistrance deformation relations 

which are predicted for the soil, 

2) the elastic bending properties of the piles, 

3) the angular stiffness of the upper structure at the 

pile to structure connection. 

The force-deformation characteristics of the soil are 

described by a set of predicted p-y curves. In Figure 2.7 

there is a graphical definition of p-y curves and in Figure 

2.6 there are typical resistance curves for soil at various 

depths. Since solution for the interaction problem relies on 

repeated applications of elastic theory, a secant modulus of 

qrril reaction E, is required, which is defined as E,  = -p/y. 



This is only a computation device which is generally 

independent of pile size and depends primarily on soil 

properties (not a unique soil property). 

The differential equation for a beam is: 

This is the same equation as used for Broms' method. Here 

this equation is solved by trial and error by estimating the 

value of T, relative stiffness factor, until T&fa;m/is equal 

to Ttried. Then correct set of E, are found and deflection 

and bending moments are computed. 

In this solution the deflection y of the pile at any 

depth x is: 

where A T ,  By are functions of z = x/T, relative stiffness 

factor T is T 5  = EI/k, and subscript t refers to the pile at 

the top. 

It is convenient to define an additional set of 

nondimensional deflection coefficients by rearranging 

equation (2.11) as: 

Pt T3 
y = Cy-  w i  

E I 
where C,,= A y +  - 

P, T 
(2.12) 

To begin the solution of the example problem it is necessary 

to assume temporarily that the form of soil modulus 



variation E,= kx will be a satisfactory approximation of the 

actual final E, variation. Available non-dimensional 

solutions are limited to a pile of constant bending 

stiffness. 

The slope at the top of the pile is: 

where subscript s stands for shear and subscript t for at 

top. 

The relation between Mt and St is: 

Combining these two equations yields: 

M A s t  T 2 = - 
P" ~ - B ~ ~ T  

3.5 

Since the relative stiffness factor T depends on the 

coefficient of soil modulus variation k and this quantity in 

turn depends on non-linear resistance characteristics, the 

solution must proceed by a repeated trial and adjustments of 

the values of T (or k )  until the deflection and resistance 

patterns of the pile agree as closely as possible with the 

resistance-deflection (p-y) relations previously estimated 

for the soil. Even though the final set of secant modulii (E, 

= - p/y) may not vary in a perfectly linear fashion with 



depth, proper fitting of E,= kx will usually produce 

satisfactory solutions. 

The steps in the Matlock-Reese method are as follows: 

Calculations are made for certain depths x 

Estimate the first value of T (trial value) 

Calculate z = x/T 

Find the coefficients A y  and B5, given in Table 2.3 

(or find Cy) 

Calculate y from equation (2.11) 

Find p for this y from p-y curves 

Calculate E, = -p/y 

Set up a graph E, vs x and find k from this graph 

(see Figure 2.9), and giving more weight to points at 

depth less than x = 0.5T. 

9) Calculate T . ~ f ~ ; ~ ~ d  = ' 

10) Compare T~f~;"~dand Tt,;,/ and when they are the same 

the trial and error process is completed. Use a 

graph of T,,, vs T,bf,;& (see Figure 2.10. ) The final 

set of computations for the E value is made as a 

check. 



2 . 5 . 2  Moments 

Computations of values of bending moments along the 

pile are made by application of the equation: 

The non-dimensional coefficients A and B are found in 

Table 2.2. Subscript m refers to moments. 

2 . 6  Construction o f  p-y curves. 

2 . 6 . 1  Overconsolidated clay (Reese and Welch 1975) 

The step by step procedure for this material is: 

1 )  Obtain the best possible estimate of the variation 

of shear strength and effective unit weight with depth, 

and of the value of E , , ,  the strain corresponding to 

one-half the maximum principal stress difference. If no 

value of &,, is available use a value of 0.005 or 0.010, 

the larger value being more conservative. Here the lower 

value will be used, I?,,= 0.005 (Reese and Welch). 

2 )  The ultimate soil resistance p is computed according to: 



and the smaller value is used for each depth. 

3 )  Compute displacement y,, at one-half the ultimate soil 

resistance. 

y,. = 2.5D6,, 

4) The points on the curve are now computed by: 

(Beyond y = 16y,,, p = p, for all values of y )  

2.6.2 Normally consolidated clay (Matlock 1970) 

The steps are the same as for overconsolitated clay but 

the values and equations are different. The procedure given 

here is for submerged clay soils, which are normally 

consolidated or slightly overconsolidated. 

1 )  Here the value of e , ,  may be assumed to be between 0.005 

and 0.020, the smaller value being more applicable to 

brittle or sensitive clay and the larger value to 

disturbed or remolded soils or unconsolidated sediments. 

An intermediate value of E , ,  = 0.010 is probably 

satisfactory for most purposes. 



2) Ultimate resistance. 

If soft clay soil is confined so that plastic flow 

around a pile occurs in horizontal planes, the ultimate 

resistance per unit length of pile may be expressed as: 

p, = N,, G D (2.20) 

where 

9 at a considerable depth below the surface 
x 

N = 3 + + J - (between the free soil surface 
L'4 0 

and depth the variation is 

described by this equation) 

2-4 very near the surface in front of the pile 

3 (for a cylindrical pile, this is believed to 1 
be appropriate) 

The value of J should to be determined empirically. 

Here the value of J = 0.5 will be used as it is 

considered to be appropriate for this type of clay. 

3 )  Compute y,, using Skempton's approach 

4 )  The points on the curve are now computed by 

Beyond y = 8y,,, p = p, for all values of y. The final 



shape of the p-y curve of clay is shown in Figure 2.11 

for normally consolidated clay. The shape for 

overconsolidated clay is almost the same but the power in 

the equation is different. 

2.6.3 Cohesionless soil (Reese, Cox and Koop 1974) 

For construction of p-y curves for sand, the outline 

from Reese et.a1.(1974) is used. The method is based on 

theory as well as empiricism. 

Recommended procedure: 

1) Obtain soil properties and pile dimensions 6 ,  y ,  D 

2 )  Use the following parameters for computing soil 

resistance: 

d a = -  4 0 , f l  = 45 + T ,  K, = 0.4, Ka= tan1(45-7) 

3 )  The following equation are used to calculate soil 

resistance: 

a )  Ultima~te resistance near ground surface: 

KO H tan@s;np + f a n  P 
PC+= YH( tan$-4)ro# (D+HtanBtana) + taofp-b)  

b) Ultimate resistance well below the ground surface. 

gd= KaDyH(tan8fi-1) + K,DyHtan$tan'B (2.24) 



4) Find the intersection xt of two above equations pd= pcd 

5) Select depths at which p-y curves are desired. 

6 )  Establish y, = 3b/80 and p, = Ap, , where A is an 

empirical adjustment factor given in Figure (2.10a) 

7) Establish y, = b/60 and p,= Bp, , where B is an 

empirical adjustment factor given in Figure (2.10b). 

8 )  Establish the slope of the initial portion of the p-y 

curve by selecting the appropriate value of kh. 

9) Parabola to be fitted between points k and m 

p = cy'ln 

10) Fit the parabola between these points : 

a) Slope of line between u and m: m = P d m  
Yu-Yrn 

b) The power of the parabola n: n = 9rr 
"Y" 

C) Obtain C as follows: C = fk y % 
c n/n-l d) Determine point k as: Y,= (k7;) 

e) Use the equation in step 9 to compute the points. 

The final shape of the p-y curve is given in Figure 2.12 

2.7 Poulos method 

2.7.1 Elastic analysis 

The methods previously discussed are based on the 

Winkler model or spring medium, and the continuity of the 

soil is not taken into account. In this method it is assumed 

that the soil is an elastic mass and an ideal homogeneous, 

isotropic, semi-infinite elastic material, having a Young's 



modulus E and Poisson's ratio y, which are unaffected by 

the presence of the pile. 

In this analysis the pile is assumed to be a thin 

rectangular strip of width D ( or if circular the diameter 

is used instead of the width), length L and having constant 

flexibility EXp. 

For an elastic condition the horizontal shear stress 

developed between the soil and the sides of the pile is not 

taken into account. The pile is divided into elements all of 

equal length except the top and bottom elements which are of 

half length. Each element is acted upon by a uniform 

horizontal stress p which is assumed to be constant across 

the width of the pile. 

For this condition the horizontal displacement of the 

soil and of the pile are equal along the pile (for purely 

elastic conditions). In this analysis the soil and pile 

displacements are evaluated and equated at the element 

center, except for the top and bottom elements where 

displacements are calculated by equating soil and pile 

displacements at these points. Using the appropriate 

equilibrium conditions, sufficient equations are qbtained to 

solve for the unknown horizontal displacement at each 

element. 

Two conditions of practical interest at the pile head 

are considered: 

1 )  a free-head pile, free rotation occurs 

2 )  a fixed-head pile, no rotation occurs 



Two major variables influencing pile behaviour are the 

length to diameter ratio L/D and a factor K R ,  herein known 

E I as the pile flexibility factor K R  = *, a dimensionless 
E L  

measure of the flexibility of the pile relative to the soil. 

2.7.2 Calculation of displacement 

Calculations by this method are performed by using 

charts. Displacement and rotation are expressed in terms of 

dimensionless influence factors which are function of the 

pile flexibility factor K . The length to diameter ratio is 
relatively small so y,= 0.5 may be used for all conditions. 

The horizontal displacement is expressed as: 

for a f ree-head pile P rvl 
Y = +fJT + I -  

YM EL 

for a f ixed-head pile P y = I  - 
YF E L  

The rotation 8 for a free-head pile is: 

Values of Iy,, are given in Figures 2 . 1 4  to 2 . 1 7 .  From theory 

IyM and I,M should be the same but this is not quite true. 

The difference is usually 5% except for very flexible piles 

where it is 10 to 1 5 % .  This discrepancy indicates the order 

of accuracy of the corresponding values of Is,. 



2.7.3 Calculation of moments 

Moments are calculated by charts of K and L/D. From 

these charts the value M/PL is obtained from Figure 2.18 for 

free-head piles and Figure 2.19 for fixed-head piles. For 

free-head piles the maximum moment is at depth of 0.1L to 

0.4L below the surface, the lower value being associated 

with stiffer piles. For fixed-head piles the maximum moment 

is at the head of the pile except if  the pile is very 

flexible. 



Figure 2.1 - Distribution of lateral pressure a) in stiff, 
clay b) in sand, c )  influence of width of beam 
on dimensions of bulb of pressure (Terzaghi 
1955). 

Figure 2.2 - a )  Beam coulumn under lateral load b) force on 
one element of the beam coulumn (Terzaghi 
1955). 
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Figure 2.3 - Cohesive soil - Lateral deflections at ground 
surface (Broms 1964a) 
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Figure 2.4 - Cohesionless soil - Lateral deflections at 
ground surface (Broms 1964b). 
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Figure 2.5 - Cohesive soil - Ultimate lateral resistance 
a) short piles, b )  long piles (Broms 1964a) 



Figure 2.6 - Cohesionless soil - Ultimate lateral resistance 
a )  short piles, b) long piles (Broms 1964b) 



Figure 2.7 - Graphical definition of p-y: a) pile elevation 
b) view AA - earth pressure distribution prior 
to lateral loading c) view AA - earth pressure 
distribution after lateral loading d) p-y 
curves, (Reese et.al. 1974). 

Figure 2.8 - Typical resistance-deflection curves predicted 
for soil at various depth, (Matlock-Reese 
1 9 6 1 )  



Figure 2.9 - Trial plots of soil modulus values, 
(Matlock-Reese 1961). 

Figure 2.10 - Interpolation for final value of relative 
stiffness factor T, (Matlock-Reese 1961). 



Figure 2.11 - Characterstic shapes of p-y curves for 
soft clay short term static loading, 
(Matlock 1970). 

Figure 2.12 - Typical family of p-y curves for proposed 
criteria in cohesionless sand (Reese et.al. 
1974). 



Figure 2.13 - Non-dimensional coefficients for ultimate soil 
resistance vs depth for sand a )  coefficient A, 
b) coefficient B, (Reese et.al. 1974). 
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Figure 2.14 - Influence factor Iyp - Free-head pile, 
(Poulos 1971). 
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Figure 2.15 - Influence factor Iy,, and Isp - 
(Poulos 1971). 

Free-head pile, 

Figure 2.16 - Influence factor IyF - Fixed-head pile, 
(Poulos 1971). 



Figure 2.17 - Influence factor I,, - Free 
(Poulos 1971). 

-head pile, 

Figure 2.18 - Maximum moment in free-head pile, 
(Poulos 1971). 



Figure 2.19 - Fixing moment at head of fixed-head pile, 
(Poulos 1971). 



Table 2.1: Evaluation of the coefficient n ,  and n,, 
(Broms 1964a) .  

Unconllnd Compressive Strength q,,, tms 
per square foot 

Lees than 0.5 

0.5 to 2.0 

Larger than 2.0 
2 

Cosfficlent nl 

0.32 

0.36 

0.40 - 
Pile Material 

I 
I Coefflclent na 

Table 2.2: Coefficient of horizontal subgrade reaction k , 
(Reese et.al 1974). 

Steel 

Concrete 

Wood 

TERZAGHI'S VALUES OF k FOR SUBMERGED SAND 

1.00 

1.15 

1.30 

R e l a t i v e  D e n s i t y  Loose Medi um - Dense 

3 
Range o f  Values o f  k ( l b s / i n  ) 2.6 - 7 .7  7.7 - 26 26 - 51 

RECOMMENDED VALUES OF k FOR SUBMERGED SAND 

( S t a t i c  and C y c l i c  Loading)  

R e l a t i v e  D e n s i t y  Loose Med i um 

3 
Recommended k ( l b s l i n  ) 20 60 

Dense 

125 



Table 2.3: Coefficients and equations for Matlock-Reese hand 
solution, (Matlock-Reese 1 9 6 1 ) .  



3 .  CALCULATIONS 

3.1 Introduction 

In this chapter the deflection at ground surface and 

maximum moment for a certain pile will be calculated by the 

previously described methods. First the parameters for both 

the soil and pile are given and the results of the 

calculations for each method are given. Finally a summary of 

the calculations is given at the end of the chapter. 

3.2 Dimensions of pile and properties of soil 

For the three different types of soil the dimensions 

and properties of the soil are assumed the same. The pile is 

assumed to be of reinforced concrete, having a circular 

cross section. 

Figure 3.1 EI = 5.6682 10SkNmZ 
Example calculated. 

The values of the soil parameters are given in Table 3.1. 



Table 3.1 -- Soil parameters used in example 

3.3 Broms method 

This method is described in section 2.4. Here 

calculations are made for a certain force so steps 9 and 10 

are omitted. The results from the calculations are 

summarized in Table 3.2 and all equations and figures used 

are found in Chapter 2. 

3.4 Calculation of p-y curves 

To be able to use the Matlock-Reese hand solution a set 

of p-y curves is needed, so they will be constructed first. 

For this, calculations are done for certains depths: here 

the selected depths are x = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 

5.0 m. 

over- 
consolidated 

clay 

normally 
consolidated 

clay 

30kPa 

~ 

2 0 kN/m ' 

15kPa 

- 
.. 

940 kN/m2 

unconfined 
compressive 
strength 9 
- 

unit weight y 
-. 

cohesion Cu 

angle of 
internal 

friction 6 

modulus of 
elasticity E 

cohesion- 
less 
soil 

- 

1 9kN/m3 

- 

30' 

3447 kN/m2 

lOOkPa 

-- 

20kN/m3 

5OkPa 

- 

3500kN/m2 



43 

Table 3.2 -- Calculation of y and M by Broms Method. 

3.4.1 Cohesive soil 

For overconsolidated soil the procedure is described in 

section 2.6.1. First the value of P is calculated according 

to equations (2.17a) or (2.17b) and the lower of the two 

values is used in the analysis. The value of y s O  is computed 

according to equation (2.18) where E , ,  = 0.005. 

The curves are generated using equation (2.19). Beyond y = 

n,n280q, 
k; = 

D 

k; (kN/m3 ) 

kh=(l-1/3)k1 

@ I  'I 

normally 
consolidated 

clay 

n, = 0.32 
n, = 1.15 
q = 30kPa 

1104 

368 

0.1067 - ~ 

1.71 

short 

over- 
consolidated 

clay 

n, = 0.36 
n, = 1.15 
q = lOOkPa 

4140 

1380 

0.1485 

cohesion- 
less 
soil 

Use Reese 
recom. 

16290 
-. 

16290 

~. 0.4917 

7.87 

long 

f 

M (kNm) 

@L, qL (m) 
-- 

length 
- 

e/L 

Y kh DL/P 

y ( EI ) 3/s k$/' /PL 

y (m) 

2.38 

interm(1ong) 

0.05 
~. .- 

5.7 

- 

0.0645 

0.05 0.05 
~. 

4.8 

- 
.- 

0.2038 

1.717 

390.0 

0.556 

455.6 

- 

0.4 
- 

0.00943 

1.85 
-- 

585.2 



16y,,, p = p, for all values of y. 

The values of p versus y are given in Table 3.3 for 

overconsolidated soil and plotted in Figure 3.2. 

Table 3.3 - -  Calculation of p for each depth and deflection 
Overconsolidated clay (unit kN/m) 

For normally consolidated clay the procedure is given 

in section 2.6.2 and equation (2.20) is used for calculation 

of p, where: 

3 very near the surface 

rr, X N p =  3 + - + J- from surface fo depth x, 
C u  D 

9 below depth x, i 



OSE 082 012 Ofi I DL 0 

'(V/NY) d 'a2uelsTsaJ TTOS 



where depth x, is found by equating the two lasts parts for 

N that is: 

The value of y,, is computed by using equation (2.18) and 

here the value of E , ,  used is 0.010. 

Equation (2.21) is used to generate the curves beyond y = 

8y5, and p = p,. 

The values of p versus y for normally consolidated soil are 

given in Table 3.4 and the plotted in Figure 3.3. 

3.4.2 Cohesionless soil 

The step by step procedure for calculating the p-y 

curve for sand is given in section 2.6.3 and the calculated 

values for each step are given here: 

1 )  From Table 3.1 the soil parameters and pile dimensions 

are: d = 30°, y = 19kN/m2, D = 0.8m. 

2) cr = 15', B = 6O0, K O =  0.4 and K,= tanz30 

3-4) Find x, - found by equating equation (2.22) and equation 
(2.23); x = 10.913m and p, is calculated for 

selected depths in Table 3.6. 

5 )  The selected depths are the same as before x = 0, 0.5, 

1.0, 1.5, 2.0, 2.5 and 5.0m. 

3 D 6) yu= - = 0.03m and p,= Ap, 
80 







D - - 7 )  Ym= 60 - 0.0 133m and p,= Bp, 

where A and B are taken from Figure 2.10 and given in 

Table 3.5. 

8) The slope of the initial portion of the p-y curve is k,,x 

where k,= 16290kN/m3. 

9) Between points k and m equation (2.25) is used to 

generate the points (see Figure 2.12). 

10) Constants m, n, C, y are calculated for each depth and 

they are given in Table 3.6. 

The p-y curves for cohesionless soil are given in Figure 

3.4. 

Table 3 . 5  -- Coefficient A and B from Figure 2.13 

depth x 

0.0 

0.5 
-- - 

1.0 

1.5 

2.0 

2.5 
.- 

5.0 

x /D 

0.000 

0.625 
-. 

1.250 

1.875 

2.500 - 
3.125 

.. 

6.250 

A 

2.87 

2.38 

1.95 

1.57 

1.22 

1.00 

0.88 

B 

- 

2.14 

1.78 

1.38 

1 . 1 1  

0.84 
P 

0.68 

0.50 
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3.5 Matlock-Reese hand solution 

3.5.1'Deflections 

The procedure for this method is given in section 2.5.1 

and the results of calculations are given in Tables 3.7 to 

3.9 for overconsolidated clay, normally consolidated clay 

and cohesionless soil respectively. This method is an 

iterative procedure. The results of the iterations are 

presented in Figures 3.5 to 3.8 and in Tables 3.7 to 3.9. 

3.5.2 Moments 

Here the moment at the top of the pile is M = 0. The 

maximum moment in the pile thus occurs when Am is maximum, 

which is Am=0.772 at z = 1.4. The maximum moment for the 

three soil types are given below. 

Overconsolidated clay: 

M,,,= A,PtT = 0.772 200 3.10 = 478.6kNm 

at depth x = 1.4T = 4.34m 

Normally consolidated clay: 

M,,, = 0.772 200 4.25 = 656.2kNm 

at depth x = 5.95m 

Cohesionless soil: 

M,, = 0.772 200 2.15 = 332.0 kNm 

at depth x = 3.01m 



Table 3.7 -- Calculation of y by Matlock-Reese method. 
Overconsolidated clay. 

I 

5 

2.5 

3.0 

x 

0.0 

0.5 - 
1.0 

1.5 
-- 

2.0 

2.5 

5 .0  

0.0 - 
0.5 

1.0 

1.5 

2.0 -- 
2.5 

5.0 

0.0 

0 .5  

1.0 - 
1.5 

2.0 

2.5 

5.0 

Z=X/T 

0.0 
----- 

0.1  

0.2 
-- 

0.3 

0.4 

0 .5  

1.0 

0.0 

0.2 

0.4 

0 .6  

0.8 

1.0 

2.0 

0.000 
-- 

0.167 

0 .333 

0.500 
-- 

0.667 

0 .833 -- 
1.667 

A Y 

2.435 1 
- 

2.273 

2.122 
. 

1.952 
- -- 
1.796 

1.664 
- 

0.962 

2.435 

2.112 
-- 

1.796 

1.496 

1.216 

0 .962 
- -- 

0.142 

2.435 

2.171 
- 

1.901 

1.664 
- 

1.400 

1.173 

0.336 

Y 

0.1074 

0.1003 
- -- 

0.0936 
- . 

0 .0861 
- - -. 

0.0792 

0 .0725 

0.0424 

0.0143 

0.0116 

0.0099 

0 .0083 

0.0067 
-- 

0.0053 
- 

0.00078 

0.0232 

0 .0207 

0.0181 
-- 

0.0159 

0.0133 

0.0112 
- 

0.0032 

E 

1005 
- 

1246 

1486 

1812 

2147 

2524 

5495 

4701 

6271 

7980 

10424 

13731 

18302 

95785 

3147 

4058 

5193 

6415 

8120 

10089 

37813 

-P 

108 
-- -- 

125 
.- 

140 
- 

156 
- 

170 

183 

233 

63 
- 

73 

79 

8 6  

92 

97 

7 5  

73 

84 

94 

102 

108 

113 

121 

comments 

kobt  = 

562.5 

T,bt = 4 

kobt = 

3409 

T,bt=2.78 

k t  = 

2 184.2 

%bt-3.04 

0.k. 

Z,.,=5.33 



Table 3.8 -- Calculation of y by Matlock-Reese method. 
Normally consolidated clay. 

T o  x 

0.0 

0 . 5  

z = x/T 

0 . 0  

0.1 
~ ~ ~~~- 

267 .4  

T,bf = 

4 . 6  

k.bt = 

1313 .4  

Zb t  = 

3.4 

E 

2 8 8  

4 0 9  
. 

1.0 0.2 2 .112  0 .0932  4 9  5 2 6  
. - 

5  1.5 0 . 3  1.952 0 .0861  5 8  

A y  

2 . 4 3 5  

2 .273  
-- 

comments 

kobt = 

~. ~ ~ 

Y 

0.1074 

0 .1003  
-~ . --- 

7 0 3 6  

2 4 3 5 8  

- P  

3 1  
-- 

4 1  

6 7 4  

3 . 0  

5 .0  

1.2 -- 
2.0 

2 . 0  0.4 

3 3  

1 9  

0 . 7 3 8  

0 . 1 4 2  

1.796 
- 

1.664 2.5 

0 .0047  

0 .00078  

~~.~~ 

0.5 

0 .0792  

0 . 0 7 2 5  

1197  

1 6 2 7  

1194  
-. 

1724  

2 3 7 4  

3 1 5 2  

4 3 2 8  

5 8 4 9  

3 .0  
- 
5.0 

0.0 

0 . 5  

1.0 

6 6  
~ 

7 3  

0 . 6  1 .496  0 . 0 6 6 0 7 9  

8 3 3  
~~ --.- 

1007  

~~~ 

1 .0  

0.0 
~ . .  

0 . 2  
. 

0.4 

2 .5  

0 . 9 6 2  

2 .435  
~~ 

2 6  
.- 

3 1  

1.496 
- - 

1.5 
-. 

2 .0  

2 .5  

0 .0424  

0 .0134  

0 .0083  
~. 

0.6 

0 .8  

1.0 

~- 

6 9  

1 6  
. 

20  

24  

2.112 

. 
1.796 

1.216 

0 .962  

0 . 0 1 1 6  

0 . 0 0 9 9  

0 . 0 0 6 7 2 9  

0 .0053  



Table 3.8  -- continued 

-P  

27 

34 
- 

42 

48 

55 

60 
- 

64 

E 

409 
--. 

559 

754 

949 

1204 
.... 

1463 

1758 
-..-- 

2609 

I 

4.25 

comments 

k.bf = 

419.4 

'Gbt = 

4.23 ok 

Z ~ . X =  

3.76 

x 

0.0  

0 .5  
-. 

1.0 
. 

1.5 -~ 
2.0 

--- 
2 .5  

---- 

3.0 

5 .0  

= x/T 

0.0 
~- 

0.1176 

0.2353 
~p 

0.3529 

0.4706 

0.5882 
~ 

0.7059 

1.1765 

A y  

2.435 
- 

2.245 
~ 

2 .056 
-. 

1.869 

1.689 

1.513 

1.345 

0.764 

Y 

0.0660 

0.0608 
---- 

0.0557 

0.0506 
- 

0.0457 
-- 

0.0410 
~ 

0.0365 
- 

0 . 0 2 0 7 5 4  



Table 3.9 -- Calculation of y by Matlock-Reese method. 
Cohesionless soil. 

comments 

k o b f  = 

1692 

T o b t  = 

3.20 

k , b f  = 

9230 

T,bt= 

2.28 

kobt = 

11875 

T,M =2.17 

&~.ar = 

7.44 

T  

5 

2.5 

2.15 

x 

0.0 

0 .5  

1.0 

1.5 

2.0 

2.5 

0.0 - 
0.5 
.- 

1.0 

1.5 

2.0 

2.5 

0 .0  

0.5 

1.0 

1.5 - 
2.0 

2.5  

= x/T 

0.0 

0 .1  
~ 

0 .2  

0.3 
- ~ -  

0 .4  

0.5 

0 .0  

0.2 
---- ~ 

0.4 
- - .. 

0 .6  

0.8 

1.0 

0.0 

0 .2326 
- 

0.4651 

0.6977 

0.9302 

1.1628 

AI 

2.435 

2.273 

2.112 

1.952 
~~ 

1.796 

1.644 

2 .435 
-- 

2.112 
~- 

1.796 

1.496 
~ 

1 .216 

0.962 

2 .435 

2.0598 
- 
1.6970 

1.3563 
- 

1.0486 

0 .7797 

Y 

0.1074 

0.1003 

0.0932 

0.0861 

0 . 0 7 9 2 2 7 6  

0 .0725 

0.0134 

0.0116 - 
0.0099 

0.0083 
~ 

0.0067 
~... 

0.0053 

0.0085 
- 

0.0072 

0.0060 

0.0048 
-- 

0.0037 

0.0027 

- P  

0 

70 

150 

224 

328 

0 

50 

95 

135 

147 

155 

0 

44 

80 

111 

123 

130 

E 

0 
- 

697 

1608 
~- 

2599 

3487 

4530 

0 

4310 

9596 

16364 
~ 

21940 
. 

29245 

0 

6111 

13445 

23319 



3 - 

m - 

Final T = 2.15 m 
N - - 

- - - 

R Overconsolidated clay 

@ Normally consolidated clay 

A Cohesionless s o i l  
0 

0 1 2 3 11 5 

T - t r i e d  (rn) 

Figure 3.5 - Interpolation for final value of relative 
stiffness factor. 









3.6 Poulos method 

This method is described in section 2 . 7  and all graphs 

needed for this Calculations are given there. The results of 

the calculations are given in Table 3 .10 .  

Table 3.10 - Calculation of y and M by Poulos method. 

Ep Ip ( kNm2 ) 
- 

E (kN/m2) 

L (m) 
~ ~~.~ 

K e 
-~ 

L/D 
-. 

IYP 

y (m) 
. ~ . 

M/PL 
- - 

M (kNm) 

cohesion- 
less 
soil 

5 . 6 6  10 '  
~ ~ 

3 4 4 7  
-. . - 

1 6  
- . 

0 . 0 0 2 5 1  

20  
~... . 

6 . 8  
-. 

0 .0247  
- 

0 . 0 6 4  

2 0 4 . 8  

over- 
consolidated 

clay 

5 . 6 6  10 '  

3500  

1 6  

0 .00247  

2 0  
~ 

6 . 8  

0 .0242  

0 . 0 6 3  

2 0 1 . 6  

normally 
consolidated 

clay 

5 . 6 6  10 '  
~ ~,. 

940  
- 

1 6  
-~ 

0 .00920  
. 

20  

5 . 0  

0 . 0 6 6 5  

0 . 1 0 3  

3 3 0 . 7  



3.7 Summary of results. 

Table 3.11 is a summary of results for all methods for 

deflections at ground surface y and the maximum moment M 

that occurs in the pile. 

Table 3.11 -- Summary of results using different 
methods. 

A .  Deflection (unit m) 

B. Moment (unit kNm) 

cohesion- 
less 
soil 

0 . 0 0 9 3  

0 . 0 0 8 8  ~- 
0.0247  

normally 
consolidated 

clay 

0 .2038  
~ 

0 . 0 6 6 0  
~~-~ 

0 . 0 6 5 2  

over- 
consolidated 

clay 

Broms 

Matlock-Reese 

Poulos 

cohesion- 
less 
soi 1 

3 9 0 . 0  

3 3 2 . 0  

204 .8  

0 .0645  
- 

0 . 0 2 3 3  

0 .0242  

normally 
consolidated 

clay 

585.2  

over- 
consolidated 

clay 

Broms 455.6  

Matlock-Reese 

Poulos 

4 7 8 . 2  

2 0 1 . 6  

6 5 6 . 2  
- 

3 3 0 . 7  



4. DISCUSSION OF RESULTS 

4.1 Introduction 

In the two previous chapters three different methods 

were introduced for calculating deflection and maximum 

moment for laterally loaded piles, and example calculations 

were presented in Chapter 3. A summary of the results is 

given in Table 3.11. In this chapter an explanation of the 

results will be sought. 

4.2 Cohesionless soil 

For cohesionless soil the deflection calculated by the 

Broms method and Matlock-Reese method compare fairly well 

with each other but Poulos method gives over 2 times greater 

values. The moment calculated by Poulos method is lower than 

calculated by the other methods. The explanation lies in 

that for the Poulos method a constant value of Youngs 

modulus E is used which is not valid for cohesionless soil. 

When constant value of Youngs modulus is used the subgrade 

reaction method agrees better with test results, for example 

Gleser result, than does the elastic solution with constant 

E (Pise 1972). This is true for both deflections and 

moments. 

Using an increasing modulus E of the soil with depth 

is more realistic than using a constant value. But an 

elastic solution with variable E equivalent to the Mindlin 



solution, which Poulos method is based on, for constant E 

is not available so an approximate analysis must be used, E 

= Nhx, where E and kh have the same rate of increase with 

depth. Solutions based on varying E also give better 

agreement with the results of Gleser than do solutions for 

constant E . The fact that, as shown by Pise, the subgrade 
reaction solution gives better agreement with Gleser's 

results than elastic solution for constant E, stems from the 

use of varying k rather from the superiority of the 

subgrade reaction approach. (Poulos 1 9 7 2 ) .  

Uncertainities in determining E remain the same as in 

determining the modulus of subgrade reaction (Pise 19721.  

4.3 Cohesive soil 

For cohesive soil the deflections calculated by the 

Matlock-Reese method and the Poulos method compare fairly 

well. On the other hand the moments calculated by the Broms 

method and the Matlock-Reese method compare fairly well, and 

those calculated by Poulos are much lower. The deflections 

calculated by the Broms method are 2.5 to 3 greater higher 

than calculated by the other two methods. In the following 

paragraphs some points are mentioned that might explain this 

difference. 

Broms (1964) says that deflection depends primarily on 

the dimensionless length factor j3L. He gives two equations 

to calculate deflections at ground surface for an 



unrestrained pile, one for BL less than 1.5 and another for 

PL greater than 2.5, that is: 

BL < 1.5 4P( l+1 .5?)  
yo = 

K D L  

He then shows that the lateral deflection y, at the ground 

surface can be expressed as a function of the dimensionless 
L 

quantity y,kD --- versus dimensionless length PL. It seems 
D 

that for Bt between 1.5 and 2.5 an extrapolation is made 

between these equations (see Figure 2.5) .  The value of the 

dimensionless length PL for the cases calculated here are in 

this range. 

Also, for BL less than 1.5 the stiffness of the pile is 

not taken into account for calculation of deflection except 

for selecting the equation. 

When Broms compared this method to case histories for 

various types of soil and degrees of end restraint he found 

that the measured lateral deflections at the ground surface 

varied from between 0.5 to 3.0 times the calculated 

deflections. For short piles the lateral deflections are 

inversely proportional to the assumed coefficient of 

horizontal subgrade reaction, k,,, and thus also to the 

measured average unconfined compressive strength of the 



supporting soil. Thus small variations in q will have large 

effects on the calculated lateral deflections. Also, 

agreement between calculated and measured lateral 

deflections improves with decreasing shear strength of the 

soil. 

Broms does not describe any case histories for 

unrestrained (free-head) concrete piles driven into the 

soil. 

When comparing elastic solution and subgrade reaction 

method, relationship between the Young's modulus and the 

coefficient of horizontal subgrade reaction has to be 

established. Poulos does this by equating the elastic and 

subgrade reaction for displacement of a stiff clay and 

states that this is the most accurate way. And then compares 

his solution with the one by Hetenyi (1946). There all the 

values from the subgrade reaction are greater than from the 

elastic theory. The difference becomes increasingly marked 

as the stiffness of the pile descreases. Comparisons between 

the corresponding solutions for moments give that the 

largest difference between the two solutions again occurs 

for relativly flexible piles, for which the subgrade 

reaction overestimates the moments. However,' the two methods 

are in reasonable agreement for stiff piles and, in general, 

the agreement is better than for displacement. 

Kosics points out that Vesic states that the subgrade 

reaction method underestimates the deflections, while Poulos 

states that it overestimates them. The difference lies in 



the different basis of relating k h  and E values. Also, the 

disadvantages of the subgrade reaction method is that k h  

depentls upon the pile properties as well as the soil 

properties. And that could mean that the same k h  should not 

be used for piles of different stiffnesses. Consequently, 

the results from a lateral load test on a particular pile 

cannot be directly applied to the analysis of other piles or 

piles groups with different conditions of end restraints 

although the soil conditions are the same. In order to 

obtain agreement between elastic solution and subgrade 

reaction solution, different k should be used for piles of 

different stiffnesses. The elastic solution also has its 

limitations. The method is limited to constant E value. The 

term E is not only going to vary from point to point in the 

soil mass, but also at a given point it will vary with 

stress conditions at that point. Also, the Mindlin solution 

is used and that includes the assumption that the soil is 

capable of resisting tensile stresses on one side of the 

pile. This assumption would not be valid in the critical 

zone near the ground surface. 
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