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Abstract

This dissertation describes the design and implementation of a prototype natural
language interface to a small work cell equipped with a simple binary vision system.
Installed on a personal computer, this TSKMSTR software package investigates
the minimum requirements of natural language processing by relying on syntactic
and semantic conventions to develop a command template. These templates, once
incorporated into a Horn Cli use task description, are executed by a meta PROLOG
interpreter. Further, this P'ROLOG representation permits the implementation of
task generalization during an English teach dialogue, a facility currently unavailable
on other natural language work cell interfaces. In addition an howmogeneous
transformation world model has been designed that places traditionally explicit world
model management duties into a hidden, run-time module. An evaluation of the
TSKMSTR system and recommendations to improve the current software are also

provided.
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Chapter 1

Introduction

When robots were first introdu~ed to industry by the fledgling Unimation in 1961,
they were taught new tasks by hand. Thirty years later, with few exceptions, the
industrial robot relies on much of its understanding of the world through a hand
guided teaching cycle. Though sensors such as vision and touch are available to add
flexible behaviour to the robot’s innat. mechanical versatility, industry has continued
to rely on the less flexible manually taught machines. One of the major reasons for
industries’ caution stems from the difficulty and expense of routinely programming
a robot within a work cell, or robot assembly station, equipped with a complex
array of sensors. The experienced assembly technician must undergo considerable
training or describe the assembly task to a full ti... programmer who may have little

understanding of the assembly task.

To discover the fundamental problem of bridging the gap between the languages
of the robot and the assembly technician first requires a discussion of how engineering
assumptions have traditionally molded machine behaviour and how the modern
robot’s behaviour is molded, not by the engineer, but by the technician on the shop

floor.

1.1 The Human Perspective

Like an artist’s perspective is instilled in his painting, the engineer’s impressions of
the world are preserved in the design and operation of his inventions. The designer’s
assumptions concerning how, where, when, and for what purpose his invention is to

be used will form its final configuration and operation in the work place. From the



stone axe to the drill press, the designer must make assumptions about the intended
placement and use of a prospective machine. In this sense the machine becomes
an expression of the designer’s view of the working environment. Discrepancies
between this assumed environment and the real world provide a means of measuring
the machine’s flexibility. The dependence on these assumptions and the tolerance of
deviations from them, while still producing the intended results, define that flexibility.
Should the machine demand a tightly regulated environment, this, too, is often
incorporated into the design. For example, some of the first woodworking lathes
were manually operated and the cutting tools hand held. Modern lathes, working
harder materials, use ‘built- in’ precision cutting tools operated through calibrated

mechanical screws, an example of regulating the lathe’s world.

In the industrial setting, efficient, high volume production often requires dedicated
miachines working within tightly controlled environments. For instance, assembly
lines often use conveyors to transport material from one operation to another, while
elaborate shakers and ferders position and orient material for processing. Despite
this rigid structuring, production lines invariably possess disordered environments
demanding mechanisms capable of flexible behaviour. In this situatiou, human
operators often guide specialized tools to complete the task, thus closing the gap
between dedicated machinery and less structured assembly operations. Ultimately a
task may either become so complex, the envirc ment so unpredictable, or the quautity
so small that only a skilled craftsman is sufficiently equipped with the flexibility
of judgement and precision of operation to adequately and efficiently complete the

assembly.



1.2 Robot Emancipation

The robot, like any other machine, has been designed by engineers with a unique
set of assumptions that define tr: machine’s general behaviour. These assumptions,
however, do not limit the application of the robot. In fact, the Robotic Inl'ustries

Association defines the robot as follows:

An industrial robot is a reprogrammable, multifunctional manipulator
designed to move materials, parts, tools, or special devices through

variable programmed motions for the performance of a variety of tasks.

Unlike previous industrial machines the robot is totally programmable, having no
single predetermined operational definition. The programmable robot’s operational
characteristics are designed and altered by shop floor personnel. The manipulator’s
precise behaviour becomes that of the ‘teaching’ technician who, in effect, impresses

his work methods and environment onto the robot.

Despite this apparent versatility. the majority of robots developed within the
last thirtv years remain employed in highly structured assembly line environments.
Most industrial robots perform essentially “pick and place” tasks, while few execute
“intelligent” decision-based assembly operations. One reason for this, of course,
is that most robots are employed in human working environments dominated by
human assembly methods. Another fundamental reason is that although robots are
programmable, the majority of hand taught industrial robots are no more flexible
than any other dedicated machine ou.ce the programming is complete. The robot’s
world is shackled to the operator’s impressions of the work place, regardless of the

consequences.



To free the robot from the limits of a ngid and potentially inaccurate human world
model, sensors and off-line programming languages have been incorporated into the
modern robot’s array of capabilities. These allow the robot to base its behaviour
on observed changes in the work environment, in effect forming its own impression
of the world. Despite these added advantages, the introduction of these flexible
robots has been difficult. The complexity and expense of routinely ‘translating’ the
programmer’s intentions and world impressions to robot level equivalents is often

difficult to justify.

In summary, machine behaviour can be interpreted as an image of a designer’s
world model. However, to take full advantage of the robot’s mechanical flexibility,
its behaviour should be based on an internal world model. Unfortunately, the
difficulties of incorporating the assembly technician’s intentions into the flexible
robot’s world model are considerable. Until such time as the robot is capable
of forming its own assembly plans, some means of efficiently and economically
translating these intentions must be found. Though many notable attempts have
been made to simplify the ‘communications gap’ between man and machine such as
AUTOPASS [3] and AL [9] programming languages, the majority of modern robot
languages are either primitive off-line versions of the on- line hand teaching protocol
or sophisticated PASCAL or FORTRAN-like programming languages requiring full

time programming expertise.

This thesis will discuss. in detail, the difficulties surrounding modern robot
programming and present one potential solution to the problem of communicating

with robots: a PC-based English natural language interface to a robotic work cell.



Chapter 2

World Modelling, Task Representation and Robot

Programming

The concept of world modelling is often considered academic and theoretical
in most discussions on robotics and is only lightly treated at the undergraduate
level [32]. This is an unrealistic judgement, however. Throughout the history of
machines, engineers have spent their educational years developing their own world
models describing material and physical behaviour, subsequently applying them to
the tools around us. The topic of world modelling in manufacturing is of growing
importance as finite element analysis, computer aided design and computer aided
manufacturing developers strive to integrate modelling methods, thus speeding the
design and production pro-ess. The development of flexible or intelligent work
cells demands the incorporation of this modelling ability in robots. The following
discussion reviews the methods employed for work cell modelling and its impact on

task representation and robot programming.

2.1 A World Model Hierarchy of Robot Control Languages

In its most rudimentary form, robot programming consists of prescribing a
sequence of robot manoeuvres and tool operations, perhaps in conjunction with
external events. These manoeuvres and events are monitored and coordinated by
some controller. A controllers capabilitics, like those of the manipulator, are closely
linked with the representational scheme adopted to model the actions and events
within the environment. As the demands made on a work cell rise, a capable

representational scheme or language must be found to represent the environment.
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This section will look at world modeclling techniques, task representation and
robot programming languages. Four broad categories characterize the programming

philosophies commonly found within moderu work cells:

1. Leadthiough programming : an Explicit World Model
2. Robot Level programming : an Expli.1: World Model
3. Object Level programming: an Implict: World Model

4. Task Level programming : a: Implat - i Definition

These four methods are not necessarily distinct, rather they exemplify a steady

increase in flexibility and complexity of work cell programming methods.

2.1.1 Leadthrough Programming : An Explicit World Model

The original and dominant foru of robot programming, known as leadthrough
programming, amounts to teaching the robot “by showing”. Most robots are taught
by “hand guiding”, storing an operators knowledge for each task description during
an on-line teaching session. Consequently, robot operations are defined by lists
of memorized joint positions. Though still reliant on a teacher’s set of external
assumptions, in effect the machines’s description of the world has been raised from

tangible mechanical stops and switches to the less tangible joint space.

Leadthrough based systems tend to be relatively inexpensive and simple to
operate. With a small keyboard teach pendantor by directly grasping the end effector,
an operator guides the end effector to a desired point, fine tunes the effector’s position
and orientation, and saves the point. Similar teaching methods include scale master

arms guiding the slave work cell manipulator through required motions or moving



bt |

the end effector through a task by hand. Unfortun. iese methods are time
consuming and often difficult to debug, the result being that the systems are not

reprogrammed often, reducing their potential flexibility.

Depending on the complexity of the system, the saved points or knot points may be
saved in joint space or in cartesian space. This more sophisticated form of leadthrough
systemn, often equipped with path generation software, stores the target position as a

coordinate frame, computing an optimized path prior to run-time.

The paths developed in early leadthrough systems were products of point-to-
point control. Point-to-point trajectories between knot points are generated when
the joints are allowed to move as rapidly as possible to their final position. Though
they make little computational demand on the controller, the path of the tool ‘ip
is often unpredictable. Path control is necessary for assembly and finishing where
small tolerances and high quality are priorities. More precise methods such as joint
interpolated control or cartesian interpolated control require the introduction of a

microprocessor to the work cell environment.

Joint interpolated motion between initial and final joint positions are motion
instructions issued such that all joints arrive at the final position simultaneously.
Joint interpolation is computationally inexpensive and rapidly produces a predictable,

though complex, tool path in the work space.

Cartesian interpolation, designed to produce a predictable linear path through
cartesian space, places a heavy computational load on the controller 2:d often requires
large joint accelerations or torques. This method is usually employed only when high
precision is required in tool positioning, usually during the final approach and actual

machining or assembly operations.

Obviously, robot manoeuvres rarely occur in isolation and must be coordinated



with external events such as material arrival or process completion. Signals convey
this information to the controller and trigger a predetermined action sequence. These
signals are incorporated into the program through the controller. Some hand guided
robots can interact with their environment through simple sensor input [7]. such as

tou h or force sensing.

The dominant advantage of leadthrough programming is simplicity. Since thas
method can employ relatively unskilled programmers. the hand taught robot is
popular in industry. If the robot’s role i1s well chosen, there is often little advantage

in employing more sophisticated robots.

A significant disadvantage of this method is that any new procedure must be
virtually retaught from the beginning. The concept of subroutines is both limitcd and
difficult to employ, often more difficult than simply retraining the robot. Furthermore,
since the operator develops the robot environment on the shop floor by hand, the
assembly line is interrupted and production stopped. Deficiencies of this method
appear when operations employing precise path control and event based decisions
are given to hand taught work cells. Though some are equipped with simple sensor-
based decision making functions, the controller’s lack of computational power limits
their decision making capacity. Often the only solution is the introduction of a small
microcomputer to control the work cell. An off-line programming language then

orchestrates work cell processes.

2.1.2 Robot Level Programming : an Explicit World Model

The simplest form of off-line programming retains the leadthrough method of
joint space task representation. These positions are stored in data files and called

during program execution by a MOVE type instruction. While these explicit robot



configurations precisely describe manipulator motions, simple flow control such as
GOTO or IF ... THEN commands provide a limited degree of flexibility. Variablesare
limited to simple primitives such as integers and reals. Motion commands tend to be
hiited to point-to-point movement from one configuration to another. Path control
amounts to multiple move commands through intermediate robot configurations. The
influence of sensor information on task execution remains essentially boolean switch

information.

A vanation on this method employs a cartesian space representation, by
introducing homogeneous transformations into the programming environment. See

appendix A or Paul [22] for more information on homogeneous transforms.

World Modelling with Homogeneous Transformations

In Paul’s discussion on modelling with homogeneous ransformations, T, is the
transformation from the base of the wanipulator to the gripper and represents the
forward kinematic solution. The position of the end effector, a gripper or specialized
tool (e.g. a drill), may be described by the homogeneous transformation TOOL
relative to the final joint. The displacement of the manipulator base from the origin
of the work cell may be described by an additional transformation E. The expression

defining the position, G, of the end effector relative to the work cell then becomes:
G = E T, TOOL

Like the manipulator, assemblies can be interpreted as kinematic chains within the

work cell. For example in figure 2.1.

o the transform FEEDER relates the position of a feeder mechanism in work cell

coordinates.
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e BOX defines the location of the box in FEEDER coordinates.

e HOLE defines the position of a hole in BOX coordinates.

Thkerefore:

L = FEEDER BOX HOLE

defines the location of a hole in work cell coordirates.

These transformations specifying relative object locations in a work cell can be
used to ‘calibrate’ the work cell during the programming phase. Though they may be
derived from design drawings, usually the robot manipulator and forward solution are
used to compute the values of unknown transformations. For example, if the FEEDER

transform is not known, the following expressions may be used to determine its value:
E T, TOOL = FEEDER BOX HOLE
Solving for FEEDER...
FEEDER = E T, TOOL HOLE-' BOX™

where T, is the forward solution using manipulator joint angles gathered when the

tool is placed on the site of the hole.

Unfortunately, the use of the manipulator as a tool to determine object positions
during programming interferes with the assembly line operation and is little better
than hand teaching the robot. An alternative is the use of sensors during work cell
operation to determine the missing transforms. A vision system with known camera
location CAM, relative to the work cell, determines the BOX position, BOXPOS, in

the work cell:

BOXPOS = CAM BOX



Since CAM is known, the transform BOX is expressed as:
BOX = CAM™!' BOXPOS

It should be noted that this approach removes the responsibility of world model
management from the programmer and places it firmly into the ran time environment

of the work cell.

World Modelling and Task Representation

If the above method of manipulator and assembly modelling is employed to

repres nt assembly operations, a task can be described in work cell coordinates by

a sequence of homogeneous tran f - - equations. Solving these equations for T,
expresses a task in terms of m position and orientation. Applying the
Inverse Kinematic solution to T, 7~ > the requisite robot joint angles.

Using the earlier example, the dnll placement at the sight of a future hole in the

box is equivalent to:

E T, TOOL = FEEDER BOX HOLE.

Solving this equation for T,
T. = E' FEEDER BOX HOLE TOOL™!,

isolates the manipulator and expresses the position of the end effector in terms of the
relative locations of the tool, work cell, and assembly. The Inverse kinematic solution
applied to T,, will produce those joint angles needed to bring the drill to the site of
the hole.

Though the subsequent world model and order of cxecution continues to be
explicitly expressed in the program, three significant advantages stem from the

adoption of this new description:
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1. Legibility
The immediate advantage of this method is that end effector positions,
previously occurring as joint angle lists, appear in familiar cartesian coordinate:
with some orientation quantities such as Roll, Pitch, Yaw (RPY) or Euler
parameters. This greatly improves the coding and debugging processes that

arise within the design phase of a robot program.

2. Path Generation and Control
Paths through three dimensional space can be generated and executed from
within the program. Intermediate points along the chosen path can be described
as mathematical functions, useful for optimizing robot efficiency or load carrying
performance. This scheme enables collision avoidance and target tracking
algorithms, since paths can be developed to compensate for environmental

conditions.

3. Generalization of Common Subtasks
Since this method allows variable end effector and object positions, common or
repetitive subtasks can be represented as subroutines with variable parameters.

These parameters can be provided by sensor systems such as vision or touch.

When the cartesian world model is combined with homogeneous transforms, as
outlined earlier, robot motion depends on the solution of a Task equation for T,.
These explicitly stated equations, solved at run-time, allow for the resolution of

positions within the program through sensors.

Work cells equipped with vision systems may explicitly call upon visual
information to provide unresolved position data, while other systems rely on a teach

phase prior to final program installation. In this phase undefined coordinate frames
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are described with the aid of a teach pendant or master arm. Once the teach session

is complete the program is compiled and ready to run [11].

Task Representation and Programming

A variety of data structures are used to model these equations. To justify the use
of certain data structures requires an examination of the assembly environment. Au

assembly composed of many parts can be viewed as either:

e a collection of dissociated parts uniquely related to the work celi onigin, or

e a coherent association of parts uniquely related to one another.

In addition to these considerations the movement of an assembly must be reflected

in the movement of the sum of its parts.

Small assemblies may be treated as a group of dissociated features aud parts,
though this requires cautious bookkeeping by the programmer. Consequ- n'ly small
assembly programs often use 4 x 4 arrays to represent the homogeneous transform
and explicitly alter part locations when necessary. Large assemblies, however, render

this approach an inefficient and error prone programming technique.

A partial answer to this problem is to minimize the bookkeerping required during
the program development by associating parts and features with one another. This is
done by defining within each part a central coordinate system; the useful features that
appear on that rert are then explicitly described relative to that central coordinate

frame.

The result is that a part appears as a tree-like structure with the central frame

acting as the root and the part features as branches. The location of a part feature
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then becomes the product of the part’s central framie location and the feature’s relative
location. An assembly of two parts is the attachment of one or more branches of
two trees. The location of any part on an assembly can be found by determining
an appropriate kinematic chain from the work cell origin to the part through that

assembly and finding the product of the chain’s components.

Another representation useful for this form of world model. is the use of records. In
this way a part and its features can be represented togetherin a single data structure.

A typical data structure for a can of soup might be:

type
vector = array [1..3] of real;

feature = record of

Name : string;
forvard_XYZ,
forvard_RPY: vector;
inverse_XYZ,

inverse_RPY: vector;
end;

tin_can = record of
central,
top,
bottom,

grasp_posn,
approach_posn : feature;
end;

var
soup : tin_can,;

Where central is the central frame of the tin can. The forvard. and inverse.
prefixes denote transforms from central to the feature and from the feature to central
respectively. Since the rotation matrix is not an intuitive description of onentation,

rotation often appears in its RPY or Euler form. The advantage of this approach is
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that only a small set of central frame locations need be maintained explicitly by the

programmer. See figure 2.2 for an example of this technique.

Even with this form of nested data structure, the problem of bookkeeping
still remains — the task equation must be assembled by hand and the world
model explicitly maintained within the program. As larger assemblies increasingly
complicate the world model, the programmer may concider automating the
maintenance and construction of task equations, a charactenstic feature of Object

Level languages.

2.1.3 Object Level Programming : an Implicit World Model

When the tree-like representation of individual parts, described in the previous
section, is employed to describe an assembly of many parts, a graph structure results
similar to figure 2.3. A graph structure is similar to a tree in that each node has
multiple daughter nodes. Unlike the tree structure, however, the graph also has
multiple parent nodes. This means the graph often possesses multiple routes from
one part or node to another. In this model the entire work cell becomes a single
graph, rooted in the world coordinate system. Any component in the model, such
as a robot gripper or part feature, ultimately stems from the world system. In the
homogeneous transform modelling method, described in section 2.1.2, the motion of
a robot to a position in space is equivalent to the closure of two kinematic chains.
This closure is equivalent to the graphical conjunction of two branches of the world

graph i.e. the tooled robot and the target assembly.

The construction of a task equation will require some search strategy originating
from the world node to establish the two appropriate kinematic chains that, when

equated, will describe the conjunction of these two coordinate frames. Assemblies are
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built through the cumulative attachment of subassemblies, also modelled as kinematic

chains.

Data structures for this model facilitating a search strategy typically result in
multidimensional linked lists. A typical structure in pseudo-PASCAL might be

type

feature = record of
Part_Name,
Feat _Name : string;
XYz,
RPY : vector;
Next _Feature,
Attached_To : pointer to feature;

end;

The central frame is no longer mentioned explicitly, acknowledging the
importance of the part features in assembly and relegating the central frame concept
to an implicit reference point in the part. This two dimensional structure allows
access to both the feature list of a part (by reviewing feature structures through
the Next Feature pointer) and the list of attached parts (by reviewing subsequent
structures through the pointer Attached_To). The bookkeeping operations required
for less sophisticated models have been replaced by assembly search functions. The
location and position of any part or feature is the product of the appropriate kinematic

chain found using a search algorithm.

Utility functions for joining and severing coordinate frames are required, enabling
parts to be attached to, and detached trom one another. Care must be taken to reflect
the real world in the description of these attachments. Depending on the form of real
world attachment a part may or may not be dependent on its neighbouring part for

positional information. For example :
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In the real world, if block A is on top of block B and block B is moved,
then block A will move also. However, If block A 1s moved, B will remain

stationary unless blocks A and B are mutually attached.

This form of modelling requires that either the work cell is fully aware of real world
conditions such as gravity, coefficients of friction, and object dynamics or that the
programmert explicitly state the form of object attachment. At this level of modelling

an explicit attachment function is usually employed to modify object interdependence.

Robct motion is described through a series of conjunctions between tool and
target coordinate frames or objects. The construction of the task equations governing
the conjunction is virtually hidden from the programmer. Since the world model
resides implicitly in the program, neither the manipulator nor parent assembly need be
explicated while matching tool and target features. Further, sensor systems previously
called by the programmer may be incorporated and hi.lden inside the world model [29].
Sensor access can be initiated and orchestrated by the world model when insufficient
world model data inhibits the completion of a robotic task. For example a vision
system might be enabled when an object is specified that does not exist in the world
model. Alternatively the sensors may function continuously, updating the model in

real time.

A classic example of an implicit world modelling system is the AL world model
(10). This model is virtually completely hidden from the user save for the AFFIX
and UNFIX commands. The AL model employs these affixment functions to
declare spatial interdependencies between coordinate frames. The affixment structure
developed by AL becomes a graph when multiple assemblies are affixed to one another.
Each node in the graph is composed of a frame with a pointer to a calculator hst, a

set of calculator nodes (not to be confused with graph nodes).
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Each calculator node describes an affixment relationship between two frames. An
affixment arc between two graph nodes (or frames) is modelled by two calculator
nodes one from each frame’s calculator list. Each calculator node is composed of

three boolean fields and a frame pointer described as follows:

Boolean Affixment Field : this is used to indicate the spatial dependency (Rigid

or Nonrigid) between the two linked frames.

Boolean Parent Field : this indicates the directional sense of the transformation

indicated by the Boolean Validity Field described below.

Boolean Validi*y :teld : briefly, this indicates whether or not the existing location
for the frame is valid. Otherwise the location of the frame is computed (with

continuous *cference to the directional sense imphed by the Parent field).

Pointer Transformation Field : points to the affixed frame.

The bidirectional system of calculator nodes for each affixment gives the model the
ability to determine and classify the spatial interdependency between coordinate
frames as Rigid (block B moving block A) and Nonrigid (block A moving free of
block B).

The representation and maintenance of object locations within the world model is
virtually hidden from the programmer, but implied in the user’s program. Ultimately
the task definition becomes an explicit series of actions or operations on object
features (represented by coordinate frames) instead of precise robot motions or explicit

kinematic chains.



2.1.4 Task Level Programming : an Implicit Task Description

All the methods discussed thus far have had explicit task descriptions i.e. the
order and execution of the task is described in detail by the user within the program.
As programmers provide the world model with increasingly accurate and detailed
physical knowledge, the incorporation of task planning ability into the work ccll
becomes possible. Task planners produce task descriptions based on a comparison of

the current state of the world model and the requested state.

When presented with a goalor final state, a task planner will assemble a solution
strategy capable of producing the goal state. The task definition becomes a history of
world model states. The resultant strategy is usually composed of operators affecting
changes on one state to produce another. The development of a strategy requires the
generation and evaluation of trial strategies and the selection of the correct strategy

based on environmental knowledge.

This approach is significantly more complex than the methods outlined above and
represents the ultimate form of user interface: one capable of deducing and performing
assembly tasks with little instruction, assistance, or supervision. Unlike other systems
where the boundaries between world model data and task description are well
established, the task planner’s world model is composed of both object level data and
rules of operation or heuristics. These rules provide preconditions for the application
of an operator to the world state. Realizing this system demands sophisticated
modelling techniques [24] beyond those outlined in section 2.1.2 and may include
knowledge about kinematics, dynamics, machining or assembly processes. This level
of modelling is currently beyond computing power and modelling ability customarily

used within the industrial robotics environment but has been implemented on a

limited scale in BUILD [2].



2.2 Industrial Off-Line Programming Languages

The limitations of the hand taught robot were seen early on in the 1960’s. The
first off-line language was MHI developed at MIT ([7]. This language allowed one
of the first computer controlled robots, MH-1, to move until sensor conditions were
fulfilled, a process called 'guarded motion’. Research at Stanford University produced
the experimental language WAVE in the early seventies. The ideas developed within
WAVE were used to produce one of the first industrial languages for Robots—VAL.
Subsequently a large number of research languages have been produced to minimize
programming difficulty or optimize robot control. Table 2.1 presents a list of current

programming languages available for a variety of robots.

2.2.1 Commercial Languages

In this section some of the representative languages will be used to demonstrate
typical robot control language commands. Three languages are used to demonstrate
these characteristics: VAL, AL, and PASRO/C. The following is a condensed overview
of [5,7,13].

VAL VAL, the most popular robot programming language, is used by Unimation
for its series of PUMA robots. VAL has simple control structures such
as IF ...THEN, GOTO and FOR ...NEXT loops. VAL lacks traditional
structured programming facilities such as parameter passing within subroutines
and requires teach pendant data in an off-line/on-line development loop. Since
VAL is an industrial language, it is rugged and reliable. VAL-II has corrected

much of VAL’s earlier shortcomings.



Table 2.1: Currently Available Robot Control Languages

Language ij Institution of Origin

AL 1974 | Stanford University, US.A.
AML 1977 | IBM, U.S.A.

AUTOPASS | 1976 | IBM, U.S.A.

AELP 1982 | Digital Electronic Automation
MAPLE 1975 | IBM, U.S.A.

PASRO 1983 | University of Karlsruhe, F.R.G.
PAL 1978 | Purdue University, U.S.A.

RCCL 1986 | Purdue University, U.S.A.

RAIL 1981 | Automatix, U.S.A.

RAPT 1979 | University of Edinburgh, U K.
ROBEX 1980 | Technical College(RWTH), F.R.G.
SIGLA 1978 | Olivetti, Italy.

SRL 1983 | University of Karlsruhe, F.R.G.
VAL 1975 | Vicarm (Unimation), U.S.A.
VAL-II 1982 | Unimation, U.S.A.

Status

- [

Industnal

Industrial
Research
Industrial
Research
Industrial
Research
Research
Industrial
Research
Industrial
Industrial
Research
Industrial

Industrial
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PASRO/C PASRO/C or simply PASRO is an example of library extcmsions to
existing programming languages, in this case PASCAL and C. Therefure,
the language possesses all the advantages of these host languages. Utility
functions for world model construction and manipulator commands simplify

the programming process.

AL AL and its cousin SRL are representative of the highes: level commerciallanguage
available. It possesses a syntax similar to PASCAL type langu. ges. In addition
a sophisticated world model handler monitors the state of the world through an
affixment procedure. This procedure provides AL with an Object Level capacity
¢hat allows the user to issue assembly related commands. entirely avoiding robot

level instructions.

Most of the remaining commercial languages possess characteristics shown within at

least one of the three representatives exemplifying robot programming languages.

Data Structures and Flow Control

Data structures are arguably as important to robot programming as the functions

available within a programming language.

Since the introduction of early languages such as FORTRAN, BASIC, and
PASCAL, INTEGERs, REALs, and CHARACTERs have become standard data
types. While STRINGs ard ARRAY's are also standard their representation varies

from language to language.

Robotics, however, uses certain combinations of these types often enough to
warrant the creation of new data types in som= languages. In particular the following

tvpes are commonly found:
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vector for the description of a vector in three-space.
rotation for the description of an orientation in three-space.
frame for the description of position and orientation in three- space.

jointvector for the description of a manipulator position in joint space.

The roles of record and array structures found in PASCAL are performed by the

following constructs:

array identical to the PASCAL, FORTRAN or C array.
record identical to the PASCAL record or C struct.

aggregate unique to AML, this construct is indexed like an array but allows storage

of multiple data types in a single aggregate.

Efforts have been made to standardize data types in Robot Control Languages.
IRDATA (Industrial Robot DATA) [14], developed in Germany in the early 1980's,
was based on the earlier attempt to standardize NC machine tools CLDATA.

IRDATA outlines a set of standards for software/madchine interface and data
types for industrial machine tools. A high level robot language is used to develop
IRDATA robot independent code. This code is further converted by robot device
drivers into the appropriate instructions for the given manipulator. This convention
enables IRDATA code to be employed on virtually any robot equipped with IRDATA
device dn- The IRDATA standard types are outlined in table 2.2.  Blume and
Jakob describe the implementation of an IRDATA based system {14].

Flow control such as GOTO and IF ...THEN are common to most robot

programming languages. A su'mary of addi*ional Flow control available for some of



Table 2.2: The IRDATA standard data types condensed from Blume and Jakob

(14] Programming Languages for Industrial Robots.

BOOLEAN
INTEGER
REAL
VECTOR
ORIENTATION
ADDITIONAL AXIS
WORLD

JOINT
CHARACTER
STRING
POINTER

True=1 of False=0.

an integer number (£2147483647).

a real number (+1.7 E 38).

three REALs describing cartesian coordinates.
three REALs describing orientation.

a joint angle.

a VECTOR and ORIENTATION pair.

a data type composed of up to 31 REALs.

an ASCII character from 0 ...255.

an array of characters

| memory address (unsigned integer)




Table 2.3: A comparison of current robot control language flow control.

Language goto | if/then | while/do | for/do | do/until | case | subroutines
AL . ° ° . ° °
AML ° . ° ° . .
AUTOPASS | o o ° ° . o °
HELP o . ° .
MAPLE ° ° ° ° . ° °
PASRO ° . ° ° . ° °
PAL .

RCCL . . ° ° ° ° °
RAIL ° ’ ° ° ° °
ROBEX o . ° °
SIGLA M o o
SRL ° ° . ° o °
VAL-II o ° ° ° ° ° °
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the languages appears in table 2.3. Structured programming is also possible in robot
languages but is often less sophisticated than typical implementations of PASCAL or
FORTRAN.

World Model Instructions

Typical examples of industrial level world models are those develop«d for VAL and
PASRO. VAL world 1nodels are built through a teach in procedure that allows the user
to specify frames. PASRO has no innate off line modelling ability beyond traditional
PASCAL or C. AML does possess the facilities for the construction of world models
through the aggregate data structure. Like PASRO, however, the implementation is

left to the user.

Only one industrial language possesses object level world models: AL. As
mentioned earlier the world model must be maintained wit» some mechanism for
the creation and destruction of part attachments. These attachment mechanisms are
embodied in the AFFIX and UNFIX commands. By using the qualifier RIGIDLY, mutual

attachment between parts can be specified.

AL : AFFIX gripp TO box RIGIDLY

Absolute and Relative Joint Level Instructions

Most robot control languages come with absolute joint level motion commands
that move the robot to a specific configuration. Examples that drive the second joint

to 110 degrees:

VAL : not applicable
AL : DRIVE JOINT (2) OF ARM1 TO 110
PASRO : drive(2,110)
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note that PASRO calls are always in small case. Relative motion or the movement

of a iint relative to the current position can also be exemplified by:

VAL : DRIVE 2, 20, 100
AL : DRIVE JOINT (2) OF ARM1 BY 20
PASRO : drive(2,robotjoints[2]+20)

Note that VAL only uses relative motion for joint level instructions. They must

appear with some speed command (in this case: 100).

Absolute and Relative Robot Level Instructions

Robot level instructions are in terms of cartesian coordinates and are typically
represented as a position vector and a RPY or Euler angle vector. For example: to

move the gripper to z, y, z (centimetres) and R, P, Y(degrees) =(50, 10, 12), (0,45, 0):

VAL : POINT P1

50,10,12,0,45,0 (from a teach in procedure)

MOVE P1
AL : MOVE ARM TO FRAME(ROT(YHAT,45) ,VECTOR(50,10,12)*CM);
PASRO : SETFRAME(goal,50,10,12,yaxis,45);

SMOVE(goal) ;

Note that VAL requires a teach in procedure for explicit frame cutry.

Relative motion in the = direction of 40 cm and 30 cm in the z- direction:

VAL : DRAW 40,,30

AL : MOVE ARM1 TO ¢ + VECTOR(40,0,30)*CM;

PASRO : makevector(relvect,40,0,30);
frametrans(goal,robotframe,relvect) ;
smove(goal) ;
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Robot Motion with Velocity, Acceleration, and Duration

Many languages have facilities for monitoring the velocity of the end effector:

VAL : SPEED 200
AL : MOVE ARM TO targetframe WITH SPEEDFACTOR = 3;
PASRO : SPEEDFACTOR = 3;

smove(goal);

Note that VAL uses a percent measure of normal velocity where the value 200 is
equivalent to 200% or twice the normal velocity. The SPEEDFACTOR used in AL and
PASRO languages is the ratio of the maximum to the desired velocity. In this case
one third of the maximum velocity will be applied to the end effector for the move in

AL and for all subsequent moves in PASRO.

Acceleration is rarely specifiable within industrial languages. AML uses the

following expression for an acceleration of 0.5 cm/s?:

AML : ACCEL(0.5)

Duration is another less common command, appearing only in AL. A typical

command specifying a duration of 5 seconds for a movement:

AL : MOVE ARM TO targetframe WITH DURATION = 5 * SEC;

Path Control and Intermediate Frames

Point to point manoeuvres from some startframe to a goalframe can be specified

by:



VAL : not applicable
SRL : PTPMOVE arm TO goalframe;
PASRO : pmove(goalframe?;

Joint interpolated motion:

VAL : MOVE frame
SRL : SYNMOVE arm TO frame;
PASRO : jmove(frame) ;

Cartesian motion:

VAL : MOVES frame
SRL : SMOVE arm TO frame;
PASRO : smove(frame);

Intermediate frames or frames that must be navigated while performing a complex
manoeuvre can be specified in a number of languages. For a manoeuvre with two

intermediate frames between the start and target positions:

VAL : ENABLE CP
MOVES interframet
MOVES interframel
MOVES targetframe
DISABLE C
AL : MOVE ARM TO targetframe VIA interframel, interframe2;

HELP : SMOVE(1,#1,xz1,%82,yz1,#3,zz1,84,rz1,85,pz1,#6,yavzl, #7)
SMOVE(1,#1,x22,#2,y22,#3,222,#%4,r22,85,pz2,86,yavz2,47)
MOVE(1,#1,x,#2,y,#3,z,%4,r,%#5,p,#6,yav,#7)

Note that in VAL the CP switch denotes continuous path motion. This usually
results in smooth transitions from motion to motion, in contrast to point to
point control which generates discrete path segments, often with discontinuities in

end effector movement. In HELP, the move command is composed of a difficult

(z,y, z,r0ll pitch,yaw) type notation sent to switches 1 through 7.
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Motion with Sensor Monitoring

Sensors can be employed in two roles. The first method uses the sensor as a
boolean trigger during the execution of a subsequent operation. For example, a force

sensor triggered in the z-direction by the weight of a 100 gram mass:

AL : MOVE ARM2 TO targetframe
ON FORCE(ZHAT)>= 100 = GM
DO STOP &;

A sensor can also act as part of a control system, monitoring values during an
operation e.g. applying a constant force of 700 grams along the z-direction of a drill

shaft:

AL : MOVE drill TO below
WITH FORCE = 700 = GM ALONG ZHAT OF drilltip IN HAND
WITH FORCE = O = GM ALONG YHAT
WITH FORCE = O * GM ALONG XHAT;

Note that in this example the force is measured relative to the drlltip.

End Effector Instructions

Absolute gripper instructions usually take the form:

VAL : OPEN
MOVE gripframe
CLOSE§

AL : OPEN HAND TO 5 = CM;

CLOSE HAND TO 5 = CM;
PASRO : gripwidth(S)
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The VAL example demonstrates a delayed gripper operation with the OPEN
command, executed only during the move. Immediate gripper action is enabled with
the ‘I' suffix as in the CLOSEI directive. The PASRO gripvidth() command uses

either an open or close operation to achieve the specified jaw opening.

Relative gripper instructions are available in AL and similarly in SRL:

AL : CLOSE HAND BY 6 = CM;

Velocity, duration, and force sensing can also be specified in the SRL and AL end
effector instructions. VAL has boolean gripper force sensing abilities incorporated in

a grasp command.

Sensor Instructions for Vision Systems

The most common form of vision system ic the inspection vision system. These
tend to return pass or fail information while collecting part quality data in a well
defined work area. Assembly vision systems must both quickly identify and locate

objects [14,48] All assembly vision systems have three characteristics in common.

1. Parts are associated with symbolic strings.
2. Part Position and Onientation data is presented in cartesian coordinates.

3. the system is taught new part characteristics through a “showing” procedure.

" irt identification is based on derived image quantities such as object arca.
number of holes, and largest and smallest radii {14,48,45}. Two industrial systems are
worth noting, VALIIV, an extension of VALII, and RAIL, a integrated vision/robot

control language.



35

Part location is performed through a variety of schemes [45] though moments of
area [47] (to be described later) are the most popular for 2-dimensional vision systems.
The returned location values usually reflect the 2 dimensional visual field, typically
resulting in cartesian centroidal r and y values (z is unknown) and a part orientation

angle.

VALIIV employs two vision system commands to acquire pictures and locate

objects.

VALIIV: VPICTURE
VLOCATE object, 150

Where object is the returned coordinate frame composed of a derived centroidal

position at a known distance from the camera, and a yaw angle.

RAIL is a highly developed system that returns some 45 features of the current
image or blob through the function 0BJ_FEAT. These features can be accessed directly
by using the feature variable names. Switches are used to enable and disable the

recognition criteria and camera parameters.

RAIL : OBJFEAT(4)

IF OBJ_NHOLES ==3 THEN
part = 1

ELSE

BEGIN
magazine = 1
part = 2

END

Where the quantity 4 in 0BJFEAT instructs RAIL to compute the number >f object
holes and the feature 0BJ_NHOLES is the quantity returned.
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2.2.2 Research Robot Control Languages

PAL, RCCL

Since robot motion can be described as a series of kinematic chain conjunctions,
tasks can be described by a list of task equations. PAL [11] uses these equations as
the basis of an assembly language. Developed at Purdue University, this language
experiments with a model based approach to robot programming where typical
assembly operations are described by a task equation data set. These task equations
are solved prior to the execution of the program during an interactive phase with the
user. Uunknown frames are defined through a teach procedure similar to VAL and
computed by a powerful task equation solver. The program itself consists of a list
of MOVE calls to positions in the work volume. This modelling method has been

successfully implemented under RCCL [12] a C programming language extension.

RAPT

RAPT is an interpreter based on the APT Numerical Control language and was
developed at the University of Edinburgh throughout the seventies by Ambler et al
[23,24,25,26]. Object features are first described by planes, holes and surfaces within a
CAD system. Object positions are inferred from the conjunctions of objects’ features
in the workspace. Any single reation between the features of two objects can be
described by using at least one of three uniquely defined relation keywords:against,
fits, and coplanar. Each of these keywords describes relationships between the
following classes of bodies: a plane face, a cylindrical shaft or hole, an edge, and
a vertez Specific definitions govern the keywords’ algebraic meaning between any

two bodies.
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While the system would nornially develop unique solutions to task equations based
on complete relational descriptions, the system is also capable of taking underspecified
descriptions of object interrelationships and producing a placement that satisfies that
description. An underspecified relation is one that possesses any degree of freedom or
potential frce movement. The world models discussed thus far have always assumed
a single object position and orientation. Often, however, specification of certain

quantities is unnecessary for the completion of the assembly.

For example, the positioning of a peg in a hole, expressed in RAPT as

fits/shaft of peg, hole of block;
against/bottom of peg, bottom of hole;

may be determined by the requirements that the peg’'s bottom surface is against
the hole bottom and that the peg is aligned or fits in the hole. The spacification of
roll about the peg axis along the shaft is unnecessary for the assembly to be complete.
RAPT generates a solution that will fix the specified degrees of freedom (in this case:
three translational and twc rotational degrees of freedom) while realizing that the

remaining translations or rotations are free (the rotation about the peg shaft).

Significantly, RAPT syntax is a natural extension of the intuitively simple
English-like approach to robot programming seen in languages such as AL or SRL.
Though it lacks the extensive control structures used in traditional languages and
the output must be manually translated and adapted for use by a real world
robot, RAPT removes all of the responsibility of world model maintenance from the
programmer during the programming phase and tolerates the - lerspecification of
object placement that abounds in typical component assembly by humans. Further
development of this approach ¢ - inues and may lead to a unified method of assembly

modelling [27].
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In the field of general mechanical assembly, a number of shortcomings are
immediately evident in robot programming. The complexity of modelling real world 3
dimensional spaces, the heightened attention to detail required by robotic computing
(unlike most forms of scientific or business computing), and the use of sensory
feedback to complete assembly operations all conspire to make assembly programming
impractical for complicated construction projects [8]. An effective language for
assembly must solve these problems in a manner that makes robot programming
a natural, assembly oriented procedure. This can be accomplished by removing or
hiding robot oriented utilities, such as modelling, manipulator, and sensor commands,
from the p ramming environment. Furthermore the assembly should be expressed
in a fam%a+  ecaningful manner to the user. The resulting program should reflect

the asser :ess, not a series of abstract robot actions.

AUTOPASS or AUTOmated Parts ASsembly System . developed by Lieberman
and Wesley [8] at IBM in the mid seventies, was desigued to explore assembly
programming expressed in human terms. While a natural language interface was
considered, at that time it was decided that such an approach would be ambiguous
and impractical. A middle ground English-like syntax was chosen that would retain

the legibility of written English while retaining a precise set of semantic conventions.

The semantic rules confined assembly vanables to object names within standard
PL/I data types (typically records). Further natural language features included
qualifiers such as WITH or UNTIL, to modify the behaviour of certain commands. An

example template from Lieberman and Wesley:

PLACE bracket IN fixture SUCH THAT bracket .bottom
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CONTACTS car-ret-tab-nut.top AND bracket.hole
IS ALIGNED WITH fixture.nest

Where the capitalized symbols are AUTOPASS keywords. The above example
demonstrates the world modelling abilities of AUTOPASS. The system devised model
hased grasp positions (if not specified by the user) and collision free paths, both
requiring motion planning facilities indicative of a limited Task Level programming
ability.

The system employed a graph world model similar to the method outlined in
section 2.1.3. Each node of the graph was ~itl o«r an  'iect. objert component or
assembly. The arcs of the graph represent relatious ot 1, different types: part-
of, attachment, constraint, and assembly componer' Unlike previously discussed
models, a geomeuwunc design processor was used to build the world model in which
objects were composed of polyhedrals and primitive volumes. Therefore, a symbol
or variable within AUTOPASS co: 1d be used to represent any object, surface, edge,
or vertex generated by the design processor. A significant advantage of this method
was that collision avoidance algorithms could be employed on a realistic level. Since
traditional coordinate frame models fail to describe the full extent of the solid and
define only points significant to the assembly, they are poor for realistic collision
avoidance behaviour. The polyhedral modelling system partially corrects this {ault
by modelling the entire solid. Curved surfaces could not be directly modelled by
the AUTOPASS system, however, so an optional accuracy parameter specifying the

degree of approximation was employed for complex surface description.

AUTOPASS commands are divided into the following four types, briefly:

State Change used to moveobjects about the world model. resulting in world model

changes.
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Tool Statements used to enable some tool operation. Tool statements tended to

be device dependent and were composed for each tool.

Fastener Statements used to specify fastening operations. Like the Tool
statements, Fastener statements were device dependent and composed for cach

fastener.

Miscellaneous Statements declarations of manipulator names. characternistics and
spatial features, geometric variable assignments, and assertions of assembly and

attachment relationships.

Much of the data and control structures are similar to PL/I, the host language of
AUTOPASS. Bonner and Shin [4] poict out that while AUTOPASS was easy to use,
the English-like appearance of the language was lost when subroutines were called,

and that a mainframe was the required host environment.

2.2.3 Comparison of Modern Robot Programming Strategies

It is plain that the quantity and diversity of robot control langunages is almost as
great as the number of robots. However, certain characteristics are evident amongst

these languages and are discussed below.

Robot Level languages, characterized by VAL, possess a limited syntax and are
easy tu use over simple motions. However, for assembly programming they tend to
be diffi-ult to read and write, obscuring the task with robot oriented variables and
procedures. Though vision for VAL is available through VALIIV, VAL is essentially

depeadent on world model information described through the teach pendant.

PASRO solves the bulk of problems associated with readability and

programmability. Lince world model development is left to the user, it is difficult to,
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comment on the ease of assembly programming in PASRO. Assuming a world model
similar to AL’s this would be a powerful Object Level language. As it stands, however,
the language remains an advanced Robot Level language. PAL and RCCL, while
possessing homogeneous transform models and powerful equation solvers, are difficult
to read and program for those uninitiated to transform algebra. Unfortunately, PAL
does not support subroutines. Perhaps the greatest advantage of PASRO and RCCL
is that the familiar host languages, PASCAL and C. offer extensibility, flexibility, and

some degree of portability between computer systems.

Object Level languages, while far easier to read and program than Robot Level
languages, require significantly greater modelling ability. Languages such as AL and
AUTOPASS possess English-like syntax because of these abilities. AL, still adhering
to traditional programming methods, allows the user to engage in robot or object level
programming, while supporting structured programming philosophies and legibility.
AUTOPASS is less traditional in this regard and is limited to higher level instructions.
Unfortunately, the AUTOPASS English-like syntax does not survive the transition to

structured programming techniques.

Task Level languages tend to be model dependent, since planning decisions must
be based on the world model. Perhaps for this reason few task planning systems have

been implemented.

An example of a Task Level system, BUILD (2], attempted to address assembly
probiems such as path planning, assembly stability and wnodelling. Fahlman, while
using a homogeneous transform model, noted that a major weakness in task planning
systems was worla modelling. Of the time required to write BUILD software
Fahlman admit. about 80% was devoted to world model construction, despite his
efforts to replace model features with heuristics. Fahlman recommended that world

modelling for path planning and assembly must be further investigated for assembly
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A number of studies have been performed, notably Lozano Perez [7], Bonner and
Shin (4], Blume and Jakob [14], and Gruver et al [5], comparing the various attributes
of robot programming languages. These studies compare the language clements
and technical detail such as data structures. control flow, path planning, and world
modelling ability of the bulk of robot control languages. Lozano- Perez itemized some
required characteristics of evolving robot languages: increased <ensor integration,
bet*~+ ..~ models, flexible trajectory specification, parallel task execution, and

that

I'he evidence seems to point to the conclusion that a robot language

should be a superseffsic] of an established language, not a subset.

Bonner and Shin go further and attempt to compare features such as the structure
and complexity of programming, source code readability, and cas.  extension within
a benchmark palletizing test. An understandable outcome of their comparison is
that the AUTOPASS aud AL sophisticated modelling systems considerably simplify
the programming cycle. Despite Bonner and Shin’s warning of possible semautic
ambiguities within AUTOPASS, they suggest that some form of English-like syntax
should be adopted for readability and understandability in future robot control

languages.

The next chapter will investigate the methods and systems developed for natural

language understanding and how they have been applied to robot controlled assembly.



Chapter 3

Natural Language Processing and Robot Programming

A number of projects have addressed the possibility of robot programming in
English. In particular Winograd’s SHRDLU [20], Bock's HIROB [15], Maas and
Suppes system [21], and the work of Selfridge et al. [16,17,18] have proven that there
is considerable potential for the union of natural language processing and robotics.
Before entering a discussion of the difficulties and accomplishments of these projects,
it is necessary to suffer a short review of natural language processing methods.
This overview should provide the reader with the background needed to appreciate
these first attempts at bridging the man/machine communications gap. For further
information on natural language understanding methods and techniques see Allen

[56 Winograd (20}, and Schank and Riesbeck [57].

3.1 Natural Language Processing Methods

Sinre the field of Natural Language processing is large and complex, a complete
description of all of the metk...s used to automate the comprehension of human
language will not be attempted. Instead, a fundan.cntal group of concepts and

techniques will be discussed in the hope that the reader will gain a feel for the topic.

3.1.1 What is Natural Language?

Natural Language is a term used to describe the conventions of discourse or
exchange of information through text or speech between humans, hence the term
natural. Though the above definition suggests a rigid linguistic formalism, this is

far from the truth. Natural language is composed of a more or less common set of
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representative symbols or words, loosely orgamzed through some syntar to express
some intended meanings or semantics. In essence, the challenge of natural language

processing can be divided into two areas:

e deriving the intended meaning from a set of symbols provided by an external

agent through a process called natural language understanding

e providing a meaningful symbol set to an external agent from a predetermined

meaning through a process called natural language genemtion.

This thesis is chiefly concerned with natural language understanding, though the

concepts described here are fundamental to both topics.

Language is then composed of three, not necessanly distinct, elements: a set of

svinbols, a syntax, and a set of semantic conventions.

3.1.2 Symbols

Any symbol has semantic and syntactic properties. In natural languages, unlike
computer languages, a symbol may have multiple semantic and syntactic values. The
semantics of a symbol may be a function of either its syntactic placement within an
expression or its contezt within a discourse. This results in a limited set of legal,
meaningful combinations within a syntax. Further, the construction or morphology
of a given symbol must often conform to semantic conventions within the syntax. For
example: the addition of suffixes on nouns in English to denote plurality, possession
and tense or the choice of pronouns (and articles in romance languages) to denote

gender.



3.1.3 Syntax

Though many conventions exist for describing syntax. three fundamental methods

commonly employed are

e Regular Grammars
o Context Free Grammars
o Context Sensitive Grammars

These grammars may be described using two possible representations: Backus Naur

Form (BNF) notation and Transition Networks.

Backus Naur Form (BNF) Notation

In BNF notation, a grammar is represented by a list of rewrite or production rules.
with symbols appearing on the left and right hand side of a production symbol, —.
The symbols on the left, called nonterminals may be rewritten as the symbols on
the right,composed of terminals and nonterminals. Nonterminals are symbols that
can be expressed by a combination of terminals - - the set of final or most primitive
symbols that constitute the language. Since a production rule rewrites the left hand
side to a unique right hand side, multiple rewrite rules for a single left hand side
are expressed in a shorthand, separating alternatives with an exclusive OR cperator.
|, in a production rule. A simple sentence grammar in BNF notation appears in
figure 3.1. In this grammar the nonterminal symbols appear i- upper case, while
the nonterminals appear in lower case. The start symbol, ‘S’, is top of the grammar
since it represents the top of an inverted parse tree. The group of terminal symbols is
called the bottom « © *he srrammar. analogous to the leaves on the inverted tree. This

notation will be em »xclusively in this thesis.
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Transition Networks

In general, transition networks describe grammars with a set of directed graphs.
Each graph is similar to a BNF production rule, linking nonterminal nodes together
with terminal or nonterminal arcs. Once again, nonterminals must be rewritten using

the production rules into terminals.

In transition networks a phrase is legal if a graph can be traversed in the network
whose terminals match the phrase. The expansion of a transition network involves
traversing from one node to another over labelled arcs. These labels refer to either
other networks, called pus’ arcs. or terminal symbols, called category or cat ares.
When a push arc is tzaversed or pushed, the similarly labelled graph is then expanded.
This expansion continues down through network until the expanded j. .rtion of the
phrase matches traversed cat arcs. The successful completion of a subgraph pops the

process back to the parent graph for further expansion.

The grammar of figure 3.1 appears in figure 3.2 in Transition Network notation.
Note that the BNF grammar above 1s composed of a series of directed graphs one for

each pr.laciion rule and that recursive arcs form loops.

S — noun VP

VP — verbNP

NP — article NP1

NP1 — adjective NP1 |

noun

Figure 3.1: A Simple Sentence Grammar in BNF notation



noun vP . 7

verb NP N .
R ORORCR

article

Figure 3.2: An Transition Network for a Simple Scatence
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Recoular Grammars and Simple Transition Networks
A regular grammar uses a simple production rule.

(symbol) ~ — terminal (symbol), m #n

Where (symbol), is a unique symbol labelled :. Regular grammars are capable of
generating sequences of symbols. For example a Regular Grammar can determine if
a string of letters is in alphabetical order. Figure 3.3 shows the grammar in BNF
notation while figure 3.4 shows the grammmar as a Simple Transition Network. The
simple transition network permits cat arcs only. The genemtive capacity or range
of languages described by a Regular Grammar is identical to that of the Simple

Transition Network.

Context Free Grammars and Recursive Transition Networks
A context free grammar takes the form:

(symbol) — (symbol), . .(symbol), n >1.

C ntext Free Grammars (CFG) are a superset of Regular grammars and are able
to describe other grammars in addition to Regular Grammars. For example: a CFG
can describe a language in which any number of a’s are followed by an equal number

of b’s as in aabb or aaaabbbb see figures 3.5 and 3.6

A Recursive Transition Network (RTN) is identical to the STN, but also allows
the use of push arcs to other networks, including itself, hence the term recursive.
CFGs and RTNs have identical generative capacity and are often used to antomate

small subsets of natural language because ¢ ¢ their ease of implementation.



S — aSlj
S1
S1 —- bS2|
S2
S2 — c8S3]
S3
S3 — dS4|
S4
S4 — eS5]
S5

Figure 3.3: A Regular grammar generating alphabetical combinations of a, b
c,dand e

’

Figure 3.4: An STN generating alphabetical combinations of a, b, ¢, d and e



S — ab|
as

Figure 3.5: A CFG producing equal nun.bers of a and b

S POP

Figure 3.6: An RTN producing equal numbers of a and b

J



Ccntext Sensitive Grammars

CFGs are a subset of context sensitive gr :umars. This grammar allows multiple
svimbols on the left hand side of the production rule with the stipulation that there

are fewer symbols on the left than on the right, formally:

(symbol), ... (symbel) =~ — (symbol), ... (symbol),, m < n.

Regular Grammars are a subset of Context Free Grammars, and Context Free

Grammars are a subset of Context Sensitive Grammars!.

3.1.4 Semantics

Natural language interfaces are usually employed over very limited problem
domains. These systems serve a specific purpose within well defined limits of syntax
and discourse e.g. SHRDLU's [20] use of nouns for locations and objects. Well chosen
limits allow a natural language interface to uniquely interpret input sentences. This
interpretation, understood by both user and interface, becomes a semantic convention.
It is important to note that while a given conventicn may be similar to hrman
scmantic rules of thumb, they are often not identical. Since .»man under.:anding is
far greater than that of the machine, it is certain that the inte: {.co will udop* a mcre
rigid interpretation than the human equivalent. Achieviag the comprehension 1o+ ¢
of human semantic conventions is the ultimate goal of any natural larguage .. terface,
but concessions must ultimately be made to the limitaticus of the niachine. Winogiad

[20] points out three levels of semantics:

e the meaning of each symbol

'These three grammars form a hierarchy callec tne Chomsky Hierarchy [50].



e the meaning of symbols within syntactic structures

e the meaning of a sentence in context to the linguistic and real world setting.

3.2 Automating Natural Language Understanding

3.2.1 Divide and Conquer Approaches

The most common, though not necessarily most efficient, method of natural
language understanding is to retrieve an expression from the user, verify the
syntax through a parsing procedure, and, later, derive some meaningful semantic

interpretation. The following sections will describe this ‘divide and conquer’ approach.

Basic Parsing Techniques

Parsing an expression of any language is composed of two related tasks:

1. verifying the legality of the expression by cornfirming that the organizatio. of

the symbols couforms to the syntax

2. producing a structure reflecting the syntax of the expression

Once the sentence has been divided into a list of tokems, the tree-like sentence
structure can be parsed or constructed from the syntax. Though a given parser’s
exact behaviour depends on the system chosen to represent the language, CFG and

RTN systems usually employ one of three fundamental methods:

Top Down where the expression is parsed by evaluating the grammar from the start

symbol down to the terminal symbols,



53

Bottom Up where the expression is parsed by evaluating the grammar from the

terminal symbols up to the start symbol,

Mixed Methods where the expression is parsed by partially evaluating the
grammar from the terminal symbols up, and partially from the start symbol

down, until agreement between both systems is established.

A top down parser applies the rewrite rules from left to right until a combination
of terminals matching the token list is generai=d. The leftmost nonterminal symbol
is rewritten into a new expression using a production rule. This leftmost rewnting
continues until a set of terminals that match the head of the token list is produced.
If the generated terminals at the bottom of a parse tree branch do not agree with
the token list, the parser must use an alternative rewrite rule. A complete failure to
generate the token list implies the sentence does not conform to the syntax. This

method attempts to find a legal token list for a syntax.

This pursuit of the leftmost symbol to the ‘bottom’ of the tree is called a
depth first search. Depth first searches require that the routine retain and pursue
alternative rewrite rules should other rules fail. This property, called backtracking.
allows the rcutine to explore, if necessary, every rewrite alternative during the parsing

of grammar.

Another search method, breadth first search., rewrites each symbol using all
possible rewrite expressions from left to right, before pursuing the rewrite rules for
the leftmost symbol in the new 'daughter’ expressions. This requires retaining an

ever growing list of possible parse descriptions of the token list.

A bottom up parser attempts to assemble legal syntactic structures based on

the tokeu list Bottom up parsers use the Right Hand Side of a production rule to
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assemble the Left Hxcd sid:. Once agaia the operation can be depth first or breadth

first. This method attempts to find a legal syntax for the token list.

One drawback of a pure *- vn method is that structures are often rediscovered
during a parse. For exam; igure 3.7 the grammar: The sentence: “The man
gave the boy the book.” will initially be rewritten as a NP VP. The NP will rewrite
to the noun phrase, The manr. The VP will become:

VP — verb DOBJ

where gave 1> the verb. The DOBJ is rewritten to the NP, the boy. Tlis is plainly
incorrect, since the tokens the book are unidentified, so the parser must backtrack to

the next VP alternative:

VP — verb 1I0BJ DOBJ

rematching gave to verb and rewriting IOBJ and DOBJ symbols as the NPs: the hoy
and the book respectively. It is easily seen that the parser is forced to ‘rediscover’ the

verb, gave, and the noun phrases the boy and the book.

The bottom up method avoids rediscovering symbols by using the syntacti

property of each token to guide the parse. This means that words with multiple

S — NP VP

VP — verb DOBJ

VP — verb IOBJ DOBJ
IOB) — NP

DOBJ — X\P

NP — art noun

Figure 3.7: A Context Free Grammar for a Transitive English Sentence
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syntactic values, such as the word tron (with potential syntactic values of adjective.
verb, and noun) can produce a variety of unsuccessful syntactic results in a sentence
¢.g. Iron irons iron shirts . Only a few interpretations will prove to be legal and. in

this sentence, only one syntax will prevail: ferrous irons press shirts.

The search tor the legal parse will, again, require a backtracking or breadthfirst

search technique to pursue alternatives.

While the top dewn method suffers from symbolic redescription, the bottom up
method suffers from syntactic redescription. The mixed method partially addresses
these redundan« v prooblems by establishing a set of legal syntactic substructures with
a bottom up strategy, typically noun, verb and prepositional phrases. The parser will
then determine the final syntax with a top down parse. The bottom up phase results
i a ‘shallower’ search tree for the top down phase. Mixed method parsing can be
considerably faster than pure top down or bottom up approaches since sections of the

parse tree need not be reinvestigated.

Though some parsers determine only the legality of a sentence. returning a pass
or fail judgement on the token list, semantic routines must be able to examine the
sentence structure during the semantic analysis. This requires some data structure
that reflects the tree- like, self-referential structure of natural language. One such
record-like structure used in LISP is the property list. This employs a lin!.ed list of
nested property lists, ul i ately describing the syntax. From Maas and Suppes [21]:

Add this number to the number you remembered

(IMPERATIVE VP+Advs (TV+NP add (NP+Adjs number this))
(PrepPh to
(N+rclause (NP+adj number the)
(that you remembered THATZSLOT))))

The same sentence in a PROLOG record structure is as follows :
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imp_vp_advs(
tv_np(add,
np_adjs(number, [this]),
prepph(to,
n_rclause(np_adjs(number, [the]),
that _slot(that, [you,remembered])))))

A grammar that provides this data structure is called an augmented grammar.
The CFG and RTN formalisms become Augmented CFGs and Augmented Traunsition

Networks(ATNs) respectively.

Semantic Interpretation

Though not a rule, the data structure returned by an augmented parser is often
decomposed top down, from the exterior to the interior structures. The syntax is
combined with the semantic properties of the terminal symbols to construct, in a

bottom up manner, unique semauntic defimitions of important syntactic substructures.

One method of classifying the relationship between semantics and these
substructures is through type hierarchies that describe the physical world. A tvpe
hierarchy classifies objects into tree-like groups and subgroups. For example a
possible hierarchy of nouns might be the group phys_obj, divided into subgroups
describing different physical objects. The book “The Lord of The Rings™ might bLe
classified in a pseudo-PROLOG type hierarchy as:

phys_obj (inanimata(book(fictional(fantasy(The Lord of The Rings)))))
while a Newfoundland dog might be classified as:
phys_obj(animate(dog(working(friendly(Nevfcundland)))))
Verbs can also be classified in this way. For example verbs ran be either events (e g

to laugh) and states (e.g. to want, own, or be) [56].



Another method is through Case Relations. A summary of a set of cases is

condensed from Allen in table 3.1.

3.2.2 Unified Approach

An entirely different approach is to tackle the syntax and semantics simultaneously
using a combination of traditional natural language grammar and semantic rules of

thumb. This can be typified by three possible methods:

1. Interleaved Parsers
2. Semantic Grammars

3. Conceptual Dependency

Th+ interleaved parser brings semantic rules to bear on the syntax to assist in the
parsing procedure. Interleaving may be as simple as determining semantically legal
noun phrases or as complex as performing a semantic evaluation after each production
rule. Regardless of the inflience of the semantics, traditional English syntax retains

a major role in determining the validity of a sentence in these parsers.

While the interleaved parser maintains the separativu of syntax and semantics.
secmantic grammars attempt to integrate the properties of English grammar and
meaning into a single grammatical representation. Pragmatic production rules. not
necessarily adhering to standard English grammar, describe common phrases used in
the problem domain. A fragment semantic grammar of the LADDER database query

svstem [19] appears in figure 3.8.

Another approach is to let the meaning of each word guide the parse forward

using pure semantics, only resorting to the syntax for isolating difficult word groups.



Table 3.1: A comparison between CD slots and Semantic Roles, based on Allen
[56] and Schank and Riesbeck [57]

[Case Sub Cases Dehmtioa yatax CD Equivalent ]
object thal '
CAUSAL AGENT ::M the event
[SUBJECT ua
AGENT [P ..d.iv!g_ﬂ‘.‘t'c_s Awo:l::l‘“l,w
" t v
cansation passive By
Force or ol | active m:
INSTRUMENT | wused is cawsiag ith 80 AGENT
the event Pr tion
The g bat | [Welated ]
THEME was afflac by Dll.!ﬁl‘ to OBJECT and
ﬁ%nn__‘.__ﬂllm_____“nnL____,
m wl
EXPERIENCER :tu‘:ﬂnl - St{iu -
ot ia | active
s peychological | with mo AGENT
The person for : T
neericuuRy Tt | gkt s
@ dome Preposition for. | _
The soiate of
here tbc cve-t Prepositions + Relsted to
- -,
AT AT-LOC occared  alee | ou, et FROM
called
To TOLOC iy leciid | Pupeiees [ Rt o
' : ith Related w
FROM FROM-LOC | Lecation _slse m et | DIRECTION




S -+ what is ATTRIBUTE of SHIP

ATTRIBUTE — the ATTRIB | ATTRIB

ATTRIB — speed | length | draft | beam | type

SHIP — SHIP-NAME | the fastest SHIP2| the biggest SHIP2 | SHIP2
SHIP-NAME — Kennedy | Kitty Hawk | Coustellation | . ..

SHiP2 — COUNTRYS SHIP3 | SHIP3

SHIP3 — CLASS LOC | CLASS

CLASS — Carrier | Submarine

COUNTRYS — American | French | British | Russian | ...

LOC — in the Mediterranean | in the Pacific| ...

Figure 3.8: A Semantic Grammar fragment from LADDER [19]

One method, called Conceptual Dependency (CD), performs semantic analysis of
sentences within a discourse through a series of concepts. The underlying premise of
CD is that any sentence can be described by a combination of events where an event

has the following properties:

ACTOR a concrete object capable of producing actions

ACTION one of eleven prnimitive actions charactenzing an action type 1e.
ATRANS, MTRANS, SPEAK, INGEST. PTRANS, MBUILD, GRASP.
EXPEL. PROPEL, ATTEND, MOVE.

OBJECT the object acted upon.

DIRECTION the direction the action moves the object.

As each word is analyzed from left to right in a sentence, a semantic description
describing the word, called a request, is evaluated and the results placed on a concept

lest or C- LIST.

The evaluation of eack request. similar to an IF-THEN rule, involves performing

a word velated test and an action based on the test's outcumme. Each test searches
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the C-LIST for structures relevant to the current word. A successful test results in
the construction of a new semantic structure. If the test fails, the request is placed
on a request list or R-LIST. The typical evaluation of a word can be described in the

following procedure by Birnbaum and Selfridge [57).

1. Read the next lexical item (word or idiomatic phrase) from the input, reading

from left to right. If none the process terminates.
2. Load (activate) the requests associated with the new item into the R-LIST.
3. Consider the active requests in the R-LIST.

1. Loop back to Step 1.

An example of a typical evaluation appears in Figure 3.2.



Table 3.2:  An Example of Conceptual Analysis on: Fred gave Sally a book.
condensed from Birnbaum and Selfridge [57].
[Next Word [ Test Xctions nsider Requests ]
= 23d to the C.List. Tue
Fred (REQQ) | True (PP CLASS (HUNAS) (PP CLASS (EUMAN) WARE
NAME (FAFD)} (FRED))
to the C-Liat.
(ATRASS ACTOR (FIL)
O'JE?F:‘.HILzlm) t“:llls ACTOR (RIL) OBJECT
n I s
gave (REQI) | True TIRE (PAST)) (WIL) TO (SIL) FROK (NIL)
Activate REQ?2, REQS. TIRE (PAST))
uests
s e
" e precede Place buman 1o ACTOR | (ATRASS 4CTOR (FRED) OBJECT
REQ2 RANS o8 C- | |00 (SIL) TO (RIL) FROK (NIL)
TINE (PAST))
s Bumas |~ 7 -
REQ3 Ln ‘(’;L:;‘;MNS Place buman 1a TO slot | false
—
REQ4 (orl:'AT Place object in OBJECT | ¢\,
on C-List? vt
id to the Clut: True
Sally (REQS5) | True Tn CLASS (luul) PP CLASS (SUNAE) BAKE
EANE (SALLY)) LLY))
foiiow ATRANS (ATRANS ACTOR (FAED) OBJECT
REQ3 oa C List? Place bumas ia TO slot | (gy71) ToO (saLLY) FRoW (BIL)
(PAST))
ysical object
REQ4 toflo ATRANS Place object in OBIECT | (y1q,
oo C-List?
otractune oa the | Mark Indefini
tu ite
s (REQS) Cli? 0 | refetence. false
7((&;1 to Clat: p—
PP CLASS
book True (PEYSICAL-08JECT) g;‘m(;s grnsxcu.—ouacr)
IXPE (ROOK))
wructars o8 tbe | Mark Indefinite | 450
RE cture o8 ark as ea (PP CLASS (PEYSICAL-O8JECT)
Qs C-Lim? refereace. TYPL (00K) REF (ISDEF))
a physical ob s
REQ4 8 phywee Place object in OBJECT | trwe
Q praar (ot shot HALT
ACYOR (PP CLass (NUNAR) Nant (TREDY)
OBJECT (PP CLASS (PEYSICAL-OBJECT) TYPE (BOOK) REF
(1aDEF)
Result T0 (°» CLASS (NUWAR) BARE (au.v))
FROR PP CLASS (NUKAN) BAKE (FRED
TIRE (PAST)

61



62
3.3 Robot Programming with Natural Language

3.3.1 SHRDLU : Winograd, 1972

Though not designed for robot control, SHRDLU [20]. is perhaps the most
popular example of a natural language interface. SHRDLU employed a combined
syntactic/semantic natural language subset to perfo: n simple construction in a Blocks
World with an imaginary robot. The system would execute user commands, answer

queries ahbout the world and both plan and justify its activities.

The Natural Language module was composed of seven submodules. An INPUT
module performed morphological analysis of the commands before passing them on to
a GRAMMAR module that coordinated a PROGRAMMER parser and SEMANTICS

semantic processor. Responses were generated by the ANSWER module.

The INPUT module converted the input string from a word list into word classes, a
set of root definitions contained in the DICTIONARY and modified as the morphology
required. Tokens were reviewed for tense and number agreement (e.g. He went home.

where went is a form of the infinitive to go modified into ‘past tense’).

Winograd’s parser was similar to an interleaved ATN processor. Typical ATN
processors describe sentence substructures by ‘pushing’ registers onto a stack. Note
that a ‘pop’ for a daughter network becomes "push’ fur a parent network. For example.
for a noun phrase, the registers DET, ADJ, and NOUN might be pushed onto the stack
by determiner, adjective, and noun networks or push arcs and popped into a parent
network when the noun phrase network is complete. The structure popped from the
noun phrase network and pushed onto a parent network for the black dog in LISP
would be:

(NP (DET the) (ADJ black) (NOUN dog))
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Unlike traditional ATN parsers, SHRDLU used procedures rather than registers to
describe the grammar. These procedures were written in a LISP based interpreter.
PROGRAMMAR. and was both top down and depth first. While predominantly
context free, the parser also used context sensitive information to cueck word and
phrase agreement by inspecting relevant nouns, verbs, and phrases. The parser was
able to modify its backtracking behaviour with ‘demon’ programs to handle special
semantic cases. These demons would alter the depth first execution of a parse in
order to avoid nonsensical or ambiguous semantic results. Semantic and syntactic
processing was often interleaved by considering the semantics immediately after the

evaluation of a legal production rule and was performed in the SEMANTICS module.

This semantic construct was passed to a deductive module written in PLANNER

that directed a MOVER to manipulate blocks in the world model.

Winograd deliberately used a simplified world model composed of simple three
dimensional shapes. Objects could be placed in, on, and beside one another. Position

“

was a simple vector in three space and, as Winograd [20] comments, was: “. .. designed
less as a realistic simulation of a robot than to give the system a world to talk about.”

This world was presented in real time on a graphical display.

3.3.2 A High-Level Hierarchical Robot Command Language (HIROB) :
Bock, 1984

This system was employed an English syntax for the purpose of robot instruction
[15] as opposed to true natural language understanding. An instruction was composed
of a three tiered hierarchy including high level English language instructions(HIROB),
middle level low control instructions (MIDROB), and a set of low level robot control

directives (LOROB). Any HIROB procedure could be described by MIDROB or
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LOROB instructions. HIROB is divided into three modules:

o The Parser/Scanner/Recognizer (PSR).
o The Procedure Management System (PMS),

e The MIDROB Interpreter (MINT).

The Parser/Scannet/Recognizer employed a keyword matching module, the
Scanner, a procedure reference file. PROCNAME, and a top down parser composed
of a CFG with 36 production rules. The scanner searched for keywords that matched
procedure names stored in PROCNAME. A procedure name could be a word or
phrase whose syntax corresponded to one of the nonterminals in the CFG. Given the
portions identified by the scanner module as terminals, the parser verified the syntax
of the sentence. Though Bock does not state so directly, this seems to be a mixed
method system, using the scanner to determine legal substructures and verifying the

overall sentence syntax with a final top down parse.

The Procedure Management System is a user friendly environment, permitung the
creation, alteration, and destruction of HIROB procedures. HELP and LIST utilitie -

are also available.

The MIDROB interpreter converts the HIROB procedures, composed of MIDRODB
and LOROB directives, into a LOROB execution stream issued over a senial line to

the robot.

The robot is taught new procedures through the CREATE directive. This i voki
a teach environment where the user provides both the syntactic value of the string
to be defined and a program written in MIDROB or LOROB BASIC like commands

defining the semantics of the string.

Bock [15] concludes that:
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* Composing in English obviates the need for a programmer, except for the
lowest level procedures which use Low-level Robot Command La. guage
(LOROB) statements and MIDROB directives which control the log:. al
flow in each procedure. As the repertoire of LOROB procedures grows,

less and less use of the LOROB programmer will be required.”

Apparently this system requires the presence of an experienced LOROB
programmer in the early stages of system developmeat, somewhat defeating the
purpose of the HIROB approach. Though Bock makes no mention of variable
representation, treatment or world modelling conventions, the examples provi "ed
indicate that the world model is simple and not directed towards assembly.
Nevertheless Bock's CFG successfully takes advantage of the fact that an imperative
command set describes most robot commands, a property also reflected in the

AUTOPASS templates.

3.3.3 A Natural Language Interface for an Instructable Robot : Maas
and Suppes,1985

This system employs the narrow domain of addition and subtraction to test the
applicability of natural language understanding to robot programming. The world
modec] consists of a mapped grid, each grid element is labelled by a cc srdinate pair
and contains one number. The system is divided into three LISP modules: the parser.

the translator, and the interpreter.

Parser

The parser is, once again, based on a CFG description of the imperative command

Euglish subset. Maas and S . ppes make no claims about their grammar other than a
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CFG compiler was used to | .rse strings based on a CFG provided at runtime. The

parser is composed of three stages: a pre-, main, and post-parser.
The preparser formats the command sentence for input to the main parser.

The main parser, called CREATE, compiles a CFG ‘grammar file' into a set
of tables that rapidly determine all the legal parses of a given sentence withont

backtracking. The parser produces a list of possible lega' parses.

The post parser reviews the legal parses, eliminating bad parses, weighing each
one for ‘acceptability’. providing warnings if none ar. acceptable, and ‘prettyprinting’

the successful parse.

Translator

The successful parse is then routed to a translation table coraposed of a template
or syntax and a result or semantic translation. The parse is compared against this

list of ‘templates’ and, when matched, translated into the semantic equivalent.

Each template has a unique syntactic structure. Though parts of the template
structure will be fixed, some of the syntactic substructures will be unspecified as spots

for pseudo- variables.

For example the sentence Look at the top number. is parsed as
(IMPERATIVE VP+Advs look (PrepPh at (NP+Adjs number the top))).
The matching template,
(IMPERATIVE VP+Advs look (PrepPh at [NOUN]))
where [KOUN] mai hes with (NP+Adjs number the top). Since the template list
may contain m Jtiple matching candidates, a failure to bind pseudo-variables in one
candidate engages a backtracking algorithm to examine the next one. When a match

is verified, a semantic rule is used to convert the parse into a LISP semantic construc..
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A typical semantic rule converts the term (NP+Adjs number the top) matihed with
NOUN into
((NOUN INTERSECT-CUES (OBJECT NUMBER) (LOCATION TOP)))

The remaining template is then convert. . by a similar rule from

(IMFEKATIVE VP+Advs look (PrepPh at [JOUN]))
to (LOOK-AT [NOUN])). The final semantic construct then becomes:

(LOOK-AT ((NOUN INTERSECT-CUES (OBJECT NUMBER) (LOCATION TOP))))

An interpreter then evaluates the resultant expression coercing arguments to numbs
(since this is an arithmetic robot). Coercion implies that arguments in the semantic
list are operated on by functions to produce numbers. In the example (LOCATION
TOP) is coerc d by a function COERCE-T0-LOCAT-COORDS, converting keywords into

coordinate offsets. The resulting arithmetic expressions are subsequently evaluated.

While this system has much in common with Bock’s system, both employing
a CFG and template matching scheme, Maas and Suppes’ semantic post processor
distinguishes this processor. Since it employs a specialized arithmetic world nodel,

semantic interpretation is straightforward and relatively unambiguous.

Maas and Suppes admit that one failing of the system was that it was not possible
to generalize the resultant subroutines, meaning that these subroutines could not take

varniable arguments.

3.3.4 A Natural Language Interface to a Robot Assembly System
Selfridge et al., 1986

The previous examples made no attempt to address the difficulties of natural
language processing within a complex assembly environment. As discussed earlier.

assembly programming requires a kinemati-ally descriptive world model. The world
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model mu-t. therefore. be accessible from the interface in a ‘natural’ manner.

describing the real world as closely as possible.

However, Selfridge et al {16.17.18] have successfully applied an English interface to
a work cell performing real world assemblies. Equipped with a stereo vision system,
two five degree of freedom robots, and world modelling system, the interface employed

conceptual dependency analysis to discover the meaning of an mput string.

The natural language riodule. written 1o LISP. converted the CD representaniom

of

a command into an intermed:ate tasa plan «o.' .. Lach plan was composed of a goal
part and a plan part. Each plan part w . in 1t a tae goal part of a subplan. Each
subplan is expanded until the original goal part is fulfilled. In this way a single goal
was a hierarchical tree of subgoals, the terminals of which were primitive LISP robot

and world model activities.

The world wodel retrieved information from the camera images, deriving
centroidal, area, range, circulanty, and shape data of objects in the work area. This
data was further converted into a three-dimeasional semantic representation. The

natural language module’s output was then interpreted in terms of this representation.
guag p P I

Tl ;-stem was capable of understanding v srld model queries and could be
‘taug'*" Yoth the shape of new objects through English descniption and the plans
of new .sks through a top down teach phase. The teach module, invoked by the
systcm when an unknown commmand was enccuntered, built plans based on a users
explanation of the new task. If any unknown subtasks were encountered in the
explanation. the teach system would be reinvoked to define the task. In this vense the
teach system was hierarchical, requiring tesk definitions in terms of onl previously
defined tasks. The system could also gererate English statements and responses to

queries, again using the CD representation.
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The interface greatly simplified the task of robot programming, given the
compiexity of two robots. a vision system, and a descriptive world model. Being
able to both understand and generate English in an assembly oriented dialogue.
this system effectively demonstrated the feasibility of natural language interfaces for
assembly work cells. Unfortunately, the system relied on a large minicomputer (a
VAX 11/780) aud a dedicated vision microcomputer (an APPLE II+) to run the
software. Further, the CD representation requires the prior definition of a lexicon in
LISP hence the relatively small dictionary of approximately 50 words {17]. Further,
Vannov and Selfridge point out that they did not address the issue of subroutine

generalization

3.4 The Bare Essentials of Natural Language Interfaces for
Robots

Though the example systems discussed thus far possessed varied parsing methods
and different degrees of complexity, each system successfully interpreted English
commands Both Winograd's and Selfridge’s systems wre subtle semantic/syntactic
hybrids while Maas and Suppes’ system was less complex. operating in a narrower
domain with separate syntactic and semantic modules. All three systems, were
designed to understand user commands with semantic constructs. Bock relied solely
on a template matching method and made no attempt to produce semantic constructs.
Though these syster..s have different capabilities and world models. they do have
similar surface behaviour 1.e.They allow the user to instruct a ‘robot’ with natural

langquage commands.

Natural language understanding presupposes a semantic element in the processing

software. In the case of traditional CFG or ATN parsing methods there 15 often a
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distinct division between the syntax and semantics. Efhcient parsing methods have
been developed for CFG and ATN systems and. in the case of CREATE, are often
orchestrated by machine. This leaves the system developer to concentrate on a set of
semantic formalisms based on syntactic information and requirements of the problem
domain. Unfortunately this separation of semantics increases the processing time and

size of the NLI, reducing the ability to generate flexable semantic constructs.

Alternatively, the CD parsing method rcinoves the barnier hetween syntax and
semantics, reflecting human language comprehension methods. Unfortunately, the
implementation of a CD processor is labour intensive, given that cach word in a CD

dictionary must be charactenzed by a unique LISP construct.

If suach a wide vanation in semantic techuiques produces the same surface
behaviour. one cannot help but ask:
Y

o .ch semantic processing is required for a work cell NLI?

A review of earlier discussions outlines some key Work Cell NLI unification attributes:

a manipulator and sensor array to change and monitor the environment,

a hidden world modelling system for the :imulation of assemblies during

construction,

a set of semantic formalisms describing both world model and task defimtions

to the natural language processor,

a natural language processor employving a subset of Euglish commonly used in

assembly.

This clearly shows that some semantic constructs for world model representation are

necessary. However, the example systems also show that the adoption of semantic



conventions within the language subset can reduce semantic processing e.g. 1in

SHRDLU the restriction of nouns to locations and objects in the work cell.

Given that a work cell NLI need not fully comprehend English semantics. can work
cell NLIs be designed to function on the scale of a personal computer? To investigate
this potential, an experimental NLI has been designed and incorporated into a vision

equipped assembly work cell hosted on an IBM-PC.



Chapter 4

The Experimental Work Cell

The following sections will disci<s the hardware and software support for the

University of Alberta Work Cell. - schematic of this work cell appears in figure 4.1

4.1 The Manipulator

Th+ work cell manipuia: + = 4 & lerr - of freedom RS1 Excalibur articulated
1-bot with a separate controlle - ¢ creomotors. The robot has a published
accuracv < ¢ ~* n-oxamately £1.3n. . reach of about 1 metre, and can hft about 4

kilograr .

Ev.ai: a1 be taught manually with the use of a master arm, a scale model of
the mau .. - .or. or off line from ~ personal computer, in this case an IBM compatible

with 16MHz 60386 microprocessor, 80 MB Hard drive and 2MB RANM.

The controller understands 35 possible commands, the most common of which are
the MOVETO command. s« ‘ing the robot 6 specified joint angles, the GPEN and CLOSE
commands for gripper control, and the MANIP ' vmmand, returning the nampulator’
joint positions. Formally:

MOVE[O joint, joimnt, jointy joint, joint: joint, gripper
MANIP

OPEN size
CLOSE size

Though the robot comes with an off line langnage. RCL. the languape Lo ks

advanced control and data structure capahilities.
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Figure 4.1: A schematic of the University of Alberta’s prototype work cell.



4.2 The Vision System

4.2.1 The System’s Physical Attributes

The work cell has two Mictomint £ cam Optic RAM cameras, mountod 1.2 metres
perpendiculatly above the work area.  Each camera has a rectangn - 128+ 256
pixel sep-Hr airay. Since the cau ras are sensitive to the infrared, two 100 want
incandescent hghe rces are avatlable for consistent ighting At 1.2 wetres the

view area is relatively limited at 2.3 by 64.5 centimetres using a 16mm lens

The cameras are controlled rem ely {1om an inboard vision processing card
installed in an IBM PC with a 4.77 “1Hz 8088 microprocessor. 20 MB hard dnv.
and 640K RAM. The vision hordware can Le operated from any MS-DOS language .
Though the board is capable of gencrating grey scale images, the implemented «y sten

produces binary silhouettes of objects in the view arca.

Unfortunately, vision hardware limitations forced the camera to remain solated
on the 8088. preventing installation on the faster 80386. Though this does not alter
the intended operation of the work cell. the work cell does suffer a penalty of increased

vision processi . time.

4.2.2 Visior. vstem Operation

The vision system appears to the user as a menu driven program with three
operational alternatives: the Local Mode. the Shape Editor. and the Remote Mode

The reader 1s directed to the flow chart in fiigure 4.2,
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Figure 4.2: The VISYS binary vision syst :u low diagram.



The Local Mode

The Local mode of operation is used to determar preture quality, heanl
dependent on environmental highting, and to introduce the vision svstem to new

whipcts in a teach cycle.

As mentioned above the Optic RAMs are sensitive to the infrared. This means
that ambient lighting and room temperatui. will plav a major rolein camera exposute
tiries. Short exposures are desited to both shorten the vision processing cvele aud
limit 1mage ontamination due to infrared noise. To reduce exposure times, i, ase
image contrast, and reduce the influence of ambient conditions, two incandescent
light sources are available to light the work space. The optimum exposure can tien

be determined in the Local Mode (typically 100 milliseconds).

Jo teach the vision system new silhouettes, new objects are placed in the camera’s
field of view as in figure 4.3. The captured image is presented on the momtor and.of
deemed satisfactory by the ser, evaluated for Object connectivity and identification
shape descriptors (figure 4 1). The computed values returned from tn routine, also
presented on the monitor. may be statistically evaluated on request. The results of
the evaluation can be used to construct the identification r ntine’s object ibrary data
durine the editing phase. Object identification ranges, either determined from tial
and error or from the statistical evaluation, are then incorporated into Library Obje

records in the shape editor as in figure 4.5. Object records appear as:

type
ObjectName = strin?[20];
Range = array(1..2] of Real;
LibraryObjects = record
Name : ObjectName;
Holes : Integer;
Area,
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Figure 4.4: The Local mode image analysis or ‘features’ phase.



Figure 4.5: A typical Shape Edit session screen.
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Figure 4.6: A typical ORIENT orientation method analysis phase.



Perimeter,

11,

S1,

Density Rang R
b

case Method: gectName
'SYMM’ : (K:REAL);
end;
The quantities 11, S1, Density represent the first momes -+ rant, coripactness
and elliptical area density descriptors respectively (See apyp B. Not. that Method

can be one either HOLE, PRAX, MAX, MIN or SYMM, m«aning the Hole, principal
axis, maximum radius, mmmimum radius and circle method (or symmetry method)

respectively, used to determine object orientation.

The ORIENT Orientation Utility

In VISYS, object orientation is determined after object identification and the
ortentation method incorporated into the object's record. An orientation method is
chosen based oun results produced by the ORIENT orientation utility program. Within
ORIEN T the user may compare the perimeter and inertiat . 1 orientation methods
and choose the most suitable strategy for a given object. See figure 4.6. This choice

is then inserted int » the object’s record using the shape editor.

The Shape Editor

The menu driven editor allows the user to create, update. and delete object records
from the object library. An object may be selected, a range value or orientation
method altered and :he results saved. The effectiveness of a change may then
be immnicdiately observed bv reentering the local vision system and reexecuting the

picture/featazcs <veie
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The Remote Mode

The third and most Linportant catego.y of operations is the Remote Mode of
operation. In the remote mode a host computer, linked to the vision system by serial

line, may request one of three options.

Acknowledge : (‘0’) enatles the host to check for the presence of the vision system.

The systerwn responas with the string: “Ok™.

Picture : ('1’) instructs the vision system to capture an image and must be
immediately followed by the camera number and exposure time in milliseconds.
The system responds with a string composed of the object number (as seen in
the field of view), identification string, x and y cenuroid locations (relative to

the camera) and the orientation angle in degrees.

Disengage : (‘-1') shuts down the remote mode of the vi.ion system. The < ctem

responds by returning to the main vision system menu.

4 2.3 The Vision Processor: VISYS

The vision software module is a modified version of Warkentin’s [49] Turho
PASCAL/Assembler binary vision software. Though the base image processing is
largely unchanged, modifications were made to implement this software for use in
a work cell environment. The original system, designed to perform in isolation and
provide object identification, location and, to some degree, orientation (only within
+/-180 degrees), was modified to provide remote service, accurate orientation for
assembly, and a useful object editor. The vision software now performs the following

duties:
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Teaching with an interactive teach utility fcr new object description.
Debugging with a menu driven editor for existing object descriptions.

Operation with a simple remote vision instrv~tion set returning lo.ation and

orientation in camera coordinates.
The image processing modules can be divided into three operations

e image preparation and connectivity
e Object Identification

e Object Placement and Orientation

Image Preparation and Connectivity

Warkeutin's Assembler routines perform image acquisition, storing the image as
an array of 8192 bytes. Image noise is removed by applying shrinking and growing
operators to the image. Growing a lone ‘on’ pixel results in turning all neighbouring
pixels ‘on’ in the final image. If a pixel is to remain ‘on’ in the final image, all
neighbouring pixels must be ‘on’ during the shrinking process. An enhancementstage
rectifies peculiarities of the optic RAM and transforms the image into a 512 < 128
image. This image is converted into a Run Leagth Code array, where any continuous
line of ‘on’ pixels is stored as an array element composed of a record containing the
left and right terminal pixel positions. Connectivity analysis, or the derivation of
blobs from the Run Length Code array, is performed using a published algorithm

[44).The result is a set of associated records compactly describing blob dimensions.

A list of points on the perimeter is generated by collecting the terminal points

of associated run length records in a clockwise fashion. The result is a list of £ and
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y values describing the object perimeter. Further, hole perimeters are appended to
the object perimeter list, separated by a preset number of null perimeter values. The
number of perimeters contained in the list less the object perimeter is the number of

holes in the object.

Object Identification

Object identification requires the use of parameters unaffected by object location
or orientation. Typical values employed in binary vision are area, principal moments
of inertia, density, perimeter, holes, and moment invariants such as polar moment
of inertia. The connectivity records and perimeter lists are used to determine these
properties using common algorithms found in [47] and [45]. A summary of these

algorithms can be found in Appendix B.

During the teach phase, these values are stored in an object library as a range
two standard deviations from mean trial values. During the operational phase the
computed values are compared to those in the object library. In VISYS an object
is identified when the computed values for moment invariants, density, area, and

perimeter are within the legal bounds of an object in the object library.

Object Placement and Orientation

Once idenuified, the object centroid becomes the position of the object in the
camera view area. Orientation is more difficult. Though a number of authors propose
principal moments of inertia as referents for orientation, principal moments are only
accurate to +180deg and, therefore, are only useful for symmetrical objects of high

aspect ratio. Pugh [45] recommends the use of one of the following:
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Holes where vectors are drawn between the object and hole centroids. The set of

whica may provide a unique orientation vector.

Radius where maximum or minimum perimeter radii may provide an orientation

vector.

Circle Method where a circle of predetermined radius applied to the perimeter of
the obiect will generate a set of intersection points. The direction of each niay
be described by a unit vector. The set of these vectors may provide a unique

orientation vector.

VISYS uses all of these properties to determine object orientation. The preferred
method for an individual object is determined by the user during the teach phase
with the ORIENT utility package. This package allows the user to preview any
method applied to any object. The chosen method is stored in the object library.
Once the object has been identified, VISYS consults the library to determine the

correct orientation method.

The Hole Method

The ¥ 5YS hole method sums vectors describing the hole centroid relative to the
object centroid or
Jholﬁ = fhole.'i + yholeij

n
Uhole = Z Uhde; Where n is the total number of holes.
=1

The vector sum of an asymmetrically distributed set of holes will produ Anigue,
repeatable vector. If the holes are symmetrically distributed the hole with the
largest first moment of area relative to the object centroid is chosen as an orientation

reference.
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The Radius Method

The Radius method allows the user to select a single vector from the object
centroid to a point on the perimeter. The direction of this vector, the radius, becomes
a measure of orientation for objects with a uniquely large or small radius. A figure

detailing both of these methods appears in figure 4.7.

The Circle Method

The effectiveness of the Circle Method depends on the quality of information
stored in the perimeter. In VISYS a perimeter is essentially the endpoints of the
run length code array for that object. Unfortunately, this is a poor match for the
Circle Method as described in Pugh [45] which is sensitive to small variations of the
perimeter near the circle boundary. Pugh points out that the diameter of the circle

should be chosen such that:

¢ small changes in circle diameter do not effect the location of intersection points.

e small changes in circle diameter do not create or destroy inversection points.
As a possible corollary, the perimeter algorithm should produce:

¢ unique intersection point locations.

¢ repeatable intersection point locations.

Since these requirements depend on a smooth perimeter, a rough perimeter is often
plagued with spurious and inconsistent intersection points near - he circle boundary.
Though smoothing algorithms could be employed to reduce these variations, they

would also lengthen an already prolonged vision processing cycle [45]. Figure 4.8



shows a simplified 1mage acquisition and perimeter generation, demonstrative typical

perimetcr roughness.

Briefly, the modified circle method employed in VISYS generates unit vectors
in the direction of object areas outside the applied circle, providing a method
of evaluating the quality of intersection pairs. By computing the angle between
intersection points on the circle boundary, the effect of random variations of the
perimeter near the circle boundary can be monitored and, if necessary, reduced hy

weighting each contributing vector by an angle quantity.

As a first step the Circle Method is made invariant with object size by making

the circle radius, R.;y, a function of the object area:

kAo,

T

Reyy = (4.1)

...where k is a user defined constant stored in the object library. As the routine
marches around the perimeter, points : and : + 1, of coordinates r,,y, and r,,y,4,

(relative to the centroid) respectively, are used to generate a mean radius from the

centroid:

R, = zt+y! (4.2)
Ry = VI.2+1+3/.'2+1 (4.3)

E.‘ - R, +2R-'+1 (4.4)

If the mean, R;, becomes larger than R.;;, the area slice bounded by R.;; and
R, of width df; can be computed. Note that if the points straddle R.y, a lincar

interpolation is used to generate the appropriate intersection point.

Using the dot product of the two radii to find A6 ...

TiZiv1 + YiYs .
cos A, = +1 T Yi¥is1 :

RR.4

A§;, =sin Af; = /1—cos? Ab; for small angles, (4.6)
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While R, is larger than Ry, the i'** angle slices are summed to form the J*h angle

segment, 7,, composed of m total angle slices.
EDINT (4.7)
1=1

Simultancously a unit vector in the mean direction of the i** slice, @, is added to a

segment vector sum.

§, = arctan (uﬂ) (4.8)
I.‘+I.+1
er = ECOS-O_,' (49)
1=1
v, = Y_sind, (4.10)

A segment is complete when R, falls below R.;;. This procedure is performed over

the entire length of the perimeter.
The products of the n normalized segment vector components, v;; and vy, and
segment angles, 7; are then summed. A lower boundary placed on the segment size

can be introduced to reduce excessive ‘noise’ contributed by small fluctuations of the

perimeter near the circle boundary.

Ve= T |T;'|'TJ

3

o if 7; > some lower boundary (4.11)
V, = 3 ur,
=R
V=Vi+V,j (4.12)

Tlie vector sum, ‘7, becomes the orientation vector. Since this method can be used
to determine object symmetry, it is sometimes referred to here as the ‘symmetry’

method. See figure 4.9.

Though this algorithm seems overly complicated, it allows for experimentation

with differcnt segment vector weighting schemes. For example: One trial method



87

weighted segment vectors by the segment area outside the circle. The slice area. A,

defined as:

Ab, =2 ,
A, = _2_(3,’_12:,,) (4.13)

and the segment area, S,, defined as the sum of these area slices or :

S, =3 A (4.14)

The orientation vector is then weighted by the segment areas:

V. = ¥ jus,

=i |U)| J . N

= . if &, > some lower boundary (4.15)
W= 2 FyfisJ

1

7

and substituted into equation 4.12.

Inconsistent perimeter quality made this area weighting scheme less reliable than

the angle weighted method described above.

In summary, the binary vision system may operate in two possible processing
modes: Local and Remote. In both modes, standaid moment invariant methods are
used to identify objects stored in an object library. Once identified, the orientation
method, chosen by the user during the teach phase, is applied to the object and an

orientation generated.

In Remote mode, the vision system may be run as a remote device to an external
computer, providing z, y, and 8 locations of objects in the camera’s field of view.
Local mode may be used to both inspect picture quality and teach the vision systewm

new ol ject properties through the shape editor module.

Though important in a real world application, the hardware is ultimately only
a collection of input/output devices in this intelligent robotic work cell prototype.

The strengths and weaknesses of this work cell, while dependent on the hardware, lie
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predominantly in the Natural Language software. The fcllowing chapter will review.
in detail, the design and implementation of the Natural Language interface to the

University € Alberta’s work cell.



89

Hole Method Priocipal Axis Method

IR

Minimum Radius Method

=T

Figure 4.7: The Hole, Radii and Prinapal Axis orientation methods used in the
VISYS vision system.
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Original Object Cbject Image

\_-

Object Perimeter

Figure 4.8: The evolution of a typical perimeter in a VISYS image.

Figure 4.9: The Modified Circle Method or Symmetry Method as employed by
VISYS.



Chapter 5

The Natural Language Interface

This chapter will discuss, in detail, the design and implementation of the natural
language interface: TSKMSTR. TSKMSTR investigates the minimum requirements
of natural language processing for a robotic work cell. From the outset certain design
requirements have been placed on the system. In brief. the design objectives for this

first stage of work cell development are the following:

to deve'op a syntactically based NLI prototype.

to develop a recursive teach environment.

to develop a simple Assembly world model.

to incorporate a simple binary vision system.

5.1 TSKMSTR Operation

Before entering into a detailed discussion of this interface software, a series of

sample dialogues are presented to give the reader a flavour of the TSKMSTR system.

The Environment

TSKMSTR, amounting to approximately 300kB of object code and operating on
an 80386 PC with 640kB memory, divides the dialogue of the work cell between the
user’s natural language commands and system messages. each appearing in a window

on the work cell monitor.

91
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The *Natural Language Command’ window accepts both system ‘keywords’ and

English c.nmand strings. The system recognizes the following seven keywords:

world invokes a brief textual list of wotld model objects, features and affixments.

log displays the system log containing a command history, command template data,

and a trace of expanded predicates.
list displays a user selected file.
save saves all tasks to a user selected file,
consult loads tasks from a user selected file.
end terminates a task description in teach mode.

exit exits the NLI and shuts down the vision system.

The NLI window also displays reports generated during command execution. For
cxample a find call prints an XYZRPY location to the screen. Similarly symbolic

task equations, solved for Tg, appear during robot manoeuvres.

The System Messages window informs the user of errors, omissions, and basic
system operations. Typical Message window outputs are: lexical or syntactic errors,
vision and robot [/O, world model affixments, out of reach and out of range errors.
The system also asks the user for clarification and confirmation of frames in the

System Message window.

Upon input of a command string, acknowledged as syntactically correct in the

Message window, one of three system responses are possible.

Execution : successful match with an existing library command acknowledged by

an 'Ok’ symbol.
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Failure : either the command failed during execution or an element of the command
is beyond the semantic scope of the NLI and not supported by the current work

cell.

Teach : the string does not conform to an existing command in the library. Resulting

in the pron pt: “Do you wish to enter Teach Mode?”

Command Execution

Once the command string is parsed, the command is reduced to a command
template, matched against the head of a subroutine in the command library, and
executed in a command interpreter. The execution ultimately calls primitive work cell
processes. The motion work cell primitives provide symbolic task equations reporting

the progress of command execution.

Command Failure

Commands fail for three possible reasons: illegal syntax, undefined semantics, or
execution failure. Illegal syntax simply implies a sentence t' at does not conform
to the imperative grammar. The semantics of many syntactic constructs were
deliberately left unaddressed in this prototype. A typical example of unaddressed
semantics are descriptive adjectives, excluded since many adjectives describe qualities

not measurable by the vision system or world model. Execution failure will occur if:

o the correctly specified coordinate frame cannot be found.
o the target frame is out of reach.

e a target frame is within reach, but out of the robot’s joint range.



94

e the vision system has cra.led.

e _ommunications have failed.

Teach Invocation

If a command is legal but there is no matching routine. the user may the enter the
teach phase. All teach dialogue occurs in a Teach Interface \Window. For reference the
unknown command is retained for reference in the middle of the screen. TSKMSTR
subsequently forwards a series of ‘yes/no’ questions regarding the generality of the
command. A ‘yes’ response to these questions flags frames as varables in ensuing
user defined routines. Once flagged as a vanable, all future references to that variable

become parameters in the new assembly task.

The user then provides English commands describing the original unknown
command. Should the user employ an unknown command during the explanation,
the teach mode is reinvoked about the most recent unknown command. Another

Teach Interface window is created and query session started.

Upon completion of an explanation, the user types end and the last Teach
Interface Window is recovered. This cycle continues until no windows remain. The
task definitions may then be saved to disk as PROLOG predicates through the save

keyword.
Figure 5.1 presents a general flow diagram describing TSKMSTR operations.
5.1.1 Example Dialogues

The following example dialogues effectively illustrate TSKMSTR’s operation and

case of use. Two forms of dialogue are possible: Executable and Teach. The
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[ Read Engtioh comemand |

[ Natural Language Pm;]
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}

rlend English Comwmand ] ’Cdleu (:pu Franwes
rom the Weorld Medel

r""‘ Natursl L-wj

from: the Vision System

<‘>
Ase Frames Legal?

[[__Sotve Task Equation |

[Con-nu MmeCeu-n-\hj

A
is Move Legat?
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Figure 5.1: A flow diagram detailing the global operation of the TSKMSTR system.
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executable dialogue shows the on-line behaviour of the TSKMSTR system, executing
each command from the command line. The Teach mode is an off-line environment,
allowing the user to define new commands in English without actually executing
robot commands. The capability of the TSKMSTR system, though not as wide as
that found in [17], is functionally comparable to the AL system with the benefit of

an English syntax.

An Executable Dialogue

A typical command executed by TSKMSTR appears in figure 5.2. The command
is parsed, converted to a command template, interpreted and reviewed by the
kinematic inference engine. In this example, the disk cannot be found in the world
model. The vision system is subscquently invoked and responds after approximately
10 seconds with the r, y and 8 data string appearing in the Message Window of
figure 5.3. This vision data supplies the world model with the necessary locational
information, permitting execution to continue. The task equation descnbing the
manoeuvre is built by the kinematic inference engine and presented beneath the
command. Though the i denotes an identity matrix, the kinematic engine does
not exccute matrix inversion or multiplication processes on identities, avoiding
unnecessary matrix multiplications. The computed robot joint angles appear in the

Message Window.

Once the gripper has been closed on the disk’s grasp_point, the user affixes the
gripper to the grasp_point on the disk, allowing the robot to move any portion of
the disk. See figure 5.4. Any frame of the disk may be moved relative to its current
position or to a new point in space. In figure 5.5 one such point has been assignedto
a frame label by the user . Rotations may also be applied to the tool in the gripper.

Figure 5.6 shows the execution of a roll manoeuvre. Note the adverb anticlockwise.
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Matural Language Command [nterface
> move the gripper to the grasp_point on the disk.

Systen lessages
Inperative Command: move the gripper to the grasp_point on the disk.
® Syntax ' ok {(Time - § seconds)

* consulting Vigion System...

¢ (capture image) 1

¢ (camera 2 : exposwre 100 as) 2 109

* (nunber of objects)

Stack = 8822  Heap = 1SB471  Trail = 1S979  locatiom : mowe

Figure 5.2: Typical user command. Note that the vision system has been invoked.

Systen lHessages
¢ (runber of obdjocts) 1

o Cobject list)
1 MISK 1.677T+82 2.378L+81 -5.789+010K

# target attached
e (move conmand)? NOVETO 0552 -3338 1310 6 -3971 -15281 @

® Exocution Tine - 0:8:0.1

Figure 5.3: Vision data, returned in the Messages window, is used in the
execution of the user’s command



" Matural Language Command Interface a)
b affix the gripper to the grasp_point.

Ok
P move the disk up 18 inches.

16 = up Toold i (disk.€)* (i (disk.€)*)*

Ok
4

Systea Messages
u Symtax : ok (Time = 0 seconds)
® tool affixed

* {request angles) MANIP
s {Joint angles> 8832 -84 13M4 9 -3927 -14912

* (nove command) MOVETO 8832 439 S? -6 6333 -14916 @

* Exacution Tine - 8:0:0.16

Figure 5.4: With the gripper affixed to the disk, the disk may be moved relative
to it’s current position.

Matural Language Command luterface

> assigm safe_place to xyzrpyg<17,0,8,8,0,8,0).

Ok
> move the disk onto the safe place.

16 = V.safe_place i (i (disk.C)"-om)*

Ok
>

Figure 5.5: New labels may be made in the work cell through the assign task
primitive. Objects may then be attached to these sites.
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The grammar allows the use of compound sentences as in figure 5.7. Note that
the order of execution agrees with the command structure. This performance is
complicated by increasingly complex compound sentence structures as in figures 5.8
and 5.9 and requires the use of distribution functions. A final location report on

selected work cell frames can be requested with the find task primitive as in figure

5.10.
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Matural Language Commend lwterface
16 = U.safe_place-1-(i (disk.C)"-on)"

10k
» roll the disk 98 degrees anticlockwise.

16 = M6old i (disk.€)* roll- (i (disk.©)*)*

0k
4

Figure 5.6: Au example of the roll primitive with the adverb anticlockvise.
The processor also accepts signed degree angles.

Natural Language Command Iwterface

ok
[> move the disk up S inches and yau the disk 12 dosroos.
T6 = wp-Téold 1. (disk.C)*- (1. (disgk.C)™)"
T6 = Toold-i- (disk.€)" yaw-(i- (disk.C)")"

Ok
»

Figure 5.7: An example of a compound sentence. Note the execution order
implied by the task equations reported in the Interface window.

I Matural Language Command Iwterface
b roll, pitch; and yaw the disk 12 dogrees.

16 = Toold-i-(disk.C)*-roll-(i-(disk.C)*)*
16 = Told-{-(disk.C)* -pitch (1-(disk.C)")*
16 = Toold-i-(disk.C)* -yau-(i-(disk.€)*)*

Ok
>

Figure 5.8: A more complex example of a compound command clause.



Maturel Language Command !uterface

> open and close the gripper 10 units and 28 wnits.

Ok
>

Systen Nessages
® Symtax ok (lime = 8.85 seconds)

¢ Copen gripper 10) OPIN 10
¢ {clocs gripper 18> CLOST 10
+ (open gripper 20) OPIM 28
¢ (close gripper 20) CLOSE 28

« Exocution Tine - 8:0:0.1

Figure 5.9: A worst case example of compound clauses. Once again, note the

execution order.

Naturel Language Command [wtorface

[ find the sripper and the disk.

The gripper is at :

X =17.38in ¥ =0.86in Z = 0.59in

Boll = 188.08° Pitch = 1.13° Yau = -100.08°
The disk is a” :

X=17.00ia ‘= 0.08in Z = 0.08in

Roll = 100.08° Pitch = 0.00° Yaw = 100.08°

0k
4

Figure 5.10: An example of the find primitive.
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A Teach Dialogue

If an unknown command is issued, the teach mode is invoked as in figure 5.11.
Through the query dialogue in figure 5.12, the user flags variables in the command
template, effectively generalizing the command for use in other task descriptions (in
this case the command is to be fully generalized). If one of the commands defining
the unknown command is also unknown, the teach mode is reinvoked. See figure
5.13. After responding to another query session, the subcommand is described by the
English commands in figure 5.14. The ‘end’ keyword concludes the teaching session

allowing the user to ‘ascend’ and complete the original teach session (figure 5.15).



Matura! Language Command Interface

b insert the shaft of boltl into holel on the plate.

Systen Nessages

* Syatax : ok (Time  6.85 seconds)
® Unknows Task : insert Do You with to enter “sac: ~ode?(y '}

Inperative Command: insert the shaft of boltl into holel on tne plate.

Figure 5.11: The Teach mode is invoked.

Teach Iaterface

Thew would you say that...
cor you cam insert amything in this mamner, mot just shaft.(y/n)

...of amy cbject, mot just a bolt1? (y/m)

<. You can imsert ANYTHING? (y/n)
...into any object, mot just a holel? (y/w)
«..0n any object, wot just a plate? (yn)

? insert the shaft of boltl into holel on the plate.

Figure 5.12: The query engine asks the user to generalize the command.

103
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Teach Interface

tasks
- Typs "list’: PROLOC listing of existing actions
- Type ‘ond’ : Yo Fimish.

PATH.
P grazp the head of boltl.

? insert the shaft of boltl into holel on the plate.
Systea Messages

Inperative Command: grasp the hoad ol‘ boltl.
* Syntax ' ok (Timo = 0.05 seconds)
® Unkaown Task : grasp Do You wish to enter Teach mode?(y/n)

Figure 5.13: During the definition of insert the Teach mode is reinvoked by a
grasp command, not defined in this example.

Teach luterfece

i

open the gripper.

nove the gripper outo the head of boltl.
lose the gripper.

fix the gripper to the head.

YvYVvVvYwY
g o

? srasp the head of bolti.

Figure 5.14: Graspis defined. Note the inclusion of the affix command relating
the gripper to the head of boltl.

Toeech luterfecs

ACTION:

insert

.} H

> grasp the head of bolti.

> nove the shalt of boltl iwto holel.

P affix the shaft of boltt to holel.

> open the gripper and unfix the gripper from the head of bolti.
4

7 insert the shaft of boltl into holei on the plats.

Figure 5.15: The teach mode ‘ascends’ Lack into the insert teach session.
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5.2 TSKMSTR Design and Implementation Overview

Designed to be a prototype NLI, TSKMSTR uses a context free grammar and basie
natural language processing techniques leaving optimization issues to later efforts. A
successful parse is converted into a command template by the semantic proceasor.
This command template is then passed to a command interpreter that executes the

procedure.

TSKMSTR's task definitions, similar to those described by Bock [15], Selfridge
and Vannov [17], defines new commands in terms of existing task definitions. Unlike
other robotic NLIs, however, a teach phase that generalizes ta ks through vanable
arguments has been developed to maximize the usefulness of NLI routines. The teach
phase is recursive, i.e any English command not recognized during the explanation of

a new task will reinvoke the teach mode.

During the execution of object level task primitives, objects are found through the
inspection of an assembly world model This world model incorporates characteristics
typical of object level robot languages such as the linked list representation and frame
affixment schemes of AL [10] and SRL [14]. This prototype work cell relies on the
conjunction of coordinate frames between manipulator tools and world targets to
construct ‘blocks world’ assemblies. The world model is essentially ‘hidden’ from the

user, who may concentrate on assembly instead of manipulator procedures.

If an object cannot be found in the world model, the binary vision system inspects
the work area for new objects, providing new data to the world model spontancously,

without instruction by the user.

To generate robot level instructions, these object locations are placed into task
equations, as outlined in Paul [22], and solved for Tg. The resultant joint angles

determined through the inverse kinematic solution are then transmitted to the robot
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via the serial communication module.
In summary, TSKMSTR is composed of the following five modules
e The Scanner and Parser
e The Semantic Processor

e The Command Interpreter

The World Model, Kinematic Engine and Task Primitives

e Math Utilities and Communication

Fo1 reasons that will be detailed later, the bulk of these routines have been written in
Turbo PROLOG {40}, while the math utilities have been written in ‘C’. For further
information on PROLOG, consult Bratko [39]. The following sections will describe

the design and operation of each module in detail.

5.3 The Scanner and Parser

In this prototype system, a simple syntactic Context Free Grammar has been
adopted to model the input language. Based largely on the grammar presented in
Bock [15]. the PROLOG source code for the parser was generated by an off-the-shelf

parser generator utility [41].

5.3.1 The Grammar

Bock's CFG modelled the Imperative command subset of the English language.

Though adequate for Bock’s purposes, some modifications were necessary to permit
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specification of vectors and to alleviate the semantic processing tequirements of
prepositions. Furthermore a ‘work order’ approach to English language instructions
combined with empirical results of early trials indicated that some segments of
the grammar were rarely used and were either dropped from the grammar or left

unsupported in the semantic processor.

The ‘work order’ approach to English instructions supposes that tue user has
English language list of procedures required to complete an Assembly, a philosophy
siruilar to that used in the description of AUTOPASS [8]. These assembly instruction
sheets are usually composed of imperative command statements, and seem to possess
little or no ‘literary structures such as dependent clauses, infinitive, gerundial or
participial phrases. Commands are often simple or compound predicates containing
noun phrases within compound indirect and direct objects. Modifiers range from
simple adverbs and adjectives to conjoined sets of prepositional phrases. Only the
conditional form of dependent clause is supported by the semantic processor (though

not currently supported by TSKMSTR'’s command interpreter as explained later).

5.3.2 Vectors

Bock's grammar lacked any method of stating explicit positions in the world.
This gap was filled through the creation of a noun-like rector non -terminal. The
vector is currently defined as either a one, two, three or seven element list of real
numbers separated by commas. The seven element list allows either explicit robot
joint positions or the six quantity location/orientation XYZRPY construct plus a

gripper jaw width.
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5.3.3 Prepositions

Though the bulk of the terminals in Bock’s grammar are well defined symbols
such as nouns, verbs, adverbs and adjectives, a failing of his grammar is the poor
definition of prepositional phrases. An easily recognized characteristic of colloquial
English is that prepositional phrases have highly ambiguous semantic values. For
ecxample the command.

Place the keys on the ring in my pocket.

is ambiguous, having two possible meanings:

e Place the keys onto the ring that is inside my pocket,

¢ Place the keys on the ring into my pocket.

Since it is perfectly possible that the world model may contain data supporting both
interpretations, a semantic convention developed by Bennett [52] was incorporated

into the grammar to clearly define the meaning of prepositional phrases.

Bennett isolates spatial prepositions from their contextual semantics and develops
a method of describing prepositional meaning through the combinations of five cases.
These cases are locative, source, path, goal and eztent Our interest, however, lies in

the definition of the first four.

Locative prepositions define a location. It is important to reiterate that Bennett’s
analysis is isolated from context, thus eliminating the natural assumption that a
locative preposition is of necessi'y a location in space. For example:

He saw the car in the showroom.
is plaiuly a location in space while
He saw the c. tn his dreams

is not. This typifies the analytical style adopted by Bennett to characterize



100

prepositional meaning. The following explanations will show through examples how

Bennett’s classification. are flexible across apparent semantic barriers.

Source prepositions define some starting point as in
Newton got the idea when an apple fell from a tree.
where from denotes a starting point iu space and
Newton got the idea from a falling apple.

implies some ~vent.

A path preposition implies some transitional state as in
She sent the package to Paris via Amnsterdam.
Here via denotes pas: e through some intermediate point in space and in
She sent the package to Par * mail.

describes a mode of transport.

The goal preposition defines an end point as in
He followed his father into the boat.
where into implies a physical end point and
He followed his father into politics.

implies a career goal.

Bennett employed componential analysis to define the precise meaning of a given
preposition. Combinations of locative, source, path and goal were used to form a
semantic definition of a preposition. For example, the preposition over may be used

in many ways such as:

1. He placed his hand over the money.

2. The vineyard is over the hill.
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In sentence one, over the money is plainly a location in space, though above the
location of the money. This sense of overis therefore some position (locative) related
to another position by an implied hierarchy or formally:
locative superior
In the next sentence over the hillsimplies a position(locative) related by a path (path)
through some other hierarchical position (locative) or:
locative path locative superior

The analysis amounts to reviewing several phrases of a given preposition and
discovering common denominators in their semantics e.g. for over the result becomes:

locative superior

A group of thirty similarly analyzed prepositions are shown in tables 5.1 and 5.2.

The semantic values of locative, source, path and goal were appended to the
grammar thus clarifying any prepositional ambiguity. Since these classifications are
based on colloquial English semantics, the restriction imposed by this convention is
rclatively unnoticeable and greatly simplifies semantic post processing. For source
prepositions only from is recognized, while path prepositions and goal prepositions
are (through, via) and (into, onto, to) respectively. Locative prepositions were limited

to (in, on, at).

Verbals

The Verbals (gerunds, participles and infinitives) proposed in Bock’s grammar are
rarely used colloquially and have been dropped from the grammar. The philosophy
of the TSKMSTR approach has been to employ a ‘work order’ level of instruction,

which tends to be a straight forward master/slave dialogue. The use of such ‘literary’



Table 5.1: Bennett’s [52] analysis of TSKMSTR’s locative prepositions.

Preposition | Componential Analysis

at locative
in locative intenor
on locative surface

Table 5.2: Bennett’s [52] analysis of TSKMSTR's non-locative prepositions.

Preposition | Componential Analysis

from source

via path

to goal

onto goal locative surface

inte goal locative interior




phrases seems unlikely in the work place.

Participles are adjectival verb forms that may possess objects. TSKMSTR takes a
very narrow interpretation of adjectival forms and limits modifiers to simple adjectives
and locative prepositional phrases, since these are the most common forms in a
master/slave dialogue. It is worth noting that in Bock’s grammar, the limited
variety of parti-iples ( having been, having, being) is an implicit recognition of the
narrow application these ‘literary’ structures have at this level of robotic instruction.
Furthermore, the use of participles is often avoidable. For example:

Having opened the gripper, grasp the box.
is essentially identical to :
Open the gripper and grasp the box.
It scems that in a master/slave dialogue, the latter is a more likely construct. For

these reasons participles were dropped from the grammar.

Since the teach system will query the user if a task is unknown, the use of an
infinitive phrase such as:
To start the engine, rotate the keys to the sition
for instruction is redundant. In TSKMSTR the unknown ... ..cuction
Start the engine.
is sufficient to enter the teach phase. It is for this reasor that infinitives were removed

from the grammar.

Though gerundial phrases such as
Moving the gripper to the boz, open the gripper.
are fairly common, the subordinating conjunction implies a parallel task execution,

not currently available in the work cell hardware/software package.

The resultant grammar appears in appendix D.
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5.3.4 The Parser Generator

The parser generator converts CFGs, described in a slightly modified Backus Naur
Form notation, into an efficient PROLOG Definite Clause Grammar (DCG) parser
[54], [55]. Briefly, the concept of a DCG stems from the realization that a context free
rule can be converted into a logical statement: the Horn Clause. The Hom clause,
also called a regular or definite clause is composed of a head and a bedy. For example

Mammoth — Large and Hairy and Tusks.
This clause may be interpreted as a logical statement in which the head, on the left
side, is true if the body, on the right, is also true. These clauses may be interpreted
procedurally, verifying each member in the body verifies the head.

Sentence — Subject and Verb and Object
Each member of the body is verified, from left to right, in a top down, depth first
process. The Horn Clause is also the foundation of the predicate in the PROLOG
programming language. A context free grammar rule may therefcre be converted via
the DCG formalism into a PROLOG predicate. An example is outlined by Mehdi
[51].

Most DCG parsers employ a difference list method of parsing. The head of a
given DCG rule contains input and output parameters. The successful verification of
body predicates results in the unification or construction of head output parameters.
Typically the input parameters are composed of a list of tokens or words, while the
output parameters are PROLOG record structures called compounds describing the
syntax of the string. The predicates in the body attempt to confirm that portions of
the input token list represent portions of the legal language. For example the sentence

Bill likes Jane.
becomes the token list:

[(noun("Bill"),verb("likes") ,noun("Jane")]
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ai. | when inserted as the term TOKEN_LIST into the following parser:

sentence(TOKEN_LIST,D_LIST,syntax(SUBJ,VERB,0BJ)) :-
subject(TOKEN_LIST,D_LISTI,SUBJ),
verb(D_LIST1,D_LIST2,VERB),
object (D_LIST2,D_LIST,0BJ).

subject ([noun (WORD) |IREST] ,REST,s(WORD)) : - !.

verb([verb (WORD) |REST] ,REST,v(WORD)):- !.

object ( [noun(WORD) |REST] ,REST,o(WORD)) :-!.

...1s parsed as:
syntax(s("Bill") ,v("likes") ,o("Jane"))
Note that the D_ prefix on the predicate parameters are difference lists and contain

the remainder or REST of a tokenlist after a successful token match.

The parser generator produces a still more efficient form of DCG parser.
Often production rules contain repetitive references to a single nonterminal. For
example in the following grammar COM_VERB_EXP must be discovered twice if
COM_VERB_PHR does not exist.

COM_.VERBPHR — COM.VERBEXP CONN COM_VERD_PHR |
COM_VERB_EXP

To solve this problem, the parser generator converts this BNF representation into the

following form of DCG PROLOG representation:

s_com_verb_phr(LL1,LLO,CVP) :-
com_verb_exp(LL1,LL2,CVE),
s_com_verb_phri1(LL1,LLO,CVE,CVP)

s_com_verb_phr1(LL1t,LLO,CVE,cvpl(CVE,CONN,CVP)):-
conn(LL1,LL2,CONN),
s_com_verb_phr(LL2,LLO,CVP),!.

s_com_verb_phr1(LL,LL,CVE,cvp2(CVE)) :- !.
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This form allows the derivation of COM_-VERB_EXP (CVE) to be preserved should
no further COM_VERB_PHRs (CVP)be found.

The DCG also allows the grammar to be sensitive to context through inspection
of the token list for upcoming, perhaps significant, tokens. For production rules with

consecutive terminal symbols, such as a set of numbers e.g.

VECTOR — real, real, real

The generated parser ‘looks ahead’ using an expect function that simply looks at the

next values on the list.

vector ([t (real (REAL),_) ILL1] ,LLO,dim3 (REAL,REAL1,REAL2)) :-
expect (t (comma,_) ,LL1,LL2),
expect (t (real(REAL1),_),LL2,LL3),
expect (t (comma,_),LL3,LL4),
expect (t (real(REAL2),_),LL4,LLO),!.

Note the structure of the token list. In TSKMSTR commands are conveyed to
the system from the keyboard. Upon reception from the keyboard, an input string is
passed to a scanner.The scanner dissects the sentence into individual tokens that are,
in turn, identified with certain standard syntactic values contained in a dictionary.
The dictionary, a PROLOG database, classifies words through a string matching

process. The word classes are modelled by two PROLOG compound data structures:

w(STRING,CLASS) : where STRING is the word and CLASS is the word class where a
word may have only one class e.g.

v("gripper","noun")

dual (STRING,CLASS) : where STRING is the word and CLASS 1 and

where a word may have multiple classes e.g.
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Table 5.3: A comparison between TSKMSTR and traditional English word classes

English Classification TSKMSTR | Example
transitive and intransitive verbs | verb move, insert
adverbs and particles adverb completely, up, down
nouns noun box, inches

vector XyzZrpyg, position
adjectives adjective blue

real 52,—-1.5
prepositions source from

path via, through

goals to, into, onto

location at, in, on
definite and indefinite articles article the, a
subordinating conjunctions subcon;j if, until
coordinating conjunctions coordconj | and ¢

dual("open',"adjective")

dual("open","verb")

Table 5.3 shows the list of word classes.

During the scanning phase when a token is identified as having the dual class,
the token is identified as a vord of undetermined class. The classification of the
word is defined by the parser. For some classes such as nouns, verbs, and adjectives
dual tokens are potentially quite common. Each of these classes possess a parsing

predicate capable of confirming the membership of a vord within a dual of a particular
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class. For example the verb “open”, inmitially identified by the scanner as class
simply word(open), is successfully parsed by the verb parse predicate if a compound

dual ("open" ,"verb") can be found in the database.

Once matched, each word is inserted into a PROLOG compound structure, along

with an integer indicating the word’s location in the sentence.

These compounds are subsequently inserted into the token list. For example, the
sentence Completely affiz the peg to the hole. becomes the following token list after

scanning.

{

t (adv(completely) ,0) ,t (verb(affix),h11),

t (art (the) ,16) ,t (n(peg) ,20),
t(gl(to),24),t(art(the),27),t(noun(hole),32),t(period, 34)
]

This list structure is then passed to the parser. An example of the parsed command

appears in figure 5.16.
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com_str2(
command1 (
mod4 (
modgrp3(
advexp2(
adv1 (" completely")

)
) 1
imppred3(
cvp2(
cve2(
verbi("aftix")
),
do2(
np2(
ng2(
nouni (peg")
)
)
),
mod4 (
modgrp2(
prep4(
gla(
to("to",
np2(
ng2(
nouni("hole")
)
)
)
)
)
)

Figure 5.16: The parse structure for Completely affiz the peg to the hole.
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5.4 The Semantic Processor

Once the command string has been parsed, the structure of the sentence 1

formalized and the meaning derived in a semantic processor.

In general, the semantic processor closely parallels the execution of the parsing
module and, in fact, could be incorporated directly into the parser. However, frequent
changes to the grammar and subsequent regeneration of the parser require that, for
this prototype NLI, the parser and semantic processor should rermain separate. The

processor’s activities can be divided into three categones:

e the decomp ssition of the parse structure into key syntactic substructures
e the assertion of key substructure features into syntax registers

e the retraction and distribution of the syntactic registers into command

templates.

The semantic processor employs a set of environment register stacks during the
construction of a command’s meaning. At any time in the semantic processing
procedure these environment registers contain a record of useful syntactic structures.
Essentially the semantic processor peels away the ‘outer’ structures to reveal key
syntactic substructures. As each substructure is isolated, features characteristic of
the substructure are ‘pushed’ or ‘asserted’ onto an environment register stack to he

‘popped’ or ‘retracted’ for collection and correlation at a later stage.

In a semantic processor predicate, an input syntactic structure is decomposed
into increasingly fundamental structures by processors in the predicate body. For

example:
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comverbphr (cvp1 (COM_VERB_EXP ,CONN,COM_VERB_PHR)) if
comverbexp (COM_VERB_EXP) ,
conn(CONN) ,
comverbphr (COM_VERB_PHR) ,!.

comverbphr (cvp2(COM_VERB_EXP)) it
comverbexp (COM_VERB_EXP), ! .

5.4.1 The Semantic Processor Registers

Some processor predicates have been designed to ‘push’ syntactic structures onto
an environment register while other predicates have been designed to collect syntactic
substructures by ‘popping’ the appropriate register stacks. Each register is a list

composed of unique stack elements.

The following is a brief description of the stacks employed by the semantic

processor.

Primary Registers

The primary stacks are used for fundamental gathering of primitive tokens. These

stacks are later popped by other processor predicates.

The Adv Stack The adverb, appearing as either advi(String) or adv2(String)
compounds, when encountered by the adverb decomposition predicate is placed
on the adverb stack. The adverb stack, a list of adverb compounds stored as
adv(AdverbList) is popped and the new adverb compound is appended to the
end of the list stack.

The Adj Stack An adjective, either adj1(String) or adj2(Real), when encoun-
tered by an adjective decomposition predicate, is placed on an adjective stack.

The adjective stack is composed of the modified noun tag and the adjective list.
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o

The following structure represents an adjective stack:
adj(String,Adjectivelist)

Since it is generally assumed that adjectives precede the modified noun, the ad-

jective stack initially appears with the String value set to unknown, later altered

to the noun when finally encountered during decomposition. A new adjective is

added to the unknown adjective stack by appending the compound to the end

of the adjective list.

The P Stack The possible prepositions into, onto, to, on, in and of, when
encountered by the preposition handler, are asserted onto a p() stack, appearing

as a set of asserted PROLOG compounds e.g. p("to").

5.4.2 Register Collection and Distribution

During the operation of the semantic processor the primary registers undergo an
ebb and flow of assertions and retractions. The assertion phase of primary registers
is straight forward and will not be elaborated. The retraction of these primary stacks
and reassertion within secondary registers, however, requires explanation. This stack

handling can be roughly divided between four operational types:
e A Verb Handler
e The Noun and Vector Handlers
e A Task Plan Handler

e A Conditional Handler

At the conclusion of ‘he semantic processing a set of job stacks is the only record
of the meaning. These stacks are redistributed into individual command templates,

uniquely describing each ~oinmand, by a Command Template Generator.
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The following sections will briefly discuss the operation of these stack handlers

and the template generator.

The Verb Handler

Verbs are modelled as the PROLOG compounds verbi(String) or
verb2(String). When the verb handler encounters a verb, the verl stack, a list of
v(String,AdverbList) compounds stored as action(VerbList), and a.'verb stack
are retracted. The new verb and its associated adverb stack are incorporated into a
new v() structure and added onto the VerbList iu the action() stack. The action()

structure is then reasserted.

An exception to this rule is the verb ‘to be’, handled independently in the
Conditional handler.

The Noun and Vector Handlers

When a noun is encountered, a type tag is used to direct the noun to the correct
handler. These type tags are assigned early in the decomposition phase by ‘phrase

level’ decomposition predicates. The type tags employed are described in table 5.4:

Each type tag differentiates a noun stack. Depending on the type tag a noun may
trigger collection of different primary stacks. For reasons discussed later each noun

handler raises a flag called 1astnoun(TypeTag) to record the evaluation of a noun.

A single noun handler manipulates i0 and do noun stacks. These
tagged stacks are stored in the following PROLOG compound data structure:
rrame(TypeTag,FrameList). The TypeTag may be either io or do. The FrameList
is composed of a list of f(Moun,AdjectiveList) data structures where Noun is a

string and AdjectiveList is a list of adjective compounds.
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When an io or do tagged noun (a string) is passed to the noun handler, the
similarly tagged frame stack and the unknown adjective stacks are retracted. The
noun and adjective list are then combined into an £() stru-ture. This structure
is then added onto the head of the frame stack, the stack is reasserted and the

lastnoun() flag io or do raised.

The sub type tag marks all declarative clause subjects, invoking the subject
noun handler. In this noun handler, the existing subject stack, a list of subject
‘ata structures, each one appearing as: 8(String,Declaration,Adjectivelist),
is retracted. The noun is combined with the declarative verb “is” 2  the noun’s

adjectivelist. The stack is then reasserted and the lastnoun() flag sub raised.

The locative type tag implies that the noun is the object of a locative preposition.
The locative preposition is used as a modifier on a noun or as a complement within
a declarative clause. Therefore it was decided to place locative prepositional phrases
into the preceding noun’s adjective list. The noun handlers. therefore, were designed
to raise the lastnoun() flag, recording the last noun’s type tag. This flag directs the

retraction and reassertion of the last noun’s adjective list.

When an object of a locative preposition is encountered, the last noun and

Table 5.4: The Type Tags employed by TSKMSTR’s semantic processor.

Type Tag | Noun or Vector Type

to indirect object

do direct object

su’ subject

loc. object of the locative preposition
sre object of the source preposition
pth object of the path preposition

gl object of the goal preposition
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adjective list is retracted. The preposition stack and unknown adjective stacks are
popped and combined with the prepositional object to form the locative construct:
loc(Preposition,Object ,AdjectiveList). This is then inserted into the last
noun's AdjectiveList and the last noun construct reasserted. The lastnoun () flag

locative, is raised.

A special locative case concerns aprositive or successive locative prepositional

phrases. Bennett [52] points out that :

* Successive appositive expressions provide additional information about

a single location”

For the semantic processor to provide for this interpretation requires that successive
locative phrases be installed recursively in the AdjectiveList of the previous locative
phrase e.g.on the floor in the closet becomes:
loc(on,floor,[loc(in,closet,{]1)])

When a non-locative preposition is encountered, the type tag, ome of either
src, pth or gl, identifies the noun with a p_plan(TagType,PlanList) register
composed of a list of PROLOG compound prepositional structures of type
plan(Preposition,Object ,AdjectiveList). The p_plan, p(), and adj() stacks
are retracted. The preposition, noun and AdjectiveList are incorporated into a plan()
structure, added to the p_plan() stack and reasserted. Finally, the lastnoun() flag,

the TagType, is raised.

Since the vector structure, a compound containing either one, two, three, or seven
recal numbers, can be used in place of a noun, an identical set of procedures to
those above handles vecior references. The only exception being that locative vector

structures cannot be used successively. As above, each vector may be asserted onto
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a stack of the appropriate TypeTag, though commonly vectors tend to occur in the

p-plan registers.

The Task Plan Handler

A TaskPlan is 4 Jata structure designed to reflect a transition from one state to
another, containing source, path, and goal fields. This data structure is presented as a
triple of plan () lists within a tskpln() PROLOG compound structure. For example
the transition from the feeder through the washer to the drier is modelled as:
tskpln([plan(from,teeder(])], [plan(through,vasher,[]1)], [plan(to,drier,(J)])
The use of lists for each field allows for multiple sources, paths, or goals within a
single command clause. Each clause has one tskpln() structure, compound sentences

therefore generate a stack of these structures stored in the taskplan() stack.

After the evaluation of a command clause, the Task Plan H.indler retracts the

taskplan() s'ack and the appropriate typed p_plan() stacks, constructs a tskpln()

list element, and then reasserts the taskplan() stack.

The Conditional Hand'ler

The Conditional handler builds data structures that describe some boolean
condiiion that must be proven. These conditions are expressed within declarative
clauses or clauses with the main verb ‘to be’. This verb has unusual charactenistics.
The ‘object’ of a declarative clause can be either a predicate nominative, renaming the

noun or a predicate adjective, an adjective or adjectival phrase modifying the subject.

The current implementation of the semantic processor supports the predicate
adjective interpretation of the declarative clause. The subject construct, the 8()

compound described above, forms a state description for later proof by TSKMSTR.
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The condition handler inspects an adverb list for the adverb “not” and, if found, the
Declarative field in the 8 () structure is assigned to not. These structures are stored

in a chk() checklist stack.

The Command Template Generator

Upon completion of semantic processing the noun, verb, and task plan stacks are
collected and distributed to crcate command templates. The command template is
a convention used to model the core meaning of an input command. The command
template composition is detailed in figure 5.17. As the figure shows, the template
is divided into four sections: the verb, an indirect object, a direct object and a task

plan. The reasoning behind the selection of these structures follows:

The Verb Field : The verb field is used primarily as an identifier for the rest of the

command template, analogous to a procedure name.

The Indirect Object : The indirect object acts as a catchment for nouns acting

like indirect objects. For example:

Move the boz 5 inches up.
This sentence demonstrates the syntactic complexity of even a simple command.
The noun boz in an initial analysis might be termed a direct object, a notion
reinforced by the permutation:

Movethe boz up 5 inches.
which leads the human parser to believe up is a preposition. This is not so, upis
a particle or a preposition that is part of the verb (The verb is move-up). In this

instance inches can be interpreted as the direct object and boz, the indirect ob-



COMMAND
VERB

I0

DO
TASKPLAN

SOURCE-LIST

PATH-LIST
GOAL-LIST
SQURCE

PATH

GOAL

O0BJECT
ADJ-LIST
ADV-LIST
ADJ

VECTOR

ADV
LOC-PREP
PATH-PREP
GOAL-PREP

! I A N R

Ll bl

com(VERB,I0,D0,TASKPLAN)
v(STRING,ADV-LIST)

£ (0BJECT,ADJ-LIST) | nil

£ (OBJECT,ADJ-LIST) | nil

tskpln (SOURCE-LIST,PATH-LIST,GOAL-LIST)
list of SOURCEs | nil

list of PATHs | nil

list of GOALs | nil
src(from,0BJECT,ADJ-LIST) |
srci(from,VECTOR)

pth(PATH-PREP ,0BJECT,ADJ-LIST) |
pth1(PATH-PREP ,VECTOR)
g1(GOAL-PREP, 0BJECT ,ADJ-LIST) |
g1l1(GOAL-PREP,VECTOR)
coordinate frame label STRING
list of ADJ

list of ADV
loc(LOC-PREP,0OBJECT,ADJ-LIST)
adj1(STRING) |

adj2(REAL) | nil

dim7 (REAL ,REAL ,REAL ,REAL ,REAL ,REAL ,REAL) |
dim3(REAL ,REAL,REAL) |
dim2(REAL ,REAL) |

dim1(REAL)

STRING

in | on | at | of

through | via

into | onto | to

Figure 5.17: The structure of command template used in the Semantic Processor
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ject ' TSKMSTR views particles as adverbs (though this is strictly not correct
as demonstrated by: Up move the boz 5 inches a legal parse for TSKMSTR).

The Direct Object The bulk of nouns appecr in direct object field and usually

represent the object of an action.

The Task Plan As explained earlier the task plan details a state transition.

presumably directed at the Direct Object.

Upon completion of semantic processing, four remaining stacks, action(VerbList),
frame(io,I0List), frame(do,DOList), and taskplan(TaskPlanlList), must be
redistributed into meaningful command templates through the use of a ‘stack

distribution convention’.

For example the command:
Clean and dry the floor and the window.
requires speciai distribution due to the compound verbs and direct objects. To an
experienced human listener the above command clearly implies that both the floor
and window be both cleaned and dried, though there is no implied order of events.

The state of the stacks at the termination of the semantic analysis is shown below:

VERB = actions([v("dry",[]),v("'clean",{]1)])
INDIRECT OBJECT = frame(io,[])

DIRECT OBJECT = frame(do, [f("window",[]1),f("floor",(1)])
TASKPLAN = taskplan([])

I'This is not strictly correct, since the particle up is probably the remains of the preposition up
by which would indeed make inches the object of the preposition. However, Roberts [58] suggests
that of four tests for indirect objects, only the consecutive placement of two objects is reliable. This
is the case in Bock’s grammar. TSKMSTR therefore views boz and inches as the indirect and direct

.ects respectively.



129

A stack distribution convention must reliably convey the correct semantics impli.-d
by the command. TSKXMSTR’s distribution convention orders command execution
such that all operations on one object are completed before continuing to another

object i.e.:

com(v("clean" (1) ,nil,f("floor", (1) ml)
com(v("dry", (1), nil,f("floor", [1),nil)
com(v("clean []),nil,f("vindov" []) nil)
com(v("dry",[]),nil,f("vindov",(]),nil)

These commands are then placed into a command list. Though this method is
not ideal (intelligent task queuing or scheduling is not provided), it does provide a

simple, reliable, and safe task execution.

For multiple objects and task plans such as:
Move the jug and pot to the glazer, to the drier and to the kiln.
All object/taskplan permutations will be generated one object at a time in order of

the task plans’ appearance in the command.

The following is a complete example of a semantic processing session. Though it
does not detail all the processors functions, hopefully it will provide the reader with

a sense of the procedure.

5.4.3 An Example

For the parsed example in figure 5.16, Completely affiz the peg to the hole, the

semantic processor operates as follows:

o the adverb, completely, is isolated in the adverb decomposition predicate and
asserted into an adverb register stack. The stack is a PROLOG list of adverh
striugs e.g.

"completely"]
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the verb, affiz, is isolated in the werbd decomposition predicate. Any adverbs
appearing in the adverb stack are popped and combined with the verb in a
record structure which, in turn, is pushed onto an action register stack. The
action stack is a PROLOG list of action records composed of an action word
and its modifier list e.g.

[v("atfix", ["completely"])]

peg, is type tagged do ‘n the direct object decomposition predicate as a direct
object and passed to the io/do noun phrase handler. All adjectivesin the adj ()
stack are popped, incorporated with the noun into an £ () structure and pushed
onto a tagged frame stack. The stack is a PROLOG record composed of a tag
and list of frame structures e.g.
frame("do",[f("peg",[loc(''on","peg"[1)]1)])

note that in this example the adjective list is empty or [].

the prepositional phrase to the hole is tagged as a ‘goal’ phrase, gl, implying
some target position. The preposition ‘to’ is pushed onto the p() preposition
stack and hole is passed to the preposition object handler. This handler pops
the p() and adj() stacks, combining them with the noun to form a plan()
structure that is pushed onto the p_plan stack e.g.

p-plan("gl", [plan("tn","hole", [loc("on","hole"[])])])

Since no adjectives modify hole, the adjective list is empty, [].

the clause elements have been decomposed successfully the action, frame,
lan stacks are popped and combined into a command template by a command

bly function. The above example becomes:
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v(']:affix" , ["completely"]),

nil,

£("peg", [loc("on","peg",[1)]),

takpln(nll ,nll , [p-plan(ntou s "hOIQ" , [loc(nonu , uholeu , [] )] )] )
)

5.5 The Command Interpreter

Once an English command has been parsed and converted into a command
template and placed into a command list, the interpreter executes matching library
routines. This requires a formalism for the description and execution of tasks.

The following sections will briefly discuss the representation and performance of

TSKMSTR commands.

TSKMSTR'’s task descriptions are designed to form a hierarchy of library tasks.
Each task can be described as a list of subtasks. These subtasks in turn can be
further expanded into more subtasks until the original task is decomposed into a list

of executable ‘primitive’ tasks, described in section 5.6.

Each task definition is a hierarchical structure resembling a Horn Clause, similar

to the structures developed in [17] and [21].

Each task definition head is a characteristic command template that is verified
through the clause body, also composed of command templates. Any command
template can be expressed, through Horn clauses, as a combination of the primitive
templates. To accomplish this, each command template in the body is expressed in
terms of previously taught routines, until the verification of templates produces a
body of primitives that must be proven true. Each Horn clause is executed in a top

down, depth fir manner, identical to a PROLOG clause (see [39}).

Since tasks were to be created and run during TSKMSTR execution, a means of

building and executing PROLOG-like programs within TSKMSTR (itselfa PROLOG
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program) was required. TSKMSTR was written in a compiled PROLOG thus
preventing the creation of new PROLOG clauses at run-time. The solution was
to employ a meta-PROLOG, a meta-language used for the description of languages.
In this case a PROLOG program was employed to model the action of PROLOG,
in effect recreating PROLOG on top of PROLOG. A portion of an off-the-shelf
meta-PROLOG [40], was modified and incorporated into TSKMSTR, providing the

necessary PROLOG:- like creation and execution of task meta-predicates.

The command templates become user defined meta- predicates, while the primitive

templates became true PROLOG library and work cell function calls.

The PROLOG Interpreter and Translation Utilities

The PROLOG interpreter models a HORN clause with a simple but effective

compound structure:
cmp (" :-", [Head,Body]) .
In fact, the meta- PROLOG cmp() structure models predicates and compound data
structures in addition to the clause structure above. This meta-compound is
generically represented by the following structure:
cmp (Operator ,ParameterList)

Operator may be an operator, such as the ‘if’ symbol above, the ‘and’ symbol ‘., the
‘or’ symbol ‘;’, as well as the full range of arithmetic symbols. The operator may also
be a predicate or compound name. The ParameterList is a list of parameters that

can be any one of the following types:

e a MetaVariable = var(String)

e a MetaString or atom = atom(String)
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e a MetaReal = real(Real)
e a Metalist = list(Parameter,Metalist) or nill (for [(])

e a MetaCompound = cmp(Operator,ParameterList)

The following true-PROLOG clause:

echo_readln(STRING) :- readln(STRING), write(STRING) .

therefore becomes the meta—-clause:

cmp (u sl s
cmp ("echo_readln", [var (STRING)]),
cmp(" R " s [
cmp("readln”, [var (STRING)]),
]c):mp("vrite" , [var (STRING)])
.

Briefly, the interpreter’s modifications encompassed the replacement of PROLOG
standard calls (such as read(), vrite(), sin(), and cos()) with calls to work cell
processes (such as move(), open(), and find()) and the removal of the interpreter’s

run-time environment and utilities (such as windows and file I/0).

Translation Utilities

A set of Translation Utilities converted a command template from a real PROLOG
data structure to a meta-PROLOG predicate call. The forward translaticn phase

(from true to meta-PROLOG) simply decomposed each command template into its
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constituent elements and converted them int.. ineta-PROLOG parameter equivalents

described above.

During the forward translation phase a series of tests inspected the adjectival lists
in the £ () structure for correct locative specification. The forward translation stage
allows the user to correct grossly erroneous loc() spatial references at a stage that
permits the task to continue without failure (a similar error later. in the world model.

would cause an irretrievable global failure of the task).

Any position in the work cell is specified by a noun and its locative prepositional
adjectives. The world model requires a feature/part pair to uniquely identify a
point in space. A feature is defined as a coordinate frame of a part. The part field
indicates the name of the host object. TSKMSTR expects nouns to represent either
features or parts. Tests must be performed to discover the intended meaning of a
given noun since users may refer to a feature or part in isolation. These tests will

produce a feature/part pair based on an examination of the world model.

Each spatial reference undergoes the following four tests comparing the world

model against the locative adjectives modifying the noun.

e If a part has no locative modifiers, the interpreter inspects the model for a
part. If successful the full locative description of noun is supplied by the
interpreter. For example the boz initially interpreted as :f(box, [1) becomes

f(box, [loc(of,box,[])]). Otherwise the test fails.

o If a part is modified by successive locative phrases, the test inspects the
model for agreement. If successful the execution continues. For example
the boxr on the top of the pallet initially interpreted as f(box, {1 * ines
f(box, [loc(of,box,[loc(on,top, [Toc(of ,pallet,[]1)]1)]1)]) . Otherwise

the test fails.
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o If a feature is modified by a single locative phrase, a test inspects the model
for agreement. If successful the -~ -ution continues. For example the top of the

boz becomes f (box, [loc(on,paiiet, []1)]). Otherwise the test fails.

o Ifa featureis modified by successive locative phrases, a test inspects the model
for agreement If successful the execution continues. For example the bottom of
the boz on the top of the pallet. is initially interpreted :

f(bottom, [Loc(of ,box, [Lloc(on,top, [1oc(of ,pallet,[])])])])

Otherwise the test fails.

A failure in any of these tests results in the inspection of the dialogue stack, a list
of recently discussed frames. Failing a useful match in the dialogue, a query session
is invoked in which the user must specify the intended frame from the world model.
Once these tests have en successfully navigated the correctly formed command

template is converte | © .. the meta—equivalent.

Prior to executio. 1 test is performed on the meta command template that
examines the command library for the existence of the meta-predicate’s name (the
ver'.) and parameterlist. A failure to find a match invokes a Teach Mode, described

in the section 5.5.1.

5.5.1 Teach Mcde

If a command is unrecognized during a dialogue the teach mode 1s invoked. The
teach mode is a means of describing a command unrecognized by the interpreter
in terme of recognizable commands. In effect, the teach procedure is an English

explanation of an unknown command.

Prior to entry into the teach mode proper, the user is asked a series of questions

about the nature of the noun and adjective values in the unknown command. The
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purpnse of this ‘interrogation’is to determine possible variable terms in the command.
The user is asked to decide whether a given term is unique to this command or 1s

generally applicable to other situations.

This query ‘engine’ works through the io, do, and taskplan fields asking for the
generality of each term. If a term is selected as ‘general’ then a temporary variable

flag is raised, noting that all instances of the term must be interpreted as a variable.

During the teach dialogue, TSKMSTR constructs command tinplates just as

it would in the interpreter, but does not actually execute the command In the

forward translation in the teach phase, nouns and ad-ecr ves . .pared against
the variables flags raised in the query session . If a match is f..und. 11 s that would
normally be converted directly to their meta—equivalent are, inst: | transformed into

the var() compound described above. For example: if in the command Grasp the
boz., boz is a variable, then the do field, £ (box, []1), becomes
cmp ("£'", [var (BOX) , var {(BOX_LOC)])
instead of the usual:
cmp ("£", [atom(box) ,nill])
Note that if an £() plan() or loc() structure contains a variable adjective list, the
adjectival list may also become a variable. For example in Grasp the handle on the

boz, if bozis still a vanable, f (handle, [1oc(on,box, []1)]), becomes

cmp("f" s
[atom(handle),
list(cmp("loc", [atom(on),
var (BOX),
) var (BOX\_LOC)]
nill)



137

instead of:

Cmp("f" )
[atom(handle),
list (cmp{"loc", [atom(on),
atom(box),
) nill)
nill)

As the session progresses, the ‘teach’ meta-command templates are incorporated
into the meta-clause <tructure described earlier . Upon entry of the ‘end’ keyword

the session finishes 1nd the command is executed.

If, during thr teach phase, a command is issued that does not exist in the library,
the teach mode will be immediately reinvoked. This recursive reinvocation or ‘descent’
of the teach mode will continue ad infinitum until the user provides explanations
that are in terms of existing ‘lower level’ library commands. As each teach session is
completed, the user ‘ascends’ once again to the next level of instruction, thus allowing

the composition of very high level commands from the top down.

5.5.2 Unsupported Legal Syntactic Constructs

Tlough the parser and semantic processor are able to genmerate descriptive
constructs for both conditionals and simple adjectives, the command interpreter does

not currently support them.

Conditionals are not supported for two reasons, the first is succinctly stated by

Lieberman and Wesley [8]:
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* Although severe in a general programming sense, it seems that apart
from error recovery there is little need for complicated branching paths in

an assembly program, and in practice the user may not be affected.”

In other words, an assembly language does not need extensive branching mechanisms
like those implied by English conditional dependent clauses. Secondly, the horn clause
theorem proving approach renders these clauses largely unnecessary by ensuring that
conditions for the assembly are correct. For example the command: If the boz is on
the pallet, grasp the boz. would be treated identically to the command: Grasp the boz
on the pallet. since the in lusion of the adjectival locative phrase on the pallet forces

TSKMSTR to search for a relationship between the pallet and the box.

The removal of simple adjectives from the semantic evaluation is a simplification
of the prototype system and in no way precludes their treatment at a later time. The
current decision lay in that most adjectives can be ‘built in’ to the frame name (e.g.
square hole becomes square_hole), with little loss of meaning or flexibility. Adjectives
of comparison, such as larger and longer, however, require a procedural analysis of the
wortld beyond the descriptive capacity of the current world model and are, therefore,

not supported by this prototype NLI.

5.6 World Model, Kinematic Engine and Task Primitives

5.6.1 World Model and Kinematic Engine

The world model, also written in PROLOG, is oriented towards assembly
pros ramming and has be a designed to be hidden and self-maintained, requiring
amnnnal user attention or kinematic knowledge. It employs a graph approach of the

world similar t¢ AL.
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In the TSKMSTR Kinematic Inference Engine (KIE), assigning the position of
the gripper or tool, modelled as a coordinate frame, to some target location, alse
described by a frame, is equivalent to moving the robot, i.e. a robot motion can
be described as the conjunction of two coordinate frames. In TSKMSTR, frame
conjunctions come in three varieties: into, onto, and to. These -to relations become
the natural language object (or frame) interrelationships: in, on, and at. In the
TSKMSTR world model the z-axis of each coordinate frame is assumed to be either
perpendicular tc ay oi | +t surface or aligned with the axis of a hole. The conjunctions
in and on are ;) urically defined and oppose the two frames' : axes, while at, an

identity matrix, aligns the two frames’ :--axes exactly.

An assembly graph representation has been adopted to capture these
interrelationships and to describe the location of assemblies in the world. Each nodein
the graph represents a coordinate frame and each arc, a homogeneous transformation.
An object with a group of n subcomponents called featuresis described '~ - group

of n arcs and n + 1 nodes as in figure 2.2.

A node in AL is usually repr-scnted as a record structure. A disadvantage of
this PASCAL-like notation is that the record is a t\ ped variable. An alternative
approach, freeing the user from this rigid typecasting, was the use of a PROLOG
record structure, called a compound, containing a feature/part pair, e.g. a hole in a
plate becomes node(holel ,plate) where holel is a positicn or feature and plate
a reference to a part. The advantage is that both the feature and part fields are
variables, entirely unlike the pure record equivalent e.g.plate.holel[1]. Tlis allows

the world model to inspect and create feature/part pairs.

In the graph, any object node can be attached to any other object node through
the use of a conjunction transformation arc. In a prototypical form, an arc might b

described by the following compound structure.
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arc(
node(plate,plate),
ht(v(1,0,0),v(0,1,0),v(0,0,1),v{1,3,0)),
)nodo(holol,plato)

Where ht () and v() are homogeneous transformations and vectors respectively
and ncde(plate,plate) is the reference coordinate frame on the plate. An assembly
of two objects, therefore, is composed of two object features connected to one another
throngh an in, on or at conjunction transformation. The assemblies become more

complex as these conjunction transformations are used to join several parts.

The location of any node relative to another node can be derived by finding a path
of “arcs between the two nodes. KIE employs a breadth first search method to build
these arc paths. In an assembly graph model, a single node may be reached by multiple
paths, some * wlach may contain ‘cycles’ or paths through previously traversed nodes.
KIE's search method ensures that cyclic routes, common in assemblies, will not be

generated and guarantees that the derived path will always be the shortest.

Though more cfhcient PROLOG breadth first methods are possible, the prototype
KIE breadth first search algorithm proceeds as follows. A list of possible paths
through the graph is generated as the .carch progresses. Each path is described
by a list of constituent nodes. New nodes are always added tc .he front or head of
this node list. The procedure compares the head of a path list to the target node.
If the head is not the target node, the head's neighbouring nodes are collected and
cach new node added onto a copy of the path list. For example: if the head node of
a path list has n neighbouring nodes, the path will be replaced by n copies of itself,
cach with an additional node at the head. These “expanded” paths are appended or
added onto the end of the lis* of paths. The next path in the list is then examined in

the same manner through the use of a recursive predicate call.
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This expansion and subsequent concatenation of paths results in the perpetual
inspection and (further) expansion of paths in a breadth first manner. The following

PROLOG code fragment presents a basic example of this method.

breadth_first(END, [[ENDIP]|_ ], [ENDIP])) if .
breadth_firt (END, [[NIP] |OTHERS],S) if
expand_nodes([NIP] ,NEW),
append (OTHERS ,NEW,PATHS), !,
breadth_first (END,PATHS,S)
or
1}

breadth_first (END,OTHERS,S).

Where END is the target node. P is some path, N is some node, OTHERS are alternate
paths, NEW are new paths through N, PATHS is the new list of paths, and § is the solution
path.

As mentioned above, assembly graphs often contain cycles or redundant paths
through the graph. To avoid “going around in circles” the expand nodes() function
does not collect nodes that are already present in the current path. Since a single
arc -.-scribes an attachment between two nodes, the collection of neighbouring nodes
must be prepared to inspect both node fields in the arc () data structure. Once the
path is determined, the product of the chain of homogeneous transformation arcs
along the path expresses the location of the target node relative to the start node’s

coordinates.

It is worth noting that this PROLOG breadth first scarch employs both the
common recursion PROLOG technique and PROLOG's powerful built in umfication

mechanism to make the procedure compact, efficient, and simple to implement. [39].

The assignment of a tool frame,(i.e. a frame attached to the gripper), to a target
frame (i.e. a frame not attached to the gripper) is equivalent to creating a new

conjunction arcin the graph (analogous to a homogeneous transformation), extending
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from the tool node to the target node. The linking of these frames with an arc implies
that the two frames are somehow spatially interdependent. As described earlier, this
interdependency is not necessarily mutual. In order to reflect the asymmetry of
spatial interdependence common in the real world, an AL-like affizrnent scheme has
heen employed. A pair of affixment flags declare the dependency between nodes linked

by a conjunction arc. For example in figure 5.18:

If block A is resting on block B, node Apotom and node By, are connected
by an arc with the affixment flags, 4,.,,,.. F8.,, and B, Fa,.,....- Since block
A is positionally dependent on block B (if block B moves so will block A)
then g, Faynom — fixed. However, 4,.,..FB,., = unfixed. since the

movement of block A will no! influence block B.

In the norma' movem nt of a tool frame to « arget frame, tiic tool and
target affixment flags are initially assigned to unfixed i.e. no permanent spatial
interdependence 1s assumed. The target frame may be incorporated into the tool
by fixing the target to the tool, equivalent to setting the target flag, comFearget, to

fixed.

Subsequently, any motion in the tool frame is reflected in the target frame (and
ary other frames fixed to the target). Conversely a tool part can be attached to
the target by unfizing the part frame from the rest of the tool and affixing the part
frame to the target frame. Unfizing is equivalent to assigning the part afixment

flag. 100t Fpart, to unfixed.

When the tool assembl' is moved by the manipulator all temporaiy relations
between the tool and the world are broken by an isolate_tool() function. This
is accomplished by removing all the unfixed arcs in the traversed tool-to-world

direction with an acyclic " first search method similar to the one described
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earlier. During the expand nodes() phase all unfixed flags in the tool to world
direction are retracted or deleted from memory. The acyclic search saves the remaining
unfixed arcs in the world-to-tool direction from being traversed and retracted. The
net result is that all unfixed connections the tool has with the world are severed,
while preserving all the fixed connections to the tool. For example in figure 5.18: If

the gripper is raising block B.

On the outward traverse of the arc between block B and the world the
search will encounter and eliminate the arc tagged by g, , . Fuorta, since
Broriom Fuwortda = unfixed. On the outward traverse of the arc between Block
B and A, the search will encounter and ignore flag g, Fa,. o+ Which is
fixed, and move on to Block A. At Block A the search method prevents
the backwards traversal of the arc connecting Block A and B, thus the
search avoids removing the flag 4,_,,... FB..,, Whichis unfized, and retainiuy

the positional interdependence between Blocks A and B.

The final data structure describes the arc between two nodes in the graph, each
named with a featui¢ /part pair. Since the acyclic search method prevents the pursuit
of previously ¢:aversed nodes, the two afixment flags can be safely combined into a
single arc (each node flagged with an affixment flag). Homogeneous transformations
describe the change in location between the two nodes, transforming the world model
into a directed graph, (the sense of the transformation is from left to right).

arc(node, ,node, Frodes %! Thnodss inodes Frode, ;node€7)

An example:

arc(
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Figure 5.18:

KIE’s afixment notation for a stack of blocks.
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node(plate,plate),
fixed,
t(hole,ht(v(1,0,0),v(0,1,0),v(0,0,1),v(1,3,0))),
fixed,
)nodo(holo,plate)

Each transformation is labelled to allow the construction of symbolic task
equations. Note that since this describes the hole as a feature of the plate, the
affixment flags are both set to fixed. Regardless of the direction of the tool isolation
procedure, the arc will be preserved. This data structure in conjunction with the
breadth first search mechanism effectively describes assemblies within TSKMSTR s

world model, See figure 5.19.

Finally, if the search is unsuccessful, the vision system is engaged, providing the
identity, location, and orientation of objects in the camera’s field of view. Any
objects in view are subsequentlv incorporated into the world model by linking the
object reference node, node(object ,object), on the bottom surface of the object,
to the world node. In keeping with the world model convention, the relation between
the world node and the object surface frame is modelled through a world feature,
a tempor. - intermediate point located on a world surface. This point is created
by the kine:..atic engine beneath the object on the world surface, the standard at
conjunction transform is then used to link the nodes e.g.: If a disk is found in the
view area, the relation between the world and the disk nodes can be summarized by
two arc() expressions.
arc(node(vorld,world) ,fixed,<some transform>,fixed,node(¥.disk,vorld)

arc(node(W.disk,vorld) ,unfixed, <AT transform>,fixed,node(disk,disk))
The expression <some transform>, the position of the new object in the world, 1s
determined through a simple matrix computation relating the position of the object

as the camera matrix product discussed earlier and fully described in Paul [22]. The
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Figure 5.19: A complete Assembly Graph as modelled in KIE for the objects
shown in figure 2.2.
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search algorithm is then restarted. A further failure to find the erzant frame will fail

the entire procedure.

5.6.2 Task Primitives

Once the positions of the frames have been determined the task primative -
free to execute robot manoeuvres. In general a task primitive is some mani; Voo
of a frame in the work cell. The current command primitives are ten low level calls
to the work cell. See table 5.5. In essence these commands may be summarized as

follows:

e Move a frame to another frame or to a umque XYZRPY (inches degrees).
T, TOOL = TARGET or T, TOOL = XYZRPY

Typical usage:
Move the gripper to the handle on the boz.
or

Move the handle to zyzrpyg(17,0,0,0,180,0,0).

e Move (Translate) a frame to a position relative to its current position in work

cell coordinates (inches or centimetres).

T,

Nnew

= Trans(r,y,z) T

Notd

Typical usage:
Move the handle on the boz up 5 inches.

e Move the robot to a joint position (hundredths of a degree). Typical usage:
Move the robot to position(9000,0,0,3000,0,0,0).
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Table 5.5: A list of the TSKMSTR primitive work cell functions.

r Verb Indirect Object | Direct Object Taskplan
MOVE — frame frame(s) | xyzrpy
MOVE frame units —

MOVE — robot position
AFFIX | — frame frame
UNFIX — frame frame

FIND — frame —
ASSIGN - frame Xyzrpy
ROLL frame units —

PITCH franie units —

YAW frame units

OPEN gripper units — i
CLOSE gripper units — |
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Affix a frame to another frame. Typical usage:

Affiz the gripper to the handle on the bor.

Unfix a frame from another frame. Tvypical usage:

Unfiz the gripper frém the handle on the bor.

Find the position of a frame. Typical usage:
Find the handle on the boz.

Assign a frame label to a unique XYZRPY (inches,degrees). Typical usage:
Assign handle on the boz to zyzrpyg(17,0,0.0,180,0,0).

Roll a frame to a position relative to its current position in too! coordinates
(degrees or radians).

= T,

Nold

Rot(z,0)

Typical usage:
Roll the gripper S0 degrees.

Pitch a frame to a position relative to its current position in tool coordinates
(degrees or radians).

T"vuw = T"old ROt(y‘o)

Typical usage:
Pitch the handle on the boz 17 degrees.

Yaw a frame to a position relative to its current position in tool coordinates
(degrees or radians).

= Ta.. Rot(z,8)

Nnew

Typical usage:
Yaw the boz -20 degrees.
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e Open the gripper a specific number of units (dimensionless). Typical usage:
Opern the gripper 100 units.

e Close the gripper a specific number of units (dimensionless). Typical usage:

Close the gripper 20 units.
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5.7 Communication and Support Utilities

Since the robot ccatroller < ..+ wnd receives commands over an RS-232¢ serial
line, an interrupt driven con :tion utility [41] was employed to handle the 9600

baud robot and vision system message trafhic.

PROLOG, while being an effective symbolic ma. .~ulation language, is a
poor numeric processor, having no facilities for multidimensional array structures.
Therefore homogeneous transformation inversion, matrix multiplication, and both
the forward aul inverse kinematic solutions for the Excahbur were implemented in
‘C’ and incorporated into the TSKMSTR environment. As mentioned previously the
homogeneous transformations appear as PROLOG compound structures composed of
four subcompounds each containing three real numbers representing a vector in space.
The ability to represent matrix equations as PROLOG lists simplifies the evaluation

of kinematic chains through the use of recursive calls to the *C’ matrix multiplication

utilities.

The following chapter will discuss the performance of the system and present
conclusions and recommendations for further research into Natural Lauguage

Interfaces for robotic work cells.



Chapter 6

TSKMSTR Evaluation, Recommendations and Conclusions

In this chapter the efficiency and function of each TSKMSTR module will be
discussed. Recommendations will then be made regarding future modifications to

this software and research into other Interface issues for robotic work cells.

6.1 Natural Language Iuterface Performance and

Evaluation

An unfortunate characteristic of both natural language processing and PROLOG
is that traditional methods of software evaluation such as execution time or floating
point precision benchmarks do not apply. Both disciplines employ search techniques
whose execution time is often highly dependent on the physical order of the data
in memory as in the case of a PROLOG database search. Depth first parsing is
particularly vulnerable to this order of parse predicates. It is a simple exercise to
develop sentence structures that maximize failure and backtracking (thus increasing

execution time) once the order of parse predicates has been determined.

Though in a global sense execution time is important, i.e. the general algorithm
must be reasonably fast, natural language processing speed is difficult to measure and
benchmark. More so when real world processes such as sensor 1/0O and robot motion
are included. The following discussion will, therefore. ncentrate on code clarity and

case of modification and refrain from using execution speed as an evaluation datum.
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6.1.1 Scanner and Parser Evaluation

Given that both modules operate within the bounds of an unoptimized syntactic
grammar, the scanner and parser are fast and efficient. A typical scan and parse on
the 80386 is completed in less than one half second, insignificant compared to /0O

and robot motion time.

A disadvantage of the current parser is that onlyv one parse, the first generated, s
produced. Maas and Suppes’ [21] system developed a group of legal parse struc tures
from which the semantic processor evaluated ouly the best or most suitable parse.
The current construction of the parser innts the generation of multiple parses for a
single string. In PROLOG, the only means of generating different parses produced by
a depth first search is through invoking failure and subsequent backtracking through
the parse tree. The current parser limits this backtracking, through frequent use of the
cut, ‘", operator, for good reason. Without the liberal use of cuts the parser would
soon overflow the backtracking stack, a likely situation with this large grammar.
Stack overflow might be avoided, however, through the combination of bottom up
techniques with the existing top-down algorithm, the resultant ‘shallower’ search

tree would reduce the size of the stack committed to backtracking.

Despite the apparent effectiveness of the code, the parser invaniably repeats
discoveries of legal constructs during the depth first search. This, too, could be

avoided through a combined bottom-up/top-down parsing strategy.

These frailties aside, the parser generator seems to create relauvely clear and

compact PROLOG code.
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6.1.2 Semantic Processor Evaluation

Like the scanner and parser, the semantic processor dominates the performance

of both the executable and teach interface modes.

From the programming standpoint, the semantic processor is fairly straight-
forward PROLOG. The processing logic is essentially limited to simple slot hlling.
with very little ‘traditional’ seraantic evaluation like that found in [21]. The semantic
processors chief advantage is the ease of modification and prototyping through the
use of asseried ‘register’ stacks. While the frequent assertion of predicates is not
clegant PROLOG, the technique enables for rapid prototyping and modification.
Unfortunately this technique also results in relatively opaque PROLOG and is
theref. 1 considered poor PROLOG practice. The preferred method and PROLOG's
greatest asset, unification, has not been fully embraced in this prototype semantic
module.  Without question, therc is ample opportumity for the application of
unification te.  niques throughout the semantic module. Though the processor is not
slow. the efficiency, speed, and size of the code could be greatly affected by tighter
PROLOG programming techniques.

Furtherniore the semantic processing system, with appropnate umfication
programming techniques, could be built into the modified purser, ultimately
producing multiple semantic interpretations of a command string and reducing code

size (therefore increasing the available stack size) and execution time considerably.

The Command Template

The choice of a command template system for task representation is based on
TSKMSTR's teaching methodology. The teaching philosophy adopted for TSKMSTR
is similar to Bock's LOROB and MIDROB programming method, the difference being
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that the semantics of high level commands are produced through lower level English
command sets instead of abstract BASIC-like routines. Through this mechanism
TSKMSTR effectively shifts the responsibility of semantic processing onto the user
who can precisely define his or her own semantic values for an English command
string. A further advantage to this method. when combined with a PROLOC
interpreter, is that the tasks can be generalized based on the user's requirements.
An obvious danger of this is that poorly generalized commands may become little
better than aptly named macros, unique to a limited set of circumstances and bearing
only suzface resemblance to the real English semantics. Careful generalization of task
descriptions, however, should allow the user to develop a set of routines applicable

over a wide variety of conditions.

Whether TSKMSTR'’s command template is optimal 1s difficult to determine,
though some syntactic and semantic arguments justify the use of the verb, object and

source/path/goal combination.

The semantics of assembly are primarily physical. \Without a physical means of
representing assembly semantics to an NLI, a process pursued by (18] with some
success, there is no general way to relate the precise semantics of robot motion to the
semantics of the English language. For example: the command Assemble is plainly
meaningless without a direct object. Mau. tbs seem so dependent on objects as
to 1cdice their semantic value to little better than a label. It is this dependence
between verb and object that justifies the use of some command template method.
Since there are no gemneric semantic constructs, and therefore procedures, for cach
verb in the English dictionary, semantic definitions can only be built through English

explanations. Thus the use of the verb as an action procedure label may be justified.

The use of both indirect and direct objects in the command template is debatable.

Certainly, the direct object is a very common construct indicatirg the object beng
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manipulated or transformed. The indirect object has questionable semantic value,
however. In fact, Roberts (58 suggests that the distinction between the direct
and indirect objects should be dropped since both are substantives and indirect
.bjects do not follow any single grammatical (or semantic) rule other than simple
placement in the sentence. In TSKMSTR indirect objects are used rarely and at
the work cell primitive level, only as catchments for successive objects not separated
by coordinating conjunctions. For these reasons the indirect and direct objects have

been maintained as command template elements.

Binnett’s discussion on the spatial semantics of prepositions indicates that any
transition may be completely described through the use of source, path, and goal
phrases. Since both manipulation in space and the conjunction and assembly of
two parts are essentially transitions, the combination of these turee components in
a single command template seems reasonable. It is worth noting that in our world
model, source prepositional phrases are rarely used, (barring the unfix command),
since the location »f all world objects is known (or can be determined from the vision
system). Positional specification through locative prepositional phrases is usually
sufficient to uniquely locate any frame in the world e.g.:

move the boz from the pallet into the truck.
may be stated as easily in:
move the boz on the pallet into the truck.
and 1s more precise since from does not provide the specific conjunction relation
between objects implied by on. Nevertheless, since there may be functions defined in

terms of complete transitions, the source element has been retained.

Based on these arguments TSKMSTR’s template seems to be a reasonable, though

prototypical, semantic construct for the description of physical tasks.

As a final comment, it is worth noting that in Allen’s discussion of Case



Grammars [56], the res...s of which are shown in figure 3.1, the terms THEME,
BENEFICIARY, AT, FROM, and TO are entirely equivalent to the syntactic terms
direct object, indirect object. locative, source and goal command template clements.
This equivalency of case grammars to slots has been noted by Charniak [59]. Further,
the command template bears considerable resemblance to ithe ATRANS structure

found in CD analysis, particularly the ACTION, TO and FROM slots.

The current nitural language processing modules account for approximacely 87
kB of object code - r 30% of TSKMSTR's source code. This may be considerably

reduced by emiploving the recommendations outlined above.

6.1.3 The Command Interpreter
Executable Mode

The command interpreter, composed of translati n utilities and the meta
PROLOG interpreter, is the chief mechanism through which tasks can be both
executed and generalized. Compared to the other systems discussed earlier, use of
this interpreter and associated generalization techuiques represents a step forward in
task representation. Though the current technique of plying the user with questions
addresses only the surface structure of a meta-clause, the system does allow the user
to generalize commands with some precision. Future systems should investigate how
this technique might be emplov-d to ‘intelligently’ modify user commands, perhaps

through determining a command’s intent rather than it’s litcral meaning.

Though the interpreter’s cxecution time for a typical task is insignificant compared
to the time required for manipulator motion and vision I/O, it is extremely
consumptive of memory, since the stack is used to store the position of both the

true and meta-PROLOG backtracking pointers. TSKMSTR's code size limits this
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stack space and, therefore, limits the *depth’ of calls that can be made to the meta-

predicate-. This severely restricts the complexity of TSKMSTR routines.

Fortunately the command interpreter is capable of writing user defined meta-
clauses to external files as true PROLOG predicates. This provides two distinct
advantages. Firstly, previously taught routines can be loaded into TSKMSTR through
the load keyword and, secondly, complex or ‘deep’ meta clauses, built in TSKMSTR.
can be stored in files and execn:ted within the true-PRGLOG compiler. With the
appropriate task primitives an’ support utilities, these predicates can be run as
traditional PROLOG routines v h essentially no limitations on stack space and wi+h

the benefit of a faster execution :ime.

A wasteful but unavoidable drawback «/ the current interpreter is the forward
and inverse translation between PROLOG .ata structures and the meta-PROLOG
equivalents. This step could be avoided by generating meta-data structures directly

within the semantic processor, a modification worth considering in the final system.

The frame tests mentioned in section 5.5 examine the nouns in a command string
for correct specification and consult a simple dialogue stack for previously used nouns.
While this dialogue and inspection system saves the user from continuously retyping
common nouns, TSKMSTR lacks iLe facilities required to perform true ellipsis.
Ellipsis occurs mainly between two clauses as in:

If the box is open, close it.
or within two distinct commands:
Grasp the box and place it on the pallet.
Since each command template is executed in isolation, elliptical references between
commands should be resolved before the command interpreter is invoked, ideally

within the semantic processor.

In total the command interpreter is approximately 4 .kI3 of object code. Further
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investigation is required to reduce the size of this interpreter and tailor its operation

more closely to work cell requirements.

Teach Mode

The teach module builds meta-predicates with a small, simple and effective
unification method. The query engine successfully isolates all potential vanables

outlined by the user. distinguishing between the noun and it's locative modifiers.

Though many syntactic substructures were not supported in this prototype,
such as dependent clauses, the remaining language Las been left largely intact with
only a few exceptions. In particular, the TSKMSTR system has not employed the
PROLOG ‘or’ operator, functionally equivalent to au ‘else’ statement in a procedural
language. The omission of this operator stems partially from the potential difficulties
of incorporating two English flow patterns into a top down teach method. An English
‘or’ symbol implies some alternative action, virtually identical to the PROLOG ‘or’
operator. Simple to implement in the Teach module, a divided flow pattern within an
English procedure may nevertheless be confusing to the user. Ateach ‘or’ juncture the
user would have to supply a top down definition of two alternative English procedures.
This omission has not left TSKMSTR unable to handle alternative task descriptions,
however. Alternative flow patterns can be easily modelled through the construction
of two independent meta-clauses effectively simulating the Licherman and Wesley's
‘rare’ if-then-else conditionals. Future versions should investigate the difficulties

of using this operator within a top down English teach method.

The translation utilities and teach module account for approximately 52 kB
of object code. The incorporation of the translation utilitics into the semantic

processing stage could reduce this size significantly. Though the current teach module
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is relatively compact, the system could profit from further optimization.

6.1.4 World Model Performance
In Executable Mode

The world model appears as a set of arc() PROLOG assertions. While this
approach may seem an unnecessary complication given that the breadth first searck
appears to construct an AL-like ‘calculator i+t’, the arc() data structure enables
a simpler evaluation of the world model than the AL model. The AL model
imposes an artificial hierarchy of nodes with the ‘parent’ marking scheme, requiring
a world model manager to maintain hierarchical relationships in the assembly. KIE’s
approach makes no assumptions about node hierarchies and concentrates only on
node interdependence. This does not mean to say that hierarchies do not exist in
this model, the presence of a viable path between nodes implies that such parental
hierarchies must exist. The discovery of any hierarchical pattern, however, is an
unimportant consequence of the search procedure. This saves the world model fiom
repetitive updating and review as is the case in the AL world model’s ‘dynamic’,

‘validity’, aud ‘parent’ marking.

This method is far from perfeci, however. The repetitive searches through the
database are wasteful and the current search method can be further optimized.
Artificial maintenance of the world model, while reduced to the removal of unfixed
arcs by the isolate_tool() function, still remains functionally equivalent to AL’s
‘dynamic’ marking. However, this prototype model seems conceptually simpler and

operationally less complex than the AL model.

The current advantage of this system lies in its simple implementation and implicit

behaviour. Though the model need not be implemented iu PROLOG, the model
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algorithm lends itself to relatively simple PROLOG programming techniques such
as depth first search, recursion, and backtracking. Despite PROLOG's bias towards
depth first search, implementing breadth first techniques are fairly straightforward.
It is, perhaps, worth noting that the entire prototype TSKMSTR kinematic engine
is little more than 30 kB of object code and that the execution time on an 80386 PC
is insignificant compared to the time required to send and receive sensor data and to

execute robot motions in the work cell.

In Teach Mode

A serious failing of the teach mode is that the world model is not evaluated during
the teach procedure. World model consultation is currently limited to the verification
of object specification in the object library. A teach world model mimicking the

executable world model is not built.

The reasons for this omission lie in the assumption that the teach phase occurs
off line. Commands to the robot are not issued during this phase, and the world
model, therefore, remains unaltered. Though it is certainly possible to build a
teach model in TSKMSTR, it’s application would be limited without being able
to observe the progress of the assembly. Since there is little point in developing
an ‘off-line’ teach environment that must be used on line, the next logical addition
to the environment would be a graphical world model simulator. Given that the
vision system/world model relationship allows for considerable discrepancy between
the actual and simulated layout of a work cell, exa: t simulation of the work cell may

not be necessary.
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6.2 Hardware Evaluation

6.2.1 Manipulator Performance

The manipulator has been viewed as a simple output device to the TSKMSTR
system and has been used for only simple assembly tasks. However, for real world
applications some additions should be made to the robot’s control routines. Linear
motion facilities, provided by RSI [42], should be incorporated into the robot control

software. Memory limitations have prevented their installation in this version.

The controller occasionally has difficulty processing incoming messages and,
therefore, transmits error messages to the host computer reporting potential
manipulator problems. Unfortunately, the arrival of these messages is unpredictable
and TSKMSTR's ‘fail safe’ error handling approach amounts to failing the current
task. A real world application must have robust error handling facilities capable of
determining the cause and resolution of each error condition. This ability should be

a mandatory component of the final version of TSKMSTR.

The world model relies on an accurate description of the environment, including
the position of the manipulator. In the prototype software, TSKMSTR does not store
the loc. 10n of the robot and must request joint angles through the MANIP command
issued to the serial port to guarantee accurate joint angles. An advantage of this
system is that the MANIP request cycle ties the real world to the computer’s w. rld
model. The controller command processor only acknowledges errors, legal commands
producing only robot motion. When issuing a command stream, the host computer
is ignorant of the actual command being processed by the controller at a given time.
TSKMSTR relies on the MANIP cycle to resynchronize the command set, limiting the

discrepancy between real and modelled worlds.
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Though these drawbacks are rarely encountered, the time delay and occasional
communication protlems are a troul.:some weakness in the current system. The
manipulator position should be integrated into the world model, perhaps through
another hardware link between the controller and the host computer, providing

~ontinuous values of the six joint angles.

6.2.2 Vision System Performance

VISYS is a good representative of more expensive, albeit faster, industrial binary
vision systems. Industrial vision systems, orders of magnitude more expensive than
VISYS, typically return a similar range of image data within a few seconds for complex
pictures [48]. The VISYS system returns image data in apjroximately 5 seconds
pe- blob in the image. A full frame with 6 objects returns complete object data in
approximately 25 to 30 seconds depending on the perimeter pixel densities. Centroidal
placement is repeatable to within a tenth of a millimetre. Positional accuracy, though

not precisely determined, is well within the robot’s +1.27mm positional accuracy.

Though the system is effective and inexpensive, the slow processing speed limits
the number of times TSKMSTR can affordably consult VISYS. Currently the vision
system is consulted only when absolutely necessary, after the world model search
has falied, and is inadequate for real time processes such as velocity measurement or

object trajectery prediction.

A common failure of the vision algorithm lies in the intolerance of objects
bordering the camera’s field of view. VISYS is occasionally subject to profound
irrecoverable system failures when presented with images bordering the view
area. This mayv be a ‘veakness in Warkentin's original implementation of the

Runlengthcoding algorithm.
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The circle method used to determine orientation is highly sensitive to perimeter
point resolution. The perimeter, essentially the endpoints of the runlengthcode
algorithm. becomes sparse when a linear object edge is aligned with the scan lines
of the camera. The result is t' +t large gaps in . perimeter, intersected twice by
the circular boundary, are represented only once as an intersection point. Though
this is a rare occurrence, the result will often produce incorrect object orientation
angles. Employing a higher order interpolation might be one solution. but this would
lengthen the processing time in an already prolonged vision cycle. Future versions of
VISYS should employ more robust orientation procedures than this prototype circle
method, preferably one not relying on raw unsmoothed perimeter data. Emphasis
should be placed on em;.ivying feature based orientation algorithms using corners and

edges as references.

6.3 Recommendations for Future Research

6.3.1 Modifications to TSKMSTR

The following is a summary of the recommendations suggested in the above text.

Natural Language Modules

The natural language module should be modified by optimizing the syntactic
grammar or developing a more descriptive semantic grammar. To reduce backtracking
in the parser. a combined bottozn up/top-down parsing strategy should be adopted.
The unification abilities of PROLOG should be applied to the semantic processing

replacing the register method.

Furthermore. the Semantic Processor and the Parser should be unified into a
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single natural language module. The resultant increase in stack space should allow
the module to generate all legal semantic interpretations for a command. These could

be evaluated, in turn, by an intelligent command execution module.

Command Interpreter

Optimization of command template forms might lead to wider application of the
interpreter system bevond the curreni creauon of object relationships.  Intelhigen:
task planning. queuing and scheduling should be examined adircorporated iuto the
interpreter's variable generalization mechanism. [ .ther, ‘e command interpreler

shonld be modified to reduce the stack requirements of the PROLOG interpreter.

World Model

The teach environment should be equipped with a world model simulator. In order
to create and debug accurate teach routines, some means of viewing and correcting

teach procedures off line is required.

The kinema*ic 1uf-reuce engine can be further improved by implementing an
interrupt dnven world model, receiving continuous sensor data from the robot and
vision system. mechanism which recuces the interval between world model
updates increases the reliability of the world model. Currently vision a1 1 robot
data refreshes the world model sporadically and only at the request of the system
Ideally this information should be continuously provided. analogous to a biological

nervous system.
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6.3.2 Other Approaches to Natural Language Interfaces and Work Cells

Future work on NLIs for robotics should investigate alternative processing
algorithms. In particular the work of Selfridge et al. points to the effectiveness
of the Conceptual Dependency analysis method. The success of TSKMSTR's largely
syntactic grammar app-oach suggests further work should be done in the area of

semantic or case grammars, similar to those in LIFER [19], for application to robotics.

Re-gardless of the natural language processing system, alternate world modelling
methods should be investigated. In particular, solid object modelling methods such
as CSG [28] and RAPT [24] tvpe assembly models should be investigated. Further,
the unification of the linguistic, kinematic, and visual world representations should
be addressed. Though Selfridge et al. [16,17,18] have made some progress in this
direction, the unification issues are far from resolved. Linguistic, kinematic, and
visual world models are plainly r iated and interdependent in humans. Research
should be directed towards resolving these different images of the same problen..

namely communication between a sensor equipped worx -ell and a human operator.

6.4 A Final Comment on Programming Robots in English

What is the future for robots that understand English? To understand any human
language, a robot must have some model of the human’s worl! Greater language
comprehension in robots must, therefore, be mirrored by an ecually well developed
model of the human’s environment. Natural language understanding is not the only
held to benefit from a comprehensive world description, however. Task planning is
eqnally reliant on a complete world model  One might suppose that as the world model

becomes more sophisticated. the robot may become increasingly able to perform tasks
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autonomously, through task planning. and in-reasingly able to converse in some form

of natural language.

[t seems likely, therefore, that the abilities of a robot to perform tasks with hittle
instruction may render the TSKMSTR form of NLI redundant since the robot would
be capable of deducing the correct assembly instructions, as does a human, fiom a
design schematic. Natural langunage instruction for assembly robots mayv. therefore,

be limited to general plant scheduling.

Perhaps the greatest future of natural language processing combined with task
planning might be seeu in DWIM (Do What [ Mean) and DIRN (Do It Right Now)
class of commands, typical of remote manipulator systems. In this case the use
of natural langnage would permit oral instructions while the robot’s task planning
mechanisp {rees the human operator from describing actions in tedions det -il. A good
example vy -e space-walking astronauts orally commanding an RMS manocuvre,

a task curreatly requiring the assistance of a human operator inside the shuttlecraft.

6.5 Conclusion

TSKMSTR, a prototype system, is capable of recognizing and executing user
defined commands within a subset of Natural Language. Unlixe it’s predecessors, the
system can be used to develop new ‘generalized’ commands through the use of a simple
top down teaching method that generates and modifies meta -PROLOG predica‘es.
Though the system’s performance is nominally comparable to those outlined by Maas
and Suppes, Selfridge et al., and Bock, linguistically TSKMSTR closely resembles
an AUTOPASS system with an AL world model. Unlike AUTOPASS, however,
TSKMSTR allows both on-line commands and off-line user defined subrontines to

be expressed in a subset of English.



In general, the feasibility cf a PC based natural language interface to a robotic
work cell has been proven. As a basic system, TSKMSTR demonstrates the potential
to produce a more useful and versatile assembly interface than currently available
Though the constraints of the modern PC are great, TSKMSTR establishes that

they are clearly not insurmountable. Indeed, the fact that a PROLOG based system

ruuning:

o a rclatively large prototype parser and semantic processor
o an AL like world model
e an interactive teach intcrface

a meta -PROLOG interpreter

funcrions effecti 1y at all, should encourage industrial NLI develepers to look at th

PC as a senious interface alternative *» Robotic Work Cells.

The system has been designed te investigate the minimum requirements of a
Natural Language svstem. Plainly, syntaxis a very «.eful tor ¥ to mode: n.uch of the
dialogue bet ween mau and machine. However as technology and modelling techniques
improve, TSKMSTR’s narrow AL-like world view may become too rigid for useful
task deseniption. A wider semantic groundwork should be laid fur a full scale robotic

NLL

English is an imprecise method of describing the precise relationships betw: n
assembly components. However, it is also a powerful tool expressing. roughly. the
method in which a task might be carried out. The challenge lies 11: designing software
with the requisite intelligeuce to ‘read between the lines’ of assembly instructions.

While this planning alnlity has not been treated here, the development of TSKMSTR
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has emphasized the need for research ia not onlv natural language comprehension,
but in semantic description and understanding of the world required for such planning
skills. The development of TSKMSTR has pointed to a number of design alternatives
3., Work Cell/NLI design issues. Certainly there is considerable work yvet to be done

in this unusual an. fascinating mixture of R.  otics and Artificial Intelligeace
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Appendix A

Robot Kinematics and Modelling

Most industrial robots are composed of a number of links 1n series ik
is connected to adjoining links through joints. Thomgh the huks ar o f any
dimension and shape, joints tend to be one of two kinds: Prismaty mitting
only linear motion) or Revolute (permitting rotation abo it some ax e variety
number. and placement of these joints affects the manipulator’s 4 to pos.:ion

and orient the final link or end effector within the total accessible \olume, the work

envelope.

To reach any point in a three dimensional work envelope, requires three
translational degrees of freedom or a combination of at least three Revolute or
Prismatic joints in a manipulator. To generate any orientation in three dimensional
.pace requires three rotational degrees of freedom or a combination of at least three
rotational joints. An efficient manipulator capable of reaching any orientation and

position within a work envelope must hive at least six joints or six degrees of freedom.

For the manipulator to be consistenily placed within the work velume, a function
must be developed relating the robot’s joint angles to a position in space. This

transformation from joint s;-uce to cartesian space is called the forward solution.

Though the forward solution for mamipulators of two or three links can be
derived through geometry, geometric methods become tedious and error prone as
manipulators grow to six degrees of freedom. A swift and compact solution to this

problem is presented by Paul [22] and is briefly suminarized below.
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A.1 Position
In it’s simplest form a posis.cu in three-space can be represented as a vector

relative to a known point. For example, a point, ai + bj + ck, in a cartesian coordinate

system, XY Z, with can be described with a column vector :

=,
i

L 1
e
This column vector can be incorporated into a transformation matrix, P, such

that a the product of P and a translation matrix, Trans(d,e, f) genecrates a new

matrix P’ describing another location in XYZ. Symbolically ...
P Trans(d,e, f) = P’

in matrix form ...

100all1004d 100 a+d]
010b||010 e 01 0 bte
001 cl||O0o0T1 f 001 c+f
o 01000 1] [000d 1 |

A position matrix postmultiplied by a Trans(z,y,z) expression represents a
translation relative to that position by ap amount zr,y, z, in effect creating a new
coordinate system at that point. Consecutive translations through 3 space aie

expressed by a chain of postmultiplied Trans() expressions.



A.2 Orientation

If the three axes of a local coordinate system are described by three mutually
perpendicular unit vectors defined relative to a global coordinate <ystem, the
orientation of the local coordinate system can be specifiea by an orientation matnx,R.
For example, if the local axes UVW are described by three column vectors, 1, 6, and i

(where 71 x & = @), relative to a global system X' YZ, a 3 x 3 matrix can be generated:

ny o ay
R=1|n, o a

i

[n, o, a,

where the subscripts z, y, and z denote the direction cosines of each of the unit

vectors 71, 0, and @ in the global XY Z directions.

If this matrix is incorporated into a 4 x 4 transformation matrix, a Rotation
Transformation is developed, describing rotation a »out some vector, k, by an amount

8 or:

[ ny o a, 0 ]
o, a, 0
Rot(k,8)=| * ¥ %

n, o a, 0

0 0 0 1|

-

Using this notation the three principle rotations (one about cach axis) can be

expressed as: Rot(z,0), Rot(y,8), and Rot(z,8) or:

-

1 0 0 0]
0 cosf —sinb 0
0 sind cosd O
[0 0 0 1

Rot(z,8) =

P
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LusG 0 sin9 0 ]
0 1 0 0
Rot(y,0) =
—sinf 0 cosf O
0 0 O 1 )
[ cos® ~sinf 0 O ]
sin@ cosf§ 0 O
Rot(z.6) =
0 0 1 0
] 0 0 0 1 ]

The product of a 4 x 4 matrix describing a coordinate system UVW, and a
postmultiplied rotation transformation, Rot(7,0) is equivalent to creating a new
coordinate system rotated an amount § about the vector 7 relative to UVW. It
has been shown in Paul [22], that the product of a series of rotations about a set
of axes can be expressed as a single rotation about a unique vector. The resulting

general expression is called Rot( k,6).

Since at least three successive rotations are required to model the orientation of

a ccordinate frame in three dimensional space, orientation can be expressed as the

-

product of three Rot(z,6) terms. Two popular conventions modelling orientation are

the Euler transform and the Roll Pitch Yaw (RPY) transform.

The Euler Transform is defined as the result of:
e a rotation about the z axis an amount ¢ followed by ...
e a rotation about the new y axis an amount 6 followed by ...

e a rotation about the new 2 axis an amount .

9y

Euler(¢,4,vy) = Rot{z, ¢) Rot(y, §) Rot(z,7)



The RPY Transform is defined as the result of:
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e a roll about the z axis an amount ¢ followed by . ..

e a pitch about the new y axis an amount 6 followed by . ..

e a yaw about the new x axis an amount y.

or

RPY (4,6, %) = Rot(z,¢) Rot(y,8) Rot(r, )

A.3 The Homogeneous Transform

Combining the Translation transformation

produces the homogeneous transform,T.

ng Of
n 0,
v v
T =
n; 0
0 0

ar
ay
a'

0

and the Rotation transformation

y 2
Py

P:
1

r

This transformation creates a new coordinate system at point p, and with an

orientation desc..bed by the vectors 71, 6, and d@. If a new coordinate system, C,

is generated by the product of A and T or symbolically...

AT=

C

then A can be expressed as the product of the new system C and the inver f

transform T or ...

A=CT"
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The inverse of T being defined as the following...

n, n, n, —p-n
S o o, 0, —p:0
a a, a, —p-d
0 0 O 1
L -

Four alternative representations of positior and orientation in three-D space are

possible. See Table A1,

A.4 Homogeneous Transforms and Robot Kinematics

If the base of a manipulator is placed at the origin of a global coordinate
system, the position of the end effector can be expressed through an homogeneous
transformation relative to the base coordinates. However, the position of the each
joint i1s dependent on the position of the preceding joints of the manipulator.
Therefore, the location of the end effector must be expressed in terms of the
preceding joints' positions. The net result is a chain of kinematic transforms from
the manipulator base to the end effector. The expression used to describe the joint-
to-joint transformation is a narrow definition of the homogeneous transform widely

referred to as the A matrix [22].

The A matrix is a particular series of rotations and translations that relate the
location of an n*? link to the location of link n — 1 within a multijointed manipulator.
If a coordinate system is placed on each joint such that the z axis is aligned with a
unique axis of motion (i.e. along the direction of translation for the prismatic joint
or through a revolute joint's rotational axis), the A matrix relating th¢ coordinate

svstems of link n with link n — 1 is described as...



e a rotation 8,, about axis z,_; followed by ...
e a translation d, along axis z,_; followed by ...
e a translation a,, along new axis r,, followed by ...

e a rotation a, about new axis r,,.

Using traditional transform notation:
A, = Rot(z,6,) Trans(z,d,) Trans(r,a,) Rot(r, a,)

which becomes...

cosf, —sinb,cosa, —sind,sina, a,cosb, W
cosf, cosb,cosa, —cosb,sina, a,siné,
A, =
0 sin a,, cos ay, d,
0 0 0 1

For a revolute joint, the charact~ristics of a, d, and a are fixed while for a prismatic
manipulator § and a are fixed. Once the fixed parameters have been tabulated the

A matrix for each link can be evaluated.

Using an A matrix to place the location of the joint 1 relative to joint 0, the base

joint, results in the simple equation :

0T1 = Al

e where the subscript on A denotes the joint number and

e where the superscript on T denotes the start of the



183

kinematic chain, joint 0, and the subscript denotes the last joint or frame on the right

hand side, joint 1.

Subsequent A matrices are then postmultiplicd to the equation, successively

expressing each joint in base coordinates.
I

°T, AA,

0T3 = AIAZATB
0T4 = A]AIA_’}A.‘

T, = Ai1AA;. . . ALA,

Until, finally, the right han.! side is postmultiplied by the final joint, joint n, producing
the T, matrix, where n is the number of joints in the manipulator. Note that the zero
superscript, indicating a transformation relative to base coordinates, is sufficiently

common that it is usually dropped.

A T, matrix is referred to as the forward kinematic solution, since it expresses
the cartesian end effector position and orientation in terms of the manipulator’s joint

space.

An imyortant byproduct of forward kinematic equations is the inverse kinematic
solution. The inverse solution determines the manipulator joint angles that provide a
desired end effector position and orientation. Although this solution can be generated
geometrically, the solution procedure becomes complex for more than 3 or 4 links.
One alternate method, outlined by Paul [22], involves the successive decomposition
of the right hand side of the forward solution from the base of the manipulator to

the end effector. This procedure, illustrated by the following equations, successively



isolates single unknown joint angles to the left hand side.

Al_lT,, = AzA;...A"_|A,‘
AJ'A'T, = A3 . A, A,
AJ'A'AT'T, = . AL A,

ALLLATTATAT'T, = A,

The resulting solution of these equations does 10t produce an elegant matnx, hke
the T, forward solution. The inverse solution raay produce redundant joint space
positions and often the solution strategy for oane joint may be dependent on the

outcome of another.

In summary the Forward solution can be used to determine the cartesian location
and orientation of the end effector based on the robot’s joint angles, while the Inverse
solution provides a means to determine the joint angles necessary to place the gripper

in a predetermined position and orientation in the work envelope.
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Table A.1: Alternate Representations of Position and Orientation

Position | Orientation Representation
vector Euler p|(6.0,¢)
vector RPY Pl {(&,0,v)
vector | Orientation Matrix || p | [ 0 a]
Homogeneous Transform (7 o d pl




Appendix B

Binary Vision Processing Algorithms

In this appendix, the binary vision processing techniques employed by VISYS will

be summarized.

B.1 The Moments of Area

A general expression for the moment of area, M, is described by both Ming Kuei

Hu [46] and the Handbook of Robotics [47] as:

N
My = Z rPy?
=1

where .V is the total number of pixels and where the sum of p and ¢ denotes the
order of the raoment of area.Note that r and y are the location of the on pixels in

the image. The area of a blob is equivalent to the zeroth moment of area, M. or:
N
A‘: ‘[00=21:V
=1
Only two first moments of area are possible namely :
N
My=Mo =Y 1
=1
and

N
My=Mo=)y.

=1

The second moments of area, the moments of inertia, are expressed by the following

three equations:
N
I = Mo=3%7
=1

186
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i Z

IV = .\I(J') =

E-4

-
"

Ty

I
M=

Irv = “lll

The centroids of the blobs can be determined by the relations:

- _ My _ My
IT=—— and y-=

Moo “!(x)

The moments of inertia can then be recomputed about the centroid through the

parallel axas theorem:
I,=1,-A7 1,=1,-Ay 1,,=1,- ATy

Though the general expression for the centroidal moments, fipg 1S:
N
g = 3 _(r =7y —§)°
=1

these values are also obtainable simply through the substitution of 7. y, A. I, and I,

1.¢.

- M}

I, = o= My - 20
l‘20 120 .‘[w

. , M

I, = poy = Mo - .T!?::

- , Mo M

I,y = #11=A1n——;0—!000‘1

Similar expressions can be generated for the higher moments of area such as y,, 4/,

’ !
3o and Hoa-

Though higher moments of inertia are often generated for moment Invariants.

VISYS uses only the first three moments of inertia.
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B.2 Moment Invariants

B.2.1 Scale

To normalize these central moments to image size the following transformation

from [46] is performed:

" B4y

00 '

Ppg = [“—'-] Hpg (B 1)
00

Typically a standard area, jip9, of unity is used, producing the final equation

ety +1
1 ? ,
Hpg = [——7] My, (B2

Hoo
B.2.2 Rotation

Though Miug Kuei Hu [46] develops six rotation invariants, in practice only the
first three are required for identification. All employ the scale invanant quantities

derived through the transformation above. The first three invariant expressions are

I = pao+ no (B.3)
I = (p - 1102)2 + 4#?, (B.4)
Iy = (p3 - 3#12)2“'(3I12| ‘Il(n)z (B.95)

B.3 VISYS Shape Descriptors
VISYS employs five shape descriptors:

o The Area

o The First Moment Invariant. I,
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e The Number of Holes
e The Perimeter Length
e The Density

The Compactness, S,

B.3.1 The Area and First Moment Invariant, J,.

After the mmage has been acquired by the optic RAM cameras and cnhanced
through growing aad shrinking techniques, the image is converted into a
runlengthcode array structure. This structure is then evaluated for connectivity using

the algorithm published by Thanisch et al [44].

The resulting structure is a linked list of ruulengthcode records. Each record
contains the location of the start and end pixels for a scan line and a pointer to a
neighbouring blob record. For the following discussion the runlengthcode array may

be modelled as the following data structure:

RunRecord = array([1..Somelnteger] of record
lhs,
rhs,
object,
scan,
rnext : Integer;
end;

The terms lhs and rhs represent the left and right hand sides of a consecutive row
of pixels, while the object is an object label, scan is the scan line number, and rnext
is the array index of an adjoining runreccid ciement. The area and moment invariants

are computed as described below (condensed from [47] and [49]), modified by the
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scale factor S, and 5, relating image and real world dimensions. The runlengtheede

elements become:
m, =Run'j) .1hs and n, = Run(j].rhs and y, — Runlj]).scan

The Area becomes:

k
My = S,S,Zn) —m,

=1
The first moments of area become:
el

Mo = f;'f-qv L i(“] mm, +n, 1)

=1

k
Moy = 5x53 L y,(n, = m,)

1=1

The second moments of area become:

k
1 , ‘
My = 525‘,2 IZ Sn, — m,)(n, + m, - 1)2 +(n, - rnj)'l - (n, m’)]
J)=1

My,

It

k
S=$, 2_yj(n, —m,)
-1

k
1
My = 5353 E 5("1 —m,)(m, +n, - 1)y,

=1
similar expressions may be derived for Mso, Moz, My, and M,,. After wormalization
for scale using equation B.2 the first moment invariant, using equation B.3, may
be determined. These moments may also be used to develop an orientation criteria
through the determination of the principal axes on the Mohr's Circle. Caution should
be used, however, to employ this orientation method only on ubjects of even rotational
symmetries. An object’s principal axis does not provide a unique object orientation,

since a rotation of either 8 or 8 + 7 will rotate the inertia axes to their principal

values.
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B.3.2 Density

The 1dcal Ell.pse is often used in binary vision processing to provide shape
descriptors to those described above. The properties of an ellipse with identical
moments to the object are determined about the object’s centroid. These properties
include the Major and Minor axis dimensions, the rotation of the ellipse. VISYS,
however, uses only the ellipse density, the ratio of bleb to ellipse area, as an additional

shape descriptor.

Y M},
4 = ;( 20—A[00)
4 M?
= —(Myy — =2
B 7 (Mo2 Moo
4 MioMo,
= (M - 22
¢ 7r( " Moo )

]
]

\/(A— B)? + %cz
F = VAB-C?

Where the expression for density becomes

B.3.3 The Perimeter Length, Number of Holes and Compactness

During image processing, VISYS constructs a perimeter list that contains the
location of all the pixels describing the edges and holes on an object. The format of

the perimeter list is an array containing the following information:

Index 0 : The number of edges traced.



Index 2 : The Index of edge 1.
Index 4 : The Index of edge 2.

: etcetera
Index 18 : The nnmber of horizontal pixels in perimeter
Index 20 : The number of vertical pixels in perimeter
Index 22 : The number of diagonal pixels in perimeter

Index 24 :The start of perimeterlist outer boundary.

Number of Holes

The number of edg - minus 1 (the outer boundary) is the number of holes n
the object. The area and centroids of a hole are developed through a numernical
integration technique. Refer to figure B.1. It is important to remember that the »

perimeter points are recorded counterclockwise in camera coordinates.

Area The area, A, of a hole is defined as

Az/ydx'—;zg_yﬂ.%—y;)(-rl-fﬂ-l)

=1
Since (z;— .+, ) is negative as the perimeter advances in the positive £ direction,
this has the effect of removing arca bencath the (z,,z,.;) segment. However,
(z; — T.41) is positive in the negative r direction, therefore adding area beneath

the segment (z;,z.41). Note that at : =n, 1+ li1sset to 1.
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[YSRs T7¢ ~ Region 2

B Eipl 1 Fopl Tipl s Vigl
i case A:

Bipt Vsl Ymin ¥,
case C:
Imes = Bt
Emin = %
case D:
Smas = %,
Y Smin ® 31

Figure B.1: A hole perimeter in camera coordinates. Arrows indicate direction
of perimeter list.

First Moment of Area A similar technique is adopted for the first moment of area.

For M,:
M, = /ydA
= Y nA+nd
= Z ((ym Ymin)” ymm(ymas Yrmin) + 22 2 )(1‘- I-’+l)]
and for M,:
M, = /z dA

ZzlAl + 124,
2

E ((z.m = Zmin)® ";‘"(zm, — Tomin) + x';"‘) (Yi+1 — y.-)]

=1
where maz and min subscript implies the maximum z or y values in a pair of

z,y coordinates.
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Perimeter Length
The perimeter’s actual length is then described by:
Perimeter = S; N, + S,N, + |/ S? +?§ Ny

where S; and S, are scale factors relating pixel dimensions to view area dimensions
in the z and y directions respectively while N, N, and .\V; are the number of pixels

in the r, y, and diagonal directions.

Compactness

The compactness of an object is the ratio of object area to perimeter length is

described by Groover et al [32] as:

Perimeter’
S\ = ———

Area
and has been similarly defined by Warkentin [49] as:

Perimeter?

S, =
! 4mrArea

These shape descriptors are stored in a Shape File during an editing session in the

Shape Editor and consulted during the VISYS identification cycle.



Appendix C

An Explained Dialogue Session

The following is a complete dialogue with exam:ples of the intermediate language
processing. The contents of the Command, System Messages, and Teach interface

windows will be provided and explained.

User: Grasp the head of the bolt. !

System: Syntax: ok
Unknown Task: grasp Do you wish to enter Teach mode?(y/n) ?
In general, would you say that you can grasp anything?(y/n) °
Then would you say that .
you can grasp ANYTHING in this manner not just a head?(y/n) *

...of any object not just a bolt?(y/n) *

10nce entered by the user in the Command window, the command is paised. If successful
the message Syntax: ok appears in the message window. The semantic processor reduces this
command to the template:
com(v(grasp, ) ,nil, f(head, [loc(of,bolt, [1)]),nil)

This template is then compared against a library of meta-PROLOG predicates.
2In this case, no match for this grasp template is found. Upon answering ‘yes’, a teach window

is invoked and the query engine started.
3 A ‘no’ answer would indicate that this is a unique case and is not to be generalized, shutting down

the query engine. The user’s answer, ‘ves’, indicates that to some degree the task is generalizable,

invoking a stream of questions related to the command.
4 A negative answer would ‘lock’ the direct object field into a constant value. The user’s positive

answer, however, generalizes the direct object noun and will convert all future occurances of this

noun in the teach session into variable arguments.
SSimilarly, the user’s affirmative answer to this question generalizes all cases of bolt, in effect

generalizing the adjective list. Since no more fields are present for generalization (nil indicates an

empty field), the query session ends.

195
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User: Open the gripper. °©
System: Syntax: ok
User: Move the gripper to the head of the bolt.’

System: Syntax: ok

User: Close the gripper. *
System: Syntax: ok
User: Affix the gripper to the head. °

System: Syntax: ok
Meaning Unclear: Do you mean the head of the 0olt?(y/n) '

User: end !!

SThe resulting command template is :
com(v(open, J),nil,f(gripper, (1) ,nil)
Since this command exists in the library, ouly the “Syntax: ok™ comment appears in the System

window.

7The command string is legal and acknowledged, once again, by the “Syntax: ok™ response.

The resulting command template:

com(
v(move,[]1),
nil,
1 (gripper,(]),
tskpln( {1, (J,(plan(to,head, [loc(on,bolt, []1)])])
)

is successfully matched against the move library command.
8The syntax is acknowledged as legal and produces the following command template:

com(v(close,[]),nil,f(gripper,[]),nil)

and matched against the close library command.
9Since this command is incompletely specified (head is unmodified), no match will be made with

a library object, thus spurring the question...
104 pegative response produces a series of identical questions coucerning other objects possessing

the head noun, such a<
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Meaning Unclear: Do you mean the Acad of the nail?(y/n)

An affirriative response resumes the semantic processing. Future unmodified occurances of the term
head will result in the differeat question:

Meaning Unclear: Assuming you mean the head of the bolt?(y/n) thus avoiding a long list of

incorrect trial questions by the system. The resulting command template:

com(
- v(aftix,[]),

nil,

t(gripper,[]),
tskpln([],[],(plan(to,head,[loc(on,bolt,[1)])])
)

1s then produced and matched against the affix library command.
'1The end keyword completes the teach session and results in the assertion of a meta-PROLOG

predicate into TSKMSTR memory. Note that this command definition will only be temporarily
saved in the interpreter memory and will not be present if TSKMSTR is shut down and restarted.
Command definitions may be permanently saved in files through the save keyword and retrieved
in later sessions with the consult keyword. The saved true PROLOG predicate for the grasp

command definition appears below:

grasp([],nil,f(HEAD,BOLT),nil) :-
open((],nil, f("gripper",[}),nil),
move([],nil,f("gripper”, (1), tskpln([]), (], [plan("to” HEAD,BOLT)])),
close([],nil,f("gripper", [J).nil),
af2ix((],nil,f("gripper”, {1.,tskpln(0,[], [plan(“to” ,HEAD,BOLT)])).

In PROLOG capital letters indicate variable arguments. Note that they retain their original
names, reminding the user of the origin of task and that the gripper is ‘locked-in" as a constant.

Note further that the conjunction relations have been preserved in the task plan fields.

TSKMSTR permits limited recursion through the repetition of the clause head in the body of the
clause (or the body of some sub plan). For example a repetitive squeeze function with variable units

might be modelled as:
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System: Execute?(y/n) !/
( open gripper 100 ) OPEN 100
* consulting Vision System ...
( capture image ) 1
( camera 2 : exposure 100 ms ) 2 100
( number of objects ) 1
1 NUT 1.296E+02 4.570E+02 1.023E+010K '*

+ target NOT affixed '

squeeze([],nil,f("units", [WUME]),nil) :-
open([],f("gripper",(}),f("units", [NUMS]) nil),
close((],t("gripper”,[1),2(*units", [NUNE]),nil),!,
squeeze([],nil,f("units", [NUM6E]) ,nil).

Where WUMS indicates that a variable nuniber of units (originally 5 units in the teach session) may
be used. It is important to note that the meta—cut operator, ‘!", is unable to prevent meta PROLOG
stack overflow and will only be effective in a true PROLOG environment.

12 Answering ‘yes’ to this question executes the taught routine.
13The world model is searched and no bolt found. The vision system 13 subsequeutly invoked.

Only one object, a nut, is in the field of view and inserted into the world model as:
arc(node(. >rld,world),fixed, <sometransform>,fixed ,node(W.nut ,vorld)
arc(node(W.nut,world),unfixed,<ATtransform>,fixed,node(nut ,nut))
By assuming the direction of the z-axis is the orientation angle and that the z-axis faces outward
from the bottom of the nut’s centroid an homogeneous transformation may be formed and placed

11 the <sometransform> field and labelled as W.nut.
14Since the target, in this case the bolt, was not found i» the world model or in the field of view,

the above message is displayed in the System Window reporting the failure of the user’s command.
15This command, producing the following template:

com(v(gcasp, {1),nil,f(nut, [loc(of,nut, (1)1),n11)

matches the previously taught template for grasp. The term f(nut, (loc(ot,nut, [3)1) is nnified
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User: Grasp the nut. '°
System: ( open gripper 100 ) OPEN 100
( move command ) MOVETO 8752 522 60 -10 6453 -127654 O
( close gripper 100 ) CLOSE 100

» gripper affixed to nut '®

with the argument £(BEAD,BOLT) where all occurances of HEAD=nut and BOLT=[loc(of,nut, (J)].
16The command is successfully executed and the gripper affixed to the nut. As the mcve command

is processed, the symbolic task equation describing the manoeuver is placed in the Command window:
T6 = ¥.nut - i - (i)~

where (i)° indicates an inverted at transformation (an identity 1uatrix), a product of the to

conjunction in the move command. Note that TSKMSTR does not actually perform identity

inversions or multiplications.



Appendix D

The BNF Grammar for the TSKMSTR Natural Language

Interface.

The following is the BNF granimar used as input for the parser generator [41].
This grammar is largely based Bock's {15] context free grammar and has been adapted
for use in the TSKMSTR environment. Note that some constructs H.osented here are
not supported by either the semantic processor or the command inte:reter but have

been retained for future support and investigation.
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COMMANDSTREAM

COMMAND

CONN

MOD

IMP-PRED

MODGROUP

COM-VERB-PHR

I.OBJECT

D-OBJECT

ADV-EXP

COM-VERB-EXP

Table D.1: Backus Naur Form for the Natura] l.anguage Interface.

COMMAND CONN COMMANDSTREAM |
COMMAND period

MOD IMP-PRED MOD |
MOD IMP-PRED |
IMP-PRED MOD |
IMP-PRED

, coordinate-conjunction |

.|

coordinate-conjunction

MODGROUP CONN MOD |
MODGROUP MOD |
MODGROUP comma |
MODGROUP

COM-VERB-PHR I-OBJECT D-OBJECT |
COM-VERB-PHR D-OBJECT ADJ |
COM-VERB-PHR D-OBJECT |
COM-VERB-PHR

PREP-PHRASE ADV-EXP |
PREP-PHRASE |
ADV-EXP

COM-VERB-EXP CONN COM-VERB-PHR |
COM-VERB-EXP

NOUN-PHRASE CONN I-OBJECT |
NOUN-PHRASE

NOUN-PHRASE CONN D-OBJECT |
NOUN-PHRASE

subordinate-conjunction DEP-CLAUSE |
ADVERB

VERB ADJ |
VERB
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NOUN-PHRASE

PREP-PHRASE

OCRCE

PATH

GOALS

LOCATION

ONEPATH

ONEGOAL

ONELOCATION

DES-PHRASE

NOUN-GROUP

DEP-CLAUSE

Table D.2: Backus Naur Form for the Natural Language Interface (cont )

article DES-PHRASE NOUN-GROUP |
article NOUN-GROUP |
DES-PHRASE NOUN-GROUP |
NOUN-GROUP

SOURCE PATH GOALS |
SOURCE GOALS |
SOURCE |

GOALS |

LOCATION

from NOUN-PHRASE

ONEPATH CONN PATH'!

ONEPATH PATH |

ONEPATH

ONEGOAL CONN GOALS |
ONEGOAL GOALS |

ONEGOAL

ONELOCATION CONN LOCATION |

ONELOCATION LOCATION |
ONELOCATION

path-preposition NOUN-PHRASE
goal-preposition NOUN-PHRASE
locative-preposition NOUN-PHRASE
DES-EXP CONN DES-PHRASE |
DES-EXP DES-PHRASE |
DES-EXP

NOUN LOCATION |
NOUN

DEC-CLAUSE CONN DEP-CLAUSE |
DEC-CLAUSE
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DES-EXP

DEC-CLAUSE

SUBJECT

PREDICATE

T-PRED

INT-PRED

T-VERB-PHR

‘NT-VERB-PHR

INT-VERB-EXP

T-VERB-EXP
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ADJ |
ADVERB

MOD SUBJECT PREDICATE |
SUBJECT PREDICATE

NOUN-PHRASE CONN SUBJECT |
NOUN-PHRASE

T-PRED MOD |
T-PRED |
INT-PRED MOD |
INT-PRED

T-VERB-PHR I-OBJECT D-OBJECT |
T VEKB-PHR D-OBJECT ADJ |
T-VERB-PHR D-OBJECT |

T-VERB PHR

INT-VERB-PHR NOUN-PHRASE |
INT-VERB - PHR DES-PHRASE

T-VERB-EXP CONN T-VERB-PHR |
T-VERB-EXP

INT-VERB-EXP CONN INT-VERB-PHR |
INT-VERB-EXP

AUX-EXP VERB |
VERB |

AUX-EXP COM-VERB-EXP |
COM-VERB-EXP

Table D.3: Backus Naur Form for the Natural Language Interface (cont.)



NOUN —

VERB —
ADJ —
ADVERB -
AUX-EXP -
VECTOR -
LPAR g
RPAR —

noun | ambiguous-word |
coordinate-space VECTOR

verb | ambiguous-word
adjective | ambiguous-word | real
adverb | ambiguous-word

auxiliary-verb auxiliary-verb |
auxiliary-verb

LPAR real, real, real, real, real, real, real RPAR |
LPAR real, real, real RPAR |

LPAR real, real RPAR |
LPAR real RPAR

(HITCH
ARERAY
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Table D.4: Backus Naur Form for the Natural Language Interfa ¢ (concluded).



