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1. INTRODUCTION

Large lateral lcads and moments on superstructures
causedlby waves, winds, seismic forces, surcharges etc. are
transferred to the desired soil strata by means of a single
pile or a pile group.

In designing piles for lateral load, the designer
should avail himself of more than one method whenever
possible.

In this project a single active pile will be
investigated. The deflection at the ground surface and the
maximum moment in the pile will be calculated., This will be
done for three different methods and the results will be
compared for different types of cohesive soil
(overconsclidated clay and normally consolidated clay), and
for cohesionless scil (medium dense sand)., However
comparison with test result for calculated values is not
possible because the examples are calculated by taking
representative values for the properties of each type of
soil

Many different methods for calculating the lateral
capacity of piles are presented in the literature. Those
selected here are the ones developed by Broms (1964a) and
(1964b), Matlock-Reese {1961} and Poulos (1971). All these
methods are well known and are widely used,

In chapter two the methods are introduced and
described. The theory on which they are based is reviewed,

togerther with how the parameters are used in each method.



In chapter three the example deéign problem is
introduced and used are given. The deflection at the ground
surface and the maximum moment in the pile are calculated
for these methods.

In chapter four the results are discussed and compared

and explanation is sought when they do not agree.



2. DESCRIPTION OF METHODS

2.1 Introduction

In this chapter the methods used are reviewed. First
the subgrade reaction coefficient is explained, based mainly
on the work of Terzaghi (1955) and McClelland ané Focht
{1958). The differential equation which the subgrade
reaction method has as its basis isrpresented, togerther
with how it is used for both the Broms method and the
Matlock-Reese method.

Broms (1964a and b) method is outlined both for
cohesive and cohesionless soil, The Matlock-Reese {1861}
hard sclution 1s reviewed, and also the constructicon of p-y
{soil reaction-pile deflection) curves which is necessary to
use that method. Construction of p-y curves is based on
Reese et.al.(1975) for overconsclidated clay or stiff clay,
on Matlock {1970} for normally consolidated clay or soft
clay, and on Reese et.al, (1974) for cohesionless scil. The
last method that is reviewed is the one by Poulos (1971)
which is based on an elastic solution. The elastic analysis
is discussed, followed by a description of how calculation

is done by this method.



2.2 Subgrade reaction method

The coeffient of horizontal subgrade reaction k, is
defined as the ratio between a horizontal pressure per unit
area of vertical surface and the corresponding horizontal
displacement. Thus it is a measurement of the ability of the
soil to resist horizontal deformation. The value of k,
depends on the elastic properties of the subgrade and on the
dimension of the area acted upon by the subgrade pressure.

Consider a pile which has been driven into or is buried
in subgrade. Before any horizontal force has been applied to
the pile, the surface of contact between the pile and the
subgrade 1is acted upon at any depth x below the surface by a
pressure p, which is egual to or greater than the earth
pressure at rest, If the pile is moved to the right the
pressure at the left side will drop to very small value and
on the right side will increase from p, to p.,. The lateral
displacement y, reguired to produce this change is very
small and can be neglected. After the pile has moved a
distance y, the pressure at each side will be:

left side (active state) p =0 {(2.1)
right side (passive state) p =p.+k, ¥, (2.2)

The subgrade modulus of a stiff clay, k,, is generally
considered to have the same value at every point of the
subgrade contact, independent of depth. Therefore, at any
time, the subgrade reaction p is almost uniformly
distributed over the right hand face of the pile. However,

due to progressive consolidation of clay under constant



load, y. increases and k decreases with time. Both
guantities approach an ultimate value, which is the value
that should be used in design.

For cohesionless subgrade material the values of k, and
y. are independent of time. However, the elastic modulus of
sand increases with depth, therefore the coefficient of
subgrade reaction is determined by k; =m,x where x is the
depth below subgrade and m is the ratio between coefficient
of horizontal subgrade reaction and depth below surface. The
value m;, is assumed to be the same for every point of the
surface contact (Figure 2.1).

The width D of the pile also influences the horizontal
displacement. For piles of diameter D, and nD, the lengths
of the bulbs of pressure measured in the direction of
movement of the pile are L and nL respectively (see Figure
2.1) Furthermore in both clay and sand the modulus of
elasticity is constant in the horizontal direction. Hence in
clay as well as in sand the horizontal displacement y

increases in direct proportion to the width D.

2.3 Analytical design methods by subgrade reaction

For scolving laterally loaded piles the pile-scoil system
is treated as analogous to a beam on an elastic foundation,
These analyses have as their basis the Winkler model, which
assumes that a medium can be approximated by an infinite

series of closely-spaced, independent springs.



If we look at the elementary theory of bending, it is
found that stresses and deflections in beams are directly
proportional to applied loads. Looking at one element of the
beam in Figure 2.2 and taking equilibrium, summing forces
gives:

SFy =0 =p = —;—‘%/ (2.3)

which is the rate at which the shearing force changes with
the distance x from the midpoint of the length of the beam.

Summing moments about point n gives:
0 = v-dM . od
SM,= 0 vV gy - ogf (2.4)

If the effects of shearing deformation and shortening of the
beam axis are neglected, the expression for the curvature of

the axis of the beam is:

EI —5}32— = -M (2.5)

Combining these equations by substituion and differentiation

yields:
F 2
Exg;%—+g—%gz-=p (2.6)

which is the basic differential equation for bending of beam
columns. It is also used for laterally loaded piles where

the shear force is corrected by subgrade reaction theory,



and y increases approximately in proportion to the applied
load.
For cohesive so0il the shear force is the horizontal

pressure and is egual to:

P = kpy (2.7}
For cohesionless so0il it becomes:

P = MpXy (2.7a)
because modulus of elasticity increases approximately in
direct proportion to depth., Therefore it is assumed without
serious error that the pressure p required to produce a

given horizontal displacement y increases in direct

proportion to the depth as shown. Eguation 2.6 then becomes:

EI i%%} + 0 i%f% = kpy or myxy (2.6a)

To solve this equation one must make assumptions concerning
the end conditions and then determine the constants.

Both Broms and Matlock-Reese use this eguation for
their solution. Broms assumes that the axial load is
negligible compared to the buckling load, and he uses the
shear force as previously described. Matlock-Reese use an
iterative procedure to account for the non-linear behaviour

relationship between pile deflection and soil resistance,



until satisfactory compatibility is obtained between the
predicted behaviour of the scil and the load-deflection

relationship required by an elastic pile.

2.4 Broms' theoretical-empirical method
For the coefficient of horizontal subgrade reaction,
Broms uses Terzaghi's values for cohesionless soils. For

cohesive so0il he established the following expression:

k = T;“(%OQuto 160Qu ) (2.8)

The use of B80qu gives good agreement with Terzaghi's values
The value n, is a function of the unconfined compressive
strength gu,n, is & function of the pile material, and D is
the pile diameter. The values of n, and n, are given in
Table 2.1. The values of k, for cohesionless scil are given
in Table 2.2 for both Terzaghi's and Reese's
recommendations. .

For design Broms developed two basic design conditions,

which are discussed below.

2.4.1 Allowable lateral deflection at working loads
Broms made the simplifying assumption that the axial
load is negligible compared to the buckling leoad, and

eguation (2.6) thus reduces to



Ue

EI = -k, y (2.6b)

«

o

X

He solved this eqguation for three pile conditions:

1} Fixity: free-headed or restrained,

2) Length: short, intermediate or long,

3) Soil type: cohesive or cohesionless.
He incorporated the criteria for various pile conditions in
the corresponding equations and developed graphical
relationships. From these curves it is possible to determine
either the theoretical lateral deflection or the theoretical
applied load if the other is known. Allowable lateral
deflection or allowable load can then be determined by

applying the appropriate adjustments.

2.4.2 Ultimate or failure load

This criterion assumes two modes of failure:

1} shear in the soil in the case of short stiff piles,
2) bending of the pile in the case of long piles (as
governed by the plastic yield resistance of the pile
section).

In the case of long piles Broms assumed that the pile
developed plastic hinges permitting sufficient rotation to
mobilize the bending moments along the pile length. Based on
these assumptions he treated the pile as a statically
determinant beam with a distributed load corresponding to

the particular condition. Below is a summary of the design
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procedure for Broms' method. Figures that are referred to

are at the end of the chapter.

Summary of Bromg design method.
STEP 1:
Determine the general soil type (cohesive or cohesionless)
within the critical depth below the surface (about four to
five pile diameters D)
STEP 21
Determine the horizontal coefficient of subgrade reaction k
within the critical depth from eguation (2.8) for cohesive
soil, or by selecting an appropriate value from Table 2.2
for cohesionless soil.
STEP 3:
Adjust ki for loading and soil conditions:
a. Cyclic loading in cohesionless soil:
1. kp= 1/2k, from Step 2 for medium to dense sand
2.'kh= 1/4%k, from Step 2 for loose soil
b. Static loads resulting in soil creep:
1. Soft and very soft normally consolidated clays

L

it

(1/3 to 1/6) k, from Step 2
2. Stiff to very clays
kn= (1/4 to 1/2) k, from Step 2
STEP 4:
Determine pile parameters:
a. Modulus of elasticity E

b. Moment of inertia I
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c. Section modulus S about an axis perpendicular to the load
plane

d. Yield stress of pile material fy

e. Embedded pile length L

f. Diameter or width D

g. Eccentricity of applied load e for free—headed piles
~-- i.e., vertival distance between ground surface and
lateral load

h. Dimensionless shape factor C; (for steel piles only):

1. Use 1.3 for piles with circular cross-section

2, Use 1,1 for H-section when the applied load is in the
direction of the pile's maximum resisting moment
(normal to pile flanges),

3. Use 1.5 for H-section piles when the applied load is
in the direction of the pile's minimum resisting
moment (parallel to pile flanges)

i. M » the resisting moment of the pile = C;£ S
STEP 5:

Determine factor B or n:

a. B = {/EIE?ZE?‘ fof cohesive so0il, or

b. n = i/E;7E;H for cohesionless soil

STEP 6

Determine the dimensionless length factor:

a. BL for cohesive soil, or

b. nL for cohesionless soil.

STEP 7:

Determine if the pile is long or short:



b.
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Cohesive so0il

1. BL > 2.5 (2.25) (long pile)

2. BL < 2.0 (2.25) (short pile)

3, 2.0 < BL < 2.5 (intermediate pile)
Cohesionless soil

1. gL > 4.0 {long pile)

2. gL < 2.0 (short pile)

3. 2.0 < nL < 4.0 (intermediate pile)

STEP B8:

Determine other soil parameters:

a.

Rankine passive pressure coefficient for cohesionless
soil K= tan?{45 + g/2), where g = angle of internal

friction.

. Average effective soil unit weight y over embedded

length.
Cohesion Cu= one-half the unconfined compressive

strength gu/2.

STEP 9:

Determine the ultimate (failure) load Pu for a single pile:

af

Short Free- or Fixed-Headed Pile in Cchesive Soil
Using L/D {(and e/D for free-headed case), enter Figure
2.5a, select the corresponding value of P./CuD?, .and
solve for Py.

Long Free- or Fixed-Headed pile in Cohesive Soil

Using Myield/CuD® (and e/D for free-headed case), enter
Figure 2.5b, select the corresponding value of P, /C,D?,

and solve for P,.



c. Short Free- or Fixed-Headed Pile in Cohesionless Scoil
Using L/D (and e/L for the free-headed case), enter
Figure 2.6a, select the corresponding value of Pu/ KpD%y,
and solve for Pu.

d. Long Free- or Fixed-Headed Pile in Cohesionless Soil
Using Myield/D*yKp, (and e/D for the free-headed case),
enter Figure 2.6b select the corresponding value of P,/ Kp
D*y, and scolve for Pu.

e. Intermediate Free- or Fixed-Headed Pile in Cohesionless

Soil
Calculate P for both & short pile (Step 9¢c) and a long
pile (Step 94} and use smaller value.

STEP 10:

Calculate the maximum allowable working load for a single

pile Pm from the ultimate load P, determined in Step 9:

Pm= Pu/2-5

STEP 11:
Calculate the working load for a single pile P4
corresponding to a given design deflection y at the ground
surface, or the deflection corresponding to a given design
load. 1f P, and y are not given, substitute the value of Pm
from Step 10 for Pa in the following cases and solve for ym:
a. Free- or Fixed-Headed Pile in Cohesive So0il
Using BL (and e/L for the free-headed case),enter Figure
2.3, selecting the corresponding value of yk,DL/P,, and

solve for P, or y.
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b. Free- of Fixed-Headed Pile in Cohesionless Soil
Using nL (and e/L for the free-headed case), enter Figure
2.4, select the corresponding value of y(EI)**k*5/P,L,
and solve for P, or y.

STEP 12:

1f P,2 Pn, use P, and calculate y, {(Step 11)

If P,< P, use P, and vy.

I1f P, and y are not given,use P, and Ym.

STEP 13:

Reduce the allowable load selected in Step 12 to account for

method of installation: for driven piles use no reduction,

and for jetted piles use 0.75 of the value.

2.4.3 Moments by Broms method

The mode of failure of laterally loaded pile depends on
the depth of embedment and on the degree of end restraint.

For short piles failure takes place when the soil
yields along the total length of the pile, and the pile
rotates as a unit around a point located at some depth below
ground surface (in the case of a free head pile) Restrained
failure takes place when the applied load is egual to the
ultimate lateral resistance of the soil, and the pile moves
as a unit through the soil.

For long piles the mechanism of failure is when a
plastic hinge forms at the location of the maximum bending

moment. Failure takes place when the bending moment is equal
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to the moment resistance of the pile section (for free-head
piles). Restrained pile failure takes place when two plastic
hinges form along the pile. The two plastic hinges form when
the maximum positive bending moment at depth f or (1.5D + f)
below ground surface, and the maximum negative bending
moment at the bottom of the pile cap or lateral bracing
system, both reach the yield resistance of the pile section.

For the case of a restrained pile, an intermedlate
length of pile hag also to be taken into account. In this
case failure takes place when the restraining moment at the
head of the pile is egual to the ultimate moment resistance
of the pile section, and the pile rotates around a point
located at some depth below the ground surface.

The maximum moment occurs at the depth below surface
where the shear force in the pile is equal toc zero, at depth
(f + 1.5D) for cohesive soil and f for cohesionless soil.
Cohesive soil:

The distance f and the maximum bending moment M, can
be calculated from the two eguations

P

= g50p and MP” = Ple + 1.5D + 0.5£) (2.9)

Cohesionless soil:

Here it has been assumed that lateral deflections are
sufficiently large at failure to develop the full passive
resistance {(equal to three times the passive Rankine earth

pressure), from the ground surface to the location of
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maximum bending moment., Thus we have for free~head piles:

f = 0.82/P/yDK and M22 = pPle + 0.67£) + Qa (2.10)
P a

2.5 Matlock-Reese hand solution

2.5.1 Deflections
When using this method a set of p-y curves are needed.
Here they will be constructed semi-empirically for a static
loading condition and will be described in next section.
The primary solution will consist of finding the set of
elastic deflections of the pile (including the short jacket
leg extension) which will simultaneously satisfy:
1) the non-linear resistrance deformation relations
which are predicted for the soil, _

2) the elastic bending properties of the piles,

3) the angular stiffness of the upper structure at the
pile to structure connection.

The force-deformation characteristics of the soil are
described by a set of predicted p-y curves. In Figure 2.7
there is a graphical definition of p-y curves and in Figure
2.8 there are typical resistance curves for soil at various
depths. Since solution for the interaction problem relies on
repeated applications of elastic theory, a secant modulus of

=nil reaction Eg is required, which is defined as E; = -p/y.
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This is only a computation device which is generally
independent of pile size and depends primarily on soil
properties (not a unigue soil property).

The differential eqguation for a beam is:

4 L}
EI %Z— = p jxg + EE.{' y =0 (2.6c)

This is the same eqguation as used for Broms' method. Here
this equation is solved by trial and error by estimating the
value of T, relative stiffness factor, until Tutfaned is equal
to T4.ed » Then correct set of E; are found and deflection
and bending moments are computed.

In this solution the deflection y of the pile at any

depth x is:

(2.11)

where Ay, By are functions of z = x/T, relative stiffness
factor T is T® = EI/k, and subscript t refers to the pile at
the top.

It is convenient to define an additional set of
nondimensional deflection coefficients by rearranging

equation (2.11) as:

- P, TS = My
y = Cy FT where Cy= Ay+ FQT'BY (2.12)

To begin the solution of the example problem it is necessary

to assume temporarily that the form of scil modulus
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variation Eg= kx will be a satisfactory approximation of the
actual final E; variation. Available non-dimensional
solutions are limited to a pile of constant bending
stiffness.
The slope at the top of the pile is:
RT M. T

Sy = Ag—I— + By——t- (2.13)

y= MET T Mg
where subscript s stands for shear and subscript t for at
top.

The relation between M; and S; is:

= ee— M .14

Combining these two equations yields:

M - At T
a %"BstT

{(2.15)

Since the relative stiffness factor T depends on the
coefficient of soil modulus variation k and this guantity 1in
turn depends on non-linear resistance characteristics, the
solution must proceed by a repeated trial and adjustments of
the values of T (or k) until the deflection and resistance
patterns of the pile agree as closely as possible with the
resistance-deflection (p-y) relations previously estimated
for the scil. Even though the final set of secant modulii (E

= - p/y) may not vary in a perfectly linear fashion with
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depth, proper fitting of Eg= kx will usually produce

satisfactory solutions.

The steps in the Matlock-Reese method are as follows:
1) Calculations are made for certain depths x
2) Estimate the first value of T (frial value)
3) Calculate z = x/7
4) Find the coefficients Ay and By given in Table 2.3
(or find Cy)
5) Calculate y from eguation (2.11)
6) Find p for this y from p-y curves
7) Calculate Eg= -p/y
8) Set up a graph E; vs x and find k from this graph
(see Figure 2.8), and giving more weight to points at
depth less than x = 0,5T,
9) Calculate Tplmned = ° EI/k
10) Compare Teppmed 8nd Te.y and when they are the same
the trial and error process is completed. Use a
graph of Ty VS Tifind (See Figure 2.10.)} The final
set of computations for the E value is made as a

check.
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2.5.2 Moments
Computations of values of bending moments along the

pile are made by application of the eguation:

M = B,B, T + BuM; (2.186)

The non—~dimensicnal coefficients A and B are found in

Table 2.2. Subscript m refers to moments.

2,6 Construction of p-y curves.

2.6.1 Overconsolidated clay (Reese and Welch 1975)
The step by step procedure for this material is:

1) Obtain the best possible estimate of the variation
of shear strength and effective unit weight with depth,
and of the value of &,,, the strain corresponding to
one-half the maximum principal stress difference. If no
value of £;,, is available use a value of 0.005 or 0.010,
the larger value being more conservative. Here the lower
value will be used, e:;.= 0.005 (Reese and Welch).

2) The ultimate soil resistance p 1is computed according to:

- (3« E’i + 0.5 -g——) D (2.17a)
(74
p = 8CuD {(2.17p)
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and the smaller value is used for each depth,.
3) Compute displacement ys. at one-half the ultimate soil

resistance.

y:-,n = 2.5D£5° : (2.18)

4) The points on the curve are now computed by:

= 0.5(~—) (2.19)

(Beyond y = 16Ys0, P = pu for all values of y)

2.6.2 Normally consolidated clay {Matlock 18970)

The steps are the same as for overconsolitatéd clay but
the values and equations are different. The procedure given
here is for submerged clay soils, which are normally

consolidated or slightly overconsolidated.

1) Here the value of g,, may be assumed tc be between 0,005
and 0.020, the smaller value being more applicable to
brittle or sensitive clay and the larger value to
disturbed or remolded scils or unconsclidated sediments.
An intermediate value of £€,, = 0.010 is probably

satisfactory for most purposes.
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Ultimate resistance,
1f soft clay soil is confined so that plastic flow
around a pile occurs in horizontal planes, the ultimate

resistance per unit length of pile may be expressed as:

Py~ NpCuD (2.20)
where
9 at a considerable depth below the surface
N =<3 + gﬁ + J é; {between the free soil surface

and depth the variation is
described by this eguation)

2-4 very near the surface in front of the pile

\3 (for a cylindrical pile, this is believed to
be appropriate)
The value of J should to be determined empirically.
Here the value of J = 0.5 will be used as it isg
considered to be appropriate for this type of clay.

Compute ys, using Skempton's approach

Yse= 2.5&,,D (2.2})

The points on the curve are now computed by

P Y vk
- = 5 ([~ 2.
o 0 ( P (2.22)

Beyond v = Byse, P = pu for all values of y. The final



shape of the p-y curve of clay is shown in Figure 2.11%
for normally consolidated clay. The shape for
overconsolidated clay is almost the same but the power in

the eguation is different.

2.6.3 Cohesionless soil (Reese, Cox and Koop 1974)

For construction of p-y curves for sand, the outline
from Reese et.al.(1974) is used. The method is based on
theory as well as empiricism,

Recomménded procedure:
1) Obtain soil properties and pile dimensions g, y, D
2) Use the following parameters for computing soil
resistance:
o= 2, B=45+% K, = 0.4, K= tan?(45-%)
3) The following eguation are used to calculate soil

resistance:

a) Ultimate resistance near ground surface:

py= yH(fellenfunp , tenf
B~§) cosol fan/p-¢}

(D+HtanBtana) +

K.H tanB(tandsinp-tana)-KaD) (2.23)

b) Ultimate resistance well below the ground surface.

p4= KoDyH(tan®*g-1) + K,DyHtangtan*g (2.24)
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4) Find the intersection x; of two above eguations p,= p.

5) Select depths at which p-y curves are desired,

6) Establish y,= 3b/80 and p,= Ap., where A is an
empirical adjustment factor given in Figure (2.10a)

7) Establish y,= b/60 and p,= Bp,, where B is an
empirical adjustment factor given in Figure {(2.10b),.

8) Establish the slope of the initial portion of the p-y
curve by selecting the appropriate value of k.,

9) Parabola to be fitted between points k and m

11,;1

10) Fit the parabola between these points :
a) Slope of line between u and m: m = %%ﬁ%:
b) The power of the parabola n: n = ﬁ?i
c) Obtain C as follows: C = é%%
d) Determine point k as: ¥, = (5?)nhh1
* K kx

e) Use the equation in step 9 to compute the points.

The final shape of the p-y curve is given in Figure 2.12.

2.7 Poulos method

2.7.1 Elastic analysis

The methods previously discussed are based on the
Winkler model or spring medium, and the continuity of the
soil is not taken into account. In this method it is assumed
that the so0il is an elastic mass and an ideal homogeneous,

isotropic, semi-infinite elastic material, having a Young's
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modulus E and Poisson's ratio y, which are unaffected by
the presence of the pile.

In this analysis the pile is assumed to be a thin
rectangular strip of width D { or if circular the diameter
is used instead of the width}, length L and having censtant
flexibility El,.

For an elastic condition the horizontal shear stress
developed between the soil and the sides of the pile is not
taken into account. The pile is divided into elements all of
egual length except the top and bottom elements which are of
half length. Each element is acted upon by a uniform
horizontal stress p which is assumed to be constant across
the width of the pile.

For this condition the horizontal displacement of the
soil and of the pile are egual along the pile (for purely
elastic conditions). In this analysis the soil and pile
displacements are evaluated and eguated at the element
center, except for the top and bottom elements where
displacements are calculated by equating soil and pile
displacements at these points. Using the appropriate
equilibrium conditions, sufficient eqguations are gbtained to
solve for the unknown horizontal displacement at each
element,

Two conditions of practical interest at the pile head
are considered:

1) a free-head pile, free rotation occurs

2) a fixed-head pile, no rotation occurs
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Two major variables influencing pile behaviour are the
length.to diameter ratio L/D and a factor Kp, herein known
as the pile flexibility factor Kg = %?%f, a dimensionless
measure of the flexibility of the pile relative to the soil.

2.7.2 Calculation of displacement

Calculations by this method are performed by using
charts. Displacement and rotation are expressed in terms of
dimensionless influence factors which are function of the
pile flexibility factor K . The length to diameter ratio is
relatively small so y,= 0.5 may be used for all conditions.

The horizontal displacement is expressed as:

. P M
for a free-head pile y = Ly = * hMEL (2.26)
for a fixed-head pile y = Iy E;%m (2.27)

The rotation & for a free-head pile is:

P M
& = IBP E‘L'?- * I&ﬂ FL®

{2.28)

Values_of 1%9 are given in Figures 2.14 to 2.17. From theory
Iy and I,y should be the same but this is not quite true.
The difference is usually 5% except for very flexible piles
where it 1s 10 to 15%. This discrepancy indicates the order

of accuracy of the corresponding values of Igy.
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2.7.3 Calculation of moments

Moments are calculated by charts of K and L/D. From
these charts the value M/PL is obtained from Figure 2.18 for
free-head piles and Figure 2.19 for fixed-head piles. For
free-head piles the maximum moment is at depth of 0.1L to
0.4L below the surface, the lower value being associated
with stiffer piles. For fixed-head piles the maximum moment
is at the head of the pile except if the pile is very

flexible.
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Figure 2.12 - Typical family of p-y curves for proposed

cg%t?ria in cohesionless sand (Reese et.al.
1974},



35

A B
0 ) 20 0 10 20
SOt \\‘ £ H
. WA CYCLIE) ' W8 (CYCLIC)
10} 8 = o B(STATIC)
§
A(STATIC)
20k - 20 |- -
X

A _

b 3p| — b 301 —
40}~ . 40— —
501 %50, a:088 - 50 B =055 _

Bs =05
60 : i 60 i

Figure 2.13 - Non-dimensional coefficients for ultimate soil
resistance vs depth for sand a) coefficient A,
b) coefficient B, (Reese et.al. 1974).

Figure 2,14 - Influence factor lyp - Free-head pile,
(Poulos 1971).



36

]
Vaiues of *;a
100
L
&
Lex
10
1
10 0" 16* 10? ' g 1 10
KI
Figure 2.1% - Influence factor Iym and Igp - Free-head pile,
{(Poulos 1971).
w s
20t §
Y, =05

Yalues of L/d

10°* 10" 10 107 [ «’ ] 10

Figure 2.16 - Influence factor I, =~ Fixed-head pile,
{(Poulos 1971),



Velues of ‘ya

Figure 2.17 - Influence factor Iy,

o

MiHL

Q-08-

o0

004

-0

10 10 ¢ 1 10

Free-head pile,
(Poulos 1971).

Values of &

Harizontoi Load Only
V=05

01(55

i
10°

1
w4

Kr

Figure 2.18 - Maximum moment in free-head pile,

(Poulos 1971),



V=05

Vaiues of

b
e

Figure 2.19 - Fixing moment at head of fixed-head pile,
{(Poulos 1971},

38



Table 2.1: Evaluation of the

coefficient n, and n,,
{Broms 1964a).

Unconfined Compreasive Strength qy,. boos

per sguare foot Cosfficient ny
Less than 0.5 0.32
0.5 to 2.0 0.36
Larger than 2.0 0.40

Pile Material

Coefficient ny
fteel 1.00
Concrete 1.15
Wood 1.30

Table 2.2: Coefficient of horizontal subgrade reaction k ,
(Reese et.al 1974).

TERZAGHI'S.VALUES OF k FOR SUBMERGED SAND

Relative Density Loose Medium Dense
Range of Values of k (Ibs/in®) 2.6 - 7.7 7.7 - 26 26 - 51
RECOMMENDED VALUES OF k FOR SUBMERGED SAND
(Static and Cyclic Loading)
Relative Density Loose Medium Dense

Recommended k (1bs/in>) 20 60 125
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Table 2.3: Coefficients and equations for Matlock-Reese hand
solution, (Matlock-Reese 1961).

Table }
Coefficients and Equations for Lomg ¥itea, £‘ = kx

A . S S R
0.0 2.435 -1,623 0.000 1.000 0.000
0.1 2.7} ~f.618 b.100 0,989 -0.227
0.2 2.112 1603 0.198 0,956 -0.422
0.3 £.952 -1.574 0.291 0.906 ~0.586
0.4 1.796  -1.545 0.379 O.B40  w0.718
0.5 t.6as  -1.503 ©.459 0.764 -0.822
0.6 1.496 -1.454 0.532 0.677 * 0,897
[ 1.353 -1.397 0.595 0.585 -G.947
0.8 1.216 »1.335 0.649 0.489 -0.973
0.9 1.086 ~1.268 ©.693 ©.392  -0.977
£E.O 0,962 ~1.197 0.727 £.2905 ~0.962
1.2 0.738  -1.047 D.767 0.109 -0.885
L.4 B.544 -0.833 0172 ~0.056 «0. 761
1.6 ©.138} -0.741 0.746 «0.193 -9,60¢
1.8 0.247 ~0.596 0.646 ~0,298 ~0.645
2.0 0.142 ~0.464 0.624 -0.371 ~0.283
3.0 -p.07% ~0.040 0.225 3. 349 D.726
4.0 <0050 0.052 0.000_ -0.10% 0.201
5.0 ~b.00% 0,025 ~0.033 0,011 0,046
z B By B, B, B
0.0 1.623 -1.756 1,000 0.000 6.000
0.1 1.453 -1.8650 1.000 -0.00? ~0.163
0.2 1.293  .1.550 0, 99¢ -0.028 -0.259
0.3 1.143 -1.,450 0,994  -0,038 0,143
'R} 1.003 -1.351 ©.987 +0.035 -6. 401
0.5 0.873 +1.253 6.976 -0.137 -0.436
0.6 0.752 -1.156 ©.960 ~0.181 «0.451
0.7 D.642 -1.061 0.939 «0.226 ~0.489
0.8 0.540  -D.968 0.914 ~0,270  -D.432
0.9 0,448 ~0.675 B.B8S ~0.312 +0.401
1.9 0.365 -0.792 0.852 «8.350 =0,364
1.2 0.223 -0.629 0.775 ~0.414 +0.268
j 0.112 ~0.482 0.688 ~0.456  -0.157
1.6 ©.029 «0.354 0.594  -0.477 0,047
1.8 «D.030  -0,245 0,498 -0,676 0.054
2.0 . -0,070  -0,155 0.404 -0.456 0,140
3.0 ~0.089 0.057 0,959 0,213 0.268
£0  -0.028 0.045 -0. 042 0,017 0.117
3.0 0.0 ©.011 ~0.026 0.,42% -0.002
Tearm Equation Sign Convention
Depth ror X7
Dt . |=>"rs u?ra
efiwction [ Y S —_——
¥ yET Y OB
2
s P'T N T
op# it re—
P 5 . R, &1 + B‘ T
Momen? M2 A PT 4+ B K ~~+N
(] CRl] —
+v
Sh ¥y
ear v ot A PR + B, 5 +h
Soil Rasct ] ot ~r=
EOh p * ‘.9 T + Bp ;? )




41

3. CALCULATIONS

3.1 Introduction

In this chapter the deflection at ground surface and
maximum moment for a certain pile will be calculated by the
previously described methods. First the parameters for both
the soil and pile are given and the results of the
calculations for each method are given, Finally a summary of

the calculations is given at the end of the chapter.

3.2 Dimensions of pile and properties of soil

For the three different types of scil the dimensions
and properties of the soil are assumed the same. The pile is
assumed to be of reinforced concrete, having a circular

cross section.

P P = 200kN
L V)
L = 1ém
e = 0,8m
~ D = (.8m
D E = 4x10°psi = 2.82x107kN/m?
I = -——- = 0.0201m*
Figure 3.1 EI = 5.6682 10°kNm?

Example calculated.

The values of the soil parameters are given in Table 3.1.
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Table 3.1 -- Soil parameters used in example
5011 over- normally |cohesion-

consolidated|consolidated less

properties clay clay soil

unconfined
compressive 100kPa 30kPa -
strength gu

unit weight vy 20kN/m? 20kN/m* 19kN/m?
cohesion Cy 50kPa 15kPa -
angle of
internal - - 30¢

friction &

modulus of -
elasticity E 3500kN/m? 940 kN/m? 3447 kN/m?

3.3 Broms method

This method is described in section 2.4. Here
calculations are made for a certain force so steps 9 and 10
are omitted. The results from the calculations are
summarized in Table 3.2 and all equations and figures used

are found in Chapter 2.

3.4 Calculation of p-y curves

To be able to use the Matlock-Reese hand scolution a set
of p-y curves is needed, so they will be constructed first.
For this, calculations are done for certains depths: here
the selected depths are x = 0, 0.%, 1.0, 1.5, 2.0, 2.5 and

5.0 m.
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Table 3,2 -- Calculation of y and M by Broms Method,

soil over- normally |cohesion-
consolidated|consolidated less
parameter clay clay soil
n,n.80qg, | n, = 0.36 n, = 0.32 Use Reese
Kpy= ———— I n, = 1.15 n, = 1,15 recom.
D g = 100kPa | g = 30kPa
_;g (kN/m?) N 4140 1104 16290
Ky =(1~1/3}k' 1380 368 16280
B. n 0.1485  0.1067 0.4917
L, oL (m) |  2.38 71 | 7.87
B length interm(long) short long
e/L 1 0.05 0.05 0.05
i yk,,DL/; 5.7 1.8 -
y (EI) 5k /PL - - 0.4
Yy (miwﬁw# 0.0645 ! 0.2038 0.00943
B f 0.556 1.85 1.717
M (kNm) _ B 455,6 585, 2 390.0

3.4.1 Cohesive soil

For overconsolidated scil the procedure is described in
section 2.6.1. First the value of P 1is calculated according
to eqﬁations (2.17a) or (2.17b) and the lower of the two
values is used in the analysis. The value of y,, is computed
according to equation {(2.18) where £,, = 0.005.

The curves are generated using equation (2.19). Beyond y =
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16v:0, P = pu for all values of y.
The values of p versus y are given in Table 3.3 for

overconsolidated soil and plotted in Figure 3.2.

Table 2.3 -~ Calculation of p for each depth and deflection.
Overconsclidated clay {(untt kN/m)

¥ x = 0m [x = 0.5mix = 1.0m | x = 1.5mix = 2.0mi{x = 2.5m{x = 5.0m
0. 16 120.0 140.5 161.0 181.5 202.0 222.5 325.0
0.12 111.7 13C.7 149.8 168.8 188.0 207 .1 302 .4
0. 10 106.7 124.9 143.2 161.4 179.6 197.8 289.0
.08 100.9 1181 135.4 i52.6 162.6 187 .1 273.3
0.06 893.9 109.9 126.0 142.0 i58.1 174 . 1 254 .3
©.04 84.9 99.3 113.8 128.3 142.8 157.3 229.8
0.02 7.4 83.5 a5.7 107 .9 120 .1 $32.3 183.2
0.015 66l4 7%17 89.0 100 .4 111.8 123.1 179.8
0.009 58.4 68.4 78.4 88 .4 98 .4 108 . 4 158.3
C.008 52.8 61.8 70.8 79.9 88.8 97.8 143.0
0.004 47.7 56.9 64.0 72.2 80.3 88 .5 129.2
0.002 40 .1 47.0 53.8 60.7 67.5 74.4 108.7
0.001 33.7 38.5 45 .3 51.0 56.8 62.6 91.0

For normally consolidated clay the procedure is given
in section 2.6.2 and equation {(2.20) is used for calculation
of pu. where:

3 very near the surface

Ng= 43 + Te Jzi from surface fo depth .
Cu D

9 below depth x,
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where depth x,. is found by eguating the two lasts parts for
N that is:

X, = 60 3.06m

0.7
The value of y.. is computed by using equation {(2.18) and
here the value of § ., used is 0.010.
Equation (2.21) is used to generate the curves beyond y =
By:se @and p = Pu.
The values of p versus y for normally consclidated soil are

given in Table 3.4 and the plotted in Figure 3,3.

3.4.2 Cohesionless soil
The step by step procedure for calculating the p-y
curve for sand i1s given in section 2.6.3 and the calculated
values for each step are given here:
1} From Table 3.1 the soil parameters and pile dimensions
are: ¢ = 30°, v = 19kN/m?*, D = 0.8m.
2) « = 15°, B = 60°%, Ko= 0.4 and Ku= tan?30
3~4) Find x - found by equating eguation (2.22) and eguation
(2.23): x = 10.913m and p, is calculated for
selected depths in Table 3.6.
5) The selected depths are the same as before x = 0, 0.5,
1.0, 1.5, 2.0, 2.5 and 5.0m.

6} yu= 30 - 0.03m and pu= Ap.



47

86 96} ST Lk £'Gi FTEL O i 8°8 52 LOOT0
[ 3-T4 L vZ Qree E & 594 g8 et PO vr'a [4e/o RN #)
9°LE e L7LE E'vZ g°0C Ly Cri S04 POO0O
L9t 8°'Gg LTIE B LE 8'¢l B 61 (el =71 [ A 900" C
voiv g0y E'SE 8 1€ £ LE 8% E°gl 8'EL BO0O° 0
I "EB¥ | 44 QEY L7 LE ¥ TE oLz L7 }2 9l SO0
[0 0 41 £ EG VLY STy 9 g8 8°'6Z 6'EZ C 8l [Ao2e]
0'gsd 17 L8 P 1] £E°ZS 6't¥ S LE [ 914 L ZE v0'0
8 LL g°94 £°89 6765 | A 6°Z¢ v vE [0 T4 80°0
L 88 = 4] & 8L €769 8785 T Ly SR A 9'8¢ BO O
£°Z6 L'1B [oRS"] oL 6 0% 6 0% 87 0% 808 Q"0
" 886 896 I 98 v'SL L' v9 i vs y'EP L°ZE [N
E'EO} L 10} 306 y'BL 89 6’95 LTSy v EV Vi O
O B8O 57801 L vE Q'Eg Z°4L 49 65 L Ly Q96 970
WO'§ = X|WO'E = X|[WG'E = Xiwd g = WG = WO} = X{WG Q = wo = A

‘UO13DB 38p Pue YIdep Yoes Joj d 46 UOLIEINDLE] -- $°E F(QEL

(W/NY 31Un) A21D pajep}losued A| |BukON




48

*£e1> pajeprTosucd ATTBWIOU 10] $541ND £-d - ¢'¢ @2anbug

Wy A ‘UoT133T43(

s1'0 hi'0 cl*0 g1°0 8070 8070 ho'0 c0°0 0o o
i I T 1 1 i 1
308 JJNS punoJd MOT3G yidap X
=X
¥ G =X
WO = X .
ol A
WGl =X
U gE =X
WGy = X
W QE = X 1
UG = X
i i 1 £ | | 1 o

q¢

0s

SL

00T

21

wyN) d ‘soueisTsad TToS



49

7) Ym= z%* = 0.0133m and p,= Bp.

where A and B are taken from Figure 2.10 and given in
Tabie 3.5.

8) The slope of the initial portion of the p~y curve 15 k,x
where k,= 162%0kN/m*.

0) Between points k and m eguation (2.25) is used to
generate the points (see Figure 2.12).

10) Constants m, n, C, v are calculated for each depth and

they are given in Table 3.6.
The p-y curves for cohesionless soil are given in Figure

3.4.

Table 3.5 -- Coefficient A and B from Figure 2.13

depth x x/D A B
0.0 0.000 2.87 2.14
0.5 0.625 2.38 1.78
1.0 | 1.250 1.95 1.38
1.5 1.875 1.57 1T.11
2.0 2.500 1.22 0.84
2.5 3.125 1.00 0.68
) 5.0 | 6.5%0 0.88 0.50
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3.5 Matlock~Reese hand solution

3.5.1 peflections

The procedure for this method is given in section 2.5
and the results of calculations are given in Tables 3.7 to
3.9 for overconsolidated clay, normally consolidated clay
and cohesionless soil respectively, This method is an
iterative procedure. The results of the iterations are

presented in Figures 3.5 to 3.8 and in Tables 3.7 to 3.9,

3.5.2 Moments
Here the moment at the top of the pile is M = 0, The

maximum moment in the pile thus occurs when A, is maximum,
which is Am=0.772 at z = 1.4. The maximum moment for the
three soil types are given below.
Overconsolidated clay:

Mmay = BmPeT = 0.772 200 3.10 = 478,6kNm

at depth x = 1.4T = 4.34m

Normally consolidated clay:

Mmax = 0.772 200 4.25 = 656.2kNm
at depth x = 5,95m

Cohesionless soil:
Mmax = 0.772 200 2,15 = 332.0 kNm

at depth x = 3.01m

52
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Table 3.7 —- Calculation of y by Matlock-Reese method.
' Overconsolidated clay.

Torial | X Z=x/T Ay y -p E comments
0.0 ¢.0 2.435 0.1074 3108 1005
0.5 0.;W"” 2.273 0.1003 155 1246 Kopt =
Tib 0.2 2.122 0.6;5& 1407 1486 562.5
5 (1.5 0.3 1.852 0.0861 ;ggﬁ 1812
2.0 0.4 1.796 | 0.0792|170] 2147 | T = 4
;T% 0.5 1.664 0.0725[183] 2524
gtb 1.0 ‘9.96é 0.04241233; 5495
0.0 0.0 2.435 0.0143 |63 4701
0.5 0.2 2.112 0.0116{73 6271
1.0 0.4 1;796 | 0.00991(79 7980 Kobi=
2.511.5 0.6 1.49¢6 0.0083 86 10424 3409
;TE 0.8 1.216 0.0067 92 13731
2.5 1.0 0.962 0.0053(97 18302 [T e=2.78
5.0 2.0 0.142 0.000%5K75 95785
0.0 0.000 2.435 0.0232(73 3147
0.5 0.167 2.171 0.0207 (84 4058 kobt =
1.0} 0.333 1.901 0.0181(94 5193 2184.2
3.0|1.51¢ 0.500 1.664 0.01591102| 6415
2.0 0.6&% 1.400 0.0133{1081! 8120 Tt =3.04
2.5] 0.833 1.173 0.0112(113| 10089 o.k
5.0 1.667 0.336 0.003211211 37813 [Zpm=5.33
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Table 3.8 -- Calculation of y by Matlock—-Reese method.
Normally consolidated clay.

Terial | X% = x/T| Ay y -p E comments
0.0 0.0 2.435 0.1074 31 288
0.5 0?& 2.273 0.1003141 409 kopt =
1.0 0.2 2.112 0.6932 49 526 267.4
5 11.5| 0.3 1.952 | 0.0861|58 674
2.0‘< 0.4 1:796 0.0792 66m 833 Tobt =
2.5 WO.S 1.664 0.0725 73ﬁ 1007“ 4.6
3.0 0.6 1.496 0.0660(79 1197
5.0 '”}Ta“”“”gi;g; 0.0424 69 1627
0.0 0.0 2. 435 0.0134116 1194
0.5 0.2 2. 112 0.0116 20 1724 Kobt =
1.0 0.4 1.796 0.0099 |24 2374 1313.4
2.511.5 0.6 | 1.4896 0. 0083 26 3152
2.0 J 0.8 1.21é 0. 0067 29 4328 Tpt =
2.5 1.0 0.962 0.0053(31 5849 3.4
3.0 1.2 0.738 0.004733 7036
5.0 2.0 0.142 10.00078 (19 24358
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?able 3.8 -~ continued

Tt | % |2 = x/T| Ay y -p E comments
L0.0 0.0 2.435 0.0660}27 409
0.510.1176 2.2;;_mﬂ0.0608g34 -559 Kobt =
1.0(0.2353 2,056 0.0557}42 754 419.4

4,25 1.5-0.3529 1.868 0.0506{48 949
r2.0-0.4706 1.688% 0.0457155 1204 Topt =
~2.5 0.5882 “1.5:§%_—5:04?0 60 1463 4,23 ok
3.040.7055%9 | 1.345 " 0.0Bég 64 1758 Zmax S
5.0]1.1765 | 0.764 0.0207-g;”_mé609 3.76
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Table 3.9 -~ Calculation of y by Matlock-Reese method.
Cohesionless soil,

Toiofl ¥ {2 = x/T| A, ¥ -p E comments
0.0 0.0 2.435 0.1074¢ 0 0
0.5/ 0.1 2.273 | 0.1003| 70 | 697 Kppi =
1.0 0.2 2,112 0.09321150 1608 1692
5 *?T;”ﬁﬁaj;ﬁ | 1.§52 0.0861)224 _7;599
2.0] 0.4 | 1.796 | 0.0792|276 | 3487 T, bt
2.5 0.5 1.644 0.0725 (328 4530 3.20
0.0 0.0 2.435 0.0134| 0 0
6.5 0.2 | 2.112 | 0.0116| 50 | 4310 K ot =
k}.O QT; 1.786 0.0099| 95 9596 9230
2.5(1.5 Au6:6 1.496 0.0083|135 | 16364
2.0 0.8 i 1.216 6l0067 147 121940 Topt=
2.5 1.0 0.962 0.0055 1557V29245 2,28
0.0 0.0 2.435 | 0.0085] 0O 0 Kopt =
»6.5 0.2326 }2.0598 0.0072 | 44 6111 11875
S.O 0.4651 [1.6970 0.0060 | 80 | 13445
15[1.5{0.6977 |1.3563 | 0.0048 |111 |23319 [T,; =2.17
2.010.9302 1.0486 0.0037 |123 Zmax =
2.5{1.1628 |(0.,7797 0.0027 {130 7.44
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Final T = 425 n
L F
3
a Final T = 3,00 m -
Fingl T =215 n
O QOverconsolidated clay
® Normally consolidated clay
A& (ohesionless soll
| ! | i
0 1 e 3 Y 5

T = tried _Em)

Figure 3.5 - Interpolation for final value of relative

stiffness factor.
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3.6 Poulcos method
This method is described in section 2.7 and all graphs
needed for this ¢alculations are given there. The results of

the calculations are given in Table 3.10.

Table 3.10 - Calculation of y and M by Poulos method.

501l over- normally cohesion-
consolidated |consolidated less
parameter clay clay soil
EPIP(kNm‘) 5.66 10° 5.66 10° 5.66 10°
E (;;}mz) 3800 940 I 3447
L (m) 16 Y 6
WMWﬁka ....... | 0:60247 0.06920w 0.00251
L/D ' 2dm n 20 ) 20
L, | 6.8 5.0 | 6.8
y {m) 0.0242 0.0665 0.0247
m M/PL m 0.063 | 0.103-_ 0.064
M (kNm)lﬂ 201.6 330.7 é04.8
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3.7 Summary of results,.
Table 3.11 is a summary of results for all methods for
deflections at ground surface y and the maximum moment M

that occurs in the pile.

Table 3.11 -~ Summary of results using different
methods.

A. Deflection {unit m)

soil over- normally cohesion-
consolidated|consolidated less
method clay clay soil
Broms 0.0645 0.2038 0.0093
Matlock=-Reese 0.0233 0.0660 0.0088
Poulos 0.0242 0.0652 0.0247

B, Moment {unit kNm)

soil over- normally cohesion-
consolidatediconsclidated less
method clay clay soil
Broms 455.6 585.2 390.0
Matlock-Reese 478.2 656.2 332.0
Poulos 201.6 330.7 204.8




4. DISCUSSION OF RESULTS

4.1 Introduction

In the two previous chapters three different methods
were introduced for calculating deflection and maximum
moment for laterally loaded piles, and example calculations
were presented in Chapter 3. A summary of the results is
given in Table 3.11. In this chapter an explanation of the

results will be sought.

4.2 Cohesionless soil

For cohesionless 5011 the deflection calculated by the
Broms method and Matlock~Reese method compare fairly well
with each other but Poulos method gives over 2 times greater
values., The moment calculated by Poulos method is lower than
calculated by the other methods. The explanation lies in
that for the Poulos method a constant value of Youngs
modulus E 1is used which is not valid for cohesionless soil.
When constant value ofiYoungs modulus 1is used the subgrade
reaction method agrees better with test results, for example
Gleser result, than does the elastic solution with constant
E (Pise 1972). This is true for both deflections and
moments,

Using an increasing modulus B of the soil with depth
is more realistic than using a constant value. But an

elastic solution with variable E equivalent to the Mindlin

63
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solution, which Poulos method is based on, for constant E
is not available so an approximate analysis must be used, E
= N,x, where E and k, have the same rate of increase with
depth. Solutions based on varying E also give better
agreement with the results of Gleser than do solutions for
constant E . The fact that, as shown by Pise, the subgrade
reaction solution gives better agreement with Gleser's
results than elastic solution for constant E, stems from the
use of varying k rather from the superiority of the
subgrade reaction approach. (Poulos 1972},

Uncertainities in determining E remain the same as in

determining the modulus of subgrade reaction (Pise 1972},

4.3 Cohesive soil

For cohesive s0il the deflections calculated by the
Matlock-Reese method and the Poulos method compare fairly
well. On the other hand the moments calculated by the Broms
method and the Matlock~Reese method compare fairly well, énd
those calculated by Poulos are much lower. The deflecticns
calculated by the Broms method are 2.5 to 3 greater higher
than calculated by the other two methods. In the following
paragraphs some points are mentioned that might explain this
difference.

Broms (1964) says that defleétion depends primarily on
the dimensionless length factor BL. He gives two equations

to calculate deflections at ground surface for an
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unrestrained pile, one for BL less than 1.5 and another for

BL greater than 2.5, that is:

e
BL < 1.5 y,=4—%%%‘-—) (4.1)

BL > 2.5 Yo = 2Ppp) (4.2)

He D

He then shows that the lateral deflection y, at the ground
surface can be expressed as a function of the dimensionless
guantity yo.kD ]g" versus dimensionless length BL. It seems
that for BL between 1.5 and 2.5 an extrapolation is made
between these eguations (see Figure 2.5), The value of the
dimensionless length BL for the cases calculated here are in
this range.

Also, for BL less than 1.5 the stiffness of the pile is
not taken into account for calculation of deflection except
for selecting the eguation.

When Broms compared this method to case histories for
various types of soil and degrees of end restraint he found
that the measured lateral deflections at the ground surface
varied from between 0.5 to 3.0 times the calculated
deflections. For short piles the lateral deflections are
inversely proportional to the assumed coefficient of
horizontal subgrade reaction, k,, and thus also to the

measured average unconfined compressive strength of the
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supporting soil. Thus small variations in g will have large
effects on the calculated lateral deflections. Also,
agreement between calculated and measured lateral
deflections improves with decreasing shear strength of the
soil.

Broms does not describe any case histories for
unrestrained (free-head) concrete piles driven into the
soil,

When comparing elastic solution and subgrade reaction
method, relationship between the Young's modulus and the
coefficient of horizontal subgrade reaction has to be
established. Poulos does this by eguating the elastic and
subgrade reaction for displacement of a stiff clay and
states that this is the most accurate way. And then compares
his solution with the one by Hetenyi (1946}, There all the
values from the subgrade reaction are greater than from the
elastic theory. The difference becomes increasingly marked
as the stiffness of the pile descreases. Comparisons between
the corresponding solutions for moments give that the
largest difference between the two solutions again occurs
for relativly flexible piles, for which the subgrade
reaction overestimates the moments. However, the two methods
are in reasonable agreement for stiff piles and, in general,
the agreement is better than for displacement.

Kosics points out that Vesic states that the subgrade
reaction method underestimates the deflections, while Poulos

states that it overestimates them. The difference lies in
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the different basis of relating k, and E values. Also, the
disadvantages of the subgrade reaction method is that kp
depends upon the pile properties as well as the soil
properties. And that could mean that the same k, should not
be used for piles of different stiffnesses. Consequently,
the results from a lateral load test on a particular pile
cannot be directly applied to the analysis of other piles or
piles groups with different conditions of end restraints
although the soil conditions are the same. In order to
obtain agreement between elastic sclution and subgrade
reaction solution, different k should be used for piles of
different stiffnesses. The elastic solution also has its
limitations. The method is limited to constant E value. The
term E is not only going to vary from point to¢ point in the
501l mass, but alsc at a given point it will vary with
stress conditions at that point. Also, the Mindlin solution
is used and that includes the assumption that the soil is
capable of resisting tensile stresses on one side of the
pile. This assumption would not be valid in the critical

zone near the ground surface.
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