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ABSTRACT 

Approximately 70% of the cost of beef production is impacted by dietary intake. Maximizing 

production efficiency of beef cattle requires not only genetic selection to maximize feed efficiency 

(i.e. residual feed intake - RFI), but also adequate nutrition throughout all stages of growth and 

development to maximize efficiency of growth and reproductive capacity - even during gestation. 

Nutrient restriction during gestation has been shown to negatively affect postnatal growth and 

development as well as fertility of the offspring. This, when combined with RFI, may significantly 

affect energy partitioning in the offspring and subsequently important performance traits. 

Therefore, we decided to conduct a comprehensive multi-omics study (metabolomics, 

transcriptomics, epigenomics) to understand the biological mechanisms impacted by prenatal 

nutrition (normal-diet or Ndiet versus low-diet or Ldiet) and/or parental RFI (high-RFI or HRFI 

versus low-RFI or LRFI) in young Angus bulls. Four different tissues (Longissimus thoracis (LT) 

muscle, semimembranosus (SM) muscle, liver, and testis) and three biofluids (serum, semen, and 

ruminal fluid) were analyzed. Through the metabolomics study, we created the Bovine 

Metabolome Database (BMDB; www.bovinedb.ca) which contains 51,801 metabolites with 

unique compound structures in various tissues and biofluids. We also identified two serum 

candidate biomarker panels ((1) formate and leucine; (2) C4 (butyrylcarnitine) and LysoPC(28:0)), 

which can distinguish HRFI from LRFI animals with high sensitivity and specificity (area under 

the curve from receiver-operator characteristic (ROC) or AUROC > 0.85). Through the 

transcriptomics study, we found that differences in selection for parental RFI altered gene 

expression level of myocyte enhancer factor 2A [MEF2A] in tissues (LT muscle, SM muscle, liver, 

and testis) of young Angus bulls. Furthermore, the mRNA abundance of protocadherin 19 

[PCDH19] in liver, and MEF2A in LT muscle were affected by prenatal undernutrition. We also 

http://www.bovinedb.ca/
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detected correlations between gene expression in tissues with phenotypic measures of feed 

efficiency and body weight. Through the epigenomics study, we found 652 and 1400 differentially 

methylated regions (DMRs) that were affected by maternal diet and parental RFI, respectively. 

Through pathway analysis of the identified DMRs using the Ingenuity Pathway Analysis (IPA) 

tool, three networks associated with “cell survival and growth”, “disease or abnormalities”, and 

“connective tissue development” were identified as being overrepresented in the DMRs when 

comparing the Ndiet group to the Ldiet group. Similar pathway analysis for the HRFI and LRFI 

bulls showed overrepresentation of the number of DMRs in four networks involved in “embryonic 

development”, “DNA replication, DNA repair, and RNA processing”, “growth control and 

homeostasis”, as well as “lipid metabolism”. These findings provided new knowledge regarding 

underlying biological mechanisms regulating postnatal responses to prenatal nutrition and feed 

efficiency in beef bulls. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

1.1. INTRODUCTION 

The costs of a cow-calf production cycle are usually divided into six cost categories including: 1) 

feed and pasture (64%); 2) herd replacement (13%); 3) yardage (13%); 4) labour (6%); 5) 

marketing (1%); and 6) veterinary (3%) costs [1]. Feed is, by far, the largest financial burden for 

the beef industry in Western Canada. The cost of feed varies from region-to-region with 

dependencies on climate and food source availability. It also varies from year-to-year, with a strong 

dependency on food resource unit costs [1, 2]. In particular, a longer winter-feeding period 

increases feed costs. To lower winter feed costs and improve profitability, some producers in 

Western Canada use extended grazing seasons as well as alternative feeds [1]. Other producers 

provide specific feed/nutritional supplements to various cow/calf groups within the herd (i.e., first 

calf heifers, mature cows, etc.). However, this can sometimes lead to increased expenses such as 

higher labour costs, more fencing to build and maintain, as well as higher management expenses. 

While feeding the entire herd as one group reduces costs and addresses average herd needs, it can 

lead to other challenges such as over- and/or under-feeding, which can lead to wasted feed 

resources [2].  

These issues highlight the need to find the balance between meeting a herd’s 

feed/nutritional needs while doing so in a cost-effective manner. Analyzing the chemical 

composition of feed and forage to understand their nutrient content is another strategy for more 

optimal cow/calf feed management. This approach not only allows producers to more precisely 

meet the nutrient requirement of their animals, but also helps producers to decrease expenses or 

generate extra profits. For example, if a farmer produces high quality forage but his/her herd has 
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relatively modest nutrient needs, the best decision to bring extra revenue would be sell his high 

quality forage and buy lower quality forage for feeding his/her herd during the winter [1]. All of 

the above-mentioned practices demonstrate that proper management of feed costs is crucial to 

improve profitability in the beef industry.   

As noted earlier, the highest feed cost period typically occurs during winter when animals 

cannot eat fresh forage. In Western Canada, winter usually coincides with the second half of a 

cow’s gestation period (most producers breed their cows in June, July, or August with calving 

occurring in March, April, or May) when the most critical nutrient needs of dams should be 

provided. Almost 75% of ruminant fetal growth occurs in late gestation, and therefore nutrient 

insults at this stage will have the greatest impact on fetal size (i.e., birth weight and body length) 

[3, 4]. Therefore, modest malnutrition or nutrition restriction during first half of gestation is 

considered to be of little significance post-natally since the fetus needs relatively little nutrition for 

growth and development at this stage. Indeed, studies have shown that calves born from dams that 

were nutritionally restricted during early- to mid-gestation then re-alimented before parturition had 

similar ratios of weight gain to feed intake compared to fully-fed control groups [5, 6]. However, 

it is not clear how lower planes of nutrition during early gestation could potentially affect key 

efficiency and production traits of the progeny animals and this possibility needs additional 

research. 

In addition to adopting optimized feed management strategies to reduce feed costs and 

increase profitability, genetic selection (for animals with optimal feeding responses) has also been 

used to improve profitability. In particular, the selection for animals which eat less but produce 

the same amount of meat have attracted considerable attention from beef producers. One such 

measure of feed conversion efficiency is called residual feed intake (RFI). The use of RFI in 
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livestock breeding programs is growing rapidly, especially in the beef industry, since those cattle 

which are genetically classified as Low-RFI (LRFI, efficient animals) eat less and produce less 

methane per unit weight gain [7]. However, because RFI selection is relatively new to the beef 

industry it will be important to investigate if other traits, either positive or negative, may be co-

selected along with LRFI. Although both RFI and maternal nutrition during gestation may affect 

progeny traits, our understanding of the biological mechanisms by which this occurs is poor.  

I believe that an improved understanding of RFI, maternal nutrition and progeny traits can 

be achieved through the help of multiple omics sciences including metabolomics, transcriptomics 

and epigenomics. Therefore, my thesis is focused on investigating the impact of selection for 

divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation on 

progeny bull calf traits using multiple omics technologies. In this chapter, the importance of RFI 

as a measure of feed efficiency and how it can affect different traits in cattle, are reviewed. In 

addition, the influence of prenatal malnutrition on beef cattle progeny traits is discussed as well as 

the application of different “omics” approaches towards assessing progeny traits is reviewed.  

1.2. RFI AS A MEASURE OF FEED EFFICIENCY 

There are several methods by which feed efficiency is measured in cattle. One such measure is the 

feed conversion ratio (FCR). FCR is a ratio of feed intake to body weight gain. It is often used as 

a feed efficiency measurement in the beef industry as it is straightforward to understand, and it is 

often expressed for a group of cattle in one pen, making it easy to measure. Animals with a high 

FCR consume higher quantities of feed per kilogram of body weight gain compared to their low 

FCR counterparts [8]. FCR has significant phenotypic and genetic correlations with feed intake, 

growth rate, and mature animal size [8]. Since FCR represents a gross measure of feed intake, it 

cannot distinguish between maintenance and growth requirements of an animal [9]. Therefore, 
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selection for higher (improved) FCR could result in cattle that grow faster, but which also have a 

larger mature animal size and higher maintenance and feed requirements [8, 10-13].  

RFI is another feed efficiency measure calculated using the difference between an animal’s 

actual feed intake and its expected feed requirements for maintenance and growth over a specific 

time period [14-17]. RFI was first proposed by Byerly [18] and then by Koch et al. [14]. Koch et 

al. [14] separated the feed intake of beef cattle into two categories including expected feed intake 

for a given level of production, as well as the remainder, or residual feed intake. They classified 

those cattle having greater negative residuals as more efficient [14]. Selecting for LRFI (more 

efficient) animals is gaining popularity among beef producers and is expected to increase [19], 

since those cattle which are genetically classified as LRFI eat less and produce less methane per 

unit weight gain [7]. Differences in RFI appear to be due to differences in energy partitioning, 

basal metabolism, body composition, as well as activity and energy expenditure [16, 20, 21]. 

Several studies have indicated that LRFI cattle have reduced feed intake by 9-15% at equal weight 

and average daily gain (ADG) [16, 22-24]. LRFI cattle also exhibited an improved feed conversion 

ratio (FCR) by 10-15% at equal weight and ADG, compared to their High-RFI (HRFI) counterparts 

[16, 22, 24].  

Methane is a greenhouse gas, which is produced by ruminant animals during digestion and 

fermentation [25]. Globally, livestock are responsible for the emission of ~18% of the world’s 

greenhouse gases and therefore reducing their carbon footprint is a key factor in reducing global 

warming. Several studies have shown that selecting for LRFI cattle is associated with reduced 

methane production [7, 17, 23]. Compared to HRFI cattle, 25-28% lower methane production in 

LRFI animals has been reported [7, 17]. Therefore, selection for feed efficiency can favor both the 

farmer (decreased production costs) and the environment (lower methane). Basarab et al. [7] 
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estimated that a mature LRFI cow would have a net economic profit of $46/head/year compared 

to that of HRFI, suggesting that selecting for LRFI could have a significant effect on reducing the 

costs of production.  

Another advantage of RFI over other measures is that RFI is independent of growth 

characteristics such as body weight (BW) and average daily gain (ADG) [8, 14, 26]. Indeed, a 

study by Herd et al. [27] showed that selection for LRFI in beef cattle reduced feed intake without 

compromising body size or growth. Studies in Alberta have found that there appears to be no 

difference in growth, carcass yield and quality grade between LRFI and HRFI cattle [16, 28]. In a 

study described by Castro Bulle et al. [29], similar dressed carcass yield, backfat thickness, yield 

grades, and marbling scores were seen between LRFI and HRFI cattle. Fitzsimons et al. [23] also 

reported no differences could be detected in muscle depth and fat depth as well as in ultrasonic fat 

measures between LRFI and HRFI cattle. However, a positive correlation between ultrasound 

backfat measures and RFI was reported by Basarab et al. [16] and Arthur et al. [22]. Richardson 

et al. [30] also reported that Angus steers born from LRFI parents had more whole-body protein 

and less whole-body fat compared to progeny steers of HRFI parents. These conflicting results 

suggest that further research is needed to understand the relationship between body fat and RFI.  

RFI has moderate heritability (h2 = 0.29-0.46) in cattle, which makes it a good candidate 

for genetic improvement [16, 22, 28]. When heritability is moderate-to-high, it may provide an 

opportunity to select for more efficient cattle having lower energy requirements for maintenance 

[31, 32]. However, the difficulty of measuring individual animal BW and feed intake over a 

standardized 76d RFI test as well as the relatively high cost is somewhat prohibitive [16, 33]. 

Therefore, the development of genetic or metabolomic markers to predict RFI is an attractive 

alternative which would benefit the beef industry.  
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1.2.1. Physiological basis for RFI 

About 73% of the variation in RFI can be explained by differences in energy expenditures from 

metabolic processes, body composition, and physical activity, while the other 27% is related to 

variations in ion transport and proton leakage [19]. More specifically, the proportion of variation 

in RFI that these processes explain are protein turnover along with tissue metabolism and stress 

(37%); physical activity (10%); digestibility (10%); heat increment and fermentation (9%); body 

composition (5%); and feeding patterns (2%) [19]. There are five major physiological processes 

associated with variation in RFI including: 1) intake of feed, 2) digestion of feed, 3) body 

composition and metabolism, 4) activity, and 5) thermoregulation. These are described below: 

1.2.1.1. Intake of feed 

Variation in feed intake is associated with variation in maintenance requirements of ruminants 

[19]. The more an animal consumes food, the more energy needs to be expended to digest the food. 

This is, in part, because of an increase in size of the digestive organs and increase in energy 

expended within the tissues themselves [19]. This energy is known as the heat increment of feeding 

(HIF), and in ruminants this accounts for as much as 9% of the ingested metabolizable energy 

(ME) [34]. Several studies have shown a positive correlation (r = 0.08-0.62) of RFI with feeding 

frequency, feeding duration and eating rate (g/min) [13, 28, 35, 36]. Basarab et al. [37] reported 

that the higher energy requirement for feeding activities for HRFI crossbred heifers is, in part, due 

to the higher frequency of daily feeding events (events/day), and the longer duration of head-down 

time (min/day) than their LRFI counterparts. Other studies also reported that HRFI cattle spend 2-

5% more energy in feeding activities than LRFI cattle [20, 37], since they can have 14-22% more 

daily feeding events than LRFI cattle [13, 28]. Manafiazar et al. [38] also reported that LRFI 

heifers consumed 5.3% less forage when expressed as kg DM d-1 (5.1% less when expressed as a 
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percentage of body weight) with no negative impact on their BW, back-fat thickness, or ADG 

compared to HRFI heifers. Given that selection for genetic potential for RFI is associated with 

variation in feed intake, the more efficient animals (LRFI) could be expected to have less energy 

expended as HIF. 

1.2.1.2. Digestion of feed 

Herd and Arthur (2009) reported that feed digestibility accounts for 10% of the genetic variation 

in RFI. Some studies have shown a negative correlation between RFI and digestibility in cattle [7, 

17, 39, 40], indicating that LRFI cattle tend to have greater digestibility [19]. Nkrumah et al. [17] 

reported that dry matter (DM) and crude protein (CP) digestibility tended to be greater for LRFI 

as compared to HRFI steers. Basarab et al. [7] also reported that RFI was positively associated 

with DMI, feeding event duration and bunk attendance. In particular, feeding event duration was 

negatively correlated with DM (r = −0.55) and CP (r = −0.47) digestibility, indicating that lower 

feeding durations were associated with lower DMI and improved digestibility. However, other 

studies found no significant difference in apparent DM digestibility between HRFI and LRFI cattle 

[41, 42]. Therefore, further research is needed to reveal the association between feed digestibility 

and genetic variation in RFI.   

1.2.1.3. Body composition and metabolism 

Several studies have investigated the relationship between RFI and a variety of carcass quality 

characteristics. Some have shown that there is no significant association of cattle RFI with 

muscling characteristics such as loin muscle area and intramuscular fat, at slaughter [27, 28, 43, 

44]. On the other hand, some studies from ultrasound scans of subcutaneous fat in cattle suggested 

that genetic selection for RFI altered body composition [22, 30, 45]. For instance, Arthur et al. 
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[22]  reported that backfat thickness (12th/13th ribs) measured at the end of a post-weaning test 

for RFI was positively correlated with RFI in beef cattle (r = 0.17). Richardson et al. [30] reported 

that steer progeny of HRFI parents have less whole-body chemical protein and more whole-body 

chemical fat than progeny of HRFI parents. It was estimated that these differences accounted for 

5% of the genetic variation in RFI. Basarab et al. [37] also reported that LRFI heifers had 3.2% 

less intramuscular fat, 6.8% less subcutaneous fat, and 6.8% less feeding frequency than HRFI 

heifers. 

Differences in lean muscle and adipose tissue composition may be important for 

determining RFI. The energy cost for deposition of the same weight of fat tissue is higher than that 

of lean (protein) tissue [19]. However, there is higher variation of protein turnover in lean muscle 

compared to adipose tissue. Over time, muscle will consume more energy than an equivalent unit 

of fat. In other words, efficiencies of nutrient use for fat gain (70-95%) are greater than for lean 

gain (40-50%) [19]. While the results of Richardson et al. [30] do not directly reflect protein 

turnover, they imply that LRFI steers possess a more efficient mechanism for protein deposition 

or a lower rate of protein degradation compared to HRFI steers. Similarly, Cruzen et al. [46] 

reported that less protein degradation occurs in pigs selected for LRFI compared to those selected 

for HRFI. This may account for a significant portion of the increased efficiency of nutrient use 

observed in LRFI animals. In support of this, Lefaucheur et al. [47] reported that LRFI pigs had 

leaner carcasses with higher muscle content, lower backfat thickness, and lower intramuscular fat 

content in four muscle tissues including LM (3rd/4th lumbar vertebra level), semimembranosus, 

biceps femoris, and rhomboideus muscles. In terms of lean muscle content in cattle, two studies 

have reported negative correlations between RFI and estimated lean content [12], and dissectible 



 

9 

 

carcass lean content [16]. These results suggest that LRFI animals may potentially have increased 

retail meat yield over HRFI animals.  

1.2.1.4. Activity 

Mechanisms associated with differences in animal activity include the work involved in feeding, 

ruminating, and moving at various speeds. Differences in activity levels are also associated with 

differences in RFI [20]. Several studies on monogastric species have revealed that variation in RFI 

is partly a result of variation in activity levels [20, 48-51]. In particular, de Haer et al. [48] reported 

a positive correlation between the total daily feeding time (r = 0.64) and number of visits to a 

feeding station (r = 0.51) with RFI in pigs. Luiting et al. [49] reported that about 80% of the 

variation in RFI could be related to variations in physical activity in chickens. Variations in activity 

can also be associated with differences in RFI in cattle. Richardson et al. [52] reported a positive 

correlation (r = 0.32) between RFI and daily pedometer count. It was estimated that these activity 

differences accounted for 10% of the observed variation in RFI.  Herd et al. [20] reported that 

HRFI cattle had ~ 5% more feed energy intake cost due to their higher level of activity, compared 

to LRFI cattle. Therefore, these studies show that there is a greater energy cost associated with 

activities for HRFI compared to LRFI animals. 

1.2.1.5. Thermoregulation 

In cattle, about 9% of the variation in RFI can be explained by inherent differences in heat 

production [19]. Those cattle having a higher core body temperature than others under similar 

conditions (i.e. similar dietary intake) must spend more dietary energy on metabolic heat 

production at the expense of productivity (i.e. milk or muscle synthesis) [53]. Evaporative heat 

loss is considered as an energy loss in ruminants, which is mainly regulated by the respiration rate 
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(RR) [54]. The thermal status of an animal can also be measured via skin (surface) and core (rectal) 

temperatures (TR), as well as heart rate [54]. For instance, Barea et al. [55] reported that HRFI 

pigs had greater total heat production, measured in respiration chambers, compared with LRFI 

pigs, mainly due to their higher physical activity. DiGiacomo et al. [54] reported that HRFI 

Holstein-Friesian cows had higher skin, neck, and shoulder temperatures as compared to LRFI 

cows, while the rectal temperature and RR were not influenced by RFI variation. In contrast, 

Martello et al. [56] reported higher skin temperature in LRFI Bos indicus cattle maintained in 

tropical conditions in Brazil compared to their HRFI counterparts. The authors speculated that the 

higher skin temperature in the LRFI group may be related to their improved efficiency of 

thermoregulatory mechanisms since the rectal temperature remained lower in the LRFI group. 

Clearly, further research is needed to reveal more details regarding the association between energy 

loss as heat and variation in RFI. 

1.2.2. The relationship between RFI and enteric methane 

Methane (CH4) is an important greenhouse gas that contributes to global warming. Methane is 

produced in ruminants by rumen microbes during digestion and fermentation of their feed [25]. 

The global warming potential of methane is about 25-fold higher than that of CO2 [57]. Livestock 

are responsible for approximately 18% of greenhouse gas emissions [25, 58]. Apart from reducing 

feed costs, selecting for LRFI cattle can also reduce methane production. Basarab et al. [7] reported 

that LRFI cattle had 15-25% less methane production compared to HRFI cattle. Nkrumah et al. 

[17] also reported that LRFI feedlot steers produced lower levels of methane (28%) than HRFI 

cattle on concentrate diets in the drylot. The higher level of methane production in HRFI cattle is 

most likely due to the fact that HRFI animals have higher dietary energy intake at equal levels of 

production compared to LRFI animals [24, 59]. The lower feed intake results in a host-mediated 
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response in microbial communities (bacteria, ciliate protozoa, fungi, and archaea) in LRFI animals 

favoring reduced methane production [17, 60]. This was illustrated in several studies where a clear 

segregation of rumen microbial profiles was seen in cattle with different RFI values. In particular, 

the ruminal bacterial profiles (but not the total numbers of bacterial cells) were different between 

steers divergent for RFI when fed both growing [61] and finishing diets [61, 62]. This segregation 

of ruminal microbial profiles was also seen between forage-fed beef LRFI and HRFI heifers [63]. 

Therefore, selection for LRFI animals favors a reduced carbon footprint, which appears to be 

mediated by intrinsic differences in the ruminal microflora of HRFI and LRFI animals. 

1.2.3. RFI and its relationship to immune response and stress  

Although several studies have been conducted to understand the relationship of RFI with important 

traits such as metabolism, fertility, and carcass characteristics, little is known about the 

contribution of the innate immune and stress responses to divergence in RFI, especially in cattle. 

Indeed, most studies done to date on the effect of RFI on health have focused on pigs. Grubbs et 

al. [64] reported that LRFI pigs had increased levels of heat shock protein (HSP) 60 and HSP70 in 

LD muscle and liver, compared to their HRFI counterparts. HSPs have been linked to anti-

apoptotic pathways in the mitochondria. They also suggested that LRFI pigs may be less prone to 

muscular oxidative stress (due to their increased level of anti-oxidant defense pathways), and their 

liver may have a greater metabolic capacity (pathways leading to reduced oxidative stress, and 

higher metabolism and cellular repair) compared to their HRFI counterparts. Colpoys [65] also 

looked at pigs in evaluating the physiological stress response of gilts and divergent selection for 

RFI by administering adrenocorticotropic hormone (ACTH) and measuring the stress response 

through cortisol concentrations. Pigs secrete ACTH from the anterior pituitary gland following a 

stressful event, which then stimulates the secretion of cortisol from the adrenal cortex [65]. The 
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results showed that LRFI gilts had lower cortisol concentrations in response to the ACTH 

stimulation compared to HRFI gilts, suggesting that in a production environment LRFI gilts were 

better able to cope with a physiological stressor than HRFI gilts.  

Evidence also suggests that RFI may have an effect on immune function. By analyzing 

pigs, Rakhshandeh et al. [66] evaluated the impact of lipopolysaccharide (LPS) challenge, a 

bacterially derived immune system stimulant, from the two RFI lines on the apparent ileal 

digestibility and apparent fecal digestibility of nutrients. The results showed that immune system 

stimulation increased the apparent fecal digestibility in LRFI pigs but had no effect on apparent 

ileal digestibility of nutrients. On the other hand, Azarpajouh et al. [67] reported no differences in 

sickness behaviors in response to a (LPS) challenge between divergent RFI pigs. A study by 

Dunkelberger et al. [68] using two RFI lines of pigs infected with porcine reproductive and 

respiratory syndrome virus (PRRSV) showed that LRFI animals had greater growth under 

challenge and tended to be less affected by the PRRSV-challenge than HRFI animals. This 

suggests that LRFI pigs were more robust to the viral challenge. Consolo et al. [69] reported greater 

lymphocyte count with fewer segmented neutrophils in both LRFI pregnant and non-pregnant 

heifers compared to their HRFI counterparts. In addition, LRFI non-pregnant heifers showed 

higher level of immunoglobulins M (IgM) than inefficient calves. Similarly, Herd et al. [70] 

reported a negative correlation of RFI with white blood cells and lymphocytes count in Angus 

cattle. Overall, the data suggest that LRFI animals cope with physiological and pathogenic stress 

better than HRFI animals. 

1.2.4. Relationships between RFI and fertility 

Even though the reduction of feed costs is a major factor favoring the profitability of beef 

production, successful reproduction in cow-calf operations is also a key affecting profitability [71]. 



 

13 

 

A study conducted by Smith [72] found that LRFI heifers reached puberty earlier, conceived at an 

earlier age, and delivered heavier calves compared to their HRFI counterparts. Contrary to this 

finding, several recent studies have found that LRFI heifers showed delayed sexual maturity [73-

75] but no difference was observed in pregnancy or conception rates between LRFI and HRFI 

heifers [75]. When RFI was adjusted for body fatness (RFIfat), in an attempt to ensure 

independence with age at puberty in heifers, there were no difference in the percentage of LRFIfat 

and HRFIfat heifers reaching puberty [35, 37, 44, 73]. In terms of bull fertility, several studies 

have shown that scrotal circumference (SC) and semen characteristics were not statistically 

different between LRFI and HRFI bulls. It has also been observed that a greater number of progeny 

per sire was seen for LRFI bulls in a multi-sire natural mating experiment [76]. In contrast, other 

studies found that LRFI bulls had smaller scrotal circumference [73], decreased sperm motility 

[73, 76, 77], decreased progressive sperm motility, increased abundance of tail abnormalities, and 

delayed sexual maturity [78, 79]. Moreover, when RFI was adjusted for backfat thickness, LRFIfat 

bulls still had lower sperm motility, progressive motility, as well as a smaller SC [77]. These data 

suggest that some fertility issues may exist with certain LRFI animals. 

In conclusion, the scientific community has reported that variation in RFI is associated 

with five major physiological processes including: 1) intake of feed, 2) digestion of feed, 3) body 

composition and metabolism, 4) activity, and 5) thermoregulation. It has also been established that 

there are clear relationships between RFI and traits such as enteric methane, immune response and 

fertility. Therefore, the differences in the way high and low RFI cattle use and partition energy 

might have differential effects upon the offspring of these animals when exposed to contrasting 

planes of prenatal nutrition. It is important to more clearly define the biological pathways 
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underlying the biology of RFI in order to predict production responses in different environments 

that cattle can experience.  

1.3. PRENATAL NUTRITION RESTRICTION 

Maternal stress, particularly nutritional stress, is considered to be one of the major drivers of any 

negative consequences arising during the developmental programming of offspring. Research on 

children conceived prior to and during the Dutch Hunger Winter (between December 1944 and 

April 1945 in World War II) demonstrated that children exposed to poor nutritional conditions in 

early gestation had a decline in cognitive function, increased risk of coronary heart disease, and an 

atherogenic lipid profile, despite having a slightly higher than average birth weight [80, 81]. This 

study and other similar studies resulted in a proposal by a British epidemiologist, David Barker in 

1990. This proposal, called the Barker hypothesis, states that there is a significant association 

between the occurrence of hypertension and coronary heart disease at middle age in people with 

premature birth or low birth weight [82]. Since then the idea that prenatal nutrition has long-term 

impacts on the health of the offspring, has become widely accepted. For the purposes of this 

discussion, maternal nutrient restriction includes any event which reduces nutrient supply to the 

fetus during critical developmental stages [83, 84]. Similar to studies conducted on humans, 

maternal malnutrition during gestation can also affect post-natal growth and development, fertility, 

and the health of offspring in cattle [3-5, 85]. 

1.3.1. Effect of timing of prenatal nutrient restriction on growth 

The effects of maternal malnutrition on fetal development depends upon timing, level, and/or 

duration of the period of compromised nutrition [84, 86-88]. Several studies have shown that 

nutrient insults during the last two-trimesters of a pregnancy can reduce fetal growth and the birth 
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weight of offspring in sheep [87, 89, 90]. Almost 75% of ruminant fetal growth occurs in late 

gestation, and therefore nutrient insults at this stage would be expected to have the greatest impact 

on fetal size (i.e., birth weight and body length) [3, 4]. In a developing fetus, most of the muscle 

fibre growth (myogenesis) as well as adipocyte growth (adipogenesis) take place during late 

gestation. In particular, the majority of muscle fibres are established during secondary muscle fibre 

development (beginning at about the 3rd month of pregnancy and lasting until about 7th or 8th 

months of pregnancy). Similarly, the development of adipocytes (fat cells) is thought to span the 

last 5 months of pregnancy and continue after birth in cattle [3]. Therefore, any decrease in birth 

and body weight because of nutrient insults at these later stages of pregnancy can lead to an 

impairment of adipogenesis and myogenesis as well as a decrease in muscle fibre growth [3, 4]. 

In beef cattle production, undernutrition during first half of gestation is considered to be of 

little significance post-natally since the fetus needs only a limited level of nutrition for growth and 

development at this stage compared to maternal needs [91-94]. However, critical events such as 

placental development and organogenesis occur during early pregnancy. In terms of nutrient 

partitioning in the fetus during gestation, the priority is with essential organs (i.e., heart, liver, lung, 

brain, kidney, etc.) rather than skeletal muscle. Because no net increase in muscle fibre numbers 

occurs after birth, nutrient insults during early gestation may change nutrient partitioning to 

essential organs rather than skeletal muscle [3-5, 85, 95, 96]. However, studies on sheep and cattle 

have shown that male lamb progeny and calves born from dams that were nutritionally restricted 

during early- to mid-gestation and then re-alimented before parturition had similar ratios of weight 

gain to feed intake compared to their normally fed control groups [5, 6, 97]. More recently, Johnson 

et al. [73] reported that Angus bulls born from dams that were nutritionally restricted during the 
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first half of gestation and then re-alimented had similar birth weights but were heavier between 

10-16 months of age, compared to bulls from normal prenatal diet fed heifers. 

1.3.2. Effect of prenatal nutrient restriction on muscle growth 

Muscle growth occurs in two ways: 1) muscle hyperplasia/synthesis or myogenesis and 2) muscle 

hypertrophy. In muscle hyperplasia, the number of muscle fibres is increased while in muscle 

hypertrophy, the size of muscle fibres is increased [98]. Since both muscle hyperplasia and 

hypertrophy occur in utero in cattle [3], prenatal nutrition can impact muscle growth in multiple 

ways. With regard to muscle hyperplasia, the vast majority of muscle fibres are formed in utero 

and there is very limited development or increase in muscle fibre numbers during post-natal growth 

[3]. However, hypertrophy occurs during late gestation and throughout life [3]. Hence, while 

prenatal nutrition can affect both muscle hyperplasia and hypertrophy, it may have a greater impact 

on muscle hyperplasia. 

As reviewed by Du and coworkers [3], there are two stages of myogenesis in cattle 

development. During the first wave of myogenesis, which occurs within the first two months of 

gestation, the primary muscle fibres are formed [3]. Since only a limited number of muscle fibres 

are established at this stage, nutritional insults during this period likely have a negligible effect on 

fetal skeletal muscle development [3, 96]. During the second wave of myogenesis, which occurs 

after the 2nd and up to the 8th month of gestation, the secondary muscle fibres are formed [3]. Since 

the majority of muscle fibres are established at this stage, nutritional insults during this period 

appear to negatively affect fetal skeletal muscle development [3, 96]. It is also important to 

mention that skeletal muscle matures during late gestation, at approximately day 105 for ewes and 

day 210 for cattle [3]. Hence, nutrient restriction after this stage has no major influence on the 

number of muscle fibres, although it does impact the size of muscle fibres (Greenwood et al., 
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1998). For example, McCoar and coworkers [99] reported that nutrient restriction in late gestation 

did not affect the number of muscle fibres in lambs but it did reduce the diameter of muscle fibres 

[99]. Overall, the impact of prenatal nutrient restriction on muscle growth in cattle depends on its 

timing, with the most negative effect occurring between day 60 to day 210 of gestation, when most 

muscle hyperplasia occurs. 

1.3.3. Effect of prenatal nutrient restriction on carcass quality 

Several studies have shown that poor prenatal nutrition is not only associated with reduced growth 

and body weight of cattle [100], but also negatively impacts carcass quality [6, 101]. For instance, 

Cafe et al. [100] reported reduced birth weight in calves born to dams that were nutritionally 

restricted during gestation. Greenwood et al. [101] examined the offspring born from the 

experiment of Cafe et al. [100] and found that low birth weight calves had smaller carcasses and 

smaller primal cuts after their slaughter at 30 months of age, compared to high birth weight calves. 

Long et al. [6] examined the impacts of early- to mid-gestational undernutrition (70% of NRC 

recommendations) on offspring growth, carcass characteristics, and adipocyte size in beef cattle, 

compared to a normally fed control group (100% of NRC recommendations). Surprisingly the 

results showed that there were no significant differences in body weight or organ weights among 

the two treatment groups. However, yield grade was reduced and semitendinosus weight/hot 

carcass weight (HCW) tended to be reduced in restricted compared with non-restricted group. In 

addition, average adipocyte diameter was increased in subcutaneous, mesenteric, and omental 

adipose tissues. Likewise, perirenal adipose tissue tended to be increased in restricted compared 

to non-restricted group. This suggests that maternal undernutrition in cattle may cause alterations 

in carcass quality of the offspring, potentially resulting in greater adiposity and reduced muscle 

mass. However, Blair et al. [102] reported no differences in HCW, dressing percent, ribeye area, 
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marbling score, and intramuscular fat between calves born from energy restricted vs. non-restricted 

cows during mid-gestation. On the other hand, rib backfat and the USDA (the United States 

Department of Agriculture) yield grade tended to be lower in calves born from energy-restricted 

dams. These studies show that more research is still needed to evaluate how maternal 

undernutrition may influence carcass traits in beef cattle offspring. 

1.3.4. Effect of prenatal nutrient restriction on health 

Several studies have been performed to understand the impacts of prenatal under- or over-nutrition 

on the health of offspring. Gardner et al. [103] reported that an energy restricted diet (50% 

restriction in energy) from 110 days of pregnancy until parturition in sheep did not affect the birth 

weights of lambs but it did reduce glucose tolerance causing insulin resistance in lamb progeny. 

Nutrient restriction also resulted in increased adiposity in lamb progeny carcasses at 1 year of age, 

compared to the adiposity measured from non-feed-restricted sheep. In beef cattle, maternal 

nutrient restriction (~75% of recommended allowance) during early gestation compromised 

placental angiogenesis, cotyledon weight, and fetal development [104]. Corah et al. [105] reported 

increased mortality rates of calves born from dams having an energy-restricted diet (65% of their 

dietary energy requirements) in the last trimester of gestation compared to those born from non-

energy-restricted dams (100% of their dietary requirements). While maternal malnutrition during 

gestation is associated with reduced neonatal viability, enhancing maternal nutrition during 

gestation may improve the life of progeny animals. In ewes, a study conducted by Budge and 

coworkers [106] showed higher viability in lambs born from ewes fed 150% of their energy 

requirements compared to those born from ewes fed 100% of their energy requirements.  

Passive immunity, via transfer of maternal antibodies to the fetus through placenta and to 

offspring through high quality colostrum, is an important factor in determining the health of 
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offspring [107]. Qi et al. [107] reported that immunization of pregnant mice against Yersinia pestis 

could passively transfer antibodies from mothers via both placenta and colostrum to newborn mice. 

This passive immunity can persist up to 3 months in newborn mice and as a result can be an 

effective method against plague epidemics. A study by Hough et al. [108] showed that colostral 

immunoglobulin G (IgG) concentrations were similar in both Angus cows that consumed just 57% 

of their needed nutritional requirements in the last trimester of pregnancy and non-feed-restricted 

cows [108]. However, calves fed colostrum from diet-restricted dams tended to have lower IgG 

concentrations in serum [108]. Therefore, maternal nutrition is an important factor in determining 

the immunological health of progeny animals. 

1.3.5. Effect of prenatal nutrient restriction on fertility 

In terms of the effect of maternal nutrient restriction on the fertility of ruminant offspring, a number 

of effects have been observed. These include a decreased ovulation rate [109], decreased ovarian 

weight [6], and a reduced number of postnatal follicles [110] in female progeny. These effects 

were observed when dams were nutritionally restricted during early- to mid-gestation and then re-

alimentated thereafter. In both sheep and cattle, there was no significant effect on reproductive 

development and adult reproductive function in rams or bull progeny, when ewes or heifers were 

nutritionally restricted during early- to mid-gestation and re-alimentated thereafter [73, 109, 111]. 

However, delayed prostate development has been observed in male rat pup progeny, when Wistar 

rat dams were fed a protein-restricted diet throughout the entire gestational period [112]. In 

addition, nutrient insults during pregnancy resulted in male lamb progeny with delayed puberty, 

decreased plasma testosterone concentrations (from birth until 28 weeks of age) and decreased 

testicular volume (from birth until 35 weeks of age) [113]. Therefore, maternal undernutrition can 
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affect reproductive development and function in both male and female progeny, although the long-

term effects (beyond 35 weeks of age) have not been investigated. 

In summary, the availability of nutrients to the dam and the fetus at different stages of 

gestation can affect the growth and development in the progeny animals. Important production and 

economic traits in beef cattle such as muscle growth, carcass quality, health, as well as reproductive 

development and function can be affected. These findings depict the main drawbacks of prenatal 

undernutrition at different stages of gestation in cattle and highlight that a more thorough 

understanding of how prenatal nutrition affects post-natal growth and development, and by which 

mechanisms it does this, is vital to optimize production efficiencies.  

1.4. APPLICATION OF MULTI-OMICS APPROACHES IN THE BEEF INDUSTRY  

The application of high-throughput technologies has revolutionized biological research by 

allowing scientists to explore the molecular details of complex biological systems. These high 

throughput “omics” techniques employ genomics, epigenomics, transcriptomics, proteomics and 

metabolomics. Genomics enabled by high-throughput, next-generation DNA sequencing has 

allowed the detailed genetic characterization of thousands of organisms. Epigenomics, which now 

uses high throughput DNA sequencing technology, is allowing researchers to map DNA 

methylation hotspots and temporal DNA methylation changes across multiple different cells and 

tissues. Transcriptomics, as measured via microarrays or, more recently, RNA-Sequencing (RNA-

Seq) has allowed thousands of RNA transcripts to be measured and their abundance to be easily 

compared between cells and tissues. Proteomics has opened the door large-scale protein 

characterizing and the enumeration of protein abundance changes in cells, tissues and organs. 

Metabolomics offers a powerful new route to measure hundreds to thousands of metabolites – the 

downstream products of gene/protein activities – in both biofluids and tissues.  Individually, 
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genomics, transcriptomics, proteomics and metabolomics are called “omics” approaches, together 

they are called “multi-omics”. Bringing together multiple omics approaches to look at a biological 

problem offers researchers the opportunity to explore the system, at a molecular level, from many 

different perspectives. Therefore multi-omics approaches, when combined with advanced 

bioinformatics techniques offer a more holistic or system-based perspective to explore molecular 

biology and understand molecular physiology. This section describes and discusses the application 

of three different omics sciences, metabolomics, transcriptomics and epigenomics, to explore the 

biological pathways connected with prenatal maternal diet and/or RFI in beef cattle.  

1.4.1 Definition of a metabolome and how it is detected and measured 

Metabolites are considered as the end products of cellular regulatory processes occurring inside 

the cell (many of which are guided by the genome) as well as events, exposures or phenomena 

occurring outside the cell or organism (which are dictated by the environment) [114, 115]. As a 

result, measuring the metabolome (the complete set of metabolites in a cell, tissue, organ or 

organism) can help to reveal key interactions between genes and the environment. In other words, 

metabolomics allows researchers to gain a more complete understanding of an organism’s 

chemical phenotype [116, 117]. The relationships between the genome, transcriptome, proteome, 

and metabolome are illustrated in Figure 1.1.  

Metabolomics uses advanced analytical chemistry techniques to comprehensively detect 

and measure hundreds of small molecule metabolites in cells, biofluids and tissues. Metabolomics 

uses a variety of analytical chemistry techniques including nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS) as well as coupled techniques such as liquid 

chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), 

and inductively coupled plasma-mass spectrometry (ICP-MS). Each technique enables the 
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detection of specific classes of metabolites with differing levels of sensitivity and accuracy. 

Therefore, each technique has its own pros and cons. 

The application of NMR spectroscopy to our understanding of metabolism and metabolic 

processes dates back to the mid-1970s [118]. NMR was one of the first technologies to be adopted 

in the early days of metabolomics and has an exceptional capacity to handle complex metabolite 

matrices [119, 120]. NMR is a spectroscopic technique that measures and detect perturbations of 

local magnetic fields around atomic nuclei. For conduction of an NMR experiment, molecules or 

solutions of molecules are first placed in a strong magnetic field to orient each of the molecule’s 

nuclear magnetic dipoles (found within each atom’s nucleus). Then a weak oscillating magnetic 

field is passed through the sample. This radio-frequency magnetic oscillation leads certain excited 

nuclei within the molecule to resonate and absorb the magnetic energy and to emit a detectable 

electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus (Figure 

1.2). The spectral emission peaks that are detected by NMR are called resonances and their position 

or frequency is called the chemical shift. The chemical shift of a given NMR resonance is affected 

by various chemical or molecular properties such as electronegativity, proximity to charges or 

chemical bonding. The intensity of NMR peaks is directly proportional to the number atoms at a 

given chemical shift, and can be used to characterize chemical structures of molecules very 

precisely. 

NMR has a number of unique benefits over most analytical chemistry techniques such as 

MS or other kinds of spectroscopies for metabolomics applications. In particular, NMR is 

nondestructive, nonbiased, easily quantifiable, very reproducible, requires little or no compound 

separation, permits the identification of novel compounds, and does not require any chemical 

derivatization [121]. A significant advantage of NMR over GC-MS or LC-MS is the fact that it is 
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capable of detecting compounds that are less tractable to MS techniques, such as certain sugars, 

amines, volatile compounds (e.g., acetone, methanol and ethanol) and relatively nonreactive 

compounds [121]. Although NMR is often chosen for its reliability and utility for absolute 

quantitation of metabolites, its main disadvantage is its poor sensitivity. Typically, NMR has a 

lower limit of detection of approximately 1-5 µM and a requirement of relatively large sample 

sizes (~500 µl) [121]. This makes NMR 100-1000 times less sensitive than other analytical 

chemistry techniques such as mass spectrometry. The sensitivity (limit of detection) differences 

among different analytical platforms is illustrated in Figure 1.3. 

Analyzing NMR spectra for metabolomics applications requires advanced software such 

as the Chenomx NMR suite (Chenomx Inc., Canada) or Bruker TopSpin (Bruker, Germany) to 

perform spectral deconvolution (Figure 1.4). Spectral deconvolution involves extracting or 

identifying individual spectra of pure compounds from the more complex spectra of a mixture of 

compounds. As shown in Figure 1.4, the NMR spectrum of a biological sample that contains a 

number of different metabolites, is actually the sum of individual NMR spectra for each of the 

pure metabolites in the mixture. As opposed to the concept of a single peak for a single compound 

in MS techniques, multiple NMR peaks are normally associated with a single compound (Figure 

1.4). This fact greatly reduces the problem of spectral redundancy or spectral overlap in NMR 

spectra of chemical mixtures. This means that with NMR it is unlikely that any two compounds 

will have identical numbers of peaks with identical chemical shifts or peak intensities. In an NMR 

spectrum, by properly matching and fitting the observed peaks in the chemical mixture to a library 

of pure reference compound peaks (which have been calibrated to an internal concentration 

standard), it is possible to simultaneously identify and quantify dozens of compounds at once [121, 
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122]. Typically, an NMR-based metabolomic analysis can measure between 35-60 different 

metabolites in serum with concentrations down to 1-2 M. 

Another commonly used technique in metabolomics is GC-MS. GC-MS has played a key 

role in our understanding of metabolism and metabolic processes for more than 50 years [123-

125]. In GC-MS the analytes of interest are first chemically derivatized, then volatilized (put into 

the gas phase by heating) and then separated in a long (30 m) GC column which is a thin tube lined 

with hydrophobic liner and filled with a separation gas (usually helium) maintained at high 

temperatures (up to 300 °C). The derivatized molecules interact with the GC column and then elute 

(come off) from the column at different times (called the retention time [RT]). A typical GC run 

last for 30-45 min, with compounds eluting every few seconds. The derivatized molecules reach 

the mass spectrometer (which is usually a single quadrupole (Q) or time-of-flight (TOF) detector) 

where each molecule is broken into ionized fragments and their mass-to-charge (m/z) ratio 

measured by the mass analyzer. The combination of the time taken by the analyte to travel the GC 

column (called the retention index [RI]) and the mass fragmentation pattern acquired from the 

mass spectrometer allows the compounds to be identified and quantified [126] (Figure 1.5).  

Similar to NMR, GC-MS can be used to identify and quantify a wide range of metabolites, 

including organic acids, amino acids, nucleic acids, sugars, amines and alcohols [127-129]. One 

of the great advantages of GC-MS over NMR is the fact that GC-MS is a very sensitive technique, 

with a lower limit of detection at the high nanomolar level. It is also a very reproducible, very 

precise and a highly standardized technology [128]. However, unlike NMR, GC-MS is a 

destructive process, requiring chemical fragmentation, chemical derivatization and separation of 

analytes prior their detection and quantification. This chemical derivatization step can introduce a 
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number of artifacts and reaction side products that can result in false positive compound 

identification, complicating GC-MS analyses [128]. 

Analyzing GC-MS spectra requires specialized spectral deconvolution tools such as the 

Automated Mass Spectral Deconvolution and Identification System (AMDIS), which is produced 

by the National Institute of Standards and Technology (USA) or Agilent MSD ChemStation 

(Agilent Technologies Inc., Germany). A GC-MS spectrum or total ion chromatogram for a 

biological sample typically consists of dozens to hundreds of sharp peaks (corresponding to ion 

counts) covering an elution time of approximately 30-45 min. Each peak may consist of one or 

more electron ionization (EI) mass spectra arising from one or more compounds (Figure 1.6). For 

metabolite identification, each EI spectrum extracted from the total ion chromatogram is compared 

to spectral reference libraries (e.g. the National Institute of Standards and Technology or the NIST 

library) containing the EI spectra of thousands of pure, derivatized and authenticated compounds. 

This spectral comparison allows one to identify and quantify approximately 75-100 different 

metabolites in biofluids such as serum or urine. 

The most commonly used analytical method in metabolomics is LC-MS. The application 

of LC-MS to metabolomics studies dates back to the early 1980s [130, 131]. The basic principles 

of LC-MS are very similar to GC-MS. Compounds are separated via a chromatographic column 

followed by detection with a mass analyzer and finally spectral deconvolution of the total ion 

chromatogram [121] (Figure 1.7). However, LC-MS differs from GC-MS in several ways 

including [121]: 1) analytes are not (normally) chemically modified prior to separation in LC-MS; 

2) separation of analytes is performed in a liquid phase (over a C18 alkane column) under high-

pressure or ultra-high-pressure conditions in a liquid chromatography system instead of in the gas 

phase under low-pressure conditions; 3) soft ionization methods such as electrospray ionization 
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(ESI) or atmospheric pressure chemical ionization (APCI) are used in LC-MS while a hard 

ionization method called electron ionization (EI) is used in GC-MS; 4) in LC-MS the parent ions 

(M+H ion) are sometimes further fragmented through collision-induced decay to produce product 

ion fragments or spectral signatures (through the addition of another mass spectrometer called an 

‘MS/MS’ or tandem mass system); and 5) the mass detectors are much more varied (and sensitive) 

in LC-MS and may include single quadrupoles (Q), triple quadrupoles (QqQ), linear ion traps, 

OrbiTraps, TOF (time of flight) and Fourier transform ion-cyclotron resonance systems (FT-ICR) 

as opposed to simple quadrupole or TOF detectors in GC-MS. These differences result in a number 

of advantages in LC-MS methods over GC-MS methods [128, 132]. In particular, LC-MS 

instruments are typically 10-1000 times more sensitive than GC-MS or NMR techniques (Figure 

1.3). They can measure masses much more accurately over a much larger mass range (50-2000 

Da) than GC-MS (50-800 Da). Furthermore, because there is usually no chemical derivatization, 

LC-MS instruments do not produce chemical artifacts or create hard-to-identify side-products. 

However, unlike NMR and GC-MS, LC-MS is not particularly reproducible and is usually very 

poor at separating polar molecules (which constitute the majority of metabolites in biofluids) 

relative to nonpolar molecules [128, 132]. Furthermore, because LC-MS methods use a wide 

variety of column types and mobile-phase combinations, it is almost impossible to create 

standardized retention times or retention indices (as is commonly done with GC-MS), making it 

almost impossible to identify metabolites using retention times or retention indices.  

As a result, identification of metabolites by LC-MS is not as straightforward as GC-MS. 

Compound identification by LC-MS can be done in one of two ways. One is based on matching 

MS/MS fragment patterns to spectral libraries (similar to what is done with GC-MS) and the other 

is based on accurately measuring parent ion masses to determine their molecular formula and then 
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determine their identity via comparisons to compound databases with known molecular weights 

and known molecular formulas. For LC-MS spectra matching, instrument- or condition-specific 

MS/MS product ion fragment libraries are required. Some of these libraries are commercial 

MS/MS spectral databases specifically developed for drugs, natural products, pesticides and 

metabolites for a variety of single quadrupole, triple quadrupole and ion trap instruments [128]. 

There are also a number of freely accessible electronic MS/MS spectral databases such as those 

found in the HMDB [133-136], MoNA (https://mona.fiehnlab.ucdavis.edu/) and NIST 

(https://www.nist.gov/). 

Most of the metabolomic methods described so far are designed to detect organic 

molecules. But for the detection of metal ions or other inorganic compounds found in the 

metabolome, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) is a powerful and 

sensitive approach for measuring metal ions and other trace elements in biological and inorganic 

samples [137]. ICP-MS can also be used to detect different isotopes of the same element making 

it a versatile tool for isotopic labeling and isotopic analysis for geological or geographic analyses. 

In the ICP-MS process [138], liquid samples are first vaporized using a nebulizer and then 

introduced into a hot argon (carrier gas) plasma consisting of electrons and positively charged 

argon ions. Next, the plasma’s high temperature (6000-10000 oC) splits the sample into individual 

atoms (atomization). The plasma also ionizes these atoms – causing the atoms to lose electrons 

and become positively charged ions (anions are not detected by ICP-MS). The positive ion beam 

enters a quadrupole mass analyzer where the ions are separated according to their mass/charge 

(m/z) ratio. After passing the quadrupole, the ions hit a special mass detector that detects ions at 

the higher and lower mass range (Figure 1.8). 

https://mona.fiehnlab.ucdavis.edu/
https://www.nist.gov/
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Some of the advantages of ICP-MS include its multi-elemental capability (it can detect 

almost all elements in the periodic table), its ability to perform rapid isotopic analysis, its good 

precision, a large linear dynamic range (over several orders of magnitude), the availability of 

simple spectra, and high sensitivity (low detection limits down to concentrations of subfemtograms 

per gram of matrix solution) [139]. With such advantages, ICP-MS has become the gold standard 

for identifying and quantifying different elements in both biological and inorganic samples. 

However, ICP-MS is prone to interference caused by sample matrix components due to polyatomic 

ions having the same nominal mass as the analyte. In addition, clogging of the ICP-MS inlet is 

another challenge requiring that operators keep the concentration of dissolved samples very low. 

Hence, ICP-MS requires sample pre-treatment and good calibration curves for each analyte. 

Nonetheless, with the appropriate method in place, these limitations can be largely minimized, 

allowing ICP-MS to be used for the analysis of almost all sample types [139].  

Analyzing ICP-MS spectra requires a carefully constructed calibration curve for each metal 

ion or analyte. This can be done by preparing individual calibration standard dilutions (external 

calibration) for each analyte, covering the lowest to highest concentrations that can be detected by 

ICP-MS. Each analyte is compared to its own calibration curve for quantification. An internal 

standard must be combined with external calibration in order to compensate for matrix effects (the 

effects of the surrounding material containing the sample of interest) and instrument drift. As a 

result, the same amount of one or more internal standard elements is added to all measured 

solutions (blanks, calibration standards, quality control standards, unknown samples, etc.). The 

response from the internal standard element is expected to be the same throughout the assay, 

thereby any variation is assumed to be derived from either matrix effects or instrument drift. 

Typically, a mathematical correction factor is calculated from the relative internal standard 
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response which is then applied to the analytes to correct for both matrix and drift effects. ICP-MS 

methods can typically measure 30-35 metal ions down to the femtogram level. 

1.4.1.1. Application of metabolomics in the beef industry associated with RFI and maternal 

nutrition 

Metabolomics have been widely used in cattle studies to detect disease [140-142], to assess 

physiological responses to different diets [143, 144], to evaluate carcass quality [145-147], to 

assess fertility [148], milk quality [149, 150], and even characterize the near-complete chemical 

composition of cow’s milk [151]. Metabolomics has also been used to predict RFI [13, 23, 152] 

and to explore the molecular physiological or biochemical underpinnings of lean tissue or muscle 

content in livestock. For example, Lawrence et al. [42] reported a positive correlation between 

muscularity and concentrations of the metabolite, creatinine, in blood. Creatinine is produced via 

creatinine phosphate and typically is increased due to muscle breakdown. In sheep, blood 

creatinine concentrations have been shown to have a negative correlation with fat depth and a 

positive correlation with muscle mass [153, 154]. Urea concentrations in blood also showed a 

negative correlation with lean growth of sheep [153, 154]. Moreover, in the blood of weaned 

Angus steers, urea concentrations tended to have a positive association with RFI [155].  

In terms of RFI, Fitzsimons et al. [23] reported higher concentrations of glucose and urea 

and lower concentrations of creatinine in plasma of HRFI vs. LRFI heifers. Karisa et al. [152] also 

reported higher concentrations of creatine and carnitine in the plasma of HRFI beef cattle. 

Similarly, Kelly et al. [13] reported a higher concentration of beta-hydroxybutyrate in the plasma 

of HRFI beef heifers. Therefore, there is clear evidence that a number of plasma metabolites differ 

between LRFI and HRFI animals and that metabolomics offers a good opportunity to detect 

additional markers of RFI propensity.  
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While a good deal of metabolomic data has been collected and published on RFI, there is 

very little published large scale metabolomic data on maternal prenatal diet restriction and their 

effects on progeny. Indeed, a literature review conducted by us revealed only a few studies that 

looked at metabolite levels or metabolite changes in the progeny of animals fed with restricted or 

enhanced diets. For example, Ford et al. [97] reported that the male offspring of ewes experiencing 

nutrient restriction during early- to mid-gestation and re-alimented afterwards had higher blood 

glucose levels than those of a control group fed with normal nutrition. In the second study we 

found, Zambrano et al. [156] reported that the male offspring of rats having a protein-restricted 

diet during pregnancy had higher levels of cholesterol and triglycerides than the non-restricted 

group. They also found that cholesterol and triglycerides did not differ between groups for the 

female progeny. Several studies have also investigated the potential impact of maternal nutrition 

on the nutrient composition of amniotic fluid (AF) as its composition reflects both maternal health 

and fetal status. In particular, dietary glucose restriction in pregnant rats resulted in reduced 

concentrations of methionine and phenylalanine in AF [157]. Similarly, nutrient restriction in 

pregnant ewes significantly reduced total amino acid and polyamine concentrations in AF [158]. 

On the other hand, an increased supply of carbohydrates in the diet of pregnant rats significantly 

increased glucose but also decreased uric acid in AF [159]. Overall, it is clear that the prenatal diet 

can significantly affect the concentration of a number of metabolites in AF, which possibly results 

in alterations in the metabolic profile of both the dam and its offspring.  

1.4.2. Definition of a transcriptome and how it is detected and measured 

While metabolomics allows one to explore metabolic changes associated with physiological 

perturbations or phenotypic differences, transcriptomics allows one to explore mRNA changes 

associated with these differences or changes. The genetic information content of an organism is 
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encoded in its DNA (the genome) and expressed through mRNA transcription (the transcriptome). 

The transcriptome is the complete set of all RNA molecules in a cell or a population of cells for a 

specific developmental stage or physiological condition (Wang et al., 2009). Transcriptomics 

examines the expression level of RNAs in a given cell population and has been widely used in 

livestock studies [21, 160-162].  

Transcriptomics uses advanced molecular biology techniques to comprehensively measure 

expression of dozens to thousands of transcripts in cells, biofluids and tissues. Such techniques 

include microarrays or gene-chips, RNA-Seq, and quantitative polymerase chain reaction (qPCR). 

Each technique has its own pros and cons. 

The development of microarray technologies has allowed the measurement of the 

expression of thousands of genes simultaneously [163, 164]. In this technique, case and control 

samples of isolated mRNA are labeled with Cy3 and Cy5 fluorescence dyes (via reverse 

transcriptase PCR) and then the fluorescently labeled complementary DNA (cDNA) “transcripts” 

produced by the PCR reaction are hybridized to a set of predetermined short (25-70 bp) gene-

specific subsequences (cDNA probes) that have been attached to a specially treated glass chip. 

After the hybridization step is completed (and after suitable washing and fixing steps) the level of 

gene expression is compared between case and control samples using a specially designed 

fluorescent microscope scanner, which captures fluorescence signals emitted by the Cy3 or Cy5 

labeled DNA strands from the sample that hybridized to the chip DNA probes [163] (Figure 1.9). 

The more hybridization of the target RNA to a given probe, the more signal. Microarrays offer a 

number of unique advantages for transcriptome profiling. In particular, they offer a low-cost, high 

throughput, semi-quantitative method for measuring transcript abundance. They do not require 

radioactivity (they use fluorescence), they use many advanced micro and nano-scale technologies, 
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and they can simultaneously measure the expression of thousands of genes. In addition, kit systems 

and commercial suppliers make microarrays very easy to use [164-166]. On the other hand, 

microarrays are prone to technical variations (i.e. cross-hybridization artifacts) and have limited 

ability to accurately quantify very weakly and very strongly expressed genes (i.e., they have a 

limited dynamic range) [167].  

Unlike microarrays, RNA-Seq uses next-generation sequencing (NGS) allowing genome-

wide quantification of gene expression in a given cell population [167, 168]. Recent advances in 

the RNA-Seq workflow, from sample preparation to the operation of sequencing platforms as well 

as data analysis, has enabled deep transcriptome profiling and a very detailed elucidation of many 

different biological conditions. The standard RNA-Seq procedure includes isolating RNA from a 

given sample, converting it to complementary DNA (cDNA), preparing the sequencing library, 

and sequencing it on an NGS platform [165, 167] (Figure 1.10). Unlike the microarray technique, 

which is a hybridization-based approach, RNA-Seq is not limited to detecting transcripts that 

correspond to fully sequenced organisms. RNA-Seq can show the exact location of genomic 

boundaries, to a single-base resolution. Unlike microarrays, RNA-Seq also has a large dynamic 

range (it does not have an upper limit for quantification) and it can be used to detect and quantify 

very weakly expressed genes, although a lot of sequencing is needed to get an accurate 

quantification of weakly expressed transcripts [167]. RNA-Seq also has much better 

reproducibility than most microarray platforms [167]. RNA-Seq not only provides a more detailed 

and quantitative view of RNA abundance than microarrays, but it also identifies alternatively 

spliced genes, and can detect allele-specific expression if polymorphisms are present in the 

transcript [165]. In addition to supporting the investigation and enumeration of mRNA transcripts, 

RNA-Seq can be applied to quantify various populations of RNA, including total RNA, pre-
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mRNA, and noncoding RNA (i.e. rRNA, microRNA, and long ncRNA) [165]. However, 

bioinformatic challenges during data analysis and the high costs of large-scale DNA sequencing 

are the main drawbacks of RNA-Seq. These issues have limited the widespread application of this 

technique by the scientific community [167]. 

qPCR is considered as the most accurate method for measuring the mRNA abundance in 

cells or tissues [169]. A typical qPCR experiment consists of isolating RNA from a given sample, 

converting it to cDNA, and then amplifying the sequence from the gene of interest on a qPCR 

platform (Figure 1.11). There are two types of qPCR typically used by researchers: 1) standard 

qPCR and 2) high throughput qPCR [169, 170]. A standard qPCR permits the detection and 

quantification of one gene for up to 384 different samples (in a 384 well plate) or a handful of 

genes for a smaller number of samples. However, a new generation of qPCR has emerged that 

permits higher throughput qPCR measurements. In particular, the BioMark HD system (Fluidigm 

Corporation, San Francisco, USA), uses a microfluidic controller to permit the detection and 

quantification of 96 genes for 96 samples (thousands of reactions simultaneously in a single run). 

This dramatically increases the scale and coverage over standard qPCR. The main advantages of 

qPCR over other transcriptomics techniques are its high accuracy, its excellent reproducibility, 

and low cost [169, 170]. On the other hand, qPCR is prone to technical errors produced during 

sample preparation and workup, although there are not as many steps as in preparation for 

microarrays or RNA-Seq. In addition, qPCR requires that users must design a new primer pair for 

each gene of interest or obtain the primer pair sequence for each gene from the literature. This 

manual design step is not required for microarray or RNA-Seq techniques [169, 170]. The high 

accuracy and reproducibility of qPCR over other transcriptomics techniques has led qPCR to be 
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the method of choice to confirm the results of other techniques such as microarray and RNA-Seq. 

Hence, qPCR is considered as the gold standard for measuring gene expression. 

1.4.2.1. Application of transcriptomics in the beef industry for characterizing RFI and 

maternal nutrition 

Several studies have been conducted to measure gene expression in cattle, especially in terms of 

evaluating the impact of RFI and maternal nutrition on gene expression. For instance, gene 

expression differences in liver and muscle of beef cattle were found to be associated with a 

divergence in RFI as well as with maternal diet [21, 160-162]. A study performed by Al-Husseini 

et al. [160] showed that Glutathione S-transferase mu 1 [GSTM1] had higher levels of expression 

in the liver of HRFI Angus steers than in LRFI steers. Kelly et al. [21] reported higher mRNA 

abundance of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) 

[PPARGC1A] in the Longissimus dorsi (LD) muscle of LRFI compared to HRFI cattle. In a study 

reported by Paradis et al. [162], five genes involved with inflammatory processes, including 

hemoglobin β [HBB], myxovirus resistance 1 interferon-inducible protein p78 [MX1], ISG15 

ubiquitin-like modifier [ISG15], hect domain and RLD 6 [HERC6], and interferon-induced protein 

44 [IFI44] showed different expression patterns in the liver between HRFI and LRFI heifers.  

Maternal diet effects on gene expression have also been explored. A study by Paradis et al. 

[161] found higher levels of expression of insulin like growth factor 1 [IGF1], insulin like growth 

factor 1 receptor [IGF1R], insulin like growth factor 2 receptor [IGF2R], insulin receptor [INSR], 

myogenic differentiation 1 [MYOD1], myogenin [MYOG], and peroxisome proliferator activated 

receptor gamma [PPARG] in the LD muscle of fetal calves from dams exposed to a restricted diet 

(85% of total metabolizable energy requirements) during mid- to late-gestation compared to a high 

nutrient diet (140% of total metabolizable energy requirements). Micke et al. [171] reported that 
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feeding a high protein diet (240% of recommended daily crude protein intake) to beef heifers 

during the first trimester of gestation was associated with higher expression of leptin [LEP] and 

IGF1 in the perirenal adipose tissue of both male and female beef cattle offspring at 680 days of 

age. Furthermore, lower expression of IGF1R was seen in the subcutaneous adipose tissue of all 

progeny between 552 and 657 days of age. These data provide evidence of detectable changes in 

gene expression in both HRFI and LRFI animals as well as in the progeny arising from maternal 

dietary differences.  

1.4.3. Definition of the epigenome and how it is detected and measured 

While transcriptomics offers one route to detect genetic changes or environmentally induced 

changes in the genome, epigenomics offers yet another route to explore environmentally induced 

changes to the genome. The epigenome is made up of chemical compounds and proteins which 

can attach to the DNA strand or histones and direct the genome what to do, such as turning genes 

on/off. Epigenetic effects are known to be involved in cell growth, the immune response, and in 

controlling the production of proteins in particular cells [172-174]. Once epigenomic compounds 

attach to a given DNA strand or to specific histones and modify their function, they are said to 

have “marked” the genome. These marks do not alter the sequence of the DNA but change the way 

cells use the DNA's instructions. These marks can be passed on from cell to cell as cells divide and 

from one generation to the next. These modifications occur naturally in cells and can be altered in 

response to environmental exposures or disease.  

Epigenetics is defined as the study of heritable changes in gene expression, resulting from 

alterations in chromatin structure but not alterations in the DNA sequence [175, 176]. In contrast 

to epigenetics, epigenomics pertains to the analysis of epigenetic changes across many genes in a 

cell or across the entire genome in an organism. Examples of epigenetic mechanisms that produce 
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such changes are DNA methylation as well as histone modification, each of which alters how genes 

are expressed without altering the underlying DNA sequence [172]. These epigenetic processes 

control the timing and intensity of gene expression once cells are differentiated [177, 178].  

DNA methylation can directly affect the DNA in a genome, wherein proteins called DNA 

methyltransferases (Dnmts) attach methyl groups from S-adenyl methionine (SAM) to the fifth 

carbon of a cytosine residue to form 5-methylcytosine (5mC) in specific DNA locations. These 

locations are mostly at CpG sites where cytosines precede a guanine nucleotide. These 

modifications can effectively turn genes on or off [173, 179]. In contrast to DNA methylation 

which affects DNA directly, histone modification, affects DNA indirectly [174]. In all eukaryotic 

cells, chromosomal DNA is wrapped around histone proteins, thereby forming spool-like 

structures. These protein spools enable the long DNA molecule to be wound up neatly into 

chromosomes inside the cell nucleus. In histone modification, histone proteins can attach a variety 

of chemical tags (i.e. methyl, acetyl, or phosphoryl group) to their amino acid side chains. As a 

result, specific proteins can identify these chemical tags and determine whether that specific DNA 

region should be used or ignored during transcription [174]. 

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed in a 

parent-of-origin-specific manner [180-183]. The genome is passed from cell to cell when cells 

divide and from parents to their offspring through sexual reproduction. Sexually reproducing 

organisms inherit two copies of their genes, one from their father and the other from their mother. 

In cells, usually both copies of each gene are “turned on” or active. However, in some cases, only 

one copy is “turned on”. Which copy is active depends on the parent-of-origin. Some genes are 

normally “turned on” only when they are inherited from an individual’s mother; others are active 

only when they are inherited from an individual’s father. This phenomenon is known as genomic 
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imprinting (Figure 1.12). These epigenetic DNA marks are made ("imprinted") in the germline 

(egg or sperm) cells of the parents during meiosis and are maintained through mitotic cell divisions 

in the somatic cells [184]. Much of the epigenome is reset during meiosis when parents pass their 

genomes to their offspring [185]. However, in certain cases some of the DNA marks existing in 

the DNA of eggs and sperm may be passed on to the next generation. When cells divide, often 

much of the epigenome is passed on to the next generation of cells, helping the cells remain 

specialized. An individual organism’s epigenome can also be changed throughout its lifetime. This 

usually occurs as a result of changes in lifestyle and environmental factors (i.e., diet, stress, toxins, 

particulate air pollutant matter and infectious disease), which can expose an organism to pressures 

that prompt the appearance or alteration of epigenomic marks [179, 186]. Some of these 

epigenomic marks can be harmful while others can be quite helpful. However, the ability of the 

epigenome to adjust to these life pressures appears to be required for normal health and 

development in most organisms [187].  

Epigenomics uses advanced molecular biology techniques to comprehensively detect 

epigenomic modifications in DNA or in histones. The most common techniques currently used for 

detecting histone modifications are chromatin immunoprecipitation (ChIP)-based technologies 

[188], including ChIP-Seq, ChIP-qPCR and ChIP-on-chip. On the other hand, whole genome 

bisulfite sequencing (WGBS) is used to detect DNA methylation patterns in genomic sequences 

[189, 190]. 

ChIP is an antibody-based, high-throughput technique primarily used to determine how 

transcription factors and other chromatin-associated proteins interact with DNA [188]. A typical 

ChIP procedure consists of cross-linking a protein of interest to target DNA sites in cells, extracting 

and shearing chromatin by sonicating, adding specific antibodies to immunoprecipitate the target 
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protein, unlinking the protein from the target DNA, followed by purifying the DNA [188]. 

Following the completion of a ChIP experiment, protein-DNA interactions can be analyzed using 

multiple downstream applications, including qPCR (ChIP-qPCR), microarray (ChIP-on-chip), and 

sequencing (ChIP-Seq) [188] (Figure 1.13). The advantages and disadvantages of high-throughput 

sequencing, qPCR, and microarray platforms have already been mentioned. ChIP-qPCR can be 

utilized to detect the interaction between specific transcription factor/histone modification and 

known genomic binding sites amplified via qPCR. Therefore, ChIP-qPCR benefits those studies 

focusing on specific genes and potential regulatory regions under different experimental 

conditions, utilizing low-cost qPCR. Similar to ChIP-qPCR, ChIP-on-chip methods can be utilized 

to detect the interaction between specific transcription factor/histone modifications and known 

genomic binding sites, but at a much larger scale covering thousands of these interactions 

simultaneously. Using ChIP in combination with a microarray, hundreds of DNA sites that interact 

with specific transcription factors or DNA binding proteins can be analyzed simultaneously. This 

information can then be linked to the representative gene clusters, to further understand gene 

expression and regulation. Using ChIP coupled with high-throughput DNA sequencing (ChIP-seq) 

allows researchers to rapidly identify protein-DNA interactions in a genome-wide manner. In other 

words, ChIP-seq can be used to accurately map global binding sites for any protein of interest, 

providing higher resolution and richer or more accurate information, compared to ChIP-qPCR or 

ChIP-on-chip.  

While ChIP techniques are used to identify protein-DNA interactions in the epigenome, 

specialized DNA sequencing is used to identify methylation patterns in the epigenome. In 

particular, whole genome bisulfite sequencing (WGBS) is used in the high-throughput genome-

wide analysis of DNA methylation status. WGBS involves treating the DNA with sodium bisulfite 
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before sequencing [189, 190]. Bisulfite treatment of DNA leads to the conversion of unmodified 

cytosine (C) to uracil (U) while maintaining 5-methyl cytosine (5mC) unchanged as C [189]. After 

sequencing, the unmethylated cytosines appear as thymines [189]. The standard WGBS procedure 

includes isolating the genomic DNA from a given sample, modifying the DNA with bisulfite 

treatment, preparing the sequencing library, and sequencing it on an NGS platform [189] (Figure 

1.14). The resulting DNA sequences are then mapped to the reference genome to measure the 

methylation status of CpG dinucleotides based on mismatches resulting from the conversion of 

unmethylated C into U. Since WGBS uses NGS technology, its pros and cons are similar to those 

mentioned for RNA-Seq. However, the main limitation of WGBS comes from the bisulfite 

modification technique, as incomplete conversion of C to U serves as a source of false positives 

[189, 190]. In addition, bisulfite treatment can also cause DNA degradation and requires an 

additional purification step to remove the sodium bisulfite [189, 190]. 

1.4.3.1. Application of epigenomics in the beef industry associated with RFI and maternal 

nutrition 

While only one study on beef cattle has focused on association between RFI and epigenomic 

marks, several studies have been conducted to reveal epigenomic modifications as a result of 

maternal nutrient changes in cattle. In terms of RFI, a recent study conducted by Rocha et al. [191] 

identified 1493 differentially methylated cytosines (DMCs) and 279 differentially methylated 

regions (DMRs) in the hepatic tissue of Nelore cattle exhibiting extremes in RFI. In cattle, it has 

been found that maternal nutrient status can cause epigenetic modifications to the genome of the 

developing fetus, which potentially can impact the growth, feeding efficiency, fertility and health 

of future generations [176]. Lan et al. [192] reported that the methylation levels of CpG islands of 

both H19 fetal liver mRNA [H19] and IGF2R were higher in the fetuses of pregnant sheep fed 
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alfalfa haylage (fiber) and dried corn distiller's grains (fiber plus protein plus fat) than those fed 

only corn (starch). Wang et al. [193] reported that feeding a high starch (corn silage) diet to bovine 

dams during late gestation increased the expression of the imprinted genes, IGF2R, H19, 

maternally expressed 8 [MEG8] as well as the DNA methyltransferase gene, DNA 

methyltransferase 3 alpha [DNMT3A], in the LD muscle of progeny male calves compared to low 

starch (haylage) group. A study reported by Crouse et al. [194] also demonstrated that maternal 

nutrition during the first 50 days of gestation could alter the expression of histone and histone 

modifying genes in bovine fetal liver. In particular, nine histone genes were upregulated in fetal 

liver of moderately nutrient restricted (RES) heifers compared with control (CON) heifers. The 

upregulated genes include members of the histone H1, H2A, H2B, and H4 families [194]. In 

addition, 13 histone-modifying transcripts were also differentially expressed. These include genes 

associated with methylation, phosphorylation acetylation, deacetylation, and ubiquitination. More 

specifically, these genes were histone deacetylase 10 [HDAC10] and the histone deacetylase 

complex gene, co-repressor interacting with RBPJ 1 [CIR1] which showed greater expression in 

the liver of RES fetuses compared with CON fetuses. The SET nuclear proto-oncogene [SET], 

which is involved in preventing H4 lysine acetylation, was the only gene associated with histone 

modifications that showed lower expression in liver of RES fetuses. These data suggest that 

maternal nutrient insults during the early gestation period (i.e. the first 50 days) initiate 

developmental programming via epigenetic alteration of the fetal genome in beef cattle [194]. 

Collectively, these studies provide substantial evidence of detectable epigenomic marks in both 

HRFI and LRFI cattle as well as in offspring arising from maternal dietary differences.  
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1.4.4. Application of integration of multiple omics sciences in the beef industry  

In addition to these “pure” metabolomic, transcriptomic and epigenomic studies, several groups 

have combined multiple “omics” methods to explore how genetic changes alter the metabolism or 

metabolome in cattle. In particular, genome-wide association studies (GWAS) have been 

performed to look for significant metabolomic changes arising from specific single nucleotide 

polymorphisms (SNP) in cattle [147, 195, 196]. In particular, Weikard et al. [147], as well as 

Widmann et al. [195] reported that a SNP (I442M) belonging to the non-SMC condensin I complex 

subunit G [NCAPG], is associated with higher arginine levels in plasma. NCAPG is a substantial 

modulator of pre- and/or post-natal growth in cattle. Weikard et al. [147] also reported that a 

polymorphism in the 204X allele of myostatin [MSTN] (previously known as GDF8) is associated 

with higher concentrations of carnitine in the plasma of cattle. Lu et al. [196] reported that higher 

concentrations of choline and carnitine, as well as lower concentrations of citrate, creatine or 

phosphocreatine, glycerol-phosphocholine, mannose-like sugar, acetyl sugar phosphate, uridine 

diphosphate (UDP)-related sugar, and orotic acid in the milk cows with the DGAT1 KK genotype 

compared to those with the DGAT1 AA genotype. This suggests that cows differing in certain 

DGAT1 polymorphisms can differ in their milk metabolome. Overall, utilizing multiple “omics” 

platforms simultaneously in an experiment and then studying the association among the obtained 

data can help to understand how genetic changes alter the metabolism or metabolome in cattle, 

and how these genetic and metabolomic variations lead to differences in important production 

phenotypes. 

1.5. CONCLUDING REMARKS 

Maximizing the efficiency and growth potential of beef cattle requires not only genetic selection 

(i.e., selection for feed efficiency, RFI or ADG) but also providing adequate nutrition throughout 
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all stages of gestation, growth and development of cattle fetuses. Although both RFI and maternal 

nutrition during gestation can affect progeny traits, our understanding of the biological 

mechanisms by which this occurs is poor. This thesis is aimed at investigating the impact of RFI 

selection and maternal nutrition during early- to mid-gestation, on bull calf traits such as muscle 

development and health. This investigation has been performed using multiple “omics” approaches 

including metabolomics, transcriptomics, and epigenomics. This thesis is also aimed at identifying 

candidate biomarker genes and metabolites for feed efficiency, immunity and/or muscle 

development. The discovery of biomarker genes and/or metabolites associated with these traits of 

interest will allow producers to select for efficient animals without having to extensively (and 

expensively) phenotype them, which could be of great benefit to the beef industry. 

1.6. THESIS HYPOTHESES 

Transcriptomics, epigenomics, and metabolomics can reveal the impact of prenatal nutrition and/or 

RFI on complex biological interactions in young Angus bulls. The specific hypotheses for this 

study are as follows: 

• The bovine metabolome can be comprehensively described and annotated using 

comprehensive, quantitative metabolomics techniques and computer-aided literature 

mining. 

• Differences between HRFI and LRFI bulls can be detected using metabolomics techniques, 

such that serum-based metabolite biomarker panels can be developed to distinguish HRFI 

from LRFI animals. 
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• Differences in selection for parental RFI and/or prenatal nutrition can change gene 

expression patterns in tissues of young Angus bulls leading to changes in immunity and 

muscle development. 

• Selection for parental RFI and/or differential prenatal nutrition can be associated with DNA 

methylation alterations in the sperm of young Angus bulls. 

1.7. THESIS OBJECTIVES 

My thesis has two aims: 1) understand some of the metabolic processes that underlie genetic 

differences in RFI, and phenotypic responses to prenatal nutrition, and their interactions in beef 

cattle; and 2) understand the influences of genetic differences in RFI and differences in prenatal 

nutrition on the sperm epigenome of young Angus bulls. 

The first aim was divided into two phases, a metabolomic phase and a genomic phase. For 

the first phase, I used a variety of metabolomic techniques, including NMR spectroscopy, liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), and ICP-MS to identify and quantify 

metabolites in four different bull tissues (Longissimus thoracis (LT) muscle, semimembranosus 

(SM) muscle, liver, testis) and two biofluids (serum and ruminal fluid). I hypothesized that 

differences in RFI and/or prenatal nutrition should be reflected in the metabolomic profile of 

biofluids and tissues in different animals. These differences should allow me to identify metabolic 

biomarkers for RFI prediction or potentially other metabolic biomarkers associated with other 

traits of interest such as immunity and muscle development. The use of multiple analytical 

platforms was intended to enhance the level of metabolome coverage with about 150 different 

metabolites (i.e. amino acids, fatty acids, carbohydrates, metals, etc.) being quantitatively 

measured in each tissue and biofluid sample. Metabolomic studies on these tissues and biofluids 
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were expected to reveal new insights into how RFI and/or prenatal diet could affect the metabolic 

profile of offspring.  

For the second phase of aim 1, I used qPCR (real time-PCR or RT-PCR) to determine 

whether RFI and/or prenatal nutrition could affect the gene expression patterns of those imprinted 

and non-imprinted genes that have important roles in terms of immunity and myogenesis. For this 

phase of the study, the samples of interest were LT muscle, SM muscle, liver, and testis. This work 

was expected to lead to the identification of genetic biomarkers for RFI prediction or biomarkers 

associated with immune function as well as muscle development. Therefore, using metabolomics 

together with genomics it should be possible to reveal certain key aspects of the biology behind 

RFI influences and/or prenatal nutrition on subsequent bull calf traits. This work may also identify 

biomarkers associated with the traits of interest to select animals without phenotyping them. If 

these gene/metabolite biomarkers could be validated in a larger animal population, they could 

potentially be used in breeding programs to select for feed-efficient animals. 

The second project aim used whole genome bisulfite sequencing (WGBS) on bull sperm 

to identify differentially methylated regions (DMRs) between HRFI and LRFI as well as between 

Normal-diet (Ndiet) and restricted or Low-diet (Ldiet) bulls. Sperm WGBS may also indicate how 

RFI or prenatal nutritional effects can pass on to the next generation. The identified DMRs were 

further interrogated to identify the biological pathways affected by parental RFI or the prenatal 

diet. Understanding the biological pathways that could be impacted by prenatal diet or RFI may 

help to develop nutritional or pharmaceutical manipulations that could improve prenatal dietary 

requirements or feed efficiency in beef cattle.  
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1.8. THESIS OUTLINE 

This thesis consists of seven chapters. The current chapter provides a detailed literature review of 

RFI and maternal nutrition and their effects on progeny, livestock production and related livestock 

health. It also provides background material on the various “omics” technologies used to 

investigate the effects of RFI and prenatal maternal nutrition in many animal studies. Chapter 1 

also provides the background, motivation, hypotheses and aims for this thesis. 

 The second chapter provides the results of the comprehensive, quantitative metabolomic 

characterization of six bovine biofluids and tissues, including serum, ruminal fluid, liver, LT 

muscle, SM muscle, and testis, using NMR spectroscopy, LC-MS/MS, and ICP-MS platforms. It 

also provides a detailed literature review of all the metabolites identified in different bovine tissues 

and biofluids. All of this information, plus detailed metabolite descriptions, referential NMR and 

MS spectral data and richly annotated biochemical pathway data has been placed in a publicly 

available database called the Bovine Metabolome Database (http://www.bovinedb.ca/). This 

chapter was published in the journal “Metabolites”. 

 The third chapter compares the metabolic profile of bovine serum in LRFI vs. HRFI bulls. 

It describes the use of NMR spectroscopy, and LC-MS/MS techniques to characterize the 

metabolic differences between LRFI and HRFI animals. It also identifies potential serum 

biomarkers for predicting residual feed intake in young Angus bulls.  

The fourth chapter investigates the impact of prenatal nutrition and selection for parental 

RFI on selected gene expression in young Angus bulls. In particular, in order to explore how RFI 

and/or prenatal nutrition impact the expression of genes associated with muscle development and 

immunity in the progeny Angus bulls, 26 imprinted and non-imprinted genes associated with 

muscle development and/or inflammatory response were selected from the literature. Expression 

http://www.bovinedb.ca/
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of these genes in LT and SM muscles, liver, and testis were tested by qPCR. This resulted in the 

identification of potential genetic biomarkers of feed efficiency and prenatal nutrition in cattle. 

This chapter was submitted to the journal “Livestock Science” for publication. 

The fifth chapter investigates the impact of prenatal nutrition and selection for residual feed 

intake on sperm DNA methylation pattern in young Angus bulls. Using whole genome bisulfite 

sequencing (WGBS), DMRs between HRFI and LRFI as well as between Ndiet and Ldiet bulls 

were identified in the sperm of young Angus bulls. The identified DMRs were further interrogated 

to identify the biological pathways associated with them with respect to parental RFI and the 

prenatal diet treatments.  

 The final chapter consists of a short conclusion that summarizes the results of these studies, 

their interpretation and proposed future studies, which may reveal further insights into novel RFI 

biomarkers, improved assessments of maternal nutrition, the effects of these factors on progeny 

and their influence on beef cattle production and efficiency. 
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Figure 1. 1 General schema showing the relationships of the genomics, transcriptomics, 

proteomics, and metabolomics. 
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Figure 1. 2 A) Schematic diagram of how an NMR spectrometer works. 1) The NMR tube 

containing the biofluid or extracted tissue is placed into a magnetic field; 2) a weak oscillating 

magnetic field is passed through the sample; 3) This radio-frequency magnetic oscillation leads 

certain excited nuclei within the molecule to resonate and absorb the magnetic energy and to 

emit a detectable electromagnetic signal with a frequency characteristic of the magnetic field at 

the nucleus. B) Schematic diagram of how a magnetic field orients the dipoles in a magnet and 

how dipoles flip due to the radio-frequency pulses. 
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Figure 1. 3 Relative sensitivity of different analytical methods (NMR, GC-MS and LC-MS) used 

in metabolomics. NMR is the least sensitive method (limit of detection ~ 5 µM) and LC-MS is 

the most sensitive (limit of detection <1 nM). 
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Figure 1. 4 The principles behind spectral fitting in NMR. The upper spectrum is a mixture 

composed of five compounds (A, B, C, D, and E), each with a unique spectrum containing 

different chemical shifts at different locations. 
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Figure 1. 5 Schematic view of how a GC-MS instrument works. A more detailed description of 

how GC-MS works is given in the text. 
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Figure 1. 6 Overview of how spectral deconvolution works in GC-MS. A GC-MS spectrum or 

total ion chromatogram for a biological sample typically consists of dozens to hundreds of sharp 

peaks (corresponding to ion counts) covering an elution time of approximately 30-45 min. Each 

peak may consist of one or more electron ionization (EI) mass spectra arising from one or more 

compounds. Similar principles apply in LC-MS. 
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Figure 1. 7 Schematic view of how an LC-MS instrument works. A more detailed description of 

how LC-MS works is given in the text. 
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Figure 1. 8 Schematic view of how an ICP-MS instrument works. A more detailed description of 

how ICP-MS works is given in the text. 
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Figure 1. 9 Overview of the working principles of a typical two-color microarray experiment. 

RNA is isolated from a biological sample, the isolated RNA is labelled with Cy3 and Cy5 

fluorescence dyes, and then the labeled mRNA is hybridized with cDNA probes in the 

microarray slide. 
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Figure 1. 10 Overview of a typical RNA-Seq workflow. RNA is isolated from a biological 

sample, the isolated RNA is reverse-transcribed, fragmented and amplified, the amplified 

fragments are ligated to adapters and then sequenced either single- or paired-end. 
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Figure 1. 11 Overview of a typical qPCR workflow. RNA is isolated from a biological sample, 

the isolated RNA is reverse-transcribed to make cDNA, the synthesized cDNA is mixed with 

PCR master-mix and then amplified using a qPCR machine. 
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Figure 1. 12 Overview of how imprinting marks are transferred from parents to the next 

generation. 



 

59 

 

 

Figure 1. 13 Overview of a typical chromatin immunoprecipitation (ChIP) workflow coupled 

with qPCR (ChIP-qPCR), microarray (ChIP-on-chip), and sequencing (ChIP-Seq). 
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Figure 1. 14 Overview of a typical whole genome bisulfite sequencing (WGBS) workflow. DNA 

is isolated from a biological sample, the isolated DNA is fragmented, end-repaired, A-tailed, 

ligated with adapters, bisulfite treated, and amplified by PCR to make a library, then the library 

is sequenced on an NGS platform. 
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CHAPTER 2. THE BOVINE METABOLOME 

2.1. INTRODUCTION 

The cattle industry is among the most significant agri-food sectors in the world. It has been 

estimated that the global beef industry is worth more than CAD 300 billion/year [1] and is 

responsible for producing and processing > 70 million tonnes/year of meat [2]. The global dairy 

industry is worth > CAD 650 billion/year [3] and produces more than 800 million tonnes/year of 

milk or milk products [4], with more than 80% of those products coming from dairy cows [5]. 

Beef or beef products as well as milk and milk products are rich and dense sources of vital 

nutrients. They are nutritionally important food staples for hundreds of millions of people around 

the world. Indeed, the widespread use of bovine milk and bovine meat has been responsible for 

significant improvements to human health, prosperity and longevity over the past 200 years [6–

11]. While the macronutrient (protein, fat, etc.) content of beef and milk is well known and has 

been studied for many decades, somewhat less is known about the micronutrient and chemical 

composition of key bovine biofluids and tissues [8,12,13]. Furthermore, from an animal health 

perspective, even less is known about the typical or healthy ranges of concentrations for many 

clinically important metabolites in bovine biofluids and tissues [14–17]. Indeed, far less is known 

about the metabolome of dairy and beef cattle than the metabolomes of other organisms, such as 

humans [18–21], yeast [22,23], bacteria [24,25] or even common crop plants, such as rice or 

tomatoes [26–28]. 

Over the past ten years, our knowledge gaps regarding the bovine metabolome have been 

slowly filled in through a variety of metabolomics studies focused on characterizing the chemical 

composition of different bovine biofluids and tissues. In particular, our laboratory has contributed 

significantly to the current state of knowledge of the bovine metabolome. Our first study, published 
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in 2013, focused on the characterization of the bovine ruminal metabolome [12]. This work, which 

used a combination of nuclear magnetic resonance (NMR) spectroscopy, inductively coupled 

plasma–mass spectrometry (ICP–MS), gas chromatography–mass spectrometry (GC–MS), and 

reverse-phase liquid chromatography–mass spectrometry (RPLC–MS) coupled with direct flow 

injection (DFI)–mass spectrometry (DFI–MS) (RPLC–DFI–MS/MS), led to the characterization 

and quantification of 246 ruminal fluid metabolites or metabolite species, including amino acids, 

biogenic amines, carbohydrates, lipids, vitamins, and trace minerals. Here, we define “metabolite 

species” as those molecules with non-unique chemical formulas or masses (such as lipid isomers-

PC(36:6)) while “unique compound structures” correspond to compounds with a unique and 

clearly defined chemical structure and a unique chemical name (such as L-alanine). Subsequent 

studies done by our lab have explored the metabolite composition of bovine serum, ruminal fluid, 

and urine, leading to the identification of 142 metabolites in serum [14–17], 232 metabolites in 

ruminal fluid [12,29], and 52 metabolites in urine [17] using NMR, GC–MS, liquid 

chromatography–mass spectrometry (LC–MS) and/or ICP–MS. Most recently, we completed the 

most extensive metabolomics study ever done on bovine milk [13]. This study used a combination 

of NMR spectroscopy, LC–MS, and ICP–MS to identify and quantify 296 bovine milk metabolites 

or metabolite species (corresponding to 1447 unique structures). A further literature review 

identified 676 milk metabolites or metabolite species (corresponding to 908 unique structures), 

bringing the total to 972 metabolites or metabolite species [13]. Many other bovine metabolome 

studies have also been undertaken and published by other laboratories around the world [7,30–35]. 

To date there have been 45 metabolomics studies performed on bovine milk, 42 metabolomics 

studies on bovine serum/plasma, 25 metabolomics studies performed on bovine ruminal fluid, 4 
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metabolomics studies on bovine urine and more than 20 studies performed on a variety of bovine 

tissues, secreta and biofluids including liver, muscle, testes, and others [8,12,13,29,36,37]. 

While the number of metabolomics studies on bovine fluids and tissues has grown 

significantly, the majority of the studies published to date have focused on identifying rather than 

quantifying metabolites. Furthermore, most of these bovine-oriented metabolomics studies do not 

use more than two analytical techniques nor do they attempt to integrate previously published 

metabolite information to extend or validate their results. An additional challenge facing bovine 

metabolomics researchers lies in the fact that most of the metabolomics data is not consolidated or 

centralized into readily accessible public resource. To facilitate further research into the 

metabolome of beef and dairy cattle, we believe it is critical to create an open, publicly accessible 

resource that contains current, comprehensive and quantitative data on the bovine metabolome—

including metabolomics data on multiple biofluids, excreta and tissues. We also believe that this 

resource should include detailed compound descriptions, information on referential LC–MS, GC–

MS and NMR spectra, detailed biochemical pathway data and other data typically found in 

referential metabolome databases (refer to the Human Metabolome Database (HMDB) [18–21], 

the Escherichia coli Metabolome Database (ECMDB) [24,25], and the Yeast Metabolome 

Database (YMDB) [22,23]). Such an undertaking would benefit beef and dairy researchers, food 

scientists, nutritionists and consumers.  

To create such a resource, we decided to combine experimental metabolomics techniques 

with computer-aided text mining to compile essentially all of the known chemical compounds 

(endogenous and exogenous) that can be detected in bovine milk, blood, urine, ruminal fluid, 

muscle, liver, and testes (as well as other biofluids and tissues) along with their respective 

concentrations. The resulting database is called the Bovine Metabolome Database (BMDB). The 
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BMDB, which is housed at www.bovinedb.ca [38], is a comprehensive web-accessible database 

containing concentration data, physico-chemical data and reference data for 51,801 bovine 

metabolites. 

This paper describes the experimental, computational and literature research efforts used 

to collect and validate the metabolomics data in the BMDB as well as the techniques used to 

construct the BMDB and place it online. Experimentally, we focused on updating or expanding 

the data for several incompletely characterized biofluids or tissues, including bovine serum, 

ruminal fluid, liver, muscle, and testes. To do so, we used multiple quantitative metabolomics 

techniques, including high-resolution NMR spectroscopy, liquid chromatography–tandem mass 

spectrometry (LC–MS/MS) and ICP–MS methods. This experimental work allowed us to greatly 

add to the previously collected metabolomics data for these biofluids and tissues. To further 

enhance our experimental metabolic profiling studies, we conducted an extensive literature survey 

and extracted additional metabolite data from more than 240 journal articles identified through 

computer-aided literature searches spanning not only these biofluids/tissues but another six bovine 

biofluids and tissues. This “bibliomic” effort yielded data for another 1086 metabolites or 

metabolite species (which corresponds to 163 lipids and 923 non-lipids). The experimentally 

acquired metabolite data was then combined with genome-scale metabolite inference—a technique 

commonly used to fill in the metabolic “holes” for other metabolomes, such as the human 

metabolome [18–21], the yeast metabolome [22,23], and the E. coli metabolome [24,25]. This 

method uses known, organism-specific metabolic pathways [39] and known, organism-specific 

gene/protein reactions to provide data on metabolites that are known to exist, but not normally 

measured via NMR or MS techniques. This led to the addition of another 48,628 metabolites or 

metabolite species. All of these data (metabolite names, structures, descriptions, concentration 

http://www.bovinedb.ca/
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data, biofluid/tissue locations, physico-chemical data, and known or predicted NMR and MS 

spectra) were then placed in the BMDB. The BMDB is a web-accessible, MySQL-based database 

constructed using a Ruby-on-Rails web framework. The BMDB offers a variety of user-friendly 

data search, browse and display options similar to other popular metabolomics databases, such as 

the HMDB [18–21], YMDB [22,23], and ECMDB [24,25]. 

Overall, the intent of this study is to help address four key questions: 1) What kinds of 

compounds and nutrients are present in various bovine biofluids and tissues? 2) What is the 

approximate variation in the concentration of metabolites across different kinds of bovine biofluids 

and tissues? 3) What fraction of the bovine biofluids and tissues metabolome can be identified 

and/or quantified using targeted, quantitative metabolomics techniques? 4) What analytical 

methods (NMR, LC–MS/MS, ICP–MS) are best suited for comprehensively profiling the bovine 

metabolome? Answering these questions will provide a common foundation and a more 

appropriate set of reference values for both ongoing and future bovine biofluids and tissues 

composition studies.  

2.2. MATERIALS AND METHODS  

This study consisted of both “wet” (experimental) and “dry” (computational/literature) research. 

The “wet” component focused on the comprehensive, quantitative metabolomics characterization 

of six bovine biofluids and tissues using multiple metabolomics platforms. The “dry” component 

consisted of computer-aided literature research to complement and complete the collection of 

metabolomics data on the eight selected biofluids/tissues as well as four other bovine biofluids and 

tissues. It also included computational, genome-scale inference of biochemically expected bovine 

metabolites. The dry component also consisted of designing, constructing and testing the electronic 
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BDMB database.  This section will describe the materials and methods for both the wet and dry 

components of the study.  

2.2.1. Ethics approvals 

The collection and analysis of bovine tissues and biofluids in this study were approved by the 

University of Alberta’s Animal Care Committee (Animal Use Protocol (AUP) 1129) under the 

auspices of the Canadian Council of Animal Care [67].  

2.2.2. Animal selection 

Twenty-six purebred Angus bulls raised on the Roy Berg, University of Alberta Kinsella Ranch 

(Kinsella, AB, Canada), were used in this study. After weaning, the bulls were fed and managed 

according to industry standards for feedlot production of finished cattle in Alberta until they 

reached approximately 17 months of age [68]. The bulls were then slaughtered at the Agriculture 

and Agri-Food Canada (AAFC)-Lacombe Research Centre abattoir over a period of four days to 

collect the target tissues [68].  

2.2.3. Sample collection 

Two bovine biofluids including serum and ruminal fluid, and four bovine tissues including liver, 

LT muscle, SM muscle, and testis tissues were collected and experimentally characterized for this 

study. Serum and ruminal fluids were collected from live animals, whereas the tissues were 

collected from recently slaughtered animals. Blood samples (10 mL) were collected in the morning 

(just before feeding) at 15 months of age from a jugular vein using vacutainer serum collection 

tubes (Becton Dickinson, Mississauga, ON, Canada). Blood samples were kept in a cooler on ice, 

transferred to the laboratory within 3 hours after collection, and centrifuged at 2000 ×g at 4 °C for 

15 min. The upper layer of serum was then collected, and 4 mL was stored at −80 °C. Ruminal 
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fluid samples were collected at 9 months of age through a rumen oro-ruminal tube in the morning 

prior to feeding. A 15 mL sample of ruminal fluid for each animal was obtained and placed on ice, 

then centrifuged at 3000 ×g for 20 min at 4°C to remove particular matter. The supernatant was 

then transferred into a 5 mL tube and centrifuged at 9400 ×g for 20 min at 4 °C for further phase 

separation. The clear upper phase from each tube was transferred into two 2 mL Eppendorf tubes 

and subsequently stored at −80 °C. To collect tissue samples (muscle, liver, and testes), the animals 

were slaughtered at age 17 months. Between 5 and 10 g tissue samples from LT muscle (from the 

left side of the animal between the 12th and 13th ribs), SM muscle (left), liver, and testes were 

collected approximately 30–45 min after death. The tissue was immediately frozen in liquid 

nitrogen and then stored at −80 C.  

2.2.4. Biofluid sample preparation for NMR 

Biofluid sample preparation was done according to the procedure described by Foroutan et al. [69]. 

Both serum and ruminal fluid samples contain a substantial portion of large molecular weight 

proteins and lipoproteins which can seriously compromise the quality of 1H-NMR spectra though 

the generation of intense, broad lines that interfere with the identification and quantification of 

lower abundance metabolites. De-proteinization can eliminate these peaks. The de-proteinization 

of these samples was done by ultrafiltration using 3-kDa ultrafiltration units (Amicon Micoron 

YM-3; Sigma-Aldrich, St. Louis, MO, USA), following a previously reported de-proteinization 

procedure [70]. Briefly, a newly opened 3 kDa Amicon 0.5 mL ultrafilter system was thoroughly 

rinsed by adding 500 µL HPLC-grade water (Millipore Sigma, Oakville, ON, Canada) to the filter 

and centrifuging at 9400 ×g for 10 min. The glycerol-containing filtrate was disposed into the sink 

followed by repeating the rinsing step four more times. The rinsed Amicon ultrafilter was then 

dried with a Kimwipe tissue and placed into a new 1.5 mL microcentrifuge tube. The biofluid 
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sample (either ruminal fluid or serum), which was thawed on ice (for 30 minutes), was briefly 

centrifuged at 9400 ×g for 3 minutes at 4 °C to remove any particulate material. The supernatant 

(450 µL) was then transferred into the Amicon ultrafilter and centrifuged at 11,500 ×g for 20 min 

at 4 °C to remove the proteins from the sample. The de-proteinized sample was then frozen and 

stored at −80 °C until further use. 

2.2.5. Tissue sample preparation for NMR 

For each tissue, approximately 2 g of a frozen sample was ground in a 300 mL pestle and mortar 

with about 100 mL liquid nitrogen. A total of 300 mg of the ground (still frozen) tissue was 

weighed and transferred into an 11 mL PYREX™ screw cap glass tube (Corning Inc., New York, 

NY, USA), followed by adding 4.4 mL cold methanol and 0.68 mL cold HPLC grade water. The 

tissue was homogenized using a Vortex-Genie 2 vortexer (Scientific Industries, New York, NY, 

USA) at 1500 rpm for 3 min, then 2.2 mL cold chloroform was added to the sample. The mixture 

was vortexed at 1500 rpm speed for 5 min and then centrifuged for 10 min at 1000 ×g at 4 °C. The 

supernatant was then transferred into a new 11 mL PYREX™ glass tube, then 2.2 mL cold 

chloroform and 3.2 mL cold water were added. The mixture was vortexed at 1500 rpm speed for 

3 min, then centrifuged for 10 min at 1000 ×g at 4 °C. This will give a biphasic mixture. The upper 

polar phase (containing water-soluble metabolites) and lower non-polar phase (containing lipid-

soluble metabolites) were carefully separated using a Pasteur pipette. The lower non-polar phase 

was transferred into a 2 mL PYREX™ glass tube and kept at −80 C for future metabolomics 

analysis. The upper polar phase was transferred into a 15 mL Falcon tube (Thermo Fisher 

Scientific, Whitby, ON, Canada). The upper polar phase was purged under nitrogen gas for 90–

120 min. Once the purging was completed, 2 mL of HPLC-grade water was added to the tube. The 

tube was then frozen with liquid nitrogen and the sample lyophilized for 24 h. After lyophilization, 
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the dried sample was dissolved with 300 µL of HPLC-grade water and kept at −80 C until further 

use. 

2.2.6. NMR spectroscopy 

Two-hundred-eighty μL of the ultrafiltered biofluid (serum or ruminal fluid) or the water-soluble 

extract of each tissue was transferred to a 1.5 mL Eppendorf tube, to which an additional 70 μL of 

a standard NMR buffer solution was added. For serum, the buffer consisted of 250 mM potassium 

phosphate (pH 7.0), 5 mM 2,2-dimethyl-2-silapentane-5 sulfonate (DSS-d6), 5.84 mM 2-

chloropyrimidine-5-carboxylic acid, and D2O 54% v/v in H2O. For ruminal fluid, liver, SM and 

LT muscle and testis tissue extracts, the buffer consisted of 750 mM potassium phosphate (pH 

7.0), 5 mM 2,2-dimethyl-2-silapentane-5 sulfonate (DSS-d6), 5.84 mM 2-chloropyrimidine-5-

carboxylic acid, and D2O 54% v/v in H2O. The mixture (a final volume of 350 μL) was then 

transferred to a 3 mm NMR tube for spectral analysis. All 1H-NMR spectra were collected on a 

Bruker Avance III Ascend 700 MHz spectrometer equipped with a 5 mm cryo-probe (Bruker 

Biospin, Rheinstetten, Germany). 1H-NMR spectra were collected at 25 °C using the first transient 

of a nuclear Overhauser effect spectroscopy (NOESY)-presaturation pulse sequence. This pulse 

sequence was selected based on its excellent reproducibility and quantitative accuracy [71]. NMR 

spectra were acquired with 128 scans employing a 4 second acquisition time and a 1 second recycle 

delay. 

2.2.7. NMR compound identification and quantification  

Prior to spectral deconvolution, all free induction decays (FIDs) were zero-filled to 240,000 data 

points and a 0.5 Hz line broadening function was applied. The methyl singlet of the added DSS 

(set to 0.00 ppm) served both as an internal chemical shift referencing standard and as an internal 
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standard for quantification. All 1H-NMR spectra were processed using the Chenomx NMR Suite 

8.1 software package (Chenomx Inc., Edmonton, AB, Canada) for compound identification and 

quantification as previously described [72]. A minimum of three experienced NMR 

spectroscopists processed and analyzed each NMR spectrum to eliminate compound identification 

and quantification errors. Sample spike-in experiments were also used to confirm the identity of a 

number of compounds suspected to be present in specific biofluids or tissue samples. A spike-in 

experiment involves adding 50–500 μM of the presumptive compound to selected samples to test 

if the corresponding 1H-NMR signals changed as expected. NMR analysis typically led to the 

identification and quantification of about 50 metabolites in each biofluid or tissue sample. 

2.2.8. LC–MS/MS compound identification and quantification  

A targeted, quantitative metabolite profiling approach was employed that combined RPLC–MS 

with DFI–MS (RPLC–DFI–MS/MS) to determine the concentrations of a wide range of 

metabolites. These analyses were performed using an in-house quantitative metabolomics assay 

(TMIC Prime) [73,74]. This assay was used with an Agilent 1260 series ultrahigh-performance 

liquid chromatography (UHPLC) system (Agilent Technologies, Palo Alto, CA) coupled with an 

AB SCIEX QTRAP® 4000 mass spectrometer (Sciex Canada, Concord, ON, Canada) to identify 

and quantify up to 143 compounds (including amino acids, biogenic amines, glucose, organic 

acids, acylcarnitines, PCs, LysoPCs, SMs, and SM(OH)s). The absolute quantification of water-

soluble compounds including amino acids, organic acids, and biogenic amines was ensured by 

using two separate UHPLC injections with C18 column separations. On the other hand, glucose 

and the various lipid classes (acylcarnitines, PCs, LysoPCs, SMs, etc.) are measured by the 

column-free DFI method (both +ve and –ve mode). While initially designed and calibrated for 

human metabolomics studies, the measurable ranges of metabolite concentrations available 
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through the TMIC Prime assay match very closely with the known or expected metabolite 

concentrations in bovine biofluids and tissues (as determined via orthogonal NMR experiments 

and high levels of agreement with published literature data). 

The detection of each metabolite in the TMIC Prime assay relies on multiple reaction 

monitoring (MRM). The assay incorporates both isotope-labelled internal standards and other 

quality control (QC) standards into its 96-well filter plate to ensure accurate compound 

quantification. The first 14 wells in the 96-well plate are used for building calibration curves and 

QCs, while the other 82 wells are used for sample analysis. For all biofluids analyzed with this 

assay, both the original sample (without dilution) and diluted samples (10×) were analyzed to 

ensure correct calibration and quantification. In brief, 10 µL of each sample (the filtered biofluid 

or the water-soluble or lipid-soluble extract of the tissue) was carefully pipetted into an appropriate 

sample well of the upper 96-well filter plate and dried using a stream of nitrogen gas. Amino acid 

and biogenic amine derivatization were done by adding 50 µL of a 5% solution of phenyl-

isothiocyanate (PITC) to each well and incubating for 20 minutes. After incubation and PITC 

derivatization, the samples were dried down using a nitrogen gas evaporator. The metabolites were 

then extracted by adding an ammonium acetate/methanol mixture (5 mM ammonium acetate in 

methanol) to the upper 96-well filter plate, shaking at 330 rpm for 30 min, and then centrifuging 

the plates so that the extract bled into the lower 96-deep well plate.  

The resulting extract was split for RPLC–MS (150 µL) and DFI–MS (150 µL) analyses 

followed by a dilution step with 150 µL of water for RPLC–MS analysis and with 400 µL of the 

MS running solvent for DFI–MS analysis. All LC–MS analyses were conducted on an AB SCIEX 

QTRAP® 4000 mass spectrometer equipped with an Agilent 1260 series UHPLC system. The 

Analyst software 1.6.2 (Concord, ON, Canada) was used to control the entire assay’s workflow.  
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2.2.9. Trace elemental analyses using ICP–MS 

All trace elemental analysis was performed on a Perkin-Elmer NexION 350x ICP–MS (Perkin-

Elmer, Woodbridge, ON, Canada), operating in a kinetic energy discrimination (KED) mode. 

Argon (ICP/MS grade, 99.99 %) was used as a nebulizer (0.9 mL min−1), an auxiliary (1 mL min−1) 

and a plasma gas (15 mL min−1). Helium (He) was used as a non-reactive collision gas (Cell gas 

A: 4.3) to eliminate/minimize chemical interference. The dwell time for each metal ion was set to 

50 ms with a total integration time of 500 ms (10 sweeps per reading and three replicates). The 

uptake of samples/standards/QCs was done by a peristaltic pump using the following protocol: 1) 

sample flush for 50 seconds at 48 rpm, 2) read delay for 15 seconds at 20 rpm, 3) spectral analyses 

at 20 rpm, and 4) washing for 45 seconds at 24 rpm. All samples were diluted using 1% HNO3, 

5% H2O2, and MiliQ water (grade 1) by a factor of 10 for serum and tissues and a factor of 5 for 

ruminal fluid samples. Indium (In) was added to the dilution solvent as an internal standard. The 

final concentration of indium after mixing with the samples/standards was 20 ppb. An external 

calibration curve was used for the quantitation of all metal ions using a six- to nine-point 

calibration curve (for each metal) and linear regression. The performance of the ICP–MS was 

checked daily using a commercially prepared Perkin Elmer Nexion calibration solution to evaluate 

the sensitivity of the instrument. The Nexion solution was also used to calibrate the mass 

spectrometer at low (Be), mid (In), and high (U) masses. The accuracy of the ICP–MS analytical 

protocol was evaluated in every sequence by the analysis of standard reference materials (SRMs) 

- i.e., serum and water QCs. Continuing calibration verification (CCV) was run every 15 samples 

to monitor the validity of each calibration curve throughout the sequence. 
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2.2.10. Literature research on bovine biofluid and tissue metabolites  

We conducted an extensive literature review of known bovine biofluids and tissues metabolites 

and their concentrations using many open-access search engines, such as Google Scholar [75], 

PubMed [76], and ScienceDirect [77]. We also used several in-house text-mining software 

packages that were originally developed for the Human Metabolome Project (HMP) and the 

Human Metabolome Database (HMDB) [78]. Two of the most useful programs were PolySearch 

[79] and PolySearch2 [80]. These programs are able to take simple keywords (i.e., “serum”, 

“bovine”, etc.) as input and rapidly create hyperlinked lists of abstracts and papers from PubMed 

(and other data sources) containing information about bovine metabolites and their corresponding 

concentration data. PolySearch2 was able to compile a ranked list of bovine metabolites by 

measuring word co-occurrence frequency using terms such as “cow serum”, “serum”, “beef”, 

“bovine”, and “cattle” in conjunction with words such as “concentration”, “identification”, 

“quantification”, “mM”, or “micromol”. PolySearch2 also extracted key sentences from the 

abstracts, then labelled and hyperlinked the metabolites mentioned in the text. This led to the 

identification of ~200 papers, abstracts and textbooks with relevant chemical information on 

bovine biofluids and tissues.  

All literature-derived data regarding bovine compounds, along with their concentrations 

and references, were compiled, compared, and their names “normalized” to match HMDB [78], 

chemical abstracts service (CAS) number, and PubChem identifiers. The manually derived 

compound data was further annotated using an in-house program called DataWrangler [78], which 

automatically generates names, synonyms, descriptions, structures, chemical taxonomies, physical 

property data, and bioavailability data. The information generated by DataWrangler was manually 

checked by three different scientists with post-graduate degrees in biochemistry, physiology, 
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and/or animal sciences. Additional data compiled from two other electronic databases, including 

the Livestock Metabolome Database (LMDB) [36] and the Milk Composition Database (MCDB) 

[13] was also collected and cross-checked. After the manual checking phase was complete, the 

data were then entered into the BMDB. Concentration data were cross-checked manually to 

identify any large discrepancies (>3×) between entered values. Those that exceeded this threshold 

were re-analyzed to see if data entry errors had been made. For highly discrepant values, a 

“majority wins” scheme was used to select the best or most likely value. On the other hand, if our 

experimental data matched best with one of the discrepant values, that value was selected over 

other reported value(s). The resulting list of 14 literature-derived bovine biofluids and tissues 

metabolites (including 278 overlapping experimentally-derived metabolites), along with their 

concentration data (when available), helped to confirm many of the metabolites and metabolite 

concentrations previously found in our experimental analyses.  

2.2.11. Genome scale inference of expected bovine metabolites 

Publicly available bovine metabolite, protein and pathway data from PathBank [39] and UniProt 

[81] were used to generate a genome-scale compilation of biochemically inferred or “expected” 

bovine metabolites. These “expected” metabolites correspond to endogenously produced 

compounds that are very likely to be in cells or tissues, based on well-known or well-characterized 

biochemical pathways or reactions. Many of these compounds correspond to lipids, transient 

intermediates, or low-abundance compounds that are not normally measured in metabolomics 

experiments. Comparisons of these computationally inferred bovine metabolites with metabolite 

and protein data reported in the HMDB was used to identify potentially missing metabolites or 

metabolite species. Care was taken to exclude exogenous compounds (human-only food additives, 

drugs, food constituents, etc.) that would be unlikely to be found in cattle or cattle feed.  
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2.2.12. Construction of the BMDB 

BMDB was implemented using a Ruby on Rails (http://rubyonrails.org, version 4.2.0) web 

framework incorporating a MySQL relational database (https://www.mysql.com, version 15.1 

Distrib 10.4.6-MariaDB) to manage all of the metabolite data, including descriptions, synonyms, 

physico-chemical properties, concentrations, spectra, and external references. BMDB was built 

using HMDB’s framework and is therefore similar in appearance and structure. BMDB uses the 

model–view–controller architecture, in which internal data logic is separated from user input and 

data presentation. The raw information stored in the database is dynamically extracted and 

rendered into web pages. BMDB is hosted on a Digital Ocean server equipped with 4 CPUs, 80 

GB of disk space, and 8 GB of RAM. 

2.3. RESULTS 

This section is divided into four subsections covering: 1) experimental metabolomics results; 2) 

literature review results; 3) a comparative assessment between different tissues, biofluids, and 

platforms; and 4) a detailed description of the BMDB. 

2.3.1. Water-soluble compound identification and quantification by NMR and LC–MS/MS 

Using a combination of NMR and LC–MS/MS, a total of 58, 64, 60, 60, 66, and 69 water-soluble 

compounds were identified and quantified in serum, ruminal fluid, Longissimus thoracis (LT) 

muscle, semimembranosus (SM) muscle, liver, and testis tissues, respectively. The complete list 

of compound concentrations (including averages and their standard deviations) for serum is shown 

in Table 2.1. The most abundant compounds in serum were lactate (average concentration: 4.8  

2 mM), glucose (4.0  0.4 mM), and urea (1.3  0.3 mM). The lowest concentration that could be 

reliably detected in serum was 0.04  0.02 µM for putrescine. The complete list of compound 
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concentrations for ruminal fluid (including averages and their standard deviations) is shown in 

Table 2.S1. The most abundant compounds in ruminal fluid were acetate (37  8 mM), butyrate 

(26  9 mM), propionate (16  5 mM), and glucose (16  11 mM). The lowest concentration in 

ruminal fluid that could be reliably detected was 0.1  0.1 µM for serotonin.  

In terms of LT and SM muscle tissues, the complete list of compound concentrations 

(including averages and their standard deviations) is shown in Table 2.S2 The most abundant 

compounds detected in these muscle tissues, in terms of µmol per gram wet-weight were lactate 

(LT = 31  8 µmol/g, SM = 38  11 µmol/g), carnosine (LT = 22  5 µmol/g, SM= 22  3 µmol/g), 

creatine (LT = 4.7  0.4 µmol/g, SM= 4.8  0.3 µmol/g), and glutamine (LT = 2.8  0.8 µmol/g, 

SM = 2.5  0.7 µmol/g). The lowest concentration that could be reliably detected was for 

spermidine (0.09  0.03 nmol/g in LT muscle and 0.11  0.04 nmol/g in SM muscle) as well as 

spermine (0.2  0.1 nmol/g in LT muscle and 0.11  0.03 nmol/g in SM muscle). 

Two other non-muscle tissues were analyzed, including liver and testes. The complete list 

of compound concentrations (including averages and their standard deviations) for liver tissue is 

shown in Table 2.S3. The most abundant compounds in liver, in terms of µmol per gram wet-

weight, were glucose (80  15 µmol/g), lactate (12  1.7 µmol/g), and sn-glycero-3-

phosphocholine (11  1.5 µmol/g), while the least abundant compound was putrescine (0.2  0.1 

nmol/g). The complete list of compound concentrations (including averages and their standard 

deviations) for testis tissue is shown in Table 2.S4. The most abundant compounds in testis, in 

terms of µmol per gram wet-weight were lactate (7.7  1.6 µmol/g), creatine (7.6  1.9 µmol/g), 

myo-inositol (7.2  1.2 µmol/g), O-phosphoethanolamine (7  1.2 µmol/g), and glutamate (3.3  

0.7 µmol/g), whereas the least abundant compound was spermidine (0.4  0.2 nmol/g).  
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2.3.2. Lipid-like compound identification and quantification by LC–MS/MS 

A locally developed LC–MS/MS assay called The Metabolomics Innovation Centre (TMIC) Prime 

assay provided quantitative results for 74 lipid-like compounds (14 lysophosphatidylcholines 

(LysoPCs), 5 sphingomyelins (SMs), 5 hydroxysphingomyelins (SM(OH)s, 10 

phosphatidylcholines (PCs), and 40 acylcarnitines) for serum (Table 2.1), LT and SM muscles 

(Table 2.S2), liver (Table 2.S3), and testis (Table 2.S4). Sixty-four of these lipid-like compounds 

(10 LysoPCs, 3 SMs, 3 SM(OH)s, 8 PCs, and 40 acylcarnitines) were detected and quantified in 

ruminal fluid (Table 2.S1). The other 10 compounds that could be quantified in serum and tissue 

samples, but not in ruminal fluid, were below the limit of detection (LOD) in ruminal fluid 

samples. Note that each LysoPC and PC species identified by the TMIC Prime assay typically 

corresponds to a minimum of two up to 24 possible unique structures, respectively. In our study, 

SM(16:0) (68  10 µM) and LysoPC(14:0) (6  3 µM) were the most abundant lipids identified in 

serum and ruminal fluid, respectively. Carnitine or C0 (1856  424 nmol/g and 1751  337 nmol/g) 

was the most abundant metabolite identified in LT and SM muscle, respectively. Likewise, 

carnitine (22  6 nmol/g) and SM(16:0) (22  7 nmol/g) were the most abundant lipid-like 

compounds identified by the TMIC Prime assay in liver, whereas SM(16:0) (42  6 nmol/g) was 

the most abundant lipid-like compound in testis. The least abundant lipids detected by TMIC Prime 

assay were acylcarnitines. These included C16:2-OH (5  1 nM) and C18:2 (6  1 nM) in serum 

and ruminal fluid, respectively. They also included a single acylcarnitine, C18:2, at 0.004  0.001 

nmol/g, 0.004  0.001 nmol/g, 0.006  0.001 nmol/g, and 0.004  0.001 nmol/g for LT muscle, 

SM muscle, liver, and testis, respectively.  
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2.3.3. Trace element identification and quantification by ICP–MS 

The ICP–MS method was developed to detect and quantify 35 metabolites or trace minerals. While 

no toxic trace metals (i.e., Pb, As, Cd) were detected in the samples, ICP–MS provided quantitative 

results for 13 metabolites or trace minerals in bovine serum (Table 2.1). The most abundant trace 

elements identified and quantified by ICP–MS were sodium (134  14 mM), potassium (4  0.4 

mM), calcium (2  0.2 mM), and phosphorus (1.3  0.2 mM), while the least abundant metals 

quantified by ICP–MS were cesium (1.7  0.3 nM), barium (200  30 nM), and strontium (1000 

 100 nM). In terms of ruminal fluid, our ICP–MS analysis provided quantitative results for 17 

metabolites or trace minerals, as shown in Table 2.S1. The most abundant trace elements identified 

and quantified were sodium (236  20 mM), potassium (40  7 mM), phosphorus (12  2 mM), 

and magnesium (7.5  3.5 mM), whereas the least abundant compounds were cesium (30  10 nM) 

and cobalt (1000  200 nM).  

ICP–MS could identify and quantify 15, 14, and 15 trace minerals in bovine LT muscle, 

SM muscle, and liver, respectively (Table 2.S2 and Table 2.S3). In LT and SM muscles, the most 

abundant trace elements identified and quantified were potassium (LT = 49  8 µmol/g; SM = 52 

 7 µmol/g), phosphorus (LT = 22  3 µmol/g; SM = 22  3 µmol/g), and sodium (LT = 10  2 

µmol/g; SM = 12  3 µmol/g), whereas the least abundant compounds were thallium (LT= 0.0007 

 0.0002 nmol/g; SM= 0.0009  0.0001 nmol/g) and vanadium (LT = 0.013  0.004 nmol/g; SM= 

0.009  0.001 nmol/g). In liver, the most abundant trace elements identified and quantified were 

potassium (46  8 µmol/g), phosphorus (33  7 µmol/g), and sodium (26  5 µmol/g), while the 

least abundant compounds were cesium (0.02  0.01 nmol/g), and lead (0.019  0.003 nmol/g). 

For testis tissue, ICP–MS could identify and quantify 16 metabolites or trace minerals (Table 
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2.S4). The most abundant trace elements identified and quantified were potassium (49  8 µmol/g), 

sodium (36  7 µmol/g), and phosphorus (16  3 µmol/g). The least abundant compounds were 

thallium (0.0014  0.0003 nmol/g) and lead (0.014  0.003 nmol/g). 

2.3.4. The chemical composition of bovine biofluids and tissues (experimental data) 

Inspection of our experimental data reveals that the chemical composition of bovine serum is 

dominated by inorganic ions (primarily sodium, potassium, calcium, and phosphorus), 

carbohydrates (glucose), organic acids (lactate, acetate, and 3-hydroxybutyrate), amino acids 

(glycine, valine, and glutamine), and various amine-containing compounds (urea, creatinine). 

Ruminal fluid mostly contains inorganic ions (primarily sodium, potassium, phosphorus, and 

magnesium), carbohydrates (glucose), organic acids (acetate, butyrate, and propionate), amino 

acids (lysine, glutamate, and alanine), biogenic amines (methylamine and putrescine), and 

nucleobases (uracil). The LT and SM muscles are mostly composed of inorganic ions (primarily 

potassium, phosphorus, and sodium), carbohydrates (glucose), organic acids (lactate), amino acids 

(creatine, glutamine, and alanine), biogenic amines (carnosine) and miscellaneous compounds (O-

acetylcarnitine and betaine). The most abundant compounds in liver are inorganic ions (primarily 

potassium, phosphorus, and sodium), carbohydrates (glucose), organic acids (lactate), amino acids 

(glutamate and glycine), biogenic amines (taurine) and miscellaneous compounds (sn-Glycero-3-

phosphocholine). The most abundant chemicals in testis are inorganic ions (primarily potassium, 

sodium, and phosphorus), carbohydrates (UDP-N-acetylglucosamine), organic acids (lactate), 

amino acids (creatine and glutamate), biogenic amines (O-phosphoethanolamine and taurine), and 

miscellaneous polyols (myo-inositol). Lesser quantities of lipids including acylcarnitines (except 

carnitine and acetylcarnitine, which have high concentrations in both LT and SM muscles), 
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LysoPCs, PCs, SMs, as well as other small bioactive compounds are also evident in these bovine 

biofluids and tissues.  

2.3.5. Literature survey of bovine biofluids and tissues metabolites 

As part of our literature survey, 249 papers were reviewed on bovine metabolomics. These papers 

provided metabolomic data for six biofluids and eight tissues. The paper that provided the most 

extensive metabolomics data was written by Foroutan et al. [13] on the milk metabolome. This 

paper identified and quantified 972 metabolites (296 metabolites were experimentally detected and 

676 were found from the literature) found in bovine milk using a combination of LC–MS/MS, 

NMR, ICP–MS and literature reviews [13]. Other papers of note include the work of Saleem et al. 

[12], which described more than 200 metabolites found in bovine ruminal fluid (using a 

combination of NMR, GC–MS, ICP–MS, and LC–MS/MS), the paper by Zhang et al. [16], which 

identified and quantified 128 metabolites found in serum (using a combination of direct injection 

and tandem mass spectrometry (DI-MS/MS) with a reverse-phase LC–MS/MS), and the paper by 

Muroya et al. [8], which identified and quantified 70 metabolites found in LT muscle of Japanese 

Black (Wagyu) cattle (using Capillary Electrophoresis–Time-of-flight–Mass Spectrometry, also 

known as CE–TOF–MS). The most thoroughly studied bovine biofluid was milk with 118 papers, 

followed by blood with 35 papers [36]. The least studied bovine biofluid was semen with three 

papers [54–56]. The most thoroughly studied bovine tissue was muscle with 12 papers 

[7,8,36,57,58], whereas the least studied bovine tissue was liver, with just three papers [59–61]. 

The most comprehensively characterized bovine biofluid was milk with 972 metabolites identified 

via literature data [13], followed by ruminal fluid with ~ 200 metabolites [12].  

As we observed with both our experimental data and from the literature data, bovine serum 

is particularly rich in inorganic ions or minerals such as sodium (107–137 mM), potassium (4–4.3 
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mM), calcium (1.4–2.2 mM), phosphorus (1.3–1.6 mM), magnesium (0.8–0.9 mM), as well as a 

variety of organic acids such as lactate (0.6–1.6 mM), acetate (0.9–1 mM), and 3-hydroxybutyrate 

(0.2–2 mM). Other highly abundant metabolites reported in bovine serum include glucose (3–4 

mM), urea (2–4 mM), and acetone (0.1–1 mM). The least abundant compounds in serum include 

several acylcarnitines, such as C18:1-OH (8–9 nM), C16-OH (3–6 nM), as well as C3-OH and C7-

DC and C14 (10–12 nM). The concentrations reported in the literature data for the above-

mentioned metabolites agreed well with our experimental data, except for lactate (2.8–6.8 mM), 

acetate (0.2–0.6 mM), and urea (1.1–1.6 mM). 

Just as with serum, bovine ruminal fluid is rich in a variety of inorganic ions or minerals, 

such as sodium (110–117 mM), potassium (17.9–18.2 mM), phosphorus (9.1–9.3 mM), calcium 

(0.9–1 mM), and magnesium (0.09–0.1 mM). The most abundant organic compounds reported in 

ruminal fluid are organic acids such as acetate (41–81 mM), propionate (14–17 mM), and butyrate 

(6–18 mM), amino acids such as proline (240–1275 µM), isoleucine (123–1210 µM), and lysine 

(91–1095 µM), as well as glucose (393–3111 µM). The least abundant compounds in ruminal fluid 

include several lipids or acylcarnitines such as C16:2 (2–13 nM), C18:1-OH (2–22 nM), C14:2-

OH (8–32 nM), and C16-OH (9–11 nM), sphingomyelins such as SM(16:0) (10–50 nM), 

hydroxysphingomyelins such as SM (16:1(OH)) (10–20 nM) and SM (14:1(OH)) (10–30 nM), as 

well as the lysophosphatidylcholine, LysoPC16:0 (10–200 nM). The concentrations reported in 

the literature for the above-mentioned metabolites agreed well with our experimental data, except 

for sodium (216–255 mM), potassium (33.3–46.5 mM), phosphorus (10.5–14.3 mM), magnesium 

(3.9–10.9 mM), glucose (4746–27122 µM), SM(16:0) (130–1370 nM), SM(16:1(OH)) (30–110 

nM), and SM(14:1(OH)) (40–60 nM). These differences are most likely due to dietary differences 
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among the different cattle groups being studied, as the concentration of many ruminal fluid 

metabolites are strongly affected by the feed given to cattle.  

In terms of bovine LT and SM muscles, the literature data indicated that organic acids such 

as lactate (14–132 µmol/g), inosinate (0.031–9 µmol/g), and succinate (0.9–2.3 µmol/g), amino 

acids such as creatine (1–10 µmol/g), glutamine (3–5 µmol/g), and alanine (1–1.3 µmol/g), 

carbohydrates such as glucose (3.3 µmol/g) and glucose-1-phosphate (0.1–1.2 µmol/g), the 

biogenic amine, carnosine (10–14 µmol/g), as well as betaine (1.5–1.8 µmol/g) and carnitine (0.8–

2.6 µmol/g) were found to be quite abundant in these tissues. The least abundant compounds in 

LT and SM muscles are several amino acids such as aspartate (14–54 nmol/g) and tryptophan (35–

95 nmol/g), as well as the biogenic amine, putrescine (9–22 nmol/g). The concentrations reported 

in the literature for the above-mentioned metabolites agreed with our experimental data, except for 

glucose (LT: 0.3–0.8 µmol/g, SM: 0.3–1.2 µmol/g) and carnosine (LT: 17–27 µmol/g, SM: 19–25 

µmol/g).  

Regarding bovine liver tissue, a single study described by Miles et al. [59] was the only 

study that attempted to identify and quantify metabolites in the bovine liver tissue. The most 

abundant compound found was glutamate (6122–7999 nmol/g), followed by alanine (2366–3515 

nmol/g) and glutamine (1911–2576 nmol/g). The least abundant compounds found in liver in this 

study was ornithine (984–1184 nmol/g). These values agreed moderately well with our findings. 

We found literature values for 12 amino acids in bovine testis tissue. The most abundant 

metabolites reported in the literature for bovine testis are glutamate (2–2.4 µmol/g), glycine (0.9–

1.3 µmol/g), and alanine (0.9–1.2 µmol/g), while the least abundant compounds are histidine (20 

nmol/g), isoleucine (30 nmol/g), leucine (40 nmol/g), valine (50 nmol/g), and lysine (40–200 

nmol/g). These values agreed moderately well with our findings with the observed differences 
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likely due to diet, age and breed, chemical volatility, sample work-up or extraction, sample storage 

protocols, and instrument sensitivity. 

2.3.6. The BMDB website 

All of the detected, identified, quantified and biochemically inferred compounds obtained from 

our experimental, computational, and literature-searching efforts have been deposited into a freely 

accessible database called the BMDB (Bovine Metabolome Database - www.bovinedb.ca). The 

database contains not only the metabolite names and synonyms (common and International Union 

of Pure and Applied Chemistry (IUPAC)), but also their structures (multiple formats), basic 

descriptions, chemical ontology, physico-chemical properties, their reference spectra (NMR, GC–

MS, and LC–MS), pathway information (as derived from PathBank) [39], and literature citations 

from the scientific literature for all (to the best of our knowledge) of these compounds. The BMDB 

is structured to be very similar to other popular, online metabolomics databases, such as the HMDB 

[18–21], ECMDB [24,25] or YMDB [22,23]. In particular, the BMDB is designed to serve as a 

user-friendly tool for data browsing and compound searching. The BMDB can be launched from 

its home page (Figure 2.1) using a variety of pull-down menus or tabs located at the top of the 

home page, which serve as a navigation panel. Users may “Browse”, “Search”, or “Downloads” 

data from the database using this navigation panel. Additional information about the database is 

located under the “About” menu. Clicking on the “Browse” tab and the subsequent “Metabolites” 

dropdown option (on the BMDB navigation panel) generates a tabular view that allows users to 

casually scroll through the metabolites in the database or to re-sort its contents by compound name 

or mass. Each compound entry in the BMDB is hyperlinked to an individual metabolite description 

table (called a MetaboCard) that, when clicked, brings up additional information on that particular 

chemical. Clicking on the “Search” tab at the top of the home page allows users to perform 

http://www.bovinedb.ca/
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compound name searches, general text searches, compound structure searches, molecular weight 

searches, and a variety of spectral (NMR and MS) searches. The “Downloads” section contains 

several data files that include the chemical structures, metabolite data, spectra, and other files (in 

SDF, CSV, or XML format). Currently, the BMDB contains information on 3173 unique, 

experimentally detected compounds with unique, well-defined structures and names. The BMDB 

also contains another 48,628 compounds that have been computationally inferred to exist from 

detailed genomic analysis, biochemical pathway analysis, and comparison to other well-studied 

mammalian metabolomes. As a result, the BMDB contains three classes of metabolites: 1) detected 

and quantified; 2) detected but not quantified; and 3) expected (or genomically/biochemically 

inferred). These classes of metabolites may be easily selected or filtered using BMDB’s filtering 

functions. 

Note that the total number of chemical compounds in BMDB is not a number that will 

remain unchanged. Certainly, as technology and instrument sensitivity improve, it is anticipated 

that this number will increase as other, lower abundance metabolites will be detected and will be 

added to future versions of the BMDB. 

2.4. DISCUSSION 

Using a combination of experimental, computational and literature-based approaches, we have 

attempted to identify and quantify as many chemicals as possible that are detectable in different 

biofluids and tissues of both dairy and beef cattle. We have deposited this information into the 

BMDB (www.bovinedb.ca) [38]. The BMDB contains a total of 51,801 metabolites with unique 

compound structures. Just 4.1% of these metabolites with unique structures (corresponding to 

11.8% metabolites or metabolite species) have concentration data in at least one tissue or biofluid, 

while the remaining 95.9% of these metabolites with unique structures (or 88.2% metabolites or 

http://www.bovinedb.ca/
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metabolite species) have no quantification information whatsoever. The metabolites in the BMDB 

have been associated with eight bovine tissues and six different bovine biofluids. Of the 2100 

compounds with unique structures that were experimentally identified and quantified in the 

BMDB, 1834 (87.3%) were experimentally characterized by our laboratory (using NMR, GC–MS, 

LC–MS and ICP–MS methods) over the past 7 years, including 306 (14.6%), as reported in this 

communication. Another 266 (12.7%) metabolites were compiled from computer-aided literature 

searches and were therefore measured by other laboratories. In addition, 48,628 (93.9%) 

metabolites were biochemically inferred to exist through detailed comparisons to existing 

genomics/metabolomics data of other well-studied mammals. 

There is considerable variability in the extent of metabolome coverage for different bovine 

tissues and biofluids. These results are summarized in Table 2.2. This table shows that the most 

fully characterized bovine biofluid is milk with 928 known metabolites or metabolite species 

(corresponding to 2350 unique structures). The most poorly characterized biofluid is urine with 62 

known metabolites or metabolite species (corresponding to 62 unique structures). Likewise, the 

most completely characterized bovine tissue is liver with 1056 known metabolites or metabolite 

species (corresponding to 1254 unique structures) while the most poorly characterized tissues or 

biofluids are parathyroid gland, pineal gland, umbilical cord, and vitreous humor. These poorly 

characterized tissues are grouped in Table 2.2 under the “All tissues” category, each with just one 

known metabolite (corresponding to one unique structure).  

Analysis of the data in the BMDB also allows us to identify which metabolomics platforms 

are most useful or most widely used for bovine metabolomics studies. According to our data, the 

most popular metabolomics platform for analyzing bovine metabolites is NMR, with 26 published 

studies. GC–MS is a distant second with 13 published studies, while LC–MS was used for 12 
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studies. ICP–MS has been used with just three studies. Other platforms used by metabolomics 

researchers include GC×GC–MS with 11 studies, and high-performance liquid chromatography–

ultraviolet spectroscopy (HPLC–UV) with eight studies. In terms of metabolome coverage, LC–

MS methods have been used to identify 472 compounds and to quantify 154 compounds. On the 

other hand, NMR methods have been used to identify 170 compounds and to quantify 108 

compounds. GC–MS has been used to identify 425 compounds and quantify 41 compounds, while 

ICP–MS has been used to identify and quantify 44 compounds. Based on the list of chemicals 

identified by each platform there appears to be considerable overlap with the compounds identified 

by NMR and the compounds identified by GC–MS. On the other hand, LC–MS tends to permit 

the identification and quantification of more hydrophobic compounds. As mentioned earlier, the 

differences in metabolite coverage from the different platform technologies are largely due to 

differences in sensitivity, detection/instrument biases and separation protocols, as well as 

differences in compound stability, solubility, volatility and other intrinsic chemical factors [13].  

2.4.1. Comparisons to other studies 

One of the objectives of this work was to evaluate the level of agreement between different 

platforms and different laboratories (i.e., protocols) in identifying and quantifying key metabolites 

across identical biofluids and tissues and over different periods of time. Overall, we found a very 

good agreement between the results reported for most methods and most laboratories. Here, we 

define a very good agreement as being within one standard deviation of the reported literature 

value (i.e., literature value ± 1 SD). Moderate agreement corresponds to being within two standard 

deviations of the reported value, while a poor agreement is defined as a value that is greater than 

two standard deviations of the reported literature value. A small number of questionable or 

profoundly different, literature-derived concentration values were identified during our literature 
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survey, but most of these could be eliminated through the curation process after being deemed 

mistaken, disproven (by subsequently published studies), mistyped or physiologically impossible. 

Much of the curation process involved multiple curators carefully reading and double-checking 

the primary literature to annotate the concentration unit types, to perform unit conversions, and to 

catch typographical inconsistencies. 

In terms of serum composition, we found that almost all studies exhibited very good 

agreement across platforms and across laboratories with almost no significant differences in either 

the composition or concentration of reported metabolites. More specifically, in terms of water-

soluble compounds, an inspection of Table 2.1 reveals a generally good agreement between the 

NMR- and LC–MS-measured concentrations and those reported in the literature. Forty-one out of 

the 58 compounds identified by these two techniques in serum had concentration values previously 

reported in the literature. More than 73% (30/41) of these compounds exhibited good agreement 

with literature values (i.e., the average values from our experiments fell within one standard 

deviation of the literature value) in serum. ICP–MS is considered as a gold standard for the 

identification and quantification of trace metal ions [62], and, therefore, we tend to have higher 

confidence in the values derived via ICP–MS over those measured by other (older or less sensitive) 

technologies. In serum, all nine trace elements identified and quantified in our study exhibited very 

good agreement with previously reported literature values. In total, 64 out of the 145 compounds 

identified by NMR, LC–MS/MS, and ICP–MS had concentration values that were previously 

reported in the literature. More than 78% (50/64) of these compounds exhibited very good 

agreement with literature values for bovine serum. For instance, the value of alanine reported by 

our study ranged from 210–270 µM, and for the literature-derived data it ranged from 151–222 

µM. This widespread agreement was not unexpected as serum/plasma must be highly stable and 
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cannot vary much in its metabolite concentrations to ensure physiological homeostasis [63]. Of 

course, there were a few exceptions to this rule. The most variable metabolite reported in serum 

was betaine. The value of betaine reported by our study ranged from 138–200 µM, and the 

literature-reported values ranged from 14–26 µM. This variation could be due to a number of 

factors, including differences in diet, sex, age, breed, sample work-up or extraction, sample storage 

protocols, analytical platforms and instrument sensitivity. 

In contrast to serum and plasma, ruminal fluid exhibited considerable variability across 

platforms and laboratories, even after normalizing to creatinine. In terms of water-soluble 

compounds, the inspection of Table 2.S1 reveals a generally good agreement between the NMR- 

and LC–MS-measured concentrations and those reported in the literature. A total of 55 out of the 

64 compounds identified in ruminal fluid had concentration values previously reported in the 

literature. More than 65% (36/55) of these compounds exhibited good agreement with literature 

values (i.e., the average values from our experiments fell within one standard deviation of the 

literature value) in ruminal fluid. Regarding trace elements, 15 out of the 17 the compounds 

identified in our study had concentration values previously reported in the literature. Five of the 

17 compounds exhibited good agreement with literature values (i.e., the average values from our 

experiments fell within one standard deviation of the literature value). In total, 93 out of the 145 

compounds identified by NMR, LC–MS/MS, and ICP–MS in the ruminal fluid had concentration 

values previously reported in the literature. More than 58% (54/93) of these compounds exhibited 

good agreement with literature values (i.e., the average values from our experiments fell within 

one standard deviation of the literature value) in ruminal fluid.  

It was of some interest to compare our earlier ruminal fluid analysis done in 2013 [12] with 

the more recent analysis reported here. The most variable metabolites reported in ruminal fluid 
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were 3-phenylpropionate and magnesium. The value of 3-phenylpropionate reported by our 2020 

study ranged from 0.03–0.07 mM, while the value reported in our 2013 study ranged from 0.3–0.7 

mM. We re-analyzed our 2013 data and found a graphical error in fitting the 3-phenylpropionate’s 

chemical shifts in NMR, which explains the concentration difference between these two studies. 

The value of magnesium reported by our 2020 study ranged from 4–11 mM, while the value 

reported in our 2013 study ranged from 0.09–0.10 µM. We speculate that the differences in the 

concentration of magnesium is mainly due to the dietary treatment differences in this study versus 

our earlier 2013 study.  

In terms of tissues, we found generally good agreement between the results obtained for 

the metabolite composition of muscle, testis, and liver. For water-soluble compounds in muscle 

tissues, an inspection of Table 2.S2 reveals a generally good agreement between the NMR- and 

LC–MS-measured concentrations and those reported in the literature. A total of 43 out of the 60 

compounds identified in both LT and SM muscles had concentration values previously reported in 

the literature. For the trace minerals identified in our study, we could not find any values reported 

in the literature. In total, 43 out of the 149 as well as 43 out of 148 compounds identified by NMR, 

LC–MS/MS, and ICP–MS in the LT and SM muscles, respectively, had concentration values 

previously reported in the literature. More than 65% (28/43) of these compounds exhibited very 

good agreement with literature values (i.e., the average values from our experiments fell within 

one standard deviation of the literature value) in muscle tissues. For instance, the value of beta-

alanine reported for NMR ranged from 92–206 µM in LT muscle and 85–159 µM in SM muscle, 

whereas the literature-derived values ranged from 84–155 µM. The most variable compounds seen 

in muscle tissues were carnosine (LT: 17–27 µmol/g, SM: 19–25 µmol/g, as compared to Muroya 

et al. [8]: 10–14 µmol/g) and glucose (LT: 0.3–0.8 µmol/g, SM: 0.3–1.2 µmol/g, as compared to 
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Kim et al. [57]: 3.3 µmol/g). We suspect that these variations may be due to factors such as 

differences in diet, sex, age, breed, chemical volatility, sample work-up or extraction, sample 

storage protocols, and instrument sensitivity. Similarly, 12 out of the 159 compounds (12 out of 

69 water-soluble compounds) as well as 4 out of 155 compounds (4 out of 66 water-soluble 

compounds) identified in the testis and liver tissues, respectively, had concentration values 

previously reported in the literature. Forty-one percent (5/12) of the compounds found in testis 

tissue exhibited very good agreement with literature values (i.e., the average values from our 

experiments fell within one standard deviation of the literature value). However, the magnitude of 

this variation was small in testis. As with other tissues, we suspect these small variations may be 

due to the same factors, such as differences in diet, sex, age, etc., mentioned above. 

Interestingly, none of the four metabolites previously reported in liver (including alanine, 

glutamate, glutamine, and ornithine) exhibited very good agreement with the values we measured 

experimentally, although the magnitude of this variation was small. The reasons for this appear to 

be due to differences in sample processing and the fact that the values reported by Miles et al. [59] 

were measured via an HPLC coupled with a fluorometric detection instrument. Furthermore, a 

comparison of these values reported by Miles et al. [59] to metabolite values found in other tissues 

and other mammals [64–66] suggests that their values are likely incorrect.  

2.4.2. Comparisons across platforms 

We also found that, for those metabolites that were measured by both LC–MS/MS and NMR, there 

was a generally good overall agreement with the concentration values. Depending on the sample 

type, NMR and LC–MS/MS were able to identify a common set of 20–26 metabolites. Table 2.3 

lists the concentrations measured by NMR and by LC–MS/MS for these common metabolites in 

the serum analyzed in this study. As can be seen from this table, the values differed by less than 



 

91 

 

10%, on average. The most significant exceptions were for sarcosine (28%) and glucose (14%) 

with the concentrations reported by NMR being 4 µM for sarcosine and 4.6 mM for glucose, 

whereas the concentrations reported by LC–MS/MS were 3 µM for sarcosine and 4 mM for 

glucose. Regarding sarcosine, the values are at the lower limit of sensitivity for NMR and so the 

differences are likely due to instrumental noise. However, glucose has 13 peaks (chemical shifts) 

in the NMR spectrum where some of these peaks overlap with other compounds (i.e., aspartate 

and taurine). As a result, these spectral overlaps can affect the concentration of glucose measured 

by NMR. Furthermore, these differences are likely a consequence of small differences in sample 

preparation or separation protocols, as well as differences in compound stability, solubility, 

volatility and other intrinsic chemical factors [13].  

The metabolome coverage we achieved was maximized by using as many different 

platforms as possible and carefully optimizing the metabolite coverage of each platform. Some 

platforms clearly performed better than others. Depending on the type of sample, 39–49 

compounds could be identified and quantified using NMR spectroscopy whereas 13–17 metal ions 

could be identified and quantified by ICP–MS. On the other hand, LC–MS/MS identified and 

quantified 102–116 compounds (depending on the sample type) of which 38–42 were non-lipid 

compounds and 64–74 were lipid or lipid-like compounds.  

Because of their fundamentally different separation and detection technologies, different 

metabolomics platforms tend to target or detect different classes of metabolites. For instance, NMR 

is relatively “untargeted” but is biased towards highly abundant, water-soluble compounds. Other 

methods were quite targeted, with ICP–MS being limited only to metal ions and LC–MS/MS (the 

TMIC Prime assay) being limited to a pre-selected set of 143 compounds, including amino acids, 

biogenic amines, organic acids, and lipid-like compounds. While this study did employ a relatively 
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wide range of metabolomics platforms (NMR, LC–MS/MS, ICP–MS), it did not use all available 

detection tools (GC–MS, GC×GC-TOF), nor did it explore all available separation protocols (e.g., 

solid phase extraction and enrichment, immune or ELISA detection, chemical derivatization, etc.). 

However, for this particular study, we wanted to address the question of how well a cross section 

of commonly accessible metabolomics technologies or platforms could perform in identifying and 

quantifying metabolites in various bovine biofluids and tissues.  

Overall, LC–MS/MS appears to be the most suitable method for the characterization of 

bovine biofluids and tissues metabolites, especially in terms of its broad coverage (primarily of 

lipids) and its amenability to quantification. It also requires very little sample volume (10 µL), is 

relatively inexpensive (on a per sample basis), largely automated, and offers a high-throughput 

route for measuring metabolites. The other methods, such as NMR and ICP–MS offer 

complementary data to LC–MS/MS. However, they do not provide the breadth of coverage, the 

level of automation or the sensitivity available via LC–MS/MS.  

2.5. CONCLUSIONS 

Our primary objective for undertaking these studies was to help advance the field of bovine 

metabolomics. This study used metabolomics techniques, including NMR, LC–MS/MS, and ICP–

MS as well as literature reviews facilitated by computer-aided literature mining, to determine the 

number of experimentally detected or quantified metabolites in different bovine biofluids and 

tissues. This list of experimentally determined compounds was complemented with computer-

aided genome-scale metabolite inference to provide data on thousands of other biochemically 

“expected” metabolites. 

As reported here, the number of metabolites we experimentally detected and measured in 

serum, ruminal fluid, LT muscle, SM muscle, liver, and testis were 145, 145, 149, 148, 155, and 
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159, respectively. From this set, a total of 21 compounds or compound species (corresponding to 

77 unique structures) are being reported in cattle for the first time, including 3 LysoPCs, 1 SM, 4 

PCs, 10 acylcarnitines, and 3 other compounds (NADP, uridine diphosphate glucose, and uridine 

diphosphate-N-acetylglucosamine), all of which have been added to the BMDB. Our 

experimentally acquired data corresponds to a total of 3.5% (1834 out of 51,801) of the total 

number of bovine metabolites/chemicals reported in the BMDB. Our literature-mining efforts 

identified 1339 (experimentally measured) bovine metabolites, which corresponds to 2.6% of the 

bovine metabolome. Finally, our genome-scale inference techniques generated 48,628 

biochemically expected metabolites, which accounts for the remaining 94% of the bovine 

metabolome in BMDB. 

As far as we are aware, this compilation represents the most complete chemical inventory 

or chemical assessment of bovine biofluids and tissues that has been achieved to date. All of this 

information along with other details regarding concentration ranges, chemical structures, names, 

chemical classes, NMR and MS spectra, other physico-chemical properties and associated 

references are publicly accessible in the BMDB at www.bovinedb.ca. 

Similar to previous metabolomics studies presented from our lab, we wanted to 

demonstrate the power and potential of quantitative metabolomics to comprehensively 

characterize common biofluids and tissues in cattle. The results presented here also have 

implications far beyond the field of metabolomics, especially given the economic importance of 

the bovine metabolome in the food industry and its importance in human nutrition. We expect 

these data to serve as a benchmark in comparing various technologies and assessing future 

methodological improvements in bovine metabolome research. In the meantime, it is hoped that 

the BMDB will provide a reliable source for metabolomics researchers, animal scientists, food 

http://www.bovinedb.ca/
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chemists, nutritional scientists, and consumers by providing a comprehensive, easy-to-use and 

highly centralized web-based resource on the chemical composition of bovine biofluids and 

tissues. The addition of more samples and the inclusion of more studies will certainly improve the 

quality and reliability of the data in the BMDB. Indeed, this study is most certainly not the final 

word on the chemical composition of the bovine metabolome. Over the coming years, we plan to 

further characterize the bovine biofluids and tissues metabolome using other metabolomics 

techniques, i.e., GC–MS, GC×GC–MS (to help identify volatile compounds), untargeted high-

resolution–mass spectrometry (HR–MS), and more extensive targeted LC–MS/MS techniques to 

compare and extend the metabolite coverage. 

2.6. SUPPLEMENTARY MATERIALS  

Table 2.S1: List of rumen metabolites along with their measured or reported concentrations and 

their standard deviations and/or ranges (as measured in µM), Table 2.S2: List of LT and SM 

muscle metabolites along with their measured concentrations and their standard deviations (as 

measured in nmol/g), Table 2.S3: List of liver metabolites along with their measured 

concentrations and their standard deviations (as measured in nmol/g), Table 2.S4: List of testis 

metabolites along with their measured concentrations and their standard deviations (as measured 

in nmol/g). 
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Table 2. 1 List of serum metabolites along with their measured or reported concentrations and 

their standard deviations and/or ranges (as measured in µM) 
Metabolite Platform Concentration Literature Value 

WATER-SOLUBLE COMPOUNDS 

AMINO ACIDS 

   

Alanine * LC–MS/MS and NMR 240 ± 30 151–222 a 

Arginine LC–MS/MS and NMR 218 ± 33 135–182 a 

Asparagine * LC–MS/MS and NMR 25 ± 4 20–33 b 

Aspartate * LC–MS/MS and NMR 24 ± 11 14–16 c, 31–36 a 

Beta-alanine * NMR 8 ± 1 8–9 d 

Citrulline * LC–MS/MS and NMR 88 ± 15 71–84 d 

Creatine LC–MS/MS and NMR 196 ± 28 
 

Glutamate * LC–MS/MS and NMR 92 ± 19 35–39 d, 174–198 a 

Glutamine * LC–MS/MS and NMR 330 ± 42 246–260 d 

Glycine * LC–MS/MS and NMR 398 ± 65 405–428 d 

Histidine * LC–MS/MS 78 ± 10 74–84 c 

Isoleucine LC–MS/MS and NMR 153 ± 14 101–122 a 

Leucine * LC–MS/MS and NMR 212 ± 24 205–264 c 

Lysine * LC–MS/MS and NMR 88 ± 15 58–92 b 

Methionine * LC–MS/MS and NMR 34 ± 4 22–29 c, 46–52 a 

Ornithine * LC–MS/MS and NMR 61 ± 13 62–135 a 

Phenylalanine * LC–MS/MS and NMR 71 ± 7 65–75 c 

Proline * LC–MS/MS and NMR 103 ± 15 84–110 a 

Serine * LC–MS/MS and NMR 85 ± 14 86–89 d 

Threonine * LC–MS/MS and NMR 74 ± 12 58–76 c 

Tryptophan * LC–MS/MS 47 ± 7 37–42 c 

Tyrosine LC–MS/MS and NMR 91 ± 10 68–75 c 

Valine * LC–MS/MS and NMR 356 ± 34 262–322 c 

BIOGENIC AMINES 
   

Acetyl-ornithine LC–MS/MS 3 ± 1 
 

Asymmetric-dimethylarginine * LC–MS/MS 1.1 ± 0.2 1.3–2.1 e 

Carnosine * LC–MS/MS 30 ± 12 15–20 d 

Creatinine * LC–MS/MS and NMR 113 ± 17 109–140 f 

Kynurenine * LC–MS/MS 7 ± 2 4–7 b 

Methionine-sulfoxide LC–MS/MS 1.2 ± 0.3 
 

Methylhistidine * LC–MS/MS 14 ± 2 2–12 g 

Putrescine LC–MS/MS 0.04 ± 0.02 
 

Sarcosine LC–MS/MS and NMR 3 ± 1 10–12 d 

Serotonin * LC–MS/MS 9 ± 3 4–13 h 

Spermidine LC–MS/MS 0.2 ± 0.1 
 

Spermine LC–MS/MS 0.2 ± 0.2 
 

Taurine LC–MS/MS and NMR 80 ± 20 33–47 d 

Total-dimethylarginine LC–MS/MS 2.1 ± 0.3 
 

Trans-hydroxyproline LC–MS/MS 25 ± 5 
 

Trimethylamine N-oxide LC–MS/MS 6 ± 3 
 

CARBOHYDRATES 
   

Glucose * LC–MS/MS and NMR 3962 ± 443 3290–4070 i 

ORGANIC ACIDS 
   

3-hydroxybutyrate * NMR 340 ± 145 250–2110 j 

Acetate NMR 403 ± 199 920–1040 k 

Alpha-aminoadipate LC–MS/MS 1.28 ± 0.52 7.3–8.1 d 

Ascorbate (Vitamin C) * NMR 11 ± 3 8–18 l 

Formate NMR 78 ± 12 
 

Fumarate NMR 1.2 ± 0.2 
 

Lactate NMR 4850 ± 2017 658–1600 m 
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Pyruvate NMR 150 ± 40 
 

MISCELANEOUS 
   

Acetone * NMR 70 ± 22 80–990 j 

Betaine LC–MS/MS and NMR 169 ± 31 14–26 n 

Choline LC–MS/MS and NMR 20 ± 4 4–5 n 

Ethanol * NMR 8 ± 1 3–68 i 

Glycerol NMR 314 ± 38 
 

Isopropanol NMR 2 ± 1 
 

Methanol NMR 32 ± 4 
 

Myo-inositol NMR 45 ± 11 
 

Urea NMR 1321 ± 282 1950–4080 o 

Uridine NMR 3 ± 1 
 

LIPID-LIKE COMPOUNDS 

PHOSPHATIDYLCHOLINES, ACYL-ALKYL 

  

PC ae (36:0) LC–MS/MS 1.6 ± 0.4 
 

PC ae (40:6) LC–MS/MS 0.46 ± 0.11 
 

PHOSPHATIDYLCHOLINES, DIACYL 
  

PC aa (32:2) LC–MS/MS 4 ± 1 
 

PC aa (36:6) LC–MS/MS 0.7 ± 0.2 
 

PC aa (36:0) LC–MS/MS 6 ± 2 
 

PC aa (38:6) LC–MS/MS 1 ± 0.3 
 

PC aa (38:0) LC–MS/MS 0.8 ± 0.2 
 

PC aa (40:6) LC–MS/MS 1.6 ± 0.4 
 

PC aa (40:2) LC–MS/MS 0.4 ± 0.1 
 

PC aa (40:1) LC–MS/MS 0.21 ± 0.04 
 

LYSOPHOSPHATIDYLCHOLINES, ACYL C 
  

LysoPC(14:0) LC–MS/MS 0.8 ± 0.1 
 

LysoPC(16:1) LC–MS/MS 0.6 ± 0.1 
 

LysoPC(16:0) * LC–MS/MS 20 ± 4 15–58 n 

LysoPC(17:0) LC–MS/MS 3 ± 1 
 

LysoPC(18:2) LC–MS/MS 15 ± 3 30–186 n 

LysoPC(18:1) LC–MS/MS 6 ± 1 18–69 n 

LysoPC(18:0) * LC–MS/MS 30 ± 5 14–82 n 

LysoPC(20:4) LC–MS/MS 0.48 ± 0.14 
 

LysoPC(20:3) LC–MS/MS 1.6 ± 0.3 
 

LysoPC(24:0) LC–MS/MS 0.051 ± 0.012 
 

LysoPC(26:1) LC–MS/MS 0.1 ± 0.04 
 

LysoPC(26:0) LC–MS/MS 0.7 ± 0.3 
 

LysoPC(28:1) LC–MS/MS 0.3 ± 0.1 
 

LysoPC(28:0) LC–MS/MS 0.28 ± 0.11 
 

SPHINGOMYELINS 
   

SM(16:1) LC–MS/MS 5 ± 1 
 

SM(16:0) LC–MS/MS 68 ± 10 
 

SM(18:1) LC–MS/MS 11 ± 3 
 

SM(18:0) LC–MS/MS 12 ± 2 
 

SM(20:2) LC–MS/MS 1.1 ± 0.3 
 

HYDROXYSPHINGOMYELINS 
   

SM(14:1(OH)) LC–MS/MS 5 ± 1 
 

SM(16:1(OH)) LC–MS/MS 9 ± 2 
 

SM(22:2(OH)) LC–MS/MS 4 ± 1 
 

SM(22:1(OH)) LC–MS/MS 9 ± 1 
 

SM(24:1(OH)) LC–MS/MS 2 ± 0.4 
 

ACYLCARNITINES 
   

C0 (Carnitine) LC–MS/MS 7 ± 1 
 

C2 (Acetylcarnitine) * LC–MS/MS 2 ± 1 0.65–1.09 b 

C3:1 (Propenoylcarnitine) LC–MS/MS 0.029 ± 0.004 
 



 

97 

 

C3 (Propionylcarnitine) LC–MS/MS 0.2 ± 0.04 
 

C4:1 (Butenylcarnitine) LC–MS/MS 0.017 ± 0.002 
 

C4 (Butyrylcarnitine) LC–MS/MS 0.2 ± 0.1 
 

C3-OH (Hydroxypropionylcarnitine) * LC–MS/MS 0.027 ± 0.004 0.01–0.02 b 

C5:1 (Tiglylcarnitine) LC–MS/MS 0.023 ± 0.004 
 

C5 (Valerylcarnitine) * LC–MS/MS 0.09 ± 0.03 0.03–0.06 b 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC–MS/MS 0.04 ± 0.01 
 

C6:1 (Hexenoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C6 (C4:1-DC) (Hexanoylcarnitine) LC–MS/MS 0.05 ± 0.01 0.02–0.03 b 

C5-OH (C3-DC-M) 

(hydroxyvalerylcarnitine) * 

LC–MS/MS 0.04 ± 0.01 0.05–0.06 b 

C5:1-DC (Glutaconylcarnitine) LC–MS/MS 0.018 ± 0.003 
 

C5-DC (C6-OH)(Glutarylcarnitine) LC–MS/MS 0.03 ± 0.01 
 

C8 (Octanoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C5-M-DC (methylglutarylcarnitine) LC–MS/MS 0.0196 ± 0.0024 

C9 (Nonaylcarnitine) LC–MS/MS 0.022 ± 0.003 
 

C7-DC (Pimelylcarnitine) * LC–MS/MS 0.04 ± 0.04 0.01–0.02 b 

C10:2 (Decadienylcarnitine) LC–MS/MS 0.06 ± 0.01 
 

C10:1 (Decenoylcarnitine) LC–MS/MS 0.17 ± 0.03 
 

C10 (Decanoylcarnitine) LC–MS/MS 0.18 ± 0.04 
 

C12:1 (Dodecenoylcarnitine) LC–MS/MS 0.084 ± 0.014 
 

C12 (Dodecanoylcarnitine) * LC–MS/MS 0.04 ± 0.01 0.02–0.03 b 

C14:2 (Tetradecadienylcarnitine) LC–MS/MS 0.03 ± 0.01 
 

C14:1 (Tetradecenoylcarnitine) LC–MS/MS 0.0518 ± 0.0103 

C14 (Tetradecanoylcarnitine) * LC–MS/MS 0.02 ± 0.01 0.01–0.02 b 

C12-DC (Dodecanedioylcarnitine) LC–MS/MS 0.018 ± 0.003 
 

C14:2-OH 

(Hydroxytetradecadienylcarnitine) 

LC–MS/MS 0.008 ± 0.002 
 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 
 

C16:2 (Hexadecadienylcarnitine) LC–MS/MS 0.012 ± 0.002 
 

C16:1 (Hexadecenoylcarnitine) LC–MS/MS 0.029 ± 0.003 
 

C16 (Hexadecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C16:2-OH 

(Hydroxyhexadecadienylcarnitine) 

LC–MS/MS 0.005 ± 0.001 
 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC–MS/MS 0.0184 ± 0.0034 

C16-OH (Hydroxyhexadecanoylcarnitine) * LC–MS/MS 0.008 ± 0.001 0.003–0.006 b 

C18:2 (Octadecadienylcarnitine) LC–MS/MS 0.007 ± 0.001 
 

C18:1 (Octadecenoylcarnitine) LC–MS/MS 0.0147 ± 0.0031 

C18 (Octadecanoylcarnitine) LC–MS/MS 0.021 ± 0.008 
 

C18:1-OH (Hydroxyoctadecenoylcarnitine) * LC–MS/MS 0.009 ± 0.001 0.008–0.009 b 

TRACE ELEMENTAL COMPOUNDS 
   

Sodium * ICP–MS 133515 ± 13658 107400–108600 p, 

136000–136710 q 

Magnesium * ICP–MS 931 ± 88 850–920 f 

Phosphorus * ICP–MS 1298 ± 164 1350–1620 p 

Potassium * ICP–MS 4296 ± 388 4060–4340 f 

Calcium * ICP–MS 2228 ± 221 1400–2200 h 

Iron * ICP–MS 52 ± 13 50–51 r 

Copper * ICP–MS 9 ± 2 6–9 r 

Zinc * ICP–MS 12 ± 2 14–18 r 

Selenium * ICP–MS 1.4 ± 0.2 0.5–2.7 s 

Rubidium ICP–MS 1.8 ± 0.2 
 

Strontium ICP–MS 1 ± 0.1 
 

Cesium ICP–MS 0.0017 ± 0.0003 

Barium ICP–MS 0.2 ± 0.03   
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* Compounds that exhibited good agreement with literature values; a Motyl and Barej, 1986 

[40]; b Sadri et al., 2017 [41]; c Greenwood et al., 2001 [42]; d Zhou et al., 2016 [37]; e Chan et 

al., 2000 [43]; f Consolo et al., 2018 [44]; g van der Drift et al., 2012 [45]; h Hernandez-

Castellano et al., 2017 [46]; I Raun and Kristensen, 2011 [33]; j Sato, 2009 [34]; k Sato et al., 

1999 [35]; l Padilla et al., 2006 [47]; m Kenny et al., 2002 [48]; n Artegoitia et al., 2014 [49]; o 

Liker et al., 2005 [50]; p Nozad et al., 2012 [51]; q Macdonald et al., 2017 [52]; r Noaman et al., 

2012 [30]; s Waldner et al., 1998 [53]. 
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Table 2. 2 Metabolome coverage of different bovine biofluids and tissues in the BMDB 
Tissue/Biofluid Location Identified Metabolites or 

Metabolite Species 

Identified 

Metabolites with 

Unique Structures 

Quantified 

Metabolites with 

Unique Structures 

BIOFLUID 
   

Blood 330 453 296 

Colostrum 70 70 4 

Milk 928 2350 1652 

Ruminal fluid 328 769 728 

Semen 76 76 0 

Urine 62 62 0 

TISSUE 
   

Adipose tissue 199 199 71 

Brain 557 1887 0 

Epidermis 275 275 0 

Fibroblasts 327 327 0 

Intestine 253 253 0 

Kidney 531 615 0 

Liver 1056 1254 273 

Longissimus thoracis muscle 153 267 267 

Mammary gland 269 269 0 

Neuron 322 322 0 

Pancreas 114 114 0 

Placenta 579 586 0 

Platelet 204 204 0 

Prostate 268 268 0 

Semimembranosus muscle 153 267 267 

Skeletal muscle 382 496 274 

Spleen 168 168 0 

Testis 328 442 277 

All tissues 857 4464 N/A * 

Note: Metabolite species refer to those molecules with non-unique chemical formulas or masses 

(such as lipid isomers), while metabolites with unique structures correspond to compounds with a 

unique and clearly defined chemical structure and a unique chemical name; * Not available.  
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Table 2. 3 Comparison of concentrations of 26 metabolites between nuclear magnetic resonance 

(NMR) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) methods along 

with their measured or reported concentrations and their standard deviations and/or ranges in 

bovine serum (as measured in µM) 
Compound Name NMR LC–MS/MS Average Difference (%) 

Alanine 252 ± 31 240 ± 30 4 

Arginine 210 ± 28 218 ± 33 3 

Asparagine 26 ± 5 25 ± 4 3 

Aspartate Glucose overlap 24 ± 11 
 

Betaine 180 ± 37 169 ± 31 6 

Choline 19 ± 4 20 ± 4 5 

Citrulline 89 ± 16 88 ± 15 1 

Creatine 210 ± 30 196 ± 28 6 

Creatinine 121 ± 17 113 ± 17 6 

Glucose 4572 ± 588 3962 ± 443 14 

Glutamate Proline overlap 92 ± 19 
 

Glutamine 360 ± 47 330 ± 42 8 

Glycine 438 ± 71 398 ± 65 9 

Isoleucine 160 ± 22 153 ± 14 4 

Leucine 216 ± 30 212 ± 24 1 

Lysine Arginine overlap 88 ± 15 
 

Methionine 35 ± 5 34 ± 4 2 

Ornithine 67 ± 11 61 ± 13 9 

Phenylalanine 67 ± 9 71 ± 7 5 

Proline 94 ± 16 103 ± 15 9 

Sarcosine 4 ± 1 3 ± 1 28 

Serine 87 ± 18 85 ± 14 2 

Taurine Glucose overlap 80 ± 20 
 

Threonine 72 ± 11 74 ± 12 2 

Tyrosine 84 ± 11 91 ± 10 8 

Valine 390 ± 48 356 ± 34 9 
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Table 2. S1 List of rumen metabolites along with their measured or reported concentrations and 

their standard deviations and/or ranges (as measured in µM) 
Metabolite Platform Concentration Literature value 

WATER-SOLUBLE COMPOUNDS 

AMINO ACIDS 

   

Alanine * LC–MS/MS & NMR 1060 ± 484 83–799 a 

Arginine * LC–MS/MS 17 ± 11 5–81 b 

Asparagine LC–MS/MS 1 ± 1 
 

Aspartate * LC–MS/MS & NMR 566 ± 204 153–925 a 

Beta-alanine * NMR 72 ± 38 3–33 c 

Citrulline LC–MS/MS 184 ± 74 
 

Creatine * LC–MS/MS & NMR 3 ± 4 2–15 c 

Glutamate * LC–MS/MS & NMR 1702 ± 471 238–887 a 

Glycine * LC–MS/MS & NMR 974 ± 315 50–696 a 

Histidine * LC–MS/MS 44 ± 28 18–69 a 

Isoleucine * LC–MS/MS & NMR 556 ± 127 123–1210 a 

Leucine * LC–MS/MS & NMR 603 ± 119 76–571 a 

Lysine * LC–MS/MS & NMR 2085 ± 869 91–1095 a 

Methionine LC–MS/MS & NMR 268 ± 102 9–66 b 

Ornithine LC–MS/MS 149 ± 77 7–51 b 

Phenylalanine LC–MS/MS & NMR 310 ± 129 17–85 b 

Proline * LC–MS/MS & NMR 834 ± 377 240–1275 a 

Serine LC–MS/MS & NMR 547 ± 187 24–180 b 

Threonine LC–MS/MS & NMR 658 ± 301 53–153 c 

Tryptophan * LC–MS/MS & NMR 24 ± 14 4–26 b 

Tyrosine * LC–MS/MS & NMR 295 ± 136 68–471 a 

Valine * LC–MS/MS & NMR 848 ± 295 71–593 a 

BIOGENIC AMINES 
   

Acetyl-ornithine LC–MS/MS 9 ± 5 0.1–2.5 b 

Asymmetric-dimethylarginine * LC–MS/MS 4 ± 3 0.19–1 b 

Total-dimethylarginine LC–MS/MS 5 ± 3 19–47 b 

Histamine * LC–MS/MS 57 ± 43 1–12 b 

Methionine-sulfoxide * LC–MS/MS 26 ± 9 5–37 b 

Methylamine * NMR 132 ± 116 27–822 b 

Methylhistidine LC–MS/MS 2 ± 1 
 

Putrescine * LC–MS/MS & NMR 103 ± 58 16–303 b 

Sarcosine LC–MS/MS & NMR 2 ± 1 6–67 b 

Serotonin LC–MS/MS 0.1 ± 0.1 0.9–1.1 b 

Spermidine LC–MS/MS 37 ± 22 
 

Spermine LC–MS/MS 3 ± 3 
 

Taurine * LC–MS/MS & NMR 8 ± 7 1–2 b 

Trans-hydroxyproline LC–MS/MS 2 ± 1 
 

CARBOHYDRATES 
   

Glucose LC–MS/MS & NMR 15934 ± 11188 393–3111 b 
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Ribose NMR 886 ± 201 177–501 b 

ORGANIC ACIDS 
   

2-oxoglutarate NMR 40 ± 24 
 

3-phenylpropionate NMR 51 ± 18 296–713 b 

Acetate * NMR 37264 ± 7582 41000–81000 a 

Alpha-aminoadipate LC–MS/MS 1 ± 1 
 

Butyrate * NMR 25848 ± 9273 6472–18088 b 

Formate NMR 20 ± 4 60–655 a 

Fumarate * NMR 18 ± 7 19–315 a 

Isobutyrate * NMR 719 ± 226 708–1100 c 

Lactate * NMR 2029 ± 1165 224–1560 a 

Nicotinate * NMR 60 ± 10 29–79 b 

Phenylacetate * NMR 189 ± 57 212–785 a 

Propionate * NMR 16103 ± 4550 14000–17000 a 

Pyroglutamate * NMR 233 ± 64 311–645 b 

Pyruvate NMR 62 ± 33 
 

Succinate * NMR 597 ± 344 40–289 a 

Valerate * NMR 2739 ± 677 1500–5000 a 

MISCELANEOUS 
   

Acetone NMR 66 ± 40 5–19 c 

Betaine * LC–MS/MS 15 ± 40 2–17 c 

Choline LC–MS/MS & NMR 105 ± 59 4–40 c 

Ethanol * NMR 556 ± 450 600–3200 d 

Glycerol NMR 685 ± 231 89–336 b 

Hypoxanthine NMR 753 ± 191 38–266 b 

Isopropanol * NMR 103 ± 45 14–70 c 

Thymine NMR 188 ± 45 15–63 b 

Uracil NMR 1007 ± 230 109–405 c 

Uridine * NMR 18 ± 10 2–17 c 

LIPID-LIKE COMPOUNDS 

PHOSPHATIDYLCHOLINES, ACYL-ALKYL 

  

 

PC ae (36:0) LC–MS/MS 0.05 ± 0.04 
 

PC ae (40:6) LC–MS/MS 0.04 ± 0.01 
 

PHOSPHATIDYLCHOLINES, DIACYL 
  

PC aa (32:2) LC–MS/MS 0.048 ± 0.024 
 

PC aa (36:0) LC–MS/MS 0.07 ± 0.04 
 

PC aa (38:6) LC–MS/MS 0.06 ± 0.04 
 

PC aa (38:0) LC–MS/MS 0.08 ± 0.01 
 

PC aa (40:6) LC–MS/MS 0.03 ± 0.01 
 

PC aa (40:1) LC–MS/MS 0.016 ± 0.004 
 

LYSOPHOSPHATIDYLCHOLINES, ACYL C 
  

LysoPC(14:0) LC–MS/MS 6 ± 3 
 

LysoPC(16:0) * LC–MS/MS 0.3 ± 0.2 0.01–0.2 b 

LysoPC(18:2) LC–MS/MS 0.2 ± 0.1 
 

LysoPC(18:1) LC–MS/MS 0.074 ± 0.051 
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LysoPC(18:0) LC–MS/MS 0.2 ± 0.1 
 

LysoPC(20:4) LC–MS/MS 0.03 ± 0.02 
 

LysoPC(20:3) LC–MS/MS 2 ± 1 
 

LysoPC(24:0) LC–MS/MS 0.161 ± 0.153 
 

LysoPC(26:0) LC–MS/MS 0.7 ± 0.3 
 

LysoPC(28:0) LC–MS/MS 0.11 ± 0.03 
 

SPHINGOMYELINS 
   

SM(16:0) LC–MS/MS 0.75 ± 0.62 0.01–0.05 b 

SM(18:1) LC–MS/MS 0.04 ± 0.03 
 

SM(18:0) LC–MS/MS 0.19 ± 0.13 
 

HYDROXYSPHINGOMYELINS 
   

SM(14:1(OH)) LC–MS/MS 0.05 ± 0.01 0.01–0.03 b 

SM(16:1(OH)) LC–MS/MS 0.07 ± 0.04 0.01–0.02 b 

SM(22:1(OH)) * LC–MS/MS 0.1 ± 0.1 0.01–0.1 b 

ACYLCARNITINES 
   

C0 (Carnitine) LC–MS/MS 3 ± 1 
 

C2 (Acetylcarnitine) LC–MS/MS 0.24 ± 0.11 
 

C3:1 (Propenoylcarnitine) LC–MS/MS 0.03 ± 0.01 
 

C3 (Propionylcarnitine) LC–MS/MS 0.09 ± 0.02 0.03–0.05 b 

C4:1 (Butenylcarnitine) * LC–MS/MS 0.04 ± 0.01 0.03–0.04 b 

C4 (Butyrylcarnitine) LC–MS/MS 0.05 ± 0.02 
 

C3-OH (Hydroxypropionylcarnitine) * LC–MS/MS 0.04 ± 0.01 0.03–0.04 b 

C5:1 (Tiglylcarnitine) * LC–MS/MS 0.03 ± 0.01 0.04–0.07 b 

C5 (Valerylcarnitine) * LC–MS/MS 0.03 ± 0.01 0.03–0.06 b 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC–MS/MS 1 ± 1 0.04–0.33 b 

C6:1 (Hexenoylcarnitine) LC–MS/MS 0.04 ± 0.01 0.09–0.10 b 

C6 (C4:1-DC) (Hexanoylcarnitine) LC–MS/MS 0.08 ± 0.01 
 

C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) LC–MS/MS 0.027 ± 0.004 
 

C5:1-DC (Glutaconylcarnitine) LC–MS/MS 0.019 ± 0.003 0.039–0.045 b 

C5-DC (C6-OH)(Glutarylcarnitine) LC–MS/MS 0.015 ± 0.003 
 

C8 (Octanoylcarnitine) LC–MS/MS 0.014 ± 0.003 
 

C5-M-DC (methylglutarylcarnitine) LC–MS/MS 0.022 ± 0.003 0.174–0.2 b 

C9 (Nonaylcarnitine) LC–MS/MS 0.011 ± 0.002 
 

C7-DC (Pimelylcarnitine) * LC–MS/MS 0.029 ± 0.021 0.03–0.07 b 

C10:2 (Decadienylcarnitine) LC–MS/MS 0.06 ± 0.01 
 

C10:1 (Decenoylcarnitine) LC–MS/MS 0.2 ± 0.1 
 

C10 (Decanoylcarnitine) LC–MS/MS 0.1 ± 0.02 
 

C12:1 (Dodecenoylcarnitine) LC–MS/MS 0.1 ± 0.02 
 

C12 (Dodecanoylcarnitine) LC–MS/MS 0.03 ± 0.01 
 

C14:2 (Tetradecadienylcarnitine) * LC–MS/MS 0.023 ± 0.004 0.017–0.023 b 

C14:1 (Tetradecenoylcarnitine) LC–MS/MS 0.007 ± 0.002 0.089–0.091 b 

C14 (Tetradecanoylcarnitine) LC–MS/MS 0.009 ± 0.002 
 

C12-DC (Dodecanedioylcarnitine) LC–MS/MS 0.037 ± 0.012 
 

C14:2-OH (Hydroxytetradecadienylcarnitine) * LC–MS/MS 0.011 ± 0.003 0.008–0.032 b 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 
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C16:2 (Hexadecadienylcarnitine) * LC–MS/MS 0.008 ± 0.001 0.002–0.013 b 

C16:1 (Hexadecenoylcarnitine) LC–MS/MS 0.023 ± 0.004 
 

C16 (Hexadecanoylcarnitine) * LC–MS/MS 0.016 ± 0.004 0.01–0.055 b 

C16:2-OH (Hydroxyhexadecadienylcarnitine) LC–MS/MS 0.009 ± 0.002 
 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC–MS/MS 0.01 ± 0.002 
 

C16-OH (Hydroxyhexadecanoylcarnitine) * LC–MS/MS 0.012 ± 0.003 0.009–0.011 b 

C18:2 (Octadecadienylcarnitine) LC–MS/MS 0.006 ± 0.001 0.07–0.072 b 

C18:1 (Octadecenoylcarnitine) LC–MS/MS 0.015 ± 0.003 
 

C18 (Octadecanoylcarnitine) LC–MS/MS 0.0067 ± 0.0021 

C18:1-OH (Hydroxyoctadecenoylcarnitine) * LC–MS/MS 0.012 ± 0.003 0.002–0.022 b 

TRACE ELEMENTAL COMPOUNDS 
   

Lithium ICP–MS 21 ± 5 3–4 b 

Sodium ICP–MS 235634 ± 

19788 

110000–117000 b 

Magnesium ICP–MS 7465 ± 3511 96–108 b 

Phosphorus ICP–MS 12395 ± 1908 9140–9270 b 

Potassium ICP–MS 39878 ± 6579 17980–18270 b 

Calcium * ICP–MS 371 ± 722 904–958 b 

Titanium ICP–MS 2.5 ± 0.4 
 

Manganese * ICP–MS 59 ± 62 2–3 b 

Iron * ICP–MS 40 ± 8 21–32 b 

Nickel ICP–MS 2 ± 1 0.04–0.2 b 

Cobalt ICP–MS 1 ± 0.2 
 

Copper ICP–MS 5 ± 1 2–3 b 

Zinc ICP–MS 10 ± 3 2–3 b 

Rubidium ICP–MS 25 ± 5 5–6 b 

Strontium * ICP–MS 4 ± 2 1–2 b 

Cesium ICP–MS 0.03 ± 0.01 0.001–0.01 b 

Barium * ICP–MS 2 ± 1 0.5–1 b 

 * Compounds that exhibited good agreement with literature values; a Lee et al., 2012 [197]; b 

Saleem et al., 2013 [198]; c O'Callaghan et al., 2018 [199]; d Raun and Kristensen, 2011 [200]. 
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Table 2. S2 List of LT and SM muscle metabolites along with their measured concentrations and 

their standard deviations (as measured in nmol/g) 
Metabolite Platform Concentration 

(LT muscle) 

Concentration 

(SM muscle) 

Literature 

value 

WATER-SOLUBLE COMPOUNDS 

AMINO ACIDS 

    

Alanine * LC–MS/MS & NMR 1465 ± 272 1472 ± 278 1055–1310 a 

Arginine LC–MS/MS 61 ± 14 70 ± 16 299–686 b 

Asparagine LC–MS/MS 40 ± 12 46 ± 17 106–225 b 

Aspartate * LC–MS/MS & NMR 70 ± 28 57 ± 28 14–54 b 

Beta-alanine * NMR 149 ± 57 122 ± 37 84–155 b 

Citrulline LC–MS/MS 34 ± 12 31 ± 14 59–111 b 

Creatine * LC–MS/MS & NMR 4672 ± 438 4755 ± 306 1040–1520 c, 

7262–10319 
a 

Glutamate * LC–MS/MS & NMR 425 ± 180 541 ± 234 134–942 b 

Glutamine * LC–MS/MS & NMR 2841 ± 828 2492 ± 668 3051–4834 b 

Glutathione NMR 226 ± 51 162 ± 46 769–775 b 

Glycine * LC–MS/MS & NMR 576 ± 215 538 ± 147 342–570 a 

Histidine LC–MS/MS 75 ± 18 85 ± 20 134–281 b 

Isoleucine * LC–MS/MS & NMR 107 ± 22 116 ± 23 43–231 a 

Leucine * LC–MS/MS & NMR 154 ± 37 158 ± 33 80–424 a 

Lysine LC–MS/MS 59 ± 18 66 ± 19 306–745 b 

Methionine * LC–MS/MS & NMR 34 ± 10 37 ± 11 40–395 b 

Ornithine LC–MS/MS 35 ± 12 40 ± 10 80–187 b 

Phenylalanine * LC–MS/MS & NMR 55 ± 12 58 ± 10 51–258 a 

Proline LC–MS/MS 174 ± 59 203 ± 60 240–365 b 

Serine LC–MS/MS 165 ± 36 161 ± 31 273–830 b 

Threonine * LC–MS/MS & NMR 194 ± 80 193 ± 32 193–468 b 

Tryptophan LC–MS/MS & NMR 19 ± 5 21 ± 3 35–95 b 

Tyrosine * LC–MS/MS & NMR 54 ± 14 52 ± 10 44–269 a 

Valine * LC–MS/MS & NMR 270 ± 62 278 ± 49 71–288 a 

BIOGENIC AMINES 
    

Acetyl-ornithine LC–MS/MS 18 ± 8 21 ± 8 
 

Asymmetric-dimethylarginine LC–MS/MS 0.8 ± 0.2 0.9 ± 0.2 
 

Carnosine LC–MS/MS & NMR 22085 ± 4859 21958 ± 3048 9690–13658 
b 

Creatinine * LC–MS/MS & NMR 313 ± 48 315 ± 47 128–429 a 

Histamine LC–MS/MS 17 ± 4 23 ± 6 
 

Kynurenine LC–MS/MS 0.6 ± 0.2 0.5 ± 0.2 
 

Methionine-sulfoxide LC–MS/MS 3 ± 7 2 ± 8 
 

Methylhistidine LC–MS/MS 35 ± 8 35 ± 9 
 

Putrescine LC–MS/MS 1.3 ± 0.4 2 ± 1 9–22 b 

Sarcosine LC–MS/MS & NMR 12 ± 5 10 ± 4 
 

Spermidine LC–MS/MS 0.09 ± 0.03 0.11 ± 0.04 
 

Spermine LC–MS/MS 0.2 ± 0.1 0.11 ± 0.03 
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Taurine LC–MS/MS & NMR 480 ± 146 844 ± 301 
 

Total-dimethylarginine LC–MS/MS 1.7 ± 0.4 2 ± 1 
 

Trans-hydroxyproline LC–MS/MS 32 ± 11 31 ± 11 
 

Trimethylamine N-oxide LC–MS/MS 14 ± 5 14 ± 4 
 

CARBOHYDRATES 
    

Glucose-1-phosphate * NMR 184 ± 58 175 ± 48 120 d, 363–

1178 b 

Glucose LC–MS/MS & NMR 536 ± 259 754 ± 403 3300 d 

ORGANIC ACIDS 
    

3-hydroxybutyrate * NMR 97 ± 27 88 ± 33 114–242 b 

Acetate * NMR 188 ± 31 219 ± 52 97–291 a 

Alpha-aminoadipate LC–MS/MS 7 ± 2 10 ± 4 
 

Formate NMR 533 ± 316 723 ± 184 110 d 

Fumarate * NMR 141 ± 64 220 ± 76 36–208 b 

Inosinate (IMP) * NMR 15 ± 11 124 ± 136 31–59 c, 40–

8977 b 

Lactate * NMR 31131 ± 8268 37879 ± 10580 14262–

21850 a, 

37175–

131553 b 

Nicotinurate NMR 96 ± 38 170 ± 54 
 

Pyruvate * NMR 123 ± 51 157 ± 68 1–183 b 

Succinate * NMR 1133 ± 308 743 ± 384 891–2314 b 

MISCELANEOUS 
    

Betaine * LC–MS/MS & NMR 1321 ± 351 1139 ± 246 1477–1826 b 

Choline LC–MS/MS & NMR 15 ± 7 15 ± 6 34–153 b 

Ethanol * NMR 299 ± 182 246 ± 172 160 d 

Glycerol * NMR 328 ± 210 326 ± 174 392–528 c 

Myo-inositol NMR 504 ± 133 593 ± 126 
 

NAD+ * NMR 641 ± 127 515 ± 70 15–611 b 

NADH NMR 94 ± 75 101 ± 45 
 

O-acetylcarnitine NMR 1892 ± 398 1612 ± 318 
 

LIPID-LIKE COMPOUNDS 

PHOSPHATIDYLCHOLINES, ACYL-ALKYL 

    

PC ae (36:0) LC–MS/MS 0.55 ± 0.12 0.6 ± 0.2 
 

PC ae (40:6) LC–MS/MS 0.44 ± 0.12 0.56 ± 0.14 
 

PHOSPHATIDYLCHOLINES, DIACYL 
    

PC aa (32:2) LC–MS/MS 1.7 ± 0.4 3 ± 2 
 

PC aa (36:6) LC–MS/MS 0.3 ± 0.1 0.3 ± 0.1 
 

PC aa (36:0) LC–MS/MS 0.85 ± 0.14 1 ± 0.2 
 

PC aa (38:6) LC–MS/MS 0.5 ± 0.1 0.6 ± 0.2 
 

PC aa (38:0) LC–MS/MS 0.4 ± 0.1 0.4 ± 0.1 
 

PC aa (40:6) LC–MS/MS 0.13 ± 0.03 0.14 ± 0.04 
 

PC aa (40:2) LC–MS/MS 0.017 ± 0.004 0.02 ± 0.01 
 

PC aa (40:1) LC–MS/MS 0.026 ± 4 0.031 ± 0.004 

LYSOPHOSPHATIDYLCHOLINES, ACYL C 
    

LysoPC(14:0) LC–MS/MS 0.07 ± 0.01 0.07 ± 0.01 
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LysoPC(16:1) LC–MS/MS 0.02 ± 0.01 0.03 ± 0.01 
 

LysoPC(16:0) LC–MS/MS 0.1 ± 0.02 0.11 ± 0.03 
 

LysoPC(17:0) LC–MS/MS 0.013 ± 0.003 0.016 ± 0.004 

LysoPC(18:2) LC–MS/MS 0.3 ± 0.1 0.4 ± 0.1 
 

LysoPC(18:1) LC–MS/MS 0.3 ± 0.1 0.4 ± 0.1 
 

LysoPC(18:0) LC–MS/MS 0.07 ± 0.02 0.08 ± 0.03 
 

LysoPC(20:4) LC–MS/MS 0.07 ± 0.03 0.09 ± 0.03 
 

LysoPC(20:3) LC–MS/MS 0.05 ± 0.01 0.08 ± 0.02 
 

LysoPC(24:0) LC–MS/MS 0.023 ± 0.004 0.03 ± 0.01 
 

LysoPC(26:1) LC–MS/MS 0.05 ± 0.01 0.06 ± 0.02 
 

LysoPC(26:0) LC–MS/MS 0.05 ± 0.01 0.06 ± 0.02 
 

LysoPC(28:1) LC–MS/MS 0.04 ± 0.01 0.04 ± 0.01 
 

LysoPC(28:0) LC–MS/MS 0.05 ± 0.01 0.06 ± 0.02 
 

SPHINGOMYELINS 
    

SM(16:1) LC–MS/MS 0.11 ± 0.02 0.13 ± 0.03 
 

SM(16:0) LC–MS/MS 3 ± 1 2.45 ± 0.71 
 

SM(18:1) LC–MS/MS 1.1 ± 0.2 1.2 ± 0.4 
 

SM(18:0) LC–MS/MS 8 ± 1 8 ± 2 
 

SM(20:2) LC–MS/MS 0.4 ± 0.1 0.5 ± 0.2 
 

HYDROXYSPHINGOMYELINS 
    

SM(14:1(OH)) LC–MS/MS 0.2 ± 0.04 0.2 ± 0.1 
 

SM(16:1(OH)) LC–MS/MS 1.1 ± 0.2 1.2 ± 0.4 
 

SM(22:2(OH)) LC–MS/MS 0.4 ± 0.1 0.47 ± 0.1 
 

SM(22:1(OH)) LC–MS/MS 0.9 ± 0.2 0.94 ± 0.22 
 

SM(24:1(OH)) LC–MS/MS 0.08 ± 0.02 0.09 ± 0.03 
 

ACYLCARNITINES 
    

C0 (Carnitine) * LC–MS/MS 1856 ± 424 1751 ± 337 791–1143 a, 

2600 d 

C2 (Acetylcarnitine) LC–MS/MS 854 ± 153 871 ± 150 
 

C3:1 (Propenoylcarnitine) LC–MS/MS 1.8 ± 0.2 1.8 ± 0.2 
 

C3 (Propionylcarnitine) LC–MS/MS 6 ± 2 7 ± 2 
 

C4:1 (Butenylcarnitine) LC–MS/MS 0.07 ± 0.01 0.08 ± 0.03 
 

C4 (Butyrylcarnitine) LC–MS/MS 16 ± 6 22 ± 8 
 

C3-OH (Hydroxypropionylcarnitine) LC–MS/MS 0.2 ± 0.1 0.2 ± 0.1 
 

C5:1 (Tiglylcarnitine) LC–MS/MS 0.3 ± 0.1 0.3 ± 0.1 
 

C5 (Valerylcarnitine) LC–MS/MS 4 ± 2 4 ± 2 
 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC–MS/MS 6 ± 3 7 ± 5 
 

C6:1 (Hexenoylcarnitine) LC–MS/MS 0.12 ± 0.03 0.2 ± 0.1 
 

C6 (C4:1-DC) (Hexanoylcarnitine) LC–MS/MS 0.52 ± 0.51 0.7 ± 0.4 
 

C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) LC–MS/MS 1.6 ± 0.4 1.7 ± 0.4 
 

C5:1-DC (Glutaconylcarnitine) LC–MS/MS 0.04 ± 0.03 0.05 ± 0.03 
 

C5-DC (C6-OH)(Glutarylcarnitine) LC–MS/MS 0.09 ± 0.04 0.14 ± 0.11 
 

C8 (Octanoylcarnitine) LC–MS/MS 0.26 ± 0.32 0.27 ± 0.24 
 

C5-M-DC (methylglutarylcarnitine) LC–MS/MS 0.02 ± 0.01 0.02 ± 0.01 
 

C9 (Nonaylcarnitine) LC–MS/MS 0.03 ± 0.02 0.04 ± 0.03 
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C7-DC (Pimelylcarnitine) LC–MS/MS 0.1 ± 0.1 0.14 ± 0.11 
 

C10:2 (Decadienylcarnitine) LC–MS/MS 0.04 ± 0.01 0.024 ± 0.004 

C10:1 (Decenoylcarnitine) LC–MS/MS 0.3 ± 0.1 0.3 ± 0.1 
 

C10 (Decanoylcarnitine) LC–MS/MS 0.2 ± 0.2 0.2 ± 0.2 
 

C12:1 (Dodecenoylcarnitine) LC–MS/MS 0.12 ± 0.03 0.11 ± 0.02 
 

C12 (Dodecanoylcarnitine) LC–MS/MS 0.1 ± 0.1 0.04 ± 0.03 
 

C14:2 (Tetradecadienylcarnitine) LC–MS/MS 0.011 ± 0.002 0.009 ± 0.002 

C14:1 (Tetradecenoylcarnitine) LC–MS/MS 0.01 ± 0.01 0.01 ± 0.01 
 

C14 (Tetradecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 0.01 ± 0.01 
 

C12-DC (Dodecanedioylcarnitine) LC–MS/MS 0.017 ± 0.004 0.016 ± 0.002 

C14:2-OH (Hydroxytetradecadienylcarnitine) LC–MS/MS 0.006 ± 0.001 0.005 ± 0.001 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC–MS/MS 0.008 ± 0.004 0.009 ± 0.004 

C16:2 (Hexadecadienylcarnitine) LC–MS/MS 0.007 ± 0.001 0.007 ± 0.001 

C16:1 (Hexadecenoylcarnitine) LC–MS/MS 0.032 ± 0.004 0.032 ± 0.004 

C16 (Hexadecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 0.009 ± 0.004 

C16:2-OH (Hydroxyhexadecadienylcarnitine) LC–MS/MS 0.006 ± 0.001 0.007 ± 0.001 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC–MS/MS 0.011 ± 0.003 0.011 ± 0.004 

C16-OH (Hydroxyhexadecanoylcarnitine) LC–MS/MS 0.008 ± 0.002 0.007 ± 0.003 

C18:2 (Octadecadienylcarnitine) LC–MS/MS 0.004 ± 0.001 0.004 ± 0.001 

C18:1 (Octadecenoylcarnitine) LC–MS/MS 0.008 ± 0.004 0.007 ± 0.003 

C18 (Octadecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 0.006 ± 0.002 

C18:1-OH (Hydroxyoctadecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 0.01 ± 0.01 
 

TRACE ELEMENTAL COMPOUNDS 
    

Lithium ICP–MS 1.5 ± 0.4 1.5 ± 0.3 
 

Boron ICP–MS <LOQ1 36 ± 18 
 

Sodium ICP–MS 10109 ± 2109 12037 ± 2852 

Magnesium ICP–MS 279 ± 84 286 ± 105 
 

Phosphorus ICP–MS 21915 ± 3094 21818 ± 2594 

Potassium ICP–MS 49300 ± 7605 51519 ± 7094 

Titanium ICP–MS 1.2 ± 0.2 1.3 ± 0.2 
 

Vanadium ICP–MS 0.013 ± 0.004 0.009 ± 0.001 

Manganese ICP–MS 0.12 ± 0.02 <LOQ 
 

Iron ICP–MS 10 ± 4 8 ± 3 
 

Cobalt ICP–MS 0.02 ± 0.01 0.022 ± 0.003 

Copper ICP–MS 0.25 ± 0.13 0.2 ± 0.1 
 

Rubidium ICP–MS 37 ± 7 40 ± 7 
 

Strontium ICP–MS 0.06 ± 0.01 <LOQ 
 

Cesium ICP–MS 0.03 ± 0.01 0.03 ± 0.01 
 

Thallium ICP–MS 0.0007 ± 

0.0002 

0.0009 ± 0.0001 

* Compounds that exhibited good agreement with literature values; 1 LOQ: limit of 

quantification; a Jung et al., 2010 [201]; b Muroya et al., 2019 [202]; c Kodani et al., 2017 [203]; d 

Kim et al., 2016 [204]. 
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Table 2. S3 List of liver metabolites along with their measured concentrations and their standard 

deviations (as measured in nmol/g) 
Metabolite Platform Concentration Literature value 

WATER-SOLUBLE COMPOUNDS 

AMINO ACIDS 

   

Alanine LC–MS/MS & NMR 1388 ± 276 2366–3515 a 

Arginine LC–MS/MS 9 ± 5 
 

Asparagine LC–MS/MS 169 ± 37 
 

Aspartate LC–MS/MS & NMR 384 ± 165 
 

Beta-alanine NMR 750 ± 137 
 

Citrulline LC–MS/MS 20 ± 5 
 

Creatine LC–MS/MS & NMR 1321 ± 464 
 

Glutamate LC–MS/MS & NMR 4092 ± 928 6122–7999 a 

Glutamine LC–MS/MS & NMR 1433 ± 231 1911–2576 a 

Glutathione LC–MS/MS & NMR 892 ± 472 
 

Glycine NMR 3201 ± 499 
 

Histidine LC–MS/MS 382 ± 67 
 

Isoleucine LC–MS/MS & NMR 178 ± 29 
 

Leucine LC–MS/MS & NMR 426 ± 117 
 

Lysine LC–MS/MS 115 ± 33 
 

Methionine LC–MS/MS & NMR 54 ± 16 
 

Ornithine LC–MS/MS & NMR 270 ± 63 984–1184 a 

Phenylalanine LC–MS/MS & NMR 138 ± 22 
 

Proline LC–MS/MS 352 ± 67 
 

Serine LC–MS/MS 422 ± 114 
 

Threonine LC–MS/MS & NMR 377 ± 95 
 

Tryptophan LC–MS/MS & NMR 44 ± 7 
 

Tyrosine LC–MS/MS & NMR 84 ± 27 
 

Valine LC–MS/MS & NMR 408 ± 73 
 

BIOGENIC AMINES 
   

Acetyl-ornithine LC–MS/MS 23 ± 8 
 

Asymmetric-dimethylarginine LC–MS/MS 1 ± 1 
 

Carnosine LC–MS/MS & NMR 393 ± 130 
 

Creatinine LC–MS/MS & NMR 58 ± 12 

 

Dopamine LC–MS/MS 2 ± 2 
 

Histamine LC–MS/MS 25 ± 16 
 

Kynurenine LC–MS/MS 3 ± 2 
 

Methionine-sulfoxide LC–MS/MS 13 ± 28 
 

Methylhistidine LC–MS/MS 25 ± 5 
 

Putrescine LC–MS/MS 0.2 ± 0.1 
 

Sarcosine LC–MS/MS & NMR 23 ± 10 
 

Serotonin LC–MS/MS 2 ± 1 
 

Taurine LC–MS/MS & NMR 2243 ± 1186 
 

Total-dimethylarginine LC–MS/MS 4 ± 1 
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Trans-hydroxyproline LC–MS/MS 51 ± 13 
 

CARBOHYDRATES 
   

Glucose LC–MS/MS & NMR 80098 ± 14629 
 

ORGANIC ACIDS 
   

3-hydroxybutyrate NMR 355 ± 89 
 

Acetate NMR 201 ± 91 
 

Alpha-aminoadipate LC–MS/MS 68 ± 27 
 

Ascorbate (Vitamin C) NMR 880 ± 257 
 

Formate NMR 1686 ± 209 
 

Fumarate NMR 299 ± 55 
 

Inosinate (IMP) NMR 34 ± 27 
 

Lactate NMR 12311 ± 1719 
 

Nicotinurate NMR 641 ± 87 
 

Pyruvate NMR 108 ± 20 
 

Succinate NMR 1194 ± 584 
 

MISCELANEOUS 
   

Betaine LC–MS/MS & NMR 358 ± 93 
 

Choline LC–MS/MS & NMR 345 ± 109 
 

Ethanol NMR 2065 ± 985 
 

Glycerol NMR 6219 ± 1151 
 

Hypoxanthine NMR 1227 ± 156 
 

Inosine NMR 833 ± 140 
 

Myo-inositol NMR 1177 ± 221 
 

NAD+ NMR 347 ± 99 
 

NADH NMR 48 ± 26 
 

NADP+ NMR 16 ± 8 
 

O-phosphocholine NMR 1658 ± 593 
 

sn-Glycero-3-phosphocholine NMR 10833 ± 1521 
 

Uridine monophosphate (UMP) NMR 58 ± 31 
 

Uracil NMR 76 ± 30 
 

Uridine NMR 344 ± 86 
 

LIPID-LIKE COMPOUNDS 

PHOSPHATIDYLCHOLINES, ACYL-

ALKYL 

   

PC ae (36:0) LC–MS/MS 5 ± 2 
 

PC ae (40:6) LC–MS/MS 2 ± 1 
 

PHOSPHATIDYLCHOLINES, DIACYL 
   

PC aa (32:2) LC–MS/MS 3 ± 1 
 

PC aa (36:6) LC–MS/MS 3 ± 1 
 

PC aa (36:0) LC–MS/MS 17 ± 5 
 

PC aa (38:6) LC–MS/MS 6 ± 3 
 

PC aa (38:0) LC–MS/MS 1.6 ± 0.4 
 

PC aa (40:6) LC–MS/MS 14 ± 6 
 

PC aa (40:2) LC–MS/MS 0.7 ± 0.2 
 

PC aa (40:1) LC–MS/MS 0.6 ± 0.2 
 



 

111 

 

LYSOPHOSPHATIDYLCHOLINES, ACYL 

C 

   

LysoPC(14:0) LC–MS/MS 0.09 ± 0.01 
 

LysoPC(16:1) LC–MS/MS 0.06 ± 0.02 
 

LysoPC(16:0) LC–MS/MS 0.7 ± 0.2 
 

LysoPC(17:0) LC–MS/MS 0.15 ± 0.03 
 

LysoPC(18:2) LC–MS/MS 1.1 ± 0.3 
 

LysoPC(18:1) LC–MS/MS 0.87 ± 0.23 
 

LysoPC(18:0) LC–MS/MS 2.1 ± 0.4 
 

LysoPC(20:4) LC–MS/MS 0.41 ± 0.11 
 

LysoPC(20:3) LC–MS/MS 0.132 ± 0.051 
 

LysoPC(24:0) LC–MS/MS 0.06 ± 0.01 
 

LysoPC(26:1) LC–MS/MS 0.04 ± 0.01 
 

LysoPC(26:0) LC–MS/MS 0.09 ± 0.03 
 

LysoPC(28:1) LC–MS/MS 0.1 ± 0.02 
 

LysoPC(28:0) LC–MS/MS 0.2 ± 0.1 
 

SPHINGOMYELINS 
   

SM(16:1) LC–MS/MS 0.9 ± 0.3 
 

SM(16:0) LC–MS/MS 22 ± 7 
 

SM(18:1) LC–MS/MS 3 ± 1 
 

SM(18:0) LC–MS/MS 6 ± 2 
 

SM(20:2) LC–MS/MS 0.8 ± 0.3 
 

HYDROXYSPHINGOMYELINS 
   

SM(14:1(OH)) LC–MS/MS 2 ± 1 
 

SM(16:1(OH)) LC–MS/MS 5 ± 1 
 

SM(22:2(OH)) LC–MS/MS 4 ± 1 
 

SM(22:1(OH)) LC–MS/MS 14 ± 3 
 

SM(24:1(OH)) LC–MS/MS 4 ± 1 
 

ACYLCARNITINES 
   

C0 (Carnitine) LC–MS/MS 22 ± 6 
 

C2 (Acetylcarnitine) LC–MS/MS 5 ± 2 
 

C3:1 (Propenoylcarnitine) LC–MS/MS 0.2 ± 0.1 
 

C3 (Propionylcarnitine) LC–MS/MS 3 ± 1 
 

C4:1 (Butenylcarnitine) LC–MS/MS 0.08 ± 0.01 
 

C4 (Butyrylcarnitine) LC–MS/MS 0.36 ± 0.08 
 

C3-OH (Hydroxypropionylcarnitine) LC–MS/MS 0.07 ± 0.02 
 

C5:1 (Tiglylcarnitine) LC–MS/MS 0.022 ± 0.004 
 

C5 (Valerylcarnitine) LC–MS/MS 0.17 ± 0.04 
 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC–MS/MS 0.09 ± 0.02 
 

C6:1 (Hexenoylcarnitine) LC–MS/MS 0.17 ± 0.03 
 

C6 (C4:1-DC) (Hexanoylcarnitine) LC–MS/MS 0.3 ± 0.1 
 

C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) LC–MS/MS 0.09 ± 0.02 
 

C5:1-DC (Glutaconylcarnitine) LC–MS/MS 0.026 ± 0.004 
 

C5-DC (C6-OH)(Glutarylcarnitine) LC–MS/MS 0.2 ± 0.1 
 

C8 (Octanoylcarnitine) LC–MS/MS 0.09 ± 0.02 
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C5-M-DC (methylglutarylcarnitine) LC–MS/MS 0.11 ± 0.02 
 

C9 (Nonaylcarnitine) LC–MS/MS 0.04 ± 0.01 
 

C7-DC (Pimelylcarnitine) LC–MS/MS 0.14 ± 0.11 
 

C10:2 (Decadienylcarnitine) LC–MS/MS 0.04 ± 0.01 
 

C10:1 (Decenoylcarnitine) LC–MS/MS 0.3 ± 0.1 
 

C10 (Decanoylcarnitine) LC–MS/MS 0.16 ± 0.03 
 

C12:1 (Dodecenoylcarnitine) LC–MS/MS 0.3 ± 0.1 
 

C12 (Dodecanoylcarnitine) LC–MS/MS 0.031 ± 0.004 
 

C14:2 (Tetradecadienylcarnitine) LC–MS/MS 0.011 ± 0.002 
 

C14:1 (Tetradecenoylcarnitine) LC–MS/MS 0.011 ± 0.002 
 

C14 (Tetradecanoylcarnitine) LC–MS/MS 0.011 ± 0.003 
 

C12-DC (Dodecanedioylcarnitine) LC–MS/MS 0.021 ± 0.003 
 

C14:2-OH (Hydroxytetradecadienylcarnitine) LC–MS/MS 0.008 ± 0.001 
 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 
 

C16:2 (Hexadecadienylcarnitine) LC–MS/MS 0.008 ± 0.001 
 

C16:1 (Hexadecenoylcarnitine) LC–MS/MS 0.032 ± 0.003 
 

C16 (Hexadecanoylcarnitine) LC–MS/MS 0.012 ± 0.004 
 

C16:2-OH (Hydroxyhexadecadienylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC–MS/MS 0.021 ± 0.004 
 

C16-OH (Hydroxyhexadecanoylcarnitine) LC–MS/MS 0.011 ± 0.003 
 

C18:2 (Octadecadienylcarnitine) LC–MS/MS 0.006 ± 0.001 
 

C18:1 (Octadecenoylcarnitine) LC–MS/MS 0.011 ± 0.002 
 

C18 (Octadecanoylcarnitine) LC–MS/MS 0.008 ± 0.001 
 

C18:1-OH (Hydroxyoctadecenoylcarnitine) LC–MS/MS 0.011 ± 0.002 
 

TRACE ELEMENTAL COMPOUNDS 
   

Lithium ICP–MS 2 ± 1 
 

Boron ICP–MS 47 ± 28 
 

Sodium ICP–MS 25588 ± 4753 
 

Magnesium ICP–MS 10 ± 7 
 

Phosphorus ICP–MS 32820 ± 6825 
 

Potassium ICP–MS 46154 ± 8295 
 

Calcium ICP–MS 17 ± 8 
 

Titanium ICP–MS 2.2 ± 0.4 
 

Cobalt ICP–MS 0.8 ± 0.2 
 

Copper ICP–MS 27 ± 19 
 

Zinc ICP–MS 39 ± 60 
 

Rubidium ICP–MS 80 ± 16 
 

Molybdenum ICP–MS 3 ± 1 
 

Cesium ICP–MS 0.02 ± 0.01 
 

Lead ICP–MS 0.019 ± 0.003   

a Miles et al., 2015 [205]. 
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Table 2. S4 List of testis metabolites along with their measured concentrations and their standard 

deviations (as measured in nmol/g) 
Metabolite Platform Concentration Literature value 

WATER-SOLUBLE COMPOUNDS 

AMINO ACIDS 

   

Alanine * LC–MS/MS & NMR 1400 ± 294 880–1200 a 

Arginine LC–MS/MS 51 ± 12 200–460 a 

Asparagine LC–MS/MS 48 ± 11 
 

Aspartate * LC–MS/MS & NMR 597 ± 215 310–550 a 

Beta-alanine NMR 48 ± 13 
 

Citrulline LC–MS/MS 19 ± 7 
 

Creatine LC–MS/MS & NMR 7553 ± 1850 
 

Glutamate LC–MS/MS & NMR 3270 ± 702 1950–2430 a 

Glutamine LC–MS/MS & NMR 1517 ± 338 
 

Glutathione NMR 1453 ± 257 
 

Glycine * LC–MS/MS & NMR 1247 ± 251 930–1250 a 

Histidine LC–MS/MS 61 ± 13 20 b 

Isoleucine LC–MS/MS & NMR 79 ± 14 30 b 

Leucine LC–MS/MS & NMR 138 ± 23 40 b 

Lysine * LC–MS/MS 64 ± 15 40 b, 120–200 a 

Methionine LC–MS/MS & NMR 26 ± 6 
 

Ornithine LC–MS/MS 10 ± 3 
 

Phenylalanine LC–MS/MS & NMR 56 ± 12 
 

Proline LC–MS/MS 191 ± 40 
 

Serine * LC–MS/MS 272 ± 58 230 b, 630–830 a 

Threonine LC–MS/MS & NMR 232 ± 51 140 b 

Tryptophan LC–MS/MS & NMR 18 ± 4 
 

Tyrosine LC–MS/MS & NMR 43 ± 9 
 

Valine LC–MS/MS & NMR 197 ± 37 50 b 

BIOGENIC AMINES 
   

Acetyl-ornithine LC–MS/MS 7 ± 3 
 

Asymmetric-dimethylarginine LC–MS/MS 0.8 ± 0.2 
 

Carnosine LC–MS/MS 12 ± 3 
 

Creatinine LC–MS/MS & NMR 123 ± 26 
 

Kynurenine LC–MS/MS 0.9 ± 0.4 
 

Methionine-sulfoxide LC–MS/MS 1 ± 0.4 
 

Methylhistidine LC–MS/MS 19 ± 4 
 

O-phosphoethanolamine NMR 6934 ± 1186 
 

Putrescine LC–MS/MS 11 ± 3 
 

Sarcosine LC–MS/MS & NMR 5 ± 2 
 

Spermidine LC–MS/MS 0.4 ± 0.2 
 

Taurine LC–MS/MS & NMR 1510 ± 296 
 

Total-dimethylarginine LC–MS/MS 1.9 ± 0.4 
 

Trans-hydroxyproline LC–MS/MS 43 ± 12 
 

Trimethylamine N-oxide LC–MS/MS 11 ± 5 
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CARBOHYDRATES 
   

Glucose LC–MS/MS & NMR 149 ± 66 
 

UDP-galactose NMR 53 ± 10 
 

UDP-glucose NMR 126 ± 32 
 

UDP-N-acetylglucosamine NMR 268 ± 40 
 

ORGANIC ACIDS 
   

3-hydroxybutyrate NMR 101 ± 23 
 

Acetate NMR 88 ± 19 
 

Alpha-aminoadipate LC–MS/MS 98 ± 39 
 

Ascorbate (Vitamin C) NMR 1576 ± 363 
 

Formate NMR 823 ± 240 
 

Fumarate NMR 27 ± 8 
 

Inosinate (IMP) NMR 97 ± 19 
 

Lactate NMR 7702 ± 1649 
 

Nicotinurate NMR 38 ± 11 
 

Pyruvate NMR 11 ± 3 
 

Succinate NMR 340 ± 76 
 

MISCELANEOUS 
   

Adenosine NMR 150 ± 114 
 

Betaine LC–MS/MS & NMR 564 ± 134 
 

Choline LC–MS/MS & NMR 177 ± 71 
 

Ethanol NMR 125 ± 111 
 

Glycerol NMR 380 ± 112 
 

Hypoxanthine NMR 176 ± 66 
 

Inosine NMR 225 ± 95 
 

Myo-inositol NMR 7193 ± 1232 
 

NAD+ NMR 151 ± 22 
 

NADH NMR 21 ± 8 
 

NADP+ NMR 12 ± 3 
 

O-phosphocholine NMR 1058 ± 234 
 

sn-Glycero-3-phosphocholine NMR 702 ± 121 
 

Uridine monophosphate (UMP) NMR 56 ± 11 
 

Uridine NMR 156 ± 36 
 

LIPID-LIKE COMPOUNDS 

PHOSPHATIDYLCHOLINES, ACYL-ALKYL 

   

PC ae (36:0) LC–MS/MS 0.9 ± 0.2 
 

PC ae (40:6) LC–MS/MS 0.6 ± 0.1 
 

PHOSPHATIDYLCHOLINES, DIACYL 
   

PC aa (32:2) LC–MS/MS 0.5 ± 0.1 
 

PC aa (36:6) LC–MS/MS 0.4 ± 0.1 
 

PC aa (36:0) LC–MS/MS 15 ± 3 
 

PC aa (38:6) LC–MS/MS 21 ± 5 
 

PC aa (38:0) LC–MS/MS 0.5 ± 0.1 
 

PC aa (40:6) LC–MS/MS 2.7 ± 0.4 
 

PC aa (40:2) LC–MS/MS 0.12 ± 0.02 
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PC aa (40:1) LC–MS/MS 0.07 ± 0.01 
 

LYSOPHOSPHATIDYLCHOLINES, ACYL C 
   

LysoPC(14:0) LC–MS/MS 0.09 ± 0.01 
 

LysoPC(16:1) LC–MS/MS 0.03 ± 0.01 
 

LysoPC(16:0) LC–MS/MS 0.7 ± 0.1 
 

LysoPC(17:0) LC–MS/MS 0.03 ± 0.01 
 

LysoPC(18:2) LC–MS/MS 0.41 ± 0.13 
 

LysoPC(18:1) LC–MS/MS 0.4 ± 0.1 
 

LysoPC(18:0) LC–MS/MS 0.16 ± 0.03 
 

LysoPC(20:4) LC–MS/MS 0.2 ± 0.1 
 

LysoPC(20:3) LC–MS/MS 0.04 ± 0.01 
 

LysoPC(24:0) LC–MS/MS 0.04 ± 0.01 
 

LysoPC(26:1) LC–MS/MS 0.04 ± 0.01 
 

LysoPC(26:0) LC–MS/MS 0.08 ± 0.01 
 

LysoPC(28:1) LC–MS/MS 0.06 ± 0.01 
 

LysoPC(28:0) LC–MS/MS 0.08 ± 0.01 
 

SPHINGOMYELINS 
   

SM(16:1) LC–MS/MS 0.6 ± 0.1 
 

SM(16:0) LC–MS/MS 42 ± 6 
 

SM(18:1) LC–MS/MS 0.5 ± 0.1 
 

SM(18:0) LC–MS/MS 5 ± 1 
 

SM(20:2) LC–MS/MS 0.3 ± 0.1 
 

HYDROXYSPHINGOMYELINS 
   

SM(14:1(OH)) LC–MS/MS 1.3 ± 0.2 
 

SM(16:1(OH)) LC–MS/MS 1.8 ± 0.3 
 

SM(22:2(OH)) LC–MS/MS 1.1 ± 0.2 
 

SM(22:1(OH)) LC–MS/MS 1.3 ± 0.3 
 

SM(24:1(OH)) LC–MS/MS 0.25 ± 0.04 
 

ACYLCARNITINES 
   

C0 (Carnitine) LC–MS/MS 20 ± 6 
 

C2 (Acetylcarnitine) LC–MS/MS 40 ± 11 
 

C3:1 (Propenoylcarnitine) LC–MS/MS 0.77 ± 0.13 
 

C3 (Propionylcarnitine) LC–MS/MS 0.6 ± 0.2 
 

C4:1 (Butenylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C4 (Butyrylcarnitine) LC–MS/MS 2.8 ± 0.7 
 

C3-OH (Hydroxypropionylcarnitine) LC–MS/MS 0.06 ± 0.01 
 

C5:1 (Tiglylcarnitine) LC–MS/MS 0.021 ± 0.003 

C5 (Valerylcarnitine) LC–MS/MS 0.27 ± 0.09 
 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC–MS/MS 0.16 ± 0.04 
 

C6:1 (Hexenoylcarnitine) LC–MS/MS 0.03 ± 0.01 
 

C6 (C4:1-DC) (Hexanoylcarnitine) LC–MS/MS 0.21 ± 0.06 
 

C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) LC–MS/MS 0.08 ± 0.02 
 

C5:1-DC (Glutaconylcarnitine) LC–MS/MS 0.021 ± 0.004 

C5-DC (C6-OH)(Glutarylcarnitine) LC–MS/MS 0.021 ± 0.004 

C8 (Octanoylcarnitine) LC–MS/MS 0.06 ± 0.01 
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C5-M-DC (methylglutarylcarnitine) LC–MS/MS 0.016 ± 0.003 

C9 (Nonaylcarnitine) LC–MS/MS 0.014 ± 0.002 

C7-DC (Pimelylcarnitine) LC–MS/MS 0.1 ± 0.1 
 

C10:2 (Decadienylcarnitine) LC–MS/MS 0.05 ± 0.01 
 

C10:1 (Decenoylcarnitine) LC–MS/MS 0.27 ± 0.04 
 

C10 (Decanoylcarnitine) LC–MS/MS 0.06 ± 0.01 
 

C12:1 (Dodecenoylcarnitine) LC–MS/MS 0.13 ± 0.01 
 

C12 (Dodecanoylcarnitine) LC–MS/MS 0.04 ± 0.01 
 

C14:2 (Tetradecadienylcarnitine) LC–MS/MS 0.011 ± 0.002 

C14:1 (Tetradecenoylcarnitine) LC–MS/MS 0.011 ± 0.003 

C14 (Tetradecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C12-DC (Dodecanedioylcarnitine) LC–MS/MS 0.013 ± 0.002 

C14:2-OH (Hydroxytetradecadienylcarnitine) LC–MS/MS 0.007 ± 0.001 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 

C16:2 (Hexadecadienylcarnitine) LC–MS/MS 0.006 ± 0.001 

C16:1 (Hexadecenoylcarnitine) LC–MS/MS 0.032 ± 0.003 

C16 (Hexadecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C16:2-OH (Hydroxyhexadecadienylcarnitine) LC–MS/MS 0.007 ± 0.001 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC–MS/MS 0.011 ± 0.001 

C16-OH (Hydroxyhexadecanoylcarnitine) LC–MS/MS 0.009 ± 0.001 

C18:2 (Octadecadienylcarnitine) LC–MS/MS 0.004 ± 0.001 

C18:1 (Octadecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 

C18 (Octadecanoylcarnitine) LC–MS/MS 0.02 ± 0.01 
 

C18:1-OH (Hydroxyoctadecenoylcarnitine) LC–MS/MS 0.009 ± 0.002 

TRACE ELEMENTAL COMPOUNDS 
   

Lithium ICP–MS 19 ± 2 

Boron ICP–MS 31 ± 11 
 

Sodium ICP–MS 35578 ± 6600 

Magnesium ICP–MS 70 ± 23 
 

Phosphorus ICP–MS 15602 ± 2618 

Potassium ICP–MS 48919 ± 8298 

Calcium ICP–MS 13 ± 4 
 

Titanium ICP–MS 1 ± 0.2 
 

Cobalt ICP–MS 0.05 ± 0.01 
 

Copper ICP–MS 0.7 ± 0.1 
 

Zinc ICP–MS 4 ± 1 
 

Rubidium ICP–MS 49 ± 9 
 

Molybdenum ICP–MS 0.06 ± 0.01 
 

Cesium ICP–MS 0.02 ± 0.01 
 

Thallium ICP–MS 0.0014 ± 0.0003 

Lead ICP–MS 0.014 ± 0.003 

* Compounds that exhibited good agreement with literature values; a Brown-Woodman and 

White, 1974 [206]; b Sexton et al., 1971 [207]. 
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Figure 2. 1 Screenshot montage of different browsing and searching screens taken from the 

Bovine Metabolome Database (BMDB). A more detailed description of the different functions 

and capabilities of the various browse and search tools in the BMDB is given in the text. 

 



 

118 

 

CHAPTER 3. SERUM METABOLITE BIOMARKERS FOR PREDICTING 

RESIDUAL FEED INTAKE (RFI) OF YOUNG ANGUS BULLS 

3.1. INTRODUCTION 

Residual feed intake (RFI) is a livestock feed efficiency measure defined as the difference between 

an animal’s actual feed intake and its expected feed requirements for maintenance and growth over 

a specific time-period. RFI is independent of growth characteristics such as body weight (BW) and 

average daily gain (ADG) [14, 16]. RFI measurements are laborious, expensive and time-

consuming as they require measuring an individual animal’s BW and feed intake over a period of 

76 days [16, 33]. The RFI value is typically calculated over a group or herd of cattle, where the 

mean RFI for that group is defined as 0 kg/day. Low-RFI (LRFI) animals eat less than average, 

while high-RFI (HRFI) animals eat more than average. For example, an animal with an RFI value 

of -1.9 kg/day eats 1.9 kg/day less than the mean of 0 kg/day and is considered as a LRFI or a feed 

efficient animal. Selection for LRFI animals is gaining popularity among beef producers because 

LRFI cattle eat less per unit weight gain. Another positive attribute of LRFI cattle is that they 

produce less methane. Methane is a greenhouse gas, which is produced by ruminants during 

digestion and fermentation [208]. Livestock are responsible for the emission of ~18% of the global 

anthropogenic output of greenhouse gases [58, 208] and therefore reducing their carbon footprint 

is a key factor in reducing global warming. Several studies have shown that selecting for LRFI 

cattle is associated with reduced methane production [7, 17]. Indeed, compared to HRFI cattle, 25-

28% lower methane production in LRFI animals has been reported [7, 17]. Therefore, selection 

for feed efficiency can favor both the farmer (decreased production costs) and the environment 

(lower methane and manure production). In addition, RFI has a moderate heritability (h2 = 0.29–
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0.46) in cattle, which makes it a good candidate for genetic improvement through selective 

breeding [16, 22, 28].  

However, because RFI measurements are expensive and time-consuming, they are performed 

only on a small percentage of the cattle population. Simpler or cheaper proxies for measuring RFI 

are clearly desirable. Because RFI is a measure of metabolic efficiency, it has been proposed that 

metabolomics or metabolite measurements of bovine biofluids may offer a lower cost alternative 

to manual RFI measurement. Several metabolomics studies have been conducted in beef cattle to 

explore the relationship between RFI and metabolite levels [13, 23, 152]. For example, higher 

concentrations of glucose [23], urea [23], creatine [152], carnitine [152], and β-hydroxybutyrate 

[13], but lower concentrations of creatinine [23] were reported in the plasma of HRFI beef cattle 

compared to LRFI beef cattle. However, neither the performance of these biomarkers nor a precise 

mathematical model for predicting RFI from these biomarkers has been described. Likewise, these 

studies were limited to measuring a relatively small number of metabolites via a single 

metabolomics platform (such as nuclear magnetic resonance (NMR) spectroscopy) or a laboratory 

chemistry analyzer. Here we describe a more comprehensive metabolomic study that uses multiple 

metabolomics platforms, including NMR spectroscopy, liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), and inductively coupled plasma-mass spectrometry (ICP-MS), to 

quantitatively characterize 145 serum metabolites in HRFI and LRFI young Angus bulls. Using 

this comprehensive metabolomics data set, we were able to identify several new metabolite 

biomarkers for RFI. Furthermore, we have constructed two logistic regression models (one 

optimized for NMR, the other optimized for LC-MS/MS) that use just two serum metabolites to 

differentiate HRFI and LRFI animals with a high sensitivity and specificity (AUROC > 0.85). A 

more complete description of the methods, the biomarkers and the models are given below. 
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3.2. MATERIALS AND METHODS 

3.2.1. Ethics approvals 

The collection and analysis of bovine serum in this study was approved by the University of 

Alberta’s Animal Care Committee (Animal Use Protocol [AUP] 1129) under the auspices of the 

Canadian Council of Animal Care [209]. 

3.2.2. Animals and experimental design 

Twenty-five purebred Angus bulls, raised on the University of Alberta’s Roy Berg Kinsella 

Research Ranch (Kinsella, Alberta, Canada), were used in this study. After weaning, bulls were 

fed and managed according to industry standards for production of potential replacement yearling 

bulls in Alberta until their RFI test at approximately 13 months of age [73].  

3.2.3. Measurement of phenotypic RFI values for the Angus bull cohort 

From the end of May 2015 until mid-August 2015, bulls were tested for RFIf (RFI that was 

adjusted for rib fat thickness at the end of feedlot test) at approximately 13 to 16 months of age 

using the GrowSafe™ automated feed recording system (GrowSafe Systems Ltd.) at Agriculture 

and Agri-Food Canada (AAFC, Lacombe, Alberta, Canada). The RFI test was conducted 

following the protocols and calculation of RFI as reported by Mao et al. [210] and Johnson et al. 

[73], except for that standardized daily dry matter intake (STDDMI) was calculated as an average 

of dry matter intake over the test period and standardized to 12 megajoules of metabolizable energy 

(MJ ME) per kg dry matter for finishing bulls (instead of 10 MJ ME for heifers). The GrowSafe 

diet consisted of 45% barley and 55% silage (as fed basis), and the nutrient analysis is presented 

in Table 1. An adaptation period of 21 days was used to acclimatize cattle to the GrowSafe system 

and diet. The quantity of feed intake for each feeding event of each bull was recorded by the 
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GrowSafe system, which was further used to calculate total feed intake over the 77-day test period. 

Bulls were weighed twice at the beginning of test, once per month throughout the test, and once at 

slaughter, which was a few days after the RFI test was complete. 

The end of RFI test weight was estimated from the slaughter weight. Rib fat thickness 

measurements (12/13th rib fat depth and LT area) were also determined at end of test, using an 

Aloka SSD-210 portable ultrasonographic scanner (Aloka Co., Tokyo, Japan). The initial BW at 

the start of the test and ADG were derived from a linear regression of the serial BW measurements 

against time (day). The metabolic BW (MWT) in kg was then calculated as midpoint BW0.75, 

where the midpoint BW was computed as the sum of the initial BW and the product of ADG 

multiplied by half of the days on test. Using the dry matter (DM) content of the diet as well as the 

bull’s daily intake, daily DMI in kg was calculated as an average of dry matter intake over the test 

period and was further standardized to 12 MJ ME per kg dry matter (STDDMI). In order to 

generate regression coefficients to predict an animal’s expected DMI required for maintenance of 

body weight and growth, a linear regression model was fit using PROC GLM in SAS (SAS 

Institute, Inc., Cary, NC, USA). The model was:  

Yi = β0 + β1ADGi + β2MWTj + β3FUFATk + еijk {1} (1) 

where Yi is the STDDMI for the ith bull, β0 is the intercept, β1 is the partial linear regression 

coefficient of ADG, β2 is the partial linear regression coefficient of MWT, β3 is the partial 

regression coefficient of final ultrasound backfat thickness (FUFAT), and еi is residual error for 

the ith bull. RFIf in kg of DMI per day (kg/day) was computed as the difference between the 

standardized daily DMI and the expected DMI that was predicted based on animal’s ADG, MWT 

and ultrasound backfat thickness in mm at the end of feedlot test (FUFAT) using the regression 

intercept and regression coefficients resulting from {1}. In total, 15 HRFI (0.39 ± 0.28 (mean RFIf 
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± standard deviation (SD))) and 10 LRFI (-0.52 ± 0.26) bulls were identified in this study. Those 

animals with RFIf value higher and lower than 0 kg/day were classified as HRFI and LRFI, 

respectively. RFIf values ranged from -1.05 kg to +1.07 kg DM per day, with an average of 0.00 

kg/day. 

3.2.4. Sample collection 

Blood samples (10 mL) were collected in the morning (just before feeding) at 15 months of age 

from a jugular vein using vacutainer serum collection tubes (Becton Dickinson, Mississauga, 

Canada). Blood samples were kept in a cooler on ice, transferred to the laboratory within 3 hours 

after collection, and centrifuged at 2,000 ×g at 4 °C for 15 min. The upper layer of serum was then 

collected, and 4 mL was stored at -80 °C.  

3.2.5. Metabolomics tests 

Three metabolomics platforms, including NMR, LC-MS/MS and ICP-MS, were used to identify 

and quantify a total of 145 metabolites in each bovine serum sample. Using NMR, LC-MS/MS 

and ICP-MS, 42, 116, and 13 metabolites were identified and quantified respectively, of which 26 

metabolites were common between NMR and LC-MS/MS. Details of sample preparation along 

with how the samples were run on each metabolomics platform have been previously described in 

detail by Foroutan et al. [211, 212]. Briefly, for NMR analysis, serum samples were filtered using 

a 3-kDa ultrafiltration unit (Amicon Micoron YM-3; Sigma-Aldrich, St. Louis, MO, USA) to 

remove large molecular weight proteins and lipoproteins. These macromolecules can seriously 

compromise the quality of 1H-NMR spectra though the generation of intense, broad lines that 

interfere with the identification and quantification of lower abundance metabolites [213]. The de-

proteinized sample was then frozen and stored at -80 ºC until further use. For NMR spectroscopic 
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analysis, 280 μL of the ultra-filtered serum was transferred to a 1.5 mL Eppendorf tube, to which 

an additional 70 μL of a standard NMR buffer solution (250 mM potassium phosphate (pH 7.0), 5 

mM 2,2-dimethyl-2-silapentane-5 sulfonate (DSS-d6), 5.84 mM 2-chloropyrimidine-5-carboxylic 

acid, and D2O 54% v/v in H2O) was added. The mixture was then transferred to a 3 mm NMR tube 

for spectral analysis. All 1H-NMR spectra were collected on a Bruker Avance III Ascend 700 MHz 

spectrometer equipped with a 5 mm cryo-probe (Bruker Biospin, Rheinstetten, Germany). 

Compound identification and quantification by NMR were performed according the procedure 

described by Foroutan et al. [151], using the Chenomx NMR Suite 8.1 software package (Chenomx 

Inc., Edmonton, Canada).  

A targeted, quantitative LC-MS/MS metabolite profiling approach was employed that 

combined reverse-phase liquid chromatography-mass spectrometry (RPLC-MS) with direct flow 

injection (DFI)-mass spectrometry (DFI-MS) (RPLC-DFI-MS/MS). LC-MS/MS was employed to 

determine the concentrations of up to 143 compounds (including amino acids, biogenic amines, 

glucose, organic acids, acylcarnitines, PCs, LysoPCs, SMs, and SM(OH)s) using an in-house 

quantitative metabolomics assay (TMIC Prime) [212, 214, 215]. All LC-MS analyses were 

conducted on an AB SCIEX QTRAP® 4000 mass spectrometer (Sciex Canada, Concord, Canada) 

equipped with an Agilent 1260 series UHPLC system (Agilent Technologies, Palo Alto, CA). The 

Analyst software 1.6.2 (Concord, Canada) was used to control the entire assay’s workflow. The 

macro- and micro-elemental analyses were performed on a Perkin-Elmer NexION 350x ICP-MS 

(Perkin-Elmer, Woodbridge, Canada) according the procedure described by Foroutan et al. [212].  

3.2.6. Statistical analysis 

Data analysis was performed using MetaboAnalyst 4.0 according to previously published 

protocols [216, 217]. Those metabolites having more than two missing values in each group were 
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removed from further analyses. A univariate analysis including t-tests and fold-change analysis 

was performed in order to identify differentially expressed metabolites between the HRFI and 

LRFI groups. Statistical significance was declared at a p-value < 0.05.  

Multivariate statistics, including PCA, PLS-DA, and ROC curve analysis, were performed 

using MetaboAnalyst 4.0. The data was scaled and normalized using a cube root transformation 

and auto scaling, which generated a clear Gaussian distribution plot prior to multivariate analysis. 

A permutation test involving 2000 randomized data sets was implemented to minimize the 

possibility that the observed separation of the PLS-DA was due to chance (a valid model should 

have a p-value < 0.05). 

ROC curves were calculated by MetaboAnalyst 4.0 to evaluate the predictive ability of 

potential metabolic biomarkers using a logistic regression model. The area under the ROC curve 

(AUC or AUROC) was used to interpret the performance across the two different biomarker 

models to determine the best cut-off point for maximal sensitivity and specificity. A ROC curve 

plots the false-positive rate (1-specificity) on the X axis versus sensitivity on the Y axis. Sensitivity 

(or recall) is defined as the number of true positives divided by the sum of the true positives and 

false negatives. On the other hand, specificity is defined as the number of true negatives divided 

by the sum of the true negatives and false positives. In a ROC curve, the accuracy of a test for 

correctly distinguishing one group from another, such as HRFI bulls from LRFI bulls, is measured 

by the area under the ROC curve (AUROC). The AUROC equal to 1 is the highest value indicating 

a perfect discriminating test, which is obtained when all positive samples are ranked before 

negative ones. A permutation test involving 1000 randomized permutations was implemented to 

validate (a valid model should have a p-value < 0.05) the reliability of the model for each ROC 

curve.  
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3.3. RESULTS 

3.3.1. The serum metabolome of beef cattle 

Serum metabolomic data were obtained from 15 HRFI and 10 LRFI young Angus bulls using three 

metabolomics platforms including NMR, LC-MS/MS, and ICP-MS. A total of 145 metabolites 

were identified and quantified in each serum sample (Table 2). We have deposited this information 

into the Bovine Metabolome Database - BMDB (www.bovinedb.ca) [212]. Inspection of our 

experimental data reveals that the chemical composition of bovine serum is dominated by 

inorganic ions (primarily sodium, potassium, calcium, and phosphorus), carbohydrates (glucose), 

organic acids (lactate, acetate, and 3-hydroxybutyrate), amino acids (glycine, valine, and 

glutamine), and various amine-containing compounds (urea, creatinine). We found that for those 

metabolites that were measured by both LC-MS/MS and NMR, there was a generally good overall 

agreement with the concentration values across both platforms. Therefore, to simplify the 

presentation of the data we only report the LC-MS/MS values for those metabolites measured on 

both platforms. Based on our data, the range of metabolite concentrations detected in bovine serum 

varied from 1.2 ± 0.2 µM (fumarate) to 5393 ± 2341 µM (lactate) for NMR, from 0.0075 ± 0.0011 

µM (C14:2-OH (hydroxytetradecadienylcarnitine)) to 4115 ± 326 µM (glucose) for LC-MS/MS, 

from 0.0016 ± 0.0001 µM (cesium) to 132919 ± 3122 µM (sodium) for ICP-MS. 

Using a combination of NMR and LC-MS/MS, a total of 58 water-soluble organic compounds 

were identified and quantified in bovine serum. The most abundant water-soluble organic 

compounds in serum were lactate (5393 ± 2341 µM), glucose (4115 ± 326 µM), and urea (1389 ± 

266 µM). The lowest concentration that could be reliably detected in serum was 0.035 ± 0.021 µM 

for putrescine. 

http://www.bovinedb.ca/
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The TMIC-Prime assay (a locally developed LC-MS/MS assay) provided quantitative results 

for 74 lipids or lipid-like compounds including 10 phosphatidylcholines (PCs), 14 

lysophosphatidylcholines (LysoPCs), 5 sphingomyelins (SMs), 5 hydroxysphingomyelins 

(SM(OH)s), and 40 acylcarnitines (ACs) in bovine serum. Note that some LysoPC and PC species 

identified by the TMIC-Prime assay correspond to multiple (ranging from as few as 2 to as many 

as 24) possible unique lipid structures. In our study, SM(16:0) (69 ± 10 µM) and C14:2-OH 

(hydroxytetradecadienylcarnitine) (7.5 ± 1.1 nM) were the most and least abundant lipid-like 

compounds identified in serum, respectively. 

ICP-MS also provided quantitative results for 13 trace minerals in bovine serum. The most 

abundant elements identified and quantified by ICP-MS were sodium (134 ± 16 mM), potassium 

(4.3 ± 0.3 mM), calcium (2.2 ± 0.2 mM), and phosphorus (1.3  0.2 mM). While the least abundant 

metals quantified by ICP-MS were cesium (1.6 ± 0.2 nM), barium (190 ± 40 nM), and strontium 

(940 ± 140 nM). 

3.3.2. Univariate statistical analysis of bovine serum metabolites 

Using univariate analysis, we compared the serum metabolite profile of those young Angus bulls 

identified as being HRFI with those identified as being LRFI. The most significantly different 

metabolites (p-value < 0.05) between the HRFI and the LRFI animals are shown in Figure 1. In 

total, 10 differentially expressed metabolites achieved statistical significance in this comparison. 

Specifically, the serum concentrations of serine, leucine, formate, C0 (carnitine), C3 

(propionylcarnitine), C4 (butyrylcarnitine), LysoPC(28:0), and SM(20:2) were greater in HRFI 

bulls than LRFI bulls. The most up-regulated metabolites were LysoPC(28:0) with a fold change 

(HRFI/LRFI) of 1.41 and C4 (butyrylcarnitine) with a fold change (HRFI/LRFI) of 1.38. In 
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addition to these eight up-regulated metabolites, two other metabolites, glycine and cesium, were 

down-regulated in the HRFI bulls as compared with their LRFI counterparts. 

3.3.3. Multivariate analysis of bovine serum metabolites 

Principle component analysis (PCA) showed moderately separable clustering between HRFI and 

LRFI animals (Figure 2a), while partial least squares-discriminant analysis (PLS-DA) showed a 

good separation for these two groups (Figure 2b). Permutation tests conducted on the PLS-DA 

model indicated that the observed separation was statistically significant (p-value < 0.01). A 

variable importance of projection (VIP) plot of the PLS-DA data, which ranks the top 15 

metabolites based on their contribution to the discriminant model, is shown in Figure 3. The heat 

map on the right side of the VIP plot indicates that four metabolites (cesium, glycine, 

trimethylamine-N-oxide, and C10:2 (decadienylcarnitine)) were more abundant in the LRFI group, 

while the other 11 metabolites were more abundant in the HRFI group. All, except five metabolites 

(valine, trimethylamine-N-oxide, C10:2 (decadienylcarnitine), LysoPC(28:1), and acetyl-

ornithine), identified via our multivariate analysis overlapped with the metabolites identified as 

significantly different between LRFI and HRFI animals by our univariate analysis. 

3.3.4. Biomarkers for bovine RFI 

From the significant metabolites identified via our univariate and multivariate analyses, we used 

logistic regression to generate two optimal models for distinguishing HRFI from LRFI animals. 

One biomarker panel uses only NMR-acquired data while the second uses only LC-MS/MS 

acquired data. The NMR model used two metabolites that are easily measured by NMR: formate 

and leucine (with an AUROC of 0.92 and a p-value of <0.01).  The LC-MS/MS model also used 
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two metabolites that are easily measured by LC-MS/MS: C4 (butyrylcarnitine) and LysoPC(28:0) 

(with an AUROC of 0.89 and a p-value of <0.01). 

As noted above, the best performing panel was the NMR-based test, which included formate 

and leucine. A logistic regression equation for these two candidate biomarkers was used to 

calculate the receiver operating characteristic curve (ROC) and to calculate the area under the ROC 

curve or AUROC (Figure 4). Permutation testing (n=1000) confirmed the significance of this 

model (p-value = 0.006). The logistic regression model developed for this prediction is given as 

follows: 

logit(P) = log(P / (1 - P)) = -1.6 - 3.554 × formate - 2.161 × leucine (2) 

where P is the probability of an animal being classified as LRFI. The optimal cutoff point for the 

above equation is 0.38. This means that an animal with a value greater than or equal to 0.38 belongs 

to the LRFI group, while an animal with a value less than 0.38 belongs to the HRFI group. Because 

the concentrations of the metabolites used in this study were cube-root transformed and then scaled 

via auto scaling, the value for formate in the above equation corresponds to the (cube root 

[formate]-4.2684)/0.1951 (where [formate] is the measured concentration of this compound in µM, 

as quantified by NMR). Likewise, the value for leucine corresponds to the (cube root [leucine]-

5.9522)/0.2257 (where [leucine] is the measured concentration of this compound in µM, as 

quantified by NMR). 

The second best performing RFI prediction panel included two metabolites that could only be 

measured by LC-MS/MS: C4 (butyrylcarnitine) and LysoPC(28:0). A logistic regression equation 

for these two candidate biomarkers was used to generate a model with a final AUROC of 0.89 

(Figure 5). Permutation testing (n=1000) confirmed its significance (p-value = 0.005). The logistic 

regression model developed for this prediction is given as follows: 
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logit(P) = log(P / (1 - P)) = -3.625 - 5.351 C4(butyrylcarnitine) - 6.378 LysoPC(28:0) (3) 

where P is the probability of an animal being classified as LRFI. The optimal cutoff point for the 

above equation is 0.53. This means that an animal with a value greater than or equal to 0.53 belongs 

to the LRFI group, while an animal with a value less than 0.53 belongs to the HRFI group.  Because 

the concentrations of the metabolites used in this study were cube root transformed and then scaled 

via auto scaling method, the value for C4 (butyrylcarnitine) in the above equation corresponds to 

the (cube root [C4(butyrylcarnitine)]-0.5557)/0.0499 (where [C4(butyrylcarnitine)] is the 

measured concentration of this compound in µM, as quantified by LC-MS/MS). Likewise, the 

value for LysoPC(28:0) corresponds to the (cube root [LysoPC(28:0)]-0.6494)/0.0726 (where 

[LysoPC(28:0)] is the measured concentration of this compound in µM, as quantified by LC-

MS/MS). 

3.4. DISCUSSION 

The main objective of this study was to identify candidate serum biomarker metabolites that could 

successfully discriminate HRFI cattle from LRFI cattle. To optimize the likelihood of identifying 

robust RFI biomarkers we used a combination of three quantitative metabolomics platforms 

(NMR, LC-MS/MS, and ICP-MS). Using these three platforms, we were able to identify and 

quantify a total of 145 metabolites, including 58 water-soluble organic compounds, 74 lipid-like 

compounds, as well as 13 metal ions. Overall, we found a very good agreement between the results 

of these 145 experimentally quantified metabolites with those of reported elsewhere (available in 

www.bovinedb.ca [212]). Indeed, the concentrations reported for serum in the BMDB agreed well 

with our experimental data. For instance, the value of asparagine reported by our study ranged 

from 21–30 µM, and for the literature-derived data it ranged from 20–33 µM. This widespread 

http://www.bovinedb.ca/


 

130 

 

agreement was not unexpected as serum/plasma must be highly stable and cannot vary much in its 

metabolite concentrations to ensure physiological homeostasis [218].  

Of course, there were a few exceptions to this rule. The most variable metabolite reported in 

serum was betaine. The value of betaine reported by our study ranged from 131–205 µM, and the 

literature-reported values ranged from 14–26 µM [219]. This variation could be due to a number 

of factors, including differences in diet, sex, age, breed, sample work-up or extraction, sample 

storage protocols, analytical platforms and instrument sensitivity. We believe the most likely 

contributor to this difference is diet, as the amount of betaine in the diet of our beef cattle would 

be expected to be different than that of dairy cattle in the reference study of Artegoitia et al. [219]. 

Overall, there were very few outliers like betaine. Therefore, the good agreement for metabolite 

concentrations we obtained for the Angus bulls used in this study, with other cattle breeds suggests 

that the RFI biomarkers we discovered here should be transferrable to other breeds of beef cattle 

fed similar kinds of diets. 

3.4.1. Comparison with literature-reported biomarkers of bovine RFI 

To date there have been four other published metabolomic studies that have attempted to identify 

relationships between blood metabolite levels and bovine RFI [23, 152, 220, 221]. The study of 

Fitzsimons et al. [23] showed higher concentrations of glucose and urea and lower concentrations 

of creatinine in the plasma of HRFI vs. LRFI heifers. The study by Karisa et al. [152] reported 

higher concentrations of creatine, carnitine, formate, hydroxyisobutyrate, and tyrosine in the 

plasma of HRFI beef cattle along with higher concentrations of glycine in the plasma of LRFI beef 

cattle. Clemmons et al. [220] reported that the serum concentrations of pantothenate, 

homocysteine, glutamine, and carnitine were found to be associated with divergent RFI in beef 

steers, although no concentration values for these metabolites were reported in the Clemmons et 
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al. study. A very recent study conducted by Jorge-Smeding et al. [221] found that plasma 

metabolites that are directly (ornithine) or indirectly (aspartate, lysine, valine) associated with the 

urea cycle were correlated with RFI in Charolais heifers.  

Table 3 summarizes these previous metabolomic findings and compares them with the 

findings reported here. As can be seen in this table, there was a good agreement between our 

findings and those reported from Fitzsimons et al. [23], Karisa et al. [152], and Jorge-Smeding 

[221]. For example, serum/plasma concentrations of tyrosine were higher in our HRFI group, 

which is in agreement with the findings of Fitzsimons et al. [23], and Karisa et al. [152]. Likewise, 

the serum concentrations of valine was higher in the HRFI group, which is similar to the findings 

of Fitzsimons et al. [23] and Jorge-Smeding et al. [221]. However, there were some discrepancies, 

with the most significant variations being seen in the study of Karisa et al. [152]. For instance, the 

serum concentration of 3-hydroxybutyrate was higher in HRFI animals in our study but reported 

as being lower is the study of Karisa et al. [152]. Karisa et al. [152] also reported exceptionally 

high concentrations for succinate (~250 µM), oxobutyrate (~40 µM), and allantonin (~90 µM), 

which do not match values reported by our study, by any other bovine studies or by the referential 

data in the BMDB [212]. Indeed, closer analysis of the NMR spectral regions corresponding to 

these metabolites (especially at higher fields) suggests that these peaks may have incorrectly 

identified and therefore incorrectly quantified. Other reasons for the differences between the 

Karisa et al. study and other bovine studies could be due to differences in diet, sex, age, breed, 

sample work-up or extraction or instrument sensitivity. 

Another notable difference was found for blood glucose concentrations between our study and 

the values reported by Fitzsimons et al. [23]. In particular, the concentration of glucose was found 

to be higher in the serum of LRFI Angus bulls in our study but reported as being higher in the 
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plasma of Medium- and High-RFI Simmental heifers, respectively, in the study of Fitzsimons et 

al. [23]. Apart from glucose, other metabolites measured in both studies showed similar trends in 

terms of RFI classification (i.e. both studies found that the concentration of urea and carnitine were 

higher in HRFI animals). Glucose concentrations can vary significantly depending on how long 

samples are left at room temperature prior to being frozen. This is because glycolytic reactions in 

liquid serum/plasma readily lead to the conversion of glucose to lactate. Unfortunately, no details 

were provided in the study Fitzsimons et al. [23] regarding sample preparation time or lactate 

levels. Furthermore, given the fact that the highest concentration of glucose was seen in Medium-

RFI animals as opposed to the  LRFI or HRFI animals, suggests the glucose data reported by 

Fitzsimons et al. may have been more reflective of differences in sample preparation time than 

true differences in RFI. As a general rule, we treat reported glucose concentrations in livestock 

studies with a good deal of caution because of the extreme sensitivity of glucose levels to sample 

preparation/storage. 

3.4.2. Candidate serum biomarkers of bovine RFI 

While other studies have identified possible associations between blood metabolites and bovine 

RFI, as yet no published study has attempted to develop quantitative metabolite biomarker panels 

to predict RFI in cattle. Using logistic regression models, two categorical predictive biomarker 

panels were developed from this study to categorically predict RFI and to distinguish HRFI 

animals from LRFI animals. 

The best performing panel was an NMR-based, two-metabolite model that included formate 

and leucine. The second best performing panel as an LC-MS/MS based two-metabolite model that 

included C4 (butyrylcarnitine) and LysoPC(28:0). Both panels have high sensitivity and specificity 

(AUROC > 0.85), making them good candidates to distinguish or predict HRFI animals from LRFI 
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animals. Because these panels consist of just two metabolites, it is possible to construct very fast 

(<5 minute/sample) and inexpensive (<$10) NMR or MS-based assays that could be used to 

perform bovine RFI characterization.  

Basarab et al. [222] has estimated that a mature LRFI cow would have a net economic profit 

of $46/head/year compared to that of HRFI. This cost calculation suggests that selecting for LRFI 

could have a significant effect on reducing the costs of production for cattle ranchers. However, 

RFI is a difficult and time-consuming measure to perform. The cost of performing RFI 

measurements over 80-90 days is ~ $250/head which is much higher than the cost of a metabolite 

test ($5-10/head) or the net profit of selecting for LRFI cattle via GrowSafe™ RFI measurements. 

Therefore, a simple blood test that could distinguish high RFI (HRFI) animals from LRFI animals 

(early on) would potentially benefit beef farmers in terms of optimizing production or selecting 

which animals to cull or which animals should be bred. 

As noted in the Methods section, the serum samples used to perform these metabolomic assays 

were collected at 15 months (shortly before the cattle were slaughtered at 17 months). Beef cattle 

produced in the United States and Canada can be slaughtered at any time from 12 months to 24 

month of age, with the highest quality beef coming from those slaughtered under 24 months of age 

and the most tender meat found in animals slaughtered between 12-18 months of age [223]. 

Therefore, the markers identified here could be used for reasonably early prediction of RFI 

performance. However, it is not clear if the same panel of metabolites would work at other ages 

(14 months, 12 months, or 9 months) or whether the same panel would also work with cows, steers 

or heifers. Other metabolomic studies that have looked at metabolite-RFI associations [224, 225] 

suggest that these metabolic traits are likely established early in an animal’s lifetime and so there 

is a good likelihood that these biomarkers could be used to assess RFI earlier than 15 months. 
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Being able to perform a serum-based RFI “prediction” even earlier in an animal’s lifetime would 

certainly allow critical decisions to be made by the producer regarding breeding, culling or feeding 

a particular animal.  

It is also important to note that other physiological factors certainly play a role in the 

composition of the bovine metabolome (and therefore the biomarker panel parameters described 

here), including physical maturity, sex and castration status. These physiological and age-

dependent differences would be expected to lead to changes in the optimal cut-off concentrations. 

Typically, bulls are castrated at 3-6 weeks of age to become steers [226]. Uncastrated bulls reach 

puberty at 9-10 months [227] while heifers reach puberty at 12-14 months [228]. Castration will 

certainly affect some aspects of bovine metabolism as will the stage of an animal’s sexual and 

physical maturity. Clearly additional studies will need to be done with other bovine cohorts over 

a range of ages and a range of physiological states to confirm the utility and cut-off values for 

these RFI biomarkers.   

In addition to working with animals covering a wider set of ages (to ascertain the RFI 

biomarker age-range), it would also have been useful to perform further validation of these 

biomarkers on a “hold out” set of animals. These hold-out animals would have ideally raised 

elsewhere or at a different time using similar feeding, housing and animal management conditions. 

However, the high costs of measuring RFI, the length of the study (almost 2 years) and the costs 

of maintaining the animals for 17 months make these sorts of studies prohibitively expensive, 

especially given the limited resources for this sort of discovery-based study.  

3.4.3. Metabolite markers and their role in RFI biochemistry 

Our study identified a number of significantly different metabolites that seemed to drive the 

observed differences in RFI: C4 (butyrylcarnitine), LysoPC(28:0), formate, and leucine. Each of 
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these compounds plays an important role in bovine metabolism. C4 (butyrylcarnitine) is an 

acylcarnitine formed when fatty acyl-coenzyme A (fatty acyl-CoA) enters through the carnitine 

shuttle into the mitochondria for β-oxidation and the tricarboxylic acid (TCA) cycle to produce 

ATP [229]. Besides facilitating fatty acids crossing the mitochondrial membranes to be degraded 

by β-oxidation, acylcarnitines along with branched-chain amino acids or BCAAs (leucine, iso-

leucine, and valine), also mediate activation of several important hepatic metabolic signaling 

pathways leading to diseases such as non-alcoholic fatty liver disease and type 2 diabetes mellitus 

in humans and other mammals [230, 231]. The short-chain acylcarnitines C3, C4, and C5 are 

degradation products of BCAAs [232] and saturation of the BCAA degradation pathway has been 

shown to inhibit the initial step of β-oxidation, leading to weight gain and body fat deposition 

[232]. High concentrations of BCAAs are associated with higher oxidative stress, and as seen in 

human and rodent studies, can serve as biomarkers for obesity-associated insulin resistance and 

diabetes [232, 233].  

LysoPC(28:0) belongs to lysophosphatidylcholine family of lipids which are derived by 

partial hydrolysis of phosphatidylcholines by removing one of the fatty acid groups, via the action 

of phospholipase A2 (PLA2) [234]. High concentrations of lysoPC species (especially those 

containing palmitoyl (C16:0) or stearoyl (C18:0) groups) in the blood are known to stimulate 

cytosolic PLA2 and this results in an increased release of arachidonate, which is associated with 

cardiovascular disease [235]. In the vascular system, lysophosphatidylcholines have been shown 

to increase oxidative stress [236-238]. For example, Zou et al. [238] reported that 

lysophosphatidylcholines enhanced oxidative stress in rat aorta during aging via the 5-

lipoxygenase pathway. Lehmann et al. [239] reported that circulating lysophosphatidylcholines 

can serve as biomarkers of a metabolically benign non-alcoholic fatty liver in humans. In 
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particular, Lehmann et al. found that the plasma concentration of lysophosphatidylcholines was 

higher in insulin-sensitive patients with non-alcoholic fatty liver compared with insulin-resistant 

ones with non-alcoholic fatty liver. Stiuso et al. [240] also reported that lipidomic and/or oxidative 

status of serum caused by lysophosphatidylcholines is associated with liver diseases (i.e. non-

alcoholic fatty liver or steatohepatitis). A recent study [241] reported lower levels of reactive 

oxygen species (ROS) in the liver of LRFI steers which suggests they have lower levels of hepatic 

oxidative stress than HRFI steers. Decreased oxidative stress in the liver is associated with lower 

feed maintenance requirements, due to a lower lipid and protein turnover and better efficiency in 

energy usage [241].  

As comprehensively reviewed by Herd and Arthur [19], variations in RFI can be explained by 

differences in energy expenditure from metabolic processes, body composition, and physical 

activity. Typically greater energy expenditures and higher maintenance requirements are seen in 

HRFI animals compared to LRFI animals [19]. Richardson et al. [30] also reported that Angus 

steers born from HRFI parents had less whole-body protein and more whole-body fat compared to 

progeny steers of LRFI parents. Therefore, higher levels of C4 (butyrylcarnitine) and 

LysoPC(28:0) in the serum of our HRFI bulls might be associated with increased oxidative stress 

in the HRFI group.  

The other two serum metabolites that were most differentiating between HRFI and LRFI 

animals included formate and leucine. The concentration of formate and leucine was higher in 

HRFI animals and lower in LRFI animals. Formate participates in NADPH synthesis and catalyzes 

the conversion of fumarate into succinate in the TCA cycle [242, 243].  The associations between 

RFI and several metabolites (i.e., acetate, citrate and succinate) linked to the TCA cycle were 

recently discussed  by Karisa et al. [152] as well as Wang and Kadarmideen [244]. Formate is the 
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simplest carboxylic acid and serves as a potent reductive force against oxidative stress. It is 

produced when the keto-acid, glyoxylate, neutralizes ROS in cells [242, 243]. Therefore, a higher 

level of formate in the serum of HRFI animals suggests that these less feed-efficient cattle are 

more prone to oxidative stress in the form of higher levels of ROS. This conclusion also agrees 

with the results reported in the study performed by Casal et al. [241]. Additionally, Fitzsimons et 

al. [23] also reported positive correlations between RFI and formate levels in the plasma of beef 

cattle. 

Leucine is a branched-chain amino acid and its catabolism generates succinyl-CoA and acetyl-

CoA, both of which can up-regulate the activity of the TCA cycle [245, 246]. BCAAs are also 

involved in protein turnover in skeletal muscle [246-248]. Leucine also increases fatty acid 

oxidation [249]. As discussed earlier, high concentrations of BCAAs are associated with higher 

levels of oxidative stress [232, 233]. Therefore, leucine could have an important role in RFI 

variation, since both protein turnover, oxidative stress and energy metabolism are key factors 

affecting this phenotype [19]. 

We also performed a further study to understand if the variations in the concentration of C4 

(butyrylcarnitine), LysoPC(28:0), formate, and leucine between HRFI and LRFI bulls correlated 

with the concentration of these metabolites in their rumen. This was done to explore whether these 

metabolite difference may be associated with differences in ruminal activity or rumen microbial 

activity. However, we found no such correlation (data not shown). 

3.5. CONCLUSIONS 

In this study we evaluated the effectiveness of using multi-platform, quantitative metabolomics to 

identify candidate serum biomarkers that can easily distinguish HRFI animals from LRFI animals. 

LC-MS/MS, NMR and ICP-MS were used to identify and quantify 145 serum metabolites in an 
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effort to maximize our chances to identify and develop a suitable set of metabolite RFI biomarkers. 

We successfully identified two significant candidate biomarkers panels (AUROC > 0.85) that can 

predict RFI categorically. These include a two-metabolite model (formate and leucine) that is 

compatible with NMR analysis and a two-metabolite model (C4 (butyrylcarnitine) and 

LysoPC(28:0)) that is compatible with LC-MS/MS analysis. These results suggest that serum 

metabolites could be used to categorically predict RFI (early on) and inexpensively distinguish 

HRFI cattle from LRFI cattle.  

While the results we obtained are very statistically significant and appear to be consistent with 

other reported studies on bovine RFI, the main limitation in this study was the small sample size 

(15 HRFI vs. 10 LRFI cattle). Given the significant costs and time associated with performing RFI 

measurements on cattle, this is a limitation that is difficult to overcome. Another limitation lies in 

the fact that the study was conducted on only a single sex (bulls), from a single breed (Angus 

cattle), consuming the same diet. However, it is important to note that we demonstrated that the 

data we measured in this study was broadly consistent with data collected for other beef cattle RFI 

studies. This gives us reason to believe that the results presented here will be shown to be largely 

reproducible elsewhere. Nevertheless, in order to properly confirm the robustness of these serum 

biomarkers as proxies to distinguish between divergent RFI cattle, further validation studies using 

a larger cohort of cattle with more diverse genetic backgrounds and from different management 

settings will be needed. 
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Table 3. 1 Nutrient analysis of barley-silage ration fed to bulls during the RFI test period in the 

GrowSafe system. 

Diet composition Value 

DM 1% (actual) 56.10 

CP 2 (%DM) 14 

ADF 3 (%DM) 25.25 

NDF 4 (%DM) 40.50 

TDN 5 (%DM) 69.60 

Ca (%DM) 0.94 

P (%DM) 0.34 

Mg (%DM) 0.23 

K (%DM) 1.38 

Na (%DM) 0.13 

Fe (PPM) 336 

Mn (PPM) 70 

Zn (PPM) 61 

Cu (PPM) 16 
1 DM: Dry Matter Basis; 2 CP: Crude Protein; 3 ADF: Acid Detergent Fibre; 4 NDF: Neutral 

Detergent Fibre; 5 TDN: Total Digestible Nutrients 
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Table 3. 2 List of serum metabolites along with their analytical platform, measured 

concentrations, fold change, and Log2fold change. 
Metabolite Platform HRFI (µM) LRFI (µM) Fold Change 

(HRFI/LRFI) 

Log2Fold Change 

(HRFI/LRFI) 

AMINO ACIDS 
     

Alanine LC-MS/MS & NMR 236±29 1 245±30 0.96 -0.05 

Arginine LC-MS/MS & NMR 218±32 218±35 1.00 0.00 
Asparagine LC-MS/MS & NMR 26±4 24±3 1.08 0.12 

Aspartate LC-MS/MS & NMR 26±12 22±10 1.18 0.24 

Beta-alanine NMR 8±1 8±1 0.99 -0.02 
Citrulline LC-MS/MS & NMR 93±15 81±14 1.15 0.20 

Creatine LC-MS/MS & NMR 194±31 199±23 0.97 -0.04 

Glutamate LC-MS/MS & NMR 93±22 89±15 1.04 0.06 
Glutamine LC-MS/MS & NMR 330±52 330±22 1.00 0.00 

Glycine * LC-MS/MS & NMR 377±66 429±52 0.88 -0.19 

Histidine LC-MS/MS 78±12 79±8 0.99 -0.02 
Isoleucine LC-MS/MS & NMR 156±15 150±11 1.04 0.06 

Leucine * LC-MS/MS & NMR 221±25 197±15 1.12 0.17 

Lysine LC-MS/MS & NMR 91±18 84±9 1.08 0.12 
Methionine LC-MS/MS & NMR 33±5 34±3 0.97 -0.04 

Ornithine LC-MS/MS & NMR 60±13 63±12 0.95 -0.07 

Phenylalanine LC-MS/MS & NMR 72±7 69±7 1.04 0.06 
Proline LC-MS/MS & NMR 105±15 101±16 1.04 0.06 

Serine * LC-MS/MS & NMR 91±13 76±10 1.20 0.26 

Threonine LC-MS/MS & NMR 76±12 72±13 1.06 0.08 
Tryptophan LC-MS/MS 47±7 47±6 1.00 0.00 

Tyrosine LC-MS/MS & NMR 91±12 90±6 1.01 0.02 

Valine LC-MS/MS & NMR 367±33 338±28 1.09 0.12 
BIOGENIC AMINES 

     

Acetyl-ornithine LC-MS/MS 3.3±0.71 2.8±0.74 1.18 0.24 

Asymmetric-dimethylarginine LC-MS/MS 1.15±0.21 1.06±0.11 1.08 0.12 
Carnosine LC-MS/MS 31±16 29±6 1.07 0.10 

Creatinine LC-MS/MS & NMR 109±18 118±16 0.92 -0.11 

Kynurenine LC-MS/MS 7.3±1.2 7.6±2.4 0.96 -0.06 
Methionine-sulfoxide LC-MS/MS 1.2±0.3 1.2±0.3 1.00 0.00 

Methylhistidine LC-MS/MS 15±2 14±2 1.07 0.10 

Putrescine LC-MS/MS 0.035±0.021 0.041±0.014 0.85 -0.23 
Sarcosine LC-MS/MS & NMR 2.79±0.73 3.08±0.74 0.90 -0.15 

Serotonin LC-MS/MS 8±3 10±4 0.80 -0.32 

Spermidine LC-MS/MS 0.21±0.01 0.18±0.01 1.17 0.22 
Spermine LC-MS/MS 0.21±0.14 0.12±0.04 1.75 0.81 

Taurine LC-MS/MS & NMR 80±25 81±10 0.99 -0.02 

Total-dimethylarginine LC-MS/MS 2.1±0.3 2.1±0.3 1.00 0.00 
Trans-hydroxyproline LC-MS/MS 24±5 27±4 0.89 -0.17 

Trimethylamine-N-oxide LC-MS/MS 5±1 7±4 0.71 -0.49 

CARBOHYDRATES 
     

Glucose LC-MS/MS & NMR 3860±490 4115±326 0.94 -0.09 

ORGANIC ACIDS 
     

3-hydroxybutyrate NMR 375±164 287±94 1.31 0.39 
Acetate NMR 452±228 329±123 1.37 0.46 

Alpha-aminoadipate LC-MS/MS 1.25±0.54 1.31±0.44 0.95 -0.07 
Ascorbate (Vitamin C) NMR 11±3 10±3 1.10 0.14 

Formate * NMR 82±13 72±3 1.14 0.19 

Fumarate NMR 1.2±0.2 1.2±0.2 1.00 0.00 

Lactate NMR 4488±1761 5393±2341 0.83 -0.27 

Pyruvate NMR 142±27 162±54 0.88 -0.19 

MISCELANEOUS 
     

Acetone NMR 71±27 69±12 1.03 0.04 

Betaine LC-MS/MS & NMR 169±27 168±37 1.01 0.01 

Choline LC-MS/MS & NMR 20±4 22±4 0.91 -0.14 
Ethanol NMR 7.8±1.2 8.1±1.4 0.96 -0.05 

Glycerol NMR 312±41 318±36 0.98 -0.03 

Isopropanol NMR 2.27±0.82 2.54±0.34 0.92 -0.12 
Methanol NMR 32±5 31±3 1.03 0.05 

Myo-inositol NMR 43±12 48±8 0.90 -0.16 

Urea NMR 1389±266 1220±289 1.14 0.19 
Uridine NMR 3.1±0.71 2.8±0.52 1.11 0.15 

PHOSPHATIDYLCHOLINES, ACYL-ALKYL 
    

PC ae (36:0) LC-MS/MS 1.68±0.41 1.64±0.41 1.02 0.03 
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PC ae (40:6) LC-MS/MS 0.47±0.13 0.44±0.04 1.07 0.10 
PHOSPHATIDYLCHOLINES, DIACYL 

    

PC aa (32:2) LC-MS/MS 4.3±1.3 3.8±1.1 1.13 0.18 

PC aa (36:6) LC-MS/MS 0.7±0.2 0.6±0.2 1.17 0.22 
PC aa (36:0) LC-MS/MS 6.05±1.4 6.18±1.4 0.98 -0.03 

PC aa (38:6) LC-MS/MS 1.007±0.284 0.901±0.194 1.12 0.16 

PC aa (38:0) LC-MS/MS 0.801±0.162 0.831±0.161 0.96 -0.05 
PC aa (40:6) LC-MS/MS 1.6±0.4 1.7±0.4 0.96 -0.05 

PC aa (40:2) LC-MS/MS 0.367±0.061 0.376±0.061 0.95 -0.08 

PC aa (40:1) LC-MS/MS 0.209±0.034 0.214±0.044 0.98 -0.03 
LYSOPHOSPHATIDYLCHOLINES, ACYL C 

    

LysoPC(14:0) LC-MS/MS 0.83±0.12 0.77±0.11 1.08 0.11 

LysoPC(16:1) LC-MS/MS 0.63±0.14 0.63±0.11 1.00 0.00 
LysoPC(16:0) LC-MS/MS 20±4 19±3 1.05 0.07 

LysoPC(17:0) LC-MS/MS 2.83±0.61 2.86±0.41 0.99 -0.02 

LysoPC(18:2) LC-MS/MS 16±4 14±2 1.14 0.19 
LysoPC(18:1) LC-MS/MS 6.5±1.4 6.4±1.1 1.02 0.02 

LysoPC(18:0) LC-MS/MS 29±6 30±3 0.97 -0.05 

LysoPC(20:4) LC-MS/MS 0.51±0.14 0.44±0.11 1.17 0.23 

LysoPC(20:3) LC-MS/MS 1.7±0.4 1.6±0.3 1.06 0.09 

LysoPC(24:0) LC-MS/MS 0.051±0.014 0.051±0.011 1.00 0.00 

LysoPC(26:1) LC-MS/MS 0.109±0.051 0.095±0.042 1.15 0.20 
LysoPC(26:0) LC-MS/MS 0.9±0.3 0.6±0.3 1.50 0.58 

LysoPC(28:1) LC-MS/MS 0.349±0.122 0.266±0.064 1.30 0.37 

LysoPC(28:0) * LC-MS/MS 0.322±0.121 0.228±0.044 1.41 0.50 
SPHINGOMYELINS 

     

SM(16:1) LC-MS/MS 6±1 5±1 1.10 0.13 
SM(16:0) LC-MS/MS 69±10 65±9 1.06 0.09 

SM(18:1) LC-MS/MS 11±3 9±2 1.22 0.29 

SM(18:0) LC-MS/MS 12±1 11±2 1.09 0.13 
SM(20:2) * LC-MS/MS 1.2±0.3 0.9±0.2 1.33 0.42 

HYDROXYSPHINGOMYELINS 
    

SM(14:1(OH)) LC-MS/MS 5.6±1.2 5.1±1.1 1.10 0.13 
SM(16:1(OH)) LC-MS/MS 9±1 8±2 1.13 0.17 

SM(22:2(OH)) LC-MS/MS 5±1 4±1 1.10 0.13 

SM(22:1(OH)) LC-MS/MS 9.3±1.4 8.8±1.4 1.06 0.08 
SM(24:1(OH)) LC-MS/MS 1.9±0.4 1.9±0.4 1.00 0.00 

ACYLCARNITINES 
     

C0 (Carnitine) * LC-MS/MS 8±2 7±1 1.16 0.22 
C2 (Acetylcarnitine) LC-MS/MS 1.84±0.81 1.54±0.44 1.19 0.25 

C3:1 (Propenoylcarnitine) LC-MS/MS 0.028±0.004 0.029±0.004 0.97 -0.05 

C3 (Propionylcarnitine) * LC-MS/MS 0.22±0.052 0.18±0.014 1.22 0.29 
C4:1 (Butenylcarnitine) LC-MS/MS 0.017±0.002 0.017±0.002 1.00 0.00 

C4 (Butyrylcarnitine) * LC-MS/MS 0.197±0.041 0.143±0.034 1.38 0.46 

C3-OH (Hydroxypropionylcarnitine) LC-MS/MS 0.027±0.004 0.028±0.004 0.96 -0.05 
C5:1 (Tiglylcarnitine) LC-MS/MS 0.023±0.004 0.023±0.004 1.00 0.00 

C5 (Valerylcarnitine) LC-MS/MS 0.11±0.034 0.08±0.014 1.38 0.46 

C4-OH (C3-DC) (Hydroxybutyrylcarnitine) LC-MS/MS 0.041±0.004 0.042±0.004 0.98 -0.03 
C6:1 (Hexenoylcarnitine) LC-MS/MS 0.023±0.004 0.023±0.004 1.00 0.00 

C6 (C4:1-DC) (Hexanoylcarnitine) LC-MS/MS 0.053±0.014 0.049±0.011 1.08 0.11 

C5-OH (C3-DC-M) (hydroxyvalerylcarnitine) LC-MS/MS 0.038±0.004 0.036±0.004 1.06 0.08 
C5:1-DC (Glutaconylcarnitine) LC-MS/MS 0.018±0.003 0.018±0.003 1.00 0.00 

C5-DC (C6-OH)(Glutarylcarnitine) LC-MS/MS 0.028±0.004 0.027±0.004 1.04 0.05 

C8 (Octanoylcarnitine) LC-MS/MS 0.019±0.011 0.018±0.004 1.06 0.08 
C5-M-DC (methylglutarylcarnitine) LC-MS/MS 0.019±0.002 0.019±0.003 1.00 0.00 

C9 (Nonaylcarnitine) LC-MS/MS 0.022±0.002 0.021±0.003 1.05 0.07 

C7-DC (Pimelylcarnitine) LC-MS/MS 0.037±0.042 0.026±0.031 1.42 0.51 
C10:2 (Decadienylcarnitine) LC-MS/MS 0.05±0.01 0.06±0.01 0.89 -0.18 

C10:1 (Decenoylcarnitine) LC-MS/MS 0.172±0.032 0.163±0.034 1.06 0.08 

C10 (Decanoylcarnitine) LC-MS/MS 0.19±0.04 0.18±0.03 1.06 0.08 
C12:1 (Dodecenoylcarnitine) LC-MS/MS 0.085±0.013 0.081±0.014 1.05 0.07 

C12 (Dodecanoylcarnitine) LC-MS/MS 0.038±0.011 0.035±0.003 1.09 0.12 

C14:2 (Tetradecadienylcarnitine) LC-MS/MS 0.036±0.004 0.033±0.004 1.09 0.13 
C14:1 (Tetradecenoylcarnitine) LC-MS/MS 0.06±0.01 0.05±0.01 1.13 0.17 

C14 (Tetradecanoylcarnitine) LC-MS/MS 0.018±0.011 0.015±0.004 1.20 0.26 

C12-DC (Dodecanedioylcarnitine) LC-MS/MS 0.018±0.002 0.019±0.003 0.95 -0.08 
C14:2-OH (Hydroxytetradecadienylcarnitine) LC-MS/MS 0.0079±0.0021 0.0075±0.0011 1.05 0.07 

C14:1-OH (Hydroxytetradecenoylcarnitine) LC-MS/MS 0.008±0.002 0.009±0.001 0.89 -0.17 

C16:2 (Hexadecadienylcarnitine) LC-MS/MS 0.012±0.002 0.012±0.002 1.00 0.00 
C16:1 (Hexadecenoylcarnitine) LC-MS/MS 0.026±0.004 0.025±0.002 1.04 0.06 
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C16 (Hexadecanoylcarnitine) LC-MS/MS 0.021±0.011 0.019±0.004 1.11 0.14 
C16:2-OH (Hydroxyhexadecadienylcarnitine) LC-MS/MS 0.005±0.001 0.006±0.001 0.83 -0.26 

C16:1-OH (Hydroxyhexadecenoylcarnitine) LC-MS/MS 0.018±0.003 0.019±0.004 0.95 -0.08 

C16-OH (Hydroxyhexadecanoylcarnitine) LC-MS/MS 0.007±0.001 0.008±0.001 0.88 -0.19 
C18:2 (Octadecadienylcarnitine) LC-MS/MS 0.006±0.001 0.007±0.001 0.86 -0.22 

C18:1 (Octadecenoylcarnitine) LC-MS/MS 0.014±0.003 0.016±0.003 0.88 -0.19 

C18 (Octadecanoylcarnitine) LC-MS/MS 0.022±0.011 0.021±0.004 1.10 0.14 
C18:1-OH (Hydroxyoctadecenoylcarnitine) LC-MS/MS 0.009±0.001 0.008±0.001 1.13 0.17 

METAL IONS 
    

Sodium (Na) ICP-MS 132919±12091 134408±16387 0.99 -0.02 
Magnesium (Mg) ICP-MS 920±77 948±104 0.97 -0.04 

Phosphorus (P) ICP-MS 1315±193 1271±111 1.03 0.05 

Potassium (K) ICP-MS 4283±428 4315±341 0.99 -0.01 
Calcium (Ca) ICP-MS 2251±232 2193±211 1.03 0.04 

Iron (Fe) ICP-MS 49±14 57±10 0.86 -0.22 

Copper (Cu) ICP-MS 8±2 9±2 0.89 -0.17 
Zinc (Zn) ICP-MS 13±2 12±1 1.05 0.07 

Selenium (Se) ICP-MS 1.4±0.2 1.3±0.2 1.08 0.11 

Rubidium (Rb) ICP-MS 1.8±0.2 1.8±0.2 1.00 0.00 

Strontium (Sr) ICP-MS 0.94±0.14 0.98±0.04 0.96 -0.06 

Cesium (Cs) * ICP-MS 0.0016±0.0002 0.0019±0.0003 0.84 -0.25 

Barium (Ba) ICP-MS 0.19±0.04 0.21±0.02 0.90 -0.14 

1 Mean ± Standard Deviation; * p-value < 0.05 
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Table 3. 3 Blood components associated with RFI as measured by different studies. 
Metabolite This 

study 

Fitzsimons et al., 

2013 (Olympus 

Chemistry 

Analyzer) 

Karisa et al., 

2014_Discovery 

population (NMR) 

Karisa et al., 

2014_Validation 

population (NMR) 

Jorge-

Smeding et 

al., 2019 (LC-

MS/MS) 

Glucose * L 1 H 2 
   

Urea H H 
   

Creatinine L L L 
  

Creatine * L 
 

H (Glutamine overlap) H (Glutamine overlap) 
 

Carnitine H H H (Glutamine overlap) H (Glutamine overlap) 
 

Formate H H L 
  

Hydroxyisobutyrate ND 3 H H (Glucose overlap) 
 

Tyrosine H H H 
  

Glycine L L H 
  

Pantothenate  ND 
    

Hippurate ND 
 

H (Glutamine overlap) L (Glutamine overlap) 
 

Threonine H 
 

H 
  

Acetate * H 
 

L 
  

Phenylalanine H 
 

H 
  

Lysine H 
 

H 
  

Citrate ND 
 

H 
  

Betaine H 
 

H 
  

Glutamate * H 
 

L 
  

Valine H 
  

H H 

Choline * L 
  

H 
 

Histidine L 
  

L 
 

Uridine H 
  

H 
 

2-methylamine ND 
  

L 
 

3-methylamine ND 
  

L 
 

2-hydroxybutyrate ND 
  

H 
 

3-hydroxybutyrate * H 
  

L 
 

4-hydroxybutyrate ND 
  

H (Acetone overlap) 
 

Succinate ND 
  

L (Mis-match) 
 

Oxo-butyrate ND 
  

L (Mis-match) 
 

Trans-4-hydroxy-L-proline ND 
  

L 
 

Proline H 
  

H 
 

Allantonin ND 
  

H (Mis-match) 
 

Glutamine H=L 
  

L (Overlap with 

glutamate, creatine, 

carnitine, hippurate)  

 

Aspartate H 
   

H 

Ornitine * L 
   

H 

Fumarate H=L 
   

L 

Lysine H 
   

H 

* Metobolites which concentration values do not agree with literature values; 1 L: LRFI; 2 H: 

HRFI; 3 ND: Not Detected 
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. 

Figure 3. 1 Comparison of fold change of significantly regulated metabolites (p-value < 0.05) in 

the serum of HRFI versus LRFI bulls. 
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Figure 3. 2 Comparison between serum metabolite data acquired for HRFI versus LRFI group. a) 

Principal component analysis (PCA) graph. b) Partial least squares-discriminant analysis (PLS-

DA) graph with permutation test p-value of < 0.01. 

 

 

 

 

 

 

 

 



 

146 

 

 
Figure 3. 3 Variable importance in projection (VIP) plot acquired from the comparison between 

HRFI vs. LRFI group. The most discriminating metabolites are shown in descending order of 

their coefficient scores. The color boxes indicate whether metabolite concentration is increased 

(red) or decreased (green) in HRFI vs. LRFI group. 
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Figure 3. 4 Biomarker analysis of bovine RFI. Logistic regression ROC curve analysis of a panel 

of two NMR-detectable candidate biomarkers (formate and leucine) from bovine serum samples. 
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Figure 3. 5 Biomarker analysis of bovine RFI. Logistic regression ROC curve analysis of a panel 

of two LC-MS/MS candidate biomarkers (C4 (butyrylcarnitine) and LysoPC(28:0)) from bovine 

serum samples yields an AUC of 0.89. 
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CHAPTER 4. IMPACT OF PRENATAL MATERNAL NUTRITION AND 

PARENTAL RESIDUAL FEED INTAKE (RFI) ON MRNA ABUNDANCE 

OF METABOLIC DRIVERS OF GROWTH AND DEVELOPMENT IN 

YOUNG ANGUS BULLS 

4.1. INTRODUCTION  

In terms of the global competitiveness and sustainability of beef production, feed costs are among 

the biggest challenges, with ~70% of the cost of cow-calf production associated with winter 

feeding and pasture [250]. Consequently, decreasing feed costs could have a substantial benefit 

for the beef industry. There are several ways of decreasing feed costs in beef production, such as 

extending the grazing season and using alternative feeds [1], grouping cattle with similar 

nutritional needs together to optimize use of feedstuffs and reduce feed wastage [2], and analyzing 

feed composition to decrease expenses or generate additional profits through evidence-based 

decisions regarding buying or selling forages/grains [2]. Selection for feed efficient animals (Low-

RFI or LRFI animals) is yet another strategy that not only reduces feed costs, but also decreases 

methane production per unit weight gain [7]. Therefore, selection for feed efficiency can both favor 

the farmer (decreased costs of production) and improve sustainability and environmental footprint 

of beef production.  

Maternal malnutrition during gestation can affect postnatal growth and development, 

fertility, and the health of offspring [3-5, 85]. In beef cattle production, low to moderate 

undernutrition during the first half of gestation is considered of limited significance postnatally, 

since the fetus needs only limited nutrition for growth and development at this stage. However, 

critical events such as placental development and organogenesis occur during early pregnancy 
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[251]. In terms of nutrient partitioning during early gestation, the priority is with essential organs 

(i.e. heart, liver, lung, brain, kidney, etc.) rather than skeletal muscle [5, 252]. However, since no 

net increase in muscle fibre numbers occurs after birth, nutrient insults during early gestation may 

permanently alter an offspring’s growth potential, and/or a variety of muscle characteristics 

important to beef production, including meat quality [3-5, 85, 95, 96]. However, male progeny 

lambs and calves born from dams that were nutritionally restricted during early- to mid-gestation, 

then re-alimented before parturition, had similar ratios of weight gain to feed intake compared to 

their respective control groups [5, 6, 253]. Hence, effects of substandard early prenatal nutrition 

in ruminants is not well established.  

RFI is a feed efficiency measure defined as the difference between an animal’s actual feed 

intake and its expected feed requirements for maintenance and growth over a specific time-period 

[14, 16]. Therefore, RFI is phenotypically independent of growth characteristics such as body 

weight (BW) and average daily gain (ADG). RFI has a moderate heritability (h2 = 0.29–0.46) in 

cattle, making it a suitable candidate for genetic improvement [16, 22, 28]. Selection for LRFI 

animals is gaining popularity among beef producers as they eat less and produce less methane per 

unit weight gain compared to their High-RFI (HRFI) counterparts [7]. Basarab et al. [222] 

estimated that a mature LRFI cow would have a net economic profit of $46/head/year compared 

to that of an HRFI animal. However, it is important to investigate whether other traits, either 

positive or negative, might be co-selected along with LRFI. For example, if decreased reproductive 

potential is detected in LRFI cattle, selection for LFRI will require further economic evaluation. 

On the other hand, if LRFI is correlated positively with other beneficial traits, then selection for 

LRFI cattle will gain much more popularity and will clearly lead to increased profitability for the 

beef industry.  
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Studies that measure gene expression can reveal the biological mechanisms that are 

affected by prenatal diet, and that are important for variation in RFI. In beef cattle, gene expression 

differences in liver and muscle were associated with divergence in RFI [21, 160, 162, 254] and 

with prenatal nutrition [161, 194, 255, 256]. Although both RFI and maternal nutrition during 

gestation can affect progeny traits, our understanding of the biological mechanisms by which this 

occurs is poor. In particular, understanding of how RFI, maternal malnutrition during the first half 

of gestation, or their combination, can affect the production level (muscle development) and 

overall health of an animal is very important. In addition, we are uncertain as to how well LRFI 

cattle perform under differential environmental conditions relating to nutrient availability during 

gestation, among other factors. Therefore, this study aims to investigate the impact of selection for 

divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation on beef 

cattle. More specifically, it explores how these two factors impact the expression of genes 

associated with metabolic drivers of growth and development and/or immunological function in 

the progeny Angus bulls.   

4.2. MATERIAL AND METHODS 

4.2.1. Ethics approvals 

The collection and analysis of bovine tissues in this study were approved by the University of 

Alberta’s Animal Care Committee (Animal Use Protocol (AUP) 1129) under the auspices of the 

Canadian Council of Animal Care [257]. 

4.2.2. Animals and experimental design 

Details of heifer selection, experimental design, estrus synchronization and artificial insemination 

(AI), as well as prenatal dietary treatment, have been reported in detail by Johnson et al. [73], but 
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are described here. Eighty-nine purebred Angus heifers raised at the University of Alberta Roy 

Berg Kinsella Research Ranch (Kinsella, Alberta, Canada), were recruited for this study. The 

population in which these heifers originated were a herd of 240 purebred Angus cows maintained 

at the Kinsella Ranch with their pedigree information preserved by the Canadian Angus 

Association. All heifer calves had been vaccinated for clostridial diseases and viruses that are a 

part of the bovine viral disease complex. During late winter and early spring of 2013, heifers were 

tested for RFI at approximately 9 to 12 months of age over 74 days using the GrowSafe™ 

automated feed recording system (GrowSafe Systems Ltd., Airdrie, Alberta, Canada) as described 

by Basarab et al. [16] and Mao et al. [210], and is summarized in the following text. The test diet 

consisted of 70% silage and 30% barley grain, and a 21-day acclimatization period was allowed 

for heifers to adjust to the diet and GrowSafe feeding system before the intake measurements were 

officially recorded. The quantity of feed intake for each feeding event of each animal was recorded 

by the GrowSafe system, which was further used to calculate total feed intake over the test period. 

Feed samples were collected weekly and pooled monthly, and from the pooled samples dry matter 

(DM) and energy content analysis (Table 1) were determined using wet chemistry by Parkland 

laboratories (Red Deer, AB, Canada) in accordance with recommended methods of professional 

association of official Analytical Chemists, and the National Forage Testing Association. Heifers 

were weighed twice at the beginning and at the end of the 74-day test and at 14-day intervals 

throughout the test. Rib fat thickness measurements (12/13th rib and rib eye area) were determined 

at end of test, using an Aloka SSD-210 portable ultrasonographic scanner (Aloka Co., Tokyo, 

Japan). After the GrowSafe test, heifers were classified as either HRFI or LRFI by ordering the 

animals based upon their corresponding measurement of RFI, which was adjusted for rib fat 

thickness at the end of the feedlot test [37], from negative to positive, and then allocating them in 
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half. To produce calves with divergent potential for RFI, heifers classified as HRFI were bred to 

sires identified as HRFI (n = 2), whereas heifers classified as LRFI were bred to sires identified as 

LRFI (n = 2). Consequently, the progeny of these matings were expected to have divergent genetic 

potentials for RFI, due to the assortative breeding scheme. At the time of selection, the RFI 

estimated breeding values (EBVs) of the sires were +0.174 and +0.140 kg dry matter intake 

(DMI)/day (HRFI), and -0.230 and -0.482 kg DMI/day (LRFI), with accuracies of 0.859, 0.874, 

0.805, and 0.712 respectively. Sires were also selected so that EBVs for other recorded traits were 

similar across all four bulls. Heifers within each RFI group were randomly stratified into two sub-

groups, and each subgroup was assigned to one of the sires within their respective RFI 

classification (High versus Low) for breeding via estrus-synchronization and AI. Among the four 

heifer sub-groups, there were no biases in physical measurements collected during the RFI test 

such as end of test weight, ADG during test, metabolic mid-weight, or ultrasound backfat (data 

not shown). Also, there was no difference in standardized dry matter intake nor RFI for heifer 

groups assigned to AI sire within RFI classification (data not shown).  

After the GrowSafe test, heifers were fed free-choice hay until mid-May, after which they 

grazed perennial mixed sown and native grass pasture during estrus-synchronisation and AI until 

pregnancy confirmation. Breeding was performed via two estrus-synchronized AI, as reported by 

Johnson et al. [73], but is also described here. The first AI was timed and the second was performed 

12 hours after detection of estrus. On Day 0, a CIDR® (controlled internal drug release; Eazi-

BreedTM, Zoetis Animal Health, Kirkland, QC, Canada) was inserted intravaginally and 100 µg of 

gonadotropin-releasing hormone (GnRH; Fertiline®, Vétoquinol Canada Inc., Lavaltrie, QC, 

Canada) was given intramuscularly. On day 7, the CIDR® was removed and 500 µg of 

cloprostenol (Estrumate®, Merck Animal Health, Kirkland, QC, Canada) administered 
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intramuscularly. Fifty-five hours after CIDR removal and administration of Estrumate, a second 

injection of Fertiline® was administered intramuscularly and heifers were timed inseminated. To 

begin the second round of synchronisation, a CIDR® was again inserted into the vagina of each 

heifer on day 22 relative to the start of the 1st synchronisation, and remained there for 7 days. 

Neither Fertiline® nor Estrumate® were administered during the second round of estrous-

synchronisation, as there was a possibility of heifers being pregnant. Concurrent with removal of 

the CIDR® on day 29, a KAMAR HeatmountTM detector (Kamar Inc., Steamboat Springs, CO, 

USA) was affixed with a liquid adhesive to aid in estrus detection. From Days 30 to 36, estrus 

detection was done three times daily via visual observation and heifers either observed in standing 

estrus and/or with an activated KAMAR were inseminated using the AM-PM rule (if heat first 

observed in the morning inseminated in the evening and vice versa). 

Pregnancy diagnosis was performed at 28 days after each AI, via transrectal 

ultrasonography (Aloka-500V scanner equipped with a 7.5 MHz linear transducer; Aloka Co., 

Tokyo, Japan). Heifers that did not become pregnant after two rounds of AI were removed from 

the study. The remaining pregnant heifers (n = 61) were stratified by RFI, body weight, backfat 

depth, AI sire, and conception date. They were then randomly but equally assigned to one of two 

dietary treatments from d 30 to 150 of gestation (Table 1): 1) Low-diet (Ldiet) formulated for 0.5 

kg/d ADG consisting of Brome grass hay (~75% of NRC requirements for growing pregnant 

heifers and of the normal diet), considered as a moderate level of restriction; or 2) Normal-diet 

(Ndiet) formulated for 0.7 kg/d ADG consisting of Brome grass hay supplemented with oats 

(roughly 100% of NRC requirements for growing, pregnant heifers). To account for heifer growth 

and increasing weight of the conceptus, the ration was adjusted approximately once per month 

after the heifers were weighed (Table 2). Heifers were fed the entire ration once a day, and if oats 
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were fed, it was provided in separate bunks before the hay was fed. Individual feed intake of Brome 

grass hay was recorded using the GrowSafe System. Supplemental salt and mineral were provided 

free-choice. Two heifers were removed from the prenatal nutrition trial after they were determined 

not to be pregnant after a subsequent pregnancy check. 

After day 150 of gestation, all heifers were housed together and offered free choice hay 

(Table 1) until approximately 2 months after birth, when they grazed mixed tame and native grass 

pasture until weaning in November 2014 [73]. Male calves born to these heifers were left as bulls 

(8 Ndiet-HRFI, 9 Ldiet-HRFI, 3 Ndiet-LRFI, 5 Ldiet-LRFI). After weaning, bulls were fed and 

managed according to industry standards for production of potential replacement yearling bulls in 

Alberta until their RFI test at approximately 13 months of age [73].  

4.2.3. Measurement of phenotypic RFI in bull progeny 

From the end of May 2015 until mid-August 2015, bulls were tested for RFIf (RFI that was 

adjusted for rib fat thickness at the end of feedlot test) at approximately 13 to 16 months of age 

using the GrowSafe™ automated feed recording system (GrowSafe Systems Ltd.) at Agriculture 

and Agri-Food Canada (AAFC, Lacombe, Alberta, Canada). The RFI test was conducted as 

described for the heifers following the protocols and calculation of RFI as reported by Mao et al. 

[210] and Johnson et al. [73], except for that standardized daily dry matter intake (STDDMI) was 

calculated as an average of dry matter intake over the test period and standardized to 12 MJ ME 

per kg dry matter for finishing bulls (instead of 10 MJ ME for heifers). The GrowSafe diet 

consisted of 45% barley and 55% silage (as fed basis), and the nutrient analysis is presented in 

Table 3. An adaptation period of 21 days was used to acclimatize cattle to the GrowSafe system 

and diet. The quantity of feed intake for each feeding event of each bull was recorded by the 

GrowSafe system, which was further used to calculate total feed intake over the 77-day test period. 
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Bulls were weighed twice at the beginning of test, once per month throughout the test, and once at 

slaughter, which was a few days after the RFI test was complete. The end of RFI test weight was 

estimated from the slaughter weight. Rib fat thickness measurements (12/13th rib fat depth and rib 

eye area) were also determined at end of test, using an Aloka SSD-210 portable ultrasonographic 

scanner (Aloka Co., Tokyo, Japan). The initial BW at the start of the test and ADG were derived 

from a linear regression of the serial BW measurements against time (day). The metabolic BW 

(MWT) in kg was then calculated as midpoint BW0.75, where the midpoint BW was computed as 

the sum of the initial BW and the product of ADG multiplied by half of the days on test. Using the 

dry matter (DM) content of the diet as well as the bull’s daily intake, daily DMI in kg was 

calculated as an average of dry matter intake over the test period and was further standardized to 

12 MJ ME per kg dry matter (STDDMI). In order to generate regression coefficients to predict an 

animal’s expected DMI required for maintenance of body weight and growth, a linear regression 

model was fit using PROC GLM in SAS (SAS Institute, Inc., Cary, NC, USA). The model was:  

Yi = β0 + β1ADGi + β2MWTj + β3FUFATk + еijk {1} 

Where Yi is the STDDMI for the ith bull, β0 is the intercept, β1 is the partial linear 

regression coefficient of ADG, β2 is the partial linear regression coefficient of MWT, β3 is the 

partial regression coefficient of final ultrasound backfat thickness (FUFAT), and еi is residual error 

for the ith bull. After regression coefficients for ADG, MWT, and FUFAT were determined, 

expected DMI for each bull was determined by inserting the animal’s own values into the equation 

{1} to obtain Yi. After, RFIf in kg of DMI per day was computed as the difference between the 

actual standardized daily DMI as measured by GrowSafe, and the expected DMI (Yi) that was 

predicted based on animal’s ADG, MWT and FUFAT. RFIf was calculated as a difference between 
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the expected DMI and actual STDDMI. RFIf values of the bulls ranged from -1.05 kg to +1.07 kg 

DM per day, with an average of 0.00 kg.  

After the RFI test and approximately about 17 months of age, the bulls were slaughtered at 

the AAFC-Lacombe Research Centre abattoir over four days, with one week separating the 2nd 

and 3rd slaughter dates [73]. On the day of slaughter, bulls were weighed to obtain their final 

weight (FW). At slaughter, they were first stunned by captive bolt and then exsanguinated. 

Following dressing and splitting of the carcass, hot side weights were recorded and added together 

to give the total trimmed weight (TW). 

4.2.4. Tissue collection and RNA isolation 

Between 5 to 10 g of tissue samples from LT muscle (from the left side of the bull, between the 

12th and 13th ribs), SM muscle (left), liver, and testis were collected approximately 30-45 min 

after exsanguination. The tissue was immediately frozen in liquid nitrogen and then stored at -

80C until RNA isolation. Frozen tissue was ground by mortar and pestle in the presence of liquid 

nitrogen. Total RNA was isolated by the TRIzol procedure (Invitrogen, Carlsbad, CA, USA), 

according to the manufacturer’s instructions with a few modifications. Fifty mg of ground tissue 

was transferred to a 2 mL metal, hard-tissue grinding beaded tube MK28 (Bertin Technologies, 

Montigny le Bretonneux, France), while the tube was on dry ice. Subsequently, 1 mL TRIzol 

reagent was added to the tube in order to perform homogenization and cell lysis. Tubes were then 

placed in the Cryolys® and Precellys® 24 tissue homogenization system (Bertin Technologies), 

and homogenization was performed twice at 5500 rpm for 30 s at 4 oC, with an intervening 10 s 

pause. Tubes containing the homogenate were then centrifuged at 12,000 g for 10 min at 4 oC, 

after which the supernatant was transferred via pipette to a new 2 ml Axygen™ MCT-200-O tube 

(Thermo Fisher Scientific, Waltham, MA, USA). Subsequently all RNA isolation steps were 
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completed according to the TRIzol RNA isolation procedure (Invitrogen). Finally, the RNA pellet 

was dissolved in 50 µL nuclease-free water (Ambion, Foster City, CA, USA) and then frozen at -

80 oC. After approximately 24 hrs, RNA concentration was quantified on a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific), tested for integrity on an Agilent 2200 TapeStation 

(Agilent Technologies, Santa Clara, CA, USA), and stored at -80 °C until cDNA synthesis. All 

RNA samples used for RT-PCR had an RNA integrity number (RIN) score of ≥ 7.  

4.2.5. Target gene selection 

In order to explore how RFI and/or prenatal nutrition impact the expression of genes associated 

with growth and development (especially muscle development) as well as immunity in the progeny 

Angus bulls, 26 imprinted and non-imprinted target genes associated with these traits were selected 

from the literature (Table 4). As seen in Table 4, 12 genes associated with growth and development 

and/or immunity were tested in all four tissues. Muscle mass of livestock accounts for 35-60% of 

their body weight [258], and can serve as representative of overall growth. LT muscle mainly 

serves as a stabilizer rather than prime mover of the vertebral column as a whole, unlike SM 

muscle, which functions in locomotion and is highly active [258, 259]. This difference motivated 

us to compare how RFI and/or prenatal nutrition impacted the expression level of genes associated 

with growth and development between these two muscle tissues. We also surveyed the expression 

of genes associated with growth and development and/or immunity in liver since it is considered 

as the main centre of metabolism in the body, which breaks down various metabolites, synthesizes 

proteins, and produces biochemicals necessary for digestion and growth [260, 261]. In addition, 

we measured the expression of these 12 genes in testis since it expresses the highest number of 

genes compared to other tissues [262]. We hypothesized that expression of genes involved in 

growth and development and/or immunity in testis could be a reflection of baseline expression in 
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other tissues, with less of an influence of daily biological variation between individuals due to 

environmental impacts. 

Apart from those 12 genes tested in all four tissues, an additional 14 were also tested only 

in liver. These 14 genes were expressed in the hepatic tissue of LRFI vs. HRFI cattle [162], and 

were involved in innate and adaptive immunity processes such as interferon signaling and 

inflammation. The liver is responsible for detoxifying and breaking down harmful chemicals. This 

contributes to its active role in immune function and failure to do this function can result in a 

higher concentration of circulating endotoxins, causing local and systemic inflammation [260, 

261]. This has been shown to antagonize livestock’s growth and performance since nutrients are 

partitioned for immunity processes rather than anabolic processes such as muscle synthesis [263, 

264]. Therefore, we decided to check the expression of these 14 genes in the liver of our animals.  

4.2.6. Designing and testing of real time-PCR primers 

Primers were designed using Primer3 software (Version 0.4.0, http://bioinfo.ut.ee/primer3-0.4.0/) 

[265, 266], using species-specific sequences found in GenBank and were designed to cover exon-

exon junctions when possible (Table 4). An oligo analyzer tool (Integrated DNA 

Technologies, https://www.idtdna.com/) was used to select primers with minimum probability of 

having hairpins, self-dimers, and hetero-dimers. For all RT-PCR reactions, the 

annealing/extension temperature was 60 oC.  The amplification efficiency for each gene was 

determined using serial dilution of tissue-specific cDNA and was 100 ± 10% for all genes (data 

not shown). For all the primer-pairs used in the final analyses, the product identity was confirmed 

by sequencing PCR products (data not shown). 

For each tissue, seven endogenous genes including ribosomal protein L19 [RPL19], beta 

actin [ACTB], peptidylprolyl isomerase A (cyclophilin A) [PPIA], eukaryotic translation 

http://bioinfo.ut.ee/primer3-0.4.0/
https://www.idtdna.com/
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elongation factor 1 alpha 2 [EEF1A2], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], 

hydroxymethylbilane synthase [HMBS], tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta [YWHAZ] (Table 4) were tested to determine the best gene 

or combination of genes (the geometric mean of the combination of genes) using NormFinder 

software, version 20 [267]. EEF1A2, HMBS, the geometric mean of GAPDH and HMBS and 

YWHAZ and PPIA were selected as the best endogenous genes to normalize data for LT, SM, liver, 

and testis tissues, respectively. These best endogenous genes were also tested for any treatment 

effect and were determined to be stable amongst all samples within each tissue type confirming 

their suitability as endogenous controls.  

4.2.7. cDNA creation and real time-PCR 

cDNA synthesis was performed using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions, with 

1.5 µg of total RNA used for each individual sample or reference RNA. Each tissue’s reference 

RNA was created by pooling 1 µL of every individual RNA sample (concentration 150 ng/µL) for 

that tissue.  

For each of the four tissues, a standard curve was created by serial dilution of the tissue-

specific cDNA reference sample, with reference to the original input RNA concentration (5, 1, 0.2, 

0.04, 0.008, and 0.0016 ng input RNA). The serial dilution for the standard curve was made fresh 

from aliquoted reference cDNA before each RT-PCR reaction. Individual sample cDNAs for each 

tissue were diluted to a final concentration equal to 0.5 ng input RNA for the RT-PCR reaction. 

RT-PCR was carried out in a 96-well optical reaction plate (Applied Biosystems) using the 

Applied Biosystems Step-One-Plus RT-PCR system (Applied Biosystems). The total volume of 

each reaction was 20 µL and contained 4 µL of cDNA template (1 ng/µL), 0.5 μL of each forward 
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and reverse primer (10 µM), 10 μL of the 2× KAPA SYBR FAST qPCR Master Mix ABI Prism 

(Kapa Biosystems, Boston, MA, USA), and 5 μL of nuclease-free water (Ambion). Control 

samples in each run consisted of the reference RNA without conversion to cDNA by reverse 

transcriptase (no RT control), and water instead of template cDNA (no template control). All 

samples, standard curves, and controls were run in duplicate on each plate. Amplification 

conditions consisted of: (1) hold stage for 30 s at 95 °C for enzyme activation; (2) cDNA 

amplification stage for 40 cycles of 3 s at 95 °C and then 30 s at 60 °C; and (3) a final melt curve 

stage which consisted of 15 s at 95 °C, 1 min at 60°C. The PCR program finished with a melt of 

the reaction with a ramp rate of +0.3 °C per 15 s from 60 °C to 95 °C to obtain fluorescence 

measurements that reflect the Tm of the main product while minimizing interference from primer-

dimer or other non-specific amplification products.  

4.2.8. Real time-PCR data and statistical analysis 

Ct values were converted to relative input RNA concentrations using the reaction efficiency of the 

standard curve in each run. For all genes (both target and endogenous), sample duplicates were 

averaged and expressed relative to the highest expression sample. These relative values were 

divided by the appropriate normalization gene value for that sample. Normalized gene expression 

values were analyzed as a general linear model (GLM) within SAS (Version 9.4). The model 

included parental RFI group (high and low), diet group (normal and low), and parental RFI×diet 

interaction as fixed independent variables. Bull age at slaughter was tested as a covariate, which 

was subsequently removed, as its contribution was not significant. If normalized gene expression 

values for individual genes/tissue were not normally distributed, the Box-Cox transformation 

within PROC TRANSREG was used to find the most appropriate data transformation. Differences 

between means were analyzed using a least significant difference (LSD) test with a 95% 
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confidence level and were reported as least squares means (LSM) ± the standard error of the mean 

(SEM). All LSM ± SEM reported are calculated from non-transformed data. The p-value for 

significance was < 0.05. Dependencies between individual gene expression within each tissue were 

evaluated by Pearson Correlation coefficients using the PROC CORR procedure in SAS (Version 

9.4) to assess the need for multiple testing correction. Only genes that achieved acceptable 

amplification, including agreement between duplicates, a single peak in the melt curve, no 

amplification for control samples, plus a reaction efficiency between 90-110%, were analysed 

statistically. 

4.2.9. Correlations between phenotypic and gene expression data 

Pearson correlation analysis was performed between gene expression data in liver, testis, LT, and 

SM muscles, and phenotypic data of the progeny bulls including RFIf (kg/d), STDDMI (kg/d), 

ADG (kg/d), MWT (kg), FW (kg), and TW (kg), which were collected during the RFI test and at 

slaughter. Gene expression data that were not normal were transformed using the Box-Cox 

transformation within PROC TRANSREG, as appropriate. Pearson Correlation coefficients were 

calculated using the PROC CORR procedure in SAS (Version 9.4) to analyze the association 

between gene expression and the phenotypic data. STDDMI, MWT, FW, and TW were adjusted 

for age within PROC CORR as these measurements were significantly associated with age. P-

values of < 0.05 were considered significant. 

4.3. RESULTS 

RT-PCR identified two DE genes in liver. Prenatal maternal diet was associated with expression 

of protocadherin 19 [PCDH19] (P = 0.01, Figure 1), where bull progeny of the Ldiet displayed 

higher expression than the Ndiet group. The LRFI group was associated with the expression of 
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myocyte enhancer factor 2A [MEF2A] (P = 0.01, Figure 2), where bull progeny of the LRFI 

displayed higher expression than the HRFI group. None of the other genes tested in liver were 

significantly different with respect to RFI or parental diet groups, nor their interaction (Table 5). 

Although we did see differences in expression of some genes that could be considered trends (P < 

0.1) (Table 5), the p-values were very close to 0.1. Several significant correlations between 

expression of individual genes within each tissue were detected at P < 0.05 (27, 44, 78, and 50% 

of gene pair-wise correlation coefficients in liver, LT muscle, SM muscle, and testis, respectively, 

correlation data not shown). Therefore, P-value correction for multiple testing was not performed 

when detecting significant gene expression as it would result in a higher number of false negatives. 

Nevertheless, the identified postnatal gene expression responses to prenatal nutrition would require 

further validation in different beef cattle populations. 

Correlation analysis between gene expression in liver and phenotypic traits recorded 

revealed several significant associations. STDDMI and MWT showed positive relationships with 

PCDH19 (r = +0.56, P = 0.004; and r = +0.47, P = 0.019, respectively). ADG was negatively 

correlated with insulin like growth factor 1 receptor [IGF1R] (r = -0.44, P = 0.022). As well, a 

significant relationship between ADG and H19 imprinted maternally expressed transcript [H19] (r 

= +0.59 (transformed H19), P = 0.001) was observed, and a positive relationship was found 

between RFIf and STDDMI with S-transferase mu 1 and mu 2 [GSTM1/2] (RFIf: r = +0.51, P = 

0.007; and STDDMI r = +0.42, P = 0.035). Furthermore, MWT was correlated with insulin like 

growth factor 2 receptor [IGF2R] (r = -0.41 (transformed IGF2R), P = 0.042).  

Regarding LT and SM muscles, RT-PCR identified MEF2A as differentially expressed. In 

LT muscle, a maternal prenatal diet×RFI parental group interaction was seen to be associated with 

MEF2A expression (P = 0.03, Figure 3), where the Ndiet-LRFI parental group progeny bulls had 
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higher expression than all other groups. In SM muscle, RFI parental group was associated with the 

expression of MEF2A (P = 0.01, Figure 2), where bull progeny of the LRFI parents displayed 

higher expression than the HRFI group. None of the other genes tested in LT and SM muscles 

were significantly different with respect to RFI or parental diet groups, nor their interaction (Table 

6 and 7), although we have seen some potential trends (P < 0.1). In addition, MWT was 

significantly correlated with mRNA abundance of IGF2R (r = -0.42 (transformed IGF2R), P = 

0.039), whereas FW and TW were positively correlated with mRNA abundance of calpastatin 

[CAST] (FW: r = +0.45, P = 0.026; and TW: r = +0.51, P = 0.009) in LT muscle. In SM muscle, 

ADG was correlated with mRNA abundance of CAST (r = -0.43 (transformed CAST), P = 0.028). 

As well, FW and TW were significantly correlated with mRNA abundance of myogenin [MYOG] 

(FW: r = +0.41, P = 0.040; and TW: r = +0.42, P = 0.036 (both correlations were performed with 

transformed MYOG)). 

Similarly, in testis, RFI parental group was associated with the expression of MEF2A 

(P=0.01, Figure 2), where bull progeny of LRFI parents displayed higher expression than the HRFI 

parental group. None of the other genes tested in testis were significantly different with respect to 

parental RFI or maternal diet groups, nor their interaction (Table 8). Regarding the correlation 

analysis, STDDMI was significantly negatively correlated with expression of insulin like growth 

factor 1 [IGF1] (r = -0.48, P = 0.016), insulin like growth factor 2 [IGF2] (r = -0.53, P = 0.007), 

IGF2R (r = -0.57, P = 0.003), and H19 (r = -0.45, P = 0.024). MWT was significantly negatively 

correlated with expression of IGF1 (r = -0.42, P = 0.037), IGF2R (r = -0.41, P = 0.043), calpain 1 

[CAPN1] (r = -0.44, P = 0.028), and H19 (r = -0.44, P = 0.030). Moreover, ADG, FW, and TW 

were negatively correlated with mRNA abundance of IGF2 (ADG: r = -0.39, P = 0.044; FW: r = 
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-0.50, P = 0.010; and TW: r = -0.42, P = 0.036). As well, FW was negatively correlated with 

mRNA abundance of IGF1 (r = -0.40, P = 0.049) and IGF2R (r = -0.45, P = 0.023). 

4.4. DISCUSSION 

In the study of Johnson et al. [73], which was conducted on the same bulls as this study, there was 

a tendency (P < 0.1) for a prenatal maternal diet×time interaction for bull weights, with bulls born 

from Ldiet fed heifers growing faster between 10 and 16 months of age than bulls born from Ndiet 

fed heifers. As well, LRFI parental group bulls had a smaller scrotal circumference (P < 0.01) and 

attained puberty (P < 0.05) later than HRFI parental group bulls. In the present gene expression 

study, we wanted to explore the underlying molecular differences of these phenotypes. We also 

wanted to explore genes previously associated with RFI and prenatal diet [161, 162]. Therefore, 

we chose to investigate SM and LT muscles, testis and liver to test genes associated with growth 

and development as well as immunity, to understand some of the underlying molecular biological 

differences of progeny exposed to different prenatal nutritional treatments in cattle, and genetic 

selection for divergent RFI.  

In this study, only MEF2A was differentially expressed in all tissues tested when 

comparing low and high RFI parental groups. As well, MEF2A and PCDH19 were differentially 

expressed in LT and liver tissues respectively, when comparing normal versus low maternal diet 

bulls. We speculate that the low sample number in this study (8 Ndiet-HRFI, 9 Ldiet-HRFI, 3 

Ndiet-LRFI, 5 Ldiet-LRFI) affected our ability to identify significant different interactions 

between prenatal maternal diet and RFI parental groups in gene expression, since we do see these 

trends in our data. We do feel confident that we have enough individuals to test the main effects, 

prenatal maternal nutrition as well as parental RFI group, adequately within the confines of this 

population. 
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One of the main roles of the liver is to filter the nutrient-rich blood coming from the 

intestines through the hepatic portal vein, before transferring it to the rest of the body. In particular, 

the liver detoxifies and breaks down harmful chemicals and this contributes to its active role in 

immune function [260, 261]. In our study, PCDH19 was the only immunity associated gene which 

was differentially expressed, having greater expression in the liver of Ldiet bulls. Zhang et al. 

[268] reported that PCDH19 was hyper-methylated and its expression was down-regulated in 

hepatocellular carcinoma tissues compared to non-tumor tissues in humans. This suggests that 

expression of PCDH19 is under epigenetic control, which could make it more susceptible to 

epigenetic effects of differential prenatal diets, leading to the differences in gene expression 

detected in this experiment. PCDH19 expression has also been positively associated with 

phenotypic measures related to feed intake and efficiency such as daily DMI, MWT, feed 

conversion ratio (FCR), and RFI in a few studies in the liver of beef cattle [160, 162, 254, 269]. In 

our study, expression of PCDH19 was positively correlated with STDDMI and MWT, similar to 

that reported between the expression of this gene in liver and DMI by Paradis et al. [162], as well 

as RFI and MWT by Al-Husseini et al. [160]. The lack of differential expression due to the RFI 

parental group in our study could have been due to the fact that PCDH19 expression is more 

strongly associated with phenotypic measures of feed intake rather than genetic potential for RFI 

(i.e. it is a downstream effect of differences in feed intake rather than an upstream cause). Since 

there was a trend for higher growth in the Ldiet bulls [73], and our observation that PCDH19 was 

positively correlated to STDDMI and MWT, it seems likely that Ldiet bulls ate slightly more than 

Ndiet bulls to support their increased growth, and in association, had higher PCDH19 expression 

in their livers. 
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Regarding our other correlation results in liver tissue, GSTM1/2 was positively correlated 

with RFIf and STDDMI, in agreement with studies of Al-Husseini et al. [160], Chen et al. [254, 

269], and de Las Heras-Saldana et al. [270]. The glutathione S-transferase mu 1 [GSTM1] and 

glutathione S-transferase mu 2 [GSTM2] family of genes belong to the xenobiotic metabolism 

signalling pathway and neutralize a variety of toxics, drugs, carcinogens, and products of oxidative 

stress, through conjugation with glutathione [271]. Oxidative stress occurs when production of 

reactive oxygen species exceeds the biological system’s ability (antioxidant capacity) to detoxify 

the reactive intermediates or to repair the resulting damage [272]. A recent study conducted by 

Casal et al. [241] reported lower level of reactive oxidized species in the liver of LRFI steers and 

thereby lower hepatic oxidative stress compared to HRFI steers. Decreased oxidative stress in liver 

is associated with lower maintenance requirements, due to a lower lipid and protein turnover and 

better efficiency in the use of energy [241] Hence the positive relationship between GSTM1/2 

expression with RFIf in liver suggests greater hepatic expression of GSTM1/2 to catalyze higher 

rate of reactive oxygen species in cattle with increasing positive values for RFI. Similar to this 

relationship, increased hepatic expression of GSTM1/2 may be directly a product of increased 

STDDMI in higher RFI animals, as the liver would need to be more metabolically active to process 

higher feed intakes, and in turn process a greater quantity of products of oxidative stress. There 

was a significant relationship between ADG and MWT with hepatic expression of H19 and IGF2R 

respectively, although the exact nature of the relationship was ambiguous, since both H19 and 

IGF2R expression data were transformed before analysis. There was also a negative correlation 

between ADG and IGF1R expression. H19 is an imprinted gene which has a role as negative 

regulator (limiting factor) of body weight and cell proliferation [273], via controlling the 

expression of its adjacent imprinted gene, IGF2 [274]. The encoded protein of IGF2 regulates cell 
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proliferation, growth, migration, differentiation and survival via binding to its receptors such as 

IGF1R (IGF2 increases cell proliferation, growth, etc. via binding to IGF1R) and IGF2R (IGF2 is 

rendered ineffective when it binds to circulating IGF2R) [275]. Unlike IGF1, which is a major 

growth factor in adults, IGF2 is highly active during fetal development and less active after birth, 

and its exact role in the adult is not fully understood. In adults, IGF2 expression occurs mostly in 

liver and in epithelial cells lining the surface of the brain [275]. Our observation that expression 

of H19, IGF2R, and IGF1R in liver was associated with growth traits in these bulls, albeit in an 

unexpected manner (i.e. the negative correlation of IGF1R with the growth related trait ADG), 

gives some insight on the possible interplay between these genes and their physiological effects in 

the postnatal animal.  

MEF2A is an important gene involved in muscle development [276, 277]. It is a positive 

regulator in skeletal muscle myoblast proliferation possibly via regulating myozenin 2 [MyoZ2] 

[277]. The protein encoded by MEF2A is a member of the myocyte enhancer factor 2 (MEF2) 

protein family which is involved in vertebrate skeletal, cardiac, and smooth muscle development, 

as well as differentiation during myogenesis [276]. Thus, MEF2 genes are considered as major 

regulators of postnatal skeletal muscle growth [276]. In the comparison between HRFI and LRFI 

parental group bulls, MEF2A was significantly differentially expressed in liver, SM muscle, and 

testis, with consistently greater expression in the LRFI parental group bulls (Figure 2). MEF2A 

was also higher in the average expression of LRFI parental group bulls in LT muscle (Figure 3). 

MEF2A expression in all the tissues tested was not significantly correlated with phenotypic RFIf 

measured on progeny bulls while they were in the GrowSafe test (data not shown). Therefore, we 

speculate that the presence of polymorphism(s) in the promoter/coding region of MEF2A is linked 

to genotypes associated with RFI in our Angus population, but may not be causative of the RFIf 
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phenotype. Juszczuk-Kubiak et al. [276] reported effects of single nucleotide polymorphisms 

(SNPs) at position -780T/G, -768T/G, and -222A/G in the promoter region of MEF2A. They 

detected higher expression of MEF2A in the Longissimus dorsi (LD) muscle of bulls carrying the 

homozygous TTA/TTA genotype rather than those with heterozygous TTA/GGG variant. 

Therefore, polymorphisms exist that affect the level of MEF2A expression, which could be linked 

to our low and high RFI parental groupings. To that end, others in our research group have detected 

three SNPs upstream of MEF2A to be significantly associated with RFI in a 7.8 million SNP 

genome-wide association study (GWAS) performed in our Angus population, but other SNPs in 

the population had much larger effects upon RFI and associated traits (Changxi Li, personal 

communication). 

Expression of MEF2A in LT muscle was associated with a maternal prenatal diet×RFI 

parental group interaction (Figure 3), where its expression was significantly higher in Ndiet-LRFI 

parental group bulls compared to other three groups. This result represents an example of a 

genotype×environmental effect upon MEF2A expression in LT muscle. As discussed earlier, 

expression of MEF2A appears to be linked to parental RFI genetic potential, with LRFI parental 

group bulls displaying higher expression. Higher expression of MEF2A in LT muscle of Ndiet-

LRFI parental group bulls over all groups might be plausible, since the nutritionally unrestricted 

dams would have consumed enough nutrients to partition energy towards LT muscle in the fetus 

and further increase MEF2A expression over the Ldiet-LRFI parental group bulls. The other tissues 

tested may not have shown this pattern so dramatically, because they are more essential to fetal 

survival - i.e., the liver, which is an essential organ, and SM, which is important for postnatal 

locomotion [3-5, 96]. A similar pattern of differential effects upon various fetal tissues from 

prenatal nutrition in bovine dams was reported by Paradis et al. [161]. In that study, there was a 
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higher level of gene expression differences in Longissimus dorsi muscle of high versus low 

maternal diet fetuses than in semitendinosus, a muscle with similar functions to SM. Testis tissue 

may not have reflected the maternal diet effect in LT on the Ndiet-LRFI group more than the 

others, since gonadal mitotic activity is lower during the period of 65-230 days of gestation [278], 

which was when our maternal dietary treatment took place, or that differential regulation of 

MEF2A expression by maternal diet in testis would gain no advantage for testicular development 

since the gene is associated with muscle development. 

The mRNA abundance of IGF2R in LT muscle was correlated with MWT, plus the mRNA 

abundance of MYOG in SM muscle was correlated with FW and TW, although the exact nature of 

the relationship is ambiguous, since both IGF2R and MYOG expression data were transformed 

before analysis. The primary role of IGF2R is in hydrolysis of circulating IGF2 [279], which is an 

important fetal mitogen [280]. MYOG is a member of myogenic regulatory factors (MRF) and is 

involved in embryonic skeletal muscle fiber differentiation (permits the transition from 

proliferating myoblasts to differentiating myotubes) [281]. In adults, MYOG controls the balance 

between muscle hypertrophy and muscle atrophy which are essential for maintenance of skeletal 

muscle mass [282]. Therefore, any impacts upon muscle development in utero may also affect the 

expression of both IGF2R and MYOG postnatally. As a result, it is plausible that their expression 

may continue to be related to growth traits in these bulls, particularly their expression in muscle 

tissue.  

FW and TW were positively correlated with mRNA abundance of CAST in LT muscle. The 

calpastatin protein encoded by CAST, is a specific inhibitor of the calpain family and is involved 

in in vivo cell proliferation and cell viability [283]. The calpain family proteins including μ-calpain 

and m-calpain are implicated in myofibrillar protein degradation [284]. Hence, the positive 
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correlation between body weight traits and expression of CAST was plausible, as its increased 

expression reduces a positive regular of muscle protein degradation. In SM muscle, ADG was also 

correlated with mRNA abundance of CAST, although the exact nature of the relationship was 

ambiguous, as CAST expression data were transformed before analysis. Morgan et al. [285] 

reported a significant negative correlation between calpastatin activity and fractional degradation 

rates (FDR) of Longissimus muscle. We inferred that decreased FDR of skeletal muscle, possibly 

through higher calpastatin activity, was associated with greater efficiency of growth [285]. Studies 

of Nassiri et al. [286], Chung and Davis [287], as well as Khan et al. [288] have also reported an 

association between ovine CAST polymorphisms and ADG. As well, Karisa et al. [145] found two 

SNPs at 271G/A and 672A/G positions of the CAST gene, which were associated with RFI, in beef 

steers. Therefore, it is plausible that genetic variation in our population might exist that affected 

the level of CAST expression, which could be linked to body weight (FW and TW) and phenotypic 

measures of RFI (MWT and ADG) in our study. 

With regards to the other significant negative correlations between gene expression in testis 

and phenotypic measures of intake (STDDMI with IGF1, IGF2, IGF2R, and H19), and growth 

(ADG, FW, and TW with IGF2; FW with IGF1 and IGF2R; as well as MWT with IGF1, IGF2R, 

CAPN1, and H19), the detailed biological origins of these associations were uncertain. The testes 

have two main functions including: 1) production of haploid germ cells (spermatogenesis) 

necessary for reproduction, and 2) synthesis of androgens (primarily testosterone) which are 

necessary for spermatogenesis and play an important role in the development of male sex 

characteristics [289]. However, as recently reported by Uhlen et al. [262], testis tissue expresses 

the highest number of genes compared to other tissues in human body. Therefore, expression of 

some key genes involved in growth and development including IGF1, IGF2, IGF2R, CAPN1, and 



 

172 

 

H19 in testis and their association with phenotypic measures of intake and growth could be a 

reflection of how these genes are expressed in other tissues, ultimately resulting in modulation of 

growth and development, with less of an influence of daily biological variation between 

individuals due to environmental impacts. 

Other studies have found differential expression due to both prenatal maternal diet and RFI 

group for some of the other genes that we have tested [161, 162, 171, 193, 290], although several 

differences existed in the breed and sex of the animals selected for the high and low RFI groups, 

the type, time window, and severity of dietary treatment, age and breed of cattle selected for the 

dietary treatment, and age of animal during tissue collection, which could all lead to differences in 

the results of our studies. This is true for nearly all prenatal nutritional studies in cattle, which 

makes it extremely difficult to confirm or refute the results of any single study. It was also reported 

by Mukiibi et al. [291] that gene expression profiles in the liver of steers divergent for RFI can be 

highly breed-specific. Bearing that in mind, the accumulation of studies and information about the 

effects of prenatal nutrition on postnatal growth and development in cattle, and genes that are 

differentially expressed between high vs. low RFI cattle, can start to bear fruit in the identification 

of biological pathways and processes that are most likely to be affected, and give insights into 

methods to optimize prenatal nutrition to ensure the health and prosperity of the postnatal animal. 

4.5. CONCLUSIONS 

In conclusion, expression of MEF2A was related to parental group RFI in all tissues tested, as well 

as prenatal maternal nutrition in LT. Furthermore, PCDH19 expression in liver tissue was most 

likely related to feed intake differences in normal versus low maternal diet bulls. Therefore, the 

phenotypic differences seen in these bulls were most likely manifested at an earlier age, and/or are 

not related to many of the genes we chose to study. Although many of the genes surveyed in this 



 

173 

 

study did not show differential expression due to parental RFI or maternal diet, one gene 

(GSTM1/2) showed strong associations with RFIf in liver, plus some (IGF1, IGF1R, IGF2, IGF2R, 

H19, PCDH19, CAPN1, CAST) showed significant associations with phenotypic measures of RFI 

(STDDMI, ADG, and/or MWT) in different tissues. These findings help to understand the 

underlying biological mechanisms regulating postnatal responses to prenatal nutrition, and feed 

efficiency, intake, and growth traits in beef bulls.   
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Table 4. 1 Nutrient analysis of ration on a dry matter basis (%DM) fed to heifers during the 

initial GrowSafe trial, 30-150 days of treatment and 150 days to parturition 

Diet composition 

(%DM) 

GrowSafe trial 

ration 
30-150 days ration 

150 days to 

parturition 

Feed type TMR1 Brome grass hay Oats Hay 

DM2 % (actual) 62.0 81.8 89.7 81.4 

CP3 (%DM) 11.9 10.3 11.9 18.7 

ADF4 (%DM) 28.6 49.5 15.0 32.3 

NDF5 (%DM) 45.7 70.1 29.9 39.1 

TDN6 (%DM) 67.5 52.8 77.0 64.8 

Ca (%DM) 1.67 0.65 0.13 1.67 

P (%DM) 0.39 0.25 0.37 0.26 

Mg (%DM) 0.23 0.20 0.15 0.33 

K (%DM) 0.91 2.55 0.59 2.12 

Na (%DM) 0.42 0.01 0.02 0.04 

Salt (%DM) 1.05 0.04 0.04 0.10 
1 TMR: Total Mixed Ration; 2 DM: Dry Matter Basis; 3CP: Crude Protein; 4 ADF: Acid 

Detergent Fibre; 5 NDF: Neutral Detergent Fibre; 6 TDN: Total Digestible Nutrients 
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Table 4. 2 Dietary adjustment of normal and low diets over the course of the trial (as fed) 
Adjustments Normal Low 

 Hay (kg/day) Oats (kg/day) Hay (kg/day) Oats (kg/day) 

     

Initial 1 6.94 3.45 9.71 0.00 

1st adjustment 2 7.73 3.75 9.33 0.00 

2nd adjustment 3 9.21 3.95 11.29 0.00 

3rd adjustment4 7.14 5.65 12.84 0.00 

4th adjustment5 7.02 6.80 10.78 2.61 
1 Initial: Jul. 24, 2013; 2 1st adjustment: Aug. 19, 2013; 3 2nd adjustment: Sept. 11, 2013; 4 3rd 

adjustment Oct. 8, 2013; 5 4th adjustment: Nov. 8, 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

176 

 

Table 4. 3 Nutrient analysis of barley-silage ration fed to bulls during the RFI test period in the 

GrowSafe system 

Diet composition Value 

DM1 % (actual) 56.1 

CP2 (%DM) 14 

ADF3 (%DM) 25.3 

NDF4 (%DM) 40.5 

TDN5 (%DM) 69.6 

Ca (%DM) 0.94 

P (%DM) 0.34 

Mg (%DM) 0.23 

K (%DM) 1.38 

Na (%DM) 0.13 

Fe (PPM) 336 

Mn (PPM) 70 

Zn (PPM) 61 

Cu (PPM) 16 
1 DM: Dry Matter Basis; 2 CP: Crude Protein; 3 ADF: Acid Detergent Fibre; 4 NDF: Neutral 

Detergent Fibre; 5 TDN: Total Digestible Nutrients 
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Table 4. 4 Forward and reverse primers for endogenous control genes 
Gene name Gene 

symbol 

Forward Primer (5'-3') Reverse Primer (5'-3') GenBank 

Accession 

number 

Tissue Product 

Size 

(bp) 

Association 

Ribosomal protein L19  RPL19E ACCCCAATGAGACCAATGAA ATGGACAGTCACAGGCTTCC NM_001040516.1 All1 101 Housekeeping 

gene 

Beta actin   ACTBE CTCTTCCAGCCTTCCTTCCT CCAATCCACACGGAGTACTTG NM_173979.3 All 245 Housekeeping 

gene 

Peptidylprolyl isomerase A 

(cyclophilin A)  

PPIAE GTCAACCCCACCGTGTTCT TCCTTTCTCTCCAGTGCTCAG NM_178320.2 All 132 Housekeeping 

gene 

Eukaryotic translation 

elongation factor 1 alpha 2  

EEF1A2E AGTTCACGTCCCAGGTCATC CTCCAACTTCTTGCCAGAGC NM_001037464.1 All 149 Housekeeping 

gene 

Glyceraldehyde-3-

phosphate dehydrogenase  

GAPDHE TGACCCCTTCATTGACCTTC GATCTCGCTCCTGGAAGATG NM_001034034.1 All 143 Housekeeping 

gene 

Hydroxymethylbilane 

synthase 

HMBSE CTACTTCGCTGCATTGCTGA CAGGTACAGTTGCCCATCCT NM_001046207.1 All 105 Housekeeping 

gene 

Tyrosine 3-

monooxygenase/tryptophan 

5-monooxygenase 

activation protein, zeta  

YWHAZE AGACGGAAGGTGCTGAGAAA CGTTGGGGATCAAGAACTTT NM_174814.2 All 123 Housekeeping 

gene 

Maternally expressed 3 

(non-protein coding) 

MEG3I TCACCTGTCTCACGCTTCTC GACCAGAGGAGACCACGAAG NR_037684.1 All 171 Immunity 

Insulin like growth factor 2 IGF2I CCAGCGATTAGAAGTGAGCC AGACCTAGTGGGGCGGTC NM_174087.3 All 95 Muscle 

development 

Insulin like growth factor 2 

receptor 

IGF2RI GCAATGCTAAGCTTTCGTATTACG GGTGTACCACCGGAAGTTGTATG NM_174352.2 All 188 Muscle 

development 

H19 imprinted maternally 

expressed transcript 

H19I CAGACACACCACTGCTGCTC GAAGTCCGTGTTCCAAGTCC NR_003958.2 All 97 Immunity, 

growth and 

development 

Neuronatin NNATI AGCACTCGCTCTCAACCAC GGAAAATGTACCAGCCGATG NM_001201324.1 All 98 Immunity 

Insulin like growth factor 1 IGF1N GATGCTCTCCAGTTCGTGTG CTCCAGCCTCCTCAGATCAC NM_001077828.1 All 141 Immunity and 

muscle 

development 

Insulin like growth factor 1 

receptor 

IGF1RN CAAAGGCAATCTGCTCATCA CAGGAAGGACAAGGAGACCA NM_001244612.1 All 139 Immunity and 

muscle 

development 

Myogenic differentiation 1 MYOD1N GAACACTACAGCGGCGACTC AGTAAGTGCGGTCGTAGCAG NM_001040478.2 All 121 Muscle 

development 

Myogenin MYOGN CAGTGAATGCAGCTCCCATA CGACATCCTCCACTGTGATG NM_001111325.1 All 164 Muscle 

development 

Myocyte enhancer factor 

2A 

MEF2AN CAATGCCAACTGCCTACAAC TGTCCTAAATGGTGCTGCTG NM_001083638.2 All 130 Muscle 

development 

Calpain 1 CAPN1N CCTGCTGGAGAAAGCCTATG GCTCGTACCACTCGGTGACT NM_174259.2 All 113 Muscle 

development 

Calpastatin CASTN GTGCCTCGGACCTCTATGTG CGTCTTCTGGATCTGCTTCC NM_001030318.3 All 133 Muscle 

development 

ATP synthase, H+ 

transporting, mitochondrial 

F1 complex, O subunit 

ATP5ON GAAGGAGTTGTTGCGAGTAGG TTGCCGTCATGTCACTTAGG NM_174244.1 Liver 116 Immunity 

Glutathione S-transferase 

M1 and M2 

GSTM1/2N GGGAGACAGAGGAGGAGATGA CCTTCAAGAAACCAGGCTTCA NM_175825.3 Liver 126 Immunity 

Solute carrier family 2 

member 1 

SLC2A1N ACACAGCCTTCACTGTCGTG TGCTCAGGTAGGACATCCAG NM_174602.2 Liver 156 Immunity 

Interferon-induced protein 

44 (IFI44), transcript 

variant X1 

IFI44N ACGCATGTGGATACCTTGGA AGGACATCTATGACAGGCTCC XM_002686295.3 Liver 179 Immunity 

Insulin like growth factor 

binding protein 3 

IGFBP3N CCTCTGAGTCCAAGCGTGAG GCTGCCCGTACTTATCCACA NM_174556.1 Liver 210 Immunity and 

muscle 

development 

Inhibin beta A subunit INHBAN GGACGGAGGGCAGAAATGAA AGACGGATGGTGACTTTGCT NM_174363.2 Liver 203 Immunity 

Protocadherin 19 PCDH19N GAACACCAGTGTGACCTCCA GCTTCAACATCAGCAGCAGT XM_003588123.2 Liver 207 Immunity 

MX dynamin like GTPase 

1 

MX1N TTCAACCTCCACCGAACTGC TGCCTCCTTCTCTCTGACCT NM_173940.2 Liver 165 Immunity 

Metallothionein 1E MT1EN CAACTGCTCCTGCTCCACT CCCACGTTCCTCCATTGATA NM_001114857.2 Liver 221 Immunity 

ISG15 ubiquitin-like 

modifier 

ISG15N CGCAGCCAACCAGTGTCT CGTCATGGAGTCCCTCAGA NM_174366.1 Liver 120 Immunity 

Heat shock 60kDa protein 

1 

HSPD1N TCCAATCCATTGTTCCTGCT CTGCCACAACTTGAAGACCA NM_001166608.1 Liver 138 Immunity 

Hect domain and RLD 6 HERC6N GTTCCACCAGTGTTCCCAGG GCAGTCAGACAAGCAGGAGA NM_001192644.1 Liver 157 Immunity 

Heat shock protein family 

A (Hsp70) member 5 

HSPA5N TGAAACTGTGGGAGGTGTCA CCAGAAGGTGATTGTCTTTCG NM_001075148.1 Liver 161 Immunity 

Toll like receptor 4 TLR4N CAGAACAACTTGCTCCCTGAC GCACCTGAAGGCTAGAGAGG NM_174198.6 Liver 124 Immunity 

1 LT muscle, SM muscle, liver and testis tissues; E Endogenous gene; I Imprinted gene; N Non-

imprinted gene 
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Table 4. 5 Effect of prenatal diet and RFI on gene expression of liver of progeny bulls 

 P-value  
Gene Symbol Diet RFI Diet×RFI 

IGF1 0.64 0.26 0.42 

IGF1R 0.44 0.97 0.61 

IGF2 0.97 0.97 0.18 

IGF2R 0.77 0.7 0.42 

MEF2A 0.19 0.01* 0.09 

CAPN1 0.23 0.15 0.91 

CAST 0.19 0.15 0.53 

H19 0.29 0.45 0.49 

HSPD1 0.59 0.48 0.63 

PCDH19 0.01* 0.3 0.16 

GSTM1/2 0.12 0.09 0.86 

ATP5O 0.91 0.51 0.28 

MX1 0.99 0.88 0.89 

IGFBP3 0.74 0.42 0.6 

HSPA5 0.08 0.16 0.55 

TLR4 0.26 0.39 0.87 

* P < 0.05  
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Table 4. 6 Effect of prenatal diet and RFI on gene expression of LT muscle of progeny bulls 

   P-value  
Gene Symbol Diet RFI Diet×RFI 

IGF1R 0.21 0.27 0.56 

IGF2 0.35 0.74 0.34 

IGF2R 0.07 0.81 0.52 

MEF2A 0.02* 0.01* 0.03* 

CAPN1 0.67 0.16 0.92 

CAST 0.17 0.29 0.96 

H19 0.45 0.11 0.51 

MYOD1 0.35 0.39 0.87 

MYOG 0.52 0.28 0.76 

* P < 0.05  
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Table 4. 7 Effect of prenatal diet and RFI on gene expression of SM muscle of progeny bulls 

   P-value  

Gene Symbol Diet RFI Diet×RFI 

IGF1 0.92 0.17 0.66 

IGF1R 0.09 0.1 0.83 

IGF2R 0.87 0.97 0.91 

MEF2A 0.33 0.01* 0.16 

CAPN1 0.78 0.13 0.66 

CAST 0.22 0.14 0.44 

H19 0.32 0.13 0.8 

MYOD1 0.48 0.98 0.19 

MYOG 0.82 0.45 0.37 

* P < 0.05  
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Table 4. 8 Effect of prenatal diet and RFI on gene expression of testis of progeny bulls 

   P-value  
Gene Symbol Diet RFI Diet×RFI 

IGF1 0.94 0.59 0.09 

IGF1R 0.44 0.48 0.48 

IGF2 0.69 0.26 0.3 

IGF2R 0.15 0.76 0.64 

MEF2A 0.1 0.01* 0.52 

CAPN1 0.8 0.16 0.33 

CAST 0.89 0.57 0.7 

H19 0.17 0.92 0.73 

NNAT 0.78 0.85 0.5 

* P < 0.05  
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Figure 4. 1 Comparison of mRNA abundance of PCDH19 gene in liver of Ndiet vs. Ldiet 

groups. Data represent significant (P < 0.05) differences between Ndiet and Ldiet groups within 

PCDH19 gene and are expressed as least squares means ± SEM.  
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Figure 4. 2 Comparison of mRNA abundance of MEF2A gene in liver, SM muscle, and testis of 

HRFI vs. LRFI groups. Data represent significant (P < 0.05) differences between RFI groups 

within MEF2A gene and are expressed as least squares means ± SEM.  
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Figure 4. 3 Comparison of mRNA abundance of MEF2A gene in LT muscle by dietary treatment 

and RFI. Data are expressed as least squares means ± SEM. a,b Different  letters  represent  

significant  differences  between  treatment groups (P < 0.05). 
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CHAPTER 5. IMPACT OF PRENATAL MATERNAL NUTRITION AND 

SELECTION FOR PARENTAL RESIDUAL FEED INTAKE (RFI) ON 

SPERM DNA METHYLATION PATTERNS IN YOUNG ANGUS BULLS 

5.1. INTRODUCTION 

DNA methylation/demethylation provides a crucial layer of epigenetic regulation for 

embryogenesis and normal development by permitting the modification or reprogramming of gene 

expression [292-296]. The incomplete erasure of DNA methylation marks during the 

reprogramming process allows transfer of some environmental impacts from one generation to the 

next [297]. Several studies have reported that aberrant sperm DNA methylation, due to alterations 

in environmental exposures (i.e. air pollution, lead, mercury, tobacco smoke, and nutritional 

factors), can cause impaired male fertility, alter embryonic development and increase offspring’s 

susceptibility to various disorders, i.e. neuropsychiatric and fecundity disorders [298-303]. This 

highlights the importance of sperm DNA methylation in the fecundity, health, and development of 

offspring. 

Alterations in prenatal nutrition experienced by parents can cause new epigenomic marks 

to appear in their germline genome, which can be passed to the next generations and thereby affect 

the phenotypes of their offspring, especially susceptibility to disease in later life [304]. Heijmans 

et al. [301] reported that individuals who were prenatally exposed to famine during the Dutch 

Hunger Winter had less DNA methylation of the imprinted IGF2 gene compared with their 

unexposed, same-sex siblings. This loss of methylation was associated with reduced birth weight, 

as well as a higher tendency to develop obesity and later-life health issues. In livestock, a number 

of studies have shown the effects of maternal dietary perturbations on offspring traits such as 
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postnatal growth and development, fecundity, and general health [3, 4, 85, 305]. For example, 

several studies have shown that nutrient insults during the last two trimesters of pregnancy are 

associated with reduced fetal growth and birth weight of the offspring in both sheep and cattle [87, 

89, 90]. At the molecular level, a study by Lan et al. [192] reported that the methylation levels of 

CpG islands of both the H19 [H19 fetal liver mRNA] gene and the IGF2R [insulin like growth 

factor 2 receptor] gene were higher in the fetuses of pregnant sheep that were fed alfalfa haylage 

(fiber) and dried corn distiller's grains (fiber plus protein plus fat) than those fed only corn (starch). 

Paradis et al. [161] also reported that feed restriction of 85% compared with 140% of total 

metabolizable energy requirements during mid-to-late gestation could alter the expression of 

growth, adipogenic and myogenic genes in fetal bovine muscle without apparent differences in 

phenotype. These data provide substantial evidence of detectable epigenomic marks in offspring, 

arising from maternal dietary differences, which results in differences in gene expression and 

thereby metabolism alterations in different parts of body, leading to epigenetic programming. 

A genetic trait that is becoming popular for selection in beef cattle, which could potentially 

modulate prenatal nutrition effects upon the unborn offspring, is residual feed intake (RFI). RFI is 

a feed efficiency measure defined as the difference between an animal’s actual feed intake and its 

expected feed requirements for maintenance and growth over a specific time period [14, 16]. RFI 

is an appealing measure of feed efficiency because it is moderately heritable (h2 = 0.29-0.46) in 

cattle and is independent of growth characteristics such as body weight (BW) and average daily 

gain (ADG) [16, 22, 28]. In beef cattle, selection for low-RFI (LRFI) animals (feed efficient 

animals) is gaining popularity among beef producers as these animals eat less and produce less 

methane per unit weight gain [7, 222]. Similar to prenatal maternal diet, the RFI status of an animal 

is also associated with metabolism alterations in different parts of body [30, 306].  
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In terms of bull fertility, several studies have shown that scrotal circumference (SC) and 

semen characteristics were not statistically different between LRFI and high-RFI (HRFI) bulls [76, 

307-309]. In contrast, other studies found that LRFI bulls had smaller SC [73], decreased sperm 

motility [73, 76, 77], decreased progressive sperm motility, increased abundance of tail 

abnormalities, and delayed sexual maturity [78, 79]. The mechanisms behind the negative 

associations are unclear. Both negative genomic associations between RFI and fertility parameters, 

and possibly epigenomic marks may also play a key role during this process. In cattle, only one 

study to date has focused on associations between RFI and DNA methylation [191]. They 

identified 1493 differentially methylated cytosines (DMCs) and 279 differentially methylated 

regions (DMRs) in the hepatic tissue of Nelore cattle that were characterized as extremes for RFI. 

Hence, methylation patterns of DNA may be associated with RFI and therefore it is important to 

study this relationship. 

The biological mechanisms by which prenatal maternal diet and/or RFI influence the 

offspring’s phenotype, or subsequent generations’ phenotype, remains obscure. As a result, this 

study was undertaken to identify DMRs (via whole genome bisulfite sequencing - WGBS) in the 

sperm of progeny Angus bulls whose dams were exposed to different prenatal maternal diets 

during first half of gestation. In addition, we also aimed to identify DMRs in the sperm of progeny 

Angus bulls with divergent parental RFI that were exposed to different prenatal diets (low-diet 

(Ldiet) and normal-diet (Ndiet)). The identified DMRs were further interrogated to identify the 

biological pathways associated with RFI and prenatal diet, which were manifested through sperm 

epigenomics. 



 

188 

 

5.2. MATERIALS AND METHODS 

5.2.1. Ethics approvals 

The collection and analysis of bovine semen in this study were approved by the University of 

Alberta’s Animal Care Committee (Animal Use Protocol [AUP] 1129) under the auspices of the 

Canadian Council of Animal Care [209]. 

5.2.2. Animals and experimental design 

Details of heifer selection, experimental design, estrous-synchronization and artificial 

insemination (AI), as well as prenatal dietary treatment were reported in detail by Johnson et al. 

[73], and in chapter 4 of this thesis. Briefly, 89 purebred Angus heifers raised on the University of 

Alberta’s Roy Berg Kinsella Research Ranch (Kinsella, Alberta, Canada), were used for this study. 

The population in which these heifers originated from was described previously by Mao et al. 

[210]. During late winter and early spring of 2013, heifers were tested for RFI at approximately 9 

to 12 months of age using the GrowSafe™ automated feed recording system (GrowSafe Systems 

Ltd., Airdrie, Alberta, Canada) as described by Basarab et al. [16] and Mao et al. [210]. After the 

test, they were classified as either HRFI or LRFI by ordering the heifers based upon their 

corresponding measurement of RFI corrected for backfat [37], from negative to positive, and then 

dividing them in half. To produce calves with divergent potential for RFI, heifers classified as 

HRFI were bred to sires identified as HRFI (n=2), and heifers classified as LRFI were bred to sires 

identified as LRFI (n=2). Consequently, the progeny of these matings were expected to have 

divergent genetic potentials for RFI because of the assortative breeding scheme. At the time of 

selection, the RFI estimated breeding values (EBVs) of the bulls were +0.174 and +0.140 kgs 

DMI/day (HRFI), and -0.230 and -0.482 kgs DMI/day (LRFI), with accuracies of 0.859, 0.874, 
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0.805, and 0.712 respectively. Bulls were also selected so that EBVs for other recorded traits were 

similar across all four bulls. Heifers within each RFI group were randomly stratified into two sub-

groups, and each subgroup was assigned to one of the bulls within their respective RFI 

classification (High versus Low) for breeding via estrous synchronization and AI. Between the 

four heifer sub-groups there were no biases in physical measurements collected during the RFI 

test, such as end-of-test weight, ADG during test, metabolic mid-weight, and ultrasound backfat 

(data not shown). Also, there was no difference in standardized dry matter intake nor RFI for heifer 

groups assigned to AI bull within RFI classification (data not shown).  

Breeding was performed via two estrous-synchronized AIs as reported by Johnson et al. 

[73]. The first AI was timed, and the second was performed 12 hours after the detection of estrous. 

Pregnancy determination was performed at 28 days after each AI via trans-rectal ultrasonography 

(Aloka-500V scanner equipped with a 7.5 MHz linear transducer; Aloka Co., Tokyo, Japan), and 

heifers that did not become pregnant after the two rounds of AI were removed from the study. The 

remaining pregnant heifers (n = 61) were stratified by RFI, body weight, backfat depth, AI sire, 

and conception date, and randomly but equally assigned to one of two dietary treatments from day 

30 to day 150 of gestation: 1) A low-diet or Ldiet formulated for 0.5 kg/d ADG consisting of 

Brome Grass hay (~75% of NRC requirements for growing pregnant heifers, and of the normal 

diet); or 2) a normal-diet or Ndiet formulated for 0.7 kg/d ADG consisting of Brome Grass hay 

supplemented with oats (roughly 100% of NRC requirements for growing, pregnant heifers). To 

account for heifer growth and increasing weight of the conceptus, the ration was adjusted 

approximately once per month after the heifers were weighed. Heifers were fed the entire ration 

once a day, and if oats were fed it was provided in separate bunks before the hay was fed. Individual 

feed intake of Brome Grass hay was recorded using the GrowSafe System. Supplemental salt and 
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minerals were provided free-choice [73]. Two heifers were removed from the prenatal nutrition 

trial after they were found not to be pregnant due to a subsequent pregnancy check. 

After 150 days of gestation, all heifers were housed together and offered free-choice hay 

until approximately 2 months after birth, when they grazed mixed tame and native grass pasture 

until weaning in November 2014. The male calves born to these heifers were left as bulls (11 Ndiet 

vs. 15 Ldiet and 18 HRFI vs. 8 LRFI). After weaning, bulls were fed and managed according to 

industry standards for production of potential replacement yearling bulls in Alberta (Johnson et 

al., 2019). 

5.2.3. Sample collection 

Details of semen collection is reported in detail by Johnson et al. [73]. Briefly, semen was collected 

by electroejaculation at 4-week intervals from 13 to 16 months. Samples with ≥ 50% motility were 

diluted with equal volumes of semen extender (AndroMed-Minitube, Ingersoll, ON, Canada) and 

transferred to 15 mL tubes. Subsequently, the concentration of sperm was determined using a 

hemocytometer (Electron Microscopy Sciences, Hatfield, PA, USA), which was followed by 

adjusting the final concentration to 50 × 106 sperm/mL. The semen was then transferred into 0.5 

mL straws, frozen using the automatic freezing machine (ICE Cube: Minitube, Ingersoll, Ontario, 

Canada), and plunged into liquid nitrogen for long-term storage [310]. 

5.2.4. DNA isolation 

The final collection of semen (16th months of age) was selected for analysis. To begin the DNA 

extraction procedure, individual semen straws were thawed at room temperature and 125 µL of 

each semen straw was transferred to a 1.5 mL Eppendorf tube. One mL of 1X STE buffer (100mM 

Tris; pH=8, 10mM EDTA; pH=8, 1M NaCl) was added to the tube, and after a brief vortex, the 
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tube was centrifuged at 7000 ×g for 5 min. The supernatant was poured off and the remaining 

pellet was washed (to separate clumps of cells from semen extender) again twice with 1 mL 1X 

STE buffer. After the final wash, the supernatant was again poured off and the pellet was 

resuspended in 336 µL 1X STE. The tube was vortexed, then 40 µL of 10% SDS (final 

concentration ~1%), 10 µL of 20 mg/mL Proteinase K, and 14 µL of 1 M DTT (final concentration 

~35 mM) were added to the tube. The tube was incubated in a rotating hybridization oven at 56 

°C overnight for 24 hrs. Two MaXtract tubes (Qiagen, Hilden, Germany) were prepared by pulse 

centrifugation at 15,000 ×g for 20-30 sec. Then 400 µL of phenol:chloroform:isoamyl alcohol 

(PCI=25:24:1) was added to one set of MaXtract tubes. The sperm cell lysate from the overnight 

incubation was poured into the same MaXtract tube, mixed by inversion for 5 min, and centrifuged 

at 15,000 ×g for 5 min at 4oC. A total of 400 µL of chloroform:isoamyl alcohol (CI=24:1) was 

added to the other set of MaXtract tubes. The aqueous layer (top) was transferred from the PCI 

tube to the CI tube, mixed by inversion for 5 min, then centrifuged at 15,000 ×g for 5 min at 4 oC. 

Then 0.1 volume of 3 M sodium acetate (~40 µL) was added to a new 1.5 mL tube, and 400 µL of 

the aqueous layer was transferred into the tube containing sodium acetate. Two volumes of 100% 

ethanol (~880 µL) was added and the tube was frozen at -80 oC for 2 hrs. Following the freezing 

process, the tube was left at room temperature for 3 min until the liquid inside melted. After 

melting, the tube was centrifuged at 15,000 ×g for 15 min at 4 oC. The ethanol supernatant was 

poured off into a waste flask, and 1 mL of 70% ethanol was added to the pellet, which was followed 

by centrifugation at 15,000 ×g for 5 min at 4 oC. The pellet was washed with 70% ethanol for a 

second time and then the pellet was resuspended in 100 µL AE buffer (10 mM Tris-Cl, 0.5 mM 

EDTA; pH=9.0) (Qiagen). Total DNA was quantified using a Nanodrop-2000 spectrophotometer 

(Thermo Fisher Scientific, Wilmington, NC, USA) and DNA integrity was evaluated using an 
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Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). The sample was then 

stored at -80 °C. All DNA samples used in this study had a DNA integrity number (DIN) score of 

≥ 8.5. Afterwards, DNA samples were shipped to the Beijing Genomics Institute (BGI, Shenzhen, 

China), in a box containing dry ice, for library construction and whole-genome bisulfite 

sequencing. BGI remeasured the DNA quantity using a Qubit 3 Fluorometer (Life Technologies, 

Carlsbad, CA, USA) and 1% Agarose Gel Electrophoresis (voltage: 150 V, electrophoresis time: 

40 min) before library construction. 

5.2.5. Library construction and whole-genome bisulfite sequencing 

One µg of genomic DNA was sheared by sonication (Covaris, Woburn, MA, USA). Shearing was 

followed by 1% Agarose Gel Electrophoresis, and bands corresponding to DNA insert sizes of 

200-300 bp were excised then purified with QIAquick Gel Extraction kit (Qiagen, Germantown, 

MD, USA). The fragmented DNA was end-repaired, then purified with MiniElute PCR 

Purification Kit (Qiagen). A single adenosine nucleotide was added at the 3′ extremities of the 

blunt-end fragments, then purified with MiniElute PCR Purification Kit (Qiagen). Methylated 

adapters (BGI in-house adapter with length of 124 bp) were ligated to the adenylated 3' ends of 

each strand in the genomic fragments, then purified with MiniElute PCR Purification Kit (Qiagen). 

Then DNA fragments were treated with sodium bisulfite using the EZ DNA Methylation-Gold™ 

Kit (Zymo Research, Irvine, CA, USA). Two rounds of conversion were performed to achieve 

>99% conversion. Agarose gel electrophoresis was performed on the ligation product, and 

fragments ranging from 320 to 420 bp were selected and then purified with QIAquick Gel 

Extraction kit (Qiagen). The DNA fragments were enriched through 10 cycles of PCR using 

JumpStart Taq DNA Polymerase (Sigma-Aldrich Co., Steinheim am Albuch, Germany), followed 

by purification using QIAquick Gel Extraction kit (Qiagen) to ensure a fragment size range of 
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320bp-420bp. Library quality was monitored using an Agilent 2100 BioAnalyzer (Agilent 

Technologies) and its viable sequencing fragments (molecules carrying adapters at both 

extremities) was quantified by quantitative PCR using the Library Quantification Kit from KAPA 

Biosystem. The libraries were amplified using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, San 

Diego, CA USA) on cBot system (Illumina) for cluster generation on the flowcell. Then the 

amplified flowcell was paired-end sequenced (two reads of 151 bp each) using TruSeq SBS KIT-

HS V3 (Illumina) on an Illumina HiSeq X Ten sequencer (Illumina) yielding an average depth of 

300 million reads and 48 billion bp of sequence (9X coverage) per sample. 

5.2.6. Bioinformatic data analysis 

Data filtering was conducted to improve the quality of the DNA reads using an in house BGI 

pipeline in R software (Version 3.6.1). This included removing adaptor sequences, sequence 

contaminants and low-quality reads from the raw reads. Low-quality sequences include two types, 

and any read meeting one or both of the conditions were removed; 1) reads in which unknown 

bases are > 10%, and 2) reads consisting of 10% or more bases with a Phred quality score of less 

than 20. The clean reads were then mapped to the Bos taurus genome sequence assembly (UMD 

3.1.1 with NCBI Accession #: GCF_000003055.6) using the BSMAP program [311]. Duplicate 

reads were removed, then the mapping results were merged according to UMD 3.1.1 library.  

Methyl-cytosine (mC) identification was performed according to the method and 

correction algorithm of Lister et al. (2009). The methylation level of a cytosine was determined by 

dividing the number of reads covering each mC by the total reads covering that cytosine [312], 

which also equals the mC/C ratio at each reference cytosine [313]. The formula is shown below:  
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where Nm represents the reads number of mC, while Nnm represents the reads number of non-

methylation reads and Rm stands for the mC/C ratio.  

The number and proportion of each mC type in the whole genome were classified into three 

types including CG (or CpG), CHG (H = A, C or T), and CHH, and were derived from the 

UMD3.1.1 assembly. The methylation levels of different mCs were also mapped to transcriptional 

units on the bovine genome, specifically denoting methylation levels with respect to 5/-UTR, first 

exon, first intron, internal exon, internal intron, last exon, and 3/-UTR. 

DMRs between Ndiet and Ldiet and between HRFI and LRFI groups were identified using 

the de-novo annotation mode of the Metilene software [314]. Here, a fast circular binary 

segmentation approach on the mean difference signal of both groups was used [315, 316]. After 

additional filter steps were applied, potential DMRs were tested using a two-dimensional 

Kolmogorov-Smirnov-Test (KS-test) [317]. The significance of the DMRs was finally assessed 

using the Mann-Whitney-U (MWU) test. Potential DMRs had an MWU q-value < 0.05 and 

minimum mean methylation difference ≥ 0.1. 

The subset of filtered significant DMRs identified via Metilene, originally mapped to 

UMD3.1.1 co-ordinates, were then converted to the corresponding coordinates on the new bovine 

genome assembly, ARS-UCD1.2 (NCBI Accession: GCF_002263795.1), using the liftOver 

function within rtracklayer (version 1.44.4) package [318] of R version 3.6.1, and the chain file 

Tau8ToBosTau9.over.chain, downloaded from the University of California Santa Cruise (UCSC) 

genome browser’s FTP server (http://hgdownload.cse.ucsc.edu/goldenPath/bosTau8/liftOver/). 

DMRs that did not successfully lift over to the new genome assembly (49 from the total of 673 for 

Ndiet vs. Ldiet, and 351 from the total of 1666 for HRFI vs. LRFI) because the region was not 

represented on the ARS-UCD1.2 were discarded from further analysis. As well, 13 prenatal diet-

http://hgdownload.cse.ucsc.edu/goldenPath/bosTau8/liftOver/
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related DMRs from the UMD assembly were split in the ARS assembly, and for RFI, 60 DMRs 

were split when transferring RFI-related DMR coordinates from UMD to ARS assemblies. This 

resulted in the identification of 652 and 1400 DMRs or DMR fragments that were successfully 

transferred from UMD3.1.1 to ARS-UCD1.2, for the prenatal maternal diet and RFI analyses, 

respectively. To prepare for gene annotation of the DMRs that successfully were lifted over to the 

new assembly, the gene transfer format (GTF) file corresponding to the ARS-UCD1.2 assembly 

was retrieved from the FTP site using the latest release of the Ensembl database (Release 98; 

September 2019: ftp://ftp.ensembl.org/pub/release-98/gtf/bos_taurus/Bos_taurus.ARS-

UCD1.2.98.gtf.gz). The ARS-UCD1.2 assembly GTF file was processed to keep only those 

columns that are required for DMR annotation in our analysis, after which all duplicated rows 

were removed. Then we determined the genomic features from the processed GTF file that 

overlapped with the DMRs successfully lifted over to ARS-UCD1.2. This resulted in the 

identification of 403 unique DMRs that overlapped with 352 genes for the prenatal diet analysis, 

and 836 unique DMRs that overlapped with 656 genes for the parental RFI analysis.  

5.2.7. Functional enrichment analysis  

Fold change and then log2 fold change of the DMR-associated genes for both prenatal diet and 

parental RFI was determined by dividing the mean methylation of HRFI and Ndiet by the mean 

methylation of LRFI and Ldiet, respectively. Lists of DMR-associated genes (gene symbols or 

Ensembl IDs) which consisted of the 352 genes identified for prenatal diet, and 656 identified for 

divergent parental RFI, along with log2 fold change for each DMR, were imported into the 

Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood City, CA www.ingenuity.com) 

software. This software was used to perform gene pathway analysis, gene functional analysis and 

gene network generation to identify the most significantly perturbed biological pathways affected 

ftp://ftp.ensembl.org/pub/release-98/gtf/bos_taurus/Bos_taurus.ARS-UCD1.2.98.gtf.gz
ftp://ftp.ensembl.org/pub/release-98/gtf/bos_taurus/Bos_taurus.ARS-UCD1.2.98.gtf.gz
http://www.ingenuity.com/
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by either parental RFI or prenatal maternal diet. The core analysis of IPA was performed to map 

DMR-associated genes to the Ingenuity Knowledge Base (IKB). The IKB contains large numbers 

of individually modelled relationships between gene objects (e.g. genes, mRNAs and proteins) to 

test for significantly over-represented biological networks and pathways using a Fisher’s exact test 

with a cut-off p-value < 0.05. All DMR-associated genes that were associated with a biological 

term in the IKB were used in the analysis. The significance of the association between the focus 

genes and the canonical pathway is measured using Fisher’s exact test, which is used to calculate 

a p-value to determine the probability that the network eligible genes that are part of a network 

appeared there by just random chance. The score is the negative exponent of the right-tailed 

Fisher's exact test result. For instance, a score of 3 means that probability that the network eligible 

genes that are part of a network were found there by chance alone is one in 1000. In other words, 

there is a positive relationship between the number of network eligible genes in a network and 

score. This means that the higher the number of network eligible genes found in a network, the 

greater the score (lower the Fisher’s exact p-value) that network will have.  

5.3. RESULTS 

WGBS resulted in a considerable amount of sequence data, ranging from 237,258,977 to 

337,297,715 uniquely mapped reads amongst the individual sperm samples, with a mapping rate 

of 73.6-90.2% (Table 5.1). Bisulfite conversion rates were estimated by inclusion of unmethylated 

lambda DNA controls along with each sperm sample (Bisulfite Conversion Rate = 1 - methylation 

rate of lambda DNA). These quality control parameters (Table 5.1) support our ability to faithfully 

capture patterns of genomic DNA methylation in all sperm samples. 

The number and proportion of each mC type (CG, CHG, or CHH) in the whole genome is 

reported in Table 5.2. Consistent with current patterns of DNA methylation in cattle sperm, 
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genome wide, CG dinucleotides were preferentially methylated [319]. Across the whole bovine 

genome, the proportion mCG as compared with mCHG and mCHH was between 95.4 and 97.2% 

across all samples (Table 5.2). Consistent in all sperm samples and within the transcriptional 

region, the mean methylation level of CG was highest in the internal intron regions, then in first 

intron, internal exon, 3/-UTR (downstream), 5/-UTR (upstream), last exon, first exon, and 

transcriptional start sites (TSS) regions, respectively (Figure 5.1). In other words, the mean 

methylation level of CG in sperm was highest in the gene body region (including introns and 

exons), and then in 3/-UTR (downstream), 5/-UTR (upstream), and TSS regions respectively, in 

agreement with the results of Liu et al. (2019). In terms of the two non-CG methylation types, 

CHG and CHH, their proportions across the whole bovine genome were 0.8-1.3% and 2-3.3%, 

respectively. In general, CG methylation is found in both coding genes and in repetitive elements 

(i.e. short interspersed nuclear elements (SINEs) and long terminal repeats (LTRs)), and is 

involved in gene expression regulation. On the other hand, the two non-CG methylation types, 

CHG and CHH, are mostly absent within genes and are mainly found in intergenic regions and 

repeat-rich regions of the genome [313, 320]. 

After DMRs were transferred from UMD3.1.1 to the ARS-UCD1.2 genome assembly, 652 

DMRs or DMR fragments remained in the comparison between the Ndiet and Ldiet samples. Of 

these DMRs, 145 regions were hypermethylated and 507 regions were hypomethylated in the 

Ndiet group. A total of 352 unique genes that overlap with DMRs were imported into IPA. The 

summary of the IPA core analysis biological functions related to prenatal diet DMR-associated 

genes is presented in Table 5.3. The significant (p-value < 0.05) functional subcategories of major 

interest are those associated with Cellular Function and Maintenance, Cell Morphology, as well as 

Cellular Assembly and Organization in network 1; Organismal Injury and Abnormalities, 
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Reproductive System Disease, as well as Cancer in network 2; and Connective Tissue 

Development and Function, Connective Tissue Disorders, as well as Organismal Injury and 

Abnormalities in network 3. These three gene interaction networks of DMRs obtained from 

comparisons between the Ndiet and Ldiet bulls are presented in Figures 5.2, 5.3, and 5.4, 

respectively. 

After DMRs were transferred from UMD3.1.1 to the ARS-UCD1.2 genome assembly, 

1400 DMRs or DMR fragments remained in the comparison between the HRFI and LRFI samples. 

Of these DMRs, 798 regions were hypermethylated and 602 regions were hypomethylated in the 

HRFI group. A total of 656 unique genes that overlap with DMRs were imported into IPA. The 

summary of the IPA biological functions related to RFI DMR-associated genes is presented in 

Table 5.4. The significant (p-value < 0.05) subcategories of major interest were those associated 

with: Embryonic Development, Organ Development, as well as Infectious Diseases in network 1; 

DNA Replication, Recombination, and Repair, Cell Cycle, as well as Cellular Assembly and 

Organization in network 2; Embryonic Development, Nervous System Development and Function, 

as well as Cellular Development in network 3; and Lipid Metabolism, Molecular Transport, as 

well as Small Molecule Biochemistry in network 4. These four gene interaction networks of DMRs 

obtained from the comparison between HRFI and LRFI bulls are presented in Figures 5.5, 5.6, 5.7, 

and 5.8, respectively. 

5.4. DISCUSSION 

Many of the impacts of maternal dietary perturbations on offspring traits, such as postnatal growth 

and development, fertility, and general health have been established [3, 4, 85, 305]. Additionally, 

the relationship between RFI and important traits such as metabolism, fertility, and carcass quality 

have been well documented [19, 27, 28, 30, 43, 44, 73-75, 321]. However, little is known about 
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the molecular mechanisms involved in regulating phenotypic responses in the offspring due to 

differences in prenatal maternal diet and the genetic potential for RFI. It is very plausible that DNA 

methylation plays a role in both spheres.  

The current study reports global bovine sperm methylation profiling using the WGBS to 

identify DMRs related to the genetic potential for feed efficiency and exposure to prenatal diet in 

beef bulls. We hypothesized this was important to investigate as it could shed some light on how 

both genetic (genetic potential for RFI) and environmental (prenatal nutrition) messages are 

manifested in sperm DNA methylation levels, and potentially passed on to the next generation. 

We detected 652 (corresponding to 352 unique DMR-associated genes) and 1400 (corresponding 

to 656 unique DMR-associated genes) DMR and DMR fragments, between normal and low early 

prenatal nutrition groups, as well as between high and low genetic potential for RFI, respectively, 

with a q-value < 0.05 in the sperm epigenome. Within the prenatal nutrition comparison, 507 

DMRs had enriched methylation levels in Ldiet bulls as compared to 145 DMRs that had enriched 

methylation levels in the Ndiet bulls. Therefore 77.8% of identified DMRs are more highly 

methylated in Ldiet bull semen. This is a striking dissimilarity in the direction of methylation 

differences between Ldiet and Ndiet groups, especially when compared to the RFI genetic 

potential analysis where 57% of DMRs had enriched methylation levels in the HRFI parental group 

bulls, as compared with 43% in the LRFI parental group. The greater prevalence of more highly 

methylated DMRs in sperm of the bulls exposed to undernutrition in utero is in contrast to the 

study by Radford et al. [322], which saw exactly the opposite. They found that DMRs detected in 

sperm obtained from adult mice had a higher prevalence of hypo-methylation in individuals born 

from to undernourished dams. Although, they speculated the DMRs they identified belong to a 

group that are late to re-methylate in primordial germ cells (PGCs) as fetal development 
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progresses. Therefore, the profile of DMRs identified by the current study, where the prenatal 

dietary treatment ended at 150 days of gestation (total gestational length ~285), and the DMRs 

identified in the mouse study, where undernourishment in utero went from 12.5-18.5 days of 

gestation (normal gestational length ~19-21 days), which also created distinct differences in 

birthweight of the offspring [323], might be a different group of DMRs and/or behave quite 

differently due to timing of prenatal diet/nourishment treat with respect to PCG development 

timelines. Other bovine sperm methylation studies have seen differences in the number of DMRs 

that were hypo- versus hyper-methylated, but these comparisons have been mainly performed 

between high and low fertility sires [324, 325]. Toschi et al. [326] have reported adult sperm DMRs 

associated with peri-conceptional undernutrition in sheep, but did not indicate any distinct hypo or 

hyper-methylation patterns within those DMRs. The shear number of DMRs with enriched 

methylation in Ldiet bulls warrants further investigation. 

To understand the possible relevance of the DMRs we have identified, and their potentially 

associated genes, biological relationships between DMR-associated genes were investigated via 

IPA. Even though IPA is designed for transcriptomic and proteomic data in order to identify 

potential cause and effect relationships stemming from differences in gene expression, we used it 

to identify those biological pathways that might be affected by our two treatments. As a result, 

three and four statistically significant gene networks were identified for prenatal diet and parental 

RFI, respectively, as fitting this set of DMR-associated genes. In the following two sections we 

discuss the possible relevance of these networks, and how they result from or can be related to 

biological functions associated with: 1) prenatal diet or 2) parental RFI. 
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5.4.1. DMR-associated gene networks related to prenatal diet 

The first network identified for prenatal diet contained DMR-associated with genes relevant to 

major cellular functions including: a) Cellular Function and Maintenance; b) Cell Morphology; 

and c) Cellular Assembly and Organization. This network includes 30 DMR-associated genes, of 

which nine were hypo-methylated while 21 were hyper-methylated in the sperm of Ldiet bulls 

(Table 5.3 and Figure 5.2). Since genes in this network are connected to the RAB35 [RAB35, 

member RAS oncogene family], and NOTCH3 [notch receptor 3] genes, as well as the AKT [AKT 

serine/threonine kinase or protein kinase B] signalling pathway, this suggests that this network is 

primarily associated with cell growth, survival, and proliferation [327-330]. Notch signalling has 

also been shown to be important for spermatogenesis [331], and the PI3K-AKT pathway important 

for sperm motility [332]. Alteration of these pathways could possibly affect fertility of the bulls 

and their sperm, although no obvious differences in sperm fertility parameters between N- and 

Ldiet bulls were detected [73]. de Castro Barbosa et al. [333] reported that a high fat paternal diet 

reprogrammed the DNA methylation profile of murine sperm on 92 genes of which some were 

related to cellular localization, transport, and metabolic processes, somewhat similar to the current 

study, although none of their DMR-associated genes match those in this first network. The study 

of Toschi et al. [326] mentioned earlier that would be the most similar to the current study in the 

animal type used (sheep) and diet treatments applied (peri-conceptual maternal undernutrition), 

did not identify any similar overrepresented gene ontology groups or DMR-associated genes as 

was involved in the a) Cellular Function and Maintenance; b) Cell Morphology; and c) Cellular 

Assembly and Organization network identified by IPA. Although, we have found evidence of 

differential methylation of genes from this network in sperm from other experimental treatments 

[334, 335]. Amongst men undergoing IVF, DNA methylation of several genes associated with cell 
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morphology, cellular assembly and organization, and cellular function and maintenance were 

detected, plus many were similar to this study [334]. This adds evidence that the methylation status 

of the DMR-associated genes we have detected from our prenatal diet treatments may be sensitive 

to environmental factors. 

The second network identified for prenatal diet contained DMR-associated with genes 

relevant to major immune functions including: a) Organismal Injury and Abnormalities; b) 

Reproductive System Disease; and c) Cancer. This network has 30 DMR-associated genes, of 

which 23 were hypomethylated and seven were hypermethylated in the sperm of Ndiet bulls (Table 

5.3 and Figure 5.3). Since genes in this network are connected to the NF-kB (nuclear factor kappa-

light-chain-enhancer of activated B cell) signalling pathway [318, 336] and its associated genes 

including INF2 [inverted formin 2] [337], CACTIN [cactin, spliceosome C complex subunit] [338], 

LRRFIP1 [LRR binding FLII interacting protein 1] [339], the imprinted TRAPPC9 [trafficking 

protein particle complex 9] [340], and ANKRD11 [ankyrin repeat domain 11] [341], this suggests 

that this network is primarily associated with immune response. NF-kB signalling has also been 

shown to be associated with pathogenesis of male infertility, with patients having poor sperm 

concentration had significantly lower levels of NF-kB as compared to control group with normal 

sperm concentration [342]. LRRFIP1 mediates the regulation of transcription and translation in the 

later stage of spermatogenesis [343] and ANKRD11 is known to be associated with male fertility 

[344]. Alteration in methylation level of DMR-associated genes in this network could possibly 

affect fertility of the bulls and their sperm, although no obvious differences in sperm fertility 

parameters between N- and Ldiet bulls were detected [73]. Nevin and Carroll [345] reported that 

environmental factors (i.e., diet, smoking and exposure to chemical compounds), testicular injury, 

sexually transmitted disease and cancer can cause aberrant DNA methylation which impairs sperm 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:23791
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:6702
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:30832
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:30832
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motility, morphology as well as vitality, thereby causing male infertility. Therefore, DNA 

methylation plays an important role in male fertility. By comparing the sperm methylome of fertile 

and subfertile Buffalo bulls using a custom-designed microarray, Verma et al. [346] found 151 

DMR-associated genes, of which 13 were associated with sperm functions and embryogenesis. 

Similarly, Camprubí et al. [347] found 696 DMRs associated with 501 genes related to 

spermatogenesis in the sperm of fertile and infertile humans using the Illumina 450 k array. The 

study of Toschi et al. [326], which compared the sperm methylome of ram offspring exposed to 

prenatal undernourishment with a control group, identified one DMR-associated gene, ST18 

[suppression of tumorigenicity 18, zinc finger transcription factor], which  also was found in this 

second network. This supports the fact that different nutritional conditions experienced in utero 

may alter the methylation status of the sperm genes related to pathogenesis of male infertility, 

identified in our study. 

The third network identified for prenatal diet contained DMR-associated with genes 

relevant to major cellular functions including: a) Connective Tissue Development and Function; 

b) Connective Tissue Disorders; and c) Organismal Injury and Abnormalities. This network has 

23 DMR-associated genes, of which seven were hypermethylated, while 16 were hypomethylated 

in the sperm of Ndiet bulls (Table 5.3 and Figure 5.4). Since genes in this network are connected 

to the PARPs [poly(ADP-ribose) polymerases] transcription factor [348], RAB20 [RAB20, 

member RAS oncogene family] [327, 328], and WNT9A [Wnt family member 9A] [349, 350], this 

suggests that this network is primarily associated with organismal injury and abnormalities. High 

PARP (a DNA repair enzyme) expression in mature spermatozoa is associated with fertile men, 

whereas low PARP levels in mature sperm is associated with infertile patients, which suggests a 

role of PARP in male infertility [351, 352]. Aberrant methylation of RAB20 is associated with 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:18260
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:18260
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:12778
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infertile human sperm [353]. Regulated Wnt/Beta-Catenin signaling is essential for diverse 

processes during development and in adult tissue homeostasis and sustains adult spermatogenesis 

in Mice [354, 355]. Alteration of these pathways could possibly affect fertility of the bulls and 

their sperm, although no obvious differences in sperm fertility parameters between N- and Ldiet 

bulls were detected [73]. The study of Toschi et al. [326] did identify two similar DMR-associated 

genes including HDAC4 [histone deacetylase 4] and HNRNPUL1 [heterogeneous nuclear 

ribonucleoprotein U like 1] which were also identified in this third network. Similar to the second 

network, this overlap in DMR associated genes supports the fact that different nutritional 

conditions experienced in utero may alter methylation status of gene networks involved in a) 

Connective Tissue Development and Function; b) Connective Tissue Disorders; and c) Organismal 

Injury and Abnormalities. 

5.4.2. DMR-associated gene networks related to parental RFI 

The first network identified for RFI contained DMR-associated with genes relevant to major 

cellular functions including a) Embryonic Development; b) Organ Development; and c) Infectious 

Diseases. This network includes 27 DMR-associated genes. Seventeen genes were 

hypermethylated, while 10 were hypomethylated in the sperm of HRFI bulls (Table 5.4 and Figure 

5.5). Since genes in this network are connected to regulation of ERK1/2 [mitogen-activated protein 

kinase 3/1 or MAPK3/1] signalling pathway [356-358], IGF2R [279, 359], as well as Rab family 

of proteins including RABL6 [RAB, member RAS oncogene family like 6], RAB7A [RAB7A, 

member RAS oncogene family], and RAB7B [RAB7B, member RAS oncogene family] [327, 328], 

this suggests that this network is primarily associated with growth and development. We did not 

see any difference in overall growth between our HRFI and LRFI bulls, however we did see that 

LRFI bulls had a smaller scrotal circumference than HRFI bulls [73]. Zhang et al. [360] reported 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:24703
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:9788
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:9788
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:30513
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that LRFI lambs had smaller rumen and longer duodenum (indicating the LRFI lambs had less 

feed intake and more efficient absorption rate than HRFI lambs), smaller liver, lung and kidney 

than HRFI lambs. Meyer et al. [361] also reported that LRFI lamb tended to have larger pancreas 

and spleen than HRFI lambs. Fitzsimons et al. [362] reported lighter weight of empty reticulo-

rumen in LRFI compared with HRFI bulls. Basarab et al. [16] also reported lower weight of liver, 

stomach and intestine in LRFI steers compared to their HRFI counterparts. Additionally, we also 

seen differences in the expression of some genes associated with growth and development in 

Longissimus thoracis (LT) muscle, semimembranosus (SM) muscle, liver, and/or testes (as 

reported in chapter 4). The study of Karisa et al. [145] found SNP-associated genes related to 

regulatory pathways controlling growth and development in divergent RFI beef cattle such as 

ERK1/2 reported in this network, although it was not a DMR-associated gene. These findings 

suggest that the in terms of size/weight of different organs, at least regarding visceral organs, there 

might be some differences between HRFI and LRFI animals, for which these pathways could play 

a part of. ERK or MAPK cascade regulates normal spermatogenesis and germ cell functions [363]. 

RABL6, RAB7A, RAB7B belong to Rab family of proteins are key regulators of male fertility [364]. 

Although no obvious differences in sperm fertility parameters between HRFI and LRFI bulls were 

detected and only LRFI bulls tended to exhibit lower progressive motility compared with high RFI 

bulls [73], alteration of these pathways may affect fertility of the bulls and their sperm. Indeed, 

there is only one study in cattle that compared global methylation pattern of HRFI and LRFI in 

liver [191] but not in sperm. In this study which was conducted by Rocha et al. [191], 1493 

differentially methylated cytosines (DMCs) and 279 differentially methylated regions (DMRs) 

were identified in the hepatic tissue of Nelore cattle exhibiting extremes in RFI, although the 
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association between these DMCs and DMRs with genes or biological pathways was not 

investigated.  

The second network found for RFI had DMRs which were particularly associated with 

genes related to a) DNA Replication, DNA Repair, and RNA Processing; b) Cell Cycle; and c) 

Cellular Assembly and Organization. It consists of 26 DMR-associated genes, of which 21 were 

hypermethylated, while five were hypomethylated in the sperm of HRFI bulls (Table 5.4 and 

Figure 5.6). The term cellular assembly and organization refers to nuclear assembly and the 

organization of genes and chromosomes which occurs at three levels including [365]: 1) 

organization of nuclear processes themselves, including DNA replication, DNA repair, 

transcription, and RNA processing; 2) organization of chromatin; and 3) arrangement of 

chromosomes and genes within the nuclear space. Since genes in this network are connected to 

DMR-associated genes including SMARCB1 [SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin, subfamily b, member 1] [366] and POLR2A [RNA polymerase 

II subunit A] [367], this suggests that this network is primarily associated with regulation of gene 

expression, DNA replication, and DNA repair. Ramayo-Caldas et al. [368] reported that POLR2A 

and CHD1 [chromodomain helicase DNA binding protein 1] genes were differentially co-

expressed in divergent RFI pigs, which could substantiate our identification of these genes being 

RFI DMR-associated genes. With respect to potential fertility differences, aberrant methylation of 

SMARCB1 is associated with infertile human sperm [353], and alterations in the transcription 

factor binding site of POLR2A is associated with infertile human sperm [369, 370]. The LRFI bulls 

in this study tended to exhibit lower progressive motility compared with high RFI bulls [73]. 

Therefore, alteration of these pathways may affect fertility of the bulls and their sperm.   

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:11103
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:11103
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:9187
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:9187
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Similar to the first network with respect to RFI, the third network found for RFI had DMRs 

which were particularly associated with genes related to a) Embryonic Development; b) Nervous 

System Development and Function; and c) Cellular Development. It consists of 21 DMR-

associated genes, of which 15 were hypermethylated, whereas six were hypomethylated in the 

sperm of HRFI bulls (Table 5.4 and Figure 5.7). Since the genes in this network are connected to 

PI3K [phosphatidylinositol 3-kinase] (Hemmings and Restuccia, 2012) and CREBBP [CREB 

binding protein] (Tang et al., 2016), it suggests that this network is primarily associated with 

metabolic processes involved in growth and development. As mentioned for the first network, 

there are differences in size/weight of organs in HRFI vs. LRFI animals [16, 360-362]. We have 

also seen smaller scrotal circumference in LRFI bulls [73] and different expression of genes 

associated with growth and development in Longissimus thoracis (LT) muscle, semimembranosus 

(SM) muscle, liver, and/or testes (as reported in chapter 4). Karisa et al. [145] reported SNP-

associated genes related to regulatory pathways controlling growth and development in divergent 

RFI beef cattle such as JAK [Janus kinase] and STAT5 [signal transducer and activator of 

transcription 5] reported in this network, although they were not DMR-associated genes. Both 

PI3K [371] and CREBBP [353] also regulate normal spermatogenesis and are important regulators 

of male fertility. As mentioned earlier, LRFI bulls in this study showed a tendency of lower 

progressive motility compared with high RFI bulls [73]. Hence, alteration of these pathways may 

also affect fertility of the bulls and their sperm. 

The fourth network found for RFI had DMRs which were particularly associated with 

genes related to a) Lipid Metabolism; b) Molecular Transport; and c) Small Molecule 

Biochemistry. This network consists of 14 DMR-associated genes, of which three were hypo- and 

11 were hyper-methylated in the sperm of HRFI bulls (Table 5.4 and Figure 5.8). Since genes in 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2348
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2348
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this network (i.e., PNPLA4 [patatin like phospholipase domain containing 4], CPT1C [carnitine 

palmitoyltransferase 1C], ABCA3 [ATP binding cassette subfamily A member 3], and CLYBL 

[citrate lyase beta like]) are connected to the production of beta-estradiol and triacylglycerol, this 

suggests that this network is primarily associated with lipid or steroid metabolism. Several studies 

looking at ultrasound scans of subcutaneous fat in cattle suggested that selection for LRFI cattle 

resulted in progeny steers having more whole-body chemical protein and less whole-body 

chemical fat than the progeny of HRFI parents [22, 30]. In addition, study of Weber et al. [372] 

showed down-regulation of regulatory pathways controlling fat deposition in LRFI cattle such as 

lipid metabolism, similar to our study. As well, PNPLA4, CPT1C, ABCA3, and CLYBL regulate 

normal spermatogenesis and are important regulators of male fertility [353]. Hence, changes in 

these pathways may also affect fertility of the bulls and their sperm.  

5.5. CONCLUSIONS 

In this study, we performed global DNA methylation profiling to elucidate the underlying 

epigenetic mechanisms of the effects of prenatal maternal diet or selection for parental RFI in 

cattle offspring at the level of sperm DNA. Comparison between Ndiet and Ldiet groups identified 

652 DMRs (corresponds to 352 unique DMR-associated genes) in the sperm of bull offspring. In 

addition, comparison between HRFI and LRFI parental groups identified 1400 DMRs 

(corresponds to 656 unique DMR-associated genes) in the sperm of the bull offspring. The Ndiet 

versus Ldiet comparison displayed a striking difference in the number of hyper- and hypo-

methylated DMRs, with 77.8% hyper-methylated in Ldiet bulls. This is in contrast with the RFI 

comparison where HRFI sperm displayed 57% of the hyper-methlyated DMRs. To understand the 

possible functions of the DMRs and their potentially associated genes, biological relationships 

were determined by pathway enrichment analysis via IPA. As a result, three networks associated 

https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:24887
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:18540
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:18540
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:33
https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:18355


 

209 

 

with “cell survival and growth”, “disease or abnormalities”, and “connective tissue development” 

were identified as being different when comparing the Ndiet group to the Ldiet group. Many of 

the genes in these networks are important for normal spermatogenesis and male fertility. Similar 

pathway analysis for the HRFI and LRFI bulls showed difference in four networks involved in 

“embryonic development”, “DNA replication, DNA repair, and RNA processing”, “growth control 

and homeostasis”, as well as “lipid metabolism”. These data suggest that both prenatal under-

nutrition and parental RFI selection can alter the epigenome of sperm cells in progeny bulls.  
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Table 5. 1 Number of unique mapped reads, mapping rate, and bisulfite conversion rate amongst 

the bovine sperm samples obtained by the whole genome bisulfite sequencing (WGBS) 

technique 
Sperm ID Mapped Reads a Mapping Rate b (%) Bisulfite Conversion Rate c (%) 

Sperm701 296,499,021 88.9 99.7 

Sperm703 264,469,768 88.2 99.7 

Sperm707 291,661,108 87.7 99.6 

Sperm709 274,850,036 88.8 99.7 

Sperm711 320,324,688 85.0 99.6 

Sperm713 302,505,051 85.6 99.6 

Sperm715 270,111,566 90.2 99.6 

Sperm717 243,556,545 83.5 99.7 

Sperm719 268,759,310 81.4 99.6 

Sperm721 248,850,976 89.0 99.7 

Sperm723 257,337,584 83.7 99.6 

Sperm725 337,297,715 88.8 99.6 

Sperm727 280,060,696 83.9 99.6 

Sperm729 243,224,291 85.0 99.6 

Sperm735 295,178,407 87.2 99.6 

Sperm737 281,289,208 83.5 99.6 

Sperm739 239,821,806 88.2 99.6 

Sperm741 290,135,716 81.5 99.7 

Sperm749 282,042,403 73.6 99.7 

Sperm751 277,129,595 87.9 99.7 

Sperm753 245,355,343 82.6 99.6 

Sperm755 316,136,068 85.9 99.7 

Sperm795 328,046,844 88.8 99.7 

Sperm817 237,258,977 81.9 99.6 

Sperm823 264,430,244 83.6 99.7 

a Mapped reads: total read numbers that can be mapped to the reference genome; b Mapping rate: 

the proportion of reads that can be mapped to reference genome out of the total number of reads 

for each sample; c Bisufite conversion rate: the proportion of non-methylated cytosine that has 

been converted to uracils by bisulfite treatment in total non-methylated cytosine.  
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Table 5. 2 Number and proportion of mCG, mCHG (H = A, C or T) and mCHH of all methyl-

cytosines in each sample 
Sample ID  mCG mCHG mCHH 

Sperm701 mC number 22,639,020 213,186 560,132 

 proportion (%) a 96.7 0.9 2.4 

Sperm703 mC number 19,656,408 165,302 419,442 

 proportion (%) 97.1 0.8 2.1 

Sperm707 mC number 24,371,007 229,797 635,349 

 proportion (%) 96.6 0.9 2.5 

Sperm709 mC number 20,093,435 164,484 414,604 

 proportion (%) 97.2 0.8 2.0 

Sperm711 mC number 25,749,778 266,992 750,733 

 proportion (%) 96.2 1.0 2.8 

Sperm713 mC number 20,405,393 217,946 602,171 

 proportion (%) 96.1 1.0 2.8 

Sperm715 mC number 20,575,533 168,214 423,174 

 proportion (%) 97.2 0.8 2.0 

Sperm717 mC number 20,979,878 167,961 437,408 

 proportion (%) 97.2 0.8 2.0 

Sperm719 mC number 23,586,378 218,168 597,425 

 proportion (%) 96.7 0.9 2.4 

Sperm721 mC number 19,340,705 163,231 412,014 

 proportion (%) 97.1 0.8 2.1 

Sperm723 mC number 22,524,640 194,086 509,822 

 proportion (%) 97.0 0.8 2.2 

Sperm725 mC number 23,294,852 244,017 670,007 

 proportion (%) 96.2 1.0 2.8 

Sperm727 mC number 20,067,219 265,412 694,471 

 proportion (%) 95.4 1.3 3.3 

Sperm729 mC number 19,795,405 187,896 514,616 

 proportion (%) 96.6 0.9 2.5 

Sperm735 mC number 20,029,505 195,887 488,106 

 proportion (%) 96.7 0.9 2.4 

Sperm737 mC number 24,760,884 255,042 728,872 

 proportion (%) 96.2 1.0 2.8 

Sperm739 mC number 19,680,793 168,611 417,309 

 proportion (%) 97.1 0.8 2.1 

Sperm741 mC number 24,975,324 206,417 577,221 

 proportion (%) 97.0 0.8 2.2 

Sperm749 mC number 20,357,930 235,597 666,279 

 proportion (%) 95.8 1.1 3.1 

Sperm751 mC number 21,101,801 189,054 490,934 

 proportion (%) 96.9 0.9 2.3 

Sperm753 mC number 22,902,760 211,505 589,283 

 proportion (%) 96.6 0.9 2.5 

Sperm755 mC number 24,670,387 208,577 555,554 

 proportion (%) 97.0 0.8 2.2 

Sperm795 mC number 25,058,783 283,578 779,983 

 proportion (%) 95.9 1.1 3.0 

Sperm817 mC number 20,644,327 203,495 581,400 

 proportion (%) 96.3 1.0 2.7 

Sperm823 mC number 20,495,156 186,390 475,767 

 proportion (%) 96.9 0.9 2.2 
a The sum of proportion of three mC types is 100%. 
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Table 5. 3 DMR-associated gene networks related to prenatal diet identified by IPA 
ID Molecules in Network Score Focus 

Molecules 

Top Diseases and Functions 

1 ↓ACAD9, Akt, ↑BAIAP2L1, ↓BPIFB2, ↓DENND1B, ↑EVPL, 

↓FBXL17, ↓FLYWCH1, ↓FRMD1, ↑GEM, ↓GRB10, 

↓INPP4A, ↑ITPR3, ↓KIAA1671, Mlc, Mlcp, ↓MPRIP, Myosin, 

↓NDUFV1, ↓NISCH, ↑NOTCH3, Pkg, ↓PPP1R12B, 

↓PRDM16, ↓PRMT8, ↓RAB35, ↓SCD5, ↑SHANK2, 

↓TBC1D10A, ↑TFAP4, ↑UNC45B, ↓VTCN1, ↓WIPF2, 

↑ZDHHC8, ↓ZNF516 

55 30 Cellular Function and Maintenance; 

Cell Morphology; Cellular Assembly 

and Organization 

2 ↓ACADVL, ↓AFAP1, ↓AFF1, ↓ANKRD11, c-Src, ↓CACTIN, 

↓CEP170B, ↑CLASRP, ↓ERC2, ↓FAM83H, ↓FRY, ↓FYCO1, 

↓GAK, ↑GRAMD4, ↓ICE1, ↑IFT122, ↓INF2, ↑IQSEC1, 

↓LRRFIP1, MAP1LC3, mediator, NFkB (complex), P-TEFb, 

↓P2RX3, ↑PADI2, ↓PDE4DIP, ↓PKN3, ↓RBM10, ↑SASH1, 

↓SLCO3A1, ↓ST18, ↓TECPR1, ↓TRAPPC12, ↓TRAPPC9, 

↑ZFP64 

55 30 Organismal Injury and Abnormalities; 

Reproductive System Disease; Cancer 

3 ↓ATP11A, ↓BCL2L11, ↑CAND2, caspase, cytochrome C, 

↓DNAJB6, ↓ELP4, ↓GMDS, ↓HCN1, Hdac, ↓HDAC4,histone 

deacetylase, Histone h4, ↓HNRNPUL1, Hsp27, Hsp70, Hsp90, 

↑INTS1, Jnk, ↓KLF6, ↓LRP4, ↑MAPK8IP1, ↑MCPH1, N-cor, 

Nucleoporin, ↓PACS2, PARP, ↓RAB20, ↓RCOR1, ↓RGL1, 

↑TBX1, ↑TNKS2, ↓TTLL4, ↓WIPI2, ↑WNT9A 

37 23 Connective Tissue Development and 

Function; Connective Tissue 

Disorders; Organismal Injury and 

Abnormalities 

DMR-associated genes are underlined and hypermethylated DMR-associated genes in Ndiet 

group are marked in bold. 
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Table 5. 4 DMR-associated gene networks related to genetic potential for RFI identified by IPA 
ID Molecules in Network Score Focus 

Molecules 

Top Diseases and Functions 

1 Adaptor protein, Adaptor protein 1, ↓AHDC1, Ap1 gamma, 

↑AP1B1, Ap2 alpha, ↓AP2A2, ↑B3GAT1, ↓CLTB, ↑COMMD9, 

↑CROCC, ↑DENND1B, Dgk, ↑DGKQ, ↑DGKZ, ↓DOK5, 

Dynamin, ↓EPN1, ERK1/2, ↓GAREM1, ↑GTSE1, ↑HIP1, 

↑IGF2R, ↓LRRC8E, ↑MGRN1, RAB7, ↑RAB7A, ↑RAB7B, 

↑RABL6, ↑SUSD5, ↓TAFA4, ↑TBC1D5, ↓TRIM2, 

↑WASHC2A/WASHC2C, ↓ZYG11B 

40 27 Embryonic Development; Organ 

Development; Infectious Diseases 

2 ↑CARS2, ↑CHD1, ↑CHD7, ↓COL6A1, ↑COL6A5, Cyclin A, 

Cyclin E, ↑DYNC1H1, E2f, ↑ESYT2, ↓GATAD2A, ↑IFT140, 

↑INIP, Insulin, ↑KAT2B, ↑LARS2, ↓LYRM4, ↑MCM4, 

↑MED15, ↓MED6, mediator, ↑MLLT1, ↑POLR2A, ↑RAB36, 

Rb, ↑SDHB, ↑SMARCB1, ↑SMOC2, ↑TADA2B, ↑TFDP1, 

TFIIH, thymidine kinase, ↑TLN2, TRAP/Media, ↓ZNF592 

37 26 DNA Replication, DNA Repair, and 

RNA Processing; Cell Cycle; 

Cellular Assembly and Organization 

3 amylase, ↓ARHGEF10L, Atrial Natriuretic Peptide, ↑BAHCC1, 

Cbp/p300, ↓CLP1, ↑CREBBP, ↑EBF1, ↑EBF3, EGLN, ↑EP400, 

↑FOXK1, ↓GIMAP4, Ifn, IFN Beta, IFN type 1, ↑IFNW1, 

↓IMMP2L, IRF, ↓IRF2, JAK, ↑KIF26A, ↓LSP1, NCOA, 

↑PCGF3, PEPCK, PI3K (complex), ↑PLEKHF1, ↑RNF165, 

↑SETD3, SMAD1/5/9, ↑SPDEF, STAT5a/b, ↑ZFHX3, 

↑ZNF511 

27 21 Embryonic Development; Nervous 

System Development and Function; 

Cellular Development 

4 AADAC, ↑ABCA3, ARID5B, ↑ART5, beta-estradiol, CCR3, 

CHRM3, ↑CLYBL, ↓CPT1C, GALR1, GPR137B, GPR37L1, 

GPR88, GRM3, HDAC1, ↑HMCN2, HR, ↑KCNIP1, ↓LRFN3, 

↑NACC2, ↑NALCN, ↑PADI4, ↑PHF21B, ↑PNPLA4, PON2, 

PTCH1, ↑RAPSN, RNF130, RXFP2, SCTR, SEMA3C, 

ST6GALNAC3, TNNI2, triacylglycerol, ↓UGT3A2 

15 14 Lipid Metabolism; Molecular 

Transport; Small Molecule 

Biochemistry 

DMR-associated genes are underlined and hypermethylated DMR-associated genes in HRFI 

group are marked in bold. 
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Figure 5. 1 Methylation trends within the transcriptional unit for sperm701. Methylation level for 

CG (or CpG), CHG (H = A, C or T), and CHH are shown with red, blue, and orange colors, 

respectively. TSS stands for transcriptional start site and is shown by the dotted green line. 

Upstream refers to 5/-UTR, whereas downstream refers to 3/-UTR. 
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Figure 5. 2 The relationships between DMR-associated gene with respect to prenatal diet in 

network 1, which have functions in Cellular Function and Maintenance, Cell Morphology, as 

well as Cellular Assembly and Organization. DMR-associated genes coloured in red are 

hypermethylated in Ndiet bulls. DMR-associated genes coloured in green are hypermethylated in 

Ldiet bulls. The colour intensity correlates to the level of methylation. 
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Figure 5. 3 The relationships between DMR-associated gene with respect to prenatal diet in 

network 2, which have functions in Organismal Injury and Abnormalities, Reproductive System 

Disease, as well as Cancer. DMR-associated genes coloured in red are hypermethylated in Ndiet 

bulls. DMR-associated genes coloured in green are hypermethylated in Ldiet bulls. The colour 

intensity correlates to the level of methylation. 
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Figure 5. 4 The relationships between DMR-associated gene with respect to prenatal diet in 

network 3, which have functions in Connective Tissue Development and Function, Connective 

Tissue Disorders, as well as Organismal Injury and Abnormalities. DMR-associated genes 

coloured in red are hypermethylated in Ndiet bulls. DMR-associated genes coloured in green are 

hypermethylated in Ldiet bulls. The colour intensity correlates to the level of methylation. 
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Figure 5. 5 The relationships between DMR-associated gene with respect to genetic potential for 

RFI in network 1, which have functions in Embryonic Development, Organ Development, 

Infectious Diseases. DMR-associated genes coloured in red are hypermethylated in HRFI bulls. 

DMR-associated genes coloured in green are hypermethylated in LRFI bulls. The colour 

intensity correlates to the level of methylation. 
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Figure 5. 6 The relationships between DMR-associated gene with respect to genetic potential for 

RFI in network 2, which have functions in DNA Replication, Recombination, and Repair, Cell 

Cycle, as well as Cellular Assembly and Organization. DMR-associated genes coloured in red 

are hypermethylated in HRFI bulls. DMR-associated genes coloured in green are 

hypermethylated in LRFI bulls. The colour intensity correlates to the level of methylation. 
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Figure 5. 7 The relationships between DMR-associated gene with respect to genetic potential for 

RFI in network 3, which have functions in Embryonic Development, Nervous System 

Development and Function, as well as Cellular Development. DMR-associated genes coloured in 

red are hypermethylated in HRFI bulls. DMR-associated genes coloured in green are 

hypermethylated in LRFI bulls. The colour intensity correlates to the level of methylation. 
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Figure 5. 8 The relationships between DMR-associated gene with respect to genetic potential for 

RFI in network 4, which have functions in Lipid Metabolism, Molecular Transport, Small 

Molecule Biochemistry. DMR-associated genes coloured in red are hypermethylated in HRFI 

bulls. DMR-associated genes coloured in green are hypermethylated in LRFI bulls. The colour 

intensity correlates to the level of methylation. 
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CHAPTER 6. GENERAL CONCLUSION 

My thesis investigated four different hypotheses: 1) The bovine metabolome can be 

comprehensively described and annotated using comprehensive, quantitative metabolomics 

techniques and computer-aided literature mining; 2) Differences between HRFI and LRFI bulls 

can be detected using metabolomics techniques, such that serum-based metabolite biomarker 

panels can be developed to distinguish HRFI from LRFI animals; 3) Differences in selection for 

parental RFI and/or prenatal nutrition can change gene expression patterns in tissues of young 

Angus bulls leading to changes in immunity and muscle development; 4) Differences in selection 

for parental RFI and/or prenatal nutrition can change DNA methylation patterns in the sperm of 

young Angus bulls. These hypotheses were described and tested in chapters 2-5 of this thesis. Here 

I will summarize the importance of each hypothesis/chapter and their associated results: 

Hypothesis 1/Chapter 2. From an animal health perspective, relatively little is known 

about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and 

tissues. In an effort to gain a better understanding of bovine metabolism and a better picture of the 

chemical composition of bovine milk/meat products, I hypothesized that the bovine metabolome 

could be comprehensively described and annotated using quantitative metabolomics techniques 

and computer-aided literature mining. In testing this hypothesis in chapter 2, I described the results 

of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, 

including serum, ruminal fluid, liver, LT muscle, SM muscle, and testes tissues. Using NMR, LC-

MS/MS, and ICP-MS, we were able to identify and quantify more than 145 metabolites in each of 

these biofluids/tissues. Combining these results with previous work done on other bovine 

biofluids, as well as previously published literature values for other bovine tissues and biofluids, 

we were able to generate quantitative reference concentration data for 2100 unique metabolites 
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across five different bovine biofluids and seven different tissues. These experimental data were 

combined with computer-aided, genome-scale metabolite inference techniques to add another 

48,628 unique metabolites that are biochemically expected to be in bovine tissues or biofluids. 

Altogether, 51,801 unique metabolites were identified in this study. Detailed information for these 

51,801 unique metabolites has been placed in a publicly available database called the Bovine 

Metabolome Database (www.bovinedb.ca). I believe these reference data will be useful for 

understanding more about bovine biology, for assessing the micronutrients found in bovine tissues 

as well as for improving the veterinary care of beef and dairy cattle. 

Hypothesis 2/Chapter 3. RFI is a feed efficiency measure commonly used in the livestock 

industry to identify animals that efficiently or inefficiently convert feed into meat or body mass. 

Selection for LRFI or feed efficient animals is gaining popularity among beef producers due to the 

fact that LRFI cattle eat less and produce less methane per unit weight gain. Several studies have 

indicated that LRFI cattle have reduced feed intake by 9-15% at equal weight and average daily 

gain (ADG) [16, 22-24]. However, some studies have shown that some fertility issues may exist 

with certain LRFI animals [76, 77, 79]. LRFI cattle also exhibited an improved feed conversion 

ratio (FCR) by 10-15% at equal weight and ADG, compared to their High-RFI (HRFI) counterparts 

[16, 22, 24]. In addition, RFI is moderately heritable in cattle, which makes it a good candidate for 

genetic improvement. RFI is a difficult and time-consuming measure to perform and therefore a 

simple blood test that could distinguish HRFI from LRFI animals (early on) would potentially 

benefit beef farmers in terms of optimizing production or selecting which animals to cull or which 

animals should be bred. Serum and plasma metabolite differences between HRFI vs. LRFI cattle 

have been reported previously, which suggests that a simple blood test for RFI testing may be 

possible. However, the results have been variable and have never been replicated nor expressed in 

http://www.bovinedb.ca/
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a clear biomarker profile. Therefore in chapter 3, I hypothesized that differences between HRFI 

and LRFI bulls could be detected using metabolomics techniques, such that serum-based 

metabolite biomarker panels could be developed to distinguish HRFI from LRFI animals. In 

testing this hypothesis for chapter 3, I employed quantitative NMR spectroscopy, LC-MS/MS, and 

ICP-MS techniques and combined the results with logistic regression to identify two serum 

biomarker panels for RFI prediction. These include an NMR-based two-metabolite model included 

formate and leucine, an MS-based two-metabolite model included C4 (butyrylcarnitine) and 

LysoPC(28:0). These serum biomarkers have high sensitivity and specificity (AUROC > 0.85), 

for distinguishing HRFI from LRFI animals. Because these panels consist of just two metabolites, 

it is possible to construct very fast (<5 minute/sample) and inexpensive (<$10) NMR or MS-based 

assays that could be used to perform bovine RFI characterization. RFI is a difficult and time-

consuming measure to perform. The cost of performing RFI measurements over 80-90 days is ~ 

$250/head which is much higher than the cost of a metabolite test ($5-10/head) or the net profit of 

selecting for LRFI cattle via GrowSafe™ RFI measurements. Therefore, a simple blood test that 

could distinguish high RFI (HRFI) animals from LRFI animals (early on) would potentially benefit 

beef farmers in terms of optimizing production or selecting which animals to cull or which animals 

should be bred. These results suggest that serum metabolites could be used to inexpensively predict 

bovine RFI groupings. Further validation using a larger and diverse cohort of cattle is required to 

confirm these findings. After my formal study was completed, I conducted an investigation to 

further understand why the concentration of these metabolites in serum were significantly different 

between HRFI vs. LRFI bulls, especially formate which is produced by rumen microbes and used 

as a precursor of methane production. Hence, I measured concentration of these metabolites in 

ruminal fluid of the bulls but found no connection between their concentration in ruminal fluid 
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versus serum (data not shown). This was supported by the study of Ault-Seay et al. [373], where 

they found no relationship between concentration of serum and rumen metabolites in response to 

different dietary treatments in beef steers. Hence, I speculated that since HRFI animals produce 

more ruminal methane, they also produce more extra ruminal formate compared to LRFI animals. 

Even though concentration of formate was not significant in ruminal fluid comparing LRFI vs. 

HRFI bulls, the significant differentiation was later depicted in blood stream. 

Hypothesis 3/Chapter 4. Approximately 70% of the cost of beef production is impacted 

by feed utilization. Maximizing production efficiency of beef cattle requires not only genetic 

selection to maximize feeding efficiency (i.e. residual feed intake - RFI), but also adequate 

nutrition throughout all stages of growth and development to maximize productivity of growth and 

reproductive capacity, even during gestation. Nutrient restriction during gestation has been shown 

to negatively affect post-natal growth and development. This, when combined with efforts to 

minimize RFI, may significantly affect energy partitioning in the offspring and subsequently 

important performance traits. Therefore, in chapter 4, I hypothesized that differences in selection 

for parental RFI and/or prenatal nutrition could change gene expression patterns in tissues of young 

Angus bulls leading to changes in inflammatory response and muscle development. To test this 

hypothesis we decided to investigate the impacts of prenatal under-nutrition during the first half 

of gestation (dams were either fed ~75% of NRC requirements (low-diet group (Ldiet)) vs. 100% 

NRC requirements (normal-diet group (Ndiet), for growing pregnant heifers during the first half 

of gestation), as well as selection for divergent RFI, upon gene expression in select tissues, 

including LT and SM muscles, liver, and testis, in Angus bull progeny. The genes monitored in 

this study included metabolic drivers of animal growth, especially muscle growth and 

development, and those that were aspects of inflammatory response. The results showed that the 
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mRNA abundance of protocadherin 19 [PCDH19] in liver, and myocyte enhancer factor 2A 

[MEF2A] in LT muscle, was significantly higher in Ldiet, and Ndiet prenatal maternal diet groups, 

respectively. The results also showed that in all four tissues, expression of MEF2A was 

significantly higher in the LRFI group as compared to its HRFI counterpart. We also reported 

correlations between gene expression in these four tissues with phenotypic measures of feed 

efficiency and body weight. These findings help to understand the underlying biological 

mechanisms regulating postnatal responses to prenatal nutrition, and feed efficiency, intake, and 

growth traits in beef bulls. 

Hypothesis 4/Chapter 5. Prenatal exposures and intrauterine stressors in parents are 

known to affect the health and viability of their offspring, although the multitude of mechanisms 

of transfer from parent to offspring are still unclear. One of the mechanisms of transfer is thought 

to be through the transfer of DNA methylation patterns via the sperm. Therefore, in chapter 5, I 

hypothesized that differences in selection for parental RFI and/or prenatal nutrition can change 

DNA methylation patterns in the sperm of young Angus bulls. To test this hypothesis, WGBS was 

used to investigate DNA methylation patterns in the sperm of offspring Angus bulls. Dams of these 

bulls were either fed a Ldiet or Ndiet during the first half of gestation. We also imposed a genetic 

component to the experiment as half the pregnant heifers in each prenatal diet treatment were HRFI 

heifers bred to HRFI bulls, and the other half were LRFI heifers bred to LRFI bulls. Comparison 

between Ndiet and Ldiet groups identified 652 DMRs (corresponds to 352 unique DMR-associated 

genes) in the sperm of the bull offspring. Comparison between HRFI and LRFI parental groups 

identified 1400 DMRs (corresponds to 656 unique DMR-associated genes) in the sperm of the bull 

offspring. Through pathway analysis of the identified DMRs using the IPA tool, three networks 

associated with “cell survival and growth”, “disease or abnormalities”, and “connective tissue 
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development” were identified as being overrepresented in the DMR-associated genes when 

comparing the Ndiet group to the Ldiet group. Similar pathway analysis for the HRFI and LRFI 

bulls showed overrepresentation of the number of DMR-associated genes in four networks 

involved in “embryonic development”, “DNA replication, DNA repair, and RNA processing”, 

“growth control and homeostasis”, as well as “lipid metabolism”. These data suggest that the 

epigenome of sperm cells in progeny bulls are under the influence of both the prenatal environment 

(limited prenatal nutrition), and genetics (strong parental RFI selection), which raise questions 

about the inheritance of genetic potential and the potential adverse multigenerational effects of 

prenatal nutrition in beef cattle. 

In conclusion, Ldiet bulls grew faster between 10 and 16 months of age than Ndiet bulls. 

From our gene expression study, we found that differential expression of genes associated with 

growth and development in tissues might be the reason for this growth difference between Ldiet 

and Ndiet bulls. This was also supported through the sperm DNA methylation study, where we 

found a DMR-associated gene network related to cell growth, survival, and proliferation. We also 

did not see any phenotypic difference in terms of fertility parameters between Ldiet and Ndiet 

bulls, however all three DMR-associated gene networks identified for prenatal diet contained 

DMR-associated genes that could be related to spermatogenesis and male fertility. Therefore, 

further investigation is needed to figure out whether prenatal undernutrition can threaten the 

fertility of bulls or not. Regarding the RFI groups, there was no growth difference between HRFI 

and LRFI bulls. However, we found different expression pattern of genes associated with growth 

and development in tissues of HRFI vs. LRFI bulls. This was also supported by the sperm DNA 

methylation study, where we found two DMR-associated gene networks related to growth and 

development, comparing HRFI vs LRFI bulls. Furthermore, through all three omics studies 
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(transcriptomics, epigenomics, and metabolomics) we found that LRFI and HRFI bulls were 

different in terms of immune response (i.e. oxidative stress). Moreover, the LRFI bulls had smaller 

testis, delayed onset of puberty and tended to exhibit lower progressive motility compared to HRFI 

bulls. This was further supported by our sperm DNA methylation study where DMR-associated 

gene networks containing genes related to spermatogenesis and male fertility were identified from 

the comparison between HRFI and LRFI bulls.  

Insights from multidisciplinary omics. Each chapter on its own gives insight into the 

biological processes affected by prenatal maternal nutrition, and selection for and/or expression of 

RFI. However, greater knowledge is gained when investigating the results in the light of the other 

studies. To this end, a relationship between metabolome and transcriptome concerning RFI was 

further investigated. In Figure 6.1, I have shown the relationship between MEF2A gene and 

significant serum metabolites of RFI in a network, in which you see a connection to Ca2+, 

proinsulin, three amino acids, formic acid, LysoPC(28:0) and three acylcarnitines. The MEF2 

family of genes responds to multiple calcium-regulated signals, in the control of skeletal muscle 

fiber type [374]. These Ca2+ channels are also responsible for regulating secretion of insulin in 

Langerhans islets [375]. Insulin stimulates protein synthesis in muscle tissue when the levels of 

total amino acids, or at least the essential amino acids, are at or above their post-absorptive 

concentrations [376]. As well, a study conducted by Nascimento et al. [377] reported higher 

concentration of insulin in the plasma of LRFI Nellore cattle, which in retrospect, would have been 

interesting to investigate in our bulls. As alluded to by figure 6.1, BCAAs (leucine, iso-leucine, 

and valine) are essential amino acids having the primary role in stimulating muscle protein 

synthesis [376]. Serine and glycine are two amino acids that are biosynthetically linked, and 

together provide the essential precursors for the synthesis of proteins [378-380]. Therefore, there 
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may be a concrete biological connection between MEF2A expression and concentrations of 

leucine, serine and glycine in the serum of LRFI bulls. 

It has also been shown that high concentrations of BCAAs are associated with higher 

oxidative stress, and as seen in human studies, can serve as biomarkers for obesity-associated 

insulin resistance and diabetes [381]. Acylcarnitines mediate activation of several important 

hepatic metabolic signaling pathways leading to diseases such as non-alcoholic fatty liver disease 

and type 2 diabetes mellitus [230, 231]. Formate is the simplest carboxylic acid and potent 

reductive force against oxidative stress [242]. In an oxidative milieu, glycine is catabolized to form 

glyoxylate in order to combat ROS that appear in cells [242]. Decreased oxidative stress in the 

liver is associated with lower feed maintenance requirements, due to a lower lipid and protein 

turnover and better efficiency in energy usage [241]. A recent study conducted by Casal et al. 

reported lower levels of ROS in the liver of LRFI steers which suggests they have lower levels of 

hepatic oxidative stress than HRFI steers [241]. Therefore, lower level of glycine and higher level 

of formate in the serum of HRFI animals suggest that these less efficient cattle are more prone to 

oxidative stress. Therefore in our study, expression of MEF2A was higher in LRFI group, and 

could be reacting to the different levels of oxidative stress in high versus low RFI animals, at least 

in liver tissue. 

Future Directions. The application of metabolomics for identifying and quantifying 

metabolite profile of different biofluids and tissues is relatively new and challenges still exist with 

both the technology and the experimental protocols. As seen in chapter 2, we could confidently 

infer or predict the existence of 51,801 unique metabolites in the bovine metabolome, our 

experimentally acquired data corresponded to just 7.4% of the total number of 

metabolites/chemicals reported in the BMDB. Clearly more work is needed in the field to expand 
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the proportion of the metabolome that can be routinely measured in metabolomics studies. Because 

of their fundamentally different separation and detection technologies, different metabolomics 

platforms tend to target or detect different classes of metabolites. For instance, NMR is relatively 

“untargeted” but is biased towards highly abundant, water-soluble compounds. Other methods 

were quite targeted, with ICP-MS being limited only to metal ions and LC-MS/MS (the TMIC 

Prime assay) being limited to a pre-selected set of 143 compounds including amino acids, biogenic 

amines, organic acids, lipid-like compounds. While the metabolomic studies described in chapters 

2 and 3 did employ a relatively wide range of metabolomics platforms (NMR, LC-MS/MS, ICP-

MS), they did not use all available detection tools (GC-MS, GC×GC-TOF) nor did they explore 

all available separation protocols (e.g., solid phase extraction and enrichment, chemical 

derivatization, etc.). Therefore, in the future, the application of other metabolomics techniques, 

such as GC-MS, GC×GC-MS (to help identify volatile compounds), untargeted high resolution-

mass spectrometry (HR-MS), and more extensive targeted LC-MS/MS techniques could and 

should be used to extend the metabolite coverage of bovine biofluids and tissues.  

As seen in chapters 3, 4 and 5, the main limitation of each omics study was the relatively 

small sample size. Omics studies typically need sample sized of dozens to hundreds of animals or 

samples to draw strong conclusions. While the findings made in the smaller-scale pilot studies 

described in this thesis are statistically significant, it is clear that these studies will need to be 

repeated on larger animal cohorts to confirm their validity. Likewise, these expanded studies would 

have to include more diverse animal cohorts covering a broader range with regard to diet, sex, age, 

breed, and farm management practices. Addressing these limitations in future studies should help 

confirm the results reported here and improve our understanding of the underlying biological 

mechanisms regulating postnatal responses to prenatal nutrition, and feed efficiency, intake, and 
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growth traits in beef cattle. Addressing these limitations would also allow greater integration and 

more expanded interpretation of the different omics studies that were attempted in this thesis.   

Overall with regards to chapter 2, the results presented have implications far beyond the 

field of metabolomics, especially given the economic importance of the bovine metabolome in the 

food industry and its importance in human nutrition. We expect these data to serve as a benchmark 

in comparing various technologies and assessing future methodological improvements in bovine 

metabolome research. In the meantime, it is hoped that the BMDB will provide a reliable source 

for metabolomics researchers, animal scientists, food chemists, nutritional scientists, and 

consumers by providing a comprehensive, easy-to-use and highly centralized web-based resource 

on the chemical composition of bovine biofluids and tissues. For example in the beef industry, by 

measuring the blood metabolites (i.e. minerals) from cattle and comparing them with the normal 

ranges of metabolites available in BMDB, we can understand the health condition of an animal. 

Regarding chapter 3, we hope that once the two biomarker panels were verified in a larger and 

more diverse animal cohort, beef producers can use these biomarkers to inexpensively classify 

their cattle into LRFI and HRFI groups. Chapters 4 and 5 also help to better understand the biology 

behind the impacts of prenatal undernutrition and RFI on young Angus bulls. These two chapters 

provided some evidence that prenatal undernutrition negatively affects growth and development 

as well as health of offspring cattle. More specifically in chapter 4, we found that expression of 

PCDH19 (associated with immune function) and MEF2A (associated with muscle development) 

genes were significantly affected by prenatal undernutrition which somehow explains how prenatal 

undernutrition might negatively affect the overall health and growth of offspring beef bulls. As 

well, higher expression of MEF2A in four tissues of LRFI bulls might answer the mechanism of 

why LRFI animals are leaner. Chapter 5 also highlights how both prenatal undernutrition and 
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parental RFI can affect epigenetic DNA machinery in the sperm of next generation which can be 

passed to the next generation. Overall, this research provided valuable outcomes that can be used 

by animal scientists, food chemists, nutritional scientists and other researchers. 
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Figure 6. 1 An example of the relationship between metabolome and transcriptome with regards 

to RFI found in this study 
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