
Speedup Clustering with Hierarchical Ranking

Jianjun Zhou Joerg Sander
Department of Computing Science

University of Alberta
{jianjun,joerg}@cs.ualberta.ca

Abstract

Many clustering algorithms in particular
hierarchical clustering algorithms do not scale-up well
for large data-sets especially when using an expensive
distance function. In this paper, we propose a novel
approach to perform approximate clustering with high
accuracy. We introduce the concept of a pairwise
hierarchical ranking to efficiently determine close
neighbors for every data object. We also propose two
techniques to significantly reduce the overhead of
ranking: 1) a frontier search rather than a sequential
scan in the naïve ranking to reduce the search space;
2) based on this exact search, an approximate frontier
search for pairwise ranking that further reduces the
runtime. Empirical results on synthetic and real-life
data show a speedup of up to two orders of magnitude
over OPTICS while maintaining a high accuracy and
up to one order of magnitude over the previously
proposed DATA BUBBLES method, which also tries to
speedup OPTICS by trading accuracy for speed.

1. Introduction and Related work

Clustering is an important problem in data-mining.
However, many clustering algorithms especially
hierarchical clustering algorithms do not scale-up well
for large data-sets, which are becoming more and more
common nowadays. For instance, the hierarchical
clustering algorithm OPTICS [1] without index support
has quadratic runtime complexity of O(n2), where n is
the size of the data-set.

This quadratic time complexity could be a big
problem for even a medium sized data-set in some
applications, since such a time complexity in a
clustering algorithm typically leads to the same amount
of distance computations, which could be
computationally very expensive, depending on the
application. For instance, computing the dissimilarity
between a pair of 3-dimensional protein structures

using structure alignments can take up to tens of
seconds on a state-of-the-art PC. In a data-set of size
ten thousand, for example, if the average runtime of
computing a distance is one second, computing all
pairwise distances would require more than half a year.

Theoretically, it is possible to reduce the average
runtime complexity of OPTICS to O(nlogn), if an
index structure is available that can perform similarity
range queries in O(logn) time. OPTICS computes all
pairwise distances only if it takes O(n) time to evaluate
a similarity range query. (A similarity range query
retrieves all objects in a large database that are similar
to a query object, typically using a distance function to
measure the dissimilarity.)

There has been an intensive effort [7] over the last
two decades to speedup similarity search in metric
spaces. The typical approach is to build some form of
tree-like indexing structures in advance to speedup the
similarity range query in the application. While
researchers have achieved significant progress in some
types of data such as low dimensional Euclidean data,
the problem is difficult for high dimensional space and
general metric space [5], and finding consistently
efficient index structures for high-dimensional and
general metric spaces has been so far an elusive goal,
due to a number of effects in these spaces, collectively
referred to as the “curse of dimensionality”. Therefore,
there is currently no indexing support that can
efficiently and effectively speedup exact hierarchical
clustering in these kinds of data spaces.

A different way of speeding up a clustering
algorithm is to trade accuracy for speed. A naïve
approach is to sample a small portion of the whole
data-set and run the clustering algorithm on the sample
only. The drawback of this approach is that the result
could be distorted, depending on the sampling rate. The
smaller the sample is, the faster the runtime, but the
worse the accuracy.

To improve this naïve sampling scheme, different
methods have been proposed. The general idea is to

collect certain sufficient statistics such as the linear
sum of the set of points in the region around each
sample point. For instance, BIRCH [15] is the first
method to incorporate sufficient statistics with a
hierarchical partitioning structure to speedup
clustering. It partitions the space along a hierarchical
tree in which so-called clustering features for each
node in the tree are collected. A clustering feature
consists of the number of points, the linear sum, and
the square sum of the set of points represented by a
node. Clustering algorithms are then applied on the leaf
nodes of the hierarchical tree rather than the original
data or sample points. DATA BUBBLES [3] use
different sets of statistics particularly targeted to
speedup hierarchical clustering algorithms such as
OPTICS. Results in [16] show that this approach is
able to handle non-vector data as well as vector data.

While being a significant improvement over the
naïve sampling, the approach of using sufficient
statistics to derive approximate clustering results is still
suffering from the problem of inadequate accuracy for
some important real-life applications. For these
methods, clusters with a size smaller than the number
of points in the smallest abstract region, represented by
a set of sufficient statistics, will typically be lost in the
final clustering result. Even clusters that have a large
number of points but are close to other clusters could
be buried in bigger clusters in the output result, since
gaps between clusters can often not be recovered
correctly by BIRCH or DATA BUBBLES [16].

In this paper, we propose a novel approach to
perform approximate clustering with high accuracy.
The method is based on the observation that in some
clustering algorithms such as OPTICS and single-link,
the final clustering result depends largely on the nearest
neighbor distances of data objects, which comprise
only a very small portion of the quadratic amount of
pairwise distances between data objects. We introduce
a novel pairwise hierarchical ranking to efficiently
determine close neighbors for every data object. The
clustering will then be performed on the original data
objects in stead of on sample points or sufficient
statistics as in the previous methods. Since a naïve
pairwise hierarchical ranking may introduce a large
computational overhead, we also propose two
techniques to significantly reduce this overhead: 1) a
frontier search rather than a sequential scan in the naïve
ranking to reduce the search space; 2) an approximate
frontier search for pairwise ranking that further reduces
the runtime. Empirical results on synthetic and real-life
data show a speedup of up to two orders of magnitude
over previous approaches.

The remainder of this paper is organized as follows.
In Section 2 we introduce background knowledge
including the OPTICS clustering algorithm; in Section
3, we state the motivation of the new method; Section 4
discusses the idea of ranking; in Section 5, we
introduce our new ranking method; in Section 6, we
compare our method empirically with the previous
methods; finally, we conclude with Section 7.

2. Preliminaries
2.1 Three Major Clustering Approaches

Clustering algorithms can be categorized based on
how they cluster the data objects. In this sub-section we
briefly introduce three of the major categories:
partitioning, hierarchical and density-based
approaches. For a complete description of all
categories, see [8].

The partitioning approach is represented by the k-
means algorithm. This approach selects a set of centers
and partitions the data-set by assigning data objects to
their nearest center. The centers are then adjusted
according to the objects in each group and the
assignment process is repeated to refine the result.
Each group of objects assigned to a center is
considered a cluster.

The hierarchical approach is represented by the
single-link algorithm. Starting from groups of
individual data objects (one data object per group), the
method agglomerates two nearest groups into a new
group. The final result is a hierarchical ordering of all
data objects that shows the process of the
agglomeration.

The density-based approach is represented by the
DBSCAN algorithm [5]. The method estimates the
density of the region around each data object by
counting the number of neighbor objects within a given
radius. It then connects dense regions to grow them
into clusters.

Although our algorithm can be applied to other
clustering methods, due to the space limitations, we
focus on OPTICS, which is a hierarchical clustering
algorithm that uses density-based concepts to measure
the dissimilarity between points.

2.2 Triangle Inequalities in Metric Space

Given a set of objects B and a distance function D

between objects in B, by definition, a metric space
satisfies the following properties:
1. (Positiveness) for all x, y in B, D(x, y) ≥ 0,
2. (Symmetry) for all x, y in B, D(x, y) = D(y, x),
3. (Reflexivity) for all x in B, D(x, x) = 0,

4. (Triangle inequality) for all x, y, z in B,
D(x,y) + D(y,z) ≥ D(x,z).

The triangle inequality can be used in a technique
called pruning to avoid distance computations in data
retrieval operations and data-mining applications that
require distance computations.

To apply the pruning technique, typically the
distances between a selected small set of objects P and
all other objects o in a data-set are pre-computed in a
preprocessing step. The objects p∈P are called a
“pivots” or “reference points” in the literature.

In a range query, for example, a query object q is
given and the task is to find objects within a given
query radius r from q. For any data object o and pivot p,
by a derived form of the triangle inequality, it holds
that D(q,o) ≥ |D(q,p) – D(o,p)|. Therefore, at query
time, the distance D(q,p) is also computed in order to
determine if |D(q,p) – D(o,p)| > r. If this condition is
true, then it follows that D(q,o) > r, and o can safely be
excluded without actually computing the distance
D(q,o).

The triangle inequality has been incorporated in
several indexing methods for metric data, for instance
the M-TREE [10]. It can lead to a substantial saving of
distance computations in low dimensional spaces and
in metric spaces that can be mapped to a low
dimensional space. In high dimensional space and
general metric space, however, its effectiveness
deteriorates.

Compared with the sampling and methods such as
BIRCH and DATA-BUBBLES, the advantage of using
triangle inequalities is that it can provide additional
speedup for virtually any method on metric data
(including our method) and it is an exact method that
loses no accuracy.

2.3 Clustering with OPTICS

The OPTICS algorithm is a combination of the
hiearchical and density-based clustering approaches.
OPTICS estimates the density of the region around
each data object as in the traditional density-based
clustering algorithm, and then hiearchically orders all
data objects in a bar plot, so that objects that are close
in dense regions will be close in the ordering. An
example reachability plot for a 2-dimensional data set
is depicted in Figure 1. Such a plot is interpreted as
following: “valleys” in the plot represent clusters, and
the deeper the “valley”, the denser the cluster. The
tallest bar between two “valleys” is a lower bound on
the distance between the two clusters. Large bars in the
plot that are not at the border of a cluster represent

noise, and “nested valleys” represent hierarchically
nested clusters.

There are two important notions in the OPTICS
algorithm: core-distance and reachability-distance for
objects with respect to parameters Eps and MinPts. The
parameter MinPts allows the core-distance and
reachability-distance of a data object to capture the
density around that object. Given a radius Eps, an
object with at least MinPts neighbors within Eps is
called a “core-object”. For any core-object c, its core-
distance is the MinPts-nearest neighbor distance, and
its reachability-distance to another object o is the
greater value of the core-distance of c and the distance
between c and o.

The ordering of OPTICS is essentially a “walk”
through all data objects. Starting from an arbitrary
object marked as visited with an undefined
reachability-distance that is set to “infinity”, it always
selects an object o with the smallest reachability
distance d to any of the already visited objects as the
next object to visit. The value d is then assigned to o.
An Eps-range query is performed for o to determine o’s
core distance as well as all objects and their
reachability distance (w.r.t. o) within o’s Eps
neighborhood. The output of the algorithm is a bar plot
of the reachability values assigned to the objects in the
order they were visited.

3. Motivation

Although the OPTICS algorithm without index
support requires the computation of O(n2) distances, its
final result depends largely on the MinPts-nearest
neighbor distances only. Some large distances (larger
than typical MinPts-nearest neighbor distances)
between clusters also count, but OPTICS only needs a
few of them, e.g., one per pair of clusters as depicted in
Figure 2, while most of the reachability-distances
plotted in the output are short distances within clusters.
The exact values of these large distances can even been
replaced by approximated values without significantly
changing the cluster structure in the output plot, since
as long as the approximation value is large enough, it
can fulfil its function of separating a cluster from the
remaining of the data-set.

C A

B
(a) Data set (b) Reachability Plot

A C B

C A

B
(a) Data set (b) Reachability Plot

A C B A C B

Figure 1: A data-set and its OPTICS output.

It is also not necessary to figure out the exact
MinPts-nearest neighbor for each object to compute its
core-distance (approximately). Since OPTICS only
uses the values of the MinPts-nearest neighbor
distances, an object with a very similar distance as the
MinPts-nearest neighbor can also serve the same
purpose. Overall, in order to preserve the quality of the
final output, we are only required to provide OPTICS
with values that are similar to the MinPts-nearest
neighbor distance for each object and a few large
distances between clusters. To achieve this without
computing O(n2) distances, we will introduce the
method of pairwise hierarchical ranking in Section 5.

Figure 2: An OPTICS walk. The arrows represent
the ordering in the walk. Although the
corresponding reachability-distances are different
from the distances between the pairs of objects, the
lengths of the edges indicate the level of the
reachability-distance values. It shows that most
plotted reachability-distances are in small values.

4. k-Close Neighbor Ranking

The problem of ranking a list of objects has been
well studied in social sciences, with the typical
application of ranking political candidates. Different
from this general problem of ranking, in this paper, we
will focus on a special kind of ranking in computer
science.
Definition 3.1 [k-cn ranking] Given a list of data
objects and a query, the problem is how to rank the list
of data objects so that the top k objects in the list
contain many close neighbors. This problem is called
the k-close neighbor (k-cn) ranking problem.

For our application, we do not require to find the
true top k nearest neighbors, as long as (1) the ranking
returns close neighbors that have similar distances to
the query as the true top k nearest neighbors, and (2)
the ranking is “consistent” among all query objects in
the sense that the number of close neighbors returned
by the ranking reflects consistently the density around
all query objects, then the ranking is good enough to be
used in our clustering method to estimate density. This
low requirement on the accuracy of ranking is also due
to the fact that our method will compute the actual
distances between the query and the top k objects to
filter out far away objects, as will be discussed in
Section 5.

4.1 Ranking using Triangle Inequalities

Figure 3: Ranking with triangle inequalities.
Although p can not be used to estimate D(q,o), p can
be used to estimate D(q',o). While D(q,o) can not be
estimated by using p, chances are that D(q,o) can
be estimated by using another pivot p'.

It has been long observed empirically [14] that the
triangle inequality in a metric space (D(x,y) + D(y,z) ≥
D(x,z) for data objects x, y, z) can be used to detect
close neighbors for a given query object. While the
triangle inequality can be used to speedup data-mining
applications via the pruning technique [4] as discussed
in Section 2.2, the use of triangle inequalities to
perform ranking is only gaining the attention of
researchers in recent years [2]. Given a distance
function D(.,.), a query object q and data objects o and
p, Ep(q,o) = |D(q,p) – D(o,p)| is a lower bound
estimation of D(q,o) using p as a pivot. As shown in the
2-d example of Figure 3, when q and o are not on the
circle centered at p, then the absolute difference value
|D(q,p) – D(o,p)| will be larger than zero and can
indicate the actual D(q,o) values. The estimation will
be the better, the closer q, o, and p are located on a
straight line. Using several pivots will typically
improve the estimation, since if one pivot fails to
estimate D(q,o) well, chances are that it can be
estimated better using another pivot. The rankings of
different individual pivots in a set of pivots P can be
easily combined in order to obtain the best estimation
as the largest lower bound:

EP(q,o) =
Ppi ∈

max |D(q,pi) – D(o,pi)|.

The merit of this ranking method lies in its ability to
save distance computations. In the preprocessing stage,
the distances between all data objects and all pivots in
P are computed; then, in the application, when the
estimation of D(q,o) is needed, e.g., to retrieve the
nearest neighbor of a query q, the above formula can be
applied for all data objects o and the one with the
smallest EP(q,o) value is the estimated nearest
neighbor. All required distances except those between
q and pivots in P have been computed in the
preprocessing stage, so that in the application, only
computationally cheap operations and |P| distance
computations are performed. When the number of

p

q

o

p′

q′

pivots is set to be small and the distance function is
computationally expensive, the total amount of
computations is much smaller than in the brute-force
approach of computing all distances between q and all
data objects to find the nearest neighbor. In most
scenarios, the runtime of an application is much more
important than that of a possible preprocessing, since
the preprocessing is usually performed in advance and
only once for several applications. But even when the
runtime of the preprocessing stage is counted in the
total runtime of an application, the ranking method can
still significantly speedup our intended applications
where the runtime is dominated by the runtime of
typically very expensive distance computations such as
hierarchical clustering where the closest neighbors
have to be determined for each object in the data-set. In
these applications, the total amount of computed
distances is O(n|P|), which is much smaller than O(n2).

4.2 An Analysis of When Ranking Works

In this sub-section, we give a theoretical analysis to
show why EP(q,o) can be used to estimate D(q,o) in
general metric spaces.

For any pivot p, a query q and a close neighbor c of
the query, Ep(q,c) = |D(q,p) – D(o,p)| is bounded by
D(q,c) since, by triangle inequality, |D(q,p) – D(o,p)| ≤
D(q,c). This result can be extended directly to the case
of using a set of pivots P, with EP(q,c) ≤ D(q,c).
Therefore, if a neighbor of the query is very close to it,
then D(q,c) is small, and consequently EP(q,c) must be
small. This means that when ranking objects according
to their estimated distance to q, c can be expected to be
ranked high, if not many objects that are farther away
from q have estimated distances lower than EP(q,c).
The important question is therefore: How large will
EP(q,o) on average be for a randomly chosen object
o?” If EP(q,o) has a high probability of being larger
than EP(q,c), then close neighbors will mostly be
ranked higher than random objects. Theorem 3.1 below
gives the probability of random objects o getting a
EP(q,o) value lager than a given value.
Theorem 4.1 Given a data-set B with metric distance
function D(.,.), let query q, data object o and pivot set
P be selected randomly from B.
Let Z = {D(q,pi) – D(o,pi), pi∈P}, and let PZ(x) be the
probability that for an arbitrary z in Z, |z - µ| ≤ x, where
µ is the mean of values in Z. Then

Pr[EP(q,o) > x] = ||))((1 P
Z xP− .

Proof: Let S = {v| v = D(q,pi) or v = D(o,pi), pi in P}.
Since q, o and the pivots in P are selected randomly
from B, elements in S are independent of each other.

Thus the zi = D(q,pi) – D(o,pi) are also independent of
each other. Therefore
Pr[EP(q,o) ≤ x] = Pr[

Ppi ∈
max |D(q,pi) – D(o,pi)| ≤ x]

=
Ppi∈

Π Pr[|D(q,pi) – D(o,pi)| ≤ x] = ||))((P
Z xP

Theorem 4.1 provides us with a clue of when the
ranking will be effective. Let x = D(q,c) be a distance
between a query q and an object c. By Theorem 4.1

Pr[EP(q,o) ≤ D(q,c)] = ||))),D(((P
Z cqP

Although the distribution of Z is unknown,)),D((cqPZ

is always a monotonic function of D(q,c). The smaller
the D(q,c), the smaller)),D((cqPZ and consequently

the smaller will be ||))),D(((P
Z cqP . It also holds that

the larger the number of pivots |P|, the smaller
||))),D(((P

Z cqP . The trend of the function f(x) = bx is

illustrated in Figure 4 for several values of b, varying x.

Therefore, the closer a neighbor c is to a query q,

and the more pivots we use, the higher the probability
that a random object is ranked lower than c.

Figure 4: f(x) = bx, for b = 0.9, 0.8, 0.7. The values
decrease exponentially.

5. Pairwise Hierarchical Ranking

In this section, we propose a new method using
ranking to reduce distance computations in OPTICS.
The method performs a “pairwise” ranking to detect
close neighbors for each object. In a pairwise ranking
of a set of m object, every object will in turn be the
query so that the ranking contains m sub-ranking of the
m objects. At the end, OPTICS is run on the distances
between each object and its detected close neighbors
and a few additional distances between objects that are
far away from each other.

As indicated by Theorem 4.1, to rank close
neighbors of a query object high, we should use as
many pivots as we can in the ranking, since the larger
the number of pivots, the larger is the probability that a
random object is ranked lower than close neighbors of
the query. However, more pivots also means more

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100

0.9x

0.8x

0.7x

distance computations between pivots and data objects,
as well as the overhead of the ranking. Selecting a
suitable number of pivots to balance these two factors
in the traditional way of using a set of pivots is not
easy.

In order to increase the number of pivots without
significantly increasing the number of distance
computations, we propose to perform the ranking
hierarchically. The method can be roughly described as
follows. First, the data is partitioned in a hierarchical
way, so that for each group of objects on the bottom
level, their distances to O(logn) ancestor objects are
computed. Using these O(logn) ancestors as pivots, our
method then performs a pairwise ranking for each
group of objects to find close neighbors within the
group. To find close neighbors across different groups,
the method also performs ranking across several groups
at a time. Since different groups of objects have
different sets of ancestors, the pivots our method uses
will be their common ancestors. In other words, the
rankings will be performed layer by layer, along the
generated hierarchical partitioning.

Our hierarchical ranking method can save distance
computations because not every pivot is associated
with the same amount of distance computations. The
top level of pivots have distances to all objects, but in
the next level, for each pivot, since its set of
descendants is only a fraction of the whole data-set, the
number distances associated with it is reduced to the
same fraction. In this way, the pivots are constructed
similar to the pyramidal hierarchy of a government:
some pivots are global pivots, responsible for every
member of the data-set, but some are local pivots that
are responsible for members within their territories
only.

The processes of partitioning and ranking will be
explained in more details in the following sub-sections.

5.1 Partitioning

Our method first partitions the data in a hierarchical
way, creating a tree, which we call “pivot tree”.
Initially, the root node of the hierarchical tree contains
all objects in the data-set. During the construction, if a
node v is “split”, a set of f representative objects are
randomly selected from the set of objects in v, and f
associated child nodes (one per representative) are
created under v. The set of objects in v is then
distributed among its children by assigning each object
in v to the child node with the closest associated
representative. Each representative and the objects
assigned to it will form a new node. The construction
proceeds recursively with the leaf node that contains

the largest number of objects until the tree has a user-
specified number of leaf nodes. At the end, all data
objects are contained in the leaf nodes of the tree, and
all nodes except the root contain a representative. For
any data object o and a node v, o is said to be under v if
o is in v or o is in a leaf node that is a descendant of v.

5.2 Ranking

Figure 5: An example for hierarchical ranking.

Multiple rankings are performed using subsets of the
representatives in the constructed hierarchical tree as
pivots. We will show an example before giving the
formal description of the algorithm. In Figure 5, I i (i =
1, 2, 3) are internal nodes and Li (i = 1, 2, 3, 4) are leaf
nodes in different layers. o1, o2, o3, o4, o5, o6, o7, o8,
and o9 are data objects under them. Let I i.rep and Li.rep
be the representatives of internal node I i and leaf node
Li respectively. For o1, o2, o3, o4, and o5 since the
distances between them and the representatives of L1
and L2 are computed when the algorithm partitions the
internal node I2 into L1 and L2, we can use L1.rep and
L2.rep as pivots to rank data objects o1, o2, o3, o4, and
o5. Since the distances between these data objects and
I2.rep, I3.rep, L4.rep are also computed in earlier
partitions, I2.rep, I3.rep, L4.rep should also be used as
pivots to rank them. Therefore, {L1.rep, L2.rep, I2.rep,
I3.rep, L4.rep} is the set of pivots to perform the
ranking for objects of L1 and L2. In the upper layer
ranking of objects under I2, I3 and L4, we can only use
{ I2.rep, I3.rep, L4.rep} as pivots to rank the whole set
of {o1, o2, o3, o4, o5, o6, o7, o8, o9}, since distances
between data objects o6, o7, o8, o9 and representatives
L1.rep, L2.rep may not be computed (they are computed
only when L1.rep= I2.rep or L2.rep = I2.rep).

The formal description of the ranking algorithm is
shown in Figure 6. For any node v (if it is to pairwise
rank the whole data-set, v = root and P = ∅), function
rankNode performs a pairwise k-cn ranking of the
objects under v, using the child representatives of v and
the higher-level pivots with known distances to the
objects under v as the current set of pivots. rankNode is
then recursively applied on all child nodes of v.
Therefore, any object o under v takes part in multiple
rankings: the ranking in v as well as the rankings in all

I1

I2 I3 L4

L1 L2 L3

o1, o2 o3, o4, o5 o6 o7

 o8, o9

descendant nodes of v that o is also under. The lower
the level of the node, the more pivots are used in its
pairwise ranking and the less objects are involved in
the pairwise ranking. The method will maintains a
close neighbor set for each data object o. In any k-cn
ranking, the top k objects with the smallest EP(q,o)
values are retrieved and stored in this close neighbor
set of o. The distances between objects in this set and o
are computed at the end and will be used in the
clustering. It is easy to prove that the number of
distances computed in the partition and ranking is
O(fnlogfn + knlogfn), where f is the branching factor in
the tree, and n is the size of the data-set. However, the
overhead of this ranking using naïveKcnRank can have
a quadratic time complexity (although using
computationally cheap operations), since the function
naïveKcnRank essentially scans all objects and all
pivots to compute and sort the distance estimation
values EP(q,o) of each object o. In the next subsection,
we will propose two new techniques to reduce this
overhead.

Figure 6: Hierarchical ranking algorithm.

5.3 Reducing the overhead in ranking

One issue that arises in the ranking algorithm shown

in Figure 6 is that for the ranking in each node, the

worst case time complexity is O(m2logn), where m is
the number of objects to rank (m decreases as the
algorithm proceeds from the root to the bottom layer).
This is due to the fact that the algorithm needs to
perform a k-cn ranking for each data object and each
ranking has a time complexity of O(mlogn). (Note,
however, that the time complexity is on
computationally cheap operations, i.e., simple
comparisons of pre-computed distance values, rather
than expensive distance computations.) To reduce this
overhead, we propose two new techniques: 1) a best-
first frontier search [11] (rather than the sequential scan
in the naïve ranking) to significantly reduce the search;
2) based on this frontier search (which results in the
same pairwise ranking as the naïveKcnRank) an
approximate pairwise ranking that further reduces the
runtime without sacrificing too much accuracy in the
application to hierarchical clustering.

5.3.1 Best-First Frontier Search

While the naïve k-cn ranking performs a sequential
scan of distances between pivots and all data objects to
be ranked, we propose to use instead a best-first
frontier search, based on a new data structure that
organizes the distances associated with pivots in the
following way. Given a set of objects R under a
particular node of the pivot tree and the corresponding
set P of pivots for the k-cn ranking of the objects in R,
for each pivot pi ∈ P, we store the distances between pi
and o∈R in a list of pairs (o,D(o,pi)), and sort the list
by the distance value of D(o,pi). Using |P| pivots, we
have |P| sorted lists, and each object o∈R will have
exactly one occurrence in each of these lists. Between
the lists of different pivots we link the occurrences of
the same object together in order to efficiently access
all occurrences of a particular object in all lists. The
data structure is illustrated in Figure 7.

Figure 7: Linking the occurrences of each object.

When computing a pairwise k-cn ranking, each
object q will be used in turn as a query object, and all
other objects o∈R will be ranked according to their
estimated distances to q.

p2 p1 p3

(q,D(q,p1)) (o,D(o,p3))

(q,D(q,p2))

(q,D(q,p3))

(o,D(o,p1))

(o,D(o,p2))

p1 p2 p3

rankAll(node root, int k)
for all objects o under root
 o.closeSet ← ∅;
rankNode(root, k, ∅);
for all objects o under root
 for all neighbors x in o.closeSet
 o.distSet ← D(o,x);/* o.distSet stores distances

associated with object o */

rankNode(node v, int k, set P)

P′ ← P ∪ {all child representatives of v};
rankObjects(v, k, P′);
for all child nodes c of v
 rankNode(c, k, P′);

rankObjects(node v, int k, set P)
for all objects o under v /* i.e., ∀o ∈ v.objectSet */
 topK = naïveKcnRank(o, k, P, v.objectSet);
 o.closeSet ← o.closeSet ∪ topK;

naïveKcnRank(object q, int k, set P, set objectSet)
 sortedList ← ∅;

for all objects o in objectSet
 sortedList ← EP(q,o) =

Ppi∈
max |D(q,pi) – D(o,pi)|.;

return top k objects in sortedList;

Instead of solving this problem with a sequential
scan, our new k-cn ranking algorithm first retrieves all
occurrences of the current query q from the given data
structures. These occurrences virtually form a starting
line. Then, our method searches from the starting line,
advances upward and downward along the |P| sorted
lists, to search for the top k objects with the smallest
EP(q,o) distance estimation values.

Figure 8: k-cn ranking algorithm with best-first
frontier search.

The rationale is as follows. For a query q, let object
o be one of the top k objects that is returned by the
naïve ranking, i.e., its distance estimation value EP(q,o)
=

Ppi ∈
max |D(q,pi) – D(o,pi)| is one of the k-smallest

among all objects to be ranked. That also means that
for object o, the values |D(q,pi) – D(o,pi)| for each pivot
pi are all small (since |D(q,pi) – D(o,pi)| ≤

Ppi ∈
max |D(q,pi)

– D(o,pi)| = EP(q,o)). Consequently, the occurrences of
(a top k object) o in all the lists will in general be close
to the occurrences of the query q because the lists are
sorted by the distances of the objects to the pivot
D(o,pi), and for a difference |D(q,pi) – D(o,pi)| to be
small, D(q,pi) and D(o,pi) have to be similar values and
will hence appear close to each other when sorted.
Therefore, we can start from the occurrences of q and
look in the nearby positions in the |P| sorted lists for
the top k objects by a frontier search. At the end, the
number of occurrences we visit will be typically only a

fraction of the total occurrences in the lists that belong
to the pivots, leading to a speedup over the sequential
scan.

The pseudo-code of the new k-cn ranking algorithm
is given in Figure 8. Function kcnRank maintains a
priority queue as the frontier such that its top element is
a pair (o,D(o,pi)) with |D(o,pi) – D(q,pi))| the smallest
in the queue. After all occurrences of q in the lists that
belong to the pivots are retrieved, the frontier is
initialized with occurrences immediately adjacent to
those occurrences of q upward and downward. Then
the function performs a frontier search in all the sorted
lists, always advancing in the list that the current top
element of the queue lies in. For objects already
encountered when the frontier advances, the function
maintains a count of the number of their occurrences. If
this number is equal to the number of pivots used in the
ranking, then the object is one of the top k objects
returned in the final ranking. This process continues
until all top k objects are found.

In the remaining of this subsection, we prove the
correctness of algorithm kcnRank.
Lemma 5.1 In algorithm kcnRank, let occurrence
(a,D(a,pi)) be popped out of the priority queue before
another occurrence (b,D(b,pj)), then |D(a,pi) – D(q,pi))|
≤ |D(b,pj) – D(q,pj))|.
Proof: When (a,D(a,pi)) is popped out the priority
queue, (b,D(b,pj)) can only be either in the frontier
queue or outside the frontier (i.e. the occurrence has
not yet been visited by the frontier). If (b,D(b,pj)) is in
the queue, then by the property of the priority queue,
|D(a,pi) – D(q,pi))| ≤ |D(b,pj) – D(q,pj))|. If (b,D(b,pj))
is outside the frontier, since all the lists are sorted,
there must be a third occurrence (c,D(c,pj)) in the list of
pivot pj with an absolute difference value |D(c,pi) –
D(q,pi))| ≤ |D(b,pj) – D(q,pj))|. Since |D(a,pi) – D(q,pi))|
≤ |D(c,pj) – D(q,pj))|, |D(a,pi) – D(q,pi))| ≤ |D(b,pj) –
D(q,pj))|.
Theorem 5.1 The algorithm of kcnRank and the naïve
k-cn ranking algorithm naïveKcnRank return the same
result.
Proof: Let the last top k objects found by the frontier
search be t. Thus the last occurrence popped out of the
priority queue belongs to t. Denote this occurrence by
(t,D(t,pi)). For any object o other than the returned k
objects in topK, it must have an occurrence (o,D(o,pj))
that can only be popped out of the priority queue after
(t,D(t,pi)). By lemma 5.1, |D(t,pi) – D(q,pi))| ≤ |D(o,pj)
– D(q,pj))|. Thus EP(q,t) ≤ EP(q,o). Also by Lemma 5.1,
(t,D(t,pi)) has an absolute difference value |D(t,pi) –
D(q,pi))| no less than those of the previous occurrences
popped out the queue. Since for the other top k objects
returned by kcnRank, all of their occurrences are

init(object q, priorityQ frontier, set P)
for all occurrences (q,D(q,pi)) of q, with pi ∈ P
 for all immediate adjacent occurrences (o,D(o,pi)) of

(q,D(q,pi))

 frontier ← (o,D(o,pi))

/* perform k-cn ranking for query q. P is the pivots set */
kcnRank(object q, int k, set P)

frontier ← ∅; /* the top is the pair (o,D(o,pi)) with
|D(o,pi) – D(q,pi))| the smallest in it */

init(q, frontier, P);
topK ← ∅;
while frontier ≠ ∅ /* perform frontier search */
 (o,D(o,pi)) ← frontiers.pop();
 if o is not in count
 count[o] ← 0;
 else count[o] ← count[o] + 1;
 if count[o] = |P|
 topK ← o;
 if topK = k
 return topK;
 frontier ← (o′,D(o′,pi)); /* (o′,D(o′,pi)) is the

adjacent pair of (o,D(o,pi)) outside the frontier */

popped out before (t,D(t,pi)), their distance estimation
values are all no greater than EP(q,t). So the elements in
topK have the smallest distance estimation values
among all objects to rank. Therefore, they will also be
returned by the naïveKcnRank algorithm.

5.3.2 Approximate Pairwise k-cn Ranking

As indicated by Theorem 4.1 in Section 4.2, the
larger the number of pivots, the greater the ranking
accuracy. Given a fixed set of pivots, if the number of
pivots is too small to effectively perform k-cn ranking,
e.g., k = 5 and only 3 of the top 5 objects returned by
the ranking are actually close neighbors, then some of
the occurrences of the top k objects in the ranking may
be located farther away from the corresponding
occurrences of the query object in one of the sorted
pivot lists. Thus the frontier search in algorithm
kcnRank in Figure 8 may have to advance to a place far
away from the starting point to find the occurrence of
all the top k objects, and still incur a large overhead.

Our solution to this problem is to limit the steps that
the frontier can advance from the starting position. The
returned result is then no longer exactly the same as the
naïve k-cn ranking, so that the new algorithm performs
an approximate pairwise k-close neighbor ranking.
When the search stops, if only k′ of the top k objects (k′
< k) have all occurrences within the frontier, then the
remaining k-k′ objects are selected from those objects
(besides the k′ objects already selected) that have the
largest numbers of occurrences within the frontier.

The rationale behind this idea is that objects with
occurrences located far away from the corresponding
occurrences of the query objects are more likely to be
random neighbors that can not contribute short
distances to be used by OPTICS, even if the frontier
search goes all the way to find their occurrences. Thus
setting a step limit for the frontier search will not hurt
the final clustering accuracy, even if some of the top
but not so close objects are not returned by the search.

Let the step limit be s. The approximate pairwise k-
cn ranking algorithm has worst case time complexity of
O(snlogn), where n is the size of the data set. Empirical
results in Section 6 show that s can be as small as 2k to
generate clustering results with high and robust
accuracy.

5.4 Integration with OPTICS

After close neighbors of all objects have been
detected by the pairwise ranking based on distance
estimations, our method computes the actual distances
between each object and these close neighbors.

Another set of distances we will use are the distances
computed in the partition stage when creating the pivot
tree, i.e., the distances between the representatives of
nodes and the objects under them. These are the only
distances that OPTICS will use in the clustering. All
other distances are assumed to be “infinitely” large.

The value of k should not be significantly smaller
than the minPts parameter of OPTICS, otherwise the
cluster result can be distorted because there are enough
computed distances associated with each object to
estimate the core-distances. In the pairwise hierarchical
ranking, each object can take part in several sub-
ranking, i.e., rankings of different layers, so that the
number of distances associated with each object is
usually a little larger than k. And since in practice the
minPts parameter only needs to be relatively small to
provide good results, k can also be set to a small value
(typically <10).

6. Experimental Evaluation

In this section, we compare our method and the DATA
BUBBLES method on synthetic as well as real-life
data-sets. Both methods are used to speedup the
OPTICS clustering algorithm. We denote our method
using approximate pairwise hierarchical ranking by
OPTICS-Rank, and the DATA-BUBBLE method by
OPTICS-Bubble. All experiments are performed on a
Linux workstation with dual AMD Opteron 2.2GHz
CPUs and 5GB of RAM, using one CPU only.

6.1 Synthetic Data

We use the two synthetic data-sets studied in [16] to
show that our new method has better accuracy in
detecting subtle cluster structures.

The first synthetic data we use, denoted by DS-
Vector, is a synthetic 2-dimensional point data set. It
contains 50000 points distributed over 8 clusters and
4% background noise. The clustering output of
OPTICS is depicted in Figure 9 (a). Some of the 8
clusters are very close to each other as indicated by the
relatively low reachability values that separate them.

The second data set, called DS-Tuple, is a synthetic
set of binary strings. Each object of DS-tuple is a 100-
bit 0/1 sequence, and the similarity between two such
sequences s1 and s2 is measured using the Jaccard
coefficient, i.e. 2121 ssss ∪∩ . 80% of the objects

form 10 clusters and the remaining 20% are noise. Two
of the clusters are very small (123 and 218 objects),
making the problem of finding them very challenging.
The reachability plot obtained when clustering the

whole data set using OPTICS is depicted in Figure 9
(b) (the two tiny clusters are indicated by arrows).

The outputs of OPTICS-Rank for DS-Vector and
DS-Tuple are shown in Figure 9 (c) and (d)
respectively. For the parameters of OPTICS-Rank, the
number of top objects to return in each ranking, k, is set
to 5, and the step limit s for the best-first frontier search
is set to 10. The number of leaf nodes for the pivot tree
is set to 5000, and the branching factor is set to 10. The
plots generated by OPTICS-Rank are almost identical
to those generated by OPTICS, only that some clusters
have switched position, which is a normal phenomenon
when clustering with OPTICS and which does not
affect the clustering accuracy. OPTICS-Rank uses only
a fraction of the total number of distances used by
OPTICS. The number of distances computed by
OPTICS is 2.5x109 for both data-set, while OPTICS-
Rank uses 2.4x106 and 2.7x106 distances for DS-Vector
and DS-Tuple respectively.

We compare the clustering accuracy of OPTICS-
Rank and OPTICS-Bubble on DS-Vector and DS-Tuple
using the measurement defined in [16]. The measure
evaluates different cut-lines through a reachability plot
in equidistant intervals, and selects the cut-line that
corresponds most closely to the clustering obtained for
the whole data set. This cut-line is assigned a score
based on the number of clusters that are present with
respect to this cut through the reachability plot. If k
clusters are found (0 ≤ k ≤ maximum number of
clusters in the original data set, k_max), then the cut-
line gets a score of k/k_max.

The clustering accuracy on DS-Vector is shown in
Figure 10 (a). OPTICS-Rank uses a fixed setting as
mentioned above while the number of bubbles used by
OPTICS-Bubble varies from 100 to 250. The
experiment is repeated 10 times and OPTICS-Rank

always succeeds to find all the clusters so that it has a
score of 1. This accuracy is consistently better than that
of OPTICS-Bubble. The corresponding numbers of
computed distances by the two algorithms are shown in
Figure 10 (b). As the number of bubbles increases, the
number of distances computed by OPTICS-Bubble
increases linearly. It uses as many as 12.5x106/2.4x106
≈ 5.2 times amount of distances as OPTICS-Rank.

The clustering accuracy on DS-Tuple is shown in
Figure 11 (c). OPTICS-Rank uses the same setting as
in the previous experiment and the number of bubbles
used by OPTICS-Bubble varies from 20 to 250.
Similar to the previous experiment, OPTICS-Rank
outperforms OPTICS-Bubble and is only matched by
the latter when the number of bubbles reaches 200. The
numbers of computed distances for both methods are
shown in Figure 10 (d). It shows that when we use a
larger amount of bubbles (≥ 200) for OPTICS-Bubble
to match the accuracy of OPTICS-Rank, OPTICS-
Bubble will need to perform many more distance
computations.

6.2 Real-life Data

The first real-life data-set we used, denoted by DS-
Protein, are all the 170,158 short structure motifs of
length 4 extracted from 755 protein structures. The
distance function we use is the rmsd structure
alignment score. Another real-life data-set we use,
denoted by DS-Jaspar, consists of 73,253 DNA
sequence motifs extracted from the first human
chromosome using the transcription factor binding
patterns in the JASPAR database [13]. The distance
function we use is the average mutual edit (Levenstein)
distance for all sequences in two motifs [12]. The

Figure 9: The Reachability plots from OPTICS (a
and b) and OPTICS-Rank (c and d) are almost
identical.

(a) OPTICS output for
DS-Vector

(b) OPTICS output for
DS-Tuple

very small clusters

(c) OPTICS-Rank output
for DS-Vector

(d) OPTICS-Rank output
for DS-Tuple

very small clusters

Figure 10: Clustering accuracy and number of
distances computed.

(a) Accuracy on DS-Vector

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220 240 260

A
cc

ur
ac

y
sc

or
e

Number of bubbles

OPTICS-Rank
OPTICS-Bubble

(b) Computed distances for
clustering DS-Vector

 0
 2
 4
 6
 8

 10
 12
 14
 16

 100 120 140 160 180 200 220 240 260

M
ill

io
n

Number of bubbles

OPTICS-Bubble
OPTICS-Rank

(c) Accuracy on DS-Tuple

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

A
cc

ur
ac

y
sc

or
e

Number of bubbles

OPTICS-Rank
OPTICS-Bubble

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 50 100 150 200 250

M
ill

io
n

Number of bubbles

OPTICS-Bubble
OPTICS-Rank

(d) Computed distances for
clustering DS-Tuple

pairwise distances for this data-set were pre-computed
using massive parallel processing.

6.2.1 Protein Structure Alignment Data

The resulting plots of applying different algorithms
on the whole data-set of DS-Protein are shown in
Figure 11.

For OPTICS-Rank, the parameter k is set to the
smallest possible value of 1, and the frontier search
step limit s is varied. Any larger values of k will
improve the clustering accuracy but in the worst case
increase the number of distance computations linearly.
For OPTICS-Bubble, the number of bubbles it uses,
denoted by b, is set to 500 and 5000.

Figure 11 (a) is the output of OPTICS. Figure 11 (b-
d) show the outputs of OPTICS-Rank, with s = 5, 100,
and 1000 respectively. They show that the plots of
OPTICS-Rank are very similar to that of OPTICS, and
increasing the step limit s will not significantly improve
the accuracy. Figure 11 (e) and (f) are the plots of
OPTICS-Bubble. They are less similar to the OPTICS
output than those of OPTICS-Rank, showing that even
with as many as 5000 data bubbles, much of the actual
clustering structure is lost.

The runtime and the number of computed distances

of the three methods are shown in Table 1. It shows
that OPTICS-Rank computes far fewer distances than

both OPTICS and OPTICS-Bubble. It also shows that
increasing s can only slightly decrease the number of
computed distances while dramatically increasing the
runtime. Therefore, in practice, using a small value of s
has a better balance of accuracy and runtime.

Table 1: Runtime and computed distances for
OPTICS, OPTICS-Rank and OPTICS-Bubble

Method Runtime
(min)

Number of Computed
Distances (million)

OPTICS 695 14476.9
OPTICS-Rank,
s=5

6 7.2

OPTICS-Rank,
s=10 0

36 7.1

OPTICS-Rank,
s=1000

240 7.0

OPTICS-Bubble,
b=500

14 85.0

OPTICS-Bubble,
B=5000

147 838.3

Figure 12 shows the scalability of OPTICS-Rank

with respect to the size of the data-set. It shows that
with a cut-off step limit set to 10, OPTICS-Rank
achieves a sub-quadratic time complexity in practice.

Figure 12: Scalability of OPTICS-Rank w.r.t. the
size of the DS-Protein data-set. k= 1, s = 10.

6.2.2 JASPAR Data
The clustering results on DS-Jaspar are depicted in

Figure 13. While using 1000 times less distances,
OPTICS-Rank generates a plot that captures the same
cluster structure as the output of the original OPTICS
(with some switching of cluster positions).

In order to measure the accuracy numerically, we
apply the F-score measure [9] on the clustering results.
The F-score is defined as F = 2*p*r/(p+r) , where p is
precision and r is recall. The closer an F-score is to 1,
the better is the result. To determine the F-scores, we
manually extracted the clusters from both output plots
(98 clusters for OPTICS and 101 clusters for OPTICS-
Rank), and each cluster in the OPTICS output is
matched to the cluster in the OPTICS-Rank output that
has the highest F-score. The F-score distribution of the
matched clusters is shown in Figure 14. It shows that
the majority of the clusters in the OPTICS output can

(a) Result of OPTICS,
runtime = 695 min.

(c) Result of OPTICS-Rank,
s = 100, runtime = 36 min.

(d) Result of OPTICS-Rank,
s = 1000, runtime = 240 min.

(e) Result of OPTICS-Bubble,
b = 500, runtime = 14 min.

(f) Result of OPTICS-Bubble,
b = 5000, runtime = 147 min.

Figure 11: Reachibility plots on DS-Protein for
OPTICS, OPTICS-Rank, and OPTICS-Bubble.

(b) Result of OPTICS-Rank,
s = 5, runtime = 6 min.

 50
 100
 150
 200
 250
 300
 350
 400
 450

 30000 60000 90000 120000 150000

R
un

tim
e

(s
ec

)

Size of data-set

be matched with a cluster in the OPTICS-Rank output
with an F-score of more than 0.95. The average F-score
weighted by the size of the cluster in the OPTICS
output is 0.86.

7. Conclusions

In this paper, we proposed a novel approach to

perform approximate clustering with high accuracy.
We introduced a novel pairwise hierarchical ranking
method to efficiently determine close neighbors for
every data object. We also proposed a frontier search
rather than a sequential scan in the naïve ranking to
reduce the search space and a heuristic that
approximates the frontier search but further reduces the
runtime. Empirical results on synthetic and real-life
data showed the high efficiency and accuracy or our
method in combination with OPTICS, obtaining a
speedup up to two orders of magnitude over OPTICS
while maintaining a very high accuracy and up to one
order of magnitude over DATA BUBBLES combined
with OPTICS while obtaining a much more accurate
result.

Acknowledgment

� We are grateful to Gordon Robertson and Mikhail

Bilenky in Canada's Michael Smith Genome

Sciences Centre for fruitful discussions and
providing us the DS-Jaspar data-set.

� Research partially funded by NSERC and CFI.

8. References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J.

Sander. OPTICS: Ordering Points To Identify the
Clustering Structure. SIGMOD’99, pp. 49-60.

[2] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S.
Sclaroff. Query-sensitive embeddings. SIGMOD’05,
pages 706–717.

[3] M. Breunig, H.-P. Kriegel, P. Kröger, and J. Sander.
Data Bubbles: Quality Preserving Performance Boosting
for Hierarchical Clustering. SIGMOD’01, pp. 79-90.

[4] C. Elkan. Using the Triangle Inequality to Accelerate k-
Means. ICML’03, pp. 147-153.

[5] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J.
L.Marroquın. Searching in metric spaces. ACM Comput.
Surv., 33(3):273–321, 2001.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. KDD’96, pp. 226-
231.

[7] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. TODS, 28(4):517–580, 2003.

[8] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[9] B. Larsen and C. Aone. Fast and Effective Text Mining
Using Linear-time Document Clustering. KDD’99, 16-
22.

[10] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
Efficient Access Method for Similarity Search in Metric
Spaces. VLDB’97, pp. 426-435.

[11] S. Russell, P. Norvig. Artificial Intelligence: A Modern
Approach, Prentice Hall Series in Artificial Intelligence.
Englewood Cliffs, New Jersey, 1995.

[12] G. Robertson, M. Bilenky, K. Lin, A. He, W. Yuen, M.
Dagpinar, R. Varhol, K. Teague, O. L. Griffith, X.
Zhang, Y. Pan, M. Hassel, M. C. Sleumer, W. Pan, E.
D. Pleasance, M. Chuang, H. Hao, Y. Y. Li, N.
Robertson, C. Fjell, B. Li, S. B. Montgomery, T.
Astakhova, J. Zhou, J. Sander, A. S. Siddiqui, and S. J.
M. Jones. cisRED: a database system for genome-scale
computational discovery of regulatory elements. Nucleic
Acids Research, 34: D68-D73, 2006.

[13] G.D. Stormo. DNA binding sites: representation and
discovery. Bioinformatics. 2000 Jan;16(1):16-23

[14] E. Vidal. An algorithm for finding nearest neighbours in
(approximately) constant average time. Pattern Recogn.
Lett., 4(3):145–157, 1986.

[15] T. Zhang, R. Ramakrishnan, Linvy M.: BIRCH: An
Efficient Data Clustering Method for Very Large
Databases. SIGMOD’96, pp. 103-114.

[16] J. Zhou and J. Sander. Data bubbles for non-vector data:
Speeding-up hierarchical clustering in arbitrary metric
spaces. VLDB’03, pp 452–463.

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F-score

Figure 14: Distribution of F-score. The weighted F-
score is 0.86.

(a) OPTICS output, using 5.4x109 distances.

(b) OPTICS-Rank output, using 4.9x106 distances.
Figure 13: Clustering results on DS-Jaspar.

