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Abstract

Graphics Processing Units (GPUs) have been widely used to accelerate the performance of programs. How-
ever, such performance gains can be significantly degraded by irregular data accesses and by control-flow
divergence. Both of these performance issues arise only in the presence of thread-divergent expressions—
expressions that evaluate to different values for different threads. The effect on performance depends on the
number of threads that are left idle by control divergence, or on the number of distinct memory accesses that
are required to satisfy all the memory references from a single warp of threads. Even experienced program-
mers may fail to identify control divergence or non-coalesceable memory accesses. This paper introduces
GPUCheck: a static analysis tool that detects branch divergence and non-coalesceable memory accesses in
GPU programs. GPUCheck relies on a static dataflow analysis to find thread-dependent expressions and on
a novel symbolic analysis to determine when such expressions could lead to performance issues. GPUCheck
supports programmers by informing them, at compile time without executing any GPU code, of potential
performance problems.



1 den = (qsqr-q0sqr) / (q0sqr * (1+q0sqr)) ;

2 c = 1.0 / (1.0+den) ;

3 if (c < 0){temp_result[ty][tx] = 0;}

4 else if (c > 1) {temp_result[ty][tx] = 1;}

5 else {temp_result[ty][tx] = c;}

Figure 1: Original diffusion coefficient calculation in srad.

6 den = (qsqr-q0sqr) / (q0sqr * (1+q0sqr)) ;

7 c = min(max(1.0f / (1.0f+den),0.0f),1.0f) ;

8 temp_result[ty][tx] = c;

Figure 2: Modified diffusion coefficient calculation in srad.

0.1 Introduction

Modern supercomputers rely extensively on GPUs to deliver the computing power that propels them to
the Top500 list [1]. For example, Titan [24], the current top supercomputer in the USA, utilizes nearly
20,000 GPUs. The successful use of GPU acceleration in some areas of computation justifies this shift
toward GPU-based high-performance computing. GPUs improve, by orders of magnitude, the performance
of neural networks [5], fluid dynamics [20], and molecular dynamics [14]. Power-envelope restrictions for
the next generation of supercomputers will increase reliance on GPUs even further, due to their superior
performance-per-watt ratio. The upcoming Summit supercomputer [23] aims to deliver over 200 petaflops
in a power envelope of 10 MW, a five-fold increase over the performance of Titan while consuming only 10%
more energy.

Despite the increased reliance on GPUs, the structured style of parallel processing that GPUs require
makes their performance sensitive to two problems: (1) branch divergence [13], in which adjacent threads
exhibit different control-flow behaviour causing hardware stalls, and (2) non-coalesced memory accesses [7],
in which adjacent threads access disparate memory addresses, overloading the underlying memory system
with requests. Experienced GPU programmers have a number of options to produce code that avoids both
problems. For example, rephrasing control-flow operations as arithmetic operations can reduce branch diver-
gence. Similarly, for non-coalesced memory accesses, programmers can either change which thread performs
which memory access, restructure the underlying data structure, or load sections of data into a shared-
memory buffer with different memory access characteristics. Nevertheless, even experienced programmers
may unwittingly produce code that suffers from poor performance. Such issues often arise when an algorithm
designed for a CPU is translated into a GPU equivalent without substantial restructuring. GPU algorithms
typically must be restructured around the constraints of the underlying platform, separating work that can
be parallelized across threads, and often recomputing intermediate products.

GPU threads are grouped into warps of 32, which execute in lock-step. When thread behaviour within
a warp diverges, branch divergence and non-coalescable accesses become possible. We define instructions
where threads within a warp may evaluate an instruction differently to be thread-dependent instructions.

The example in Figure 1, taken from the srad benchmark in the Rodinia suite [8], illustrates branch
divergence. To ensure that the coefficient c stays within the range 0 to 1, the code tests the value of c

and makes the appropriate correction. However, the value qsqr is derived from data calculated from each
thread’s location in a 2D grid. Therefore, the value of c is different for each thread, causing potential control-
flow divergence: a different group of threads may execute each of the statements in Lines 3–4, leading to
three execution cycles, each requires a memory access. Figure 2 shows an alternative implementation, where
testing the value of c is a computation of min and max operations that are available as instructions in NVidia
GPUs. In the transformed code, all threads execute the memory-access statement in Line 7 simultaneously.
By modifying the example to avoid the divergence, performance can be substantially improved.
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Static analysis can detect divergence performance issues in many common cases. Branch divergence and
non-coalescable memory accesses can both only occur when the behaviour of threads within a warp differ
due to thread-dependent behaviour. And thread-dependent behaviour can only occur when an instruction
depends, either directly or indirectly, on the thread index or a valued produced by an atomic operation.
Therefore, thread-dependence detection can be defined as a taint-analysis problem [2] that identifies whether
variables and memory locations may be tainted by an atomic operation or by the thread index. A branch
whose conditional expression is tainted may exhibit divergent behaviour. However, reporting all tainted
branches would lead to many false positives. Thus, the taint analysis must be combined with a pruning
algorithm to provide helpful feedback to programmers.

This paper addresses the following research problem: given a program containing portions that are des-
ignated for execution on Nvidia GPUs, detect and report branch divergences and non-coalescable memory
accesses. To achieve that, we present GPUCheck, a static analysis tool, built on top of a novel static anal-
ysis framework, that identifies and reports the locations in a given program source code that are likely to
exhibit poor GPU performance. The paper also describes a prototype implementation of GPUCheck built
on top of the Clang/LLVM compiler [18]. The input to this prototype is an intermediate representation of
the program with mappings to the original source code. GPUCheck uses a novel inter-procedural context-
sensitive Arithmetic Control Form (ACF), a representation for static address range analysis and conditional
expression analysis also described in this paper. The prototype identified performance issues in 17 well-known
Rodinia benchmarks [8], including the example in Figure 1.

Unlike GPUCheck, previous attempts to analyze GPU workloads observe dynamic behaviour on either a
simulator [3] or on physical GPUs [7]. These analyses produce precise results, but come at a cost. To benefit
from dynamic analysis, the application developer must have access to GPUs with similar characteristics to
the target system, or experience substantial overheads to simulate GPU execution. In addition, a developer
must have access to representative data sets to examine relevant code paths. In contrast, GPUCheck analyzes
a given program statically, and reasons about all possible execution paths through the program. GPUCheck
tends to be substantially faster than dynamic techniques, because it does not need to execute a program to
perform its analysis. On the Rodinia benchmark suite, the median completion time for GPUCheck’s analysis
is 0.21 second, in comparison with 36.36 seconds required by Nvidia’s own dynamic profiler nvprof [22].

In summary, this paper makes the following contributions:

1. Arithmetic Control Form (ACF), a representation for statically computing differences between expres-
sions computed by various threads.

2. GPUCheck, a static analysis tool that identifies common sources of performance degradation in GPU
programs.

0.2 CUDA Programming, Divergence, and Coalescing

GPUCheck applies traditional static analysis techniques to the context of GPU execution. In this section,
we provide background on the GPU execution model, and common causes of performance degradation.

0.2.1 CUDA Programming Model

Parallelism in the CUDA programming model is of a SIMT (Single Instruction Multiple Thread) form. In
CUDA, a program is divided into host code and a series of kernels. The code for each kernel describes the
execution of a single thread, but the programming model assumes that many threads will execute that same
kernel code in parallel. Threads are grouped into blocks, and a number of blocks is executed simultaneously.
The number of threads per block and the number of blocks are collectively referred to as a grid, and must be
specified each time a kernel is executed. CUDA kernels have access to device variables such as threadIdx

and blockIdx to specify thread-specific behaviour. Divergent behaviour often occurs when a conditional
statement or the calculation of a memory-access address depends on the value of these variables.
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9 kernel_compute_cost(int num, int dim, long x

, Point *p, float *coord_d, ...) {

10

11 const int tid;

12 tid = blockDim.x * bid + threadIdx.x;

13 ...

14 float x_cost = d_dist(tid, x, num, dim,

coord_d) * p[tid].weight;

(a) Noncoalescable memory accesses

15 kernel_compute_cost(int num, int dim, long x

, float *p_x, float *p_y, float *p_z,

float *p_weight, float *coord_d, ...) {

16 const int tid;

17 tid = blockDim.x * bid + threadIdx.x;

18 ...

19 float x_cost = d_dist(tid, x, num, dim,

coord_d) * p_weight[tid];

(b) Perfectly coalesced accesses

Figure 3: Extract from the Rodinia benchmark streamcluster.

32-byte cache line 32-byte cache line 32-byte cache line

warp of 32 threads warp of 32 threads

32-byte cache line 32-byte cache line 32-byte cache line

Figure 4: The access pattern in the Rodinia benchmark streamcluster before (left) and after the code
transformation (right).

0.2.2 Branch Divergence Leads to Resource Underutilization

Modern NVidia GPUs issue each instruction to a warp of 32 threads simultaneously: All threads in a
warp must execute the same instruction each cycle. Branch divergence occurs when a conditional branch
instruction is issued to a warp and the condition evaluates to a different value for some threads within the
warp. In this case, the hardware must first execute the code in the taken path—leaving idle the threads
that evaluate the condition to false—and subsequently it must execute the not-taken path while leaving idle
the threads that evaluate the condition to true. All threads may continue executing when the control flow
re-converges at the join point in the flow graph. Such underutilization of processing resources reduces the
performance of GPUs.

Branch divergence is problematic because stalled threads are still assigned registers and execution slots,
preventing other threads from being started to perform useful work.

0.2.3 Global Memory Coalescing is Key for Performance

A warp of threads issues instructions simultaneously, causing as many as 32 simultaneous memory access
requests to be issued in one execution cycle. However, the bandwidth available to access a GPU global mem-
ory subsystem is limited. Thus, the hardware in a GPU is able to coalesce (merge) adjacent or overlapping
requests that originated on the same cycle by threads within a warp into fewer requests, each accessing more
data. Once a memory access request is issued, no threads in a warp can continue executing until all of the
threads have been serviced. Therefore, coalescing multiple memory accesses into fewer requests dramatically
improves throughput. However, the hardware is only able to coalesce requests if the threads in a warp are
accessing adjacent or overlapping locations in memory, and if the range of accessed addresses is aligned to a
cache line boundary. If the execution of a statement leads threads to access memory locations that do not
fit within an aligned range of memory addresses, then multiple memory requests are necessary. Therefore,
the execution time is longer than in the case where all the accesses for the warp are coalesced into a single
request. Each global memory request requires hundreds of cycles to be completed. Thus, GPU programs
should be structured to avoid non-coalescable memory accesses.
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Figure 5: GPUCheck Analysis Workflow

Figure 3a shows an extract from the Rodinia benchmark streamcluster, which illustrates a non-
coalescable memory access, as detected by GPUCheck. The code computes a weighted Euclidean distance
between points, using the array of structures p[tid].weight in the computation. The data structure Point

occupies six 32-bit words as shown on the left of Figure 4, and there is a gap between the weight field, shown
in grey, of subsequent structures. As a consequence, the execution of the code in Line 14 of Figure 3a leads
to the coalescing pattern shown on the left of Figure 4 where each memory transaction, represented by the
ellipses, fetches few weight fields. To fix this performance issue, the code should use separate arrays for each
member in the struct as shown in Figure 3b. The right of Figure 4 shows the placement in memory of the
array p weight. In this pattern, the accesses are coalesced into fewer memory transactions, each fetching
the maximum number of weight fields allowed by the memory bandwidth.

0.3 A New Static Analysis Engine

The core of GPUCheck is a series of static analyses, which combine to determine how execution behaviour
differs between threads, and the effects that those differences may have on performance. In this section,
we provide an overview of the two core analyses in GPUCheck: thread-dependence analysis and Arithmetic
Control Form. Figure 5 shows the analyses in GPUCheck and their dependences. Figure 5 also includes the
dependent performance detection analyses detailed in Section 0.4.

0.3.1 IFDS-based Taint Analysis over SSA to Detect Thread Dependence

An expression is thread dependent if it generates different values depending on the thread executing it at
runtime. To detect potential thread-dependent expressions statically, GPUCheck identifies sources of thread
dependence and propagates them through their uses in the program. As a motivating example, consider the
pseudocode in Figure 6 where a is thread dependent, because it contains the value of the thread identifier
threadIdx. Similarly, c is thread dependent, because it derives from a. However, is b thread dependent?
The answer depends on the analyzed program point. For instance, at the point immediately after Line 23,
the value of b is a constant 1, and at the point immediately after Line 25, b is a constant 0. However, b as
used at Line 28 is thread dependent, because the value of b depends on the if statement whose condition
contains the thread-dependent value c. Given this intuition, we define thread dependence as follows:

Definition 0.3.1. An expression is thread dependent at a program point p if it may evaluate to different
values by different threads at p.
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20 a = threadIdx;

21 c = a % 2;

22 if(c) {

23 b = 1;

24 } else {

25 b = 0;

26 }

27 Arr[a] = 0;

28 Arr[b] = 0;

Figure 6: An example illustrating thread dependence.

If a given expression is not a source of thread dependence, then it can only be thread dependent through
data-flow dependencies or control-flow dependencies. Detecting thread dependence through data-flow depen-
dencies is straightforward, because an operand of the expression must also be thread dependent. However,
calculating thread dependence caused by control-flow dependencies requires additional analysis. Control-
flow thread dependence occurs when a conditional branch evaluates a thread-dependent expression that may
evaluate to different values depending on the execution path.

Divergence—both for branches and for memory access addresses—originates from source statements and
is propagated to other expressions in the program through control-flow and data-flow dependencies. For
each expression in the program, the thread-dependence analysis in GPUCheck computes a boolean value
that determines if the expression is thread dependent. GPUCheck regards source statements as tainting
statements and employs a taint analysis to determine which expressions are tainted by thread-dependent
calculations. In a GPU program, a statement may be a source of thread dependence due to a variety of
operations. For instance, a statement that reads hardware values, or performs an atomic operation such
as compare-and-swap, may compute values that may be unique to each thread. GPUCheck is concerned
primarily about branch divergence and memory coalescing, which are behaviours between threads within
a warp. Therefore, it only considers thread identifiers and atomic memory operations as sources of thread
dependence. Although other operations can result in thread dependence (SM identifier, block identifier,
warp identifier), these operations all return the same value across a warp, and therefore can never cause
intra-warp thread dependence.

GPUCheck uses an Interprocedural Finite Distributive Subset (IFDS) [25] taint analysis over a static
single assignment (SSA) intermediate representation to propagate thread-dependence information through
the IFDS supergraph representation of the program. Given the set D of all SSA expressions in the program,
the dataflow problem consists in determining which subset of D is thread dependent at each point in the
program. The thread-dependence property is propagated through distributive dataflow functions that can
be decomposed into micro-functions. Each micro-function fx(y) expresses the propagation of the expression
x ∈ D through the statement that defines the expression y ∈ D. The special function gen creates and
propagates the thread-dependence property regardless of the prior state, the function prop propagates the
input thread-dependence state to output, and the function kill propagates no thread-dependence property,
regardless of input. The use of an expression x in a program statement does not change the thread-dependence
property of x. Therefore, for each statement that defines an expression d ∈ D, the thread-dependence
property of each expression x where x 6= d remains unchanged: fx(d) = prop. If the statement that defines
d reads the thread identifier, then d is a source of thread dependence and the micro-function fd(d) = gen.
Otherwise, fd(d) depends on the thread-dependence property of the operands used in the statement that
defines d and on the control-flow dependencies of the statement that defines d. To compute fd(d), let O(y) be
the set of expressions that are used in the statement that defines expression y (the operands). Let CDG(y)
be the set of basic blocks that the statement that defines y is control dependent on, as determined by a
control-dependence graph (CDG) [12]. Then CDG(y) is the set of basic blocks that determines whether or
not y executes. Let cd(y) be the set of expressions used as conditions for branches exiting each basic block
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29 int readBounded(int* a) {

30 int tx = threadIdx.x;

31 if(tx > 256)

32 tx = 256;

33 int *addr = a + tx;

34 return *addr;

35 }

(a) A bounded array access.

36 tx0 = threadIdx.x

37 p1 = tx > 256

38 p1? tx1 = 256

39 tx = ψ(tx0, p1?tx1)

40 tmp = 4 * tx

41 addr = a + tmp

42 return addr

(b) If-converted ψ-SSA form for the code in (a).

Figure 7: An example illustrating if-conversion in ψ-SSA, which serves as inspiration for our ACF analysis.

in CDG(y). The value of fd(d) is then given by:

fd(d) =
⋃

o∈O(d)

(
fo(d) ∪

⋃
c∈cd(o)\cd(d)

fc(d)
)

(1)

Intuitively, the first half of the equation, ∪
o∈O

fo(d), captures thread dependence over data dependencies

by combining the thread dependence of all operands of d. The control dependences for an operand o ∈ O(d)
of the definition d (denoted cd(o)) are the decisions that lead to the execution of the expression that defines
o. To capture relevant control dependences, the analysis computes the conditions that are required to reach
an operand of d, but not d itself, producing the set difference cd(o) \ cd(d). Such conditions are control
dependences, and are combined to produce fd(d).

0.3.2 Arithmetic Control Form (ACF)

The thread-dependence analysis determines which expressions in the program are thread-dependent. The
intuition is that a conditional expression that is thread dependent is a potential source of control-flow
divergence, and a memory-access expression that is thread dependent is a potential source of non-coalescable
memory accesses. However, this intuition alone may lead to numerous false positives, i.e., GPUCheck would
be signalling potential divergences that are not actual divergences. For memory accesses, we are interested
in determining if the range of addresses accessed by all threads in a warp falls within a single cache line.
To achieve that, we have designed the Arithmetic Control Form (ACF) analysis. Given a thread-dependent
expression, ACF determines the difference between the value of this expression as computed by each thread.

The value computed by an expression depends not only on the flow of values through expressions, but also
on the conditional statements in the code. Existing work in support of if-conversion in SSA form [19, 27]
serves as an inspiration for ACF. [27] introduced ψ-nodes to represent the flow of SSA values through a
segment of straight-line code in the presence of predicated execution. Intuitively, a ψ-node combines the
results of multiple predicated instructions, unifying values in straight-line code in the same way φ-nodes
unify values from differing basic blocks in traditional SSA. Figure 7a shows a simple bounded array indexing
operation. The ψ-SSA form for this code is shown in Figure 7b after if-conversion. The transformed code is
in single-assignment form and the if-statement conditional expression is stored in predicate register p1. The
ψ-node thus uses predicates to select between multiple possible values.

In the ψ-SSA form, ψ-nodes are equivalent to the sum of all incoming values multiplied by the associated
incoming predicate. ACF extends this notion by computing complex predicates through as much of the
program’s control-flow as necessary to obtain an expression that precisely captures all possible execution
traces. In other words, the ACF value for an expression is equal to a sum, where each summed element
corresponds to a control-flow path and has a value equal to the expression as computed along that path,
multiplied by the conditions required to execute that path.

For each execution of the code, a single predicate combination evaluates to 1 and all the other combi-
nations evaluate to 0. Through this transformation, ACF produces a symbolic equation for each expression
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43 void memcpy(char* tgt, char* src, size_t sz) {

44 int tx = threadIdx.x;

45 int dim = blockDim.x;

46 for(int i=0; i+tx<sz; i+=dim) {

47 char *tgtaddr = tgt + i + tx;

48 char *srcaddr = src + i + tx;

49 *tgtaddr = *srcaddr;

50 }

51 }

Figure 8: An example illustrating how ACF handles loops.

of interest. In essence, ACF is an alternative program representation, suited for analysis rather than actual
execution. ACF represents the value generated by each expression as a tree of arithmetic operations, con-
stants, and unknown values. For each expression of interest in a given CUDA kernel, ACF computes the
differences between the expression as it is evaluated by each thread. Threads are computed by substituting
constant thread identifiers, and simplification is performed by merging common predicates and eliminating
subexpressions that are not thread dependent. In practice, most differences statically evaluate to a con-
stant after simplification and thus can be used to determine if a tainted expression leads to either thread
divergence or non-coalesced accesses. Consider the example code in Figure 7a, which implements a bounded
array access. To compute the address accessed by each thread in Line 33, ACF analyzes all possible paths
through the function. In this case, there are two paths, corresponding to the if case or the else case. Let
v be a variable in the program. In ACF, the notation [v] indicates that v is represented symbolically, and
ACF(v) is the ACF value for v. A subscript indicates that a reference is thread-dependent, and specifies the
thread. The ACF value for addr on Line 33 is then defined as:

ACFt(addr) =

([threadIdx.xt] > 256) ∗ ([a] + 4 ∗ 256) +

([threadIdx.xt] ≤ 256) ∗ ([a] + 4 ∗ [threadIdx.xt])

Whenever possible, ACF replaces variable references with their definitions. For example, [threadIdx.xt]
is used instead of tx in the ACF representation of the code in Figure 7a. An unknown value, such as
[a] in Figure 7a, is represented symbolically. Given the ACF representation for the code in Figure 7a, a
consuming analysis may query for the difference between the addr returned by threads 0 and 1: ACF1(addr)−
ACF0(addr). The thread-dependence analysis determines which symbolic references, such as [a], are not
thread dependent. Such references cancel out in the computation of differences as follows:

ACF1(addr)−ACF0(addr)

= ((1 > 256) ∗ ([a] + 4 ∗ 256) + (1 ≤ 256) ∗ ([a] + 4 ∗ 1))

− ((0 > 256) ∗ ([a] + 4 ∗ 256) + (1 ≤ 256) ∗ ([a] + 4 ∗ 0))

= ([a] + 4)− [a]

= 4

To reason about loops, ACF has to handle loop induction variables. Similar to unknown variables,
ACF handles a loop induction variable iv symbolically, using the following notation: ACF(iv) = [iv]. For
instance, Figure 8 shows a simple parallel implementation for memcpy. The query ACF(srcaddr) is used
to determine the value of srcaddr. To solve this query, ACF captures the common behaviour across all
loop iterations, under the assumption that if values common within the loop are not thread dependent,
they will often cancel when a difference is calculated. ACF(srcaddr) is therefore calculated as follows:
ACFt(srcaddr) = [src] + [i] + [threadIdx.xt].
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52 int main() {

53 int x = b(4);

54 int y = a(x);

55 int z = b(y);

56 return y;

57 }

58 int a(int i) {

59 int ar = i - 16;

60 return ar;

61 }

62 int b(int j) {

63 int br = j + 8;

64 return br;

65 }

Figure 9: An example illustrating the need for Inter-procedural Arithmetic Control Form (IACF).

ACF treats the index variable [i] symbolically. If both the initialization expression and the reinitial-
ization expression for [i] are thread independent, then the value of [i] is also thread independent. Thus,
when computing the difference between expressions involving [i] for any loop iteration, the symbolic value
[i] disappears, resulting in either a constant distance between threads or a distance that depends either on
the thread identifier or on other symbolic variables.

To calculate the ACF representation for the function call c = f(〈args〉) with the return expression ret ,
GPUCheck first calculates ACF(ret), then replaces any arguments in ACF(ret) with the actuals in 〈args〉.
For the code example in Figure 9, ACF(y) is calculated as follows:

ACF(y) = ACF(a(x))

= [i]− 16

= ACF(x)− 16

ACF(x) = ACF(b(4))

= [j] + 8

= 12

ACF(y) = 12− 16 = −4

In this example, calls are resolved down the call stack. However, in many cases, branch divergence and
memory coalescing analyses require upward call resolution, because the analysis is performed inside a nested
function. For instance, in the example in Figure 9, what is ACF(br)? In ACF, the answer can only be
[j] + 8. To provide more precise results, an inter-procedural ACF is needed.

0.3.3 Inter-procedural Arithmetic Control Form (IACF)

To operate inter-procedurally, GPUCheck maps the actual arguments from a function call to the formal
parameters in the function definition. This mapping may lead to multiple ACF representations for a given
program expression—potentially one for each calling context.

Producing IACF requires an inter-procedural control-flow graph (ICFG). GPUCheck constructs a set
of IACF representations iteratively by first calculating the intra-procedural ACF representation of each
function. GPUCheck then inspects this representation for references to the function’s arguments. For
each reference to a function argument, GPUCheck identifies all non-recursive call sites to the function, and
substitutes the actual arguments for the formal parameters for each call site. This process continues until
all arguments corresponding to non-recursive function calls have been replaced. Similar to loop induction
variables, arguments to recursive calls remain symbolic references. Therefore, IACF generalizes over recursive
paths similar to looping paths, sacrificing some precision for performance.

For the example in Figure 9, the best approximation that the intra-procedural analysis produces for the
possible values of br in Line 63 is ACF(br) = [j] + 8. IACF produces a more precise result. IACF discovers
that there is a set of two possible values for br, because there are two calls to the function b(), b(4) in
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Line 53 and b(y) in Line 55.

IACF(br) = {[j] + 8}
= {ACF(4) + 8,ACF(y) + 8}
= {12, 4}

While IACF sets may grow arbitrarily large, GPU kernels tend to have small call graphs. In our exper-
imental evaluation with the Rodinia benchmark suite, which is representative of typical GPU applications,
we found that any computed IACF expression set has at most 6 expressions. Therefore, we believe that
IACF performs adequately for GPU code. In applications where memory space or computational time is
limited, ending IACF expansion when a set reaches a specified maximum size (similar to k-limiting [16])
allows for sacrificing precision to improve performance.

0.3.4 ACF for SSA Form

We have implemented a prototype for GPUCheck on top of the LLVM compiler infrastructure. Since the
release of gpucc [31], Clang is able to compile CUDA programs to LLVM IR. Using gpucc, GPUCheck can
operate on CUDA programs just like any other LLVM GPU language.

GPUCheck generates ACF on demand from LLVM’s SSA representation, which requires a memory-
dependence analysis and a control-dependence graph [10]. Given an expression e, the computation of ACF(e)
requires the computation of the ACF for each of the operands of e. GPUCheck memoizes the ACF for these
operands and makes them available when needed for future ACF computations. Once the ACF for all
operands of e is determined, arithmetic operations can be trivially converted to ACF to compute ACF(e).

Most SSA values deterministically compute a value from their operands, and so the equivalent ACF
expression is simply the same operation computed on the ACF of their operands. However, φ-nodes merge
values over multiple incoming control-flow paths by specifying a mapping of each predecessor basic block
to a value. To calculate the ACF expression for a φ-node, GPUCheck first calculates a predicate for each
predecessor basic block b that evaluates true iff the φ-node is immediately preceded at runtime by b. The
ACF value for the φ-node is then simply the sum of each predicate multiplied by the associated definition.

Let CDG(e) be the set of control dependences for an expression e, as determined by the program control-
dependence graph. Let cond(e) refer to the set of conditional expressions corresponding to each control
dependence in CDG(e) that results in the execution of e. Finally, let operand(x) denote the expression
operands to a φ-node x. To determine the value of a φ-node, the ACF representation for each operand
expression is multiplied against the ACF representation of each conditional expression cond(e) required to
reach that operand (Equation 2).

ACF(φ) =
∑

i∈operand(φ)

 ∏
c∈cond(i)

ACF(c)

 ∗ACF(i) (2)

If a φ-node contains a cyclic reference (e.g., loop induction variables), its ACF representation remains
symbolic (i.e., ACF(φloop) = [φloop]). Otherwise, for each operand, all conditions required to select that
value are converted to ACF representation, and multiplied against the value.

To resolve dependences between operations with memory, the generation of ACF requires a pointer-aware
memory-dependence analysis as presented by [15], that provides a set of dominating stores for each memory
load where possible. The prototype implementation uses LLVM’s MemDepAnalysis. If a dominating store
exists, the ACF representation uses the stored value to be used in place of the load instruction. Otherwise,
the load becomes a symbolic reference.

The memory-dependence analysis propagates the effects of the statements of a procedure on memory —
through an inter-procedural memory dependence analysis, on the local variables of the caller, and on global
variables.
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0.4 Detecting Divergent Behaviour

We have implemented the detection algorithms in GPUCheck using IACF expression sets. These algo-
rithms calculate differences between IACF expressions evaluated by different threads in a warp to detect
thread-dependent behaviour. IACF expressions typically contain many run-time references that the thread-
divergence analysis have determined to be thread independent. In the calculation of the difference between
two IACF expressions evaluated by different threads, thread-independent run-time references cancel out. In
many cases, the result of the difference is a constant offset between the accesses in two threads that can be
used for performance analysis.

0.4.1 Divergent-Branch Analysis

Divergent-branch analysis takes as input the set of thread-dependent conditional branches in the program
under analysis, as discovered by the thread-dependence analysis. To improve the precision of GPUCheck,
the analysis assumes a constant grid of 256 threads per block and 1 block per grid. Ideally, the actual
runtime grid would be used, but the grid is defined in host code and therefore not available during device-
code analysis. The use of a constant grid lead the analysis to report divergences that do not occur (false
positives) and also to miss actual divergences (false negatives), because some CUDA code may assume the
use of a particular grid geometry. Typical CUDA code queries hardware registers (gridDim, blockDim) and
adapts to arbitrary geometry, but if the source code expects a particular grid geometry then GPUCheck
may produce incorrect results. Given that the results produced by GPUCheck are used to raise warnings to
developers, risking producing incorrect results in some cases to improve precision or the common cases is a
reasonable tradeoff.

GPUCheck constructs IACF expression sets for each thread-dependent conditional branch. For each
IACF expression IACFt(e), and for each thread tx in a warp of threads t0 . . . t31, GPUCheck calculates the
difference IACFtx(e) − IACFt0(e). If a difference is non-zero, the warp of threads is branch divergent. If
a difference is a non-constant ACF expression, then GPUCheck is unable to determine the divergence of a
branch for that warp. GPUCheck calculates the divergence ratio for each branch over all warps as

warpsdivergent
warpstotal

.

The result of this analysis is, for each thread-dependent branch instruction, a range [dmin , dmax ] where dmin

is the minimum divergence ratio for the branch and dmax is the maximum divergence ratio. Thus, the range
[0,0] indicates that no branch divergence can ever occur, a [1,1] indicates that all warps diverge, and a range
[0,1] indicates that no information could be determined statically.

0.4.2 Non-coalescable Memory Access Analysis

GPUCheck uses IACF to bound the number of requests required to fulfill a memory operation that accesses a
thread-dependent address. The analysis in this paper only models accesses to global memory. Shared-memory
accesses require different access patterns for coalescing to occur. Moreover, penalties for non-coalescable
accesses are substantially lower in shared memory. Therefore, GPUCheck does not analyze shared-memory
accesses.

GPUCheck uses an address-space analysis to identify memory operations on pointers that may point to
global memory. Non-coalescable memory access analysis takes the set of thread-dependent addresses from
loads and stores that may point to global memory as input. Similar to divergent-branch detection, the
analysis assumes a constant grid to improve precision at the expense of possible unsound results. For each
IACF expression, and for each thread x, the analysis calculates the difference IACFtx(addr)− IACFt0(addr).
The calculated differences are either constant, in which case they are collected in a set C, or non-constant,
in which case they iterate a counter nonconst. There are two possible reasons for an IACF difference to not
be constant: (1) the IACF analysis is imprecise, leaving constant but unknown values in the expression; or
(2) the expression is dependent on run-time data that cannot be statically determined. For constant address
differences, all accesses within a 256-byte range can be coalesced into a common request. Figure 10 presents
the coalescing algorithm that GPUCheck uses to calculate the number of memory requests required for a
given memory access, given a set of constant offsets C and a number of non-constant accesses nonconst. The
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Function coalescedRequests(C, nonconst)
requests={ };
for c ∈ C do

fit = false;
for r ∈ requests do

if c ≥ r.low && c ≤ r.high then
fit = true;

else if c ≥ r.high - 256 && c ≤ r.high then
r.low = c;
fit = true;

else if c ≤ r.low + 256 && c ≥ r.low then
r.high = c + 8;
fit = true;

end
if fit 6= true then

requests.append( (low: c, high: c+8) );
end

end
return (requests.size, requests.size + nonconst);

Figure 10: Coalescing algorithm in GPUCheck.

algorithm computes the number of required requests by greedily calculating the minimum number of 256-
byte spans (from r.low to r.high) that can serve all of the constant offsets in C. This calculation is based on
the fact that complete coalescing only occurs when all the accesses are to the same 256-byte cache line. This
coalescing algorithm considers only the size of requests, and cannot identify when additional requests are
required because of unaligned addresses. This imprecision results from the canceling of symbolic values using
ACF thread differences. GPUCheck cannot determine the offset of base pointers shared between threads,
and therefore is unaware of access alignment. The result of this analysis, for each thread-dependent memory
access, is a [rmin , rmax ] range where rmin is the minimum number of memory requests — at least 1, and
rmax is the maximum number of memory requests — at most 32, required per warp. As full range [1,32]
indicates that no information is known statically. A range [1,4] indicates that all accesses will be coalesced,
and the range [32,32] indicates that no coalescing is ever possible.

0.5 Fast Static Detection of Previously Unknown Divergence Is-
sues Leads to Better Performance

The main goal of GPUCheck is to assist developers by detecting potential performance-limiting issues in
GPU programs at compile-time so that they can be eliminated to improve performance. Ideally, GPUCheck
would run every time code is compiled. Therefore, the analysis must be sufficiently fast to avoid interrupting
development.

This section reports on a performance evaluation of the LLVM GPUCheck prototype. This evaluation
uses the CUDA implementation of the Rodinia heterogeneous computing benchmarks [8], a benchmark suite
that captures a representative sample of GPU computing tasks.

Prior to GPUCheck, developers could only detect GPU performance issues through dynamic profiling:
executing programs against testing data, and recording characteristics of the execution. To facilitate pro-
filing, NVidia provides nvprof, a dynamic profiler. Both nvprof and GPUCheck identify non-coalesced
memory accesses and divergent branches. Additionally, nvprof detects a wide variety of other issues such
as determining overall occupancy [22].
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Table 1: Classification of thread-dependent branches in Rodinia benchmarks. Non-divergent indicates that
no warps ever diverge, partial divergence indicates that some warps definitely diverge, and Total divergence
indicates that all warps always diverge.

Benchmark Non-divergent Partial Divergence Total Divergence Unknown

backprop 1 1 0 2
bfs 0 0 0 6
b+tree 0 2 0 12
gaussian 1 0 0 0
heartwall 16 5 16 53
hotspot3D 2 0 0 2
hotspot 9 2 0 5
huffman 3 3 0 7
lavaMD 0 3 0 3
leukocyte 2 2 1 10
lud 0 5 0 0
myocyte 0 2 0 25
nn 0 0 0 1
nw 0 5 0 1
pathfinder 2 2 0 6
srad 8 8 0 2
streamcluster 0 0 0 2

Total 44 40 17 137

To provide a comparison, we profiled each Rodinia benchmark using nvprof, collecting all --analysis-metrics,
which includes branch divergence counters for each branch in the source code, dynamic memory coalescing
counters for each memory access in source code, as well as occupancy information and the dynamic in-
struction mix. Through debug information, assembly-level performance counters are associated with lines
in the original source. If nvprof reports a line as divergent, or a memory operation requiring at least four
requests, then that line is deemed either divergent or non-coalescable. An execution of GPUCheck converts
the software source into LLVM IR and links all device modules. GPUCheck analyses all branch instructions
and memory access operations. GPUCheck uses debug source information to report offending source lines.
The benchmarks are compiled using NVCC from CUDA 8 at optimization level -O2 with lineinfo included.
The benchmark generated code is executed and profiled on an NVidia Pascal Titan X, using a host system
running on an Intel i7-4770 with 32GB of RAM running CentOS 6. Seventeen benchmarks from the Rodinia
suite are analyzed — at the time of evaluation, the CUDA implementations of cfd, hybridsort, kmeans,
mummergpu, and dwt2d could not be compiled with Clang/LLVM because of its incomplete CUDA support,
and thus these benchmarks were not included in the evaluation. This evaluation addresses the following
questions:

• Q1: Does GPUCheck identify problems in common benchmarks?

• Q2: Does GPUCheck provide similar results to dynamic profiling?

• Q3: How many problems identified by GPUCheck reflect real performance opportunities?

• Q4: Is GPUCheck performant enough to be used during active development?

0.5.1 Q1: Does GPUCheck identify problems in common benchmarks?

We divide thread-dependent branches into four categories, based on the static range of possible divergence:
(1) Non-divergent branches never diverge within a warp; (2) Partial-divergence branches diverge in at least
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Table 2: Classification of thread-dependent memory accesses in Rodinia benchmarks. Coalesced indicates 4
or fewer memory requests required. Non-coalesced indicates that more than 4 requests are always required,
and unknown indicates that between 1 and 32 requests are required per warp.

Benchmark Coalesced Non-coalesced Unknown

backprop 1 0 17
bfs 10 0 4
b+tree 24 0 1
gaussian 1 0 6
heartwall 63 0 18
hotspot3D 10 0 11
hotspot 3 0 0
huffman 15 0 13
lavaMD 9 0 0
leukocyte 0 0 3
lud 11 0 0
myocyte 0 3 16
nn 5 0 0
nw 2 0 8
pathfinder 3 0 0
srad 17 0 8
streamcluster 6 0 3

Total 180 3 108

1 warp; (3) Total-divergent branches diverge in every warp; (4) Unknown represents branches with static
ranges spanning multiple categories, i.e. the result of the analysis is the range [0-0.5] indicating that the
branch may or may not be partially divergent.

This categorization is pragmatic. Total divergence is a separate category because it can cause dramatic
performance degradation. Table 1 shows that GPUCheck identifies 17 total branch divergences and 40
partial branch divergences across 14 of the 17 analyzed benchmarks. When thread-dependence comes solely
from thread identifiers and there are 256 threads per block the results produced by GPUCheck are sound.
Therefore, these 17 branches always diverge and result in a reduction of GPU performance. In addition
to these known divergences, GPUCheck also identifies thread-dependent branches with statically unknown
divergence behaviour. These branches are likely thread-dependent as well because data-dependent behaviour
is the primary reason for statically unknown branch behaviour. GPUCheck identified between 57 and 194
divergent branches, depending on the runtime behaviour of the unknown branches, and was able to determine
that 44 thread-dependent branches are definitely not divergent.

Each thread-dependent memory access is categorized as coalesced (rmax ≤ 4), non-coalesced (rmin > 4),
or unknown if GPUCheck’s computed range contains 4 requests/warp (rmin ¡ 4 ¡ rmax ). In the Nvidia Titan
X Pascal, a memory operation for a full warp requires 4 cycles to be dispatched. Thus, if a memory access
requires up to 4 requests/warp, that access does not increase the memory access latency. Table 2 shows the
memory coalescing behaviour as determined by GPUCheck. Across all the analyzed Rodinia benchmarks,
only three memory accesses were provably non-coalescable, all due to an extremely common pattern. The
code in Figure 11 to demonstrates this pattern. On Line 72, the array access is multiplied by a parameter,
Size, to create a 2-dimensional array access pattern. Unfortunately, the value of Size is not known at compile
time. On one hand, the occurrence of run-time values in benchmarks leads to GPUCheck reporting nearly
all non-coalescable accesses as unknown — only 3 of the 111 possible non-coalescable accesses are reported
as non-coalescable. On the other hand, GPUCheck is able to prove that 180 thread-dependent memory
accesses as definitely coalescable.

Although static analysis cannot precisely determine most non-coalescable accesses, the presence of un-
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known access patterns indicates a data-dependent address expression that is likely to be a non-coalescable
access. In the remainder of the evaluation, unknown divergence and unknown access patterns are reported
as problems identified by GPUCheck.

GPUCheck identifies between 59 and 304 divergent branches and non-coalescable accesses in the
popular Rodinia benchmark suite.

0.5.2 Q2: Does GPUCheck provide similar results to dynamic profiling?

Table 3 shows divergent branches and non-coalescable memory accesses as found by both the NVidia dynamic
profiler and by GPUCheck. Differences in methodology cause GPUCheck and nvprof to report different
but overlapping sets of divergency issues: GPUCheck cannot detect uncoalesced accesses caused by cache
misalignment, and reports potential branch divergence as a ratio of divergent warps per branch. By contrast,
nvprof measures branch divergence dynamically, so branches only a portion of threads in a warp are executing
may report different values. Due to these methodological differences, GPUCheck results are not a strict
superset of nvprof results. Further, nvprof reports divergence and coalescing issues using line numbers.
Thus this evaluation compares the line numbers where GPUCheck reports at least one issue with the ones
reported by nvprof. However, lines may contain multiple memory accesses, and thus the numbers reported
may not match those in Tables 1 and 2.

Ideally, both GPUCheck and nvprof would identify all possible issues in all benchmarks, however both
GPUCheck and nvprof have limitations. For a given instruction, nvprof aggregates across all executions.
For instance, a memory operation that generates 32 requests per warp (i.e., fully non-coalescable) 10% of
the time would be reported by nvprof as requiring 3 requests per access, while GPUCheck would correctly
identify the non-coalescable access. A similar strategy is used by nvprof for divergent branches. When
inspecting branches, GPUCheck and nvprof use different thresholds to identify divergence. GPUCheck
statically analyzes the branch condition per warp, reporting the branch as divergent when more than 40%
of warps are divergent, or if the thread-dependent branch condition is also based on a value that is not
known at compile time. By contrast, nvprof uses an unpublished threshold of all runtime executions of a
warp, causing occasional disagreement on whether a particular branch is divergent. For example, nvprof
does not report any non-coalescable accesses for the gaussian benchmark, where an 8.8% performance gain
can be achieved after fixing three non-coalescable accesses that GPUCheck reports (see Q3). Conversely, in
this evaluation non-coalescable accesses detected with nvprof, but not by GPUCheck, never in exceeds five
requests/warp, which leads to only marginal performance degradation.

As a static analysis tool, GPUCheck analyzes kernels and code paths that may never be executed at
runtime. This feature allows GPUCheck to identify performance issues throughout the code, while nvprof

is limited to code paths actually exercised by the provided workloads. Given that it is based in actual
execution of the program, nvprof can provide additional insight into the impact of various performance
issues by determining the percentage of runtime affected by each issue.

GPUCheck and nvprof are complementary: GPUCheck identifies additional performance oppor-
tunities ignored by nvprof, and can be used during development

0.5.3 Q3: How many problems identified by GPUCheck reflect real perfor-
mance opportunities?

For an analysis like GPUCheck that may miss issues and may report issues that are not real, a measurement
of precision and recall would be desirable. However, computing precision and recall requires a ground
truth that is not available for the issues addressed by GPUCheck. As the case studies reported in this
section will evidence, the decision on whether an issue is real or not is highly correlated with the skills
of the CUDA programmer that examines the issue reported. The best that we can do to address the
precision/recall question is to compare the issues reported by GPUCheck to those reported by nvprof,
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Table 3: Divergency issues found in the Rodinia Benchmark Suite. Black indicates an issue found only by
GPUCheck. White indicates an issue found only by nvprof. Grey indicates an issue found by both. The
adjacent fractions are the number of issues found by GPUCheck, over the total issues found.

Benchmark Divergent Branches Non-coalescable Accesses

backprop
3

3

7

8

bfs
4

4

4

4

b+tree
11

11

1

1

gaussian
3

3

3

3

heartwall
74

76

17

22

hotspot
4

4

0

2

hotspot3D
2

2

5

5

huffman
9

16

12

12

lavaMD
3

3

0

6

leukocyte
13

14

3

4

lud
5

5

0

0

myocyte
14

14

14

14

nn
1

1

0

1

nw
6

6

2

2

pathfinder
5

5

0

0

srad
12

12

8

8

streamcluster
2

2

2

4

15



66 __global__ void Fan1 ( ... ) {

67 int xidx =

68 blockIdx.x * blockDim.x + threadIdx.x;

69 if(xidx >= Size-1-t) return;

70 int off = Size*(t+1)+t;

71 m_cuda[Size*xidx+off] =

72 a_cuda[Size*xidx+off] / a_cuda[Size*t+t];

73

74 }

75 __global__ void Fan2( ... ) {

76 ...

77 if(yidx >= Size-1-t) return;

78 if(xidx >= Size-t) return;

79 ...

80 a_cuda[Size*xidx+yidx+off] -=

81 m_cuda[Size*xidx+off] *

82 a_cuda[Size*t+yidx+t];

83 if(yidx == 0) {

84 b_cuda[xidx+1+t] -=

85 m_cuda[Size*xidx+yidx+off] *

86 b_cuda[t];

87 }

Figure 11: Original gaussian kernel functions (edited for clarity).

the Nvidia dynamic profiler. Using case studies, we establish that issues raised by GPUCheck represent
real performance issues. We investigate and repair four benchmarks (gaussian, lavaMD, nw, and srad) to
demonstrate the performance gains that may be obtained by acting on GPUCheck reports. For each of these
benchmarks, we fixed any issues detected by GPUCheck, and executed both our modified and the original
code three times each on our experimental machine, interleaving executions. We measure speedups over
mean kernel execution time, ignoring the negligible variance.

Gaussian Elimination (gaussian)

The gaussian benchmark in the Rodinia benchmark suite uses two kernels, Fan1 and Fan2, to solve for
variables in a linear system of arbitrary size. Figure 11 shows simplified excerpts of both kernels. GPUCheck
identifies non-coalesced memory accesses in Fan1 at Line 72 and in Fan2 at Line 81 and Line 85, both missed
by nvprof. nvprof identifies divergent branches at boundary checks in Fan1 and Fan2, because the grid
geometry of threads and blocks is not an exact match for the problem size. Better tuning of the grid to
match the problem size may improve performance but we deliberately exclude such branch divergences as
performance impact is likely to be limited. Instead, we concentrate on the 6 non-coalescable (unknown)
accesses picked up only by GPUCheck.

In Fan1, the first element in each row of the matrix is initialized by a thread. The access stride by
adjacent threads is the width of a row, because the matrix is stored in row-major format. Changing the
indexing of the matrix to column-major format allows these accesses to be coalesced. With this change,
Fan1 initializes adjacent elements in each thread. When changing storage schemas, it is often necessary to
consider how other accesses will be affected. Fan1 and Fan2 operate on the same matrix, thus the access
pattern in Fan2 is also changed by this transformation.

Fortunately, Fan2 is a two-dimensional CUDA kernel. Reversing the matrix storage schema in Fan2 is
equivalent to exchanging the x and y thread dimensions in the kernel. We do not present the modified code
here, because the modifications are straightforward changes to the array indexing operations by swapping
threadIdx.x and threadIdx.y.

After applying the modifications based on the output of GPUCheck, Fan1 runs 11.5% faster and Fan2 runs
5.9% faster than the original code. Overall, the gaussian kernels complete 8.8% faster. The 6 non-coalescable
memory accesses reported by GPUCheck are not detected by nvprof, and were previously undetectable by
automated means. All 6 represent real non-coalescable accesses.
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88 int wtx = threadIdx.x;

89 ...

90 while(wtx<NUMBER_PAR_PER_BOX){

91 rA_shared[wtx] = rA[wtx];

92 wtx = wtx + NUMBER_THREADS;

93 }

Figure 12: Extract from lavaMD demonstrating buffering in shared memory.

LavaMD (lavaMD)

LavaMD is an N-body computation for simulating molecular dynamics interactions. It was originally pro-
duced by the Lawrence Livermore National Laboratory, and is derived from the ddcMD application, which
performs the same computation sequentially. The lavaMD benchmark’s kernel makes heavy use of shared
memory buffers, copying memory in tiles for efficient memory access patterns as shown in Figure 12. How-
ever, the buffer size NUMBER PAR PER BOX is carried over from previous CPU implementations, and set to 100
in the original benchmark. By contrast, this kernel is launched with 128 threads, leaving nearly a quarter of
threads idle through these loops.

Both GPUCheck and nvprof identify the loop at Line 90 in Figure 12 as a source of branch divergence,
repeating in 4 locations. We fixed this issue by modifying the shared memory buffers and number of threads
per block to 96 elements. By using a power of two for the shared memory sizes, the allocations divide evenly
into the device’s shared memory space, improving utilization. Additionally, reducing the number of idle
threads allows more throughput per thread. With only these values changed, the lavaMD kernel executes
25.6% faster. We are unsure why nvprof missed 1 of There are 6 additional non-coalescable memory accesses
detected by nvprof, caused by poor memory alignment while copying data to shared memory. GPUCheck
missed these accesses, because it currently cannot identify alignment issues.

Needleman-Wunsch (nw)

Needleman-Wunsch is an algorithm from the field of bioinformatics used to align proteins and nucleotides.
The implementation in the Rodinia benchmark suite executes as a tiled matrix computation with a halo.
Figure 13 shows the halo initialization from the original kernels. GPUCheck identifies the northwest corner
setup on Line 94 as a point of divergence, and both GPUCheck and nvprof identify the west column setup
on Line 98 as a non-coalesced access.

The divergence can be resolved by allowing all threads within the first warp to setup the corner, providing
a small improvement by avoiding divergence. In this case, the non-coalesced access cannot be fixed, because
threads must read across both rows and columns of the matrix. Performance can still be improved, because
this non-coalesced access is tightly synchronized. The synchronization points above and below this access
hurt performance, because all threads in the block must wait while the access completes. A cursory inspection
shows that all threads write to different elements of temp, and thus all of the halo setup can be synchronized
together, eliminating extra synchronization in Lines 97 and 99. By providing other warps with work to
perform while resolving each non-coalesced access, performance can still be improved.

GPUCheck finds an additional 5 partial divergences due to a triangular loop, which cannot be easily
removed, but are nonetheless true divergent branches.

Applying both transformations makes the nw kernels execute 5.5% faster.

Speckle Reducing Anisotropic Diffusion (srad)

The srad algorithm attempts to remove correlated noise, or speckles from imagery without destroying un-
derlying information. This algorithm has applications in various imaging technologies such as ultrasound or
radar.
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94 if (tx == 0)

95 temp[tx][0] = matrix_cuda[index_nw];

96 ...

97 __syncthreads();

98 temp[tx + 1][0] = matrix_cuda[index_w + cols * tx];

99 __syncthreads();

100 temp[0][tx + 1] = matrix_cuda[index_n];

101 __syncthreads();

Figure 13: Original halo computation in nw kernels.

Table 4: Execution time for GPUCheck vs dynamic profiling. Branches and accesses show the number of
instructions requiring ACF analysis over all instructions analyzed.

Benchmark Branches Accesses GPUCheck Time (s) Profiling Time (s)

backprop 4/13 18/145 0.14 2.38
bfs 6/12 14/67 0.12 24.38
b+tree 14/33 25/214 0.30 4.73
gaussian 4/9 7/69 0.09 5.02
heartwall 90/258 81/1364 5.53 281.23
hotspot 16/48 3/194 0.26 1.86
hotspot3D 4/16 21/195 0.43 105.55
huffman 13/41 28/277 0.28 41.26
lavaMD 6/29 9/162 0.15 21.16
leukocyte 15/66 3/332 0.21 57.79
lud 5/77 11/272 0.29 36.36
myocyte 27/4216 19/7499 1.25 1880.55
nn 1/2 5/32 0.09 1.37
nw 6/50 10/280 0.19 201.21
pathfinder 10/37 3/111 0.14 6.73
srad 18/58 25/540 0.53 8.04
streamcluster 2/9 9/82 0.13 2080.28

One step of the srad computation calculates a coefficient of diffusion c, a value between 0 and 1, based
on a stencil of nearby values. GPUCheck identifies branch divergence in this code, pointing to repeated
conditional memory operations as shown in Figure 1 on Lines 3, 4, and 5. Figure 2 presents our modified
code that uses arithmetic min and max, which have single-instruction implementations on the GPU, to
remove the conditional behaviour entirely. Our modified srad kernel executes 30.8% faster. Dynamic
profiling through nvprof fails at detecting this issue, which is representative of the performance gains from
repairing branch divergence problems using GPUCheck. The benchmark srad contains a second kernel, in
which GPUCheck found no issues, thus the overall srad kernel execution time is improved by 15.7%.

Fixing the performance issues as reported by GPUCheck in 4 sample Rodinia benchmarks led to
improving GPU kernel performance by 5.5–25.6% in terms of execution time. No reported issues
were false positives, though not all could be repaired without major algorithmic reworking.
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0.5.4 Q4: Is GPUCheck performant enough to be used during active develop-
ment?

GPUCheck is intended to be used actively during the development of GPU algorithms and applications.
Therefore, the performance of the analysis is important. The analysis time reported for each benchmark
consists of the time for the branch divergence, memory coalescing, and supporting analyses. These times
are representative if the application is typically compiled using Clang/LLVM, allowing GPUCheck to raise
warnings during compilation.

Table 4 shows the execution time required for each benchmark. GPUCheck completes its analysis in
90 milliseconds to 5.5 seconds for each benchmark, with an arithmetic mean analysis time of 596 milliseconds,
typically within Nielsen’s recommended threshold for interactive user interfaces [21]. Therefore, GPUCheck
can be integrated seamlessly into existing development environments, without adding much overhead to the
normal workflow of developers. By contrast, nvprof requires an arithmetic mean of 4.7 minutes to collect
the required profiling information (min: 1.37 seconds, max: 34.67 minutes, arithmetic mean: 4.667 minutes),
with a total of 1.4 hours for all benchmarks. The notable outlier is heartwall, where GPUCheck executes
for over 5s — but for which nvprof needs 4 minutes. The heartwall benchmark program contains a large
number of thread-dependent code paths, leading to ACF expressions being generated for 171 expressions. By
comparison, only 46 expressions are inspected in myocyte. Most interestingly, GPUCheck analysis time and
nvprof profiling time are uncorrelated. GPUCheck scales with thread-dependent code size, while nvprof

scales with execution time.

GPUCheck is substantially faster than nvprof, with mean benchmark analysis time under one
second.

0.6 The ACF Analysis Distinguishes GPUCheck from Alternative
Approaches to Divergency Detection

Automated tools exist for most programming languages to detect common programming mistakes [17, 6, 9].
Such tools make use of static analysis techniques to verify correct program behaviour. This section intently
narrows the discussion to highlight prior work on detecting branch divergence and non-coalescable memory
accesses for GPU kernels.

[26] propose a conservative divergent-branch analysis over affine expressions on thread identifiers, now
implemented within LLVM. An extension to their work generalizes to divergent values throughout a GPU
kernel. In contrast, GPUCheck does not require affine expressions, and can solve for non-linear conditions.
The ACF framework used by GPUCheck allows for non-linear relationships and conditional, inter-procedural
data flow to be accurately and precisely modelled.

Transforming non-coalesceable memory accesses into coalesced accesses has been an active subject of
research. [30] show that given perfect knowledge of memory access layouts, minimizing non-coalesced accesses
is an NP-hard problem. However, the authors do not consider what analysis might be used to generate such
layouts. GPUCheck is well-suited to perform such a task. Affine polyhedral models have also been used
to transform memory accesses [4, 29]. [28] have recently extended the polyhedral model to include limited
non-affine expressions. The ACF framework, and therefore GPUCheck, can compute arbitrary non-affine
expressions, and maintain precision through arbitrary function calls. ACF is also being implemented in an
industrial-strength compiler to guide GPU loop transformations for memory coalescing [Citation omitted for
blind review].

[11] present an approach that requires dynamic analysis to identify non-coalesced accesses using memory
traces. Their work generates high-accuracy results, but requires the analysed kernels to be executed, suffering
from the same issues as any dynamic profiler. On the other hand, GPUCheck runs its analysis without even
a GPU present, by calculating inter-thread behaviour. Integrating GPUCheck in a development framework
and reporting potential performance issues at compilation time, allows programmers to fix problems while

19



their implementation is fresh in their minds, and there is no need to wait until the actual execution of a
GPU program.

0.7 GPUCheck Efficiently Uncovers Performance Issues Early

GPUs enable power-efficient parallel processing, and are becoming increasingly popular to accelerate scientific
applications. However, GPUs are subject to two well-known performance problems: branch divergence and
non-coalescable accesses. In this paper, we introduce GPUCheck, a static analysis tool that reasons about
GPU program behaviour. Compared to dynamic profiling, GPUCheck has the following advantages:

1. ACF is a framework for reasoning about parallel behaviour in the presence of unknown values and
arbitrary control-flow. GPUCheck leverages these abilities to uncover GPU performance issues at
compile-time.

2. GPUCheck’s analysis time scales with the code size, while profiling time scales with actual program
execution time. The difference in times can be very significant, because GPU programs tend to be
highly parallel.

3. Since GPUCheck uses static analysis, it needs no test data and takes into consideration all possible
executions through the code. In contrast, profiling can detect only issues that actually occur in the
test data.

4. GPUCheck does not require a physical GPU to identify problems, because it does not execute GPU
code. When there is competition for the use of GPU computation, GPUCheck frees up more GPU
time for useful work.

GPUCheck detects branch divergences and non-coalescable memory accesses on 17 programs from the
Rodinia benchmark suite. Fixing those issues improves performance, in terms of execution time, by 5.5–
25.6%. An LLVM-based prototype demonstrates that GPUCheck is complementary to dynamic profiling,
and represents a strong foundation on which future analysis of parallel systems can be built.
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