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Abstract 
 

Many clustering algorithms in particular 
hierarchical clustering algorithms do not scale-up well 
for large data-sets especially when using an expensive 
distance function. In this paper, we propose a novel 
approach to perform approximate clustering with high 
accuracy. We introduce the concept of a pairwise 
hierarchical ranking to efficiently determine close 
neighbors for every data object. We also propose two 
techniques to significantly reduce the overhead of 
ranking: 1) a frontier search rather than a sequential 
scan in the naïve ranking to reduce the search space; 
2) based on this exact search, an approximate frontier 
search for pairwise ranking that further reduces the 
runtime. Empirical results on synthetic and real-life 
data show a speedup of up to two orders of magnitude 
over OPTICS while maintaining a high accuracy and 
up to one order of magnitude over the previously 
proposed DATA BUBBLES method, which also tries to 
speedup OPTICS by trading accuracy for speed. 
 

1. Introduction and Related work 
 

Clustering is an important problem in data-mining. 
However, many clustering algorithms especially 
hierarchical clustering algorithms do not scale-up well 
for large data-sets, which are becoming more and more 
common nowadays. For instance, the hierarchical 
clustering algorithm OPTICS [1] without index support 
has quadratic runtime complexity of O(n2), where n is 
the size of the data-set.  

This quadratic time complexity could be a big 
problem for even a medium sized data-set in some 
applications, since such a time complexity in a 
clustering algorithm typically leads to the same amount 
of distance computations, which could be 
computationally very expensive, depending on the 
application. For instance, computing the dissimilarity 
between a pair of 3-dimensional protein structures 

using structure alignments can take up to tens of 
seconds on a state-of-the-art PC. In a data-set of size 
ten thousand, for example, if the average runtime of 
computing a distance is one second, computing all 
pairwise distances would require more than half a year.  

Theoretically, it is possible to reduce the average 
runtime complexity of OPTICS to O(nlogn), if an 
index structure is available that can perform similarity 
range queries in O(logn) time. OPTICS computes all 
pairwise distances only if it takes O(n) time to evaluate 
a similarity range query. (A similarity range query 
retrieves all objects in a large database that are similar 
to a query object, typically using a distance function to 
measure the dissimilarity.) 

There has been an intensive effort [7] over the last 
two decades to speedup similarity search in metric 
spaces. The typical approach is to build some form of 
tree-like indexing structures in advance to speedup the 
similarity range query in the application. While 
researchers have achieved significant progress in some 
types of data such as low dimensional Euclidean data, 
the problem is difficult for high dimensional space and 
general metric space [5], and finding consistently 
efficient index structures for high-dimensional and 
general metric spaces has been so far an elusive goal, 
due to a number of effects in these spaces, collectively 
referred to as the “curse of dimensionality”. Therefore, 
there is currently no indexing support that can 
efficiently and effectively speedup exact hierarchical 
clustering in these kinds of data spaces.  

A different way of speeding up a clustering 
algorithm is to trade accuracy for speed. A naïve 
approach is to sample a small portion of the whole 
data-set and run the clustering algorithm on the sample 
only. The drawback of this approach is that the result 
could be distorted, depending on the sampling rate. The 
smaller the sample is, the faster the runtime, but the 
worse the accuracy.  

To improve this naïve sampling scheme, different 
methods have been proposed. The general idea is to 



collect certain sufficient statistics such as the linear 
sum of the set of points in the region around each 
sample point. For instance, BIRCH [15] is the first 
method to incorporate sufficient statistics with a 
hierarchical partitioning structure to speedup 
clustering. It partitions the space along a hierarchical 
tree in which so-called clustering features for each 
node in the tree are collected. A clustering feature 
consists of the number of points, the linear sum, and 
the square sum of the set of points represented by a 
node. Clustering algorithms are then applied on the leaf 
nodes of the hierarchical tree rather than the original 
data or sample points. DATA BUBBLES [3] use 
different sets of statistics particularly targeted to 
speedup hierarchical clustering algorithms such as 
OPTICS. Results in [16] show that this approach is 
able to handle non-vector data as well as vector data. 

While being a significant improvement over the 
naïve sampling, the approach of using sufficient 
statistics to derive approximate clustering results is still 
suffering from the problem of inadequate accuracy for 
some important real-life applications. For these 
methods, clusters with a size smaller than the number 
of points in the smallest abstract region, represented by 
a set of sufficient statistics, will typically be lost in the 
final clustering result. Even clusters that have a large 
number of points but are close to other clusters could 
be buried in bigger clusters in the output result, since 
gaps between clusters can often not be recovered 
correctly by BIRCH or DATA BUBBLES [16]. 

In this paper, we propose a novel approach to 
perform approximate clustering with high accuracy. 
The method is based on the observation that in some 
clustering algorithms such as OPTICS and single-link, 
the final clustering result depends largely on the nearest 
neighbor distances of data objects, which comprise 
only a very small portion of the quadratic amount of 
pairwise distances between data objects. We introduce 
a novel pairwise hierarchical ranking to efficiently 
determine close neighbors for every data object. The 
clustering will then be performed on the original data 
objects in stead of on sample points or sufficient 
statistics as in the previous methods. Since a naïve 
pairwise hierarchical ranking may introduce a large 
computational overhead, we also propose two 
techniques to significantly reduce this overhead: 1) a 
frontier search rather than a sequential scan in the naïve 
ranking to reduce the search space; 2) an approximate 
frontier search for pairwise ranking that further reduces 
the runtime. Empirical results on synthetic and real-life 
data show a speedup of up to two orders of magnitude 
over previous approaches. 

The remainder of this paper is organized as follows. 
In Section 2 we introduce background knowledge 
including the OPTICS clustering algorithm; in Section 
3, we state the motivation of the new method; Section 4 
discusses the idea of ranking; in Section 5, we 
introduce our new ranking method; in Section 6, we 
compare our method empirically with the previous 
methods; finally, we conclude with Section 7.  
 

2. Preliminaries 
2.1 Three Major Clustering Approaches 
 

Clustering algorithms can be categorized based on 
how they cluster the data objects. In this sub-section we 
briefly introduce three of the major categories: 
partitioning, hierarchical and density-based 
approaches. For a complete description of all 
categories, see [8]. 

The partitioning approach is represented by the k-
means algorithm. This approach selects a set of centers 
and partitions the data-set by assigning data objects to 
their nearest center. The centers are then adjusted 
according to the objects in each group and the 
assignment process is repeated to refine the result. 
Each group of objects assigned to a center is 
considered a cluster. 

The hierarchical approach is represented by the 
single-link algorithm. Starting from groups of 
individual data objects (one data object per group), the 
method agglomerates two nearest groups into a new 
group. The final result is a hierarchical ordering of all 
data objects that shows the process of the 
agglomeration. 

The density-based approach is represented by the 
DBSCAN algorithm [5]. The method estimates the 
density of the region around each data object by 
counting the number of neighbor objects within a given 
radius. It then connects dense regions to grow them 
into clusters. 

Although our algorithm can be applied to other 
clustering methods, due to the space limitations, we 
focus on OPTICS, which is a hierarchical clustering 
algorithm that uses density-based concepts to measure 
the dissimilarity between points. 

 
2.2 Triangle Inequalities in Metric Space 

 
Given a set of objects B and a distance function D 

between objects in B, by definition, a metric space 
satisfies the following properties: 
1. (Positiveness) for all x, y in B, D(x, y) ≥ 0, 
2. (Symmetry) for all x, y in B, D(x, y) = D(y, x), 
3. (Reflexivity) for all x in B, D(x, x) = 0, 



4. (Triangle inequality) for all x, y, z in B,  
D(x,y) + D(y,z) ≥ D(x,z). 

The triangle inequality can be used in a technique 
called pruning to avoid distance computations in data 
retrieval operations and data-mining applications that 
require distance computations.  

To apply the pruning technique, typically the 
distances between a selected small set of objects P and 
all other objects o in a data-set are pre-computed in a 
preprocessing step. The objects p∈P are called a 
“pivots” or “reference points” in the literature.  

In a range query, for example, a query object q is 
given and the task is to find objects within a given 
query radius r from q. For any data object o and pivot p, 
by a derived form of the triangle inequality, it holds 
that D(q,o) ≥ |D(q,p) – D(o,p)|. Therefore, at query 
time, the distance D(q,p) is also computed in order to 
determine if |D(q,p) – D(o,p)| > r. If this condition is 
true, then it follows that D(q,o) > r, and o can safely be 
excluded without actually computing the distance 
D(q,o).  

The triangle inequality has been incorporated in 
several indexing methods for metric data, for instance 
the M-TREE [10]. It can lead to a substantial saving of 
distance computations in low dimensional spaces and 
in metric spaces that can be mapped to a low 
dimensional space. In high dimensional space and 
general metric space, however, its effectiveness 
deteriorates.  

Compared with the sampling and methods such as 
BIRCH and DATA-BUBBLES, the advantage of using 
triangle inequalities is that it can provide additional 
speedup for virtually any method on metric data 
(including our method) and it is an exact method that 
loses no accuracy.  

 
2.3 Clustering with OPTICS 
 

The OPTICS algorithm is a combination of the 
hiearchical and density-based clustering approaches. 
OPTICS estimates the density of the region around 
each data object as in the traditional density-based 
clustering algorithm, and then hiearchically orders all 
data objects in a bar plot, so that objects that are close 
in dense regions will be close in the ordering. An 
example reachability plot for a 2-dimensional data set 
is depicted in Figure 1. Such a plot is interpreted as 
following: “valleys” in the plot represent clusters, and 
the deeper the “valley”, the denser the cluster. The 
tallest bar between two “valleys” is a lower bound on 
the distance between the two clusters. Large bars in the 
plot that are not at the border of a cluster represent 

noise, and “nested valleys” represent hierarchically 
nested clusters.  

There are two important notions in the OPTICS 
algorithm: core-distance and reachability-distance for 
objects with respect to parameters Eps and MinPts. The 
parameter MinPts allows the core-distance and 
reachability-distance of a data object to capture the 
density around that object. Given a radius Eps, an 
object with at least MinPts neighbors within Eps is 
called a “core-object”. For any core-object c, its core-
distance is the MinPts-nearest neighbor distance, and 
its reachability-distance to another object o is the 
greater value of the core-distance of c and the distance 
between c and o.  

The ordering of OPTICS is essentially a “walk” 
through all data objects. Starting from an arbitrary 
object marked as visited with an undefined 
reachability-distance that is set to “infinity”, it always 
selects an object o with the smallest reachability 
distance d to any of the already visited objects as the 
next object to visit. The value d is then assigned to o. 
An Eps-range query is performed for o to determine o’s 
core distance as well as all objects and their 
reachability distance (w.r.t. o) within o’s Eps 
neighborhood. The output of the algorithm is a bar plot 
of the reachability values assigned to the objects in the 
order they were visited.  

 
 
 
 
 
 
 
 
 

3. Motivation 

Although the OPTICS algorithm without index 
support requires the computation of O(n2) distances, its 
final result depends largely on the MinPts-nearest 
neighbor distances only. Some large distances (larger 
than typical MinPts-nearest neighbor distances) 
between clusters also count, but OPTICS only needs a 
few of them, e.g., one per pair of clusters as depicted in 
Figure 2, while most of the reachability-distances 
plotted in the output are short distances within clusters. 
The exact values of these large distances can even been 
replaced by approximated values without significantly 
changing the cluster structure in the output plot, since 
as long as the approximation value is large enough, it 
can fulfil its function of separating a cluster from the 
remaining of the data-set.  
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(a) Data set (b) Reachability Plot 

A C B 
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Figure 1: A data-set and its OPTICS output. 



It is also not necessary to figure out the exact 
MinPts-nearest neighbor for each object to compute its 
core-distance (approximately). Since OPTICS only 
uses the values of the MinPts-nearest neighbor 
distances, an object with a very similar distance as the 
MinPts-nearest neighbor can also serve the same 
purpose. Overall, in order to preserve the quality of the 
final output, we are only required to provide OPTICS 
with values that are similar to the MinPts-nearest 
neighbor distance for each object and a few large 
distances between clusters. To achieve this without 
computing O(n2) distances, we will introduce the 
method of pairwise hierarchical ranking in Section 5. 

 

Figure 2: An OPTICS walk. The arrows represent 
the ordering in the walk. Although the 
corresponding reachability-distances are different 
from the distances between the pairs of objects, the 
lengths of the edges indicate the level of the 
reachability-distance values. It shows that most 
plotted reachability-distances are in small values. 

 

4. k-Close Neighbor Ranking 
 

The problem of ranking a list of objects has been 
well studied in social sciences, with the typical 
application of ranking political candidates. Different 
from this general problem of ranking, in this paper, we 
will focus on a special kind of ranking in computer 
science.  
Definition 3.1 [k-cn ranking] Given a list of data 
objects and a query, the problem is how to rank the list 
of data objects so that the top k objects in the list 
contain many close neighbors. This problem is called 
the k-close neighbor (k-cn) ranking problem.  

For our application, we do not require to find the 
true top k nearest neighbors, as long as (1) the ranking 
returns close neighbors that have similar distances to 
the query as the true top k nearest neighbors, and (2) 
the ranking is “consistent” among all query objects in 
the sense that the number of close neighbors returned 
by the ranking reflects consistently the density around 
all query objects, then the ranking is good enough to be 
used in our clustering method to estimate density. This 
low requirement on the accuracy of ranking is also due 
to the fact that our method will compute the actual 
distances between the query and the top k objects to 
filter out far away objects, as will be discussed in 
Section 5.  

 
4.1 Ranking using Triangle Inequalities 

 

Figure 3: Ranking with triangle inequalities. 
Although p can not be used to estimate D(q,o), p can 
be used to estimate D(q',o).  While D(q,o) can not be 
estimated by using p,  chances are that D(q,o) can 
be estimated by using another pivot p'. 

It has been long observed empirically [14] that the 
triangle inequality in a metric space (D(x,y) + D(y,z) ≥ 
D(x,z) for data objects x, y, z) can be used to detect 
close neighbors for a given query object. While the 
triangle inequality can be used to speedup data-mining 
applications via the pruning technique [4] as discussed 
in Section 2.2, the use of triangle inequalities to 
perform ranking is only gaining the attention of 
researchers in recent years [2]. Given a distance 
function D(.,.), a query object q and data objects o and 
p, Ep(q,o) = |D(q,p) – D(o,p)| is a lower bound 
estimation of D(q,o) using p as a pivot. As shown in the 
2-d example of Figure 3, when q and o are not on the 
circle centered at p, then the absolute difference value 
|D(q,p) – D(o,p)| will be larger than zero and can 
indicate the actual D(q,o) values. The estimation will 
be the better, the closer q, o, and p are located on a 
straight line. Using several pivots will typically 
improve the estimation, since if one pivot fails to 
estimate D(q,o) well, chances are that it can be 
estimated better using another pivot. The rankings of 
different individual pivots in a set of pivots P can be 
easily combined in order to obtain the best estimation 
as the largest lower bound:  

EP(q,o) = 
Ppi ∈

max |D(q,pi) – D(o,pi)|. 

The merit of this ranking method lies in its ability to 
save distance computations. In the preprocessing stage, 
the distances between all data objects and all pivots in 
P are computed; then, in the application, when the 
estimation of D(q,o) is needed, e.g., to retrieve the 
nearest neighbor of a query q, the above formula can be 
applied for all data objects o and the one with the 
smallest EP(q,o) value is the estimated nearest 
neighbor. All required distances except those between 
q and pivots in P have been computed in the 
preprocessing stage, so that in the application, only 
computationally cheap operations and |P| distance 
computations are performed. When the number of 

p 

q 

o 

p′ 

q′ 



pivots is set to be small and the distance function is 
computationally expensive, the total amount of 
computations is much smaller than in the brute-force 
approach of computing all distances between q and all 
data objects to find the nearest neighbor. In most 
scenarios, the runtime of an application is much more 
important than that of a possible preprocessing, since 
the preprocessing is usually performed in advance and 
only once for several applications. But even when the 
runtime of the preprocessing stage is counted in the 
total runtime of an application, the ranking method can 
still significantly speedup our intended applications 
where the runtime is dominated by the runtime of 
typically very expensive distance computations such as 
hierarchical clustering where the closest neighbors 
have to be determined for each object in the data-set. In 
these applications, the total amount of computed 
distances is O(n|P|), which is much smaller than O(n2).  

 
4.2 An Analysis of When Ranking Works 
 
In this sub-section, we give a theoretical analysis to 
show why EP(q,o) can be used to estimate D(q,o) in 
general metric spaces.  

For any pivot p, a query q and a close neighbor c of 
the query, Ep(q,c) = |D(q,p) – D(o,p)| is bounded by 
D(q,c) since, by triangle inequality, |D(q,p) – D(o,p)| ≤ 
D(q,c). This result can be extended directly to the case 
of using a set of pivots P, with EP(q,c) ≤ D(q,c). 
Therefore, if a neighbor of the query is very close to it, 
then D(q,c) is small, and consequently EP(q,c) must be 
small. This means that when ranking objects according 
to their estimated distance to q, c can be expected to be 
ranked high, if not many objects that are farther away 
from q have estimated distances lower than EP(q,c). 
The important question is therefore: How large will 
EP(q,o) on average be for a randomly chosen object 
o?” If EP(q,o) has a high probability of being larger 
than EP(q,c), then close neighbors will mostly be 
ranked higher than random objects. Theorem 3.1 below 
gives the probability of random objects o getting a 
EP(q,o) value lager than a given value. 
Theorem 4.1 Given a data-set B with metric distance 
function D(.,.), let query q, data object o and pivot set 
P be selected randomly from B.  
Let Z = {D(q,pi) – D(o,pi), pi∈P}, and let PZ(x) be the 
probability that for an arbitrary z in Z, |z - µ| ≤ x, where 
µ is the mean of values in Z. Then  

Pr[EP(q,o) > x] = ||))((1 P
Z xP− .  

Proof: Let S = {v| v = D(q,pi) or v = D(o,pi), pi in P}. 
Since q, o and the pivots in P are selected randomly 
from B, elements in S are independent of each other. 

Thus the zi = D(q,pi) – D(o,pi) are also independent of 
each other. Therefore 
Pr[EP(q,o) ≤ x] = Pr[

Ppi ∈
max |D(q,pi) – D(o,pi)| ≤ x] 

= 
Ppi∈

Π Pr[|D(q,pi) – D(o,pi)| ≤ x] = ||))(( P
Z xP   

Theorem 4.1 provides us with a clue of when the 
ranking will be effective. Let x = D(q,c) be a distance 
between a query q and an object c. By Theorem 4.1 

Pr[EP(q,o) ≤ D(q,c)] = ||))),D((( P
Z cqP  

Although the distribution of Z is unknown, )),D(( cqPZ  

is always a monotonic function of D(q,c). The smaller 
the D(q,c), the smaller )),D(( cqPZ  and consequently 

the smaller will be ||))),D((( P
Z cqP . It also holds that 

the larger the number of pivots |P|, the smaller 
||))),D((( P

Z cqP . The trend of the function f(x) = bx is 

illustrated in Figure 4 for several values of b, varying x.  
 
Therefore, the closer a neighbor c is to a query q, 

and the more pivots we use, the higher the probability 
that a random object is ranked lower than c. 
 
 
 
 
 
 
 
 
 
 

Figure 4: f(x) = bx, for b = 0.9, 0.8, 0.7. The values 
decrease exponentially. 

5. Pairwise Hierarchical Ranking 
 

In this section, we propose a new method using 
ranking to reduce distance computations in OPTICS. 
The method performs a “pairwise” ranking to detect 
close neighbors for each object. In a pairwise ranking 
of a set of m object, every object will in turn be the 
query so that the ranking contains m sub-ranking of the 
m objects. At the end, OPTICS is run on the distances 
between each object and its detected close neighbors 
and a few additional distances between objects that are 
far away from each other. 

As indicated by Theorem 4.1, to rank close 
neighbors of a query object high, we should use as 
many pivots as we can in the ranking, since the larger 
the number of pivots, the larger is the probability that a 
random object is ranked lower than close neighbors of 
the query. However, more pivots also means more 
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distance computations between pivots and data objects, 
as well as the overhead of the ranking. Selecting a 
suitable number of pivots to balance these two factors 
in the traditional way of using a set of pivots is not 
easy. 

In order to increase the number of pivots without 
significantly increasing the number of distance 
computations, we propose to perform the ranking 
hierarchically. The method can be roughly described as 
follows. First, the data is partitioned in a hierarchical 
way, so that for each group of objects on the bottom 
level, their distances to O(logn) ancestor objects are 
computed. Using these O(logn) ancestors as pivots, our 
method then performs a pairwise ranking for each 
group of objects to find close neighbors within the 
group. To find close neighbors across different groups, 
the method also performs ranking across several groups 
at a time. Since different groups of objects have 
different sets of ancestors, the pivots our method uses 
will be their common ancestors. In other words, the 
rankings will be performed layer by layer, along the 
generated hierarchical partitioning. 

Our hierarchical ranking method can save distance 
computations because not every pivot is associated 
with the same amount of distance computations. The 
top level of pivots have distances to all objects, but in 
the next level, for each pivot, since its set of 
descendants is only a fraction of the whole data-set, the 
number distances associated with it is reduced to the 
same fraction. In this way, the pivots are constructed 
similar to the pyramidal hierarchy of a government: 
some pivots are global pivots, responsible for every 
member of the data-set, but some are local pivots that 
are responsible for members within their territories 
only.  

The processes of partitioning and ranking will be 
explained in more details in the following sub-sections. 

 
5.1 Partitioning 
 

Our method first partitions the data in a hierarchical 
way, creating a tree, which we call “pivot tree”. 
Initially, the root node of the hierarchical tree contains 
all objects in the data-set. During the construction, if a 
node v is “split”, a set of f representative objects are 
randomly selected from the set of objects in v, and f 
associated child nodes (one per representative) are 
created under v. The set of objects in v is then 
distributed among its children by assigning each object 
in v to the child node with the closest associated 
representative. Each representative and the objects 
assigned to it will form a new node. The construction 
proceeds recursively with the leaf node that contains 

the largest number of objects until the tree has a user-
specified number of leaf nodes. At the end, all data 
objects are contained in the leaf nodes of the tree, and 
all nodes except the root contain a representative. For 
any data object o and a node v, o is said to be under v if 
o is in v or o is in a leaf node that is a descendant of v. 
 
5.2 Ranking 

 

Figure 5: An example for hierarchical ranking. 

Multiple rankings are performed using subsets of the 
representatives in the constructed hierarchical tree as 
pivots. We will show an example before giving the 
formal description of the algorithm. In Figure 5, I i (i = 
1, 2, 3) are internal nodes and Li (i = 1, 2, 3, 4) are leaf 
nodes in different layers. o1, o2, o3, o4,  o5, o6, o7, o8, 
and o9 are data objects under them. Let I i.rep and Li.rep 
be the representatives of internal node I i and leaf node 
Li respectively. For o1, o2, o3, o4, and o5 since the 
distances between them and the representatives of L1 
and L2 are computed when the algorithm partitions the 
internal node I2 into L1 and L2,  we can use L1.rep and 
L2.rep as pivots to rank data objects o1, o2, o3, o4, and 
o5. Since the distances between these data objects and 
I2.rep, I3.rep, L4.rep are also computed in earlier 
partitions, I2.rep, I3.rep, L4.rep should also be used as 
pivots to rank them. Therefore, {L1.rep, L2.rep, I2.rep, 
I3.rep, L4.rep} is the set of pivots to perform the 
ranking for objects of L1 and L2. In the upper layer 
ranking of objects under I2, I3 and L4, we can only use 
{ I2.rep, I3.rep, L4.rep} as pivots to rank the whole set 
of {o1, o2, o3, o4, o5, o6, o7, o8, o9}, since distances 
between data objects o6, o7, o8, o9 and representatives 
L1.rep, L2.rep may not be computed (they are computed 
only when L1.rep= I2.rep or L2.rep = I2.rep). 

The formal description of the ranking algorithm is 
shown in Figure 6. For any node v (if it is to pairwise 
rank the whole data-set, v = root and P = ∅), function 
rankNode performs a pairwise k-cn ranking of the 
objects under v, using the child representatives of v and 
the higher-level pivots with known distances to the 
objects under v as the current set of pivots. rankNode is 
then recursively applied on all child nodes of v. 
Therefore, any object o under v takes part in multiple 
rankings: the ranking in v as well as the rankings in all 
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L1 L2 L3 

o1, o2 o3, o4, o5  o6  o7 
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descendant nodes of v that o is also under. The lower 
the level of the node, the more pivots are used in its 
pairwise ranking and the less objects are involved in 
the pairwise ranking. The method will maintains a 
close neighbor set for each data object o. In any k-cn 
ranking, the top k objects with the smallest EP(q,o) 
values are retrieved and stored in this close neighbor 
set of o. The distances between objects in this set and o 
are computed at the end and will be used in the 
clustering. It is easy to prove that the number of 
distances computed in the partition and ranking is 
O(fnlogfn + knlogfn), where f is the branching factor in 
the tree, and n is the size of the data-set. However, the 
overhead of this ranking using naïveKcnRank can have 
a quadratic time complexity (although using 
computationally cheap operations), since the function 
naïveKcnRank essentially scans all objects and all 
pivots to compute and sort the distance estimation 
values EP(q,o) of each object o. In the next subsection, 
we will propose two new techniques to reduce this 
overhead. 
 

 

Figure 6: Hierarchical ranking algorithm. 

 
5.3 Reducing the overhead in ranking 

 
One issue that arises in the ranking algorithm shown 

in Figure 6 is that for the ranking in each node, the 

worst case time complexity is O(m2logn), where m is 
the number of objects to rank (m decreases as the 
algorithm proceeds from the root to the bottom layer). 
This is due to the fact that the algorithm needs to 
perform a k-cn ranking for each data object and each 
ranking has a time complexity of O(mlogn). (Note, 
however, that the time complexity is on 
computationally cheap operations, i.e., simple 
comparisons of pre-computed distance values, rather 
than expensive distance computations.) To reduce this 
overhead, we propose two new techniques: 1) a best-
first frontier search [11] (rather than the sequential scan 
in the naïve ranking) to significantly reduce the search; 
2) based on this frontier search (which results in the 
same pairwise ranking as the naïveKcnRank) an 
approximate pairwise ranking that further reduces the 
runtime without sacrificing too much accuracy in the 
application to hierarchical clustering. 

 
5.3.1 Best-First Frontier Search 
 

While the naïve k-cn ranking performs a sequential 
scan of distances between pivots and all data objects to 
be ranked, we propose to use instead a best-first 
frontier search, based on a new data structure that 
organizes the distances associated with pivots in the 
following way. Given a set of objects R under a 
particular node of the pivot tree and the corresponding 
set P of pivots for the k-cn ranking of the objects in R, 
for each pivot pi ∈ P, we store the distances between pi 
and o∈R in a list of pairs (o,D(o,pi)), and sort the list 
by the distance value of D(o,pi). Using |P| pivots, we 
have |P| sorted lists, and each object o∈R will have 
exactly one occurrence in each of these lists. Between 
the lists of different pivots we link the occurrences of 
the same object together in order to efficiently access 
all occurrences of a particular object in all lists. The 
data structure is illustrated in Figure 7.  

 

Figure 7: Linking the occurrences of each object. 
 

When computing a pairwise k-cn ranking, each 
object q will be used in turn as a query object, and all 
other objects o∈R will be ranked according to their 
estimated distances to q.  

p2 p1 p3 

(q,D(q,p1)) (o,D(o,p3)) 

 
(q,D(q,p2)) 

(q,D(q,p3)) 

 

(o,D(o,p1)) 

(o,D(o,p2)) 

p1 p2 p3 

rankAll(node root, int k) 
for all objects o under root 
    o.closeSet ← ∅; 
rankNode(root, k, ∅); 
for all objects o under root 
    for all neighbors x in o.closeSet 
       o.distSet ← D(o,x);/* o.distSet stores distances 

associated with object o */ 
 
rankNode(node v, int k, set P) 

P′ ← P ∪ {all child representatives of v}; 
rankObjects(v, k, P′ );  
for all child nodes c of v 
    rankNode(c, k, P′ ); 
           

rankObjects(node v, int k, set P) 
for all objects o under v /* i.e., ∀o ∈ v.objectSet */ 
    topK = naïveKcnRank(o, k, P, v.objectSet); 
    o.closeSet ← o.closeSet ∪ topK; 

 
naïveKcnRank(object q, int k, set P, set objectSet) 
    sortedList ← ∅; 

for all objects o in objectSet 
    sortedList ← EP(q,o) =

Ppi∈
max |D(q,pi) – D(o,pi)|.; 

return  top k objects in sortedList; 



Instead of solving this problem with a sequential 
scan, our new k-cn ranking algorithm first retrieves all 
occurrences of the current query q from the given data 
structures. These occurrences virtually form a starting 
line. Then, our method searches from the starting line, 
advances upward and downward along the |P| sorted 
lists, to search for the top k objects with the smallest 
EP(q,o) distance estimation values.  

 

Figure 8: k-cn ranking algorithm with best-first 
frontier search. 

The rationale is as follows. For a query q, let object 
o be one of the top k objects that is returned by the 
naïve ranking, i.e., its distance estimation value EP(q,o) 
= 

Ppi ∈
max |D(q,pi) – D(o,pi)| is one of the k-smallest 

among all objects to be ranked. That also means that 
for object o, the values |D(q,pi) – D(o,pi)| for each pivot 
pi  are all small (since |D(q,pi) – D(o,pi)| ≤ 

Ppi ∈
max |D(q,pi) 

– D(o,pi)| = EP(q,o)). Consequently, the occurrences of 
(a top k object) o in all the lists will in general be close 
to the occurrences of the query q because the lists are 
sorted by the distances of the objects to the pivot 
D(o,pi), and for a difference |D(q,pi) – D(o,pi)| to be 
small, D(q,pi) and D(o,pi) have to be similar values and 
will hence appear close to each other when sorted. 
Therefore, we can start from the occurrences of q and 
look in the nearby positions in the |P| sorted lists for 
the top k objects by a frontier search. At the end, the 
number of occurrences we visit will be typically only a 

fraction of the total occurrences in the lists that belong 
to the pivots, leading to a speedup over the sequential 
scan.  

The pseudo-code of the new k-cn ranking algorithm 
is given in Figure 8. Function kcnRank maintains a 
priority queue as the frontier such that its top element is 
a pair (o,D(o,pi)) with |D(o,pi) – D(q,pi))| the smallest 
in the queue. After all occurrences of q in the lists that 
belong to the pivots are retrieved, the frontier is 
initialized with occurrences immediately adjacent to 
those occurrences of q upward and downward. Then 
the function performs a frontier search in all the sorted 
lists, always advancing in the list that the current top 
element of the queue lies in. For objects already 
encountered when the frontier advances, the function 
maintains a count of the number of their occurrences. If 
this number is equal to the number of pivots used in the 
ranking, then the object is one of the top k objects 
returned in the final ranking. This process continues 
until all top k objects are found. 

In the remaining of this subsection, we prove the 
correctness of algorithm kcnRank. 
Lemma 5.1 In algorithm kcnRank, let occurrence 
(a,D(a,pi)) be popped out of the priority queue before 
another occurrence (b,D(b,pj)), then |D(a,pi) – D(q,pi))| 
≤ |D(b,pj) – D(q,pj))|. 
Proof: When (a,D(a,pi)) is popped out the priority 
queue, (b,D(b,pj)) can only be either in the frontier 
queue or outside the frontier (i.e. the occurrence has 
not yet been visited by the frontier). If (b,D(b,pj))  is in 
the queue, then by the property of the priority queue, 
|D(a,pi) – D(q,pi))| ≤ |D(b,pj) – D(q,pj))|. If (b,D(b,pj))   
is outside the frontier, since all the lists are sorted, 
there must be a third occurrence (c,D(c,pj)) in the list of 
pivot pj with an absolute difference value |D(c,pi) – 
D(q,pi))| ≤ |D(b,pj) – D(q,pj))|. Since |D(a,pi) – D(q,pi))| 
≤ |D(c,pj) – D(q,pj))|, |D(a,pi) – D(q,pi))| ≤ |D(b,pj) – 
D(q,pj))|.  
Theorem 5.1 The algorithm of kcnRank and the naïve 
k-cn ranking algorithm naïveKcnRank return the same 
result. 
Proof: Let the last top k objects found by the frontier 
search be t. Thus the last occurrence popped out of the 
priority queue belongs to t. Denote this occurrence by 
(t,D(t,pi)). For any object o other than the returned k 
objects in topK, it must have an occurrence (o,D(o,pj))  
that can only be popped out of the priority queue after 
(t,D(t,pi)). By lemma 5.1, |D(t,pi) – D(q,pi))| ≤ |D(o,pj) 
– D(q,pj))|. Thus EP(q,t) ≤ EP(q,o). Also by Lemma 5.1, 
(t,D(t,pi)) has an absolute difference value |D(t,pi) – 
D(q,pi))| no less than those of the previous occurrences 
popped out the queue. Since for the other top k objects 
returned by kcnRank, all of their occurrences are 

init(object q, priorityQ frontier, set P) 
for all occurrences (q,D(q,pi)) of q, with pi ∈ P 
    for all immediate adjacent occurrences (o,D(o,pi)) of 

(q,D(q,pi)) 

        frontier ← (o,D(o,pi)) 
 
/* perform k-cn ranking for query q. P is the pivots set */ 
kcnRank(object q, int k, set P) 

frontier ← ∅; /* the top is the pair (o,D(o,pi)) with  
|D(o,pi) – D(q,pi))| the smallest in it */ 

init(q, frontier, P); 
topK ← ∅; 
while frontier ≠ ∅  /* perform frontier search */ 
    (o,D(o,pi)) ← frontiers.pop(); 
    if o is not in count 
        count[o] ← 0; 
    else count[o] ← count[o] + 1; 
    if count[o] = |P| 
        topK ← o; 
        if topK = k 
            return topK; 
    frontier ← (o′,D(o′,pi)); /* (o′,D(o′,pi)) is the 

adjacent pair of (o,D(o,pi)) outside the frontier */ 



popped out before (t,D(t,pi)), their distance estimation 
values are all no greater than EP(q,t). So the elements in 
topK have the smallest distance estimation values 
among all objects to rank. Therefore, they will also be 
returned by the naïveKcnRank algorithm. 
 
5.3.2 Approximate Pairwise k-cn Ranking 
 

As indicated by Theorem 4.1 in Section 4.2, the 
larger the number of pivots, the greater the ranking 
accuracy. Given a fixed set of pivots, if the number of 
pivots is too small to effectively perform k-cn ranking, 
e.g., k = 5 and only 3 of the top 5 objects returned by 
the ranking are actually close neighbors, then some of 
the occurrences of the top k objects in the ranking may 
be located farther away from the corresponding 
occurrences of the query object in one of the sorted 
pivot lists. Thus the frontier search in algorithm 
kcnRank in Figure 8 may have to advance to a place far 
away from the starting point to find the occurrence of 
all the top k objects, and still incur a large overhead.  

Our solution to this problem is to limit the steps that 
the frontier can advance from the starting position. The 
returned result is then no longer exactly the same as the 
naïve k-cn ranking, so that the new algorithm performs 
an approximate pairwise k-close neighbor ranking. 
When the search stops, if only k′ of the top k objects (k′ 
< k) have all occurrences within the frontier, then the 
remaining k-k′ objects are selected from those objects 
(besides the k′  objects already selected) that have the 
largest numbers of occurrences within the frontier.  

The rationale behind this idea is that objects with 
occurrences located far away from the corresponding 
occurrences of the query objects are more likely to be 
random neighbors that can not contribute short 
distances to be used by OPTICS, even if the frontier 
search goes all the way to find their occurrences. Thus 
setting a step limit for the frontier search will not hurt 
the final clustering accuracy, even if some of the top 
but not so close objects are not returned by the search. 

Let the step limit be s. The approximate pairwise k-
cn ranking algorithm has worst case time complexity of 
O(snlogn), where n is the size of the data set. Empirical 
results in Section 6 show that s can be as small as 2k to 
generate clustering results with high and robust 
accuracy.  
 
5.4 Integration with OPTICS 
 

After close neighbors of all objects have been 
detected by the pairwise ranking based on distance 
estimations, our method computes the actual distances 
between each object and these close neighbors. 

Another set of distances we will use are the distances 
computed in the partition stage when creating the pivot 
tree, i.e., the distances between the representatives of 
nodes and the objects under them. These are the only 
distances that OPTICS will use in the clustering. All 
other distances are assumed to be “infinitely” large. 

The value of k should not be significantly smaller 
than the minPts parameter of OPTICS, otherwise the 
cluster result can be distorted because there are enough 
computed distances associated with each object to 
estimate the core-distances. In the pairwise hierarchical 
ranking, each object can take part in several sub-
ranking, i.e., rankings of different layers, so that the 
number of distances associated with each object is 
usually a little larger than k. And since in practice the 
minPts parameter only needs to be relatively small to 
provide good results, k can also be set to a small value 
(typically <10). 
 
6. Experimental Evaluation 
 
In this section, we compare our method and the DATA 
BUBBLES method on synthetic as well as real-life 
data-sets. Both methods are used to speedup the 
OPTICS clustering algorithm. We denote our method 
using approximate pairwise hierarchical ranking by 
OPTICS-Rank, and the DATA-BUBBLE method by 
OPTICS-Bubble. All experiments are performed on a 
Linux workstation with dual AMD Opteron 2.2GHz 
CPUs and 5GB of RAM, using one CPU only. 
 
6.1 Synthetic Data 
 

We use the two synthetic data-sets studied in [16] to 
show that our new method has better accuracy in 
detecting subtle cluster structures. 

The first synthetic data we use, denoted by DS-
Vector, is a synthetic 2-dimensional point data set. It 
contains 50000 points distributed over 8 clusters and 
4% background noise. The clustering output of 
OPTICS is depicted in Figure 9 (a). Some of the 8 
clusters are very close to each other as indicated by the 
relatively low reachability values that separate them. 

The second data set, called DS-Tuple, is a synthetic 
set of binary strings. Each object of DS-tuple is a 100-
bit 0/1 sequence, and the similarity between two such 
sequences s1 and s2 is measured using the Jaccard 
coefficient, i.e. 2121 ssss ∪∩ . 80% of the objects 

form 10 clusters and the remaining 20% are noise. Two 
of the clusters are very small (123 and 218 objects), 
making the problem of finding them very challenging. 
The reachability plot obtained when clustering the 



whole data set using OPTICS is depicted in Figure 9 
(b) (the two tiny clusters are indicated by arrows).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The outputs of OPTICS-Rank for DS-Vector and 
DS-Tuple are shown in Figure 9 (c) and (d) 
respectively. For the parameters of OPTICS-Rank, the 
number of top objects to return in each ranking, k, is set 
to 5, and the step limit s for the best-first frontier search 
is set to 10. The number of leaf nodes for the pivot tree 
is set to 5000, and the branching factor is set to 10. The 
plots generated by OPTICS-Rank are almost identical 
to those generated by OPTICS, only that some clusters 
have switched position, which is a normal phenomenon 
when clustering with OPTICS and which does not 
affect the clustering accuracy. OPTICS-Rank uses only 
a fraction of the total number of distances used by 
OPTICS. The number of distances computed by 
OPTICS is 2.5x109 for both data-set, while OPTICS-
Rank uses 2.4x106 and 2.7x106 distances for DS-Vector 
and DS-Tuple respectively. 

We compare the clustering accuracy of OPTICS-
Rank and OPTICS-Bubble on DS-Vector and DS-Tuple 
using the measurement defined in [16]. The measure 
evaluates different cut-lines through a reachability plot 
in equidistant intervals, and selects the cut-line that 
corresponds most closely to the clustering obtained for 
the whole data set. This cut-line is assigned a score 
based on the number of clusters that are present with 
respect to this cut through the reachability plot.  If k 
clusters are found (0 ≤ k ≤ maximum number of 
clusters in the original data set, k_max), then the cut-
line gets a score of k/k_max. 

The clustering accuracy on DS-Vector is shown in 
Figure 10 (a). OPTICS-Rank uses a fixed setting as 
mentioned above while the number of bubbles used by 
OPTICS-Bubble varies from 100 to 250. The 
experiment is repeated 10 times and OPTICS-Rank 

always succeeds to find all the clusters so that it has a 
score of 1. This accuracy is consistently better than that 
of OPTICS-Bubble. The corresponding numbers of 
computed distances by the two algorithms are shown in 
Figure 10 (b). As the number of bubbles increases, the 
number of distances computed by OPTICS-Bubble 
increases linearly. It uses as many as 12.5x106/2.4x106 
≈ 5.2 times amount of distances as OPTICS-Rank. 

The clustering accuracy on DS-Tuple is shown in 
Figure 11 (c). OPTICS-Rank uses the same setting as 
in the previous experiment and the number of bubbles 
used by OPTICS-Bubble varies from 20 to 250. 
Similar to the previous experiment, OPTICS-Rank 
outperforms OPTICS-Bubble and is only matched by 
the latter when the number of bubbles reaches 200. The 
numbers of computed distances for both methods are 
shown in Figure 10 (d). It shows that when we use a 
larger amount of bubbles (≥ 200) for OPTICS-Bubble 
to match the accuracy of OPTICS-Rank, OPTICS-
Bubble will need to perform many more distance 
computations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.2 Real-life Data 
 
The first real-life data-set we used, denoted by DS-
Protein, are all the 170,158 short structure motifs of 
length 4 extracted from 755 protein structures. The 
distance function we use is the rmsd structure 
alignment score. Another real-life data-set we use, 
denoted by DS-Jaspar, consists of 73,253 DNA 
sequence motifs extracted from the first human 
chromosome using the transcription factor binding 
patterns in the JASPAR database [13]. The distance 
function we use is the average mutual edit (Levenstein) 
distance for all sequences in two motifs [12]. The 

Figure 9: The Reachability plots from OPTICS (a 
and b) and OPTICS-Rank (c and d) are almost 
identical. 

(a) OPTICS output for 
DS-Vector 

(b) OPTICS output for 
DS-Tuple 

very small clusters 

(c) OPTICS-Rank output 
for DS-Vector 

(d) OPTICS-Rank output 
for DS-Tuple 

very small clusters 

Figure 10: Clustering accuracy and number of 
distances computed. 
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pairwise distances for this data-set were pre-computed 
using massive parallel processing. 
 
6.2.1 Protein Structure Alignment Data 

The resulting plots of applying different algorithms 
on the whole data-set of DS-Protein are shown in 
Figure 11.  

For OPTICS-Rank, the parameter k is set to the 
smallest possible value of 1, and the frontier search 
step limit s is varied. Any larger values of k will 
improve the clustering accuracy but in the worst case 
increase the number of distance computations linearly. 
For OPTICS-Bubble, the number of bubbles it uses, 
denoted by b, is set to 500 and 5000.  

Figure 11 (a) is the output of OPTICS. Figure 11 (b-
d) show the outputs of OPTICS-Rank, with s = 5, 100, 
and 1000 respectively. They show that the plots of 
OPTICS-Rank are very similar to that of OPTICS, and 
increasing the step limit s will not significantly improve 
the accuracy. Figure 11 (e) and (f) are the plots of 
OPTICS-Bubble. They are less similar to the OPTICS 
output than those of OPTICS-Rank, showing that even 
with as many as 5000 data bubbles, much of the actual 
clustering structure is lost.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The runtime and the number of computed distances 

of the three methods are shown in Table 1. It shows 
that OPTICS-Rank computes far fewer distances than 

both OPTICS and OPTICS-Bubble. It also shows that 
increasing s can only slightly decrease the number of 
computed distances while dramatically increasing the 
runtime. Therefore, in practice, using a small value of s 
has a better balance of accuracy and runtime. 

Table 1: Runtime and computed distances for 
OPTICS, OPTICS-Rank and OPTICS-Bubble 

Method Runtime 
(min) 

Number of Computed 
Distances (million) 

OPTICS 695 14476.9 
OPTICS-Rank, 
s=5 

6 7.2 

OPTICS-Rank, 
s=10 0 

36 7.1 

OPTICS-Rank, 
s=1000 

240 7.0 

OPTICS-Bubble, 
b=500 

14 85.0 

OPTICS-Bubble, 
B=5000 

147 838.3 

 
Figure 12 shows the scalability of OPTICS-Rank 

with respect to the size of the data-set. It shows that 
with a cut-off step limit set to 10, OPTICS-Rank 
achieves a sub-quadratic time complexity in practice. 
 
 
 
 
 
 
 

Figure 12: Scalability of OPTICS-Rank w.r.t. the 
size of the DS-Protein data-set. k= 1, s = 10. 

6.2.2 JASPAR Data 
The clustering results on DS-Jaspar are depicted in 

Figure 13. While using 1000 times less distances, 
OPTICS-Rank generates a plot that captures the same 
cluster structure as the output of the original OPTICS 
(with some switching of cluster positions).  

In order to measure the accuracy numerically, we 
apply the F-score measure [9] on the clustering results. 
The F-score is defined as F = 2*p*r/(p+r) , where p is 
precision and r is recall. The closer an F-score is to 1, 
the better is the result. To determine the F-scores, we 
manually extracted the clusters from both output plots 
(98 clusters for OPTICS and 101 clusters for OPTICS-
Rank), and each cluster in the OPTICS output is 
matched to the cluster in the OPTICS-Rank output that 
has the highest F-score. The F-score distribution of the 
matched clusters is shown in Figure 14. It shows that 
the majority of the clusters in the OPTICS output can 

(a) Result of OPTICS, 
runtime = 695 min. 

(c) Result of OPTICS-Rank, 
s = 100, runtime = 36 min. 

(d) Result of OPTICS-Rank,  
s = 1000,  runtime = 240 min. 
 

(e) Result of OPTICS-Bubble,  
b = 500, runtime = 14 min. 

(f) Result of OPTICS-Bubble,  
b = 5000, runtime = 147 min.  

Figure 11: Reachibility plots on DS-Protein for  
OPTICS, OPTICS-Rank, and OPTICS-Bubble. 

(b) Result of OPTICS-Rank, 
s = 5, runtime = 6 min.  
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be matched with a cluster in the OPTICS-Rank output 
with an F-score of more than 0.95. The average F-score 
weighted by the size of the cluster in the OPTICS 
output is 0.86. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Conclusions 

 
In this paper, we proposed a novel approach to 

perform approximate clustering with high accuracy. 
We introduced a novel pairwise hierarchical ranking 
method to efficiently determine close neighbors for 
every data object. We also proposed a frontier search 
rather than a sequential scan in the naïve ranking to 
reduce the search space and a heuristic that 
approximates the frontier search but further reduces the 
runtime. Empirical results on synthetic and real-life 
data showed the high efficiency and accuracy or our 
method in combination with OPTICS, obtaining a 
speedup up to two orders of magnitude over OPTICS 
while maintaining a very high accuracy and up to one 
order of magnitude over DATA BUBBLES combined 
with OPTICS while obtaining a much more accurate 
result. 
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(a) OPTICS output, using 5.4x109 distances. 

(b) OPTICS-Rank output, using 4.9x106 distances. 
Figure 13: Clustering results on DS-Jaspar. 


