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ABSTRACT

Detection of no-flow boundaries is an integral and important
aspect of well test analysis. Identification of no-flow boundaries assists
in defining the reservoir system and is used in determining the areal
extent of a reservoir. Existing procedures for detection of boundaries rely
heavily on the use of type curves. These type curves have been derived
for use with drawdown data, and do not necessarily work with buildup

data.

A direct method for detecting no-flow boundaries in rectangular
reservoirs using only buildup data, without reference to drawdown type
curves, has been developed. This direct method of boundary detection
introduces the concept of Boundary Influenced Difference of Pressure, or
BIDP, which relies on using an infinite acting reservoir as a frame of
reference. The BIDP is defined as the difference between the “Infinite-
Acting Reservoir” pressure and the “Boundary Influenced” pressure. This
differencing procedure removes the effect of the infinite-acting behaviour
and accentuates the boundary effects. The BIDP thus contains the
“boundary information”. Additionally, by utilizing the semi-log derivative
of the BIDP the number of boundaries is indicated and the distance to

those boundaries may be calculated.

Furthermore, this method does not rely on the duration of
producing time, as do the existing traditional methods of boundary
detection. This direct method depends only on the duration of shut-in
time, and is not affected by the duration of producing time. Thus
boundaries can be detected for relatively short producing times and

longer shut-in times.

The method is illustrated with examples using synthetic data. The
application of the method to “noisy” data is also demonstrated.
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BIDP

Pwelt

NOMENCLATURE!

formation volume factor

Boundary Influenced Difference in Pressure
dimensionless wellbore storage

total compressibility

distance to a boundary

exponential integral function
formation thickness

counter for infinite series

counter for infinite series

formation permeability

pressure

initial reservoir pressure

bottomhole pressure in a well

flowing bottomhole pressure in a well

flowing bottomhole pressure in a well at the instant of
shut-in

shut-in bottomhole pressure in a well

shut-in bottomhole pressure in a well ijn a reservoir
system with a boundary

shut-in bottomhole pressure in a well in an infinite-acting
reservoir

bottomhole pressure in a well

The equations in this work are presented in a consistent set of units.

Thus, the units of variables and parameters are not specified here.



P~ = bottomhole pressure in a well in an infinite-acting
reservoir

= flow rate of a well

r = radius

ri = radius of investigation
r« = wellbore radius

s = skin

t = time

tp = producing time
w = distance to a boundary
X = distance to a boundary
y = distance to a boundary
z = distance to a boundary

Greek Symbols

a = group of variables used to simplify equations
B = group of variables used to simplify equations
Ap = (difference in pressure
Apepp = boundary influenced difference in pressure
Apbuiwp =  difference in pressure during buildup
Apdrawaown =  difference in pressure during drawdown
At = shut-in time
¢ = porosity
= viscosity

= Euler’s Constant = 1.781



1.0 Introduction

The analysis of pressure data has been a subject of interest
to petroleum engineers for many decades. Pressure data can be
analyzed to determine reservoir parameters and flow
characteristics. Measurement of bottom hole pressure data is one
of the few ways of acquiring “real time® data from a reservoir.
Furthermore, this data can be obtained with a high degree of
accuracy for a very reasonable cost. Hence there is much interest
in acquiring and interpreting pressure data.

The theory of pressure transient analysis is derived from the
solution of the radial diffusivity equation for a fluid of small but
constant compressibility flowing at a constant rate. From the
general solution, using various boundary conditions which
represent different well/reservoir geometries, dimensionless
drawdown type curves have been developed. These drawdown type
curves give the analyst the opportunity to compare the raw data
with the analytical solution and thus, qualitatively and
quantitatively, determine the reservoir system in which the well is

located.

The graphical comparison of measured bottom hole pressure
data to these standard dimensionless type curves is known as Type
Curve Matching. This is a straight forward, well documented and
accepted procedure. It applies equally well to simple and complex

systems in drawdown tests.



Type curve matching has two main results: (1) Reservoir
Parameter Estimation, and (2) Reservoir Model Identification. Here
‘reservoir parameters” are quantities such as reservoir
permeability, wellbore storage effects and skin. “Reservoir model”
refers to the reservoir-well system which would produce the
specific pressure-time data recorded. Examples of reservoir
models include: a circular reservoir with constant pressure
boundaries with the producing well located in the center; channel
reservoirs with the producing well very close to one boundary;
dual porosity systems; and multi-layered composite systems.

Reservoir parameter estimation is usually done using the
portion of the measured data that is “infinite-acting”, or transient.
Reservoir model identification depends upon the interpretation of
boundary effects that are considered to be in the late time region of
the data.

The majority of the published solutions apply to single rate
drawdown tests. Variable rate and multi-rate tests are treated
simply by application of the Principle of Superposition. Buildup
tests are considered to be a special case of a multi-rate drawdown

test where the last rate is zero.

From a practical point of view, buildup tests are preferred.
Drawdown data are collected while the well is flowing. As a result
the data are subject to wellbore dynamics and wellbore effects.
This causes drawdown data to be noisy, even at the best of times.



Often, the drawdown data are so noisy that they cannot be
analyzed successfully. By contrast, buildup data are collected
when the well is shut-in. During the early time period, wellbore
effects and afterflow affect the data. However, these phenomena
generally quickly disperse, and the reservoir signal is often
apparent thereafter.

Furthermore, with the cessation of afterflow, a constant
sandface flowrate is achieved. Theoretically, then, the buildup

data can be analyzed as a superposition of drawdown solutions.

For buildup data, currently there are no type curves
published in the literature. The current procedure for analyzing
buildup data is to mathematically manipulate the time variable to
force buildup data to match the drawdown type curves. Using this
hybrid time variable, the buildup data are then analyzed as if they
were a drawdown test. This temporal superposition process works
very well for infinite-acting, homogeneous reservoirs.

This process also works reasonably well to determine
reservoir parameters in more complex reservoir models, if the
infinite-acting portion of the data can be identified. However, the
reservoir model itself may not be readily identified in these cases.
The buildup data set, even after it has been mathematically
manipulated, represents boundaries or heterogeneities very
differently than does drawdown data. Furthermore, if the infinite-
acting portion of the data cannot be identified, the technique of




using drawdown type curves to analyze buildup data fails

miserably.

Reservoir model identification for buildup data is currently a
trial and error method. Measured data are compared to theoretical
or numerical solutions of various reservoir configurations until a
suitable match is found. This is an imprecise and time consuming
process. The starting reservoir configuration is a “best guess”
guided by the analyst’s previous experience. Refining the initial
configuration to match the actual data is very much dependent on
the analyst’s previous experience and exposure to various reservoir

models and their representation in buildup data.

As the majority of well tests currently conducted are buildup
tests, a rigorous and direct methodology for reservoir model

identification would be advantageous.



2.0 Review of Literature

2.1 Background

The analysis of buildup data began with Horner [1951].
Horner suggested a semi-log analytical method of determining
formation permeability. A plot of the shut-in bottom hole pressure
versus the logarithm of {(tp+At)/At} resulted in a straight line with
a slope that was inversely proportional to the permeability. With
the assumptions of radial flow in an infinite acting reservoir, a
constant formation permeability, a single phase fluid of small and
constant compressibility, and constant viscosity, this semi-log plot
has provided the foundation for traditional pressure buildup

analysis.

Horner also showed that, for wells in closed drainage
systems, reservoir pressure eventually became static. This static
pressure provided an estimate of the average pressure within the

drainage area of the well.

Additionally, Horner showed that for a well located near a
no-flow linear barrier, the buildup pressures in the late time
period would show a marked increase. This increased pressure
formed a second linear trend with a slope that was twice that of the
initial semi-log straight line.



Miller, Dyes, and Hutchinson [1950] presented a study of
wells located in closed (bounded) reservoirs and constant pressure
boundary reservoirs. This study assumed that the wells had been
produced to pseudosteady state or steady state prior to shut-in.
Miller et al. concluded that a plot of buildup pressures versus the
logarithm of shut-in time produced a straight line with a slope that
was inversely proportional to the permeability. Also, for either
boundary condition (closed or constant pressure), the pressure
data reached a static value. This value was indicative of the

average pressure in the drainage area of the well.

Miller et al. also studied wellbore storage phenomena.
Because the well is shut-in at surface, the sandface flow rate does
not instantaneously fall to zero. Fluid continues to enter the
wellbore until the formation pressure becomes static. Miller et al.
coined the term “afterflow” to describe this phenomenon.
Previously, this phenomenon had been termed “annulus
unloading” by van Everdingen and Hurst [1949], for the case
where a well is opened at surface and produced.

A different method of determining average pressure in the
drainage area of the well was presented by Matthews, Brons, and
Hazebroek (MBH) [1954]. Matthews et al. developed dimensionless
curves for wells at various locations in drainage areas of various
shapes. Using the extrapolated pressure from the Horner plot, the
average pressure in the drainage area can be determined from the

MBH dimensionless curves.



The advantage of the MBH method is that it is applicable to a
wide variety of drainage area shapes. This method has two
disadvantages. First, it requires previous knowledge about the
shape and size of the drainage area, and second, it requires a
knowledge of the location of the well within the drainage area. This
method also relies on estimates of reservoir and fluid properties
that may not be known with great accuracy.

Slider [1971] presented a paper that outlined a new buildup
analysis method for a well that had reached either pseudosteady -
state or stabilized flow. The method is based on the change in
pressure caused by the negative rate effect due to shutting in the
well. The two advantages attributed to the Slider method are:
first, a complete analysis can be accomplished without prior
knowledge of the porosity or effective compressibility and second,
a straight line pressure plot exists for much longer time periods
than other methods. The disadvantage of this method is that the
answer depends heavily on the extrapolation of the drawdown
data. This is a semi-log method, after the fashion of Horner.

A paper by Ramey [1976] provides an excellent summary of
advances in well testing theory to that time. It provides a view of
the historical trend of research in pressure transient analysis and
gives some predictions of future directions. As in most areas of
scientific research, the historical trend was to build on previous
concepts and trains of thought, sometimes not stopping to

consider new tools that are available.



2.2 Type Curves

Drawdown type curves including storage and skin were first
published by Agarwal, Al-Hussainy, and Ramey [1970]. These
type curves allowed a graphical method of determining reservoir
parameters; but, more importantly, allowed a description of the
reservoir/well system model. These drawdown curves worked well
for drawdown tests, but were not applicable for buildup data

because producing time effects were not taken into account.

The focus of the work on pressure buildup type curves,
documented in the literature, has been to manipulate the time
function to allow buildup data to fit the existing drawdown curves,
rather than developing specific type curves for buildup data. This,
no doubt, is because drawdown type curves were readily available

and understood.

Agarwal [1980] devised the concept of “equivalent time”
which accounts for the dependence of buildup behaviour on the
duration of the producing time. This allowed a time shift of
buildup data so that the drawdown type curves could be used for
analysis. The method accounts for the effects of producing time,
and in that respect is similar to the Horner method. It may be
used to determine formation permeability, skin, and reservoir
pressure. This type of analysis works well for buildup data during
the infinite acting or transient portion of the flow period. Beyond



the infinite-acting range of data the equivalent time manipulation

does not work.

McKinley [1971] presented a paper that detailed a method
for determining wellbore transmissibility from afterflow dominated
pressure data. While afterflow is generally regarded as a nuisance,
it is reasonable to assume that the afterflow data contains valuable
information. Pressure change during afterflow reflects a balance
between the wellbore storage capacity and the ability of the
formation to flow fluid to the wellbore.

McKinley’s method uses real time, not dimensionless time,
and relies not on “correcting” the measured pressure data, but
rather on utilizing a set of type curves generated for a
homogeneous, radially finite reservoir to calculate the near
wellbore transmissibility. Wellbore transmissibility is an indicator
of the ease with which the formation supplies fluid to the wellbore.
The manner in which the measured data deviates from the type
curve gives an indication of the transmissibility of the bulk
formation as compared to the wellbore transmissibility. This type
curve analysis provides a comparative index of transmissibility
which gives an indication of damage or improvement (skin) near
the wellbore. This method focuses on the early time data and is
used primarily for well tests that are dominated by afterflow.

Raghavan, Meng, and Reynolds [1980] presented a new
procedure to analyze pressure buildup data following a short flow



period by utilizing drawdown type curves. By converting buildup
data to equivalent drawdown data a larger data set for drawdown
type curve matching is obtained. The method of conversion is to
assume that the drawdown extension Ap for a given value of shut-
in time, At, is (pi-pwtp))+( Di -Pws(At)), where t, and At have the
same numerical value. This results in an extension of the
drawdown data that can be matched to the drawdown type curve.
The authors state that a longer band of data will result in a more
reliable match. This method requires that pressure-rate data prior
to buildup are available, and an estimate of the initial reservoir

pressure is needed.

The most recent major advances in type curve matching and
analysis came from Bourdet, Whittle, Douglas, and Pirard (1983)
with the introduction of derivative type curves. Following the
earlier concepts of finding the slopes of the semi-log plots,
derivative type curves are plots of the derivative of the semi-log
curve plotted on a log-log scale. Derivative curves allowed for
determination of the reservoir parameters, as well as the

identification of well and reservoir flow behaviour.

Derivative curves provide unique “signatures” that enable
the identification of flow regime. For example, one can identify
radial, linear, or bi-linear flow by observing the value of the slope
of the derivative curve. These signatures are a significant advance

over the traditional type curves.

10




The derivative curves necessarily depend greatly on the
quality of the measured data to achieve a smooth derivative curve.
With the advent of modern electronic pressure gauges this is no
longer a major concern due to the accuracy of the electronic
gauges and the number of data points it is now possible to record.
However, the measured data still often needs to be “smoothed”.
Bourdet, Ayoub, and Pirard (1989) did address this concern and
offered some methods for smoothing the recorded data.

11



2.3 Deconvolution

Through the 1980’s there was another approach to the
analysis of buildup data. This involved the inverse use of
Duhamel’s principle or deconvolution. By definition, deconvolution
is a mathematical technique for extracting the effect of the time-
dependent input data from the output data. From a pressure
transient analysis standpoint, deconvolution extracts the
drawdown data that underlie the buildup data. Because the tools
to analyze the drawdown data are available, the reservoir system

could then be described.

Inherently, deconvolution has two drawbacks.
Mathematically, it is a highly unstable, inverse problem. When the
deconvolutien algorithms work, the resulting data has a high
degree of scatter. Secondly, from a more practical point of view,
application of deconvolution to pressure transient analysis
depends on the measurement of the downhole (sandface) flow rate.
This is a very uncommon measurement that is subject to many

inaccuracies, and one that is relatively expensive to obtain.

Papers which illustrate the development of deconvolution as
a tool for the analysis of buildup data are summarized as follows:

Stewart, Wittmann, and Meunier [1983] and Meunier,
Wittmann, and Stewart [1983] presented a discussion on the use
of deconvolution in well test analysis using data (pressure and flow

12



rate) measured downhole. Measurement of the downhole flow rate
allows for elimination or minimization of wellbore storage and
afterflow effects. The identification of storage directly means
almost twice the amount of data is available at early time for

analysis compared to other methods.

For deconvolution, the continuously measured variable rate
is replaced by a piecewise linear approximation. The resulting
convolution integral has an analytical solution. For radial flow, a
plot of rate normalized pressure versus a modified logarithmic time
function is linear. The flow capacity and skin can be determined
from the slope and intercept, in a similar fashion to the constant
rate case. Thus the authors develop the theoretical basis for the
analysis of simultaneous, continuously variable bottomhole
pressure and bottomhole flow rate data. This model eliminates the
simplifying assumption of constant wellbore storage. However, for
application to buildup data, extrapolations of pressure and
manipulated time functions are invoked to allow the use of

drawdown theory.

Thompson and Reynolds [1986] presented a paper that
proposed three methods of application of Duhamel’s principle to
well test data. They considered both drawdown and buildup data,
but concentrated on the drawdown solutions. Unique to this work
is the idea that the methods presented use Duhamel’s principle to
convert the variable sandface rate - pressure data to the equivalent
pressure data that would have been obtained if production had

13



been at a constant sandface rate. This equivaient constant rate
data can then be analyzed using standard procedures.
Furthermore, Thompson and Reynolds extended the previous
methods of planar radial flow to a more general case that could be
used for fractured wells or heterogeneous reservoirs. The biggest
limitation to their methods is that sandface flow rates must be
available.

Moser [1987] suggested a modified Gladfelter method to
account for changing flow rates. This improvement is to correct
the time function in a continuous fashion, after the fashion of
Horner, rather than in discrete units. Moser points out that the
method is more intuitively based, rather than based on
mathematical derivation. However, the method did give excellent
results in the examples provided. The limitation is the reliance on

measured sandface flow rates.

The first use of convolution data in type curves was
presented by Ayestaran, Mimhas, and Kuchuk [1988]. Based on
the rate normalized pressure deconvolution developed by
Gladfelter, Tracy, and Wilsey [1955], a method for identifying
system characteristics and estimating reservoir parameters was
developed. Furthermore, it was shown that an “automatic type
curve matching®, that included the effect of prior production
history, could be achieved. While the proposed technique worked
well on synthetic data, noise in the gathered data or oscillations in
the flow rate caused the model to break down to the extent that it

14



could not be used for model identification. This method used
sandface flow rates and pressures. To incorporate surface flow
rates, the model was found to be very dependent on wellbore
storage. This effect could not always be effectively incorporated in
the model.

Kuchuk, Carter, and Ayestaran [1990] and Kuchuk [1990-
a] suggested that the ability to deconvolve pressure and flow data
would be of use in many reservoir problems. Particularly in the
area of pressure transient analysis, data trends may be masked by
more prominent time-dependent effects, and the reservoir data are
lost. For example, in hydraulically fractured wells the
characteristic half slope, because it occurs at early times, may be
masked by wellbore storage or rate variations. The authors go on
to describe deconvolution methods that are numerical solutions to
the convolution integral. These techniques are very successful
with “synthetic” data, but fail when even small amounts of noise

are introduced into the data.

As research progressed on the deconvolution of pressure-
flow data, it became apparent that if downhole flow rates, rather
than surface flow rates, were used in deconvolution the
mathematical results would be less subject to data scatter. While
this was an improvement, obtaining the downhole flow rates was
subject to its own set of problems. The gauges were affected by
wellbore effects and fluid movement in the wellbore. Kuchuk
[1990-b] presented a comparison of convolution /deconvolution
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interpretation techniques and standard techniques by utilizing two
field cases. It was noted that the deconvolution formula is
recursive; that is, previously computed values are used to
compute the next value. Thus small perturbations in initial data
result in large perturbations in the computed solutions. Kuchuk
concluded that the downhole flow rate is crucial for system
identification and parameter estimation. Furthermore,
deconvolved pressure derivative data can be an effective system

identification tool.

In 1994 Baygun, Kuchuk, and Arikan [1994] presented a
constrained least-squares deconvolution method which should be
useful for noisy data. The constraints considered were
autocorrelation constraints and derivative of energy constraints.
In the numerical examples presented, the deconvolution result
oscillated about the true influence function, but was not biased
away, in any direction, from the true solution. Also, the
magnitude of the oscillations was significantly suppressed

compared to earlier techniques.
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2.4 Boundary Conditions and Solutions

For the purpose of building a computer model to generate
solutions for various boundary conditions and flow regimes, the
literature was reviewed for existing solutions, both analytical and
numerical. The following is a description of some of the more

applicable papers:

Ramey and Cobb [1971] presented a general theory for
pressure buildup in a closed drainage area, and compared the
Muskat method, the MDH method, and the Horner method, for
wells in the center of a closed square. For each of the methods the
length of producing time was considered a variable. For the
Muskat and MDH methods, the length of time the well was
produced had a significant impact on the values of permeability
and average reservoir pressure computed. For the Horner method,
for all producing times considered the correct slope was achieved,
and the correct value of permeability was calculated. For those
cases where the producing time resulted in pseudosteady state
flow prior to shut-in, and the shut-in time was long enough to see
a buildup to pseudosteady-state, the average reservoir pressure

calculated was correct.

One of the more interesting conclusions in this work was
that the Horner method straightens buildup data to much longer
shut-in times than does the MDH method, and because of this the

17



Horner method appears to be much more useful than the MDH
method.

The work of Ramey and Cobb [1971] was extended by Cobb
and Smith [1975] to develop a correlation between the time
required to reach the end of the semi-log straight lines as a
function of the time the well was produced prior to shut-in and
well geometry. By extension, this allowed for an estimate of the
minimum time the well must be shut in before the effects of the

boundaries become pronounced.

Correa and Ramey [1986] presented a new approach to solve
the problem of pressure buildup following constant pressure
production. By using the unit step function to combine boundary
effects the problem was solved analytically. This solution was
obtained by solving the diffusivity equation with a single inner
boundary condition that included the mixed conditions for flow
and buildup. The solution was obtained using regular Laplace
transformation techniques. The authors emphasized that the
solution does not involve the use of superposition, nor does it
involve a temporal transformation. However, the use of the unit
step function in this manner is an elementary form of convolution
[Wylie 1975].

Moser [1983, 1987] proposed a method of semi-log type
curve analysis for drawdown data after the fashion of Horner. For
the analysis of buildup data Moser proposed a temporal

18



desuperposition to extract drawdown data which can then be
analyzed using traditional methods. Restrictions on this
desuperposition were that the initial pressure must be known and
that the duration of the buildup was at least twice that of the
drawdown period.
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3.0 Statement of the Problem

The objective of this research is to develop a rigorous and
direct methodology to identify no-flow boundary effects in
rectangular reservoirs using pressure buildup data.

The theory of pressure transient analysis is derived from the
solution of the diffusivity equation for a fluid of small but constant
compressibility, flowing at a constant rate. From the general
solution, wusing various boundary conditions which represent
different well/reservoir geometries, dimensionless drawdown type
curves have been developed. “Reservoir Model Identification” and
“Reservoir Parameter Estimation® by the graphical comparison of
bottomhole pressure data to standard dimensionless type curves is
known as Type Curve Matching. It is a well defined and accepted
procedure and applies equally well to simple and complex reservoir

systems for drawdown data.

There are no published dimensionless type curves for
pressure buildup data. If the transient portion of the data can be
recognized, the reservoir parameters can be estimated from the
drawdown type curves, but, in many instances, no conclusions

can be drawn about the reservoir-well system.

Currently, the method used for model identification is to
generate “synthetic” solutions for various reservoir models and
then to compare the measured data to the synthetic solution. (A

20



synthetic solution is one which is generated by supplying all the
reservoir parameters and solving the radial diffusivity equation for
a specific boundary condition.) This is a tedious and time
consuming method of trial and error. There are no guidelines for
choosing a model with which to start nor, once a model is chosen,
how to proceed to achieve an acceptable match to the synthetic

solution.

To add further complexity to this problem when using the
current methods, it is known that the “characteristic shape” of
response of a given system, in buildup data, is influenced by the

duration of flow preceding the pressure buildup.

The majority of well tests currently conducted are buildup
tests, due to the resulting high quality data achieved. However, it
is very difficult to identify reservoir systems from buildup data
using the current analytical techniques.

Rectangular reservoirs were chosen as the primary subject of
this study primarily because it was felt that a boundary detection
method developed for rectangular reservoirs could be readily
extended to other reservoir configurations. Rectangular reservoirs
offer a wide range of configurations, and an infinite number of
well/boundary situations that can be studied. Also these
reservoirs can be mathematically represented in several ways. As
a result, this reservoir configuration offers several approaches for

development of a boundary detection methodology.
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The last decade has seen a significant change in the
operation and production of the Western Canadian Sedimentary
Basin. There is much more interest in exploiting shallow
formations which are hydrocarbon bearing. Most of these were
formed in a river or channel environment and have resulted in
rectangular shaped reservoirs. The ability to determine the
boundaries in these formations has great application to the

development of this resource.

Thus, the objective of this research is to develop a rigorous
and direct methodology to identify no-flow boundary effects in

rectangular reservoirs using pressure buildup data.
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4.0 Development of the Boundary Detection Method

Pressure transient analysis, or well testing, is the most
frequently used method to gather “real time” data about a well in a
reservoir system. The data gathered from a well test are analyzed
to determine reservoir parameters such as permeability, skin, and
wellbore storage effects, and to some extent to determine the

reservoir model.

By identifying various portions of the data, such as early
time, infinite acting (transient) and late time, the reservoir
parameters and reservoir model may be determined. For example,
early time data is analyzed to give wellbore storage and skin
effects. The transient portion is analyzed to give flow regime and
permeability, while the late time data are analyzed to determine

boundaries and hence the reservoir model.

These results are most often obtained using a technique
known as type curve matching. Type curve matching is the
graphical comparison of measured bottom hole pressure data to
standard dimensionless type curves. The standard type curves are
solutions of the radial diffusivity equation for a fluid of small and
constant compressibility, flowing at a constant rate, and various
boundary conditions. Type curve matching is a straight forward,
well documented and accepted procedure.
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The majority of the published type curves apply to single rate
drawdown tests. Variable rate and multi-rate tests are treated
simply by application of the Principle of Superposition. Buildup
tests are considered to be a special case of multi-rate drawdown

where the last rate is zero.

It has been previously stated that buildup tests are preferred
due to the quality of the resulting data. Analysis of the buildup
data follows the same methodology as that of drawdown data. In
fact, drawdown data type curves are used analyze buildup data.
This is accomplished by mathematically manipulating the time
variable (temporal superposition) to force the buildup data to

match the drawdown type curves.

While this method works reasonably well for the analysis of
early time data, and the infinite-acting data, the late time data
and hence boundaries cannot be analyzed successfully. The
buildup data, even after mathematical manipulation, represent

boundaries quite differently than drawdown data.

The objective of this chapter is to detail the development of a
direct method for determining boundaries in rectangular reservoirs

using buildup data.
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4.1 General Assumptions of the Method

The focus of this research is to investigate boundary effects
so that a reservoir model may be determined. Thus, for the
purpose of developing a boundary detection model, it is assumed
that early, transient and late time portions of the data have been
identified. Further, from the early and transient portions of the
data, the reservoir parameters of wellbore storage, skin effect,
and permeability have been determined and are available. It is
also assumed that reasonable estimates of porosity, net thickness,
total compressibility, and fluid viscosity are available.

Essentially, the analysis for the early time and transient
portions of the data have been completed as for a well in an
infinite-acting reservoir. It is now when the trial and error process

of reservoir model identification begins.

The model has been developed for a reservoir flowing a single
phase light crude oil of small but constant compressibility. It was
assumed that there was a connate water saturation, but that

water is immovable. Gas was considered to be solution gas only.

To assist in understanding the development of the method,
the effects of wellbore storage and skin have been omitted from the
development of the equations. The effect of wellbore storage and
skin are discussed in the chapter titled “Results and Discussion”.
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4.2 General Concepts of the Method

There are five main concepts which are key to the
understanding of the derivation of the method. These are:

1. The Radial Diffusivity Equation
2. Method of Images

3. The Principle of Superposition
4. Radius of Investigation, and

S. An Infinite-Acting Reservoir Frame of Reference.

The Radial Diffusivity Equation is the basis for all solutions

in pressure transient analysis.

The Method of Images is a mathematical technique which
allows no-flow boundaries to be constructed at specific distances

from a flowing well.

The Principle of Superposition will be used in two ways.
Firstly, with the radial diffusivity equation to represent all
boundary conditions. Secondly, with the Method of Images to

simulate no-flow boundaries.

The Radius of Investigation concept gives an indication of the
distance a pressure signal has travelled in a specific reservoir

during a finite amount of time.
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An Infinite-Acting Reservoir Frame of Reference is the key
element of this method of boundary detection. Traditional methods
of analysis use a pressure measurement during the flowing portion
of the well test as a reference for the difference in pressure used in
the solution of the radial diffusivity equation. This method uses
the response from an identical well in an infinite-acting reservoir

as the reference pressure.

A more detailed discussion of each of these concepts follows.

4.2.1 Radial Diffusivity Equation and Superposition

The theory of Pressure Transient Analysis is derived from the
solution to the Radial Diffusivity Equation for a fluid of small but

constant compressibility flowing at a constant rate.

The Radial Diffusivity Equation is:

op 10p _duc op
S e e (4.2.1.1)

ar"~’ *
It is derived by combining the Law of Conservation of Mass,
Darcy’s Law, and an Equation of State. (see Matthews and
Russell [1967] for the full derivation). To solve this equation for a

well flowing at a constant rate in an infinite, homogeneous

reservoir, the boundary and initial conditions are:
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op__qu
rar =3 fort>0 and r->r,, = ... (4.2.1.2)
P=D; asr —»wx, and ... (4.2.1.3)
P=Dp; att=0. . (4.2.1.4)

The solution to the radial diffusivity equation for a well

flowing in an infinite, homogeneous reservoir is:

2
p,-p= %{— Ei(— -d’ic—l;tr"n S (4.2.1.5)

(See the Appendix for the complete solution.) This solution is

an exact analytical solution.

There is no disputing that an infinite acting homogeneous
reservoir is a very ideal case. However, solutions for other
boundary conditions may be obtained by use of the Principle of
Superposition. Mathematically, the Principle of Superposition
states that the addition of two or more solutions of a linear
differential equation results in a new solution of the equation. This
new solution is valid for a different set of boundary conditions than
those of the original equation (Crank 1975). Thus, by combining
solutions to the radial diffusivity equation, various reservoir

configurations can be modelled.
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4.2.2 Method of Images

The change in pressure at any point in a reservoir is the sum
of the changes in pressure at that point caused by flow in each of
the wells in the reservoir. This is a direct application of the
Principle of Superposition. Using this concept, no-flow
boundaries can be constructed mathematically.

Consider the pressure behaviour of a well producing in a
reservoir located a distance “d” from a single no-flow boundary.
Mathematically, this is the same problem as two identical wells
producing at a distance of “2d” apart, as illustrated in Figure
4.2.2.1. The second well is considered to be an “image” well. It
can be shown that a line equidistant from each of the wells has a
pressure gradient of zero, which means that there is no flow. This

line, then, represents a no-flow boundary.

Expanding this technique, many no-flow boundary
configurations can be represented. An array of image wells
influencing the actual well will effectively represent these no-flow
boundary configurations. For further details on the method, see
Earlougher (1977).
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Flow

Figure 4.2.2.1 Example of Method of Images
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4.2.3 Radius of Investigation

It is possible to estimate the distance to the no-flow
boundary from the characteristic curve by applying the concept of
“Radius of Investigation”. Radius of investigation is the distance,
measured in a radial direction from the well, over which there is a
measurable change in pressure due to production or injection at

the well.

There are a number of expressions which define the concept
of radius of investigation based on what is considered to be a
measurable change in pressure. Van Poollen (1964) reviewed
various definitions of radius of investigation and provided advice
on their use. Each of the definitions is valid given the underlying
assumptions. However, the resulting radius of investigation is at

best, an estimate.

For the purpose of this work, the radius of investigation is
defined as the distance a pressure transient has moved into a
formation following an instantaneous rate change in a well. (Lee

(1982)) It is given by the equation:

4kt
- /—— ..... 4.2.3.
i YouC, (#.2.3.1

Equation [4.2.3.1] describes the time it takes the maximum

pressure disturbance to reach a distance of r; from the well
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following an instantaneous change in the rate. The radius of
investigation equation also describes the distance a significant
pressure disturbance has propagated into a formation by

production or injection at a constant rate.

Shutting in a well is a significant rate change. The pressure
disturbance propagated as a result of this action can be traced
using the shut-in time At. Using a specific At in the radius of
investigation equation enables the calculation of the distance the
pressure disturbance, caused by shutting in the well, has

travelled in the reservoir.

For the purpose of finding the distance to the boundary
using shut-in time, the radius of investigation equation can be

written as:

;ﬁt ..... (4.2.3.2)

where “d” is the distance to the no-flow boundary.
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4.2.4 Infinite-Acting Reservoir Frame of Reference

Traditional methods of well test analysis rely on the solution
to the radial diffusivity equation which can be expressed as:

B 2
Ap = _%kih[gi(_ 4’_‘;?1;%” ..... (4.2.4.1)

This representation expresses a difference in pressure as a
function of the other reservoir variables. In a drawdown test, the
pressure difference is expressed as the difference between the
initial pressure, p; and the flowing bottom hole pressure, pw. For
a buildup test, the pressure difference is expressed as the
difference between the wellbore pressure in the shut-in well, puws,
and the flowing bottomhole pressure at the instant of shut-in, pus.
This is illustrated in Figure 4.2.4.1.

The basis for the direct method of boundary determination
developed herein is to use a different frame of reference for the
pressure difference. Instead of using the flowing well condition as
a frame of reference, this new method relies on an “infinite-acting
reservoir” frame of reference. The pressure difference is expressed
as the difference between a well in an ideal, infinite-acting,
homogeneous reservoir, and an identical well in a specific reservoir
configuration. For this method Ap in the solution to the radial
diffusivity equation is expressed as Ap = p. - pwa at any given
time. This pressure difference is referred to as the Boundary
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Influenced Difference of Pressure or BIDP. Figure 4.2.4.2
illustrates this difference of pressure.
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4.3 Variation from the Infinite Case

Consider a plot of the solution of the radial diffusivity
equation for an infinite homogeneous reservoir. Now, if a
boundary is imposed, the solution will vary from the infinite case.
The difference of the pressures in these two cases will contain
information that will uniquely describe the boundary condition.
The pressure difference in this case is the difference between a well
flowing in an infinite reservoir of given reservoir parameters, and a
well flowing at the same rate in a reservoir with identical reservoir
parameters having a no-flow boundary. This pressure difference is
referred to in this work as the Boundary Influenced Difference in

Pressure (BIDP).

Due to the previously mentioned preference to use buildup
data for the analysis of well tests, in this work from this point
forward the discussion will focus on buildup data and its use in

describing boundaries.

Figure 4.3.1 shows the Boundary Influenced Difference in
Pressure in a semi-infinite reservoir. A semi-infinite reservoir is
one which has at least one side unbounded. The plot shows that
the pressure difference is constant for a period of time, then

increases, and finally decreases asymptotically to zero.
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Figure 4.3.2 shows the BIDP for several cases, each of which
describes a different boundary condition. All these curves have the
same general shape and do not display any unique characteristic
which could be used to identify the particular boundary
configuration of each system. The issue of an unique
characteristic can be overcome by plotting the semi-log derivative
of the BIDP versus the log of time. This is a technique similar to
that described by Bourdet et al. (1983).

The derivative curve developed by Bourdet et al. (1983) has
gained prominence in conventional well test analysis because it
clearly identifies features which are not evident in other plotting
techniques. The derivative by its very nature serves to magnify
subtle changes in trends. These subtle changes can be interpreted
and the result is a curve from which some reservoir characteristics

may be identified.

A key to the reservoir configurations used in this work is

given in the Appendix.
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4.4 Description of d(BIDP) Curve

The d(BIDP) curve is the plot of the semi-log derivative of
BIDP versus the log of shut-in time, At. The BIDP is defined as the
difference between buildup pressures in an infinite acting reservoir
and buildup pressures in a bounded reservoir. A description of
the d(BIDP) curve and how it relates qualitatively to what is
physically occurring in the reservoir is presented below. Further a
discussion of how boundaries are reflected in the d(BIDP) curve
and how to calculate the distance to each boundary is included.

The d(BIDP) curve describes the time rate of change of the
pressure difference between a well flowing in a reservoir system
with no-flow boundaries and a well flowing in an infinite-acting
reservoir with identical reservoir flow characteristics. While this is
a simple statement summarizing the mathematics behind the
d(BIDP) curve, it represents a complex set of physical events. As
illustrated in Figure 4.2.4.2, the bottom hole pressure in the
bounded reservoir is not only different in magnitude from that in
the infinite-acting reservoir, but the rate of change of the bottom
hole pressure in the bounded reservoir is different as well. Both
the magnitude of the bottom hole pressure and the rate of change
of the bottom hole pressure are influenced by the specific
boundary configuration present. The d(BIDP) curve captures these

subtle differences and accentuates them.
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Figure 4.4.1 illustrates the d(BIDP) curve for a well in a
reservoir with a single boundary. The curve is divided into four
regions. The first region of the example curve in Figure 4.4.1 is at
shut-in times of less than 0.1000 hours. In this region, the curve
is flat with a d(BIDP) value of zero. This represents a constant
difference in pressure between the infinite-acting reservoir and the
bounded reservoir. In effect the bounded reservoir is mimicking
the behaviour of the infinite-acting reservoir. The buildup
response in the bounded reservoir has not yet been influenced by
any boundary. It is acting as true radial flow 1n the reservoir.

The second region of the example curve is at shut-in times
between 0.1000 hours and 11.0 hours. This region illustrates an
increasing difference in pressure and an increasing rate of change
of that difference. The physical interpretation of this trend is that
the reservoir is recharging the depleted area between the well and
the no-flow boundary from the unbounded portion of the reservoir.

The reservoir is no longer acting in true radial flow.

The third region of the example curve is at shut-in times
between 11.0 hours and 120 hours. This region illustrates a
decreasing difference in the pressure between the infinite-acting
reservoir and the bounded reservoir, and a decrease in the rate of
change of that difference. The physical interpretation is that the
infinite portion of the reservoir, which is at a higher pressure, is
equalizing the pressure across the entire reservoir including that
part of the reservoir between the well and the boundary.
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The fourth region of the example curve is at shut-in times
greater than 120 hours. This region shows an ever decreasing
difference in pressure between the infinite-acting reservoir
pressure and the bounded reservoir pressure, and the rate of
change of this difference asymptotically approaches zero as the
shut-in time approaches infinity. At a shut-in time of infinity the
difference in pressure between the infinite-acting reservoir
pressure and the bounded reservoir pressure would be zero and
the curve would again be flat along the x-axis. This region of the
curve shows the infinite portion of the reservoir dominating the

pressure data.

Regions three and four of Figure 4.4.1 show the response of
the infinite portion of the reservoir acting to equilibrate the
pressure in the entire reservoir. The shape of the curve in this
area is the direct result of the difference in pressures between the
infinite-acting reservoir and the bounded reservoir. In these
regions, the pressure in the infinite-acting reservoir is changing
only slightly in magnitude, while by comparison, the pressure in
the bounded reservoir is changing much more and at quite varying
rates. It is this combination of effects that gives the d(BIDP) curve

a characteristic shape.

Qualitatively the magnitude of the maximum value of the
d(BIDP) curve and the steepness of the curve between the

maximum and minimum values of the d(BIDP) curve give an
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indication of recharge, or the transmissibility of the reservoir, and

hence permeability.

The minimum value of the d(BIDP) curve is indicative of the
reservoir coming back to an equilibrium state having redistributed
reservoir fluids in the area between the flowing well and the
boundary. It is not indicative of a boundary.

The maximum value of the d(BIDP) curve is indicative of the
first boundary. Using the shut-in time corresponding to this point
in the radius of investigation equation gives the distance to the
boundary. Figure 4.4.2 illustrates this point. A sample calculation
for the distance to the boundary using the radius of investigation
equation is included in the Appendix.

In the case of multiple boundaries, the shut-in time
corresponding to the initial maximum value of the d(BIDP) curve in
the radius of investigation equation gives the distance to the

closest boundary.

For more than one boundary, the boundaries are indicated
by additional flex points in the d(BIDP) curve. Figure 4.4.3
illustrates an example d(BIDP) curve for a well producing in a
reservoir having two boundaries. The first boundary is indicated
on the d(BIDP) curve in the same way as in the case of a single

boundary.
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The region of the curve in Figure 4.4.3 denoted as Region 3
has a definite flex point. Unlike Region 3 in Figure 4.4.1, which
has a constant rate of change from the maximum to the minimum
values of the d(BIDP) curve in Region 3, Region 3 of Figure 4.4.3
has a change in the rate of change from the maximum value to the
minimum value of the d(BIDP) curve. This flex point is indicative
of the second boundary. In the first case, Figure 4.4.1, the
reservoir is recharging one region of depletion from the unbounded
portion. This leads to the constant rate of change illustrated in
Figure 4.4.1. In the second case, Figure 4.4.3, the reservoir is
initially recharging the depleted portion of the reservoir between
the well and the first boundary; this is illustrated by the first
slope. The reservoir then begins the recharge of the region to the
second boundary, .resulting in the second slope. Thus the flex
point is indicative of the second boundary. Using the value of the
shut-in time At at this flex point in the radius of investigation

equation gives the distance to the second boundary.

Figure 4.4.4 shows the d(BIDP) curve for a well in a reservoir
having three boundaries. The first boundary is indicated in the
same manner as the single boundary case. The second and third
boundaries are indicated by flex points in the d(BIDP) curve. These
points are noted on Figure 4.4.4. The distances to the no-flow
boundaries are calculated by using the values of shut-in time At
corresponding to the flex points, in the radius of investigation

equation.
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The analysis of boundaries in a fully bounded, or finite,
reservoir proceeds in the same manner as for a reservoir that is
semi-infinite. Figure 4.4.5 illustrates the d(BIDP) curve for a well
producing in a finite reservoir. While Figure 4.4.5 exhibits similar
characteristics to the previous cases, one notable exception is
that, as At approaches infinity, the d(BDIP) curve asymptotically
approaches the x-axis from the positive d(BIDP) range rather than
from the negative d(BIDP) range. This is a distinguishing feature of
a finite reservoir, and is indicative of pressure depletion. Unlike
the semi-infinite reservoirs, which will regain their original
pressure as shut-in time, At, reaches infinity, finite reservoirs,
once produced, will not regain their initial pressures, but will
stabilize at a pressure lower than the original pressure as the

shut-in time, At, approaches infinity.

The second peak, which indicates the maximum value of the
d(BIDP) curve, is a qualitative indication of depletion in the
reservoir. It does not indicate a boundary.

The boundaries for the finite reservoir are indicated on
Figure 4.4.5. The distance to the boundaries is calculated as in
the previous cases by using the shut-in times, At, corresponding

to the noted flex points in the radius of investigation equation.

In all boundary configurations the first boundary is very
obvious. It is denoted by the first maximum. All other boundaries
are present, but depending on the reservoir characteristics and
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boundary configuration, their presence on the d(BIDP) curve can
range from very obvious to quite subtle. In many cases,
expanding the vertical scale, which causes the data to “shrink”,
makes the flex points more obvious. For example, compare Figure
4.4.5 with Figure 4.4.6; these figures represent exactly the same
reservoir configuration. In Figure 4.4.6 the scale for d(BIDP) has
been expanded. Also, the labels for the boundaries have been
removed so as not to distract the reader from the shape of the

curve.

During the analysis of the d(BIDP) versus log At plots as a
tool for the detection of no-flow boundaries, the inflection points
found on the curves were investigated as potential indications of
these boundaries. It was found that by substituting the value of
the shut-in time At at which the inflections occurred, into the
radius of investigation equation (Equation 4.2.3.1), the distance so
calculated could be correlated to the distance to the boundary. In
other words, the inflection points were first investigated, not the
time which corresponded to the boundaries in the synthetic data.

In all boundary configurations, after all boundaries have
been felt, the d(BIDP) curve becomes smooth, regardless of

whether it is increasing or decreasing.

The use of the derivative of the d(BIDP) curve was considered
to assist in the determination of subtle boundary responses. It
was found that while this second derivative had a response at the
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appropriate time, the response was not unique. Additionally,
there were responses in the second derivative that were not
apparent in the d(BIDP) curve. Therefore, at this time, the second
derivative is not considered to be useful in identifying boundaries
in the d(BIDP) method.

The following sections give an analytical derivation of the
Boundary Influenced Difference of Pressure and the d(BIDP) for the
cases of a single boundary, two intersecting boundaries, two
parallel boundaries, three boundaries, and four boundaries.
While these models were used to test for accuracy in the examples
presented herein, the actual plots presented were generated by
calculating the buildup pressure data for each case, then
subtracting it from the infinite-acting case giving the BIDP, and
then calculating the d(BIDP). This is indicative of how the method

would be used with real data.
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4.5 Single No-Flow Boundary

Using the Principle of Superposition, a single no-flow
boundary located at a distance “d” from a well can be represented
by two wells a distance of 2d apart with both wells having identical
flow characteristics and production histories. The second well is
considered to be the “image” well. Mathematically, it can be
shown that a line equidistant between two wells with identical flow
characteristics will be a no flow boundary. By adding the solutions
of the radial diffusivity equation for the two wells using the actual
well as the reference location one obtains a solution for a single

no-flow boundary (Lee 1982). See Figure 4.5.1.

Actual Well Im age Well

No-Flow
Boundary

Figure 4.5.1 Method of Images for Single No-Flow Boundary
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The solution of the radial diffusivity equation for a well
flowing in an infinite reservoir is given above. For the same well
that has been shut-in after a period of flow the solution is:

qBu | éuc,r? ( ¢uctr§)
 ~Duse = | —Ei] - —HC:fw | g GHCIL ) (4.5.1)
Pi = Puw = 20kn [ axft, + At)J 4kAt

Similarly, for a well in a reservoir with a single no-flow
boundary that is shut-in after a period of flow, the bottom hole

pressure can be determined from the expression:
qBu | |  éuc.r? ( dmctrz)
i = Pwsy = -Eij -——¥ _| +Ej| - ———t %
Pi ~ Pwsb 41ckh[ ( ak(t, + At) 4Kk(At)

| uc a0 | ¢uct(2d)2J
—E{ 4k(tp+At)]+El ( 2k(A0) J ..... (4.5.2)

Subtracting these two quantities gives the Boundary

Influenced Difference of Pressure, BIDP:

2 2
BIDP = pwsnn - pwsb = .ﬁu— - El(— EEQL))J + El(—- ¢u'(':v.(Qd.) J

4nkh ak(t, + At 4k(At)
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As was discussed earlier, a plot of BIDP versus log At does

not give a unique characteristic boundary signature.

Bourdet et al. (1983) proposed an interpretation method
based on the analysis of the derivative of pressure with respect to a
time function. These authors found that the derivative response
was more sensitive to the small phenomena of interest in pressure
transient analysis. Using the derivative curve, a distinct signature

for a given flow condition could be identified.

Following this method, a plot of the semi-log derivative of
BIDP versus log At results in a curve that displays a unique
signature for each set of boundary conditions applied. Figure 4.5.2
illustrates this for a single boundary.

The semi-log derivative is defined as follows:

d(BIDP) (d(BIDP))
d(log(At)) ~ d(At)

For example, the semi-log derivative, for a well in a reservoir

with a single boundary, is:
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exp(— ¢u¢t(2d)2J ( ¢uc,(2d)2]
d(BIDP) - At qBu 4]\{(tp +At) ~ P~ 4k(At)
d(log(at)) "~ 4nkh duc, (2d)° duc, (2d)*
ak(t, + At) 4k(At)
..... (4.5.5)

For the examples presented in this work a central difference
formulation was used to evaluate the derivative of BIDP with
respect to At. It was found that while forward, central, and
backward differences gave very similarly shaped curves, a time
shift occured along the At axis for the backward and forward
difference methods. This was rather insignificant at low values of
At; however, the time shift compounded itself as At increased.

See Figure 4.5.3.

The time shift with forward or backward differences was
further compounded by the use of a logarithmic scale for At. At
large values of At, the time between data points increases and the
shift is magnified. The logarithmic time scale was chosen to give a
reasonable distribution of data across the time interval.
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4.6 Two Intersecting No-Flow Boundaries

Using the Method of Images, two intersecting no-flow
boundaries can be represented as shown in Figure 4.6.1. This is
similar to the case of a single no-flow boundary; however, in this

case there are three image wells.

@ Actual Well
O Image Well

Figure 4.6.1 Method of Images Two Intersecting
Boundaries

For a well in a reservoir bounded by two intersecting no-flow

boundaries, the bottomhole pressure after shut-in can be
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determined from the following expression. This expression is

developed using the Principle of Superposition.

qBu |  ¢uc,r? ( ¢uctr3)
ws =D; +———|Eil -—————+%__| _Ej| - —tw
Pus =P 41|:kh[ ( 4k(t, +At)J 4k(At)

+Ei[_ ¢uct(2X)2)] _ Ei(_ d>uct(2X)2)

4k(t, + At 4k(At)

+E{— duc,(22)* J _ Ei(— ¢uct(22)2J

ak(t, +At) 4k(At)
| duc,(4x? +42?) _ ( ouc, (4x? +422)J
+ E{— 4k(tp . At) J Eil - ax@an) )| (4.6.1)

Subtracting the above solution from the solution for a well in
an infinite reservoir gives the Boundary Influenced Difference of

Pressure, BIDP, for two intersecting no-flow boundaries.

BIDP = Pes — Puss =

S—

QB | oo ¢uc,(2x) ] +Ei[_ ¢uc,(2x)*
4nkh 4k(t, + At) 4k(At)

_E{_ duc,(22) J 5029

4k(t, + At) 4k(At)
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) ci:g,lc,(4x2 + 422) .(_ ¢uct(4x2 +422)J
- E;[— Al (tp N At) J + Ei ax@an )| (4.6.2)

A plot of the d(BIDP) versus log At is shown in Figure 4.6.2.
It can be seen that the magnitude of the initial deviation is greater
than for the case of a single boundary. Also the “infinite acting”
data is shifted to a later time. Further, the smooth curve evident
in the single boundary case is no longer smooth. The additional
flex point indicates a second boundary, and allows for the
calculation of the distance to the second boundary. The distance
to the first boundary is found in the same way as in the single

boundary case.
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4.7 Two Parallel No-Flow Boundaries

Using the Method of Images, two parallel no-flow boundaries
can be represented as shown in Figure 4.7.1. For parallel
boundaries, the method of images results in an infinite array of
image wells extending from each boundary.

@ Actual Well
O Image Wells

Figure 4.7.1 Method of Images for Two Parallel Boundaries

For a well in a reservoir bounded by two parallel no-flow
boundaries, the bottomhole pressure after shut-in can be
determined from the following expression. This expression is

developed using the Principle of Superposition.
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QBu |..[  duc,r? [ dmctrfj
ws =P +—— Eij-———% | _Ejl -—t+=_
Pws =P 41|:kh[ ( ak(t, + At)J 4k(At)

I=1

n [E{_ duc,(2Ix + 2(1 - 1)y)zJ ] Ei(— ouc.(21% + 2(1 - )y)? ]

4k(t, + At) 4k(At)

. E{_ duc (201 - 1)x + 21y)2J . E{_ ouc (2(1 - Dx + 2[y)2J
4k(t, +At) ak(At)

. ¢uct(21x + 2Iy)2 ( ¢uct(2Ix + 21y)2J
2Ei| - - 2Eil -
’ { ak(t, + at) J = 4k(at)

Subtracting the above solution from the solution for a well in
an infinite reservoir gives the Boundary Influenced Difference of
Pressure, BIDP, for two parallel no-flow boundaries.

BIDP = pwsno - pwsb =

5 [_E{_ ouc, (2Ix + 2( - 1}y)2] . E{_ duc, (21x + 2(1 - 1)y)2]

qBu
4nkh 5 4k(t, + At) 4Kk(At)

_Ei[_ duc,(2(1 - Vx + 2Iy)? . E{_ duc, (21 - )x + QIy)zj
4k(t, + At) 4k(At)
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[ ducex+2y)] [ ouc,(2x+ 2Iy)2J
- 2E1[— pon (tp N At) J + QE{— ak(a) )| (4.7.2)

A plot of the d(BIDP) versus log At is shown in Figure 4.7.2.
There is a definite change of slope on the plot between times of 100
and 1000. This is indicative of a second boundary. The distance to
the first boundary is calculated as for a single no-flow boundary.
To calculate the distance to the second boundary note the time At
where the curve “flexes”. Using this time At, in Equation (4.2.3.2)
for distance to the boundary given in Section 4.2.3, calculate the
distance to the boundary.
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4.8 Three Intersecting No-Flow Boundaries

Using the Method of Images, three intersecting no-flow
boundaries can be represented as shown in Figure 4.8.1. For
parallel boundaries, the method of images results in an infinite
array of image wells extending from each boundary. Adding a
third boundary results in two rows of an infinite number of wells.

A 2 O—2X A /] A 2 Ae—2X A
Oe 2y % O % ® % O 7 O % O
@® Actual Well

O Image Wells

Figure 4.8.1 Method of Images for Three No-Flow Boundaries
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For a well in a reservoir bounded by three intersecting no-
flow boundaries, the bottomhole pressure after shut-in can be
determined from the following expression. This expression is

developed using the Principle of Superposition.

From the case of two parallel boundaries the solution is:

2 2
b, =p, + 3B gl ducas _Ei[_%]
4nkh 4k(t, + At) 4k(At)

5 [E{_ duc, (2Ix + 2(1 - 1)y)2J ) Ei[_ duc, (21x + 2(1 - 1)y)2J

4k(t, + At) 4k(At)

I=1

[ éuc(20-Dx+20y)*) [ ¢uc (20 - x +2Iy)°
+El(_ ak(t, + At) J El( 4k(At) )

o duc (2 + 2Iy)2j oo duc,(orx + 2Iy)2]
ak(t, + At) L 4k(ay)

For the second infinite row of image wells, the contribution

to pressure drop is:

4nkh 4k(t, + At 4Kk(At)
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[ ¢uct((2x)2 +(22)2)J ( dmct((Qx)2 +(2z)2)J
+Ei} - —Eil -
ak(t, + At) 4k(At)

+E{_ duc,((2y)* + (22)2)] i Ei[_ duc,((2y)* + (27,)2)J

4k(t, + At) 4k(At)

+2Ei[— bue,((2x +2y)° + (22>2)J ] .[_ duc,((2x +2y)* + (22)2)J

4k(t, + At) l 4k(At)

i d)uct((4x +2y)° + (22)2) i ¢|.lct((4x +2y)% + (2z)2)
ak(t, + At) T 4Kk(At)

+Ei[— ¢UC¢((4Y +2x)° + (22)2)J _ Ei[— ¢uct((4y +2x)° + (22)2)J

4k(t, + At) 4k(At)

+ 2Ei| - (4 - 4)" < ezy) -~ 2Ei - buc,((4x + 4y)’ + (22)’) o
ak(t, +At) 4k(At)
..(4.8.2)

Combining these two results gives:

2 2
Pws = P; +ﬂ Ei __& _Ei(_ ¢uctrw)
47kh 4k(t, + At) 4k(At)
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4k t, +At 4k(At)

duc, (2Ix +2(1 - 1)y) J E{_ duc, (21x +2(1 - l)y)zJ

[ duc, (22)° J ¢l~lC:(22)J
+§{El 4k(t, + At) 4k(At)

- { duc, (2ly +2(1 - 1)x) J ) Ei[_ duc,(2ly +2(I - l)X)z]

4k(t + At 4k(At)

_ ¢uc,(2Ix + 2Iy)* [ duc, (2Ix + 21y)2J
- 2Ei} -
ak(t, + At) 4k(At)

+E1[— d)uct (21x +2(1-1)y)* +(22) )J

4k(t, + At)

4k(At)

[ duc, (21y+2(I 1)x)* +(22) )]

4k(t, +At)
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[ puc,((2ly +2(1-1)x)” + (22)2)]
-Eil -
4k(At)

ak(t, + At) 4k(At)

. Ei[- puc((20x + 21y)’ + (22)2)] ) Ei[_ puc,((2x + 21y)° + (22)2)]H

Subtracting from the infinite system result gives the BIDP for

a system with three no-flow boundaries:

@Bu | . o¢uc,(22) ( duc (2z)2J
BIDP = weo — Pwsb = ———— -Ej ——t\"""7 Ej| — ~—t\=4)
P Pas 41r.kh[ ( ak(t, + At) T 4k(At)

I=1

5 {_E{_ duc, (21x +2(1 - 1)y)2] X E{_ duc,(2Ix + 2(1 - 1)y)2J

4k(t, + At) 4k(At)

_Ei[_ duc, (2ly +2(1 - 1)x)2] . Ei[_ duc, (2Iy +2(1 - 1)x)2)
4k(t, + At) 4k(At)

—2Ei(— d)],l,Ct(QIX + QIY)ZJ + 2Ei[—- ¢uCz(21X + 21}’)2)
4k(t, + At) 4k(At)



duc,((21x + 2(1 - 1)y)* +(22)°)
4k(t, + At)

—Ez[
+Ei[_ duc,((21x + 2( - 1)y)* + (22)2)J
4k(At)

dmct (2ly +2(1-1)x)* + (22)2)
4k(t, + At)

4k(at)

+E1( d)u(:t (2ly +2(1-1)x)* +(22) )J

ci)uc:t 2Ix + 21y) + (2z)2)J . {_ ¢uct((21x +20y)* + (22)2)

akt, + At) 4Kk(At)

A plot of the d(BIDP) versus log At is shown in Figure 4.8.2.
There is a definite flex point on the plot between times of 10 and
100. This is indicative of a second boundary. There is another flex
point between times of 100 and 1000. This is indicative of the
third boundary.
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The distance to the first boundary is calculated as for a
single no-flow boundary. To calculate the distance to the second
and third boundaries note the flex points on the curve. Using the
time At, where the curve flexes, and using those values in
Equation (4.2.3.2), the distance to the boundary, given in Section
4.2.3, calculate the distance to each boundary. On this graph,
the flex points are quite evident. This is due as much to the
distance between each of the boundaries as it is to the method.
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4.9 Four Intersecting No-Flow Boundaries

Using the Method of Images, four intersecting no-flow

boundaries can be represented as shown in Figure 4.9.1. For

C o} @)
o o (o)
(o) (0] O
/]
O*———'Ot—-0~—-2
2y 2x 5
7
7
(o] (o] O
O o) o
(o) (o) o (o] O o

@ Actual Well
O Image Wells

Figure 4.9.1 Method of Images for Four No-Flow
Boundaries
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parallel boundaries, the method of images results in an infinite
array of image wells extending from each boundary. For four
boundaries, there are infinite arrays of image wells extending in
all directions. These wells are spaced as shown in Figure 4.9.1

Using the Principle of Superposition, an expression for
bottomhole pressure after shut-in was developed for a system
having four intersecting no-flow boundaries. The equation is an
extension of the case for three no-flow boundaries; however, the
infinite arrays of image wells extend in both directions. This leads
to a double series of terms, summing in the “north-south” and
“east-west” directions. Each quadrant of the arrays of wells has
four terms in the summation. The two single summations are the
wells that lie along the “axis”. To assist in reviewing this

derivation, the common groups of variables are defined as follows:

___%uc,
T 4k(at)”

¢U~Ct
4k(t + At

qBu | .|  éuc,r? ( ¢uczr§)
=p;, +>—| Ei| - —F—*—| - Ei| - —*%
Pus =Pt * 2k ( ak(t, +At)J 4k(At)

+§; [Ei(a(ZIx +2(1- 1)Y)2) - Ei(B(QIX +2(I- l)y)z)

+Ei(a(2(I -x + 2Iy)2) - Ei(B(Q(I -1)x + 2[y)2) + 2Ei(a(21x + 21y)2)
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~2Ei(B(21x + 21y)°) + Ei{o(21z + 21 - w)’) - Ei{{B(21z + 2 - w)°))

+Ei(a(2(l -1z + 2Iw)2) - Ei(B(2(I -z + 2[W)2)

+2Ei(a(21z + 21w)?) - 2Ei(B(21z + 21w)2)]

3.5 ooy 200 + (2w + 200 )
~Ei(p((21y + 201 - Dx)?) + (20w +2(J - 2)’)
i{a{ 2ty + 217 + (20 + 200 - 12)')
~Ei{p((21Ly +21x)* + (2w +2(J - 12y’

+Bifof(2ly + 21~ 1x)* + @Jw + 202’

_Ei(B((QIy +2(I- 1)1.1')2 +(2Jw + 2Jz)z))

+Ei{of(2ly +21x)" + (20w +2J2)%)) - Ei{p{(2ly + 21%)° + 2w +2J2)°))
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+Ei(a((21y +2(1-1)x)* +(2Jz+2(J - 1)‘”)2))
~Ei{B{(21y +2(1 - Dx)? +(20z + 2(J - Hw)’))
+Bila{(2ly +2Ix)’ + (202 +2(J - )w)’))
Ei{p{(21y + 21" + (2024 2 - Dw)?)
+Bi{o(2ty + 201 - 1))’ + 20z + 20w)’))
-Ei(B((zly +2(1-1)x)° +(2Jz+ 2"“’)2))

+Ei(a((21y +2Ix)* +(2Jz + 2Jw)2)) - Ei(B((2Iy +2Ix)* +(2Jz + 2JW)2))

a2+ 20 1y)" + (20w + 200 - DoY)
-Eip{(21x + 20~ 09)" + (20w + 200 - D2)')

+Ei(a((21x +2Iy)* +(2dw +2(J - 1)z)° ))
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~Ei{p((21x + 21y)” + (20w + 2(J - 1)2)°))
+Ei(a((21x +2(1-1)y)* +(2Jw +2Jz)° ))
~Eip{(21x + 201 - )y)* + 20w + 202’

+Ei(a((21x + 2Iy)* + (20w + 2J2)*)) - Ei{p{(21x + 21y)” + (20w + 2J2)*))

+Bi{a((21x + 201 - )y)* + (202 +2(J - Dwy’))
~Ei{p((21x + 20 - y)* + (202 +2(J - Hw)’))
+Bi{of (21x + 21y)” + (202 +2(J - yw)’))
_Ei(é((zlx +21y)” + (22 + 2(J - )w)’))

+Ei(a((21x +2(I- l)y)2 +(2Jz + 2JW)2))

~Ei{p((21x + 21~ )y)” + (202 + 20w)* )
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+ Bi{o (2x + 20y)* + (22 + 20w)?)) - Ei(p{(21x + 21)° + 20z + mw)z))}]

If Equation 4.9.1 is then subtracted from the solution for an
infinite reservoir, Equation 4.2.1.5, the terms containing r. drop
out and the signs in the summations change. The BIDP for a finite

reservoir is given by:

BIDP = ffk‘;l [[an; [—Ei(a(21x +2(- y)?) + Ei{p(21x + 2( - 1)y)?)

_Ei(a(g(l ~Dx + 21y)2) + Ei(B(Q(I ~1)x + 21y)2) - 2Ei{a(2Ix + 21y)*)

+2Ei(B(21x +21y)*) - Bi{a(21z + 21 - )w)*) + Ei((B(QIz £2(I - 1)w)2))

~Ei{o(2(1 - )z + 21w)2) + Ei(B(2(1 - )z + 21w)’)

~2Ei(a(21z + 21w)?) + 2Ei(B(21z + 21w)2)]

o5 5oy + 20 2w 20107

J=1 I=t
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+Ei(p{(21y +2( - Dx)’) + (20w + 2(J - 1)2)’)
~Ei(of(21y + 21x)* + (20w + 2(J - )2)°))
e 2+ aow 200
~Ei{o{(2ly + 20 - 1)x)* + (20w + 202
+Ei(p((2Ly +2( - Dx)? + 2Jw +2J2)%))

~Ei{of(21y + 21x)” + (20w + 202)")) + Bi(B((2Ly + 21%)° + (20w + 2J2)°))

_Ei(a((QIy +2(1-D)x)* +(2Jz + 2(J - Yw)’ ))
+i(p((21y + 20 - Dx)? + (202 + 200 - w)’ )
—Ei(a((QIy + 21x)2 + (2Jz +2(J - l)w)z))

+Ei(5((21y +2Ix)" +(2Jz+ 2(J - 1)“’)2))
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-i{a{(2ty + 20 - 9x)" + @2 + 2%
+Ei([3((21y +2(1- l)x)2 +(2Jz + 2JW)2))

—Ei(a((QIy + QIx)2 +(2Jdz + 2JW)2)) + Ei(B((2Iy + 2L1i:)2 +(2Jz + 2Jw)2))

_Ei(a((illx +2(1-1)y)* +(2Jw +2(J - 1)2)2))
+Eip{(21x + 20 - D3)* + (2w +200 - 0e)')
-Eifaf(aix + 215)° + (20w + 20 - 12)')
+Ei(p{(21x + 21y)° + (20w +2(J - 1)2)°))
-Bifa{(21x + 201 - 1)y)* + @Jw + 202’
+Ei(p((21x + 20 - Dy)? + @Jw +202)°))

~Eila(21x + 21y)” + (2Jw +2J2)°)) + Ei{B{(21x + 21y)° + @Jw +2J2)%))
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-Eife{(21x + 20~ 1)9)* + 22+ 200 - D))
Eifp{(21x + 20 9y + (232 200 - 1w’
-Bi(a{(21x + 21y)* + (2Jz +2(J - Hw)’))
+Bi(p((21x + 21y)” + (2Jz + 2(J - Hw)’))
-Bi(a((21x + 201 - )’ +(2Jz + 25w)?))

+Bi(p((21x + 20 - y)* + @Iz + 25w)?))

- Eifof(21x + 21y)* + (202 + 20w)?)) + Ei(B((QIx +2Iy)* +(2Jz + 2Jw)2)m

A plot of the d(BIDP) versus log At for a system of four
intersecting no-flow boundaries is shown in Figure 4.9.2. There is
a definite flex point on the plot around the time At=10. This is
indicative of the first boundary. The second flex point occurs
around At=60. This would be the second boundary. The third flex
point occurs around At=180. This is the third boundary, and the
final flex point occurs around At=420. This is the fourth boundary.
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Substituting the times At for each flex point, in Equation
4.2.3.2, distance to the boundary, given in Section 4.2.3,
calculate the distance to each of the boundaries. On Figure 4.9.2
the flex points are illustrated.
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4.10 Summary of Method of Boundary Determination

Following traditional procedures, analyze the measured
pressure data to determine the parameters of permeability,
wellbore storage, and skin. Using these calculated parameters,
generate the buildup data for an identical well in an infinite-acting

reservoir.

Subtract the measured buildup data from the infinite-acting
data. This gives the BIDP.

Plot the semi-log derivative of BIDP versus log of shut-in
time. This gives the d(BIDP} curve that was described in the
previous section. From this curve, boundaries may be identified,

and the distance to those boundaries calculated.

Boundaries are identified by points of inflection in the curve.
The first boundary is represented by a maximum in the positive
d(BIDP) domain. Additional boundaries are noted by points of

inflection along the curve.

It should be noted that the minimum value of the d(BIDP)
curve does not represent a boundary. It is the consequence of the

recharging of the reservoir from the infinite source.
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4.11 Discussion of Computer Programs

To generate the synthetic data used in this work a FORTRAN
computer program was written for each of the five boundary cases

discussed.

The programs follow the equation development as outlined in
the previous sections. Rather than compute the BIDP within each
FORTRAN program, the programs produce the bottom hole
pressures for buildup in each boundary case. The BIDP and its
semi- log derivative was then calculated in an additional program.

This technique was used to simulate the actual “field”
experience. In practice, one would have downhole pressure data
gathered from a test. This data would be compared with an ideal
infinite-acting homogeneous reservoir response, and the semi-log

derivatives calculated.

To check the accuracy of the finite difference equations, the
analytically derived derivative was used to calculate the semi-log
derivative of BIDP using the synthetic data. Comparison with the
above technique resulted in good agreement with variations of less
than + 0.00001 in the value of the derivative.

To calculate the exponential integral function, an IBM
subroutine was used (Ramey et al. (1977)). Further, it was decided
that rather than using a logarithmic approximation for the Ei
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function, the Ei function would be calculated for all terms. This
decision resulted from early trials where the data became “noisy”
around the times where the Ei function began to be represented by
the logarithmic approximation. This noise was eliminated when
the Ei function was used for all times.

For the formulations that have infinite summations, the
summations were programmed to have 10,000 terms. However,
there was a summation termination condition applied. That
condition was that once each of the arguments of the Ei function
was greater than 10, the summation was terminated. The value of
the Ei function is zero when the argument is greater than ten. A
counter in the DO loop indicated that less than 200 terms were

needed to satisfy this Ei termination condition.
A copy of FORTRAN programs is included in the Appendix.

This method was also tested using FAST Well Test™, FAST™
is a computer based pressure transient analysis tool developed by
Fekete Associates. FAST™ uses a Green’s function formulation to
solve the diffusivity equation. Comparisons of the value of the
d(BIDP) calculated by the two methods showed differences of less
than +0.0001 kPa.

The figures used to illustrate the three and four boundary

cases in this work were generated using FAST™.
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S5.0 Results and Discussion

This method of boundary identification, the d(BIDP) method,
gives directly an indication of the reservoir-well model. It allows for
the direct observation of the number of boundaries, and direct

calculation of the distance to those boundaries.

This section provides a discussion of the application of the
d(BIDP) method to boundary detection and reservoir classification.
A discussion of the effect of each of the variables in the defining
equation is given. Also discussed is the application of the d(BIDP)
method to noisy data.

91



S.1 Semi-Infinite Reservoir d(BIDP) Curves

Figure 5.1.1 shows the d(BIDP) curve for a reservoir with a
single boundary. It can be observed on that plot that the value of
the d(BIDP) asymptotically approaches zero from the negative
region. This suggests that the difference in pressure between the
infinite case and the semi-bounded case is continually decreasing
until it asymptotically approaches a constant value. In fact, the

constant value is zero at infinite time.

Consider the definition of the semi-log derivative of BIDP:

d(BIDP) _ At(d(BIDP)) _ At( lim ABIDP)

d(log(At)) ~ d(At) s@t-o  A(At)

It is known that At is positive as its range is zero to infinity.
Also, A(At) is a positive quantity. This means that the value of
ABIDP is a negative quantity. For the value of ABIDP to be a

negative the value of BIDP decreases as shut-in time increases.

BIDP, - BIDP; < 0O

BIDP, < BIDP,

(Pwsw)2 - (Pwsb)2 < (Pwsw) 1~ (Pwsb)1
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In fact if the buildup data in both cases were allowed to
reach infinite time, the value of the BIDP would be zero. It has
been shown that in a semi-infinite reservoir, if the well is allowed
an infinite amount of shut-in time, the measured wellbore
pressure will return to pi. Hence, the value of the BIDP will be
zero, and the semi-log derivative of the BIDP will be zero also.

The early time data also indicate a value of zero for the semi-
log derivative of the BIDP. This is due to the early time
phenomena where the pressure difference between the infinite case
and the semi-infinite case is constant; that is, the plots of bottom

hole pressure in the two cases are parallel.

The asymptotic approach to zero of the value of the d(BIDP)
from the negative region is a characteristic of these plots unique to
semi-infinite reservoirs. For all cases tested where the reservoir
was semi-infinite (that is, the reservoir is infinite in at least one
direction} the semi-log derivative of the BIDP approached zero

asymptotically from the negative direction.
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5.2 Finite Reservoir d(BIDP) Curves

Figure 5.2.1 shows a d(BIDP) curve for a finite reservoir. A
finite reservoir is one that is completely bounded. It can be
observed on that plot that the value of d(BIDP) asymptotically
approaches zero from the positive region. This suggests that the
difference in pressure between the infinite case and the finite case
after the pressure transient has reached all four boundaries is
continuously decreasing with increasing shut-in time. At an
infinite shut-in time the difference will be a constant value greater

than zero.

Again consider the definition of the semi-log derivative of the
BIDP:

d(BIDP) _ (d(BIDP))_ At( , ABIDP)
d(log(At)) — d(At) /" \swadao A(At)

It is known that At is a positive quantity. Also, A(At) is a
positive quantity. For the semi-log derivative of the BIDP to be
positive then the value of ABIDP must also be positive.

BIDP; - BIDP, > 0

BIDPz > BIDPl

(Pwse)2 - (Pwsb)2> (Pwse)1 - (Pwsb)
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Once the four boundaries have been impacted by the
pressure transient, the difference in pressure between the infinite
case and the bounded case asymptotically approaches a constant

value greater than zero as At approaches infinity.

This asymptotic difference illustrates pressure depletion in a
finite reservoir. A finite reservoir once produced will never return
to the value of pi. Instead, at infinite shut-in time it will reach a
constant value of pressure that will be less than p:.. This pressure
difference is indicative of depletion of the reservoir and hence a

finite reservoir.

Similar to the semi-infinite reservoir case, the early time data
has a semi-log derivative of the BIDP of zero. This is due to the
difference in pressure between the infinite case and the bounded
case being constant. Again, this is the time region where the
pressure signal acts as if the reservoir is infinite. No boundaries

are yet seen by the shut-in pressure signal.
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S.3 Effects of Wellbore Storage and Skin

This method was developed initially without including the
effects of wellbore storage and skin. When included, it was found
that wellbore storage and skin effects had no influence on the
results of this method. The effect of both phenomena cancelled out
in the calculation of the BIDP and the method of boundary
detection was unaffected by these phenomena.

There is a decided advantage in this new method in that
early time data can now be used for boundary detection.
Boundaries that were previously masked in the wellbore storage
portion of the data can now be detected.

Figure 5.3.1 shows a plot of semi-log derivative of BIDP that
indicates a boundary at early time. Figure 5.3.2 shows the same
system with dimensionless wellbore storage of 100 and skin of 3.
The boundary is very much apparent. In traditional analysis, this
boundary would be masked in the wellbore storage region of the

data.

One advantage of using buildup data for analysis is that skin
does not enter the equations. This is illustrated using the model
for a single boundary. The general expression for the solution of
the radial diffusivity equation for buildup for an infinite system

which includes skin is:
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qBu | éuc,r2 ( ¢uctr3)
pi-pwscn = _El - “2S+El -_-—— +2S .....5.3.1
4nkh [ 4k(tp + At)] 4KkAt

For a well in a reservoir with a single boundary and skin the
solution is:

- 2;@_ ~Ei __;m — -/_W;rij
Pi — Pww 41rkh[ El[ 4k(tp+At)J %-i-EI.L 4k(At) +2s

g ducd’ | .(_ ¢uct(2d)2J
Ex[ 4k(tp+At)J Ei ax(A0) } .....5.3.2

In both equations the skin effect cancels itself out. Similarly,
skin does not affect the calculation of the BIDP. The expression for
the BIDP remains:

qBu | _.| ¢uc,(2d) ( ¢uc‘(2d)2)
BIDP = Dy, ~ Dus = 5o | ~ Ei| -~ | pif - $EAL
Puse = Push = 3 ey ( axft, + at) ak(at)

.....8.3.3
Wellbore storage is a termm that describes “wellbore
unloading’ in a flowing well, and “after production” in a shut-in

well. This phenomenon can last for a significant period of time

depending on the flow characteristics of the reservoir.
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Wellbore storage is usually described as a dimensionless
constant for a given reservoir and flow conditions. It relates the
properties of the reservoir fluid(s) and the volume of the wellbore.
As a constant in the equation it, too, drops out in the calculation
of the BIDP.

Instead of being an additional pressure drop, as is skin,
wellbore storage is a boundary condition of the radial diffusivity
equation. It has the effect of masking the commencement of radial

flow.
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S.4 Effect of Changing Permeability k

Changing the permeability affects both the shape of the
semi-log derivative of the BIDP versus log At curve, and where the
flex points occur with respect to time. Figures 5.4.1 through
5.4.4 show values of permeability increasing by orders of
magnitude, starting at k=1. The reservoir model used in these

figures is for a single no-flow boundary.

It can be seen that the smaller the value of permeability, the
longer the shut-in time that is required to see the signature of the
boundary. This follows directly from the theory of pressure

moving through the reservoir.

Consider the equation for the distance to the no-flow

4k(At
boundary: d= L . Assuming that the distance to the
Yéuc,

boundary in all examples is constant, and that ¢, 4, and c. are
constant, then it can be seen that k and At vary inversely. As k
increases At decreases. This is graphically illustrated in Figures
5.4.1 through 5.4.4.

The magnitude of the peak of the semi-log BIDP decreases as
the value of permeability increases. The peak is a qualitative
measure of the depletion the well experiences. In reservoirs with
large values of permeability the rate of recharge is much higher,
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and thus the amount of depletion a well experiences is less,

compared to a reservoir system of lower permeability.

Figures 5.4.1 through 5.4.4 further illustrate a qualitative
relationship between permeability and the effect of a boundary in a
semi-infinite reservoir. As permeability increases the response of a
reservoir to the depletion between a well and a boundary is much
faster, and the pressure drop in the area of the reservoir between
the well and the boundary is much less. That is, the reservoir is
capable of recharging itself very quickly.

McKinley and Streltsova (1988) indicated on Horner plots
that before the plot turned up indicating a no-flow boundary, the
curve actually turned down slightly. McKinley and Streltsova
theorized that this was due to a recharging of the fluid in the area
of the reservoir between the well and the no-flow boundary.
Interestingly, this effect was more evident in lower permeability

reservoirs.
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S.5 Effect of Changing Flow Rate q

In the equation defining the BIDP, the flow rate, q, is a
multiplier to the terms containing the exponential integral
function. As might be expected, the flow rate affects the
magnitude of the value of the semi-log derivative of the BIDP.

There is a direct proportionality between different rates. If
one flow rate is twice another, the magnitude of the maximum
value of semi-log derivative of the BIDP will be twice that of the

lower flow rate.

The shut-in time, At, at which the maximum value of the
semi-log derivative of the BIDP curve occurs is independent of flow
rate, q. That is, the flow rate does not affect the time it takes the
pressure transient to reach the boundary. This is expected.
Equation 4.2.3.2 describes the relationship between distance a
pressure transient travels and shut-in time. Flow rate, q, isnot a

variable in this equation.

These points are illustrated in Figures 5.5.1 and 5.5.2. The
flow rate used to generate Figure 5.5.2 is 2.5 times larger than the

flow rate used to generate Figure 5.5.1.

Utilization of these concepts is useful in interpreting raw
data. It can also be used to fine tune the reservoir model to a more

precise answer.

109



P/€WOT Jo @3ey Mol - rjoaressy Arepunog offurs 1°'g'S emBrg

WL uRInys

0006

(daialp

110



P/€WCT Jo 93uY Mol - 5oA1esey Lrepunog offurg z'g'g omBrg

auyl urinys

| DS SRS B

S VPP UIP

T A T

)
[EEE ]

L e e T

(¢aigle

111



5.6 Multiple Equidistant Boundaries

To this point in the discussion, it has been assumed that
the well is located in such a way that the distance to each
boundary is different. From that it has been possible to identify
flex points in the semi-log derivative of the BIDP curve. When
multiple boundaries are equidistant from the well, the d(BIDP)

curve has an interesting response.

Figure 5.6.1 illustrates the responses for systems where the
boundaries are equidistant from the well. As is shown in the
figure, all cases have a response that would indicate a single
boundary. The difference in the response is the magnitude of the
semi-log derivative of the BIDP.

The magnitude of depletion in the reservoir depends on the
number of boundaries in the reservoir. The greater the number of
boundaries, the greater the rate of depletion. Hence, the larger
the magnitude of the response of the semi-log derivative of the

BIDP, the larger the number of boundaries.

Unfortunately, there is no unique correlation between the
values of the magnitudes of the semi-log derivative of the BIDP that
would allow for easy determination of the number of boundaries.
That is, the value of the semi-log derivative of the BIDP for three
boundaries is not five or seven or eleven times the magnitude of
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the value of the semi-log derivative of BIDP for a single boundary.
To determine the number of boundaries, generate synthetic data
for a single boundary case using the boundary distance indicated,
and compare to the raw data. De-superposition may also be used
in determining the number of boundaries.

De-superposition in this context means exactly the opposite
of superposition. Instead of adding the responses of wells to
determine the effect on the pressure at a given point, the
responses are subtracted. The Method of Images is used and

superposition is applied in reverse.
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5.7 Effect of Producing Time tp

In traditional analysis usirg the conventional frame of
reference, there is a wide range of opinion as to how long a well
must be flowed to have an observable response to a no-flow
boundary. Lee(1982) suggests that the time required should be the
time that would be required for the pressure signal to travel twice
the distance to the boundary. Earlougher (1980) suggests that the
time necessary is the time required for the pressure signal to travel
four times the distance to the boundary. Others have suggested as
much as sixteen times the distance to the boundary as the
minimum time required to observe a boundary response.

There is another school of thought put forward by Mattar
(1996) and others which suggests, based on the Principle of
Conservation of Mass, that in theory, if only one molecule of
hydrocarbon is removed from the reservoir, everything about that

reservoir can be determined.

Figure 5.7.1 illustrates the effect of changing the producing
time, t,, for a given reservoir configuration. The reservoir
configuration is a single boundary 25 meters from the producing
well. The flex point should occur at 9.8 hours. The d(BIDP) curve
in Figure 5.7.1 illustrates that for all producing times noted only a
single boundary is indicated.
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For producing times of S hours and 10 hours, the boundary
is indicated at a time of approximately 10.5 hours, slightly more
than the actual time of 9.8 hours. For producing times of greater
than 10 hours, the boundary is correctly predicted.

Figures 5.7.2 and 5.7.3 illustrate a finite system of four
intersecting boundaries. First consider Figure 5.7.2. The
boundaries occur at At = 10hr, 65hr, 150hr, and 350hr.
Following the method outlined in this document, even the short
producing time of ten hours correctly predicts four boundaries.

Figure 5.7.3 is the identical system to that in the previous
figure. It shows a wider range of producing times, and illustrates
that the curves smooth with increasing producing time, and the
maximum and minimum values of the semi-log derivative of BIDP
change. However, the information gained does not increase with

increasing production time.

The foregoing suggests that, when using the response of a
well in an infinite system as the reference, in theory any small
amount of production will yield all the information about a given
reservoir. In practice, however, the well must be flowed
sufficiently to be able to determine wellbore storage and skin
effects and to determine the permeability. Given this
consideration, it follows that the total time a well must be
produced to determine the configuration of boundaries is
significantly less than is currently the practice.
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5.8 Effect of Shut-In Time At

When considering data in the current frames of reference, pi
for drawdown and pws for buildup, a statement is often made to
the effect that: “A short flow time cannot be compensated for by a
long shut-in time.” [Earlougher (1980})]. Certainly this is correct for

those frames of reference.

When using the infinite response as the frame of reference,
this is no longer a true statement. Lengthening or shortening At
simply changes the amount of data one has to consider. A shorter
shut-in time merely truncates the data. A longer shut-in time

adds data to be considered.

The examples used in this work all have a shut-in time of
100,000 hours. This was used to ensure that all models were
conforming to the trends discussed previously. It is highly unlikely
in practice that any well would be shut-in for this period of time!

Shutting a well in for only 100, 500, or 1000 hours would
truncate the data available. For example, consider Figure 5.7.3,
if the well was shut-in for only 100 hours, it would be possible to
determine only the presence of two boundaries, and one could not

conclude that the reservoir was in fact finite.

If the well was shut-in for 500 hours, all four boundaries
would be in evidence, and it would be possible to infer that the
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reservoir was finite. The semi-log derivative of the BIDP has
crossed the x-axis back to the positive domain. This occurs only

when the reservoir is finite.

If the well was shut-in for 1000 hours, all four boundaries
would be in evidence, and it can be concluded that the reservoir is
finite. In this example, there is no additional information to be
gained from the additional 500 hours of shut-in.

The above conclusions concerning the presence of
boundaries determined at various shut-in times, are independent
of the length of the producing time. This new method of boundary
determination assumes that the producing time is of sufficient
length to determine wellbore storage, permeability, and skin

effects.
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5.9 Use of the d(BIDP) Method with Noisy Data

It is widely acknowledged that pressure data collected during
well tests are noisy. That is to say, the real data does not
necessarily form the smooth curves given by “synthetic” data.
Rather, the data can be random and scattered. Figure 5.9.1
represents the d(BIDP) of such data. It is a four boundary case
with all boundaries being a different distance from the well. It was
generated using FAST™ software using the noise function in the

generated data.

Employing the “preferred algorithm” presented by Bourdet et
al. (1989) to smooth the derivative curve, gives a d(BIDP) curve
which accurately predicts four boundaries. These boundaries are
predicted to occur at the correct shut-in times. Figure 5.9.2 shows
the data with the curve smoothed using the Bourdet method. The
Bourdet method uses one point on either side of the point of
interest, calculates the corresponding derivatives and places their

weighted mean at the point of interest.

Figure 5.9.3 shows the noisy data, the smoothed d(BIDP)
curve from that data, and the d(BIDP) curve of the same reservoir
well configuration using pure synthetic data. It is observed that
there is effectively no difference in the time, and hence distance,
at which boundaries are evident in the smoothed curve as

compared to the synthetic curve.
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6.0 Conclusions and Recommendations

6.1 Conclusions

A new method for the detection of no-flow boundaries in
rectangular reservoirs using pressure buildup data has been
outlined. This method is valid for both semi-infinite and finite
reservoirs. It is equally applicable for oil and gas reservoirs.

This new method uses an infinite-acting reservoir response
as the frame of reference. The pressure behaviour of a well
produced in a specific reservoir is compared with an identical well
producing in an infinite-acting homogeneous reservoir having the
same characteristics. The semi-log derivative of this difference
gives a unique signature curve from which no-flow boundaries may

be determined directly.

The distance to the boundaries may be determined using the
radius of investigation concept. The method does not
mathematically manipulate the time variable, and thus the
distance to a no flow boundary can be calculated directly using the

radius of investigation equation.

Due to the mathematical structure of the model, all buildup
data may be used in the analysis. Early time effects are not
masked by wellbore phenomena or skin. This allows for
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identification of boundaries very close to the well that would not be

detectable with current techniques.

In this method, the length of shut-in time rather than the
length of producing time is the significant variable. It was shown
that, for very short flow periods, all the boundaries in a reservoir
could be detected if the shut-in pressures were recorded for a
sufficiently long period of time. This result has the potential for a
significant change in the methodology currently used for testing

wells.
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6.2 Recommendations

Future research on the d(BDIP) method of boundary

detection should address the following issues:

1. An improved method for distinguishing between
boundaries which occur very close together on the d(BIDP)
curve. These reservoir configurations give very subtle
boundary responses. Some investigation into using the
second derivative was undertaken; however, the results

were inconclusive.

2. The ability to distinguish how many boundaries there are
in multiple equi-distant boundary configurations needs to

be improved.

3. The potential to apply the d(BIDP) method to reservoirs
which are not rectangular in shape. For example,
reservoirs with oblique angles or that may be irregular in

shape.

4. An investigation of the application of the d(BIDP) method

to reservoirs with constant pressure boundaries.

S. An investigation of the application of the d(BIDP) method

to composite reservoirs.
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Few are those who

see with their own eyes and

feel with theivr own hearts.

Albert Linstein

(1879 - 1955%)
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Appendix

Solution to the Radial Diffusivity Equation for
Constant Flow Rate in an Infinite Medium

The mathematical problem is the solution of:

o°p _10p _ éuc, 3p .
ér? "ror  k 8t e

with initial and boundary conditions of:

1) p=pi att=0 forallr

@) __qu
2) (rar = 5y forall t>0

3) p—p;, as ro>x forallt.

To facilitate a solution, the second condition is changed to the “line
source” approximation:

. o _ _au
rh.florar = omidh for t>0.
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This boundary condition has been shown to yield identical results
with those obtained from the solution of the problem with the
original condition. (Matthews and Russell 1967)

To solve the equation, use the Boltzman transformation:

_ guc,r?
Y=
dY éuc,r
Then G = "okt
d’Y  ¢uc,
dr* = 2kt ’
dY  ¢uc,r?
and T T ke
Similarly,
op _dpdY ¢uc,rdp
or dYdr 2kt dY’
72 2(2). 2(dpdY)_0(tucrdp)_ducfdp gucs d'p
o’ ér\or/ ar\dYdr/ ér\ 2kt dY) 2kt |dY 2kt dy2
op _dpdY  duc,r?dy
and ST Ay dt T 4kt dt-
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Substitute in equation 1:

- ¢!J«Ctr2 dp

2kt

ay "2kt av? |t okt ay -

Collecting terms and simplifying gives:

2Y

d?*p
dy?

2

gYE +(2 +2Y)g—$ =0, and finally

ljdp_
+(1+Y dY—O

duc, [dp duc,r? dsz+ duc, dp _ éuc,

k

[

4kt?

)

..........

Applying this transformation to the boundary conditions gives

Let

3)

2)

Y

W =

dp qu
it Or ay - —21tkh for t>0,

P—p; as Yox forallt.

dp dw
q and then Qv

d?p
dy?’
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Substitute in equation 2.

dw ( 1) _
Y + 1+Y W=0

Separate variables

dw ( 1)
W - 1+ Y dy
Integrating gives:

In(WY) =-Y +C,

Then

where C, is a constant of integration.

where C = e€,

Applying boundary condition 2 gives

qut

C=Znn
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Integrating gives:

p= 42]1:11 (Ei(- Y))+ C, where C: is a constant of integration.

Substituting for Y gives:

__a ( ._¢uctr’))
P = 4rkh \E‘( axt )) T C

Applying boundary condition 3 gives

C; =p;.

The solution to the Radial Diffusivity Equation for constant flow in

an infinite reservoir is:

_ au (. d>uc[r2D
P=D; +4nkh(E1( akt )

Or as it is more commonly written:

o [ o ducr?
pi - ‘mm( E‘( Kt B
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Key to Configurations Used in Figures

LULLLLLLLLS LS
/]
/| y . il
e
1177777777777
Figure Page x y z w
Number Number
4.3.2 40
2 Intersecting 25 oo 100 0
2 Parallel 25 100 © )
3 Intersecting 25 65 100 o
4.4.1 43 25 ®© © ©
4.4.2 46 25 o« 0 0
4.4.3 47 20 2 100 e
4.4.4 49 20 75 150 0
4.4.5 50 25 100 65 150
4.4.6 S3 25 100 65 150
4.5.2 58 20 o0 © ©
4.5.3 60 25 100 65 150
4.6.2 64 25 o 100 0
4.7.2 68 25 100 © o
4.8.2 75 25 100 75 o
4.9.2 86 25 100 65 150
5.1.1 93 20 o © o
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Figure Page x y z .4
Number Number

5.2.1 96 25 100 65 150

5.3.1 99 10 0 © =

S5.3.2 100 10 x = x

5.4.1 104 100 © © 0

S5.4.2 105 100 x © x

5.4.3 106 100 20 ®© <

5.44 107 100 © o x

5.5.1 110 100 20 © 2

9.5.2 111 100 x 0 P

5.6.1 113

Single Boundary 100 ) 2 o'

2 Intersecting 100 x 100 x

2 Parallel 100 100 o x

3 Boundaries 100 100 100 )

S5.7.1 116 25 o < x
5.7.2 118 25 100 65 150
5.7.3 119 25 100 65 150
5.9.1 124 25 100 65 150
S5.9.2 125 25 100 65 150
5.9.3 126 25 100 65 150
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Distance to Boundary - Sample Calculation

The equation for the distance to the boundary is:

_ [4kaAt

= in consistent units.
yduc,

d

For the system of units used in the examples in this work, the
kAt
7.036x10%¢uc, °

equation becomes: d = J

Using Figure 4.5.2 as an example, the following reservoir
parameters were used to create the figure:

k=7md

¢=12%

p=1.461 mPa-s

¢t = 8.25x10-6 kPa!

From Figure 4.5.2 the first maximum is located at At = 5.8 hr

Substituting these values in the above equation, distance to the
boundary is calculated as:

d - KAt _ (7X5.8)
" Y7.036x10% puc, 7.036x10*(0.12)(146 1){(825x1079)

d =20 m.
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Computer Program Listings

SUBROUTINE EI(X,E1)

DEFINITION: E1(X) = -EI(-X)

IBM SCIENTIFIC SUBROUTINE PACKAGE (VERSION III)
PROGRAMMER'S MANUAL, H20-020S (1968) PAGES 368-369
FROM Ramey, Kumar, AGA Book

O00000n

DOUBLE PRECISION X,DEXP,DLOG,ARG,RES, E1
IF (X.GT.60.) GO TO 120
IF (X.LE.4.) GO TO 100
ARG=4./X
RES=(0.24999999+ARG*(-0.062498588+ARG*(0.031208561+ARG
1*(-0.022951979+ARG*(0.0204 12099+ARG*(-0.017555779+ARG*(0.011723273
2+ARG*(-0.0049362007+ARG*(0.000944276 14)))})))))
RES=DEXP(-X}*ARG*RES
GO TO 130
100 IF (X.LT.0.) GO TO 120
IF (X.EQ.0.) GO TO 110
RES=-DLOG(X)-.57721586+X*(1.0+X*(-0.25+X*(0.05555552+X*(-0.0104 166
162+X*(.0016666906+X*(-.00023148392+X*(2.833759D-05+X*(-3.099604D-0
26+X*(3.0726221D-07+X*(-2.763583D-08+X*(2.1915699D-09+X*(-1.6826592
3D-10+X*(1.5798675D-1 1+X*(-1.0317602D- 12N
GO TO 130
110 RES=1.D75
GO TO 130
120 RES=0
130 E1=RES
END
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PROGRAM EIINFINI

REAL MU,L,K

DOUBLE PRECISION ARG1A,ARG1,ARG2A,ARG?2

OPEN (5,FILE='SIN.TXT')
OPEN (6,FILE="EIIN150)

READ (5,910) PI,PHI,MU,K,RW,TP,Q,B,H,L,CT
910 FORMAT (10F10.4,E10.3)
C
9000 WRITE (6,910)PI,PHI,MU,K,RW,TP,Q,B,H,L,CT
C
CONST1=933.1*Q*B*MU/(K*H)
CONST2=7.036E4*PHI*MU*CT*RW**2/K

c

C FOR DT=0

c
ARG1A=CONST2/TP
CALL EI(ARG1A,ARG1)
ARG1=ARG1%-1.0)
PWS=PI+CONST1*ARG1
WRITE (6,920) DT,PWS

c

C FOR DT>0

c

DO 100 [=1,10000
READ (5,915) DT
915 FORMAT (F10.4)
[F (DT.EQ.-5.0) GO TO 999

ARG1A=CONST2/(TP+DT)
CALL EI(ARG1A,ARG1)
ARG1=ARG1*-1.0)
ARG2A=CONST2/DT

CALL EI(ARG2A,ARG2)
ARG2=ARG2*(-1.0)
PWS=PI+CONST1*(ARG1-ARG2)

WRITE (6,920) DT,PWS
920 FORMAT (5X,F10.4,3X,F10.2)

100 CONTINUE
999 CONTINUE

STOP
END
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SUBROUTINE EI(X,E1)

DEFINITION: E1(X) = -EI(-X)

IBM SCIENTIFIC SUBROUTINE PACKAGE (VERSION I1I)
PROGRAMMER'S MANUAL, H20-0205 (1968} PAGES 368-369
FROM Ramey, Kumar, AGA Book

oNoNeoNoNeNe!

DOUBLE PRECISION X,DEXP,DLOG,ARG,RES,E1
IF (X.GT.60.) GO TO 120
IF (X.LE.4.) GO TO 100
ARG=4./X
RES=(0.24999999+ARG*(-0.062498588+ARG*(0.03120856 1 +tARG
1%(-0.022951979+ARG*(0.0204 12099+ARG*(-0.017555779+ARG*(0.01 1723273
2+ARG*(-0.0049362007+ARG*(0.000944276 14)))))i}))
RES=DEXP(-X)*ARG*RES
GO TO 130
100 IF (X.LT.0.) GO TO 120
IF (X.EQ.0.) GO TO 110
RES=-DLOG(X)-.57721586+X*(1.0+X*(-0.25+X*(0.05555552+X*(-0.0104166
162+X*(.0016666906+X*(-.00023148392+X*(2.833759D-05+X*(-3.099604D-0
26+X*(3.0726221D-07+X*(-2.763583D-08+X*(2.1915699D-09+X*(-1.6826592
3D-10+X*(1.5798675D-11+X*(-1.0317602D-12))IH)
GO TO 130
110 RES=1.D75
GO TO 130
120 RES=0
130 E1=RES
END
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PROGRAM EISINGLE

REAL MUK,L
DOUBLE PRECISION ARG1A,ARG2A,ARG3A,ARG4A ,ARG1,ARG2,ARG3,ARG4

OPEN (5, FILE='SIN.TXT')
OPEN (6, FILE='"PWSOU150")

READ (5,910) PI,PHI,MU,K,RW,TP,Q,B,H,L,CT
910 FORMAT (10F10.4,E10.3)

c

9000 WRITE (6,910) PI,PHI,MU,K,RW,TP,Q,B,H,L,CT

c
CONST1=PHI*MU*CT/K
CONST2=CONST1*RW**2.0
CONST3=CONST1%(2.0*L)**2.0
CONST4=933.1*Q*B*MU/(K*H)
ARGB=7.036E4*CONST2
ARGC=7.036E4*CONST3

c

C FOR THE CASE OF DT=0

c
DT=0.0
ARG1A=ARGB/TP
CALL E{ARG1A,ARG1)
ARG1=ARG1*(-1.0)
ARG3A=ARGC/TP
CALL EI(ARG3A,ARG3)
ARG3=ARG3*(-1.0)
PWS=PI+CONST4*(ARG1+ARG3)
WRITE (6,950) DT,PWS

c

C FOR DT>0

c

DO 100 I=1,10000
READ (5,920) DT

920 FORMAT (F10.4)
IF (DT.EQ.-5.0) GO TO 999
ARG1A=ARGB/(TP+DT)
CALL E{ARG1A,ARG1)
ARG1=ARG1%*(-1.0)
ARG2A=ARGB/DT
CALL EI{ARG2A,ARG2)
ARG2=ARG2*(-1.0)

ARG3A=ARGC/(TP+DT)
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CALL EI{ARG3A,ARG3)
ARG3=ARG3*(-1.0})

ARG4A=ARGC/DT
CALL EI(ARG4A,ARG4)

ARG4=ARG4*(-1.0)
PWS=PI+CONST4*(ARG1-ARG2+ARG3-ARG4)

WRITE (6,950) DT,PWS
950 FORMAT (5X,F10.4,3X,F10.2)

100 CONTINUE
999 CONTINUE
END
SUBROUTINE EI(X,E1)
DEFINITION: E1(X) = -EI(-X)
IBM SCIENTIFIC SUBROUTINE PACKAGE (VERSION I1I)

PROGRAMMER'S MANUAL, H20-0205 (1968) PAGES 368-369
FROM Ramey, Kumar, AGA Book

oNoNoNoNoNe!

DOUBLE PRECISION X,DEXP,DLOG,ARG,RES,E1
IF (X.GT.60.) GO TO 120
IF (X.LE.4.) GO TO 100
ARG=4./X
RES=(0.24999999+ARG*(-0.062498588+ARG*(0.03120856 1 +ARG
1*(-0.022951979+ARG*(0.020412099+ARG*(-0.017555779+ARG*(0.01 1723273
2+ARG*(-0.0049362007+ARG*(0.000944276 1 4)))))))l}
RES=DEXP(-X}*ARG*RES
GO TO 130
100 IF (X.LT.0.) GO TO 120
IF (X.EQ.0.) GO TO 110
RES=-DLOG(X)-.57721586+X*(1.0+X*(-0.25+X*(0.05555552+X*(-0.0104 166
162+X*(.0016666906+X*(-.00023148392+X*(2.833759D-05+X*(-3.099604D-0
26+X*(3.0726221D-07+X*(-2.763583D-08+X*(2. 191 5699D-09+X*(-1.6826592
3D-10+X*(1.5798675D-11+X*(-1.0317602D- 12
GO TO 130
110 RES=1.D75
GO TO 130
120 RES=0
130 E1=RES

RETURN
END
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PROGRAM RTANGLE

REAL MU,K,LE,LS,LSE
DOUBLE PRECISION ARG1A,ARG2A,ARG3A,ARG4A, ARGSA,ARG6A, ARG7A ARGSA
DOUBLE PRECISION ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7,ARGS8

OPEN (5, FILE='RTANG.TXT")
OPEN (6, FILE="RTANGOUT")

READ (5,910) PL,PHIL,MU,K,RW,TP,Q,B,H,LE,LS,CT
910 FORMAT (11F10.4,E10.3)

c
9000 WRITE (6,910) PI,PHI,MU,K,RW,TP,Q,B,H,LE,LS,CT

c
LSE=(4*LE**2.0+4*LS**2)**0.5
CONST1=933.1*Q*B*MU/(K*H})
CONST2=PHI*MU*CT/K
CONST3=CONST2*RW**2.0
CONST4=CONST2*(2.0*LE)**2.0
CONSTS=CONST2*(2.0*LS)**2.0
CONST6=CONST2*LSE**2.0
ARGB=7.036E4*CONST3
ARGC=7.036E4*CONST4
ARGD=7.036E4*CONSTS
ARGE=7.036E4*CONST6

c

C FOR THE CASE OF DT=0

c

ARG1A=ARGB/TP
CALL EI(ARG1A,ARG1)
ARG1=ARG1*(-1.0)

ARG3A=ARGC/TP
CALL EI(ARG3A,ARG3)
ARG3=ARG3*(-1.0)

ARGSA=ARGD/TP
CALL EI{ARGSA,ARGS)
ARGS=ARG5*(-1.0)

ARG7A=ARGE/TP
CALL E{ARG7A,ARG7)
ARG7=ARG7*-1.0)

PWS=P[+CONST1*(ARG1+ARG3+ARG5+ARG7)
WRITE (6,950) DT,PWS
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o
C FOR DT>0
c
DO 900 I=1,10000
READ (S,920) DT
920 FORMAT (F10.4}
IF (DT.EQ.-5.0) GO TO 999

ARG1A=ARGB/ (TP+DT)
CALL EI(ARG1A,ARG1)
ARG1=ARG1*(-1.0)

ARG2A=ARGB/DT
CALL E(ARG2A,ARG2)
ARG2=ARG2*(-1.0}

ARG3A=ARGC/(TP+DT)
CALL EI(ARG3A,ARG3)
ARG3=ARG3%(-1.0)

ARG4A=ARGC/DT
CALL E{ARG4A,ARG4)
ARG4=ARG4*(-1.0)

ARGSA=ARGD/(TP+DT)
CALL EI(ARGSA,ARGS)
ARG5=ARGS5*(-1.0)

ARG6A=ARGD/DT
CALL EIARG6A,ARG6)
ARG6=ARG6*(-1.0)

ARG7A=ARGE/(TP+DT)
CALL EI{ARG7A,ARG7)

ARG7=ARG7*(-1.0)

ARG8A=ARGE/DT

CALL EI(ARG8A,ARGS)

ARG8=ARG8*(-1.0)
PWS=PI+CONST1*(ARG1-ARG2+ARG3-ARG4+ARGS-ARG6+ARG7-ARGS)

WRITE (6,950} DT,PWS
950 FORMAT (5X,F10.4,3X,F10.2)

900 CONTINUE
999 CONTINUE

STOP
END
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SUBROUTINE EI(X,E1)

DEFINITION: E1{X) = -EI{-X)

IBM SCIENTIFIC SUBROUTINE PACKAGE (VERSION III)
PROGRAMMER'S MANUAL, H20-0205 (1968) PAGES 368-369
FROM Ramey, Kumar, AGA Book

000000

DOUBLE PRECISION X,DEXP,DLOG,ARG,RES,E1
IF (X.GT.60.) GO TO 120
IF (X.LE.4.) GO TO 100
ARG=4./X
RES=(0.24999999+ARG*(-0.062498588+ARG*(0.03120856 1 +ARG
1*(-0.022951979+ARG*(0.020412099+ARG*(-0.017555779+ARG*(0.01 1723273
2+ARG*(-0.0049362007+ARG*(0.000944276 14)))))}}})
RES=DEXP(-X)*ARG*RES
GO TO 130
100 IF (X.LT.0.) GO TO 120
IF (X.EQ.0.) GO TO 110
RES=-DLOG(X)-.57721586+X*(1.0+X*(-0.25+X*(0.05555552+X*(-0.0104 166
162+X*(.0016666906+X*(-.00023148392+X*(2.833759D-05+X*(-3.099604D-0
26+X*(3.0726221D-07+X*(-2.763583D-08+X*(2.1915699D-09+X*(-1.6826592
3D-10+X*(1.5798675D-11+X*(-1.0317602D- 12
GO TO 130
110 RES=1.D75
GO TO 130
120 RES=0
130 E1=RES

RETURN
END
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PROGRAM PARALLEL

REAL MUK,LE,LW
DOUBLE PRECISION ARG 1A,ARG2A,ARG3A,ARG4A ARGSA,ARG6A,ARG7A ,ARGSA
DOUBLE PRECISION ARG1,ARG2,ARG3,ARG4,ARGS,ARG6,ARG7,ARGS

OPEN (S, FILE='"PARAL.TXT')
OPEN (6, FILE='"PARAOUT")

READ (5,910) PL,PHI,MU,K,RW,TP,Q,B,H,LE,LW,CT
910 FORMAT (11F10.4,E10.3)

c
WRITE (6,910) PL,PHI,MU,K,RW,TP,Q,B,H,LE,LW,CT
c
CONST1=933.1*Q*B*MU/(K*H)
CONST2=PHI*MU*CT/K
CONST3=CONST2*RW**2.0
ARGA=7.036E4*CONST3
ARGB=7.036E4*CONST2
c
C FOR THE CASE OF DT=0
c
DT=0.0
ARG1A=ARGA/TP
CALL EI(ARG1A,ARG1)

ARG1=ARG1*-1.0)
SUM=ARG1
DO 100 [=1,10000

ARG3A=(ARGB*(2*I*LE+2*(I-1)*LW)**2)/TP
ARGS5A=(ARGB*(2*I*LW+2*(I-1)*LE}**2)/TP

IF(ARG3A.GT.10.AND.ARGSA.GT.10} GO TO 199

CALL EI{ARG3A,ARG3)
CALL EI(ARG5A,ARGS)

ARG3=ARG3*(-1.0)
ARGS5=ARG5*(-1.0)
SUM=SUM+ARG3+ARGS

ARG7A=(ARGB*(2*I*(LE+LW))**2)/TP
IF(ARG7A.GT.10) GO TO 199

CALL EI{ARG7A,ARG?7)
ARG7=ARG7*-1.0)
SUM=SUM+2*ARG7

153



100 CONTINUE

199 PWS=PI+CONST1*SUM
WRITE (6,950) DT,PWS

c
C FORDT>0
c
DO 300 J=1,10000
READ (5,920) DT
920 FORMAT (F10.4)
IF (DT.EQ.-5.0) GO TO 999
SUM=0.0

ARG1A=ARGA/(TP+DT)
RG2A=ARGA/DT

CALL EI(ARG1A,ARG 1]
CALL EI(ARG2A,ARG2)

ARG1=ARG1%-1.0)
ARG2=ARG2+*(-1.0)
SUM=ARG1-ARG2

DO 200 [=1,10000
DIST1=ARGB*(2*I*LE+2*(I-1}*"LW)**2
DIST2=ARGB*(2*I*"LW+2*(I- 1)*LE}**2
DIST3=ARGB*(2*I*(LE+LW))**2

ARG3A=DIST1/(TP+DT)
ARG4A=DIST1/DT
ARGSA=DIST2/(TP+DT)
ARG6A=DIST2/DT

IF (ARG3A.GT.10.AND.ARG5A.GT.10) GO TO 299
CALL EI(ARG3A,ARG3)

CALL EI(ARG4A,ARG4)

CALL EIARGSA,ARGS)

CALL EI(ARG6A,ARG6)

ARG3=ARG3*(-1.0)

ARG4=ARG4*(-1.0)

ARGS5=ARGS5*(-1.0}

ARG6=ARG6*(-1.0)
SUM=SUM+ARG3-ARG4+ARG5-ARG6

ARG7A=DIST3/(TP+DT)
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ARG8A=DIST3/DT
IF (ARG7A.GT.10) GO TO 299

CALL EI{ARG7A,ARG7)
CALL EI(ARG8A,ARGS)

ARG7=ARG7*(-1.0)
ARG8=ARGS8*(-1.0)

SUM=SUM+2*ARG7-2*ARGS8
200 CONTINUE
299 PWS=PI+CONST1*SUM

WRITE (6,950) DT,PWS
950 FORMAT (5X,F10.4,3X,F10.2)

300 CONTINUE

999 CONTINUE
STOP
END

SUBROUTINE EI(X,E1)

DEFINITION: E1(X) = -E[(-X)

[BM SCIENTIFIC SUBROUTINE PACKAGE (VERSION 1I1)
PROGRAMMER'S MANUAL, H20-0205 (1968) PAGES 368-369
FROM Ramey, Kumar, AGA Book

O000O00

DOUBLE PRECISION X,DEXP,DLOG,ARG,RES,E1

IF (X.GT.60.) GO TO 120

IF (X.LE.4.) GO TO 100

ARG=4./X

RES=(0.24999999+ARG*(-0.062498588+ARG*(0.03120856 1 +ARG
1*(-0.022951979+ARG*(0.020412099+ARG*(-0.017555779+ARG*(0.01 1723273
2+ARG*(-0.0049362007+ARG*(0.000944276 14)))))}))}

RES=DEXP(-X)*ARG*RES

GO TO 130

100 IF (X.LT.0.) GO TO 120

IF (X.EQ.0.) GO TO 110

RES=-DLOG(X)-.57721586+X*(1.0+X*(-0.25+X*(0.05555552+X*-0.0104 166
162+X*(.0016666906+X*(-.00023148392+X*(2.833759D-05+X*(-3.099604D-0
26+X*(3.0726221D-07+X*(-2.763583D-08+X*(2.1915699D-09+X*(- 1.6826592
3D-10+X*(1.5798675D-11+X*(-1.0317602D- 12}
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GO TO 130
110 RES=1.D75
GO TO 130
120 RES=0
130 E1=RES

RETURN
END
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