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Abstract 

Deconvolution filtering problems in dynamic systems have wide applications in seis

mology, oil exploration, image restoration, fault detection, signal processing, com

munications, and equalization. This thesis aims at designing deconvolution filters 

with guaranteed energy-to-peak performance. 

In Chapter 2, we consider the design of li — l^ deconvolution niters. We first 

formulate the FIR deconvolution filtering problem, and then derive the sufficient 

and necessary condition to satisfy the design objectives. Further, the condition is 

transformed to LMIs with nonconvex constraints, which can be efficiently solved by 

the product reduction algorithm (PRA). 

In Chapter 3, we study the I2 — loo HR deconvolution filter design. The sufficient 

and necessary condition is derived to guarantee the I2 — lco filtering performance. 

Further, the condition is transformed to LMIs. 

In practice, the channel uncertainty is an important factor to consider. Therefore 

in Chapter 4, to incorporate the channel uncertainties, we propose to use the poly-

topic uncertainty description, and derive the sufficient condition to guarantee the 

robust 1% — Zoo HR deconvolution filtering performance. In order to further decrease 

the conservativeness of the design, we apply the parameter-dependent Lyapunov 

method and improve the robust I2 — loo HR deconvolution filter design. 

Finally, several open problems are listed as the future research directions. 
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Chapter 1 

Introduction 



1.1 Deconvolution Filtering 

The deconvolution filtering problem is to reconstruct a signal embedded in noise and 

distorted by the signal transmission channel. The deconvolution filtering problems 

in dynamic systems have wide applications in seismology, oil exploration, image 

restoration, fault detection, signal processing, communications, and equalization. 

As depicted in Figure 1.1, the perfect reconstruction (PR) is defined as the property 

wherein the reconstructed output signal is simply a delayed version of the input 

signal. However, due to the existence of model uncertainties and disturbances, it 

is hard to achieve PR. Therefore, a practical design objective is to reconstruct the 

signal S at the receiver end as close as possible, i.e., S —> S. From the model 

matching perspective, as shown in Figure 1.2, the objective is alternatively to force 

e to be as small as possible. 

In the following, we will generally classify current research on the design of decon

volution filters into three categories based on their different performance measures. 

1.2 Design of Deconvolution Filters 

There are mainly three performance measures under which deconvolution filtering 

problems have been considered: (1) the H2 performance measure, (2) the Hoo perfor

mance measure, and (3) the mixed 'Hil'Hcx, performance measure. In what follows, 

different design methods for deconvolution filters in the literature are classified into 

three main categories and reviewed. 

2 
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Figure 1.1: A general block-diagram of the deconvolution filtering system. 
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Figure 1.2: Model matching for a deconvolution filtering system. 

1.2.1 H.2 Deconvolut ion Filter Des ign 

Chen, et. al studied the fixed-order infinite impulse response (IIR) and finite impulse 

response (FIR) Ti.2 optimal deconvolution filter designs in [8]. How to optimally 

determine the coefficients of a fixed-order deconvolution filter to achieve the H2 

minimization of reconstruction error is a highly nonlinear minimization problem, 

and thus, they proposed to apply the genetic algorithm to effectively solve the 

formulated nonlinear optimization problem. 

In [12], the H2 optimal estimation of a linear combination of the state and the 

input of a discrete-time linear time-invariant dynamic system was investigated. Such 

a problem was reformulated in terms of three linear matrix inequalities (LMIs) and 

explicit formulae to compute a family of solutions for such LMIs were derived. This 

family is explicitly parameterized so that the H2 performance of the corresponding 

filter may be rendered arbitrarily close to the optimality by choosing certain involved 

parameters. It is worth mentioning that the formulation (of estimating a linear 
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combination of the state and the input) is pretty general and provides a unifying 

framework where several generalized versions of the H2 optimal estimation problem 

can be covered and solved, i.e., the state estimation, deconvolution, and input and 

state co-estimation. 

In [66], the "^-optimal deconvolution problem for periodic FIR and IIR channels 

was studied. It showed that the 2-norm of a periodic filter can be directly quantified 

in terms of periodic system matrices and LMIs without resorting to the commonly 

used lifting technique. The optimal signal reconstruction problem was then formu

lated as an optimization problem subject to a set of matrix inequality constraints. 

Under this framework, the optimization of both the FIR and IIR periodic decon

volution filters can be made convex, solved using the interior point method, and 

computed by using the MATLAB LMI Toolbox. The robust deconvolution problem 

for periodic FIR and IIR channels with polytopic uncertainties were further solved, 

also by convex optimization and LMIs. Compared with the lifting approach to the 

design of periodic filters, the proposed approach is simpler yet more powerful in 

dealing with multi-objective deconvolution problems and channel uncertainties. 

1.2.2 Hoo Deconvolut ion Filter Des ign 

Compared with conventional H2 deconvolution, the Hoo deconvolution has some 

practical advantages. There is no need to know exactly the knowledge of statistics 

of the driving and measurement noises, and the noises are only needed to have 

bounded energy, thus the Tioo deconvolution has more robustness to the noises than 

the Ti.2 deconvolution. 

In [8], genetic algorithms were also applied to deal with the Hoo optimal signal 

reconstruction design problem with a prescribed filter order. Genetic algorithms are 

optimization and machine learning algorithms, initially inspired from the processes 

of natural selection and evolutionary genetics. They tend to achieve the global 
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optimum solution without becoming trapped at local minima. The convergence 

property of the proposed design algorithm was also analyzed. 

In [28], the Hoo deconvolution filtering for a linear time-varying discrete-time 

system was studied under the framework of Krein space [20]. The Hoo deconvolu

tion filter was designed in terms of solutions of Riccati equations. A sufficient and 

necessary condition for an Hoo deconvolution filter was established. 

A reduced-order Hoo deconvolution filter design based on the bounded real 

lemma for linear discrete-time systems was proposed in [43]. The order of the 

proposed deconvolution filter is less than or equal to n — p, where n and p are or

ders of the system and the measurement, respectively. The filter parameters were 

expressed in closed form in terms of a solution to a Riccati difference equation. 

In [55], the authors studied the robust Hoo deconvolution filtering problem for 

continuous- and discrete-time stochastic systems with interval uncertainties. The 

matrices of the system describing the signal transmissions are assumed to be un

certain within given intervals, and the stochastic perturbation is in the form of a 

multiplicative Gaussian white noise with constant variance. Finally, the filter pa

rameters were characterized in terms of the solution to LMIs. 

Linear periodic systems and filters can find many applications in communica

tions, filtering, decoding, network synthesis, process control, and so on. Xie et. al 

studied the deconvolution problem for linear periodic transmission channels subject 

to the Hoo performance specification [58]. Further, Xie et. al investigated the Hoo 

deconvolution problem for 2-D digital systems described by the Fornasini-Marchesini 

local state-space (FM LSS) model [57]. 

1.2.3 Mixed H2/TLoo Deconvolution Filter Design 

To enjoy the benefits of both H2 and Hoo performance measures, the mixed H2/H00 

optimal deconvolution filter design was proposed in [21]. Genetic algorithm was 

5 



introduced to treat the nonlinear optimization design problem of the fixed-order 

mixed H2/W00 deconvolution filter. Such a mixed design can achieve the H2 optimal 

reconstruction and a desired robustness against the effect of uncertainties from the 

fioo norm perspective. 

1.3 Energy-to-Peak (1% — loo) Performance Measure 

In this section, we introduce the energy-to-peak performance measure under the 

framework of filtering. The energy-to-peak performance measure is also referred to 

as the \<i — Zoo one. 

Let us start with briefly revisiting the popular Kalman filtering and Woo filtering 

problems. In general, the filtering problem is to estimate the states of a system using 

past measurements. The celebrated Kalman filter provides a recursive algorithm to 

minimize the variance of the state estimation error when the power spectral density 

of the process and the measurement noise is known [3]. Kalman filtering techniques 

have found widespread applications in aerospace guidance, navigation, and control 

problems. "Hoo filtering has received considerable attention recently. Unlike the tra

ditional Kalman filtering, it does not require knowledge of the statistical properties 

of the noise. Its objective is to minimize the energy of the estimation error for the 

worst possible bounded energy disturbance. 

The objective of the filtering design with guaranteed energy-to-peak perfor

mance, i.e., l<i — Zoo filtering is to minimize the peak value of the estimation error 

for all possible bounded energy disturbances. Hence, the li — Zoo filtering can be 

considered as a deterministic formulation of the Kalman filter [18]. 

For a discrete-time vector-valued signal f(k), the I2 norm is 

{ 00 

E/T(fc)/(fc) 
0 

V i 
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where (-)T denotes the transpose of a real matrix. The £«, norm is 

| | / | |oo = S U P { / T ( f c ) / ( f c ) } 1 / 2 . 
k 

Consider a stable n-th order linear time-invariant system with a state-space 

representation 

x(k + l) = Ax(k) + Bw(k), 

y{k) = Cx{k) + Dw(k), 

z(k) = Lx{k). 

Here, A, B, C, D, and L are system matrices with appropriate dimensions, x(k) e 

Rn is the state vector, y{k) e W is the measured output, and z(k) 6 R r is the signal 

to be estimated. 

The discrete-time \<x — l^ filtering problem is to find a filter T with state-space 

formulation and order n < n to minimize the peak value ||e[|oo of the estimation 

error e(k) = z(k) — z(k) over all bounded energy disturbances w(k), that is 

mm sup -——. 
? O^weh \\wh 

1.4 Relationship of the L^ — L^ Induced Norm and H2 
Norm 

It is interesting and useful to revisit and clarify the relationship between the Li — L^ 

induced norm and the "Hi norm. This section is summarized and presented for 

continuous-time systems based on the following papers and the references therein: 

[56, 11,44, 18]. 

For a finite-dimensional linear time-invariant feedback system, suppose Q denotes 

the plant and C the controller; the signal w denotes the exogenous input vector, while 

z denotes the controller output vector; the signals u and y represent the control 



input vector and the measured output vector, respectively. Let Tzw stand for the 

closed-loop map from the exogenous input w to the controlled output z. 

Wilson [56] introduced several useful "system gains". Assume that the above-

mentioned feedback system is internally stable, and Tzw denote the closed-loop trans

fer matrix from w to z. In [56], Wilson pointed out that, if Tzw is strictly proper, 

Tzw is a bounded operator from 1/2 [0, oo) to Loo[0, oo), and its induced norm is given 

by 

l l ^ l l = Jf [^ J^Tzw(jco)T*w(jco)dw^ . (1.1) 

The function /(•) is either the maximum eigenvalue or the maximum diagonal entry. 

First, when z is a scalar signal, (1.1) reduces to the H2 norm of Tzw. Second, 

if z is a vector-valued signal, then this induced norm is no longer the standard H2 

norm. 

1.5 Motivation and Objectives 

The work of the thesis is motivated by the following observations based on a com

prehensive literature review: 

1. In the literature, there was no reported work on the I2 — loo deconvolution 

filter design, to the best of author's knowledge. 

2. In practice, channel uncertainty is an important factor to consider. However, 

in the area of deconvolution filter design, this issue has received relatively less 

attention. 

Therefore, the main objectives of this thesis lie in the following aspects: 

1. To develop I2 — loo deconvolution filter design methods, for both finite impulse 

response (FIR) and infinite impulse response (IIR) structures. 



2. To design ease-to-solve algorithms based on the LMI techniques. 

3. To incorporate the channel polytopic uncertainties into the robust IIR decon-

volution filter design. 

To proceed, it is worthwhile summarizing different filters in the following ta

ble. According to specific application requirements, different types of filter design 

methods should be chosen. 

Table 1.1: Filters with different performance measures 
Filter 

Kalman 

n2 
Woo 

h — 'oo 

Performance 

Mean Squared Error 
Least Squared Error 

Maximal Energy Gain 

Maximal Energy-to-peak Gain 

Mathematic Description 

min(E||e||i) 
min(||e|||) 

| | G e t X < 7
2 o r s u p j g f < 7 

SUP t f c < 7 

1.6 Scope of the Thesis 

In Chapter 2, we consider the design of I2 — loo deconvolution filters. We first 

formulate the FIR deconvolution filtering problem, and then derive the sufficient 

and necessary condition to satisfy the design objectives. Further, the condition is 

transformed to LMIs with nonconvex constraints, which can be efficiently solved by 

the product reduction algorithm (PRA). 

In Chapter 3, we study the I2 — loo HR deconvolution filter design. The sufficient 

and necessary condition is derived to guarantee the I2 — loo filtering performance. 

Further, the condition is transformed to LMIs. 

In practice, the channel uncertainty is an important factor to consider. Therefore 

in Chapter 4, to incorporate the channel uncertainties, we propose to use the poly

topic uncertainty description, and derive the sufficient condition to guarantee the 

robust I2 — loo IIR deconvolution filtering performance. In order to further decrease 

9 



the conservativeness of the design, we apply the parameter-dependent Lyapunov 

function method and improve the robust I2 — loo HR deconvolution design. 

The last chapter summarizes the work in the thesis, and outlines some possible 

future research directions. 

1.7 Notation 

The notation used throughout the thesis is fairly standard. The superscript 'T' 

stands for matrix transposition; Kn denotes the n-dimensional Euclidean space; 

R m x n is the set of all m x n real matrices; and the notation P > 0 means that 

P is symmetric and positive definite. In addition, in symmetric block matrices or 

long matrix expressions, we use * as an ellipsis for the terms that are represented 

by symmetry and diag{- • •} represents a block-diagonal matrix. 

10 



Chapter 2 

FIR Deconvolution Filter 
Design with Guaranteed 
Energy-to-Peak Performance 
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2.1 Introduction 

In recent years, problems of the finite impulse response (FIR) deconvolution filter 

design for discrete-time channels have received considerable attention. In [48], the 

FIR deconvolution filter was designed such that the Tioo norm of the filtering error 

transfer function is minimized subject to the constraint that the filter output with 

a given input to the system is constrained or bounded in a prescribed envelope. 

The filter design problem was further formulated as a standard optimization prob

lem with LMI constraints. Further in [25], the channel uncertainties characterized 

by the integral quadratic constraints were incorporated to design the robust FIR 

deconvolution filters. 

Other methods for discrete-time systems with partially known noise information 

are li filtering and li — loo filtering, which receive relatively less attention compared 

with Tioo filtering. To the best of our knowledge, I2 — loo filtering has not been 

applied to deconvolution filter design in the literature. 

On the other hand, LMIs have gained much attention for their computational 

tractability and usefulness in control engineering. The number of control and es

timation problems that can be formulated as LMI problems is large and continues 

to grow. LMIs can now be solved efficiently using the powerful MATLAB LMI 

Toolbox. 

This chapter is concerned with the I2 — loo FIR deconvolution filter design prob

lem. The objective is to design deconvolution FIR filters by minimizing the peak 

value of the estimation error for all possible bounded energy disturbances. 

The rest of this chapter is organized in the following way. We first formulate 

the FIR filtering problem and state the objective of li — loo filtering design in Sec

tion 2.2. In Section 2.3, the sufficient and necessary condition is derived to guarantee 

the fo — loo filtering performance. Further, the condition is transformed to LMIs with 

12 



nonconvex constraints, which can be efficiently solved by the product reduction algo

rithm (PRA) [33, 63]. To illustrate the effectiveness of the proposed method, design 

examples are given in Section 2.4. Finally, the conclusion remarks are addressed in 

Section 2.5. 

2.2 Problem Formulation 

Consider the deconvolution filtering system shown in Figure 2.1. In the system, the 

source signal s(k) € 71 is assumed to be generated by the signal model 

v(k) 

w(k) 

Signal 
Model 

z. *(*) 

1" 

Transmission 
Channel 

Zc 
z°{ki( *\ 

Deconvolution 
FIR Filter 

m <ym m 

*6 e&h 

Figure 2.1: An FIR deconvolution filtering system model. 

EM xa(k + l) = Asxs(k) + Bsw(k) 
s{k) = Csxs{k) + Dsw(k) 

(2.1) 

where xs(k) € R"s is the model state vector, w(fc) € ^[0, oo) is the driving signal 

of the model, and As, Bs, Cs, and Ds are known constant matrices of appropriate 

dimensions. The source signal is transmitted through a channel modeled by 

^ C : { 
xc{k + 1) = Acxc{k) + Bcs(k) 

zc(k) = Ccxc(k) + Dcs(k), 
(2.2) 

where xc(k) £ M.Hc is the channel state vector. 

At the receiver end, the measured signal y(k) is equal to zc(k) + v(k), where 

v(k) is the energy-bounded channel noise. To optimally recover the source signal 

s(k), the signal y(k) is deconvoluted by an FIR filter of length nj with the transfer 

13 



function 

F(z) =a0 + aiz 1 + a2z
 2 + --- + anfz

 nf, 

where ao, a\, • • •, anf are filter parameters to be designed, and n/ is the order of 

the FIR filter. The FIR filter can also be represented by the following state-space 

model 

xf{k + l) = Afxf(k) + Bfy(k) E*.{ (2.3) 
a(fc) = Cfxf(k)+Dfy{k) ' 

where xj{k) € W1! is the filter state vector, and Af, Bj, Cf, and Dj are constant 

matrices to be designed, and they have the following form: 

/ = 

' 0 1 
0 0 

0 0 

. ° o 

Bf = 

0 • 
1 • 

0 • 
0 • 

" 0 " 
0 

0 
1 

•• 0 
•• 0 

• • 1 
•• 0 

m . w 1 

tfXTlf 

7 1 / X l 

Cf= [ anf a n /_i ••• oi } l x n f , 

Df = ao. 

Define the filtering error as 

e(fc) = s(fe) - s(jfc). 

Then the filtering error system can be described as 

where xj(k) = \xj(k), xj(fc), xj(k) , wj(k) = [wT(k), vT(k)], and 

xe(k + l) = Aexe(k) + Bewe{k) 
e(fc) = Cea;e(fc) + I?eWe(*;) ' 

Ae. 
As 

BCCS 

BfDcCs 

0 
Ac 

BfCc 

0 
0 

^ / 

(2.4) 
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Be = 
B3 0 

BCDS 0 
_ BfDcDs Bf 

Ce=[Cs- DfDcCs -DfCc -Cf ] , 

De=[Ds- DfDcDs -Df ] . 

The main objective of this work is to develop the h - loo FIR filter of the form 

in (2.3) such that: 

1. The filtering error system is stable. 

2. The filtering error system guarantees 

||e||oo < 7 l K l l 2 

for all nonzero we G /2[0, oo), where ||we|l!
 : = 12h=ow'e(^)'we{k), ||e||^j = 

supfce
T(fc)e(fc), and 7 > 0 is a pre-selected scalar. 

2.3 F IR l2 - loc Filter Design 

In this section, we solve the FIR li — l^ deconvolution filter design problem under 

the framework of LMIs. The sufficient and necessary condition is first derived and 

further converted to equivalent LMIs with nonconvex constraints. 

First of all, we state the following lemma that is adapted from Lemma 7 in [18]. 

Lemma 1 Suppose (Ae,Be,Ce,De) is arbitrary but fixed and let 7 > 0 be given. 

Then the filtering error system is stable and the I2 — loo gain of the filtering error 

system is less than 7, that is 

sup | % < 7 , (2-5) 

if and only if there exists a matrix P > 0 such that 

CePCj + DeDj < 7
2 7 , (2.6) 

15 



AePA? -P + BeB? < 0. (2.7) 

Proof: It can be proved by following the results in [18, 16]. • 

Then we have the following theorem by applying the Schur complement to 

Lemma 1. 

Theorem 1 Suppose (Ae,Be,Ce,De) is arbitrary but fixed and let 7 > 0 be given. 

Then the filtering error system in (2-4) is stable and the I2 — loo go-in of the filtering 

error system is less than 7 (4- 7) if and only if there exists a matrix 0 < P G n 2 n x 2 n 

such that 
jzl CeP De " 

>0 , 

72 I CeP De 

PCJ P 0 
Dj 0 / 

P AeP Be 

PA} P 0 
Bj 0 I 

>0 . 

Proof: Equation (2.6) can be written as 

- 7 2 7 + DeDj - {-CeP){-P-l){-PCj) < 0. 

Using the Schur complement, we obtain 

(-PCJ) 

which can be further rewritten as 

- 7
2 / ( -C e P) 

(-PC?) -P 

-!2I + DeDj {-CeP) 
-P 

<0 , 

-De 

0 -I}[-DJ 0 ] < 0 . 

Applying the Schur complement to the above inequality, we obtain 

- 7 2 / -CeP -De ~ 
-PCI 0 

0 
<0, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

which proves (2.8). 

By following the similar line and applying Schur complement, (2.9) can be 

proved. • 
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Inequality (2.8) is nonlinear due to the product of variables. Hence, it cannot 

be directly solved using the LMI toolbox. In the following theorem, we transform 

the condition to LMIs with nonconvex constraints, which can be efficiently solved 

by using the product reduction algorithm (PRA) [63]. 

Theorem 2 Let 7 > 0 be given. Then there exists an admissible I2 — loo deconvo-

lution filter if and only if there exist matrices P > 0 and W > 0 such that 

12I Ce De 

cj w 0 
DJ 0 I 

P Ae Be 

Aj W 0 
Bj 0 I 

>0 , 

>0 , 

(2.14) 

(2.15) 

with nonconvex constraint 

PW = 1. (2.16) 

Proof: Multiplying (2.8) and (2.9) by diag{J, P~\ 1} to the left, and by diag{7, P ~ \ 

to the right, respectively, we get (2.14) and (2.15). • 

Remark 1: Inequality (2.9) does not have the product of variables and it is an LMI. 

Hence, the transformation from inequality (2.9) to (2.15) is actually not necessary. 

Here, to facilitate the use of LMI toolbox to solve the problem, Ce and De can 

be written as 

Ce = [Cs- DfDcCs -DfCc -Cf } 

= [Cs 0 0]+Df[ -DCCS - C c 0]+Cf[0 0 -I], 

De = [Ds- DfDcDs -Df ] , 

= [Da 0]+Df[ -DCCS -I ] . (2.17) 

respectively. 
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Af = 

Corollary 1 The FIR I2 — loo deconvolution filter for system (2.4) can be designed 

by solving the following optimization problem: 

min7 subject to (2.14), (2.15), and (2.16). 

2.4 Design Examples 

In this section, design examples are given to illustrate the proposed algorithm. Sup

pose that the system shown in Figure 1 has the signal model Y^s with the following 

system matrices: 
3.6015 1 0 0 0 0 

-5.6805 0 1 0 0 0 
5.0232 0 0 1 0 0 

-2.6253 0 0 0 1 0 
0.7707 0 0 0 0 1 
0.0997 0 0 0 0 0 

1 
0 
0 
0 
0 
0 

Cs = [ 0.0002 0.0091 0.0323 0.0222 0.0029 0 ] , 

and the channel model ^ c with the following system matrices 

1.6047 0.8520 0.1496 
1 0 0 
0 0 1 

B„ 

Br = 

Cc = [ -0.1747 0.2772 0.1135 ] , 

Dc = 0.45. 

In addition, assume, to start, that there is no channel noise (i.e., v = 0). 
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Example 1: n / = 6. n/ is chosen to be 6. By using Corollary 1, 7 = 0.076 is 

finally achieved, and the designed filter has the following system matrices: 

Cf = [ -0.0122 -0.1631 -0.3451 -0.2215 0.4250 1.2304 ] , 

D f 1.9792. 

The simulation results are shown in Figure 2.2, and the signal reconstruction er

ror is illustrated in Figure 2.3. Further, a white noise with power of 1 x 10 - 4 is added 

and the results are shown in Figure 2.4, and accordingly the signal reconstruction 

error is shown in 2.5. 

Figure 2.2: Example 1: Simulation results without channel noise (rif = 6). 

Example 2: nj = 15. In the second example, the filter length is chosen larger. The 

suboptimal 7 = 0.07 can be obtained by using Theorem 1 and the system matrices 

of the FIR filter are 

Cf = [ -0.0039 0.0046 0.0192 0.0350 0.0442 0.0376 0.0084 -0.0418 -0.0989 

-0.1382 -0.1329 -0.0658 0.0623 0.2352 0.4391 ] , 
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Figure 2.3: Example 1: Reconstruction error signal without channel noise {nj — 6). 
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Figure 2.4: Example 1: Simulation results with channel noise (n/ = 6). 

Df = 2.5748. 

The simulation results are shown in Figures 2.6 and 2.7. Then, a white noise 

with power of 1 x 10 - 4 is added and the results are shown in Figures 2.8 and 2.9. 
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Figure 2.5: Example 1: Reconstruction error signal with channel noise (n/ = 6). 
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Figure 2.6: Example 2: Simulation results without channel noise (nj = 15). 

To take a closer look and make comparisons, we show the signal reconstruction 

errors of Example 1 and Example 2 in Figures 2.10 and 2.11, respectively. It is 

observed that for longer n/ the deconvolution filter provides better reconstruction 
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Figure 2.7: Example 2: Reconstruction error signal without channel noise («./ = 15). 
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Figure 2.8: Example 2: Simulation results with channel noise (n/ = 15). 

performance. 
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Figure 2.9: Example 2: Reconstruction error signal with channel noise (n/ = 15). 
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Figure 2.10: Comparison of reconstruction error signal without channel noise. 

2.5 Conclusion 

In this chapter, an LMI-based optimization approach and the PRA method are 

applied to design FIR deconvolution filters that guarantee the energy-to-peak per-
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Figure 2.11: Comparison of reconstruction error signal with channel noise. 

formance. Simulation examples illustrate the effectiveness of the proposed method; 

comparison studies show that for FIR filters, the longer the filter length, the better 

the performance. 

On the other hand, however, the longer the filter length, more implementation 

cost will arise for the application. This posts a question worth to further research: 

Can an algorithm simultaneously design both the filter parameters and the filter 

length? To our best knowledge, such work is still an open topic and could be 

considered a future research problem. 
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Chapter 3 

I IR Deconvolution Filter Design 
with Guaranteed 
Energy-to-Peak Performance 
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3.1 Introduction 

In signal processing, many filter design problems often can be cast as a constrained 

optimization problem. This methodology has been applied to IIR filter design, e.g. 

[61, 49]. Particularly, the Hoo optimization technique was used for the design of 

IIR filters considering the time-domain envelop constraints in [61]. Further, it was 

extended to deconvolution filter design in [49] by following a similar line. To the 

best of our knowledge, the \<i — loo I IR deconvolution filter design has received less 

attention, which is the focus of this chapter. 

The rest of the chapter is organized in the following way. We first formulate the 

IIR deconvolution filtering problem and state the objective of h — loo filtering design 

in Section 3.2. In Section 3.3, the sufficient and necessary condition is derived to 

guarantee the li — l^ filtering performance. Further, the condition is transformed to 

LMIs. To illustrate the effectiveness of the proposed method, design examples are 

given in Section 3.4. Finally, the conclusion remarks are addressed in Section 3.5. 

3.2 Problem Formulation 

Consider the deconvolution filtering system shown in Figure 3.1. In the system, the 

source signal s(k) G 7£ is assumed to be generated by the signal model 

v(k) 

Signal 
Model 

Transmission 
Channel 

w{k) s{k) *.(*) 

Deconvolution 
IIR Filter 

y(k) cym s(k) 

+*6 e(k)j 

Figure 3.1: An IIR deconvolution filtering system model. 
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• ^ f x3(k + l) = Asxs(k) + Bsw{k) 
^ a- \ s(k) = Csxs{k) + Dsw{k) ' (3-1) 

where xa(k) 6 R"s is the model state vector, w(k) 6 ^[0, oo) is the driving signal 

of the model, and As, Bs, Cs, and Ds are known constant matrices of appropriate 

dimensions. The source signal is transmitted through a channel modeled by 

£C: xc(k + 1) = Acxc(k) + Bcs(k) 
zc(k) = Ccxc{k) + Dcs{k), ' 

(3.2) 

where xc(k) £ K"c is the channel state vector. 

At the receiving end, the measured signal y(k) is equal to zc(k) + v(k), where 

v(k) is the energy-bounded channel noise. To optimally recover the source signal 

s(k), the signal y(k) is deconvoluted by an IIR filter with the following state-space 

model 

V F- / xf(k + 1) = Afxf(k) + BfV(k) 
^ \ s(k) = CfXf(k) + Dfy(k) 

(3.3) 

where x/(fc) £ M.nf is the filter state vector, and Af, Bf, Cf, and Df are constant 

matrices to be designed. 

Combining (3.1), (3.2), and augmenting the state vector give rise to the following 

state-space model: 

f x{k + l) = Ax{k) + Bwe{k) 

\ y{k) = Cx{k)+Dwe(k) ' {6-V 

where xT(fe) = [xj(fc), xj{k)\, wj(k) = [u>T(fc), wT(fc)] and the new system ma

trices are 

A = 

B = 

C = [ DCCS Cc ] 

As 

BCCS 

Bs 

BCDS 

0 
Ac . 

0 " 
0 

D = [ DCDS 1 ] . 
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Define the filtering error as 

e(fc) = «(fc).-«(fc). 

Then the filtering error system can be represented by 

5>{ xe(k + 1) = Aexe(k) + Bewe(k) 
e{k) = Cexe(k) + Dewe{k) 

where xj(fc) = xT(fc), a;T(fc) 

Considering that 

(3.5) 

s(k) = Csxs(k) + Dsu>{k) 

xa(k) 
_ xc(k) 

Ca 0 ] + [ Da 0 

then we have 

Ae 

Ce 

De 

A 0 
BfC A}\ 

B 
BfD 

[ $ - DfC -Cf ] 

r - DjD. 

w{k) 
v(k) 

The main objective of this work is to develop the li — l^ IIR filter of the form 

in (3.3) such that: 

1. The filtering error system is stable. 

2. The filtering error system guarantees 

l|e||oo < 7 l k e | | 2 

for all nonzero we G ^[0, oo), where H^elll : = Sfclo we'('!')we(^) anc^ llelloo = 

supfce
T(fc)e(fc). 

28 



3.3 I IR l2 - loo Filter Design 

In this section, we will formulate and solve the li — l^ IIR filter design problem 

under the framework of LMI. Lemma 1 and Theorem 1 stated in Chapter 2 also 

hold for the case of IIR deconvolution filter design, except the different definitions 

for the involved matrices Ae, Be, Ce, and De. To make the presentation concise, we 

choose not to reiterate the results here, but just to cite Lemma 1 and Theorem 1 

for the following derivation. 

Theorem 3 Suppose (Ae,Be,Ce,De) is arbitrary but fixed and let 7 > 0 be given. 

Then the filtering error system in (3.5) is stable and the l<i — l^ gain of the filtering 

error system is less than 7 if and only if there exist Z > 0, Y > 0, Q, F, G, Df 

(with appropriate dimensions) such that 

72J $-DfC-G fb-DjC T-DfD 
Z 
* 
* 

Z 
Y > 0 , (3.6) 

Z Z ZA ZA ZB 
* Y YA + FC + Q YA + FC YB + FD 
* * Z Z 0 
* * * Y 0 

> 0 . (3.7) 

Here, * represents an ellipsis for the terms that are introduced by symmetry. Further, 

the system matrices of the deconvolution IIR filter are given by 

Af = {Z-Y)-lQ, 

Bf = {Z-YYlF, 

Cf = G. 

(3.8) 

Proof: Let us partition P in (2.8) and (2.9) and its inverse as 

P = 
X U ' 
* X 

, p-1 = 
) 

' Y V 
* Y 

(3.9) 
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where X, Y and X,Y are all symmetric and positive definite matrices. Then we 

have 

p p - i XY + UVT XV + UY 
UTY + XVT UTV + XY 

I 0 
0 I 

(3.10) 

From this partition of matrix P, we can obtain the following one-to-one change of 

variable: 

' V 0 " 
0 / 

i 

• v~l o ' 
0 I 

' Q F ' 
.GO. 

- l 
' Q F 

G 0 

' V-lQXU~T V~lF 
GXU- T 0 

u^x-1 on_1 

0 I 

xu-T o 
0 I 

(3.11) 

where the indicated inverses exist due to the fact that X is symmetric and positive 

definite and matrices V and U are both nonsingular. 

Using the partition P in (3.9), 

CP=[$- DfC -Cf ] 
X U 
C/T X 

= [ ($ - DfC)X - CfU
T ($ - DfC)U - CfX ] . 

Inequality (2.8) becomes 

7 2 / C D~ 
CT W 0 
D T 0 I 

= 

7 2 I ($ - DfC)X - CfU
T ($-DfC)U-CfX T - DfD 

X 
* 

U 
X 

Defining the square and full rank matrix 

J 
X-1 Y 

0 VT and J 
X'1 0 

Y V 

0 

0 
I 

(3.12) 

(3.13) 

and multiplying inequality (2.8) to the left by the full rank matrix J T = diag[7, JT, I] 

and to the right by J and considering the equalities in (3.10) and (3.11) provide the 

following inequality 

72J §-D}C-G 9-DfC T-DjD 
* 
* 
* 

x-1 

* 
* 

x-1 

Y 
* 

0 
0 
I 

> 0 . (3.14) 
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Using a similar procedure and multiplying inequality (2.9) to the left by the full rank 

matrix J T = diag[JT, J T , I] and to the right by J provide the following inequality 

X~l X-1 X~lA X~lA X~lB 
* Y YA + FC + Q YA + FC YB + FD 
* * x-1 x-1 o 
* * * Y 0 

> 0. (3.15) 

Let X 1 = Z, we can obtain the theorem. Let U = X = Z \ so (7 is nonsingular. 

Then, from XY + UVT = I, we can get 

V T = Z(I - XY) => V = (J - YX)Z = Z- YXZ = Z-Y. 

Hence, 

Af = V~1QZ-1Z = V-1Q = (Z-Yy1Q, 

Bf = V~lF = (Z- Y)~lF, 

Cf = GXX~1 = G. 

This completes the proof. • 

Corollary 2 The IIR li — l^ deconvolution filter can be found by solving the fol

lowing optimization problem: 

min 7 subject to (3.6) and (3.7). (3.16) 

3.4 Design Examples 

In this section, a design example is given to illustrate the proposed algorithm. Also 

its performance will be compared to that of the FIR deconvolution filter designed 

in Chapter 2. 

Example 1: Suppose that the system shown in Figure 3.1 has the signal model Y^s 
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with the following system matrices 

T _ 
s 

" 3.6015 
-5.6805 
5.0232 
-2.6253 
0.7707 
0.0997 

1 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
1 
0 

Bs = 

Cs = [ 0.0002 0.0091 0.0323 0.0222 0.0029 0 ] 

D. = 0, 

and the channel model 53 with the following system matrices 

Ac = 

Cc = 

1.6047 0.8520 0.1496 
1 0 0 
0 0 1 

Bc. 

-0.1747 0.2772 0.1135 ] 

Dc = 0.45. 

Then, applying Corollary 2, 7 = 2.4702 x 10 is obtained, and the system 

matrices of the designed IIR deconvolution filter are: 

Af = 

2.8726 
0.7098 

-0.0023335 
-0.0049231 

0.001806 
-0.0006155 

-2.7865 x 10~7 

-8.2242 x 10~8 

-1.6269 x n r 7 

-8.9068 
-1.9377 
0.093794 
-0.02528 
0.016532 

-0.0057867 
2.3522 x 10~6 

6.0906 x 10 - 7 

1.6791 x 10~6 

-16.04 
-9.7485 
-2.5909 
0.70658 
0.12752 

-0.043863 
7.0543 x 10-7 

-1.0144 x HT7 

1.7527 x 10~6 

-33.634 
-14.016 
-3.3499 
0.42721 
0.87206 
0.043022 

4.7742 x 10~5 

1.3258 x 10-5 

2.7742 x 10~5 

-5.3168 
-2.1392 

-0.25561 
-0.0077303 
0.0048452 
0.99833 

1.0646 x 10~5 

2.8579 x 10 - 6 

6.346 x 10-6 
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-12.648 
-5.0263 
-0.73913 
0.30907 
-0.10622 
0.036067 

2.6653 x 10 
7.4824 x 10 
1.5063 x 10 

3/ = 

602.51 
258.4 
54.618 
-6.1404 
1.787 

-0.60002 
-5 1.992 
-6 0.99975 
~5 -0.00052254 

1183.8 
595.79 
191.29 
16.065 
-7.384 
2.5475 
2.2222 

1.3048 x 10 - 5 

. -9.194 x 10~5 . 

) 

-824.15 
-358.52 
-79.568 
6.75 

-1.8061 
0.60247 
-1.4669 

0.00030928 
1.0007 

291.99 
129.05 
30.135 
-1.7328 
0.38496 
-0.12626 
0.40146 

-9.8384 x 10~5 

-0.00021386 

Cf = [ 1.0694 x 10~9 -8.354 x 10~8 -2.5119 x 10~7 8.504 x 10~7 3.6416 x 10~7 

6.2363 x 10~7 0.3882 -0.61598 0.25222 ] 

Df = 2.2222. 

Figure 3.2 shows the filter output s(k), signals s(k) and y(k), when no channel noise 

v(k) is added. In this case, the reconstruction error signal is illustrated in Figure 3.3. 

Then, a white noise with power of 1 x 10~4 is added and the results are shown 

in Figures 3.4 and 3.5. 

Example 2: Comparison between IIR and FIR deconvolution filter de

sign. To compare the performance of the IIR deconvolution filter and the FIR one 

(n/ = 15), we illustrate their signal reconstruction errors, for the case of adding 

noise (Figure 3.6) and without adding noise (Figure 3.7), respectively. From Fig

ure 3.6, it is observed that the IIR deconvolution filter obviously outperforms the 

FIR one. 
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Figure 3.2: Simulation results without channel noise. 
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Figure 3.3: Reconstruction error signal without channel noise. 

3.5 Conclusion 

In this chapter, we developed the li — 1^ IIR deconvolution filters by using the LMI 

technique. Design examples verify that the proposed method has good performance 
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Figure 3.4: Simulation results with channel noise. 
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Figure 3.5: Reconstruction error signal with channel noise. 

in terms of the observed small signal reconstruction errors. The developed IIR filter 

is also compared to the FIR one proposed in Chapter 2, and it is observed that 

the IIR filter outperforms the FIR one under the situation of no noise. One way to 
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Figure 3.6: Comparison of signal reconstruction errors without channel noise. 
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Figure 3.7: Comparison of signal reconstruction errors with channel noise. 

improve the performance of FIR deconvolution niters is to increase the filter length. 
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Chapter 4 

Robust I IR Deconvolution 
Filter Design with Guaranteed 
Energy-to-Peak Performance 

37 



4.1 Introduction 

In practice, there is still another important factor to take care of for the deconvo-

lution filter design - channel uncertainties. In literature, the channel uncertainties 

have received relatively less attention. In [49, 48, 50, 61], channel uncertainties were 

not considered. In [25], the uncertainties in the channel were formulated as satis

fying the integral quadratic constraints (IQCs), and further developed the robust 

FIR deconvolution filters. Another effective way to characterize the channel uncer

tainties is the polytopic uncertainty description that has been widely used in the 

area of control and estimation. In this chapter, we focus on the robust design of IIR 

deconvolution filters considering the polytopic uncertainties in the channel. 

The rest of the chapter is organized in the following way. We first formulate 

the robust IIR filtering problem and state the objective of robust fa — loo filtering 

design in Section 4.2. In Section 4.3, the sufficient condition is derived to guarantee 

the robust fa — loo filtering performance. Further, to decrease the conservativeness 

of the design, the parameter-dependent design method is introduced. The derived 

conditions are further transformed to LMIs. To illustrate the effectiveness of the 

proposed methods, design examples are given in Section 4.4. Finally, the concluding 

remarks are given in Section 4.5. 

4.2 Problem Formulation 

To characterize the uncertainties on the channel model, we introduce the polytopic 

uncertainties description: Assume that the system matrices of the channel model 

belong to a convex polytopic set defined as 

(AC,BC,CC,DC) :-
Ac(a) Bc{a) 
Cc(a) Dc(a) 

, a e T , (4.1) 
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where T is the unit simplex 

T = ^ (ai , • • •, a s) : ^ aj = 1, aj > 0 > . 

The state-space model of the IIR filter to be designed takes the same form as 

(3.3) in Chapter 3. 

For the state-space model (3.4) by combining (3.1), (3.2), and augmenting the 

state vector, its system matrices (A, B,C, D) are with the following polytopic un

certainties accordingly: 

(A,B,C,D)r-
A{a) B(a) 
C{a) D{a) = £ a 

% 
= i 

Ai Bi ,ae?\. (4.2) 
Ci Di 

The objective is to develop the robust 1% — loo HR filter of the form in (3.3) such 

that for all admissible uncertainties: 

1. The filtering error system is stable. 

2. The filtering error system guarantees 

||e||oo^7lKI|2 

for all nonzero we G ^[0, oo), where H^elll := J2T=o wJ(k)we{k) and UeH ,̂ — 

supA.eT(fc)e(fc). 

4.3 Robust I IR l2 — loo Filter Design 

We can easily extend Theorem 3 in Chapter 3 to obtain sufficient conditions for the 

robust I2 — loo deconvolution IIR filters with polytopic uncertainties, thanks to the 

inherent properties of the convex combination - it suffices to verify the constraints 

only at the vertices of the polytopic uncertain parameters. 

Theorem 4 Suppose (Ae, Be,Ce, De) are arbitrary but fixed and letj>0 be given. 

Then the filtering error system in (3.5) is stable and the li — loo 9ain °f the filtering 

39 



error system is less than 7 (4-V> if there exist Z > 0, Y > 0, Q, F, G, Df satisfying 

- 7 2 j $ _ DjC. _ Q $ _ £>/C". r _ DjD. -

* 
* 
* 

z 
* 
* 

z 
Y 
* 

0 
0 
I 

> 0 , (4.3) 

Z Z ZAi ZAt ZBi 
* Y YAi + Fd + Q YAi + Fd YBi + FDi 
* * z z 0 
* * * Y 0 
* * * * / 

>o, (4.4) 

where i = 1,2, • • •, s, and the filter is given by 

Af = {Z-YYlQ, 

Bf = (Z-YrlF, 

Cf = G. 

Proof: It can be readily proved by following the similar line of Theorem 3. 

(4.5) 

• 

Corollary 3 The robust IIR I2 — loo filter can be found by solving the following 

optimization problem: 

min 7 subject to (4.3) and (4.4), Vi = 1 , . . . , s. (4.6) 

Even though it is straightforward to obtain above results to design a robust 

h — loo deconvolution filter, the design would be conservative in that the resulting 

h — loo gain may not be small enough. How to develop a less conservative design 

method will be the focus in the following. In the literature, it has been reported 

that the parameter-dependent Lyapunov function method can effectively reduce the 

conservativeness in robust control [32] and robust filtering design [16]. In this work, 

we apply this method to the robust 1% — loo deconvolution filter design. 

For a clearer presentation here, we reiterate Lemma 1 for the IIR case, that is 

adapted from Lemma 7 in [18]. 
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Lemma 2 Suppose system matrices of the deconvolution IIR filter, (Ae,Be,Ce,De) 

are arbitrary but fixed and let 7 > 0 be given. Then the filtering error system is 

stable and the I2 — loo 9a^n °f the filtering error system is less than 7, that is 

e op 
SUP T~T~ < T> 

if and only if there exists a matrix Y > 0 such that 

CeYCj + DeDj < 7
2 J 

AeYA]! + BeBj < Y. 

(4.7) 

(4.8) 

(4.9) 

Proof: It can be proved by following the results in [18, 16]. • 

The next theorem presents a new version of the I2 — loo performance condition 

which is equivalent to Lemma 2. 

Theorem 5 Suppose (Ae,Be,Ce,De) is arbitrary but fixed and let 7 > 0 be given. 

Then the filtering error system in (2.4) is stable and the li — loo 3 a * n °f the filtering 

error system is less than 7 (4- 7) if and only if there exist 0 < Y and G satisfying 

727 CeG De 

* GT + G-Y 0 
* * I 

Y AeG Be 

* GT + G-Y 0 
* * I 

>0 , 

>0 . 

(4.10) 

(4.11) 

Proof: By applying the Schur complement to (4.8) and (4.9) and by choosing 

G = GT = Y we can obtain (4.10) and (4.11). On the other hand, assuming (4.10) 

and (4.11) are feasible, we explore the fact that G + GT — Y > 0, so that G is 

nonsingular and (GT — Y)Y~l{G — Y) > 0 always holds. Hence, the inequality 

G + GT - Y < GTY-XG enable us to conclude that 

7
2 7 CeG De 

* GFY-XG 0 
* * I 

>o, (4.12) 
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Y AeG Be 

* GTY-lG 0 
* * I 

> 0 . (4.13) 

Performing congruence transformations to (4.12) and (4.13) by diag{I, G - 1 , ! } to

gether with Schur complement operations yield (4.10) and (4.11), which conclude 

the proof. • 

Now, we are in a good position to give the main results on the robust I2 — loo 

deconvolution filter design. 

Theorem 6 Suppose (Ae,Be,Ce,De) is arbitrary but fixed and let 7 > 0 be given. 

Then the filtering error system in (3.5) is stable and the li — loo go-in of the filtering 

error system is less than 7 (4-7), if and only if there exist 0 < X, 0 < V, Z, R, F, 

M, N, T, Df satisfying 

•j2I §-DfC-T &-DfC 
* RT + R-X RT + F + UT-Z 
* * FT + F-V 

T-DjD 
0 
0 
I 

> 0 , 

X Z RTA R^A RTB 
* V FTA + NC + M FTA + NC FTB + ND 
* * RT + R-X RT + F + UT-Z 0 
* * * FT + F -V 0 
* # * * / 

and the IIR filter is given by 

> 0 , 

(4.14) 

(4.15) 

Af = U^M 

Bf = U~lN 

Cf = T. 

(4.16) 

Proof: The proof is in the appendix. • 

For polytopic uncertainties, we have the following results on the robust IIR 

h — loo deconvolution filter design. 
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Theorem 7 Let 7 > 0 be given. Then the filtering error system in (3.5) is stable 

and the l<i — l^ gain of the filtering error system is less than 7 (4-7), if there exist 

0 < Xi, 0 < Vi, Zi, i = 1 , . . . , s, R, F, M, N, T, Df satisfying 

$ - Dfd YI <S>-Dfd-T 
* RT + R-Xi RT + F + UT -Zi 
* * FT + F-Vi 

Xi Zi RTAi RTAi 
* Vi F^Ai + Nd + M FTAi + NCi 
* * RT + R-Xi RT + F + UT-Zi 
* * * FT + F-Vi 

r - DfD, iu% 

>0 , (4.17) 

R Bi 
FTBi + NDi 

0 
0 
I 

> 0. (4.18) 

and the IIR filter is given by (4-16). 

Proof: It can be proved by following the similar procedure in Theorem 6. • 

Corollary 4 The robust IIR li — l^ deconvolution filter can be found by solving the 

following optimization problem: 

min 7 subject to (4.17) and (4.18), Vi = 1 , . . . , s. (4.19) 

4.4 Design Examples 

Example 1: First of all, it is worth mentioning that Theorem 3 in Chapter 3 is 

equivalent to Theorem 6, for systems without uncertainties. To verify this, applying 

the method in Theorem 6 to design the IIR deconvolution filter for the same system 

used in Chapter 3, 7 = 1.3045 is obtained, which is identical to that obtained in 

Section 3.4 of Chapter 3. 

Example 2: Robust li — l^ IIR deconvolution filter design. Next, we turn 

our attention back to the design for a system with polytopic uncertainties. The com

parison simulations will show and verify that the parameter-dependent Lyapunov 

method achieves better performance. 
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Assume that the channel model has the polytopic uncertainty with following 

system matrices: 
a 0.8520 0.1496 
1 0 0 
0 0 1 

Bc 

where 

Cc = [ -0.1747 p 0.1135 ] 

Dc = 0.45, 

1.59 <a< 1.61, 

0.2771 < (3 < 0.2773. 

First, we apply Corollary 3 to design the filter, and the resulting h — loo gain is 
shown in Table 4.1. The corresponding system matrices of the designed filter are: 

Af = 

3.0430 
0.7642 
0.0062 
-0.0188 
-0.0166 
-0.0389 
-0.0610 
-0.0712 
-0.0645 

-5.2312 
-0.1881 
0.5199 
-0.0570 
0.0520 
0.2584 
0.3661 
0.4249 
0.3897 

3.1693 -
-0.9689 -
-0.4547 -
0.3038 -

5.3758 2.9407 
2.1347 1.5106 
1.2623 0.7939 
0.1434 0.0861 

-0.4081 1.2562 -0.2963 
-0.7043 1.1917 -0.0824 
-0.9920 1.4940 -1.2053 
-1.1397 1.6668 -1.3417 
-1.0375 1.5208 -1.2495 

Bf = 

' 137.6904 " 

105.6959 

69.8332 

36.6473 

12.0215 

-1.4010 

2.7624 

0.7167 

0.0094 

5 

-1.5944 
-1.0516 
-0.5770 
-0.1387 
0.1828 
0.5377 
0.5255 
0.5732 
0.5343 

13.5410 
10.2480 
6.6597 
3.4499 
1.1685 
-0.0056 
1.5319 
0.8597 
0.2396 

-19.3616 
-14.8256 
-9.9013 
-5.4978 
-2.3430 
-0.6519 
-1.3268 
-0.3854 
0.1079 

7.2081 
5.5830 
3.8249 
2.2507 
1.1079 
0.4595 
0.5055 
0.3301 
0.5103 

Cf -0.0011 -0.0023 0.0195 -0.0196 0.0396 -0.0086 0.1196 -0.2597 0.1304 

Df 1.9161. 
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Table 4.1: Comparison of performance using two different methods 
h - loo gain 

7 

Direct method 
(Corollary 3) 

0.28175 

Parameter-dependent Lyapunov function method 
(Corollary 4) 

0.1751 

Figure 4.1 shows the filter output s(k), signals s(k), and y(k) without channel 

noise v(k). The reconstructed error signal is shown in Figure 4.2. Then, a white 

noise with power of 1 x 10~4 is added and the results are shown in Figures 4.3 

and 4.4. 

Figure 4.1: Example 2: Simulation results without channel noise. 

Example 3: Then apply Corollary 4 to design the filter, and the results are: 

8.0261 
2.5668 
0.8541 
0.1797 
-0.2069 
-0.3541 
-0.2708 
-0.3642 
-0.3451 

-31.6036 
-10.4777 
-4.3466 
-1.2453 
1.0328 
1.9554 
1.6502 
2.1427 
2.0785 

34.6427 
12.0734 
7.8127 
2.9976 

-2.1393 
-4.3034 
-4.1543 
-5.0688 
-4.9285 

-83.7086 
-34.3011 
-15.9327 
-4.2525 
3.1987 
5.4613 
5.4964 
7.0390 
7.1272 

59.1829 
24.0047 
10.5072 
3.0496 

-1.0323 
-2.4126 
-3.7329 
-4.9053 
-5.1267 

-21.5709 
-8.7353 
-3.5367 
-1.0362 
0.2354 
1.0108 
1.2154 
1.6289 
1.7404 

188.4664 
80.5576 
27.6699 
5.8688 

-1.0217 
-2.2753 
0.4467 

-1.8177 
-2.8284 

-309.9510 
-131.3303 
-44.8258 
-9.7621 
1.1507 
3.2028 
0.3345 
3.9125 
5.0529 

132.2306 
55.5102 
18.8268 
4.1957 

-0.3114 
-1.2151 
-0.1881 
-1.5083 
-1.6158 

Bf = [ 1273 560.29 199.53 48.672 1.3909 -7.401 2.7556 -8.8483 -12.722 
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Figure 4.2: Example 2: Reconstructed error signal without channel noise. 
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Figure 4.3: Example 2: Simulation results with channel noise. 

Cf = [ -0.011639 0.044552 -0.065991 0.056478 0.0079402 -0.0098903 0.13346 -0.25943 0.1239 ] , 

Df = 2.001. 
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Figure 4.4: Example 2: Reconstructed error signal with channel noise. 

Figure 4.5 shows the filter output s(k), signals s(k) and y(k) without channel 

noise v(k). The signal reconstruction error is shown in Figure 4.6. Then, a white 

noise with power of 1 x 10~4 is added and the results are shown in Figures 4.7 

and 4.8. 
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... yynj 

\\... s(k) 
'y<S£:j^sw 

% (^^^" 

1 1 1 

s(k) 
. . . - y ( f c ) -
- - - S ( f c ) 

< 

Figure 4.5: Example 3: Simulation results without channel noise. 
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Figure 4.6: Example 3: Signal reconstruction error without channel noise. 

20 30 40 50 60 70 

k 

Figure 4.7: Example 3: Simulation results with channel noise. 

The comparisons of signal reconstruction errors are shown in Figures 4.9 and 4.10, 

respectively. 

From Table 4.1 and all the simulation figures, it is obvious that the parameter-
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Figure 4.8: Example 3: Signal reconstruction error without channel noise. 

-0.03 

- J * ' 1 
/' % \ 
1 ' 1 

" 1 t •' 
/ * 

J 1 

r 
» 
i 

\ 

i 

; Corol lar 

» 1 .: 
? . : Co 

'A • ^ 
\ / 1 / • \ * % 

\ / A . .11 ; V ./. . . . /T" 

..'... \l\ > 
i y t 

» 1 1 : 
v ' , • . . . . . . . 

i 

YA 

•ollary 3 

- — Error using Corollary 4 
Error using Corollary 3 

i 

10 20 30 40 50 70 

Figure 4.9: Comparison of error signals without noise. 

dependent Lyapunov method achieves much less conservative design that the direct 

method. 
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Figure 4.10: Comparison of error signals with noise. 

4.5 Conclusion 

In this chapter, first, by directly extending the results of Chapter 3, we develop 

the robust h — loo HR deconvolution filter incorporating the polytopic channel un

certainties; this direct extension is enabled by the inherent properties of convex 

combination for this type of uncertainty description. However, such a straightfor

ward extension leads to conservativeness to some extent. Therefore, we apply the 

so called parameter-dependent Lyapunov method to re-design the robust I2 — loo 

deconvolution filter, resulting in less conservativeness in terms of the smaller I2 — loo 

gain, and for sure, better signal reconstruction performance. Several examples are 

given to verify the proposed methods. 
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Chapter 5 

Conclusions and Future Work 



In this thesis, we have investigated the deconvolution filter design with guaran

teed energy-to-peak performance, that is, the I2 — loo deconvolution filter design. 

This chapter summarizes the results reported in this thesis, and proposes some 

possible future research directions. 

5.1 Conclusions 

Unlike most existing deconvolution filtering design methods under the framework 

of "Hoo optimization in the literature, we propose to design I2 — loo deconvolution 

filters. 

1. We have proposed to design FIR deconvolution filters that guarantee the 

energy-to-peak performance using the LMI-based optimization approach and 

the PRA method. Simulation studies show that for FIR filters, the longer the 

filter length, the better performance can be achieved. 

2. We have developed the I2 — loo HR deconvolution filter by using the LMI 

technique. The IIR filter is found to outperform the FIR one. One way to 

improve the performance of FIR deconvolution filters is to increase the filter 

length. 

3. By directly extending the results of I2 — £00 deconvolution filter design in Chap

ter 3, we have developed the robust I2 — loo HR deconvolution filter incorpo

rating the polytopic channel uncertainties; this direct extension is enabled by 

the inherent properties of convex combination for this type of uncertainty de

scription. However, such a straightforward extension leads to conservativeness 

to some extent. Therefore, we have further applied the parameter-dependent 

Lyapunov method to re-design the robust 1% — Zoo deconvolution filter, result-
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ing in less conservativeness in terms of the smaller li — 1^ gain, and for sure, 

better signal reconstruction performance. 

In the following section, we give some possible future research directions. 

5.2 Future Work 

Indeed, even though present analysis and design of deconvolution filters go a long 

way in facilitating reliable applications, in many aspects the research in this area is 

still open. We propose some future research topics. 

• Existing deconvolution filter design methods are based on infinite precision 

arithmetic, and therefore lead to filters that cannot be readily implemented 

with microprocessors. Such infinite precision filters have to be transformed 

into finite precision filters using techniques such as coefficient quantization and 

rounding before they can be implemented with hardware. This leads to two 

problems: (1) First, the likely sacrifice of filter performance because of the 

deviation from the infinite precision filter (which can be partially overcome 

by increasing the level of precision, although practical applications have a 

limit to the allowed wordlength); (2) second, the use of more bits tends to 

exacerbate the cost and complexity of hardware implementation. Hence, it is 

interesting to design deconvolution filters whose coefficients are restricted to 

a sum of signed powers of two (POT). This feature allows the filters to be 

implemented with simple adders and shifters only, eliminating the need to use 

any multipliers whose contribution to the cost and complexity is often great. 

This type of deconvolution filters is desirable in applications. The design 

could be formulated as an integer programming problem under the framework 

of model matching. 
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On another practical side, lower filter order and complexity are always required 

in many applications. It would be interesting to further study the design 

of deconvolution filters with designable filter length. To develop an efficient 

algorithm to simultaneously design both deconvolution filter parameters and 

filter length is the main objective. 

• In practice, signal transmission is usually affected by the network-induced 

packet loss and/or delay, as depicted in Figure 5.1. Therefore, the output 

measurements yi(k) will be subject to random data loss. An obvious conse

quence is that the deconvolution filter design will become more challenging: 

Since the output data are not always available, existing deconvolution filter 

design methods can no longer be applied directly. How to design an effective 

deconvolution filter with randomly missing outputs is a worthy topic for future 

research. 

v(k) 

Signal 
Model 

Transmission 
Channel 

w(k) m I c 
*«(*) 

Deconvolution 
Filter 

O y(k) 
Network 

/(*) 
Incomplete 

Measurement 

m 

X^v 
Figure 5.1: A deconvolution filtering system with randomly missing outputs. 
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Chapter 6 

Appendix: Proof of Theorem 6 



Proof: Proof of necessity. Suppose there exists an admissible filter guaranteeing 

the filtering error system to be stable with an I2 — 'oo disturbance attenuation level 

7, then from Theorem 4, there exist matrices 0 < Y and G satisfying (4.10) and 

(4.11). Partition G, G _ 1 and Y as 

G = 
Gn G12 
G21 G22 

G-! = S11 Su 
S21 S22 

Y = 
Yn Y12 

12 Yl y22 
(6.1) 

There is no loss of generality in assuming that G21 and S21 are invertible. Introduce 

matrices 

Gn I' 
G21 0 Js-= 

'I Sn' 
0 52i . JG:= 

then Jo and Js are nonsingular, and we have 

(6.2) 

G 1JG = Js GJs = JG- (6.3) 

Y r- (6.4) 

Define 

~ Yn Y12 

Y?2 *22 

Performing congruence transformations to (4.10) by J5 := diag{7, Js,I}, and to 

(4.11) by J6 := diag{J5, Js,I}, yields 

7 2 / LGn-CfGn L V - DjD 
* Gft + G n - Y h / + G^Su + G&S21 - Y12 0 
* * Sn + 5 ^ — Y22 
* * * I 

Yn Y12 AGn A 
* %2 SjyAGn+S^BfCGn+S^A^i Sj.A + S^BfC 
* * Gn+Gn-Yn 1 + Gj.Sn + GixS?l - Y12 

* * * Sn + Sn — Y22 

Inequality (6.5) implies Gu + Gji — Y"n > 0, then Gn is invertible. Performing 

congruence transformations to (6.5) by J^ := diag{7, Gj~j , / } , and to (6.6) by Js := 

>o, 

B 

(6.5) 

SnB + SlBfD 
0 
0 
/ 

(6.6) 
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diag{G n \ I, G n \ / , 1} yields 

7
2 / L-CfG2lGn

l 

* G^ 4- GJJ — X GJJ + Sn + G-^ G2^Sr2i — Z 
Su + Sfi - V 

* 

o 
0 
I 

> 0 , (6.7) 

X Z GnTA G ^ A G ^ B 
* V SfiA + S&BfC + S&AfGziGi? S^A + S^BfC S^B + S&B/D 
* * Gii + Gj~! —X G u + 5n + GJ-! G21S21 — Z 0 
* * * Sn+Sfi-V 0 

where 

Y :--
X Z 
ZT V 0 I 

Yu Y12 

Y?2 Y22 

-T 
11 G 

oT QT 
°11 °21 

Gn1 0 

G n 5 n 
0 S21 

and a new change of variables to (6.7) and (6.8) defined by 

> 0 

(6.; 

(6.9) 

R: 

M : 

T : 

— ^11 ' F : = "Siii ^ : = ^ l ^ i - R , 

= 52
T

1A /G2ii?,iV:=52
T

1B /, 

= G/G2ii? 

(6.10) 

yields LMIs (4.14) and (4.15). 

Proof of Sufficiency. Suppose there exist matrices 0 < X, 0 < V, Z, R, F, M, N, 

T, Df satisfying (4.14) and (4.15), then the proof is as follows. LMI (4.15) implies 

X Z 
* V 

Further, we have 

> 0 , 
RT + R-X R? + F + UT-Z 

* FT + F-V 
> 0 . 

Rr + R RT + F + Ur 

* FT + F 
> 0 . 

(6.11) 

(6.12) 

Then, U must be nonsingular, or there exists x / 0 satisfying Ux = 0 which gives 

rise to 

T T 
x —x 

RT + R RT + F + UT^ 
* FT + F 

x 
—x 

0 (6.13) 
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which contradicts (6.12). With R nonsingular, invertible G21 and S21 can always 

be constructed from URr1 = S^G^i. Then the filter matrices Af,Bf,Cf as well 

as 5 n and Gn can be constructed uniquely from (6.10). In addition, we can also 

compute Yii, Y12, and Y22 by reversing the formulas. 

Since G21, 521, and Sn are invertible, the matrices JQ, Jg, J\, J2, J3, and 

J4 defined above are all invertible. By adequate transformations and congruence 

transformation, (4.14) and (4.15) are equivalent to (4.10) and (4.11). Then we 

can conclude that the filtering error system is stable with an \<i — l^ disturbance 

attenuation level 7. 

Furthermore, from (6.10), we have 

As = S^MR^G21, Bf = S^N, Cf = TR~lG^. (6.14) 

Then the transfer function (in z) of the filter is described by T(z) = Cf(zl — 

Af)~1Bf. The change of variables defined in (6.14) together with some standard 

transformations to the above transfer function yields 

T{z)=T{zI-U-1M)-1U-1N, (6.15) 

which means (4.16) is established and the proof is concluded. • 
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