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Abstract

Systems which take raw data and categorize them into discrete classes are ubiquitons
in computer science. having applications in fields such as vision., expert systems. and
game playing. These systems work by extracting features from the data and then
combining the values of the features to form a Jjudgement. While much work has
been done on ways to automatically combine feature values. the task of auntomatic
discovery of these features is recognized to be much more difficult. and so has become
one of the holy grails of machine learning. Classifier svstems. an outgrowth of genetic
algorithms. scemed a promising approach to amtomatic feature discovery, but it is
difficult to get the full power of the classifier system from existing implementations.

This thesis simplifies the classifier svstem into a variant of the genetic algorithm.
called the Population Genetie Algorithm (PGA). PGAs are used to automatically
discover features for tic-tac-toe and checkers endgame positions. and these features
arc automatically combined using Bavesian statistics to classify each position as won,
lost, or drawn.

The theoretical maximum performance of the PGAs is determined by using an
exhaustive enmmeration technique to serve as a baseline comparison. The results
indicate that while PGAs can be made to perform at. near-optimal levels, the optimal

solution is insufficient to perfectly classify any of the domains studied.
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Chapter 1

Introduction

In the field of machine learning. the problem of supervised learning is a prominent
research arca. It can he summarized as follows: Given a set of training data with a
correct responxe for cach datim. construet a system which learns from those data so
that it can give the correct response for any datum. The way in which the system
must respond depends on the specifie problem. If the data arve categorized into a set
of fixed categories. the task is to construct a svstem which will correctly classify any
datum. If the data are accomipanied by a recommended course of action. the task
15 to produce the correct action in all situations. The svstem generally determines
its response by extracting relevant features. or numerical abstractions. from the data
and theno on the basis of these feature values. arriving at a judgement.

Extracting and combining feature values has a wide base of applicability. A com-
puter vision program may identily different faces based on the facial features of each.
A medical expert system uses the answers to questions it asks as features to determine
what sort of disease the patient has. In computer game playing, the data is the set of
possible board configurations. with the system ecither classifying them as a win, loss.
or draw. or recommending a particular move. There is even an analogous process in
our visual system. it is now known that certain classes of neurons in the visual cortex
will only respond to stimuli of certain orientations, movements, spatial frequencies,

or retinal disparities [25].



In the field of game playving. programs mnst be ahle to scarch a reasonable munber
of positions. and they must be able to evaluate cach position 1o determine how likelwy
it is that the position will lead to a win. While the most successiul game-plaving pro-
grams for chess, checkers. and Othello! have velied primarily on the fast searching of a
large number of positions. the applications of supervised learning to the Improverent
ol a program’s position evaluation function have provided some notable successes.
As far back as 1959, Arthur Samuel was doing experiments in macline learning for
checkers, ranging from rote learning te the adjustment of feature weights to evaluate
positions [33. 31]. For the game of backgammon. Gerald Tesauro's Neuroganmimon
[10] used neurval nets trained by backpropagation to learn which move to recommendd.
Kai-Fu Lee used Bayesian learning for his Othello program. Bill 3.0 [28]. and the
concepts have been extended for Michael Buro's Othello program. Logisthello [7].
Neurogammon. Bill 3.0, and Logisthello have all been computer world champions.

However. virtually all attempts at. machine learning for game plaving have con-
centrated on automatic methods of combining various leature values extracted from
the board. and relied on human expertise 1o determine what these features will be
instead of doing this automatically. A small amount of work has been done using
symbolic Al [15] [or automatic feature discovery, and Tesauro has claimed that his
ueural nets have this capability [39]. although he was not able to get master-level
performance from his nets until he added hand-crafted features.

Samuel himself regarded the automatic discovery of features as a NECessary ex-
tension for truly flexible machine learning of game playing. and this sentiment has
been echoed several times since then (33, 10. 28, 17]. The discovery of an automatic
feature generation system with reasonable performance would he a great aid to the
field of machine learning because traditional feature selection requires the user to de-
cide ahead of time what is relevant and what is not for o domain. Ideally one wishes
for a machine learning system to be a “black bo:.” in which no domain dependent

knowledge is required, although this ideal is surprisingly difficult to attain in prac-

! Also known as Reversi.



ticecand rescarchers are starting 1o conchide that no learning algorithm will work for
all domains, The advantages to automating aspects of the machine learning system.
however, lie in the faet that they can be applied to problems for which there is little
himan knowledge, that they are free from hnman biases and that they mav uncover
more information about a ficld which has alrcady bheen well studied with traditional
techniques. Unfortunately, despite many decades of rescarch, no practical approach
has vet been discovered for the problem of antomatic feature discovery, making it a
sort of holy grail for compnter game plaving and other arcas of machine learning,.

One promising approach was presented during the 1930°s by John Holland of
the University of Michigan. His approach. known as Classifior Systems. uses a large
number of simple rles in a production system 1o recommend a course of action based
oninput. The learning comes in the form of reinforeement from t he environiment when
the svstem bhehaves correetly, and new rales are generated using a “survival of the
fittest™ method called Genetie Algorithms. also developed by Holland [18. 5. 23]

Despite their promise, the results of applying classifier svstems to anything be-
vond “toy™ problems have been disappointing because of the enormous complexity
of the syvstems, their Layriad of parameters. and their non-linear behaviour. Subtle
design decisions can exert a surprising and often unwelcome influence on the system’s
performance. In cases like these it can be diffienlt to determine whieh part of the
svstem is responsible for its failure to perform.

This thesis presents a form of automatic feature discovery using a simplified form
of the classifier system. Features are discovered using a modified genetic algorithm
and then combined using Bavesian statistics to produce a final classification of game
positions as winning. losing. or drawn. The notion of the system as a black box is dis-
carded in favour of a set of techniques designed to evaluate the absolute performance
of the system and to diagnose and correct any weak areas. Although the focus of this
thesis is on game playing, the techniques discussed here could conceivably be applied
to more general arcas like computer vision, expert systems, and data compression.

Chapter 2 gives an overview of genetic algorithms and classifier systems. along



with a more detailed discussion of their variants and problems. and then presents
Population Genetie Algorithims (PGAs) as a svuthesis of the two. (‘hapter 3 contains
a discussion ¢ the methodological principles which guided the research in this thesis.
aund provides a tinctional breakdown of the problem. illustrating varions issies and
. . -4 - . .
previous work done in ecach category. Chapters 4 and 5 contain the results of applyving
population genetic algorithms to the problem of automatic feature discovery for tic-
tac-toe? and checkers endgames. Chapter 6 is an overview of possible extensions and

applications for such systems.

®Also known as noughts and crosses.



Chapter 2

An Overview of Evolutionary

Computation

Evolutionary computation refers to the set of all algorithms which are modeled after
the process of Darwinian evolution. As such. it falls under the broad category of
Artificial Life. or computation inspired by biological processes. Two common types
of evolutionary computation are Genetic Algorithms and Classifier Systems. This
chapter provides an overview of these two techniques. and presents a third alternative.
Population Genetie Algorithims. or PGAs. which were developed by the author and

liec in between genetice algorithins and classifier systems in terms of complexity.

2.1 Genetic Algorithms

Genetie Algorithms are the oldest form of evolutionary computation in use today. de-
veloped by John Holland and his colleagues and students at the University of Michigan
in the 1970°s for optimization problems [18]. They work by generating a population
of possible solutions to the problem and defining the “fitness™ of each solution to be
its closeness to the ideal solution. A process similar to natural selection operates on
solutions as they reproduce and mate, and this leads to an overall increase in the

fitness of the population, hopefully culminating in the emergence of an individual

5
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L__J/__,

| Child |

Weak Individual

Figure I: Structure of the genetic algorithm used in this thesis

representing the optimal solution.

The canonical genetic algorithin follows these steps:
g g

1. Determine an encoding of the solution as a fixed-length bit string. For example
if you know that the solution you are looking for is a number. you could choose
a number of bits large enough to cover the range. and use a standard base 2

encoding.

2. Generate a fixed-size population of random bitstrings. which represent random
solutions to the problem. In the initial population some strings will be fit
(ie. represent values close to the optimal) by sheer chance. and others will be
unfit. It is unlikely for a non-trivial problem that the population will contain

an optimal solution.
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3. Create a next-generation child by selecting two parents from the population and
mating them. There should be a random component to selecting the parents.
but it should be biased towards the fitter individuals. One possible way to do
this is to make the probability of selecting an individual be proportional to its

fitness. This is known as “Roulette Wheel™ selection.

There are many different techniques for mating together two parents. including
crossover. messy crossover, mutation. and inversion. ('rossover combines the
two parents by cutting them both at a random place (but the same place for
both strings) and then pasting the first half of one with the second half of the
other. Messy crossover is like crossover. except that each parent can be cut at
a different place. Mutation is the process of selecting random bits of the child
and flipping them to the opposite value. Inversion is the process of reversing

the order of symbols in an arbitrary substring of the child (see figures 1 and 2).

1. Depending on the type of genetic algorithm, either use this new child to replace
one of the older individuals in the population. or add it to a new population.

which replaces the old population when full.

ot
.

If an individual with an acceptable fitness is in the population, or a preset
number of generations has passed, then terminate. and present the most fit

individual in the population as the solution. Otherwise. go to step 3.

Since the child individuals are made up of fit individuals from the previous gener-
ation. we expect. them to be fitter on average, resulting in an increase in the average

fitness of the population and. hopefully. a convergence upon the optimal solution to

the problem.

2.1.1 The Schema Theorem

This expectation of convergence has been formalized in Holland’s Schema Theorem

[18]. A schema, according to Holland, is a subset of all possible bitstrings of the length



chosen for the genetic algorithm. So, for example. the schema *%0%1%1 % represents a
subset of all 8-bit strings. with the third bit being 0. and the fifth and seventh bits
being 1. The * character in this context means “don’t care” and can mateh cither a
Ooral.

[f we define the fitness of a schema to be the average litness of all strings in
the population which match the schema. then the Schema Theorem says that we can
expact the number of occurrences of any particular schema to grow roughly according
to its fitness divided by the average fitness of all schemata in the population. Other
lactors in the theorem account for the chance of a schema being destroyved by crossover
or mutation.

Holland has also shown that binary string encodings are optimal for processing
the maximum number of schemata per generation. This result has been widely cited
as justification for only using binary encodings for any problem [19]. although this is
changing [16].

The intuitive argnment goes as follows: Consider two different alphabets for en-
coding the numbers from 0 to 15. We could use the standard binary encoding
0000.0001.0010..... I111. or we could use a symbol for each number. like A, B.....0O.
The latter scheme needs only one symbol to encode a number. while the former peeds
four. However.while there are no similarities at all hetween the different letters, the
genetic algorithm can exploit similarities between different binary representations.
For instance. the schema Ik** represents all numbers greater than 7, and the schema
#+%() represents all even numbers. The number of schemata per bit of information can
he calculated. For an alphabet of cardinality &, it is "®2&/% F 1. which is minimized,

subject to & > 2. when & = 2.



2.1.2 Modifications to the Canonical Genetic Algorithm
Avoiding Premature Convergence

While the canonical genetic algorithm described above is most often used as an in-
troduction to genetic algorithms. it is almost never used in practice. because roulette
wheel selection leads to problems. As time goes by. the variation in the population
goes down as more successful strings take over. Inevitably the population converges
to multiple copies of one particular solution to the problem. If this happens too
quickly, the solution which comes to dominate the population may not. be optimal.
or anywhere near optimal. This problem is known as premature convergence. and
roulette wheel selection is particularly susceptible to it.

Furthermore, there are classes of problems in which there may be several good
solutions to a problem, all of which should be found by the genetic algorithm. This
quality is called multimodality, and we would ideally wish to have the population
distributed so that each solution is represented by a number of instances proportional
to its fitness. Much research has been devoted to devising parent selection schemes
which accomplish this. Three of the most common approaches are crowding [i1].
sharing [12. 24]. and local mating [10]. All three approaches attempt to maintain
variation in the population by encouraging unique strings and/or checking the fecun-
dity of particularly fit strings. Of the three, sharing has been shown to be superior
[12, 24].

A more extremme approach to selection is employed by rank-based schemes such as
work done¢ by Baker [3], and Darrell Whitley’s GENITOR. algorithm [41, 42]. Under
a rank-based scheme, the absolute fitness of a string is unimportant. Instead, a
method of determining if one string is more fit than another is required. The initial
population is sorted according to this criterion, and then new children are inserted
into the population, pushing out the lowest-ranked strings. The probability of a string
being selected is a function of its rank in fhe population. Since this approach does

not depend on absolute fitness values, there is no chance of an individual prematurely

[0



dominating the population by virtue of its fitness being far higher than its neighbours.

Non-Binary Alphabets

Recently, Holland’s conclusion that binary alphabets are optimal has come under
attack [1]. The argument is that defining schema using a {0, 1. %} alphabet implicitly
biases the results towards the conchision that binary alphabets are optimal. A higher
-ardinality alphabet would involve a more complex schema language. For example, if
we encoded our individuals using the ternary alphabet {0.1.2}, then the appropriate
schema alphabet to consider would be {0. 1.2, %01 %p3. *q2. *o12}. where. for example
*02 would match the symbols 0 and 2, but not 1. When such an expanded concept of
schema is used. the results are reversed. and higher cardinality alphabets are favoured
for the greatest amount of schema processing per generation.

In a separate subficld of evolutionary computation this approach has been used
successfully for many types of problems. Genetic Pregramming, developed by John
Koza [26]. uses genetic algorithm techniques to evolve LISP functions to solve specific
problems. These functions are usually stored as trees. Instead of the traditional
crossover operator. a subtree is extracted from one function and grafted to replace a

subtree of the other function.

Messy Genetic Algorithms

Finally. it is possible to ignore the constraint that all strings be the same length.
Such algorithms are called “messy™ genetic algorithius [13]. The traditional crossover
operator is replaced by a messy operator which allows each string to be cut at a
different point. Then the first part of one is pasted on the second part of the other,
Just like in traditional crossover.

While messy encodings remove the constraint that all encodings must be the same
length. they introduce the new constraint that the developer cannot attach semantic
meaning to fixed bit positions, or ranges. For example, in a fixed-length encoding, the

developer may wish to use bits 8 to 15 to represent an 8-bit numerical field. Under



messy crossover. these bits will likely end up in a different position in the string. and
the bits in positions 8 to 15 (if they exist at all) will be from some other part of the
parents. Hence. position-independent semantics are necessary to intelligently decode
the string into a solution.

One further potential problem with messy encodings lies in the fact that since
the length of the string changes. there may be too little information in the string
to completely specify a solution. At the other extreme. there may be too much

information. leading to conflicts between different parts of the st ring.

2.2 Classifier Systems

More recently, Holland has developed a new adaptive technique known as classifier
systems. Classifier systems incorporate genetic algorithms as part of their structure.
and are more powerful (in fact. they have been shown to be Turing complete [13]).
Whereas genetic algorithms ave primarily used for simple optimization problems. clas-
sifier systems are designed to adapt. to a real-time environment which offers sporadic
rewards. in a fashion reminiscent of hehaviourist operant conditioning.

The canonical classifier system consists of an interface to the environment in the
form of bit-encoded inputs and outputs, a population of rules known as classifiors.
working memory in the form of a message list, and a system for improving the popu-
lation over time. The inputs are analogous to the system’s senses. the outputs are like
motor commands. and the classifiers and memery comprise the brain of the svstem
(figure 3).

Classifiers have two parts to them. a condition and an action. Conditions are
fixed-length strings from the alphabet {0.1.#}. where the # matches cithera | or a
0. Actions are strings of the same length as conditions, and using the same alphabet,
but the # symbol now acts as a pass-through: if the condition matches a bitstring,
another bitstring is generated from the action part, with the # symbols filled in with

corresponding bits from the matched bitstring. The standard classifier system also

~/
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14
allows multiple conditions in a classificr. and for conditions to be negated. Multiple
conditions must all match for the rule to match. and negat conditions must not
match for the rule to match.

The strings which are given to the classifiers to match are called messages. Thev
can cither be supplied by the environment or produced by the act of a classifier
matching. All messages are the same length. Iuputs from the environment are en-
coded into binary messages. which are added to the message list. Then all of the
classifiers are checked against the messages. and the classifiers that match compete
to sce who will be allowed to put their own messages onto the message list. The
developer builds an arbitrary scheme to deiermine which messages will be considered
output messages. usually by reserving one or two bytes as a tag. Quiput messages
are collected. decoded. and sent to the environment.

If the environment decides that the outputs were correct, it rewards the system
with a numerical payofl. which is awarded to all classifiers that were responsible
for the output. Thus. over time, those classifiers which aid the system should be
strengthened and those that arve useless should be weakened. Periodically a genetic
algorithm is run over the population to weed out the bad classifiers and generate new
oncs from the strongest of the population.

A large portion of the classifier system’s power depends on it. being able to “chain™
classifiers. that is. to have one classifier produce a message which is used by another
classifier. If this can be achieved. the classifier system can rise above a sim ple stimulus-
response mode of behaviour where all classifiers only match input messages and only
produce output messages. To encourage chaining, Holland developed au algorithm
known as the Bucket Brigade algorithm. It works as follows: Matching classifliers
compete for access to the message list by taking a portion of their strengths and
offering it as a bid. Based on the size of the bids. the system stochastically decides who
will be allowed to put their message on the message list, and the bids are deducted
from those rules’ strength. In addition, if a classifier matches another classifier’s

message, the matching classifier must pay the message-producing classifier a certain



amount of its strength. Finally. a small tax on strength is exacted from all classifiers,
so that inactive classifiers will eventnally drop out of the population. The hope is
that if classificr A uses classifier Bs message to get rewards from the environment.,
then it will pass parts of its rewards to B. over time. Classifier B. in turn. may have
matched a message from classifier C'. and pass on a portion of its reward to (.

The second hope of classifier systems is that they will spontancously decompose
the population into a number of relatively weak general rules and a number of rel-
atively strong specific rules. This setup is known as a “default hicrarchy.” and it
would presumably reduce the number of rules required to handle a task by relegat-
ing default behaviour 1o a group of general classifiers. with more specific classifiers
overriding on special occasions. a form of organization similar to Rodney Brooks®

subsumption architecture [6].

2.2.1 Problems with Classifier Systems

Perhaps the most troubling problem with classifier systems is that they very rarely
live up to their expressive potential by forming rule chains or default hierarchies. and
those that do form are usually not maintained by the system. In David Goldberg’s
review of the state of the art in classilier systems [43]. the number of instances of
successful chaining or default hierarchy formation could be counted on the fingers of
one hand. A variety of techniques have been attempted to encourage the formation
and maintenance of these arrangements [31, 21], but for the most part there have
been no breakthroughs.

One of the great difficulties in diagnosing and fixing problems is the sheer num-
ber of parameters involved in the average classifier system implementation. Rick
Riolo’s C'I'S-C system [32]. for example. has 38 parameters, many of which are likely
to interact non-linearly. Most approaches to fixing problems with classifier svstem
performance have been oriented towards adding extra features to the algorithm, each
carrying its own set of parameters, which only aggravates the problem. The truth is

that there is no good theory of classifier systems which accounts for the interactions
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among the myriad of techniques used by rescavchiers. To exhaustively ennmerate all
combinations would be prohibitively expensive. tedious, and likely only relevant to
the test cases studied. Some work has been done on nsing a second-level eenctie al-
gorithm to optimize the parameter values for a first-level genetie algorithim [20]. but
little has come of this.

When considering the genetic algorithim part of a classifier svstem. we find that
the problem of premature convergence has become a erisis. One of the great strengths
of classifier systems is that the entire population is used as the solution to the prob-
lem instead of just the top-scoring individual. Unfortunately this places an additional
constraint on the system in that all aspects of the correct solution must be discov-
ered and maintained somewhere in the population. Genetic algorithms. with their
emphasis on finding one solution to a given problem. not surprisingly show a strong
tendency to converge on one individual only. This is unacceptable behaviour. even if
that individual is the best possible classifier. To borrow {rom Donne., no classifier is
an island.

Carrying over experience from genetic algorithms. we can see that classifier Sys-
tems represent a problem with extremely high multimodality. In fact. the ideal clas-
sifier system population would be composed completely of unique classifiers. each
representing one ol the best problem solvers. However such a population aggravates
another problem in generating a good set of classifiers: the larg: Lumber of low-fitness
classifiers which are generated when two completely different classifiers are mated to-
gether. Since each classifier fulfills a different role and is likely to have a different
structure, it is very unlikely that the combination of the two will generate good off-
spring. Booker solves this problem by introducing the technique of inbreeding. where
only individuals which are active at the same time are allowed to mate [1]. Instead
of our ideal population, then, we settle for one composed of many subpopulations,
each representing a different aspect of the solution. This effectively cuts the number
of useful classifiers in a population of size n to n /s, where s is the average sizc of a

subpopulation. This value must be large enough to provide sufficient variation for
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the genetie algorithm to work o,

Finally, the fact that classifior systems use bitstrings as messages and the alphabet
{0010 #) Tor classifiors generates a subtle class of problems. As mentioned hefore, it
is widely believed that a low-cardinality alphabet is best for processing large numbers
of schemata simultanconsly. as it takes advantage of naturally occurring regularities
in the representation. The natural question to ask is whether we should be taking
advantage of schemata which are likely to be serendipitous artifacts of an arbitrary
encoding scheme, for sueh artifacts represent a double-edged sword. Not only can an
advantageons encoding aid in search. but a poor cncoding can significantly hamper
the chances of a classitior svstem discovering a good solution.

Take, for example. the task of encoding a tic-tac-toe board.  Each space may
contain an X. and O, or a blank. so we need two bits 1o completely encode a square.
Sinee two bits encode four values. we will have one left-over state. which we will call
illeaal. Now. if we encoded the sqnare contents as follows:

N — 0l

O — 10

Space  — 00

Megal — 11
the genetie algorithm would run into trouble in the future if the concept of not
empty. (ie. either N or O) was necessary. There is no combination of 0. 1. and #
which can represent its and we. the users of the classifior svstem. might never realize
that this was the reason for the poor classifier svstem performance. On the other
hand. il we have the foresight to see that this concept could be useful to represent.
we might as well make it explicit in the alphabet by supplying a "not empty” symbol.
Suppose that we use an encoding which prevents this problem. like:

AN — 00

O — 0l

Space  — 10

llegal — 11



Now the pattern 0# will encode the ‘not cmpt.}” condition. but even now we are
introducing arbitrary biases in the genetic search. To see why. consider the effect of
mutating one of these representations:

00 (X)) mutates to 10 {Space) or 01 (Q)

01 (O mutates to Il {(Illegal) or 00 (X)

10 (Space) matates 1o 00 (X) or 11 (Illegal)
Of the 6 possible ontcomes. X is twice as likely 1o come out as O or Space. Thus our
encoding biases the mutation operator. and henee the search. towards boards with
many X's. (‘rossover is even worse:

00 (X) crossed with 01 (O) gives 01 (O) or 00 (X)

00 (X) crossed with 10 (Space) gives 00 X) or 10 (Space)

01 (O) crossed with 10 (Space) gives 00 (X) or 11 (Illegal)
Now fully half of the resulting outcomes represent X.

On the other hand. if we encoded the square using a higher cardinality alphabet

like {X.0.Spacc}. not only would we have direct control over the transposition
probabilities between symbols. we would be able to climinate that annoving [llegal

symbol. These examples. and other problems with binary encodings. can be found in

[35].

2.3 A New Synthesis: Population Genetic Algo-

rithms

Despite their problems. classifier systems have one great advantage over genetic al-
gorithms: they use the entire population as a solution rather than Just the fittest
individual. To see why this is important, consider the task of evolving a multiple-rule
production system like the one used in classifier systems. in the context of the genetic
algorithm. Because only one individual in the population is chosen among many. it
is necessary to encode the entirc rule set of the system into each individual. This

approach was used by S.F. Smith in his LS-1 system. whose most famous application
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was a Poker playing system {36]. \ comparison with the canonical classifier systenn
model. C'S-1. can be found in [18].

An intuitive argument can be made for the increased problem complexity from
using LS-1 as opposed to (‘S-1 by considering two multiple-rule production svstems.,
cach which mnst discover R rules. Let 1 be the number of rules encoded in each
individual. The LS-t approach would set n = R and use N individuals. If we wish
to keep the number of potential rule solutions in a population the same for both
approaches. C'S-1. which sets 1 = 1. would be allowed to maintain a population of
N R individuals without increasing the amount of computation per generation.

If it takes b bits to encode each rule. then the search space for the LS-1 svstem
would be b2 bits long. for a total of 2 possible rule sets. The complexity of the
task is thus exponential with respeet 1o the number of rules desired. On the other
hand. the CS-1 approach decouples the number of rules from the search space size.
so that we are scarching for It instances from the much smaller space of 2° possible
rules. a linear increase in R, While it is likely that genetic search would reduce the
complexity of the LS-1 approach to less than exponential. and increase the complexity
of the C°S-1 approach to more than linear. clearly LS-1 represents more work.

One advantage of the LS-1 approach over (US-1 is  hat we can more accurately
test the true fitness of an LS-1 rule. which is its performance in the context of the
best possible set of co-rules. Since LS-1 treats entire rule sets as individuals. this
quality is optimized for that system. while the rules of ('S-1 must be tested on their
own. Calculating the true fitness of a CS-1 individual would require generating all
2PH-1) hossible sets of its of co-rules. Fortunately it is not necessary 1o resort to such

measures, as will be seen in the next chapter.

2.3.1 Application to Data Classification

In traditional classifier systems, the mechanisms of reward and bucket brigade are
used to determine the strength of each rule in the population. As we have seen,

these mechanisms have failed to produce the performance one would expect from
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an adaptive luring-complete engine. Thus. when considering the use of classifier
systems. we do well to heed the lessons learned by previous rescarchers and strip ont
any unnecessary features aud parameters.

A straightforward application of classifier systems to classifving game boards

would produce rules of the following types:

o IF condition THEN recommend Win
o IF coundition THEN recommend Loss
o IF condition THEN reconunend Diaw

o IF condition THEN add mcssage M

Classifiers which matched the board and/or current message list would compete to
determine which outcome was assigned to the board. If the classification was correct
then all matching classifiers would be rewarded.

The first simplification we can make is to eliminate internal message passing.
While it may be important to maintain the expressive potential of the svstem. we
saw in the chapter on classifier systems that it is a troublesome feature 1o get working,.
Thus 1t is important to determine how necessary it is to a specific task, and only use
it if the performance without it is unsatisfactory.

The second thing to note is that since we have all of our training data on hand
at once. we can iterate through it as many times as we like, and in any order. The
notion of time between payoffs becomes irrelevant as well. Thus we do not have
to incrementally approximate the value of each rule over time. nor use a simplistic
punishment /reward scheme. Furthermore. we do not have to maintain a high degree of
system performance throughout the entire run, or worry about exposing cach classifier
to a sufficient amount of “experience.” Thus. the whole issue of when to explore for
more solutions and when to exploit the ones we have is avoided.

One final simplification can be made by recognizing that for the job of classifving

data, each pattern in a rule can simultaneously provide evidence for or against a



number of different categories. Thus. the notion of an explicit action part to each
rule is unnecessary.

When all of these modifications are made. we are left with a learning svstem which
is somewhat less than a classifier system. but somewhat more than a genetic algo-
rithm. This is a new type of evolutionary computation. called the Population Genetic
Algorithm. or PGAL in this thesis. Thus. a classifier system should be considered a
PGAL as is the simplified classifier svstem used in this thesis. which generates a set
of optimal binary features for the classification of data: in other words. automatic

feature discovery.



Chapter 3

Formal Analysis

This chapter presents a more thorough analysis of the task of applying population
genetic algorithms to the problem of supervised learning for game playving. The task is
decomposed into a number of mostly independent sub-tasks. and a review of possible
approaches is given. along with a justification for each approach used in this thesis.
Before we start. though. it is important to give an overview of some of the issues of

methodology considered in the actual research.

3.1 A Note on Methodology

In the previous section we simplified the classifier system paradigm by removing any
unnecessary aspects for the problem of game board classification. However. even
PGAs are susceptible to problems of complexity. In this sense. the process of trou-
bleshooting such a system is similar to that of debugging a large and complex program.

Novice programmers, when they first encounter bugs, will often pursue the non-
productive strategy of guessing at the bug’s location, making a minor change to code
that is not obviously wrong, and then re-running the system to see if the bug went
away. Not only does this approach often not solve the problem, but even worse, it
can seem to fix the problem by changing the program’s state in such a way that the

bug is not manifested at that particular moment. The reappearance of the same bug
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that was presumably “fixed” is always a demorali, ‘ug experience.

More experienced programmers will approach the problem of detecting and fixing
bugs in a more systematic manner. First of all they devise informal tests to determine
which section of the program is mishehaving. Determining the problem area is made
casier if the program is constructed in a modular way. so that the code is divided
into functions which are more or less independent. with minimal intesference between
functions. Once the general arca of the bug has been found. the programier tests
various data values against their expected values 1o pinpoint the first occurrence of
discrepancy. Once this discrepancy has been located. it is nsually easy to determine
the coding error.

The methodology of such an approach can be transferred over to apply to the
troubleshooting of complex systems. Instead of working with modular code to deter-
mine which module is at fault. we decompose our task into a number of functionally
independent subtasks. Goldberg has used this approach to divide genetic algorithims
into the subtasks of building block generation. isolation, growth. and mixing, and
to divide classifier systems into the subtasks of strong/weak cooperation. rule main-
tenance/secarch. and rule accuracy/covering/generalization [21). This thesis takes a
broider approach. dividing the task of supervised learning into the subtasks of data
representation. data collection. feature representation. feature selection. and feature
combination.

To determine which subtask(s) is causing the lack of performance. it is impor-
tant to use accurate metrics to determine the absolute performance of each subtask.

Baseline comparisons are useful in this capacity to determine both the upper and

lower bounds of expected performance for the subsystem performing the subtask. If

we have an upper bound on performance we can determine whether our particular
subsystem could do any better. and should be adjusted, fixed. or replaced by a more
sophisticated approach. If we have a lower bound on performance, we can reassure
ourselves that a good performance from onr subsystem is not due to pure chance or

an overly simple problem domain.
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This analogy between code and complex systems can be extended bevond debug-
ging/troubleshooting to the area of prevention. Code which is simple and straight-
forward is less likely to contain bugs, and more likely to reveal any bugs which it
does contain. In the same manner. reducing the number of parameters in a com-
plex system reduces the number of things which could go wrong and makes it more
obvious where problems lie. This has been a goal throughout the research for this
thesis. However. it is important to take into account. any implicit parameters from an
approach as well as the explicit ones. For example. we might claim that combining
two values by averaging them is superior to combining them with a weighted sum
because averaging requires no parameters, while a weighted sum requires two. Uniess
we have an «a priovi reason, however. for assuming that both parameters are equally
important, we are simply hiding the weighting parameters by setting them to the

value of %

3.2 A Functional Decomposition

As stated before. supervised learning can be decomposed into the subtasks of data
representation. data collection. feature representation. feature selection. and feature
combination. Note that the functional independence of subtasks is an ideal which
cannot. always be met with all possible combinations of solutions to the subtasks.

Possible dependencies between subtasks will be noted in the appropriate section.

3.2.1 Data Representation

The first issue at hand is what aspects of the data to provide to the learning algorithm.
and in what format. Obviously if the information is not there. or is buried by large
amounts of irrelevant information. then we cannot expect to get good performance.
As an extreme example, a learning system for chess which gets its positions in the
form of an index into some database, or as a list of move numbers from the start of

the game is probably not going to be able to extract positional information.



A second question pertains to whether each position should be classified into the
ategories {H'in, Loss, Draw}, or should be associated with a set of recommended
moves. Kai-Fu Lee’s Bill 3.0 [28] used the former scheme. as do most game-playing
programs for the simple reason that most tree scarching algorithms require a means
of numerically rating the worth of positions. and any metric which indicates the
probability of a position being part of the 1 in category will suffice.

Two notable examples of the second scheme are Gerald Tesauro's Neurogammon,
[10] and Moriarty's board ranking for Othello [29]. Tesauro notes two variants on the
move recommendation scheme. One can cither structure the data so that for cach
position there is a recommended move. or in such a way that for a combination of
position and move. a numerical score is returned indicating how good that move is.
Neuroganunon avoids the dicey problem of how 1o represent moves by implementing
the latter. Its training database is composed of backga.nmon board configurations.
cach which contains a set of possible dice rolls. and for each dice roll. a sot. of possible
moves using that roll along with a goodness score for playing that move. Tesauro
Justifies this approach because he. a backgammon expert. generates his database
by hand. and such an approach coincides with the way that humans think about
backgammon. Indeed. backgammon literature examples are primarily composed of
hypothetical positions and dice rolls. along with a comparison of the best way to
move men using that roll.

Moriarty used neural nets trained by genetic algorithms to rank moves in order
to improve the performance of a standard alpha-beta search. since the alpha-beta
algorithm works best if it searches the best branches of the game tree first. The
output nodes of the ncural net represented the possible moves in Othello, and the
value at each node represented the goodness of that niove. Thus, Moriarty also
assigned scores to moves. as opposed to simply recommending a move.

In gencral. the position-based scheme can be transformed into a move-based
scheme simply by assigning the score of the final position to the move which pro-

duced it. Thus. since the position-based scheme requires only that the position be



codified. and not the potential moves. this is the method used in this thesis.

3.2.2 Data Collection

A problem in machine learning is where to get the training set of examples. and how
to correctly classify them. Ideally we wish to obtain a representative sample of the
set. of all possible data. with each datum having a very high probability of being
correct. Best of all would be a database which contains all possible data. correctly
classified. but then we would have already solved the problem. Thus. we will settle
for a databasc which is representative of the problem. and classified with reasonable

accuracy.

Note that a raw percentage of all possible data may not be an adequate measure of

how representative the database is. for two reasons. First. it is likely that some data
will be more common than others. For example. at the start of the game there are
likely to be a limited number of openings, so positions from the traditional lines of play
arc likely to appear in every game. The second reason is that while some positions
arc easy to classify. like a chess position where one side has an overwhelming material
superiority, there are likely to be others which straddle the borderline between winning
and losing. They may not form a large portion of all possible data. but they are
important since play between two closely matched opponents will walk this grey arca
throughout the game.

The first possibility for data collection is to have a human generate the training
examples, as Tesauro did. This works well for domains where there is a large body
of human experience on the subject but few or no proficient computer programs. It
also has the advantage of allowing the expert to decide which positions are the most
representative and conducive to learning. The major disadvantages to this approach
stem from the fact that humans are limited and fallible. Since humans are so slow
compared to computers, it is difficult to scale up this approach, and tedious for the
human. Also, even experts can make mistakes. Finally, using human generated

training sets forces the implementor to incorporate domain-dependent knowledge in
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the system. since the human must decide how to classify cach training position. An
approach which can automatically generate and classify positions would correct all of
these problems.

Lee™s approach with Bill 3.0 was 1o use an older version of Bill. Bill 2.0. to generate
the training set. He gencrated a game by selecting the first 20 moves of the game
at random. and then let Bill 2.0 play against itself. He then classified cach position
occupied by the winning side as a winning position. and each position occupied by the
losing side as a losing position. This approach takes advantage of the fact that if two
perfeet players plaved against cach other. the player who started at a winning position
will always occupy winning positions. and the one starting at a losing position will
always occupy losing positions. While Bill 2.0 is not a perfect plaver. it was a world
championship level program. and thus Lee felt. Justified in making the assumption of
perfection. ‘.

Other approaches to generating test cases by allowing the program to play against
itself can be seen in Samuel’s polynomial evaluation learning [33]. and Tesauro’s ap-
plication of Temporal Differencing [38]. In Samuel’s work. two versions of a checkers
program were set to play against cach other. One version learned to play by compar-
ing the result of its evaluation function against one generated by a deeper scarch, and
adjusting its weights accordingly. As soon as it had reached a certain level of supe-
rority over its non-icarning opponent. it replaced the opponent. and all subsequent
learning took place in the context of games against this most recent incarnation.

More recently. Tesauro has used Teniporal Differencing to train neural net eval-
uation functions. In temporal differencing, the learning algorithm makes use of the
difference between successive estimations of the value of a position as well as the
eventual game outcome to adjust its weights appropriately. The amount of reliance

on these estimation differences can be adjusted from 0 (weights are determined solely

by the most recent difference) to 1 (weights are determined solely by the outcome of

the game).

Both of these approaches have been used successfully in situations where it is
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impossible to generate perfect and complete information. This thesis does not deal
with this ])1'61)1(:111 specifically, and so to eliminate data collection as a potential source
of errors. the only games studied are ones which can be solved completely. Both the
training and testing set consist of all possible positions.

The game of tic-tac-toe is simple enough that it can be fully solved. and all possible
positions stored in a small amount of storage. The checkers endgame databases
[27] are part of the Chinook checkers prograni. currently the human-machine world
champion. The game of checkers has been solved for all positions containing eight
or fewer picces. This database is divided into a large number of smaller databases.
based on the number and type of picces on the board. and the rank of the furthest
advanced piece on vach side. This provides a wide range of sizes and complexities for

use as training sets,

3.2.3 Feature Representation

The subtasks of feature representation and selection move us out of the traditional
position evaluation paradigms and into the field of feature discovery. Unlike hand-
crafting featuivs. the process of antomatic feature discovery requires that we must
supply some sort of alphabet out of which these features can be built. If the alphabet
is too simple, the features will not be able to express those aspects of the board which
allow it to be classified. If the alphabet is too complex. the [eature selection process
may have a difficult time gleaning the useful features from a sca of poor or illegal
features.

At the simplest, we could use the same method to represent features as we used
to represent boards. so that a set of features enumerates a set of boards. This scheme
might be the best we can achieve if our data are all completely unrelated to one
another, but usually we prefer to have each feature match & number of boards.

As we have scen, classifier systems encode the data as fixed-length binary strings.

Introducing the # symbol to the alphabet for a string of length n means that we

can represent 3" of the 22" possible subsets of strings of length n, or (%)2"—" logz 3 f



all possible subsets. However. we have previously noted that binary encodings can
contain illegal strings. and introduce secarch biases. Other cencodings are possible.
such as using higher cardinality alphabets.

To illustrate the possibilities. consider the problem of encoding features for a tie-
tac-toe board. ignoring for the moment the possibility of illegal boards. rotations.
reflections. and so on. Using a binary encoding. we need two bits to store the 3
possible values, leaving one illegal value. If we take nine of these. we require I8 bits
to fully store a board. Hence. there are 22 possible sets of 18-bit strings. and the

)2(i2] 15

alphabet {1.0.4#} can encode 3% of them. or { of them. an extremely small

N [

portion.

We can reduce the exponent somewhat by going to a higher cardinality alphabet.
Using the alphabet {X. 0. Spacc. #} we can represent 19 of the 2% possible subsets of
tic-tac-toe boards, lor a fraction (%)"’“‘"”. If we extend the alphabet to include symbols
for not=X. nol—Q. and not—Space. we can now represent 7 subsets. for a fraction
of (1) [t appears that a single feature will be unlikely to suffice to categorize
a non-trivial domain. no matter how much we extend the alphabet.  Fortunately,
complete representative power can be gained if we use more than one feature. Going
back to the sitiplest alphabet. we can see that it represents binary conjunctions. For
example,if we number the bits of a string as bo. by ba. ... the string 10#1 represents
the proposition bob by,  Using multiple classifiers gives us the logical-or operator.
allowing us to construct propositions in disjunctive normal form. which is sufficient
to represent all possible subsets of the strings we are trving to match. though not
necessarily in the most efficient mauner [24].

There are other extensions we could make. depending on domain-dependent knowl-
cdge. For example. position-invariant patterns might be useful. or patterns which
take into account relationships between various pieces. Even belore Tesauro added
hand-crafted features to his neural net inputs. his notation was augmented to allow
a simple representation of a point being “made™. “stripped™, “cleared”, “slotted”,

and “broken™ [10]. Rescarch into automatic optimal feature representations presents
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another interesting challenge. above and bevond that of automatic feature discovery.

3.2.4 Feature Selection
What is a good feature?

Once we have an a.lphal)c‘t?l'()r representing features, we must generate a set of the
best features.  This entails deciding what “best™ means for features. so we must
define a metric for ranking features according to how well they would contribute to
the solution.  Ideally. we would use the metrie delined for LS-1: the best featnres
are those in the best-performing feature set. Unfortunately this requires resorting to
LS-1 style feature selection. which requires a prohibitively large search space.

Approximations to this ideal feature metric fall into two categories: those that
take into account the co-features of the feature we are measuring. and those that
measure cach feature in isolation. As an example of the first tvpe of metrie, we
could measure a feature according to its best or average performance with a number
of random co-feature sets. Another example of the first category. if we are using a
form of population genetic algorithm. would be to take the rest of the population
as the co-features. and average the population’s performance over the time that the
leature has been a part of it. This is the essence of the bucket-brigade algorithm in
classifier systems [5]. if we eliminate internal message passing. These sorts of systems
have greater potential to approximate the ideal feature metric than measuring cach
feature in isolation. The first. however. requires a large amount of computation. and
both can be unstable. as the value of cach feature will fuctuate as its set of co-features
changes.

The second category. measuring each feature in isolation. is likely to be simpler
and more efficient than the first, since the worth of each feature does not depend
on its co-features. There are several qualities which are desirable in a feature. First
and foremost. it should be able to separate the data space 1nto examples and non-

examples of a given class. Above and bevond this. we would like it to match as many



data as it can. and deviate as much as possible from the distribution we would expect
if it were classifving data at random.

In this thesis. binary features are used. and a probabilistic approach is taken
to measuring their worth. This has several advantages: probabilities are virtually
parameter-frees intuitive to humans. and free from ad hoe judgements. They allow
comparisons with other metries. without the need to normalize ouc or both of the
metrics. Finally, there is a large body of knowledge on how to combine and manipulate
probabilities.

The following notation will he used throughout the rest of the thesis: A feature.
or the event of a feature matching a datum. will be denoted by the letter f. Data
15 divided into € disjoint classes. e «c. The term w. will denote the e¢th
class. or the event that a datum is a member of that class. Thus. the probability
of a feature matching is (f). the probability of a datum being in the class <. is
’(«.). the probability of a feature matching a datum eiven that the datum is in
<. is P(f e, and the probabilitv that a datum is in «. given that a feature has
matched it is P(w,. [ ). These probabilities can be casily estimated from the training
set. A important theoretical relationship between these values is Baves™ rule [11].

which states that
_ I)(fiw“-)])(w'p)
B P(f)

There are several different probabilistic ways in which one could measure the

I)(u_‘,- | f)

(3.1)

cffectiveness of a feature. A feature which is very general will have a high probability

of matching. so the generality of a feature can be determined by P(f):
Ciencrality(f) = P(f).

A feature which tends to match the specific class we will have a high P(w. [ f). so we
can use a metric like

Con(f) = IIIQX{j)(w':-- [£)}

to measure how consistently that feature matches a particular class. In this thesis.

we call this the consistency of a feature.
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Another possible metric can be seen by noticing that the left hand side of equa-
tion 3.1 is changed most drastically towards 0 or | if P(f | w:) is set to an extreme

value. either 0 or 1. Thus. we can define the metric
Inf(f) = max{|P(f|<.) - 1|}

In this thesis. this metric is called the influence of a featnre.

An intuitive grasp for these concepts can be gained by looking at figure 1. The
top diagram illustrates a feature with perfect Consistency. The second two diagrams
show the two wayvs in which a feature can have perfect Influence.

Another feature metric can be deduced by looking at the distribution of classes
that a feature matches. If a feature matches data at random. we expect to see the
matched data distributed in the various classes according 1o the a priori probabilitices
of these classes. Any deviation from this expected distribution is evidence that the
feature is displaving a preference towards certain classes.

This deviation can be measured by null hypothesis testing. Take the null hypoth-
esis to be that the feature is matching data at random. according 10 the priori
probabilities of each class. Then the number of matches in each class follows a multi-
nomial distribution. The \? value of the deviation from tiis distribution can be

estimated using Pearson’s approximation [22

C e e 2
2 Z (‘\'x-:tule - ‘\r:rp(rh.-d)
7= e .
c=1 - Texrpected

where V70, is the expected number of data which match a feature and belong to
category w.. and N7, is the number we actually find. If we let N(f) be the number
of data matched by feature f. and N(f A «.) be the number of data matched by

feature f which also belong to category w.. then the metric is

(N A we) = N(F)P(w.))?
De ’(f) = . .
“ ; N(E)P(wr)

This feature is known as the distributional deviance, or just deviance. in this thesis.

The higher it is. the less likely it is that the feature matched the data at random.
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Figure 1: Optimal solutions to the consistency and influence metrics



It is important to note that statistical approximations of this sort usually come with
conditions of validity. In this case. the results are only valid if the expected values are
sufficiently large. say. at least 5 for 1 degree of freedom. and 10 for 2 or more degrees
of freedom [22]. However. since we are using this test as a heuristic measure and not
for formal hypothesis testing. the issue of sample size is less critical.

One final metric to consider would be the correlation between the event of a feature
matching a datum and that datum belonging to a class. If we let X be a random
variable which is 1 if the feature f matches, and 0 if it doesn’t. and Q be a random
variable which is | if a datum is in the class w. and 0 if it is not. then we can nse

Covariance( X, )

Corr(X.Q) = .
orrl ) \/\'(II'(X)‘-"(H'(Q)

The variance of X is NP(f)(1 — P(f)). and similarly for Q. The covariance between

the X and Q can be estimated by

wamwwﬁﬂhh%ZHX—?NQ—m=fWAwJ—mﬂm%L
(X.Q)

Thus. we can define a correlation metric as follows:

Corr(f) = max

[V55

{PGAwJ—MﬂH%)}
VNPE PO Pl P) )

Searching for good features

Goldberg, in his comparison of geretic algorithms with traditional search techniques
[18], divides search methods into three main tvpes: calculus-based, enumerative, and
random. Calculus-based methods are typically exemplified by movement along the
local error gradient in an effort to find a point which is better than all its neighbours.
This is known in the literature as hill-climbing. Hill-climbing methods which employ
movement along a g© tient will fail if the fitness function is not differentiable at most
of its points, since a gradient cannot then be determined. Many local optima in the
the fitness landscape can also mislead the search. The fitness landscape over the space

of all possible features as we have described it is likely to be very uneven, since the



changing of even a single symbol in a successful feature can be enough to destroy its
discriminatory properties. Thus. the fitness landscape is not even continuous. much
less differentiable. and unlikely to submit to gradient-based optimization.

Enumerative techniques examine all states in turn, keeping track of the best fit-
ness encountered. They have the advantage of being impossible to lead astray. If an
optimal state exists in the landscape. enumeration will find it ceventually. Unfortu-
nately. since search time is on the order of the size of the search space, only trivial
spaces can be secarched in a reasonable amount of time.

However. enumeration can serve the extremely important role of a baseline tech-
nique for less robust but more efficient. techniques. If we have several different search
problemns at our disposal. covering a range of scarch space sizes, then we can use an
cnumerative technique as a standard to tune the more efficient techniques in anticipa-
tion of applying these to the more difficult search problems. It is. of course. possible
that there are qualitative differences between the simple and complex search spaces
which invalidate this sort of approach. but this is beside the point. The purpose of
baseline comparisons is to eliminate potential sources of error. An cfficient search
method may fail when applied to a large search space for two reasons: either it is
a bad method. or it is bad for that particular search space. If an efficient search
technique succeeds on a simple space, ails on a more complex one. then we have
eliminated the forme: eause and produced evidence for the latter. We can thus narrow
the focus of our scareh foa errors.

In this thesis. the PGAs are calibrated by comparing the patterns generated by
them to those generated by enumeration. The enumeration technique is to generate
all possible patterns and then sort them according to various fitness criteria. To break
ties, a second criterion is used as a secondary sorting key. For tic-tac-toe and the
smaller checkers databases, this approach is feasible.

If hill-climbing is too fragile and enumeration is too inefficient, we are left with
the third possibility, random techniques. While there are other search methods which

are guided by random values, such as simulated annealing, this thesis deals with
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genetic algorithms, which have already been shown to be more efficient than simple
enumeration. and yet more robust than hill-climbing [18].

In particular. a rank-based genetic algorithm. similar to Darrell Whitley's GEN-
ITOR [41], is used. These algorithms sort the population according to fitness. and
then use the position of an individual in the sorted list instead of that individual’s fit-
ness. to determine whether it will be selected for mating. Children are inserted at the
appropriate position in the population if theyv are better than the worst individual.
which causes the worst individual to be dropped off the end of the list.

The GENITOR algorithm has one parameter, called Bias. which determines how
much reproductive advantage individuals at the top of the list enjoy. Bias has a
lower bound of 1 (completely random selection), and as it is increased. selection
pressure increasingly favours the top individuals. If we let ;3 represent the bias. R be
a random number from 0 to 1. N be the size of the population and i be the index of
the individual chosen for mating, then the following formula is used by GENITOR to

select individuals when 1 < 3 < 2:

3= /32— 13— )R

1= | N ——
' 23 —1)

which corresponds to a linear allocation of the number of offspring. The top-ranked
individual produces. on average. J times as many offspring as the median individ-
ual. Thus, by ﬁ]o(lifying 3. the convergence rate is under the direct control of the
researcher.

While rank-based selection schemes throw away the information contained in the
exact fitness value, these values are usually fairly ad hoe, so performance can actually
be improved by considering rank as opposed to raw fitness. The scaling problem, for
example, in which highly, but not optimally, fit individuals dominate the population,
is eliminated. Certainly a rank-based approach fits more neatly with the enumeration
approach discussed above. Furthermore, using a scheme which has only a single
parameter follows the principle of eliminating as many parameters as possible. Finally,

since a feature will never be eliminated from the population until the population is
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full of better individuals. rank-based populations have a stability not seen in many
traditional genetic algorithms. where random genetie drift can accidentally drive even
fit genotypes to extinction.

Since we are evolving a population of features. it is necessary not to have dupli-
cate features in the population. Not only would duplicates decrcase the population
-ariation. but they interfere with the Bavesian combination function. The approach
taken in this thesis is simple: the initial population does not contain duplicates, and
they are disallowed from entering the population. In traditional genetic algorithm
selection schemes. the chances of a feature being selected for mating would be de-
termined both by its fitness and the number of copies it has in the population. By
climinating duplicates we capture reproductive advantage in one simple value.

A second departure in this thesis from traditional genetic algorithms is the use
of variable-length genotypes. known as “messy™ genetic algorithms [13]. All of the

genetic encoding schemes in the next chapters are of the form:
(piccey. squarey)(piceey. squares) . ..

so a variable length genotype lends itself well to the representation. Overspecification.
in which two elements conflict in what picce to place in a certain square, is resolved
with a “first-come. first-serve™ scheme. Underspecification. in which certain squares
are not mentioned in the genotype. is handled by allowing unreferenced squares to
match anything. Mating operators used are messy crossover. mutation, and inversion.
Goldberg refers to this style of genetic encoding as sparse encoding, and 1nentions that

it shows promise as a scheme for classifier systems [43].

3.2.5 Feature Combination

Once the features have been defined, we need some means to combine their values,
also known as conflict resolution. Classifier system rescarchers have come up with
several ways of resolving conflicts between output messages generated by classifiers.

The simplest method is to accept the judgement of the classifier wich the highest



strength, but such an approach is deterministic, and so does not allow a variet vy of
classifiers the chance 1o gain rewards or punishments. A stochastic version of the
previous would randomly sclect a classifier. with the probability of being selected
being proportional to the classifier’s strength. Goldberg has recommended the noisy
auction technique [43]. in which each classifier has a certain amount. of Gaussian noise
added to its strength. and then the highest strength is selected.

All of the above metho 's have the disadvantage of assuming that if a set of rules
conflict. one must be right and all the others wrong. Preferable would be a system in
which cach feature contributes to the final judgement according to its degree of surety.
This is the approach of Bayesian learning. which has been successfully applied to a
variety of tasks in computer vision [9], expert systems [8]. and game playing [28. 7]

Bayesian learning relies on Bayes™ Law, given in equation 3.!. This rule can
be extended to the case of multiple binary features by introducing the vector x =
(1, r2.....0,). where «; is set to 1 if f; matches a given datum. and 0 if it. does not
match. Then. for a given datum:

_P(x |we) P(ws)
B P(x)

P(w. | x) (3.2)

The left-hand side is the probability that the datum is in the class « on the basis
of what features match or don’t match. A judgement is arrived at by estimating the
probabilities of a datum being in each class. and then simply selecting the class with
the highest probability of being the correct class.

If the probability distribution of x is known, this equation can sometimes be used
to calculate an optimal feature combination. For example, Lee used the fart that
his feature value vector was approximately multivariate normal to generate the Bill
3.0 evaluation function for Othello [28]. Unfortunately, binary features do not lend
themselves easily to a completely accurate probability determination, so we must

approximate.

A common approximation technique, often seen in expert systems, is to assume
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that the features are independent given a class [11]. ie.:
Vwe P(x]w.) = P(ay |w) Plag | we) ... Pl | wo).

This assumption greatly simplifies the calculation of the nume ‘ator of equation 3.2,
A more stringent assumption. that the features are independent in general would be

needed to simplify the denominator so that
P(x) = P(a)P(ry) ... P(ay,).

But. as Charniak points out. we can eliminate the denominator from this equation.
Since we are simply ranking the outcomes of P(w. | x) for various w. and since P(x)
is the same for all of these values, we do not need to calculate it. This is fort unate. as
the sheer fact that two features contribute evidence for a class is cnough to produce
some dependence between them [8].

Another simplification often made is to take the logarithms of both sides. This
reduces the chances of arithmetic over- or underflow. Once all of these changes have

been made to 3.2, we are left with the following set of discriminator functions:

Jw.(x) = log Plw,.) + Z [.rz- log pc + (1 — xi) log(l — pir )] (3.3)
i=1
where pic = P(f; |we). The class w. whose discriminator function produces the

highest value for any given x is deemed to be the correct class for the datum that
produced the x.

Notice that if we set n to be 0. that is, asked for a Judgement without using
any features, this algorithim would always select the class with the highest a priosr !
probability. This agrees with our intuition that the best strategy to follow in the
absence of any evidence whatsoever is to always pick the a priori most probable
class.

These functions are lincar in ;. so interactions between features, maniiested by
statistical dependence, will tend to degrade performance. The degree of dependence

between two features, given a class, can be measured by using the common statistical



technique of null hypothesis testing using a 2-by-2 contingency table and a \2 test

[22]. For the pair of features f; and f;, and a class, we construct a table like so:

a | b|F
cld|f
f, f

where a. b, ¢. and d are the number of occurrences of each combination of presence
and absence of f; and f;. for a single class. Let the null hypot hesis be that the features
arc independent of cach other. If N is the total number of occurrences of that class.
then we can use Pearson’s test with Yates™ correction for continuity [22] to arrive at
the formula:

N(|ad — be| — N /2)?2
(a + b)Y+ d)(a+ )b+ d)

Since a class w. occurs P(w.) of the time. we can define a measure of total dependence

Chi(fi.f)) =\*=

between two features by using a weighted sum:

Dependence(f;.f;) = Pl )Chi(f. £;). (3.1)
J }

-

If this value is greater than some predetermined cutoff. we judge two features to be
too dependent..

There are a number of higher-degree polynomial approximations in existence.
such as the Rademacher-Walsh. and Bahadur-Lazarsfeld approximations [1-1]. which
do not depend on the assumption of independence. They do. however. require a
correspondingly high number of paramecters, and hence data samples and time. to
calculate. That is. a quadratic approximation using n features will require O(n?)
parameters, samples, and units of time for an accurate approximation. which may be

unacceptable if n is large.
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Chapter 4

Experimental Results:

Tic-Tac-Toe

To test these ideas. some experiments were done with tic-tac-toc and checkers, Al-
though tic-tac-toe is quite a bit more simple than checkers or chess, it is a good
domain for testing techniques. since all possible positions can be enumerated. per-
fectly classified. and analyvzed in a reasonable amount of time. Furthermore. it turns
out that even tic-tac-toe can be surprisingly complex.

Alllegal tic-tac-toe positions were used as training and testing data. These posi-
tions were obtained using exhaustive tree scarching. Reflections and rotations were
removed, and all boards were normalized so that X is to play.  All positions were
classificd according to the eventnal game ontcome for Y. assuming perfect play. The
resulting database contains 765 positions. of which 51% are wins for X, 29% are
losses. and 209 are draws.

Features were represented by a 9 symbol string from the alphabet {X, 0. Space., #)
where # is the “don’t care™ symbol which will match anything. The position of the

symbol in the string corresponds to the tic-tac-toe board square. so that, for example,
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the string Ng#O#O#### corresponds to the pattern

#10
O | #
#|#|#

.

3t

Features were combined using the Bavesian lincar function defined in the previous
chapter. Although there are 1Y = 262, LIl possible combinations of the alphabet

svmbols. only 62111 of them mateh at least one board.

4.1 Enumeration Results

To determine the theoretical best performance available to the PGA. an enumerative
procedure was followed to create a population of the best possible features.  All
possible leatures which match at least one position in the database were generated.
and then these features were sorted according to a particular feature metric. The
top 200 were extracted and used to classify all the positions. Performance for the
population was measured by the pereentage of positions correct Iv classificed.

In the cases of consisteney and influence, it was found that far more than 200 of
the possible patterns scored perfectly for that metric. In such cases. a second feature

metric was used as a secondary sorting key. The sorting criteria tried were:

e Primary Key: Consistency

Secondary Key: number of matches (Generality)

e Primary Key: Consistency

Secondary Key: Deviance

e Primary Kev: Influence

Secondary Kev: Deviance

e Primary Key: Deviance

Sccondary Key: number of matches
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Figure 5: Performance of various featnre metries and baselines for tic-tac-toe
e Primary Kev: Correlation
o Primary Kev: Generality

Technically. the secondary key for deviance was unnecessary. as there is enough vari-
ation among the best high-deviance patterns to minimize the effect of a secondary
sorting kev.

In addition. two minimum-level baseline metries were tested to cstimate the lower
bound on performance. The Random sorting criterion chooses 200 features at random
without replacement from the population.  The Lixceptions criterion assumes the
strategy ol classifving the position according to the most a priori probable class,
unless the position is found in a set of memorized exceptions. Thus, this approach
amounts to rote learning. With n exceptions, for tic-tac-toe we expect a performance
of P(Win)+ n/765.

The performance of the top n features in the population is charted in figure 5
for various sorting criteria. That is. the performance when + = 100. for example,

is the performance using the top 100 enumerated features. As can be seen, the
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performance for consistency /deviance. influence. deviance. and correlation initially
rise quite rapidly. and then taper ofl. in some cases equaling that of rote learning.
There does not seem to be much favouring one over the other. except that consistency
and influence performances rise more quickly at the beginning. The two eriteria in
which generality plavs a prominent part seem to do especially poorly. performing
below even random features. suggesting that the sheer coverage of a feature is 100
simplistic to be useful. For the remainder of this thesis. the consistency eriterion will
refer to the consisteney/deviance combination. not the consistency /generality one.

The fact that perfeet performance is not achieved indicates that either tic-tac-100
is too complex a game to be captured using the number and types of features we
arc using. the feature combination function is not able to exploit all of the feature
matching information. or a combination of the two. As we will see later. the feature
combination [unction is responsible for much of the problem.

Initial experiments actually applied a priori minimum standards of deviance and
number of matches to the features. so that features which did not meet these stan-
dards could not become part of the population. Figure 6 illustrates the performance
of features in which the requirtements {Dcviance > 9.21. NumMateh > 50} and
{Dcviance > 9.21. NumMuatch > 25} are applied to features. Since deviance is
a \? value. a value greater than 9.21 corresponds to the significance level p < 0.01
that the feature did not match at random. 50 matches is the lower bound on the
number of samples required to have cach expected frequency be greater than 10.
25 matches guarantees that this be greater than 5. Not only did these standards
worsen performance. but the less stringent the requirements. the better the popula-
tions performed. This indicates that even features which only match a small number
of positions contribute significantly to the performancec.

Another approach used to improve performance was to change the combination
function. Initaally. it. utilized bot¥: <he positive evidence provided by a feature match-
ing, and the negative evidence provided by a feature not matching. In the new

combination function, known as the Active combination function, only the event of
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a feature matcking affected the ontcome. If we remove all terms from equation 3.3
dealing with the case where a feature does not match (ie. r; = 0). we arrive at the
following set of discriminator functions:

g (x)=log P(w.) + Z r, log p‘,""".

i=1
As can be seen in figure 7. this did not affect the performance of the Consistency
metric. and worsened the performance of Influence and Deviance.

One technique which did improve performance considerably was the removal of
dependence from the population. Recall that our main assumption in determining a
Bayesian combination function was that all features were independent. given a class.
If this condition is violated. performance can be expected to degrade. In equation 3.1
we defined a metric to measure the dependence between two features. We can produce
a measure of the dependence in a population by simply averaging the dependence of
all pairs of features.

Dependence was removed from the population by changing the last step of the

population generation process. Instead of taking the tup 200 features from the sorted
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list. feature 7 was only allowed into the population if its dependence with cach feature
from 1.../—1 was below a certain maximum., D, ... This approach is called depen-
dence culling in this thesis. To generate 200 consistencey patterns for Do < 100 1260
patterns were examined. For D,,,, < 5. 2911 patterns were examined. As can be seen
from figure X, dependence culling dramatically improves population performance.

To see the relationship between dependence and performance in a population. the
average dependence versus relative performance can be plotted. Relative performance
is the percentage of positions matehed. but sealed so 1hat the performance from 0
features is set 1o 0. In the case of tic-tac-toe. this would be the probability of the
most probable class. ie. Win. so that we have
perf — P(Win)

I — P(Win)

sealed _perf(perf) =

The results show that there is a definite relationship between average popula-
tion dependence and performance. and decreasing dependence increases performance.
However. as the Generality data point indicates, dependency is not the sole criterion

responsible for poor performance (figure 9).
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4.1.1 Qualitative Results

An examination of the best patterns for the best performing population shows a
mixture of intuitive and not-so-intuitive features. Since all positions are normalized
so that it is always X's turn to go. three O's in a row alwavs signifies a loss for Y.
The various rotations of this pattern occupy the top two positions. as well as -1th and
7th place. Third place is two X s and a blank. corresponding to a win.

On the other hand. the enumeration process is as diligent about distinguishing
draws as it is about distinguishing wins and losses. Several of the top 10 patierns are

variations on this theme:
#0|#
# | #
#1 X | O

which corresponds to a draw. Results such as this serve to illustrate that the difference

between a hiuman’s and a computer’s idea of what is interesting can often be quite

pronounced.
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4.2 Population Genetic Algorithm Results

As mentioned in the previous chapter. the genetic algorithm used in this thesis is rank-
based. similar to Whitlev's GENITOR program [11]. which means that the decision of
which individuals to select for mating is determined by their position in a list sorted
by fitness. The ranking criteria used were exactly the same as those used for the
cnmmeration results,

To maintain varicty in the population and stave off convergence towards one in-
dividual only. duplicates were not allowed into the population. In domains which are
CoOntmrious st e sect 1o some parts of the genotype. convergence. even premature
convergen. - - "W possible if a cluster of individuals which are different but similar
and all lie about one of the optima is allowed to grow. Take. for example, the domain
of real numbers. using a standard binary cncoding. If there is @aa optimal solution at
x. then we can generate a large number of near-optimal solutions simply by taking
the binary representation of & and setting the least significant bits to random values.

However, onr feature domain is sufliciently discontinuous that changing even one
symbol is likely to produce a drastically different set of matches. s - sider the differ-

ence. for example. between

O #|#
# O | #
#|#1]0

and

O #|#
# | X | #
#|# |0

The first corresponds very highly with a loss for X. The second represents nothing

in particular and does not rank high on any of the metrics.
Individuals in the genetie algorithm population are varyving-length strings built
from a high-cardinality alphabet. Each element in the string consists of the tuple

({ X, 0. Space. #}. {1...9}). This string was decoded by scanning from left to right,
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and placing the appropriate piece in the appropriately numbered square. Conflicts
over squares were resolved in a “first-come. first-serve™ manner. and any squares not
explicitly addressed were defined to contain #. Operations performed on these indi-
viduals were messy crossover. muitation. and inversion. Messy crossover and inversion
boundaries took place between tuples only. and the mutation vperator completely
redefined a tuple.

To generate cach new feature. two parents were selected by rank using a bias
of 1.5. which corresponds to the top-ranked [eature producing approximately 1.3
times as many children as the median feature. and then messy crossover was applied
to combine them. The probability of mutation was set to 0.01 per tuple. and the
probability of performing an inversion was set to 0.1. The populations contained
200 individuals. the genetic algorithiis were run for 200 gemerations. and in cach
generation 200 children were produced and tested. This means that 10.000 featuves
were examined during cach run. which is 15% of the entire scarch space. Each PGA
run was repeated five times to determine the amount of variation in performance.
The results can be seen in figure 10. While the deviance population performances
indicate that most of the enumeration patterns were learned. this is definitely not.
the case for vhe consistency patterns. The sudden decreases in performance of the
cousistency population are indicative of a set of high-dependence features which are
not in the top 200. and consequently are not seen in enumerated populations.

It is important to note that the task of discovering the optimal features via PGA
is more dilficult for a two-metric sorting criterion like consistency /deviance, than for
deviance alone. As we saw with the enumeration results. many features have a perfect
consistency or influence. and so all the variation in the top 200 patterns comes from
deviance. During the genetic algorithm runs for consistency or influence. features
which had perfect scores for these metrics quickly took over the population. The task
was thus reduced to one of optimizing deviance with the constraint that any children
which had less than perfect consistency/influence were disallowed into the population.

Clearly genetic algorithm techniques which handle constraints more gracefully, such
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as in [30]. would be useful.

Implementing the equivalent of the dependence culling used in enumeration proved
difficult. When ennmerating the population. the greedy approach was taken. guaran-
tecing that all features would be independent. and that in case of contlict the highest-
ranked feature took precedence. For rank-based genetic algorithmes. guarantecing the
independence of all features is not so casy.

The algorithm used consistss of two parts. First, the initial random population is
created in such a way that an individual is not added to that population unless it is
independent of all the individuals already added to the population. Then. when a
child is created, the program creates a set of all individnals in the population which
are too closely dependent on the child. If this set is empty, the child is added in the
normal fashion. Otherwise. the child replaces the member of tl set with the highest
dependency, provided the child has a higher fitness.

The first part of this algorithm can produce problems because blocks of features
can form which cover the dependency landscape in such a way as to make it diflicult
for any more features to be added. Thus, if 100 consecutive failed attempts were made
to add random features to the initial population, then the rest of the features were
added without the restriction of minimum dependence. The vesults of this dependence
culling for consistency can be scen in figure 11. As with the enumerated population.
performance improves substantially, but not to the level of the enumerated population.

In an attempt to expand the expressiveness of the features, an expanded alphabet
was attempted. which contained the elements {X, O, Spacc. not—=X, not—0, nol—
Space. #}. where a not- symbol would match anything but that symbol. The scarch
space for this approach becomes 7 = 40, 353.607. which is too large to enumerate,
but. well within the reack of the PGA. 10,000 generated patterns represents 0.1% of
the search space.

Unfortunately, expanding the alphabet did nothing to improve the population’s
performance, and perforinance was extremely erratic. An examination of the gen-

erated features explained why. With the expanded alphabet, synonymous features
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became extremely common.  That is. often two features would display superficial
differences. but mateh exactly or nearly exactly the same set of positions.  T'hus.
population dependence was extremely high. Dependence culling fixed the problem.
and produced results similar to. but no better than. that of the smaller alphabet
(figure 12). "This suggests that improvements to the feature representation scheme

must come from other directions.

4.3 Summary

An examination of various feature metries indicated that the consistencey. influence.

deviance, and correlation metries produced roughly the same performance. although

consistency and influence produced better results when a limited number number of

features were used. Feature metries which used generadity tended to do poorly.

Population performance was compromised by dependence hetween features in the
population. The problem of too much dependence overwhelmed even the potential for
better features from an expanded feature alphabet. Dependence can be eliminated
somewhat from the population by the use of dependence culling.

PGA performance was close to that of the enumerated population. provided only
one criterion was being optimized. T'wo-key fitnesses in which one key was perfeet for
many of the features caused problems for the PGA. A more sophisticated constraint
satisfaction (GA technique may solve this problem.

Despite the apparent simplicity of the game of tic-tac-toe. it appears that fea-
tures constructed from simple template-like alphabets and combined using a lnear
Bayesian function are insufficient to completely categorize all positions. While this
is a somewhat surprising conclusion, it is important to realize that no secarch was
performed in the categorization. Humans regularly use a small amount of scarch in
playing tic-tac-toe (“H | put an O here. then she can put her X there...™). and the ease
in which tic-tac-toe yields to scarch has contributed to its reputation as a “trivial®

game.



Chapter 5

Experimental Results: Checkers

The next domain attempted was a set of checkers endgame databases, generated
[or use by the Chinook checkers program [27]. Chinook is the current man-machine
world chaimpion. and its endgame database contains all positions. perfectly classified
as winning. losing. or drawn. for cight picces or less. a total of 110 billion positions.
The database is divided into many smaller databases according to the number of cach
type ol picce, and the most advanced checker for cach side.

These smaller databases are named by six mumbers: the munmber of black kings. the
number of black checkers. the number of white kings, the number of white checkers.
the rank of the farthest-advanced black checker. and that ol the farthest-advanced
white checker. Thus. a database called 1002.02 would contain all positions for one
black king and two white checkers. where the the most advanced white checker is on
the third rank. the ranks being numbered from 0 to 7.

The advantage of this scheme is that these subdatabases cover a large range of
sizes and complexitios. so that new techniques can be tried on the smaller databases
before attempting the larger ones. The disadvantage of the subdatabases is that for
the most part they are largely biased towards one class or other. Many are composed
entirely of one class, and the remainder more often than not. contain less than 10%
ol one class and more than 80% of another.

The three databases tested were 1002.02, 0022.60, and 1111.50. The rules of



checkers mandate forced captures. and positions in which black’s move is a forced
capture arc not contained in the databases. but calculated using a small amount of
search. These positions were not included in the learning process sinee it wonld be
difficult to classily them without performing some tactical analysis. The statisties for

the three databases are:

Database Size | % Win | % Loss | % Draw
1002.02 0938 0 96 1
0022.60 Gl2 36 22 42
1111.50 2,168 l 15 ) S0

The composition of [catures is somewhat more sophisticated for checkers than for

tic-tac-toce. They have the following structure:

(Binding. Anchor)(picec Y (picecy. Nrows. Neolunmn Y preces. Arowes. Neolumn.y)

Each picee; is one of the set:
{BlackKing. BlackChccker. Black Any. W hiteNing. WhitcChecker. Whitc Any}

where BlackAny matches either black picce. and White Any matches either white
picce. The Arow and Neolumn contain the position of that picce relative to piceey.
Thus we have a variable-length movable picce template.

The extent to which this template is allowed to move is determined by the
(Binding. Anchor) tuple. which determine the allowable squares lor piccey. Binding
is one of the set

{ Absolute. Free, RowOnly, ColumnOnly }

and the form of Anchor depends on the value of Binding. 1f Binding = Absolutc then
picce; must appear on one particular square, contained in Anchor. for the feature to
match. Binding = RowOnly or ColumnOnly represents the restriction that piceey
must appear on a given row or column contained in Anchor for the feature to mateh.
If Binding = [F'rce then there are no restrictions on the placement of picce, and

Anchor is ignored.

)



As an example. the feature
(RowOnly 3)(BlackCheckeryWhite Cheekeer, — 1. 41 Y(BlackKing. -2, 40)

corresponds to the {ollowing:

O

@

where the black checker is restricted 1o oceur on the third rank only.

To climinate exact synonyms from the population. each feature was accompanied
by a 123 bit signature. which was a combination of hash values for cach position
that the feature matched. Thus. if two features had different signatures. they were
guaranteed to matceh two different sets of positions. Since it is possible that two
different sets of positions will generate the same signature. there was no guarantee
that the reverse of this statement was true. However. in practice 128 bits proved

sufficient to distingnish between various position sets.

5.1 Enumeration Results

The results of applying cnumeration to determine the theoretical best 200 features
can be seenin figures 13 to 15, In the case of the 1002.02 databasc. consistency gives
the best performance. The influence and deviance criteria give identical populations,
which perform marginally worse than consistency in achieving perfect performance.
Once perfect performance is reached. the remaining features for all criteria become
superfluous and cause dependency interference. An examination of the best consis-
tency features reveals that for the most part they only correspond to one board.
Thus. with the given encoding scheme there does not seem to be any better strategy
than to enumerate exceptions to the loss class, which contains 96% of the positions

to begin with.
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The results of the 0022.60 database are more interesting. and for the first time
we have best performance coming from the deviance criterion. Dependence culling.
on the other hand. does not improve the performance of any of the metries. and even
decreases the performance of the deviance population (figures 16 and 17) presumably
due to the elimination of useful features. Unlike tic-tac-toe. dependence does not
seem to be a big problem for the 0022.60 features.

In 1111.50. population dependence has degraded the deviance population’s perfor-
mance. and dependence culling on the population removes this deficiencey (figure 1),
The performance of even the consistency and influence populations. however. is some-
what disappointing. even after culling. To a certain extent. it is to be expected that it
would be more difficult to compress 12.468 positions into 200 patterns than it would
be to compress the 612 positions of the 0022.60 database. On the other hand. the

current representation scheme is clearly inadequate for the job.
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5.1.1 Qualitative Results

The features generated by enumeration on checkers databases were considerably less
intuitive than those in tic-tac-toe. largely due to the fact that the classifications of
checkers endgame positions can be difficult for humans to understand. Nevertheless.
some interesting features could be determined.

For the 0022.60 database. for example. the most useful pattern was the following:
O O

which was allowed 1o match freely. While it looks like black has the advantage (black

moves down. black always has the next move). it is actually a loss for black. Since
the 0022.60 database only contains white checkers on their home row, the pattern
contains an implicit bottom edge of the board below the two white checkers. Black
cannot jump either white checker. and cannot avoid getting jumped in the next turn.
Whether this is considered a brilliant understanding of the problem domain or a

shameless exploitation of a database artifact is left to the reader to conclude.
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For the 11i1.50 database. the top features are a group which contain variations

on the following configuratic r

Q

@

where the white king must be on the top rank. This corresponds to a win for black

because the black king can be moved like this:

O

@®

which traps the white king and allows the black king to jump the white checker if

necessary.

5.2 Population Genetic Algorithm Results

The genetic algorithm used for checkers was essentially the same as for tie-tac-toe.
except that the bias was changed to 1.9. Experimenting with different biases indicated
that since the population converged onto something reasonable regardless of the bias.
the use of a strong selastion pressure caused it to converge more guickly.,

Individuals in the PGA were again composed of variable-length st rings. now of
either (picec. row, column). or \f3inding). Note that tuples in the genome contain
absolute row and column numbers instead of relative. In the process of decoding a
genotype into a feature. the first tuple of the genotype contributed the Anchor values.
and all subsequent picces added to the feature were converted to be relative to this
first piece. Binding was determined by the first Binding-type tuple encountered. and
the rest were ignored. If no binding tuple was processed. then the binding was taken
to be Frce. The decoding process also kept track of the number of pieces of each

type and stopped decoding any piece types that exceeded the maximum allowed by
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the database. For a four-piece database. the number of possible legal patterns would
be Lhindings x T tcmplates x 32 squares = 307.328 so that 10.000/307. 328 = 13%.
of the featnre space was scarched. The results for deviance on 0022.60 can be seen in
figure 19. The PGA performance illustrates that most of the features were discovered.

In an effort to improve the expressiveness of the features. the feature set was
expanded to allow one picce which matched an cmpty square to be added to the

feature. The hope was that a feature like

@

which is clearly advantageous for black. would be fonnd. Unfortunately it was discov-
ered later that 0022.60 does not contain any of these situations, and in general any
situation in which black has a forced capture had been eliminated from the database
already. Empty squares were not originally part of the feature alphabet since the ma-

Jority of squares in a checkers endgame are empty, and so most combinations of empty

3
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squares would turn out to be synonyms of each other. in the meantime expanding the
search space by 23277 where n is the number of pieces on the board.

The problem of synonyms is manifested in the PGA results. even when the number
of empty squares allowed in the feature was restricted to 1. The genetic algorithm
simply took the best normal feature and tacked an empty square onto it at various
positions to achieve more of the highly fit individuals. Adding “ependence culling
at level 20 improved the performance (figure 20). but not anv inore than could be

attained from features which did not have the empty square.

5.3 Summary

One problem with many checkers endgame databases is their heavy bias towards
one particular category. In cases such as these. it is usually most efficient. to simply
enumerate all exceptions to that category, which is the strategy emploved by the

enumerated patterns for 1002.02. For 0022.60, a small and well-balanced databasc,



deviance turned out to be the best feature metric. For the larger 1111.50. the deviance
metric produced features with large amounts of dependence. which were eliminated
with dependence culling. This indicates that no one feature metric is best for all
databases. and several should be tried. Perfect performance could only be attained
with a heavily unbalanced database like 1002.02. In the case of 1111.50. only a
moderate amount of performance could be achieved. which again reinforces our view
of the inadequacy of the representation alphabet used.

The PGA was run using the deviance criterion for 0022.60. which produced results
very close to those of enumeration. Expanding the feature alphabet to include the
Empty symbol produced large amounts of dependencey. which was eliminated from
the population using dependence culling. with results comparable to that of more
restricted alphabets.

[tis difficult to predict how the PGA would perform on still larger databases. Since
feature representation seems to be a problem. the amount of compression possible
would depend on the amount of regularity in the database which can be captured by
the feature alphabet. The general trend. however. seems o indicate that 200 features

would produce poorer performance for larger databases.
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Chapter 6

Final Remarks

6.1 Future Enhancements

6.1.1 Message Passing

In section 2.3 we simplified the classifier system to produce the population genetic
algorithm. Oue interesting area of research would involve replacing components of
the classifer system. one at a time. and observing how much this aids the performance
of the PGA. For example. if we could reintroduce message passing into PGAs. their
expressive power woulld increase substantially for the cost of a small increase in search
space,

One possible approach would involve adding two more elements to the genotype:
(SendMessage M) and (RecciveMessage M), The former would add message V to a
global message list whenever the whole feature matched. and the latter would require
message M to be in the message list for the feature to match.

This implies that there would be some sort of temporal sequential ordering among
the events of features matching. If the data of the database correspond to successive
positions in, say. a chess game, then a natural scheme would involve ustug the message
list to carry information from one position to the next. If the data follow no particular

order in the -“r1abase, then we can still employ a message list by starting with an
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empty message list for each datum. and then running through the feature set multiple
times to allow diff  ut features in the set to send and receive messages for that datum.

The technique of Bavesian networks has already been developed to handle chains
of features. and presumably the results would carry over to the domain of message
passing in PGAs. If we assume that there ave m possible messages. equation 3.2 can
accommodate message passing extensions by introducing the binary vector y which
has length n + m. so that y; = »; for 1 Si<nandforn+1<i<n+m.y =1if
message ¢ — i+ 1 is in the message list. and 0 if it is not.

The notions of consistency. influence. deviance, and the rest can be extended if we
expand our notion of the feature matching a datum to include the event of the feature

becoming involved in a chain of matches which culminates in a datum matchine.
(o) &

6.1.2 Meta-Features

One concept explored in this thesis involved determining the “goodness™ of a feature
by investigating its consistency. influence. and so on. The ultimate measure of the
goodness of a feature was how it performed in the company of other features selected
on the same basis. In this sense. we engaged in a second., higher-level classification
scheme. in which the features became the data. and feature metrics like consistency
became the meta-features. This suggests that. just as one feature was insufficient to
adequately classify data, one feature metric may be insufficient to determine what
constitutes a good feature. and so we should investigate methods of meta-feature
combination.

One obvious approach would be to use a weighted combination of consistency,
influence and deviance to rank features according to their usefulness. We thus come
up against the same problems that confront researchers who wish to combine regular
features.

Another approach is to employ a multiobjective genetic algorithm to optimize
along all meta-features simultaneously. Pareto optimization [37] is a technique for

optimizing several different fitnesses by distinguishing between dominated and non-



dominated individuals. One individual dominates another individual if it is at least
as good along every fitness criterion. and better for at least one eriterion.  Nom-
dominated individuals ave those which are not dominated by any other individuals.
and some recent work has been done to create genetic algorithms which will perform
Pareto optimization [37).

It should be noted that the use of Pareto optimization for tic-tac-toe or checkers
with either consistency or influence as a criterion would have produced the same
results as obtained using the sorting approach of the thesis. Take. for example. the
case of using consistency and deviance. Since there are many features with perfect
consistency, all non-dominated individuals would have this quality. and so the non-
dominated individual would be the one with the best deviance. If this was removed.
the non-dominated individual would now be the one with the second-best deviance,
and so on. Removing successive layers of non-domination would result in a population
sorted. first according to consistency. and then according to deviance. as is done in

this thesis.

6.1.3 Hybrid Schemes

A large population of binary features combined using a lincar function will. by the
central limit theorem. approximate a Gaussian distribution. Thus. many simple bi-
nary features can be treated as one large Gaussian one, and incorporated with other.
more conventional features as an enhancement to them. As has already been noted. if
the other conventional features are also Gaussian distributed. they can be combined
optimally using an easily computable quadratic function.

Bayesian statistics are not the only possible method of combining binary features.
Any linear combination of features can be modeled using a single-layer perceptron,
so expanding the complexity of the perceptron to a multi-layer perceptron or Adap-
tive Logic Networks [2] might improve performance. Since ALNs take binary inputs
and are much laster than multi-layer perceptrons, they are an especially attractive

candidate.



6.2 Applications

6.2.1 Compression

Oue of the intended uses for the automatic feature discovery techniques of this thesis
was to compress Chinook endgame databases. These contain 110 billion positions and
occupy 6 Gigabytes of storage. so any reasonable compression scheme which allows
for fast retrieval of a position /value pair would be extremely useful. A compressed
database using PGAs would consist of a list of features and a set of weights for cach
[eature and class. A set of misclassified positions along with their correct classilica-
tions could also be included. or the user could rely on search to uncover and correct
any errors in classification. This type of compression could be used for ot her domains

as well,

6.2.2 Game Playing

The obvious application of PGAs to game playing is in generating either part or all of
a game-playing progran-’s evaluation function. Performing a large number of pattern
matches may prove too time consuming. however. to he practical for a tournament-
styvle program. On the other hand. automatically generated populations of features
are casier to read and understand than. for example. the pattern of weights in a
neural net. Thus. PGAs can serve as a tool of analysis. cither pointing out significant
fcatures which can be implemented more efficiently in a conventional manner. or

pointing out similaritics in positions misclassified by a conventional approach.

6.3 Conclusion

The purpose of this thesis was to provide a first cut at using genetic algorithms for
automatic feature recognition. As such, it outlined the general problems to be solved
and pointed out which areas in particular require further attention. The results

indicate that for the practical application of PGAs to pattern classification. much
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remains to be done. On the other hand. the processes of functional decomposition and
bascline comparisons more than proved their worth. It is common. when undert aking

the task of applying genetic algorithms to a problem. to assume that the genetic

algorithms will be the major source of error. Enumeration results on the games of

tic-tac-toe and checkers indicated that most of the problems lay elsewhere. in the areas
of feature representation and feature combination. This counter-intuitive conclusion
would likely have been missed if the genetic algorithms were simply treated as a black

box. Thus a greater understanding of the problem at hand was achieved.
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