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Abstract using structure alignments can take up to tens of
seconds on a state-of-the-art PC. In a data-ssizef
Many clustering algorithms in  particular te€n thousand, for example, if the average runtirhe o
hierarchical clustering algorithms do not scale-well computing a distance is one second, computing all
for large data-sets especially when using an expens Pairwise distances would require more than hakary
distance function. In this paper, we propose a hove  Theoretically, it is possible to reduce the average
approach to perform approximate clustering withthig ~runtime complexity of OPTICS td(nlogn), if an
accuracy. We introduce the concept of a pairwise index structure is available that can perform sinty
hierarchical ranking to efficiently determine close range queries if©(logn) time. OPTICS computes all
neighbors for every data object_ We also propose tw pairWise distances Only if it tak&n) time to evaluate
techniques to significantly reduce the overhead of @ similarity range query. (A similarity range query
ranking: 1) a frontier search rather than a sequaht retrieves all objects in a large database thasmnéar
scan in the naive ranking to reduce the search epac t0 @ query object, typically using a distance fiorcto
2) based on this exact search, an approximate igont measure the dissimilarity.)
search for pairwise ranking that further reducee th There has been an intensive effort [7] over the las
runtime. Empirical results on synthetic and re&tli two decades to speedup similarity search in metric
data show a speedup of up to two orders of magaitud SPaces. The typical approach is to build some fofm
over OPTICS while maintaining a high accuracy and tree-like indexing structures in advance to speettiep
up to one order of magnitude over the previously Similarity range query in the application. While
proposed DATA BUBBLES method, which also tries to 'esearchers have achieved significant progreseries

speedup OPTICS by trading accuracy for speed. types of data such as low dimensional Euclidean,dat
the problem is difficult for high dimensional spaaed
1. Introduction and Related work general metric space [5], and finding consistently

efficient index structures for high-dimensional and
general metric spaces has been so far an elusale go
due to a number of effects in these spaces, coidyt
referred to as the “curse of dimensionality”. THere,
there is currently no indexing support that can
|eﬁiciently and effectively speedup exact hieracahi
clustering in these kinds of data spaces.

A different way of speeding up a clustering
algorithm is to trade accuracy for speed. A naive
approach is to sample a small portion of the whole
data-set and run the clustering algorithm on timepéa
only. The drawback of this approach is that theiltes
could be distorted, depending on the sampling fite.
be smaller the sample is, the faster the runtime, that
worse the accuracy.

To improve this naive sampling scheme, different
methods have been proposed. The general idea is to

Clustering is an important problem in data-mining.
However, many clustering algorithms especially
hierarchical clustering algorithms do not scalevwsdl
for large data-sets, which are becoming more ang mo
common nowadays. For instance, the hierarchica
clustering algorithm OPTICS [1] without index suppo
has quadratic runtime complexity 6{(n?, wheren is
the size of the data-set.

This quadratic time complexity could be a big
problem for even a medium sized data-set in some
applications, since such a time complexity in a
clustering algorithm typically leads to the samepant
of distance computations, which  could
computationally very expensive, depending on the
application. For instance, computing the dissirtifar
between a pair of 3-dimensional protein structures



collect certain sufficient statistics such as theedr

The remainder of this paper is organized as follows

sum of the set of points in the region around eachIn Section 2 we introduce background knowledge

sample point. For instance, BIRCH [15] is the first
method to incorporate sufficient statistics with a
hierarchical partitioning structure to speedup
clustering. It partitions the space along a hidraa
tree in which so-called clustering features forheac
node in the tree are collected. A clustering featur
consists of the number of points, the linear sung a
the square sum of the set of points represented by
node. Clustering algorithms are then applied orléhé
nodes of the hierarchical tree rather than theirmaig
data or sample points. DATA BUBBLES [3] use
different sets of statistics particularly targetéd
speeduphierarchical clustering algorithms such as
OPTICS. Results in [16] show that this approach is
able to handle non-vector data as well as vectiar. da
While being a significant improvement over the
naive sampling, the approach of using sufficient
statistics to derive approximate clustering resslstill
suffering from the problem of inadequate accuramy f
some important real-life applications. For these
methods, clusters with a size smaller than the mumb
of points in the smallest abstract region, represkthy
a set of sufficient statistics, will typically best in the
final clustering result. Even clusters that haviarge
number of points but are close to other clusterddco
be buried in bigger clusters in the output ressitice

including the OPTICS clustering algorithm; in Seati

3, we state the motivation of the new method; $acti
discusses the idea of ranking; in Section 5, we
introduce our new ranking method; in Section 6, we
compare our method empirically with the previous
methods; finally, we conclude with Section 7.

2. Preliminaries
2.1 Three Major Clustering Approaches

Clustering algorithms can be categorized based on
how they cluster the data objects. In this subiceate
briefly introduce three of the major categories:
partitioning, hierarchical and density-based
approaches. For a complete description of all
categories, see [8].

The partitioning approach is represented by khe
means algorithm. This approach selects a set @éren
and partitions the data-set by assigning data thbjec
their nearest center. The centers are then adjusted
according to the objects in each group and the
assignment process is repeated to refine the result
Each group of objects assigned to a center is
considered a cluster.

The hierarchical approach is represented by the
single-link algorithm. Starting from groups of

gaps between clusters can often not be recovereqngividual data objects (one data object per groth®

correctly by BIRCH or DATA BUBBLES [16].

method agglomerates two nearest groups into a new

In this paper, we propose a novel approach 10 groyp. The final result is a hierarchical orderufgall

perform approximate clustering with high accuracy.

data objects that shows the process of the

The method is based on the observation that in Someagglomeration.

clustering algorithms such as OPTICS and single-lin
the final clustering result depends largely onnbarest

The density-based approach is represented by the
DBSCAN algorithm [5]. The method estimates the

neighbor distances of data objects, which comprisedensity of the region around each data object by

only a very small portion of the quadratic amouht o
pairwise distances between data objects. We inte@du
a novel pairwise hierarchical ranking to efficigntl
determine close neighbors for every data objece Th
clustering will then be performed on the originaital
objects in stead of on sample points or sufficient
statistics as in the previous methods. Since aenaiv
pairwise hierarchical ranking may introduce a large
computational overhead, we also propose two
techniques to significantly reduce this overheadal
frontier search rather than a sequential scanem#ive
ranking to reduce the search space; 2) an appréxima
frontier search for pairwise ranking that furtheduces
the runtime. Empirical results on synthetic and-liéa
data show a speedup of up to two orders of magmnitud
over previous approaches.

counting the number of neighbor objects within zegi
radius. It then connects dense regions to grow them
into clusters.

Although our algorithm can be applied to other
clustering methods, due to the space limitations, w
focus on OPTICS, which is a hierarchical clustering
algorithm that uses density-based concepts to measu
the dissimilarity between points.

2.2 Triangle Inequalitiesin Metric Space
Given a set of objectB and a distance functio

between objects iB, by definition, a metric space
satisfies the following properties:

1. (Positiveness) for alt, y in B, D(x, y) > 0,
2. (Symmetry) for allk, y in B, D(x, y) = D(y, X),
3. (Reflexivity) for allx in B, D(x, X) = 0,



4. (Triangle inequality) for allx, y, z in B,
D(xy) + D(y,2) > D(x,2).

The triangle inequality can be used in a technique
called pruning to avoid distance computations in data
retrieval operations and data-mining applicationat t
require distance computations.

To apply the pruning technique, typically the
distances between a selected small set of olfeatsd
all other object® in a data-set are pre-computed in a
preprocessing step. The objeqtSlP are called a
“pivots” or “reference points” in the literature.

In a range query, for example, a query objgds
given and the task is to find objects within a give
query radius fromq. For any data objectand pivotp,
by a derived form of the triangle inequality, itlt®
that D@,0) > |D(a.,p) — D(o,p)|]. Therefore, at query
time, the distance [Q(p) is also computed in order to
determine if |Dg,p) — D(o,p)| >r. If this condition is
true, then it follows that @y,0) > r, ando can safely be
excluded without actually computing the distance
D(q,0).

The triangle inequality has been incorporated in
several indexing methods for metric data, for inséa
the M-TREE [10]. It can lead to a substantial sg\iri

noise, and “nested valleys” represent hierarchicall
nested clusters.

There are two important notions in the OPTICS
algorithm: core-distance and reachability-distafme
objects with respect to paramet&gsandMinPts The
parameter MinPts allows the core-distance and
reachability-distance of a data object to captire t
density around that object. Given a radigps an
object with at leasMinPts neighbors withinEps is
called a “core-object”. For any core-objaxtits core-
distance is theMinPtsnearest neighbor distance, and
its reachability-distance to another objemtis the
greater value of the core-distancecaind the distance
betweerc ando.

The ordering of OPTICS is essentially a “walk”
through all data objects. Starting from an arbjtrar
object marked as Vvisited with an undefined
reachability-distance that is set to “infinity”, @lways
selects an objecb with the smallest reachability
distanced to any of the already visited objects as the
next object to visit. The value is then assigned to.

An Epsrange query is performed forto determineo’s
core distance as well as all objects and their
reachability distance (w.r.t.o) within o's Eps

distance computations in low dimensional spaces andneighborhood. The output of the algorithm is a filat

in metric spaces that can be mapped to a low

of the reachability values assigned to the objecthe

dimensional space. In high dimensional space andorder they were visited.

general metric space, however, its effectiveness

deteriorates.

Compared with the sampling and methods such as

BIRCH and DATA-BUBBLES, the advantage of using
triangle inequalities is that it can provide adufitl
speedup for virtually any method on metric data
(including our method) and it is an exact methoat th
loses no accuracy.

2.3 Clustering with OPTICS

The OPTICS algorithm is a combination of the

B2 -
(a) Data set

Figure 1: A data-set and itsOPTICS output.

(b) Reachability Plot

3. Motivation

Although the OPTICS algorithm without index

hiearchical and density-based clustering approachessupport requires the computation@fn?) distances, its

OPTICS estimates the density of the region around
each data object as in the traditional density-dbase
clustering algorithm, and then hiearchically ordalis
data objects in a bar plot, so that objects thatctose

in dense regions will be close in the ordering. An
example reachability plot for a 2-dimensional dsg¢h

is depicted in Figure 1. Such a plot is interpregsd
following: “valleys” in the plot represent clustemsnd
the deeper the “valley”, the denser the clustere Th
tallest bar between two “valleys” is a lower boum
the distance between the two clusters. Large Ipatfsei
plot that are not at the border of a cluster remes

final result depends largely on thdinPtsnearest
neighbor distances only. Some large distancese(larg
than typical MinPtsnearest neighbor distances)
between clusters also count, but OPTICS only needs
few of them, e.g., one per pair of clusters asategiin
Figure 2, while most of the reachability-distances
plotted in the output are short distances withirsters.
The exact values of these large distances canleem
replaced by approximated values without signifiant
changing the cluster structure in the output poice
as long as the approximation value is large enoiigh,
can fulfil its function of separating a cluster fiathe
remaining of the data-set.



It is also not necessary to figure out the exact

MinPtsnearest neighbor for each object to compute its 4.1 Ranking using Triangle | nequalities
core-distance (approximately). Since OPTICS only o’

uses the values of theéMinPtsnearest neighbor N

distancesan object with a very similar distance as the

MinPtsnearest neighbor can also serve the same Lop _
purpose. Overall, in order to preserve the qualithe e

final output, we are only required to provide OP3IC T .

with values that are similar to thMinPtsnearest ) _ _ _ ] o
neighbor distance for each object and a few largeFigure 3: Ranking with triangle inequalities
distances between clusters. To achieve this withoutAlthough p can not be used to estimate D(q,0), p can
computing O(n®) distances, we will introduce the P€used toestimateD(q',0). While D(q,0) can not be

method of pairwise hierarchical ranking in Secton estimated by using p, chances are that D(q,0) can
o be estimated by using another pivot p'.
M It has been long observed empirically [14] that the
\){/ triangle inequality in a metric space (3( + D(y,2) >
N D(x,2) for data object, y, 2) can be used to detect
close neighbors for a given query object. While the
Figure 2: An OPTICS walk. The arrows represent triangle inequality can be used to speedup dat@min
the ordering in the walk. Although the applications via the pruning technique [4] as disedl
corresponding reachability-distances are different in Section 2.2, the use of triangle inequalities to

from the distances between the pairs of objects, the perform ranking is only gaining the attention of
lengths of the edges indicate the level of the  researchers in recent years [2]. Given a distance
reachability-distance values. It shows that most function D(.,.), a query object and data objects and
plotted reachability-distances arein small values. p, Eg0) = [D@p) — D@Op)| is a lower bound
estimation of Dg,0) usingp as a pivot. As shown in the
2-d example of Figure 3, whapando are not on the
circle centered ap, then the absolute difference value
ID(@,p) — D(o,p)| will be larger than zero and can
indicate the actual [@(0) values. The estimation will
be the better, the closer o, andp are located on a
straight line. Using several pivots will typically
improve the estimation, since if one pivot fails to
estimate Dg,0) well, chances are that it can be
estimated better using another pivot. The rankioigs
different individual pivots in a set of pivoB can be
easily combined in order to obtain the best estonat

4. k-Close Neighbor Ranking

The problem of ranking a list of objects has been
well studied in social sciences, with the typical
application of ranking political candidates. Ditet
from this general problem of ranking, in this papee
will focus on a special kind of ranking in computer
science.

Definition 3.1 [k-cn ranking] Given a list of data
objects and a query, the problem is how to ranKiste

of data objects so that the tdpobjects in the list as the largest lower bound:
contain many close neighbors. This problem is dalle Ex(q,0) = max [D@,p) — DOp)|

thek-close neighbor (k-cn) rankingroblem. P p,OP P Pl

For our application, we do not require to find the  The merit of this ranking method lies in its ability to
true topk nearest neighbors, as long as (1) the rankingsave distance computations. In the preprocessing stage,
returns close neighbors that have similar distaioes  the distances between all data objects and all pivots in
the query as the true tdpnearest neighbors, and (2) p are computed; then, in the application, when the
the ranking is “consistent” among all query objeicts  estimation of Dg,0) is needed, e.g., to retrieve the
the sense that the number of close neighbors exurn nearest neighbor of a que]{ythe above formula can be
by the ranking reflects consistently the densiyuad  applied for all data objects and the one with the
all query objects, then the ranking is good endoge  smallest [(g0) value is the estimated nearest
used in our clustering method to estimate den3itys  neighbor. All required distances except those between
low requirement on the accuracy of ranking is alse g and pivots in P have been computed in the
to the fact that our method will Compute the actual preprocessing Stage’ so that in the app“cation, On'y
distances between the query and the kagbjects to  computationally cheap operations arf| istance

filter out far away objects, as will be discussed i computations are performed. When the number of
Section 5.



pivots is set to be small and the distance function isThus thez = D(q,p;)) — D(o,p;) are also independent of
computationally expensive, the total amount of each other. Therefore

computations is much smaller than in the brute-force Pr[Ep(qg,0) < X] = Pr[max |D@,p;) — DO,p)| < X]
approach of computing all distances betwgeand all PP

data objects to find the nearest neighbor. In most= T Pr[|D@,p) — DEp)I<X = (P, (x))™
scenarios, the runtime of an application is much more PP ) )

important than that of a possible preprocessing, since Theorem 4.1 provides us with a clue of when the
the preprocessing is usually performed in advance and@nking will be effective. Lek = D(q,c) be a distance
only once for several applications. But even when the Petween a query and an objeat. By Theorem 4.1
runtime of the preprocessing stage is counted in the Pr[Ex(g,0) < D(q,0)] (P, (D(q,c)))|P|

total runtime of an application, the ranking method can Ajthough the distribution oZ is unknown, P, (D(q,c ))
still significantly speedup our intended applications is always a monotonic function of @€). The smaller

where the runtime is dominated by the runtime of
typically very expensive distance computations such asthe D@.), the smallerf, (D(g,c ))and consequently

hierarchical clustering where the closest neighborsthe smaller will be(PZ(D(q,c)))'P'. It also holds that
have to be determined for each object in the data-set. Ithe |arger the number of pivot$|| the smaller

these applications, the total amount of computed
distances i©(n|P|), which is much smaller thad(n?).

4.2 An Analysis of When Ranking Works

In this sub-section, we give a theoretical analysis to
show why E(g,0) can be used to estimatedX) in
general metric spaces.

For any pivotp, a queryg and a close neighbarof
the query, Kaq,c) = |D@,p) — D(,p)| is bounded by
D(qg,c) since, by triangle inequality, |Bf) — D(@O,p)| <
D(q,c). This result can be extended directly to the case
of using a set of pivot®, with Es(q,c) < D(q,c).
Therefore, if a neighbor of the query is very close to it,
then D@,c) is small, and consequently(g,c) must be
small. This means that when ranking objects according
to their estimated distance gpc can be expected to be
ranked high, if not many objects that are farther away
from g have estimated distances lower tha{qfE).
The important question is therefore: How large will
Er(g,0) on average be for mndomly choserobject
0?” If Ep(q,0) has a high probability of being larger
than E(g,c), then close neighbors will mostly be

(P, (D(q,c)))"!. The trend of the functionx| = b* is
illustrated in Figure 4 for several valueshofvaryingx.

Therefore, the closer a neighlmis to a query,
and the more pivots we use, the higher the probabil
that a random object is ranked lower tlgan
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Figure 4: f(x) = b, for b = 0.9,
decrease exponentially.

0.8, 0.7. The values

5. Pairwise Hierarchical Ranking

In this section, we propose a new method using

ranked higher than random objects. Theorem 3.1 below/@nking to reduce distance computations in OPTICS.

gives the probability of random objects getting a
Er(g,0) value lager than a given value.

Theorem 4.1 Given a data-seB with metric distance
function D(.,.), let query, data objecb and pivot set
P be selected randomly froBh

Let Z = {D(q,p;) — D(O,p;), piOP}, and let B(x) be the
probability that for an arbitraryin Z, z - 14 < x, where
s the mean of values i Then

Pr[Ex(q,0) >x] = 1= (P, (x))".

Proof: Let S= {v|v = D(g,p) or v = D(o,p), piin P}.
Sinceq, o and the pivots irP are selected randomly
from B, elements irnS are independent of each other.

The method performs a “pairwise” ranking to detect
close neighbors for each object. Irpairwise ranking

of a set ofm object, every object will in turn be the
guery so that the ranking contaimssub-ranking of the

m objects. At the end, OPTICS is run on the distances
between each object and its detected close neighbor
and a few additional distances between objectsatteat
far away from each other.

As indicated by Theorem 4.1, to rank close
neighbors of a query object high, we should use as
many pivots as we can in the ranking, since thgelar
the number of pivots, the larger is the probabilitgt a
random object is ranked lower than close neighbbrs
the query. However, more pivots also means more



distance computations between pivots and data bjec the largest number of objects until the tree hasea-
as well as the overhead of the ranking. Selecting aspecified number of leaf nodes. At the end, alladat
suitable number of pivots to balance these twoofact objects are contained in the leaf nodes of the taed
in the traditional way of using a set of pivotsnist all nodes except the root contain a representafige.
easy. any data objeat and a node, o is said to beinderv if

In order to increase the number of pivots without oisinvorois in a leaf node that is a descendant.of
significantly increasing the number of distance
computations, we propose to perform the ranking 5.2 Ranking
hierarchically. The method can be roughly descriaed
follows. First, the data is partitioned in a hietgcal
way, so that for each group of objects on the botto
level, their distances t®(logn) ancestor objects are
computed. Using thegg(logn) ancestors as pivots, our
method then performs a pairwise ranking for each
group of objects to find close neighbors within the , ,
group. To find close neighbors across differenugs |°1’ °2| |°3’ 04, Os | |°6 | |°7 |
the me_thod als_,o perfc_)rms ranking across se_verapgro Figure 5: An example for hierarchical ranking.
at a time. Since different groups of objects have
different sets of ancestors, the pivots our methses Multiple rankings are performed using subsets ef th
will be their common ancestors. In other words, the representatives in the constructed hierarchical &e
rankings will be performed layer by layer, along th Pivots. We will show an example before giving the
generated hierarchical partitioning. formal description of the algorithm. In Figurelb(i =

Our hierarchical ranking method can save distancel 2, 3) are internal nodes abdi = 1, 2, 3, 4) are leaf
computations because not every pivot is associatednodes in different layersy, 0, 03, 04, 05, Gs, O7, O,
with the same amount of distance computations. The@ndos are data objects under them. Leep andL,.rep
top level of pivots have distances to all objebts, in be the representatives of internal nodand leaf node
the next level, for each pivot, since its set of Li respectively.For o, o, 0; 04 andos since the
descendants is only a fraction of the whole datatise distances between them and the representativés of
number distances associated with it is reduceché¢o t andL, are computed when the algorithm partitions the
same fraction. In this way, the pivots are consemic  internal nodd; into L, andL,, we can usé,.repand
similar to the pyramidal hierarchy of a government: Larep as pivots to rank data objeds 0,, 0s, 0s, and
some pivots are g|oba| pivots' responsib|e for wver Os. Since the distances between these data Objeﬂtts an
member of the data-set, but some are local pivats t |2rep, k.rep, L.rep are also computed in earlier
are responsible for members within their territerie Partitions,lo.rep, k.rep, L.rep should also be used as

only. pivots to rank them. Thereforel {rep, L,.rep, b.rep,
The processes of partitioning and ranking will be larép. Lerep} is the set of pivots to perform the
explained in more details in the following sub-&sus. ranking for objects of; andL,. In the upper layer
rankingof objects undel,, I3 andL,, we can only use
5.1 Partitioning {l,.rep, k.rep, L.rep} as pivots to rank the whole set

of {0, 0, O3, 04, Os, 05, 07, Og, Og}, SiNCe distances
Our method first partitions the data in a hierazahi ~ between data objects;, 0;, 0, 0y and representatives
way, creating a tree, which we call “pivot tree”. Lirep, L.repmay not be computed (they are computed
Initially, the root node of the hierarchical treentains ~ only whenL,.rep= l,.repor Lo.rep = l,.rep).

all objects in the data-set. During the construxtit a The formal description of the ranking algorithm is
nodev is “split”, a set off representative objects are shown in Figure 6. For any nod(if it is to pairwise
randomly selected from the set of objectsvjrand f rank the whole data-set,= root andP = /), function

associated child nodes (one per representative) argankNode performs a pairwiskcn ranking of the
created undernv. The set of objects irv is then objects undev, using the child representativesvodind
distributed among its children by assigning eacjeaib  the higher-level pivots with known distances to the
in v to the child node with the closest associated objects undev as the current set of pivots. rankNode is
representative. Each representative and the objectshen recursively applied on all child nodes waf
assigned to it will form a new node. The constarcti  Therefore, any objeat underv takes part in multiple
proceeds recursively with the leaf node that castai rankings: the ranking is as well as the rankings in all



descendant nodes wfthato is also under. The lower worst case time complexity ©(mflogn), wherem is

the level of the node, the more pivots are usedlsin  the number of objects to rankn(decreases as the
pairwise ranking and the less objects are involwved algorithm proceeds from the root to the bottom faye
the pairwise ranking. The method will maintains a This is due to the fact that the algorithm needs to
close neighbor set for each data objectn anyk-cn perform ak-cn ranking for each data object and each
ranking, the topk objects with the smallesty,0) ranking has a time complexity @dd(mlogn). (Note,
values are retrieved and stored in this close beigh however, that the time complexity is on
set ofo. The distances between objects in this setoand computationally cheap operations, i.e., simple
are computed at the end and will be used in thecomparisons of pre-computed distance values, rather
clustering. It is easy to prove that the number of than expensive distance computations.) To reduse th
distances computed in the partition and ranking is overhead, we propose two new techniques: 1) a best-
O(fnlogin + knlogn), wheref is the branching factor in  first frontier search [11] (rather than the seqissican

the tree, and is the size of the data-set. However, the in the naive ranking) to significantly reduce tlearsh;
overhead of this ranking using naiveKcnRank carehav 2) based on this frontier search (which resultshim

a quadratic time complexity (although wusing same pairwise ranking as the naiveKcnRank) an
computationally cheap operations), since the foncti approximate pairwise ranking that further redudes t
naiveKcnRank essentially scans all objects and allruntime without sacrificing too much accuracy ire th
pivots to compute and sort the distance estimationapplication to hierarchical clustering.

values [(q,0) of each objeco. In the next subsection,

we will propose two new techniques to reduce this 5.3.1 Best-First Frontier Search

overhead.

While the naivek-cn ranking performs a sequential
rankAll(noderoot, intk) scan of distances between pivots and all data tsbjec
for all objectso underroot be ranked, we propose to use instead a best-first
ocloseSet- ; - frontier search, based on a new data structure that
;gpgwggfég?glan?e’rmot organizes the distances associated with pivothén t
following way. Given a set of objectR under a

for all neighborx in o.closeSet . . .
odistSet — D(0xX);/* o.distSet stores distancels particular node of the pivot tree and the corredpan

associated with object*/ setP of pivots for thek-cn ranking of the objects iR,
for each pivoip; O P, we store the distances betweggn
rankNode(node, intk, setP) andolR in a list of pairs ¢,D(o,p)), and sort the list
P’ PO {all child representatives of; by the distance value of Bf;). Using P| pivots, we
rankObjects(, k, P’); have IP| sorted lists, and each objeaflR will have

for all child nodeg of v

exactly one occurrence in each of these lists. Betw
rankNodeg, k, P’);

the lists of different pivots we link the occurrescof
rankObjects(node, int k, setP) the same object together_ in order_to e_fﬂment_ly
for all objectso underv /* i.e., o (1 v.objectSet all occurrences of a particular object in all listhe
topK = naiveKcnRank( k P, v.objectSet): data structure is illustrated in Figure 7.
o.closeSet- o.closeSef] topK; p1 p2 ps3

naiveKcnRank(objed, intk, setP, set objectSet)

sortedList— [ (9.D(a,ps) »{(0,D(a,p2))
for all objectso in objectSet (0.D(0,p1)) : ...
sortedList— Ep(q,0) = max |D@.p;) — D©,p)|-; . .
PP .
- (0.D(0,p2))

return topk objects in sortedList;

Figure 6: Hierarchical ranking algorithm. Figure 7: Linking the occurrences of each object.

5.3 Reducing the overhead in ranking When computing a pairwisé&-cn ranking, each
objectq will be used in turn as a query object, and all
One issue that arises in the ranking algorithm show other objectsol]R will be ranked according to their
in Figure 6 is that for the ranking in each nodes t estimated distances tp



Instead of solving this problem with a sequential fraction of the total occurrences in the lists thalong

scan, our nevk-cn ranking algorithm first retrieves all
occurrences of the current queryrom the given data
structures. These occurrences virtually form atistar
line. Then, our method searches from the startimg |
advances upward and downward along ®lesprted
lists, to search for the tolp objects with the smallest
Er(q,0) distance estimation values.

init(objectq, priorityQ frontier, seP)
for all occurrencesD(q,p;)) of g, withp; O P
for all immediate adjacent occurrence®(o,p;)) of
(q!D(q!pl))
frontier— (0,D(o,p;))

/* performk-cnranking for queng. P is the pivots set */
kenRank(object, intk, setP)
frontier — O; /* the top is the pairg,D(o,p;)) with
|D(o,p;) — D(@,py))| the smallest in it */
init(q, frontier,P);
topK ~ [,
while frontier#z O /* perform frontier search */
(0,D(o,p)) « frontiers.pop();
if 0 is not in count
countp] — O;
else count] ~ countp] + 1;
if countjo] = |P|
topK ~ 0;
if topK =k
return topkK;
frontier « (0’,D(0'p)); /* (o’D(o’p)) is the
adjacent pair ofd,D(o,p;)) outside the frontier */

Figure 8: k-cn ranking algorithm with best-first
frontier search.

The rationale is as follows. For a quepyet object
0 be one of the tojx objects that is returned by the
naive ranking, i.e., its distance estimation vatH],0)
= mgg ID@.p) — D(,p)| is one of thek-smallest

to the pivots, leading to a speedup over the sdiglen
scan.

The pseudo-code of the ndwen ranking algorithm
is given in Figure 8. Function kcnRank maintains a
priority queue as the frontier such that its tognegnt is
a pair 6,D(o,p)) with |D(o,p)) — D(@,p:))| the smallest
in the queue. After all occurrencesgin the lists that
belong to the pivots are retrieved, the frontier is
initialized with occurrences immediately adjaceat t
those occurrences af upward and downward. Then
the function performs a frontier search in all foeted
lists, always advancing in the list that the curr@p
element of the queue lies in. For objects already
encountered when the frontier advances, the fumctio
maintains a count of the number of their occurrentfe
this number is equal to the number of pivots useithé
ranking, then the object is one of the thppbjects
returned in the final ranking. This process corggu
until all topk objects are found.

In the remaining of this subsection, we prove the
correctness of algorithm kcnRank.
Lemma 5.1 In algorithm kcnRank, let occurrence
(a,D(a,p)) be popped out of the priority queue before
another occurrencd,0(b,p;)), then |D&,pi) — D@.p))|
< |B.p) - D@.P))I-
Proof: When &,D(a,p)) is popped out the priority
queue, 0,D(b,p)) can only be either in the frontier
gueue or outside the frontier (i.e. the occurrehase
not yet been visited by the frontier). B,D(b,p;)) is in
the queue, then by the property of the priority wpje
ID@@.p) — D@,p))l < [DO.) — D@R))I- If (b.D(b,p))
is outside the frontier, since all the lists aretes,
there must be a third occurrenceX(c,p;)) in the list of
pivot p; with an absolute difference value ¢Ip) —
D(g,p))| = [DOp) — D@,p))l- Since |D&,p;) — D@.p))|
< |D.p) — D@.R)I. ID@p) — D@.p))| < IDb.P) -
D(q.p))I-
Theorem 5.1 The algorithm of kecnRank and the naive

among all objects to be ranked. That also mearts thak-cn ranking algorithm naiveKcnRank return the same

for objecto, the values |Q,p;)) — D(o,p;)| for each pivot
p; are all small (since |Q(p;) — D(o,p)| < max |D@,p;)
p, 0P

result.
Proof: Let the last togk objects found by the frontier
search be. Thus the last occurrence popped out of the

— D(o,p)| = Ex(q,0)). Consequently, the occurrences of priority queue belongs tb Denote this occurrence by

(a topk object)oin all the lists will in general be close

(t,D(t,p)). For any objecb other than the returnekl

to the occurrences of the queq;becat_Jse the lists are  objects in topK, it must have an occurrene®(0,p;))
sorted by the distances of the ObjeCtS to the prOtthat can On|y be popped out of the priority queﬂlera

D(o,p), and for a difference |Qfp) — D(,p)| to be
small, D@,p;) and Dp,p;) have to be similar values and

(t.D(t,p)). By lemma 5.1, |D(p) — D@.p))| < [D(0.p)
—D@.m))l- Thus &(q,t) < Ex(q,0). Also by Lemma 5.1,

will hence appear close to each other when sorted.t D(t,p)) has an absolute difference valuetp) —

Therefore, we can start from the occurrenceq ahd
look in the nearby positions in the||sorted lists for

D(q,p))| no less than those of the previous occurrences
popped out the queue. Since for the otherktopjects

the topk objects by a frontier search. At the end, the returned by kcnRank, all of their occurrences are

number of occurrences we visit will be typicallylypa



popped out beforet,D(t,p;)), their distance estimation
values are all no greater thag(dt). So the elements in

Another set of distances we will use are the destan
computed in the partition stage when creating ikietp

topK have the smallest distance estimation valuestree, i.e., the distances between the represesgatf/

among all objects to rank. Therefore, they willoalse
returned by the naiveKcnRank algorithm.

5.3.2 Approximate Pairwise k-cn Ranking

As indicated by Theorem 4.1 in Section 4.2, the
larger the number of pivots, the greater the ramkin
accuracy. Given a fixed set of pivots, if the numbg
pivots is too small to effectively perforkacn ranking,
e.g.,.k =5 and only 3 of the top 5 objects returned by
the ranking are actually close neighbors, then some
the occurrences of the tdqobjects in the ranking may
be located farther away from the corresponding
occurrences of the query object in one of the dorte
pivot lists. Thus the frontier search in algorithm
kenRank in Figure 8 may have to advance to a dhace
away from the starting point to find the occurreinde
all the topk objects, and still incur a large overhead.

Our solution to this problem is to limit the stepat
the frontier can advance from the starting posititime
returned result is then no longer exactly the sasthe
naivek-cn ranking, so that the new algorithm performs
an approximate pairwise k-close neighbor ranking.
When the search stops, if olyof the topk objects k”
< k) have all occurrences within the frontier, thea th
remainingk-k’ objects are selected from those objects
(besides th&’ objects already selected) that have the
largest numbers of occurrences within the frontier.

The rationale behind this idea is that objects with

occurrences located far away from the corresponding

occurrences of the query objects are more likelpeo

nodes and the objects under them. These are tlge onl
distances that OPTICS will use in the clustering. A
other distances are assumed to be “infinitely”darg

The value ofk should not be significantly smaller
than theminPts parameter of OPTICS, otherwise the
cluster result can be distorted because thereramegé
computed distances associated with each object to
estimate the core-distances. In the pairwise hibieal
ranking, each object can take part in several sub-
ranking, i.e., rankings of different layers, sotttiae
number of distances associated with each object is
usually a little larger thak. And since in practice the
minPts parameter only needs to be relatively small to
provide good result¥ can also be set to a small value
(typically <10).

6. Experimental Evaluation

In this section, we compare our method and the DATA
BUBBLES method on synthetic as well as real-life
data-sets. Both methods are used to speedup the
OPTICS clustering algorithm. We denote our method
using approximate pairwise hierarchical ranking by
OPTICS-Rank, and the DATA-BUBBLE method by
OPTICS-Bubble. All experiments are performed on a
Linux workstation with dual AMD Opteron 2.2GHz
CPUs and 5GB of RAM, using one CPU only.

6.1 Synthetic Data

We use the two synthetic data-sets studied in{d 6]

random neighbors that can not contribute shortshow that our new method has better accuracy in

distances to be used by OPTICS, even if the frontie
search goes all the way to find their occurrencésis
setting a step limit for the frontier search wilitrhurt
the final clustering accuracy, even if some of the
but not so close objects are not returned by theche

Let the step limit bes. The approximate pairwide
cn ranking algorithm has worst case time complexdty
O(srogn), wheren is the size of the data set. Empirical
results in Section 6 show thatan be as small ag #

detecting subtle cluster structures.

The first synthetic data we use, denoted Dify-
Vector, is a synthetic 2-dimensional point data set. It
contains 50000 points distributed over 8 clusterd a
4% background noise. The clustering output of
OPTICS is depicted in Figure 9 (a). Some of the 8
clusters are very close to each other as indidayetie
relatively low reachability values that separatenth

The second data set, callB&-Tuple is a synthetic

generate clustering results with high and robust set of binary strings. Each object@$-tupleis a 100-

accuracy.

5.4 Integration with OPTICS

After close neighbors of all objects have been
detected by the pairwise ranking based on distanc
estimations, our method computes the actual distanc

between each object and these close neighbors

e

bit 0/1 sequence, and the similarity between twchsu
sequencess; and s, is measured using the Jaccard
coefficient, i.e.|s;ns,|/|s;0s,|. 80% of the objects

form 10 clusters and the remaining 20% are nois&é T

of the clusters are very small (123 and 218 objects
making the problem of finding them very challenging
The reachability plot obtained when clustering the



whole data set using OPTICS is depicted in Figure 9always succeeds to find all the clusters so thaa# a

(b) (the two tiny clusters are indicated by arraws) score of 1. This accuracy is consistently bettan ttinat

of OPTICS-Bubble. The corresponding numbers of

computed distances by the two algorithms are shiown

‘ Figure 10 (b). As the number of bubbles increathes,
number of distances computed by OPTICS-Bubble

increases linearly. It uses as many as 12.32ux1¢

verv small cllstrs

‘JJIJJ

(@ OPTICS output fc (b) OPTICS output for =~ 5.2 times amount of distances as OPTICS-Rank.

DS-Vectol DS-Tuple The clustering accuracy onS-Tupleis shown in
verv small C§Lr5

Figure 11 (c). OPTICS-Rank uses the same setting as
in the previous experiment and the number of bubble
used by OPTICS-Bubble varies from 20 to 250.
Similar to the previous experiment, OPTICS-Rank
outperforms OPTICS-Bubble and is only matched by
the latter when the number of bubbles reaches @®.
numbers of computed distances for both methods are
shown in Figure 10 (d). It shows that when we use a
larger amount of bubbles (200) for OPTICS-Bubble
to match the accuracy of OPTICS-Rank, OPTICS-
The outputs of OPTICS-Rank fdpS-Vectorand Bubble will need to perform many more distance
DS-Tuple are shown in Figure 9 (c) and (d) computations.
respectively. For the parameters of OPTICS-Rari, th

],

(c) OPTICSRank outpu (d) OPTICS-Rank output
for DS-Vectol for DS-Tuple

Figure 9: The Reachability plots from OPTICS (a

and b) and OPTICS-Rank (c and d) are almost

identical.

. R . 1 T T 16 T T -\ T T T T
number of top objects to return in each rankiogs set o ol ] 1 oPTiceRank ]
to 5, and the step limgtfor the best-first frontier search 5 .| | 5 w©f .
is set to 10. The number of leaf nodes for thetpinee ¢ ,| | 58 I i
is set to 5000, and the branching factor is s@0toThe £ o,|  oprcsrank —— - ‘2‘ C ]
plots generated by OPTICS-Rank are almost identical o L.OFSPBbe > ol

100120140160180200220240260 100120140160180200220240260
to those generated by OPTICS, only that some chiste Number of bubbjes Number of bubbles
have switched position, which is a normal phenomeno (5 Accuracy oS-Vector (b) Computed distances for

when clustering with OPTICS and which does not SlusteringDS-Vector

affect the clustering accuracy. OPTICS-Rank uség on

14 | OPTICS-Bubble' —— ]

e gl s 7 1o [ OPTICS-Rank -
a fraction of the total number of distances used by (| * ] g wf .
OPTICS. The number of distances computed by ,| 1 5 &0 i
OPTICS is 2.5x10for both data-set, while OPTICS- & .| opnicsramk —r - 4r ]
Rank uses 2.4xf@and 2.7x1bdistances fobS-Vector o L_OPTICSBubble - oL ]
andDS-Tuplerespeciively e

We compare the clustering accuracy of OPTICS+c) accuracy orDS-Tuple (d) Computed distances for

Rank and OPTICS-Bubble dS-VectorandDS-Tuple ClusteringDS-Tuple

Figure 10: Clustering accuracy and number of

using the measurement defined in [16]. The measuredistancescomputed.

evaluates different cut-lines through a reachabylot
in equidistant intervals, and selects the cut-lihat 6.2 Real-life Data
corresponds most closely to the clustering obtafoed
the whole data set. This cut-line is assigned aesco The first real-life data-set we used, denoted O+
based on the number of clusters that are prese¢ht wi Protein, are all the 170,158 short structure motifs of
respect to this cut through the reachability pldt.k length 4 extracted from 755 protein structures. The
clusters are found (& k < maximum number of distance function we use is the rmsd structure
clusters in the original data sét, maj, then the cut-  alignment score. Another real-life data-set we use,
line gets a score &k _max denoted by DS-Jaspar consists of 73,253 DNA
The clustering accuracy ddS-Vectoris shown in sequence motifs extracted from the first human
Figure 10 (a). OPTICS-Rank uses a fixed setting aschromosome using the transcription factor binding
mentioned above while the number of bubbles used bypatterns in the JASPAR database [13]. The distance
OPTICS-Bubble varies from 100 to 250. The function we use is the average mutual edit (Lewnpst
experiment is repeated 10 times and OPTICS-Rankdistance for all sequences in two motifs [12]. The



pairwise distances for this data-set were pre-coatpu
using massive parallel processing.

6.2.1 Protein Structure Alignment Data

The resulting plots of applying different algoritem
on the whole data-set dDS-Protein are shown in
Figure 11.

For OPTICS-Rank, the parametkris set to the
smallest possible value of 1, and the frontier cear
step limit s is varied. Any larger values df will
improve the clustering accuracy but in the worsteca
increase the number of distance computations linear
For OPTICS-Bubble, the number of bubbles it uses,
denoted byp, is set to 500 and 5000.

Figure 11 (a) is the output of OPTICS. Figure 11 (b
d) show the outputs of OPTICS-Rank, witlk 5, 100,
and 1000 respectively. They show that the plots of
OPTICS-Rank are very similar to that of OPTICS, and
increasing the step limiwill not significantly improve
the accuracy. Figure 11 (e) and (f) are the pldts o
OPTICS-Bubble. They are less similar to the OPTICS

output than those of OPTICS-Rank, showing that even

with as many as 5000 data bubbles, much of thealctu
clustering structure is lost.

el

(@ Result of OPTICS, (b) Result of OPTICS-Rank,
runtime = 695 min. s =5, runtime = 6 min

sl

(c) Result of OPTICS-Rank,  (d) Result of OPTICS-Rank,
s =100, runtime = 36 mir s =1000, runtime =240 min.

-t

(e) Result of OPTICS-Bubble, (f) Result of OPTICS-Bubble,
b = 500. runtime = 14 mir b = 5000. runtime = 147 min

Figure 11: Reachibility plots on DS-Protein for
OPTICS, OPTICS-Rank, and OPTICS-Bubble.

both OPTICS and OPTICS-Bubble. It also shows that
increasings can only slightly decrease the number of
computed distances while dramatically increasirg th

runtime. Therefore, in practice, using a small gabfis

has a better balance of accuracy and runtime.

Table 1. Runtime and computed distances for
OPTICS, OPTICS-Rank and OPTICS-Bubble

Method Runtime Number of Computed
(min) Distances (million)

OPTICS 695 14476.9

OPTICS-Rank, 6 7.2

s=5

OPTICS-Rank, 36 7.1

s=100

OPTICS-Rank, 240 7.0

$=1000

OPTICS-Bubble, | 14 85.0

b=500

OPTICS-Bubble, | 147 838.3

B=5000

Figure 12 shows the scalability of OPTICS-Rank
with respect to the size of the data-set. It shtvas
with a cut-off step limit set to 10, OPTICS-Rank
achieves a sub-quadratic time complexity in practic

450
400
350
300
250
200
150
100

Runtime (sec)

50 1
30000 60000 90000 120000150000

Size of data-set

Figure 12: Scalability of OPTICS-Rank w.r.t. the
size of the DS-Proteindata-set. k= 1, s= 10.

6.2.2 JASPAR Data

The clustering results dnS-Jasparare depicted in
Figure 13. While using 1000 times less distances,
OPTICS-Rank generates a plot that captures the same
cluster structure as the output of the original GFST
(with some switching of cluster positions).

In order to measure the accuracy numerically, we
apply the F-score measure [9] on the clusteringltes
The F-score is defined &= 2*p*r/(p+r) , wherep is
precision and is recall. The closer an F-score is to 1,
the better is the result. To determine the F-scoxes
manually extracted the clusters from both outpotsl
(98 clusters for OPTICS and 101 clusters for OPFICS
Rank), and each cluster in the OPTICS output is
matched to the cluster in the OPTICS-Rank outpait th

The runtime and the number of computed distanceshas the highest F-score. The F-score distributfahe

of the three methods are shown in Table 1. It shows

matched clusters is shown in Figure 14. It shoves th

that OPTICS-Rank computes far fewer distances thanthe majority of the clusters in the OPTICS outpaih ¢



be matched with a cluster in the OPTICS-Rank output
with an F-score of more than 0.95. The averageoFesc
weighted by the size of the cluster in the OPTICS =
output is 0.86.

[1]

(a) OPTICS output, using 5.4x16istances. [2]

(3]

[4]
[5]

(b) OPTICS-Rank output, using 4.9X1dlstances.
Fiaure 13: Clusterina resultson DS-Jaspa.l.

60

=r I [6]
=T I [7]
[8]

9]

10 =

0o ot e L

O 0.10.20.30.40.50.60.70.80.9 1
F-score

Figure 14: Distribution of F-score. The weighted F-
scoreis0.86.

7. Conclusions

In this paper, we proposed a novel approach to
perform approximate clustering with high accuracy.
We introduced a novel pairwise hierarchical ranking

Sciences Centre for fruitful discussions and
providing us thédS-Jaspadata-set.
Research partially funded by NSERC and CFI.
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