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ABSTRACT

The Asymptotic Ray Theory (ART) has become a frequently used technique for
the numerical modeling of seismic wave propagation in complex geological models.
This theory was originally developed for elastic structures with the ray amplitude
computation performed in the time domain. ART is now extended to linear vis-
coelastic media, the linear theory of viscoelasticity being used to simulate the dis-
persive properties peculiar to anelastic materials. This extension of ART is based
on the introduction of a frequency dependent amplitude term having the same prop-
erties as in the elastic case and on a frequency dependent complex phase function.
Consequently the ray amplitude computation is now performed in the frequency
domain, the final solution being obtained by carrying out an Inverse Fourier Trans-
form. Since ART is used, the boundary conditions for the kinematic and dynamic
properties of the waves only have to be satisfied locally. This results in a much
simpler Snell’s Law for linear viscoelastic media, which in fact turns out to be of
the same form as for the elastic case. No complex angle is involved. Furthermore
the rays, the ray parameters, the geometrical spreading are all real values implying
that the direction of the attenuation vector is always along the ray. The reflection
and transmission coefficients were therefore rederived. These viscoelastic ART coef-
ficients behave differently from those obtained with the Plane Wave method. Their
amplitude and phase curves are always close to those computed for perfectly elastic
media and they smoothly approach the elastic reflection/transmission coefficients
when the quality factors increase to infinity. These same ART coefficients also dis-
play some non-physical results depending on the choice of the quality factors. This
last feature might be useful to determine whether or not the two media making up
the interface can be regarded as linear viscoelastic. Finally the results obtained from

synthetic seismogram computations using ART and other techniques seem to reveal



that this extension of Asymptotic Ray Theory correctly accounts for the dispersion
and the amplitude decay of waves propagating through linear viscoelastic media.



ACKNOWLEDGEMENTS

I first would like to thank Prof. F. Hron for introducing me to such an interesting
area of geophysics and for his guidance and advice throughout the course of this
work.

I also would like to give a special thank to Jeremy Gallop for patiently discussing
many aspects of this thesis with me and to Prof. P. Moczo, Prof I. Zahradnik and
Vladislav Plicka for their computaions which were much needed for this work.



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

CHAPTER 2 ELASTODYNAMIC EQUATION FOR LINEAR

VISCOELASTIC MEDIA

CHAPTER 3 EXTENSION OF ASYMPTOTIC RAY THEORY

(ART) TO LINEAR VISCOELASTIC MEDIA

3.1

3.2
3.3
34
3.5

CHAPTER 4 REFLECTION AND TRANSMISSION COEFFI-
CIENTS FOR TWO LINEAR VISCOELASTIC

Modelling of Effects due to Linear Visco- elasticity

Application of the Asymptotic Ray Theory (ART)
P Waves

S Waves

Geometrical Spreading

MEDIA USING ASYMPTOTIC RAY THEORY

4.1

4.2

43

44

4.5

4.6
4.7

Summary of the Plane Wave Approach
Asymptotic Ray Theory Approach

First Numerical Results to Compare Viscoelas-
tic Reflection and Transmission Coefficients Com-
puted with ART and Plane Wave Methods

Example of an Unacceptable Amplitude Growth
for Transmitted Plane Waves

Investigation of Others due to the Viscoelastic-
ity on the Behaviour of These New ART Reflec-
tion/Transmission Coeflicients

Presentation of Numerical Results
Discussion of These Last Numerical Results

7

18
22
25

33
37

42

50

58
63



CHAPTER 5§ INVESTIGATION ON A POSSIBLE PROOF OF
THE RESTRICTED CHOICE OF Q 69

5.1 Attempt to Determine the Time Dependent Shear
and Bulk Moduli from their Corresponding Com-
plex and Frequency Dependent Moduli M(w) and
K(w) 69

5.2 Computation of the Quality Factors from Parame-
ters Describing the Medium Mechanical Properties

in the Time Domain 77
5.3 Numerical Results of S1S1 Coefficients Computed
with Checked Linear Viscoelastic Media 80
CHAPTER 6 SEISMOGRAMS 92
CHAPTER 7 CONCLUSION 105
BIBLIOGRAPHY 107
APPENDIX 1 111
APPENDIX 2 113

APPENDIX 3 117



Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

LIST OF TABLES

Main differences between Plane Wave and ART approaches to
calculate viscoelastic reflection and transmission coefficients

Set of 3 models used to perform the continuity test in which
the amplitude and phase curves of the viscoelastic coefficients
should move closer and closer to the amplitude and phase curves
of the elastic coefficients as the two media across the interface
become less and less attenuating. The top model is the elastic
case: no attenuation, all the quality factors are set to infinity.
Case 1 (middle) is an intermediate attenuating case, the media
on both sides of the interface are attenuative but not as much
as the next case. Case 2 (bottom) is the most attenuating case
with the quality factors being the lowest in all three models. For
all these cases, the P and S wave velocities and the density of
each dium are kept the same

Example of model which produces unusual behaviour of the mod-
ulus of the viscoelastic S1S1 coefficient displayed versus the angle
of incidence

Model used to show the 7 phase switch of the viscoelastic phase
curve obtained with the plane wave approach:

- case 1: case producing a r phase difference between viscoelastic
and elastic phase curves.

- case 2: case which does not produce the x phase difference men-
tioned in case 1. The quality factors have been slightly modified
from those of case 1

Model used by Richards (1984) to obtain a case of amplitude
growth for transmitted plane wave

Model derived from Breckhemer’s data. The different cases are
(from top to bottom):

- elastic case.

- case 1: original model.

- case 2: model with greater quality factors than their original
values.

45

46

46



Table 5.1:

Table 5.2:

Table 5.3:

Table 6.1:

Table 6.2:

- case 3: model with lower quality factors than their original
values.

- case 4: model with “mixed Q values” i. e. Q,p and Qs are
lower than their real value whereas Q,p and Qs are greater than
their original values

First example of interface made up with two checked linear vis-
coelatic media

Second example of interface made up with two checked linear
viscoelatic media

Third example of interface made up with two checked linear vis-
coelatic media

1D model used to compute some synthetic seismograms

1D model used to compare ART and DWN seismograms

57

81

86

87
95

100



Figure 3.1:
Figure 3.2:

Figure 3.3:

Figure 3.4:
Figure 4.1:

Figure 4.2:

Figure 4.3:
Figure 4.4:
Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

LIST OF FIGURES

Ray tube between K, and K for a homogeneous medium

Moving trihedron required to determine W, for the S wave case.
The ray is traveling in a homogeneous medium

Example of a ray in a homogeneous layered medium
Change in the cross-sectional area of the ray tube at an interface

Example of a viscoelastic plane wave impinging upon an
interface

Incident, reflected and transmitted plane waves at a boundary
between two viscoelastic media (SH case)

Example of a non-planar wavefront with different incidences
Concept of a ray tube used in Asymptotic Ray Theory

Principle of the Asymptotic Ray Approach. The zeroth order of
the actual amplitude reaching the point of incidence is Vodecayes
whereas V; and V5 are the zeroth order terms representing the
reflected and transmitted amplitudes

Amplitude and phase curves for the P1P1 coefficient. The re-
sults obtained with the plane wave approach are on the left
and those obtained with ART are on the right. The models
described in Table 4.2 were used. The ‘e’ curve represents the
elastic case and the #1 and #2 curves were respectively com-
puted with case 1 and case 2 from Table 2

Amplitude and phase curves for the P1S1 coefficient. The re-
sults obtained with the plane wave approach are on the left and
those obtained with ART are on the right. The same models
and the same curve notations as in Figure 4.6 are used

Amplitude and phase curves for the P1P2 coefficient. The re-
sults obtained with the plane wave approach are on tae left and
those obtained with ART are on the right. The same models
and the same curve notations as in Figure 4.6 are used

20

23
26
27

36
37
38

40

47

48



Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Example showing the x phase shift of the viscoelastic phase
curve for a very slight change in the quality factors. This shift
is obtained with the plane wave method only. The models
described in Table 4.4 were used, case 1 is on the left and case
2 is on the right

Amplitude and phase curves for the S1S1 coefficient. The
results obtained with the plane wave approach are on the left
and those obtained with ART are on the right. The models
described in Table 4.3 were used. The ‘e’ curve represents the
elastic case and the ‘a’ curve was computed for the viscoelastic
case

Example of incident, reflected and transmitted plane waves
(SH case) to show that the radiation conditions impose the
cartesien coordinate signs of }"B, B, B, respectively the prop-
agation vectors of the incident, reflected and transmitted plane
waves

Illustration showing the geometrical differences between the
Plane Wave approach (top) and the ART approach (bottom)
for the amplitude growth case described by Richards (1984).
This amplitude growth problem only occurs with the Plane
Wave method

Amplitude curves for the viscoelastic S2P1 coefficient used
by Richards to investigate an amplitude growth case occuring
with the Plane Wave Theory. The amplitude curve obtained
by Richards in on the left and that obtained with ART is on
the right. Both were computed for the model described in
Table 4.5

2 cases of S1S1 coefficient computed for the model presented
in Table 4.6. The elastic case is on the left and case 1 (the
measured Q values) is on the right. Note that the reflection
coefficient for viscoelastic media is always complex valued, it
means even for pre-critical range, where the perfectly elastic
models have the real values of all reflection and transmission
coefficients

2 cases of S1S1 coefficient computed for the model presented
in Table 4.6. Case 2 (greater Q values) is on the left and case
3 (lower Q values) is on the right

51

52

53

55

56

59

60



Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 5.1:

Figure 5.2:
Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Case 4 (“mixed Q values”) of S1S1 coefficient computed for
the model presented in Table 4.6

2 cases of P1P1 coefficient computed for the model presented
in Table 4.6. The elastic case is on the left and case 1 with
original Q values is on the right

Case 4 (“mixed Q values”) of P1P1 coefficient computed for
the model presented in Table 4.6

Geometry of the experimental set up to measure Q

Algorithm to compute the time dependent moduli u(t) and
k(t) from vp, Us, P, QP and QS

Typical curve of a time-dependent modulus

Sketches of the curves corresponding to the real and i imaginary
parts i. e. M’ (w) and M" (w) of the complex modulus M (w)

frequency spectrum
Typical curve of the M(t) function

Numerical examples of M(t) computations when —-(-l is as-
sumed to be 0 at w = 0 (left: expected correct Q combma.tlon,
right: incorrect Q combination)

Plots of i (top left), k; (top right) in the time domain and M”
(bottom left) and K7 (bottom right) in the frequency domain
for the top half-space of the interface described in Table 1

Plots of i (top left), k2 (top right) in the time domain and My
(bottom left) and K7 (bottom right) in the frequency domam
for the bottom half-space of the interface described in Table 1

Amplitude and phase curves of the $S1S1 coefficients computed
from the interface described in Table 1

Amplitude and phase curves of the S1S1 coefficients computed
from the velocities and the densities of the interface described
in Table 1 and the following incorrect Q combination: Qp, =
100, Qs, = 70, Qp, = 200 and Qg, = 140

61

65
68

70
71

73
74

76

82

83

84

85



Figure 5.10:

Figure 5.11:

Figure 5.12:

Figure 5.13:

Figure 6.1:
Figure 6.2:
Figure 6.3:

Figure 6.4:

Figure 6.5:

Figure 6.6:

Plots of j1; (top left), & (top right) in the time domain and M”
(bottom left) and K7 (bottom right) in the frequency domain
for the top half-space of the interface described in Table 5.2

Plots of j1; (top left), &, (top right) in the time domain and MY
(bottom left) and K7 (bottom right) in the frequency domain
for the bottom half-space of the interface described in Table
5.2

Amplitude and phase curves of the S1S1 coefficients computed
from the interface described in Table 5.2

Amplitude and phase curves of the S1S1 coefficients computed
from the interface described in Table 5.3

5(t) source pulse used to compute some synthetic seismograms
Amplitude and phase spectra of the s(t) source pulse

x-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and
S152S2S1 (d) arrivals obtained with the elastic version of the
model described in Table 6.1, at 4 different offsets (magnifying
factor = 150)

x-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and
S152S2S1 (d) arrivals obtained with the viscoelastic model
described in Table 6.1, at 4 different offsets (magnifying factor
= 500)

z-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and
S1S2S2S1 (d) arrivals obtained with the elastic version of the
model described in Table 6.1, at 4 different offsets (magnifying
factor = 75)

z-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and
S15252S1 (d) arrivals obtained with the viscoelastic model
described in Table 6.1, at 4 different offsets (magnifying factor
= 250)

Figure 6.7: 1D model and ray path used to compare wavelets computed

with ART and Finite Difference Technique

88

89

90

91
94
94

96

97

98

99

102



Figure 6.8:

Figure 6.9:

Figure 6.10:

Figure Al:

Figure A2:

Wavelets computed by ART (left) and Finite Difference Tech-
nique (right) from the model described in Figure 6.7

x(top) and z(bottom) components of the seismogram
obrained with the model described in Table 6.2, for a 1000m
offset. The dotted and black curves respectively correspond
to DWN and ART computations

x(top) and z(bottom) components of the seismogram
obrained with the model described in Table 6.2, for a 2000m
offset. The dotted and black curves respectively correspond
to DWN and ART computations

top: wavelet used to compute the S15S252S1 arrival.

middle: S1S2S2S1 arrival computed with the right Q, com-
bination (Q;,=66, Qa,=72).

bottom: S1S2S2S1 arrival computed with the wrong Q, com-
bination (Q,,=50, Q,,=110)

S1S1 coefficients calculated with the two Q, combinations
presented in Appendix 1. The one obtained with the right
combination (Q,,=66, Q2,=72) is on the left whereas the
S1S1 coefficient on the right was computed with the wrong
Q, combination (Q;,=50, Q,,=110)

102

103

104

119

120



CHAPTER 1
INTRODUCTION

Over the years geophysical experiments Performed to investigate Earth’s interior
have shown that many materials constituing Earth behave in an anelastic manner
rather than elasticly. Consequently, consideration of the anelasticity of Earth’s ma-
terials in computation of synthetic seismograms is necessary in many cases (e. g
presence of clay, sediments, hot materials) in order to improve the agreement be-

tween experimental and synthetic seismograms.

The theory of linear viscoelasticity is used to model the anelasticity. In Chap-
ter 2, differences in behaviour between elastic and linear viscoelastic materials are
described and a brief description of the derivation of the elastodynamic equation
for linear viscoelastic media is given, following Christensen (1971). This equation
is the starting point for investigation of the wave propagation through this type of

medium.

Several seismogram computation techniques such as finite differences, discrete wave
number and the ray method have been used to simulate viscoelastic dispersion and
additional amplitude decay in the wave propagation. This thesis deals only with the
ray method. Most previous computations performed with this last technique to take
into account these above-mentioned effects were carried out using the plane wave
approach. A different approach to compute synthetic seismograms in viscoelastic
media is presented here. It still uses the concept of a ray, but is based on Asymp-
totic Ray Theory (ART). This theory was originally developed for perfectly elastic
structures and its extension to linear viscoelastic media is explained in Chapter 3.
The work is based on the still unpublished notes made available to me by Pr. F.
Hron and used in our 3 jointly published papers. The extension of ART leads to a



new expression for geometrical spreading (Chapter 3). Reflection and transmission
coefficients must also be rederived as the two media on either side of the interface
are now linear viscoelastic. Determination of these viscoelastic ART coefficients and
comparisons with traditional viscoelastic plane wave coefficients are given in Chap-
ter 4. Some numerical results illustrating features which are peculiar to these new
coefficients are also given and analyzed in Chapter 4. Some of these features might
lead to a new selective criterion for the choice of the parameters describing linear
viscoelastic media. A study of the possible existence of such a criterion is presented
in Chapter 5. Finally, to verify the correctness of the ART approach, simple seismo-
grams are computed for P-SV and SH waves with several types of sources (Chapter
6). Some of these seismograms are analyzed using their analog obtained for the
purely elastic case. Others are compared with seismograms computed for the same

model but with other techniques (e. g. finite differences and discrete wave number).



CHAPTER 2
ELASTODYNAMIC EQUATION FOR LINEAR
VISCOELASTIC MEDIA

A review of the basic steps to obtain the elastodynamic equation required to study
wave propagation in linear viscoelastic media is presented. The essential difference
between elastic and viscoelastic media is that elastic materials store mechanical en-
ergy without dissipation whereas viscoelastic materials both can store and dissipate
mechanical energy. In other words, only part of the work applied to a viscoelas-
tic material can be retrieved. This main distinction between the 2 types of media
implies that they have different behaviours in specific situations. For instance, defor-
mation is instantaneous and constant when a stress is suddenly applied to an elastic
material. In contrast, the other hand, for such a situation, a viscoelastic material
also responds instantaneoulsy but the deformation thus produced does not remain
constant, it evolves as time elapses. A viscoelastic material then possesses both
elasticity effects and also other features generally referred to as creep characteristics
(Christensen, 1971). A second situation of interest is the sudden application of two
stresses on a particular specimen but at different times. For an elastic material, the
deformation is instantaneous for each stress; consequently the sample deformation
is only a function of the actual stress level existing at every instant of time. A
sample of viscoelastic material behaves differently. Its response to the first stress
is first instantaneous but the deformation proceeds to evolve with time. When the
second stress is applied slightly later, the viscoelastic sample again responds instan-
taneously while it is still changing as a result of the first stress, in a time dependent
manner. This feature typical of a viscoelastic material is called the memory effect:
the response of a viscoelastic material is not only a function of the current stress

state but is also influenced to all the past stress states; such a material is generally

3



said to have a memory for all these past stress states (Christensen, 1971). These
characteristics of energy dissipation and time dependent response peculiar to vis-
coelastic materials, must be accounted for in the stress-strain relations in order to
theoretically investigate the propagation of waves through this type of material. For
a linear viscoelastic isotropic medium, the general form of the stress-strain relation
is (Christensen, 1971)
() — £ dexs (1) t de;; (1)
) _5.,/_;,\« N ar+2 [ pe-o) 3 gyr
or 0ij (t) = 8ijA (t) * dews () +2u(t) * de;; (t) (2.1)
(For the elastic case 055 = Aewbi; + 2pe;;)

where 0;; (t) and e;; () are the time dependent stress and strain tensors and ) (t) and
p(t) are the time dependent Lamé parameters. The symbol * denotes the Stieltjes
convolution (see Fung (1965)). The strain tensor €;j (t) can be written

1
€; = > (uij + u;,) (2.2)

where u;, i = 1, 2, 3 is the particle displacement or displacement vector. The Einstein

summation convention being used in all the equations,
ek =en+t+en+tepn=V-i (2.3)

represents the dilatation: the relative change in volume due to the strain state.
Knowing the bulk modulus k (t) is given by

2
k(t)=A(t)+ 3 (t) (24)
Equation (2.1) can be divided up into bulk and shear components:
Oke () = K (t) * ey (t)

and
0;;(t) =2u(t) = de;; (t) fori # j (2.5)

4



The stress-strain relation can then be rewritten
035 (£) = 85k (2) * dexe (£) + 21 2) = dess (£) — 5,-,;,4 @) sde(t) .  (26)
The equation of motion for infinitesimal motion is given by
0ijj = Pils = p=—nr 2.7)

where p is the density of the medium. Substituing (2.1) into (2.7) yields the following
equation
@) +p@]=d(V(V-0) +p(t) »d (V27) = pit (2.8)

which is the elastodynamic equation for linear viscoelastic media. The convolutions
make the representation in the time domain quite tedious. The Fourier transform
of equation (2.8) is instead calculated (see Appendix 1) to obtain

A+M)V(V-8) + MV?E = —pu?F (2.9)

where

r—3 “9{-'(
= ve™ dt
-0

A=A@) = /: - %t-(-tle*"“"dt (2.10)
M=Mw) =/°+°° d”fdit)-e"""“dt

Equation (2.9) which describes a homogeneous, isotropic, linear viscoelastic medium
in the frequency domain, leads to the equations relating complex valued Fourier
transformed parameters and physical quantities i. e. stress, strain, displacement,
velocities and mechanical parameters of the medium such as M (w),A(w) or K (w),
which are similar to the corresponding relations obtained for isotropic, perfectly elas-
tic media in the time domain. Both sets of relations are tied together by the so-called
Correspondence Principle (Christensen, 1971). In fact equation (2.9) has the same



form as the basic elastodynamic equation describing perfectly elastic, homogeneous

and isotropic media which is
(+W) V(- 57) + 47 @6, 7) = pTeT) 2.11)

The fundamental difference between (2.9) and (2.11) is that when the solution to
(2.9) is sought in the form of mechanical waves, the speeds of two types of waves
(P and S) will be complex valued. This is due to the presence in equation (2.9) of
the frequency dependent complex Lamé parameters A and M. These parameters
can easily be interpreted physically. Consider a homogeneous, isotropic, viscoelas-
tic material subjected to steady state harmonic oscillation conditions. The strain
history is written

£(t) = Ge™t . (2.12)
According to Christensen (1971), the stress-strain relation can then be expressed for
this case as

& (t) = Ga (w) Spe™* (2.13)

for a particular frequency w. G, is the complex modulus obtained from the devia-
toric part of the stress-strain relationif a = 1. f a = 2, G, is the complex modulus
obtained from the dilatational part of this same relation (Christensen, 1971). Equa-

tion (2.13) can be rewritten as
5 (t) = |G (w)] geHer+ee) (2.14)

It is now obvious that the complex modulus introduces a phase delay. The strain lags
behind the stress: this is a time dependent response. The delay can be determined
from the phase angle ,. The presence of these complex moduli is of course due to
the features peculiar to viscoelastic materials. None of these features exist in elastic

materials where the moduli are then real and frequency independent.



CHAPTER 3
EXTENSION OF ASYMPTOTIC RAY THEORY (ART)
TO LINEAR VISCOELASTIC MEDIA

It has long been well known that the effects of viscoelasticity on a propagating wave
are an amplitude decay along the propagation direction, since energy is dissipated,
and the existence of dispersion (the phase velocity and the attenuation are frequency
dependent) due to a time dependent response. In this chapter, these two effects are
modelled and are implemented in ART and the ART solution to describe a wave
propagating in a linear viscoelastic medium.

3.1 Modelling of the Effects due to Linear Viscoelasticity

The additional loss in amplitude associated with the length of the ray path ‘s — s,
led seismologists to assume an experimentally verified exponential dependence of the
amplitude on the length of the ray path written as

|0 (5,8)] = U (s0,2) - e=te-) (3.1)

where

a = a(w) is a positive value and is the empirically determined absorption coefficient

which is assumed to be frequency dependent.

U (s0,t) is the amplitude at sq, this same amplitude will be observed at s if the

medium between s and s, is elastic and the geometrical spreading is disregarded.
From a purely practical point of view, the exponential dependence of the amplitude

on the ray length can be formally described for any monochromatic harmonic wave of

frequency w by introducing the concept of a frequency dependent complex velocity:
ve (w) = vg (w) + ivp (w) 3.2)
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Then, for a given frequency, equation (3.1) can be rewritten as

O(s,t) = T (s0,t)et=rwa)

or v (s,t) = if (80, t) e™wT1@W) gmiw(t—Ta(w.s))

where a complex eikonal 7 is expressed by

88— 8 .
T(w,8) = % (@) =Tp+in;

with 7 representing the real valued travel time

8—8 _s—35
ve(@) ~ vp(w)

Tr(w,8) = Re
and 7; standing for a real valued amplitude decay function
8$— 8 - _
@) - a(s~sg) .
Obviously, the real valued phase velocity vp (w) is equal to

11 (w,8) =Im

vy () = 1 1 v+?
P - 1 ) -
Reoc(u) ;i-_f;; Up

and the absorption coefficient @, which is positive becomes

1 . |
ve(w)  vh+} >0

a(w)=Im

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

These two parameters v, and a are frequency dependent and as a result a dispersion

relation can then developed. Equation (3.8) is a special form of a radiation condition,

which requires
al-iolcxalo Iﬁ(s’t)l =0

meaning that the longer the distance travelled, the lower the amplitude. This can

be translated into the requirement that

-vr(w)>00rv;(w) <0

8



which will then be written as
vc (w) = vp(w) + vy (w) <0 (3.9)

yielding
1 ./ §
vc(w) vk +o}

as required by the radiation condition.

>0

a(w)=Im

The experimentally found need for a complex velocity function (3.9) that would
formally account for an exponentially decreasing amplitude due to the viscoelasticity
is automatically satisfied by the theory of viscoelasticity (Christensen, 1971). An
expression of the complex velocity in terms of the measurable quantities v, and
Q can easily be obtained. Using (3.5) and (3.6) and noting that the absorption
coefficient is equal to a = 5;1'3, for Q@ > 1, where Q is the quality factor (Aki and
Richards, 1980):

1 . 1 . 1
@ @ T Ym0 (8.10)
(Aki and Richards, 1980). The vc (w) expression is then equal to
2
ve (w) = 2@ _; %29 (3.11)

4Q7+1 '10°+1

which satisfies the requirement of (3.9).

3.2 Application of the Asymptotic Ray Theory (ART)

The main purpose here is to obtain a solution of equation (2.9), which describes
a wave whose amplitude decays exponentially along its ray path and which is also
affected by dispersion. Most of earlier work which considers linear viscoelasticity
and using ray theory have sought a solution in the form of plane waves. This has led

to the concepts of inhomogeneous waves, viscoelastic Snell’s Law, and complex rays.



Buchen (1974) used ART to investigate waves propagating through viscoelastic me-
dia but all his calculations were performed in the time domain. In this section, ART
will be applied to the Fourier image @ (w, 7) of the displacement vector expanded in

the time domain into an asymptotic ray series
0
@t 7= EW"" (M) 9a (x) (3.12)

where W (7) is the amplitude term of the wave
X is t — ((7) (¢ (¥) being the real phase function).
gn is a function closely related to the source function describing the shape of

the wave in the time domain and

(0 = 5, () or [ gn(X)d(X) = s (3.13)

where go (t) represents the source function. The Fourier transform of (3.12) can be

written
T = S W0 (76 () (3.14)
with
() = D (3.15)

since using (3.13) we have

dgn+1 (x) = iWwGn+1(X) = ga (w)

dx
Sw) = f ~ g0 (t) et dt (3.16)
-a0
is the Fourier spectrum of the pulse. This Fourier transformed displacement
F(w,7) = f ® 2(t,7) ettt (3.17)
-0
can be rewritten in the form of the ray series
i (w,f) = E w (w, i’ ( Z w,T) Fy (w,§) (3.18)
n=0 n=0

10



in which the amplitude terms W (w, ) may depend on the frequency w. It is assumed
that W (w, ) is slowly varying with frequency. The physically meaningful solution
for the wave propagating in the viscoelastic medium will thus be obtained after the
following inverse Fourier transform

® emiw(i~r(Fw))

Z(t,7) = -::Re /: S(”),‘Z,;OM“)?TiT)“""“’ (3.19)
is carried out. It is worth noting that if S(w) is equal to &(w — o), where § is
the dirac function, the asymptotic series in (3.19) can be regarded as a ray series
due to a monochromatic harmonic wave with the source function e~'t carrying a

displacement vector

260 =F A, (d,r)e—'% (3.20)

The application of ART to the Fourier transformed displacement # (w, ) consists
of a formal application of the ray series (3.18) to equation (2.9) i. e. the Fourier
transformed elastodynamic equation assuming W (w, 7) varies only slowly with fre-
quency. It must be pointed out that W™ (w, 7) is not the Fourier transform of W®
in equation (3.12) since W™ is not time dependent. Equation (3.18) only shows
the form in which we will attempt to find a solution to the Fourier transformed
displacement # (w, 7). The only, but essential difference with the elastic case is that
we now deal with complex frequency dependent Lamé parameters A (w) and M (w).
Recalling equation (2.9)

A+ M)V (V-7) + MV2E = —pu?i

and using (3.18) we obtain

11



(A+ M) Lgo Faa(Wa-V7r) Vr - Eo Foct [V (V- W) + V- W, V7]
+3 AV (v w,,)] +M |3 W, (V) - S F @(vr-vi) +
n=0 n=0
Wavii) +§F:.v=w,.] = p W, 3.21)
n=0 n=0
Equatioz (3.21) can be written as

5 Fuca [(A+ M) (s V) Vr 4 MWW, (V)" W] -
n=0

> Fasy [(A+20)[v (V- W) + 9. W] + M 2(V7- V) + Wov2d] +
n=0

> A A+ M)V (VW) + MVPW,] = 0 (3.22)
n=0
Defining W_, = 0 = W_,, the final expression of (3.21) is
S A (5 Wss) B (5 W) + L (rB)] =0 (323
n=-2

with
N(1,Way2) = [(A+ M) (Wasa- V1) VT 4+ MWoya (V7)? - PWaso]
M(r,Wast) = (A+M)[V (V7 Wan) + (V- Wair) V7]
+M [2(Vr - VWoi) + Wa V1] (3.24)
L(nW) = A+M)V(V-W,) + MV,

So for (3.23) to hold, it is required to have

[N (7. Was2) - M (rWast) + L ()] =0 n=-2,-1,0... (3.25)
or
ﬁ (‘r, WQ) = 0

N (r, W) - 3 (v, W)
ﬁ(r,w,..,,z)-A?(r,w,.+1)+f(r,w,.) =0 n=0,1,2...

i
=)

(3.26)

12



Using
N(n, W) =0
two new equations are obtained
N(nW)-Vr = (A+M) (W - vr) (vr) + (M (V)2 -)) (Ws - V1)

= [(A+2M)(Vr)2 =] (W - V7)

=0 (3.27)
and

N (W) x Vr = [M(Vn)? - p] (Wo x V7)
=0 (3.28)

(Wo . Vr) and (Wo X Vr) are not generally equal to 0 simultaneously. The same
comment can be made for [(A +2M) (V)2 - p] and [M (Vr)? - p] . Consequently
the system formed by equations (3.27) and (3.28) has two solutions, i.e.

vr)2 o 1 ¥ x Vr) =
(V7) TA+M T ) (W x T)-o
(3.29)
vri=2 -1 Wo - V1) =
(V)= 2, (Wo-Vr) =0

These are the eikonal equations from which the complex velocities of P and S waves

are obtained i. e.

for P waves %, = A-I;2M
and (3.30)

for S waves v, = %

A and M being the complex Lamé parameters. Recalling (3.4), (V7) can also be

expressed as
1

VT @)

(3.31)

13



with v¢ (w) given by equation (3.11). The two expressions of the complex velocities
i. e. equations (3.11) and (3.30) for P and S waves have to be equivalent so that
(V) can be expressed in terms of the actual phase velocity and the quality factor.
The equivalence between these two expressions stands if gLy < 1 which is generally
the case (see Appendix 2). Hence using equation (3.4), the exponential amplitude
decay is obtained immediately since equation (3.18) may be rewritten as

B, 7) = 3" N, (0,7 S () e ( = 3 WF (w,£) (3.32a)
n=0

n=0
or using (3.20)
L)
(—i)"

2(t,7) = 3 e 1N, (o, 7) (3.32b)
n=0

Equation (3.32b) can be interpreted as a displacement of the particle motion carried
by the monochromatic wave of frequency w propagating with the real speed of

v} + v}
Uphase = -5?1 (3.7)

so that

TR=Rer= (3.5)

vm
represents the real valued travel time between 2 points separated by the distance
As measured along the ray and obtained by solving the eikonal equation

Vrp= (3.33)

v,,..,, ’
The amplitude terms W, (w,7) in (3.32) are independent of time and the “phase
function”

- e~k
Fo(w,é) =S (w) — 3.34
.8 =5() (3.34)
with £ = —7 (f,w) possesses the necessary property for the phase functions required

by ART, namely: _
OF, n+1 (U, f )

3 = F‘,. (w, f) (3.35)

14



Hence the amplitude terms in (3.32)
wn (w,F) = W) (w, ) (3.36)

must have all the features of the amplitude terms derived in the time domain for
waves propagating through perfectly elastic media with the source function e—**.
In particular, in the zero order approximation of ART when the ray series contracts
to the leading term in (3.32b), we obtain

i(t,7) = e 1FIW (o, 7) e =) (3.37)

which represents the amplitude of the complex displacement vector. Indeed the dif-
ferences between the asymptotic ray series used with the elastodynamic equation in
the time domain for the elastic case and in the frequency domain for the viscoelastic
case can be stated the following way. For the first case, the characteristics of the
asymptotic ray series representing the displacement are given in (3.12) and (3.13):

a(t,7) = i_':o W (7) ga (€)

with W™ (7) is the amplitude term of the wave
§ ist — 7(7) with (7 (7)) being the phase function.
The quantity g, is a function closely related to the source function describing

the shape of the wave in the time domain and

dgn41 (§) -
& o (3

Whereas for the second case, the asymptotic ray series describing the transformed

displacement vector is given in (3.18):
o

2w = @A) e = S @A Fa 00

where W, (w, ) is the frequency dependent amplitude term
§ is —7(w,) where (7(w,)) is the complex phase function taking into ac-

count the travel time and the amplitude decay due to the viscoelasticity.
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Fo (w,£) is a function closely related to the source as in the elastic case, but

also considering the amplitude loss along the propagation direction and

aF n+d1 (“"’ E )
3

= F n (U: f) .
Consequently for all the equations from (3.21) to (3.31), the term taking into account
this amplitude loss is not in W), but it is contained in V.

All these calculations are based on the assumption that the gradients of both the
real and the imaginary parts of the complex phase function r i. e.

8§ — 8

Uc (w)

are parallel to the ray so we can write

T(w,8) = =Tp+ 177 (3.4)

2

Vr=V7rg+iVr = {(Re-l- + iImi) =
L)/ed Vo

= (3.38)
where is a real unit vector tangent to the ray and vc is the complex velocity.
This assumption is equivalent to the statement that the propagation vector P and
the attenuation vector A in a commonly accepted expression for the complex wave
vector k in viscoelastic media
E=P+id
are parallel (meaning that the attenuation angle v = 0) at any point of the ray
path for P and S waves, in any isotropic medium (with the exception of a critically
reflected /transmitted rays).
The assumption of V7g||V7;||f is based on:
1. the observation that the amplitude decay depends on the length & travelled
by the wave, meaning that V7;||£]| V5.
2. the observation that in the case of symmetrical (spherical, cylindrical) wave-
fronts propagating in a homogeneous isotropic space, the surfaces of equal amplitude

16



coincide with surfaces of equal phase , if the sources (point, line) have a uniform
radiation characteristic.

3. the isolated element principle generally accepted in the ray method by which
the temporal and dynamic properties of the wave depend only on the mechanical
properties of the immediate neighbourhood of the medium surrounding the ray path.

It is also worth mentioning that the case A J|° was required for plane waves re-
flected from, or transmitted through, a plane interface separating two viscoelastic
half-spaces of different Q, only in order to preserve independence of the boundary
conditions (continuity of stress and displacement) along the infinite boundary (Lock-
ett, 1962). Since ART requires the continuity of the displacement and the stress only
in the immediate vicinity of the point of incidence, there is no requirement to have
A }B,i.e. Vg )V,

This extra case EII P, required for plane waves, leads to a special Snell’s Law for plane
waves impinging on an interface between two viscoelastic media. The X-component
of the complex vector £ must remain constant; this means the x-component of the
attenuation vector A must also be constant. Consequently an amplitude term is in-
troduced in this particular Snell’s Law. In ART, the original Snell’s law, dealing only
with phase matching is used. The assumption V7g||Vr||f allows the calculation of
the actual wave amplitude which reaches the point of incidence on an interface. At
this point, the phases of incident, reflected and transmitted rays are matched using
the original Snell’s Law and no amplitude term is involved. These phase matchings
are frequency dependent because of the dispersion relation. This means that for a
given frequency w, the phases are matched using the velocities computed at that
particular frequency. The process must be repeated for each frequency present in

the source frequency spectrum. A more complete analysis of the phase matching

17



problem is described when the reflection and transmission coefficients are computed

(see Chapter 4).

Finally, recalling (3.38), we obtain

_|d™r _ 1 vg _i
IV7g| = s —Revc = 2+ -v,, (3.39)

where ds is the length element along the ray and v, the phase velocity. Similarly

d‘l’[

|Vr| = (3.40)

=Imt=_
Ve
where a is the absorption coefficient.

3.3 P Waves

For P waves the amplitude vector W), is parallel to the direction of propagation in

homogeneous media, hence
Wy = Wiyt (3.41)

where £ is the real unit vector defined in (3.38). £'is also given by
f=uvcVr (3.42)

with vc being the complex velocity of P waves. To obtain Wo, M (-r, Wo) -Vris
calculated

M (W) -Vr = (A+M) [(V- W) (Vr)2 + @ (W - v7) - V1] +

M [V?r (Wo- Vr) +2(V7- VW) - V1] (3.43)
We have
1
(VT)2 = Fc
V-Wo = V- (Wf) = V- (WetcVr) = 1oV - YWy + 5 WpV2r

18



WO -Vr = Wovc (V‘l’)2 = %

(Vr-9W) = vr-vwi
(since the medium is homogeneous)

= Vr- (V‘r . vw.,) = -l-(Vr- VWs)
vc
hence equation (3.43) can be rewritten
M (r W) -Vr = (A+M)[o-Vr YW+ 2WVor + Lvr.vwy] +
/o4 vc Vo

M [-’;,"-CEV% + 2 (vr-v)]

A+2M -
= :C WoV2r +2(Vr - Wi)]
= puc [WoVPr +2Vr. VW] (3.44)
Using equation (3.42)
[AZ (r, Wo) . V‘l’] Wo=puc [V . (W°2V‘r)] (3.45)

Recalling the top equation of system (3.24), we obtain

N (r, W..) -Vr = (A+M) (W,, . Vr) (Vr)?+ [M (Vr)? - p] (W,. . Vr)
A+M M =
= [ g -] 0w
A+2M -
- (52 m
= 0 for P waves (3.46)

The second equation of (3.26) implies that

[M (W) - Vi)W =0

19



Figure 3.1: Ray tube between K and K for a homogeneous medium
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consequently
V- [P vr] =0 (3.47)

or  V-[(W0)?Vrg+i(W)? Vn]=0

The concept of a ray tube about a central ray is now employed. The ray tube may
be defined as a narrow pencil of rays connecting two wavefronts of the central ray at
different times to and ¢ with ¢, < ¢ (Figure 3.1). As is the length along the ray path
between the two wavefront surfaces do (s9) and do (s). As and the distances between
the rays bounding the ray tube are infinitesimal quantities. Using Gauss’ divergence
theorem when the integration over the volume V of the ray tube is performed leads

to

/V V- [(W)2vr]dv= /’ (Wo)2Vr-d3 =0 (3.48)

where do is an element of area on the ray tube. Using (3.10) and (3.38), equation

(3.48) can be written

[V vr-dz = é{[(wo)zda]. - [wo)?ae], } +
i 201 g [0 as], - (w2 a0], }
=0 (3.49)
This implies that
[(W0)? do], - [Wo)?ds] =0 . (3.50)
Therefore
Wo () = Wi (s0) % . (3.51)

W is the amplitude term which corresponds to the elastic case (see equation (3.37)).
Along As, the amplitude is also affected by the viscoelasticty. This effect does
not appear in equation (3.51) because in all of the previous derivations, the term

describing this amplitude decay is contained in V. To obtain the actual amplitude
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at s, this extra amplitude loss must be taken into account. This is achieved using

equation (3.37)
@@t = e““"'("")wae"”(“"')
= Ope~tt-m) (3.52)
where I8°| is the actual amplitude at a particular point s

8 — 8, is the distance from that point to the source, the source is supposed to

be in the same medium as s.

Hence
W (5) = 8y (5) e2e—*) (3.53)
and using (3.51)
Uo(s) = Uy (sp)evalso=sa)g-wale—ss) «Z ((s:))
= Uy (s) e™wole—%) ___.‘;‘;((":)) (3.54)

Equation (3.54) allows calculation of Uy at any point s on the ray if U, at sq is
known. The amplitude decay due to the viscoelasticity is now included.

3.4 S Waves

For S waves the amplitude term W), is perpendicular to the direction of propagation
hence
Wo-£=0and Wy - Vr =0 (3.55)
A moving tribedron of the ray path consisting of three orthogonal unit vectors, ¢
(defined in 3.3), 77 and b (Figure 3.2) is required to determine W, as in the elastic
case. This trihedron will be used as a local Cartesien coordinate system on the ray.
W, can then be expressed as

Wy = Woii + Wo, b (3.56)
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Binormal line

Normal plane

Normal line

Osculating plane
Tay

Figure 3.2: moving trihedron required to determine W) for the S wave case.
The ray is traveling in a homogeneous medium.
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and we also have
-Vr=0andb-Vr=0

To obtain Wy, M (‘r, Wo) -7t and M ('r, Wo) - b have to be computed

M (r, W) - = M [Wo,Vr +2{(Vr- V)W, } - 4]

but
(VT -V)Wh, - i = Vr- YWy it - = Vr- VW,
consequently
M (7, W) - 7 = M [Wo,VPr +2(Vr- YW, )|
and

[ (r, W) - A Wo. =M V. [, )? vr]
The same derivation is performed with the unit vector b to obtain
[M (%) -5l Wo, =M v - [As,) vr]
For S waves (Vr)? = (—cls-)-, = £ then in that case
N (r.Wa) = (A + M) (W, - V) V7

and
N (r W) 7= N (r, W) -F=0

Using the second equation of (3.26) again, we can write

87 390) -] = 0= [ (60) -

24

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)



hence

V- [.)?vr] =0
(3.65)
V- [We)vr] =0

Using the same reasoning as section 3.3 for S waves, the following expressions are

obtained
Wo. () = Wo, (o) | S
(3.66)
Wo, (5) = Wo,(30) | T2

for the amplitude terms corresponding to the elastic case, and when the amplitude

decay due to the viscoelasticity is taken into account

Uo. (8) = Uy, (80) e~w(=%) da-da ((':0))

(3.67)

U, (8) = Ug, (s9) e~wale=2) ‘fi‘:((?))

3.5 Geometrical Spreading

An expression for the geometrical spreading of a ray propagating through a layered
homogeneous isotropic linear viscoelastic medium is now computed. A ray of m seg-
ments propagating through a sequence of flat horizontal homogeneous layers has to
be considered (Figure 3.3). The term which must be evaluated is %(('-fjl which is
Present in equation (3.54) for P waves and in (3.67) for S waves. These calculations
are frequency dependent and when an arrival is to be computed, the term J:-g(—l‘z
must be determined for every frequency present in the frequency spectrum of the
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Figure 3.3: Example of a ray in a homogeneous layered medium.
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Figure 3.4: Change in the cross-sectional area of the ray tube at an interface.

27



source. In the case of Figure 3.3, the amplitude coefficient at the endpoint K and
for a given frequency w is

dU(Ko, U)
\ 45 (01,w)

do’ (O),w)
w do (02a w)

U(Kw) = X R; (w) x emwor(Q1~Ko) o

X Ry (w) x e™«o3(03~01) ¢

. R (@) x \J——_da(g;:z ‘;’) een(On=0n-1)

U (Ko, w) (3.68)

where R;,j =1,2,...,m-1is the reflection /transmission coefficient at 0j, a; is the
absorption coefficient of the layer where the i ray segment lies in (i=1,2,...,m),
where the prime refers to quantities associated with the reflected or transmitted
wave at O; and the unprimed quantities are associated with the incident wave at
O;. Equation (3.68) can be written as

1 m—1

YT A (K, Ko, @) H R; x He-uo.(o.-o.-x) x U (Ko, w) (3.69)

j=1

Kw) " [d0(050)
L(K,Ko,w)=‘|$((Ko,"‘:)) 11:11 d;(( o,,:)) (3.70)

L (K, Ko,w) is the geometrical spreading of the ray at a particular frequency w.

U(K,w) =

where

Figures 3.1 and 3.4 represent the ray tube and the change in the cross sectional area
of the ray tube at an interface respectively. Starting with the cross-sectional area
at K from Figure 3.1, the expression of do(K) is

do (K) = (cos8 (K) dz) (z ddy) (3.71)

where z is the horizontal distance traversed by the ray, ¢y the azimuthal coordinate
at Ko and 6(K) is the angle between the ray segment and the vertical z-axis. z
depends on z and 6y = 0 (Kj) which is the take-off angle at K. Hence the expression
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of dz is

oz oz
dz = 5—,;:100 + -a—zdz (3.72)

From Figure 3.1, we see that dz = 0. The cross-section of a spherical wave at a
unit distance from the source i.e. dog = do (Ko) is given by dog = sinfy df, dgy.
Consequently

io 1) _ = (d) cond )ty ity _ 2 (8) w00
do (Ko) ~ sinfy dfy doy sin f,

(3.73)

From Figure 3.4, we have
do (O;) _ co88(0;)
do'(O;) cosé (0;)

where 6 and ¢’ are the angle of incidence and transmission and do (O;) and do’ (O;)

(3.74)

are the cross-sectional areas for the incident and transmitted rays. The medium is
homogeneous and ¢ (0;) =4 (Oj+1), so that

357 (05,2) ~ \ 0s0(0) = \ con8 (7} (3.75)

Therefore, inserting (3.73) and (3.75) into (3.70) yields

L(K,Ky,w) = "z-ai cot 6y (3.76)
00y

The epicentral distance is given by

'ﬁl do(0j,w) _ | cosf(0) _sto(x")

=1

T= Zm:z,- = i (hj tan ;) 3.77)

Jj=1 Jj=1
where h; is the thickness of the layer containing the j* ray segment and 6; is the
incident angle of the j** ray segment. £ must now be calculated. Since the same

Snell’s Law as for the elastic case is used (see section 3.2), we can write

Org. 01
—af'- a:° (3.78)

which is equivalent to
sind; (w) _ sinfp (w)
vp,; (w) Upo (w)

(3.79)
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where 75; is the contribution of the j** ray segment to the real part of the phase
function 7. In fact (3.79) represents the x-component of V7g,. The z-component
of Vg, is slightly more complicated to obtain because its sign depends on the
orientation of the j** ray segment. Nevertheless, it is still possible to write

2

where vy, (w) is the phase velocity of the j** ray segment at the frequency w. Let
us name V7 = P then
= f
VT& = P= v—’:

AL
0z

|P;.|

and tané; can be expressed as

ﬁ_ Po‘ -PoSinoo

tanf; = =L = = 3.81
e v Tx e Ty (38D
The subscript ‘0’ refers to quantities at K. Z; is now equal to
z; = 2Tosinb (3.82)
| P5.
and P
8::,- - IPJ,I 00800 -— -L“lﬂL Sinao
60 h;Fy [ ) (3.83)
%%;‘1 must now be evaluated.
2 . p2 2 2
aIPj:I — a PJ P.h = 1 a_’}'_ - aPz’, (3-84)
36, 96, 2|P;| \ 88y 86,

The positive square root is considered. Knowing that P?= ;5— and since the medium
£}

is isotropic i.e. vy, is independent of 6y yields

a|P;,) P;, 0P Py
3, |P;,] 88, ~ " [B;] 0% (3.89)
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using (3.79). Equation (3.83) can now be rewritten as

dz; _ hiPy P2 cos 8y sin’ 90]
—L cosfp +
=B =% (P

(3.86)

and £= is equal to

Z = Pycosby 2: |P, | + P} sin a.,g—l—g) (3.87)

J=1
It still can be sxmplxﬁed to
hjv3.

3_z = Pacosb, f:.'i'!i_h_"..,.pz sin?6, z:._:.
96 R i=1 cosf; ¢ =1 cos%d;

™ g, h;  sin?6y & hyd,
= Pycosty _Z:;';{+s";,a"2 ”’)

J Po  j=1 cos? ;
= Pycosf, sz cos30 (u2 coe?0; + o2, sin oo)) (3.88)
Using (3.79) we finally obtain

aa; Py 00800 ['z: C’;Sg’o ] (3.89)

Equations (3.80), (3.82) and (3.77) are recalled to express r as

_x=hjPosinbovp,, . = hjv,.
=) oy = Pysinéb, L§ ——z-cos 6. (3.90)

j=1

Finally inserting equations (3.89) and (3.90) into (3.76) yields

=1 sin 6,

L(K, Ko,w) °°“’° \[ [2 h; ks 3 Lz h; —in (3.91)

The expression of the geometrical spreading L (K, Ky, w) for linear viscoelastic media

L(K,Ko,w) = JPosmOo [E 2% | Py costy (Z c’:{;";] cos o
J

has the same form as that corresponding to the elastic case. The difference is that
equation (3.91) is frequency dependent since all the calculations are performed in
the frequency domain. In fact this frequency dependence is caused by the dispersion

relation which is one of the features which characterizes linear viscoelastic media.
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CHAPTER 4
REFLECTION AND TRANSMISSION COEFFICIENTS
FOR TWO LINEAR VISCOELASTIC MEDIA USING
ASYMPTOTIC RAY THEORY

The next step is the computation of the reflection and transmission coefficients for
two linear viscoelastic media. This particular reflection/transmission problem has
already been studied in depth. Lockett (1962), Cooper (1966), Cooper and Reiss
(1967) examined the reflection and refraction of plane waves at a plane interface
between two half spaces of different linear viscoelastic materials. Buchen (1971)
investigated the reflection and transmission of SH-waves for the same type of solids
considering a cylindrical line source. His work assumed weakly dissipative media. A
complete analysis of the general case of a plane wave (SH and P-SV ) impinging upon
an interface between viscoelastic media was derived by Borcherdt (1977, 1982). Fi-
nally Krebes and Hron (1980), Kelamis et al. (1983), Krebes (1983, 1984), Bourbié
and Gonzalez-Serrano (1983), Hearn and Krebes (1990) computed and plotted some
viscoelastic reflection and transmission coeficients. The term ‘viscoelastic’ which
has been employed to describe these types of coefficients means that the linear the-
ory of viscoelasticity was used in their computations. The two half-spaces making
the interface are dissipative, each are characterised by their P and S phase velocities
, density and quality factors for P and S waves. These factors take into account
the amplitude decay along the propagation direction. All of the above computa-
tions considered a plane wave incident on a plane interface between two viscoelastic
media. The results obtained display amplitude and phase differences relative to
the elastic case and mainly in the vicinity of the critical angles. In this chapter a
different approach to determine reflection and transmission coefficients between two
viscoelastic media based on Asymptotic Ray Theory (ART), is developed. Since
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ART is used, this approach does not need to consider an incident plane wave and
can approximate the case of a non-planar wavefront incident on a generally curved
interface.

The first section of this chapter briefly describes the traditional plane wave ap-
proach used to obtain viscoelastic coefficients. In the second section, the ART
approach is presented and the differences between the two methods examined. Com-
putations of viscoelastic coefficients were performed with both methods for several
hypothetical cases. The results are given and analysed in the third and fourth sec-
tions. Finally the effects of the viscoelasticity on these ART viscoelastic coefficients
are investigated more deeply. Several different calculations were carried out in order
to numerically investigate their behaviours. These calculations are described in the
fifth section. Amplitude and phase variations peculiar to these ART viscoelastic
coefficients are observed and are presented in the sixth section. An explanation for
these new features follows in the last section.

4.1 Summary of the Plane Wave Approach

The expression for a plane wave in a linearly viscoelastic medium is slightly dif-
ferent from the elastic case because the amplitude decay, due to the viscoelasticity
of the medium, must be taken into account. This is achieved by introducing the
attenuation vector. A harmonic plane wave propagating in this type of medium is

then expressed as
Be—A-Fel'(p'r‘“") = Be‘(s'?-‘“) (4'1)

where

B is the amplitude at the given frequency

A is the attenuation vector (which accounts for the amplitude decay),
P is the propagation vector,

k is the complex wave vector (k= P+iA).
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Figure 4.1 shows an example of a viscoelastic plane wave. P is perpendicular to
the planes of constant phase, whereas A is perpendicular to the planes of constant
amplitude. These two vectors are generally not parallel because the amplitude of
a plane wave propagating in a viscoelastic medium can vary along the wavefront
(Borcherdt 1977, 1982). In the special case when v =0, then P and A4 are parallel
and the wave is called an homogeneous plane wave. When v#0, P and A are not
parallel; this happens to be the most frequent situation and the plane wave is then
called inhomogeneous.

When a plane wave is incident upon a plane interface (Figure 4.1), the boundary con-
ditions on this interface are independent of the x position which means that the same

incidence occurs at any point on the interface. The reflected and transmitted waves

Ay
"o
Y

M

P: Propagation vector 6: Incident angle
A: Attenuation vector 7: Attenuation angle

Figure 4.1: Example of a viscoelastic plane wave impinging upon an interface.



are then also plane waves. Figure 4.2 shows the SH case where the subscript j=0
denotes the incident plane wave, and subscripts j=1, 2 are used for the pertinent
reflected and transmitted waves respectively. The boundary conditions at the in-
terface z = 0 require the continuity of displacement and shear stress across the

boundary and are then written as
Boe'®e®) 4 B eilthes) - Byei(k2e%) (4.2)
Mko,Boe'®e®) — Mk, Bjeit1e®) = Myk;, Bye'h2:®) (4.3)

where By, B;, B, are respectively the amplitudes of the incident, reflected and
transmitted plane waves; ko, k1,, k2, and ko,, k1., k2, are respectively the x and
z components of the corresponding complex wave vectors. M; and M, are the
complex shear moduli of the upper and the lower media. These complex forms are
typical when viscoelastic media are considered (see chapters 2, 3). By, B;, B, are
independent of x, y, z since the term expressing the amplitude decay is included in
the wave vector, consequently, for equations (4.2) and (4.3) to hold, it is required
that:

ko, =k, =k, => Py, = P,=P, and Ay = A, =4, . (44)

This is the so-called Snell’s Law for viscoelastic media (Borcherdt, 1977, 1982; Wen-
neberg, 1985). This law clearly has two parts: conservation of the x-component of
the propagation vector P and of the attenuation vector 4. By knowing the inci-
dent and initial attenuation angles of the incident wave, respectively 6, and 7y, the
reflection and transmission angles 4, and 02,the attenuation angle of the reflected
wave 7, and that of the transmitted wave v, can be determined using this law.
For several years, the problem with this method had been the absence of physi-
cal criteria to choose the value of 7,. Therefore, different choices of v, produced
different propagation velocities for these types of plane waves and consequently

different arrival times and reflection/transmission coeflicients (Krebes & Hron, 1980;
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P: Propagation vector 0: Incident angle
A: Attenuation vector 7: Attenuation angle

Indices: O=incident, 1=reflected, 2=transmitted

Figure 4.2: Incident, reflected and transmitted plane waves at a boundary between
two viscoelastic media (SH case).
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Krebes, 1983; Hearn & Krebes, 1990). In 1990, Hearn and Krebes suggested that
Fermat’s principle could be used to determine the proper choice of 7. A unique set of
reflection/transmission coefficients is then obtained at the price of the introduction
of complex rays, whose physical interpretation is not always elementary (see Hearn
and Krebes, 1990).

4.2 Asymptotic Ray Theory Approach

Plane waves have plane wavefronts. The reflection/transmission problem is better
approximated by considering a non-planar wavefront leading to different geometries
and ranges of validity of boundary conditions (Figure 4.3). In particular, application
of so-called ‘phase-matching’ which is a standard procedure in Asymptotic Ray
Theory (ART) leads to the requirement that the mathematical relations expressing
the boundary conditions be valid only in the immediate neighbourhood of the point
of incidence. ART will now be used as a basis for the computations of viscoelastic
reflection and transmission coefficients. All the following derivations have been made

with the ART zeroth order terms.

x]
—
)
N
Y

B Propagation vector of the first ray.
P Propagation vector of the second ray.
z) and z3: point of incidence respectively for ray 1 and ray 2.

Figure 4.3: Example of a non-planar wavefront with different incidences.
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ray tube

central ray

N

~

N

Figure 4.4: Concept of a ray tube used in Asymptotic Ray Theory.

When a ray is traced, ART only considers the energy travelling in the vicinity of the
central ray of the ray tube (Figure 4.4). Consequently at the point of incidence on
the interface, ART requires the continuity of the displacement and the stress only in
the immediate vicinity of the point of incidence. There is, therefore, no need to keep
the boundary conditions the same along the entire interface, which means that any
shape of boundary can be considered. Since we deal only with the energy travelling
along the central ray of the ray tube, the amplitude decay must be expressed along
the ray. For a ray travelling in a linear viscoelastic medium and for a particular
frequency f, this is given by (Aki & Richards, 1980):

e 5eg(*—%) (4.5)

where

c is the phase velocity at the frequency f,

Q is the quality factor of the medium at the frequency f,

(8 — s0) is the length of the ray segment in the medium,

w = 2xf is the so-called angular frequency of the harmonic source.
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This decay term depends on the frequency and therefore must be calculated for each
individual frequency present in the source frequency spectrum. The principle of the
method is described with the SH case. The boundary conditions require continuity

in displacement and stress i. e.:
U.=0,

and (4.6)
Osy (17! =0 (ﬁb)

where U, and U are respectively the total displacements in the top and bottom
half-spaces. Following equation (3.19), and for the zeroth order only, these two total

displacements can be written:

U, = Y -l-Re r S (w) V, (f,w) e~ =) g,

v=017

and (4.7)
- 1 - .
-— - -w(g-ﬂ)
U= “Re L S(w)Va(fw)e dw

where the subscript v = 0 corresponds to the incident wave, v = 1 to the reflected
wave and 2 to the transmitted wave. There exists a third boundary condition for
the phase which states

TR = ™R, = TRy - (4.8)

Therefore to fulfill the first condition above-mentioned, it is required to have for
each frequency present in the source frequency spectrum

%e“‘“’("") + Vle""(“") - Vze-t’w(l-u) . (4.9)
Using equation (4.8), we obtain

Voe™™ + Vie ™™ = Voe~vh (4.10)
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For each frequency, the incident amplitude is affected by the viscoelasticity of the
top half-space during the propagation from s, the source location, to s, the point of
incidence at the interface (Figure 4.5). The actual amplitude reaching s is calculated

%Qe-ﬁ(c-n) = Voseeuus - (4.11)

On the other hand, the amplitudes of the reflected and transmitted waves have not
been subjected to any decay caused by the propagation since they both originate at
the interface. Consequently at s, 75, = 77, = 0 and equation (4.10) can be rewritten

Vieora +Vi =V . (412)

So

Figure 4.5:  Principle of the Asymptotic Ray Approach. The zeroth order of the
actual amplitude reaching the point of incidence is W0secayes» Whereas
Vi and V2 are the zeroth order terms representing the reflected and
transmitted amplitudes.
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A similar approach is used for the continuity of stress. The individual frequency
dependent shear stresses 0,, caused by the incident, reflected and transmitted SH

waves are obtained from the classical shear stress formula
=opm |1 (O, Ok
oo =2} (22422 am

but now M is the complex shear modulus at a particular frequency and u, and u,
are the displacements in the y and z directions at this same frequency. For the SH
case u, is equal to 0 since only the zeroth order of ART is used. This leads to

M, [cos 00
v

0 0
VO‘“.,.‘ -M; [%‘/1] =M, [co:;z 2‘,2] (4.14)

where M) and M, are the complex shear moduli of upper and lower media at a
particular frequency; 6y, 6; and 0, are the real incident, reflection and transmission
angles and v, which is equal to v;, and v, are the phase velocities of the upper and
lower media. Equations (4.14) must also be valid for each frequency contained in the
source frequency spectrum. It is worth mentioning that Wosecesear V1 and V3 are the
ray amplitudes of SH waves at the same point of incidence even though V5 is taken on
the opposite side of the boundary. Hence these amplitudes have not been subjected
to any decay caused by the propagation and they are affected by the viscoelasticity
of the media because of the presence of the complex valued shear moduli. From
equations (4.12) and (4.14), the reflection and transmission are easily determined.
These two equations are completely independent of the attenuation angle v, the
usual real valued phase velocity is used and the original Snell’s Law is obtained
from the process of phase matching. The frequency dependence of equations (4.12)
and (4.14) comes from the fact that ART is applied to the Fourier transformed
displacement # (w, 7) (see Chapter 3). The reflection and transmission coefficients
then must be computed at each frequency present in the source frequency spectrum.
The changes in the actual values of the coefficients as functions of frequency are
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related to the dispersion relation taken into consideration when characterising the
linear viscoelastic media.

With this method of calculating the reflection and transmission coefficients, the
rays are real and there is no need to introduce complex rays. The main differences
between the two methods are summarized in Table 4.1. The plane wave approach
described in this table is that based on the attenuation angle satisfying Fermat’s
Principle, following Hearn and Krebes (1990) and was used to compute the plane
wave P-SV coefficients in the next paragraph.

Plane Wave Approach

ART Approach

Lame paramaters A and M, the veloci-
ties and the angles are all complex

The term taking into account the am-
plitude decay is included in the wave
vector and therefore present in the
boundary conditions

Y

Special Snell’s Law with the attenua-
tion angle v which influences the direc-
tion of P and the velocities of reflected
and transmitted rays

Lame paramaters A and M are complex
but velocities and angles are real

The term taking into account the am-
plitude decay is only used to calculate
the actual amplitude incident on the
interface

4

Original Spell’s Law i. e. only phase
matching, is used. The direction of P,
the velocities of reflected and transmit-
ted rays are not affected by Q. The
kinematic is conserved.

Table 4.1:

Main differences between Plane Wave and ART approaches to calculate

viscoelastic reflection and transmission coefficients.

4.3 First Numerical Results to Compare Viscoelastic Reflection and Transmission
Coefficients Computed with ART and Plane Wave Methods

The SH case was used above only to show the principle of both approaches but
the P-SV case was chosen to display coefficients because more coefficients can be

compared. The system to be solved to obtain the P-SV coefficients depends on the
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mode (P or SV) of wave propagation carried by the incident wave. For an incident

P wave, the system describing the boundary conditions with ART is
sinfp = —P1P1sin6, ~ P1S1cosf; + sin 0, P1 P2 + cosf,P1S2

cosoo = P1P1 c0301 - PlSlsinOa +c0302P1P2 - 8ill04P1$2
M, 22% _ Mlm”‘ P1P1+ M 2223 p161 4 11, 522%2 1 po M2 204

Yo U1 U3 U2 Uy

(Ao + 25::008200) = —P1P1 (Al + 2?1008201) + P151M38m203
1

P1S2

sin 204
Uy

- P1S52M,

+P1P2 (A2+2A:22008202)

In the case of an incident S wave, a similar system describes the boundary conditions:
cosfp = —S1P1siné) ~ S151 cosf3 + 5in 6,51 P2 + cos 6,S152

sinfp = —S1P1cosf; + S1S1sinf; ~ cos62S1P2 + s5in 6,5152

°°i20° M52 29‘ S1P1+ Mf“j”’ =B6181+ M,‘“‘vf"z S1P2+ M,°°z29‘
0 4

(Mo sin 200) = S1P1 (A1 + 2M, 008201) _ SlSlMasm 26,
Yo n U3

A2 + 2M> cos? 02)
L ]

My S152

sin 204

+ S1S2M,
Uy

~S1P2 (

where

6o: angle of incidence 6,: angle of reflection for P wave
02: angle of transmission for P wave 6;: angle of reflection for S wave
04: angle of transmission for S wave

vp: phase velocity of the incident wave

v;: phase velocity of the reflected P wave

v: phase velocity of the transmitted P wave

v3: phase velocity of the reflected S wave

vq: phase velocity of the transmitted S wave
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My = M; = Mj and Ag = A, stand for complex Lamé parameters in the upper
medium

M; = M, and A; denote the complex Lamé parameters in the lower medium.
Tables 4.2 and 4.3 present models selected to compute viscoelastic coefficients. For
a single boundary there are 16 coeflicients, 8 for incidence from above and 8 for
the incidence from below. Only a few were selected for our discussion. The results
displayed for P1P1, P1S1 and P1P2 coefficients were computed with the model de-
scribed in Table 4.2, whereas the ones displayed for S1S1 were obtained with another
mode! (Table 4.3). For the model in Table 4.2, several computations were carried
out with the same velocities and densities but with variable quality factors. The
purpose of this exercise was to check the “continuity of coefficients” expected when
the dissipative properties of both half-spaces are decreased such that the ideal elastic
case is approached. In such a process it is reasonable to expect the amplitude and
the phase curves of the viscoelastic coefficients to approach those obtained for the
elastic case.

Both methods were used and the test results are shown here for the P1P1, P1S1
and P1P2 coefficients (Figures 4.6,4.7,4.8). The ‘e’ curve represents the elastic case,
the #1 and #2 curves were respectively obtained for the models 1 and 2 men-
tioned in Table 4.2. Model 1 is less attenuating than model 2 because the quality
factors of model 1 are higher. For the reflection coefficients P1P1 and P1S1, the
amplitude curves for the plane wave approach are continuous. For P1S1, these
curves are similar for all the models. The same comment is true for P1P1 except
in the vicinity of the critical angle. In this part of the graph (Figure 4.6), the
three curves are distinct but the differences between the elastic and the dissipa-
tive models decrease when the medium is less attenuating (#1 curve is closer to
the ‘e’ curve then #2 curve). Unfortunately the phase curves do not show this

continuity. There exists a v phase shift between the ‘e’ curve and the #1 and
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#2 curves beyond the critical angle. Additional computations showed that the
phase curve obtained for the absorbing medium does not continuously approach
the elastic one when the quality factors are increased (Table 4.4) but instead, sud-
denly switches by a factor of x to become similar to the elastic phase curve, at
particular Q values (Figure 4.9). On the other hand, with the ART approach,
continuity exists for both amplitude and phase. For each reflection coefficient, the

[ Elastic Case [ Vp (km/s) [ Vs (km/s) [ o (g/cc) | Qr | Qs |

Layer 1 1.9 1.0 1.0 oo | o0

Layer 2

2.1

1.2

1.2

(e o}

00

Layer 1

1.9

1.0

1.0

81

| Case 1 | Vp (km/s) [ Vs (km/s) [ p (g/cc) | Qr | @s |
[Layer 11 19 [ 10 | 10 [81[50]

50

Layer 2

2.1

1.2

1.2

92

70

Layer 1

1.9

1.0

1.0

60

| Case 2 | Vp (km/s) [ Vs (km/s) [ o (g/cc) | Q- | @s |
Toerl] 15 [ 10 [ 10 [60]50]

30

Layer 2

2.1

1.2

1.2

80

40

Table 4.2:  Set of 3 models used to perform the continuity test in which the amplitude
and phase curves of the viscoelastic coefficients should move closer and
closer to the amplitude and phase curves of the elastic coefficients as the
two media acroes the interface become less and less attenuating. The
top model is the elastic case: no attenuation, all the quality factors are
set to infinity. Case 1 (middle) is an intermediate attenuating case, the
media on both sides of the interface are attenuative but not as much as
the next case. Case 2 (bottom) is the most attenuating case with the
quality factors being the lowest in all three models. For all these cases,
the P and S wave velocities and the density of each medium are kept the
same.
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Table 4.3:

Table 4.4:

viscoelastic amplitude and phase curves trend to the elastic ones when the media on
both sides of the interface are less attenuating. The actual differences between the
three curves for the amplitude and for the phase are small and cannot resolved on the
graphs (Figures 4.6, 4.7). For P1P1, the loss in amplitude around the critical angle
is not present. There are some slight differences between viscoelastic and elastic
phase curves for each coefficient. This is due to the introduction of complex moduli
in the equations describing the boundary conditions. The undisturbed continuity of
both amplitude and phase curves is clearly evident in the graphs, thereby confirming

S1S1 Model | Vp (km/s) | Vs (km/s) [ o (g cc) | Qp | Qs
Layer 1 4.2 24 2.1 200 | 100
Layer 2 64 3.5 2.6 300 | 200

Example of model which produces unusual behaviour of the modulus of
the viscoelastic S1S1 coefficient displayed versus the angle of incidence.

Layer 1

1.9

1.0

1.0

1000

[ Case1 | Ve (km/s) [ Vs (km/s) | p(g/cc)| Qr | Qs |
T_T——T——'T"——r——r——

990

Layer 2

2.1

1.2

1.2

1001

995

Layer 1

1.9

1.0

1.0

1000

| Case 2 [ Vp (km/s) [ Vs (km/s) [ p (g/cc) | Qp [ @s]

990

Layer 2

2.1

1.2

1.2

1000

995

Model used to show the x phase switch of the viscoelastic phase curve
obtained with the plane wave approach:
- case 1: case producing a x phase difference between viscoelastic and

elastic phase curves.

- case 2: case which does not produce the x phase difference mentioned
in case 1. The quality factors have been slightly modified from those of

case 1.

our physical intuition.
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Figure 4.6: Amplitude and phase curves for the P1P1 coefficient. The results ob-
tained with the plane wave approach are on the left and those obtained
with ART are on the right. The models described in Table 4.2 were used.
The ‘e’ curve represents the elastic case and the #1 and #2 curves were
respectively computed with case 1 and case 2 from Table 4.2.
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Amplitude and phase curves for the P1S1 coefficient. The results ob-

tained with the plane wave approach are on the left and those obtained
with ART are on the right. The same models and the same curve nota-

tions as in Figure 4.6 are used.
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Figure 4.8: Amplitude and phase curves for the P1P2 coefficient. The results ob-

tained with the plane wave approach are on the left and those obtained
with ART are on the right. The same models and the same curve nota-

tions as in Figure 4.6 are used.
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Figure 4.8 shows the results obtained for P1P2. For each method, the viscoelastic
amplitude and phase curves are extremely close to the elastic ones. Therefore both
approaches appear to give similar results with no continuity problem with the plane
wave approach for the transmission case.

Unfortunately, another type of problem can occur in the computation of viscoelas-
tic reflection coefficients when the plane wave method is used. In our experience
with many different anelastic models, the viscoelastic S1S1 coefficient amplitude
curve computed with the plane wave approach sometimes exhibits unusual behaviour
around the S1S2 critical incidence. An example of these unusual amplitude curves
obtained for the S1S1 coefficient is displayed in Figure 4.10. The viscoelastic ampli-
tude curve is labelled curve ‘a’ and was obtained with the model described in Table
4.3. Curve ‘a’ oscillates around the S1S2 critical incidence before steadily increasing
to 1. The remainder of the curve is very similar to the elastic case represented here
by curve ‘e’. A 7 phase difference again exists between the viscoelastic and elastic
phase curves. All these amplitude irregularities do not appear when the ART ap-
proach is used. For both amplitude and phase, the viscoelastic and elastic curves
are extremely close to each other.

4.4 Example of an Unacceptable Amplitude Growth for Transmitted Plane Waves

For a viscoelastic plane wave, the ray parameter p is a complex number and the
cartesian coordinates of the propagation vector P and the attenuation vector A are
given by:

P =w(Rep,0,~Re§), A=uw(Imp,0,~Img) (4.15)

with p being the ray parameter and v the complex wave speed (Krebes 1983,

where

Richards 1984, Wenneberg 1985). For the reflection/transmission problem, the signs
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Figure 4.9: Example showing the x phase shift of the viscoelastic pbase curve for a
very slight change in the quality factors. This shift is obtained with the
plane wave method only. The models described in Table 4.4 were used,
case 1 is on the left and case 2 is on the right.
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Amplitude and phase curves for the S1S1 coefficient. The results ob-

tained with the plane wave approach are on the left and those obtained
with ART are on the right. The models described in Table 4.3 were
used. The ‘e’ curve represents the elastic case and the ‘a’ curve was
computed for the viscoelastic case.
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of some P components are imposed because of the plane wave propagation direc-
tions (Figure 4.11). For the z components of P, the root which has the positive
real part is always required; this means there is no control on the sign of Im§. De-
pending on the values chosen for input parameters in calculating the coefficients,

Figure 4.11: Example of incident, reflected and transmitted plane waves (SH case)
to show that the radiation conditions impose the cartesien coordinate
signs of Py, Py, P, respectively the propagation vectors of the incident,
reflected and transmitted plane waves.

situation the amplitude can increase as the plaue wave moves away from the inter-
face. Richards (1984) described such a case for a S wave incident from the lower
medium (Figure 4.12). Using the model of Richards (1984) (Table 4.5), the am-
plitude of the corresponding transmitted P wave increases away from the interface
for take-off angles greater than 13.3°. For these pre-critical incidence angles, the
amplitude at ¥/ is greater than that at 2’ (see Richards, 1984). This situation is not
acceptable as intuitively the amplitude should not grow indefinitely when the dis-
tance from the interface, i. e. the height, increases. Richards (1984) suggested that

the correct value for the transmission coeflicient can be obtained if the transmit-
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ted wave is evaluated at large |z|. He also mentioned that to examine the problem
in general, some allowance for curved wavefronts is required (1984). This is what
is done here using ART since a non-planar wavefront striking the interface is con-
sidered (Figure 4.12). The transmission coefficient is then directly determined by
solving the classical system of four equations. Figure 4.13 gives the results obtained
by both methods. They are similar for pre-critical incidence. For the post-critical
incidence i.e. § > 28.1°, ART cannot produce a coefficient because the geometrical
ray no longer exists. It is also worth mentioning that Richards’ results were com-
puted with a 0° initial attenuation angle and not with the initial attenuation angle

satisfying Fermat’s Principle.

 Richards’ Model | Vp (km/s) [ Vs (km/s) [ p (g/cc) | @r | Qs |
P—“r_-ﬁ_—_—f_!_

Layer 1 9.7 5.3 1.084 | 630 | 400
Layer 2 8.55 4.58 1.0 250 | 150

Table 4.5:  Model used by Richards (1984) to obtain a case of amplitude growth for
transmitted plane wave.

4.5 Investigation of Other Effects due to the Viscoelasticity on the Behaviour of
These New ART Reflection/Transmission Coefficients

In section 4.3, reflection and transmission coeflicients were computed with models
progressively less and less attenuative approaching the ideal elastic case. Additional
computations were also carried out with several different kinds of viscoelastic inter-
faces in order to fully investigate the behaviour of these ART coefficients.

Table 4.6 shows several versions of the original model employed in the computa-
tions. Each version is defined by Vp, Vs, the velocities of P and S waves respec-
tively, the density p and Qp,Qs, the quality factors for P and S waves describing



Plane Wave Approach

ART Approach

Figure 4.12: llustration showing the geometrical differences between the Plane Wave
approach (top) and the ART approach (bottom) for the amplitude
growth case described by Richards (1984). This amplitude growth prob-
lem only occurs with the Plane Wave method.
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Figure 4.13: Amplitude curves for the viscoelastic S2P1 coefficient used by Richards
to investigate an amplitude growth case occuring with the Plane Wave
Theory. The amplitude curve obtained by Richards in on the left and
that obtained with ART is on the right. Both were computed for the
model described in Table 4.5.
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|ElasticCase| Ve [ Vs | » |Qp|Qs|

Layer 1 5.7 133 ]33] 0|
Layer 2 6.1213.53|351] oo [ 00

Casel | Vp | Vs | o [Qr[Qs
Layer1] 57 | 3.3 | 3.3 [14871 66
Layer 2 (6.12[353 13511162 72

Case2 [Vp [ Vs | » | Qr] Qs

Layer 1} 5.7 | 33 | 3.3 [1707] 80
Layer 2 | 6.12 | 3.53 | 3.51 [ 260 [ 140

Case3 | Vo [ Vs | p» TQr[@s
Layer1] 57133 ][33]70]20
Layer 2 1 6.12 | 3.53 | 3.51 [ 100 | 40

Cased | VP [ Vs | p TQpr| Qs

Layer1] 5.7 ]33 ]|33[70] 2
Layer 2 [ 6.12 | 3.53 [ 3.51 [ 260 | 140

Table 4.6:  Model derived from Breckhemer’s data. The different cases are (from top
to bottom):
- elastic case.
- case 1: original model.
- case 2: model with greater quality factors than their original values.
- case 3: model with lower quality factors than their original values.
- case 4: model with “mixed Q values” i. e. Q,p and Qs are lower than
their real value whereas Q2p and Qu5 are greater than their original
values.
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the properties of homogeneous media on both sides of the plane interface. Initially
the coeflicients were computed for an elastic version of the model. This was formally
achieved by setting all the quality factors to the same large value and it is called
here the elastic case (Krebes, 1980). Subsequent computations were performed for
four different versions of the model, each with differing quality factors while keeping
the wave velocities and densities the same as for the elastic case. The first of these
four model versions is the original model based on the experimental data obtained
by Berckhemer el al. (1982) and labelled as case 1 in Table 4.6. Berckhemer el
al. (1982) designed an apparatus to measure shear modulus and quality factors of
dunite and forsterite in the seismic frequency band from 0.003-30 Hz and near partial
melting to simulate conditions in mautle. At these temperatures, the anelastic effects
are significant (Berckhemer el al., 1982). These two mantle rocks are therefore used
to construct this original model. In the second version (case 2 in Table 4.6) all the
quality factorsi. e. Q1p, Q;5, Q2p and Q,5 were increased relative to their respective
original values. In the third version (case 3 in Table 4.6), all the quality factors were
lower than their respective original values. Finally, the fourth version of the model
(case 4 in Table 4.6) used quality factors which were lower than their original values
in the top medium, but greater than their original values in the bottom medium.
This last version is called “the mixed Q’s case”.

The next paragraph describes the results obtained from each above-mentioned case.

4.6 Presentation of Numerical Results

Variations in amplitudes and phases of the ART coefficients are observed by per-
forming the computations described in the previous paragraph. The most significant
variations were obtained for the P1P1 and S1S1 coefficients; therefore these two co-
efficients were chosen for display and analysis of the numerical results.

The moduli and phases of the S1S1 coefficients, computed for the five versions of
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Figure 4.14: 2 cases of S1S1 coefficient computed for the model presented in Table

4.6. The elastic case is on the left and case 1 (the measured Q values) is
on the right. Note that the reflection coefficient for viscoelastic media
is always complex valued, it means even for pre-critical range, where
the perfectly elastic models have the real values of all reflection and
transmission coefficients.
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Figure 4.15: 2 cases of S1S1 coefficient computed for the model presented in Table
4.6. Case 2 (greater Q values) is on the left and case 3 (lower Q values)
is on the right.



$181

0 20 40 60 80
Angle of incidence

$151

2 Pi

;o\

Phase

———/ .\
0 20 40 60 80
Angle of incidence

Figure 4.16: Case 4 (“mixed Q values”) of S1S1 coefficient computed for the model
presented in Table 4.6.
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the model derived from Berckhemer’s data (1982) (Table 4.6), are shown in Figures
4.14 to 4.16. The phases are plotted from 0 to 2x. Figure 4.14 displays these results
for the elastic (left) and the original (right) versions of this model. The S1S1 moduli
and phases obtained from the second (greater Q values) and the third (lower Q val-
ues) versions are shown in Figure 4.15 while those obtained from the fourth version
(mixed Q’s case) are displayed in Figure 4.16. When the original experimental Q
values are used, the numerical coefficient values for the S1S1 case are very similar
to the elastic coefficients. There are some small amplitude and phase differences,
particularly in the vicinity of the first critical angle i;, corresponding to the criti-
cally refracted S1P2, but they occur when the amplitude is quite low. Conversely,
when perturbed Q’s are used to describe an anelastic material i. e. cases 2, 3 and
4 we observe physically unacceptable amplitudes with the modulus of S1S1 being
greater than 1 around the critical angle i, corresponding to the critical refraction
of S152. This last result is totally unphysical for the coefficient of reflection of the
unconverted wave since it would mean that energy is being created at the boundary
during the reflection. These unrealistic amplitudes are much greater for cases 3 and
4 than for the case 2, when all the Q’s are greater than their real values. The com-
binations of perturbed Q also produce some phase changes around the first critical
angle but they still occur when the amplitude of the coefficient is very low.

Cases 2 and 3 (i. e. combination of greater Q’s and combination of lower Q’s) are
only presented to show the effects arbitrarily selected quality factors which lead to
the unrealistic values of S1S1. The most important case is that called “mixed Q’s”
i. e. case 4.

In our approach we account for the anelasticity in the computation by the imagi-
nary part of the eikonal, 7; (see Chapter 3), which leads to the sum

Jj=n l; |
—L_ 4.16
=1 205Q; ’ (
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with [; being the length of the j** segment, v; and Q; being respectively the velocity
and the quality factor for the material within which the j** segment is located. These
last two parameters of course depend on the phase of the j** segment (P or S phase).
Obviously several quality factor combinations can then produce the same value for
this sum (4.16). A good fit between experimental and synthetic seismograms can
still be obtained with the quality factor combination of case 4, although this same
combination leads to nonphysical coefficients. An example of such a situation is
presented in detail in Appendix 3.

Figures 4.17 and 4.18 show the P1P1 coefficient for the elastic case, case 1 and
case 4 respectively. The P1P1 plots were obtained for the same model. Again the
coefficients obtained with the original Q combination (case 1) are similar close to
the elastic case whereas the arbitrary selected Q combination (case 4: “mixed Q’s
case” ) leads to unrealistic results around the critical angle P1P2.

4.7 Discussion of These Last Numerical Results

The nonphysical effects which arise when quality factors are arbitrarily chosen can
be explained in two different ways. First, in order to calculate the coefficients of
reflection and transmission, two media are required. Each medium is characterised
by Vp, Vs, the density p, and Qp, Q5. For a given linear viscoelastic material, Vp,
Vs, p, Qp and Qs are all interrelated since the mechanical properties of the mate-
rial are sufficiently defined by the two time dependent Lame parameters A(t) and
p(t) with Vp, Vs, Qp and Qg being all related to the Lame parameters according
to (3.7), (3.10) and (3.30). This means that by knowing Vp, Vs and p for a given
medium, Qp and Qs are already implicitly determined, if the material is to behave
as a linear viscoelastic material. A problem is that in many articles describing the
quality factor measurements, it is never mentioned whether the material is regarded

as a linear viscoelastic material or not. Simply taking the measured values of Qr
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Figure 4.17: 2 cases of P1P1 coefficient computed for the model presented in Table
4.6. The elastic case is on the left and case 1 with original Q values is
on the right.
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and Qs or even choosing these values randomly, calculations may be performed with
a material which is not linear viscoelastic or even worse, completely non-physical.
Consequently, incorrect combinations of Q’s can produce unphysical values for the
coefficients, such as seen in Figures 4.15, 4.16, and 4.18.

Another possible explanation comes from the measurement of Q itself. The value
of 1/Q(w) is defined as being equal to (-1/2x) times the energy lost in one cycle
divided by the peak strain energy (see, for example, Aki and Richards, 1980). For

Q>>1, we have
_1A4
Qw) 7 A

where A is the wave amplitude for a given frequency of a monochromatic wave and

(4.17)

AA is the loss in amplitude after one cycle. Typically, when Q is measured one shot
is needed and several receivers are set along a defined path in a uniform material
(Figure 4.19). The amplitude for each frequency of the seismic disturbance created
at the source postion can be measured at different points on the path and in this
way Q is found for each frequency. A correction for the geometrical spreading must
to be made when the amplitude is measured to determine Q. Unfortunately, many Q
measurements were not performed in this way in many seismic studies. For instance,
when a 3D set up was used, repeated shots were fired in the same hole, each of them
changing the time history A(t) and u(t). Thus the mechanical properties of the
medium were different for each shot because of the damage caused by the previous
shots and the later measurements could not give the correct Q values within the
framework of the theory of linear viscoelasticy, thereby leading to the nonphysical
results for the computation of coefficients.

We should note here that the previous two explanations for the arbitrarily chosen
Q factors, which resulted in the nonphysical features of the reflection coeflicients
for some models, are based on our experience with the computation of the re-

flection/transmission coefficients for many models. As previously mentioned, the
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model presented in this chapter was derived from data obtained by Berckhemer et
al. (1982). His Qs measurements were performed with a sophisticated device al-
lowing determination in the seismic frequency band from 0.003-30 Hz and at very
high temperature to simulate mantle conditions. This apparatus generates forced
torsion oscillations on a sample which must be cylindrical. The shear modulus and
the quality factor Q, can then be found from the ratio and phase-shift of torsion
angle and torque moment (Berckhemer et al., 1982). Their instrument probably pro-
vided more accurate Q measurements than a more usual seismic experimental set
up described in Figure 4.19 would produce since the deformation obtained in Berck-
hemer’s experiments is very carefully controled. Other procedures have also been
used to measure Q in the seismic frequency band e. g. McDonal et al. (1958) and
Strick (1967). They all emphasize on the extreme care required and the difficulty to
obtain values of quality factors in this frequency range. The Qp was obtained with
the following relation (Karato and Spetzler, 1990):

1 1 1
-Q—P'—L(m) +(1-L)Q—K s (4.18)

where L = (4/3)(Vs/Vp)? and 1/Qk is a quality factor characterizing dilatational
deformations only. Karato and Spetzler (1990) used relation (4.18) to measure Qp
over the whole mantle. According to their groes Earth structure model based on
seismic data, g- >> Z- in the mantle and can therefore be neglected. Hence one
would expect that Berckhemer’s quality factors determined for this model should
then be quite accurate and suitable for the adequate description of the viscoelas-
tic medium. This is indeed confirmed by our values of S1S1 reflection coefficients
computed for his model and displayed in Figure 4.14.
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Figure 4.19: Geometry of the experimental set up to measure Q.
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CHAPTER 5
INVESTIGATION ON A POSSIBLE PROOF
OF THE RESTRICTED CHOICE OF Q

In the last section of Chapter 4, two possible interpretations for the nonphysi-
cal features of the reflection coefficients between two viscoelastic half-spaces were
described. Both are based on some restrictions of the allowed values for Q. Unfor-
tunately these two interpretations are only explained qualitatively. An attempt at
a formal proof of these restrictions on the possible Q values is investigated in this
chapter.

5.1 Attempt to Determine the Time Dependent Shear and Bulk Moduli from
their Corresponding Complex and Frequency Dependent Moduli M (w) and K(w)

Since the density is known and the phase velocities and quality factors of P and
S waves are given at a reference frequency, with a dispersion law, it is possible to
compute M(w) and K{(w) for a certain range of frequencies using the algorithm
described in Figure 5.1. Once the frequency spectra of M (w) and K(w) have been
obtained, the relationships between the real time dependent moduli and the complex
frequency dependent moduli should allow the determination of the corresponding
time function u(t) and k(t). u(t) and, k(t) rather than A(t), have been chosen for
this study because both have direct physical meanings. It is then hoped that cor-
rect Q values will give physically realizable time functions for u(t) and k(t) whereas
incorrect Q values should lead to non-physical behaviour for #(t) and k(t) in a ma-
terial which is supposed to behave linear viscoelastically.

For a linear viscoelastic medium, the time dependent moduli #(t) and k(t) are
expected to be decaying functions of time increases and should follow the pat-
tern displayed in Figure 5.2 (Christensen, 1971; Emmerich and Korn, 1987). M
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Input Data: vp,, Qp,, vs, and Qg,
at a reference frequency wy and
density of the material

Using a dispersion law, compute vp, vg
and Qp, Qs for a given frequency range

Compute the complex velocity vp. and
v, for each frequency of this
same frequency range

Using the following relationships:
(vs¢)2 - !Lp@l’ (vpe)z = A‘uﬂfu‘u!
and K (w) = A(w) +2/3M (w)

M (w) and K (w) are obtained for each
frequency of this same frequency range:
M (w) = p(vs, (@))*

K (w) = p(ve. (w))* - 4/3p (vs, (w))*

Computation of u(t) and k(t) from
(%(,ﬂ) and (L‘g-"l) frequency spectra.

Figure 5.1:  Algorithm to compute the time dependent modul x(t) and k(t) from
vp, Vs, p QP and QS'
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Figure 5.2: Typical curve of a time-dependent modulus

represents either ux or k. M(t) = 0 for t < 0. My, is the unrelaxed modulus which
corresponds to the proportionality constant between stress and strain as soon as the
material has been submitted to a stress and before it has started to relax to a new
state (Aki and Richards, 1980). Mz is the relaxed modulus relating o(t) and €(t)
as time goes to infinity (Aki and Richards, 1980). Clearly the function M (t) is not

integrable in the sense that

[ M@t ¢ 0 (5.1)

M(t) does not fulfill the Dirichlet conditions for the existence of Fourier transform;
consequently the relationships between the time-dependent moduli and their cor-
responding complex frequency dependent moduli are not straightforward Fourier
and Inverse Fourier transforms (see equation 2.10). In order to determine these
relationships, Christensen (1971) splits M(t) into two parts

M(t) = Mg + M(t) (5.2)
with

‘l_i‘tgﬂ(t) =0 .
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The relationships obtained to relate the time-dependent modulus AM(t) to the com-

plex frequency modulus AM(w) are then (Christensen, 1971)
M) = Mg +w /: M(t)sin wt dt (5.3)
M) = -w /OQ M(t) coswt dt (54)
with
M) = M'(w) +iM"(w) . (5.5)

Christensen (1971) also investigated the shape of frequency spectrum for the real
and imaginary parts of M(w), by considering the limiting cases of w approaching 0
and w tending to co. For the first limit (w = 0), using equation (5.3) and (5.4), it
is obvious that

M(0) = Mg = Jim M(2) (5.6)

and

M"(0) =0 (5.7)

At infinite frequency, Christensen (1971) demonstrated that for a linear viscoelastic
solid
M'(c0) = Mp + M(0) = lim M(¢) (5.8)

and

M"(c0) =0 (5.9)

Figure 5.3 displays the sketches of the frequency spectra for M'(w) and AM"(w) de-
rived from the limiting cases. It is also worth mentioning that for these 2 extreme
situations, the viscoelastic material behaves like an elastic solid. Finally by rear-
ranging and inverting equation (5.3), Christensen (1971) obtained an expression for
M(t) _

M@y =2 [ 2 gip iy g (5.10)

w
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which provides a mean for determining the time dependent modulus once the fre-
quency spectrum of the real part of the complex modulus is known.

M ()

M" (w)

.

0 w

Figure 5.3: Sketches of the curves corresponding to the real and imaginary parts
i. e M'(w) and M" (w) of the complex modulus M (w) frequency
spectrum.

From equation (5.6), it is clear this last frequency spectrum has significant compo-
nents at low frequencies. This introduces a problem in the determination of M(t)
from M'(w) as most of the analytical dispersion relations require a low frequency
cut-off. For instance, Futterman’s dispersion Law stated as

v (W) = vl (w,) [1 - ?Q'}T,)l" (w-“-’-)] (5.11)

where v is the phase velocity, Q the quality factor and w,, the reference frequency;
requires a low frequency cut-off wp = 10~3Hz (Futterman, 1962). Consequently only
a part of the A'(w) frequency spectrum can be computed, which is insufficient to
retrieve M(t) by performing the sine transform in (5.10). The whole spectrum is,
of course, required because, as previously stated, the low frequency content of the
M'(w) frequency spectrum cannot be neglected.

It still seems possible to obtain the function M(t) defined in equation (5.2). By
rearranging and inverting (5.4), Christensen (1971) showed that

M(t) = % /0 = :(“’) coswt dw (5.12)
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From its definition in equation (5.2), it is obvious that AM(t) bas the behaviour
displayed in Figure 5.4. The low frequency content of M"(w) spectrum still cannot

My = Mz )
M(t)

Figure 5.4: Typical curve of the AM(t) function

be computed, but since lim,,—.o M"(w) = 0, an approximation of M(t) might never-
theless be obtained by setting M"(w) = 0 for low frequencies. The determination of
M(t) would illustrate the manner in which the moduli of a linear viscoelastic solid
decays with respect to time, for several combinations of quality factors. This might
provide a physical criterion for the restricted choice of Q. Correct Q values should
lead to physically plausible curves for AM(t), whereas incorrect Q values should yield
nonphysical curves for AM(t), for example one with a limit different from 0 when t
increases to infinity.

Another type of problem arises from this last approach. To compute AM(t) from
(5.12), &:@», and not M”(w), must be cosine transformed. By setting M"(w) =0,
when w goes to 0, the term M.%@ is not defined at w = 0. Figure 5.5 displays a
numerical example of the M(t) computation when it is assumed that -“—Z(“-'l is 0 at
w = 0. Two Q combinations were used, the expected correct Q combination from
case 1 of Table 4.6 (Chapter 4) and an incorrect one. Both computed M(t) seem
to have a negative limit when t increases to infinity. At first sight, these two curves
appear unphysical because AM(t) should decrease towards 0 as t increases to infinity
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(equation (5.2)). This is a consequence of the above assumption that -“'i—:("-'l is 0 at
w=0. flim, o —4‘.—:,@ is indeed a positive number, both of these curves would be
different. The M(#) curve obtained with the correct Q values would hopefully be-
come physically plausible whereas the one obtained with incorrect Q values would
still have a limit different from 0 when t increases to infinity. Unfortunately the
impossibilty of computing -“—25@ for w approaching 0 prevents the use of equation
(5.12) to obtain M(t) and leaves us without any physical criterion for the choice
of the quality factors. The numerical example presented in Figure 5.5 is used to
show the importance of knowing the behaviour of M”(w) and i:;(-“-’}- exactly when
w approaches 0. Finally to strengthen the idea that lim,_q —-‘Z—:‘-"-’l is probably a
positive number, the cosine transform of the time function ke~** is computed, where
k and a are positive constants. This function fulfills the conditions imposed on the
behaviour of M(t) for ¢ > 0. From equation (5.4), it is possible to write

M"(U) — ~at
—-—w—' = ./oﬂa ke~ coswtdt
[ |
= k|o—s -acoswt+wsinwt]
) a2 +u? 0
M"(w a
=72 = kel (513
With equation (5.13), it becomes obvious that
. M'w) &
b -— =3

which reinforces the above-mentioned reasoning.

The first part of this research for a proof of the restricted choice of the quality
factors was performed from frequency domain to time domain. This is because four
out of five input parameters used in seismology to describe viscoelastic media are

frequency dependent. Unfortunately, this work did not provide any significant result
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Figure 5.5: Numerical examples of M(t) computations, here with shear modulus,
when A"—’—;‘ﬁl is assumed to be 0 at w = 0 (left: expected correct Q
combination, right: incorrect Q combination)
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showing possible restrictions on the Q values. It might still be possible to determine
such restrictions by performing calculations from time domain to frequency domain.
The penalty with this approach is in the description of the viscoelastic medium,
which begins in the time domain. Therefore the first input parameters must be time
dependent. The typical results obtained from seismic studies i. e. ¥, vs, Qp and Qg
can no longer be used as original input parameters in characterizing a viscoelastic
medium. These seismic results might be used later to determine some restrictions
on Q values, once the calculations are transferred to and performed in the frequency

domain.

5.2 Computation of the Quality Factors from Parameters Describing the Medium

Mechanical Properties in the Time Domain

The mechanical properties of a linear viscoelastic medium are formally described
by its time-dependent shear and bulk moduli, respectively u(t) and k(t). Their
expected behaviours with respect to time have already been discussed in paragraph
5.1. In this same paragraph it was also shown that to express a time-dependent
modulus M(2) in the frequency domain (equations (5.3), (5-4), (5.5)), M(t) must
be split into two parts

M(t) = Mg + M(t) (5.2)
with
}_i.% M(t)=0
As previously mentioned, the behaviour of M(t) is of ke~ type for t > 0, where
k and a are positive real numbers. Therefore by choosing this type of function
to describe the decaying part of the time dependent shear and bulk moduli, the

medium under consideration is automatically set as linear viscoelastic. These two
decaying functions are denoted /i(t) and k(t) for the shear and the bulk moduli,
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respectively. By using equation (5.4), the frequency spectra of the imaginary parts
of the complex moduli M(w) and K(w), i. e. M"(w) and K" (w) can be computed.
Once these two frequency spectra are known, they can be related to other equations
derived in the frequency domain (see Chapter 3) in order to place some restrictions
on Q values. From equations (3.11) and (3.29), it is possible to write for the complex
shear modulus M(w)
2 3
M) = o = o [0 - “agey| 6w
where vs, is the complex S velocity, vg is the S wave phase velocity, p is the density
and Qg is the quality factor for the S waves. Hence
16Q3 (w) v (w
M'(w)=-p C ggg“’; _: i)) (5.15)

and the following equation is obtained
16M"(w)Q% + 16pv3Q3 + 8M"(W)Q% + M"(w) =0 (5.16)
Similarly for the complex bulk modulus we can write

K@) = po, ~ 3M(w)
_ L[ 1setd et . 160bed ]
~ Plaer 1 T ek + 17 a@e ey

where vp, is the P wave complex velocity, vp is the P phase velocity and Qp is the

;M(w) (5.17)

P wave quality factor. Hence
K"w)=—p 16Q% (w) Bw) 4 M"(w)

Q@ +17 3 (518)
and a second equation is derived
(16K”(w) + 6?:;114"(«:)) +16p2Q% + (z—zM"(w) + 8K"(w)) Q3
+K"(w) + §M"(w) =0 (5.19)
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Equations (5.16) and (5.19) are both frequency dependent. By choosing p, vp and
vs at a frequency where M”(w) and K"(w) are known, unique values for Qp and
Qs are obtained at this frequency, by solving these two equations. The decaying
functions ji(t) and k(t) were the only input parameters used in the time domain so
that common seismic measures such as vp, vg and p could still be introduced to
determine the quality factors Qp and Qs. If the medium is defined completely in
the time domain, by choosing its decaying functions ji(t) and k(t) and its relaxed
moduli gr and kg, a system of four equations with four unknowns (vp, vs, Qp and
Qs) would be obtained from the frequency spectra of the real and the imaginary
parts of the complex moduli M(w) and K{(w). The density p would be the only pa-
rameter in the frequency domain which would have to be chosen. The first approach
is preferred because P and S phase velocities are much more common parameters
in seismology than relaxed moduli uz and ki and they are also directly measured
from seismic studies.

The purpose of the whole derivation is to show, from a theoretical point of view,
it is possible to define a medium with vp, vg, p, Qp, Qs and to make sure, at the
same time, that this medium behaves linear viscoelastically. This procedure can be
applied to construct an interface made up with two linear viscoelastic half-spaces.
For each half-space, i(t), k(t) are chosen, M"(w) and K"(w) are then computed and
by choosing p, vp and v, at a given frequency, the corresponding Qp and Qs can be
determined using equations (5.16) and (5.19). Reflection coefficients of this inter-
face can thus be calculated at this given frequency. According to the interpretations
proposed in paragraph 4.7 of Chapter 4; the non-physical features observed on reflec-
tion coefficients should only appear when Q values which do not correspond to linear
viscoelastic media for the given p, vp and vg, are used. Since both half-spaces in
the above-described interface are proven to be linear viscoelastic, the computations

of the reflection coefficients for this interface should not exhibit any non-physical
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features. If this is the case, this result would reinforce the interpretations mentioned
in paragraph 4.7. It would also seem to show that reflection coefficients could be
used to indicate whether or not the media behave linear viscoelastically. The S1S1
coefficient would probably be the best indicator since it is usually the one having
the most significant non-physical features. This whole reasoning is now illustrated

with a few numerical examples.

5.3 Numerical Examples of S1S1 Coefficients Computed with Checked Linear
Viscoelastic Medi

As previously mentioned, the procedure described in paragraph 5.2 is used to con-
struct interfaces with proven linear viscoelastic media. For the first numerical ex-

ample, the decaying functions i(t) and lE(t) are chosen to be
A(t) = 0.8ezp (-i- - o.ooz)

ky(£) = 0.04ezp (-5—5 -0 0015)

for the top half-space and
. t
da(t) = ezp ('Z - 0.002)

kx(t) = 0.05ezp (--5-5 ~0. 0015)

for the bottom half-space. The frequency spectra of M{(w) and K{(w) for the
top half-space and M7 (w) and KJ(w) for the bottom one can then be computed.
pa(t), ky(t), M!(w) and K{(w) and jp(t), ko(2), M3 (w) and K7 (w) are respectively
displayed in Figures 5.6 and 5.7. The frequency chosen to determine the quality
factors is f = 10.01Hz. The P and S wave velocities and the density are chosen to
be
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vp =0.7km/s vs = 0.35km/s p=1.5¢g/cc
for the top half-space and
vp = 0.9km/s vs = 0.55km/s p=18g/cc

for the bottom one. Using all these parameters and the values of M{(w), K} (w),
M;(w) and K3(w) at f = 10.01Hz, equations (5.16) and (5.19) are solved. The val-
ues obtained for the quality factors are Qp = 176.2, Qs, = 60.37, Qp, = 279.6 and
Qs, = 143.1. There are of course other solutions of these two degree 4 polynomials
but they are either negative or complex numbers. They do not have any physical
meaning and consequently are disregarded. This first interface is summarized in
Table 5.1. Figure 5.8 shows the S1S1 coefficients computed from this interface. No
non-physical features such as S1S1 amplitude greater than 1 appear.

If the quality factors of top and bottom half-spaces are changed to random values
e. g Qp =120, Qs, = 70, Qp, = 300 and Qg, = 100 but keeping the same velocities
as in Table 5.1, non-physical results are observed (Figure 5.9). Of course , the Qp
and Qs values mentioned in Table 5.1 should not be the only possible ones for the
velocities and densities present in this same table. Other Qp and Qg values can still
lead to ART viscoelastic reflection coefficients without any non-physical features.

They would simply describe a different linear viscoelastic medium. For instance if the

1st Interface [ Vp (km/s) [ Vs (km/s) [p (g/cc) | Qr | Qs

Top half-space 0.7 0.35 1.5 176.2 | 60.37
Bottom half-space 0.9 0.55 1.8 279.6 | 143.1

Table 5.1:  First example of interface made up with two checked linear viscoelatic
media.
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Figure 5.6:  Plots of j2; (top left), & (top right) in the time domain and M{' (bottom
left) and K| (bottom right) in the frequency domain for the top half-
space of the interface described in Table 5.1.
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Plots of i (top left), k2 (top right) in the time domain and M} (bottom

left) and K (bottom right) in the frequency domain for the bottom
half-space of the interface described in Table 5.1.
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Figure 5.8: Amplitude and phase curves of the S1S1 coefficients computed from the
interface described in Table 5.1.
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decaying functions are set to be
- t
in(t) = 1.0ezp (- - 0.0025)

k1(t) = 0.02ezp (—i - o.ooz)

for the top medium and
fia(t) = 1.2ezp (-315 - 0.0025)

ko(t) = 0.05ezp (-% - 0.002)
for the bottom one, different frequency spectra are obtained for MY (w), K!(w),
M3 (w) and K3(w) (Figures 5.10 and 5.11). Keeping the same velocities and densities
as Table 5.1, and the same frequency f = 10.01Hz, different values for Qp and Qg
are determined. This second interface is presented in Table 5.2 and Figure 5.12
shows the corresponding S1S1 coefficients. No non-physical results are observed.

[ 2nd Interface | Vp (km/s) | Vs (km/s) | p (g/cc) | Qp | Qs |
[~ Top half.space | 0.7 | 035 1 15 Tli02zl32¢]

Top half-space 0.7 0.35 1.5 103.5 | 38.6
Bottom half-space 0.9 0.55 1.8 186.9 | 95.4

Table 5.2:  Second example of interface made up with two checked linear viscoelatic
media.

Finally a third interface is constructed with other decaying functions but with
greater velocities and densities. For the top half-space, the functions are
i (t) = ezp(-2.5t — 0.02)
k\(t) = 0.06ezp (—1.875¢ — 0.015)
and for the bottom one
i2(t) = 1.2ezp (—1.875t - 0.015)
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ka(t) = 0.08exp (—1.25¢ — 0.01)

Table 5.3 presents the chosen velocities and densities and the quality factors ob-
tained by solving equations (5.17) and (5.20) for each half-space. Figure 5.13 shows
the 5181 coefficients computed from this third interface and again no non-physical
features are observed.

[ 3rd Interface | Vp (km/s) | Vs (km/s) [p(g/cc) | Qr | @s |

Top half-space 2.2 1.1 1.8 167.8 | 57.8
Bottom half-space 2.7 1.5 2.0 311.3 | 1324

Table 5.3:  Third example of interface made up with two checked linear viscoelatic

media.

All these results reinforce the idea that non physical features observed on vis-
coelastic ART reflection coefficient amplitude curves are probably due to the use of
incorrect Q values. Although no analytical proof has been established, these same
results also strengthen the suggestion that once vp, vs and p are set, there are some
restrictions on Qp and Qs values so that the medium described by these 5 parame-
ters is linear viscoelastic. If this is the case, the fact that the S1S1 coefficient does
not exhibit any non-physical feature could be used as a necessary condition to show
that the two media composing the interface can be considered to be linear viscoelas-
tic. More computations are required before proposing such a selective criteria but

these first results are nevertheless promising.
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Figure 5.10: Plots of ji; (top left), k; (top right) in the time domain and M}’ (bottom
left) and K (bottom right) in the frequency domain for the top half-
space of the interface described in Table 5.2.
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Figure 5.11:  Plots of jiz (top left), kg (top right) in the time domain and M} (bottom
left) and K3 (bottom right) in the frequency domain for the bottom
half-space of the interface described in Table 5.2.
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Figure 5.12: Amplitude and phase curves of the S1S1 coefficients computed from the
interface described in Table 5.2.
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Figure 5.13: Amplitude and phase curves of the S1S1 coefficients computed from the
interface described in Table 5.3.
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CHAPTER 6
SEISMOGRAMS

The theory developed in Chapters 3 and 4 is now applied in the computation
of simple synthetic seismograms as a check on its correctness. Computations are
performed with a 1D model composed of linear viscoelastic layers. The synthetic
seismograms obtained are first compared with seismograms calculated from the elas-
tic version of the model with all the quality factors of every layer set to infinity. It
is then possible to evaluate how our approach accounts for the dispersion and am-
plitude decay of a wavelet propagating in dissipative media described by the theory
of linear viscoelasticity.

The zeroth order approximation of Asymptotic Ray Theory is used. The dis-
placement corresponding to a wavelet propagating through a model and reaching a
receiver is then given by

@(t,7) = %Re /: S (@) WO (w, 7) ———"'("i:;:'m dw 6.1)
where S (w) is the frequency spectrum of the source pulse s (t), W® (w, ) is the
zero order amplitude term, and 7 is the complex phase function defined in paragraph
3.1. Since W (w, 7) is frequency dependent and must “have all the features of an
amplitude term derived in the time domain for waves propagating through perfectly
elastic media with the source function e~**” (see paragraph 3.2), it is expressed as

Y (w) e¥«)

WO, = L(w)

(6.2)

where Y (w) e“) is the complex product of the viscoelastic ART reflection and
transmission coefficients for the specified ray, Y being the relative amplitude and
¢ the relative phase, and L (w) is the geometrical spreading given by (3.91). This

amplitude term has to be computed for all the frequencies present in the source
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frequency spectrum because of the dispersion. The displacement @ (¢,7) is easily de-
termined by performing an inverse Fourier transform, the term S (w) W (w, 7) ei”
having to be equal to 0 from some Nyquist frequency.

As previously mentioned, one of the main effects due to the viscoelasticity of a
medium on the wave propagation is the dispersion. This means that the quality
factors and phase velocities proper to this medium are frequency dependent. To
take this effect into account, Futterman’s dispersion relations (1962):

QW = 1- [ﬁ,—]‘n(«%)}
(6.3)

v () Q(w) = wQo

are used where wy is the reference frequency, Qp and v, are respectively the quality
factor and the phase velocity at wy. Therefore all the parameters but the density
describing each layer of the viscoelastic model are given at a reference frequency.
This does not apply to the elastic version of the model since there is no dispersion
in the elastic case. The P and S phase velocity values of each elastic layer are
chosen to be equal to those given at reference frequency for the viscoelastic model.
These latter velocities remain constant over the entire frequency range covered by

the source frequency spectrum.

The source pulse chosen to perform the computation of synthetic seismograms is

s(t) = ezp (-— (2“5‘5 x (t— °-327273))2) cos (w (t —0.327273) + g) (6.4)

4.0

and is defined over the interval [0,0.654546s] (Figure 6.1). Figure 6.2 shows its cor-
responding amplitude and phase frequency spectra. The model used is described in
Table 6.1 and consists of 2 layers over a half-space. Both the point source and the
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Figure 6.1: s(t) source pulse used to compute some synthetic seismograms.
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Figure 6.2: Amplitude and phase spectra of the s(t) source pulse.
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receiver are located at the surface. The rays considered are S1S1, S1P1, S1S252S1
and S1S2P2P1. The vertical and horizontal components of these arrivals are com-
puted for elastic and linear viscoelastic cases at four different offsets.

[ 1D Model | Vp (km/s) [ Vs (km/s) [ p (g/cc) | @p | @s | Thickness (km) |
—_——__————

1st layer 5.7 3.3 3.3 148 | 66 3
2nd layer 6.12 3.53 3.51 162 | 72 4
half-space 6.8 4.0 3.9 300 | 200 00

Table 6.1: 1D model used to compute some synthetic seismograms.

Figures 6.3 and 6.5 display the horizontal and vertical components obtained with
the elastic model. Their magnifying scale factors are respectively 150 and 75. Fig-
ures 6.4 and 6.6 show these same components but computed with the viscoelastic
model. For this second model the corresponding magnifying scale factors are set to
500 and 250. The differences in these factors show the amount of amplitude decay
caused by the viscoelasticity of the media described in the first two rows of Table
6.1. These particular values for the scale factors were also chosen so that the ar-
rivals have relatively the same size in Figures 6.3 and 6.5 (elastic and viscoelastic
x-components) and in Figures 6.4 and 6.6 (elastic and viscoelastic z-components).
This makes the comparison between relative amplitude at a given offset easier. The
relative amplitudes between arrivals change as different arrivals are attenuated to
various degrees by the quality factors. Furthermore, the distortion due to the disper-
sion becomes more obvious. The comparisons in the shapes between corresponding
arrivals show some sharp differences, especially for the S1S1 arrival. As expected,
the longer the travel time, the greater the shape distortion.

To ensure the amplitude decay and the dispersion are correctly taken into account,

seismograms computed with ART are now compared with seismograms
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Figure 6.3: x-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and S1S2S2S1 (d)

arrivals obtained with the elastic version of the model described in Table
6.1, at 4 different offsets (magnifying factor = 150).
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arrivals obtained with the viscoelastic model described in Table 6.1, at
4 different offsets (magnifying factor = 500).
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Figure 6.5:  z-component of S1P1 (a), S1S1 (b), S1S2P2P1 (c) and S1S2S2S1 (d)

arrivals obtained with the elastic version of the model described in Table
6.1, at 4 different offsets (magnifying factor = 75).
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arrivals obtained with the viscoelastic model described in Table 6.1, at
4 different offsets (magnifying factor = 250).
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obtained with other techniques. For the first case, two wavelets carried by the
same plane SH reflected from the plane boundary and travelling along the ray path
shown in Figure 6.7 were computed. The source pulse is the same as the one de-
scribed in equation (6.4) and the model parameters are mentioned in Figure 6.7.
One of the wavelets was obtained using ART (Figure 6.8 left) whereas the other
was calculated with a program based on Fininite Differences which is a numerical
technique. (Figure 6.8 right). These two methods lead to almost identical shapes
of the wavelet. A second comparison is made with seismograms computed from the
Discrete Wave Number (DWN) method which is also a numerical technique. For
this case, an explosive point source with the same pulse as shown in Figure 6.1
and the model described in Table 6.2 are used. This last technique computes all the

[ 1D Model | Vp (m/s) [Vs (m/s) | p (kg/m3) | Qp | Qs | Thickness (m) |

top layer | 1385.64 800 2600 34 |17 1600
half-space | 346.41 200 2000 24 | 12 0o

Table 6.2: 1D model used to compare ART and DWN seismograms.

possible arrivals at once i. e. body waves, head waves, surface waves, etc. Since only
primary body waves are to be compared, the top medium of the model is given the
highest velocity in order that no head wave is generated. Furthermore all the free
surface effects were removed from the DWN seismograms. Therefore the P1P1 and
P18S1 arrivals are the only ones remaining for the comparison. Figures 6.9 and 6.10
display the superposition of the seismograms computed with both techniques respec-
tively for 1000m and 2000m offsets. The dotted seismograms were obtained with
DWN whereas those in black were calculated with ART. The results are extremely
close. The only noticeable differences between ART and DWN seismograms occur
at the peak amplitudes of some arrivals. This is mainly because ART and DWN
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programs used different time sampling rates. The results obtained from all these
comparisons indicate that the ART approach seems to correctly take into account
the effects due to the viscoelasticity of the media, on the wavelet propagation.
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Figure 6.9: x (top) and z (bottom) components of the seismogram obtained with
the model described in Table 6.2, for a 1000m offset. The dotted and
black curves respectively correspond to DWN and ART computations.
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Figure 6.10: x (top) and z (bottom) components of the seismogram obtained with
the modecl described in Table 6.2, for a 2000m offset. The dotted and
black curves respectively correspond to DWN and ART computations.

104



CHAPTER 7
CONCLUSION

The Asymptotic Ray Theory (ART) has been used to compute synthetic seismo-
grams in homogeneous, isotropic, linear viscoelastic media. The extension of ART
for such media is based on the introduction of a frequency dependent amplitude
term having the same properties as in the elastic case and on a frequency dependent
complex phase function. With this approach, the amplitude along the wavefront is
constant and the rays, the ray parameters, the angles and the geometrical spreading
are all real values. This differs from the traditional technique which uses the ray
concept trough the Plane Wave approach. In this case the amplitude varies along
the wavefront in most of the cases and the rays, the ray parameters, the angles and
the geometrical spreading are complex valued when synthetic seismograms are com-
puted in linear viscoelastic media. For these calculations, the physical interpretation

of the above-mentioned parameters is therefore easier when ART is used.

At the interface, the computation of viscoelastic reflection and transmission co-
efficients with ART is performed by considering a non-planar wavefront which is
probably closer to the reality. These viscoelastic coefficients seem to behave in a
more physical manner than those obtained with the Plane Wave approach as they
are always continuous in both amplitude and phase between elastic and linear vis-
coelastic cases. Their amplitude curves are extremely close to those computed for
the elastic case even for the P1P1 and S1S1 coefficients. For these two coefficients,
their computations with the Plane Wave approach can lead to some significant dif-
ferences between amplitude curves corresponding to viscoelastic and elastic cases,

especially in the vicinity of critical incidences.

The viscoelastic ART coefficients may also exhibit some non-physical results de-
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pending on the choice of the quality factors describing the linear viscoelastic media
making up the interface. A study of the properties of the functions used to charac-
terize such media i. e. the real time dependent and complex frequency dependent
moduli, tend to show that these non-physical features are related to the possible
existence of some restrictions in the choice of the quality factors, even though no
formal analytical proof could be determined. It seems that once the other param-
eters such as Vp, Vs and p have been chosen, then there are restrictions in the Q
values allowed such that the defined medium behaves linear viscoelastically. More
research is required on this topic before drawing any final conclusion.

Simple synthetic seismograms were computed for a linear viscoelastic model. They
were then compared with those obtained from an elastic version of this model and
with seismograms computed using other techniques (e.g Finite Differences, Discrete
Wave Number). The results indicate that this extension of ART seems to correctly
account for the dispersion, the shape distorsion and the amplitude decay of the
wavelets propagating in the dissipative media described by linear viscoelasticity.
Computations of more complete seismograms including multiples and comparisons
with real data are certainly required in order to confirm or reject these preliminary
results. In its present form, this seismogram computation technique can be applied
to an arbitrary combination of elastic and linear viscoelastic layers separated by
curved interfaces. There seems to be no fundamental problems which would prevent
the extension of this technique to generally inhomogeneous or anisotropic media.
This is indeed another requirement to verify its correctness as it will allow situations
much closer to reality to be considered.
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APPENDIX 1
Fourier Transform of f(t) + dg(t)

f(t) and g(t) are two arbitrary functions of time t. The Stieltjes convolution of
f (t) and ¢ (t) is given by
FO *dg(t) = /_' _f-7) ‘*:—ff)dr (A.11)
Its Fourier transform is equal to
F@vdg@ = I=[" f@)sdg(r)er“at
= /: * [ /_' _fe-) %ﬂdr] ettdt  (A.1.2)

The integration region is shown on the following graph

\

Changing the order of integration yields
1= [ [[re-o etitar] 2210 ) 4r (A4.1.3)
-00 r dr
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Let t — 7 = &, the t-integral becomes

[T re-nesa = e [ () erag
= etor /_:" F() ertde
if f(£) = 0 when ¢ < 0. Then
I= [ f@yerra [T ererdliDy,
Calculating the r-integral by part yields

/:c > e"“"“'d—":i‘(r—r)-dr = [e"""‘"g (T)] t: - /_ 4:’9 (7) det®r

+00 _
= —iw g(r)et“Tdr
-0

Finally

I = -ivf ‘:" () e¥tds /:., g (r) et mdr
I = F(w) xg(w)
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APPENDIX 2

The complex velocity vc can be expressed in two different ways. The first one is
with the quality factor and the phase velocity:

1 1 ]
vc = Z—Q%(2Q ~1) or —c- =— (1 ;Q) (A.2.1)

The second one is with the complex modulus

v = ‘/%“’) (A2.2)

where C(w) = A+ 2M for P waves
and C(w) = M for S waves

The two expressions must be equivalent. Using the following equations from Aki

and Richards (1980)
Cu C. 1 -1
[vP (“’)]2 = 7 [1 + (-C_' - 1) (m)]
1l w(r-1)
Q  l+4uwir,T
Cw) = - - Cu —
[+ 5> & (7) exp (iwr) dr]
with ¢(t) = (— - 1) —e~t/™)
and C, = (g
where

C. is the unrelaxed modulus (instantaneous response),

C: is the relaxed modulus (response at ¢t — o),

7e is the characteristic relaxation time of strain under an applied step in stress,
7o is the relaxation time for stress corresponding to a step change in strain,

¢ is the creep function.
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First f5° & () ezp (iwt) d7 has to be evaluated
¢(t) = (2 - 1) (1 - —‘/f‘)

$(t) = (—--1)( "")

/o"’&(t)ezp(i‘.n)dt = [ (;-1 ( ;ﬁ)e(m)dt

- (50 [t
1_ ;1:) [ eha

(1;' 1 1
= (-3 g
G-t

(0-1)

< IED
- \% )(.L_w)

= ("' )(;) + o2

- (55 ()

(A.2.3) can be checked using

1 Im{f°(t) Mt}
Q  1+Re{f5°¢(t) endt}

from Aki and Richards (1980). (A.2.4) can be expressed as

1 (=) oS
Q T T+ui =

TeTo

(Te = To) wrl
(1o ~1) (1 +21) + (1. = ) 7e
(Te = To)wr?
ToTe + WP TeTe + T2 — T, T,
= (e~ 1)w
1 4+ w771,
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which is the second equation used from Aki and Richards (1980). We now can write
L[ _ /_P_[ ; wrydr] "
w-Vc@ ~ V<. 1 +/o°¢(‘r) ezp (iwt)dr

P Te—To\ [Te +iwr2\]Y/?
Vc. [“( T )(1+w’1'3)] (4.2.6)

and

1 _ 1L+l

2Q
; C. 1 1/2 1 Y2
&+ G- ()| -]

- &+ E-) (=)

_ PB(r—1) | (e=T)w
4(1 +w21;r,)¥ (1 +w?7.1,)
e[, PO~ (h-m)w (% 1
C. 1 4(1 +w21;1':)f +‘(1 + w1 7,) + (T, 1) (1 +w273)
_(fe-‘ra)( 1 ) W? (e ~15)°

1/2

7o \1+w?72) 4(1 +u?rr,)?
_ _ 1/2
To 1+w?72) (1 +u27e1,)

The imaginary part inside the square root of (A.2.7) can be simplified to

1/2
(e —7) [—— + (re = 75) £
1+ e, T (1 +u?r2) (1 + WireT,) C.

= iw(r—r).f'(l-"wzf‘z)'bn-r' . £
- N (1 + 0?12 (1 + W?rT,) C.

117

- | Pt +r—-1, 12 [P
= ) (1; - r,) £ _
7o (1 +w?72) (1 + w27.7,) C.
e Ji o) [ r(+e?rn) 12 2
(1 +w?72) (1 4+ w?7,7,) C.

G
e e |
. 1/2
- |23 (2%)) / /& (428)
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(A.2.8) and the imaginary part inside the square root of (A.2.6) are then identical.
The real part of both - expressions are equivalent if ;‘!7 is assumed to be negligible
compared to 1, which seems reasonable. Thus the real part in the square root of
(A.2.7) is given by

G0 ()] =V b+ (59 ()]

(A.2.9)
With this above assumption, the real part inside the square roots of (A.2.6) and
(A.2.9) are equivalent, therefore

p 1 i
C.@ =~ %@ (‘* 3Q (w')) (4.2.10)

The complex modulus C (w) can then be determined from the phase velocity vp and

the quality factor Q.
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APPENDIX 3

This is an example to show that different combinations of Q can lead to the same
attenuation effect along the same ray path. In ART, the attenuation is taken into
account in the calculation of the imaginary part of the complex phase function
in accordance with (3.6) (see Hron and Nechtschein, submitted, for more details).
Let’s consider the following two layer model and a four segment unconverted ray:

™N L

o~

The complex phase function 7 is obtained in solving the eikonal equation (3.29) in

the form

4

T_,Z':‘/l P C 5= ,;1,/1 p’v2 cz (43

where h; is the layer thickness where the jth segment lies,
v; is the phase velocity of the layer where the jth segment is and _
¢; is the complex velocity for the jth segment, related to the real valued phase
velocity v; by

1 1 ]

—_—=— — A32

G ( 2QJ) ( )
with Q; being the quality factor of the layer where the jth segment is located. Then

- h; i
T 2; [7_=1 = %] > ﬁ-‘l—p’ 7 o Q,-] (A.3.3)

The first sum of (A.3.3) is the temporal term, whereas the second one is the term

which characterizes the amplitude decay along the propagation. In ART, when the
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layers are made of the viscoelastic materials, the calculations are first performed in
the frequency domain. This means that for each frequency w, the phase function
7 (w) must be computed first. We see that in accordance with (3.4) the real part
of the eikonal 7 in (A.3.3) represents the real travel time along the ray, whereas
the imaginary part of 7 in (A.3.3) characterizes the amplitude decay due to the
anelasticity along the entire ray path.

This is illustrated by considering an example with the above ray, assuming:

hy = 1km, hy = lkm, v; = 3.3km/s, v2 = 3.53km/s, the incident angle is 54°. The
second term of equation (A.3.3) is equal to

0. 21427 0.21654
(4} (w) Q2 (w)

and depends on @Q; and Q,. We find by inspection that two different combinations
of Q@’s, namely @, = 66 and Q, = 72 and the combination @; = 50 and Q; = 110

give the same value for this second term of equation (A.3.3). Both combinations

will thus produce the same amplitude decay at a given frequency w at which the
quality factors are supposed to be known. Figure Al shows the wavelets traveling
along this four segment ray and the source used to calculate the wavelets for both
Q combinations discussed above. The shapes and arrival times of both wavelets are
practically identical and were obtained with frequency independent quality factors
presented above. The computation of the reflection coefficients can then help to
determine which Q combination is correct, assuming that the materials are supposed
to be linear viscoelastic. Figure A2 displays the S1S1 coefficients computed with
both @ combinations. The S1S1 coefficient calculated for the first combination (i. e.
Q1 = 66, Q2 = 72) is extremely close to the elastic case, whereas the other one
calculated for the second combination yields nonphysical values of the modulus of
S1S1, which clearly exceeds the unity beyond the second critical angle and therefore
is not acceptable from the physical point of view.
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Figure Al: top: wavelet used to compute the S1S25251 arrival.
middle: S1S2S2S1 arrival computed with the right Q, combination

(Ql.=66’ 02.872)'
bottom: S1S252S1 arrival computed with the wrong Q, combination
(Q1,=50, Q2,=110).
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Figure A2: S1S1 coefficients calculated with the two Q, combinations presented in
Appendix 1. The one obtained with the right combination (Q;,=66,
Q2,=72) is on the left whereas the S1S1 coefficient on the right was
computed with the wrong Q, combination (Q;,=50, Q2,=110).
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