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ABSTRACT .

Molecular charge-traosfer complexes are examined with e:xhasie on
their electronic states, potential energy curves and spectra. Potential
energy curres are calculated for éioglet and triplet states of several
_contact charge-transfer complexes, using the quantum chemistry method of
Complete Neglect of Differential Overlap in Spectroscopy, CNDO/S. The Stoke 8
shifts that may be expéed in these complexes are also calculated. Good
agreement between the computed and experimentally available data 1is achieved.

It is shown that molecular contact charge-transfer complexes form a
class of lasers analogous to the well-known rare-gas halide excimers. Althougﬁ
such complexes heve been known for years to.cheﬁists, mainly from their work
on absorption spectra, their potential es‘laser syetems has not been previously
ipvestigated. The population inversion mechanism in contact charge-transfer
lasers relies on picosecond radiationless relexation of the lower state. This
is a consequeoce of the additional degrees of freedom inherent in these

relatively large polyatomic systems The excimer systems which have been
investigated to present, on the other hand, are mostly dz‘tomics and having
only one nuclear degree ‘of freedom, rely on the repulsive nature or thermal
dissoeiation of the ground electronic state for sustaining‘a popuiation

inVersion.

Contact CT lasers would have radiative emission cross-sections’ and lifetimes
of 10 -17 cm and lus _ in the visible or near u.v. and could,. therefore, find
use as storage lasers, for instance in laser driven nuclear'fusion research.

A pratical method for pumping such a'ﬁﬁﬁer is examined for one typical-

" example and it 1is estimeted tﬁst gaiias of‘eeveral percent per cm may be

. i
el

expected.

iv’ R
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Excimer 1asers have recently generated a' great amount of interest

~[1-4]‘ The boundffree electronic transitions inherént in excimers result

in a tunable source,of coherent radiation in the visible and near u.v.

region offthe electromagnetic spectrum. Such lasers have wide-ranging

o ’.;«“ o

applications in several important areas of" research including photophysics,

‘

photochemistry, isotope separation and soft coherent x-ray production by
\ -

second and third order harmonic generation, to name a few. Further, several

ko

e

excimers which satisfy the~basic requirements on fusion lasers [5-7], such
¢ as pulBe duration (subnanosecond), wavelength (= 3000A) and offer promise ,

for future operation at- the high peak powers (~101 W) necessary are being

\,_f g ™ .
i ‘experimented upon; : 0
‘,} ™ The=e§cimer'1asers known today are mostly diatomics such as the rare-

R )

‘ﬂj gas molecules Krz, Ar2 Xe [9], the rare-gas halides [1,2], ng [8], and
Na2 [lO] ‘~The potential of other diatomic excimer lasers such as Na-Xe
and Najﬁe is being investigated by some researchers [11]. Although many
examples of the absorption spectra of polyatomic excimers and exciplexes

are known [12, 13 lﬁﬂy-lasing has only been demonstrated in a few such complexes,

\
e
T

"' e
g _

by Maggga s §roup [15]..

As mehtioned abové amongst “the uses to which excimer lasers may/he put

is:the possible*hpplication of sdﬂe of them to nuclear fusiony: At present,

much effort is being directed A trying to achieve this by focussing a high

s o8 m s

energy short laser pulse on a microscopically small pellet containing

gydrogen isotopesy’ A short Nd YAG laser pulse of about lym wavelength is

amplified through an, array of storage amplifiers and thén focused on to the

vﬂ
pellet. Recent results however indicate that 2 much shorter wavelength

1



might prove more eff:ctive;

The rare gas halide laser is the only existing short wavelength
laser with power and efficiency approaching that required for fusion
experiments. However, this laser d5es not lend itself to generating short
pulses. For ethple, a Nd YAG amplifier will store energy for‘several
milliseconds and this etored energy 1s removed by passing a short pulse
through the amplifier. Unfortunately, fhe rare-gas halide laser media will"
store energy for less than 10ns because the transitions, which operate
.between bound to repulsive states, are stronély allowed. A KrF* storage
amplifier hence eannot be made.

In the present work we explore large molecﬁle excimefs;‘the}contact.
charge transferl(CT) complexes, as they are known to photochemists.- Such
complexes have spin-allowed transitions with tvoical dross-sections and lifetimes
of 10_l7cm2 end lus, making them more suitable as storage lasers than the diatomic
excimers. This wogk is‘based upon the semi-emperical quantum’chemistry
meteod known as the Complete Neglect of Differenti&l'Overleﬁiin Spectroscopy
(CNDO/S). The potential energy cur. - for several CT complexes between the
‘'oxygen molecule (acceptor) and small aromatic donor molecules are calehleted.
Very good agreement is obtained wherever experimental results exist. The
possibility of emission in these CT complexes is examined the Stoke's
shifts that may-be expected are calculated and emission wavelengths predicted.

It is shown that a population inversion in contact CT_complexes can,
in principle, be obtained once the excited CT state 1s accessed. The inver-
sion mechanism relies on fast radiationless depopuletion of cﬁe lower state
which is possible in these relatively la;ge and massive molecular systems.
The additional degrees of freedom (as compared to the lone nuclear degree

.

of freedom in a diatomic), available in such polyatomic excimers eliminates .
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The reliance on the repulsive nature, or the thermal dissociation, of the
ground electronic state. A method of pumping such a laser is studied and
applied to the pyrrole - 02 system for which a gain of approximately
3x10_2cm—l is predicted.

1.1  Scope of this Work ) '

Chapter II deals with charge-transfer theory including'the theoretical
gnd experimental aspects of contact CT complexes. This chapter is based
mainly on R.S. Mulliken's pipneeriqéiWork [16].

AChapter III outlines the gegﬁégl Linear Combination of Atomic Orbital-
Molecular Orbitals (LCAO-MO) mé&kods [17], including the Zero Differential
Overlép (zD0) approximation [18], of which the Complete Neglect of Wifferential
Overlap (CNDO) Approximation [19] is a special case. Various formulations
of the latter method, that 1is CNDO/1, CNDO/2 and CNDO/S [20-34] are outlined.

Chapter IV describes the application of CﬁDO/S to the complexes of
benzene, aniline, pyrrole and H20 with 02. The computer program [34] used
in these calculations 1is outlined. The results obtained are compareh with
experimental data available in the literature [36,37]. ,

Cﬁapter V examines the possibility of lasing action in contact CT
amplifiers [38]. A method of pumping is studied, excited state quenching is
examined and an estimafe_for the expected gain in a''typical'contact CT
system made. S

Chapter VI outlines future wor that should be undertaken before a

contact CT laser can be operated in the laboratory.



‘CHAPTER IT \\

CHARGE-TRANSFER MOLECULAR COMPLEXE:
v’ -

2.1 Molecﬁlgg iﬁte;gftions and Bonding

It ﬁas been known for several years now that even valence saturated
atoms anq molecules interaet with one another. Such interactions are
generally of strength intermediate between the weak (generally less than
1Kcal/m91e or 4x10_2eV/molecu1e)ilong range forces of dispersion, including
van der Waals interaction, and the strong (greater than 50Kcal/mole or
2eV/molecule) chemical bonding forces in stable molecules where classical
" valence saturation is sought [39].

This intérmediate type of attractive fofce is respongible"for the form-
ation of molecular éomplexes whose existence was discovered when absorption
spectra, not exhibited by either component alone, were found whgn two
different molecules interacted [40,41]. :

Molecular complexes of this type themselves vary in bonding energiles.
Absorption'spectra have been measured for ve}y stable cbmplexes as well as
for complexes which have practically no binding energy in the ground state.
In the latter case the components are merely 'in contacg" in Mulliken's
terminology. |

.In the present work it is these contact charge-transfer (CT) complexes
th§t will be focused upon. Mulliken has shown ;hat the intensity of contaci/

/

CT com can be relatively large and since no stable ground state'exispé

* the possibility of excimer ation immediately becomes obvious. This .

aépect is treated in Chapter V.

Mulliken's CT theory which has been very successful in explaining the

behaviour of these complexes will be outlined below, first in general terms

and then for contact CT complexes.



Allléhemical bonds, howéver élassified, (covalent, ionié, charge-
'transfgr etcr) have several common féa;ures [52]. Tﬁ;s, all bonds are i
formed b?cause the poééncial eﬁerg& of the méleéﬁlar system is lowered aé
a result of electrons Qoving simultaﬁegusly ﬂea}_the positive chafgeé of
two or more nqclei;n Eléétrons of one atom ;an mbve dimultanéously»pear
“the positively charged.ﬂuéléus of a second atom by entéring aivalence orbital
of the latter which is either half-filled or vacant. Even when an atom has
formed one or more bonds, it rétains reactivity’as long as there are
additional halfifi}ied\o; vacant valence orbitals. A chemical bond forméd

A

betwgen two atoms each with a single half-filled valence orbital has a Bipdiné
energy between 50-150Kcal/mole. A bond formed bgtween an atom with a vacant
valence orbital énd an atom wi;h an unused pair, will usually be in the

range of 10-50kcal/molé.Hence,alth0ugh the clagsification of chemical bond
types 18 very f?;itful, the common underlying featutes nevertheless make |

such divisions somewhat artificial. With this in mind one may make the

following definitions [52].
A covaient-bqnd is formed when a pair of'éiectroﬁé*ia‘equaily phared_}
‘between two atoms. Some examples are the bonds in homonuclear\diagomics
such as 02, NZ’ Hz ete, . .- . T
A bond in which the shared electrons are concenpfated nearer to one

of tﬁ; atoms is said to have ionic/charaéter; ., Some éiamples,arg the
heteronucléar diatomics éuch as HC1, HF, NaCl etc. |
Covalené bonds both with #nd without ionic character are bonds-resuyfing |
from the proximity of two atoms which péssess half filled valeﬁcg o;bitalg [52]f
? .

The definition of charge-transfer bonding has been the subject of

some controversy [53,59,60]. Although all molecules interact with other

[



molecules, when, as in most cases, the intermolecular forces involved are
small compa;ed to the interatomic forces within molecules there is no
difficulty in‘defining the molecule and concluding that irter-molecular
forces are phfsical ("non”chemical") in that they do not require a description
in terms of ciassical covalent or ionic bonding. Howeve;, numerous
examples are known where such interactions cannot be explained purely by )
invokiﬁg dipole—gipole,dipole-induced-dipole, higher order pble, or,
dispersioﬁ forces. The indisputable usefulness' of the concept of the
molecule has‘ied to a reluctance in reéognizing the possibility of graded
interaction between the extremes of the classical covalent or ionic bond
and the weaker lang range van der Waals interactions.

In this work a complex will be defined as a system formed by the
interaction of two or more component molecules and/or ions. The complex may
or may not be capable of existence in an independent form. Many complexés
are, for instance, known to exist only’in solution.

Some workers [52],.prefer to}?istiqguish chhrge—tr&nsfer (also Calleq
electron donog-acceptor) bgnding‘from covalent and ionic bonding. by
restricting CT bonding to mean interactions which utilize eompletely vacant
acceptor orbitals. This distinction can be somewhat misleading as illustrated

by the fact that 0 forms CT bgnds with numerous molecules with one of
its half-filled antibonding m03¥pular orbitals acting as an acceptor orbital.
&‘ The main criticism against ‘the use of the f:e'rm "charge-transfer" is
that in many so—callé@ charge-transfer complexes, charée transfer forces do
‘not_provide the majér contribufion.to the binding forces in the grbund state
[59,601. Mulliken,‘the founder of present day CT theory, pointed this out’ i
{

himself [16] Nonetheless, the term has wide common usage 1n describing .

the molecular interactions to be treated here [53] and will hence -be retained.
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As. pointed out below in the cases where the gro&éd state is not charge
.transfer stabilized (contact CT complexes), the %xcited state generally is.

In the present work, a charge-transfer bond\will be defined as a
bond between two moleculesA(steble on their owﬁ) f rmed by,the.donation
(to various degrees) of an elECtron from the least oound valence orbital
of the donor molecule to the flrst (completely or partially) vacant valence
orbitel of the acceptor molecule [42,53]. The bond strength of such complexes
in the ground electron state ranges from{aooroximate1§ SOKcallﬁoleA(for the
very strong\complexes).to practically zero for the contact CT complexes. We
note here that contact CT complexes are important because they have stabilized
excited states and radiatlve transition oscillator strengths which are
'relativelyllarge compared to other CT complexes.

Charge transfer resonance forces [52] qpe (quite universal molecular)
forces of attraction and t occur betweén 1like as well as unlike molecules.
‘In this respect charge traosfer forces resemble the dispersioh forces that
F. lo;Eon used to successfully explain van der Waals attractions. CT forces
supplement these dispersive and other attraction forces such as those due to-
dipole-dipole and dipole-induced dipole effeets and help in expleining
cohesion between molecules. 'They differ from these other attractive forces _
in thet they fall off faster- (exponentially, like valence forces) with |
_increasing‘distance and they operate only if there is an appreciable overlap
of the wave functions of the interacting molecules.

- A very interesting feature of CT forces is that their orientational
properties, which are a result of quantum mechanical symmetry requirements,

often differ drastically from the orientational properties of other forces.

Thus, CT forces have often been decisive in establishing modes of packing

- of molecules 1in crystals whose structurea would otherwise not be intelligible.
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2.2 Mulliken Charge-Transfer Theéory [16,40-58]"

The basis of the theory [44] is the idea thaf any two species,
whether they are atoms, positiye_or negative ions, or molegules or even
solids,have a tendency to exchénge electrons, that is, to act as electron
donors (denoted by'D in this wgrk) or eléctroh acceptors (denoted by A). We
note that either the donor or the acceptor or both may be, and very oftén -
are, clqsed shell (valence satﬁrated) moleculeé [16].

For simplicitykge consider here one to one'associations. Furthermore
the theory presented will be a vapo? state theo;y. However, after small
corrections for solvation energies, it remains essentially valid for solutions
in inert solvents.

Quantum mechanically, the total ground state wavefunction of the

- combined donor-acceptor syétem may be approximated by:

. + -
¥ (D-A) =a ¥ (D,4) +b ¥ (0'A) } | (2.1)

’

The first term on the right hand side incorporates the "ordinary" interaction
between atoms and molecules, such as London dispersion forces (including

van der Waals forces) [42], and any electrostatic interactions between

. permanent or %emp;rary dipole moments [44]; that might be presenf. This

term is hence called the no tond term. The second term expresses the
condition wbere an electron has :one over from the donor to the acceptor;

and is called the dative term. . -~ dative structure corresponds to aﬁ‘iﬁnic
‘ plus‘a covalent bond and has sometimes been called a semipolar double bond.
also [16]. Equation (2.1) could be made mor: accurate by including such
terms as c VZ(D—A+) and locally exci;ed terms such as d Y3(D*,A),

* : : . ,
e Y4(D,A ) etc. For the most part, however, the approximation given by (2.1)

is adequate; The value of bz'tepresents the amount of charge-trénsfer.



In loose complexes b2 is much less than az. For instance in the benzene-

12 complex b2=0.06 and az=0.34.

If the.grouﬂa state structure of a complex is expressed by YN’ then

quantum-mechanical principles dictaﬁe that there be an excited state ?v

given by [16]:
¥ = by fn NETR NS (2.2)
v 1 1 :

This excited sFate is the charge transfer (éT) state.

- In loose complexes, by definition, the ground state is mostly no-bond
(|a|2>>|b]2 and the excited state 1s therefore mostly dative‘(la*|2>>|b*|2).
Hence, in these cases the excited CT state essentially.corresponds to the
condition where an electron has been transferred from the donor D to the

[ 4

acceptor A.
, ‘
The normalizing conditioms:

Y (D.A) Y.(.A)dv = 1 i C(2.3)
| ¥y N

and . _ ' L

f WV(D;A) WV(D-A)&v =1 f ‘ : C O (2.4)

- where the integrations are over all coordinate space yield:

82 + b2 + 2abS . =1 e - 2.5)
~ 01 _
and
* * 2 * * ' :
(a )2 + (b )2‘— 2a b S01 =1 (2.6)
S01 is the non-orthogonality or overlap integral of the wavefunctions
YO and Vl _ " -

sOl - f ‘Yo‘l’ldv ‘ @.7) -~

Note that we have used the normalizing conditions f16]
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J ¥o(D,A) ¥ (D,A)dv = 1 - (2.8)
and

| wl(D+A')vl(D+A')dv -1 2.9)
in deriving equations (2;5) and 62.6).

An important requirement is that YO and Wl belong to the same group
theoretical symmetry species, in terms of the symmetry of the complex. In

other words, WO and Wl must belong to the same irreducible representation
of the point group to which the complex belongs. This requirement is the
consequence of the fact that the Hamiltonian operator must have the full
symmetry of the complex since it 1s simply an operator expression for the
energy of the system, and this energy cannot change in either sign of
magnitude as a result of a symmetry operation. The Hamiltonian therefore
belongtho the toﬁall§ symmetric representation. Hence [61,62,63] expressions
such as
Hy, - | \y; HY¥ dv | (2.10)
which determine the amount of resonance energy stabilization [41144] would
be zero if Vo and Yl belonged to different symmetry species of the complex.
If H is the total Hamiltonian of the complex then the time independent

Schroedinger Equation for the system [17,64] 18 as
HY = EY (2.11)

where Y and E are the energy eigenfunction and eigenvalue respectively,

Uaing‘the expression given by (2.1) for the eigenfunction in (2.11)
" we obtain .
(H-E) (a¥, + b¥,;) = 0 ‘ . (2.12)

e e, * ¢
Premultiplying by the conpleg“éonjugate of Vo, Yo,and integrating over all

£3
-
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coordinate space yields

a(Hy,-E) + b(Hy -S,,E) = 0 (2.13)
where )
* A
Hoo = [ g H ¥gav = <¥olH|¥> = E, . (2.14)
* A o
Hyy ™ f ¥o H ?ldv54?0|H|Y1> = Eg; - (.15)

*
Similarly premultiplying (2.12) by ?l and integrating over all space yields

a(H;(=S,;E) + b(H;;-E) = 0 (2.16)
where
H, = [ ¥, Hoy av = <y Hly >2 & | (2.17)
10 10 170 10 :
and
*H A
Hy, = I yaE<y Wy >=E (2.18)

(Normally one would be dealing with real.éunctions and consequently the

complex conjugate symbol may be dropped).

It can be shown that

Hyy = B0 T Enp (2.19)

Now equations (2.15) and (2.16) have a non trivial solution if the

S

following condition is satisfied.

-E E.. - S..E :
01 01 -0 . . (2.20)

E,, - Sg,E E, - E .
o1~ "1 "1 s

0

Expanding this quadratic in E yields

2, 2 . R
E°(1-5,) + E(2S,;E),~E;-E,) + EqE -Eq, = 0

Solving for E and multiplying by (1-831);yields

:



2 E

E(1- 801

) =

E(1-s2

where

A = El-Eo

80 = Ep1 Fp
B = Enh

and

8,80 = ~ 5o

If the ground state energy (the "normal" state) is denoted by EN and

the excited state

BBy ey

where

Ver

o1) = ¢

+E
0 1 -5

7~ So1Bor* 3

1
2 () -

So1

So1

1A

by Ev

2[(a/2)2 + 8,8

228

1;

(1) 01 0 1)

then from (2.21)
172

2

1-5

From (2.13), by substituting Eq for E

(E
bé,..
=&

, 0
and from (2.16)

0By

Bo1%01By -

/x

b, g 01En)
ade== (El-EN) ,/’”ﬁ\
////7 'k : ,
Similarly
Byt Bo1-S01 %) _ BBy
a" Bo- By Eo1-501%v

Equation (2.1) can
I ¢
— Y

0

and from the normalization condition (2.5) we obtain

+p 4

be rewritten as

1

2

2
smlzo1 t [(A/2) f 8081]

2
6(1-801

1/2

2
)(EOEI-E

21

(2.21)

(2. 221,A\>

(2. 23)
(2.24)

(2.25)

(2.26)

denotes the frequency of the charge-transfer spectrum line.

(2.27)

(2.28)

(2.29)

\\*\\\
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2 1
1+p" +2 801 -5
_ _ ) a
therefore
Y. 4+ p¥
0 1 :
Y, = — (2.30)
N 2 1/2
[1 +p"+ 2p501]
Similarly
*
Y. -p ¥ .
1 0 : :
‘l’v - - ry e y 3 (2 . 31)
[1+ p*z - 2p 801]1/2 ' ; '
! ) o »

2.2.1 Loose CT Complexes |

. v
|

For weak complexes S§1<<1 as mentionedlpreviously. (Mulliken [16]

defines these complexes as those for which-so : 0.1). Then we can write

1l
from equation (2.20),

+ Eo7Ey Eor . .\
x 0 '
E E, -
- oL ! B
! Hence E2 <
01 : o
e *EB-~E-E
e
L
0 (BEHESEY L
Further for such weak complexes we can'write,'froq)(2.23).v : )
‘ ) ' . -~ “ . , 6
B % Bof | | ‘
T herefore, dqing equation (2.2%)
g oeg -2 | | (2.32)

L |
vhere we have also used the fact that for-weak complexes the resonance -

energy in the ground state due to the no bond and normal wavefunctions ¥,
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and Y, given by EO*EN, is small f41). Similar arguments lead to

2
81 -
'Ev =»£1-+w3— e - - . (2.33)
The CT absorption ffequency would hence be
B2 + 82
Ver ™ EV-EN = A+ —_— (2.36)

This expression is valid forgloose complexes and may be compared to
the somewhat more involved general'expreéaion»(2.26) deriﬁed‘ahpvg whicﬁ
18 valid for both sttonglx_gﬁd loosely bound complexes.

The charge transfer resonance energy stabilization of the ground
state is, ftom equation 2.32), - BZIA. The CT‘resénance energy for the
upper state is, from (2 33),+ B /4. |

Prom equation (2. 28)

a’

" E B
-b—.pa—f—luo——-—\——————— -—-]'.-9'3-‘—0- ‘(2035‘)

| a E ~-E +E0 EN A A
and similarly from equation (2.29)
-

1 , '
5 . - (2.36)

SR 8

=P =&~

*The wavefunctions of the ground and excited CT states are then
) : : . ’ * ' P
obtained by substituting these expressions for p and ¢ into equations (2.30)=.

and (2.31) abovc.

'2 2. 2 ggggricnl Pornulation of Loose CT Co!glexcs Theory "

In order to test the sbove theory Mulliken derived an expréssion for
the CT absdtpti&n fraquency in terms of-éiperical‘du;ptities"such as foni-
A zation potcntiala and electtonic affinities. '

rigute 2 1 [16} -hows the genctal lhape of thc potential energy curves
of i CcT couplﬁx wvhose uuvefunctionl,ax¢~gtv'n by equations (2.1) and 2.2).
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Fig.2.1 The ériergies*Ev and Ey, as functions of the
-donor-acceptor separation Rp [16].
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RDA is the distance between the donor and acceptor molecules. When.

.~RDA-m (i.e. the dohor and acceptor are not interacting) the energy difference
El-EO (see equations (2.21) and (2.22)) 1is simﬁly the difference between

the ionization energy of the donor, D, and the electron affinity of the

acceptor molecule A.

\Y Vv >
E, - E. | -1 -E 7 (2.37)
17 %0 Ry " 07 A
The superscript V stands for "vertical". Ig is the ionization potential

for the free doﬁor\molecule constrained to remain, after ionization, in the
Aconformation it has in its neutral ground‘state (that is the internal
coordinates of theﬁionic stéte are therﬁaﬁe as those of the neutral normal
state). EX is the electron affinity of the similarly constrained atceptor.
Th; quantity G1 applies to the Qative,structure denofed by“i’1 and
héé two components.
6 =C+V | . e (2.38)
where
C is the Coulomb energy that is dissipated when the D+ and A 1ions
are . ought together at the equilibrium separatiom. C also includes two smaller
hrms,generaliy.neglected, due to polarization anq exchange repulsion.
V is the energy of formation of the valence bond in the dative state.
. N A
G, represents the interaction of D and A if they were brought

0
together in the no-bond structure YO. This includes the London disperéion‘

forces and any interactions between permanent or temporary dipole moments
that may be present. In treating loose complexes'_G0 is small and generally
may be igndte& [16]. -Bg/A-and + Bi/A are the CT resonance energy terms

described above. Hence BO"Bl are also called resonancerintegrals.



- From Figure 2.1 we write

V oV

6= E,-Ey = I J*tA.+ 6,- 6, (2.39)
We define

X, =E, - E (2.41)

o~ "N %o -

-

The energy of formation of the complex in the ground ‘state is,

therefore,

B E. =Gy + Xy i (2.42)

bver = By By = B EotEy R R~ y
Hence ‘using (2.39), (2.4) and (2.41)

vV v - | ‘ _
thT ID - FA + G1 - GO + x1 - Xo_ (2.43)

Equation (2.43) is general and applies to both stromng andeeak
CT complexeé. In the former case (2.43) shoula be used in equation %(2.26)
while in the latter case it may be used in (2.34). C

For a series of weak complexeé between a set of donor molecules and
a single acceptor, Ev is consfant. it has been standard éractice to aésume

A

that G, 1is approiimately constant although it has been éhqwn [16] that the

1
Coulombic compohent of , C, this quantity may vary appreciaﬁly with the

size of D, for aromatic donors at least. Also, for similar donors G0 is
taken to be constaﬁt (usuaily neglected since it is sm;11 in weak complexes).
Finally,.for weak complexes of a single acceptor with similar dohé:stit

is [16] also assumed that the integral 8o and the overlap integral':S(;1 are

relatively‘constant-and small in magnitude. Hence, for a set of closely

related weak complekes of a single acceptor we can write from equatiop‘(2.34)
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C2
h\)CT = A+ e (2.44)
where
2 2
C2 = Bo + 81 (2.45)
Further defining the parameter Cl_as
C1 - ID - A (2.46)
and using equation (2.39)
C -ID-.A-(I—E[V)-S-EV—G +G \ .(247)
1 D D A 1 0 )
Using (2.46) in (2.44) we obtain’
C2 C2 : :
thT = A+ " ID -C, + - (2.48)

°1 ID-C1

~ We note that (2.47)_1nvolves explibitly the difference between the vertical
ionizétion potential Ig and the ad}abatic ionizgtion potential ID' Thé
latter is the energy difference between the donor don in its ionic.
eqéilibrium configuration and thg dondr molecule in its neutral molecuiar :
configuration. This is in contrast to the vertical ionization potential,
defined aﬁove, in whiéh the donor ion is constréiued t; remain in the |

‘ configuraﬁién it has in its neutral normal (ground) state. For most
_mdleéules (e.g. benzene) thé-equilibridm géoﬁetry of the ion is not ‘expected |

to be very different from that of the neutral molecule. Therefore,’if,is

normally assumed that

. ~ S _ -
1 -1 =0 (2.49)
However, in other cases where-it is known that the ionic configuration
is substantially different from that of the molecule, (2.49) cannot be used.

F;t:gxahple for the amines the iomnic equilibrium configuration is believed

" to be planar rather than pyramidal as for the molecule. In this case, it
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has been estimated [16] that the difference between the vertical and
adiabatic ionization potentials could be as high as half an electron volt.

Experimental measurements of théyabsorption spectra [65,66] for sets

\

'of.chemically related donors with various acceptors have, in general, been

in good agreement with equation (2.48). Estimates for the constants C1 and

a0

C2 for several groups of CT complexes have been made from such measurements.

2.3 Intensities of Charge Transfer Spectra

The theoretical treatment of the intensities of CT complexes‘;ncluding
contact CT complexes (gee section 2.4 below) requires the formulation of
the wavefunctions of the no-bond and dative structures (Wo aqg Wl) and the

'gvaluation of their overlap integral Sol' [16,671].

2.3.1 Detailed forms of no-bond and dative wavefunctions

The no bond wave function WO(D,A), defined in equation (2.1), may be

written as follows

w([)N] (D,A) = (Wii&m o) - (‘i’lE‘oM;]T"N](A))‘ (2.56)'
Here the complex has a total of ﬁ-eleétrons, the donor;D, has'H eléctrqns

and the acceptor, A, N-M electrons, és-indiéa;ed by‘the superséripts. The
subscript "mod" stands for "modified"; Hence,l?mod(D) isrthe wavefunctiont
of the normal staﬁe of the donor molecule as it would be 1if fhe configuration
of the free donor were modified to the nuclear framework which it has in

the compleﬁ. ?ﬁoa(D) also incorporates the effecgé of eXChangeirepﬁlsioﬂ,
dispersion and classical electrostatic attraction fdrces\due to.theApreseﬁce
of the acceptor A. ?mdd(A) has a cotresponding‘meaning. it,is also

‘understood that both ymod(A) and»?mod(n) are antisymmetfic with‘respecg:to

the exchange of any two of their electrons. -The overall wavgfunction YO(D;A)
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is antisymmetric in all the N electrons of the complex. The modification

necessary to the free donor and acceptor wavefunctions depends on the

-

strength of the interaction (or the CT bond in the normal state) being

greater the stronger the bond.
Both Ymod(A) and W (D) are approximated by a single Antisymmetrized ’

Molecular §pin,0rbita1 Product (AS.MSOP) function as follows

Y- md(D)v (5)=[wd(l)a(l)wd(Z)B(2)\#(’1(3)a(3)..'.\va(M+1)a‘)m1)wa(M+2)e(mz)w;(m

3)aM+3)...] . ) ' (2.5;9
Here Wd refers to one of the molecular orbitals (MO's) on the‘denor,

Wé to another and so on. Wa and ?; refer to MO's on the acceptor. As

mentioned above these are modified in comparison with MO's of the free
donors and acceptors, but only slightly, in weak complexes, t0Awhicﬁ we

address ourselves. ., .. :

s S - :
The dative wavefunction Wl(D+A ) can be expressed [67] in terms of

two wavefunctions WI and WII

: Yo+ ¥ .
¥ (0 = ——1 | (2.52)

1/2
[2a+s;s 12 , _

W differs from ?o only in that an eiectron (for instance electron number

: 2) has been removed from the spin orbital W B of the donor and placed in
the spin orbital ?a-B of the acceptor. The acceptor MO which accepts. the
.electron 1is called ¥ - because fn:therwavefunction Wl it is an MO of the

negative ion A" (in the usuel‘cese» ere D and A are neutral molecules).

/

Hence, V. is represented as ﬁpllows

1

I-w‘“’(n ANCICpRL (1)agm)v @8} OUOR
v 2O LIaCHDY, oue)soﬂa)i/oﬂa)aaua)...] - @y

)
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wII differs from WI only in that electron l.with a spin from Yd, instead

of electron 2 with B spin, occuples the vacant acceptor orbital Va-. Hence,

¥ ‘”(D )v‘“’(A =¥, (Da(l)¥, (2)8()Y} <3>a<3)...

_,II
wa(M+1)a(M+1)wa(M+z)s(u+z)w;(M+3)atM+3)...] ' (2.54)
In equation (2.52), I II 1s the overlap integral function of the
coﬁponents WI and WII of the_dative function Wl.x Hence,
Spoqp = [ ¥ ¥y dv = < wI|w11> -~ (2.55)

 Substituting (2.53) and (2.54) into (2.55) yields

S f[v Ve ()Y, _(2)B(2)¥(3a(3)...

Ya(n+1)a0w+1)vd(u+2)B(MfZ)W;(M+3)a(M+3)...j x
(¥, (Da(1)¥, (BRI (a(3)i..”
¥, (1)a0r DY, (H2)BOHDY MDa03) . Jdv - (2.56)

Recognizing the orthonormaiization condition for molecdlar Bpin orbitals,
i.e. using

<wq(1)|wa(1)> =1 | | - (2.57)
" and |

<a(@la(@)> =1 a . ©(2.58)
etc, equation (2.56) redﬁces to

L= [y, @, WY, 2y o @.59)

\,
N,
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_ J
where now the integration is over spatial coordinates, V', only.

Defining the overlap between the donor and acceptor orbitals as Sda— ‘
= " ‘
Sga- = ¥y) ¥ _(1) dv (2.60)

\522 .

equation (2.59) can be written as

o

) ,
St 11 ™ Sga- _ (2.61)

This follows because in (2.59) the integration 1s over six spatial co-

. o\ .
ordinates, that in (2.60) is over 'three. Using (2.52) and (2.61) in (2.7),
| the overlap integral between the no bond and dative wavefunctions becomes

,?0(?1 + WII)

S =
M sl

(2.62)

jwovldv-j[wdgl)a(i)wd(z)s(Z)wé(s)a(3>...
¥_(HH1)a QL)Y (M42) B (42)¥ ] (M43)a (+3) ... ] x
19, DaY, @B@YDe()... -

wa(u+1)aoﬂl)wam+z)s(n+2-)w;(u+3)am+3) ee] : (2.63)

Using (2.57) and (2.58) in (2.63) yields
[egty av=[9¥,2) ¥, _(2) av' =5, _‘ | (2.64)

- Similarly

A 92N

A\ .

- ] ' = “\;‘: ’ ’ . ’
J ¥ty &v j YD ¥, () v’ =5y | (2.65)

Using (2.64) and (2.65) in (2.62) yields
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s = Y21+ s2 ]'1/2

01 da- S _ (2.66)

da-

In the case of weak complexes the overlap integral Sda— is small enough

to make the approximation

Spp = Y2 Sy : N (2.67)

fairly accurate {56].

2.3.2 On_the separation of electronic and nuclear motions
To treat the intensity of the CT spectrum of a complex expressiong
for the dipole and transition moments mug;—bé/gg;ived. We note here that
,‘\‘ .

the wévefunctionsi?o,'wl, Yoo ¥y WI and yII describe the combined motion of'
the electrons and the nucleti. Fu;ther we note that when WO and Wl are

- expressed as AS.MSOf functions such as (2.51)(2.53) and (2.54), Born-
Oppenheimer separtion of nuclear and electronic motions [68-72] is implicitly
vassumed. The Born-Oppenheimer Apprqximation allows the total wavefunction of
a molecul;r system to Be separated iﬁto the product of nuclear and electronic
wavefunctions. The total energy is also separable in this approximation,
into the sum of nuclear ana electroﬁic energies. The nuclear motion of the

system is generally then separated into vibrational and rotational motioms.

The vélidity of this approximation allows potential energy diagrams to be

drawn for any molecular system [72].

The total wavefunction, ?x, is expressed as a product of an electronic

- = m
wavefunction, Wm(ri, Rk)’ and a nuclear wavefunction Vq(Rk)
Wlay §,8) VE®) R | (2.68)
m m i’Rk q Rk .
where

q refers to an appropriate set of nuclear quantum numbers
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o denotes the electronic state of the molecular system, and

the vectors ?; and i# are the electronic and nuclear coordinates

respectively.

.

As mentioned above the nuclear qavefunction,‘¥:(§i) is generally
D&{Q

split into a product of vibrational and rotational wavefunctions.

complexes (which have a shallow potehtial energy minimum in the ground
electronic state) consideration of the nuclear vibrational (and rotation-")
energies may become especially important since in these cases the vibrati na:
quanta are small and the first few vibrational states would hence be
populated under ordinary conditions (room temperéture ané pressure).

In contrast to molecular complexes (strong and weak) which exhibit
minima in the ground electronic states, the nuclear kinetic energy of contact -
CT complexes (see section 2.4 below) which do not have a potential weil
canno; be classified int; rotational and vibrational energies. (Of course
each component of the complex may, and usually does, have vibrational and

rotational motion of its own).. -

2.3.3 Transition and Dipole Moments

The transition moment- for a spectroscopic transition between two

rovibronic states m and n is given by

qu_qn - <yd|y_|vd> (2.69)

mn . m' op' n

Uk | e g | . | '

U = | YU Yot dRy - (2.70)
-~ ' _ ,

The term rovibronic [73] is here used to imply the total wavefunction

(incorporating electronic, wibrational and rotational energies). ﬁ;p 1gl”

the dipole moment operator and is given. by
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U =e Z zkﬁk - e Z r, : (2.71)
k i

where

2, is the charge on the kth nucleus in the system, and
the summations are over the total number of nuclei and electrons. e

Using (2.68) in (2.69) yields
“‘q“ f\y (f ¥ 0 ‘i’dr]‘i’ de _ (2.72)

Integration over the electrdnic goordinates defines the electronic transition

moment Uein(ii) where
el — —- = - _— - -
Umn(Rk) = I wm(ri'Rk)Uopwn(ri’Rk)dri (2.73)

The dipole moment of the normal (ground) state is obtained from (2.69) by
substituting m=n=N and q,=q_=q- ¢arrying out the integration over electronic

coordinates only first

m op m

[y R dri- J v (e Z zk.ii - g er )Y d;;

=g E-szk / Yo ‘l’mdri - E e f Yo ri Ym dri‘

b4 U ¥ dr, = e z R_- e N<Td> v 53 (2.74) .
mopm 1 X k Rk -

where
<r% is the expeciation value of the electronic‘posi;ions

N is the total number of electrons, and we have used the normalizihg

condition <¥ IW > =1,
m' m

<

o



The dipole moment of the ground state, Ug, can now be obtained by

carrying out the integration over nuclear coordinates in (2.72).

q . R = nee 3wl ar
Uy e}'\y‘q(z z R - NeT >)\rq R

N= N .~ " q_ NN
- e ¥ R, ¥ dR, - Ne<r™» vy
Therefore
q . R s - g )
UN e E <Rk> Ne <r™> . (2.75)
where

<§£> 1s the-expectation value for the k nuclear coordinates and the
nuclear wavefunctions are norﬁalized.

In the present work, the nuclear mot;pn in the complex will be ignored.
Hence, the eiectronic wavefunction, Ym(;i,ii), in (2.68) will be taken to
describe the total wavefunction, V:. Provided‘the gprn-Oppenheimer ﬂ
Approximation holds, this égn be done with the proviéion,that the nuclear
kinetic energy could then, if necessary, be added onto the electronic energy.

« : N
The wavefunctions ?N’ Y§, Wo, ?1, ?I and yII in equations (2.1),ﬂ12.2) and
- (2.52) are in this approximation taken to be the appropriate Born-Oppenheiper

electronic wavefunctions. The electroniq transition moment of the CT

o

transition (V<N) 1is then o ‘ /////f/
S =
el _ v IF » - R /////
UyN <VN|U°p|\yV> - (2.76)
’ ® * )ﬂ// ts
& I(a Yo +b Yl)UOp (a¥, -b 1’1 \ )

.« an¥5el
aa 001
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0. <, [T 1¥)> . (2.79)
el - o :
U, - <w0|U°p|vo> ~ 7 | o (2.80)

Now the dative and no bond wavefunctions are orthonormalized [56], and

hence
<YNIWV> =0, <YN|VN> - <yV|wv> =1 (2.81)
Using equations (2.1) and (2.2) in equations (2.81) we obtain

x *
f(avo +bY¥)(a ¥y -~ b ¥ )dv =0

* ~‘ b* + *b bb* |

aa So]_ - .a a - Slo -0 l'

Now 501 - f V0V1 dv = I vlwo dv = Slo | g”fffﬂlwl//J/w’JV

* * * * _,.,,/“.»/» T P IRy | | ‘
Hence ba=a b + Sof(ag By - | .

;fﬁubatitutiﬁg'(é.SZ) into (2.77) yields

*
ﬁel = g b(ﬁ;l -

el * * el =el -
VN Uy ) +@a =-bb) (U5 - Sg; Up™) (2.83)

01 0 |

The intensity of the CT absorption (and émiésion)'band is proportional-to

the square of the magnitude of this transition moment (erll ).

. 2.4 Contact Cha:gﬁjTransqu Complexes

The expression for ttansition mament given by equation (2. 83) explains
' the existence of contact CT spectra. Thege,are new spectra-which occur -
eveﬁ'when there is no exﬁerimenfal evisshéé for the formation of a complex
in the groqﬁf state. In this case-ghere 1s.ﬁo resonanbé interacﬁion, the
und state being a completely no-bond state, where oniindispers1dn (4n-

cluding 's) and‘electroggatic'(due‘to pe:nanéht qnd, @r_iﬁduced
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dipoles) attraction are exhibited. In this case the coefficient b in

equation (2.1) 1s equal to zero.

~Equation (2.83) now reduces to

el _ —el ’
UYN aa (U01 01 UO ) : . (2.84)

The normalizing conditions in (2.81) and (2.8) yield

o

*
aa =1 and,’therefore,

~el —el =~el
Uyn = Wo1 = Sp1 Yo : (2.85)

~/
The right hand side of this equation is generally non zero. This leads to

\ .
the very important conclusion [67] that every pair of molecules, whether
or not they form a stable complex in the ground electronic stéte must possess
a charge-transfer excited electroniC'staté and a CT spectrum, Whether

i

or not absorption (or emission) spectra due to thépe states are readily

.
a
2

observable dependa;iamongaﬁ other things,, on their 1ocationfyit? reépect tdl

other absorption bands of the‘fwo molecules, and on their intensity. ‘
Molecules which do not interact specifically to forﬁ complexes are.

said by drgel;énd Hullikehy[AB]_to be in contact and their spectra are

callé& cqntact‘chargé_transfbr spectra. In such cases the distance betvégn‘

the:doﬁorlana aéceﬁtor'is'approximafély‘equal to the van der Waal distance.
In.contQCt CT complexes there is practically no overlap of the donor B

~ orbital, Yd,’ané the h{ghest fille& orbitalcof-the acceptor; !a. Hence,

f'vdva>ay,=o" o o o (2.86)

o Bowever, in :hese cases there can be, and usually is, a large overlap

. :between the donor orbital and the acccptor orbital. _ into which the domnor



electron is transferred during the CT transition. ‘Hence even when

_equation (2.86) holds and there is 1iittle or‘no CT stabilization of the
, ) , '
ground state,ﬂgenerally

Sgpe = [ ¥l dv O (2.87)

Sda— may have an appreciab}e magnitude simply because the orbital Wa_.is
ldtger and spatially more diffuse than the‘orbital Wé. (Wa_ is generally
an gntibonding orbital whéreas Wa is qually bohding or non bondiqg). Now
‘the right hand side of (2.85) may be interpreted‘[l6] as dipole moment

generated when a charge —eS01 is transfefred from the donor orbital to the

centre of the region of overlap of ¥, and ¥__.

Hence, P i P

—el wel - = >E : - '

Uo1 SOlU0 ‘% - esOl(rda— rd) ‘ (2.88)
Where ;da— is the average position of tﬁe overlap charge ‘l’d‘l’a_ and Ty the

average position 6f the donated electron in Wdon D before transfer. Using

(2.66)
| /2

—el el L a2 - -
o1~ So1% * e/Z[1 + 53 158, (fg, = T (2.89)

Now although, as pointed out above, S, _ 1s generally gréater than . zero, 1€

.
}

is certainly less than one and normaIf§ Sia- is'muéh less than unity. Henée

from (2.85) and (2.89)

]

el - = - |
Uyy © 2 e Sda- (rda- . rd) o . - (2.90)

An important class of contact CT spectra are those.éxhibited by 02

whén 1nteracting'wifh various orgggic molecules. In this casg_since ihe ;

acéeptdr,orbi;al'iS'one of the partdally filled ant&bopding orbitals of O2 ‘

°
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the sizes of Wa and Wa_ are not very different. The explanation given
above for the existence of contact CT spectra is hence not applicable.
Murrell [58,74,75] has provided an alternative explanation for contact

CT band intensities which is probably more relevant in this case.

e

According to this, the contact CT band derives its strength by borrowing
intensity from a strongly allowed transition of either the donor or the
acceptor molecules. Mulliken [49] has successfully used this idea to explain

the'relatively large intensities, corresponding to decadic molar extinction
: ~
coefficients close to 100, that are exhibited by the contact CT spectra

of 02. It is thought that the contact CT band borrows its intensity from

the strongly allowed transition between the donor ground state and the donor
1.

singlet excited state. In cases where the tramsition, in the donor, téﬂ‘
{

the first excited state is forbidden (as is the case in benzene) the”ﬁT

-

state borrows spectroscopic combining power from a higher singlet excited
state or states.

L
BIARAR N -



CHAPTER III
MOLECULAR ORBITAT THEORY

3.1 Introduction

.

The fundamental aspect of an excimer laser is the bound-free type of
electronic transition betdeen a stable upper level and an unbound ground
state. In any investigation of the suitability of a molecular complex as
an excimer laser system therefore, it is important to study the electronic
states. The restriction that the ground electronic state not be bound. is
obviously satisfied by a truly large number of molecules for example those
which haye a closed electronic shell, valence-saturated strncture and
which, being very stable on their own, do not exhibit attractive stabilization
forces (besioes the weak long-range van der Waal's type forces). it then._
becomes important to investigate whether or not suitably placed bound excited
electronic.states exist. - This requires calcuiation of the potential energy
curves for the excited states of the molecular systems.

Information is required about the location of the uoper-state minimum,
the states‘of the component monomers to which it correlates and the location
of other electronic states with respect to the excimer state;.'Coupled with
an estimate of the oscillator strength of the excimer transition, this
information enbales one to predict‘the wavelength and intensity-of the
laser transition. Potential energy curves yield information on the possibility ~
of pumping the laser state by cross-over from locally excited states and
also give information on .gain-reducing quenching mechanisms. If the kinetiév-
rates of such processes can be estimated a rate equation may be set up,
the solution of - which would give an estimate for the gain to be expected; ;'

Numerous methods for computing molecular electronic states, varying a

great deal in usefulness and sophistication, are available. These can be

31



divided into two broad categories namely, ab initio methods and
Pemiemperical methods. The former may be described as "first-principle
methods" in whiéh the énalysis is based on the Schroedinger equation. The
Born—Oppenheimer Approximation is used to set up the molecular electroﬁic
Schroedinger equation and approximate methods of solution.are sought.

Semiemperical methods on the other hand [76] seek to use all available

experimental data to build a theory which is simpler to implement computation-

ally.

The most severe criticism of semiempefi;al methods has been the
objection of some researchers that these methods are "little more than clever
and fortuitous parameter_fittings without any rgal foundation in the
briginal molecular Schroedinger equation". Howéver, very often in rigorously
theoretical methods, éignificanc insight‘into-the nature of the processes
involved 1is prevented by intricafe matﬁematical formalism. - In sémiemperical
techniques it is generally easier to skegéh a p}ctofial outline of thg
physical and chemical processes involved and to predict which experimgnta;
characterigtics playba more important role than others. Ob@ibqsly, both

.methods have their uses and as oftenﬁhappens, the devdelopment of one haé
fruitful consequenceé for the other. |

l-Attémpts at bridging the éap between gb initio and semiemperical methods
khave réééntly been made by Freed [76] who»has provided a theoretical

foundation for semiemperical methods in molegular electronic structure

calculatiqns;

" Further categoriéatibﬁiﬁf the methods of tte;ting molecular electronic v
systeﬁh, their spectfa and bonding behavibﬁr, into the valence bond and
mole;ular orbital'theo;ies can be made. Valence bond theory is due mainly
. to Heitler, London, Slaférvénd Pauling [77-80]‘wh¢reaé molecular orbital

‘théory was developed initially by Hund and Mulliken [81-84]. Briefly, in .

bl

.
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the former method electron wavefunctiona are written for pairs of bonded
nuclei whereas in the latter completely delocalized (over the whole
molecular nuclear framework) navefunctions‘are set up. As might be expected
then, molecular orbital (m o) theory generally has greater success in
explsiningithe spectra and other“properties of molecules and compleres uhich
have delocalised ™ electronic systems. .

The CNDO/S method, used in thia work, 1s a Semiemperical molecular
orbital theory which has had demonstrated success in explaining the spectra
of several molecules and molecular complekes [18-38].

In this chapter CNDO molecular orbital methods, and the theories and
assumptions on which such methods are based, will be discussed. The Born-
Oppenheimer formulation'and its resultant simplification'of'the Schroedinger
wave equation,is described. The orbital appronimation is used to derive
expressions for the electronic energy in terms of the Exchange and
Coulombdintegrals. The Variational Principle is then used to derive'the
Hartree—Fdrk'equations from which the Roothaan equations'are obtained.by
'using Linear Combinations of Atomic Orbitals-Molecular Orbitals (LCAO—MO 8).

The Zero Differential Overlap (ZDO) Approximation or the Neglect of
Differential Overlap (NDO) Approximation, as it is also known, is treated. '
‘Finally, the various Complete Neglect of Differential 0verlap (CNDO) .
.parameterizations which follow by the application of NDO to the Roothaan
‘equations are described [19 85— 87]

3.2 Born—Oppenheimer Simplification of the Molecular Schroedinger Equation ‘

As is usual in any molecular orbital theory first the Born-Oppenheimer )

Approximation is invoked to write the electronic Schroedinger wave equation

for the molecular system.
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actions.

j the system.;
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. ' i
Tan B G, B - @) e R G
shere
HIGEL R = T, + v G+ v, G, R) (3.
and \
| | N .
h ' e 2 . ! . . .
Te(ri) = - Eﬁ—-‘ 2 Vi . - (3.3)
e i=1 .
2 E n
Vo) = T ——— (3.4)
(13) |ry=r, - .
Z e2 '
K ' :
VoL R) =] - S—— (3.5)
1 Rk {0 |T,R | |

o -

Hel(;;,'ik) is the electronic Hamiltonian Operater. of the syStem with ;
Rk denoting the vector coordinates of the ith electron and the kth nucleus.

T (r ) is the total kinetic energy operator for the electrons 4in the

‘ molécular system.

V-e(ri)-represents the Coulomb potential term“fbr’eiectrbn-electron

“interactions.’

v (; s ik) represents the Coulomb potential term for electron-nuclear inter-

f

¥

W (ri, Rk) is the total electronic wavefunction corresponding to

¥ (ri, Rk) in equation (2 68) E (Rk) is the total electronic energy of

, :

; M‘ is the mass of an electran.

'Zk is the charge dn the kth nucleus and
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h is the normalized Planck constant.

'In this approlimation the total wavefunction is

"w”"{“ T B = voiE, B Y E&) T @.e)
where ;

nu(ﬁ%) corresponds to‘the nuclear wavefur _lon w?(ihl in eanation
(2.68). |

nu(ﬁi) is an eigenfunction of the nuclear Schroedinger wave equation which

is written as

nu(Ek) ‘ynu('ﬁk En‘Pnu(R-k) : ] (3. 7).
Conu,e » - = el S »
H (Rk) = 'rn(Rk) + vnn(Rk) + E (Rk) (3.8) |
h 1 2 ‘ -\ :
T®) = -3 1 w 'k ' T
A = - s
k 1 :
(Rk - —_— o . ) (3.10)
nn .
(kl ) IRk—Rll : .

Tn(ik) is the total kinetdic energy operator for the nuclei in the molecular

system. 'Vnn(in) 18 the Coulomb potential term For nuclear-nuclear interactions,

and M is the mass of the kth nucleus.
- - %

"In the Born-Oppenheimer Approximatien the totallenergy EtOt, ofvthe
system can be approximated‘tovthe eigenvalne E" of équation (3.7)

ES°F « g S | - @a)

In a treatment of electronic wavefunctions such as CNDO and'other
methods, the aim is to solve equation (3 1) for the electronic wavefunction
v (r Rk) and electronic energy E® (Rk) of the system. Nuclear motion is-

' neglected it being kept in mind that the Born-Oppenheimer Approximation

allows the solution for the total (nuclear plus electronic) energy of theﬁ

A
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system to be approximated by superposing on to Eelzik),_the terms for
nuclear kinetic and Coulombic energies (by equations 3.7-3.10), should the
need arise.

3.3 The Orbital Approximation

3

Having seoarated nuclear and electronic motions by meens of the
powerful Born-Oppenheimer Approximation, it 1is neceesary to somehow
differentiate the motions of the various electrons in the molecular system.
This is done [89- 94] by approximating an n electron wavefunction, ¥(1,2,...n)

(corresponding to W el in 3 6) as a product of n one- electron functions

wl(l) 9‘ ¢2(2) » -." . ‘l’n(ﬂ) .

‘..

¥(1,2, .... n) = Q;l‘(l)_wz(Z) wnp(n) B (3.12)

Each wi(i) on the right hand side is a function of the coordinates of the

ith electron alone and is called a molecular orbital. The product function
is often called a.Hartree productr The probability density.function IWIZ

: computed_from (3.12) is then the product of one-electron probebility
‘densities [wi(i)lz. From orobability theory, this can only be so when the
'events associated with each of the probabilities |wi(i)| occur independently
of one another. Hence, physically the orbital apgroximation is equivalent
tolthe assumption that the various one~electron molecular orbitals are
independentiof one anotber, or:in other uords, correlation betoeen’the
verious electrons is neglected.‘ The Born—0ppenheimer Approximation applied to the
totel molecular-waﬁefunction(ae=showniin equetion 3.6)sinilarly'eeparates

nuclear?and electronic'motions.

3.3.1 Molecular Spin Orbitals ,
| The one electron orbitals in (3 12) specify only the apatial \ -

,fdistribution of each electron and in that respect are incomplete. In addition
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' to spatial motion, described by wi(i) and reflected in its orbital angular
| momentum, an electron also possesses an additional intrinsic angular

~ momentum which is a manifestation of relativistic effects identified with

electron spin.

The spin angular momentum is represented by the veetor.operator s
whioh has the components E;, ;; and E;. The spin operators‘all commute
[19] with the general Hamiltonian operator. This is a useful pfoperty since
it impliee that the eigenfunction of the spin operators will also be the
eigenfunctioné:fwith different eigenvalues, in general) of the Hamiltonian -
[64]. The components ;;, E; ann ;; ail commute with the.spin~squared
operator §2 but not with each other [17,19]. Spin functions may therefore
be chosen which are simultaneously the eigenfunctions of" 82 and one of the .
components of S usually arbitarily taken as s 2t )

.The spin operators are best defined in terms of ﬂﬁeir.operation on the -

’spin function U(E) and B(E) whe're £ are the spin coordinates (which are

‘entirely independent of the spatial coordinates x, y and z) of the electron

[18]. ' : - : | - *
== 1= | \/\ o .
s, a(E) = 3 B(D) - RS
RO =3a® . E (3.10)
—_—— 1 A _ : . :
o sya(E)v =3 i8(&) | o ‘ : | E 7(.3.15_)
i —8'(59 '-—-%- 1a(E) o . ‘ - . (3.16)
,'EE(E? G e | | “ B (3.17)
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a(£) and B(E) are in units of %; where h 1is Planck's constant and has the
units of angular momentum (energy x time).

The complete wavefunction of a single electron is a product of a
spatial function (like wi(i) in equation 3.12) and a spinfunction, and 1is
called a spin-orbital. A giveﬁ'spatial orbital wi(i) may be associated with
either a or B spin and hence may give rise to a maximLm of two spin-orbitals

wi(i)z(a) and wi(i)ﬁlﬁ). ‘The general form of the orbital approximation then

becomes

¥(1,2,7eee ) = 9y (1Da(D)4,(2)8(2)¥,(3)a(3) ... ¥_(n)B(n)
' (3.19)

where the pumbérs 1,2 .... n specify the appropriate épatial or spin
coordinates of the respective electron. Equation (3.19) is normally contract -
to

>

¥(1,2, om) = 9 DV el b @-DR@) (3.20)

where the barred orbitals i&(i) are B spin orbitals and the unbarred ones

‘are a spin orbitals associated with them. .

3.3.2 Slater Determinantal Wévefuncﬁions, the Antisymmetry Principle

and the Pauli Exclusion Brinciple.'

An important characteristic of an electronic wavefunction is 1i:
behaviour under permutation of the constituent electrons. 'Siﬁce ele. . ~ons
are indistinguishable particles no physical—prdperiy of the system can be
affééted by ;nterchgnge of the coordinates of any two électrons. This
impiies that the ptobability density function ?2 must remain unchanged

‘under such a permutétion.L Hence there are only two possibilitieé
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¥(1,2, «vee 133, ceeo m) = 2 ¥(1,2, .... 3,4, .... n) (3.21)

-

It can be shown [19] (see below also) that only the antisymmetric wavefunction

is compatible with the Pauli Exclusion Principle. Hence
?;jwcl,z, ces.m) = = ¥(1,2, .... n) (3.22)

where P,, is a permutatioh operator which interchanges all the coordinates

i]
(spatial and spin) of electrons i and 3.

We see that wavefunctions such as (3.19) do not satisfy this requirement.

For instance 1if

¥(1,2) = ¥, (D), (2)8(2) " (3.23)
then

P ,¥(1,2) = ¥y (2)a(2)v, (1)) BCED

and therefore

P ,¥(1,2) #.- %(1,2) | - © (3.25)

However, if we write

v

' B De) ¥ WEW | O (3.26)
w(l’z) - : Co '
i.e. \ N -
¥(1,2) = ¥, ey DBQ) - ¥ (DBDY, (2a(2) (3.27)
then ' '

Pp¥(L,2) =9, (2)a(2)¥; (1DBQ) - 4 @B@Y M) (3.28)
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i.e.

PlZW(l,Z) =~ ¥(1,2) (3.29)

which then satisfies the Antisymmetry Princiﬁle giveh by (3.22). To
completely'specify an electronic wavefunction in the orbital approximation, |
therefore it only remains to define ¥(1,2) in (3.26) such that it is

normalized. Hence a two electron wavefunction can be completely specified

by the following Slater determinant

b (e b @BA)
¥(1,2) = 1 ‘ ' (3.30)
B@a@ W @B

" where n‘is a normalizing constant.

For a closed shell»aystem of 2n electrons where each spatial orbital
coﬁtains the maximum ﬁossibleftwo.paiied spin electrons the Slater
determinant, whichvis the simplest orbital wavefunction that satisfies

the Antisymmetry Principle is written as

S M ¢oY.1¢ D) ¥, (1)8Q) v,(Ma) ... c v (DB
| K@@y @@ D@ 9 @8O)
¥(1,2,....20) = I oaee..... ceateeeens ebireress semess shevmeses

¥ (2n-1)a(2n-1) ¥, (20-1)8(2n-1) ¥,(20-Da(2n-1).. .........

v,20)a(2n) ¥, (20BGn)  ¥,(20)a(@n) ..... ¥_(20)B(20)
. . ) } ' . v ’
(3.31)

This is usually abbreviated as :ollobs
¥(1,2,000020) = |9, (Da(D¥, (28D ... ¥ (20820 (3.32)

L :
< A
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by using the diagonal terms in (3.31). Using bars for 8 spin functions,

‘this is abbreviated further

¥(1,2,...20) = [y (1Y (2) ... ¥ (20)] (3.33)
Often tﬂe notation is simplified even further by dropping the identifying

electron numbers
¥(1,2,....20) = [ e V| - (3.38)

Equations (3.32), (3.33) and (3.34) all imply (3.31), the normalizing

constant being understood.-

1

Another way to write a determinant such as that invequationa (3.31) to ‘ﬁ
X : - .
(3.34) 1is as follows [19]:

P=, ‘ .
¥(1,2,....2n) = T Z (-1) ‘P{wl(l)a(l)wl(Z)B(Z)....wn(2n)8(2n)}\(3.35)
where the normalizing factor Il is explicitly shown, P is a permutation of
1,2,....2n and (—l) 19 +1 or -1 for even or odd permutations respectively.
For example the operator P which yields the permutation 3421 of the

electrons 1234 has the property
3421{¢ Ma()y (2)8(2)w2(3)u(3)w2(4)8(4)}-{wl(3)a(3)¢1(4)8(4)¢2(2)a(2)¢2(1)&L)}

(3. 36)
and the permutation 3421 ia odd because for instance, 1t can be written

as a product of three separate permutations bf electrnns 4 and 2 (P 2) 3
and 1 () and finally 1 and 2°(F) R | |
A Slater determinant satisfiea the Pauli Exclusion Principle becauae

Af any two electrona had 1dentica1 quantum numbers (including spin) then twe

3
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rows in the determinant would be identical making it zero. Further, the
Antisymmetry Principle is satisfied since interchaning two rows of a e
determinantm(which»correspondg to interchaning»the coordinates of two electrons)
only changes the sign of the determinant. Hence, Slater determinants are

compatible with the Pauli Exclusion Principle and the Antisymmetry Principle.

3.4 Energy Expression for a Closed Shell Configuration [19]

Derivation of the.BRartree-Fock equations requires the application of
' - the Variational Principle to the energy of the molecular system. It is

therefore necessary to, have a convenient expression for. this quantity in
<

terms qf the orbitals involved. For this, we will consider a cloaed-shell

w-t

electronic system (that is one in which all occupied orbitals contain.the
maximum two electrons and which 1s therefore a singlet state). Analogous

enpressions for open-shell electronic:systems'(in‘which.there is at least
one unpaired eleetron) apply. _ ‘ v. T = 1‘

The Slater determinant given in (3 35) applies to a closed shell systfs
. containing 2n palired electrons. To find the normalization constant I, the‘

I

—integrated probability density is gset to unity and we use orthonormalized

one electron orbitals. Hence

* ' . : . | e '
‘ f? ¥ d11d12 e dTZn 1 | ' 7 (3.3D)

and )
& ° s e

Sy3 ¥ R vy =6y, - BRSO .

:-Using (3. 35) ia (3. 37) and assuming, without loss of generaltﬁy, only real

unvefunctions yields

)j I —1) (-1) IJ' P{tl(l)a(lw (2)8(2)...1» (Zn)B(Zn)}
R - ,
X F'{vl(l)acl)vﬂ'gz)a(z)...t (2n)8(2n)}dt d'r ...ar ..1 (3 3&)

,)»'-
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The 1ntegration is over spatial and séin coordinaCes of all electrons. Noﬁ.
[19] the multiple integral in thia.equation assoclated with any particular
pair of permutation will be zero unless P and P' are identical. . This
fqilows ffom thé orthogqnalityréondition given by (3.ﬁ8)£sin§e anAintegrgtién
over ahy two spin orbitals which differ either in the spatial or spin
function must be zero.v Moreover.wheh P and P' are identical the multiple

.integral is unity. Hence the summation on the left-hand side of (3 388) is

simply equal to the number of permutations of the 2n electrons. This number

y 4
is (2n)! Hence ‘::y . ' ,
%)l =1 | ' | (3.39)
n="[(2n)1] * o : ot (3.40).

The electronic Hamiltonian givén By‘equation (3.2) comsists of two one-

electron terms and one two-electron term

H= H1 f H2 | 5 | ’(3.41)-
vhere the supefscript "el" ~nd the coordinates r Rk are understood and
\

where H is the one-electron term and H the two electron term. Frqﬁ (3.2)

"*»;'
.

we find , ' } C ' ; o N
p-l2oyy oz
H.o =) =29 =) Z T h (3.42) -
: e

and _ . i |
) H2 =11 ‘;;q-;‘." I 'L S ‘> : (3.43) -
T P<q - e ) .

N 4

. where - " R B S
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y

p is the number of eiectrons,'zA is' the charge on nucleus A and where atomic

.unit system units(in which th?'electrénic charge and mass and the normalized

. o .
Planck constant are all of unit magnitude) have been used.rpA is the distance between
the pth electron and the Ath nucleus and T the distance between the pth

CO¥e

and qth electrons. The core Hamiltonian H (p) is défined from (3.42)

to be

ke .
. ‘ 2 - -1 ' : :
Hcore(p) - l_v _ z 7 T i . . (3.44) \
N 2 p A A pA k
Hence " J
H =1 H%%@) (345 v

P

H®T€(p) 1is the bnejglecfron Hamiltonian and correépon&s to the motion of
an electron. in Fhe field of the barevnuclei;

Using (3.41) tpe energy expectation vaiue forla molecular-system can
be separated into onefelgctron aﬁd twp:electrén parts

I
o+

<¥|H|y> = <‘¥|H1|\P> + <y[H,|y>, (3.46) .

Using (3.45)

2n

<p[H v = 1" <¥|HEOTe (p) | ¥> (3.47)
o P | .

-

. where 2n is the 'total ﬁumber of electrons in the closed-shell system being
considered. Now since .all 2n electrons are indis;inguishable)and are treated
1d¢nii¢a11y in the.waveféﬁctioﬁ ¥

<v[H |¥>. = 2mer | [v> O (3.48)

<

% -
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Using (3.35) and (3.40) gives

A \"Y : ‘ '
o[ [v> - 1Y DFEDT o Bl (e ()B(2). .4, (20)8(20))

(2 (2n)1
PP

HEOTR (1) B {y(a(L)v; (2)B(2).. .4, (2mB(m) M dy..dTy,

(3.49)

alhy v = (@00 L 0T enT ffP{wl(l)a(l)w (2)8(2)...¥, (206 (20)}
: PP

!

core, .\ .
x H ,(1)P {wl(l)a(l)wl(.2)8(2).. .wn(Zn)B(Zn) }dtldrz. "dTZn

(3.50)"

Carrying out the integration over e'lectrons 2,3 ... 2n shows that all terms
in which P # f‘ must yievld, zerb. This follows from the orthogonality
condition expressed by (3.38). Hence only terms in which P - P’ survive

. and (3.50) now becomes

& : _ |
<slty |v> - [(zn-1>11‘1 1477 (o a@i DB@)..v, 2B0)

|

core = - ) y )
x.H ~(1) P{wl(l)a(l)wl(Z)B(Z)',;..wn(Zn)B(Zn)}dtld12.~..dtzn

(3.51)
Integration over electromns 2 ,3, 2n gives unity in each term (again g .
by 3.38). Summed over P this gives (211—1)1 "Also Hc ore is spin independént,
s‘in'c'e“é’i-orbit interaction termé are not included in the Ha_miltonian |
and inte}g:ation over the spin coordina’tes of eiectron 1 &ields a'fuf;her =
factor of unity. Hen_ée N e | '

AN

| . ; A
<¥|H, les=2) 7 v, (1) HEOTE Y, Wary L (3e52)
, {=1 : : P P

—
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where now the integration 1s over the spatial coordinates of electron 1
only and the factor of 2 with summation over n terms is a consequence of
the fact that there are two electrons in each of the molecular orbitals wi.

From (3.52) the expectation value of the’one-electron,core Hamiltonian

is defined as

Hy, =/ ¥, (1) H°°re(1)wi(1)drl | - (3.53)

Hence

<w]H |¥> = 2 2 H (3.54)
fag 11 . | . ,

The expecﬁatioﬁ value of the two electron term H2 can Be evaluated in a
similar manner.  For 2n eleqtroAs there are [2n(2n-1)/2] electron-electron
ﬂrepulsion terms because>e;ch pair contributes oﬁly once in the‘shmmation in
(3.43). Furthermoré;#iecause of the indistinguishability of eléctrons,-each
will give the same contribution. .

Hence

. l ) N N : ' .
;<W|H2|W> -.E{Zn)(Zn-l){W|r12|V> | (3.55)

Using (3.35) and (3.40) yields °

e[y |v = 2eem) a1 L 7L § S0P DT R, (Dav, ()8). .
PP
- PR |
o -1,
...*n(Zé)B(Zn)}r12 P {wl(l)g(l)tl(Z)B(Z)... (Zn)}drldtz...dr2

-

"(3 56)

~

:<?|H |w> - —{(Zn 1 122(-1) -nF IIP{wl(l)a(l)wl(Z)B(Z) ' (20)8(20)}
PP’ .
- ) P'{¢l(l)a(1)wl(2)8(2)...w (2n)8(2n)}dtld12...d12
'.,‘ 1
R (3. 57)
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Once again, the orthogonality condition ekpresseo by (3.38) leads to
_non zero terms if fiano P' are identical. This time however, because of the
two-electron term rlz,’e mon‘zero reeultrisralso ohtalmed.when'§{ difféié .
from F'only by the interchange of electrons 1 and 2: These two cases will
be consioered Eeparetely. |

Consider firet the case when P and P' are identlcal. There are (2n-2)!

oermutations'for each assignment of electrons 1 and 2 to any.two molecular

. orbitals. This cancels with the [(21:1—2)!]"1 term in (3.57); 1f electrone

1 and 2 are assigned to different spatial molecular orbitals ¢i andjwj both;)
may have a or B spins leading to four terms of the form 1/2 Jij where the -

]

factor 1/2 1is left over from (3.575 and where

Iy - 11y (1)wj(2) > ‘bi(l)wj(Z)drldrz o (3.58)
N B .

There are four such terms because the case where electron 11is in wi and 2

»is in wj with both electrons having a spins or both electrons having % spins ’

is 1dentical to the case where electron 1 1s in w1 and 2 in wi with the same
G

restriction on' thelir spins.

If electrons 1l and 2 are assigned to the same molecular orbital

they must have opposite spins and this gives rise to. two terms of the fo
1 -

J . ‘
2 744 ‘ S .
e The total contribution is therefore

‘n

2 ... & L '
1§1§+1 TR o e g

. o C
where the summations are over the n molecular orbitals. ‘ if and J j

two-electron terms with the integratiqn 1n (3 58) being over the six epatial

’.
- o
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coordinates of the two electrons. These terms are called the Coulomb
- Integrals and represent the Coulomb repulsion energy between two electrons
residing in the region'of overlap of the orbitals ¢i,and wj assuming no
electronic correlation (i.e. assuming that all electrons move independently
in the orbitals to which they are assigned) [19,881i ‘ |

Consider now the contribution to the energy (expectation) value when
P' and Fioniv differ from each other by an interchange_of electrons 1 and 2.

"If 1 and 2 are in spatially different molecular orbitals the following

four poaSibilities exist:

Permutation ﬁ' ' j‘ - Permutation P
b Da@) ¥y @@ - ey @e@)
by (D) ¥, @8@) L ey WB@) by e (@)
b B ¥, (e @) o @e@) v @)8Q)
RASLORNOLCS) SR AS LIRS

Here on%h'the assignments of electrons 1 and 2 are. shown since the other
' electrons must have the same assignments in both P and P' in order that a

non-zero value result, as mentioned above.

Of these four sets, the second and third give_vanishing terms by

13-

h‘integration over the spin coordinates. The first and fourth each give - %K
‘where ‘
o om —— 3.59
Kij ff¢i(l)¢j(2) 1y Wj(l)wl(z)dfldfz ' ( )

The %-term arises as explained above for Jij' The minus,sign is a con-

‘aequence of the fact that for these permutations (-1) (-1) = «1, . since
these pernutations can be derived from each other by a single interchange.

»In other words, if F is an\even permutation then B is an odd one and vice-

'fversa._ If electrons 1 and 2 are essigned to the same orbital then they
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~must have opposite spins and the corresponding integral vanishes by integration

over spin coordinates Kij is called the Ebchange Integral It is a six

(spatial) dimensional two-electron integral like the Coulomb Integral. It

reflects the energy stabilization due to the partial correlation of electrons

of parsllel spin [19]. . B

The final expression for the electronic energy of the system thfn becomes

Iyt (23

. 13 ij) (3.60)
i

. ' n
<y |Hly> = <¥|H +, |¥> = £%1a 2] Hy o+
. _ i

[l e 1=
[ aear 1]
(% e 1=

where Eel is the total electronic energy of the system as given by the eigen-

value of the Schroedinger electronic waveequation (3.1); The last equality
in (3. 60) of course only holds under the stipulstions of the orbital and
other approximations (e.g. the Born—Oppenheimer Approximation) made.

From (3.58) and (3.59) it follows ; .

- T . - " . i )
R,y = gy o I ¢ N3 §

Using (3.61) equation (3.60) may be rewritten then as

1 - n .
= 2] H,, +ZJ +Z y+YJ ZK
¢ i 25578y 211 13

f(.\ | ‘nn o 'i'_ L - T
=2] H, + Y1 @1, -K.,) o : ’ (3.62)
S T 13 | S ' : =

Bii is a one electron integral which represents the energy of an

4v’electron in a molecular orbitaI wi in the field of the. baré’nuclei snd |
’this is multiplied by 2 since there are two electrons in each orbitaltg ij"
. the Coulomb Integral, is a two-electron integral which represents the
Coulomb repulsion energy of two electrons in the. overlap region of orbitals
b'lwi and wj 11; the Exchange Integral enters with s negative sign in the

- ~~—~’

_energy expression because it represents the stabilization energj'of inter— e

P
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action between electrons with parallel spins.in different orbitals wi and
wj. (We note that the second. and third permutations in the set which

accounts for*l(ij have electrons with antiparallel spins and these give a
vanishing value).
One-electron energies can now be defined as

.
. n ‘ . ) "\\ .
E, =H,_ +) (23,, - K ) L - (3.63)

17 11
NI B

Ei is the energy of an electron in the molecular orbital wi'interécting

with the nuclei and the other (2n—1)_e1ectrons.

N

From (3.62) and (3.61) it follows that

N
1 n . i ) .
- E (E% + Hii) o | ‘ ‘3.64)
. Aléo from_(3.63) N
) ) 1]
2 E, =2.). H,6+2 23 )
i 14 13 i3 13

i=1 © i=]

-~

P g2} weila 31 as; - x,
2) E =27 m, + ~R ) +Y) @1, -%)
P N L 713 7 Ry 13 1j o

and-hsing (3,62) this becomes -

=2 E, = E + 2J - K, )
. e 2 3y 4
therefore: §@fﬁl _ ’
C .el n.. non - T ' - :
¥ 2] fEi -3y (zJij - Kgy) : S - (3.65)
R 15 ] 13 ' S -
Equations (3. 60) to (3.65) are forms that are useful 1n deriving the

»‘Hartree-Fock Equations after application of the Variational Principle.»

<
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<

3.5 The Hartree-Fock Equations [19,92,95]

" The energy expression derived above for a closed shell system can be
"used to.derive a set of differential equations for the optimum forms of the
molecular orbitals by use of the Variational Principle [17 19] According
to this principle, an approximate wavefunction describing a system is an
upper bound on the exact ground-state energy and the closer the trial
wavefunction is to the exact wavefunction the closer the approximate energy
will be to thejexact energy. The optimum wavefunction is then that which
corresponds to the minimum‘in'energy as obtained by varying the trial wave-
function with respect to variational parameters i{ncluded in, or inherent to,
the approximate wavefunction. The best choice for a trial wavefunction is,
therefore, one which is the least constrained and contains enough variational
parameters to yield the required amount of accuracy after application of
the Variational Principle. | |
The molecular orbital wavefunctions used to derive the energy expressions
(3 605 to (3.65) above are fairly flexible, the only approximations made in
deriving them being the Born-Oppenheimer Approximation, the Orbital
' Approximation and the orthonormalization of the individual molecular orbitals "
(3.38). The first of these approximations is generally extremely powerful
only breaking down under exceptional circumsta:ﬂes such as near regions of
curve crossing [68-72] Fhe remaining ‘two constraints are not seriously -
inhibiting factors either. Semiemperical methods such as CNDO and CNDO/S

which are based on the Hartree-Fock equations. have the added flexibility,

to reduce the effects of any approximations made, of semi-emperical

~ ST,

‘**parameterization.

The procedure 1s therefore to minimize the energy expeetation value
v<?|Hl!> where 'Y is the many electron wavefunction described above (see

equations 3.35 and“3,60 to 3.65). This is done by using the method of
S _ \ &
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undetermined multipliers [19].
A function G is first defined as follows
‘nn
G=E-2)7JE
. 15

where E corresponds to Eel with the subscript dropped for convenience,

ij.Sij (3.66)

E,, are the as yet undetermined multipliers and S

ij , i3
by (3.38). Using (3.62) in (3.66) results in
Tu, +11 5 -27]
G 2 H + ). 23,, - K,,) -2 E S (3.67)
AREEIM I SRt U LN I S € € >

A stationary point of the function G is such that the variation, 6G, in
G as a consequence of varying all_orbitalsvwi by an infinitesimal. amount

to wi + Gwi, is zero. The variation in G, SG,‘Ean be written as
<

6G =2 ) 8 H,, + J) (283, - 8K, )~ 2‘2 E,,8S _ (3.68)
| _g 11 1§ RS R M 1§ 15713

where from equations (3.53), (3.58); {3.59) and (3.38)

7N

'sni = T8 (OHOFE @, ()dry - (3.69)

GJij fswi(l)(fwj(Z) - wj(Z)gtz)wi(l)drl
1
12

I8, @)U )

3

¥y (1)dr))v, (2)dr, | " (3.70)

6Kyy = S80; (1) (9 (2) - wiv(&)dtz)u{‘i(l).drl

o jz‘ e s !;;. iaes & S
: E:;féwi(ZJK{?i(l) rlz.vj(l)drl?yi(z)drz | (3f71)

are the overlaps defined.
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Since electrons 1 And 2 are indistinguishable the terms on the

right-hand sides of (3;70) and (3.71) can be rewritten to give

Iy wai(l)(fwj(Z) =

"k rey
3 12

“14 12

;
I8 09, @)

j(Z)GTz)wi<1)671

Uy, @) — v, (2)81,)9 (1)6r

b

f5¢i(1)(fwj(2) Wl(Z)GT )wi(l)dT

(2)612)¢1(1)§T1

Defining the Coulomb operator, Jj’ as .

(2) w (Z)GT
j 12 j'

E ~
5

J (1)'

b

and an Exc'hange operator, Kj’ aé

K, (1)w1<1) - (fwj<2>

3 *12

wi(z)ar Wy @)

equations (3.73) and (3.75) égn be revritten as

- 184 (13, (W, D6y + Sv, )T, Wy W6ty

834y = /¢ T

K = fs¢i(1>xj;1)¢;(1)¢rl-+ 8%

From (3.68), (3.69), (3.77) and (3.78)

3"

(LK, (W)y, (W6,

3.73)

(3.74)

. (3.75)

(3.76)

G

(3.78)
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AN
’

ore ‘
éc-zgfsw ,1(1).H° Wy, (1)Grl+§§2f6¢i (1), vy (1)611+§§2!6w3 (1)J; (D, )8ty

'-ngsw (1)1<j )y, (1)67 Agf&\'uj (1)"1(1”'3 (l)Grl-ngijftswi(l)wj (1)1,
‘ (3.79)

Once again, because electroniwﬁ 2 are indistinguishable the third term

- ‘1. '

_in (3 79) is equal to theu .*the fifth equal to the fourth Hence -

s6=2[7 69, (1) [H°OF S0}y 4408
. ’ TR

.

,;.j'(1))&211)—Zzij¢j(1)]crl . (3.80)

IR

This expression holds for any electron ‘and since the 1ncrement 6*; is

_arbitrary the tequirement of the Variational Principle that 6G be zero leads

v

.immédiately to -

yeore - . K ﬁ R ;
[ + jXQ(?.Jj xj)]w jZ Ey wj/ e (3.81)
where
1= 1, 2, ...n
R .
and
j-l 2: «sonl, ’ . . ' :

,Defining the Fock Eamiltonian, F, as -
FeH ¢V -x, ~ % - . (3.82)
=T g0 3 _ o 7 | E

XE“*-" TT 3"1‘,%““:3-','. RN < £ 1)}
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Equation (3.83) represents a set of differential equations each withlsn'

eigenvalue E, .. The resson"for~thewsummstion~in(3;83)is that several-basis -sets could -

13

be chosen for the same electroniq wavefunction. Singce the elements‘E1j
form a Hermitian matrix [19] there exists a unitary trsnsformstion [IW] which
will disgonalize:this mstrix. Applying such a transformation the set in

(3.83) can be reduced [19] to a standard eigenvalue problem.
. i .

Fwi = Eiwi 1.1,2.sea.s N . . . . * (3-84) ‘

‘ These equations are commonly calledmthe,ﬂartree-Fock Equatidns. -

3.6 The Roothaan Equstions {19, 961

‘ The molecular orbitals wi sbove are spatislly delocalized over all ‘the
stoms in the molecule. It is necessary in the solution of the Hertree-Fock
equetions, for exsmple by the Self Consistent Field (SCF) Method described
below,‘to start ‘with an approximate form of the molecular orbitals. The T
most widely used technique is to approximate esch moleculsr orbital wi’
with a Linear Combination of Atomic Orbitals (LCAO) of the stoms of the .
molecular system. This method has the sdvantsge thst the contribution of
esch of the constituent stom to the eleCtronic properties of the molecule

can be discerned relstively easily. -7'[, S e ”,:A .lif_,> 'i N

Moleculsr otbitels nay be specified in terns of the stomic electronic

functions as basis sets.‘ Three .types of basis sets thst sre nost frequently -

encountered in theoreticsl ehenistry sre"(l) Vslence bssis sets (2) "e\lff{;f,

Mininsl bssis sets and (3) thended bssis sets. A vslence bssis set is the »;‘;i'

.set of all the vslence orbitsls of s11 the sto-s in the Ioleeular system.

A nininsl basis set is a set which in 'udee the valence bssis set plus s11

the inner orbitals of a11 the-stonra~ff'



.

- minimal basis set plus any number of atomic orbitals lying outside the

"~ valence ahell‘of'eaeh‘htom."For'iﬁStence'for the HF molécule the'valeoce
basis set would be the hydrogeo is orbital function ploe tﬂe Zs, 2px, 2py

. and sz orbital éavefunctions-of the fluorine atom. _Additioo of the
.fluorine atomic ks orbital function to this set dakes it a minimal basis set.
Addition of any of. the other atomic orbital functions such as the hydrogen |
29, 2p, 3s, 3p, 3d....and/or the fluorine 3s, 3p, 3d &a..., would make the

"minimal basis set an extended set. CNDO/l CNDO/Z CNDO /S and other derivatives ,

o

of CNDO for calculating electronic states use valence basis sets.

t

. The moieculer orbitals *1 are written as LCAO—MO's as follows

'g-f‘.'«'.

LR R ; N < 5. )
U . )

v

yhere Oﬁ.are.atomic valence orbital reel‘fnnetiooe. The summation is over
LA .

'the basis set of etomic orbital functions.

The requirement that molecular orbitals ‘be orthonormal as expressed
5\_/‘* R : :

by (3 38), leads to - ;

ZZ °u1 o1 TSy TSy . T (.88)
- H (m (l)dt R € X )3




oce : . |
L 2nm=2f7- wi(lwl(l)dr | (3.88)
\‘ i . © N
Hence ‘ ' s
. occ : |
=2/ 737 c* ek’ v1¢¢dR S (3.89)
iuvw . .
where (3.85) has been used. z
Definingvth'e density matrix PW as
. oce
PIJ\) = 2 g ‘cﬁi c\’i_ (3.90)
.
yields the following equation
. . - - ,
N~ | |
2n=) BoP S (1)¢ (v, =] P s I (3.91)
u} uv' T v 1 Gy MY Tuv . 3& , ”
Substituting (3.85) iato (3.53) yields
(3.92)
@y

i O N3.93)

e

é‘fhto (3 92) gives

RAs
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In order to derive analogous expressions for the Coulomb and

Excﬁange Integrals given by (3.58) and (3.5%»we write the following

molecular orbitals (following (3.85) o
PORPEW ¢v<1> S . (3.95)
@ - E ¢*(1> . i | . (3.96)
¥y ) = (X, 4(2) & | '_ (3.97)
\  | Vi@ - ; (3.98)

Further,-folibwing (3.90) we write the atomic dens!*v matrix PAO as

oce C ‘ '
' ‘ . A (3.99) ’.

\pn

e
sl '

Théﬁ, substituting (3.95) to (37Q$) into (3,58)'(§ith complex conjugation

. of the wavefunctions réintroduceq‘ﬁqr_coﬁvenience),

R @ -
-
Ty 1 c*i¢*<1)¢gj¢§<2) = ity e j¢ @dnydr, (31000
L e 1°xj u ajm (8, () F— 4’;\‘2)4’ (2)dr <3g,101)
uivo . R .
) # . ‘ ' S . . ,"" f
. 7‘/ N . L e
f .lm /( L4 . - ‘ \p‘ﬁ;::n L
aj(uvllc)‘ o . %ﬁﬁf;- ,,(3.10?)._

(uvIXaQJ- ff ¢*(1)¢ «(1) --2- j*(Z)Q"(Zl)drld'rz - Gam

‘Eu&
. H

]

ERY b
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" Similarly) the two electron six dimensional Exchange Integral given by
. [ i . -
(3.59) becomes
, > " . [

\)’A . i . .

e * - * :

v » Kij uqu ¥y cgj e coj(uA/vo? - . (3.104)

%;q_ .4%// 1’1 ,~ . |
, jj?order to derive the totql electron;c encrgy as given by (3.62) in
* ' " "

terﬁs'of the atomic asis fnnc Iohs, the core Hamiltoni has to be summed
g

@Zy" over 1, and‘the fwo eldﬁtrﬁn integrals have to be summed over i ahd i.
.,,u, _

,;L ;gﬂ ?}om (3.Qﬁ3 | ', ;f '%r~
e Y
R -{Z Wkoe B (3.105)
o i %4 iwv. T R TR . ' '
) , . . “(7:_ 7 ‘q o - ' ! ) R v .
. ./» L ‘ | o o \
7 Using (3.90) yields
27H, =) P._H_ : IS  (3.106)
g1y W S | S
Similarly o
C - . o/
S IYeLe=IlD c (uvha). o | (3.107)
i3 Y 15 mve s xj vi'y. | RS
‘ P ' 5 ¥ O
. 2
Using (3 90) and .(3.99) reeﬁlts S )
o g
Ci3 M f ukve e U Te T
Similarly / a o o
T - ,.‘.‘7" ‘,"‘l’ X ' o T . . . . i e
. L ‘{ bR ¢ "“ ’ . ; R . K '. . o
TR Y S P, Se(ur/ve T (3.109
A o) E §1t1j. i k{tép ) . SR R (__‘ )
o . ot ] . Ta'f’ e ‘
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 Substituting (3.106), (3.108) and (3.109) into (3.62) ylelds

1 1
E=) P H. .+ )} PP [{uw/i) -3 (uk/vo)]  (3.110)
o v pv 2 UAVO ‘uv. Ao 2 ‘

.
“
.

Cond

. | t | ‘ _
Substituting (3.110) into (3.66) and ut. «ng the stationary point condition ”i

6G=0 yields - L
-
J ' 1 N L
8L R B +F8L . PP [(/Ao) - -<ux/vo)] - 26 22 Eyy Sy = 0
Hv , uvio
. (. 111)

-

' Substituting equations (3.90):, (3.99) and (3.86) into (3.111)

1.’
8 % . - '
N 2 ;EV b1 %ut B’ Ei Evlo(5°uicvi¢§jcoj)[2(uv/Ao) -(A/vo)] 2§3§v6°v1 1 vj - ?
\\ I _ , o . o
N L.
N | ; (3.112)

ninimizing with re8pect to'c:i and eliminating the common summations over

R

. . s ) : ..
- N . - e 4 )
.
L& - .
A

Z 28, ¢ vi+ Z Z xj oj 1[2(““/*°) @A fvo)] = 2 Z E;j X °v3'§b (3.113)

i and\b\results int'
\\ o

-

 As before, it -can be shown that there exists 8 unitary transformation which
- o 4

- -when applied to the basis prbitale diagonalizea the matrix E [19]
"!erforming this trandfbfhation results in t‘, .
S Bymot * J R : *:_T T - (3.114)
ﬁ;‘ t;j:- Eiji_ij | (3)11;)'
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.
v

g{zuwcvi+ gcg €% Coy Cyg[2v/A0)=(ur/vo)1) = 2 g E, \Z) Cy1 Spy

A

Using (3.99) this becomes;

{{n o [ PAb(Yuv/Ao) - —<ux/vo)]} e,y ~ E é Cyy Spy = 0 (3.116)

Defining .
. ) 1 ‘ Ly
Fo=H+ g P gl o/ag) - 2 (A /vo) ] o s 117‘),
a . “_v., .:\!
A . , {r ;;‘1 e
‘equation (3.116) can be written in the form . , , thag‘
' . .","sl' -
; \"’\x | .) » '.'{"
. ) ) Po _ » . |
L, -ES Je, =0 ‘ |  (3.118)

These are the Roothaan Equations.

3. 7 Complete glect of Differeﬁtial Overlap Methods [18 19 88|

CNDO methods are a particular set of semiemperical techniques. . These
methods ignore certain differential overlap(defined below)’ integrals and -
’spproximate other difficult ones by using experimental data. There are

several general characteristics -that must be satisfied by approximate m.o.

(including CNDO) methods. Hence to. be useful firstly the methods should
be simple enough to be applicable to- moderately large molecules or _
molecular complexes without bpcoming prohibitively expensive in terms of i

9

computational time. Secondly, the approximations made §hou1d be accurate

enough to - descr(be the general physical\and chemical properties of"the
molecular system. Thirdly, -the theory should be developed in such a way that

the results can be interpreted in detail and used to suppont or discount ;_7

different hypotheses of the physical and chemical pictures thst may be
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available for ‘a property or properties of a molecule or molecular
complex. Io this reepect, appréximate semiemperical methods can often be
interpreted more usefully than complex methods which &ield mathematically
accurate wevefupctions. Finally; a theory which atteﬁpts to explain the
electronic properties of a molecule muet be sufficiently general to take
account of all the "actipe" electrons. Generally this means all the ’
valencevelectrons. Hence the usefulness.ot*ﬁtpolgsular orbital theory is
increased greatly by an explicit provisiop ﬁ%ﬁdo as well as 7 valence
electrons. The extension of quantum mechanical techniques to‘aZZ the,valence
electrons of a moleculeimust remain a major objective. The CNDO methods
to be described here attempt to remain faithful to these objeccives.

The differeotial overlap between two gtomic functions ¢u and ¢v is
defined as the probabilfty of finding'an.electron 1 in a polume common to
the two functions. This probability is proportional to the following
differential overlag%integral (88] .

S,v = 7 9, (D) 6,1 dry- N € 8 £

\

"where ¢ (i) and ¢ (1) are atomic orbitals. The Zero Differential Overlap.

(ZDO) or. thf Neglect of . bifferential ‘Overlap (NDO) Approximation is expressed

by \J';535; A tf o o . : : | B N &
S e g : ‘ : Rl
S . '
- - c.a\, .
: RN P N 4 _
S I¢F(i)¢ (mri‘yﬁ' S (3.120)

'Strict NDO therefore impliee a vanishtng pnlue for the overlap integral of
4,

. all nonidentical &to-ic ofbitals..'uh’ﬁote -here that equation 3. 120) is’
. @b P
very restricfive quite unliﬁe the orthornormalization q§ the molecular_
. ¥
5 orbitals expressed by equation (3 38). .!quation_(3.120)_is a drastic.
ey o |
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approximation for,although S v will be equal to unity if normalized atomic
orbitals arg used it is known [77) that S for adjacent centres is of the
order of O. 25 for 2p overlap, a value certainly far from zero. The only

~ real justification for the NDO Approximation is that it greatly simplifies
vcomputation. The Basic Huckel Molecular Orbital Theory is the strictest
application of the NDO Approximation [61, 77], but even it retains non-zero :
values for Suv if ¢ and ¢ are on adjacent atoms. CNDO and INDO (Inter-
mediate Neglect of Differential Overlap) methods also utilize (3 120) but
somewhat more cautiously. At several places in the-formulation of these
theories experimental data is used to include parameters which tend to . : ’
compensate for the approximations made, the large number of. possible options,

partly accounting for the\pumerous CNDO and INDO parameterization methods.

Only wise use of'emperical experience" (18] legds'to useful theories; None-

theless, it ‘is truly renarkable tﬁat calculations . rporating the NDO
at - “c . .
ApprOximation have been so successful, especially when, clearly, this RGO S

-~ .

. approximation is fundamentally at{variance with the principle of maximnh
overlap in chemical bonding [77I - |
The consequences of the NDO Approximation are é&ven below for the -~

‘major types of integrals encountered [88]

(a) Overlap Integral By definition .of NDO

sw' = J‘ ‘¢u(i) ¢\',‘('i)d'r i S o : »_ (3,..12_1—)-‘
(b)- Nuclear-Electron Attrahtion Int;grals - o .
ALY Wdr, A
Zk I = " 0 unleeb A o - (3.122) .
: : ‘ - . : Coe Y
(c) Two Electron Integrals - ~_ T, ‘ S S

RERNOLN (1) —-—2- MZN <2>dr 2 = (/o) = (uu/m 8,58 xo
' | 6. 123)
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These results (with appropriate qualifications to be described later)‘m
are used in CNDO. However, before this 1s done it 18 important to check if A
the NDO Approximation is invariant to rotational transformations, If it @ﬁ
is not then additional approximations must be made éb restore such invariance
[19]. Invariance to rotation 1s necessary because clearly whatever approx~
.imations are invoked in developing an m.o. theory it is essential that the
theory yield the same results regardless of the choice of the coordinate axis.

To see if the NDO Approximation is invariant to rotation cansider for,
example [l%ita rotation of 45° about the z axis. Thg. new axes x' and y'
are then related to the initial ones, x and ¥, in the,folloging manner,

X\ Gk T T Gz
T Gy

y' =\(x + y)//_
Consider the product of a 2 Py, and a 2 py atomic orbital. This product is

‘proportional t\ the:product xy. Under transformations (3.124) and (3.125)

the produdg bectmes, L S .
Cox'y =3 G- . | | T (3.126)
" It follows then [19] the differential overlap'oﬁov in the new axis can
be written in~terns'of‘the old ax Q?,'. ‘ ’ ’ ’
(@, py) = 5 L0, » - G, ) ] - | | (3.127)

'_Hence, ‘the neglect of differential overlap in one coordinate»syatemfis not

equivalent to the same approximation /the other coordinate system, unless

A the righthand side of (3. 127) is ne ected too.

tational invariance‘is testored if the

“"

It can.be lhown [19] that
i IO

additional approximation of ma ing two-electron integrnls depend only on

_the natute of the‘atoms A ahd B to which ¢ and ¢ belong is made. Hence,

1if the .additional quali 'cation'



. for all v on atom A ) v _
(mu/AA) = Y,y {and (3.128)
for all A on atom B ' )

' 18 made, th®nm as Pople and Beveridge [19] show, the NDO Approximation is
% .
invariant to @otation. Yan is theil an average electrostatic repulsion '

1 ~

‘between any vaiance-electron on;A»and.any valence electron on B. For two

PN

s o o .
electrons on the same atom the integral is again made dependent only on the

‘nature of the atom and not upon the nature of the orbitals involved [88].

-

Hence, T on ' : ‘ ’ /~>
, A ‘ B _ -

© (pu/uu) - Yan for'all p on atom A | ) : (3.129)

From (3.123) and this additional simplification it follows that

L} ' 9
a Sl !

L » \ o for all u on atom A
B ' If¢ (1)¢2(1)-—— *x(2)° (2)411d12-(uu/xx)-yAB {and
o o ‘ o o . for all A on atom )]

30)

- (uu/uu) = Yaa for all u on aton;A.
. %

K
rv‘,‘

We note here that the NDO &pproximation, through equation (3 123) implies

automatic neglect of,all three and four«centre two electron integrals. (If

all the atomic orbitals ¢ ’¢v’¢l’¢ belong to one atom then (3 123) ia a
”'one-centre two electron integral. If theae orbitals belong to’ two different3fi'
-atoms, then (3 123) is a two-centre two electron integral. Similarly ‘

'(3 123) is a three or four centre two electron 1ntegra1 depending on whether_

l,the atomic orbitals belong to three or four different atona~reapecttve1y). :L_

If the Zero Differontia:

7g_then equation (3 118), the Roothaan.equation for the LCAD coefficients -

"f._‘."v' . ."

;p”ia uaed for a11 atomic orbital paits f;[f?




simplifies to

1 F

v uv cvi = i "ui

E, ¢

From (3.117).when u=y

F
uu

= H
uu

+1 B L) - 2 /uoy)
Ao

(3.131)'

Using (3:123) (uA/uo) 1is non-zero only when u=d, u=o. Hence pumv=i=g and

When ufv (uv/Ac) .= 0, hence from (3.117)

B
HY

= H

Hu

- % Puu (uu/un) + )X‘ ?xx(““/“) :
1Y

-

.1\ 1
. :‘-_Fw By -3 Puy(uu/w)

Substituting_(3q128);aq9

*

haRey
iR ' : ¢ﬂ on atom A

t

o ' ¢)‘,on atom B
$ on atom A .
i m 1, wo
P TR T 3B as
T ’ *v on atom B
‘Defining.
D Pa=lfp Hhoms

. t

.iun V-n : 2) Pll‘;{M + szB.Bo AY‘AB‘(’IJ. on a_ton A)‘

) 2

i

u .

o

N

-

A ¢

o

(3.132)

!

(3.133)

(3.129) 1in equatioms (3.132) and (3.133) we obtain

&

(3.134)

(3.135)

© (3.136)

L

(3.157) -

SR
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PBB is- the symbol for the total electron density associated with atom B,

From (3.44) the core Hamiltonian operator’becomes.

12 v . - | R
He =29 —%vB o (3.138)

where now - VB is the potential due to the nucleus plus the innercshells‘

of atom B. (This is in contrast to the ngre(p),defined'by‘(3.44).inmwhich ,'
the field considered is that of bare nuclei. Since in the CNDO Approximation
only the valence:electrons are treated explicitly the inner shell electrons
potential field ée included with that of the bare nuclei).

The diagonal ‘matrix elements Hu are then -given by '// O 4

.am'l - <u|--—v v, B§ a"" . S - (3.139).

Hence ‘ ' ’ ' - L .

H =0 -):"<g|v [u> - o ©(3.140)
LU L ¥ 7Y B _ _ : ‘

where

1.2 oo . U

‘¢ being On atom A.G,U is a one;ggntre term and s essentially an atomic
quantity being equal to the energy (kinetic plus potential) of the electronbc
in orbital ¢ in the field of the core of its own atom. The remaining'
terms in (3 140) are two centre terms giving the interaction of an electron
in the valence orbital ¢ of atom A with -the cores (nuclei plus inner shells)
; of other atoms (collectively termed B)ﬂgﬁthe off-diagonal core Hamiltonian -

.matrix elemente H can be divided into two groups. The first group involves

diffenent atomic orbitals ¢ and ¢ on the same atom A.' The second group L

.

consists-of terms ' g ¢ on atom A and ¢ on another atom B.

[

Consider fira _the case where ¢ and ¢ are on[gre same aton A.-~Aa;;vlw”-

above the matrix elements H can be separated into two qirts

et
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B ™ Uy °B§A <wulvglv> o6, na 4 - ()
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This 19 analogous tolequetion (3.140) abgve,fthe first férm being a one~
centre term, the_seéoﬁd £e1ﬁg a set of two éentre terﬁa.ln the CNDO Approx-
imation, the valence orbitals on one atom are assumed to be indistinguishable.
. Hence, the interaction enérgyfof ggi{Qalence,electron on Qtom A with the
core (nﬁcleilplus innef shell electrons) of ah} atom'B;‘2u|VB|u>, is defined

as [;9]

1

<ulvni:5 - 3A3,for all ¢u,9n A R

“In CNDO neglect of monatomicl_(tbu,cvv both on atom A)pditferential ovérlap is

- extended to include t?i condition
<u|VB|v> = O' ¢°,¢‘ both on atom.A,' : : ' o - (3.143)

Now since ¢ ,¢ qre functions of the s.p,d... type and ¢ and QV are not

dentical in. equaéion (3. 1&2) althougb they are both on atom A, 1t can be

shown that BYWNECTY argumen:s require*that Uu- -0 119] Hence from @A. 142)

Using (3.142) in (3.140) yields

‘I.iuutuuu"BgA “’me.lA : L _(3.145‘)
It remains now to find an expression for the off-diagonal core matrix

ielements H with ¢ and ¢ on different atoms A and B. In CNDO, differential
:;overlap is not neglected here since these e1¢unnts~take account of the

fbasic bonding capacity of the overlap betueen the orbitals. In other words,

,in CNDO diatonic differantial overlup is not neglected although monatonic




\

' off diigonal matrix elements are written as . . -,

1.2
Huv <u|— 3 v

- V= V. [v> -

A= Vpl <u|v |v>¢ on A, ¢ onB

chinn)”
(3 146)

where the aecond term represents the 1nteraction energy of orbitale ¢ and

¢ with the cores of third atoms (beeides A and B) c. In CNDO these integrale

are neglected eince they are comparable [19] to the three- and four-centre o

‘two-electron integrals which as pointed out above, have already been ignored.

The first term in equation (3.146) is a function of the local environment o .

(namely the fields of the atomis A and B to which ¢ and ¢ belong) and 1s

hence a measure of the lowering of energy levels as a. cono«quence of an

electron being in the electroetatic fields of two atoms limultaneoualy.l,v'?

Analogously to the integrals, Bo end 81, in Mulliken s CT theory (described

‘in Chapter. II),_thia term: 13 called a reeonance zntegruz and ie denoted by

’Bgv; Hence equation (3 1&6) becomee .

v o
by

Hulv ‘Bu\’ ¢ on A,- ¢ on B B ' | :i--‘.. . . : (3 1&7)
CNDO now: makee -an essumption which is the result of "emperical

experienee" [18] Bﬁ 8. aeeumed to be proportional to s o the difﬁerentiel

~0verlap integral‘ It has been found nece--ery to d? thie in -pite of |
equation (3. 120) einee ezperinental reeulte indicete B correlates well

with L Heuee the off-diﬁhonal Bemiltonian,natrix elenents are written ;ﬁ
o , .§/~ X . .

. B fas ) , . ] ’~, ’ :
g as - L g B T, o

~

v 7(3 148) ;AJ_';

' dtrect conflict vith this well m.épmczm-‘- cuno then usin KDO-with:

T
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-

_+ caution and compensates for'tﬁe'coﬁpdtatiﬁnal si;uplificitidna of NDO by r
the introduction’ of semiemperical r.lqtionshipb such as that illﬁetrated‘
by(31aa) AT T

Using (3. 145) in (3. 137) givu the followtng equation for the diagcmal

Fock mtrix element

o e e s

— e SR [ .

' ' o » ‘ , (3. 149)

Equations (3 135) and (3. 148) y:leld the . follogihg expression for the

off-diagonal Fock mtrix eleménts L.
S - 80, s Llp . ¢ on atoiA o¥ oia atom B - (3.150)
S AB uv 'z uv AB hgY) !

and ¢ ate on the same ato- A :hen H - 0 from equation (3 144),

2

nce ,(3 135) becomes y _' o o SRTE .' "
Pllva 2 uv‘YAA 0*¢’b°th°éft(?'*- EECAPRIR -..-.‘(3";"_515___
The net: charge qn_tny atom B is given by

\ Q. ZB PB_ T R o | (3 1-52)

‘ uhere Zy 1s tbe core (nuclous plui 1nnor shell electronn) charge of atom

3 and BBB 1‘ the valencc elcctronic dmity on atom B. RN ) | R A-»-:'
u-ing (3.152) 1a (3 149) JEAN TR |
1

‘ . (3 153) ?
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" Using equation (3.117) in equation (3.110) \

AR Py By +F0) (3.154)
u u\) _ ‘
"This 1s the total electronic energy of the system.J The nuclear—nuclear

_v.

repulaion energy then may<be added to give‘the expression for the total

.Qbetgy (ignoring nuclear kinetic energy) by ueing the Born—Oppenheimer

<

approximation and replacing the nuclear charges with. the core‘charges in
N : N 'J. §

‘equation -G.10Y. This gives C By ga: L

. “ : Lo . 7
J -, ; .

1», M ) ‘
E=L J P +F Y+ .} g , - (3.155)
L2 uv uv uv uvm Aq, 252 B°AB . R

This completes the basic derivation of the CNDO method. . The maihk

o \m
a * 3

‘ateps followed 1n thia derivatinn are €
(1) The Born-Oppenheimer approximation 18 used to eeparate nuelear pmd'

°

electronic motiona, allouing-the eleqtronic Schroedinger equation‘toﬂbe‘

S
(2) A'molec;{;r orbital approach ia taken. The‘molecular oeelectron wave-
function is written, in the Orbital Approximation,}aa a pro&uct of n one-

electron molecular orbitala, eleetron correlation being 1gnored.- )

(3) Molecular apin-orbitala‘:re g;itten as Slater determ;P’nts conaistent::
- with the Pault Exclunion and Exchange Anticymetry Principles. A |
(%) An expresaion for the electronic energy of the ayatem ta obtained in |
terns of a one-eleetron core-Hamdltonian and . twb-electron Coulomb and

Exchange Integrals.- The core-yamiltonian ia a three dinenaional integral

",‘.k over the spatial coordinatea of an electron, aﬁd representa the kinetic plus

5. -

al energy of 1nteractionaof an electron vith all the eores of K

u[ t é. atoma in the moleeular ayetem (the tern “cote inplies the nucleua and

inner electron-ahella)., Ihe Coulomb 1ntegra1 1l'a;six-d;nensioue1 1ntegra1-f

B q

oVer the epatial coordinatea of ad& pair of electronaﬁin the ith and jth

:-: ,,\’. Sl
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molecular orbitals and represents the repulsion energy between these two
electrons in the region of overlap of-.the orbitals *1 and *3 The Exchange

Integral is also a six dimensional integral over :the spatial coordinates of

two electrons in the ith and jth molecular orbitals. It reflects the energy

fgtabilization due to the partial correlation of electrons with parallel

ol
. A\I‘
{ C fu;:

.N‘;

q

spnm. _ : g

‘(5) The Variational - -Principle is now applied to the energy expression derived

above to derive a set of differential equationa for the optimum forms of

‘the moleculag orbitalsf These are the Hartree—Fock equations which resemble

the Schroedinger time—independent eigenequation with the Hamiltonian

\

replaced by the Fock operator. The 1attersis .an operator whi b incn rpqmates

. the above-mentioned core-Hamiltonian, the CBthmb operator (ann‘*sous tp

(8). naffe:inéiai owerlsp 1s ignored in all :aa electron (Coulonb and

. normalizing the molecular orbitals. ¥

the“Bbulomb integral) and the Exchange operator (analogoua to the Exc :
o g _ N .3 '

iﬁtegral) " ﬁs'.‘? C _ ‘ Ee\, ‘ e

r*\; ) (}
expressing the molecular orbitals as fiﬁﬁﬁﬁ;Sombinations of‘Atom c Orbitals

“of the constituent atoms, For this pur ose, all vaIEnce electrons bf the

7 . 4 -'J

“atoms ate treated explicitly and 4'va1ence basﬁs set consisting of the\atomic

valence functions is used. The Roothaan .equations differ from ghe Hartree:

Fock equations in that they are algebraic rather than differential equations

.and also insofar as they involve the core Hamiltonian and the Coulomb and.
LiExchange integrals in terms of atomic valence functions._

",*(7) Neglect of Differential Overlap Approximation is ‘now invoked and o

.

' used in 8 semi-emperical manner. The overlap matrix is replaced by ” ‘

' ‘ﬁ_matrix in the ,Roothun eqnations and: differfxtial overlap is ignored in

g

e - o r
. . .o . . \

X ;kﬁwe) integrela 4n sueh a vay that these are’ non-zero onl; if the overlap



A,
o

Q

b

)

. -written as (uv/)‘o),-(uu/)\l)é

= repulslon) integrals are written as (uv/lo)=(uu7n)6 N (uu/uu)-yAA Y is

' temed an electron repulsfwn m*t:egral

.y . ] o .
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of each elecéron s orbital is with itself Otherwise the integral 1s
v

‘l\v

taken .to be zero. This is mathematically expressed as (u\)/xo)-(uu/)\l)s

; .

PV Ao
4 L :
This automatically imp%es ,the neglect of all three- and four-centre terms.
4. . . = -y “
okal invariance, which {s destroyed by the

(9) In ordor to resto;

'above. sta, an a&fitiona ppproximation is introduced This mskes all th‘e

‘* two—electrotr (Coulomb and Exchange) integrals depend only on t'he ﬁature of

Tk
the atom to wh c% electro'n atomic orbital be],ongsvand not on the nature
4 , g
of the orbital itself This enables the mtroduction of a semi--emperical
Yowo -

i parameter, Y‘AB’O ich depmdd sglely on the pair A ﬁfofxntoms dt}hsidered’ | m;

‘: n‘ 3 O ' .
and exprgsses the ave:tge °electros%atic repulsion betwe&an *gle’étro{ ;;on‘
&L %

atom A. and: any electron on"atom B. This means that all two, :

] LR

. .
2 U, $ro YAB for al]v ¢ ‘%a“y atom Ah;md all 9, , on

-anﬁ o;her atom' B. For all ¢, ‘on any atom A_ the- (oge-centre two-elelt'on —

pv )«o

DI

Q D‘

. LA
. ,;

PR

(lb) Diffe‘&:.ential bvérlap is’ ignored 1n the gt ;--‘,., BK ‘ressing ;.he int.'eraction S

energy of any valence electron on atom“A with the core of any other atoé B ;

A

- ‘
in the following manner. - <u|V fu> = N for all’ ¢ on A and <u Iﬁ)|v> =0

for all ¢ ,¢ on A. A is the interact;lon eﬁergy of any valence orbital on

J

_atom A with the core (nucleus plus :lnner-shell electrons) of aton B snd

-VB is the potential energy field due to the nucleus i&d inner-shell electrons _‘
N Vs .
, of atom B.- This approximation results in expressions for the mstrix é’lements

4 ‘core Hamiltonian gi\rEn by.H =g - 2 for a11 4) on A and H -.0- S

L R }uu-u " ByA nAB

foraall ¢, ¢. ‘on A with ¢‘f¢ tfu -is an .atomic one-centre term which gives
‘hr‘ ; : -

E

the energy of an electron in. ¢ in the field o "‘:ifthe core of b aton. R

)

‘Um; and LR "te/ both obtained semi—emperically, giving the CNDO method

added flexibmty. IR B

N
T e
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(11) The off-diagonal‘&otﬁe-éamiltonhn matrix elements, H v? for the case

. where ¢ and ¢ are centred on dl.fferent atoms A and*ﬁ is taken to be

*

'proporta\!@nal to. the corresponding overlap integral S o' with the constant

14 .

of proportionality, 823, beingj apother s'eimi-.empe.rical parameter. Hence, st
v H E- .BgB v’ ¢ on A, ¢ on B. Bence, here differential overlap is not N
:ignored. Experimental results indhate that there is good- correlation

-betvUen H v* which 1is callpdf the re'son;xce inteétal and denoted by 8 o -and

the overlap integral ; :24 L . S

(12,) The CNDO*%quations are g)ow solwad in ’“B&mer by the
| Self Consistent Field method. This method ; aiica‘lly.l'u‘rolves making an | ;V;:Z{"r

N *‘ O

initial estimate of*‘é’ﬂ molecular orbital‘% Here previous eﬁperience is
i .’
necessary ta :lﬁose set of molecular orbitafhcoeffficients which will gfve

C

»'l

'_-N..‘q o

; fast convergence.. i‘The coefficients of the approximate molecular orbitcgls K

are\ used towe@@truct the gensé‘;:y matrices P v and the FooMtrix eletients

B‘u%: The CNDO equations ‘are theg solved 3 for instance, by matrix.@iagonal—: .‘S“__‘.g}‘
,ization techniques This yields a new set of _coeff&ients for the molecular '

N N_ 2

he coefficients or the

‘orbitals. .'l'he proce e’ is repsated until eit o

an

'energy Xo not chang more tba‘n a predetemined amount.ﬂ 'l.'he wavefunctions -

“‘ [

thus obtained are said to b‘ self cdnsistent with the potential field
v N

(potential energy terms in "the Fock matrix elements F ) they generate.

3.7.1 CNDO Parametgrizations |19,86| S : R :,§

A complete CNDO calculation requires values for the overlap integrals

| suv and V (i e. the energy of an electron in the field of the core - . .4-,

vjxof its own atom and the interaction energy of any valence electron on A with

. _the core of B, respectively) terms of the eore Hamiltonian matrix, the

,/- .

. electron repulsion integrals y and 7 , and finally, the bonding parameters o
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(V]

e " . evaluated that gives rise to the diffarent CNDO methods, CNDO/l, CNDO/2

& owoss. o .
_ ¢ -k ? ’
' 3.7.2 The CNDO/1 Parsmeterization . ., R
\f‘:‘ ;o This is an eariier parameterization schen- of Pople and 53831 [86]

Sy "CNDO/I was’ later“—eplaeéd by the much more succesaful s%heme CNDO/2 871, -

< fto be described below, and is seldom used: nowadays. Nohetheleas, a study of .
. » i

.CNDO/1 especially in relation to CNDO/Z, shows clearly the importance of

3

o

Atw;_choosing the "adjustable" parameters in a eemi—emperical manner. T

»

The - CNDO/l method can be used fof’atoms in the periodic tablewup to‘ S

fluorine. The basis set ¢ consists of\SJater-type %alence atomic orbitals.
- ‘¢ . .

7 The overlap integrals are calculated by orthononﬁelig&:g S . _,.~ X
» o &

E . ) . v . . ‘
~ ST ) - M . : 4 iyt ) B -
b Lo -

- "Q A§uv'-u6uv ,fog ¢u,¢v on the'eame atom A. <‘~ ' s S
o e . L . 181 - C T y e
\ Two“centrewoverlapKintegi:ls are evaluated in a prolate spheroidal Kalso’ e
- called conﬁapll elliptical) poordinate system [19 97] in terma of a ao-callegjjz
ﬁ)" \b
reduced over}ﬂp integral [19] which is a function of fﬂe atomic orbital Do

» c‘_

- . quantum numbers, n a? 1 ar W nb, lb u, g where o, nb are the principal

v
[ ]

quantum number& of the ”P orbitals (centred on atom A and B), 1 ’ lb are
' fthe azimuthal qUantum numbers. is the magnetic quantum number, ‘and e and B

ere the epin quantum numbers [19 The scﬁeme is described in detail by

v ot . R

(; ) PoPle and‘ﬁ2§eridge in Appendix . of refetence [19] . 1# 113"
M\g : : The two~e1ectron repulsion ihtegtals, YAB’ are' ;;Ecdlatedrtn a Bﬁmilar);j

mqaner using only the epherically symmetrical [} orbitals .th

s diffetentiation is.nede between 8. ;ud p orbitala [19 88] f

- . | : »
iy
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and

‘ 2.1 2 ' _
(uu/uu)-ff% (1) f12 ¢u(2)d11u12-YAA-Hs (1) —l-z-s (2)d'r1dt2 %“A on A
‘ (3.157)

Furthermore,~the terms VA:B' rep’r‘esenting the interaction between a

valence’ electron‘&n A with the core (nucleus and inneﬁr-ehell electrons) of
a’

. other atoms B &eleo calculated using 8 valence orbitals of A and
» .

gting the B core as a point charge at the position of the.B nucleus. ‘
He L .

e

.’; .‘“;, : - ) 3 ’ | T .
1 ‘ ST Tt
o VAB Zy I sA(l) (r dr, : (3.158)
U" '; -0’* > ) ﬁ‘. ’ “ ' .
- wherg v the core charge of B and r;B is the distancé of the valence
e a7,
] v ’ [ . '
electrony'ﬁrom the R: nucleus. Q"‘-" fﬁ . Ly N

¢

L

e 'rhe terms Uvu, whicl: are. one-centre atomid&termegexpressing the. totgl

energy of an electron An orbital ¢ in the field of the core of its own

-

atom, could be calculated from atomic orbitals l,:l.ke the terma S uv? YAB and

N

VAB" However, in CNDO/l this is not done s:IEnce better results are echieved
. («3 o

vhen these parameters (U ) are obtained from experimentally observed atomic

energy levels.. R E O c T e e

At the level of/‘approximation used in the éNDO method interaction .

<

. % .
Uenergy between the valence electrons of an at:om X (bet’iveen Lirand F 1n the

periodic table) with an electronic configuration (23}"’ (2p) can be written
- as [19] '

‘&Yp“ﬁi W 2;.2‘ ¥ avz;; o ;«,rétmmenyu | '_f j; (3 159)

,tion-x* fomed‘by the renovai of a 2p electgpn frou x. 3."—,“‘3‘_’,"..

B ‘_;.~ B R _,“.-.v_,, ) . ' .- -
. ‘ T L DO I



- B 4
l;/ [}
B’ 26%, 20" Dyeml, s+ (a-1)U, , + L= 1)(m-z) (3.160)
»28°,2p )mmlyg g 2p,2p Taa .
. X AT . v - -
A ' | 3
The atomic potential of ionization from a 2s orbitalliq. by definition, -
: B ] . . , ) .'/’,,/. .
' '. | + 1 ) % . -
1,287, 20 =E (X", 26", 297 )-E(X, 287, 297) T T (3161 ey

Now analogous to (3.157). L ﬁﬂ»’";/
oo+ omel o on o 1 . I \»
‘E(X ,2s »2p ) (m-l)Uzs 25*“‘Uzp 2p+ 2(m+n—1).(m+n 2)?(“ ‘ ‘g , ‘\3.162)
Using (3 162) and (3 155) with YAA‘Yxx in (3 161)4 yields L
v e o X (7163
I (X 28 Zp )= -q§§ 2g” (r#ﬁml)yxx @; i T TRRRCES (3.16})
cﬁ)‘ . . ' ) '.i\‘ - . B :
Similarly, the atomic potential of»ioniiatien frqmue 2p orbitalvis;"
! . . i . , . ' R s R X N . v
_1,,:(};,'25 2P ‘)"“2'1: 2p-(m"-'“’l‘.)-‘7’ e P £ (3%1'-'64)
Now since WXX are, in CNDO/l calculated as d ihpd aHove,_the terms
U (U25 28 ¢ and 02 2p) can be obtained from equations (3 163) and (3 164)
by using experimental values for I and Ip. These values qfqiqnization'
tential are given in Taﬁle 3.1 below. L
Table 3 1 Ionization potentials (in. ev) used to fix Uﬁ dn CNDO/l [19]
” \ - N = "
~Atom H g L)i .‘ . Be i B', - c i L 0\ F . x%
2,8'2 75039 9432 14 os 19. 44 25 32.28 40"20‘
T -.354 . 5.96 .. 8. 30 10.67 13 ¥ 15 85 18 66
e SRR, N xS , : :
B v . o ,.'! o )
— <.~p@":'r'ﬂ;;v". SR »g, .-3 RS 0 AN
The only unSpecified paraneter now 1s Ehe bonding parnuétet BAB This
1s written as a bum of" two equally contributing parts. each due to one i -
L e .
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0 _

AB ™ 2 (B + 8y % R S (3.165)

B

: This r;duces the amount of semi-emperical parameterization necessary. The
values used in® CNDO/l are giVen below in Table 3.2

Table 3.2 Bonding_param%tersmBgA(inﬁev) used in'CNDO/l-[léiz

T : ‘ Y I S R i N
Y - ' A sl g 4
Atom 3 : ‘L1 Be <~ B - C N -0 F
' e ) .’-_‘1‘;.'.' (LN ., . ) X - e
-8 9 . 9 13 17 . 21 .25 3 39
'.:-'i« -»_f;‘,J” ' . ot I 4 ) . ‘« ' *
E S T I
3.7. 3 The CNDO/Z,Parameterization 119, 87] S ‘; . ﬁ"’ o
- T T S ‘ : R

8¢ eﬁg differs from ‘the~opne above in two respects. Firstly, it
etration integrals (defined above} and secondly, it utilizes
. _ g R :ﬂ“- .,H.' e "

g u

cal ionization potentials gn& electrbn affinities dn order toq

. ’ i o i . ,
fix the values for U w,T‘he modification& are. necessary to bring about
closer agreement between d&mputed and experimental results.
e’ . v oa
It is difficult to theoretically justify the neglect of penetration
‘; integrals.ueﬂagexer, doing this, which is equivalent to, hsst&ng /_ j?ﬁ{,.
R Zg Yap = ¥ I o b f'~(§m9
AB AB . : P S o .
Do . /% _
dbes appear to qompensate for errors ofrthe opposite sign introduced by
- : -

_the neglect ‘of differential overlap. Equation (3.164) can be’ rewritten as

e b
. B K Y

T -au‘a»+ ¢ ,;a/yAA _p R - .' | 4(;.16?)

e
[ ]

K . o S v

o P | ~ '

: ”fwhereszA i//fh;:cOre charge and we have éﬂhﬂ the fact that. 1n a neutral

‘ Do, .
’.atom K//total core charge, in atonic units, must equal the n:,ber of

1

//vhlence electrons (m+n in (3 184)) Ah anslogous equation can be derived for .

5 I BT I ) . .o

/

atondc electron affinities, Au4[19]

. ies)

e ‘, " w



- e
_ L |
From (3.167) and (3.168) @
. ' l ' - ‘ .o o v ' |
T (T, + Au)‘ U * (2 ) Yaa (%ng)

.

SN
- ‘:w' . . & . &
Using (3.166) (i.e. ignoring the penetration integral) and (3.152) in

(3.153) yields

Fw " U * Bua =3B, P )t"‘?ni PﬁkYAB ZgVan. .(3.3170)

R ) “’w

‘;rom which, by using (3. 169) the'following equation is obtained

F - -—<: )+ “PAA A) - 7, 1>JYAA+ XA (2, s Z57,p) ;‘

; , guu-l);]"" YAA"'BgA,(PBBYAB BYAB) ¢u On atom A

R e N »

o ] “ y - —l g
B Fuu 2(Iu+Au_') L@y

o

Using (3. 165)q1n (3 5;0) and (3 151) yields =

, , B 1 - - . o o
Fuv/ 2(BA f.QB) S“V -5 UY YAB ¢ on A, ¢ ‘on B : _(3;172)

SRR A T 4 T oeam

Equations . 171),"

G, 172) and (3.173),are the.basic equationq\of cunolz,:ﬁ‘:.‘v
Used with @. 142),"' (3 143), 3.148), (3 145). (3 148) and (3.155), the cmo/z /\ .
energy for the molecular system bay be*conputed.«;Thg electronegatiﬁities,

-(L, t%A )/2 nornaily used 1n CNDO/Z are given belaw 1n stle 3 3 [19]

: i
togqther with the bonding parameters for elements of the firat and second _
_taw of the period:lc t:able. L o e

C v e




f .
rn% tbf gonding.parameter for a second row element A, 8 is assumed to be

B

3.8 The CNDO nechod in Spectroscopy, CNDO/S [20-34] ~~ .

'va1ues" £ :he-"{:umsc

N’ l'r-
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CNDO/2 when qpplied to elements_in the first row of the periodic table
(up to F) is similar to CNDO/1 exceptlfor the two modiftcations concerning
neglect of penetration integrdls“add'hse of atomic electronic affinities

with ionizetfpn potentials; However, when appligd tp'the elements in the

secobd row of the.periodic'tablertNa to Cl), ‘ an additional modification'

)
has been found to be necessary. In this case the bonding parameters are

constrained by the following equation R o ' +

p = (KI2) @ + 8

where:x = 0,75 for second-r0w and unity for first—row elements, Furthermore,

related to the atomlc one~centre core terms Uuﬁ of an. atom C in the first

“row by le] - T L §§

»
P

Uss, 3s(A)+U3 L 3p4) , o N
© ¥ 0 SR - - )

B = B
€Uy 26 '2p,2p (

>

where the U "y terms are governed by equatioq I3-;67) The: values of B for

the second Tow shown in Table 3.3 are calculated 4n this manner. f
L A . .
e .

L\ A g

The methods described above, CNDOI2, in particular have been qui;e

' aepcessful in deacribing the ground electronic etetee of noderately %erge

;i'(coqpeining up to ebout 35 atqee or 80 besie functions, whichever is emaller)

NN

-f:methode °f4§h° Rertree-?ock level of computation which give approximate o
. . L 1,

‘ nnd) electronic atatee. ')*5“' Sl
. E "‘\J._ - s .

N

'moleculea [19] As described 4in. tbe above eections, CNDO/l aud‘CNDOIZ are W

1ecu1e(or R

::?gh various L
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. This method involves.using the basic,SCF CNDQ/Z wavefunctiogg,with a limited
amount=pf configuration interqction utilizing only aingiyrencited (reletive
to the CNDO/2 weﬁefnnotione) orbitale.5 ithCNﬁO/S"ﬁEEhodnrequiredléertein
changes in parameterizqtion, in the way that two-electron répulaion integrals
are cafeulated and}in,the treatment of the o and electrons. Hence for .
‘ instance, whereas CNDO/2 is parameterized for agreement witﬁ‘ﬁzfghitio :
ground: state wavefunctiono of diatomic molecules using Slater determinants
as trial functions, CNDO/S is parameterized on spectroscopic transitions_" -’

. using Virtual Orbital-CdnfiguratiOn Interaction (VOrCI) trial functions.jU

parameterization of a

This 1s an important point‘to keep in m nd since t‘ﬁ

’ A - KA
eemi-emperical method is.valid only. ;ﬂ\y;t&g set ﬁial functions for
:uyhich it has been‘calibrated If diifi, i}trial fnnctions ére used a’ * w7
complete reparpmetrization, or at least verification that tﬂe calibratian‘ie

valid within the particular approximation used, is required [18] Before

q
Table 3«3 Electronegativities and Bonding;Parameters (in ev)used in CNDO/Z [191

- L4
Ator - H 11 Be 'n" o s Q P :
o Mok M*&»gw,
(1 +4)/2 7.176 3.106 5. 946, 9 594 14 os1° 19.316 25.390 2.272°
(1, )/z . 1.258 2. 563 4.001 5. 572 7 275 9. 111 11.080 S e
- i & e et
N , B . K i
'“ -e°\ . ;9 SR _"%13’,’ 17 21 25 3L a9 S g
(I tA )/2 Na ~ZMB;"‘% - ":‘Piv - Srlf_ ‘tlgl :j} - ;,a{ﬁ't 7-;;;
(1 W2 2. 804 5. 125 7.771 10 033 14,033 17 650 21. 591 s
- (Id+Ad)/2 1. 302 9. 052 z 995 4 133 5. 464 6 989 8. 708 o

v-Bo : 0. 150 0‘162 0 224 0 337 O 500 0 713‘ 0 977

9 4’“11 3 13 1 15 1 18 2 22.3%
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Q"‘ r! . . . " ..
the details of. NDO/S are: described the method of configuration interaction,

v

o which it. usea, will be outlined. ,

‘ 3.8 1 The Method of Confipration Interaction: [10~1 .

' The Configuration Interaction (CI) technique can, in principle, be:

1

applie t any state of an atomic or molecular system. In this method the
Q

vavefunctionl ia written as a linear combination of a aet of Slater deter- :

. *

minants, built, in turn, from a set of orthonormal linearly independent:, R

baais atpnic _funct;iona [971. Hence the molecular wavefunction ia written as
. . . N ~,‘; .

¥Q@,2, .m =] C €Dy 2, oo Cw J ‘” Gany .

1 Lot

where Dj (1 2, vees M) ia a Slater determinant of the t:m fi;ccribed by :
te b

\a‘ny of the equat:ions (3 31) to (3 35), or a linear comb?!ﬁgtion of such

‘é’:’“%-‘m o
dete‘rminaa%s, Each of the terms D 3 *heﬂis made up o Y ectronady,
molecular orbitals orthornormalized eccording to equat:i!!mk E4 ,“’%'f‘"-‘

the molecula:; orbitals ia in turn normally written as an LGAO function\ as
P given by equation (3;85) [105] ‘ The functiona D j are called configuralions* .

S configuration functiona. l’hey are choeen by . experience and b trial o

and error depending on the electronic atate of t:he syetemamder")consideration.

Hence, for example, if a singlet 5&

used would be singlet wavefunctiona. Similanly for d aud triplet

etates. o A _— \ R ci 1 ) R I y

" ‘ . thfiguration Interaction methode can be applied to ground-atate ‘

18 being considered the cohfi\gurationa
/ y

wnvéfunctions as we].l, as’ excit.ed state vavefunctione.~ Gegerally. however S ."




L configuration would be l‘ ) | _ o '%& e ‘_”J L
’ e e L
. bi’:,i_ '- uv . : . ., .
le(l)vblm s ¥, (1)1:A.(1+1) q, (nJl ._‘#, -

then be wtitte.n as’

: electron to a virtual orbital :ls "singly excited".w} "

- -The superscripts uv on By descr&ba this.

. singi"e: vavefunctions, excited to vafiquu;‘"d__eg‘t’ur (i.m_m.-u doubly etc.)

Hence ' ' : e

g o P . -

070

T : . s 8 : ; /_
.

C.D, =1 !(1 2,....n) - nlw 1)*1(2)...& (1)& (i)... (n)l (3 175)

I'me other tetm 4n t:he expanl:lon (3 174) iare forned by promot:ing one or

nore elnctrons from an occnp:led to an unoccupiad ("virt:ual") scr grmmd '

state wavefunction._ The nunber of electrons pronoted defines the dagtca ot

excitation of the CI expansion funation.ﬂ Bence a wavefunction wh.ich diffen )

'..from the ground electronic Javefunction @a. 175) by the promtiou Qf \one

px:onoted #Igctrons : :Q".

where the (i+1)th electrou has been pronoted fton m bccupiéd uolacuuf

' otb:lt.al v to an. orbital \(hnoccupied :[n gthe SCl" gtound vavafunction) F ve |

5, e - N S nE
' Jacond t:ern_in 63 174) could

Sy

AN
.




_The wavefunctiona choaen—nre eigenﬁunctiona of the spin operators §2 and

v s .

s:. Henqg singlet wavefunctiona are eigenfunctiona of 32 with eigenvalue

B}

_.).

RS 26TOL Doublec aggktriplet wavefunctionn 8 are. eigenfunctions of s2 with

f'{ eigenvalue- of; 3/4 and 2 ta-pcctively [18] ‘Q o ;_f ‘  j‘

T
L)

3 >,',;. E:ahplea of nina}y excited triplet configuration funcflons are given

‘. . .

bq.l(z) e “)"x'("ﬂ) vy (n)l e (3 180)

o ) - i B .
N 3 - [N B - .
i ." .,'. s .

“* @Q{hlmﬁ(z)...w (1)¢x (ﬁﬁf.-} (n)‘lifliv (1)01(2)---1*,‘(1)0 (4*‘1)“",;.-_‘["."

;\ C o~ . . . . . 8
* : - . L : ® oy . L =

. i . )
« Ve o &

Y

-
{74

;a of the tfiplqt4qre dis inguishedvby eigenvalﬁes of
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sufficient because although in many cases the first excited state of a

molecule can be reasonably well defined by a sinple configuration, higher

\

excited states cannot [18].

¢

The Virtual Orbital Approiimation can be improved by introducing
Configuration Interaction. In this (VO-CI) method, the excited state
functions are written as a sum (see equation (3.174)) of singly and doubly
(and possibly even higher order) configuration functions such as those given

by equatidns (3.175) to (3.182). Hence whereas the VO approximation uses

-

only a single configuration for deecribing an excited state, the VO-CI
method uses a series of these terms.

The configurations D, are chosen so that they satisfy all, or if that

]
is not possible, at least some of the symmetry conditions which the total

wavefunction ¥. 1s required to satisfy.: The fact that Slater determinants
are used implies that the primary requirement, permutational antisymmetry,

1s satisfied. The linear combination of Slater Orbitals which make up'DJ

are, as mentioned above, spin adapted (eigenfunctions of the operators 82

)

and ;;). Furthermore, they are also symmetry aéapted satisfying the space
symmetry requirements of the species (irreducible representation) of the

" gsiecular bSint group. Making each term in the CI expansion coﬁform to spin
and space symmetry conditions enforces these same conditions on the total

wavefunction thereby providing a classification for the excited state being

»

computed.

Further simplification which results from such a use of group theory

is 1llustrated by substituting the CI expansion (3.174) into the Schroedinger
"

+

time-independent waveequation (3.1) to yield

)C, =0 . (3.183)

E(H‘DJ - B,)C,

]

Premultiplying by Ci*Di*vand integrating over all space gives



(Hij - Esij)Cjci* -0 4 - (3.184)
where

Hy -.<D1|H|Dj> (3.185)

54 " <Di|pj> (3.186)

For (3.184) to have a non-trivial solution, the following secular equation

must be satisfied

ey

|H - SE| = 0 ' / (3.187)

and Si as defined above. Since the matrix

13 3

elements Hij vanish if D_1 and‘Di belong to different symmetry species, use

of group theory then simplifies t&e matter conéiderably, dividing the

with the matrix elements H

problem of computing the electronic state of a molecule into separate, smaller

" problems, one for each symmetry speciles.

The coefficients Cj of the CI expansion (3.174) are obtained essentially
from the solution of eqﬁation (3.187). This is usually done by a tri-
vd%égonalizacion.technique (in which all elements in the matrix except thcse
on the main diagonal and on the two.immediately adjacent diagonals, one on
each side, are zero) devised by Houséhulder [106]. The Householdér method is
. one of the more efficient gethod; of sclving eigenequations (for eigenvalues
and eigenvectors) and is the principal method in use today in many gomputer
programs. The ﬁublished form of CNDO/S [35] uses this method.

To recapitulate, the CI method, including the VO-CI CNDO/S technique,
involves the following four main procedures [104].

(1) Choosing a basis set {¢u} (seé equation (3.85)). In most treatments an

atomic basis set of the type used in the SCF Hartree-Fock approach with

—



-
'

[}
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perhaps some additional functions to incorporate the effect of electron
correlation is adequﬁfe. Hence, for in;tance, the CNDO/2 basis functions
also form the basis set in CNDO/S. The Coulomb and Exchangr lutcprals and
the Hamiltonian matrix elements as given by equations (3. 02).. (3. ".) and
"(3.93) are evaluated, as in the generai CNDO method in tems of th-ie atomic
basis functions.
(2) Forming LCAO~-MO's (éﬁuation (3.85). Here it is normal practice to use
.
the SCF occupied‘and,virtual orbitals because these orbitals whicﬁ maintain
ths SCF boundary between the occupied and virtual subspacesdare about as
effective, in general, as any other reasonable choice of molecular orbi;als

~-Y]. These orbitals are then used to transform the above mentioned

int grals to the forms using molecular orbital basis sets (equations of the

L] -

type given by (3.58), (3.59) and (3.53)).
The above two steps are similar to those described for the generai
CNDO method and to the CNDO/1 and CNDO/2 techniques.
(3) Choosing and constructing a set of symmetry adapted configuration
functions appropriate to the state or states, The VO-CI approximation is
used and configurations exciteq‘to various degrees are used in the CI expansion
as described above. The Hamiltonian matrix is then calculated in terms
of these configuration functi;ns.

(4) The Schroedinger eigenequation is then solved by standard diagonization

techniques such as that of Householder.

3.8.2 CNDO/S Parameterization [18,20]

CNDO/S is a VO-CI method of the type described above. Having been
developed with the specific purpose of describing the excited electronic states
and spectra of molecules, it uses a different set of CNDO parameters in order

to achieve tbia.éoal."
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The CNbO/l and CNDO/2 parameterizations approximate all two-electron
repulsion integrals between different orbitals as bétween a pair ofl2s .
orbitals and calculate this 4hantity from Slater type atomic orbitals. In
.CNDO/S Del Bene and Jaffé [20] retained many of the proven features of the
Pariser-Parr-Pople (PPP) method for pi electrons [107-109]. Accordingly, one-

centre electron repulsion integrals YAA (see equations (3.129) and (3.130))

are set equal to

= y‘ - Iﬁ - Aﬁ for ¢u on atom A

Yaa = Yuu .(3.188)

3

where Iﬁ and A: are‘the ionization potentiai and electron affinity of the

¢u orbital of atom A. . .
- Y
Two-centre electron repulsion integrals are approximated in two different

wa}qi It has been found that for singlet states the approximation due to

'
Mataga [57] works best. In this case the integral Yuv is written as follows

il
v

Yoy = Yap = Gu/w) = Dryp +2/0r +y 1T '(3.189)

In treating tripletstates the approximation due to Pariser is used. 1In this
case the two-centre electron repulsion integrals are estimated by the
‘charged~sphere methqd [88, 108, 110] in which p orbitals are reﬁiaced by two
charged spheres touching the corresponding nucleus. The repulsion between
two sets of such cﬁarged spherical clouds is taken 2s an approximation to the

two-centre electron repulsion energy and is given by

cYap ™ 21,5 (1 +p) (3.190)

with

2
T

‘ 2 ~1/2 :
p = [1+ (4R%/r,p)] (3.191)

where



(Lo

. R 18 the radius of the charged spheres
T, is the internuclear distance between atoms A and B
. A _ . A A B B
R isthosen so that Y,p 18 equal to the integral (pﬂ P, IpTr P, )
at preset distances T\
The second change involved in CNDO/S is in its treatment of the bonding

parameters B. * In CNDO/1 and CNDO/2 this parameter is defined,‘by equations

(3.148) and (3.165) as

1 0 0 :
B 2 S (BA + BB) . (3.192)

uv uv

.’
with 82 and'Bg being adjustable parameters which have been chosen so as to
best reproéuée ab initio calculations on diatomic molecules. In CNDO/S the

calculation of the overlap integral S in equation (3.192) is modified by de-
composing it into two parts, a 0 and a 7 component. The ¢ component is
calculated in the normal way (as in CNDO/1 and CNDO/2) from Slater(é orbitals.

\

The % component is also calculated in this manner but 1is multiplied\by.n

~—

factor k the optimum value of which Del Bene and Jaffé give as 0.585. - Thi\\

bonding parametefs in CNDO/S hence are given by

B =

1,0 T™.,.0 0 _ :
we "2 (SW + ksw)(eA + BB) : . (3.193)

Finally, the third change made is the recalibration of 82. These values
of B are shown below in Table 3.4 [35] and should be compared with the values

used in CNDO/1 and CNDO/2 and given in Tables 3.2 and 3.3.

Table 3.4 Bonding Parameters (in ev) used in CNDO/S [35]

Atom A H Li Be B c N ) F

-gg(ev) 120 9 13 5 17.5 26.0 45.0  50.0
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The CNDO/S method has been particu ariy useful f‘ describing the
*

electronic states of sevéral moleculeg [20-34].

In the present work, the application of CNDO/S 1is extendéd to Contact

Charge Transfer compiexes [36,37]. /In particular, the following chapter

deals with CNDO/S calculation of fhe excited states of contact CT complexes

of several donors with the 02 molecule.

| N\



CHAPTER 1V

»

NDO/S COMPUTATIONS
- Thig chapter d¢scribes results obtained by the application ofighe
CNﬁb/S method to c plexes of benzene (C6H6), aniline (C6H5NH2), p&rrole
(CAHnNH{.and HZO with 02.' The results obtained are discussed and/compared‘,

with experimental data available to date. Before such a comparigon can be

~made, however, it is nécessary to briefly describe the orbital wavefunctions
A : '

of the molecules inVolved. This is done in section 4.1. Experimental work

of other researchers, which 1s correlated to the computa£k§ns performed here,

. is outlined ln gection 4.2. Section 4.3 briefly‘diécusses the computer

coding of CNDQ/S together with the options available. (The cpmplete program

is listed in Appendix 1). Section 4.4 detailé the types of calculations -
made and the configurations of the complexes in?eatigated. (A sample-
calculation is given in full in Appendix 2). Results are presented in sectidn
4.5 and discussedlin relation to the experimental work outiined in section

4.2. It is shown that CNDO/S computations accurately describe the behaviour

of contact CT complexes, reproducing.experimen;al‘d;ta and predicting valua? -
for such quantities as contact radii and energies of formation which havé not

.

been measured yet. Section 4.6 concludes this chapter.

R

4.1 Molecular Orbitals Destription of the Monomers

A déscrip;ion of the molecular orbital wavefunctions is essential in .~
understanding and interpreting the results obtained. An understanding of the
shapes of these wavefunctions -explains why, for example, certain aﬁoms“in a -
given donor act as the ﬁajor electron denBity contributors in the formationg
of a particula; charge-transfer state. It also enabies us to tell which

m.o.g.ate involved in a given CT transition. ) o B

1
. o
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4.1.1 Molecular Orbitals of Benzene, Aniline and Pyrrole

The molecglar orbitals of importance to us are the least bound ones
which are formed by the valence electrons of the constituent atoms. Hence
the m and n molecular orbitals are the ones that account for the donor
proper??es of these molecules. The o frameworks are, to that extent, re-
latively unimportant. Y -

The benzene molecule is the easiest of the three organic donors to
treat. Its high symmetry (Cév) enables group-theoretical principles to be
applied in a relatively simple treatment.

In benzene the 7 molecular orbital wavefunctions can be fairly accurately
described by using Linear Combination of the éarbon 2p Atomic Orbitals,

- one from each carbon atom. Using group-theoretical principles these 7 m.o.s

can be written as follows [61].

3

1
Y(A) = — (¢, + ¢, + ¢, + ¢, + ¢_ + 9.) (4.1)
/6 1 2 3 4 5 6
1 @,
Y(E,a) = — (2¢, + ¢, - - 2¢, - 6. + ¢.) (4.2)
1 12 1 2 3 ‘ 4 5 6
) .
WED) = 5 (4, + 05 = ¢ = 6) | (4.3)
“ .
1 4
V(E,a) = — (2¢, - ¢, - ¢, + 2¢, - ¢ - ¢_) (4.4)
2 /fZ_ 1 2 3 4 5 6
1 .
VB = (6] = 6y + b= b, + b - 8) 4.6)

Here ¢i represents a 2p orbital of the ith carbon atom in the benzene ring.
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N
v(A) is the most strongly bonding molecular orbital of the six described

above. w(Ela) and w(Elb) are degenerate in the Huckel Approximation [6;]

and are somewhat less bonging in character than Y(A). w(Eza) and w(Ezb) are,
once again in the Huckel Approximation, degenerate, and antibonding in
cﬁaracter, while Y(B) is the most antibonding of all.

The bonding and antibonding characters can be understood qualitatively
in terms of the nodal planes in these wavefunctions. Hence v(A) has no nodal
planes. w(Ela) and w(Elb) both have one nodal plane - hence the subscript 1.
The nodal plane in w(Elb) passeé through diametrically opposite carbon
atoms (say Cl and C4). The nodal plane in w(Ela) is perpendicular to'the
nodal plane in w(Elb). w(Eza) and w(Ezb) each have two nodal planes as
indicated by the subscript 2. The nodal planes in w(Ezb) are perpendicular
to each oéher, one of them passing through diametrically opposite carbon
atoms. The nodal pjﬁaps in w(Eza), on the other hand result in the largest
concentration concentration of electronic charge on the two atoms through
which one of the nodal planes of w(Elb) passes.

_The molecular orbitals of aniline and pyrrole are somewhat more difficult
to treat. It is thought [130] that in aniline the nitrogen atom uses sp2
hybridization [133] 1n the for&gtion of three single bonds with the two
hydrogen atoms and the carbon atom of the benzene ring. The HNH angle is
therefore 120°, and the non-bonding orbital 1s thought to be an almost
pure nitrogen atom 2p orbital.

There is some controversy [130,131,132] regarding the molecular electronic
structure of pyrrole (and other similar five-membered heterocyclic compounds
such as furan and thiophene). Pyrrole may be regarded essentially as a
cyclic diene (that.is a compound having two carbon-cérbon double bonds). It

is a conjugated diene because the two carbqn-carbon double bonds alternate

with single bonds. The lone pair of électrons of the- N atom in pyrrole is
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thought to play a significant role'in the formation of the planar aromatic

" ring of this molecule which is similar to the six 7 electron ring of benzene.
(Each of the four carbon atoms contributes one 2p electron while the
nitrogen atom contributes its '"lone pair" to give a six electron r molecular
orbital [132]).

4.1.2 Molecular Orbitals of HZO

The molecular orbitals of H20 have been studied 4uite extensively by
several workefa [134-140]. The oxygen atom has the electronic configuration
152, 252, 2px2, Zpy, 2pz. The OH bonds are fairly accurately described as
?g}pg due to the overlap of a nearly pure 2p orbital of 0 with the 1s oibital
of H. There are two lgne pairs of electrons in the H20 molecule résiding in
non-bonding orbitals. The latter are due to sp hybridization in the 0 atom
[134]. These two non-bonding orbitals form two lobes, symmetrically located
above and below the molecular plane subtending, roughly, tetrahedal angles
with the OH bonds. The HOH angle 1s 104.5°.

’

4,1,3 Molecular Orbitals of O2 {s2]

As mentioned previously, the electronic configuration of atomic oxygen
is 182, 292, 2px2’ 2py, 2pz. There are relatively large Separatioﬁs between
the 1s andﬁ23 brbitals, between the 2s and 2p orbitals, and again between
the 2p and still higher orbitals. This implies that the parentage o0f the
molecular orbitals in O2 is fairly simply related to these isolated atomic
orbitals.

For our purposes the following approximate description of the molecular

orbitals of 02 provides an adequate model for ﬁndetstanding the acceptor

role of Oé.
b

The tightly bound 1s orbitals, one od each oxygen atom, give rise to

évo 0 molecular orbitals one of which i1s bonding and the other sntibonding.



o*(28) m.o.. Hence, if one of the oxygen at is denot }Si A-and the other
°*~é

by B then the in-phase m.o. combinations of the»t orbitals can be expressed

as
\
oc(ls) a ¢A(1s) + ¢B(ls) 4.7)
0(28) o §,(28) + ¢(28) ' 4.8)

and the out-of-phase m.o. combinations are governed by the relations
o*(1s) a ¢A(ls) ~ QB(ls) (4.9)

o*(28) a ¢Abs) - ¢B(28) (4.10)

Here o and o* are‘O2 bonding and éhtibonding m.o.'s and A0 ‘B denote the

atomic wavefunctions.

»

If the z axis is taken to be coincident with the 02 molecular axis

then the atomic 2pz orbitals also give rise to bonding and antibonding ¢ m.o.'s.

ence

- N

o(2p,) a ¢,(2p,) + ¢5(2p ) . ' (4.11) .
and ’

Y o%(2p,) a ¢,(2p.) - ¢,(2p) o (4.12)
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The atomic 2px and 2py orbitals give rise to m bonding and antibonding

orbitals 7
\
m(2p,) o ¢,(2p ) + ¢5(2p ) - (4.13)
m*(2p, ) a ¢,(2p) - é5(2p ) (4.14)
)
v(2py) a ¢A(2py) + ¢B(2py) (4.15)
™(2p.) @ 6, (2p) - ¢5(2p ) " C4.16)

¥
These'm.o.'s lie in the following order, from the most to the least tightly
bound: o(1ls), o*(1ls), o(2s), o*(2s), o(2pz), ﬂ(pr) and ﬂ(2py),.w*(2px) |
and w*(2py), and o*(2pz). w(2px) has the same energy as w(2py) while ﬂ*‘Zp*)
and w*(Zpy) are als? degenerate. The total.number of electrons availgble
from the two ;toms 1s 16. These 6ccupy the m.o0.'s 1in ﬁccordance with
Pauli's Exclusion Principl::. Hence four electrons reside in the o(ls) and
o*(1s) orbitals and make no net contribution to the bonding in 02. Similarly
four more electrons reside in the o(2s) and o*(2s) orbitals. Once again,as
both bohding and antibonding orbitals are filled, there is no net'binding.
0f the remaining 8 elec;*ons, 6 occupy the three bonding orbitals 6(2pz),
ﬂ(pr) and ﬂkZpy). These contribute a bond order of three. The remaining .
two electrons may give rise to either a singlet or triplét state of 02
depending on whether or not they occupy the same or different antibonding
m.o. [52,141]. Hence if the remaining two e}ectfons singly occupy the
wf(2px) and w*(2py) m.o.'s with parallel spin? then a ttiflet state 32;

‘

results. This is the. least energétic of the possibilities, and hence, the
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ground state of 0 is Zg . If the electrons‘ang\paired and occupy one of
the two w* antibonding orbitals theq\the resulting state ia a singlet, the

lA8 state ‘which lies 0 97ev above the Z ground state

4.5 }BxperimentallEvidence for Contact CT Complexes
The first'experimental evidepce for the exiatence of complexes -of
some.organic molecules (including benzene, aniline and pyrrole) with oxygen
‘ wag- obtained by Evans [121- 5] An the fifties This was followed by the

more extensive rk of Taubomura aqd Mulliken [49] which was conducted in

- \

1960. 'The absorption spectrum of the complex of H20 with O was investigated v
_by Hedidt and his co-workers {116~ 117] in the late fifties. Somewhat more
‘recently (1973) Birks et.aZ. [126] have invedtigated the benzene-oxygen
complex in the vapor phase. Thelexperimental work of E;ans, Tsubomura and
Mulliken,and Birks provides the basis for Judging the results obtained by
‘CNDO/S computations and shown in Figures 4.1 to 4.4 and Tables 4.1 to 4.4,
Birks et.al. measured the absorption spectrum of the benzene-oxygen
contact CT complex from 2350 to 2120 ; from the difference in the absorption
spectra of benzene vapor (76 @orr) in the presence and absence of oxygen (760

torr). They found that the complex haa an absorption maximum at 5.65ev

(2192a€) and has an energy of formation of 2. 90ev from the benzene cation and

+

oxygen anion. ‘
The experimental work of Evans, Tsubomura and Mulliken, and Heidt et.al.
was performed in the liquid phase. Tsubomura and Mulliken established that
the absorption spectra they measured were due to contact CT complexeajsince
they founduthat these spectra disappeared completely when nitrogen gas was
bubbled through the liquid aolution o; the oxygen in the organi:’substance.

This indicated that the observed spectra were not due to any stable ground

state eomplex but to weak interactions between the organic donor and the

-
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oxygen acceptor moleculdts.

4.3 -Computer Coding of CNDO/S

The computer program used in this work ues QCPE No. 174 [35], obtained

u frbm Quan;hﬁsbhemietr§ Program Exchange, Indiana University. Some modi-
fficatlbhs were necessary before it could be executed on the University's
" Amdahl computer. The program was developed by J. Del Bene, H.H. Jaffé,

~© R.L. Ellis and G.* Kuehnlenz.

QCPE 174 (see ‘Appendix 1) is written in two parts. The first part

is a preprocessor'britien in PL/I. The main program is written in fortran.
$]

The fortran preprocessor provides for variable dimensions in a fortran

& . -
1 ‘l

program.j It ?cang for the presence of an alphanumeric variable name where a

-dimension specification would be expected and replaces the variable name

‘gwith the cortect numeric value. The latter has to be supplied by the user

and will depend on. the number of atoms in the system and the number of basis
- dw

functipns.

9 n . <
‘The main program has been written in such a way that a given

moleculat;syetemféan be examined under numerous options. An input list

2 R Ve b

geverns thé t§$e of calculation that will be performed. ' In the default

E@%tionh,obtained if the option cards in the input list are left blamk, the

e
program executes CNDO/S calculations using the Mataga Approximation and

‘&;--.

‘ :‘configuration interaction for singlet states only. The options included

are the following g
E $

1. The maximum number of iterations permitted in ontaining convergence
within’spec%fied limits in the SCF procedure.

2. The nuﬁberiof confiéurations to be included in CI.

3. "The type of electron repulsion integrals used. These can be evaluated

byneithet the Mataga Approximation [18,57,111, 112], the Pariser Approximation

%

"u].\
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(108], the Ohno Approximation [113,114] or the Roothaan theoretical method.
4. No CI and no éxcitation energies, CI for singlets only, CI for
triplets only or CI for singlets and triplets.

‘5. The type of nuclear (core) repulsion integral used. This could be
eithé? the approximation that assumes these core to be point charges, thé
gammas described in Chapter III, or the Dewar formula [88,115].

6. The types of>bonding parameters, BO. These could be either the.
CNDO/S values of Del Bene_and Jaffé, the CNDO/2 values of Pople et.al., or
those of Mulliken. J

7. The charge densities of the excited states. These can be célculated
together with the differences relative to the ground state for singlets
alone, triplets alone, or for both the singlets and triplets.

8. SCF conve;gence tests. This could 'be done either on the total energy,
the energies of occupied orbitals or on the electron density matrix.

9. Spectroscopic transitions. Here'transitions between SJ and So, SJ and

Sl’ TJ and SO’ and TJ and T1 can be calculated.

QééE 174 is listed in appendix 1,
4.4 Method

CNDO/S calculations were carfiéd out for the complexes of benzene,
aniline, pyrrole and HZO with molecular oxygen. These are some of the contact
" CT complexes for which experimental results in absorption have been obtained
[16,49,i16,117]. \Computations were carried out using 60 singly excited
‘configurations (relative to a closed-shell SCF reference wavefunction) for
each complex. Two centre electron repulsion integrals were calqulated using
the Mataga Approximation for singlet energy values and by the Pariser

Approximation for triplet states. A computation was abandoned 1f SCF energy

convergence to within 0,0000lev was not obtained in 40 iterations.
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Computations were carried out for one-to-one associations. The
CNDO parameters used are given in Table 1 of reference [36).These values
have been used in successfully explaining the electronic spectra of many
molecules previously [20-34].,

For each of the three organic molecules, CNDO/S calculations were
carried out for three mutually orthogonal geometries.‘ These configurations
are referred to as the axial modai: resting model 1 and resting model 2
depending on the orientation of the linear 02 molecule relative to the ’
planar ring of the aromatic molecule. (See Figures 4.1, 4.2 and 4.3). For
the H20—02 collision computatiqns were perfgrmed for six plgnar configurations
called models M1 to M6 (See Figure 4.5).

Singlet and triplet energy values were calculated for increments ip'

R, the collisional parameter (See.Figures 4.1, 4.2, 4.3, 4.4 and A;S) 6% 1 ;
for the most part, except near the potential energy’triplet minima where
smaller variations (between 0.05 ; and 0.1 X) were used, in ogdef to define
these minima more accurately.

The atomic coordinates used in every instance were equilibrium ground .
electronic séate values calculated by using the bond lengths and angles
given by L.E. Sutton [118]. Except for the distance R, between the donor
and acceptor molecules, all coordipates were held fixed at these values.

The electron_densitycﬁﬁ every atom together with the difference between the
density'invén excited state and that in the ground state was also calculated
for every‘étate treated at every value of R. A sample computer output is

¢

given in Appendix 2.

" 4.5 Results and Discussion
" The poténtial energy curves calculated by CNDO/S are shown in Figures
4.1 to 4.4. The electronic charge demsity differences between the excited

electronic states and the reference state - are shown in Tables 4.1, 4.2, 4.3
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2

M1 to M6 represent the six different
‘orientations of the O molecule
relative to H20 for which computatnons |

~ were made.:

& ‘ '
Eig, 4.5 Configurations of the HZO-OZ Complex for which

' Computations were Carried Qut -
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and 4.4,

The potential energy curves for both Mataga singlets and Pariser
triplets - obtained for each molecular,complex.in the various collisional
geometries and shown in Figures 4.1 to 4.4 correspond to the contact CT
states formed after abéorption. These potential ene?gy curves correspond
to the CT Franck-Condon states [119,120]. This follows from the fact that
they are calculated by holding all internal coordinates fixed with only
the collisional parameter R varying - a condition which describes a vertical
Franck~-Condon transition.

As mentioned in Chapter II, the CT theory outlined therein applies
strictly speaking, to complexes in the}vapor phase. Furthermore, since the
CNDO/S results obtgined in this work are for one-to-one associations, these
results also are applicable to the vapor phase. Unfortunately however, the
only experimental work done in the vapor phase is that by Birks et!al.
[126]’on the'benzene-oxygen contact CT complex.- Moreover, Tsubomura and
Mulliken were unable to extend their work to obtain peak absorption wave-
lengfhs to any great accuracy. Heidt et.al. also did not establish an
experimental value for the peak absorption wavelength in the H20-02 complek.‘

The CNDO/S potential curves shown are“drawnirelative to a referen;é
closed-shell structure. Hence, in this case the curves reprgsent the energy

[}

diffé;ence between the excited states and the reference closed-shell
electron@c state.

The potential enefgx'minima caléuiated correspond approximateiy to
the peak absorption wavelengths that can be expected in experimental
measuréﬁents.\ As pentioned above, except for the benzene-oxygen spectrum,

experimental peak absorption wavelengths are, at present, unavailable.
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Table 4.la Charge Transfer Behaviour of Benzene-Oxygen Stable Pariser Triplets

Axial Model!

Resting Model 1

Resting Model 2

° ’ o ) ° ° o
R = 2,4A R'= 2.65A R = 2,75A R = 3A R = 3A
3 3 3 3 3
State A2 State Al State A2 State Al St A2
Atom Electron E Electron Electron Electron Ei~ctror
Density Density Density Density Density
Transferred| Transferred Transferred| Transferred Transferred
Cl 0.005 -0.306 0.009 0.000 - 0.331
c2 -0.218 -0.075 -0.242 <0.245 - 0.080
c3 -0.218 -0.075 -0.242 -0.245 - 0.080
C4 -0.005 -0.306 0.009 0.000 - 0.331
C5 -0.218 —0.075 ~0.242 ~0.245 - 0.080
cé6 -0.218 -0.075 ~0.242 -0.245 ) - 0.080
1013 0.434 0.456 0.476 0.489 0.492
014 0.427 0.456 0.476 0.489 ° 40.492

e ———
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Stable Mataga Singlets

b
»

Axial Model

Resting Model 1

Restiﬁg Model 2

R = 3R R = 3; R =34

State 1A1 State 1A2 State lAl State 1A2 ‘State lAl State 1A2
Atom | Electron Electron Electron Electron Electron Electron

Density Density Density - Density Density Density

Transferred|Transferred| Transferred Transferred | Transferred|Transferred
cl -0.332 0.001 " =0.321 0.006 0.000 -0.332
c2 -0.083 -0.248 -0.080 -0.248 -0.240 -0.078
C3 -0.083 -0.248 -0.080 -0.248 -0.240 -0.079
Ch -0.332 0.001 -0.321 0.006 0.000 ~0.332
CS. ~-0.083 -0.248 -0.080 -0.248 ~-0.240 -0.078
(o] -0.083 -0.248 -0.080 -0.248 -0.240 -0.079
013 0.500 0.496 0.481 0.489 0.481 0.489
014 0.495 0.494 0.481 0.489 0.481 0.489
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Table 4.2a Charge Transfer Behaviour of Aniline-Oxygen Stable Pariser Triplets

Axial Resting Model 1 Resting Model 2
o ° o ° ’ °
R = 2,75A R = 2,.75A R = 2.75A R = 2,60A R = 2.75A
State 3A' Sfate 3A' State 3A" State‘3A' State 3A"
Atom Electron Electron Electron Electron Electron
Density Density Density Density Density
Transfgrred Transferred Transferred Transferred Transferred
Cl ~0.198 -0.158 " 0.005 0.002 -0.198
C2 -0.122 fO.llO -0.241 -0.222 -0.101
c3 -0.039 0.027 -0.232 -0.211 -0.016,
C4 -0.256 -0.210 0.008 0.001 -0.247
C5 ~0.039 -0.027 -0.232 -0.211 -0.016
Ccé -0.122 -0.110 -0.241 -0.222 -0.101
N7 ~0.210 -0.208 -0.003 -0.003 -0.209
015 0.498 0.427 0.467 0.433 0.444
016 0.487 . 0.468 0.433 0.444 ™

0.423
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Stable Mataga Singlets

\\-

-

Axial Model

Resting Model 1

Resting Model 2

i ﬁ - 3; R -.32 R= 3; R = 31 R = 3;

i State lA' State Ly State lA" State Lae State lA"
Atom i Electr;n Electron Electron Electron Electron

i Density Density Density Density Density

i Transferred Transferred Transferred Traqsfgrred Transferred
Cl i -0.214 -0.204 0.006 0.000 f0.215
c2 -0.117 -0.113 -0.254 -0.248 -0.113
c3 -0.043 -0.040 -0,240 - -0.233 - -0.038
C4 ~0.265 -0,250 0.008 -0.000 -0.264
C5 -0.043 -0.040 -0.240 -0.233 -0.038
ce | -0.117 -0.113 -0.254’ -0.248 -0.113
N7 l -0.196 -0.196 0.001 - ~0.000 -0.198
015 0.500 ° 0.478 0.487 0.482 0.490
016 2 0.500 0.476’ 0.487 0.482 0.490
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Table 4.3a Charge Transfer Behaviour of Pyrrole-Oxygen Stable Pariser Triplets

AxiallModel Resting Resting.
. Model 1 Model 2
R = 1.8A R = 2,8A R = 2.8A
State “A'' State 3A'Y_ State %A'

Atom Electron " Electron Electron
Density Density Density
Transferred - Transferred - Transferred

N1 ~0,002 -0.001 -0.001

c2 -0.152 -0.326 -0.324

c3 . =0.063 -0.143 -0:.141

C4 ~0.063 -0.143 ~0.141

C5 . ~0.152 ~-0.326 -0.324

011 0.377 0.467 0.465

012 0.061 - . 0.471 0.465

o




?
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Resting Model 2

Axial Model
N [-] (] (-]
R = 3.0A 4 R= 3,0A R = 3,0A
State lA" '2 State lA', State lA"
Atom Electron ' Electron Electron
Density ~'Density DensiFy
Transferred ' Transferred Transferred
N1 0.000 -0.000 -0.413
c2 -0.348 -0.331 -0.009
. i
C3 -0.148 I -0.139 -0.266
‘ . | . -~
C4 -0.148 i -0.139 -0.266
cs -0.348 i -0.331 -0.009
- 011 0.499 i 0.470 0.481
012 0.492 | 0.470 0.481




Table 4.4 Charge Transfer Behaviour of H20-02‘Stab1e Pariser Triplets
N Model M1 Model M3 '
-] -] o l
R = 2,5A R=1.85A R =34 !
’ 3 3 3 i
State A2 State Al State 32
Atom Electron | Electron Electron
Density Density Density
- Transferred Transferred Transferred
) |
{
‘01 -0.848 -0.898 f ~0.560
: i
H2 0.000 0.000 [ ~-0.026
’ .
_ H3 0.000 0.000 | ~0.026
% . . o -
00 0. 444 0.449 0.306 '
- 05 0.403

0.449

0.306

¢

e
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3

It should be noted here that the ground electronic states of O2 and
the donor molecules investigated are triplet and singlet states respectively.
As the oxygen—doqor pair is a very weak chplex, or a "contact pair", the
wavefunction of the ground state of this pair can be represented-by the
fully antisymmetrized product of those for the individual molecules,
W(3Z;) and W(lA) {49]. The overall ground state for the complex is tﬁereforel
a triplet. The CT state may be a triplet or a singlet depending on the
relative spins of the two electrons in the half-filled méleculat.orbitals.
The éxperimentally observed CT spectra are those which correspond to
transitioﬁs between the ground state and the triplet CT excited state. ‘These
experimentally observed spectra are therefore ;pin—allowed.[49].

For example, the CT state observed exﬁerimentally in a mixture of 02
and bgnzene may be attributed to the fo;lowing transition:

~Bz...HZW(Ela)vzw(Eib);Oé...ﬂ*(pr)w*(Zpy)+Bz...nzw(Ela)ﬂ¢(Elb);02---

"<n*>2_<2px>ﬂ*<29y§ S | @

where the supérécripts represent orbital occupancies and the starred orbitals

are antibonding molecular orbitals. s

Similarvy*ﬂ* transitions résult in the éharge—trap;fer states of
_#hiiiné an&'pyrréle with 0,. The H,0-0, contact stateé (3A1 and 3A2(in
Figurelé.h) account for the“experimentally observed spectrum and are due
to transitions from a nonbon&ing HéO molecular-orbital (centred én the 0
atom).

'.The CT state will be a siﬁgiet or A triplet depending on the relative

spiﬁs of the electrons in the half filled orbitals ﬂW(Elb) and.ﬂ*(Zpy) on .

]
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the right hand side of. (4.17).
The reference closed shell configuration in the CNDO/S calculations

‘in this work corresponds to double occupancy in the u* molecular orbital

of 02 and hence the CT state corresponds to the following transition

<

Bz.;.ﬂzw(Ela)nzw(Elb);Oz...(ﬂ*)2(2px)+Bz.;.ﬁzw(Ela)NW(Elb);Oz...(n*)2(2px)ﬂ*(2py)

(4.18)
Since the final electronic configuration in borh these instances((4.17)
and (4.18)) is identical and since the donor electron comes from the same
orbital of the donor molecule, the difference in the initial configurations
is not very consequential especially in‘eOmparison to the charge transfer
stabilization of the excited state [36]. Furtherqore, as an initial
approximation this difference was compensated for by adding to the CNDO/S

potential energies the value of the singlet—triplet splitting of the 02

molecule (0.97ev). The potential energy curves shown are drawn after this

. -

correction has been made.

The Pariser triplet curves obtained describe accurately the experimehtal
results (hoth qoéntitatively and qualitatively). Mataga singlets and triplets
calculated aleo describe the eharge—transfer stabilization of the complexes.
The calculated Mataga triplets were always lower than the correspoodiné
Mataga singlets in accordance with Hund 8 Rule.,

It appears, however, that the Mataga Approximation, although reproduc-
iﬁg the qualitative ChargefTransfer stabilization of° these complexes quite
well, consistently underestimates the energies. It io important to keep
this fact in mind in any comparison between the singlet and triplet corves.

" The Pariser triolet curves obtaihed are in agreement quantitatively

with all. the experimental data available to date and will fOrm the basis g .

of comparison between theory and experiment below.
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4.5.1 Electron Affinities and Ionization Potenttals

The oxygen verticalvelectrbn affinity in these complexeé caﬁ be dedﬁcéd
from the benzene~oxygen Pariser triplét curves.' The 1oniiation energy of
the benzene w(Ela) andiﬁ(Elb) orbitals is well established as 9.24ev [16].
Using fhe fact that for CT complexes the asymptotic limit of energy is
equal to the difference between the vertical ionization energy of the donor -
orbitai and the verticai electron affinity of the acceptor orbital (as given

'bf equation 2.37), Fhis &ields the value 0.57ev as the eleétron affinity |

for 02.“ This compares favourably with the value of 0.67+0.2ev quoted by -

Birks [127].
The potential energy curves presented for the aniline-oxygen and

pyrrole-oxygen complexes (Figures 4.2 and 4.3) have been extrapolated for

values of R greater than 52. This was found to be necessary Because SCF

energy convergence was not obtained at values of R > 52 (oscillations éf‘

éomputed energy values wefe:observed here). The extraﬁolatibng were made

by using equation (2.37), the electron affinity;calculated above (0.57ev)

and the experimental values of the first ionization values of aniline

(7.70ev) [16] and pyrrole (8;87ev) [128].' The’extrapolations’of the second

CT states in these cases are much more uncertain because the Qecond ioniza-

tion energies for aniline and'pyrroie were not ava%lable; /
For the HZO-O2 complex{ as fo;,the benzene-O2 complex such'noﬁ—convergQ

eﬁce problems were not encountered. From Table'é.é, it is seen.that the

3A2 and 3A1 states inICOnfigurations M1 and M3'§orrespond to ;he donation of

a lone-pair electron on the HZO molecule to the 02 antibonding m.q,"The
iohization energy for this m.o. 1s obtained from Figure 4.4,‘edhation (2.37) and
the.value of electron_affinity for 02. The valﬁé of I thqs deduced is

14.24ev, which compares'reasonablyxﬁgilcwith the experimental'value of

12.59ev quoted by Mulliken [16].
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4.5.2 Energies of Formation from the Ionic Monomers

The energy of formatidh, AE,of a CT state from the corresponding ions
of the donor and acceptor molecules (D+ and A") 1is the difference between
the asymptotic energy (as R+=) of the state and the value of the potential

energy minimum, E for that state. These energies can be calculated

min’®
for the complexes of benzene ana HZO’ since here SCF convergence problems
were nof encountered for large R.

For the triplet contact CT states of:thé benzené-oxygeh complex AE
is between 3.lev and 3.2ev depending on thé species and the gedmetrical

configuration. The exact values are given in Figures 4.2a and 4.2b . This

compares Very faéourably‘witﬁ the experimental value of 2.9ev observed by
Birks et.al. [126].
The corresponding energies of formation for the H20-02 complex can

be obtained from Figure 4.4, These are 3.9, 2.1 and 2.2ev for the 3A1,

3A2 and 3B2 states respectively. Unfortunately, experimental values for
\ . these energies are unavailable.
S For the complexes of aniline and pyrrole, the theoretical energies of

: &

formation cannot be given. This follows from the fact that, as mentioned
3 o . ‘
previous{y, the potential energy curves for R 2 5A have had tb be extra-

- polated using experimentél ionizatiqn potentials. The values t éan be

* ~ obtained froﬁ Figures 4.2 and 4.3 for these complexes,

regarded as semiemperical values, since the pote energy minima were

calculated by CNDO/S. |
‘4.5.4 Charge-Transfer Nature of Cémputed States

’The.ChargerTransfer nﬁturg.of‘thg excited statgs computed is cleafly
.revealed by the results in Tébleé 4.1 to 4.4, Tﬁeseitables give the
calculated eleétron density differencgs (wiéh réspect to the reference
electronic state at the value of R equal or close to that for which the
-foteptial eﬁergy is a miniﬁnm), for each at&h,_in the exéited state of ;he
compléx. -

/" ' ~Tables 6}1 to 4.3 do not show the denéitiea on the hydrogen atoms



- 132
because these do not participate, to any significan; extent, in the Charge-

Transfer stabilization of the organic complexes considered. This is to be
N . - ‘
expected because the H 1s atomicorbitals are quite tightly bound to the

atoms (being part of'the o framework), and hence do not contribute to the
delocalized 7 (or n)lmolécuiar donor orbitnls;

The different }ractional glectron dens.. .es dona:t.d by "'~ various
atoms in the donor molecules can be explained in terms of tt symmetries,
-of the donor molecular orbital wavefunctions. (See Tables 4.1 to 4.5). For
example, in the resting mode} 2, the benzehe-oxygen sipglet and triplet A2
and Al states correspond to_elégtronic transitions from the w w(Eia) and
n w(Elb) benzeqe orﬁitals [61]), respectively, to an antibonding 7*(2p) |

molecular orbital of 02. Hence the diametrically dppasite carbon atoms
Cl and C4 15 the benzene ring actvas'thé'majof do;ors in the.stébilization
of the A étate while‘thébremgining_carbon atoms (C2, C3, C5 ahd C6) piay

2
the major role in the stabilization of the A, state. This is to be expected

1
since the nodal plane in the w(Elb) benzene orbital'pagses Fhrough Cl and C4
ﬁhereas the nodaljplane in the w(Ela) wavefunction is gerpendicular'tq this,
resulting in the greatest electron dénsity at atoms Cl and C4. ”

Similatly; in thg resting model 1 fﬁe A1 staté’cbrresp;ﬁds to a
doﬁgtion ffom the Y (E,a) benzene m.o. while the A, state qorrgsponds to a
transition_fromvthe w(Elh) orbital. This explains the electron dené;ty
differences shown. ‘

The axial model electron density differences and those for the other

~organic complexeé are éimiiatly explained.

3

A Table 4.4 for fhe H 0—02 complex shows that the states 3A2 and Al in

2
configurations M1 and M3 (See Figure 4.5) corfespond to a trénsition from
the nonbonding orbital on the 0 atom in H20 to the antibonding T m.o. of

3 ‘ )
02. In the .BZ
small role in CT stabilization.

state in conf#gufatibn M3, the hydrogen atoms do pl#y a
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4.6 Conclusion

CNDO/S computations successfully reproduce the experimental behaviour
of contact CT complexes. The calculated results are in agreement withr
experimental data wherever the ‘latter are available. This‘implies that the
calculated characteristics, such as binding energies and fractional electron
.density contributions, for which experimental results are not available |
are reasonably accurate. also. More important, hcwever, is the fact that
CNDO/S computations provide a physical picture and account for the process
of charge—transfer stabilization. This means 1 *he wethod of computation
can be used to theoretically predict the existe . .t ' .ze-transfer spectra
which have not been measured experimentally yet. In this way CNDO/S can
serve as an excellent guide for future experimental work in the fileld.

In the next chapter it is shown how contact CT complexes can sustain '
population inversions resulting in a new class of .lasers somewhat analogous
to the commonly known diatomic rare gas-halide 7§;imer lasers. CNDO/S
calculations te guide experimental searches for‘such laser candidates then

become important.

Before concluding, however, another important fact which makes CNDO/S
a powerful tool must be pointed,out. The mechanism which sustains a
population inversion in-a contact CT complex, to be described in the next
chapter, does not relyioﬁ the fact that the excited state is charge-trahsfer'
stabilized. Similarly, CNbO/S,'in no way, is restricted to molecular
complexes mhich are charge-transfer stabilized. Hence, in prihciple, CNDO/S
'could be applied todmolecular complexes which might have excited electronic
states which are stabilized by means other than Charge-Transfer resonance. .
The number of molecular systems that can then be examined for potential as
laser Candidates, therefore, becomes even larger than the great number of .

Charge-Transfer systems knowvn or suspected.



CHAPTER V

CONTACT CHARGE TRANSFER LASERS

5.1 Emission in Charge-Transfer Complexes . “

Absorption has been investigated experimentally 1in a wide range of
charge-transfer complexes including contact CT compiexes, [40-51, 53-58, 120];
However, .fluorescence and phosphorescence measurements are not as plentiful.
Furthermore, most of the luminescent (fluorescent and phosphorescent)
measurements have been made at low temperatures, in many cases in solid
state solutions [120]. Some fluorescent measurements have been made at room
temperature [121], including those for 1,2,4, S-Tetra-cranobenzene (TCNB-

lO 4 2) with various organic donors (TCNB consi;;; of the benzene ring
With four hydrogen atoms replaced by the -CN radic§$ - 1,2,4,5 denote the
fpositionsi on the hexagonal 'benzene ring, of the -CN radical groups).> The
donors investigateo iucluded benzene, hexamethyl-benzene and mesitylene

N

among others. Most phosphorescent measurements have been made at cryogenic
. .

temperatures [120] ﬁ

Nagakura [120] explains’ the small oscillator strengths in emission in
fluid CT complexes by the fact that once a CT complex has been formed (for .
instance by‘absorption of a photon), fast reorientation occurs such that
the luminesceut state is a high symmetry structure.

For example in the TCNB—hexemethyloenzene complex, the ground electronic
state 1s a state of the 1owFst possible_symmetry,.the_point group Cs'
(See Appendix 3 for an outline of group theory.) This has been determined
experimentally by Niimura et.al. [153]. Nagakura [120] has deteruined that
the benzene rings of both the donor (hexamethylbenze or benzene) and the

acceptor (TCNB) are aligned in the equilibrium excited CT_state configuration,

leading to a relatively high symmetry, structure. In the notation of

134
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Figure 5.1, the ground electronic s&ate EN(R,QN) belongs to the point
group CS, whereas the fluorescent CT state, EV(R,QV), belongs to a higher
symmetry point group. The ¥intensity of the CT spectrum is governed by the
transifion moment through equations (A.51), (A.SZ),\(A.62) and (2.76). Now
in absorption,\this transition moment is generally non zero. This follows
fromAthe character tébleifor the point group CS (See Appehaix 3 and
Cotton [61]). The CS character table shows every transition would be allowed
by either x,y, or z polarization. 'From the character tables of the higher
point groups, it is seen that the ﬁercentage of transitions that Qould be
allowed 1is mﬁch smaller decreasing with iﬁcreasing symmetry. For example,
in the point group sz if the direét p:oduéﬁ qf the two relevant states
belongs to the irredﬁcibie represenfation Al, Bl,-or B2' electric 'dipole

. traggitions would be allowed‘by zZ, X, OT & polérization respectively. These
three species constitute seventy five percent of the total number of
irreducible represegtations here, tﬂe only dipole transition group theo;etically
forbidden being that fér'which thé diréct product of the t&o states belongs
to the species A2. In the ppint group C6v only those transitions are dipole
allowed for which the directzﬁroduct belongs to the Ai or El irreducable
representations. This constitutes only one third of the total nu- ver of
species in this point group. As Nagakura [120] has éhown, becse «

. higher symmetry of the fluorescent CT ;tate of TCNB complexes + _h benzene
and hexamethylbenzene the transition moment <ﬁ;p>’(see eqﬁations *.37),

‘ (A.51), (A.52), (A.62 and (2.76)) is reiatively small.

J A At cryogenic temperatures, once CT absorption occurs, the complex
doés not have the flexibility to go'into a higher symmetry structure. The

- emission transition probability is hence approxiﬁately equal to that in

e

ébsorption At higher tempetatufea_in fluid media this is not the caée,

the luminescent state being of high symmetry and the transition moment is
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consequently small. This explains why fluorescence and phosphorescene
measured at room temperature 1é-substantially weaker than that at crypgenic
temperatures.

It is.important, however, to note that the contact CT complexes which
have been considered in this work, and especially thefpyrrole-oxygeﬁ complex
which is, as shown below, the most important of the four complexes investi-
gated as far as its potential as a‘laser candidate 1s concerned, are low
symmetry étfuctures. For instance, any non-planar pyrrole-oxygen complex
configuration belongs to the lowest symmetry group Cs’ This is mainly a
consequence of the presence of the N atom in the pyrrole ring. Hence, in
this.case, group theoretical 1{mitations on the emission transition
probabilities such as those Az2sc. =d «bove do not apply.

The molecular complex of - 1i: with oxygen also bélongs.to the
point group CB for any non-planar collision. Here also, iﬁé group theoretical
restrictions on emission qscillator strengths do.not apply.

In the case of the benzene-oxygen complexes the ?pint groups are sz
in the resting‘models and.C6v in the gxial’model. In the resting models thew
Al CT state is due to & b2+b2 transition ¥nd hence a fluorescent transition
from this stafe to the ground state would be,allowed with z polarization.
The Az'state is formed by a bi+b2 transition‘and hence a fluorescent
trangition here would be fotbidden. This follows from the sz character
table and the group-theoretical theorem mentioned in Appendix 3. Similar
reasoning applied to the axial ﬁodel gshows that, once agair fluorescence |
from the Al state would be allowed while that from the A2 state would be

- forbidden. |
One other phenomenon that plays an imporfant role in the emission

process is that of radiatidﬁless quenching. In fluid media this will obviously

be more important than in solid matrices at cryogenic temperatures. This
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has been verified by experimental measurement [120]. Fﬁrthermore, this
parasitig process is important for all complexes regardless of their
symmetries. The effect of radiationless triplet quenching has been included
in the rate‘equation analysis performed below, in Section 5.8, for the

pyrrole-oxygen complex.

5.2 Population Inversion Mechanism in Contact CT Complexes

Cohtact CT cohplexes exhibit a unique means 6f sustaining an electronic
population inversion.

‘The mechanism is illﬁstrated in Figure 5.1. N and V denote the
ground ("normai") and excited-CT states respectively, consistent with the
notation due to Mulliken [51] and used in Chapter II. EN and Ev are the
energy levels of these states (sometimes also denoted by WN and WV)' R
is the coliisional parameter (for instance, the disténce between the dono;
and acceptor molécules ~ See also Figures 4.1 to 4.5 in Chapter IV). QN are
all the other configuration coordinates, besides R, which minimize the
energy éf the complex in thevgroundelectrbnic state./ QV are the coordinates
which minimize the energy in the excited state. |

For the sake of argument, consider the irradiation, by a photon, - of
an organic-donor acceptor pair capable of forming a contact CT complex.
The pair of molecuies which is initially in the state EN(R, QN)'absorbs ;his
photon and undergoes a 'vertical"” transition forming thé state EV(R’ QN).
Here, as a éoﬁsequence of the Franék—Condon Principle [119], the internal
cobrdiﬁatés QN do not' change (Tﬁe Franck~CondonAPrincip1e which states that
the geometry of ‘a molecule and its nuclear kinetic energy remain substantially
unchanged during an electronic transition [130], and the Born-Oppenheimer
Apprpximation which separates‘electrqnic and nuclear motions are both

eésentially the consequences of the great disparity between the masses of a

G



138

8914 5,0 ‘91€}S PUNOID (NO ‘d)Nm [*NT

-H »_. 1
H s It . . ) ) . _ e
wsTuLydaW uorsiaaul uorjegndod 1°¢ 314 A 0 m
> O o
Zmd , o3 oM
-2 1359
| | o (r
sanje) a1els L3 1o
Pa}Iox3 0} pauielisuo) v by ®

g

SO ‘ayeig punoin - (Ap‘Y)Nm [2N] on4r TO70
: : o A ‘ >
ok I B4 F
© 233 22ls
30 | @ T |2
L H
56 1° 89
°a oo
| 88 Er
221450 ‘O1RIS PaoXx3-  (AD ‘W) M [EN] <o zo
4 4
.v
- Av |
1)
Agv ,m.

sanjep ajels
pUNOJK) 0} Paules}suo) v

uoljexe|oy

ssa uonelpey

J—
S

s.D ‘eje}s pa}ox3 (NO ‘d)M [PN]



139

proton and an electron). New fast radiationless relaxation, witn
characteristic times in the plcosecond regime [57], take the complex to the
state EV(R, Qv) where the lnternal coordinates.are free. . (We assume here
that themedium is fluid). Then, Franck-Condon radiative emission takes the
complex to the ground electronic state EN(R, Qv) in nhich the internal
coordinates, Q, are constreinee to the excited state values, Qv. Finally,
fast radiationless relaxation to the grOund state EN(R QN) occurs.

Both radiationless processes (which take the complex from EV(R QN) to
EV(R QV) and from EN(R Qv) to EN(R QN) are very fast processes compared to
the radiative processes. In a typical organic CT complex the radiationless
time constant ie of the order of picoseconds. ,The radiative llfetimes afe.

£

several orders’ of magnitude larger, being anywhere between nanoseconds and
milliseconds [120] (See also Appendix IV) and references [37], [154]6:)o

The rate of depletion of EN(R,QV) by radiationlese‘relaiation is fast
compared to the emi:-ion from Ev(R,Qv).‘ The emission process presents a |
"bottleneck", as it were, and a population inversion between EV(R Qv) and
EN(R Qv) is established when the former state is populated.

The picture described above makes the important assumptlon that
radiationless quenching of tha upper laser state, EV(R QV)’ is negligible
Such triplet quenching is discussed in detail below and it is shown that
- although this process limits gain, it does not eliminate it in a "typical"

L 4
Contact CT Excimer Laser.

The simplified physical mecnanism’can‘be summafized é; the following

approximate equatien

A, e DN

»dg o 1, ‘:M (5.1

s
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where [Nz], [N3] are the popul@tion densities (cm-‘3) of the states E.N(R,Q‘})
and‘Ev(R,Qv) respectively, T, andyrb are the lifetimes (radiative and
radiationless associated with these two states.

<
Under steady state conditions

= o
TS 0 v u(5.4.)

and - /?y

.@L‘Sé

o T - (5.3)

‘14, the radiationless relaxation time constant, isﬂof'the order of

. ' . . Y .
picoseconds.- T, is an average radiative decay time which<includes the
, A : : Poiiot '
: AT i
effects of both spontaneous and stimulated emission. It is shown in
il )
\

Appendix IV that‘thefgoontaneous lifetime is typically about lus. For

N

instance the spontaneons lifetime of the pyrrole—O2 contact CT state is

0.6ue.' The ratio’ [N3]/ [N ] which is a measure of the population inversion
‘ 6

is then approximately 10 . If the stimulated 1ifetimes are considered it

follows that 1, will be larger and consequently the value 106, quoted above,

2
is a lower iimitcof the inversion ratio.

In any practical system radiationless quenching of the laser state
would decrease [N ] and increase [N ] reducing this ratio and consequently 3
the gain also. In this case equation (5.1). is modified by the addition of
a tenh like k[N ] on the right hand side which expresses the radiationless

quenching of-&v(R Qv) resulting in vibrationally excited ground state B

complaes. E\ (R, QV) “ : . o ,% ., ) v ’8
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5.3 Stokes Shift in Contact CT Complexes

"Emission in a CT complex will be red shifted relative to absorption
by an amount equal to AEV+ AEN (See Figure'S.l). This is the Stokes Shift
and is analogous to the displacement between absorption and emission spectra
between two bound eleZtronic levels of stable molecules whose minima are
displaced relative to each other. 1In stable molecules absorption noamally
occurs from the lowest vibrational level of the boune groundielectronic
state to an exclted vibrational level of an upper electronic staée. In the
excited electrdnic state the molecules quickly relax to the corresponding
lowest.vibraeional state from which emission occurs. The emission ds
cpnsequently red-shifted relative to absorption.

The mechanism which causes the Stokes Shift in contact CT complexes 1is

analogous. The difference here lies in the fact that the ground electronic

-
s

state in these complexes is not bound as is the case for stable molecules.

For laser action to occur it is necessary that, besides the existence

[
of a population ihversion, there be no overlap between the emission and

any absorption band.

_ Barring excited state absorption the Stokes Shlft in contact CT
complexes considered here is substantial enough to eliminate such an overlap.

A typicel experimental value for thls shift obrained’for the CT
complexes of TCNB is around 10 000 cm -1 in-fluia media (af room. temperature)
[120]. "

ln contecc”CTAcomplexes this shift 1s expected to be even larger. This

féllows from_the‘fac; that the concraéé between QNﬁand Qv is the 1erger_for
contact éT;ecmplexes thae tcat fbr CT complexes which have bound eround electronic
nuclear configuration of the free donor and acceptor molecules (although | é;;

-,
E-3

states [51] - In contact CT complexes QN corresponds approximately to the"

-

- N - - -

a.
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-

some orientations may be more favorable than others for CT abs: ption). On
the other hand, Qv corresponds to the equilibrium configuration for the pair .
of positive donor and negative acceptor ions [51]

5.4 Triplet Sensitized Pumping

‘In a specific contact CT laser the upper laser level density will
depend very much on the method of pumping used. For instance, direct optical
pumping of the state EN(R Q ) by absorption would not produce a substantial
density in the state Ev(R,QN) and hence in the upper laser state EV(R,QV)

-either. This follows from the fact thet the optical absorption cross-section
in the contact CT compleXes considered here is ‘small being of the order of
10717 cmz. ”This'tigure is obtained by using a decadic molar extinction
coefficient of 100 (liters mole-l.cm-lj, which is a typical value for the
complexes being considered. ' Mulliken and Tsubomura [49]lhave measured the
experimental I values for various organic contact CT complexes and have also -
snown that these values can be explainedbin terms of intensity borrowing
by the CT band from allowed donor Sl*SJ

molecules in the upper state will also depend on, the other quenching
. . <

(J>2) transitions " The fraction of

processes specific to the system being considered.
| A more practical means of pumping would be to utilize the fact that;
often, in organic molecules, the lowest triplet state T1 is easily accessible
by direct optical pumping of the singlet ground state to an excited singlet
followed by efficientlinternal conversion (to the first excited singlet)
and'finally intersystem crossing to the triplet [161] This mechanism can
_,‘be very efficient and numerous examples are known whererelmost every photon
incident on/an organic molecule eventually leads to the production of the
first triplet T, [7,161, 171].
-The method envigsaged here requires the production of donor triplets

-

by this mechanism with subsequent excitation of the triplet CT states of the

3 “h.
. 9,

-
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donor-acceptor complex by energy transfer. (See, for exaﬁple, Figure 5.4).
Triplet state energy exchange between various organic (energy) donors and,
(energy) acceptors (not to be confused by electron donors and electron
acceptors) is.é well documented process [161-170] both in rigid matfices and
in fluid media. In the latter; eneréy transfer may occur.on every collision
between the energy donor‘and the energy acceptor [161] provided the transfer
is exothermic.Endothermic transfer also occurs but the efficiency drops as
endotherﬁicity increases, as may be expected.

An important condition that must be satisfied if efficient triplet
sensitized pumping is to be accompllshed is, therefore;\that'thehelectrdn
donor triplet be energetically higher than the CT.triplet.state of the
electron donor écceptor complex.(See Figure 5.4).

In terms of the potential energy curves presented in Chapter IV, the
Zoadaiy excited triplet state curve (that is ghe interaction‘potential

I .

energy of the organic donor triplet Ti with ground state 02 as R is varied)

should intersect the triplét CT curve.

CNDO/S computations (described in‘Chapter IV) were mad; for-thése
locally excited triplet statevcuryes for tﬁe compléxes of benzene,_aniliné,
-and pyrrole with oxyéen. It shohld be noted here thatnaf lafge eléctron
donor-electfon acceptor distances, R, ghese potential energy curve values

-

correspond to the calcuTared values of T, for the respective organic molecule.

1
The computed CNDO/S values obtained are giﬁen, and compared with

the experfﬁental values‘quotéd in the literature, in Table_S.l.
From Table 5.1 and the resﬁits given>in Chapter.IV-(Figures 4.1 to

4.3) it‘is seen that bnly in the case éf‘the pyrrolé-oxygen contact CT complex

would triplei state exchange, discussed 356Ve, be exothermic. Hence,.this

"is the only contact CT state which would yield to triplet;sensitized pumping.
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Table 5.1 Calculated and Experimental Values of T

1

Molecule . CNDO/S - Experimental

Value (ev) Value (ev) -
' Benzene 3.43 '3.65 [161]
Aniline ‘ 3.40 3.32 [129]
Pyrrole 3.99 4.6 [171]

‘“n

¢

Triplet sepsitized ppmpin$_might be viewed from the point of view of
curve crossihg. If the loéally excited triplet curve crosses with the
tfiplgt CT curve, then the latte; would be populated by transfer of energy
ffom the férmer.' The condition that the potential energy curves cross
autaﬁatically impiies that triplet energy transfer gust be exothermic,
consistent with the discuséion above. Howeﬁer, ah additional criferion,
which is not covered by the simple collisional picture, has to be satisfied.

This is that the potentiaibenergy curve symmeteries be.different. In that

case [61]
< WLEIHI ‘PCT > = 0 . . : . (5.4)
whe:e-WLé and WCT are the wavefunctions of the locally excited and CT states

respectively. If wLE’ and wCT belong to the'same irreducible fepresen;ation
‘then the interaction energy integral aﬁdvéﬂwould in géneral‘be non-zero. and
the cutyes would tend to repel ("avoided curve crossing) [61,1725176].

.Iﬁ the pyrrole-oxygen complex‘the locallx excited aﬁd CT states have

different symmetries in the axial model and'the Resting Model 1. In the
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Resting Model 2 both the curves belong to the species A'.
The pyrrole-oxygen CT state can hence be pumped by transfer of electronic
energy from the pyrrole triplet state. The raté equation analysis done

below is for a pyrrole-oxygen Contact CT Excimer Laser pumped in this manner.

5.5 Radiationless Triplet Quenching

Parasitic triplet quenching by radiationless relaxation mechanisms
would be detrimental to the production of gain by-the pumping method described
above in Section 5.5. Such triplet quenching would decrease gain by the

»

following two ways:

1. Reduction of the organic moleéﬁle Tl states before triplet energy

exchange occurs,and
‘2. . Reduction of the triplét CT stateé of the cémplex (the upper laserw:

level) after triplet energy éxchange. o
Any raté equation treatment of the system must thefeforqatake these effects
1hto consideration. This is all the more so since the‘;oﬂtact CT comp;exes
investigatedvhere invoive Oz.as the acceptor. Molecular Qxygeq is‘known to
be one of the most effeCtive'qﬁenchers nf organic,triplets.. For instance,
the presence of even a;trace of molecular oxygen miz lead to erfoqeous'
results in éxperiméntal'éituétions which do not call for the presence of

. / )
any oxygen [177,178] by completely masking the behaviour of an organic

triplef.

The quenching of the eiectrop donor (for example pyrrole or benzene)

triplet and that of the CT triplet will be treated separately below. It is

~ expected that, although there may be other triplet quenching proceéses,,

qbenching«dﬁe to the pfesencg of 02 in the system viil‘be the most important.

-3.5.1 Rate of Radiationless Transitions o

\

H

Before ;adiatibnless triple't quenching caﬁ.be treated quantitatively

it is necessary iovexténd the time dependent perturbation theofy of Sectidn
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5.1 above in such a manner as to obtain the rate of radiationless transitions
from any given state to a group of possible final etates. The expression‘yas
first derived by Fermi [187] and is hence called Fermi's Golden Rule [17,64].

Lonsider a perturbation, analogous to that denoted by equation (A, 40)
The probability that this perturbation causes a transition from an initial
state k to any final state q is then given‘by equation (A.51) reproduced
below for convenience

Hk:)lz Sin [z(wk-w ~w)t]

P (t) =
krq h2 [E(wk—wq-w)] '

Here we have considered a perturbation of the form

WV E, ) = H @) e

expressed by (A.40)'(which'describes a dipole energy perturbation term
important in radiative tranéitions). In (5.6) H (r) is an, as yet undefined,
energy perturbation term which plays an important role in radiationless
transitions.‘ The derivation of (5. 5) from (5.6) 1is analogous to that of
(A.51) from (A.éO)r Pk+q(t) is a dimensionless transition probability.

Hkq io an energy term (erg), t is the time (sec) that the perturbation lasts,

Wes Wos w are radian frequencies (sec~1) and h is the normalized Planck

constant (exg sec). Let

\N J
. . . 1 .
W - wg = Aw | ( sec ) (5.7)

a0y = x (=) T (.8
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and
P B = gE (e ) (5.9

\
~

where pq(E) is the density of final states in the region d;/around Eq-hwq
and dN_ is the (dimensionless) number of states in this range dE,
The probability‘of transition from a state k to a state q in the range

Eq + dE is then

The total probability of transition is therefore

= @ . . . | 5.11 -
P S Pk+q(:) pq(E) dE , ( )

>ijom‘ (5.7) and (5.8)

hx = [(E-E) - El/2 ; L (512)
Hence
" dE=2hdx - (5.13)
Therefore,
, « . ] ~ .
1 o ¢ (1),2 Sin" (xt o
P = ;5-_wf {Hk | —~;§£__l pq(E) dE : ‘7(5.14)

Defining a dimensionless quantity y as
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y = xt, %f -t . . fs.ls)
yields

dE = gh~dy (5.16)
From (5 15)‘~<5 16)

p ;5% _;{; | (5.17)

P = Elf£;2~i- o (B) t I §1§31 dy ST (5a8) -

h gt e y

In deriving (5.18) Pq (E) and {Hk ){ are aBSumed to be slowly varying (with
respect to energy) quantities. This is a reasonable approximation since

the integrand is a sharply peiked function centred around Eq [64]. Hence
2nt (1),2 y ‘an
= E v ’ (5.1¢2
lnkq 17 e g€ > | G

The transition rate from initial state k is then’

R == IHkl)I 0y (). (sec”h) ’ (5.20)

. ’ .
This is Fermi's Gdiden Rule. This eduation shows that the rate at which
molecules 1n etate k are deactivated is independent of time but proportional
to the square of the magnitude of tbe perturbation matrix element and to
the density of states which are toupled with the initial state k.

Equation (5 20) may. be rewritten in a slightly modifed -form

Coap 2 g2 PdE '
R--a—izg— l ql “'%'("f)' (Bec ) ‘ _ (5.21)

.
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where by definition ¢

o (B) \ 1 .
(D) - pq(E) (erg 7) R (5.22)
s

N(E) is the density of molecules in the final state in (cm ), p '(E) 1s

in (cm -3 erg )

At present we are concerned only with‘radiationleSBVtransitions and
. ’ e

therefore the final states,q, of importance here are those which are
~degenerate or nearly &egenetate with the initial states k. 1In practice,

the final states coupleo to the initial state can-be taken to be the
&
- : , 1)

vibronic manifold of the state qu The interaction eneérgy term

h /

to the perturbation can hence be written more explicitly ag a sum over these

due

i

states.

(5.23)

SN

where n runs over all'the vibrational levels of the final state, Eq, to

which radiationless transitions from the initial state, Ek occur.

The derivation of 'equation (5.22) by use perturbation theory
assumed that the total Hamiltonian, H, could be split into two parts H( ).
and Hcl), (equation. (A.3)). It was also assumed that'H(o) gave rise to

the atationary states which were described by a time independent wavefunction
\
(equation(A 4)) ' This treatment is suitable when an external perturbation,'
/'&./ ‘
such as an electromagnetic field, is present. It was shOWn above (Section
~ y

5.1) how this led to expresaions for the radiative transition probabilities
of stimulated emission and absorption. The application of equation (5. 23)

to radiationless transition, for e?%mple intersystem crossing within an

.
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isolated molecule, a process which is capable of occurring without the
presence of an external_perturbation,‘can:be made be imaging H(o) to be

zero. This implies that the radiationless_transition is due to the

-

total Hamiltonian of .the isolated molecule itself. This is clearly in

" agreement with the experimental observation that, in general, radiationless

~

. transitions are intramolecular processes not requiring the presence of

an external perturbing agent. L

7

Equation (5 23ycah hence be rewritten in a more general form which

also describes the situation where a raditionless transition is triggered

»

by an external influence as follows
s

R = (dP/dt) = (gnp'/hﬂ) )) ‘<‘P2|H|‘Pi{>|2 ' (5_24)
. . n ' o .

where _
H'is the tofal Hamiltonian of the system, and
n r&s over all the vibrational levels of the final state,qu, to which’

.fadiationless transitions from the initial sta Ek occur.

The total wavefunctions Wéland ?k are\ n,; in. the Born—Oppenheimer

Approximation, as the product of electronic and nuclear wavefunctions -
ve (r Rk) and ¥° (Rk) respectively (See equation (3. 6) in Chapter III)

In equation (s,ztﬁﬁﬁﬁﬁy the total Hhmiltonien of the system, which

depende on both nuclear and electronic coordinates.

FurtEErmore; for the pdtposes of this work; the matrix élement in
cqua;ion (5 24)wd11 be apptoximated [177 188 189] by writing it as the

fptoduct of two compouents, one of which is an electronic term, and the
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¢

A

osher a nuclear term. The nuclear wavefunction term represents the overlap
between the nuclear wavefunctions of the initial and final states. This

term is usually called the Franck-Condon factor. o,

Hence

g ! - <ytlynn el nu, el , . el . yhUy AU ‘
<wq|H|wk> Yo ¥ |H|w Yoo = <Y |H|\vk > <‘¥q_’}v|\1fk > (5.25)

" Had H been a function of electronic coordinates oﬂly, this would be
an -exact igﬂpiity. However, since H is a function ofapoth electronic and
nuclear c;ordinates, equation (5.25) is an approximation. This.approximation,
however, simplies the treatment considerably and will therefore be used

here. . ' . ’ :

. Eq!;“’t&i#“ (5.24) now becomes

. 9?‘ ,3- . o . .;.';
ZI<‘1’“I"M>I | ey

The other mtrix element is, in the above approximation, an electronic ,ﬁ"

Ty

v

y ;;:tor Be%. def:lned as ‘ . I .
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el el
R L L ad -~ (5.28)

Hence (5.26).becomes, finally,

(dp/dt) = (2npy hN) 321 qu | “ T (5.29)

5.5.2 Electron Donor Radiationld#s Triplet Quenching by 0,

The quenching of organic trdplets by molecular oxygen has been examined |

theoretically aalwell as experimentally [177—18&]. Any rate equation
‘analysis requirea a numerical estimate for this process Various estimates

are available and these will be utilized in the rate equation analysis

A,

Anndertaken below.
However, it is important;qO gain an insight to the physics oi ch“n
process of donoxr triplet QUenching by oxygen. of particular relevance is
the involvement of charge—transfer‘states in this process. It is necessary )
to find out if a CT complex is formed as an intermediate complex before the .
organic triplet is deactivated by a radiationless process. va, for example;
every donor triplet which interacted with a ground state triplet oxygen‘i“
lmolecule was radiationlessly deactivated by the formation of an intermediate

L /

,gﬂGTﬁ@gmg}ex triplet’state, ‘then the pumping mechanism described ihvSection

;i t not be succeasful, for then even after, Successful triplet energy '

t" *

xchapge to fhe CT atate the 1atter would have a relativelyxlarge probability

pfﬁgg;ng disapciated radiationlessly. , fl < .
| ;?, . ’ ‘: . [‘

There has been a lot of discussion in the 1iterature regarding the

I

actual physicé of the triplet quenching mechanism [49 121-125 177-179 185]

(X2 4,;

The curréﬁm view, aupported by experimentdl evidence, [69 177], is that _

- although cbarge-tranefer interaction doea play a large role in the quenchingi

a chargg;tranafer complex is not formed daring radiationless deactivation

‘, ) '_;.J" .
. a gl
R
Y

e
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of an organic triplet by molecular oxygen. The quenchling occurs by an

,interaction of virtual CT states with the initial and final states of the

. QUenching reaction [177] The interaction forces are somewhat analogous

- , .

"1 to London dispersion foi'ees The lstter forces, which have been used to

L

&

”quenching calj be any of the following three systems. .

: v " in i
@

4T .

. « A
exp'lain van de): Waal.a forces,f are. due to the interad}ion of the ground

electronic sﬂ&te (r@ulaive in the case of two helium atoms say) with all

. \

the” excited stntés pf the system [The dispersion of light by'a gas depends
. ¥ \f o

on the aame quantities (the strengths of the transitions to all excited .

states) and heaoe ‘the name "dispersion forces"][lBG] In the same way

o

'that Londonm d:hspersion forcea between the ground repulsive state of two

valence satureted atoms like He and the virtual excited electronic states

of the system lead to an attractive force, the interaction of the initial v,

system (comprising of an organic tr'iplet,_‘and the ground s‘tate'Oz 3):; , State)
, , ‘ 8, _

and final state (comprising of the quenching organic in its ground electronic .

state with.or without vibrational excitation, and an oxygen molecule in
©

"the excited lr or lAg' or the ground 32_ states) with virtual CT states gives

—

‘a relatively high probability to the quenching process ' ,

. These ideas can be expounded quantitaqiﬂly [177] bycuaing Fermi '8
xa
Golden Rule in the fomibf equation ¢5. 29) derived above.

-
’

Consider ran organic lgplecule, R such as pyrrole, benzene or aniline

in its first. tl'iplet state% colliding with an oxygen mo‘lecule, A, in its

/ ,9. . P

‘ground el‘Ectr«{mic triplet state 32; » The. total wavefunction describing

this initial Ftate will be denoted by ¥ (3D3 A{3Z }) The final Gtates after

¢
!

* S
5§ ound singl‘et state and the oxygen molecule in its B
i ; B

Excited singlet statpw Z+ The total wavefunction describing this V =
. systap can be written as \l’ (lﬁ {1["}), : : _ - g .-
[ |

’ . .
/ - - . ? LY o ’ . S '
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(b) D in its.ground singlet stat and oxygen in its excited singlet

state lAg, the total wavefunctior being ¥ ( D, A{ A b, '\
(c) *Both the organic moleedle, L, J the oxygen molecule A in their izgk
ground electronic states with D being in a vibrationally.excited

state. The total wavefunction here can be written as V¥ (1 # 3A{3Z;},

1D# represent ing the vibrationally excited organic molecule in its
ground electronic state.

The schemes to be considered here involve queriching by direct

interaction of the initial and final states and that due to the interaction of .

both the initial and figal states with an intermediate CT state. This CT ‘% (

state,can be a singlet ot a triplet as shown in Chapter’IV- These wavefunctions,, 9_
1 3 . . 1 3 . '..: .

‘will be denoted by wCT nd . CT (and correspond to Wv apd vain the

v

" notation used: in Chapter II) Tﬁese interaction schemee are shown dia-
-~ gramatically in Figure 5.2 [177]. - '

Equation (5.29) derived above is ;ppropriatdﬁéken the radiationless
transitions occur as a result of direct mixing of the initial apd final
states [177 188] Kawaoka et.al. [177] have derived anﬁinalogous expression,

by use of secohd-order time dependent perturbation arguments. when indirect mixing of

the initial and final states occurs threugh an intermediate state. “They

4

show that in this case (5.26) modifies to

s “~

Y O -

‘R = (dp/dt)-&'(2ip'/ﬁﬁ)|<w:1|H|w ><¥g |H!w°1 >|2

o _ Ixm‘><me|x 5 ) g
o . X Z cik c i__) - (5.30)

v" ‘t‘

<where the tgdices n and m run over the final and intermediate states q and

CT respectively and w‘here for convenience the nuclear wave?tiona v T (
. ' ) ) _— B %%
- 45Lt - . S Y

e L
S .
o ‘a". T * . -

[T

. -
T
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A

are written as x. Using
m - m ' '

L Ixer” <xgpl =1 : (5.31)

m. 4 . . 4

it can be shown [177] that

R = (dP/dT) = (an /h!)[|<wellH|WCT> <xel|H|wel>| /(Ek ECT)el]FEq ey

"P ‘ ‘

. » “ N .
L
. (5.32) ‘tx*WTVE‘
[ ' 5 "\‘4 : N b [P
o (:”!’ N . \;‘l-v .
o B ey i

where F#q is the Franck-Condon factoz;defined by equation 62,27) and® uf;&
(ER—ECT)el denotes the difference between the electronic energy ievelg of

the initial state k and the intermediate CT; state. Defining an electronic -

factor Bél for this case as ¥

s v . : m "
v oo leweligeel el el .
Bay '|<Wq [HIWCT> <wCTlH|wk.>/(Ek ECTI (5.33)
. B "H |
. equation (5.32) can'be‘written as
= ' 8 : .
(dp/de) = Qmo'/bN)(B))" Fpo ;o (5.34)

which is exactly analogo&p to equation (5.29) for the case of direct
mixing. iﬁ-/h;n (5.34) plays the ~same role as 8 in (5 29)

From (5. 29)and (5 .34) the ionrtant quantities in dete‘ﬁining the- .
rate of radiationless relaxation are the matrix elements B and B', the

Franck-Condon factors qu and the density of final staues p . In:order'to :

evalnate theaé terms; the'wavefunctions of the initial, intermediate and
e . C . B
e f . . v 4

' final statés have te be written. - . T I A 4-:;
' v*egg% . ’ i L lk' LN

2
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1

The”boqndary condition on these wavefunctions is that the wavefunctiog
of any séate of D and A together (written as.(DA)) reduce to the products

of the sepatéte molecule wavefunctions at infinite separati;n.A F;rther,
for mathematical convenience, it 1is required that‘wavefuﬁctions cbrresponding

to diff;rént (non stationary) states be orthogonal to one another at all

intermolecular separations. v ’oj%ﬁgﬁ g

The wavefunctions are written as

‘ - P A9 . o
\P(p,q) A ?D %2 (5.35)

where A is an antisymmetrizing &perator which makes ?(

| Q) éntisymmgtric.
with respect to permutation of any pair of electrons.
At infintBe separation Qg,and eg satisfy the time independent
Schroedinger wave equations . '
| , o R 2

H'°?"Eg°g» | - - (5.36)

dgeiesiel R (R
S’z-

where-H and ﬂ [, "represent the isolated donor- and acceptor-molecule

,(‘4

Hamiltoniaéi'respectiir}yg - The use of the product wavefunction (5.35). at

finite molacul%; separatiéis is.a good approximation since the interactions
. ) o ,.lk "-', K R '/0
_"being c&%sidered here are reltmively.wgak
- /)p«' . Y . .
It haa been shown [177 ﬁ9013:het at infinite separation y y 1s an
(.q) \
'aAeiéﬁhfunction-of the total Hamiltonian of the system,-H. Hence

N

AV‘ ’ (P'q) (ED + E ) ,(p’Q) ) N . v ‘ ' (5.38) :
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Therefore,.at,infinite lntermolecular'separation, w(p,q) represent the
stationsry states of the‘donor-acceptor system. At finite separations,
however, the savefunctions, w(p,q)’ constructed in this msnner are not exect
eigenfunctions of ﬂlﬂgnglconsequently, transitlons_between thesebnonjA

stationary states may occur.

The total Hamiltonian of the system is written as -

regl il oS-l i
1, A 1,93, A 1, T1A
ik
z z, "%z . "
e i lkD+R:D (5.39) T
1, iAD ky kA ka,A 1a A - E

Where the terms¢ln the first bracket represent the Haﬂiltonian for the D
molecule, those in the second bracket represent the Hamiltonian for the A

’ molecule and the remaining terms are interaction terms. ZD/ri D represents
the- interaction of electron i with all the nuclei of D and likewise for

kDA

" equations (3. 1) to (3 10)). Spin-Orbit interaction is ignored in writing

z /r (All the nuclei in each molecule are "lumped together Compare '

~equation (5.39). To further simplify the calculations the following

L3 L

additional sssumptions aue mad&
(1) ’ The system ‘is treated as a, four electron system comprising of the
two outermost parallel,spin electrons of the organic molecule and the two

outermost parallel spin electrons of the oxygen molecule. The rest of the

B electrons are considered together with the nuclei in D and A as cpmprising

.the cores of these two molecules. This approacﬁ_is ‘similar to thet takenvinh

’

. _.‘- o ' -W
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" Chapter III in the formulation of the CNDO/S method.

2) The molecular electronic orbital wavefunctions are written as
antisymmetrized products of one-electron molecular orbitals. In brder to
orthogonalize the. various ?( ,q)’ the molecular orbitals of D are

orthogonalized with respect to those of A.

Kawaoka et.al. [1773 consider the two cases of direct and indirect
interation (equations (5.29)and (5.34) respectively). They have shown‘that

the e&ﬁctronic matrix element

-1

Bel =.2§§m for direct interaction (5.40)
and : | :
8. = 20 <:m—1 for indirect interaction (5.41)

el

Thes® vaiues éf Bel and Bél are approximately independent of the final
states of_the system, (a), (b) or (c) above. In other words, for both the

" E+E process (in which the 02 molecule ends up in an excited singlet state,
with the organic triplet is quenched to its ground singlet state) and the
.‘E+V process (in which the organic triplet quenched to a'vibrationally

> excited ground electronic state, the 0 molecule staying in i:s ground
eiectronic triplet state), the value of Bel = 2_cm -1 1f the que;ching occurs
by direct-interaction of tne initial snd final states and 8' o= 20'cm—llif*

the quenchtng occurs via an intermediate virtual (unoccupied) CT ‘state.

*:!bc four components of eQuations (s. zg)and (5.34) can be written as

- (2m'/mN) (8,02 (¥, ) | (5.42)
o elMpp kg |
g = (2o’ /H). (B;l)ii ,<?iq)iig.g (5.42)
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r

11q = (2m0'/BN) (8 1)111 (qu)ﬁi | (5.44)

E-V

., - (an'/hN) (Bel)iv (qu)iv

mi (5.55)

E-V
(5.42) 1is thekrat; of radiationless quenching of the orgaﬁic triplet
by direct interaction of the initial and final states, k and q, with the

final state q corresponding to cases (a) or (b) (02 in an excited singlet 

’

y \

! )
-

lstate).
(5.43) . 1is tﬁe rate for the same process but via an interaétion with

an intermediate virtual (unoccupied) CT state, !

(5.44) - is the rate of radiationless quenching of the organic

triplet by direct intgraction'of theainitial and final states, k and q, for

* case (c)vabave (i e. both the organic and 0 molecues in their ground state:

with the organic molecule D, vibrationally excited).

‘N"

(5.45) 18 the rate for the same process.but via an intéggction with
a virtual CT state. =~ - ’ N

" Kawaoka et.al. [177] have-shown that

Ve
<

-1

(BEI)iE;E = (Bel)iiiE_v = 2 cm | (5.46)
Co -1 : |
(Bel)iiE E - (Bel)i 2Q cm . - (5‘47)-
Defining
(2np'/0N)- (B_,) (21!0 /hN) (B ) c - .
. _ gl,iE_E el iiiE v : (5.48)
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(270" /0N) (8! 1>11E = (2ot (eél)ivE_V -c (5.49)
ylelds, from equations (5.42) to (5.45)

ZRE R (5.50)

Ty = C'(qu)iiE_E (5.51)

g ® C(qu)iiig-v (5.%2)

- Ty =c¢'F q)ivE v o v (5.53)

‘The total rate corresponding to

-

e w = ' '
TE g Ti + fii (c +c") (qu)E—E (5.54)
and the rate corresponding to the E-V prbcess is"
.- ‘ = ¢ i
Tpv " Tygg YTy 7 (et el F) B (5.55)
 where wé'have>used '
. ‘. .
), =) = (F ) (5.56)
vkg ?E;E kg 113—3 ~"kq’E~E
and '
( Peuar | * Frgdsy " Fudey (5.57)

VE-V

the E-E process is therefore

gy
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Equations (5.56) and (5.57) impl&‘thet the Franck—Condon fectors are
approximately the same for both the direct mixing and 1ndirect mixing E-E
processes. Similarly they are approximately the same for both the direct
mixing and indirect mixing E-V processes. These are reasonable approximations
because the Franck-Condon factor is related to the amount of energy converted

to vibrational energy, AE cm-l, by the following relation [177,191-193]

¢

~[ (AE-4000) /5000]

= 0.15 x 10 (5.58)

From equations (5.54) and (5.55) it can‘be seen that the relative
rates of quenching by the E-E and E-V processes depend mainly on the Franck

.
e

Condon factors. For an E-E process the amount of electronic energy, AE,

In

converted to vibrational energy is smaller than for the E-V prqcess.

other words

e :
AE < AE - : :
EfE E-V : B . (5.59)
Consequently, from (5.58)
Fe-g > Fev o , | (5.60)

.

Kawaoka et. aZ [177] have shown that, in general Fp_p is betyeen 100 and
1000 times larger than FE v’ and that c’ lOc. '

5.5.3 Radiationle ching,of Triplet CT. State

The spontaneous emission lifetime of the triﬁget LT state is expected
to be approximately lus (See Appendix IV). The lifetﬁgt of the radiationless,

decay of this state is not known accuratelyu Hovever;~ffbm the discussion
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" of triplet quenching in subsection 5.6.2 above, an estimate for this time

-

may be made. |

Since molecular oxygen is knOWn to be one of the most efficient triplet
quenchers [177,178], it will be assumed here that the‘major loss in the
upper 1aser.etate occurs by collisions uith 02.

As mentioned in subsection 5. 6 2, the radiationless quenching of an
' organic triplet can occur by direct mixing or by indirect mixing of the

initial and final states. Furthermore,- the quenching may be described as

either an EV or an E+E process, The relevant" ratas for these fo gonents

of the‘process.aiQ given by equations {f.43)' to (5.45). As ennﬁl
above, quenching bf indirect’mixing via en intermediate CT state is approx—
imately ten times faster than by direct mixing.

Indireet mixing of the type that occurs, in the quenching of D by 0
~is unlikely here simply because the existence of an intermediate CT state
is not likely here., Such a CT state would have to- be & state of the complex

-02 02 . |

Under identical-Circumstancee then; radiationlees quenchingiof the
rlaser state is expected to be approximately an order of magnitude slower :
than quenching of the Flectron donor triplet by 0 7 |

In the-"worst case" radiationless quenching of the triplet CT state

may be taken to be as efficient as that of the electron donor triplet by 0

A5.6~ Summary of Effects Due to the Presence of 02 | 55!

It will be useful to summarize the various effects due to the inter-

e action of O with organic molecules and to bring out the common features

)
- .. PV o

iuvolveé/in all of them. ;ﬂ~; ihﬁ'»tg;#&;!;%ﬁ s
( The oxygen molecule has a triplet ground state ( Z ) and has excited_‘
- singl@t etates ( A i 1z+)iuith exeitation,energies of 7882 cm ; and 13 ,121 cm

-1
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respectively.'
| The interaction of ground state oxygen with an aromatic molecule
leaos to the following photophysical observations' | . A
i) contact CT spectra [40~57]

ii)‘ enhanced 8,-T; absorption in the aromatic [49 121-125]

111) aromat:lc triplet (T, " )quenching [177-180]

iv) energy transfer from aromatic t;iplet to 02 yle - ing singlet

excited state 0, [177-180)

v)v oxidation of aromatic [182]

All these processes have some common characteristics which will now
be discussed. ' o | .

In Figure 5.3, the states of the isolated aromatic molecule M, the
isolated 02 molecule and the states of the system M. O2 are shown.

The M. 02 states originate as follows (the notation used is. that of
.Tsubomura and Mulliken [49], with that of Kearns et.al. [177,194] _shown 5
in parentheses) . o
3,01, from ’n,?X;_

)

~

tr

1
‘1’2), from IM, Ag

(lrj);' from IM, 12;

1&35(135”’&0“‘3“” I
_.,v' g

% S}

;,BQCT(I ) frm 2“"' 2 2 : ) . -

"'V‘ . \\

- and
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3G, from 1M R 3

1M 3.k - lM*‘ - SR - .
Here M, "M and are the ground singlet and the first excited triplet

and singlet states (S ,rTl and S,) of M. 32;, lAg and Z+ are the ground

" triplet ‘and the first pwo excited singlet states of 02 v

ot
5.6:1 Contact CT Spectra Rt

As mentioned in Chapter I1, Murrell [58 74,75] and Tsubomura and

Mulliken [49] have shown that contact CT spectra, corresponding to the

| 4 —s&lowed transition BA— 30T in“Figure 5 3, derive their intensity from
mc 3A transition. The 3G- 3A transition in turn derives its intensity
from the IM- lM (S ‘— s ) transition of the aromatic. When the § -S1
transitf%n is forbidden, as in benzene, the CcT transition borrows its
intensity from a higher excited singlet state of M via a higher excited
triplet state of the M 02 system. Tsubomura and Mulliken have ghown that

| decadic molar extinction coefficients thus calculated agree well with ‘

experimentally measured values. : I - .

]

‘ 5.6.2 Enhanced S -T1 Spectra

°

It has been shOVn experimentally that the intensity‘of S —Tl spectra
of aromatic~molecu1es is enhanced substantislly by the presence of 0
[49, 121-125] "This transition, spin-forbidden in the isolated aromatic,
-corresponds to the spin~slloved 3A73F transition in the M 02 s;stem. Murrell
'[58 74 75] and Tsubomurs and Mulliken [49] have shown that this transition - -f
‘Lgains intensity by intersction of ;he I and 3cr states. As mentighed above'
the 3A-3CT transition obtains its intensity by interaction~of the 3C‘I‘ stateb
'ﬂdth the 3G state.v The. 3A-3G transition derives its intensajglin turn from
”~?‘the 1H~1H (S -Sl) transition., Bence. the contsct cr spectra and S - iqh
5:;enhsnced speetra both ultinately derive their intensity from. the orgsnic o

P 40
: "lu-lu trmitim

- : R AR N C -

‘:f*%' R S
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N [ 4
' ;JHoijtinkvb.ﬁles] proposal that the A~ F transition gains its
inteneity by direct intersction betyeen' the 3F and 3G states does not appear

to be accurate. Such a direéct interaction mecheniam leads to smaller . ﬁéQ

calculated electronie matrix element, el’ (see equation (5. 28) above) than

i gli" N
H et

asnecessary to explain the 'experimentally observed values of the enhanced °
’ intensityr Indirect mixing ~ia the 36T state accounts pr:perly for the ‘

‘;A ~fjexperimentally observed values (via the matrix: element ﬂ'; %see equation "
| (5 33) above) [177].. ‘1 ; ., ' ! Ty

. 5.6.3 Aromatic Triplet Quenching’by 0,
- H ) \‘ | \‘e

The initial state, here cofresponds vo.¥ ( D Afszgl)'in the notation
‘of szaoka et al [177] (See .also subsection 5.6.2 above) This is the
state F of the ‘Mo 0 system in Figure 5.3. The final states ((a),  (b) and

(c) in subsection 5.6. 2) corréspond to the states ( r ), ( Pl 2) and

3 # )»‘here the last state is vibrationally excited As explained in

3 R subsection 5.6.2, the formation oﬁ electronic excited oxygen (final states
lrl 2 ‘and lr ) occurs between 100-1000 times faster than formation of
vibrationally excited ‘ground electronic state of M (corresponding -to 3A )

,Further Kawaoka et. aZ [177] have shown;that these processes occur by inter-

action with the- CT states,_1 3CT at a rate: approximately ten times faster

. than if the process occurred by direct intersction of the initial and final
. . . L - i
p states., _’ e e s

“\ - .
It may be said thereforé that all the’ three processes mentioned,namely

~

contact CT absorption (and emission), enhanced s Tl absorption and aromatic

et quenching involve interaction of the CT states snd the rstes of

thene processes are. in the final anslysis, governed by the rate of the .
-ix }.transition (rsdiative or rsdiatiohless) S1 So of the arouatic‘

LA y o
= ; FA e

L. PR . . .
) et

é R ‘ - v . .. T e A
¢ R N Lo (. . . AR Ty e
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&

. g, -
photosensitized oxidation of these‘toﬁgﬁiggs [198 199] i
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5.6 .4 Production of Excited Sing’letO2 and Oxidation- of Aromatic

4

Production of excited singlet 02 is a direct‘consequence of the

\)“

. quenching of the aromatic triplet explsined above. | Obviously, the presence

of excited 0 in the system generally enhances the rate of oxidation reactions

For example, Kautsky [12?] studied the photo—oxidation of spatislg& isolated

" pensitized and acéeptor molecules, and found that ‘at a low optimum oxygen

Y ]

¥

pressure it was possible to selectively excite<s sensitizer and produce

‘ oxidation ¢f a distant scceptor molecule.w)Kautsky concluded that this-long-

range transfer ofJenergy was due'torthe”dif?usion'%f excited ’ninglet)'Of

molecules f&hich have long radiative lifetimes), produced b jquen: *ing of the
B .
triplet state sensitizer. “It has been shown, further, that 84 glet,state

nw§Ecular oxygen produced in the reaction of sodium hypochlérite wi

hydrogen peroxfﬁe [196], or in an rf ﬂischarge [197], reacts with vd

T

organic co&pounds to give products which are identicql to those produced in
o .

5. 7 . Rate Equation‘Analysis o

The pumping mechanism described in Sec!ion 5 5 1s- illustrated An
. +
’Figure 5. ls which shows the energy levels of the isolated sromstic and those
\ [ : ‘ '
of the CT complex. S ‘ ¢

Of the systems investigated here the one most suited for this type of

S ' P
- -

pumping'is the'pyrrole-oxygen complex becaose; as mentioned previously, the

o allptate in this case 1s lower than the Tl state of pyrrole.

' ‘I‘he imp\ortant steps in this pumpihg process ‘are the followingw :

oh

N \(l)_ VOptiosl pumping of the pyrrole S1 state. This«is an allowed transition

. P )
'and the 81 state may .be popdﬁated directly by So-*S1 transitions oy

. A @

"snd by So-*s 3 tronsitions (J>2) with subsequent rsdiationleos internal

'."conversiea;te~sl This .rate of - pu-pipg s denoted by r (cn oec ‘).
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. '6 a.;low the :lnternal coordinates Q to take on va}ues which mﬁim‘sz - The .
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(2) lfnters’yqtem crossihg @mp the Sl to the T, states.” The.rate constant
tates. ;
. l

-1 .
fthhis‘propess 43' denoted by KISC(sec ). ' s

«)% “Triplet-Tripl’ ; ‘rgg exchanfe between the pyrrole Ti’ state and the

"

3CT sta&e.

Iy -~

%) Laier emission bgzween the 3CT state and the level Eﬁ\‘R Qv) (See

Figur‘b:lS The radiative decay time here is denpted by KR(sec 1).
(23 . .

(5) Radiationlees Relaxat:lon of the state "E’.N(-R‘,Q")' to EN(R.Q 3 (See Figure
v . ¥ N* AR

5.1). o A “. L
. i J N : PR

, The dT state shown in Figure 5 4 is the l-fv(kﬂ

‘ 5 AR

laser level) in Figure 5.1.. T}h’s is :equivalent to the aﬁemﬂym\

!bow& » "' .

the trfplet-triplet exchang% prbces% charac@.stic time i’sﬁ 1ong enough to

TR

Xy

demities (cm ) of “the various states a&e denotefi by JM 1, [Myﬂs‘ [N ]

[N ] and [bll] See Figure 5 4 and Figure. 5.; i}&‘or each -of the .states 4
O vy \

-

rate eqpation may be written. Hence, .”

M‘bﬁ' . -

4':_' L N :
7 i . . !‘i

‘@ o . ’-\“‘ [v]
sl .] ‘ -
T KF[M ] szc[M I o ,%5).61)

. ! . . r B e -
~ . ) . ) 7

where, in general, l% is the fluorescence decay time* constant (sec ) of '

af s o ‘ -
e . : e N g

I

5, and the other quantities have been defined aSové ‘. e -
. l‘ . o L » K ) )
- 4} ' “a . i - . . .
d[“z] i ‘ . T, 1 _
a3t~ Kiscl® "r["z] "rq["zl Kr'r["zl L (5:62)
B . o . " - - B

'.qhere, Kr (sec ) is the thte at wbich '.l.‘1 ig quenched radiationlelsly by 02 -

and. KTT (cm aec ) is the rate of~ self quench’inﬁof Tl :

% RS AP TR

- ‘r[ ] nrq[nal t,.,[

e ta .
-:._Q,.,r.‘i %

Mte constant for thie process_is denoted by Kr(sec 1y

!
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SR . s
fa - . - .
where, Ki. (sec 1) is the rateqat which 3CT is quenched by collisions with

l% (cm dec ) is the self quen.ching rate and KR (sec ) is the

radiative decay time constant 6f the 3CT state. %
& - . .
d[N] > L o
' KR[N] [N I o 6.64)
- ’ »;‘“?‘- .
‘e + ..e‘, e .
e AT
. . & X o v
where K ' ({ ) is the rate of radiatio .S e ﬂﬁn of. the atate
, ‘ q » ,:-‘ \'
ENcR Qv) to E\(R, QN) - Equé"’cion (5. 64) i
. I '-'v ‘ . ) ) ” . . .(‘3, R » ¢
gl ' -1*-‘ - N T C
KR v, &ﬁ’d Ko = T . . a My o ' Sy Ty
%h “ 4 P . 5 N ‘ : X 9, e
*a 5o T km '. T @T"‘_“ %' ; &
To simplify the analygﬁt ateady-State conditions wiulbe assumed.
- & ,
. The 1eft,-hand sides of equatgons (5 61) to (5 ‘64) are hence all zero. *

:f\‘?»
& It should be noted here Qhat the quantitative analysis based on
> a“ )

equations (5 61) ‘tO (5 64) N presented bel‘. only by a very apbrokimate

?

. t .
4 °n§ eince meny of: a above rat;e constants are not known ’accurately at .

—
.1-3 4

preaent. The sample calcgation presented assumes an experimental test cell
"

10 ca in lehgth 5 cm in diameter, f11led with 10 torr of pyrr&e and 10. s

.

..torr of 02 y - - s g

‘The rate of optical pumping of S, can be written as [7]

-

r,-= == (cm = sec ) i EEREN (5.€5y

vhere Y is the decadic molar extinction coefficient (liters @ lmole ), M
. ‘(

18 tlte molar concentration (moles litre ), Iis the incideut radiative '

: pover per cn2 (watts cn ), h is Planck's constant (Joule sec) and . v the
- - ) ) » ) ’/)..:

_frgqugncy of ebeorbed photon (llz)

&
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. o
e R ¥ - . *
Kol SRS L A
For pyrr..c [171] the peak absorpt ONi@urs at 48,190'cm . and
Xmax = 7590 (‘-.cers cm 1mole, ). Assuming an incident (optical pumping)
power of 25 KW em-z, tbisﬂleads to a value of -
Trymli2x 1023 em™> sec”t : : - (5.66)
) . . ’ .o " R NN p o
Now in. pyrrole it can be assumed‘that practically every molecule in
the S1 state eventually results in one in the,il etate [171] This is the'
reason given by Hovrath and Kiss [171] forvthefi fa lure to observe ' QP'
~ ’ # - .
fluorescence in pyrrole ‘*," i
: A it e g » :
. -Hence>in equation-(5.6154ﬂF & 0&?,This leads to L ‘.ﬁ.. ‘
u ) “% ’ 4,«‘.\“ 4#2 . . . ' . ‘ , “‘ . -w*;\i .
E“ﬁ’ Kise " " _ ’;m v (5.67) &
5 o -
Iy ' ‘:Z‘ I . S " ,' ' . - ) . s » R
An experimental value for K C is unavailable. However, for benzene
. this value is app:ogﬁ&gtely tg l [161]. Making the’ nessonable assump—
ltionlthat the value of KlSC in pyrrole is comparable‘yieldsﬂ~the steady
state value. . ' { o |
: . et ;._..v RN -+ ‘: g ' °
.. .A~ 16 —j ‘ ' T -z Te g _’;-. \ v .
- ] = 10" cm CEIE e s (5 63)

The value ‘of . the rate eonstant, KT; for triplet energy excbange is

z~unknown also. This is the most difficult value to estimate. ~In other small_

moleculsr systems involving potential energy crossing this rate constant

lies between !0 " snd 10 11 cm3 molecule -1 sec 1-[200] Assuming a value :

D ~10 " 3 1'

cm molecule sec'1 as a ‘typical" value yields B
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- 7 -1 .- ‘ .
KT =4 x 10 ~ sec . o (5.69)

"»at the pressures under consideration.

The value of K'rq’ the rate at, which pyrrole triplets are quenehedx by
L ow : ' §

02 -isztakelnf to be approximately the same as the experimental rate quoted by
Snelling [18 for benzene. This exp'rimental value 18 5 x 10'--1 cm3’
- - F\‘;/n :
ﬁfnolecﬁle 1 secl. This leads to
‘ L,,&Iq = 2. x 10 sec N . .(5.20)

T .

[

:'""

quenching equafion (5/ 62) leads to a steally state’ valua

-~

. .q - . . - - h v
o . -,
M]=1 e ' 5.71
2 .: %—- X ’1016 cm-3 v . . ) ( -71)
. (\D . . . . = ,

%ﬁx order to obtain the density of states, [N ], in the upper laser

N

level it is necesgary to know the, rate consténts in equation (5.63) - KTq

" 4is the rate of radiationléss decay of the upper 1a'ser state by collisions

with O Y, It would be reasonable to. assume a vai’he of KL‘ to be approximately

' f_,@ttﬁﬂ&ﬂpd{)ﬁ% "zorst cgse" eo’nditions& (See subsection 5.623 aborve) H_ence .

25
L
egual to that of K.r , the réte of quenching of pyrrole triplets by 0 This

Krq = Fpq ¥ 2 x 107 sec - SRR ¢ 1 3}

,’I‘he radiative decay t:lme constant is takenf:o be the Spontaneous o

eniuion rate (10 sec 3, , See Appendix IV) 'fhis cen be dqne since if the

v- .‘ spontanoou nnd oti-nhtad .iuion lifetinn are t” and Te rupectively, :

. Lo . et . v a
B : o . . L . . . . X B . , R o
ot . . PR R L [ AP “ < Te . -

-

“as in obtaining t:he vw)e fo% - she density of quenqher molecules ’.

. .. Y “ . . ‘ = .
is eStd.mated from the stipulated conditione)xﬁ preasure. Ignoring self b“

? &
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R
v . . i

and the ‘total radiative ‘lifeti'me isg Tpo then

‘ ) 1 1 S
B A ¢ + T = o 4 = . .
Ky R 8p _st:. Ksp K. ' _ (§.73)

24

=]
=]
(=9

w .

T (5.75):

a ¥

L ek : -
o Akq B A %ﬁf.ﬂh ,
FE o BT,

o <SS

Using (A.70) and (A.66) shows that the spontaneous emission rate is the - a

limiting rate ‘process here, since then

e 13

K. _=2B ~(5.76)

- kp; Q/ﬁ '- - |
st~ g R . ( ‘ )

. v .. . . ‘ . \ ‘ -\,\ ‘

‘where hv in the pyrrole-0, complex s approximately 2.8 ev. Using thisp' _

" value in | (5.76) " ghows that L \j _

Kge << Ks'p ‘.“ L S v g o ‘(.5'2‘7')“ o —

Lo p’ s - S - e T e e . . . : . ‘ .
: . £ o @ "Q . : :‘V‘ * : - Y ‘ - ‘k-. B '$~ -, . " T . . . .
. . . - L e .. '-’ L R v LN “ J. o . -

"63.')‘ ‘this 'vfi;nally lgéds“ﬁo AV- .

'I.g'noring'kséif ‘quenching in (5

RS e : o >
. : . . ot 0 ] - . . . v B o ) .
[N3] = ?&x l_O]Z_s:cm -3'.“_ IR SR o (3.78)
. - : - S .‘ o o S ) 3

If an emission vcrosaé-s}e’o;:tidti of 10—17 cnz(Seeippendix IV) A’.:I;g aamed

et Ly
EREPYVN .
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X RN o o " . . '
consistent with meaauren@ntam of extinciion coefficients of approximately 100

in,ab{_sorptlc’in, "th_in.s value yieldsf an.upper value for gain, g,

. B - R . . .
e s « ’
o . ¢

‘ . o e 7
R S -1 C . C ey A4F
g~ .03 cm _ g # : : - _
s . ‘ il
. . - . AGH
-t : * N

-\

e ﬁi”v‘ Z

- The ne‘klect o'f self quenching(rate constants KI‘T and KI‘T 11(« equations oo

(5 62) and- ‘“(5 63) 18 npt; a bad approximation For instance, w;ith aelf a '
A4 * .
ng i,gnored the :densities" of the relevant triplets [M ] and [Nj were ,

.

15, 8 : !
‘e approximatei»y 10 cm and 3 x 10‘!5 =3 . Now a reasonable value
: L e P S .
Tt the self que‘aching process is [1’29] o e T L
- RS L R AR TIN S
. - w' ‘ . ‘“o "4, "av g L‘._u to
107 Rl o ' - %
Kpp = 10 mole ¥gec™ o S S (5.79)
4 -1- »\’_< B ‘ R s . hd . : ‘, ' . - <
Then KI’I‘[ 2 x 10 e e X e . &%-€5.80) *I.C‘
~ e | | . . et
o g : : ) ~
5 —1 .
and KTT[N ] y x, 10° - « - (5.81)
5. .l : . - . o
g

Iu pompatisom with the other rate constants in equation (5 62) aad‘ (. 63l
N\

~ these values are orders of magnitude smaller. Hencé the estimates for [M 1 \‘:
an4 [N ] obtained by ignoring aelf quenahing -are approximately correct. . A
'Generally, @F effect of triplet queng}ng of an organit: by collision with

:the ground state siaglet 18 smaller than self quenching of ,Jhe triplet [129]

\
- -

'Hence the eet:lmate for gain obtained above is reasonable.

. " . N . hd - . M . . .
. ' : - Lo . . ! B . . . - .
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CHAPTER VI Lo

Ry

CONCLUSION AND OUTLOOR g

a

The theoretical basis for the existence of a new class of lasers

analogous to the well-known diatomic excimer lasers has been established.k

£

The "Contact Charge Transfer Excimer Lasers"utilize the extra degrees of
-ﬁ:_ L e
’nuclear freedom that exist in polyatomic complexes of two valence saturated

molecules. "H
. The CNDO/S method describes the behaviour of the excited electronic

~states and can be used to investigate thé'potential of numerous' other

- N e ¥ | — LY
. 5 e T -
complexes as laser molecu 9Qi§3;. S : 'yj ;~-‘ﬁk’ g

- There are several ob¥ 8- that have to be overcome before a contact

- CT Excimer Laser can be operated in the Iaboratory. These are briefly
discussed%below together with suggestions ‘on future work that may prove _

fruittul. v . : ‘ ‘ o .
It is expected that onélof the major problems that will -have to be

overcome in practice will be the prevention of irreversible chemistry. The

i 2

PP "o.
contact CT complexes investigated above fhvolve the oxygen'molecule in an

L4 ST

acceptor role. The lstter is a reactive moIeeule and hence experimental

i chave to be strictly regulated if the pumﬁkng mechanism

suggested is. to work. For example,,it would be necessary to keep the' )L'

L

incident radiation frequency below the threshold for photochemical reactions-

conditions W

iA4the mixture irradiated._ Initial experiments could be conducted with a

monochromatic but tunable light gource (such as a ﬁunable dye laser)

For molecular systema involving 02, the production of the excited ,

1

‘ singlet states of the latter during radiationless quenehing of organic -

trip],ets could present another problem ‘Ehe enhanceme’gt of irreversible
- , . . A }
T chemistry by the: presenee pf singlet *Gould hﬁVe to be studied carefully :
: { e

~ .
"

in experimental situations.

s

- . : (‘ S Y K - .> "‘ ,A c.
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v

. L
. Another problem related to irreversible photochemistry is that of
predissociation [73]. 1If in any atomic (or @lecular) system certain discrete
energy levels a,b,c,... of a series .of stat&s'A have the same energy as a

continuous range M of energy levels of a series of states B the former assume,
- AU

to a certain degree, properties of the latter. Normally, the continuousxdgﬁ
range M corresponds to the system "flying apart" with various amounts of.
kinetic energy [73]. Hence.once the system is in any of the states a,b,c,..;

f’it‘will; after some time,'enter'the:gange M and break up. Such radiationless .

dec%mposition>is called the Auger process. 1f the continuous levels M

LY P
. - .

u¢gcgrrespond to dissaciation, the process is called prediss%ciation; when 1t

qorresponds to ionization it is called pretonization or %gtozontzatzon [73
i/k

186]

L]

A major route of predissociation is the excitation of . the system by
absorption of light which takes the molecule to levels energetic enough for

'photochemical decomposition by predissociation to occur. In-the pumping_

N

mechanism proposed in Chapter v, therefore pfédissociation may cau.

parasitic loss of the laser state. In order to minimize any such effects

.

it would be necessary to control the energy of the incident photons.

»

_ Further work both theoretical and experimental regarding other contact
N

CT pairs would be»useful. For example, it would be instructive toftind :
whether ‘6ther acceptors, 1e-s reactive than molecular O2 form conﬁhct CT

complexes, Molecules like 002 which are known to act as acceptors could be

' -

.

. :investigqted. Similarly, other donors could»be-investigated, )

IS 4 - N ’ 7 : ‘ .
. | _ . .
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APPENDIX I : ~
[
INTERACTION OF RADIATION WITH MATTER

This appendix outlines some well known results, in particular
it treats radiative emission and absorptién. Ve start by outlining
time dependent perturbation tgéory in which the total Hamiltonian
is treated as a sum of two parts, one of which is time independént
and for which stationary states wavefunctions exist. The second
part of Hamiltonian incorporates the time Aependence expressions
for radiative transition probabilities are hence derived. The
P semi-classical thermodynamic treatment for spontanedus'emigsion,

formulated originally by Einstein is also presented. .

The 1ntera;tion of radiation with matter gives rise to three important
phenomena namely stimulated emisaion, (stimulated) absorption and 3pbntaneou8
emfssion. These processes can be accounted for by quantiiing both the
radiation and the atom or'molecule with which the field interacts [17,142].
Such an approach requires the elégant but somewhat formidable formalism of
quantum electrodynamics [143]. For thié reason, in the present work, a
‘semiclassical approach will be used in which the atomic or moleculaf gystem
is treated ﬁuantum mechanically, but the electromagnetic radiation igs
formulated classically.

The semiclassical approach has the drawback of not accounting for
spontaneous em natural way. However, this phenomenon can be
studied somewhat indi: ctl b§ including Einstein's thermodynamic treatment
(in the form of the Einstein A and B coefficients). This is the approach
taken here. Time!%ependent perturbation theory will be used in which the

electromagnetic field Y5 included as a small time-dependent perturbation

of the Hamiltonian of the isolated atomic or molecular system.
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A.1.1 Time-dependent Perturbation Theory [17]

Since the electromagnetic radiation, taken here as a classical
harmonic field, is time dependent, the tqtalbﬂamiltonian of the system will
also be time-dependent.: Hence the time;indeéeddént Schroedinger equations
(2.11) and (3.1) cannot be used. This simplification of the Schffgdinger
equation, used in Chapter II, is oniy applicable to cases.where the
potential ene?gy term in the Hamiltonian is not a function of time, in which

case gh; total wavefunction can be separated in space and time as follows
¥(r,t) = exp{~1(E/)t}¥ (¥) (A.1)

where r denotes the spatial dependence of a wavefunction (on both the

nuclear and electronig\spatial coordinates, r, and,ﬁi of Chapters II and

III), E is the energy of the system and h the normalized Planck constant.

In the case of a time-dependent potential energy term in the
N PR
Hamiltonian, it 1is necessary to st from the fundamental time-~dependent

Schraedinger equation . .
b -
HY(T,t) = 1h 2 ¥(T,¢) : | ‘
’ . at ’ ‘ . (A.2)

from which the time-indepe;dent forms given in (2.11) and (3.1) can be -__
deg}ved by using the wave equation represented by (A-1) [64]. |
In time—depquﬁgt perturbati&n theory the full Hamiltonian, H, of
a . .
the system (comprising of radiation and matter) is split up into two parts

\.
HE,e) = HO @ + 1P 3,0 o (A.2)

where the zeroth~order Hamiltonian, H(o)(;),'is time-independent and all

< N
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- time dependence is included in the perturbation Hamiltonian H(l)(;;t).
Since H(o)(;) is in&ependent of t, there do exisé stationary-state
(time-independent) wave functions for the zeroth-order Hamiltonian, H(o)(;).
Hence a time—indépendent equation can be qritten for this part of the

_full Hamiltonian

O @ vy @ = gy @ " | (a.6)
where wE(;) is an eigenfunction of the zeroth-order Hamiltonian H(o)(;3
corresponding to the eigenvalue En. It should be noted here that stationary
states do not exist for the full Hamiltonian H(r,t), since the latter is
a function of time. Once time dependence is introduced Qi; the perturbation
Hamiltonian, one can no lonéer talk about eigenfunctions aﬁd eigenvalues.

In effect equation (A.4) ignores the presence of the electromaénetic .
field and this must therefore be included im the'perturbation Hamiltonian
D &,e). |

Tiﬁ;,deﬁeﬁdent perturbat}on theorykfow assumes an e;pansion for the
total wavefunction in terms of a complete set of zero—or@er wavefunctions
wE (;) of equation (A,Q), In order to do that it is necéssarybto introduce

n .
the time dependence of ¥(r,t) 1&\the expansion coefficients. Hence, the

.» following expansion is used \

¢

f(;,t) =7 a

4 /mye} (A.5)
j=1 '

(t) ¥, (r) exp{-1(E
3 ]
where j represents a set of quantum numbers which uniquely identify a-state
of thé unperturbed sys;ém. The nonstationary character of the total
wavefunction, Y(;;ﬁ), 1s reflected in this expansion. The state described by

?(;,t)‘ié assumed to be a mixture of stationary states of the unperturbed
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Hamiltonian (atom or molecule in the ;§sence of the field) with the coupling

coefficients, a,(t), depending on time.\

. 3
Substituting the expansion (4.5) 1ato (A.2) yields

—iwjt _ 3 © -iwjt-
(t)e | wj(r) = ih Ez-jzl J(t) e wj(t)

{

HO@ + #P @01 ] ac
3=1

(A.6)

where the angular frequency, w,, is defined by

h|

E

wJ--ﬁl o ‘ (A.7)

which follows from
) qF“
hw
-—-1- ] °
hvj o7 3 Ej (A.3)

4

Now since the set {wjf;)} forms stationary state eigenfunctions of
the unperturbed Hamiltonian it must also satisfy the time dependent

Schroedinger equation from which the time independent form is derived by

-~

use of equation (A.1). Hence

-ip. t ' -iw. t

K@@ e 1 - v @e (4.9)

Therefore

iwj(t)

() = v s R
H (n) 21 ay(t)e 2 3t ¢j(r)e

(A.10)
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N ¥ [ iw t

Expanding (A.6), using (A.10) multiplying throughout by-wa(;5e 1 and
integr#ting over all spatial coordinates ylelds
1( ) )t
d T TP o e 1
R ROR AU PP o @z
' (A.11)
, where X _
1), \a =y = St =1y =
qut(t{ WAL (r,t)wj(r)dr-<wq(r)|H .(r:t)le(r)>
(A.12)

(the Dirac brackets in (A.12) denote integration over spatial coordinates.
only).

There are an infinite number of equations in set (A.11), one for

each value of q=1,2,...~. In order to solve this infinite set of cOupled

first-order differantial equations (A.11) 1s integrated over time from 0 to t

yielding
© -1 (0,: w )t
2 (t) = - —-Z {f 2,(t)e i (1)(t)dt} +c, q=1,2,
o j=1 9 - a3 q
(A.13)
‘ o

_ where ¢ 1is a constant of integr: -n which is determined by the initial

conditions of the problem under cosrideratian. | -
It is apparent that to solve fc¢r ~he ¢:h coefficient, aq(t), we must
know all the coefficients, including aq(t), since'they appear on the

right<hand side of (A.13). Hence solutior of (A.13) is not possible without

v .

approximating.

It will be assumed here that tbe perturbation ﬂamiltonian, H( )(r t),

[
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is small. From‘kA,ll), then, the rate of change of each coefficient;
aq(t), c;n aléo reasonably be assumed to be small.

Let the system initially (i.e. at t=o) be in the kth quanitum state.
Let a small perturbation be introduced at this time, t-o: A short time
later (éime = t), none of the coefficients will have changed significantly,
80 ak(t)ul will be the largest,-and the superposition of stationﬁry states
making up chexfotal wavefunction ¥(r,t) (given by (A.s) will be dominated

by the kth state. In the zeroth-order approximation, which in effect

igﬂores the perturbation, is therefore

a (t):a 8

3 Ik for small t>o ' (A.12a)

and

-1 (Ek/h)t

W(;;t) o wk(;3 e for small t>o (A.12b)

~

Substituting (A.13a) into (A,13) yields

-1(w,~w )t

1 v - 1
a (t) = - E—jzl {oftsjk e 1 q Héj)(t)dt} + cq
-1 (w -w )t
ag(®) = - % oft e kg Héi) (£)de + C_

Now for q # k, aq(o) = o since the system is initially in the kth state.
Further, the perturbation matrix element H;i)(o) is also zero since the
perturbation 18 "switched on" at t=o.° Hence cq-o and

N e—i(mk-wq)t

i 1
a ®) = - s g (0) de afc (A-130)

%

For q=k, aq(o) - ak(o) = 1, Hence cq-l. Therefore
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-1 (w, ~w )t
a (6 = 2 () = 1 - Lt R (de amk (4.130)

Equations (A.léc) and (A.13d)aré first-order time dependent perturbatiyn
theory coefficients. The corresponding first-order wavefunction can be

obtained by evaluating the coefficients aj(t) using these equations and

then substituting in the expansion given by (A.5).
Y, The physical interpretation of the coefficients aj(t) in (A.5) can
be obtained by realizing that the probability of finding the system in state

q at time tl (when initially it was in state k before the perturbation was

applied) is given by

1(E /h)ty

IZ
(A.14)

Pk-rq(tl) - |f¢3(?)e ‘i’(_r-,tl).d?

Now using the fact that the eigenfunctions wq(;) are orthornormalized and

substituting‘(A.S) into (A.14) immediately yields

2
U CHENENCR T (A.18)

Equation (A.13c)is therefore an important result since it yields the
probability of a transition from state k to state q as a result of a time-

dependent perturbation.

A.1.2 The Electromagnetic Radiation Field

As mentioned before the interaction of radiation with matter will be
treated by considering a classical electrgmagnetic field as a perturbation.
The approach will be to first write-dovn the perturbation Hamiltonian H(l)(;,t)
due to the radiation field'and then use time dependgnt perturbation theqry,

outlined above, to expand ?(;,t), the total wavefunction, in the gtationary
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states of the unperturbed sysfem. The expangsion coefficients thus obtained
represent the transition probabilities caused by the presence of the
electromagnetic field. The rad{ation field will be taken to be that of a
classical plane wave. Furthermore, ih the following treatment, only the‘
effects due to the electric component of the electromagnetic field will be
considered, the effects of the magnetic component being neglected. This 1is
normally justified since the electric field effects are significantly larger
than those of the magnetic field. .

The treatment in this secfion will therefore lead to an expression for
the electric dipole transition moment. The corresﬁonding quadrupole and N
magnetic dipale moments are orders of magnitude smaller and although theséa&
are very important in many practical_situations (especially in not allowing
any transition to be rigorously forbidden) they will, nonetheless, be ;gnored
here, for simplicity. L4 he ‘ \,

The elctric component of a plane monochromatic electromagnetic wave, )

at any point (x,y,z), is given by
ER,0) = B ®,0)a, +E ®Da, +E,® Da, (A.16)

where R is the distance from the source, ;;, ;; and ;; are unit vectors in
. / .

the x, y and z directions respectively. Each component will be given by an

equation like the following

o

iK-R eiwt + E° e-iK'R e-ia)t; (A.17)

— L o
EX(R,t) Ex e .

where the plane wave propagates in the direction of X which 1s perpendicular

to both E and B (the magnetic field component) [144,145].



. 206

Consider the situation where the molecular system has a dipole moment

given by (2.71) which 1is repeated here for convenience

Uop-eézkkk-egri (A.18)

Then the perturbation Hamiltonian is gigen By the interaction of this dipole

with the field. In the far field this can be written as

1) — - - }
HY @0 =T+ E®0) (4.19)
The full Hamiltonian then becomes
- © = oy + T EE® ’
H(x,e) ~ H7"(x,t) + U ER,t) (A.20)

H(o) is the unperturbed Hamiltonian of the molecular system (that is the
Hamiltonian which expresses the stationary states of the system) This time
independent part will havé stationary states described by (A.4).

Writing the dipole moment in terms of its components
=0 a +U a +U a (A.21)
and using (A.16) in (A.19) yields

res) T.t) = [ngx(ﬁ’t) + uyzy(i',c) + UzEz(i,t)] (A.22)

If the molecular system is initially in state k then the relevant

matrix elements to be evaluated are Eﬁi) and Héi)(t). Fror (4 22)1t can
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be seen tﬁat each matrix element will consist of three terms, an x term,

a4 y term and a z term. Consider the x term alone

B - DD E ol ®> ' (a.23) )
) . . (™) |U_E_®,t) |y, &)> R .
Hkqx Wq r) (U, x( st) Y r) (A.24)
L

Using (A.17) this yields . . \

v

mxzxe -1K-R, i“’tlwk(r» (A.25) .

It should be recalled heté‘that the integratioﬁ in these equations, (A,23)
to (A.25) is over spatial coor&inates only. |
Tﬁe y and z terms are similar. )
In order to ef/iuate (A.25) a further simplification will be made.
It can be shown [17] that if the wavelength of the incident radiation is

large compared to the dimensions of the atom or molecule perturbed by it, :

'
/

then taking
-— i‘ici ! .
eiK-R xe - O "constgnu / . (A.26)

‘ is a reasonable approximation.
Using (A.26) in (A,25) yields
(1) £ iK- Ro -iK. R :
Hk . [e <w (r) IU I#k(r)> +e 4' (r)lU l*bk(r)>]

i ' . f o (A.27)

Similarly
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‘ EE " -{K'R
(1) _0 ety (o - L N T S =
ey Ey[e - qu(r)luylwk(r)»e e <wq(r)JUy|wk(r)>]
. (A.28)
and
(1) .o ii.i: wt i i—i ‘
 BemEle ’\<w (r)lU @ <w O v, @>]
T N ' (A.29)
i\
Defining bl T -~
Vg > = < V@0, [, @ > O @a
M
J
< uqu; - < wq(?)|uy|wk('r’) > . " (A.31)
and -
. hd ’
< .uqu >m< "q(’,’”“zl“’k("v)’ - : .(5'32.)
" The total matrix perturbation Hamiltonian matrix ‘element is
B () = aﬁic:) + ‘”(c) seBey (A.33)

'Using equations (A.27)'to (A.32) in (A.33) ylelds

’ . - ﬁci. | ii e
Eg) (t) = [e %t 4+ e o °"“"‘][z <u, >+ E%u, . >+ x:<uqu>

kqx 'y kqy
. (A.34)
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=+ 1E3§; o= L0— o —
. E = e (e a; + Eya) +E) & ] - (A.35)
and
-1K'R ,
_ or .0~ o— o—
- . + +
E e [Exa E a Ezaz]‘ (A.36)

.

and recognizing that, from (A.21) and (A;§0) to (A.32)

< Uop > m < q,q(r)luoplwk(r) > m < qux > ax + < quy > ay

+ < quz > az o (A.37)
-~
_yields finally
1 =+ dot = - -
Hliq)(t) -<u > [ET M4 ET T (A.38)
Héi)kt) is similarly derived. C

These matrix elements then enable one to calculate radiati#e

)

transition probabilities by the time-dependeng perturbation relationshibs

derived In Section

&

Fop convenience let the perturbation Hamiltonian be separated into

spatial and harmonic temporal parts . "

HD @,e) = @) M 4 W @) oot a.39)

‘where ///k//

U . |-
H(x) = ?Op E L



210

and

H(r) = Uop « E (A.41)
and where E T and E _ are defined by (a.35) and (a.16). Note that eauation
(A.39) follows immediately from equation (a.22) if the definitions given

by equations (A.16). (A.17)¢7(A.21), (A.35), (A.38). (A.40) 8nd (A.41) are

used.
«

A.1l.3.Radiative Transitiol Probabilities

- It ié now possible }o dérive expressions for the probabi}ities with ¢
which the molecular system under consideration will undergo radiative Z;f
transitions. Since these transitions occur becauée of the perturbation caused
by the presence of an external electromagnetic field the phenomena are

properly described as stimulated absorption and stimulated emission. However,

N

the adjective stimulated,is normally not used for absorption since this process

cannot occur spbntaneously unlike emission, which can [148].

As mentioned previously, the semiclaasicai‘hpproach taken here does
not naturally account for the phenomenon of spontaneous absorption, unless

therpodynamic constraints are placed.
' s : :
As before let the molecular system be in the quantum mechanical

state k before the perturbation is experienced. Let this perturbation be

due to the presence of a harmonic electromagnetic field such that the
perturbation Hamiltonian is given by (A.39). Then as shown above the

probability that a transition to the state q occurs 1s given by Iaq(t)[2 of

equation (A.13¢). ’ ' ' <L

Substituting (A.39) into (A.13c) yields

- -1(w -0 )t
i t “x™q - + = 1ot
aq(t) = -3 of e | <wq(r)|H (r)e

+H @ v @)> ae : (A.42)
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\
Hence _
L -1 (w, ~w -w)t ~1 (0w, ~w _+w)t
’ ~ -1 et “k™% - k q
<o aq(t) = -4 off{nkq e + Hkq e } dt
(A.43)
b
where
+ ) = o = - : ‘
Heg = wq(r)lH (r) |v, (©)> | (A.44)
: \
and
Mg = V@I @ |y () (A.45)

Once again, the integrations in (A.44) and (A.45) are over coordinate

spacé\pnly. Hence in (A.43) the matrix elements H:q and H;q can be removed
AY

fpom under the integral sign. Doing this and evaluating the definite integral

in equation (A.43) results in
‘ o

o ~1(w, ~w ~w)t L -i( -0 _+w)t
a‘=%+[e“‘kq t_iH; ™ 1t
q q | o h o
—i(mk-wq—m) -1(wk-mq+m)
Hence
+ -
-i( -0 -m)t Bk ' ~1(w, ~w _tuw)t
. kg “k i, kg U
aq‘t) (Ek =gy [e 1]+ (Ek—Eq+hm) [e 1]

(A.46) -

where equationv (A.7) has been used. The square of the amplitude of this
term gives the probability that the molecular system will undergo a
transition from the initial state k to any other state q in the presence of
a monochromatic electtcmegnetic field with an angular frequency w. Equation

(A.46) gives an interesting result since it shows that the tramsition
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probabilities attain their maximum values when the incident radiation ﬁas',
a quantum energy which is equal to the energy difference between two states

Ek and Eq’ that is when

hv = hw = Ek - Eq : . (A.47) .
Here Ek can be higher or lower thén Eq. If Ek>Eq then the pransitién
probability ca;culated'is that of stimulated emigsion. For the case when
Ek<Eq’ the transition probability corresponds to that of absorption.

The fact “that aq(t) takes on maximum values when (A.47) holds is easily
proved by applying L'Hospital's Rule [146] to (A.46). |
| For the purpoées of this work, only the case when the electromagnetié

'field photon energy, hw, is nearly resonant with_the energy spacing Ek—Eq
will. be consideré&. . ‘

For resonant stimula;ed emission (hm=Ek4Eq and Ek>Eq) the first term

in '(A.46) dominates. Hence the probability of stimulated emission is then
Q .

+ 2
|8

- Iaq(t)l2 = 3 JCos(mk—wq-w)t-i Sin(mk~wqu)t_1|2

hz(mkqu-m)
' + 2 | |
' 2|8 | -
]aq(t)|2 = —2-55——2 [1 - Cos(Muw-w)t] (A.48)
h” (Aw-w)

where

(A.49)
Then using the trigonometric eQuality

1 -Cosb =2 smz_% - (A.50) ] )j
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equation (A.48) reduces to

I + |2 -
(t) =
T _,[%(mk-wd-w)lz |

Sinz[ %(mk-mq—g)t]
Flerg

(A.51) -

Pk+q(t) is the probability of stimulated resonant emissioh. Similarly, when
Ek<Eq the second term in (A.46) dominates and the probability of (stimulated)

resonant abosorption is

-2 2,1 3
. IHk |© s1n [ (w, —w_+w)t] C
3 2.k 4 (A.52)

P (t) = :
k+q 2 1 2
h [z(wk-mq+w)]
From equationé (A.40) and (A.44)
+ -— g — ’ ) ' .
Heg = < b @[T, - BT v () - (A.53)
. : Ve
Using (A.35) ylelds '
= =+ _ = ii;_; 0= 0= . 40— | ~
Upp "B =Up e [E a + E s +E, az] © (A.54)
Defining
=0 . g° = o — o~
E | Ex a_ + Ey~ay + Ez a, _ (A.SS)}
t . ' .
and substituting (A.54), (A.55) into (A.53) gives
+ — ii;i; EO1. Sy o : :
Hg = < wq(r)lnop ‘e .E lo &) > - (a.55)

-

-

g2 Ry e sopy oy o2 L
g 1% = de Pl v @IT, - Ely @ 217 e

f ) N ‘ o Py
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iy 12 = < DT, - By ® | (A.57)

Equation (A.S?) way be subsﬁituted into (A.51) Or.(A.SZ) if the need arises.
The intensity of a charge—éransfer spectruﬁ is prdﬁortional to thé

square of the electronic transition moment as defined by equation (2.76).

This is proved with the derivation of equations (A.51), (A,sz),ﬁnd (A.37).

Using (A.21) and (A.55).

-0 o o, . .o ; _
U+ E = EU +EU +EU, (A.58)

Further, from ¢A,17) and (A, 655)it is seeﬁ that, by definition, f; is

independent of the spatial codrdinates. Therefore, using the definitions

" (A.30) to -(A.32) - o )

—_ | = — 0 L o0
< ?q(r)onp Eolwk(r) > Ex < qux >+ Ey < quy > -

(s}
tE < Ukgz (A.59)

Considering the 2ﬁ§g where the electric field is homogeneous leads td the

~

further gimplifidation

0 (o] 0 (o]
Ex - Ey - Ez = Efr e (A_.60)

Then
=1 s T te (T > = 70 :
< tbq(r)IUop .Eoifk(r) > = Bl< O >+ < o>

+ < quz‘>} ) OAQGIX
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Hence

+ 12 12012100 ¢ a2 |
B 12 = (2121 b >+ < U >+ < T D e

Equations :(A_51), (A,jé)and (A.62)show that the probability that a stimulated
emission or absorption transition occurs (i.e. the intensity of the spectrum)
depends, among other things, on the intensity of the electromsgnetic field
andltbe transition moment. In the derivation above the transition moment

was assumed to be derived solely from the dipole moment of.the molecule.

This need no the case,'however, and byainclusion of quadrupole electrio,
msgnetic dip:l:§ etc., eneréy interaction terms in the perturbation
Hamiltonian (see equation A. 20.,), the intensities due'to quedrupolé,

magnetic dipole, etc., transitions may be derived in an analogous manner.

As pointed out previously, though such transition probabilities are generally
orders of magnitude smaller than electric dipole transition moments:

A.1l.4. Einstein's Treatment of Spontaneous Emission [147,148,149]

lhe derivstions above do not spply to spontaneous emission which is
emission of electromsgnetic radiation by an exeited atom or molecule into
empty spacé even iu the absence .of any other source of electromagnetic
radiation. This is a shortcoming of the classical treatment of electromagnetic
‘radiation, It can be shown that in a more complete treatment [142], with
the field quantized, spontaneous emission -would be accounted for in a natural
way, together with the phenomena of stimulated emission ‘and absorption.

A simpler approach due to Einstein E147] and based on thermodynamics‘
may &lso be used to treat Spontaneous ..1ggion.§ In'tﬁis approach sponteneous

emission is postulated a rate sscribed to it and it is assumed that the

matter’ is in thermsl equilibrium with a blackbody thermal radiation field at

temperature T [148,149].

I
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It is assumed that the rates (sec_l) at which the induced absbrption

K .
¢

aqd emission occur are proportional to the energy density per unit frequency,
p, (erg am—3Hz_l = erg cm-BSec) in the incideni (perturbing) electromagnetic
- field. (This assumption can be verified by taking the perturbation treatment
described above a step further [17]. This wiIl be done below.) The

constants of proportionality are the Einsten B coefficients. Hence

Bevq ™ B P (se°-1~? . (4.63)
) ' (A.64)

if Ek>Eq then Rk+q is the rate of stimulated epissibn; qu 1s the EBinstein
B Coefficient o{aftimilated Emisgion, Rq+k is the rate of (stimulated)
absorption and Bék is the Einstein B Coefficient of Absorption. (The units

of B are therefore erg—lcm+3sec .) A rate of spontaneous emission which

is independeﬂt of any ele;tromégnetic field isrqgg/postulated in the form
of the Einstein 4 Coefficieﬁt of Spontaneous Emission. (The unitsrbf A
are sec-l). Ihe'A coefficieﬁt‘;@ the inverse gf the spontaneous lifeﬁﬁne
(in sec) associated with any transition Ek--’-Eq [148]. |

The situ#;iqn where the atoms or molecules. under conside:é;ion are in
~thermal‘§quiiibrium'with,a blackbody thermal radigtion field at temperature
T is now considered. B o . \.

Let the densities of moleculea in states k and q. be Nk(cm ) and

N (cm~ ) reapectively. The assumption of equilibrium then requires

S

~35ec71)

' Nk[Akq +'kaq] - Nqukp (cm “sec
\

- (A.65)
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where as a further simplification a two level (k and q) molecular system

is assumed.

p is assumed to be blackbody thermal radiation and is consegquently

governed by Planck's Law and given by [150]

8ﬂhv3 1

p(v) =
c3 ehv/KT_1

(erg cm_3sec) (A.6BJ/
r——»——#

wvhere v is the frequency of radiation, h the Planck Constant, K the Boltzmann
coustant, T the absolute temperature and c the velocity of light.
Sincé the molecular system is assumed to be in thermal equilibrium

the ratio Nk/Nq is gi&en by the Boltzmann factor [150,151]
Ne  chv/x ' ‘
—_a ' (A.67)
N ‘
q : v
(We have assumed here that the molecular system is interacting with
resonance radiation,-i.e. the quantum energy separation between Ek and Eq

is hv where v is the radiation frequency under consideration in equation -

(a.66) ).
Using (A.66) and (a.67) in (A.65)results in
. ] e
m? M )
c3(ehv/KT_l) B ehv/KI__ :
: qk Prq
Equation (A.68) holds if
qu -’qu,. .(erg—lcmSSQc-z) | (A.693
- .
and A, 8mvah 3 : o
-9 Y (erg cm “sec) ' (A.70)
B, c . . ' : , v 4 oA



- APPENDIX II
GROUP THEORETICAL IDENTIFICATION OF NON-ZERO ENERGY MATRIX ELEMENTS [61]

The Hamiltonian operator for any moleéule must have the full
symmetry of the system. It is simply an operator expression for the energy
of the molecule and clearly, the energy of the molecule cannot change in
either sign or magnitude as a result of a symmetry operation. The’
Hamiltonian, H, therefore beiongs to the totally symmetric representation
of the mo}ecular point group. _

/ Further there exists a theorem in group theory [61] which states that
the representation of a direct product, rAB’ will contain the totally
symmetric representation only 1if ﬁhe irreducible representation DA is
identical to the irreducible representation PB.

From these two statements it can be shown that an energy integral .
< ijlei > may be non zero only if wi an& wjlbelong to‘the same irrequcible
representation of the molecular point gfogp of the system described by
these wavefunctions. | ‘

It can also‘be shown [61] than an ele;tric diﬁole transition will be
allowed with x,y, or z polarization if the direct product of the representat-

{ons of the two states concerned 1s or containsg the irreducible representation

to which x,y or z, réspectively,<belongs. {/\/

218_
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f=i4.6x10"° /Idv (A. 3.5)

Thie is usually approximated as

f =~4.6x10° ¢ Av (A.3.6)
max

where A\);i (cm—l) is the bandwidth of the line and Zmax the molar extinctioﬁ

coefficient (litre~cm-1 mole-l).

It can be shown that [129]

—

£ = 1.5 (g /8)) (1/v%) (1/7%) (A.3.7)

Here f is the oscillator strength in absorption, 1° 1s the intrinsic life- -

/

time of the reverse emission, 81 is the multiplicity of the lower state and
g, multiplicity of the upper state. "Intrinsic emission lifetime" here
implies the lifetime of an excited state which is depopulated by spontaneous
emission only. [129]

From equations (A.4.7), (A.4.6) end (A.4.4)

)

g
o= 1,24 2 3;__3. ls-x 10
1l Avev T

“100 (em?) | (A.3.7) -

when‘t0 i8 in sec.

Consider pyrrole-oxygen CT emission (at approximately 4.5ev=36,000 cm-%

-1

=y). Let Av=4000 em & and I=100 liters cm»1 mole . (which are typical

values,see [51] and [49]) thed Erom (A.4.4) 0=3.8x10"%7 ca?. From (A.3.7)
- this leads to a value of 1 =0 6x10 -6 sec. This is the approximate spontaneous

A

emission lifetime of the pyrrole-oxygen contact CT fluorescence band.
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‘APPENDIX 111
— OSCILLATOR STRENGTHS, CROSS-SECTIONS AND EXTINCTION COEFFICIENTS

A monochromatic beam of radiatién of initial intensity I1 passing
through a med{ium of th{ckness d cm emerges with an intensity I governed by

[155,156]
I=1 10'2[“]d ' (A.3.1)

where [H] is the molar concentration (moles/liter) of the absorbing species
and I is defined as the molar extinction coefficient (liters c:xn-1 mole-l).

This follows from the well known relation [155]

1-1, ¥ | o © (A.3.2)

~

_ where y 1is the absorption coef?icient (cm-;);

Defining an absorption cross-section o (cmz) as

N

' - ‘ '
11, ™ dag oM | (A.3.3)

. : > ‘\\
~ \ . N

'where n' is the density (cm&3) of the absorbing species then it can be shown

' [155] that ’ \

o =3.81 x 1017 £ (cn?) \ . (A.3.4)

- Here I is the molar extinction coefficient in liters cm_l mol.l.
‘The OsciZZatqa?Strength, £, which is a measure of the intemsity of

a radiative transition is given by [156-160]

220
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The corresponding value of spontaneous emission lifetime for the

benzene-oxygen contact CT fluorescence is approximately 0.5:1:10-6 sec

1 1

(obtained by using‘v-AS,OOO cm - = 5.6 ev, Av-a,OOO cm » £=2100 liters

cm 1 mole-1 and (3'-'3.8x10"17 cmz). \



