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Abstract

The primary aim of this study was to develop a coherent basis for analysis of conditional
nearest-neighbor spatial associations of wildlife distributions. The analysis involves the
development and use of tessellation diagrams coupled with statistical measures of
conditional spatial association. First, a new modification to the Quickhull algorithm is
proposed for the creation of the convex hull. The convex hull is the geometric precursor
to the tessellation diagram. Second, a new algorithm for the development of Delaunay and
Voronot tessellation diagrams is proposed. Third. a tessellation statistic for analyzing
conditional locational interdependency is applied to a set of moose location information

and the applicability of the method for wildlife analysis is reviewed.
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1. Introduction

The primary focus of wildlife distributional analysis is to determine if the animals
distribution pattern is in some way affected by a specific causal agent, generally a
landscape feature, an environmental gradient or a man-made disturbance. Inherent to this
problem is the relationship between the environmental variables spatial arrangement and
the affects the arrangement has on the animals distribution pattern. Even after decades of
research there has been limited success in deriving a concrete unbiased statistical
methodology that can provide insight into these distributional processes. It is the
development of a spatial statistical application to answer questions like these that is the

primary focus of this thesis.

Certainly, the problem has not been a lack of methodology. as there have been many
statistical methods designed to measure either the dispersion or arrangements of wildlife
point patterns. Unfortunately. all of the common dispersion techniques, like the nearest
neighbor methods (see Pielou, 1969; Diggle, 1983 and Upton and Fingleton 1985) and the
quadrat methods (see Getis, 1964 and Lee, 1974), which are used most often. suffer from
biases brought about by an arbitrary determination of the study area boundary or through
the use of statistics which depend upon the density of the observations. Thus we attempt
to remove both the arbitrary boundary problem and the density dependency factors by
using the more powerful arrangement techniques. Specifically those that utilize Voronoi

tessellation diagrams (see Boots and Getis, 1988, 17-85 pp.).

Unraveling the history of the Voronoi tessellation diagram leads across numerous
scientific disciplines and through many fascinating articles in several languages. The
earliest known example of the use of tessellation geometry was from an astronomical
diagram drawn by Descartes around 1629. A few centuries later the German

mathematician Dirichlet (1850) published the first known mathematical treatise on the



subject. However. it wasn’t until subsequent mathematical foundations were developed by
the French mathematician Voronoi (1908) that tessellation began to find a place in
geometry. By the early 1920’s German mathematicians like Niggli (1927) began to use the
techniques to further research in the field of cellular networks. The next major
contribution came from Delaunay (1934) who discovered the dual geometric form of the
Voronoi, which consequently bears his name. Meanwhile, analytical works by the
meteorologist Thiessen (1911) provided the first glimpses of the enormous analytical
potential of the diagrams. However, the complex nature and tedious work involved in
tessellation calculations led most tessellators of the mid 1900’s to spend research time on
finding better algorithms to improve diagram development as opposed to furthering the
statistical frontiers. Certainly the advance of the computer was a turning point for the
transition from diagram development to statistical analysis. The early statistics developed
by researchers such as Neyman (1939). Robbins (1944), Garwood (1947) and Bronowski
and Neyman (1945) laid the foundations for the tremendous strides in tessellation statistics
by Boots (1974), Okabe and Miki (1984), Okabe ef al. (1992), Okabe and Sadahiro
(1994) and Okabe and Yoshikawa (1989). More recently, the topic of spatial statistics has
gained popularity though it is still far from the mainstream. as are most spatial statistics of

this century. For a thorough historical summary, consult Okabe er al. (1992).

To begin, tessellation in its formal sense is the replication of a figure or object. A group of
tessellation objects fit together much like the interlocking pieces of a puzzle. This is the
true form of tessellation. There is a great deal of information on the topic available across
the internet. Voronoi tessellation and Delaunay tessellation are not true tessellations in the
sense that the shapes or objects created are not identical, though they are interlocking.
These tessellation diagrams are derived using locational information provided by the user.
The information generally consist of points, lines or areas, describing the spatial location
of landscape features, for example, well sites, lakes or forest cutblocks. A tessellation of

point features, like the centroids of a group of lakes, would create a boundary around each

~



centroid. The boundary equally divides the area between two adjacent centroids
Therefore, the boundaries separate each centroids influencing area from all other
centroids’ respective areas. Each area can be thought of as a quadrat which provides a
means to statistically analyze an observed set of locational information. like a series of x,y

coordinates of moose locations with respect to the lakes.

The tessellation of point distributions has been extensively studied and there are many
methods to choose from. Most methods begin by calculating the outer boundary of the
feature points, formally called the convex hull. The rapid calculation of the hull is perhaps
the most widely researched in computational geometry. One of the earliest known
algorithms for its calculation, called the Quickhull. was developed by two McGill
University researchers, Akl and Touissant ( 1978). Unlike most of its predecessors the
Quickhull is a geometric sorting procedure as opposed to a mathematical one. Specifically,
it sorts points using geometric primitives, like triangles, to determine the position of each

point relative to an initial boundary.

Of the many hull forthing algorithms now available for study. there exists only a handful of
strategies. The two most common are the divide and conquer method and the incremental
method (see Tsai, 1993 and Green and Sibson, 1977). The essence of the divide and
conquer method is to divide a point dataset into two halves along the x axis. from each
half form a separate convex hull and then conquer the problem by merging the two hulls
together. In contrast, the incremental algorithm, which has many forms, essentially creates
an initial triangle of three outer or inner points, then adds single points to the edge of this
triangle, expanding it, until there are no longer any points to test. Both methods have had
many pre and post processing improvements over the years and both are classified as
deterministic algorithms, because they impose strict ordering to the selection and
processing of point information. The original Quickhull algorithm is a mixture of these

two methods.
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In more recent years, there has been a trend toward the use of Las Vegas style algorithms
for convex hull development (Clarkson er al. 1989). These algorithms select points based
on a randomized selection process. They have an expected running time that matches the
lower time constraint required to solve the convex hull problem (see Boas, 1980 and Avis.
1980). Since we are interested in redesigning the core equations in the original Quickhull
algorithm, we have added in a randomization process but not as the primary modification,
hence we have chosen to ignore true algorithm randomization as it can easily be added

later.

In my search for a linear time algorithm. with which to construct the hull, I propose the
theory that the sequential ordering of geometric primitives would provide maximum
topological efficiency, under both stable and random spatial change. which in turn would
maximize the efficiency of finding those points which make up the hull. To maximize
topological efficiency means to assign a series of non-overlapping geometric objects. such
as triangles, to completely fill an irregular open space, like a polygon, in such a way that
the objects used is minimized. Once found. the minimum number of triangles should
provide an optimum solution for determining if a given test point falls inside the polygon.
An example of the use of this theory is the application of the sorted Tnangle Fan algorithm
to solve a point in polygon problem (see Haines, 1994). This theory also extends to the

development of the Delaunay diagram

The second part of diagram development consists of identifying the nearest neighbors of
every feature point. A common strategy for solving this problem is to use the convex hull
to determine the position of a point relative to its’ neighbors. Once the two neighbors are
located a closed line segment is drawn which connects the point to each of its two nearest
neighbors, thereby forming a triangle. The resulting triangulated set is known as a

Delaunay tessellation diagram.



As previously inferred. the triangular topology of the Delaunay lends itself to the creation
of the Voronoi, which is sometimes referred to as the dual graph. This utility of this
duality was first reported by Boots in 1974 and since then it has become a common
practice to create one diagram from the other. The creation of the Voronoi from the
Delaunay is by simply attaching together the perpendicular bisectors of each line in the
Delaunay’s triangulation (see Aurenhammer, 1991). The resulting linework forms
individual regions called Voronoi tiles. These regions represent the area of influence
around a given feature point. The tile boundaries thus represent a division of influence

between two adjacent features.

I proposed to develop a Delaunay diagram from a convex hull, by using the Triangle Fan
algorithm which is a typical geometric example of the divide and conquer strategy. The
topology of the Triangle Fan linework is similar to that used in Delaunay diagrams and
therefore provides a paralleled approach to diagram creation. Though it does not have the
point-in polygon speed of the gridding algorithms, the Triangle Fan test does not have the
memory overhead nor the secondary setup time inherent to the gridding strategies (Haines.

1994). 1t is therefore very simple to implement as a computer program.

Unlike the convex hull and tessellation geometry, tessellation statistics have received little
attention from the research community. A handful of Japanese researchers. headed by
Professor A. Okabe from the University of Tokyo, began the statistical development in the
early 1980s. The first examples were presented by Okabe and Miki in 1984. They
combined conditional probability theory, integral calculus and tessellation geometry to
determine the effects subway stations had on the distributions of local retail stores. The
results of this study opened the door for others to explore the effects of roadways and
parks on the distributions of high cost apartments. Unfortunately, the complexity of the

procedure has somewhat stunted its’ growth to this point. A complete review of the



methodology is provided herein. however a reader is advised to consult the original

research paper by Okabe and Miki (1984).

Any attempt at spatially analyzing wildlife distributions must be critically linked to the
behavior of individual animals. This is one of the key features of the tessellation statistic. It
is highly sensitive to the spatial variation in distribution data brought about by differences
among individual activity patterns. This sensitivity lends itself to the analysis of any
landscape feature or point distribution thought to influence the behavior of the study

animals. An example would be the influence of water bodies on the distribution of moose.

With this aside we open the thesis with a chapter devoted to the construction of the
convex hull detailing our proposed modifications to the well known Quickhull algorithm.
In the second chapter we discuss the formation of both the Delaunay and Voronoi
tessellation diagrams. outlining the basic methods used and describing our technique in
detail. In the third chapter we review the basis for the tessellation statistics, apply the
techniques to a wildlife problem and summarize our findings. In the final summary I recap
the projects’ overall aim, discuss the success of our proposed diagram modifications and
further discuss the use of Voronoi tessellation as a statistical tool for analyzing wildlife

information.
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2. The Modified Quickhull Algorithm

2.1 Introduction

Since its development in 1978, the Quickhull algorithm has undergone few changes. The
model is generally very fast (O’Rourke, 1995) and for this reason alone improvements to
the model are difficuit. Recently the model was converted into a randomized Las Vegas
style algorithm by Wenger (1997). Wengers modifications provided an O(n log h) model,
which is independent of the input data distribution. Chan er al. (1995) also modified the
Quickhull to provide an output-sensitive model. The original model is deterministic and
has an expected runtime of O(n), but it is not clear whether it is distribution independent.
In my review of the literature I found that most deterministic algorithms were not
distribution independent. However, the general focus is on the reduction in overall
processing time for random data sets and not distribution independence. In this study of
convex hulls I propose to modify the Quickhull algorithm in an attempt to decrease the
processing time for data points in R2. Earlier investigations which compared many of the
primary point-in-polygon algorithms, suggests that the Quickhulls’ core tests are likely
inferior to a variety of newer algorithms (Haines 1994). Whether an alternative, as

suggested by Haines. could be incorporated into the Quickhull model was speculative.

The Quickhull’s inherent use of geometric shapes to filter out the probable hull points
provides a simple mechanism to test the differences between the various proposed
alternatives. With respect to the Quickhull’s divide and conquer strategy, there are two
distinct filtering processes. The first process consists of filtering the initial dataset into
points located in the interior of a derived quadrilateral with those that are exterior. This
filtering process is intended to allow a faster testing of potential hull points than could be

accomplished without one. Under most conditions the filtering does improve the actual



selection of the hull points. However, this is not true for all algorithms as many of these
techniques are quite complex, requiring reading and re-reading of subsets of the data to
derive the pre-ordered state. Obviously, the key to a fast algorithm lies in its ability to
order the data. The approach taken by almost all the convex hull algorithms reviewed
herein excelerate the creation of a convex hull using some form of preliminary data
ordering (Tsai 1993, Ohya et al. 1984, Brassel and Reif 1979, Dehne and Klein 1997.
Maus 1984, Graham 1972, Preparata and Hong 1977).

The second process, the conquering of the problem, involves using these exterior points to
find the convex path for each of the four edges of the derived quadrilateral. We apply the
theory of geometric sequencing to devise a means to rapidly locate points as the hull path
is formed. A quadrilateral edge, along with the section of hull that connects to it. can be
considered as an irregular polygon, whose shape changes over the course of hull
formation. The vertices of the hull edge form a natural triangular fan with the
quadrilaterals edge, thus I chose to use triangles as the mechanism to divide up these
polygons. which should maximize the polygons topological efficiency. In this way. the

Triangle Fan algorithm is a natural choice as a modification to the original model.

Customarily, the divide and conquer operations are separated, both in the code and in the
design of the model, however, this is not the case for the Quickhull. The flow of individual
data points is sequential through the processes, allowing the complete sorting of a point,
from start to finish, thereby eliminating a second handling of the data. Although this was
not the method described in the original paper, it was proposed toward the end and I feel
it is the superior method of all those originally proposed. Although, I have conveniently

divided them out in the following text.
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In the first section I give a formal definition of a convex hull. In the second section I
review the original Quickhull model as described by Akl and Toussaint (1978). The third
section provides descriptions of the proposed modifications and example calculations for
all geometric primitives and the new algorithms. In the fourth section [ provide an analysis

of the original hull to those proposed. Lastly, [ summarize my findings.

2.2 Definition of a Convex Hull

The formal definition of a convex hull is described as the set of points which form a
convex boundary around all data points in the sample space. This implies that all hull
points are connected in a closed loop, called a polygon and that the interior angle at any
given hull point is less than 180° (Figure 2.2.1). A hull point with an angle that exceeds
180° would create a dent in the boundary thus rendering it non-convex (Figure 2.2.2).
This does not mean that the sample points are no longer encompassed. in fact they must be
otherwise it is not a hull. Another less obvious constraint is that the line segments
connecting the hull points do not overlap. This special case of an inverted polygon. though

convex by the abov¢ definition, is actually not convex due to its overlapping line segments.

2 2
.. [ 3
] \.3 ° . .';
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Figure 2.2.1. A convex hull Figure 2.2.2. A non-convex hull

This and other degenerate cases are reviewed by Schorn and Fischer (1994). C onvexity is

an issue in that the properties and utility of the polygon change drastically once it becomes
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non-convex. and this can render some tessellation forming algorithms unusable. A list of

formal convex hull definitions is found in O’Rourke (1995, pp. 71-72).

2.3 Overview of the Quickhull Algorithm

Akl and Toussaint (1978), recognized that a convex hull could be formed from any three
initial geometric shapes; a quadrilateral, a triangle or a line. As mentioned in the chapter
introduction, their general strategy is essentially a geometric form of the divide and
conquer principle. To describe the strategy using the quadrilateral, the algorithm begins by
determining the four extremal points in the dataset. These four points become the four
corners of the extreme quadrilateral (Figure 2.3.1). Note that these four extreme points
are all on the hull (Figure 2.3.2). It then proceeds to eiiminate points that fall in the
interior of the quadrilateral, as these points are not on the hull. Akl and Toussaint called
this the “throw-away principle™. The throw away principle uses Algorithm 112 as
cataloged by the ACM ( Shimrat. 1962 ). The original equation has an error in it, but
fortunately this was corrected by Hacker (1962). This algorithm is commonly called the
“Crossings test” (Hz:ines 1994). A mathematical example of Shimrats algorithm. including

the geometry, is given in Example 2.3.1. at the end of this section.

Y:nax Ymax. Point
[ ]
. * Xmax Xmax.
. Point
Xmin o o Xmin.
T~ Point
[ ] ~ ~— ®
Ymin Ymin. Point
Figure 2.3.1. The extreme quadrilateral. Figure 2.3.2. The hull relative to the

quadrilateral.



The second stage in the process is to divide up the remaining exterior points into four
quadrat groups according to the regjon that they fall into (Figure 2.3.3). For efficiency. the
division of the points occurs during the “throw-away” testing. These quadrat points are
then sorted by their x coordinates in the following way; ascending order for points in
quadrats 1 and 2 and descending for points in quadrats 3 and 4. The quadrilateral used in
this manner correlates to the “divide” part of the divide and conquer method. To conquer

the problem all that remains is to develop the convex path for each quadrat.

Obviously. each path begins at one extreme

corner of the quadrilateral and finishes at the g SRR

next. The focus is to eliminate all quadrat points o . Xmax.
not on the path. Those left in the quadrat list E
have already been properly sorted, hence they
form a proper convex path for the given quadrat.
To create this convex path, Akl and Toussaint S L SO :

developed an algorithm, called the “directed line

test”. This test is well recognized as the core test Figure 2.3.3. Quadrat assignments.

for many forms of the incremental method. It is

performed by calculating the area of a triangle and noting the sign of the resulting value
(O’Rourke 1995). The first directed line test includes one corner of the quadrat edge, call
it a, the first sorted point in the quadrat list, call it ¢ and the next point in the quadrat list,
call it b. If the area, as calculated from a to b to the test point ¢, is a positive value, point ¢
is to the left of the directed line ab. If the value is negative, point ¢ would be to the right of
the line ab (Figure 2.3.4). In the quadrat cases, negative values are inner to the existing
hull path, so are removed from the list. This iterative processing is repeated until all

negative points are removed from each quadrat list. The directed line test is often called
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the Clock test because positive values are formed by a counter-clockwise (CCW)
orientation of the points and negative values result from a clockwise (CW) orientation. A
mathematical example of the test. including the geometry. is provided in the example

2.3.2, at the end of this section.

The original paper on the Quickhull also suggests that the processing of points can be

done by repeatedly using the throw-away principle and dropping the use of the sorting all

together. Strictly speaking the algorithm does

not require the sorting mechanism, as the N positive b
traversal of the hull, using the defined directed ¢

line test, can determine the hull points. The sort

was added to speed up the selection of points a negative

to test. The sorting accomplished a faster X

termination of the hull traversal routine,

however, the direct traversal method is faster, Figure 2.3 4. The directed line test.
since at that time it is likely the fastest sorting

method available had an expected run time of only O(n log n). As outlined in the paper.
eliminating the sort will achieve an expected runtime of O(n). A complete review of the
use of Big O notation for algorithm classification is provided in an excellent article by
Schneier (1994) on NP-completeness. This completes the overview of the basic structure
and function of the criginal Quickhull algorithm. The modifications which follow are based

on an evaluation of the effectiveness of the standard quadrilateral form.
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Example 2.3 1 Shimrats Crossings Test (Shimrat 1962).

a
[ ]
d
e ®
*e——————»
Ray r
b o
®
Cc

Figure 2.3.5. An exterior Crossings
test

If points a to f have coordinates as follows:

b(24.c(4.2).d(6.6).a(35.7)
e(1.8.3).f(7.5).

with the test point being ¢ and a test ray shot to
point f. then the crossings test is calculated as
follows:

First check all endpoints to determine if they cross
the ray by comparing them to e.y.

if (a.y >ey) and (b.v <e.yv). then I know that
edge ab and edge cd have endpoints on either side
of the ray but I do not know if either edge actually
crosses the ray. so I must solve for the x value of
the intersection using the Crossings formula. If the
inequality is true.

(b.x-((b.y -ev)a.x-b.x)/ (av-by))) >=ex
(2-((4-5)3E.5-20/(T4H)) >=18.
(2-((1.5Y/3)))>=138

25>=18

then the ray crosses the edge.

There are many variations to the testing procedure
which fit particular circumstances. Here keeping

15

Figure 2.3.6. An interior Crossings
test

If points a to f have coordinates as follows:

b(2.4).c(42).d(6.6).a(3.5.7)
€(3.3).£(75).g(1.8.5)

with the test point being e and a test ray shot to
point f. then the crossings test is calculated as
follows:

Again check all endpoints to determine which
edges have endpoints on either side of the ray. the
edge cd is a candidate so is edge ab. so [ calculate
as before,

(b.x - ((b.y - e.¥)(a.x-b.X) / (a.y-b.y))) >=e.x.
(2 - ((4-35)3.53-2)/(74))) >=3
2-(1.5/3)))>=3

25>=3

which is false. Calculating the second edge cd |
find.

(dx-((dy-ey)c.x-dx)/ (c.v-dyv)) >=ex
(6-((6-5)4 -6)/(2-6)) >=3

(6-((-2)/ (4))>=3

5.5>=3



track of the edges being tested works best. Given which 1s true. so I conclude that point ¢ 1s intenor
that the initial edge comparison tests all four to the quadrilateral. The total numbecr of tests 1s at
edges. I find it takes a minimum of nine least twenty two.

mathematical operations to complete the task.
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Example 2.3 2 Akl and Toussaints Directed Line Test (Akl and Toussaint 1978)

Figure 2.3.7. A positive directed line
test.

If the points a to ¢ have the following coordinates:
a(2.2). b(4.6) . c(2.2. 4) and d(3. 2.2).

then the directed line test from a to b with ¢ as the
test point is calculated as,
s=(bx-ax)cy-ay)-(by-ay)c.x-ax)
S=(4-2)4-2)-(6-2)2.2-2)
§=2(2)-4(0.2)

$s=3.2

Since the result is positive I conclude that point ¢
is to the left of the directed line ab. To confirm the
test correctly assigns the sign. a negative directed
test using the same directed line ab with d follows.

17

Figure 2.3.8. A negative directed line
test.

If the points a to ¢ have the following coordinates:
2(2.2). b(+. 6) and (3. 2.2)

then the directed line test from a to b with ¢ as the
test point is calculated as.

s=(bx-ax)cy-ay)-(by- ay)cx-axy
S=(4-2)2.2-2)-(6-2%3-2)
$=2(02)-4(1)

s= -3.6

Overall there is a total of seven mathematical
operations per line test. five subtractions and two
multiplication’s. The result is negative. This
verifies the signs of the test results. Again the
same number of operations per directed test.

Another important use of this test is for the area of
a triangle. The calculated value is twice the area of
the triangle abc. thus taking the absolute value and
dividing in half gives the true area.



2.4 Quickhull Modifications

The first modification was to replace Shimrats’ “Crossings” algorithm, which was used for
the throw-away principle, with Greens’(1993) Triangle Fan algorithm. The modification
divides the extreme quadrilateral into two triangular regions, using a single shared edge.
This is done by joining the Ymax point to the Ymin point or secondly by joining the Xmax
point with Xmin point. Doing this creates two triangles, one with corners

Ymax:Ymin: Xmin and the other with corners Ymax:Xmax:Ymin. A single directed line
test using the triangles’ shared edge, call it line Y:Y, places a test point in either triangle
one or two (Figure 2.4.1). A second and possibly third test, using the exterior edges of the
point’s triangle, confirms the point’s location with respect to the quadrilateral's edges. A
second test will determine if the test point is exterior to the quadrilateral or that a third test
will be needed. A third directed line test will determine the points position as being either

exterior or interior to the quadrilateral.

Two other throw-away methods were also

Ymax. Point
. . [ J
evaluated. A three edged directed line test *

M 13 : 7 : Tnang[c 2 g Xma.\.
which uses the “edge-paving™ technique and a . . Point
four edged directed line test which simply tests Y:Y Line
every edge of the quadrilateral in order. The Xmin,, Trangle |

) Point - °*
three-edged model balances the testing of o« .

- - - . .

points regardless of the data distribution. It Ymin. Point

does this by dividing the quadrilateral into four R

quadrats (Figure 2.4.2). Every point is tested Figure 2.4.1. The Quadrilateral
exactly three times; once using line Y:Y, once Triangle Fan

using line X:X and lastly by the appropriate
quadrilateral or quadrat edge. This preserves the essence of the algorithms geometric

divide and conquer principle. In contrast, the four edged model attempts to average out
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the number of edges tested by testing all four edges in sequence. using the directed line
test. Should a point be found exterior to a given edge the test is completed. therefore it
tests two edges on average for datasets evenly distributed across the plane (Figure 2.4.3).
An example of the geometry and mathematics of the both the Tnangle Fan test and edge

paving test is provided at the end of this section.

Ymax. Point Ymax. Point
. & - . .
. Ql " Xmax. . * Xmax.
. o4 L Point . o Point
Q2
Xmin. .4 Q3 Xmin.,
Point ) Point ¢
® [ ] [ L
1 .
Ymin. Point Ymin. Point
Figure 2.4.2 Geometry of the Three Figure 2.4.3. Geometry of the Four
edged model. edged model.

-

The second modification to the original algorithm, removes step two. the point sorting. It
also replaces the iterative processing of the points along the convex path with a hybrid
triangle fan test (see Badouel 1990, Green 1993). The fan test used follows the test
proposed by Green, with slight modifications. To execute the Triangle fan the first data
point found exterior to the initial extreme quadrilateral is attached to the quadrat comers
and thus forms an initial convex path, whose shape is a triangle. Quadrat points are then
tested to determine if they fall inside this triangle. If they do they are eliminated from
further consideration. If the point is outside, a second triangle is formed using one quadrat
point and the two test points. As arranged, the first triangle has the longest edge and the
next adjacent triangle to it has the next longest edge and so forth as the fan grows. This
provides a natural sorting mechanism for each triangle on the fan (Figure 2.4 .4).

Recognizing that each triangle in the fan shares an edge with either the quadrat edge or an
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adjacent triangle, a test for inclusion would only require the testing of two edges per
triangle. Moreover. a quicker determination of the point with respect to the hull. is found
by knowing which edge of the triangle the point is exterior to. If the test point is exterior
to the triangles “hull” edge. as designated in figure 2.4 4, the test is complete. otherwise
the next adjacent triangle must be tested. Processing a point via the fan test completes the

initial stage of path development.

To complete the convex path every point f3/' e
found outside a hull edge must undereo a -

£ £ Hul T
traversal of the existing edge to properly Edge. Quadrat 4
incorporate the point into the path array. The T
traversal is done to remove any existing hull .

points which would fall interior to the convex

path once the new point was added. The Figure 2.4.4. Hull edge geometry
check for tangency uses the directed line test

and is therefore the same operation as performed in the original algorithm. only very
selectively. In summdry. the addition of each new hull point requires both finding the
proper location in the hull to insert the point, as well as the elimination of any existing hull
points that are now interior to the newly formed convex path. The construction of the hull
edge is therefore very dynamic, as points are added others are deleted until the final path is

formed.

In the next section we present the results of a comparison between the original Quickhull
processes, the modified Quickhull, and the proposed quadrilateral variations. The
comparisons were accomplished by programming each algorithm as inline code and
incorporating them into the exact same C++ method (function). Thus the processes were

almost identical except for the slight variations in control structures.



Example 2.4 1 The Quadrilateral Triangle Fan Test

% - Quadrat 4
Quadrat 1
od
T2
T1 oe
be®._ Quadrat 3

Quadrat 5\10

Figure 2.4.5. An exterior Triangle Fan test

The two triangles T1 and T2 share a common edge
represented here by the dashed line. We can
readily determine if the test point e is on the left or
right of the this common edge by a simple directed
line test using line ac. A second directed test using
either quadrat edge. for the given T. could
determinc if the point is exterior. giving a fast two
edge test. A common modification to increase the
overall speed of the test is to test the longest edges
first. Given that the edges are not sorted there is a
fifty percent chance of selecting the correct edge
first. Given that points a to e have coordinates as
follows:

a(3.5. 7). &(2. 3). c(5.2). (6. 6). e(7. 3).
We calculate e’s position by the following.

s=(c.x-ax)ey-ay)-(cy-ay)ex-a.x)
$s=(5-35)5-7)-Q2-7(7-3.5)
s=14.5,

so I know e is to the left of the directed line ac.
next [ arbitrarily select line cd to test.

s=(dx-cx)ey - c.y)-(dy-cy)e.x-c.x)
S=(6-5)(5-2)-(6-2)7-5)
s= -5,

so I have confirmed e is exterior to the line cd.
and the test is done.

% Quadrat 4
Quadrat 1
) ) od
T2
T1
b&_ Quadrat 3
Quadrat 2 .c

Figure 2.4.6. An interior Triangle Fan test

If the points have the same coordinates except the
test point [ have:

a(3.5. 7). B(2. 3). c(5.2). d(6. 6). e(5.5. 5).

We calculate e’s position by the following,
s=(c.x-ax)ey-ay)-(cy- a.y¥ex-ax)
S=(5-33)5-7-(2-7(5.5-3.5)

s=17.

so I know e is to the Ieft of the directed line ac.
next I arbitrarily select line cd to test.

s=(dx-cx)ey-cy)-(dy-cy)ex-cx)
$=(6-5)5-2)-(6-2)5.5-3)
s= L

so I have confirmed e is interior to the line cd.
lastly I test directed line da.

s=(ax-dx)ey-dy)-(@y-dy)ex-dyx)
$=(3.5-6)5-6)-(7-6)5.5-6)
s= 3.

confirming the point is interior to the triangle T2,



Example 2.4.2 The Hull Triangle Fan Test

Figure 2.4.7. The Triangle fan test

If line ab represents one edge of the quadrilateral
and a to e. make up the hull points at time t then
to test point g for inclusion to the hull requires.

a directed line test using line ab.

which determines that point g is exterior to the
inner quadrilateral. next I test the remaining inner
triangle edges in sequence as follows.

a directed line test using line ac.
a directed line test using line ad,
a directed line test using line ae

From these tests the position for insertion of g. ie
after point ¢. is known. but the remaining hull
edges must be traversed to eliminate points like e
which are non-convex once g is added.

The final traversal begins with a directed line test
from e to d which tags point e for deletion. because
g is twice left of e. The rest of the exterior edges
are tested in the same manner. The hull at time
t+1 now looks like Figure 2.4.7.

g"‘t’?‘b
-
de "~
cCe
°
a

Figure 2.4.8. Hull path at time t+1

An evaluation of the these operations quickly
reveals that a direct traversal of the edge for every
test point would resuit in a greater number of
directed line tests. This is due to the fact that the
triangles can terminate the testing should the point
fall inside an inner edge and this in turn results in
fewer overall tests. Moreover, the triangular
topology is an excellent example of maximizing
topological efficiency. Notice the inner triangle
edges sum to one less than the edge of the hull and
that the interior edges are naturally sorted by
length. beginning with the longest edge first.



2.5 Algorithm Evaluations

The original research paper on the Quickhull states that approximately one-half of

randomly distributed data points

Quadrilateral Point Distributions would be interior to the extreme
Random Distribution, N=25, 250 trials quadrilateral. To ensure the execution
55, :; of the original algorithm is as claimed
gé n%': Zs: I randomly generated twenty-five
* 4“ points two hundred fifty times and

Inner Outer

Quadrilateral Location measured the distribution of points

with respect to the extreme

quadrilateral. The onginal claim is
Figure 2.5.1. Quadrilateral point assessment .
true, approximately one-half of the
points are eliminated by the use of the Crossings algorithm (Figure 2.5.1). With this
information I began to search for a better alternative.
A first thought was to evaluate the Crossing test. The Crossings test depends upon the
dataset’s point distribution and more importantly upon the orientation of the initial
quadrilateral. An improvement to this test would require the use of a triangle as the
extreme geometric shape, however this would lead to a reduction in the number of initial
points “thrown away” and an increase in the number of points processed via the hull filter.
which could only lead to an increase in the processing time, since the hull filtering process
is more complex. A review of “point in polygon” algorithms by Haines (1994) confirms
the drawbacks of the Crossings test and suggests several others as replacements. The
fastest replacement test for polygons with many sides is the Grid test, as it provides nearly
constant time, but the Grid test has the unfortunate drawback of being very memory

intensive to set up and manage. An even faster test for polygons with few sides is the

Sorted Half-Plane (or Triangle Fan) test.

N
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To ensure that my selected Triangle Fan replacement was indeed faster than the C rossings
or the Three and Four Edge directed line tests, all algorithms were programmed in C+~.
using the same class and same hull path processing method. Trials were done in sets of
twenty-five repetitions. Each repetition generated a randomly distributed point set of a
given size. Five sizes were chosen going from one-thousand points in a set to five
thousand points per set. The outcome of the twenty five trials was averaged for each of
the four test algorithms. The results are shown in Figure 2.5.2. Our regression analysis
with additional trials reveals that every test procedure was an O(n) algorithm (Table

2.5.1), with the Triangle Fan averaging the fastest computational time of those tested.

Throw-away Algorithm Trials
{ Number of Points Versus Average Cpu Time)

12

Q 10

'E -~ 8 B Three
[*2]

3z M Fan

06 6

o 9 OFour

g6 o

S - B Cross

> 2 -

<

1000 2000 3000 4000 5000

Number of Points per Trial

Figure 2.5.2. Processing times for Throw-away algorithms

The results are really not that surprising as the Triangle Fan test will have fewer
operations, with respect to all other tests, on all datasets except those whose points
consistently require a “third edge” assessment. The exception to this fact appears in the
trials of four-thousand points. Aside from this minor variation the Triangle Fan still

processes single points faster than any of the other proposed algorithms.



For evaluation purposes, the conquer portion or second modification of the algorithm
which traverses the hull edges was divided into three separate hull operations: failed left

tests, point deletions and point additions. The failed left tests are the sum of all directed

N HULL PTS| THREE FAN FOUR CROSS
1000 16.88 2.0216 2.024 2.048 2.1816
2000 20.6 4.0736 4.0292 4.108 4.2484
3000 21.16 6.1632 6.0948 6.1408 6.4464
4000 22.24 7.9192 7.9832 7.9552 8.3816
5000 22.12 10.1848 | 10.0336 10.2028 10.72
10000 24 194772 | 19.1364 19.3264 20.2184
50000 29.56 100.526 | 97.8628 | 98.6744 102.7412
Avg/Point 22.37 0.00200 | 0.00196 | 0.00198 0.00207
R’ 0.8901781 10.9999719/0.9999783] 0.999978 | 0.9999797

Table 2.5.1. Average Cpu time in seconds for “Throw-away” algorithms.

line tests used to process points which did not result in the direct deletion or addition of
the point to the hull. If a point is on the hull path but its” position is no longer convex due
to the addition of another point, they are classified as deletes. The add operations are due

to additions to the hull regardless of whether they are deleted later as the true path unfolds

(Figure 2.5 3).

Original Quadrat Path Operations versus Modified
Quadrat Path Operations
( Random Distribution N=25, 250 Trials )

6000

f:g: 0O Original

z“m“ & Modified
1000 ‘

0
Adds Deletes Failed Total

Lefts
Hull Operation

Sum of Total
Operations

Figure 2.5.3. Comparison of Original versus Modified Operations
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Figure 2.5 3 represents the total sum of each operation across 250 trials. By this figure the
original Quickhull model spends most of its time resolving failed left tests. The Triangle
Fan has practically the same number of additions and deletions, but fewer failed lefts,

significantly improving the models overall performance.

2.6 Summary

In Akl and Toussaints words “ the simplicity and speed of the proposed algorithm make it
worth reporting”. The Quickhull algorithm is indeed a very fast convex hull algorithm. Of
the three proposed modifications to the quadrilateral point filtering process ( throw-away
process) none were non-linear. Furthermore, any one of the three proposed algorithms
was, by my evaluation, better than the original model. The Crossing test algorithm itself is
a very fast test, however the initial point evaluations to determine if the edge endpoints are
on either side of the test point ray, is very costly. Even the optimization employed to
reduce all unnecessary control structures could not provide a better result than those
obtained by the others. Indeed, from the computer programming perspective the fastest

algorithms are generally those having the fewest and least complicated control structures.

A review of the operational elements of the convex path construction reveals that the
traversal of the hull edge is the most costly of the three path operations. The overhead
incurred trying to determine a points location with respect to the hull edge leads to many
failed directed line tests. Mathematically, the division of the quadrat/hull polygon into
triangles creates one less interior edge when compared to the number of exterior hull
edges. Using the interior triangle edges to determine a test points location generally
permits the termination of the test faster when a point is interior to the hull edge, therefore

significantly reducing the overall number of failed directed line tests.
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The best overall quadrilateral point filter came from the Triangle fan model. Certainly. the
topological arrangement of lines in the Fan contributed to its efficiency. The Triangle fan
is a very fast algorithm when applied to the dynamic construction of the hull. because the
hull topology provides a natural edge sorting mechanism for the implementation of the fan.
Haines (1994) also points out that the faster Triangle fan algorithms for both general and
convex polygons are those whose edges or areas are presorted, prior to the search. and
that the it is a good algorithm when the majority of points are interior to the polygons (ie.
hull) edges, which implies that a non-uniform circular point distribution pattern would
likely be the most expensive hull to compute. Another important point is that the division
of the point set into four parts, one for each quadrilateral edge, usually results in the
evaluation of four smaller polygons, which provides the Triangle Fan with its “optimal”
configuration, as it is the most efficient on polygons with fewer edges. Whether these facts
result in the maximization of topological efficiency was not proven. however. it is
reasonable to assume that the fan is faster than the gnd based algorithms when there are

fewer polygon edges because of these inherent characteristics.
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3. Voronoi Tessellation

3.1 Introduction

In this chapter, I focus on the design and implementation of a randomized divide and
conquer algorithm for diagram creation that will provide a complimentary data structure
for the planned statistical methodology. My planned statistical method follows that
proposed by Okabe and Miki (1984) for conditional locational interdependency. Briefly,
the statistical analysis requires that the Voronoi tiles are divided up into triangular
segments, with the generator point acting as the anchor for each tile segment. This allows
for rapid geometric classification of the triangle segments and the integration of random
areas for statistical purposes. To compliment the statistical requirements I decided to
attempt the creation of a randomized divide and conquer algorithm for Delaunay and
Voronoi diagram construction. which in turn compliments the theory and techmques
developed for the Quickhull model.

For the construction of tessellation diagrams. the determination and maintenance of the
topology presents the most difficult problem to resolve (Spaccamela er al. 1996. Guibas
and Stolfi 1985). This is due in part to the fact that for every point inserted into a
Delaunay diagram. two additional triangles are created. This increase in triangle objects
nonlinearily increases the search time for the next point insertion. For my algorithm I
simply defined the topology of the tessellation through the use of triangle objects. All
triangles are ordered in the same counter-clockwise direction, as tradition has it. Edge
ordering is maintained during the insertion of new points by reordering the edges of the
affected triangles. Point location is accomplished by the edge-paving technique, which
uses the familiar directed edge test (Akl and Toussaint, 1978 and Guibas and Stolfi, 1985).



Even if the topological constructs are correct the model must still satisfv the geometric
properties set out for each specific diagram type. The Delaunay diagram is defined by
eighteen specific geometric properties. However, robustness and consistency in diagram
computation can be derived through the coding of just three important properties. The
first is the nearest neighbor property. It states that a triangle is Delaunay if and only if for
each vertice of the triangle, the other two points are those points which are closest to this
point than to any other in the dataset. The second property is the circumcircle property,
which states that any point falling within a circle created from the three points of a
triangle, i.e. the triangles circumcircle, defines a new nearest neighbor point for the
triangle. The third property is called the cocircular property. If any four points from the
dataset fall on the perimeter of the same triangles circumscribed circle, the triangles are
unresolved. This means there can be no more than three points on the perimeter of a
nearest neighbor circle and the circle itself must be empty. The Delaunay diagram is thus
defined by determining each triangle’s largest empty circumcircle. Geometric properties of

the Delaunay and Voronoi diagrams are thoroughly treated by Okabe er a/. (1992).

The model I propose consists of the following steps:

1. Division of the hull into a series of triangles.
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- Creation of a one dimensional array representing the triangle section that each
point in the dataset falls into.

- Insertion of points into their respective triangle sections and the swapping of

(V¥

redundant edges to form individual Delaunay triangle sections.
4. Conquer the problem by merging the triangle sections together and updating

the necessary edge topology.

In the next section I describe the triangulation of the convex hull, its topology and the
rational of the design. In section 3.3 I describe the creation of the one-dimensional array

and the initial insertion of a point into the hull triangle sections, including the updating of



the topological records. In section 3.4 [ describe the insertion of the remaining points and
the swapping of the triangle edges. The next section describes the final merging of the
triangle segments to derive the final Delaunay diagram. In section 3.6 I describe the
creation of the Voronoi tile objects and discuss both the duality of the diagrams along with
the rational for the data structure used. Lastly I summarize the model developments. For
consistency all examples throughout the chapter are derived from the same test dataset.

which is listed in the appendix.

3.2 The Hull Triangulation Process

The overall aim in the hull triangulation process is to divide up the hull dataset into an
ordered set of triangles with their edges oriented according to a standardized topological
pattern. [ begin the process by dividing up the hull into a sequence of triangles since this
structure already presents itself as a natural triangular fan. Consider selecting one vertice
of the hull and using it as an anchor point. From this point connect the next two points in
the hull sequence so that together the three points form a closed triangle. Repeat this
process in sequence until all triangles are formed and the result is as shown in F igure
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The vertices and edges of each triangle ®
are numbered in counterclockwise order Sﬁgxtaﬁon ®
T4

from the anchor. The edges of each ‘\ e m

. Anchor '\ ¢od T3 g
triangle alre :::rinbere: mb . Point )y 7 °,
counterclockwise order beginning from ~

. S — 14 T2 ®

the anchor point. Thus each triangle has o o
its third edge adjacent to the next ;

triangles first edge and so forth. Hull

edges are represented with zeroes to Figure 3.2.1. The initial hull triangulation.

I
19



permit filtering during the point insertion process. The record structure. as given in Table
3.2.1, represents this pattern. The remaining three numbers are the record numbers of the
adjacent triangles. For example. consider triangle one, it is record number one in the
dataset. Initially the record has three X,y vertices, named A,B and C. Its’ first edge is a hull
edge, hence the adjacent triangle AB field is numbered zero, so too is edge BC, however,
edge CA is bordered on by triangle two, thus the adjacent triangle CA field has the
number two in it. To topologically match the dataset the second record has a one in the
adjacent triangle AB field designating that the first edge of triangle two is matched with
the third edge of triangle one. Therefore, positioning of the adjacent triangle record
numbers within a triangles’ record is significant. Similarly for the remaining triangles in the
set. The design of the edge topology in this manner provides a consistent framework for
comparing point locations with triangle edges. Program control structures can filter out
the redundant hull edges and target the testing of the remaining ordered edges. As I shall
describe, this topology also reduces the number of edge updates and promotes rapid point

insertion using the proposed edge paving process.

Initial Hull Triangle Records

Vertice A Vertice B Vertice C Adjacent Edges
Record X Y X Y X Y AB | BC | CA
! 0.2939 18.4395 | 5.7082 8.5194 11.9234 | 1.0686 0 0 2
2 0.2939 18.4395 1 11.9234 | 1.0686 25.6483 | 1.5545 l 0 3
3 0.2939 18.4395 | 25.6483 | 1.5545 31.5235 ] 11.6695 | 2 0 4
4 0.2939 18.4395 | 31.5235 | 11.6695 | 30.9537 | 208697 | 3 0 5
5 0.2939 18.4395 | 30.9537 [20.8697 | 27.3888 | 31.2156 | 4 0 6
6 0.2939 184395 | 27.3888 | 31.2156 | 0.9977 31.3476 | 5 0 0

Table 3.2.1. Record structure for initial hull triangulation.

To complete the first step in the process each record is written to a temporary file and the
adjacent edges are updated to zeros, which represents the fact they are all outer edges.

This creates the divide portion of the strategy.

(%)
(9%



3.3 Pre-Insertion Processes

In this section, I describe the process of creating the one dimensional array and describe
the process of inserting the first point into a triangle section, as this prepares the triangles
for the rest of the insertion processes. To begin the creation of the one dimensional array.
[use the hull triangulation much like the formation of the convex hull edge. By testing a
points position relative to the inner edges of the hulls’ triangles I can determine which
triangle encloses the point. First, I randomly generate a record number in the range of one
to the total number of hull triangles and then retrieve the triangle record at this location.
Next, I select the first non-hull point from the input data file and test its’ location with
respect to the edges of this random triangle by applying the directed line test as described
by Akl and Toussaint (1978).If the point falls interior to the triangle I must test the
triangles opposite side to ensure it is enclosed. Since my aim is to determine in which
direction [ must go to find a points’ enclosing triangle the edge test is set up to return the
adjacent triangles record number, whenever the test point is exterior to the edge being
tested. I would then test the adjacent triangles untested edges in counterclockwise order.
Recall that the edges are interconnected so the if a point is exterior to one triangles edge it

is known that it is interior to the adjacent

triangles matching edge, therefore there is no Edge Test
° Sequence

need to test the edge again. If the test is T ® 1 T4- Edge 1

. . 2. T3-Edge 1
exterior to an given edge I repeat the test on T5 - 3.T2-Edge 1.

. . . . T4 -
the next adjacent triangle, until the enclosing | _ —@ Random
- .. . >~ - Triangie
triangle is found. This is the edge paving N~ Jd 3\ s
technique (Figure 3.3.1). Each point record T1 N T2, @
. \\‘ : .

has the index number appended to it. This Test Point
allows the program to select the appropriate

record set to begin the search for the points Figure 3.3.1. The edge paving

enclosing triangle. process. Dashed lines are those used
in the directed line tests.
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Using the point index, I begin the insertion process by first dividing up the initial triangle
segment into three new triangles. The triangle is split up into three new triangles and
numbered in a counterclockwise fashion (Figure 3.3.2). Each new triangle begins at the

test point location and revolves counterclockwise to its next two vertices. The original

triangle record is updated with the new

coordinates and its respective adjacent

triangle numbers. Table 3.3.1 provides an 0 /tﬁ
. ’ 0
example of the point (10.4219, 10.9027 ) 5c T3 71

inserted into triangle record two, using the
same records from Table 3.2.1. Notice that

the original triangle record has become

triangle two in the record set. This

standardization of the updating procedure is Figure 3.3 2. Triangle splitting

an attempt to maintain the position of the geometry.

hull edges in the record set. If the first three

records in each of thé segment record sets are those triangles which have segment edges
and they are arranged in this counterclockwise order then the process of merging the
segments together will be straight forward, otherwise I will require to find the merge

records and match them to the records from the adjacent segment sets.

Hull Triangle Records

Vertice A Vertice B Vertice C Adjacent Edges
Record X Y X Y X Y AB | BC | CA
1 10.4219 | 10.9027 | 0.2939 | 18.4395 | 11.9234 1.0686 0 S
3 104219 | 10.9027 25.6483 | 1.5545 ‘ 0.2939 18.4395 izt Y] 1 '

Table 3.3.1. Insertion of initial point into the triangle segment records.




Therefore. maintaining the topological order here ensures that future redundant operations
are omitted and the record sets are stored in a fixed format permitting an evaluation of

their correctness.

3.4 Edge Swapping Routines

I have thus far created the convex hull from the data file, triangulated the interior of the
hull space, divided the triangle segments into separate files, inserted the initial points into
each triangle segment and updated its records. In this section I will describe the insertion
of the remaining points into the triangle segments and describe the swapping procedure in
detail. As previously stated, the geometry of the triangles must correctly abide by the
properties of the Delaunay diagram and to ensure that they are I will filter the redundant
edges using the radius test. First I will describe the applicable theoretical properties. then
describe the tests used to ensure the properties are correctly met and lastly I will explain
the geometry of the edge swapping procedure.

-

All Delaunay triangulation’s follow the

empty circumcircle and non-cocircular

properties. The theorem states that any

Ouside Crele
( Correct

given triangle formed inside a convex hull NN Tranges )

is Delaunay, if a circle, having on its’ {

# Penme-e- Poin-
(Cocrcuar
- Property)
7 Inside Circle
( Circumcircle
Property )

perimeter the vertices of the given triangle \
(i.e. the triangles circumcircle ), does not .
enclose any other vertices in the

triangulation and does not have on its

perimeter any other points from the

triangulation (Okabe et al. 1992). Figure Figure 3.4.1. Delaunay circle properties

3.4.1 shows the simple geometry of these properties.



The insertion of a point into the triangle segments begins as it did in the previous section.
with the generation of a random number in the range of one to number of records. in this
case three. I next edge pave to the enclosing triangle and use the enclosing triangles
circumcircle properties to determine if the point is inside the triangles circle boundary. The
centroid of the triangles circumcircle is calculated using a standard simultaneous set of
equations for a circle with three points on its perimeter. A mathematical example of
solving this form of equation can be found in Washington (1970). I used a modified
version of Johnson’s (1987, pp. 85-86) center program written in C. It uses triangle
objects as opposed to individual points and it also error checks the values prior to
execution of the divisions. Once the centroid is calculated I use the standard distance
formula for calculating the distance from the data point to the triangles centre. This radius
(r2), is compared to the triangles radius (r1), if r2 is smaller then the triangles edges are

flagged for swapping (Figure 3.4.2).

The swapping technique rotates the vertices of each triangle in a counterclockwise
manner. This creates two new triangles with the same matched edge, but different vertice

values (Figure 3.4.3). The matching process does not have to update each and every edge

New Data Point

Figure 3.4.2. Radius test geometry. Figure 3.4.3. Radius test geometry.
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adjoining the new triangles, since some of the adjacent record associations are still valid.
The rotation of the matching edge maintains the edge order. hence both triangle records
still crossmatch to one another as before . However, each triangle now has one edge from
the other triangle. The matching adjacent triangle of each of these edges no longer points
to the correct triangle record and must therefore be updated. The updating of these two

edges is a matter of selecting the appropriate

adjacent triangle record numbers, which are
part of the original record structure, and
updating them. The thick lines of F igure
3.4.4. are an example of the post swapped
triangle edges. If a triangle is marked for edge
swapping the adjacent triangles are also

checked to determine if they still meet the

Delaunay criteria. The geometry of this

swapping procedure is similar to the method
outlined Tsai (1993). An example of a point  Figure 3.4.4. Post-swap Triangles

inserted into the initial triangle segment is provided in Figure 3.4.5. along with the

New Paint
& S e
° ' <
*«©— —— e
e "0 “ 2N T \
® - \.

A) New Point inserted into B) Radius check of new point C) Radius check of newly formed

intal tnangle segment with existing adjacent tnangles Delaunay tnangulation Note
ashed circles represent tmangie the aircumaircles are all empty

circumcircles

Figure 3.4.5. Geometry of the edge swapping sequence.



updating of its records (Table 3.4.1).

Hull Triangle Records
Vertice A Vertice B Vertice C Adjacent Edges
Record X Y X Y X Y AB CA
10219 ] 109027 ] 1 4395 3 ——

P T e A Ly e S3e?

5 : : = SRR A
_

Table 3.4.1. Triangle segment record set .

The result of the swapping technique is the Delaunay diagram for each triangle segment.

All that is required to conquer the problem is the merge step.

3.5 Merging and Checking

The merge step is quite straightforward, since the topology for it is built into the model.
I first selected the first set of triangle segment records and selected the third record from
the set, which matches the first record in the second set. These triangles were then
evaluated in the same manner as for the insertion of a new point in a triangle segment. If
the triangles were not Delaunay, they rarely are, then the edges are swapped and the
swapping procedure is continued until there are no longer any redundant edges between
the segments. Once complete the records are merged into a single file for inspection. The

resulting diagram from the merge step is the Delaunay diagram (Figure 3.5.1).

A close inspection of the diagram reveals that all triangles are indeed those with the largest
empty circumcircles. I have drawn in a few circumcircles, in figure 3.5.1 to confirm the
condition was met. As well I checked to ensure that the diagram had the correct number
of edges and so forth using property D11 as stated in Okabe ez al. (1992, pg.102).

Property D11 is defined as follows: Given that n is the number of points in the dataset, if
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nt is the number of triangles in the network, ne is the number of edges in the network and

nc is the number of vertices on the convex hull then the following equations hold-

nt=2n-nc-2, (2.2.1y

ne =3n-nc- 3. (2.2.2)

Using these equations I should have 40 triangles and 64 edges for a dataset of 25 points,
having eight points on the convex hull. A careful inspection of the Delaunay diagram
confirms that the triangulation has the proper number of edges and triangles and is

topological correct.

Figure 3.5.1. The Delaunay tessellation.
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3.6 Voronoi Tessellation

The rational for the strict adherence to the fundamental geometric properties is from the
realization that if the Delaunay diagram is not correct the mistakes there compound
themselves when the Delaunay is used to develop the Voronoi. Since the Voronoi is the

dual graph it serves as a final check for the Delaunay.

The Voronoi diagram is developed by simply connecting the circumcentres of the
Delaunay triangles into closed loops around each of their nearest generator points. The
connected circumcentre loops are formerly called Voronoi tiles (F igure 3.6.1). Voronoi
tiles derived from Delaunay triangles with hull edges. do not create closed tiles. Without
the formation of a boundary. the Voronoi is thus an infinite structure. The closed loops
represent local areas of influence about the generator points. The tile boundaries represent
the transition between two generator influences. An object, thus placed on a tile boundary
experiences equal magnitudes of influence from the generator points on opposite sides.

provided the plane is homogenous.

The record structure of the Voronoi is represented by

an array of points, with the generator point as the first | Anchor

1
element in the array. This structure is not the most ~NJtrT12 -
efficient representation of the diagram but it parallels 6 g T3
- - - ' h = ~ -
the geometry used for the statistical process. Other — 5 ' T4 °-

representations such as the winged edge structure by ' -
Baumgart (1975) and quad edge structure by Guibas
and Stolfi (1985) are far more efficient at the dual

representation of the diagrams. Using the first element
of the array ( the generator point ) as the anchor point F8ure 3.6.1. Tile triangulation.

the tile can be segregated into a series of consecutive
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triangles (Figure 3.6.1). Each triangle shares an edge with both the previous triangle and
the next triangle in the list. This parallels the geometry provided in the paper by Okabe and
Miki (1984). Consequently, it is easy to see that the use of triangle objects lends itself to
the representation of both geometric structures, which is ideal for execution using the
object oriented nature of C++ programming. The duality of the tessellation geometry is

provided in Figure 3.6.2.

Figure 3.6.2. The Voronoi diagram (solid lines) and the Delaunay diagram (dashed

lines) from the test data.
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3.7 Summary

To objective of developing a Voronoi diagram using a randomized divide and conquer
strategy was accomplished. The development of a Delaunay diagram as described appears
to provide a consistent triangulation. I say this with some hesitation since it is difficult to
deal with the wide variety of possible numerical errors. However, I have incorporated an
epsilon tolerance into the calculation of the radius values in order to deal with the

possibility of cocircularity. Unfortunately, this slows the program down slightly.

To summarize the process, I calculated the Delaunay tessellation from a convex hull by
dividing out the hulls planar region into triangular segments. These segments are an
attempt at dividing up the point dataset and will do so if they are randomly distributed.
The division allows for a reduction in search time to locate a points enclosing triangle.
From this point forward the process evaluates the inner radius distances between adjacent
triangles to determine which points in the triangulation are the insertion points nearest
neighbors. The affected records are then updated and the program resumes the selection
of the next point in the dataset. If the triangle that encloses a point has an outer edge as
one of its edges then the record number of the enclosing triangle remains the same. This
provides an interlocking topology between the triangle segments which functions to
simplify the merging together of the triangle segments to form the final record set. The
sequential merging of the segments in counterclockwise order ensures that intermediate
topology is correct prior to the merging of the next segment. The aim of this is to remove

the need for the computer program to perform a final check though all the records.

The theory of the sequential ordering of geometric primitives is a fundamental part of the
divide and conquer algorithm presented here. The verification of this theory will be
addressed in future work. Also, testing of the models complexity will be completed at a

later time.
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4. Statistical Tessellations of Moose Point Locations

4.1 Introduction

Statistical tessellation derived its roots during the second world war when the focus of
interest was the prediction of damage zones created from aerial bombings. The initial
mathematics were developed by Robbins (1944), Robbins (1945) and Bronowski and
Neyman (1945). Garwood (1947) then used these investigations to derive equations for
calculating the variance of disks randomly distributed in the plane. He viewed the
problem in its true inverse, calculating the variance of the regions within which the disks
were placed and not the disks themselves. Despite the fact that today we calculate the
variance of the disks and not the regions that they reside in, these investigations still

stand as the cornerstone for the mathematics used in this form of spatial statistics.

-

Tessellation statistics of this form are more often used for point pattern analysis. Boots
(1974) used the Delaunay diagrams to test if a given random point pattern was
significantly different from that expected from a homogenous Poisson process. He
determined that angles within the diagram could be used to distinguish the differences
but warned that it may be too insensitive for other point distribution patterns. In
contrast, Lenz (1979) used the Voronoi diagrams to test the pattern of personal
robberies in the county of Milwaukee. He applied Thiels’ (1967) measure of redundancy
to note the differences in the locations of the robbery victims homes to the actual
personal robbery locations. Using Voronoi diagrams allowed Lenz to map the victims
“journey to crime”. There are several other statistical examples using tessellated
diagrams for things ranging from park proximity analysis to road network analysis, but

the abundance of work revolves around point pattern analysis.
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Although the above examples could be applied to wildlife analysis [ chose to use the
methods developed by Okabe and Miki (1984), as the statistical basis for the formulas
best fit my dataset. These methods are based on the principles of conditional probability
theory, which estimate the probability of an event occurring when it is known that
another, perhaps related event, has already occurred. This can be translated into
determining the probability of moose being influenced by the existence of related fixed
features, like lakes. We can assume that the placement of the lakes is due to the
topography of the land and not due to the location of moose. On the other hand, moose
locations are likely influenced by the location of the lakes and quite likely they are
distributed in proximity to a few specific lakes. In other words the moose locations are
“conditioned” by the lake locations. In this chapter I investigate the use of statistical
tessellation to determine if I can isolate some of the natural landscape features which

influence moose distribution patterns.

In section 4.2, I provide a brief review conditional probability theory as it relates to
tessellation geometry. In section 4.3. [ summarize the necessary background for Okabe
and Mikis’ spatial statistic Rc. Along with it I provide an empirical calculation of the
probability density function and discuss the disk and triangle geometry. In the third
section, I calculate the influence of lakes and rivers on the distribution of moose and in
the chapter summary I highlight the important parts of the calculations and briefly

discuss my findings.

4.2 Probability Theory

We begin this discussion by outlining the general theorem of total probability. The
following paragraphs and the subsequent diagram are excerpts from Walpole (1982).
The theorem states that if the events B1, B2..., Bk constitute a partition of the sample
space S such that P(Bi) > 0 for i = 1.2.3..., k, then for any event A of S:
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P(A)=P(BI1)P(AB1) + P(B2)P(A|B2) + P(B3)P(A|B3).... + P(Bk)P(AIBk).
Which by probability theorem is identical to;
A=BIQA)UB2QA)U (B3QA)..UBKQA).,

where Q represents the intersection between B and A and U represents the union.

Spatially this is represented by Figure 4.2.1. If the shaded area A represents an animals
home range and the B’s represent forest cover types then the probability that an animal
is found within the home range, A and in the B1 cover type can be calculated using the

following;
P(A|B1) =P(AQB1)/P(A) = (AQB1)/B.

Therefore, the probability of a point falling within the home range within the B1 cover
type is proportional to the area occupied by A within B1. The same concept is applied

to the Voronoi tiles. We generate a series of disks of a random radius and place them

centered on the tile generators. These are

conceptually the same as the home range.
Then I ask what is the probability that a
random event (moose location) will occur

within a disk of radius r centered on the

tile generator. The probability is exactly

Figure 4.2.1. The total probability sample equal to the equation for total probability.
space. Unfortunately, it is not easy to calculate

the probability of B since the disk-in-tile
geometry creates irregular shaped areas. To exactly calculate the area of these shapes it
is traditional to turn to integral calculus for a solution. This will be pursued in next

section.
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Another difficulty is the determination of a non-biased boundary. The unit sum
constraint states that total of the probabilities of the sample space must equal one,
Aitchison (1986 ). Since the boundary, which is my sample space, is not clearly defined
[ know that the unit sum constraint is likely violated, however, an artificial selection of
the boundary location would likely bias the probability space leading to an enlarging or
shrinking the intersecting spaces. This is the general problem with the standard nearest
neighbor analysis (Pielou 1967) and most quadrat based sampling. This is important
since for infinite diagrams, like the Voronoi, the boundary must somehow be defined
without biasing the probability. It is not clear how Miki derived the boundary for his
example, however, I found that the boundary fit the extents of the dependent variable.
being the retail stores in his example. If I consider that a non-biased estimate of the true
boundary location would be one that on average estimated the true boundary location
then using the extents of the observations would not provide a good estimate, because,
within the context of the Voronoi diagram, there is no way of knowing were it could or
should be. Miki's solution this leaves us with a biased boundary solution, since using the
extents of the datdset will artificially enlarge the total sample space. Therefore I have
developed a non-biased boundary solution which sets the stage to define the example

problem.

If the moose locations are “conditioned” by a given fixed feature, [ am testing the
conditional probability that the spatial distribution of the moose (M) are being
influenced given the spatial arrangement of the fixed locations (F). thus I state the

problem as follows;

PMJF) = P(MQF) / P(M), if P(M) > 0; where Q is the intersection of M and F.
In reverse I have,

P(FM) = P(FQM) / P(F), if P(F) > 0; where Q is the intersection of M and F.

If the two are mutually exclusive then,
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P(FIM) = P(F) or P(M[F) = P(M).

Essentially. I am asking whether the fixed features are in some way related to the
distribution of the moose or if it they are truly independently distributed. Logically, if
the fixed features are the centroids of lakes I can be quite sure that they are independent
of the moose, however, I could choose another, perhaps related distribution like the
point locations of a local wolf pack. In this case, the techniques would require some
modification to account for the “unconditional” relationship between the distributions
(see Lee 1979). Note that using the dependent variable to create the Voronoi diagram.
instead of the independent, enables me to test the relative strength of the reverse
conditioning. This is important to check especially if there is cause to believe that the
two distributions may be independent of one another. Whether this reversal procedure

actually determines independence is, at present speculative.

4.3 Mathematics and Geometry

In theory the value of the nearest neighbor association measure, R¢ is used to determine
if the observed point locations of moose are closer to the natural features (called
generator points) or farther away in comparison to a randomly distributed set of
locations. The calculation of the randomly generated set of distances is standardized
across the Voronoi diagram to include each tile within the diagram. In this way, a disk
of radius r distance centered on each tile generator provides a means to divide up every
tile in such a way that I can calculate the probability of a point being r distance from the
generators. The summation of each set of radius probabilities provides an entry to form
a customized probability density function for this diagram, from which I can compare
the average point to generator distance of the observations to determine if the moose
are closer to the generators or farther away than would be expected from a normal

random distribution. Therefore the Voronoi tiles have a two-fold role to play. They are

49



first instrumental in the calculation of the expected value of the random variable r and
secondly they enable a rapid means to locate and measure an observations closest

feature point.

In keeping with the notation of Okabe and Miki (1984), the value of the nearest

neighbor association measure, Rc, is calculated using the following formula:
R—C= ZTa / K,

where T is the average observed distance and U is the mean of the random variable r.
Given that r is a random variable independently distributed in the plane, then the
calculation of Rc determines if the moose are independently distributed within the study
area or whether they are influenced by the distribution of the natural features. If Rc < 1
the moose are more closely associated with the generators than if they were randomly
distributed, otherwise if Rc > 1 I can conclude that the moose generally avoid these
features. The calcalation of T is straight forward, Just take sum the distances of each
location to their respective nearest generator point and divide by the number of

locations. Unfortunately, the calculation of | is slightly more complex. The formula for

L is as follows;
u=E{)= J: r dF(r),

where r* is the maximum distance from a tile generator to a tile boundary across the
whole tile set and r is a random variable. Typically the calculation of W is achieved by
overlaying a disk of random radius r onto each tile, aligning the disks’ centroid with the
generator. The circular disk is applied to the tile for the purposes of dividing the
probability space of the tile evenly from the tile generator. Recall from the previous
section that P(A)P(A[B1) is the probability of a random point falling within A given B1.
F(r) parallels this probability, except that the home range A is replaced with a disk and

S0



the cover type B1 is replaced with a Voronoi tile. Using this geometry I can integrate
the areas for randomly sized disks and subsequently solve for (. In the next paragraph [
give a preliminary description of the disk and tile geometry which will serve as a primer

for the calculation methods which follow.

The geometry of the disk within a tile can be divided into a series of geometric shapes
that resemble triangles and pie slices (or disk sectors). A Voronoi tile is easily divided
into multiple triangles by connecting its generator to the vertices of the tile edges
(Figure 4.3.1.). The triangles can then be categorized as acute or obtuse depending

upon the angle formed by subtending the generator with the tile edge of that triangle

(Figure 4.3.2)).

Tile Boundary

Figure 4.3.1. Tile triangulation. Figure 4.3.2. Acute and Obtuse triangles

We know that the when the disk is completely enclosed within the tile that the area is
equal to Pi(r)’, but due to the tessellation geometry [ know that as the disk radius grows
each disks’ area of influence is bounded by the tile edges, which is the doubly hatched
area in Figure 4.3.3, hence to derive the probability of a random point falling within the
disk I must eliminate the parts of the disk that fall outside the tile edges. There are two

distinct methods of calculating the areas of the clipped disks. The first is by integral
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calculus (Okabe and Miki 1984) and the

second is by plane analytic geometry. I

negate the calculation by plane analytic
geometry and focus on the integral solution
due to the fact there are references

supporting the integral solution. Instead of

reworking the formulas completed by Okabe
and Miki (1984), I choose to provide an

- ) Figure 4.3.3. Disk in tile geometry.
empirical example of an area calculation

using one of the four proposed formulas.

In general, the integral methods developed by Okabe and Miki (1984) begins by
focusing on the calculation of the probability density function F(r). F(r) of distance r

from a random point to the nearest generator is given by;

» m q
F(r)=S(r)/S =2 D S(r|Tij)/S, Eqn. 43.2
1=l =1
where m = the number of tiles, q = the number of triangles within a tile, r = the radius of

the disk, Tij is the jth triangle in the ith tile and S is the area of the total sample space.

Consequently, the value of S(r|Tij)/S is identical to asking what is the probability of a
random point falling into a set of tile disks of radius r. In common notation. it is usually
referenced as P(r). I require to calculate each radius’ probability in order to calculate the
Expected value of r, otherwise called the mean or first moment. To proceed with the
calculation of S(r|Tij) the edge lengths, the inner edge angles and the generator to edge
height of triangle Tij is calculated (Figure 4.3.6 and Figure 4.3.7). Next I calculate the
classification angle, £ AiVij+1Vij for triangle Tij. If it less than or equal to Pi/2 .or 90"

I set omega factor t to 1 as the triangle is obtuse, else omega is set to -1, as the triangle
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is acute. The omega factor is then incorporated into one of four equations. Which
equation to choose depends upon the radius of the disk with respect to the length of the
triangles edges and these are outlined in Okabe and Miki (1984). Once the areas for all
the triangles in the sample space have been determined they are summed to provide a

single entry for the density function F(r).

As the disk radius increases and the function is formed I know that the radius r is finite
in size since the sample space is bounded on all sides. Likewise I know that the
observations are at maximum, r maximum (r*) distance from any given tile generators
since the extremes of these observations are what was used to form the study area
boundary. Which brings us full circle to the calculation of Re and leads us to an

empirical calculation of area using both calculation methods.
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Example 4.3.1 The Calculation of Disk in Triangle Area.

Ai

y2

Vij Vij+1

Figure 4.3.4. Disk area to be integrated.

Given the following coordinates of the vertices and generator of a Voronoi tile triangle

as follows;
Aix=40,Aiy=50r=35, Vij.x = 1.0, Vij.y = 2.0, Vij+1.x = 6.0, Vij+l.y = 2.0,

then to calculate the shaded area of Figure 4.3.6, I first calculate the length of each

triangle leg using the distance formula,

yl = J(vij.x - ax) +(vijy - ay) = sqrtf(1 - 4)* + (2 - 5)7]

=4.243,

Y2 =|(vij-1x - ax) +(vij-ry - ay) = sqnl(6-4)*+ (2- 5)7
= 3.606,

ya=J(vij1x-vii.x) +(Vij-Ly-vily)  =sqrtl(1-6)2+ 2 -2)?]
=85,
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next I calculate the interior angles of the triangle using the Cosine Law and set the 6T
factor according to the value of Vij-,,
cos Vij-1 - y2 +y4” -yl
2(y2)(y4)
3.606% +57 -4.234%/2(3.606)(5) = cos™(0.5567 ) * 57.3
= 56.173 degrees,

since 56.1733 is < than 90° 8T = 1, next I calculate the angle Vij as follows;

_yU+y4* -y2°
2(y1)(y4)

=4.243 + 5% - 3.606%/2(4.243)(3.606) = cos™'(0.7069) * 57.3

cos Vij

=45.01°,

Using angle Vij, I calculate the triangle height using the Sine Law as follows:
y3 =yl * sin(Vij) = 4.243*sin(45.01) = 3.0
Next, I calculate the alpha angles 1 and 2 as follows:
o = 180 - (90 + Vij) = 44.9°;

=449 (3.141592654/180.0) = 0.7836 radians
02= 180 - (90 + Vij-;) = 33.8°

=33.8 (3.141592654/180.0) = 0.5899 radians

Next, I select the correct equation, as in Okabe and Miki ( 1984), by comparing the
length of y3 to the radius, r of the disk, since r is greater than y3 and less than y2 the

equation is as follows;
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S(dTij) = r*/ 2{a - Na:) - [arccos(y3/r) + Q(arccos(y3/1))] } +
0.5(y3)(r" - y3°)* + 05(Q)y3)(r" - y3°)*.
=3.5%/2 { 0.5899 + 1(0. 7836) - [arccos(3.0/3.5) + 1(arccos(3.0/3.5))] } +
0.5(3.0)(3.5° - 3.0%)%° + 0.5(1)(3.0)(3.5% - 3.0%)°*.
=6.125 { 1.3735 - 1.0822 } +2(2.704)

S(r | Tij) = 7.1925 units square.

The calculation of the areas for a given radius is then summed and divided by the total
study area to provide a single entry into the F(r) graph. As previously mentioned, from
standard probability theory I know that the expected value of the random variable r

(radius as before) is equal to:
E() =E(w) =Z 6 P(s) = [ rdF(r) =1,
which implies that the variance is equal to;

3 1 [ S N
Var(®) =2 -0 P(e) = [ 1 dF () - ')

which are identical to those provided by Miki in equations (7) and (8) respectively. This
should help to clarify the basis of the probability relationships. Once the Var(r) and the
mean of the observations has been calculated, all that is left is to calculate Miki’s test

statistic by the following formula;

—R-Cobs -1 _ Ecobs -1
JVar(R.) StdDev(R.)"

Z=
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which in essence normalizes the distribution of the observations so that they can be
compared to the standard z table values. Note that the lower the value of the variance
the less the disks sizes vary about their mean, which is the same as saying that the tiles
are of very similar size and shape since the tiles essentials dictate the calculation of disk
areas. Therefore, if the spatial parameters of the feature points dictate their respective
tile shapes then I can predict that minor variations in the spatial positioning of the
feature points or moose locations will effect the statistical outcome. It is this kind of
sensitivity that we require, especially when it necessary to determine pre and post-
effects of man-made disturbances, such as cut-blocks, on the distribution of a given

wildlife species.

4.4 Moose Analysis

The location of the study area was in Northeastern Alberta, Canada. It is a rectangular
region. approﬁmg}ely 63 km X 81 km in size, the coordinates for the study area in
latitude and longifude are as follows: Lat. 112°00°00” to 113°15°00”. Long. 55°34°00~
to 56°10°00”. This area is located within the Alberta Pacific Industries Forest
management area. The region used for the example is a subregion of this study area.
The region is dominated by peatlands. It has a prominent mixed wood forest and the
river is a prominent feature geographical feature. By using the statistical methods
formulated by Okabe and Miki (1984) attempt to determine if moose locations are
spatially associated with lake locations and a major river, the Athabasca. Centroids were
generated using ArcInfo for the river and for each of the lakes. The moose point
locations were VHF radio-triangulation data collected in April and May of 1995 from

thirty-one collared female moose.

The first step in the analysis was the determination of the correct boundary. The correct

boundary is made up all the closed tiles, because bordering tiles are closed by an
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artificially derived boundary I cannot use the calculations without biasing the outcome.
Although this is not the process prescribed by Okabe et al. (1992) or in the paper by
Okabe and Miki (1984), I know that the calculation of the statistic Rc is dependent
upon the total study area and therefore I must use only the tiles whose complete area

has been determined, these are the closed tiles.

To begin the analysis I first removed all moose locations that did not fall within a closed
tile. This reduced the number of observations in all three months, however, proper
collection of more feature information from the surrounding area can remove this
problem, as this will have the effect of closing many of the otherwise unclosed tiles. The
computer program then gave me all the information used to calculate the Rc value and
then proceeded to calculate the final Z value. In the analysis of the May, June and July
datasets, all but one of the enclosing tiles had moose locations within them. The results
of the calculations are provided in Table 4.4.1. and a sample map of the June moose

locations is provided in Figure 4.4.1.

Month
Statistic May June July
Sample Size (n) 103 30 20
Avg. Dist. Obs. (T3) 8133.582 8433.175 8681.568
Conditional Index (Rc) 0.7912 0.8203 0.8445
Spatial Statistic ( Z ) 2223 -1.9135 -1.655

Table 4.4.1. Statistics for the conditional interdependency of moose with lake

and river centroids.

Using the tables for the standard normal areas, I found that the moose in May were
spatially associated with the water locations at a significance level of 0.01. In April, June

and July, the moose were still strongly associated with the lakes, however, they are not

58



9.
1

9]

Figure 4.4.1. The April distribution of moose, (indicated by black circles) and the
Voronoi tiles centered on the lake centroids ( indicated by gray squares ). The
boundary is defined by the thick black lines.

significant at 0.01. There are significant biological connections to the definition of the

boundary and these will be discussed in the final summary. Below I have included a

graph for the function F(r), (Figure 4.4.2) and a table for the expected value, standard

deviation for the disk areas (Table 4.4.2).

Disk in til; Values
Statistic
Number of disks 100
Std. Dev. (o) 0.093910
Expected Value E(r) | 10279.555

Table 4.4.2. Disk Values for Re
Calculations.

The Probability Distibution
Function, F(r), of distance r from a
random point to the nearest lake

centroid.
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Figure 4.4.2. Distribution of the probability
of random variable R.
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4.5 Summary

Spatial probability theory is quite straight forward when one knows how to perceive the
spatiality of the information. Viewed as the proportion of area within the study area,
each tessellated tile readily becomes understandable as a sample space. Each space
representing the homogenous area of influence for the locational observations. Provided
the feature locations are independently distributed with respect to the observations I
readily turn to conditional locational interdependency as a measure of their associations.
In practice it should be noted that the calculation of Rc using the independent variable
as the observations should completed. This would verify the conditional nature of the

datasets.

Boundary effects are exactly taken into consideration if only closed tiles having
observations within them are used. In my examples, I minimized the size of the
boundary to fit the dataset exactly. This removes the arbitrary boundary bias present in
the common quadrat and nearest neighbor statistics (Pielou 1961, Clark and Evans

1954).

The integral solution for the calculation of the disk in tile geometry is exact for any
given triangle shape. The understanding of the integration is fairly straightforward.
however, the method requires extreme care, due to the number of formulas and

variables used.

The moose tessellation example does not provide a significant contribution to the our

understanding of the effects water areas have on moose behavior: moose like riparian
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areas (DeGraaf and Rudis 1983). However. these findings hold much greater

significance from the fact that they are derived from an unbiased spatial statistic.

61



4.6 Bibliography
Aitchinson. J. 1986. The statistical analysis of compositional data. Chapman and Hall.
London, England.

Boots, B.N. 1974. Delaunay triangles: An alternative approach to point pattern analysis.
Proc. Assoc. Amer. Geog., 6: 26-29.

Boots, B.N. and A. Getis. 1988. Point pattern analysis. Sage Publ. Inc. London.
England.

Bronowski, J. and J. Neyman. 1945. Ann. Math. Stat. 16: 330-341.

Clark, P.J. and F.C. Evans. 1954. Distance to nearest neighbor as a measure of spatial
relationships in populations. Ecology 35: 445-453.

Garwood, F. 1947. The variance of overlap of geometrical figures with reference to a
bombing problem. Biometrika 34: 1-17.

DeGraaf, R M. and D.D. Rudis. 1983. NewEngland wildlife: habitat, natural history and
distribution. U.S. Dept. of Agriculture, Forest Service, N.E. For. Exp. Station,
Gen. Tech. Rep. NE-108.

Lee. Y. 1979. A nearest neighbor spatial association measure for the analysis of firm
interdependency. Env. Plan. A. 11: 169-176.

Lenz, R. 1979. Redundancy as an index of change in point pattern analysis. Geog. Anal.
11(4): 374-388.

Okabe, A. and F. Miki. 1984. A conditional nearest neighbor spatial-association
measure for the analysis of conditional locational interdependence. Env. Plan. A.
16: 163- 171.

Okabe, A., B. Boots and K. Sugihara. 1992. Spatial tesselations : concepts and
applications of Voronoi diagrams. John Wiley and Sons Inc. NewYork, N.Y.

Pielou, E.C. 1974. Population and community ecology: principles and methods. Gordon
and Breach publ., New York, N.Y.

Pielou, E.C. 1969. An introduction to mathematical ecology. John Wiley publ.. New
York, N.Y.

62



Robbins, H.E. 1944. On the measure of a random set. Ann. Math. Stat. 15: 70-74.
Robbins, H.E. 1945. On the measure of a random set. II. Ann. Math. Stat. 16 342-347.

Thiel, H. 1967. Economics and information theory. North-Holland publ., Amsterdam.
Netherlands.

Walpole, RE. 1982. Introduction to statistics. Macmillan Publishing, New York. N.Y.

63



5. Discussion and Conclusions

The current lack of an unbiased method to calculate the spatial associations between
environmental variables and wildlife distributions lends significant weight to the methods
proposed in this thesis. The combination of tessellation diagrams with conditional
probability theory provides a means to develop hypothesis about the effects one spatial
distribution has on another. It’s inherent use of the independent variables spatial
characteristics, such as juxtaposition, leads us away from the simplistic comparisons of
random distributions as used by nearest neighbor analysis to the more substantial
hypothesis based pattern analysis. Take for example the comparison of the patterns of
moose with respect to environmental components at differing resolutions. At the
landscape level we could predict that the spatial arrangement of moose with respect to
its environment reflects a form of second order selection as proposed by Johnson
(1980). A finer grained analysis could lead us to develop the home range or possibly the
core areas used by the moose. Certainly, the conditional nature of the analysis and the
interdependency of the tiles lends weight to these hypothesis. Also consider the use of
the tile as a “patch” within the landscape. A simple analysis of the changing number of
patches with respect to the occupancy by a species could measure the change of
influence certain patches have as the landscape increases or decreases in its level of
fragmentation. At what point does the fragmentation no longer provide adequate
influence to maintain the stability of the distribution pattern of a species. Furthermore,
tessellation provides a means to analyze any form of linear corridors, including road
networks, pipelines, cutlines and so forth. It has the capacity to develop diagrams for
any point, line or area feature within a landscape. Moreover, it is not restricted to using
single feature types, as there are methods for tessellating multiple feature types, a

parallel, in fact, to multi-variate analysis.
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With respect to the research and development on the subject of tessellation diagrams
provided in this thesis, it is hoped that the methods and explanations will serve as an
introduction to a researcher new to this geometry. There is a wealth of literature on the
subject and its depth is extraordinary, in both a mathematical sense and in an application

sense.

The incorporating of the triangle fan algorithm into the Quickhull model dramatically
improved its overall performance. Using triangles as the geometric primitive we find the
natural sorted triangular fan enables a faster elimination of non-hull points using the
Quickhull model versus that derived using Shimrats ray shooting technique. The primary
reason was due mostly to the reduction in the number of failed directed line tests during
the elimination of non-hull points along the hull path. We confirmed that Shimrats
algorithm is still a very efficient point in polygon algorithm, as it will execute the model
in linear time, however, the triangle fan is better suited to the design of the Quickhull
model. Certainly the model could stand a more rigorous analysis of its distributional
properties (i.€. its data density dependencies) which should lead to an even better hull
model. It is importat to note that this is not the only angle from which to approach the
derivation of the Delaunay diagram, as there are several incremental approaches which
do not require the “pre-calculation of the hull”. Aside from divide and conquer the two
most common methods are the sweep line approach (Fortune, 1978 and Edelsbrunner

and Siedel 1986) and the incremental approach (Guibas ez al. 1990).

Divide and conquer has also been successfully applied to develop linear time algorithms
for diagram creation (Tsai 1993). Most divide and conquer algorithms approach the
problem by first sorting or labeling the data points prior to the calculations. A gnd is
often developed to find the initial spatial point ordering (Maus, 1984). These grid based
algorithms require extensive overhead to setup and maintain thus I developed the idea

that if an algorithm could sort the points by using the hull geometry this would provide
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an effective means to pre-sort the data points. Linked to this division of the hull is the
theory of maximizing topological order. The initial division of the hull into a triangular
fan follows the theory but whether the subsequent triangulations resulted in a
maximization of topological efficiency was unanswered. To prove the theory may well
result in a design more effective than the current grid based methods. Also it is
important to include the newer randomization approaches to the problem as these
algorithms provide optimal lower bound solutions and are often unaffected by the

distribution of the input datasets , unlike the deterministic ones mentioned previously.

Statistical tessellation provides a complex but rational way of predicting the conditional
nature of spatial point patterns. However, I must caution a user of this technique to a
fundamental spatial problem inherent to most spatial statistics, namely spatial
autocorrelation. Spatial autocorrelation may play a role in the conditioning of wildlife to
natural features. For example, if the behavior of moose was to reduce its contact with
humans then the regular visits by humans to say oil well sites could prompt an avoidance
of oil well sites by moose. In contrast, the moose may be associating with a feature
because another highly favorable feature is present nearby. For example, riparian aquatic
vegetation in a lake. It is also important to note that Rc values greater than one do not
automatically mean that the wildlife are avoiding a certain feature. It could well be that
the wildlife are attracted to another feature which is itself avoiding the initial landscape
features. The isolation of features and a knowledge of the spatial associations will

provide insight into the rational for the behavior observed in the statistical outcomes.

Overall, the non-biased nature of tessellation statistics provides a vigorous measure of
the conditional dependency that any landscape feature may have on the distribution of
wildlife, which in turn should help towards improving our understanding of the
underlying wildlife behaviours that create these distribution patterns It is conceivable

that within the framework of ecological theory tessellation may well contribute
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considerable knowledge to the many unsubstantiated theories already developed and it is

hoped that it will lend credibility to new and exciting hypothesis concerning the spatial
relationships between wildlife and their habitats.
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