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Abstract

Tubular reactors have widespread applications in petrochemical, biochemical and

pharmaceutical unit operations. The design of a control law, which accounts for sta-

bilization of the concentration and the temperature of the chemical component during

the reaction in an isothermal/non-isothermal tubular reactor with axial dispersion, is

still challenging issue in process engineering. The mathematical models for this kind

of chemical unit operation is represented by distributed parameter systems (DPS)

models. The major issue of DPS models is that they take the form of partial differ-

ential equations (PDEs) or a mixed set of PDEs and ordinary differential equations

(ODEs). The complexity of DPS models lies in spatial approximation in order to

obtain finite-dimensional models amenable for corresponding controllers/observers.

Moreover, in process engineering, recycle-loop are typically used around the reac-

tor to reduce the hot-spot temperature while maintaining the component conversion

at the desired level. Unfortunately, a recycle-loop may bring the system instability,

thereby introducing a controller, which also accounts for instability and physical lim-

itations of the process is essential.

This work provides a model predictive control as well as observer design for dis-

persive chemical tubular reactors with recycle flow. The discrete version of the DPS

is constructed by energy preserving Cayley-Tustin transformation. Along the same

vein, the DPS is kept without any model reduction or spatial approximation.

First, we explore a model predictive control and a discrete observer design for a

coupled axial dispersion reactor and continuous stirred tank reactor (CSTR) given by
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a cascade ODE-PDE system (a case study for polymerization process) in which the

regulator design accounts for stability and physical limitations of the process imple-

mented by input/state constraints.

Next, the proposed design is extended to a non-isothermal tubular reactor with

recycle flow described by a class of convection-diffusion-reaction PDEs with a non-

linear reaction term (a case study for chemical and bio-processing). Based on the

different mass and heat Peclet values the system can exhibit multiple equilibria than

can be stable or unstable. The objective is to design a model predictive controller

and discrete observer for the linearized system around the unstable steady state pro-

file. The controller can provide state stabilization, constraints satisfaction and input

disturbance rejection. Finally, the performance of the both controllers are assessed

via numerical simulations.
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1
Introduction

1.1 Motivation

A substantial proportion of unit operations in petrochemical and biochemical pro-

cesses take place in distributed parameter systems (DPS). The mathematical models

of the mentioned controlled systems depend on both temporal and spatial variables.

On the contrary, the systems in which the variables do not rely on spatial parameters

( e.g., well-mixed reactors) are known as lumped parameter systems (LPS).

Due to widespread applications of DPS and economic benefits of controlling these

systems precisely, developing controllers with consideration of the accurate model is

of great importance. The objective of this thesis is focused on designing the advanced

controllers for class of distributed parameter systems and coupled LPS-DPS unit op-

erations with special emphasis on axial dispersion tubular reactors. The methodology

of designing controller in this work is based on the model predictive controller (MPC)

for DPS setting (see Alessio and Bemporad 2009 for a survey). The optimization-

based algorithm yields a sequence of optimal control actions and the first move is

applied on the system (Muske and Rawlings, 1993). The MPC for DPS must pre-

serve the nature of infinite dimensional setting while providing naturally constraints

satisfaction emerging form physical limitations.
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Chapter 1: Section 1.2 2

Another interesting research direction in this thesis, particularly for chemical pro-

cesses, is the application of recycle flow in biochemical and polymerization process

presented by DPS and coupled LPS-DPS models, respectively. When chemical re-

actor is considered with recycle of energy/mass, the model analysis and subsequent

controller design become more challenging and require careful consideration since re-

cycle is known to induce instability in apparently stable reactor operations. Hence,

in the proposed regulator design, stability constraint has been taken into account.

To address the issue of having access to all the state variables, the output discrete

observer is also provided for the both systems: class of parabolic PDEs and a coupled

cascade ODE-PDE system. In the pursuing sections, the available contributions of

distributed parameter systems with the outline of the thesis will be summarized.

1.2 Control of distributed parameter systems

As mentioned earlier, the most conventional approach for designing controller for DPS

is by using lumping techniques to approximate the PDE models. In other words,

it consists of some idealization of the process originating from spatially uniformity.

Methods such as finite difference can be utilized for spatial discretization; however,

such the mentioned simplifications cannot accurately capture the dynamical prop-

erties and/or may leads to high dimensionality of the controller generated by sets

of ODEs. Moreover, the observability/controllability of the systems will rely on the

location and number of discretization points (Christofides, 2001). Another approach

for regulator design of DPS is based on developing the control theory for DPS then

employing discretization on the resulting controller (late lumping). The outstanding

privilege of this method is that the proposed controller accounts for the nature of the

original model of the system. Over the years, research direction particularly for DPS

is oriented to introduce novel algorithms dealing with infinite dimensional nature of

the systems.

Some researchers explored control of systems described by PDEs by robust control,

dynamic optimization and output feedback regulator design (Armaou and Christofides,

2002). A more precise way, originated from the study of the dynamic properties in



Chapter 1: Section 1.2 3
the frequency domain, is analyzing the nature of the infinite-dimensional part of the

system and then designing the controllers for PDE (Ray, 1981). There are also other

approaches relied on analytic formulation using semigroup theory and PDE back-

stepping control methodologies (Curtain and Zwart, 1995; Krstic, 2008).

The theory of optimal control for DPS began in late 1960s. Notable research

has been carried out to solve the well-known Riccati equation, which is developed to

apply optimal control for particular class of PDEs (see Aksikas et al. 2009; Aksikas

et al. 2007). Along the same vein, MPC controllers are introduced as an algorithm in

which the control action is found by solving finite horizon open-loop objective func-

tion at each sampling time (Muske and Rawlings, 1993). Several contributions have

been concentrated on developing MPC strategies of DPS (Dubljevic et al., 2006),

boundary actuation (Dubljevic and Christofides, 2006a) and predictive output feed-

back control of PDEs (Dubljevic and Christofides, 2006b). As the implementation of

MPC applications in digital computer controllers, the discrete version of the overall

system is generally obtained by conversion of the models or controllers into a discrete

time setting using methods such as explicit or implicit Euler, Runge-Kutta and etc..

The main disadvantages of these methods is that the accuracy of the discretization

can be deteriorated by increasing the sampling period. It has been demonstrated

that the Cayley-Tustin method conserves the characteristics and intrinsic energy of

the linear distributed parameter system (V.Havu and Malinen, 2007) rather than the

traditional numerical time discretization.

On the other hand, the mathematical models in most complex processes are in

the mixed form of distributed and lumped parameter systems (LPS) (Oh and Pan-

telides, 1996) as can be seen in chemical reactions, pharmaceutical plants, coupled

electromagnetic and coupled mechanical systems (see Fig.1.1). Several researchers

have studied coupled LPS-DPS systems (Hasan et al. 2016; Tang and Xie 2011 to cite

a few). There are two types of possible interaction between PDEs and ODEs: First is

by in-domain coupling where the parameters of the DPS are coupled to the LPS. This

can be seen in catalytic reactions, for instance, where the deactivation in the catalyst

is described by the number of ODEs (Mohammadi et al., 2015). The second type of

interaction is called cascaded ODE-PDE where the boundary conditions for the DPS

are coupled to the LPS (e.g., Susto and Krstic 2010). Motivated by all above, we
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will develop MPC controllers for two different setting of chemical engineering plants

represented by class of parabolic PDEs and a coupled ODE-PDE system.

Figure 1.1: An illustrative example of a coupled LPS-DPS configuration.

1.3 Semigroup theory

Let us start with the linear representation of the finite dimensional system (A,B,C,D)

defined on finite dimensional spaces X, U and Y :

ẋ = Ax(t) + Bu(t), y(t) = Cx(t) +Du(t) (1.1)

where A ∈ L(X), B ∈ L(U,X), C ∈ L(X, Y ) and D ∈ L(U, Y ) are well-defined

bounded linear maps between finite dimensional spaces. Then, the following well

known expression of the finite dimensional system can be written as:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ (1.2)

Hence, with the input vector u(t) ∈ L2([0, τ ];U), one can obtain x(t) ∈ L2([0, τ ];X)

and y(t) ∈ L2([0, τ ];Y ). Accordingly, the corresponding transfer function is given by:
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G(s) = C(SI − A)−1B +D (1.3)

As can be seen, we always study matrix exponential functions as the solution of

the control problem in finite-dimensional spaces. Thus, it is natural to ask wether

by analogy with the finite dimensional case, can we reach a solution for infinite-

dimensional spaces. The answer is given by the C0-semigroup operator described as

the exponential function of an operator which is no longer bounded (Curtain and

Zwart, 1995).

The concept of the semigroup theory is relied on the the system with zero input.

The corresponding abstract standard version of the infinite dimensional setting can

be represented by the following state space equation:

ẋ(ζ, t) = Ax(ζ, t) (1.4)

x(ζ, t) ∈ H and H is a real Hilbert space. The following properties are hold for a

strongly continuous semigroup infinitesimal generator T constructed by the operator

A from R+ to H(Curtain and Zwart, 1995):

- T (t+ s) = T (t)T (s) for t, s > 0 (time invariance property)

- T (0) = I

-
∥∥T (t)x0 − x0

∥∥→ 0 as t→ 0+ for ∀x0 ∈ H

Therefore, the operator A : D(A) ⊂ H → H is a generator of a C0-semigroup on H

such that

x(ζ, t) = T (t)x0 (1.5)

1.4 Scope and outline

As mentioned earlier, we are interested to propose the model predictive controller for

the more complicated systems.

Chapter 2 addresses a novel output model predictive controller design for a rep-

resentative model of continuous stirred-tank reactor (CSTR) and axial dispersion

reactor with recycle. The underlying model takes the form of ODE-PDE in series

and it is operated at an unstable point. The model predictive controller (MPC) de-

sign is explored to achieve optimal closed-loop system stabilization and to account
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for naturally present input and state constraints. The discrete representation of the

system is obtained by application of the structure properties (stability, controllabil-

ity and observability) preserving Cayley-Tustin discretization to the coupled system.

The design of a discrete Luenberger observer is also considered to accomplish the out-

put feedback MPC realization. Finally, the simulations demonstrate the performance

of the controller, indicating proper stabilization and constraints satisfaction in the

closed loop.

In Chapter 3 the MPC design is extended to a class of nonlinear parabolic PDEs

(convection-diffusion-reaction PDEs). The emphasis placed on biochemical reactors

as a case study for non-isothermal dispersive chemical tubular reactors with recycle.

The model accounts for energy and mass transport in recycle stream. The dynamical

system is considered with different Peclet numbers which prevent analytic solutions

for eigenvalues and eigenfunctions of the system. The linearization of the system and

corresponding multiple steady state will be addressed. Then, based on the unstable

equilibria, the MPC will be designed to tackle with instability and physical limita-

tions of the system. Furthermore, the new quadratic form of the optimization problem

will be developed for class of convection-diffusion-reaction PDEs providing rejecting

disturbances arising from reactor operations. Finally, the controller performance is

assessed via simulation studies, implying proper state stabilization and constraints

satisfaction with input disturbance rejection.

Chapter 4 is the conclusion of the work and summarizes the contributions of the

thesis with possibilities for future research directions.
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2
Model Predictive Control for a Coupled

CSTR and Axial Dispersion Tubular
Reactor with Recycle

2.1 Introduction

The modeling of many chemical engineering process plants relies on the description

given by either transport-reaction mathematical models, which belong to the class of

distributed parameter systems (DPS), or by lumped parameter system models, which

represent idealization of the process units where some assumptions of spatial unifor-

mity (mainly due to the mixing) can take place (Ray, 1981). The transport-reaction

processes are modeled as distributed parameter systems and take the form of partial

differential equations (PDEs) which are given by parabolic or hyperbolic PDEs.

To apply control methods on PDEs, one approach is the traditional method, which

uses lumping techniques to convert the PDEs to a set of ordinary differential equa-

tions (ODEs) (Muske and Rawlings, 1993; Rawlings, 2000; Eaton and Rawlings, 1992;

Richalet et al., 1978; Shang et al., 2004). Due to the high numbers of modes required

in this approach, especially when it comes to the parabolic PDE models, this type of

simplification leads to the high dimensionality of the ensuing controller. Furthermore,

9
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neglecting the nature of the infinite dimensionality in the original setting might result

in instability of the closed-loop system. There are several contributions focused on

the synthesis of low-order controllers, which address the issue of having the spatially

varying nature in transport-reactions systems. These contributions include the anal-

ysis of dynamic properties in the frequency domain, nonlinear, and robust controllers

for different classes of dissipative PDEs and Lyapunov-based control methodologies

(e.g., Ray 1981; Armaou and Christofides 2002; Krstic and Smyshlyaev 2008).

Along the line of modeling, most complex processes are in the mixed form of dis-

tributed and lumped parameter systems (LPS), and the latter are generally modeled

by ODEs (Oh and Pantelides, 1996). The interconnected coupling of DPS and LPS

is a challenging task, but in essence is the proper way to address a variety of pro-

cess units in real world plants. There are two types of possible interactions between

PDEs and ODEs. The first is an in-domain coupling, where the parameters of the

DPS are coupled to the LPS (e.g., Mohammadi et al. 2015; Moghadam et al. 2013).

The second type of interaction is called cascaded ODE-PDE, where the boundary

conditions for the DPS are coupled to the LPS (Susto and Krstic, 2010). There are

numerous research efforts focused on this type of interaction in the control litera-

ture, for instance, the observer design of coupled ODE-PDE cascade systems (Hasan

et al., 2016), feedback boundary control for coupled ODE-PDE system (Tang and

Xie, 2011) and backstepping boundary control for coupled ODE-PDE (Krstic and

A.Smyshlyaev, 2008; Meglio et al., 2018).

Although the aforementioned contributions consider the stabilization of the ODE-

PDE coupled system, they never address either input or state constraints, which are

naturally present in the process plants. If constraints are present in the system, one

can use a model predictive control (MPC) methodology to take into account these

limitations in the process control realization. Basically, within the optimal control

framework, the popularity of the so-called online receding horizon control comes from

its capability to handle the constraints, particularly for the manipulated input and

state variables (Mayne et al., 2000). Motivated by this, some researchers investigated

the properties of MPC controllers, such as the stability of the closed-loop system, con-

straints validation and system performance (Chen and Allgöwer, 1998; García et al.,

1989; Ito and Kunisch, 2002). In addition, some works considered a class of the Riesz
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spectral systems with separable spectrums and successfully designed MPC algorithms

with constraints (Dubljevic et al., 2006; Liu et al., 2014; Dubljevic and Christofides,

2006). There are also some other relevant studies regarding nonlinear MPC for DPS,

such as data-based modeling or the techniques based on model reduction by using

repeatedly online linearization (Bonis et al., 2012; Ai and San, 2013).

Computer applications in various engineering areas require a modern controller

realization, which is implemented in the discrete setting. Hence, in order to turn

the models/controllers into a discrete setting, mostly traditional numerical meth-

ods, such as explicit and implicit Euler (Kazantzis and Kravaris, 1999), are used

for time discretization. However, from the linear system theory, this may impact

the stability of the system when there is an increase in sampling period, mapping

a stable continuous system into an unstable discrete one (Åström and Wittenmark,

1990). The mentioned issue becomes more serious when DPS are analyzed, as these

are represented by infinite-dimensional state-spaces. It has been demonstrated that

the Crank-Nicolson midpoint integration rule method (Cayley-Tustin) preserves the

system characteristics and intrinsic energy (i.e., Hamiltonian preserving) of the lin-

ear distributed parameter system (V.Havu and Malinen, 2007). Motivated by this,

in this contribution, the conversion of the continuous linear infinite-dimensional sys-

tem representation to the linear discrete-time infinite-dimensional one, is done by the

application of the Cayley-Tustin discretization (Hairer et al., 2006).

In this work, the extension of the standard finite-dimensional MPC for linear sys-

tems (Mayne, 2014; Rawlings et al., 2017) is considered. The optimal constrained

finite-dimensional controller is applied to the lumped parameter system coupled to a

distributed parameter system, and ensures the input and state constraints satisfaction

within the framework of finite-dimensional quadratic optimization problem (Scokaert

et al., 1999). The relevant process engineering model includes a continuous stirred-

tank reactor (CSTR), and the output of this reactor is coupled to an axial dispersion

mono-tubular reactor that has a recycle stream. The system of coupled equations in-

cludes a parabolic PDE with algebraic boundary conditions (representing the tubular

reactor), while the ODE refers to the CSTR model dynamics. The discrete Luenberger

observer is designed to account for the system output and its stability is based on

the design in the continuous-time setting. The reconstructed system states are then
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used in the MPC, providing optimal stabilization of the ODE-PDE cascade with the

inclusion of state and input constraints.

The manuscript is organized as follows. In Section 2.2.1, the coupled ODE-PDE

system is introduced in the appropriate abstract Hilbert space. Then, in addition

to the stability analysis of the system in Section 2.2.2, the discretization scheme is

accomplished by the Cayley-Tustin method in Section 2.3. It is followed by the ob-

server design for the coupled ODE-PDE system in Section 2.4. Finally, in Section 2.5,

considering an unstable operating condition, the feasible optimization problem is re-

alized with input, state, and stability constraints, and it is followed by the simulation

studies, which show the performance of the optimization-based controller design.

2.2 Case study: Polymerization process
2.2.1 System Representation

Consider the following coupled CSTR-tubular reactor configuration as the combina-

tion of a lumped and parabolic distributed parameter system. This setting is used for

some chemical processes (see, e.g., Fogler 2005). It is also applied for polymerization

process (see, Chen 1994). The process can be represented as follows (Fig. 2.1):

Figure 2.1: CSTR-tubular reactor system with recycle stream.
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The mentioned process can be described by the following coupled ODE-PDE sys-

tem of equations on domain {t ∈ <+, ζ ∈ [0, 1]} with algebraic coupled boundaries

and initial condition:

dxF (t)

dt
= a1xF (t) + a2u(t) + RxI(1, t)

∂xI(ζ, t)

∂t
= D

∂2xI(ζ, t)

∂ζ2
− v∂xI(ζ, t)

∂ζ
+ ψxI(ζ, t) + f(ζ)d(t)

xF (0) = xI(ζ, 0) = 1
xI(0, t) = xF (t)
∂xI(ζ, t)

∂ζ

∣∣∣
ζ=1

= 0

y(t) = xI(1, t)

(2.1)

where the second order linear parabolic PDE corresponds to convection-diffusion re-
actor. The transport of a property xI(ζ, t) ∈ L2(0, 1) - L2(0, 1) is a Hilbert space—
through the tubular reactor, given with the inner product (< ·, · >), (L2(Ω;Z),

< h, f >=

∫
Ω

< h(z), f(z) >Z dz), the ODE indicates the dynamics of the variable

xF ∈ < within the CSTR. ζ ∈ [0, 1] is the position and t ≥ 0 is the time variable.
ψ ∈ < and a1 ∈ < are the constant values responsible for the consumption or gen-
eration of xI(ζ, t) and xF (t), respectively. R ∈ <+ refers to the recycle factor in the
system and is considered to be a bounded parameter (0 ≤ R ≤ 1). v ∈ <+, D ∈ <+

are the constant transport velocity and diffusion-constant, respectively. a2 ∈ < is a
constant number, and u(t)∈ < represents the system input. f(ζ) and d(t) represent a
known disturbance which may present in the tubular reactor and can express changes
in unit operations, such as temperature. d(t) is considered to be a step function and
f(ζ) is given as follows:

f(ζ) =

{
0 0 ≤ ζ < yI

kI yI ≤ ζ ≤ 1
(2.2)

where yI and kI are constant values. Here, the linear coupled finite-infinite-dimensional
system can be rewritten by the following state-space equations:

ẋ(t) = Ax(t) + Bu(t) +Md(t)
y(t) = Cx(ζ, t)

(2.3)

x is state representing both finite and infinite part of the process

x =

[
xF
xI

]. For the

sake of simplicity in the paper, index F refers to finite part of the system (ODE), while
index I indicates the infinite part (PDE). A is defined as a linear operator L(X) (where
X is a real space <⊕L2(0, 1)), such that D(A) = {x ∈ X : xF ∈ <, xI(ζ) ∈ L2(0, 1)

∣∣
xI(ζ),

dx

dζ
are absolutely continuous, xI(0) = xF and

dx(ζ = 0)

dζ
= 0}. B =

[
a2

0

]
is the
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linear input operator L(<, X), M =

[
0

f(ζ)

]
is the linear disturbance input operator

and C=

[
0

∫ 1

0

δ(ζ − 1)(.)dζ

]
is the linear output operator.

2.2.2 Open-Loop Stability

The generality of the ensuing design can be established by performing the stability
analysis of the target system given by Equation (2.1). The eigenvalue problem for
the open-loop (u(t) = 0) unstable coupled ODE-PDE system is defined as below:

AΦ = λΦ (2.4)

where:

A =


AF = a1 R(·)I

∣∣∣∣
ζ=1

0 AI = −v∂(·)I
∂ζ

+D
∂2(·)I
∂ζ2

+ ψ(·)I

 ,Φ(ζ) =

[
ΦF

ΦI(ζ)

]
(2.5)

λ and Φ are the eigenvalues and eigenfunctions, respectively. The boundary conditions
are given by

ΦI(ζ = 0) = ΦF ,
dΦI(ζ)

dζ

∣∣∣
ζ=1

= 0. (2.6)

After some simple manipulation and using the boundary conditions defined by Equa-
tion (2.6) in Equation (2.4), one gets the following:

d2ΦI

dζ2
− v

D

dΦI

dζ
− (λ− ψ)

D
ΦI = 0 (2.7a)

ΦI(ζ = 0) = ΦF = −RΦI(ζ = 1)

a1 − λ
,
dΦI

dζ

∣∣∣∣
ζ=1

= 0 (2.7b)

λ and ΦI(ζ) are found numerically from Equation (2.7a). The solution of Equation
(2.4) with the set of parameters R = 0.55, v = 1.8 and consumption of the desired
component in both CSTR and dispersive tubular reactor (ψ = −1 and a1 = −0.25),
shows that most eigenvalues have negative real parts and there is only one unstable
eigenvalue in the system (see Figs. 2.2 and 2.3). To explore the effects of diffusion
(D) on eigenvalues placement, several values for diffusion were considered. By ana-
lyzing Fig. 2.3, with the same conditions, one can notice that as diffusivity increases,
the distribution will shift from complex eigenvalues to the real ones.
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Figure 2.2: Eigenvalues distribution for unstable coupled ODE-PDE system when
there is no diffusion within the tubular reactor

In this particular chemical engineering system, with the boundary conditions men-
tioned above, the instability of the coupled ODE-PDE system present with the value
assigned for R. As will be discussed in Section 2.5 by canceling the unstable mode
under model predictive control, the stabilization of the system is addressed.

2.3 Discrete Representation
2.3.1 Discrete Operators

In this section, the Cayley-Tustin time discretization is applied, which maps the men-
tioned coupled ODE-PDE system from continuous-time to a discrete one, preserving
all energy properties with the feature of no spatial discretization. The discrete version
of Equation (2.3) with sampling time ∆t can be represented as follows:

xk+1 = Adxk +Bduk +Mddk
yk = Cdxk +Dduk +Nddk

(2.8)

δ = 2/∆t and (Ad, Bd, Cd, Dd,Md, Nd) are the linear discrete operators defined by:

[
Ad Bd Md

Cd Dd Nd

]
=

[
−I + 2δ [δ − A]−1

√
2δ [δ − A]−1 B

√
2δ [δ − A]−1 M√

2δC [δ − A]−1 C [δ − A]−1 B C [δ − A]−1 M

]
(2.9)

where δ = 2/∆t, and [δ − A]−1 = R(δ, A) is given as the resolvent operator of A
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Figure 2.3: Effects of diffusivity within the dispersive reactor on the eigenvalues
placement for unstable coupled ODE-PDE system

in Equation (2.5). It should be mentioned that the discrete operators are found by
replacing s with δ in R(s, A) . In order to find the resolvent operator, one may easily
apply Laplace transform to the set of Equations (2.1):

∂

∂ζ

 xI(ζ, s)
∂xI(ζ, s)

∂ζ


︸ ︷︷ ︸

X(ζ,s)

=

 0 1
s− ψ
D

v

D


︸ ︷︷ ︸

P

 xI(ζ, s)
∂xI(ζ, s)

∂ζ

+

 0

−xI(ζ, 0)

D


︸ ︷︷ ︸

H

(2.10)

Since P is a constant matrix, one can calculate ePζ with the Laplace inverse transform
(L−1{[sI − P ]−1}). Therefore, the solution of the mentioned system

(
X(ζ, s) = ePζ

X(0, s) +

∫ ζ

0

eP (ζ−η)Hdη

)
can be expressed as follows:

 xI(ζ, s)
∂xI(ζ, s)

∂ζ

 =

[
e1(ζ) e2(ζ)
e3(ζ) e4(ζ)

]  xI(0, s)
∂xI(0, s)

∂ζ

+

[
b1(ζ)
b2(ζ)

]
. (2.11)

After applying the boundary conditions
(
xI(ζ = 0, s) = xF (s), ∂xI(ζ=1,s)=0

∂ζ

)
to Equa-

tion (2.11), the discrete operators are obtained and have the following form:

Ad(·) = −

[
(·)F
(·)I

]
+ 2δ

[
RFF RFI

RIF RII

][
(·)F
(·)I

]
(2.12)
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Bd =
√

2δ

[
RFFB
RIFB

]
;Md =

√
2δ

[
RFIf(ζ)
RIIf(ζ)

]
(2.13)

Cd =
√

2δ
[
RIF

∣∣
ζ=1

RII

∣∣
ζ=1

] [(·)F
(·)I

]
(2.14)

Dd = [RIFB]
∣∣
ζ=1

;Nd = [RIIf(ζ)]
∣∣
ζ=1

(2.15)

with the following components:

RFF (·)F =


(·)F
R

δ − a1

R
− f (1)

3

 , RFI(·)I =


b

(1)
1 −

e
(1)
2 b

(1)
2

e
(1)
4

δ − a1

R
− f (1)

3



RIF (·)F (ζ) = f3(ζ)

 (·)F
R

δ − a1

R
− f (1)

3



RII(·)I(ζ) = f3(ζ)

 b
(1)
1 −

e
(1)
2 b

(1)
2

e
(1)
4

δ − a1

R
− f (1)

3

− e
(1)
2 b

(1)
2

e
(1)
4

+ b1

RFFB = f3(ζ)

 a2

(δ − a1)2

R
− f (1)

3 (δ − a1)

+
a2

δ − a1

RIFB(ζ) = f3(ζ)


a2

R
δ − a1

R
− f (1)

3

 , RFIf(ζ) =


k

(1)
1 −

e
(1)
2 k

(1)
2

e
(1)
4

δ − a1

R
− f (1)

3


RIIf(ζ) = f3(ζ)

 k
(1)
1 −

e
(1)
2 k

(1)
2

e
(1)
4

δ − a1

R
− f (1)

3

− e
(1)
2 k

(1)
2

e
(1)
4

+ k1

(2.16)

in above equations e1(ζ), e2(ζ), e3(ζ), e4(ζ), b1(ζ), b2(ζ), k1(ζ), k2(ζ) and f3(ζ) are de-
fined by the following expressions:



Chapter 2: Section 2.3 18

e1(ζ) = e
mζ
2

(
cosh

(
hζ
2

)
− sinh(hζ2 )m

h

)
e2(ζ) =

2sinh
(
hζ
2

)
e
mζ
2

h

e3(ζ) =
2
(
δ−ψ
D

)
sinh

(
hζ
2

)
e
mζ
2

h

e4(ζ) = e
mζ
2

(
cosh

(
hζ
2

)
+

sinh(hζ2 )m
h

)
b1(ζ) =

∫ ζ

0

f1(ζ, η)(·)Idη

f1(ζ, η) =
−2e

(ζ−η)m
2 sinh

(
h(ζ−η)

2

)
Dh

k1(ζ) =

∫ ζ

0

f1(ζ, η)f(ζ)dη

b2(ζ) =

∫ ζ

0

f2(ζ, η)(·)Idη

(2.17)

f2(ζ, η) = −e
(ζ−η)m

2

D

cosh(h(ζ − η)

2

)
+
sinh

(
h(ζ−η)

2

)
m

h


k2(ζ) =

∫ ζ

0

f2(ζ, η)f(ζ)dη

m =
v

D

h =

√(
v

D

)2

+ 4

(
δ − ψ
D

)

f3(ζ) = e1(ζ)− e2(ζ)e
(1)
3

e
(1)
4

where e(1)
1 , e(1)

2 , e(1)
3 , e(1)

4 , b(1)
1 , b(1)

2 , k(1)
1 , k(1)

2 , f (1)
1 , f (1)

2 and f (1)
3 are the corresponding

terms calculated at ζ = L = 1.

2.3.2 Discrete Adjoint Operators

The adjoint operators are required for developing the model predictive control. The ex-
pressions for adjoints (A∗d, B

∗
d) of the discrete operators (Ad, Bd) are written in the

following form:
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A∗d(·) = −

[
(·)F
(·)I

]
+ 2δ

[
R∗FF R∗IF
R∗FI R∗II

][
(·)F
(·)I

]
(2.18)

B∗d =
√

2δ

[
(RFFB)∗

(RIFB)∗

]T
(2.19)

The components of the adjoint operators are computed based on the definition (<
AdΦ,Ψ

? >=< Φ, A?dΨ
? >) and results in following operators:

R∗FF (·)F = RFF (·)F

R∗IF (·)I =

∫ L

0


e1 −

e2e
(1)
3

e
(1)
4

δ − a1 −Rf (1)
3

 (·)Idζ

R∗FI(·)F (ζ) =

 f
(1)
1

δ − a1

R
− f (1)

3

−

e
(1)
2 f

(1)
2

e
(1)
4

δ − a1

R
− f (1)

3

 (·)F

R∗II(·)I(ζ) =

−f (1)
2

∫ L

0

 e
(1)
2

e
(1)
4

(
δ − a1 −Rf (1)

3

)f3(η) +
e2(η)

e
(1)
4

 (·)Idη

+

f (1)
1

∫ L

0

 f3(η)(
δ − a1 −Rf (1)

3

)
 (·)Idη +

∫ L

ζ

f1(η, ζ)(·)Idη



(RFFB)∗(·)F =

 a2f
(1)
3

(δ − a1)2

R
− f (1)

3 (δ − a1)

+
a2

δ − a1

 (·)F

(RIFB)∗(·)I =


a2

R
δ − a1

R
− f (1)

3

∫ L

0

[
e1(ζ)− e

(1)
3 e2(ζ)

e
(1)
4

]
(·)Idζ

(2.20)
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2.4 Luenberger Observer Design
In a real process system controller realization, having access to all the state variables
cannot be feasible, especially when DPS are considered. In order to address this issue
in the design of the model predictive control, the Luenberger observer is introduced
for reconstruction of the state variables by taking the output measurement into ac-
count. First, the design of observer for the coupled parabolic PDE-ODE system in the
continuous setting is considered. Then, the continuous observer gain is transferred
into the discrete one using Cayley-Tustin discretization. The Luenberger observer
has the form given by:

˙̂x(ζ, t) = Ax̂(ζ, t) + Bu(t) + Lc[y(t)− ŷ(t)] + f(ζ)d(t)
ŷ(t) = Cx̂(ζ, t)

(2.21)

where Lc=

[
LF
LI(ζ)

]
is the continuous observer gain. By subtracting Equation (2.21)

from its general form
(
ẋ(ζ, t) = Ax(ζ, t) + Bu(t)

)
, one can get the dynamics of the

observer error as follows:

˙̂e(ζ, t) = (A− LcC)ê(t), ê(0) 6= 0 (2.22)

the design of the observer is relied on choosing Lc such that the state estimation error
dynamics given by Equation (2.22) is stable. Hence, the stability of the observer can
be ensured by analyzing the eigenvalues problem of the observer error:

(A− LcC)Φ = λΦ (2.23)

which results in following equation and boundary conditions:

d2ΦI

dζ2
− v

D

dΦI

dζ
− (λ− ψ)

D
ΦI =

LI(ζ)

D
ΦI(ζ = 1) (2.24a)

ΦI(ζ = 0) = ΦF = −(LF −R)ΦI(ζ = 1)

a1 − λ
,
dΦI

dζ

∣∣∣∣
ζ=1

= 0. (2.24b)

Fig. 2.4 shows the eigenvalues placement for different values of Lc=

[
LF
LI(ζ)

]
. It should

be emphasized that in the eigenvalue problem, although a spatially varying LI(ζ)
could be chosen, a constant value throughout the whole spatial domain (LI(ζ) = L)
is considered and the same value assigned for the finite part (LF = L). It can be seen
that as the value of Lc increases, the unstable real eigenvalue is shifted to the left
side (the stable region). Therefore, as depicted in Fig. 2.4 for Lc > 0.1 the stability
of the error dynamics will be ensured by having only negative eigenvalues. Here,
the resolvent is used to compute the corresponding discrete observer gain from the
continuous one (Cassol and Dubljevic, 2020):

Ld =
√

2δ

[
RFF RFI

RIF RII

][
LF
LI(ζ)

]
. (2.25)
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Therefore, the reconstructed state in the discrete setting can be expressed as:

x̂k+1 = Adx̂k +Bduk + Ld(yk − ŷk) +Mddk

ŷk = Cdx̂k +Dduk +Nddk, yk = Cdxk +Dduk +Nddk

(2.26)

Figure 2.4: Shifting the unstable eigenvalue of the observer for different values of the
observer gain.

2.5 Model Predictive Control for Linear Coupled ODE-
PDE System

2.5.1 Optimization Problem

The linear discrete-time model dynamics represented in Equations (2.12)–(2.20) is
used in the formulation of the model predictive control for the coupled CSTR and
tubular reactor system. The MPC developed in (Rawlings et al., 2017) regarding
linear time invariant systems for the finite-dimensional setting is extended to infinite-
dimensional one. In order to achieve this purpose, the following objective function
should be minimized at each sampling time (k) to design the regulator of the coupled
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ODE-PDE system:

min
u

J =
∞∑
j=0

< x̂(k + j|k), Qx̂(k + j|k) >

+ < u(k + j + 1|k), Fu(k + j + 1|k) >

s.t. x̂(k + j + 1|k) = Adx̂(k + j|k) + Bdu(k + j|k),
umin 6 u(k + j|k) 6 umax,
x̂minF 6 x̂F (k + j|k) 6 xmaxF ,
< x̂(k +N),Φu >= 0

(2.27)

where x̂ =

[
x̂F
x̂I

]
refers to the reconstructed state, F is a positive definite operator,

Q=

[
QF

QI

]
represents positive semidefinite spatial operator associated with the state of

coupled ODE-PDE system and the indices, (k + j) and (k + j + 1|k), for both input
and state variable, indicate current and future time, respectively. In order to get
the finite horizon objective function, one can assume zero input beyond the control
horizon (i.e., u(k+N+1|k) = 0) by taking the terminal penalty term into an account.
The result takes the following form:

min
uN

J =
N−1∑
j=0

< x̂(k + j|k), Qx̂(k + j|k) >

+ < u(k + j + 1|k), Fu(k + j + 1|k) >
+ < x̂(k +N |k), Q̄x̂(k +N |k) >

s.t. x̂(k + j + 1|k) = Adx̂(k + j|k) + Bdu(k + j|k),
umin 6 u(k + j|k) 6 umax,
x̂minF 6 x̂F (k + j|k) 6 xmaxF ,
< x̂(k +N),Φu >= 0.

(2.28)

After simple algebraic manipulation, the following finite-dimensional quadratic opti-
mization problem is obtained:

min
U

J = UTHU + 2UTPx̂(k|k)

+ < x̂(k|k), Q̄x̂(k|k) >
(2.29a)

where Q̄ is terminal state penalty operator. The above equation is subjected to the
following constraints: 

1. Umin 6 U 6 Umax

2. x̂minF 6 x̂F 6 x̂maxF

3. < x̂(N),Φu >= 0

(2.29b)
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where U =
[
u(k + 1|k) u(k + 2|k) u(k + 3|k) . . . u(k +N |k)

]T
and (H,P ) are

computed as below:

H =


B∗dQ̄Bd + F B∗dA

∗
dQ̄Bd . . . B∗dA

∗
d
N−1Q̄Bd

B∗dQ̄AdBd B∗dQ̄Bd + F . . . B∗dA
∗
d
N−2Q̄Bd

...
... . . . ...

B∗dQ̄A
N−1
d Bd B∗dQ̄A

N−2
d Bd . . . B∗dQ̄Bd + F

 ,

P =


B∗dQ̄Ad
B∗dQ̄A

2
d

...
B∗dQ̄A

N
d

 .
(2.30)

The model predictive control scheme used on the coupled ODE-PDE system is illus-
trated in Fig. 2.5. As can be seen, the full state feedback is needed for the MPC
scheme, which is going to be given by the reconstructed states from the observer.

Figure 2.5: Representation of the closed loop.

2.5.2 Terminal State Penalty Operator

The terminal state penalty term, the operator Q̄=

[
Q̄F

Q̄I

]
, can be found from the

solution of the following discrete Lyapunov equation:

A∗dQ̄Ad − Q̄ = −Q. (2.31)

The above solution of the discrete Lyapunov equation based on Cayley-Tustin method
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is the same unique solution of Q̄ in Equation (2.31) in continuous setting (A∗Q̄+Q̄A =
−Q) (Xu and Dubljevic, 2017). Since the solution of Q̄ cannot be obtained directly; in
other words, because of the necessity of using integral operators coming from discrete
operators for calculating Q̄, the procedure followed here is to connect the discrete
and continuous Lyapunov equations. Here, one can rewrite the continuous Lyapunov
equation in the following format (Curtain and Zwart, 1995):

< Ax1, Q̄x2 > + < Q̄x1, Ax2 >= − < x1, Qx2 > . (2.32)

By considering x1 = Φ̂m and x2 = Ψ̂m and using the fact that λm and Ψ̂m are the
eigenvalue and eigen function of the system (i.e., AΦ̂m = λmΦ̂m), the equation leads
to:

< λmΦ̂m, Q̄Ψ̂m > + < Q̄Φ̂m, λmΨ̂m >= λm < Φ̂m, Q̄Ψ̂m > (2.33)

+λm < Q̄Φ̂m, Ψ̂m >= − < Φ̂m, QΨ̂m >

Q̄ is a bounded symmetric operator (D(A∗) = D(A)) and it is self-adjoint (see, (Cur-
tain and Zwart, 1995)) which implies < Φ̂m, Q̄Ψ̂m >=< Q̄Φ̂m, Ψ̂m >= Q̄m, accord-
ingly the following simplified equation is achieved:

Q̄m =
− < Φ̂m, QΨ̂m >

2λm
. (2.34)

Finally, the solution of the continuous Lyapunov equation gives the expression for
the infinite part (PDE) of the terminal state penalty operator (Q̄I) which can be
expressed as below:

Q̄I(·)I =
∞∑
m=0

− < Φ̂m
I , QIΨ̂

m
I >

2λm
< (·)I , Ψ̂m

I > Φ̂m
I (2.35)

where Φ̂m
I and Ψ̂m

I refer to the normalized eigenfunction and adjoint eigenfunction
of infinite part of the system, respectively. In Equation (2.35), the summation is
computed for increasing number of different eigenvalues, until the applied operator
converges to a constant value. In this work the first 20 eigen modes are considered in
the simulation. For the finite part (ODE), AF = A∗F = a1. According to Lyapunov
equation, Q̄F is easily obtained and given by the following expression:

Q̄F (·)F =
QF

2a1

(·)F (2.36)

2.5.3 Stability Constraint

Based on the definition of a positive definite operator, it is possible to show that Q̄ is a
positive operator if only the stable nodes are taken into account (Curtain and Zwart,
1995). In order to guarantee stabilization of the system, a stability constraint is
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applied in the optimization problem and is represented by an equality constraint (Xu
and Dubljevic, 2017). It is assumed that the controller will gain stabilization by
rejecting the unstable modes. Hence, this condition can be written as below:

< x̂(N),Φu >= 0 (2.37)

where Φu refer to unstable eigenfunctions associated with positive eigenvalues. The cor-
responding equality constraint, which cancels the unstable modes at end of the hori-
zon, is constructed as follows:[

< AN−1
d Bd,Φu > . . . < Bd,Φu >

]
U

= − < ANd x̂(k|k),Φu > .
(2.38)

If there is a feasible input sequence given by optimization problem, the above equal-
ity constraint is satisfied for the constrained convex optimization problem given by
Equation (2.29a). Therefore, stabilization can be obtained, and the unstable modes
will be canceled by end of the horizon. Here, due to the feasibility of the optimization
represented by constrained quadratic problem in the zero-disturbance case, feasibility
implies stability and optimal stabilizability. This extension is based on the well-known
results from the finite-dimensional theory (Mayne, 2014; Rawlings et al., 2017).

2.6 Simulation Results
In this section, the simulation study is performed for the proposed controller of the
coupled ODE-PDE system. First, the design of the observer is discussed in the dis-
crete setting with reconstruction of states in an open-loop condition by using Cayley-
Tustin method, then the performance of the ensuing Model Predictive Control is
demonstrated and compared with the open-loop response.

Table 2.1: Parameter values used in numerical simulation

Parameters Values

v 1.8
F 1
D 0.35
a1 −0.25
ψ −1
a2 1
R 0.5
umin −0.09
umax 0
xF

min 0
xF

max 0.65
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2.6.1 Observer Design and Open-Loop Response

Based on Equations (2.8)–(2.13), one can reconstruct the dynamics of the discrete
representation for both finite and infinite parts of the system with the set of param-
eters given in Table 2.1. As discussed in Section 2.4, to guarantee the stability of the
observer, Lc = 5 is chosen as the observer gain. By using Equation (2.25) the discrete
version of the corresponding observer gain is computed. The initial conditions for the
mentioned observer and original system are considered to be constants in the entire
space, x̂0 = 0 and x0 = 1, respectively. In simulation ∆t = 0.04 is considered which
implies δ = 50 and for numerical integration ∆z = 0.005 is chosen. Then, according
to Equation (2.26), the reconstructed state is obtained, and the corresponding error
dynamics is evaluated. As shown in Fig. 2.6, the dynamics of the observer error con-
verges to zero, which means the developed observer has a good performance. Hence,
in the case of a realistic system, the Model Predictive Control can be applied using
just the output measurement.

As discussed in Section 2.2.2 regarding the instability of the coupled ODE-PDE
system, Fig. 2.7a demonstrates the space-time evolution of the tubular reactor (xI(ζ, t))
for 0 ≤ t ≤ 20 which grows unbounded as expected. Following this, the correspond-
ing dynamics of the CSTR (xF (t)) with pertaining initial condition is depicted in
Fig. 2.7b.

Figure 2.6: Evolution of the discrete error dynamics with the value Lc = 5 for observer
gain.
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(a)

(b)

Figure 2.7: (a) The estimated state profile evolution (xI(ζ, k)) through dispersive
tubular reactor constructed on the basis of discrete-time coupled ODE-PDE system
in an open-loop condition; (b) Dynamics reconstruction of the scalar variable within
the CSTR in an open-loop condition.
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2.6.2 MPC Implementation

In this part, based on the scheme represented by Fig. 2.5, the successful application of
the proposed constrained model predictive controller is demonstrated on the basis of
Cayley-Tustin time discretization with optimization problem described by Equations
(2.27)–(2.38).

The implementation of the system under model predictive control with and with-
out constraints (see Equation (2.29b)) in time domain 0 ≤ t ≤ 20 is shown in Fig. 2.8
b) and Fig. 2.8 d). By choosing QF = 2.5, QI(ζ) = 1.5 and N = 65 for the MPC con-
trol horizon, it is possible to see that the controller is able to comply with the input
and states constraints (dash-dotted lines) imposed into the coupled ODE-PDE sys-
tem. Moreover, regarding the instability of the system, as described in Section 2.5.3,
one can notice that the stability constraint is also fulfilled by canceling the unstable
mode at end of the horizon (see Fig. 2.9).

Figure 2.8: a), b) and c) demonstrate the comparison between input profiles under
model predictive control law: with and without input/state constraints, with con-
straints and with disturbance for 20 ≤ t ≤ 25; d), e) and f) denote reconstructed
dynamics of the scalar variable within the CSTR under model predictive law: with
and without input/state constraints, with constraints and with disturbance for
20 ≤ t ≤ 25.

On the other hand, in order to provide a comparison of the dynamics of scalar
variable xF in CSTR with input and state constraints, the simulation is performed
again to justify two scenarios, for the first one only stability constraint is considered
in the MPC algorithm while in the second one all constraints (stability, input and
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Figure 2.9: Evolution of the stabilized spatial profile for the tubular reactor with all
constraints.

state) are present. Fig. 2.8 d) and Fig. 2.8 e) show this analogy with corresponding
control actions given by Fig. 2.8 a) and Fig. 2.8 b). As expected in the first setting,
the CSTR dynamics is faster compared to the latter case as no state/input constraints
need to be satisfied.

Another simulation has been performed to explore the behaviour of the MPC algo-
rithm for handling the mentioned constraints, the step disturbance is applied through
the infinite part of the system (tubular reactor) for 20 ≤ t ≤ 25. The idea here is to
examine the performance of the MPC algorithm for stabilization and the state/input
constrains satisfaction. yI = 0.5 and kI = 0.6 are chosen as the parameters in Equa-
tion (2.2) describing spatial varying function f(ζ). Fig. 2.8 c) and Fig. 2.8 f) verify
the good performance of MPC for handling the constraints when the disturbance is
present.

By analyzing Fig. 2.8 c), one can notice that after the step disturbance is applied,
the state variable of the CSTR stays at the upper limit (xmaxF ) until t = 25, then
decreases and once again goes back to zero (at t = 45) based on the control action
given by Fig. 2.8 c).

2.7 Summary
In this chapter, the design of a model predictive controller and discrete observer
for a coupled ODE-PDE system was investigated. In particular, the lumped and dis-
tributed system were coupled by the boundaries, with the manipulated variable acting
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on the ODE. The system stability characteristics were first analyzed by studying the
system’s eigenvalues. A discrete representation of the system was necessary in the
controller design; thus, the Cayley-Tustin time discretization was applied, preserving
the original system characteristics. An unstable operation condition was considered,
and the MPC and observer design had to take this into account. To develop the dis-
crete observer, the design in the continuous-time setting was first derived, then the
discrete observer was obtained based on the continuous gain. The MPC was designed
to obtain the optimal control sequence while handling input constraints and stabi-
lizing the system using a terminal constraint. Finally, numerical simulations were
shown to present the performance of the controller in the closed loop. As expected,
the controller was able to achieve stabilization, while handling the constraints. If a
disturbance is made, the controller can deal with the effects made in the system while
satisfying the constraints.
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3
Model Predictive Control of

Non-Isothermal Axial Dispersion Tubular
Reactors with Recycle

3.1 Introduction
Many transport-reaction processes present in petrochemical, biochemical and phar-
maceutical unit operations belong to distributed parameter system (DPS) models.
Within a finite spatial domain, the mathematical formulation of the mentioned pro-
cesses, arising from the first-principle modeling, usually takes the form of a set of
parabolic partial differential equations (PDEs) in which the intrinsic feature of reac-
tion, convection and diffusion phenomena can be captured. The non-isothermal axial
dispersion reactors have attracted great attention since their models account for a
large number of reactor realizations in industry (see Varma and Aris 1977 for a sur-
vey). In particular, the dynamical properties and control for axial dispersion tubular
reactors, where mass and thermal phenomena are taking place, has been the objective
of numerous studies over the years (see Hlavacek and Hofmann 1970a,b; Cohen and
Poore 1974; Georgakis et al. 1977; Bošković and Krstić 2002), as several complexities
are observed in the dynamical description and in the practical realization of the re-
actor operation (Marwaha and Luss, 2003). In addition, when a dispersive chemical
tubular reactor is considered with recycle of energy and mass flow, the model analysis
and subsequent controller design become more challenging and require careful con-
sideration since competitive effects of mass and heat transfer are present in recycle
and it is known that may induce instability in apparently stable reactor operations
(Luss and Amundson, 1967).

The salient feature of the axial dispersion reactor model is the mathematical de-

34
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scription given by parabolic partial differential equations (PDEs) which can admit
a variety of boundary modeling realizations to account for the physically meaning-
ful setting present in industry. Among several modeling realizations, the Danckw-
erts boundary conditions (Danckwerts, 1953) reflect the physically relevant inlet flux
transport and zero flux conditions at the reactor outlet. In general, the reactor mod-
els are numerically solved by application of standard (high-order) and reduced-order
PDE-to-ordinary differential equation (ODE) including finite difference discretization
schemes (Badillo-Hernandez et al., 2019), methods relied on dynamically moving the
discretization mesh to minimize the discretization error (Liu and Jacobsen, 2004), or
by applying the various spectral methods such as proper orthogonal decomposition
(POD) to study oscillatory reactors regimes (Bizon et al., 2008). Along with the mod-
eling efforts, the controller designs and associated spatial discretization techniques are
proposed for PDEs to obtain sets of ordinary differential equations (ODEs), and then
the reduced models (if possible) are utilized for the synthesis of finite dimensional con-
trollers (see Curtain 1982; Balas 1979; Ray 1981; Antoniades and Christofides 2000).
The significant drawback of this approach, notably when it comes to parabolic PDEs,
is that the order of the discretization used (in the case of finite difference methods
applied to approximate spatial derivatives) and/or number of modes that must be
considered to reach the desired order of model approximation, which may lead to
high dimensional controllers, mainly difficult to be implemented. Consequently, the
regulator design for dissipative PDEs has been the objective of many studies over the
years, and different design methodologies were considered, such as approximate iner-
tial manifolds, dynamic optimization, robust control and linear quadratic control in
the frequency domain (e.g. Christofides and Daoutidis 1997;Armaou and Christofides
2002;Aksikas et al. 2017 to cite a few). In the same vein, there are several contribu-
tions focused on the stability and dynamical properties of the axial dispersion tubular
reactors with multiple steady states (Jensen and Ray, 1982; Dochain, 2018; Bildea
et al., 2004).

Although in designing a controller, the stabilization of the system is investigated
by the aforementioned studies, the issue of input and state constraints, which are nat-
urally present in the process, is generally not considered for the transport-reaction
systems with recycle. Hence, within the optimal framework, the model predictive con-
trol (MPC), or the so-called online receding horizon control, is introduced by control
practitioners to compute the required manipulated variable for optimizing open-loop
performance objective subjected to constraints (Muske and Rawlings, 1993). A sig-
nificant number of contributions has been focused on properties of MPC controllers
for parabolic PDEs, including spatial discretization methods, constraints validation
with system performance for a class of the Riesz spectral systems with separable
spectrums, pice-wise predictive feedback control and data-based modeling using re-
peatedly online linearization (Dufour et al., 2003; Dubljevic et al., 2006; Bonis et al.,
2012).

As the implementation of MPC applications in digital computer controllers, the
discrete version of the overall system is mainly required for control realizations. Over
the years, for the conversion of the models or controllers into a discrete time setting,
the classical methods such as explicit or implicit Euler, Runge-Kutta and etc. are
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usually taken into account. It is proven from linear system theory that by increasing
the sampling period, the accuracy of discretization can be degraded and leads to the
mapping a stable continuous system into an unstable discrete one (Aström and Wit-
tenmark, 1990; Kazantzis and Kravaris, 1999). This issue gets more prominent when
it comes to distributed parameter systems, given by the infinite dimensional state-
space control realization needs to be accounted for in the controller design. Motivated
by aforementioned issues, this work explores a robust and accurate transformation
of continuous linear infinite dimensional system to a discrete one by the application
of Cayley-Tustin time discretization technique (Crank-Nicolson midpoint integration
rule), in which the system properties and intrinsic energy of the DPS model are pre-
served (i.e., Hamiltonian preserving) (V.Havu and Malinen, 2007; Xu and Dubljevic,
2017). In addition, the practical realizations usually account for the output controller
designs (Xie et al., 2019) due to the fact that infinite dimensional system states cannot
be directly measured. Hence, the discrete observer developed in this work is based on
the Cayley-Tustin method, which does not account for any model reduction or/and
spatial approximation, as the discretization of the underlying operators is the usual
procedure used in the literature to reconstruct the state variables given by transport-
reaction processes (e.g. Dochain 2001, 2000; Mohd Ali et al. 2015; Alonso et al. 2004;
Bitzer and Zeitz 2002).

In this manuscript, the claimed novelty is the extension of linear MPC designs
for finite-dimensional system (Mayne, 2014; Rawlings et al., 2017) to the case of
infinite-dimensional one which accounts for transport-reaction system properties con-
sidering a system of coupled parabolic PDEs which represent a non-isothermal axial
dispersion tubular reactor with mass and thermal recycle flow. In addition, the pro-
posed findings provide an insight into the dynamical properties of the system since
the model of interest considers different mass and heat Peclet numbers in the spatial
operators accounting for the distinction between heat and mass transport phenom-
ena. Moreover, a different values for mass and thermal Peclet numbers lead to more
complexity in model representation and prevent the analytic solution for eigenval-
ues and corresponding eigenfunctions. Due to the fact that one cannot realize the
measurement of mass and temperature along the reactor, the discrete observer for the
system of parabolic PDEs is proposed. The discrete-time observer design accounts for
the available output measurement taken at the exit of the reactor (considered to be
the reactor temperature) and reconstructs the system states. Finally, the controller
design provides optimal stabilization of the system with the inclusion of state and
input constraints, as well as input disturbance rejection in the control law.

The manuscript is organized as follows: Section 3.2 addresses the model descrip-
tion of the axial dispersion tubular reactor with recycle. In Section 3.3, the linearized
system is derived and the system is defined in an appropriate abstract Hilbert space.
This is followed by the linear system stability analysis and obtaining the relevant
eigenfunctions and adjoint eigenfunctions of the system, in Section 3.4. In Section
3.5, the time discretization of the overall system is accomplished by the Cayley-Tustin
technique. Then, the discrete observer design is provided in Section 3.6, while the op-
timization problem for a coupled unstable parabolic PDEs is presented in Section 3.7.
Finally, the performance of the proposed controller is demonstrated with a simulation
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study in Section 3.8.

3.2 Case study: Biochemical reactors

3.2.1 Model formulation

Figure 3.1: Schematic view of a non-isothermal axial dispersion tubular reactor with
recycle

The chemical process shown in Fig.3.1 represents a non-isothermal tubular reactor
involving convection, molecular diffusion with macroscopic back mixing (dispersion)
(Levenspiel, 1999), and a first-order irreversible reaction A→ B, where the reaction
is considered to be exothermic. After passing through a separator, the unreacted
component A is recycled and fed back to the tubular reactor. The dynamics of
the system can be directly deduced from energy and mass balances on a slice with
infinitesimal thickness dz shown in Fig.3.1. The mentioned process is described by the
class of convection-diffusion-reaction parabolic PDEs on domain {tm ∈ R+, z ∈ [0, lr]}
as follows (Jensen and Ray, 1982):

∂CA
∂tm

= D
∂2CA
∂z2

− v∂CA
∂z
− ke− E

RT CA

∂T

∂tm
=

λ

ρfcp

∂2T

∂z2
− v∂T

∂z
− ∆Hr

ρfcp
ke−

E
RT CA +

4h

ρCpdt
(Tc − T )

(3.1)

assuming transport lags in the connecting lines are not significant, the associated
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Danckwerts’ boundary conditions (Danckwerts, 1953) are given by:

∂CA
∂z

∣∣∣
z=0

=
v

D

(
CA

∣∣∣
z=0
− (1− r)CAFeed − rCA

∣∣∣
z=L

)
∂T

∂z

∣∣∣
z=0

=
ρfvcp
λ

(
T
∣∣∣
z=0
− (1− r)TFeed − rT

∣∣∣
z=L

)
∂CA
∂z

∣∣∣
z=L

=
∂T

∂z

∣∣∣
z=L

= 0

(3.2)

where the state components are CA(z, tm) and T (z, tm) representing the concentra-
tion (mol

l
) of reactant and the temperature (K) profile through the tubular reactor,

respectively. z ∈ [0, lr] is the position (m) and tm ≥ 0 is the time variable (s). The
parameters of the axial dispersion reactor with recycle is given in Table 3.1.

Table 3.1: Parameters of the chemical tubular reactor system used to model Eq.(3.1)

Variable Unit Description
lr m Length of the tubular reactor
dt m Diameter of the tubular reactor
R kJ/kgK Gas constant
λ kJ/msK Axial energy dispersion coefficient
v m/s Fluid superficial velocity
D m2/s Axial mass diffusivity
Tc K Jacket temperature
h kJ/m2Ks Heat transfer coefficient for wall
ρf kg/m3 Fluid density
Cp kJ/kgK Heat capacity of reacting fluid
E kJ/kg Activation energy
∆Hr kJ/kg Heat of reaction*

r − Recycle ratio
* For endothermic reactions ∆Hr > 0, and for exothermic reactions
∆Hr < 0.

For the sake of simplicity, one can transform the aforementioned system of equations
into the dimensionless form by introducing the following change of coordinates:

ζ =
z

L
, t =

tmv

L
(3.3)

As TFeed and CAFeed are considered to be constant values, the change of variables
can be written as:

m1 =
CFeed − CA
CFeed

, m2 =
T − TFeed
TFeed

, Tw(t) =
Tc(t)− TFeed

Tfeed
(3.4)
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by substitution, we get the following:

∂m1

∂t
=

1

Pem

∂2m1

∂ζ2
− ∂m1

∂ζ
+ ka (1−m1) e

(
ηm2

1+m2

)
∂m2

∂t
=

1

PeT

∂2m2

∂ζ2
− ∂m2

∂ζ
+ δka (1−m1) e

(
ηm2

1+m2

)
+ σ (Tw −m2)

∂m1

∂ζ

∣∣∣
ζ=0

= Pem

(
m1

∣∣∣
ζ=0
−Rm1

∣∣∣
ζ=1

)
∂m2

∂ζ

∣∣∣
ζ=0

= PeT

(
m2

∣∣∣
ζ=0
−Rm2

∣∣∣
ζ=1

)
∂m1

∂ζ

∣∣∣
ζ=1

=
∂m2

∂ζ

∣∣∣
ζ=1

= 0

(3.5)

with
Pem =

vL

D
, PeT =

ρvCpL

λ
, ka =

kL

v
e−η,

δ =
−∆HrCAFeed
ρCpTFeed

, η =
E

RTFeed
, σ =

4hL

ρCpvdt

Pem and PeT are defined as mass and heat Peclet numbers describing the relative sig-
nificance of diffusion and convection in the chemical tubular reactor given in Fig.3.1.

3.2.2 Steady state solutions

The steady state solutions of the reaction-convection-diffusion PDEs in Eq.(3.5) can
be obtained by solving the following ordinary differential equations with their associ-
ated boundary conditions:

1

Pem

d2m1ss

dζ2
− dm1ss

dζ
+ ka (1−m1ss) e

(
ηm2ss

1+m2ss

)
= 0

1

PeT

d2m2ss

dζ2
− dm2ss

dζ
+ δka (1−m1ss) e

(
ηm2ss

1+m2ss

)
+ σ(Twss −m2ss) = 0

dm1ss

dζ

∣∣∣
ζ=0

= Pem

(
m1ss

∣∣∣
ζ=0
−Rm1ss

∣∣∣
ζ=1

)
dm2ss

dζ

∣∣∣
ζ=0

= PeT

(
m2ss

∣∣∣
ζ=0
−Rm2ss

∣∣∣
ζ=1

)
dm1ss

dζ

∣∣∣
ζ=1

=
dm2ss

dζ

∣∣∣
ζ=1

= 0

(3.6)

It is well known from literature that due to the nonlinearity in kinetic term
representing the interconnection of temperature and concentration, particularly for
exothermic reactions, multiple steady state profiles, either stable or unstable, can be
generated (Heinemann and Poore, 1982; Hastir et al., 2020). It should be emphasized
that in practical applications, the operating points of interest may correspond to an
unstable equilibrium profile observed by the above equations.

By considering the following parameters and using shooting method, one can iden-
tify the existence of multiple equilibrium steady state profiles as it is illustrated in
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Fig.3.2:

Pem = 4, P eT = 6, Tfeed = 600, Twss = 380, CAfeed = 1,

σ = 0.9, r = 0.3, ka = 0.6, δ = 0.8, η = 20

Figure 3.2: Multiple equilibrium profiles of obtained for a non-isothermal tubular
reactor with recycle.

The results show that three steady state solutions are possible solutions to the system
given by Eq.(3.6). The equilibrium profile of interest is the middle one between the
low and high conversion profiles (represented by dash-dotted lines). As expected, this
is the unstable equilibrium profile obtained by Eq.(3.6). Therefore, it is important to
implement a robust and reliable controller to keep the tubular reactor working at this
unstable operating points of interest. In the following sections, the stability analysis
is performed and subsequently, design of the model predictive controller is addressed
based on the linearized model around the unstable equilibrium profile.

3.3 Linearized model

3.3.1 System linearization

Consider the following deviation variables:[
x1(ζ, t) = m1(ζ, t)−m1ss(ζ)
x2(ζ, t) = m2(ζ, t)−m2ss(ζ)

]
(3.7)
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we assume the cooling jacket temperature (Tc(t)) as the manipulated input variable
and the reactor outlet temperature as the measured output of the system which is
required to reconstruct the states in the subsequent observer design. Then, the new
input and output can be defined as follows:[

u(t) = Tw(t)− Twss
y(t) = m2(ζ = 1, t)−m2ss(ζ = 1)

]
(3.8)

The reaction rate is linearized around its steady-state as it depends on the dimen-
sionless concentration and temperature of the reactor:

fnl(m1,m2) = ka(1−m1)e

ηm2

1 +m2≈ fnl(m1ss ,m2ss)+

R1(m1 −m1ss) + R2(m2 −m2ss),

gnl(m1,m2) = δka(1−m1)e

ηm2

1 +m2≈ δgnl(m1ss ,m2ss)

+δR1(m1 −m1ss) + δR2(m2 −m2ss)

(3.9)

with the following coefficients:

R1(ζ) = −kae

ηm2ss(ζ)

1 +m2ss(ζ) , R2(ζ) =
ηka(1−m1ss(ζ))e

ηm2ss(ζ)

1 +m2ss(ζ)

(1 +m2ss(ζ))2

where R1(ζ), R2(ζ), δR1(ζ) and δR2(ζ) are the Jacobian of the nonlinear terms. In
the linearized system, we consider the spatial averaged coefficients over the space (R̄1

and R̄2), defined as below: 
R̄1 =

∫ 1

0

R1(ζ)dζ

R̄2 =

∫ 1

0

R2(ζ)dζ

(3.10)

Finally, the linearized representation of the original system in Eq.(3.5) takes the
following form:
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∂x1

∂t
=

1

Pem

∂2x1

∂ζ2
− ∂x1

∂ζ
+ R̄1x1 + R̄2x2

∂x2

∂t
=

1

PeT

∂2x2

∂ζ2
− ∂x2

∂ζ
+ δR̄1x1 + δR̄2x2 + σ

(
u(t)− x2

)
∂x1

∂ζ

∣∣∣
ζ=0

= Pem

(
x1

∣∣∣
ζ=0
− rx1

∣∣∣
ζ=1

)
∂x2

∂ζ

∣∣∣
ζ=0

= PeT

(
x2

∣∣∣
ζ=0
− rx2

∣∣∣
ζ=1

)
∂x1

∂ζ

∣∣∣
ζ=1

=
∂x2

∂ζ

∣∣∣
ζ=1

= 0,

y(t) = x2

∣∣∣
ζ=1

(3.11)

3.3.2 Infinite-dimensional system representation

The system of coupled parabolic PDEs given by Eq.(3.11) can be rewritten as the
following state space equations:

ẋ(ζ, t) = Ax(ζ, t) + Bu(t)
y(t) = Cx(ζ, t)

(3.12)

where x is the state, x(ζ, t) =

[
x1(ζ, t)
x2(ζ, t)

]
, and the operator A is defined as a linear

operator L(X) (X is defined as Hilbert space L2[0, 1]× L2[0, 1]):

A(·) =


1

Pem

∂2

∂ζ2
− ∂

∂ζ
+ R̄1 R̄2

δR̄1
1

PeT

∂2

∂ζ2
− ∂

∂ζ
+ δR̄2 − σ

 (·)

=

[
A11 A12

A21 A22

]
(·)

(3.13)

such that D(A) =

{
x = (x1, x2)T ∈ X : x(ζ) ∈ L2[0, 1]

∣∣ x(ζ), dx
dζ
,
d2x

dζ2
a.c.,

dx1

dζ

∣∣∣
ζ=1

=

dx2

dζ

∣∣∣
ζ=1

= 0,
dx1

dζ

∣∣∣
ζ=0

= Pem

(
x1

∣∣∣
ζ=0
− rx1

∣∣∣
ζ=1

)
and

dx2

dζ

∣∣∣
ζ=0

= PeT

(
x2

∣∣∣
ζ=0
− rx2

∣∣∣
ζ=1

)
}
. Moreover, the actuation is presented as B =

[
0
σ

]
representing the linear input

operator L(R, X), and C=

[
0

∫ 1

0
δ(ζ − 1)(.)dζ

]
indicates the linear output opera-

tor providing boundary point observation in the control setting. The above system
dynamics operator A has a well defined eigenvalue problem, which depends on the
Peclet numbers and recycle ratio r. The solution of the eigenvalue problem provides
spectral system characteristics, such as eigenvalues and associated eigenfunctions.
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3.4 Linear system stability analysis (PeT 6= Pem)
Based on the linear system representation, it is possible to analyze the internal sta-
bility by solving the eigenvalue problem associated with the system, see Eq.(3.11). In
particular, the stability assessment is performed with different settings of the Peclet
numbers which is less studied in the literature (see Hastir et al. 2020), as the con-
stant value for Peclet numbers (PeT = Pem) implies the assumption of same transport
properties of the mass and heat flow in the axial dispersion reactor, see Antoniades
and Christofides (2000, 2001) as examples of this case.

Consequently, the eigenvalues (λ) and eigenfunctions of the operators A and A∗
will be specified to access the system stability and to determine the terminal cost in
the model predictive controller, which will be demonstrated in the ensuing sections.

3.4.1 Eigenvalues and eigenfunctions of the operator A
The linear system representation is utilized to analyze the internal stability of the
operator A by solving the following eigenvalue problem for the unforced (u(t) = 0)
coupled parabolic PDEs:

AΦ = λΦ (3.14)

where the operator A is defined by Eq.(3.13). Let us write the system eigenfunctions
Φ(ζ) as below:

Φ(ζ) =

[
Φ1(ζ)
Φ2(ζ)

]
(3.15)

by substitution in Eq.(3.14), one can get the system of second order ordinary differ-
ential equations. The system can be rewritten as Ẏ (ζ) = ĀY , where Ā is defined
as a matrix with constant components of Eq.(3.11) and Y is the following vector of
eigenfunctions (Φ1, Φ2) and the corresponding derivatives:

Y =


Φ1

dΦ1

dζ
Φ2

dΦ2

dζ

 (3.16)

Hence, the solution can be expressed as below:

Y (ζ) = eĀ(ζ−1)Y (1) = Ni,jY (1) (3.17)

N4×4(ζ) is defined as the exponential matrix, with index i and j referring to the
component of the matrix. Applying the boundary conditions presented in Eq.(3.14)
leads to the following nonlinear equation, which is numerically solvable and gives the
system’s eigenvalues:

f(λ) = k1k4 − k2k3 = 0 (3.18)



Chapter 3: Section 3.4 44
with

k1 = PemN
(ζ=0)
1,1 −N (ζ=0)

2,1 − Pemr,
k2 = PemN

(ζ=0)
1,3 −N (ζ=0)

2,3 ,

k3 = PemN
(ζ=0)
3,1 −N (ζ=0)

4,1 ,

k4 = PeTN
(ζ=0)
3,3 −N (ζ=0)

4,3 − PeT r

(3.19)

Remark 1. In this work, as a system with different Peclet numbers and the Danckw-
erts’ conditions is considered, finding the analytic solution for spectral system charac-
teristics is not applicable in this case. Thus, the numerical solution for this equation
is presented.

The solution of Eq.(3.19) generates the eigenvalue spectrum containing the stable
and unstable modes (λu, λs) associated with corresponding eigenfunctions (Φu, Φs)
constructed as the function basis of the operator A in Eq.(3.13). Thus, based on
Eq.(3.18), the eigenvalue problem is solved for the unstable equilibrium profile, see
Fig.3.2. In addition, from Fig.3.3, it can be seen that there is only one real unstable
eigenvalue generated by the coupled parabolic PDEs system with the operating con-
ditions considered. It is interesting to explore the relative importance of the mass and
heat Peclet numbers on the calculated eigenvalues of the system. Hence, by changing
the value for the mass diffusivity (which is related to Pem) and considering the same
value for PeT , new steady state solutions are found and, once again, the eigenvalue
problem is solved for the unstable equilibrium profile. The eigenvalues distributions
are presented in Fig.3.3. In this case, it is possible to see that increasing Pem leads
to more complex eigenvalues. In Section 3.7.1, the stabilization of the system will
be addressed by rejecting the unstable modes under the developed model predictive
controller.

3.4.2 Eigenfunctions of the operator A∗

For any x ∈ D(A) and y ∈ D(A∗), one can write the following definition:

< Ax, y >=< x,A∗y > (3.20)

employing integration by parts and substituting the boundary conditions given in
Eq.(3.11), results in the following adjoint operator A∗ (see Appendix C):

A∗(·) =


1

Pem

∂2

∂ζ2
+

∂

∂ζ
+ R̄1 δR̄1

R̄2
1

PeT

∂2

∂ζ2
+

∂

∂ζ
+ δR̄2 − σ

 (·)

=

[
A∗11 A∗12

A∗21 A∗22

]
(·)

(3.21)
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Figure 3.3: Comparison of the eigenvalue distribution with different setting for Peclet
numbers.

with the new boundary condition represented as below:

∂y1

∂ζ

∣∣∣
ζ=1

= −Pem
(
y1

∣∣∣
ζ=1
− ry1

∣∣∣
ζ=0

)
∂y2

∂ζ

∣∣∣
ζ=1

= −PeT
(
y2

∣∣∣
ζ=1
− ry2

∣∣∣
ζ=0

)
∂y1

∂ζ

∣∣∣
ζ=0

=
∂y2

∂ζ

∣∣∣
ζ=0

= 0

(3.22)

A similar procedure, as described in Section 3.4.1 is followed to compute the adjoint
eigenfunction of the coupled class of parabolic PDEs. The associated eigenfunction
for the adjoint operator is given by:
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Φ∗(ζ) =

[
Φ∗1(ζ)
Φ∗2(ζ)

]
(3.23)

Finally, we define Φ̂m(ζ) and Φ̂∗n(ζ) as the normalized eigenfunction and correspond-
ing bi-orthogonal ones respectively. Indeed, based on Eqs.(3.15)-(3.23) they can be
constructed by:

Φ̂m(ζ) =
Φm(ζ)√∫ 1

0

(
Φ1m(ζ)Φ∗1m(ζ) + Φ2m(ζ)Φ∗2m(ζ)

)
dζ

Φ̂∗n(ζ) =
Φ∗n(ζ)√∫ 1

0

(
Φ1n(ζ)Φ∗1n(ζ) + Φ2n(ζ)Φ∗2n(ζ)

)
dζ

(3.24)

where indices m, n indicate the corresponding eigenvalue of the coupled parabolic
PDEs.

3.5 Cayley-Tustin time discretization

3.5.1 Discrete time representation

In this subsection, for the mentioned coupled convection-diffusion parabolic PDEs,
mapping the continuous time setting to discrete one is considered by the application
of the Cayley-Tustin time discretization method. Let us consider ∆t as the sampling
time, then by applying Crank-Nicolson time discretization to Eq.(3.12), one can get
the following:

x(j∆t)− x((j − 1)∆t)

∆t
≈ A

x(j∆t) + x((j − 1)∆t)

2
+Bu(j∆t), j ≥ 1 (3.25)

y(j∆t) ≈ C
x(k∆t) + x((k − 1)∆t)

2
+Du(k∆t), j ≥ 1 (3.26)

Next, we consider u(j∆t)/
√

∆t as the approximation of u(j∆t), and the convergence
of u(j∆t)/

√
∆t to u(j∆t) as ∆t → 0 can be verified in several ways, similarly for

y(j∆t), see V.Havu and Malinen (2007). Accordingly, the following finite dimensional
discrete time dynamics can be achieved which is known as Tustin transform (Franklin
et al., 1998) in digital control framework:

x(j∆t)− x((j − 1)∆t)

∆t
≈ A

x(j∆t) + x((j − 1)∆t)

2
+B

u(j∆t)√
∆t

, j ≥ 1 (3.27)

y(j∆t)√
∆t
≈ C

x(j∆t) + x((j − 1)∆t)

2
+D

u(j∆t)√
∆t

, j ≥ 1 (3.28)
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By simple manipulation, and assuming piecewise constant input within time intervals,
the discrete time counter part of Eqs.(3.12) takes the following form:

x(ζ, k) = Adx(ζ, k − 1) + Bdu(k)
y(k) = Cdx(ζ, k − 1) +Ddu(k)

(3.29)

with α = 2/∆t and the discrete spatial operators (Ad, Bd, Cd, Dd) given as:[
Ad Bd

Cd Dd

]
=

[
−I + 2α [αI − A]−1

√
2α [αI − A]−1 B√

2αC [αI − A]−1 C [αI − A]−1 B

]
(3.30)

R (s, A) = (sI − A)−1 and (sI − A)−1 B = R (s, A)B are defined as the resolvent
operators for A and B, respectively. In the above expression, it is important to
emphasize that the original model expressed by Eq.(3.12) does not have feedthrough
operator while the discrete system Eq.(3.29) poses a well-defined feedthrough operator
which is realized as transfer function, Dd = G(α) = C [α− A]−1 B, and includes one
to one relation between continuous and discrete setting (V.Havu and Malinen, 2007;
Xu and Dubljevic, 2017). The physically realizable distributed parameter systems
generally do not contain feedforward operator (D = 0). This implies G(α) is strictly
proper and do not involve instantaneous transfer from the input signal to the output
one, such that G(α) is defined as a function evaluated at s = α.

Remark 2. The Crank-Nicolson is a type of discretization scheme derived from the
implicit midpoint rule and preserves the system dynamical properties (stability, ob-
servability and controllability). This method of discretization is also referred to as the
lowest order symplectic integration algorithm in Gauss quadrature based Runge-Kutta
methods (Hairer et al., 2006).

3.5.2 Resolvents and discrete operators

The resolvent operator R (s, A) = (sI − A)−1 of the operator A can be obtained by
considering the system with a zero input condition which yields:

R(s, A)(·) =

[
R11 R12

R21 R22

][
(·)1

(·)2

]
(3.31)

Proof. All the resolvent operators can be directly found by applying Laplace trans-
form to the class of parabolic PDEs described by Eq.(3.11):

∂

∂ζ


x1(ζ, s)
∂x1(ζ, s)

∂ζ
x2(ζ, s)
∂x2ζ, s)

∂ζ


︸ ︷︷ ︸

X(ζ,s)

=


0

−Pemx1(ζ, 0)
0

−PeTx2(ζ, 0)


︸ ︷︷ ︸

Z1(ζ,0)

+


0
0
0

−PeTσu(s)


︸ ︷︷ ︸

Z2(s)

(3.32)
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+


0 1 0 0

Pem(s− R̄1) Pem −PemR̄2 0
0 0 0 1

−PeT δR̄1 0 PeT (s− δR̄2 + σ) PeT


︸ ︷︷ ︸

P


x1(ζ, s)
∂x1(ζ, s)

∂ζ
x2(ζ, s)
∂x2(ζ, s)

∂ζ


since the matrix P includes constant variables, one can obtain the general solution
as:

X(ζ, s) = TX(0, s) +

∫ ζ

0

FZ1(η, 0)dη +

∫ ζ

0

FZ2(s)dη (3.33)

which is the solution of the ODE given by Eq.(3.32). T and F are defined as 4 × 4
matrices, representing the exponential matrices ePζ and eP (ζ−η), respectively. After
some manipulation, the desired resolvent operator can be expressed as R(s, A)(·) =
(sI−A)−1(·) involving four components, R11,R12,R21 andR22 based on the operators
A11, A12 A21 and A22 (see Appendix D.1 for the details).

Based on the discrete operators defined in the previous section and the resolvent in
Eq.(3.31), the operator Ad can be written as the following convenient form:

Ad(·) = −

[
(·)1

(·)2

]
+ 2α

[
R11 R12

R21 R22

][
(·)1

(·)2

]
(3.34)

Similarly, one can obtain the operator Bd by using the resolvent operator R (s, A)B =
(sI−A)−1B which can be computed by imposing zero initial condition (X(ζ = 0, s) =
0) in Eq.(3.32). This leads to the following expression (see Appendix D.1):

Bd =
√

2αR (α,A)B =

[
R1B
R2B

]
(3.35)

According to Eq.(3.30) and the definition of the operators B and C presented in
Section 3.3.2, the discrete operators Cd and Dd can be expressed as:

Cd(·) =
√

2αCR (α,A) (·) =

[
R21

∣∣∣
ζ=1

R22

∣∣∣
ζ=1

] [
(·)1

(·)2

]
,

Dd = CR(α,A)B = (R2B)
∣∣
ζ=1

(3.36)

3.5.3 Resolvents of the adjoints and corresponding discrete
operators

In order to design the model predictive control, the adjoint operators (A∗d, B
∗
d) are

required as well in the controller design. Hence, in a similar manner described in the
previous subsection, the expressions for the corresponding adjoint resolvent operators
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can be found by applying Laplace transform on the adjoint system given by Eq.(3.21)
and Eq.(3.22):

R(α,A∗)(·) =

[
R∗11 R∗12

R∗21 R∗22

][
(·)1

(·)2

]
(3.37)

This yields the final form of the operator A∗d given by:

A∗d(·) = −

[
(·)1

(·)2

]
+ 2α

[
R∗11 R∗12

R∗21 R∗22

][
(·)1

(·)2

]
(3.38)

and one can construct the discrete operator B∗d as below:

B∗d(·) =
√

2α(R(α,A)B)∗(·) =

[
(R1B)∗

(R2B)∗

]T [
(·)1

(·)2

]
(3.39)

All the expressions of the resolvent components are provided in Appendix D.2.

3.6 Observer design for a coupled parabolic PDEs
To address the issue of having access to all the state variables, the discrete output
observer is considered in this work. The Luenberger observer is one of the practical
and easy to realize observers which is considered in a discrete modern controller
realizations. However, the discrete operators cannot be directly used in the design
of observer gains in discrete-time setting. Therefore, design is performed first in
the continuous time setting. Then, the discrete observer gain is obtained from the
continuous one by utilizing Cayley-Tustin discretization scheme and link between the
gains obtained in continuous and discrete setting.

3.6.1 Design for continuous-time observer

For the state reconstruction of the transport distributed parameter systems, partic-
ularly for the class of diffusion-convection-reaction parabolic PDEs, one can consider
the following general representation without the feedforward term (i.e., D):

ẋ(ζ, t) = Ax(ζ, t) + Bu(t)
y(t) = Cx(ζ, t)

(3.40)

and the Luenberger observer can be presented by the following standard form:

˙̂x(ζ, t) = Ax̂(ζ, t) + Bu(t) + LT [y(t)− ŷ(t)]
ŷ(t) = Cx̂(ζ, t)

(3.41)

where the reconstructed state x̂(ζ, t) is defined as a copy of the system dynamics and
considers the output of the plant provided in affine manner. By subtracting Eq.(3.41)
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from its general form Eq.(3.40) and defining observer error by ê(ζ, t) = x(ζ, t)−x̂(ζ, t),
yields the below expression:

˙̂e(ζ, t) = (A− LTC)ê(t) = Aoê(ζ, t) (3.42)

the above design relies on choosing the appropriate spatially varying gain LT (ζ) =[
L1(ζ)
L2(ζ)

]
such that the operator Ao in the state estimation error dynamics given by

Eq.(3.42) is stable. Therefore, to ensure the stability of the observer, one can analyze
the corresponding eigenvalues of Eq.(3.42):

Aoφo = λoφo (3.43)

By the same method explained in Section 3.4, after imposing the boundary conditions,
the eigenvalue problem for the operator Ao leads to a set of numerically solvable
nonlinear equations. The design objective is to determine the observer region of
stability by considering the proper value for the observer gain which is achieved by
ensuring that all eigenvalues have negative real parts. Hence, one can consider various
spatial functions LT (ζ) in order to guarantee that eigenvalue problem in Eq.3.43
provides stable error dynamics. Subsequently, once the observer gain is determined
one needs to link this spatial gain to the corresponding discrete gain Ld(ζ). The link
between the continuous and discrete observer gain is provided in ensuing section.

3.6.2 Design for discrete-time observer

A discrete version of the observer, similar to the discrete version of the plant model,
is constructed as follows:

x̂(ζ, k) = Adx̂(ζ, k − 1) + Bdu(k) + Ld[y(k)− ŷ(k)]
ŷ(k) = Cdo x̂(ζ, k − 1) +Ddou(k) +Mdoy(k)

(3.44)

where Ad and Bd have been defined in Eq.(3.30). The other discrete operators, (Cdo ,
Ddo , Ld, Mdo), are given as:

Cdo(·) =
√

2α
[
I + C(αI − A)LT

]−1
C [αI − A]−1 (·)

Ddo =
[
I + C(αI − A)LT

]−1
C [αI − A]−1 B

Mdo =
(
I + C(αI − A)−1LT

)−1
C(αI − A)−1LT

Ld =
√

2α [αI − A]−1 LT

(3.45)

notice that Ld has similar structure to Bd, as yk can be determined as an input to
the observer.

Lemma 1. If the continuous observer gain (LT ) is chosen such that (Ao) is stable,
then the discrete version of the observer in Eq.(3.44) is stable as well. In other words,
the Cayley-Tustin time discretization will preserve the system properties.
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Proof. In order to show the states constructed by observer will converge to the system
state, one can realize the discrete observer error dynamics as:

êd(ζ, k) = x(ζ, k)− x̂(ζ, k) (3.46)

and by some algebraic manipulation (see Appendix F), the relation between discrete
and continuous setting is obtained and leads to the following form of the discrete
error:

êd(ζ, k) = (Ad − LdCd)êd(ζ, k − 1) =
(
−I + 2[αI − A+ LTC]−1

)
êd(ζ, k − 1) (3.47)

where
(
−I + 2[αI − A+ LTC]−1

)
is the discrete representation of Ao = (A− LTC).

Thus, if the continuous observer gain (LT ) is chosen such that (Ao) is stable, then the
proposed discrete observer is able to reconstruct the states, as Ao generates a stable
discrete representation if the Cayley-Tustin time discretization is applied.
It should be mentioned that the presented methodology does not involve any model
reduction associated with the discrete Luenberger observer design, and no spatial
approximation has been considered compared to the spatial discretization schemes
mainly used in the literature, see Dochain (2001, 2000); Mohd Ali et al. (2015);
Alonso et al. (2004); Bitzer and Zeitz (2002).

3.7 Model predictive control for unstable coupled
parabolic PDEs

This section addresses the design of the proposed model predictive controller for the
coupled parabolic PDEs. The discrete-time model dynamics with eigenfunctions of
the system are used to find the solution of the optimization problem.

3.7.1 Optimization problem

In this subsection, based on the scheme given in Fig.3.4, the MPC design is developed
for the infinite dimensional setting. As can be seen, the full state feedback is used
by the MPC scheme, which is going to be estimated by the observer. The design of
the regulator is emerged from the finite dimensional linear time invariant systems,
see Rawlings et al. (2017).
Here, the following open-loop objective function is utilized as a foundation of a con-
troller design providing minimization at each sampling time (k):

min
uN

∞∑
l=0

< x̂(ζ, k + l|k), Qx̂(ζ, k + l|k) > + < u(k + l + 1|k), Fu(k + l + 1|k) >

s.t. x̂(ζ, k + l|k) = Adx̂(ζ, k + l − 1|k) + Bdu(k + l|k),
umin 6 u(k + l|k) 6 umax,
x̂min 6 x̂(ζ = ζc, k + l|k) 6 x̂max,

< x̂(ζ, k +N), Φ̂u >= 0
(3.48)
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Figure 3.4: Scheme of the model predictive controller used for the non-isothermal axial
dispersion tubular reactor with recycle

where x̂(ζ, k) =
[
x̂1(ζ, k) x̂2(ζ, k)

]T
indicates the state variables of the system, F is

a positive definite operator, Q=

[
Q1(ζ) 0

0 Q2(ζ)

]
responsible for positive semidefinite

spatial operator associated with the state of coupled parabolic PDEs, (k + l) and
(k + l + 1|k) are considered for current and future time, respectively. By assigning
zero-input beyond the control horizon (u(k ≥ N + 1|k) = 0), the aforementioned
infinite horizon objective function can be cast as the the following finite horizon
version (i.e, N-horizon length):

min
uN

J =
N−1∑
l=0

< x̂(ζ, k + l|k), Qx̂(ζ, k + l|k) >

+ < u(k + l + 1|k), Fu(k + l + 1|k) > + < x̂(ζ, k +N |k), Q̄x̂(ζ, k +N |k) >

s.t. x̂(ζ, k + l|k) = Adx̂(ζ, k + l − 1|k) + Bdu(k + l|k),
umin 6 u(k + l|k) 6 umax,
x̂min 6 x̂(ζ = ζc, k + l|k) 6 x̂max,

< x̂(ζ, k +N), Φ̂u >= 0
(3.49)

where Q̄ is obtained as the following terminal cost operator for the system of coupled
parabolic PDEs (see Appendix E):

Q̄(·) =
∞∑
m=0

∞∑
n=0

− < CΦ̂m, QCΨ̂n >

λm + λn
< (·), Ψ̂n > Φ̂m (3.50)
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Regarding the equality constraint (< x̂(ζ, k + N), Φ̂u >= 0), the following equation
needs to be integrated in the convex optimization problem presented by Eq.(3.49):[

< AN−1
d Bd, Φ̂u > < AN−2

d Bd, Φ̂u > . . . < Bd, Φ̂u >
]
U

= − < ANd x̂(ζ, k|k), Φ̂u >

(3.51)

where Φ̂u is described as the relevant normalized unstable eigenfunctions associated
with positive eigenvalues. Therefore, with feasible input sequence given by opti-
mization problem, the equality constraint is satisfied and the unstable modes will be
canceled at the end of the horizon.
By straightforward algebraic manipulation, one can express the objective function in
Eq.(3.49) as the following quadratic optimization form:

min
U

J = 2UT < I, P x̂(ζ, k|k) >+ UT < I,H > U+ < x̂(ζ, k|k), Q̄x̂(ζ, k|k) >

(3.52a)
which is subjected to the following constraints:

Umin 6 U 6 Umax

x̂min 6
[
SU + T x̂(ζ, k|k)

] ∣∣∣
ζ=ζc

6 x̂max

SuU + Tux̂(ζ, k|k) = 0

(3.52b)

with:

H =


B∗dQ̄Bd + F B∗dA

∗
dQ̄Bd . . . B∗dA

∗
d
N−1Q̄Bd

B∗dQ̄AdBd B∗dQ̄Bd + F . . . B∗dA
∗
d
N−2Q̄Bd

...
... . . . ...

B∗dQ̄A
N−1
d Bd B∗dQ̄A

N−2
d Bd . . . B∗dQ̄Bd + F

 ,

P =


B∗dQ̄Ad
B∗dQ̄A

2
d

...
B∗dQ̄A

N
d

 , T =


Ad
A2
d
...
ANd

 , S =


Bd 0 . . . 0
AdBd Bd . . . 0

...
... . . . ...

AN−1
d Bd AN−2

d Bd . . . Bd

 ,

Tu =
[
Ad

]
, Su =

[
AN−1
d Bd AN−2

d Bd . . . Bd

]
,

U =
[
u(k + 1|k) u(k + 2|k) u(k + 3|k) . . . u(k +N |k)

]T

(3.53)

The above standard formulation of the quadratic optimization problem leads to finite-
dimensional quadratic programming with linear constraints. If feasible, then the
constraints and optimality are fulfilled while the controller ensures the system stabi-
lization.
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3.7.2 Input disturbance rejection

In the chemical plant demonstrated in Fig.3.1, heating/cooling jacket may involve
possible temperature disturbance. To deal with this issue, in this subsection we
implement the disturbance rejection based on the optimization problem discussed
earlier. The axial dispersion tubular reactor system with recycle is a coupled parabolic
PDEs system, which can be rewritten as:

ẋ(ζ, t) = Ax(ζ, t) + Bũ(t)
y(t) = Cx(ζ, t)

(3.54)

where ũ(k) defined as the input variable with possible disturbance and given by

ũ(t) = u(t) + d(t) (3.55)

Then, the reformulated discrete version of the plant can be written as below:

x(ζ, k) = Adx(ζ, k − 1) + Bdũ(k)
y(k) = Cdx(ζ, k − 1) +Ddũ(k)

(3.56)

Based on the optimization problem given by Eq.(3.48), in a similar manner and
by substitution input u(k) with aforementioned manipulated variable ũ(k), one can
obtain the following new quadratic form of the objective function:

min
U

J = 2UT
[
< I, P x̂(ζ, k|k) > + < I, FG >

]
+ UT < I,H > U

+ < x̂(ζ, k|k), Q̄x̂(ζ, k|k) > + < G,FG >

s.t. Umin 6 U +G 6 Umax

x̂min 6
[
S(U +G) + T x̂(ζ, k|k)

] ∣∣∣
ζ=ζc

6 x̂max

Su(U +G) + Tux̂(ζ, k|k) = 0

(3.57)

where U and the operators H, P , T , Tu, S and Su have been defined previously. G
is defined as below:

G =
[
d(k + 1|k) d(k + 2|k) d(k + 3|k) . . . d(k +N |k)

]T
(3.58)

Therefore, with feasible input, the proposed constrained optimization problem can
also be accounted for input disturbance rejection.

3.8 Simulation results
This section is dedicated to the implementation of the model predictive controller for
the axial dispersion tubular reactor with recycle, see the scheme in Fig.3.4. The par-
ticular choice of parameters given by Table 3.2 leads to three equilibria for the system
as shown in Fig.3.2. The outer two profiles are stable, while the middle one is unstable
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and will be considered in the simulation study. Based on the model predictive con-
trol designed in Section 3.7, our objective is to stabilize the system while complying
with input/state constraints. The developed controller can also address the issue of
having possible known input disturbance in the system. Due to the construction of
the optimization problem, as discussed in Section 3.4, one can perform the eigenvalue
problem to calculate the eigenvalues, eigenfunctions and adjoint eigenfunctions for
the unstable coupled parabolic PDEs system.

Table 3.2: Values of the parameters used in numerical simulations

Variable Value Unit
Pem 4 −
PeT 6 −
ka 0.6 −
δ 0.8 −
σ 0.9 −
r 0.3 −
η 20 −
TFeed 600 K

CAFeed 1
mol

l
Twss 380 K

Based on Fig.3.4, the discrete observer is considered in the close-loop setting. As
discussed in Section 3.6, the stability of the observer is evaluated by the analysis of
observer error dynamics. Thus, the corresponding eigenvalue problem in Eq.(3.43) is
studied for increasing values of the observer gains. Two cases are investigated: one
provides a constant value for the observer gain in the entire spatial domain (L); the
other considers a linear spatially varying function (L(ζ) = Lζ) for the mentioned
observer gain. In general, one can propose different types of the spatial functions
L(ζ) and calculate the region of stability by considering Eq.(3.43).

Subsequently, in order to have a better realization of the proposed design, the most
positive eigenvalue for each gain is extracted and shown in Fig.3.5. From Fig.3.5, it
can be seen that, for the case with L1(ζ) = L2(ζ) = L, as the value of the gain is
increased, the unstable eigenvalue is shifted to the left side of the complex plain, while
at the same time increasing gain leads to the shift of the stable pair of the eigenvalues
to the right half plane, making the observer error dynamics unstable again. Hence, the
stability region for this observer design refers to 1.20 ≤ L ≤ 1.70 and 12.60 ≤ L ≤ 35,
while for the second case, the desired stability region is 7.85 ≤ L ≤ 35.

We show simulation studies of observer for a model of an axial dispersion tubular
reactor with recycle. The gain L = 24 is chosen as the constant observer gain in the
whole spatial domain and the related discrete version is computed based on Eq.(3.45).
Considering zero initial condition for the observer dynamics, the equivalent discrete
error dynamic written in Eq.(3.47) is evaluated and shown in Fig.3.6. It can be con-
firmed that the error dynamics is decaying exponentially such that the stability of
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Figure 3.5: Transition of the unstable eigenvalue to stable one by increasing the values
for L.

Figure 3.6: Discrete error dynamics given by Eq.(3.47) for L = 24.

the observer is guaranteed.
Based on the developed observer, one can use Eq.(3.44) to obtain the reconstructed
states in the discrete-time setting for both temperature and concentration through
the dispersive tubular reactor. In numerical simulation, x0(ζ) belongs to the domain
of A, ∆t = 0.04 which implies α = 50 and ∆z = 0.005 for numerical integration.

Next, the normalized eigenfunctions of the system with corresponding biorthonor-
mal ones are used to determine the terminal cost operator presented in Eq.(3.50). The
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(a) Temperature

(b) Concentration

Figure 3.7: The evolution of the estimated state profiles though the axial dispersion
tubular in an open-loop condition.

manipulation of the MPC is obtained by the application of the constrained optimiza-
tion problem (see Eqs. (3.48)-(3.53)) on the basis of Cayley-Tustin time discretization
with Qx = 2x, F = 0.2 and N = 10 as the control horizon. From Fig.3.8, it is possible
to verify that the close-loop system under model predictive control is successful in
stabilizing the unstable mode at end of the horizon and satisfy the stability constraint
for the system of coupled parabolic PDEs.
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(a) Temperature

(b) Concentration

Figure 3.8: Dynamics reconstruction of the stabilized spatial profiles for the axial
dispersion tubular reactor constructed on the basis of a discrete time coupled parabolic
PDEs system.

As emphasized in Section 3.7.2, in this chemical plant, tuning the temperature
of the wall may involve possible temperature disturbance. In this work, we consider
a square wave function as the known disturbance injected into the system. Based
on the quadratic optimization problem stated in Eq.(3.57) and the scheme given by
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Fig.3.4, two scenarios are justified in the simulation study. For the first one, all the
constraints (stability, state and input) with the input disturbance are assigned to the
objective function. However, in the latter case, MPC is only subjected to stabilizing
the coupled parabolic PDEs with consideration of input disturbance. From Fig.3.9
(a), it can be seen that the input with disturbance while all constraints are activated,
can satisfy the upper and lower limitations of manipulated input variable compared to
the second scenario which only stability constraint is applied on the system. The re-
lated controlled actions with respect to disturbance rejection are presented in Fig.3.9
(b).

Moreover, in a realistic physical systems various cases can be considered as
the points where state constraints can be imposed. For example, the reactor outlet
concentration, or the temperature constraint along the reactor to account with any
hot-spot generated throughout the axial dispersion reactor. Here, the concentration
of the component at end of the chemical tubular reactor (ζ = 1) is introduced as the
state constraint in the MPC controller. The result for corresponding state limitation
is demonstrated in Fig.3.9 (c) according to the input manipulations.

In a chemical process, the noise originating from operational environment may also
affect the close-loop system. Thus, another case study is considered, as measurement
noise is included in the system output (temperature at reactor outlet). In Fig.3.10,
the simulation is performed in order to show the system output with measurement
noise, generated as a white noise with standard variance κ = 0.05 and zero mean.
As it is possible to notice, the model predictive controller is able to maintain the
operation of the non-isothermal axial dispersion reactor at the desired steady state.

(a) Input profiles with disturbance.
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(b) Input profiles.

(c) Concentration profiles for inputs with disturbance.

Figure 3.9: Comparison between the inputs with square wave disturbance, controlled inputs
and concentration profiles under model predictive controller subjected to all constraints
(solid-lines) or only stability constraint (dotted lines).

Based on the above simulation studies, it possible to see that the developed con-
strained optimal controller can provide system stabilization, complying with con-
straints and reject the possible input disturbance. In addition, the observer recon-
structs the states of the dispersive tubular reactor properly through the system output
such that MPC is applicable in the chemical plant.
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(a) System output and observer output.

(b) System output and observer output with measurement noise.

Figure 3.10: Comparison of the system output (solid lines) and observer output
(dashed lines) with and without measurement noise in the non-isothermal tubular
reactor under the model predictive control and using the Luenberger observer in
Eq.(3.44).

3.9 Summary
In this chapter, the design of a model predictive controller and discrete observer were
investigated for an axial dispersion tubular reactor with recycle. The discrete version
of the overall system is provided by the application of the Cayley-Tustin time dis-
cretization on the linearization of a coupled nonlinear convection-diffusion-reaction
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PDEs system. The discrete observer is considered without any model reduction or
spatial approximation while the system properties (such as controllability, observabil-
ity and stability) are preserved. An unstable operating condition with different energy
and mass Peclet numbers is considered for the tubular reactor. Besides the stabiliz-
ing condition given by a terminal constraint, the physical limitation of the process
(state and input constraints) with possible disturbance in control manipulation were
placed in the formulation of the constrained optimization problem. The simulation
results demonstrated the good performance of the controller by regulating the cooling
jacket temperature of the reactor. As expected, the system under the proposed model
predictive controller was able to achieve stabilization and provide constraints satis-
faction while rejecting the input disturbance. The proposed optimal control scheme
with consideration of constraints is designed to help the chemical process to operate
efficiently in accordance with the process limitations.
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4
Conclusion and Recommendations

4.1 Conclusion
In this work, the design of the model predictive control was investigated for dis-
tributed parameter systems and coupled LPS-DPS models. Two different chemical
process models were considered: one described a coupled CSTR and tubular reactor
with recycle for some complex chemical reactions such as polymerization process and
the other one illustrated non-isothermal dispersive chemical tubular reactor with re-
cycle commonly used in chemical and bio-processing. Furthermore, in this work, the
foundation of systematic modeling for a linear DPS and coupled LPS-DPS for the
predictive controller was shown without any spatial approximation or order reduction.
The stability analysis is performed for both systems with consideration of diffusiv-
ity effects on eigenvalues distribution. Moreover, we also considered different Peclet
numbers in the non-isothermal biochemical reactor in which the relative importance
of heat and mass phenomena is preserved in the system dynamics. The discrete-time
versions of original systems were obtained by the Cayley-Tustin time discretization
method by applying Laplace transform to the original systems. Since it is expected
that only output measurement at the outflow of the reactors is available as a measur-
able variable: therefore, the discrete output observers were developed to reconstruct
the states for a system of ODE-PDE and a system of coupled convection-diffusion-
reaction PDEs. The effects of spatial observer gains in shifting the unstable eigenvalue
of error dynamics have also been demonstrated and discussed. It was shown that the
proposed controller was able to optimize the system performance, while handling in-
put and state constraints, ensuring the system stabilization and rejecting the possible
disturbance in reactor operation.

67
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4.2 Future work
An important area for future study is to reformulate model predictive controller for
an unstable chemical system modelled by a set of hyperbolic-parabolic PDEs cou-
pled to ODEs. In many chemical processes, mass/energy transfer can be described
by parabolic PDEs, but distributed delays emerging from measurement (sensors) are
modelled by hyperbolic PDEs. Furthermore, ODEs can be added to describe the
dynamics of several lumped parameters systems. Since the techniques for solution of
these two types of PDEs in addition to ODEs will be different particularly when it
comes to Lyapunov equation; hence, it would be worthwhile to explore how to exploit
three different approaches (parabolic PDE, hyperbolic PDE and ODE) represented
by one complex industrial system.

Another promising area is development of advanced process control strategies
which also account for the economic aspects of the process in distributed parame-
ter systems besides the stability and physical limitations. This will effect on some
variations in realization of constrained optimization problem and the subsequent con-
trollers.
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Appendix A

Discrete adjoint operators

A.1 A∗d
The operator A∗d for a coupled ODE-PDE system can be found based on definition
(< AdΦ,Ψ

? >=< Φ, A?dΨ
? >). For the sake of simplicity the following terms are

defined based on Equation (2.17) :

f3(ζ) = e1(ζ)− e2(ζ)e
(1)
3

e
(1)
4

,M1(ζ) =

1

R
f3(ζ)

δ − a1

R
− f (1)

3

, M2(ζ) =

e
(1)
2

e
(1)
4

f3(ζ)

δ − a1

R
− f (1)

3

(A.1.1)

M3(ζ) =
f3(ζ)

δ − a1

R
− f (1)

3

, M4(ζ) =
e2(ζ)

e
(1)
4

. (A.1.2)

The mentioned definition can be applied on each row of the operator Ad in Eq.(2.12)
describing finite (CSTR) and infinite dimensional (Tubular reactor) of the chemical
process. One can write the following:

Ad(·)II,IF = −(·)I + 2δ
(
RIF (·)F +RII(·)I

)
(A.1.3)

< AdΦ,Ψ
∗ >=

∫ L

0
−Φ(ζ)Ψ∗(ζ)dζ − 2δ

∫ L

0

∫ L

0
(M2(ζ)Ψ∗(ζ)f2(1, η)Φ(η))dηdζ

+2δ

∫ L

0

∫ L

0
(M3(ζ)Ψ∗(ζ)f1(1, η)Φ(η)dη)dζ − 2δ

∫ L

0
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0
(M4(ζ)Ψ∗(ζ)f2(1, η)Φ(η))dηdζ

+2δ
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0

∫ ζ

0
f1(ζ, η)Φ(η)Ψ∗(ζ)dηdζ +

∫ L

0
2δM1(ζ)ΦIF (ζ)dζ

=
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−Φ(ζ)Ψ∗(ζ)dζ − 2δ

∫ L

0

∫ L

0
(M2(ζ)Ψ∗(ζ)dζ)(f2(1, η)Φ(η)dη)

+2δ

∫ L

0

∫ L

0
(M3(ζ)Ψ∗(ζ)dζ)(f1(1, η)Φ(η)dη)− 2δ

∫ L

0

∫ L

0
(M4(ζ)Ψ∗(ζ)dζ)(f2(1, η)Φ(η)dη)

+2δ

∫ L

0

∫ L

η
(f1(ζ, η)Ψ∗(ζ)dζ)(Φ(η)dη) +
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0
2δM1(ζ)ΦIF (ζ)dζ (A.1.4)
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interchanging ζ and η results in:

=
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Hence:

A∗dII,IF = −(·)−2δ

∫ L

0
(M2(η)(·)dη)f2(1, ζ)+2δ

∫ L

0
(M3(η)(·)dη)f1(1, ζ)−2δ

∫ L

0
(M4(η)(·)dη)f2(1, ζ)

(A.1.6)

+2δ
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Which leads to:
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For the first row (finite part) we have:

Ad(·)FF,FI = −(·)F + 2δ
(
RFF (·)F +RFI(·)I

)
(A.1.8)
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One can directly obtain the following expressions from the definition (< AdΦ,Ψ

? >=<
Φ, A?dΨ

? >):

R∗FF (·)F = RFF (·)F
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Finally,

A∗d(·) = −

[
(·)F
(·)I

]
+ 2δ

[
R∗FF R∗IF
R∗FI R∗II

][
(·)F
(·)I

]
(A.1.10)

A.2 B∗d
For the operator Bd, it is possible to write:

< Bdu,Ψ
∗ >=< u,BdΨ

∗ > (A.2.1)

which u is a scalar input. The above equation directly leads to the following adjoint
resolvent operators:

(RFFB)∗(·)F =

 a2f
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3
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3 (δ − a1)
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which can be used to compute the operator B∗d as:

B∗d =
√

2δ

[
(RFFB)∗

(RIFB)∗

]T
(A.2.4)
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Sample code
A Sample code developed for the model predictive control of a coupled LPS-DPS
configuration (version Matlab):

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Codes Developed by "Seyedhamidreza Khatibi"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Part1:
%Demonstration of the open loop (unforced) response for a coupled ...

ODE-PDE
%in both discrete and continous setting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Continious Setting
clc
clear
close all
global R D v a1 psi
R=0.5;
D=0.35;
a1=-0.25;
psi=-1;
v=1.8;
dt=0.04;
dz=0.005;
Node=1/dz+1;
z=0:dz:1;
N=length(z);
x0=[1;ones(N-2,1)];%I.C
[t,y]=ode45(@func,0:dt:20,x0);
%%%Discrete Setting%%%
∆=2/dt;%∆=2/h
t=0:dt:20;
Time_steps=20/dt+1;
Z=zeros(length(Time_steps),Node+1);
Y=zeros(length(Time_steps),1);
Z_IC=[1,ones(1,length(z))];%I.C
Z(1,:)=Z_IC;
for T_s=1:Time_steps-1%sampling time

Ad=discrete_Ad(Z_IC,v,psi,∆,z,Node);
Z(T_s+1,:)=Ad;

78
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Z_IC=Ad;

end
figure(1)
zeta=0:1*dz:(Node-1)*dz;
Time_steps=20/dt+1;
k=0:1*(Time_steps-1);
[Zeta,K]=meshgrid(zeta,0:dt:(Time_steps-1)*dt);%5
mesh(Zeta,K,[y(:,2) y(:,2:(N-2)+1) y(:,(N-2)+1)])%
axesH=gca;
axesH.XAxis.TickLabelInterpreter='latex';
axesH.XAxis.TickLabelFormat='\\textbf{%g}';
axesH.YAxis.TickLabelInterpreter ='latex';
axesH.YAxis.TickLabelFormat='\\textbf{%g}';
axesH.ZAxis.TickLabelInterpreter ='latex';
axesH.ZAxis.TickLabelFormat='\\textbf{%g}';
xlabel({'\textbf{Position}\boldmath$(\zeta)$'},'FontSize',12,...
'fontweight','bold','Interpreter','latex','rotation',20)
ylabel({'\textbf{Continuous ...

Time}'},'FontSize',12,'fontweight','bold',...
'Interpreter','latex','rotation',-20)
zlabel({'\textbf{Open Loop Response For PDE in Continious Setting}'},...
'FontSize',12,'fontweight','bold','Interpreter','latex')
set(gca,'LineWidth',1.5);
set(gca,'FontSize',14) ;
set(gca,'fontweight','bold');
grid on
figure(2)
mesh(Zeta,K,Z(:,2:Node+1))
axesH2=gca;
axesH2.XAxis.TickLabelInterpreter='latex';
axesH2.XAxis.TickLabelFormat='\\textbf{%g}';
axesH2.YAxis.TickLabelInterpreter ='latex';
axesH2.YAxis.TickLabelFormat='\\textbf{%g}';
axesH2.ZAxis.TickLabelInterpreter ='latex';
axesH2.ZAxis.TickLabelFormat='\\textbf{%g}';
ylabel({'\textbf{Position}\boldmath$(\zeta)$'},'FontSize',12,...
'fontweight','bold','Interpreter','latex','rotation',-20)
xlabel({'\textbf{Continuous ...

Time}'},'FontSize',12,'fontweight','bold',...
'Interpreter','latex','rotation',20)
zlabel({'\textbf{Open Loop Response For PDE in Discrete Setting}'},...
'FontSize',12,'fontweight','bold','Interpreter','latex')
set(gca,'LineWidth',1.5);
set(gca,'FontSize',14) ;
set(gca,'fontweight','bold');
grid on
function F=func(t,x)
global R D v a1 psi
dz=0.005;
z=0:dz:1;
N=length(z);
Xi=[x(1);x(2:(N-2)+1);x(end)];
F(1,1)=a1*x(1)+R*Xi(end);
for i=2:N-1
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F(i,1)=D/dz^2*(Xi(i+1)-2*Xi(i)+Xi(i-1))-v/dz*(Xi(i)-Xi(i-1))+psi*Xi(i);

end
end
function Ad=discrete_Ad(x,v,psi,∆,z,Node)
global R D a1
z_p_0=x(1);
xx=x(2:end);
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2.*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
b1(1)=0;
for j=2:Node

b10=(-2./(D.*h)).*xx.*exp((n./2)*(z(j)-z)).*sinh((h./2)*(z(j)-z));
b1(j)=trapz(z(1:j),b10(1:j));

end
s33=(-2./(D.*h)).*xx.*exp((n./2)*(1-z)).*sinh((h./2)*(1-z));
b11=trapz(z(1:end),s33(1:end));
b2(1)=0;
for j=2:Node

b20=(-1./(D)).*xx.*exp((n./2)*(z(j)-z)).*(cosh((h./2)*(z(j)-z))+...
(((sinh((h./2)*(z(j)-z))).*n)./h));
b2(j)=trapz(z(1:j),b20(1:j));

end
s44=(-1./(D)).*xx.*exp((n./2)*(1-z)).*(cosh((h./2)*(1-z))+...
(((sinh((h./2)*(1-z))).*n)./h));
b21=trapz(z(1:end),s44(1:end));
R_FF=(((((z_p_0/R))./(((∆-a1)/R)-e11+((e21.*e31)./e41)))));
R_FI=((((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+((e21.*e31)./e41)))));
R_IF=(((e1-((e2.*e31)./e41)).*(((z_p_0/R))./(((∆-a1)/R)-e11+...
((e21.*e31)./e41)))));
R_II=(((e1-((e2.*e31)./e41)).*((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-...
e11+((e21.*e31)./e41))))+b1-((e2.*b21)./e41));
Ad=-[z_p_0,xx]+2.*∆.*[R_FF+R_FI,R_IF+R_II];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Codes Developed By "Seyedhamidreza Khatibi"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Part2:
%Eigenvalues distribution For a Coupled Lumped and Distributed
%parameter systems(LPS-DPS)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear
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close all
global a1 R v D psi
R=0.5;
D=0.35;
a1=-0.25;
psi=-1;
v=1.8;
fun4=@f4_original;
xss_original=[];
for k=1:20000

if k<1000
%real guess
x0=(rand(1))*1;

else
%Complex guess
x0=-(rand(1)-0.2)*7500+(rand(1)-0.5)*30*1j;

end
[xs,fval,flag]=fsolve(fun4,x0);

if (flag==1||flag==2)&&fval 6=0
if imag(xs)<0

xs=real(xs)-imag(xs)*1i;
end
xss_original=[xss_original,xs];

end
end
%Removing repeated eigenvalues:
Ass=zeros(length(xss_original),2);
Ass(:,1)=(real(xss_original));
Ass(:,2)=(imag(xss_original));
Ass(:,1)=round(Ass(:,1),4);
[C,ia]=unique(Ass(:,1),'rows');
Bss=Ass(ia,:);
xss_original=Bss(:,1)+(Bss(:,2)).*1i;
lambda=[];
for lml=1:length(xss_original)

if abs(imag(xss_original(end-lml+1,1)))<10^-3
lambda=[lambda,real(xss_original(end-lml+1,1))];

else
lambda=[lambda,xss_original(end-lml+1,1),...

real(xss_original(end-lml+1,1))...
-imag(xss_original(end-lml+1,1))*1i];

end
end
xss_original=lambda;
figure(3)
plot(real(xss_original),imag(xss_original),'ok','linewidth',2)
yline(0,'linewidth',1.5,'Color','k')
xline(0,'linewidth',1.5,'Color','k')
set(gca,'LineWidth',1.5,'Fontweigh','bold');
set(gca,'FontSize',16,'Fontweigh','bold') ;
ylabel('\textbf{Im}','FontSize',16,'fontweight','bold',...
'Interpreter','latex')
xlabel('\textbf{Re}','FontSize',16,'fontweight','bold','Interpreter',...
'latex')
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grid
function y4_original=f4_original(x)
global a1 R v D psi
a=((x-psi)/D);
b=v/D;
T_11=(exp(b/2 - (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) +...
exp(b/2 + (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) + b*exp(b/2 - ...
(b^2 + 4*a)^(1/2)/2) - b*exp(b/2 + (b^2 + 4*a)^(1/2)/2))/(2*(b^2 + ...

4*a)^(1/2));
T_21=(b^2*exp(b/2 - (b^2 + 4*a)^(1/2)/2) - b^2*exp(b/2 + ...
(b^2 + 4*a)^(1/2)/2) - exp(b/2 - (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a) + ...
exp(b/2 + (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a))/(4*a*(b^2 + 4*a)^(1/2));
T_31=-(a*exp(b/2 - (b^2 + 4*a)^(1/2)/2) - a*exp(b/2 + ...
(b^2 + 4*a)^(1/2)/2))/(b^2 + 4*a)^(1/2);
T_41=(exp(b/2 - (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) + ...
exp(b/2 + (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) - b*exp(b/2 -...
(b^2 + 4*a)^(1/2)/2) + b*exp(b/2 + (b^2 + 4*a)^(1/2)/2))/(2*(b^2 + ...

4*a)^(1/2));
y4_original=(T_41.*(T_11+((a1-x)/R)))-(T_21*T_31);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Codes Developed By "Seyedhamidreza Khatibi"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Part3:
%Observer Design
%Note that as described in the thesis the following eigenvalue ...

problem for
%the observer error dynamics has been solved with several observer gain
%such that with proper value for L in the continious setting
%no positive eigenvalue observed.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc
close all
global a1 R v D psi LI LF
R=0.5;
D=0.35;
a1=-0.25;
psi=-1;
v=1.8;
fun4=@f4_L;
ds=0.01:0.01:20;%Step Changes in Observer Gain
k_lambda=[];
all_lambda=[];
all_L=[];
for gh=1:length(ds)

LI=ds(gh);
LF=ds(gh);
for k=1:10

x0_n=-(rand(1))*1;%Also with complex guess
[xs_jhL,fval,flag]=fsolve(fun4,x0_n);
if (flag==1||flag==2)&&fval 6=0

k_lambda=[k_lambda,xs_jhL];
end
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end
all_lambda=[all_lambda,max(k_lambda)];
all_L=[all_L,LI];
k_lambda=[];

end
function y4_L=f4_L(x)
global a1 R v D psi LI LF z Node
a=((x-psi)/D);
b=v/D;
T_11=(exp(b/2 - (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) + exp(b/2 + ...
(b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) + b*exp(b/2 - ...
(b^2 + 4*a)^(1/2)/2) - b*exp(b/2 + ...
(b^2 + 4*a)^(1/2)/2))/(2*(b^2 + 4*a)^(1/2));
T_21=(b^2*exp(b/2 - (b^2 + 4*a)^(1/2)/2) - ...
b^2*exp(b/2 + (b^2 + 4*a)^(1/2)/2) - exp(b/2 - ...
(b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a) + exp(b/2 + ...
(b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a))/(4*a*(b^2 + 4*a)^(1/2));
T_31=-(a*exp(b/2 - (b^2 + 4*a)^(1/2)/2) -...
a*exp(b/2 + (b^2 + 4*a)^(1/2)/2))/(b^2 + 4*a)^(1/2);
T_41=(exp(b/2 - (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) + ...
exp(b/2 + (b^2 + 4*a)^(1/2)/2)*(b^2 + 4*a)^(1/2) - ...
b*exp(b/2 - (b^2 + 4*a)^(1/2)/2) + b*exp(b/2 +...
(b^2 + 4*a)^(1/2)/2))/(2*(b^2 + 4*a)^(1/2));
A=[0 1;a v/D];
F_21=zeros(1,Node);
F_41=zeros(1,Node);
for pp=1:Node

Floop1=expm(A.*(1-z(pp)));
F_21(1,pp)=Floop1(1,2);
F_41(1,pp)=Floop1(2,2);

end
s33=(F_21.*(LI/D));
H11=trapz(z(1:end),s33(1:end));
s44=(F_41.*(LI/D));
H21=trapz(z(1:end),s44(1:end));
CC=[T_11+((x-a1)/(LF-R)) T_21;T_31 T_41]\[-H11;-H21];
c1=CC(1);
c2=CC(2);
y4_L=1-(T_11*c1)-(T_21*c2)-H11;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Codes Developed By "Seyedhamidreza Khatibi"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Part4:
%Model Predective Control(MPC) For a coupled CSTR and Axial dispersion
%tubular reactor including stability,input,state constarints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear
close all
global R D v a1 a2 psi L
R=0.5;
D=0.35;
a1=-0.25;
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a2=1;
psi=-1;
v=1.8;
dz=0.005;
z=0:dz:1;
Node=1/dz+1;
L=[5,5.*ones(1,Node)];
dt=0.04;
∆=2/dt;
z_p_0=1;
z0=ones(1,length(z));
t=0:dt:45;
Time_steps=45/dt+1;
%%%%%%%%%%%%%%%% Open loop %%%%%%%%%%%%%%%%%
Z0_state=zeros(length(Time_steps),Node+1);
Z0_state_observer=zeros(length(Time_steps),Node+1);
Z_IC0_state=[z_p_0,z0];
Z_IC0_observer=[0,0.*ones(1,length(z))];
Z0_state(1,:)=Z_IC0_state;
Z0_state_observer(1,:)=Z_IC0_observer;
for T_s=1:Time_steps-1

Ad_o_state=discrete_Ad(Z_IC0_state,v,psi,∆,z,Node);
Ad_o_observer=discrete_Ad(Z_IC0_observer,v,psi,∆,z,Node);
L_d_o=discrete_L(L,v,psi,∆,z,Node);
Cd_o_observer=discrete_Cd((Z_IC0_state-Z_IC0_observer),v,psi,∆,...
z,Node);
Z0_state(T_s+1,:)=Ad_o_state;
Z0_state_observer(T_s+1,:)=Ad_o_observer+(L_d_o.*Cd_o_observer);
Z_IC0_state=Z0_state(T_s+1,:);
Z_IC0_observer=Z0_state_observer(T_s+1,:);

end
N=65;
Q=[2.5 1.5*ones(1,Node)];
RR=1;
%Loading stable eigen values and corresponding normalized eigen ...

functions
load Phi_original_D_35
phi_F=phi_F_original_D_35(2:20);
phi_I=phi_I_original_D_35(2:20,:);
phi_F_adj=phi_F_adj_D_35(2:20);
phi_I_adj=phi_I_adj_D_35(2:20,:);
xss=xss_original_D_35(2:18);
%%%%%%%%%%%%%%%% Calculate H & S %%%%%%%%%%%%%%%%%
Bd=discrete_Bd(v,psi,∆,z,Node);
QB=operator_Qbar(Bd,z,length(xss),Q,xss,phi_I,phi_I_adj);
Ads_Qbar_B=discrete_Ads(QB,v,psi,∆,z,Node);
AdB=discrete_Ad(Bd,v,psi,∆,z,Node);
QA=operator_Qbar(AdB,z,length(xss),Q,xss,phi_I,phi_I_adj);
Ads_0=Ads_Qbar_B;
AdB_0=AdB;
for i=1:N-3

Ads_new=discrete_Ads(Ads_0,v,psi,∆,z,Node);
AdB_new=discrete_Ad(AdB_0,v,psi,∆,z,Node);
QA_new= operator_Qbar(AdB_new,z,length(xss),Q,xss,phi_I,phi_I_adj);
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Ads_0=Ads_new;
AdB_0=AdB_new;
Ads_Qbar_B=[Ads_Qbar_B;Ads_new];
AdB=[AdB;AdB_new];
QA=[QA;QA_new];

end
for i=1:N-1

for j=1:N-1
if i==j

h=discrete_Bds(QB,v,psi,∆,z,Node)+RR;
H(i,j)=h;
S(i,j)=Bd(1);

elseif i<j
h=discrete_Bds(Ads_Qbar_B(j-i,:),v,psi,∆,z,Node);
H(i,j)=h;
S(i,j)=0;

else
h=discrete_Bds(QA(i-j,:),v,psi,∆,z,Node);
H(i,j)=h;
S(i,j)=AdB(i-j,1);

end

end
end
H=(H+H')/2;%H is not symetric
%%%%%%%%%%%%%%%% State with MPC %%%%%%%%%%%%%%%%%
%%Constriants%%
U_up=0;
U_low=-0.09;
X_up=0.65;
X_low=-0.09;
U=[];
Z_IC_state=[z_p_0,z0];%Initial Condition for Z
Z_IC_observer=[0,0.*ones(1,length(z))];%Initial Condition for Observer
Z=Z_IC_observer;
Z_state=Z_IC_state;
Md=discrete_Md(v,psi,∆,z,Node);
disturnbance=0;
for T_s=1:Time_steps-1

if T_s>(20/dt)
disturnbance=1;

end
if T_s>(25/dt)

disturnbance=0;
end

%%%%%%%%%%%%%%%% Calculate P & T %%%%%%%%%%%%%%%%%
Ad_state=discrete_Ad(Z_IC_state,v,psi,∆,z,Node);
Ad_observer=discrete_Ad(Z_IC_observer,v,psi,∆,z,Node);
L_d=discrete_L(L,v,psi,∆,z,Node);
Cd_observer=discrete_Cd((Z_IC_state-Z_IC_observer),v,psi,∆,z,Node);
Ad_0=Ad_observer;
for i=1:N-2

Ad_new=discrete_Ad(Ad_0,v,psi,∆,z,Node);
Ad_0=Ad_new;
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Ad_observer=[Ad_observer;Ad_new];

end
for i=1:N-1

p=discrete_Bds(operator_Qbar(Ad_observer(i,:),z,length(xss),Q,xss,...
phi_I,phi_I_adj),v,psi,∆,z,Node);
P0(i)=p;

end
P=P0';
T=Ad_observer(:,1);
%%Optimization%%
H_quad=2*H;
P_quad=2*P;
%Loading unstable eigen mode
Phi_UU=[phi_F_original_D_35(1),phi_I_original_D_35(1,:)];
%Equality constraint:
%Left hand side:
Phi_U=[];
for i=1:N-2

phi_u=AdB(i,1:Node+1).*Phi_UU;
phi_U=trapz(z(1:end),phi_u(2:end))+phi_u(1);
Phi_U=[Phi_U;phi_U];

end
phi_u=Bd(1,1:Node+1).*Phi_UU;
phi_U=trapz(z(1:end),phi_u(2:end))+phi_u(1);
Phi_U=[Phi_U;phi_U];
Phi_U=Phi_U';
Phi_UA=fliplr(Phi_U);
%Right hand side:
phi_u=Ad_observer(N-1,1:Node+1).*Phi_UU;
phi_U=trapz(z(1:end),phi_u(2:end))+phi_u(1);
Phi_UB=-phi_U;
%||state, input and stability constraints||
A_quad=[eye(N-1);-eye(N-1);S;-S;Phi_UA];
b_quad=[(U_up*ones(1,N-1))';(-U_low*ones(1,N-1))';...
((X_up*ones(1,N-1))'-T);((-X_low*ones(1,N-1))'+T);Phi_UB];
%||Optimization:||
u=quadprog(H_quad,P_quad',A_quad,b_quad);
u_new=u(1);
x_new=Ad_observer(1,:)+(Bd*u_new)+(L_d.*Cd_observer)+(Md*disturnbance);
Z_IC_state=Ad_state+(Bd*u_new)+(Md*disturnbance);
x_new(1)=x_new(2);
x_new(Node)=x_new(Node-1);
Z_IC_observer=x_new;
U=[U;u_new];
Z=[Z;x_new];
end
%Constucting discrete operators
%Ad
function Ad=discrete_Ad(x,v,psi,∆,z,Node)
global R D a1
z_p_0=x(1);
xx=x(2:end);
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
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s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2.*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
b1(1)=0;
for j=2:Node

b10=(-2./(D.*h)).*xx.*exp((n./2)*(z(j)-z)).*sinh((h./2)*(z(j)-z));
b1(j)=trapz(z(1:j),b10(1:j));

end

s33=(-2./(D.*h)).*xx.*exp((n./2)*(1-z)).*sinh((h./2)*(1-z));
b11=trapz(z(1:end),s33(1:end));
b2(1)=0;
for j=2:Node

b20=(-1./(D)).*xx.*exp((n./2)*(z(j)-z)).*(cosh((h./2)*(z(j)-z))...
+(((sinh((h./2)*(z(j)-z))).*n)./h));
b2(j)=trapz(z(1:j),b20(1:j));

end
s44=(-1./(D)).*xx.*exp((n./2)*(1-z)).*(cosh((h./2)*(1-z))+...
(((sinh((h./2)*(1-z))).*n)./h));
b21=trapz(z(1:end),s44(1:end));

R_FF=(((((z_p_0/R))./(((∆-a1)/R)-e11+((e21.*e31)./e41)))));
R_FI=((((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+((e21.*e31)./e41)))));
R_IF=(((e1-((e2.*e31)./e41)).*(((z_p_0/R))./(((∆-a1)/R)-e11+...
((e21.*e31)./e41)))));
R_II=(((e1-((e2.*e31)./e41)).*((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-...
e11+((e21.*e31)./e41))))+b1-((e2.*b21)./e41));

Ad=-[z_p_0,xx]+2.*∆.*[R_FF+R_FI,R_IF+R_II];
end
%Ads
function Ads=discrete_Ads(x,v,psi,∆,z,Node)
global R D a1
z_p_0=x(1);
xx=x(2:end);
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2.*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
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e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
c1=1./R;
c2=e21./e41;
c3=(((∆-a1)/R)-e11+((e21.*e31)./e41));
c4_eta=e2./e41;
c5=e21./e41;
c6=c3;
f_z=(e1-((e2.*e31)./e41));
f1_z_1=(-2./(D.*h)).*1.*exp((n./2)*(1-z)).*sinh((h./2)*(1-z));
f2_z_1=(-1./(D)).*1.*exp((n./2)*(1-z)).*(cosh((h./2)*(1-z))+...
(((sinh((h./2)*(1-z))).*n)./h));
f_eta=f_z;
R_FF_s=(c1./c6).*z_p_0;
R_FI_s=((f1_z_1./c6)-((c5.*f2_z_1)./c6)).*z_p_0;
integrant_IF=((c1.*f_z)./c3).*xx;
R_IF_s=trapz(z(1:end),integrant_IF(1:end));
integrant_R_II_s_1=((c2.*f_eta)./c3).*xx;
R_II_s_1=-f2_z_1.*trapz(z(1:end),integrant_R_II_s_1(1:end));
integrant_R_II_s_2=((f_eta)./c3).*xx;
R_II_s_2=f1_z_1.*trapz(z(1:end),integrant_R_II_s_2(1:end));
integrant_R_II_s_3=(c4_eta).*xx;
R_II_s_3=-f2_z_1.*trapz(z(1:end),integrant_R_II_s_3(1:end));
af(Node)=0;
for j=1:Node-1

f1_eta_zeta=(-2./(D.*h)).*1.*...
exp((n./2)*(z-z(j))).*sinh((h./2)*(z-z(j)));
af0=xx.*f1_eta_zeta;
af(j)=trapz(z(j:end),af0(j:end));

end
R_II_s_4=af;
R_II_s=R_II_s_1+R_II_s_2+R_II_s_3+R_II_s_4;
Ads=-[z_p_0,xx]+2.*∆.*[R_FF_s+R_IF_s,R_FI_s+R_II_s];
end
%Bd
function Bd=discrete_Bd(v,psi,∆,z,Node)
global R D a1 a2
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
R_FF_B=((R./(∆-a1)).*((e11-((e21.*e31)./e41)).*...
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((a2/R)./(((∆-a1)./R)-e11+((e21.*e31)./e41)))))+(a2./(∆-a1));
R_IF_B=((e1-((e2.*e31)./e41)).*((a2/R)./(((∆-a1)./R)-...
e11+((e21.*e31)./e41))));
Bd=sqrt(2*∆).*[R_FF_B,R_IF_B];
end
%Bds
function Bds=discrete_Bds(spatial_operator,v,psi,∆,z,Node)
spatial_operator_F=spatial_operator(1);
spatial_operator_I=spatial_operator(2:end);
global R D a1 a2
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
R_FF_Bs=((R./(∆-a1)).*((e11-((e21.*e31)./e41)).*...
((a2/R)./(((∆-a1)./R)-e11+((e21.*e31)./e41)))))+(a2./(∆-a1));
c12=e31./e41;
c10=((a2/R)./(((∆-a1)./R)-e11+((e21.*e31)./e41)));
integrant_bds=(e1-(c12.*e2)).*spatial_operator_I;
R_IF_Bs=c10.*trapz(z(1:end),integrant_bds(1:end));
Bds=sqrt(2*∆).*(R_FF_Bs.*spatial_operator_F+R_IF_Bs);
end
%Cd
function Cd=discrete_Cd(x,v,psi,∆,z,Node)
global R D a1
z_p_0=x(1);
xx=x(2:end);
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
b1(1)=0;
for j=2:Node

b10=(-2./(D.*h)).*xx.*exp((n./2)*(z(j)-z)).*sinh((h./2)*(z(j)-z));
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b1(j)=trapz(z(1:j),b10(1:j));

end

s33=(-2./(D.*h)).*xx.*exp((n./2)*(1-z)).*sinh((h./2)*(1-z));
b11=trapz(z(1:end),s33(1:end));

b2(1)=0;
for j=2:Node

b20=(-1./(D)).*xx.*exp((n./2)*(z(j)-z)).*...
(cosh((h./2)*(z(j)-z))+(((sinh((h./2)*(z(j)-z))).*n)./h));
b2(j)=trapz(z(1:j),b20(1:j));

end
s44=(-1./(D)).*xx.*exp((n./2)*(1-z)).*(cosh((h./2)*(1-z))+...
(((sinh((h./2)*(1-z))).*n)./h));
b21=trapz(z(1:end),s44(1:end));
R_IF_1=(((e11-((e21.*e31)./e41)).*(((z_p_0./R))./(((∆-a1)/R)-e11+...
((e21.*e31)./e41)))));
R_II_1=(((e11-((e21.*e31)./e41)).*...
((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+((e21.*e31)./e41))))+...
b11-((e21.*b21)./e41));
Cd=sqrt(2*∆)*(R_IF_1+R_II_1);
end
%Md
function Md=discrete_Md(v,psi,∆,z,Node)
global R D a1
f_zeta_disturbance=[zeros(1,length(1:(Node-1)/2)),...

0.6.*ones(1,length(((Node-1)/2)+1:Node))];
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2.*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
b1(1)=0;
for j=2:Node

b10=(-2./(D.*h)).*f_zeta_disturbance.*exp((n./2)*(z(j)-z)).*...
sinh((h./2)*(z(j)-z));
b1(j)=trapz(z(1:j),b10(1:j));

end

s33=(-2./(D.*h)).*f_zeta_disturbance.*exp((n./2)*(1-z)).*...
sinh((h./2)*(1-z));
b11=trapz(z(1:end),s33(1:end));
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b2(1)=0;
for j=2:Node

b20=(-1./(D)).*f_zeta_disturbance.*exp((n./2)*(z(j)-z)).*...
(cosh((h./2)*(z(j)-z))+(((sinh((h./2)*(z(j)-z))).*n)./h));
b2(j)=trapz(z(1:j),b20(1:j));

end
s44=(-1./(D)).*f_zeta_disturbance.*exp((n./2)*(1-z)).*...
(cosh((h./2)*(1-z))+(((sinh((h./2)*(1-z))).*n)./h));
b21=trapz(z(1:end),s44(1:end));

R_FI_fzeta=((((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+...
((e21.*e31)./e41)))));
R_II_fzeta=(((e1-((e2.*e31)./e41)).*...
((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+((e21.*e31)./e41))))+...
b1-((e2.*b21)./e41));
Md=sqrt(2*∆).*[R_FI_fzeta,R_II_fzeta];
end
%Constructing discrete observer gain (Ld)
function Ld=discrete_L(x,v,psi,∆,z,Node)
global R D a1
llf=x(1);
llI=x(2:end);
n=v/D;
h=sqrt(n.^2+4.*((∆-psi)./D));
s1=sinh((h./2).*z);
s2=cosh((h./2).*z);
s3=(∆-psi)./D;
s4=exp((n./2).*z);
e1=s4.*(s2-((s1.*n)./h));
e2=2.*s4.*(s1./h);
e3=(2.*s3.*s4.*s1)./h;
e4=s4.*(s2+((s1.*n)./h));
e11=e1(Node);
e21=e2(Node);
e31=e3(Node);
e41=e4(Node);
b1(1)=0;
for j=2:Node

b10=(-2./(D.*h)).*llI.*exp((n./2)*(z(j)-z)).*sinh((h./2)*(z(j)-z));
b1(j)=trapz(z(1:j),b10(1:j));

end

s33=(-2./(D.*h)).*llI.*exp((n./2)*(1-z)).*sinh((h./2)*(1-z));
b11=trapz(z(1:end),s33(1:end));
b2(1)=0;
for j=2:Node

b20=(-1./(D)).*llI.*exp((n./2)*(z(j)-z)).*(cosh((h./2)*(z(j)-z))+...
(((sinh((h./2)*(z(j)-z))).*n)./h));
b2(j)=trapz(z(1:j),b20(1:j));

end
s44=(-1./(D)).*llI.*exp((n./2)*(1-z)).*(cosh((h./2)*(1-z))+...
(((sinh((h./2)*(1-z))).*n)./h));
b21=trapz(z(1:end),s44(1:end));
R_FF=(((((llf/R))./(((∆-a1)/R)-e11+((e21.*e31)./e41)))));
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R_FI=((((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-e11+...
((e21.*e31)./e41)))));
R_IF=(((e1-((e2.*e31)./e41)).*(((llf/R))./(((∆-a1)/R)-...
e11+((e21.*e31)./e41)))));
R_II=(((e1-((e2.*e31)./e41)).*...
((-((e21.*b21)./e41)+b11)./(((∆-a1)/R)-...
e11+((e21.*e31)./e41))))+b1-((e2.*b21)./e41));
Ld=sqrt(2.*∆).*[R_FF+R_FI,R_IF+R_II];
end
%Terminal state penalty operator
function Qbar=operator_Qbar(x,z,N,Q,lambda,Phi,Phi_s)
global a1
Q_finite=Q(1,1);
Q_I=Q(1,2:end);
xf=x(1);
xx=x(2:end);
Qbar=0;
for i=1:N

for j=1:N
q=Phi(i,:).*Q_I.*Phi_s(j,:);
b=xx.*Phi_s(j,:);
Qbar=Qbar-1/(lambda(i)+lambda(j))*...
trapz(z(1:end),q(1:end))*trapz(z(1:end),b(1:end))*Phi(i,:);

end
end
Qbar_finite=Q_finite./2.*a1;
Qbar=[Qbar_finite.*xf,Qbar];
end
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Adjoint operator and boundary conditions
One can find the adjoint operator A∗ and its corresponding boundary conditions based
on the below definition:

< AΦ,Ψ >=< Φ, A?Ψ > (C.1)

which leads to:〈[
A11 A12

A21 A22

][
Φ1

Φ2

]
,

[
Ψ1

Ψ2

]〉
=< A11Φ1,Ψ1 > + < A12Φ2,Ψ1 >

+ < A21Φ1,Ψ2 > + < A22Φ2,Ψ2 >

(C.2)

with
A11 =

1

Pem

∂2

∂ζ2
− ∂

∂ζ
+ R̄1, A12 = R̄2

A21 = δR̄1, A22 =
1

PeT

∂2

∂ζ2
− ∂

∂ζ
+ (δR̄2 − σ)

(C.3)

By employing integration by parts and some simple manipulations, one can get the
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following:

< A11Φ1,Ψ1 > + < A12Φ2,Ψ1 > + < A21Φ1,Ψ2 > + < A22Φ2,Ψ2 >

=
1

Pem
Ψ1(1)

∂Φ1

∂ζ

∣∣
ζ=1
− 1

Pem
Ψ1(0)

∂Φ1

∂ζ

∣∣
ζ=0
− 1

Pem
Φ1(1)

∂Ψ1

∂ζ

∣∣
ζ=1

+
1

Pem
Φ1(0)

∂Ψ1

∂ζ

∣∣
ζ=0
− Φ1(1)Ψ1(1) + Φ1(0)Ψ1(0) +

1

PeT
Ψ2(1)

∂Φ2

∂ζ

∣∣
ζ=1

− 1

PeT
Ψ2(0)

∂Φ2

∂ζ

∣∣
ζ=0
− 1

PeT
Φ2(1)

∂Ψ2

∂ζ

∣∣
ζ=1

+
1

PeT
Φ2(0)

∂Ψ2

∂ζ

∣∣
ζ=0
− Φ2(1)

Ψ2(1) + Φ2(0)Ψ2(0) +

∫ 1

0

(
1

Pem
Φ1
∂2Ψ1

∂ζ2
+ Φ1

∂Ψ1

∂ζ
+ R̄1Φ1Ψ1

)
dζ

+

∫ 1

0
R̄2Φ1Ψ1dζ +

∫ 1

0

(
1

PeT
Φ2
∂2Ψ2

∂ζ2
+ Φ2

∂Ψ2

∂ζ
+ (δR̄2 − σ)Φ2Ψ2

)
dζ

+

∫ 1

0
δR̄1Φ1Ψ2dζ =< Φ, A?Ψ >

(C.4)

Then, injecting the boundary conditions given in (3.11), leads to the following new
boundary conditions which describes the adjoint operator:

∂Ψ1(ζ, t)

∂ζ

∣∣∣
ζ=1

= −Pem(Ψ1(ζ = 1)− rΨ1(ζ = 0))

∂Ψ2(ζ, t)

∂ζ

∣∣∣
ζ=1

= −PeT (Ψ2(ζ = 1)− rΨ2(ζ = 0))

∂Ψ1(ζ, t)

∂ζ

∣∣∣
ζ=0

=
∂Ψ2(ζ, t)

∂ζ

∣∣∣
ζ=0

= 0

(C.5)

where the operators are:

A∗11 =
1

Pem

∂2

∂ζ2
+

∂

∂ζ
+ R̄1, A

∗
12 = δR̄1

A∗21 = R̄2, A
∗
22 =

1

PeT

∂2

∂ζ2
+

∂

∂ζ
+ (δR̄2 − σ)

(C.6)
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Resolvent operators

D.1 Resolvent of the tubular reactor with recycle
The resolvent operator can be written as below:

R(s, A)(·) =

[
R11 R12

R21 R22

][
(·)1

(·)2

]
(D.1.1)

Considering u(s) = 0 and utilizing boundary conditions, one can find the followings:

R11 = T
(ζ)
1j (Mijγi)−

∫ ζ

0

(
F

(ζ,η)
12 Pem(·)1

)
dη

R12 = T
(ζ)
1j (MijΓi)−

∫ ζ

0

(
F

(ζ,η)
14 PeT (·)2

)
dη

R21 = T
(ζ)
3j (Mijγi)−

∫ ζ

0

(
F

(ζ,η)
32 Pem(·)1

)
dη

R22 = T
(ζ)
3j (MijΓi)−

∫ ζ

0

(
F

(ζ,η)
34 PeT (·)2

)
dη

(D.1.2)

with

Mij =


T

(ζ=1)
21 T

(ζ=1)
22 T

(ζ=1)
23 T

(ζ=1)
24

T
(ζ=1)
41 T

(ζ=1)
42 T

(ζ=1)
43 T

(ζ=1)
44

Pem(rT
(ζ=1)
11 − 1) 1 + PemrT

(ζ=1)
12 PemrT

(ζ=1)
13 PemrT

(ζ=1)
14

PeT rT
(ζ=1)
31 PeT rT

(ζ=1)
32 PeT (rT

(ζ=1)
33 − 1) 1 + PeT rT

(ζ=1)
34


−1

,
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γi =



∫ ζ=1

0

(
F

(ζ=1,η)
22 Pem(·)1

)
dη∫ ζ=1

0

(
F

(ζ=1,η)
42 Pem(·)1

)
dη

Pemr

∫ ζ=1

0

(
F

(ζ=1,η)
12 Pem(·)1

)
dη

PeT r

∫ ζ=1

0

(
F

(ζ=1,η)
32 Pem(·)1

)
dη


,

Γi =



∫ ζ=1

0

(
F

(ζ=1,η)
24 PeT (·)2

)
dη∫ ζ=1

0

(
F

(ζ=1,η)
44 PeT (·)2

)
dη

Pemr

∫ ζ=1

0

(
F

(ζ=1,η)
14 PeT (·)2

)
dη

PeT r

∫ ζ=1

0

(
F

(ζ=1,η)
34 PeT (·)2

)
dη



(D.1.3)

for Bd, zero initial condition should be taken into account. This leads to the following
resolvent:

(sI − A)−1B = R(s, A)B =

[
R1B
R2B

]
(D.1.4)

where

R1B = T
(ζ)
1j (MijΩi)−

∫ ζ

0

(F
(ζ,η)
14 PeTσ)dη (D.1.5)

R2B = T
(ζ)
3j (MijΩi)−

∫ ζ

0

(F
(ζ,η)
34 PeTσ)dη (D.1.6)

and Ωi is defined as below:

Ωi =



∫ ζ=1

0

(F
(ζ=1,η)
24 PeTσ)dη∫ ζ=1

0

(F
(ζ=1,η)
44 PeTσ)dη

Pemr

∫ ζ=1

0

(F
(ζ=1,η)
14 PeTσ)dη

PeT r

∫ ζ=1

0

(F
(ζ=1,η)
34 PeTσ)dη


(D.1.7)

D.2 Resolvent of adjoint operators
By the same procedure described in Section 3.5.2 for the operator A, consider T ∗
and F ∗ as the exponential matrices, eP ∗ζ and eP ∗(ζ−η), for the adjoint operator (A∗).



Appendix D 97
This leads to the following resolvent by imposing the corresponding adjoint boundary
conditions:

R(s, A∗)(·) =

[
R∗11 R∗12

R∗21 R∗22

][
(·)1

(·)2

]
(D.2.1)

where

R∗11 = T ∗
(ζ)

11 (M∗
1jγ
∗
j ) + T ∗

(ζ)

13 (M∗
2jγ
∗
j )−

∫ ζ

0

(
F ∗

(ζ,η)

12 Pem(·)1

)
dη

R∗12 = T ∗
(ζ)

11 (M∗
1jΓ
∗
j) + T ∗

(ζ)

13 (M∗
2jΓ
∗
j)−

∫ ζ

0

(
F ∗

(ζ,η)

14 PeT (·)2

)
dη

R∗21 = T ∗
(ζ)

31 (M∗
1jγ
∗
j ) + T ∗

(ζ)

33 (M∗
2jγ
∗
j )−

∫ ζ

0

(
F ∗

(ζ,η)

32 Pem(·)1

)
dη

R∗22 = T ∗
(ζ)

31 (M∗
1jΓ
∗
j) + T ∗

(ζ)

33 (M∗
2jΓ
∗
j)−

∫ ζ

0

(
F ∗

(ζ,η)

34 PeT (·)2

)
dη

(D.2.2)

and (γ∗i , Γ∗i , M∗
ij) are expressed as below:

γ∗i =


∫ ζ=1

0

(
F ∗

(ζ=1,η)

22 Pem(·)1 + F ∗
(ζ=1,η)

12 Pe2
m(·)1

)
dη∫ ζ=1

0

(
F ∗

(ζ=1,η)

42 Pem(·)1dη + F ∗
(ζ=1,η)

32 PemPeT (·)1

)
dη

 ,

Γ∗i =


∫ ζ=1

0

(
F ∗

(ζ=1,η)

24 PeT (·)2 + F ∗
(ζ=1,η)

14 PemPeT (·)2

)
dη∫ ζ=1

0

(
F ∗

(ζ=1,η)

44 PeT (·)2dη + F ∗
(ζ=1,η)

34 Pe2
T (·)2

)
dη

 ,

M∗
ij =

 T ∗
(ζ=1)

21 − PemR + PemT
∗(ζ=1)

11 T ∗
(ζ=1)

23 + PemT
∗(ζ=1)

13

T ∗
(ζ=1)

41 + PeTT
∗(ζ=1)

31 T ∗
(ζ=1)

43 − PeTR + PeTT
∗(ζ=1)

33


−1

(D.2.3)
Finally, for B∗d it is possible to define it as follows:

(R1B)∗(·)1 =

∫ 1

0

(R1B) (·)1dζ (D.2.4)

(R2B)∗(·)2 =

∫ 1

0

(R2B) (·)2dζ (D.2.5)
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Terminal cost operator

In this appendix, the algorithm for calculating the the operator Q̄=
[
Q̄1 Q̄2

]T
is

demonstrated. Let us consider the following discrete Lyapunov equation:

A∗dQ̄Ad − Q̄ = −Q (E.1)

It should be emphasized based on the Cayley-Tustin method, the solution of the
above equation leads to the same unique solution in the continuous time setting
(A∗Q̄ + Q̄A = −Q). The continuous Lyapunov equations can be formulated by the
inner product as (Curtain and Zwart, 1995b):

< Ax1, Q̄x2 > + < Q̄x1, Ax2 >= − < x1, Qx2 > (E.2)

Based on the operator A, let us consider x1 = Φ̂m x2 = Φ̂∗n as the normalized
eigenfunctions and corresponding adjoint eigenfunctions, respectively. The eigen-
value problem directly denotes that AΦ̂m = λmΦ̂m and AΦ̂∗n = λnΦ̂∗n. Thus, the
above equation leads to:

< λmΦ̂m, Q̄Φ̂∗n > + < Q̄Φ̂m, λnΦ̂∗n >= λm < Φ̂m, Q̄Φ̂∗n >

+λn < Q̄Φ̂m, Φ̂
∗
n >= − < Φ̂m, QΦ̂∗n >

(E.3)

where Q̄ is a bounded symmetric operator (D(A∗) = D(A)) and it is self-adjoint, see
Curtain and Zwart (1995b). Therefore, < Φ̂m, Q̄Φ̂∗n >=< Q̄Φ̂m, Φ̂

∗
n >= Q̄mn and it is

possible to write the following simplified equation:

Q̄mn =
− < Φ̂m, QΦ̂∗n >

λm + λn
(E.4)

Finally, based on the solution of the continuous Lyapunov equation, the terminal cost
operator can be computed by

Q̄(·) =
∞∑
m=0

∞∑
n=0

− < Φ̂m, QΦ̂∗n >

λm + λn
< (·), Φ̂∗n > Φ̂m (E.5)
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Appendix F

Stability of the discrete observer error
First, we need to show that the discrete observer error can be written as the following
equation:

êd(ζ, k) = x(ζ, k)− x̂(ζ, k) = (Ad − LdCd)êd(ζ, k − 1) (F.1)
Let us recall that the discrete operators of the observer dynamics are given by:

Ad(·) = −I(·) + 2α [αI − A]−1 (·)
Bd =

√
2α [αI − A]−1 B

Cdo(·) =
√

2α
[
I + C(αI − A)LT

]−1
C [αI − A]−1 (·)

Ddo =
[
I + C(αI − A)LT

]−1
C [αI − A]−1 B

Mdo = (I + C(αI − A)−1LT )−1C(αI − A)−1LT
Ld =

√
2α [αI − A]−1 LT

(F.2)

Notice that in above equations Mdo is defined based on LT , such that the discrete
observer error is stable. The relations between (Cdo , Ddo) and (Cd, Dd) are written
as:

Cd =
(
I + C(αI − A)−1LT

)
Cdo

Dd =
(
I + C(αI − A)−1LT

)
Ddo

(F.3)

By the operators defined earlier, it is possible to find:

y(k)− ŷ(k) = (I −Mdo)
(
Cdx(ζ, k − 1) +Ddu(k)

)
− Cdo x̂(ζ, k − 1)−Ddou(k)

(F.4)
Then, from Eq.(F.3) and Eq.(F.4), one can get the following:

y(k)− ŷ(k) = (I −Md)
(
I + C(αI −A)−1LT

) (
Cdox(ζ, k − 1) +Ddou(k)

)
−Cdo x̂(ζ, k − 1)−Ddou(k)→
I −Mdo = I −

(
I + C (α−A)−1 LT

)−1
C (αI −A)−1 LT

=
(
I + C(αI −A)−1LT

)−1
(
I + C (αI −A)−1 LT − C (αI −A)−1 LT

)
=
(
I + C(αI −A)−1LT

)−1 → y(k)− ŷ(k) = −
(
Cdox(ζ, k − 1) +Ddou(k)

)
+
(
I + C (αI −A)−1 LT

)−1 (
I + C (αI −A)−1 LT

) (
Cdox(ζ, k − 1) +Ddou(k)

)
= Cdo

(
x(ζ, k − 1)− x̂(ζ, k − 1)

)
(F.5)

Hence, the discrete observer error takes the following form:

êd(ζ, k) = x(ζ, k)− x̂(ζ, k) = Ad
(
x(ζ, k − 1)− x̂(ζ, k − 1)

)
− Ld

(
y(k)− ŷ(k)

)
= (Ad − LdCdo)êd(ζ, k − 1)

(F.6)
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The above equation can be linked to the continuous time setting as below:

(Ad − LdCdo) = −I + 2α(α−A)−1 − 2α
[
I −

(
I + (αI +A)−1LTC

)−1
]

(αI −A)−1

= −I + 2 [αI −A+ LTC]−1 = −I + 2 [αI −Ao]−1

(F.7)
which would be the discrete version of (Ao = A − LTC). Therefore, if the selected
continuous observer gain (LT ) ensures that the operator (Ao) is stable, then the dis-
crete version of the observer is stable as well.
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