University of Alberta

Preparation of para-disubstituted benzenes, formation of optically pure cyclic amines by intramolecular conjugate displacement and total synthesis of marinopyrrole B
by

Ping Cheng

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry
© Ping Cheng
Spring 2013
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

DEDICATED TO
MY PARENTS AND MY HUSBAND XI HU

Abstract

The first chapter of this thesis describes a method for making paradisubstituted benzenes. The process involves reaction of acetylides with aldehydes to give 1,4-diols, triple bond reduction and oxidation of the resulting 1,4-diols to 1,4 -diketones. Treatment of the 1,4-diketones with vinylmagnesium bromide, followed by ring-closing metathesis and dehydration, affords paradisubstituted benzenes. The method was applied to the synthesis of C5-aryl carbohydrates.

The second chapter describes an intramolecular conjugate displacement (ICD) between a nitrogen nucleophile and a Morita-Baylis-Hillman acetate with a chiral auxiliary for making optically pure cyclic amines. Removal of the chiral auxiliary from the ICD products with DIBAL-H provides optically pure six- or seven-membered cyclic amines having a stereogenic center α to nitrogen.

The last chapter of this thesis describes the first total synthesis of the marine antibiotic alkaloid, marinopyrrole B, which shows very strong activity against methicillin-resistant Staphylococcus aureus. It is known that marinopyrrole B can not be made directly by bromination of marinopyrrole A , and so bromination of one pyrrole unit at an early stage was the basis of my successful route. The nitrogen of the brominated pyrrole was alkylated with a Michael acceptor having an allylic leaving group, and the product was then modified to construct the second pyrrole via a Paal-Knorr reaction. The nitrogen of the resulting 1,3'-bipyrrole was then protected, followed by addition of an

appropriate Grignard reagent, oxidation and deprotection reactions, to obtain a 1,3'-bipyrrole with two aromatic carbonyl groups. Finally, dichlorination and demethylation generated racemic marinopyrrole B.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. D. L. J. Clive for his superb guidance and constant encouragement during the course of my Ph.D. program, and for his assistance during the preparation of this Thesis.

Many thanks to all group members, past and present, for their friendship and assistance. I would specially thank Dr. Lihong Wang and Dr. Zhenhua Chen for helping me during my research.

My thanks are also extended to the support staff of the department (IR, MS, NMR, elemental analysis laboratories, glass blowing, electronic, machine and chemical shops), especially to Dr. R. McDonald for the X-ray measurements.

Finally, I would like to thank my parents, sisters, brother and my husband Xi Hu for their support and encouragement.

TABLE OF CONTENTS

Chapter 1 1

1. Introduction 2
1.1. General 2
1.2. Formation of aromatic rings via a formal [3+3] cyclization 2
1.3. Formation of aromatic rings via a [4+2] annulation strategy 6
1.4. Formation of aromatic rings via ring-closing metathesis 8
1.5. Other methods for making aromatic rings 13
2. Results and Discussion 16
2.1. Research objectives. 16
2.2. Preparation of 1,4-diketones 16
2.3. Preparation of para-disubstituted benzenes. 19
3. Conclusion 23
4. Experimental 24
5. References 39
Chapter 2 42
6. Introduction 43
1.1. General 43
1.2. Existing methods of making cyclic amines with stereogenic centers α to nitrogen 43
1.3. Intermolecular and intramolecular conjugate
displacements 48
7. Results and Discussion 66
2.1. Research objectives. 66
2.2. Preparation of lactones corresponding to $\mathbf{3 0 . 1}$ 67
2.3. Preparation of amino aldehydes corresponding to
30.2 68
2.4. Coupling of the aldehydes with the chiral
lactones 74
2.5. Intramolecular conjugate displacement 78
2.6. Reduction of the ICD products 84
8. Conclusion 86
9. Experimental 87
10. References 165
Chapter 3 171
11. Introduction 172
1.1. General 172
1.2. Isolation and structural elucidation of the marinopyrroles 173
1.3. Reactivity of the marinopyrroles 176
1.4. Early synthetic studies on the marinopyrroles by the Fenical group 179
1.5. First total synthesis of (\pm)-Marinopyrrole A and its analogs 183
1.6. Second total synthesis of (\pm)-Marinopyrrole A 187
1.7. Third total synthesis of (\pm)-Marinopyrrole A and analogs 192
1.8. Synthesis of asymmetrical marinopyrrole analogs by the Li group 195
1.9. Biological activity and mode of action of the marinopyrroles 196
12. Results and Discussion 201
2.1. Research objectives 201
2.2. Synthetic studies on marinopyrrole B 201
13. Conclusion 217
14. Experimental 218
15. References 252

LIST OF FIGURES

Chapter 2

Figure 1. ORTEP diagram of $2 R$ isomer of 31.5 68
Figure 2. ORTEP diagram of 39.1a. 77
Figure 3. ORTEP diagram of $\mathbf{4 0 . 1}$ 80
Figure 4. ORTEP diagram of $\mathbf{4 0 . 5}$. 81
Figure 5. ORTEP diagram of $\mathbf{4 0 . 6}$ 82
Chapter 3
Figure 1. ORTEP diagram of $\mathbf{3 2 . 3}$ 211
Figure 2. ORTEP diagram of $\mathbf{3 0 . 1}$ 211
Figure 3. ORTEP diagram of the more polar 35.4 215
Figure 4. ORTEP diagram of $(\pm) \mathbf{- 1 . 2}$. 216

LIST OF SCHEMES

Chapter 1

Scheme 1 2
Scheme 2 3
Scheme 3 4
Scheme 4 5
Scheme 5 6
Scheme 6 6
Scheme 7 7
Scheme 8 8
Scheme 9 9
Scheme 10 10
Scheme 11 11
Scheme 12 12
Scheme 13 13
Scheme 14 13
Scheme 15 14
Scheme 16 15
Scheme 17 16
Scheme 18 17
Scheme 19 18
Scheme 20 18
Scheme 21 19
Scheme 22 20
Scheme 23 21

Chapter 2

Scheme 1 44
Scheme 2 45
Scheme 3 46
Scheme 4 47
Scheme 5 49
Scheme 6 49
Scheme 7 50
Scheme 8 50
Scheme 9 51
Scheme 10 52
Scheme 11 53
Scheme 12 54
Scheme 13 55
Scheme 14 55
Scheme 15 56
Scheme 16 57
Scheme 17 58
Scheme 18 58
Scheme 19 59
Scheme 20 60
Scheme 21 60
Scheme 22 61
Scheme 23 62
Scheme 24 62
Scheme 25 63
Scheme 26 63
Scheme 27 64
Scheme 28 65
Scheme 29 65
Scheme 30 66
Scheme 31 67
Scheme 32 69
Scheme 33 69
Scheme 34 70
Scheme 35 71
Scheme 36 72
Scheme 37 73
Scheme 38 74
Scheme 39 75
Scheme 40 79
Scheme 41 83
Scheme 42 84

Chapter 3

\qquadScheme 1173
Scheme 2 175
Scheme 3 176
Scheme 4 178
Scheme 5 179
Scheme 6 180
Scheme 7 181
Scheme 8 182
Scheme 9 183
Scheme 10 184
Scheme 11 185
Scheme 12 186
Scheme 13 188
Scheme 14 188
Scheme 15 189
Scheme 16 190
Scheme 17 191
Scheme 18 191
Scheme 19 192
Scheme 20 193
Scheme 21 194
Scheme 22 194
Scheme 23 195
Scheme 24 196
Scheme 25 202
Scheme 26 203
Scheme 27 204
Scheme 28 205
Scheme 29 207
Scheme 30 208
Scheme 31 209
Scheme 32 210
Scheme 33 212
Scheme 34 212
Scheme 35 213
Scheme 36 216

LIST OF TABLES

Table 1. Biological activity of marinopyrroles and analogs
 197

Table 2. Biological activity of marinopyrrole A and analogs............................ 198
Table 3. MIC $(\mu \mathrm{M})$ of marinopyrrole derivatives against MRSA 199

LIST OF ABBREVIATIONS

Ac	Acetyl
Ar	Aromatic ring
9-BBN	9-Borabicyclo[3.3.1]nonane
Bn	Benzyl
Boc	tert-butoxycarbonyl
brsm	Based on recovered starting materials
Bu	n-Butyl
${ }^{t} \mathrm{Bu}\left(\right.$ or $t-\mathrm{Bu}$ or Bu^{t} or $\mathrm{Bu}-t$)	tert-Butyl
CD	Circular dichroism
Cbz	Benzyloxycarbonyl
COSY	Correlation spectroscopy
DABCO	1,4-Diazabicyclo[2.2.2]octane
dba	Dibenzylidene acetone
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCC	N, N-Dicyclohexylcarbodiimide
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
de	Diastereomeric excess
DEAD	Diethyl azodicarboxylate
$(\mathrm{DHQD})_{2} \mathrm{PHAL}$	Hydroquinidine 1,4-phthalazinediyl diether
DIBAL-H	Diisobutylaluminum hydride
DMA	N, N-Dimethylacetamide
DMAP	4-(Dimethylamino)pyridine

DMF	N, N-Dimethylformamide
DMP	Dess-Martin periodinane
DMSO	Dimethyl sulfoxide
dr	Diastereomeric ratio
ee	Enantiomeric excess
Et	Ethyl
EWG	Electron-withdrawing group
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High-performance liquid chromatography
HSQC	Heteronuclear Single Quantum Coherence
IBX	2-Iodoxybenzoic acid
IC_{50}	Concentration that gives 50\% inhibition of an
	enzyme
ICD	Intramolecular conjugate displacement
LAH	Lithium aluminum hydride
LDA	Lithium diisopropylamide
LG	Leaving group
MBH	Morita-Baylis-Hillman
Me	Methyl
MIC	Minimum inhibitory concentration is the lowest
	concentration of a drug in $\mu \mathrm{g} / \mathrm{mL}$ that inhibits the
	visible growth of a strain of bacteria
MIC_{50}	Minimum concentration of an antimicrobial

agent which inhibits 50% of the bacteria being tested
MIC_{90}
mp
MRSA
MS
NBS
NCE

NCS
NIS

NMO
NMP

NMR
Nu
ORTEP

PCC
Ph
PPTS
$i-\operatorname{Pr}$
pyr
rr

Minimum concentration of an antimicrobial agent which inhibits 90% of the bacteria being
tested
Melting point
Methicillin-resistant Staphylococcus aureus
Molecular sieves
N -Bromosuccinimide
New chemical entity
N -Chlorosuccinimide
N-Iodosuccinimide
N-Methylmorpholine- N -oxide
N-Methyl-2-pyrrolidone
Nuclear magnetic resonance
Nucleophile
Oak Ridge Thermal Ellipsoid Plot
Pyridinium chlorochromate
Phenyl
Pyridinium p-toluenesulfonate
Isopropyl
Pyridine
Regioisomer ratio
rt

Tf

THF
TLC
TMS
TPAP
Ts

TsOH

Room temperature
Trifluoromethanesulfonyl
Tetrahydrofuran
Thin layer chromatography
Trimethylsilyl
Tetrapropylammonium perruthenate
p-Toluenesulfonyl
p-Toluenesulfonic acid

Chapter 1

Conversion of 1,4-Diketones into para-Disubstituted

Benzenes

1. Introduction

1.1 General

Making aromatic rings has been studied by chemists for many years and a number of different methods for constructing aromatic rings, which can be used to prepare aromatic systems existing in natural products, have been developed. ${ }^{1}$ Some of the recent methods for the preparation of aromatic rings will be described in this Introduction. ${ }^{2-8}$

1.2 Formation of aromatic rings via a formal [3+3] cyclization

Langer and coworker found that when the silyl enol ether 1.1 and 1,1diacetylcyclopropane (1.2) were treated with TiCl_{4}, the functionalized salicylic ester 1.4 was obtained in moderate to good $(44-82 \%)$ yield. ${ }^{2 \mathrm{a}}$ They proposed that the intermediate 1.3 was formed first, and then a TiCl_{4}-mediated homoallyl

Scheme 1
rearrangement, followed by elimination of water, generated the substituted benzene 1.4. Intermediate 1.3 was isolated when only $0.5-0.7$ equivalents of TiCl_{4} was used. When TiBr_{4} was used instead of TiCl_{4}, a similar result was observed.

When one carbonyl group of the 1,3-diketone component was silylated (Scheme 2), the formal $[3+3]$ cyclization reaction also worked. ${ }^{2 b}$ In this case the use of high concentrations resulted in improved yields. The 3-chlorosalicylate 2.3 was formed via TiCl_{4}-mediated isomerization of $\mathbf{2 . 2}$, followed by conjugate addition and cyclization reactions. When compound 2.4, instead of the 1,3diketone, was used in the reaction, the corresponding substituted phenol 2.5 was produced in 30% yield. ${ }^{2 b}$ Langer and coworkers proposed that this cyclization occurred via conjugate addition of $\mathrm{C}(4)$ of $\mathbf{2 . 1}$ onto $\mathbf{2 . 4}$, followed by a Mukaiyama-aldol reaction.

Scheme 2

Langer and coworkers also found that the trifluoromethyl-substituted benzene 3.3 could be formed via the TiCl_{4}-mediated formal [3+3] cyclization. ${ }^{2 \mathrm{c}}$ The yield of $\mathbf{3 . 3}$ was affected by the concentration of the reaction mixture, the temperature and the stoichiometry. The best result was obtained when the reaction mixture was slowly warmed from $-78{ }^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, and highly concentrated solutions and 2 equivalents of $\mathbf{3 . 1}$ were used. Possibly, TiCl_{4-} mediated oxidative dimerization of the diene $\mathbf{3 . 1}{ }^{9}$ made 2 equivalents necessary.

3.6

Scheme 3

When compounds 3.4 and $\mathbf{3 . 2}$ were treated with $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ rather than TiCl_{4}, totally different products were obtained. When there was no
substituent on $C(4)$ of $\mathbf{3 . 4}$, the pyran-4-one $\mathbf{3 . 5}$ was produced. When $C(4)$ of $\mathbf{3 . 4}$ carried an alkyl group or chlorine atom, the cyclohexenone 3.6 was generated because of steric hindrance due to the substituent at $C(4)$ of $\mathbf{3 . 4}$. In contrast to the TiCl_{4}-mediated cyclization, this $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$-mediated reaction gave highest yields when dilute solutions were used.

When 2-alkyl-1,1,3,3-tetraethoxypropanes 4.2 were subjected to the $\mathrm{TiCl}_{4}-$ mediated [3+3] cyclization reaction with 1,3-bis silyl enol ethers 4.1, similar results were obtained. ${ }^{2 d}$

Scheme 4

Kim and coworkers reported that highly substituted phenols could be prepared from Baylis-Hillman adducts via a [3+3] annulation reaction. ${ }^{3 a}$ One example is shown in Scheme 5. The Baylis-Hillman acetate $\mathbf{5 . 1}$ was treated with the 1,3-dinucleophilic compound $\mathbf{5 . 2}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to afford the substituted phenol derivative 5.4 via an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, aldol condensation, keto-enol tautomerization and $1,3-\mathrm{H}$ shift.

Scheme 5

1.3 Formation of aromatic rings via a [4+2] annulation strategy

In addition to the TiCl_{4}-mediated $[3+3]$ cyclization reaction, Langer and coworkers also reported a [4+2] cycloaddition and used it to form substituted phenols (Scheme 6). ${ }^{2 e}$ The [4+2] cyclization between diene 6.1 and allene 6.2 gave the regioselectively chlorinated phenol $\mathbf{6 . 3}$ in 64% yield. The product $\mathbf{6 . 5}$ was obtained via a similar process. This method provides a good way to prepare

Scheme 6
regioselectively chlorinated benzene derivatives which are not available by direct chlorination of the corresponding benzoate.

Kim and coworkers also synthesized in a regioselective manner some polysubstituted benzene derivatives via a [4+2] annulation strategy. ${ }^{3 b}$ Compound 7.1, which was prepared from the corresponding Baylis-Hillman acetate and nitroethane, was used as starting material and treated with the β-substituted Michael acceptor 7.2 in the presence of $\mathrm{Bu}_{4} \mathrm{NF}$ to afford the cyclic intermediate 7.3 in 80% yield as a mixture of diastereomers. Refluxing a mixture of 7.3 and p TsOH in PhH gave 7.4 as a mixture of two isomers (syn/anti), confirming the structure of 7.3. Finally, elimination of HNO_{2} and isomerization of the exodouble bond generated the substituted benzene 7.5.

$p-\mathrm{TsOH}, \mathrm{PhH}$
reflux, 10 min
56% over 2 steps $_{\downarrow} \downarrow$

7.5

7.4

Scheme 7

By heating a mixture of diene 8.1 and dienophile 8.2, Danishefsky and coworkers synthesized the polysubstituted aromatic compound $\mathbf{8 . 3}$ as the only product via Diels-Alder reaction. ${ }^{4}$ They found that the reaction proceeded under kinetic control, by monitoring the progress of the reaction at different temperatures by ${ }^{1} \mathrm{H}$ NMR spectroscopy. They also found that the cyclization occurred at the ynoate site of the dienophile, and the regioselectivity was controlled by the olefinic ester group. Computational studies on the four possible transition states for the reaction, led to predictions consistent with the experiment results, and also showed that acetylenes with two electron-withdrawing groups were more reactive in Diels-Alder reactions than ethylenes with two electronwithdrawing groups.

Scheme 8

1.4 Formation of aromatic rings via ring-closing metathesis

Kotha and coworker reported a methodology for benzannulation using ring-closing metathesis as a key step. ${ }^{5 \mathrm{a}} O$-Allylation of the p-benzenediol 9.1, followed by double Claisen rearrangement, gave compound 9.2. Attempts to apply the ring-closing metathesis reaction to 9.2 using Grubbs' catalysts (Grubbs I^{10} and Grubbs II^{11} catalysts) failed, probably due to coordination of the phenolic

OH groups with the catalyst. After protecting the OH groups by alkylation with MeI, the product 9.3 was subjected to ring-closing metathesis using Grubbs I catalyst, ${ }^{10}$ and then DDQ oxidation generated the desired substituted benzene $\mathbf{9 . 4}$ in 49% yield over two steps.

Scheme 9

Yoshida and coworker prepared a variety of substituted phenols $\mathbf{1 0 . 3}$ using ring-closing olefin metathesis. ${ }^{5 b}$ When compounds $\mathbf{1 0 . 4}$ and $\mathbf{1 0 . 5}$ were treated with Grubbs II catalyst, ${ }^{11}$ none of the desired phenol was formed, probably due to oligomerization. Heating $\left(80^{\circ} \mathrm{C}\right)$ a mixture of $\mathbf{1 0 . 8}$ and Grubbs II catalyst ${ }^{11}$ in PhMe gave the expected phenol derivative $\mathbf{1 0 . 1 0}$ in good yield.

Scheme 10

Yoshida and coworkers also found that the substituted styrenes $\mathbf{1 1 . 2}$ could be produced by treating acyl-protected enyne substrates $\mathbf{1 1 . 1}$ with Grubbs II catalyst, ${ }^{11}$ followed by dehydration under acidic conditions. ${ }^{5 c}$ When the substrate contained an OH group instead of an OAc group, the yield decreased dramatically to 9%, a large amount of the substrate being recovered from the ring-closing metathesis step. When a different type of enyne $\mathbf{1 1 . 3}$ was used under similar conditions, the expected styrene 11.4 was obtained in good yield (74%).

11.1

Scheme 11

In order to improve the synthesis of substituted styrenes, Yoshida and coworkers subjected compounds $\mathbf{1 2 . 1}$ to ring-closing metathesis without acyl protection of the hydroxyl group in $\mathbf{1 2 . 1} .^{5 d}$ A variety of substituted styrenes $\mathbf{1 2 . 2}$ were prepared under both nitrogen and ethylene atmospheres (29-90\% yield under N_{2}, and $28-84 \%$ yield under $\mathrm{C}_{2} \mathrm{H}_{4}$). The results revealed that the yields were higher for reactions run under ethylene than under nitrogen in most cases. The OH group in $\mathbf{1 2 . 1}$ was then oxidized, and the resulting ketones were treated with Grubbs II catalyst ${ }^{11}$ to give 4 -vinylphenols $\mathbf{1 2 . 4}$ under both nitrogen and ethylene atmospheres, after tautomerization. It was found that reactions under ethylene provided the desired products in high yields in most cases.

12.1

12.2

Scheme 12

Using ring-closing metathesis to make substituted benzenes was also studied in this laboratory. ${ }^{6}$ The aim of the procedure was to convert an ester into a benzene ring in such a way that the carbonyl carbon of the ester is incorporated into the benzene ring. The principle of this unusual route for making benzenes is shown in Scheme 13. A variety of monosubstituted benzenes and a limited range of polysubstituted benzenes were produced by this process. In the ring-closing metathesis step, the six-membered rings were formed in $78-100 \%$ yield with Grubbs I catalyst ${ }^{10}$ or Grubbs II catalyst. ${ }^{11}$ Then, using TsOH or else SOCl_{2} and pyridine, followed by dehydrogenation with DDQ gave the substituted benzenes in $66-94 \%$ yield. Some examples are listed in Scheme 14.

Scheme 13

Scheme 14

1.5 Other methods for making aromatic rings

Dong and coworkers reported the synthesis of substituted phenols by [5+1] annulation. ${ }^{7} \quad \alpha$-Alkenoylketenedithioacetals $\mathbf{1 5 . 1}$ as the five-carbon 1,5-
bielectrophilic components and nitroalkanes $\mathbf{1 5 . 2}$ as the one-carbon nucleophiles in the presence of DBU generated the highly substituted phenols $\mathbf{1 5 . 3}$ in $52-82 \%$ yield. It was proposed that addition of the carbanions of $\mathbf{1 5 . 2}$ to the double bond bearing an aryl group in $\mathbf{1 5 . 1}$ occurs first. This step is followed by an intramolecular addition-elimination, to give cyclohexenones 15.4. Finally, elimination of HNO_{2} and tautomerization affords the products 15.3.

Scheme 15

With gold catalysis, Barriault and coworker synthesized substituted tetrahydronaphthalenes. ${ }^{8}$ They proposed that the formation of a $\mathrm{Au}(\mathrm{I})$ complex 16.3, followed by 6 -endo-dig cyclization gives intermediate $\mathbf{1 6 . 4}$; deprotonation of $\mathbf{1 6 . 4}$, followed by dehydration and protonolysis of $\mathbf{1 6 . 5}$, then produces the substituted benzene $\mathbf{1 6 . 2}$ in 84% yield.

Scheme 16

2. Results and Discussion

2.1 Research objectives

As mentioned in the introduction to this chapter, conversion of esters into benzene rings that incorporate the ester carbonyl carbon has been developed in this laboratory. ${ }^{6}$ To extend this methodology, a related procedure, conversion of aldehydes into p-substituted benzenes incorporating the original carbonyl carbon was explored (Scheme 17). In this approach, the intermediate 1,4-diketones $\mathbf{1 7 . 2}$ were treated with vinyllithium to give diols $\mathbf{1 7 . 3}$ which were then subjected to ring-closing metathesis so as to generate the six-membered rings 17.4. Finally, double dehydration of $\mathbf{1 7 . 4}$ afforded the p-substituted benzenes $\mathbf{1 7 . 5}$.

Scheme 17

2.2 Preparation of 1,4-diketones

Dr. Ziffle, a former member of this laboratory, had prepared the 1,4diketones listed in Scheme 18. Treatment of acetylene $\mathbf{1 8 . 1}$ with aldehyde $\mathbf{1 8 . 2}$ and BuLi generated alkyne diol 18.3, which was converted into diol 18.4 with Pt-

C and H_{2}. Jones oxidation of $\mathbf{1 8 . 4}$ afforded the 1,4-diketone $\mathbf{1 8 . 5}$ in 90% yield. Using similar methods, the other ketones shown in Scheme 18 were prepared.

18.1

18.5

18.6

18.7
18.10

18.3

75\%

18.4

18.8

18.11

Scheme 18

To continue this project, acetylene $\mathbf{1 9 . 1}$ was used as the starting material and treated with BuLi and then aldehyde 19.2^{13} to give compound 19.3 in $\mathbf{7 2 \%}$ yield. Hydrogenation of the triple bond over $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ afforded the desired diol 19.4 in 52% yield. For the oxidation of diol 19.4, several methods were tried. Use of Jones reagent gave the diketone 19.5 in 57% yield as two diastereomers. With PCC the yield was improved to 73%, but the product was still a mixture of two diastereomers. When Swern oxidation was used, the desired 1,4-diketone
19.5 was produced in good yield (88%) as a single isomer as judged by the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Scheme 19

Scheme 20

Treatment of acetylene $\mathbf{1 8 . 1}$ with BuLi and aldehyde $\mathbf{1 9 . 2}{ }^{13}$ afforded the alkyne diol 20.1 in 67% yield (or 85% corrected for recovered 19.2). Then hydrogenation, followed by Swern oxidation, generated the expected 1,4-diketone 20.3 as a single diastereomer.

2.3 Preparation of para-disubstituted benzenes

With the ketones (Scheme 18) in hand, Dr. Ziffle synthesized the corresponding substituted benzenes as shown in Scheme 21. The addition of vinyllithium (generated from tetravinyltin and MeLi) to diketone $\mathbf{1 8 . 5}$ formed the

21.7

21.8

21.9
$a=$ yield of less polar isomer 35%; yield of more polar isomer 62%
$b=$ yield from more polar diol
c = yield from less polar diol

Scheme 21
terminal diene 21.1 in good yield. Ring-closing metathesis of $\mathbf{2 1 . 1}$ provided two separable diastereomers of $\mathbf{2 1 . 2}$ in excellent yield. The individual diols were then dehydrated under acidic conditions to give the desired substituted benzene $\mathbf{2 1 . 3}$ in 100% and 98% yields, respectively. Several other substituted benzenes (these are shown in Scheme 21) were obtained in a similar way.

The present work expanded upon Dr. Ziffle's research and established that the installation of two vinyl groups on the 1,4-diketone $\mathbf{1 9 . 5}$ generated diols $\mathbf{2 2 . 1}$ in 100% yield as a mixture of diastereomers $\left({ }^{13} \mathrm{C}\right.$ NMR) containing minor impurities (${ }^{1} \mathrm{H}$ NMR). These diols were then subjected to ring-closing metathesis, but no reaction occurred with Grubbs I, ${ }^{10}$ Grubbs II^{11} or Schrock ${ }^{14}$ catalysts, and the diols were recovered. This was probably due to unfavorable steric or conformational factors or the presence of multiple coordination sites.

19.5
Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux
or Grubbs II, PhMe , reflux
or Grubbs I, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux
or Schrock catalyst, $\mathrm{PhH}, 80^{\circ} \mathrm{C}$

22.2

Scheme 22

With vinylmagnesium bromide, 1,4-diketone $\mathbf{2 0 . 3}$ was converted into diols 23.1 in 84% yield as a mixture of diastereomers. Ring-closing metathesis of $\mathbf{2 3 . 1}$ with the Grubbs II catalyst ${ }^{11}$ formed the required cyclohexene diols 23.2 in excellent yield as two separable diastereomers. Treatment of the separated diols 23.2 with POCl_{3} in ice-cold pyridine gave the desired para-disubstituted benzene 23.3 in good yield in both cases.

a: Yield of less polar isomer 29\%; yield of more polar isomer 69\%
b: Yield from less polar diol
c: Yield from more polar diol

Scheme 23

This route provides a method to make C5-aryl carbohydrates, which have previously been prepared by introduction of the aromatic unit followed by assembly of the pyranose ring ${ }^{15}$ (often by Diels-Alder reaction with a Danishefsky diene ${ }^{15 \mathrm{a}-\mathrm{c}}$) or addition of a carbanion to a dialdehydofuranose, followed by ring expansion to the pyranose system. ${ }^{16,17}$ A number of carbohydrates bearing a C5aryl unit have potentially important medicinal properties such as use for control of
diabetes ${ }^{18}$ by inhibiting sodium-dependent glucose co-transporter type 2^{19} and thereby increasing urinary excretion of glucose.

3. Conclusion

The route described above offers an approach to convert aldehydes into substituted benzenes incorporating the aldehyde carbonyl carbon. Application of this approach to carbohydrates appears to be convenient and may be useful in preparing medically important C-5 aryl pyranosides that can act as inhibitors of sodium glucose co-transporter type 2 ; such inhibitors are likely to be useful for treating diabetes. ${ }^{18,19}$

4. Experimental

General Procedures. Unless otherwise specified, reactions were carried out under a slight static pressure of Ar or N_{2} that had been purified by passage through a column ($3.5 \times 42 \mathrm{~cm}$) of R-311 catalyst and then through a similar column of Drierite. Solvents for reactions were dried as described below. Glassware was dried in an oven $\left(140^{\circ} \mathrm{C}\right)$ overnight before use and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a light static pressure of Ar or N_{2}.

Solvents used for chromatography were distilled before use. Commercial thin layer chromatography plates (silica gel, Merck 60F-254 was used. Silica gel for flash chromatography was Merck type 60 (230-400 mesh). Dry solvents were prepared under an inert atmosphere and transferred by syringe or cannula. Dry THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium and benzophenone ketyl. Dry MeCN, $\mathrm{Et}_{3} \mathrm{~N}$ and pyridine were distilled from CaH_{2}.

The symbols $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q used for ${ }^{13} \mathrm{C}$ NMR spectra indicate zero, one, two, or three attached hydrogens, respectively, the assignments being made by from APT spectra.

Solutions were evaporated under water pump vacuum and the residue was then kept under oil pump vacuum.

Methyl 7,8-Dideoxy-2,3,4-tri-O-methyl- α-D-gluco-oct-7-ynopyrano-

side (19.1).

A solution of ethynylmagnesium bromide $(0.5 \mathrm{M}$ in THF, $15 \mathrm{~mL}, 7.5$ $\mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of crude 2,3,4-tri-O-methyl- α-D-gluco-hexodialdo-1,5-pyranoside ${ }^{13} \mathbf{1 9 . 2}$ (540.0 mg, 2.31 mmol) in THF (20 mL) (Ar atmosphere). The cold bath was left in place but not recharged, and stirring was continued for 18 h . The yellow solution was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexanes, gave 19.1 (304.8 mg , 51\%) as a light yellow oil which was a mixture of two diastereoisomers (${ }^{13} \mathrm{C}$ NMR): FTIR $\left(\mathrm{CHCl}_{3}\right.$, microscope) 3418, 3252, 2982, 2934, 2837, 2249, 2114, 1740, 1670, $1466,1466 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.46-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=9.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.44(\mathrm{~m}$, $3 \mathrm{H}), 3.51-3.72(\mathrm{~m}, 11 \mathrm{H}), 4.56-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 55.1$ (q), $55.3(\mathrm{q}), 59.1(\mathrm{q}), 60.6(\mathrm{q}), 60.8(\mathrm{q}), 60.9(\mathrm{q}), 61.3$
(q), 62.4 (q), 71.8 (d), 71.9 (d), 73.1 (d), 74.8 (d), 79.3 (d), 81.0 (d), 81.8 (d), 82.7 $(\mathrm{s}), 83.4(\mathrm{~d}), 83.6(\mathrm{~d}), 97.55(\mathrm{~d}), 97.59(\mathrm{~d}) ;$ exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{6}$ $(\mathrm{M}+\mathrm{Na}) 283.1152$, found 283.1152 .

1,4-Bis-[(2R,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]-

 but-2-yne-1,4-diol (19.3).
19.1
19.2
19.3

BuLi (2.5 M in hexanes, $0.7 \mathrm{~mL}, 1.75 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $19.1(228.0 \mathrm{mg}, 0.877 \mathrm{mmol})$ in THF (8 mL). After 1.5 h , freshly prepared crude methyl 2,3,4-tri- O-methyl- α-D-glucohexodialdo-1,5-pyranoside ${ }^{13} 19.2$ ($133.4 \mathrm{mg}, 0.57 \mathrm{mmol}$) in THF (1 mL) was added dropwise. The cooling bath was left in place but not recharged, and stirring was continued for 40 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexanes and then 3:100 $\mathrm{MeOH}-\mathrm{EtOAc}$, gave 19.3 ($174 \mathrm{mg}, 61 \%$ or 72%, based on recovered starting material) as a white solid which was a mixture of diastereoisomers $\left({ }^{13} \mathrm{C}\right.$ NMR):

FTIR (CHCl_{3}, microscope) 3433, 2934, 2836, 2249, 1466, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.63-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.46(\mathrm{~m}, 8 \mathrm{H})$, $3.47-3.74(\mathrm{~m}, 22 \mathrm{H}), 4.59-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 55.2(\mathrm{q}), 55.3(\mathrm{q}), 59.1(\mathrm{q}), 60.60(\mathrm{q}), 60.63(\mathrm{q}), 60.72(\mathrm{q}), 60.78(\mathrm{q})$, $60.82(\mathrm{q}), 60.85(\mathrm{q}), 61.4(\mathrm{q}), 61.7(\mathrm{q}), 62.5(\mathrm{q}), 62.6(\mathrm{q}), 70.6(\mathrm{~d}), 71.7(\mathrm{~d}), 71.9$ (d), 72.0 (d), 72.3 (d), 79.3 (d), 79.4 (d), 79.6 (d), 81.0 (d), 81.1 (d), 81.6 (d), 81.7 (d), 81.8 (d), $82.2(\mathrm{~s}), 83.4(\mathrm{~d}), 83.6(\mathrm{~d}), 83.9(\mathrm{~s}), 85.5(\mathrm{~s}), 97.5(\mathrm{~d}), 97.6(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})$ 517.2255, found 517.2259.

1,4-Bis-[(2R,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]-

 butane-1,4-diol (19.4).
19.3
19.4
$\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(20 \% \mathrm{w} / \mathrm{w}, 23.0 \mathrm{mg})$ was added to a solution of $\mathbf{1 9 . 3}(58.4 \mathrm{mg}$, 0.118 mmol) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$, and the mixture was stirred under H_{2} (balloon) for 2 h , and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel $(1.2 \times 15 \mathrm{~cm})$, using EtOAc and then 3:50 MeOH-EtOAc, gave 19.4 (35.2 mg, 60\%) as a white solid which was a mixture of diastereoisomers $\left({ }^{13} \mathrm{C}\right.$ NMR $)$: FTIR $\left(\mathrm{CHCl}_{3}\right.$,
microscope) $3472,2935,2835,2248,1445,1379 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.50-1.94(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 3.12-3.17(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.31(\mathrm{~m}, 2$ H), 3.35-3.40(m, 7 H), 3.46-3.53(m, 9 H$), 3.56-3.63(\mathrm{~m}, 12 \mathrm{H}), 3.80(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.72-4.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 29.1(\mathrm{t}), 30.5(\mathrm{t})$, $32.0(\mathrm{t}), 55.2$ (q), 55.3 (q), $58.9(\mathrm{q}), 59.0(\mathrm{q}), 60.2(\mathrm{q}), 60.7(\mathrm{q}), 60.8(\mathrm{q}), 69.2(\mathrm{~d})$, 69.4 (d), 71.1 (d), 71.6 (d), 72.2 (d), 72.5 (d), 73.2 (d), 79.5 (d), 81.7 (d), 82.0 (d), 82.6 (d), 83.6 (d), 83.8 (d), 97.3 (d), 97.6 (d); exact mass m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na}) 521.2568$, found 521.2568.

1,4-Bis-[(2S,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]-

 butane-1,4-dione (19.5).

DMSO ($0.04 \mathrm{~mL}, 0.564 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{COCl})_{2}(0.023 \mathrm{~mL}, 0.266 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. After 15 min , a solution of $19.4(50.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added dropwise and stirring at $-78^{\circ} \mathrm{C}$ was continued for 35 min. Then $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL})$ was added dropwise, and stirring was continued at -78 ${ }^{\circ} \mathrm{C}$ for 5 min . The cooling bath was removed, stirring was continued for 25 min , and water (2 mL) was added. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$
and evaporated. Flash chromatography of the residue over silica gel (1.2 x 15 $\mathrm{cm})$, using 3:1 EtOAc-hexanes, gave $19.5(47.6 \mathrm{mg}, 96 \%)$ as a colorless oil: $[\mathrm{a}]_{\mathrm{D}}{ }^{20} 132.8\left(c 1.32, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast microscope) 2935, 2836, 1726, 1466, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.79-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.97-3.05$ (m, 2 H), $3.21(\mathrm{dd}, J=3.5,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=8.5,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}$, $6 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 14 \mathrm{H}), 3.62(\mathrm{~s}, 6 \mathrm{H}), 4.06(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 34.2$ (t), 55.9 (q), 59.4 (q), 60.8 (q), 61.2 (q), 74.1 (d), 81.0 (d), 81.5 (d), 83.8 (d), 98.2 (d), 205.4 (s); exact mass m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na}) 517.2255$, found 517.2265 .

Methyl 7,8,10,11-Tetradeoxy-2,3,4-tris- O-methyl-11-phenyl- α-D-

 gluco-unedec-7-ynopyranoside (20.1).
18.1
20.1

BuLi (2.5 M in hexanes, $1 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 8 . 1}(196.5 \mathrm{mg}, 1.23 \mathrm{mmol})$ in THF (11 mL). After 1 h , a solution of freshly prepared crude methyl 2,3,4-tri- O-methyl- α-D-gluco-hexodialdo-1,5-pyranoside ${ }^{13} 19.2$ ($161.2 \mathrm{mg}, 0.69 \mathrm{mmol}$) in THF (2 mL) was added dropwise. The cooling bath was left in place but not recharged, and
stirring was continued for 23 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were dried (MgSO4) and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 3:1 EtOAc-hexanes, gave 20.1 ($181.2 \mathrm{mg}, 67 \%$ or 85%, based on recovered starting material) as an oil that was a mixture of diastereoisomers (${ }^{13} \mathrm{C}$ NMR): FTIR (CHCl_{3}, microscope) 3423, 3085, 3062, 3026, 2934, 2836, 2248, 1604, 1496, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.94-2.12 (m, 2 H$), 2.19-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.83(\mathrm{~m}, 3 \mathrm{H}), 3.18-3.26(\mathrm{~m}, 1 \mathrm{H})$, $3.31-3.73(\mathrm{~m}, 15 \mathrm{H}), 4.39-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 31.58 (t), 31.66 (t), 31.69 (t), 39.3 (t), 39.4 (t), 55.4 (q), 55.5 (q), 59.3 (q), 60.9 $(\mathrm{q}), 61.1(\mathrm{q}), 61.2(\mathrm{q}), 61.5(\mathrm{q}), 61.6(\mathrm{q}), 61.8(\mathrm{q}), 61.9(\mathrm{q}), 62.8(\mathrm{q}), 72.21(\mathrm{~d})$, 72.26 (d), 72.30 (d), 79.5 (d), 81.3 (d), 81.4 (d), 81.99 (d), 82.04 (d), 82.5 (s), 82.6 (s$), 83.6$ (d), 83.8 (d), 84.3 (s), 86.2 (s), 88.0 (s), 97.7 (d), 97.9 (d), 126.30 (d), 126.31 (d), 128.71 (d), 128.72 (d), 141.34 (s), 141.36 (s); exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na})$ 417.1884, found 417.1891.

Methyl 7,8,10,11-Tetradeoxy-2,3,4-tris-O-methyl-11-phenyl- α-D-

 gluco-unedecanopyranoside (20.2).
20.1

20.2

Pt-C ($5 \% \mathrm{w} / \mathrm{w}, 14 \mathrm{mg}$) was added to a solution of $\mathbf{2 0 . 1}(35.9 \mathrm{mg}, 0.091$ mmol) in $\mathrm{MeOH}(1.5 \mathrm{~mL})$, and the mixture was stirred under H_{2} (balloon) for 1 h , and then filtered through Celite, using EtOAc as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.6 \times 8 \mathrm{~cm}$), using EtOAc-hexanes from $50 \% \mathrm{EtOAc}$ to $100 \% \mathrm{EtOAc}$, gave $20.2(27.3 \mathrm{mg}, 75 \%)$ as an oil which was a mixture of diastereoisomers $\left({ }^{13} \mathrm{C}\right.$ NMR $)$: $\operatorname{FTIR}\left(\mathrm{CHCl}_{3}\right.$, microscope) $3448,3085,3061,3025,2933,2836,1603,1496,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.52-1.90(\mathrm{~m}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.64-2.85(\mathrm{~m}, 2 \mathrm{H})$, 3.14-3.20 (m, 2 H), 3.26-3.31 (m, 1 H), 3.36-3.69 (m, 15 H$), 3.79(\mathrm{~s}, 1 \mathrm{H}), 4.78$ (dd, $J=3.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.1(\mathrm{t}), 28.9(\mathrm{t}), 30.3(\mathrm{t}), 31.3(\mathrm{t}), 32.09(\mathrm{t}), 32.13(\mathrm{t}), 32.15$ $(\mathrm{t}), 32.19(\mathrm{t}), 33.8(\mathrm{t}), 34.1(\mathrm{t}), 34.4(\mathrm{t}), 34.7(\mathrm{t}), 39.1(\mathrm{t}), 39.4(\mathrm{t}), 55.17(\mathrm{q}), 55.24$ $(\mathrm{q}), 55.29(\mathrm{q}), 55.31(\mathrm{q}), 58.9(\mathrm{q}), 59.0(\mathrm{q}), 60.2(\mathrm{q}), 60.6(\mathrm{q}), 60.7(\mathrm{q}), 60.8(\mathrm{q})$, 69.3 (d), 69.4 (d), 70.9 (d), 71.0 (d), 71.1 (d), 71.3 (d), 71.4 (d), 72.1 (d), 72.4 (d), 73.2 (d), 73.3 (d), 79.5 (d), 81.7 (d), 82.0 (d), 82.26 (d), 82.33 (d), 83.6 (d), 83.7
(d), 97.2 (d), 97.6 (d), 125.7 (d), 125.8 (d), 128.34 (d), 128.38 (d), 128.39 (d), $128.41(\mathrm{~d}), 142.0(\mathrm{~s}), 142.27(\mathrm{~s}), 142.29(\mathrm{~s}) ;$ exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{7}$ $(M+N a) 421.2197$, found 421.2199.

6-Phenyl-1-[(2S,3S,4S,5R,6S)-tetrahyro-3,4,5,6-tetramethoxypyran-2-yl]hexane-1,4-dione (20.3).

20.2
20.3

DMSO ($0.09 \mathrm{~mL}, 1.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{COCl})_{2}(0.06 \mathrm{~mL}, 0.694 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After 15 min , a solution of $\mathbf{2 0 . 2}(101.6 \mathrm{mg}, 0.255 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise, and stirring at $-78^{\circ} \mathrm{C}$ was continued for 35 min. Then $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ was added dropwise, and stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 5 min . The cooling bath was removed, and stirring was continued for 25 min . Water (2 mL) was added, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5×13 $\mathrm{cm})$, using 1:1 EtOAc-hexanes, gave $20.3(83.9 \mathrm{mg}, 83 \%)$ as a colorless oil: $[\mathrm{a}]_{\mathrm{D}}{ }^{20} 79.2$ (c 1.35, $\left.\mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast microscope) 3062, 3027, 2933, $2836,1716,1604,1497,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.60-2.68(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.89-3.03(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.63(\mathrm{~m}$,
$13 \mathrm{H}), 4.06$ (dd, $J=1.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=1.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.21$ (m, 3 H$), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.0(\mathrm{t}), 34.7(\mathrm{t})$, $36.0(\mathrm{t}), 44.5(\mathrm{t}), 55.9(\mathrm{q}), 59.4(\mathrm{q}), 60.8(\mathrm{q}), 61.2(\mathrm{q}), 74.0(\mathrm{~d}), 80.9(\mathrm{~d}), 81.5(\mathrm{~d})$, 83.7 (d), 98.1 (d), 126.3 (d), 128.5 (d), 128.7 (d), 141.2 (s), 205.8 (s), 208.2 (s); exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na}) 417.1884$, found 417.1879.

3,6-Bis-[(2S,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxypyran-2-yl]-

 octa-1,7-diene-3,6-diol (22.1).

Vinylmagnesium bromide (1.0 M in THF, $1.1 \mathrm{~mL}, 1.10 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $19.5(55.7 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF (1 mL). The cooling bath was left in place but not recharged and stirring was continued for 16 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 15 \mathrm{~cm}$), using 2:1 EtOAc-hexanes, gave $22.1(63.0 \mathrm{mg}$, ca 100%) as a mixture of diastereoisomers $\left({ }^{13} \mathrm{C}\right.$ NMR) that contained some impurities $\left({ }^{1} \mathrm{H}\right.$ NMR). The NMR spectra were too complicated to be of diagnostic value: exact mass m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})$ 573.2881, 573.2880.

Methyl 7,8,10,11-Tetradeoxy-6,9-bis(ethenyl)-2,3,4-tris-O-methyl-11-

 phenyl- α-D-gluco-undecanopyranoside (23.1).

Vinylmagnesium bromide (1.0 M in $\mathrm{THF}, 1.89 \mathrm{~mL}, 1.89 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 0 . 3}(74.3 \mathrm{mg}, 0.189$ mmol) in THF (3 mL). The cooling bath was left in place but not recharged and stirring was continued for 7 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 13 \mathrm{~cm}$), using 3:5 EtOAc-hexanes, gave $23.1(62.7 \mathrm{mg}, 84 \%)$ as a mixture of two diastereoisomers (${ }^{13} \mathrm{C}$ NMR): FTIR (CHCl_{3}, microscope) 3453, 3086, 3061, 3025, 2931, 2837,1717, 1640, 1604, 1559, 1540, 1497, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.56-1.92(\mathrm{~m}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.77(\mathrm{~m}, 2 \mathrm{H})$, 3.11-3.15 (m, 1 H), 3.25-3.29 (m, 1 H$), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 8 \mathrm{H}), 3.61(\mathrm{~s}$, $3 \mathrm{H}), 4.47-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.36$ (m, 2 H), 5.47-5.53 (m, 1 H), 5.78-5.95 (m, 2 H), 7.16-7.20 (m, 3 H), 7.26-7.29 $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 30.07(\mathrm{t}), 30.09(\mathrm{t}), 31.3(\mathrm{t}), 33.4(\mathrm{t})$, $33.5(\mathrm{t}), 43.2(\mathrm{t}), 43.7(\mathrm{t}), 55.7(\mathrm{q}), 55.8(\mathrm{q}), 59.0(\mathrm{q}), 60.03(\mathrm{q}), 60.05(\mathrm{q}), 60.7$ (q), 72.0 (d), 72.6 (d), 74.6 (s$), 74.8$ (s), 76.9 (s), 77.0 (s), 81.7 (d), 81.8 (d), 82.1
(d), 84.0 (d), 97.37 (d), 97.44 (d), 113.0 (t), 113.2 ($t), 115.0(t), 115.5(t), 125.55$ (d), 125.63 (d), 128.29 (d), 128.34 (d), 128.39 (d), 140.0 (d), 140.4 (d), 142.8 (s), 143.0 (s), 143.8 (d), 143.9 (d); exact mass m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na})$ 473.2510, found 473.2503.

1-(2-Phenethyl)-4-[(2S,3S,4S,5R,6S)-tetrahydro-3,4,5,6-tetramethoxy-

 pyran-2-yl]cyclohex-2-ene-1,4-diol (23.2).

A solution of $\mathbf{2 3 . 1}(92.7 \mathrm{mg}, 0.206 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was degassed for 30 min with a stream of Ar. Grubbs II catalyst ${ }^{11}(26.2 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added and the Ar stream was continued for 15 min . The mixture was stirred and refluxed for 24 h under a static pressure of Ar and then cooled and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 13 \mathrm{~cm}$), using first $\mathrm{Et}_{2} \mathrm{O}$ and then EtOAc, gave 23.2 as a mixture of diastereoisomers [$25.1 \mathrm{mg}, 29 \%$ less polar diastereoisomer; $60.0 \mathrm{mg}, 69 \%$ more polar diastereoisomer (98% overall)]: The less polar diastereoisomer (small impurity signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra) had: FTIR (CHCl_{3}, microscope) 3458, 3061, 3026, 2933, 2835, 2247, $1603,1497,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.52(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.62(\mathrm{~s}, 1 \mathrm{H}), 1.71-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=13.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.78-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.53$ (m, 4 H$), 3.60-3.71(\mathrm{~m}, 10 \mathrm{H}), 4.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.30$ (m, 3 H), 7.35-7.38(m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 29.2(\mathrm{t}), 30.1(\mathrm{t})$, 31.4 (t), 44.3 (t), 55.8 (q), 59.2 (q), 60.3 (q), 61.1 (q), 69.5 (s), 70.5 (s), 73.7 (d), 80.6 (d), 82.1 (d), 84.5 (d), 97.6 (d), 126.0 (d), 128.6 (d), 128.7 (d), 131.0 (d), 135.2 (d), 142.6 (s); exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na})$ 445.2197, found 445.2192.

The more polar diastereoisomer had: FTIR $\left(\mathrm{CHCl}_{3}\right.$, microscope) 3441 , 3061, 3026, 2934, 2835, 2248, 1603, 1497, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.74-2.07(\mathrm{~m}, 7 \mathrm{H}), 2.71-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=3.6,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.28-3.34 (m, 2 H), $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.56(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, $4.78(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81\left(\mathrm{AB} \mathrm{q}, J=10.3 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.15-7.20$ (m, 3 H), 7.25-7.30(m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 30.1(\mathrm{t}), 30.4(\mathrm{t})$, $32.7(\mathrm{t}), 42.6(\mathrm{t}), 55.6(\mathrm{q}), 59.2(\mathrm{q}), 60.3(\mathrm{q}), 61.1(\mathrm{q}), 70.5(\mathrm{~s}), 71.1(\mathrm{~s}), 73.9(\mathrm{~d})$, 80.5 (d), 82.0 (d), 84.7 (d), 97.5 (d), 126.0 (d), 128.6 (d), 128.7 (d), 131.1 (d), 135.9 (d), 142.7 (s); exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na})$ 445.2197, found 445.2195.

Methyl (5R)-2,3,4-Tri-O-methyl-5-C-[4-(2-phenethyl)phenyl]- α-d-

 gluco-pyranoside (23.3).
(a) $\mathrm{POCl}_{3}(0.22 \mathrm{~mL}, 2.34 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the less polar diastereoisomer of $\mathbf{2 3 . 2}(19.3 \mathrm{mg}, 0.0457$ $\mathrm{mmol})$ in pyridine $(0.86 \mathrm{~mL})$ and stirring was continued for 4 h . The ice bath was left in place but not recharged, and stirring was continued for 7.5 h . Water (0.5 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with 10% hydrochloric acid, saturated aqueous NaHCO_{3}, water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.6 \times 8 \mathrm{~cm}$), using 3:10 EtOAc-hexanes, gave 23.3 (15 mg , 85%) as a thick oil: $[\mathrm{a}]_{\mathrm{D}}{ }^{20} 92.06$ (c $\left.1.22, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, microscope $)$ 3060, 3027, 2980, 2931, 2858, 2832, 1604, 1516, 1496, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.95(\mathrm{~s}, 4 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=9.0,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (dd, $J=3.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1$ H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.23$ (m, 5H), 7.26-7.31(m, 2 H), 7.34-7.36(m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 37.9 (t), 38.1 (t), 55.6 (q), 59.4 (q), 60.6 (q), 61.3 (q), 72.9 (d), 82.1 (d), 83.5 (d), 86.0 (d), 98.1 (d), 126.2 (d), 127.9 (d), 128.6 (d), 128.7 (d), 128.8 (d), 136.7 (s),
$141.9(\mathrm{~s}), 142.1(\mathrm{~s}) ;$ exact mass m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})$ 409.1985, found 409.1984.
(b) $\mathrm{POCl}_{3}(0.53 \mathrm{~mL}, 5.69 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the more polar diastereoisomer of $\mathbf{2 3 . 2}(47.0 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in pyridine (2 mL) and stirring was continued for 4 h . The ice bath was left in place but not recharged and stirring was continued for 7.5 h . Water (1 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with 10% hydrochloric acid, saturated aqueous NaHCO_{3}, water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.0 x 8 cm), using 3:10 EtOAc-hexanes, gave 23.3 (36.1 $\mathrm{mg}, 84 \%)$ as a thick oil.

5. References

Z. Y.; Xie, Y.; Healy, J.; Buhring, L. M.; DaCosta, C. M.; Bardenhagen, J.;

Mseeh, F.; Liu, Q.; Nouraldeen, A.; Wilson, A. G. E.; Kimball, S. D.;
Powell, D. R.; Rawlins, D. B. J. Med. Chem. 2009, 52, 6201-6204. (b)
Kotha, S.; Mandal, K. Tetrahedron Lett. 2004, 45, 2585-2588. (c) Fürstner, A.; Castanet, A.-S.; Radkowski, K.; Lehmann, C. W. J. Org. Chem. 2003, 68, 1521-1528. (d) Fouché, M.; Rooney, L.; Barrett, A. G. M. J. Org. Chem. 2012, 77, 3060-3070. (e) Turner, C. D.; Ciufolini, M. A. Beilstein J. Org. Chem. 2011, 7, 1475-1485. (f) O'Keefe, B. M.; Mans, D. M.; Kaelin, D. E.; Jr.; Martin, S. F. Tetrahedron 2011, 67, 6524-6538.
(a) Langer, P.; Bose, G. Angew. Chem. Int. Ed. 2003, 42, 4033-4036. (b)

Reim, S.; Langer, P. Tetrahedron Lett. 2008, 49, 2329-2332. (c) Bunescu, A.; Reimann, S.; Lubbe, M.; Spannenberg, A.; Langer, P. J. Org. Chem. 2009, 74, 5002-5010. (d) Mamat, C.; Büttner, S.; Tranhardt, T.; Fischer, C.; Langer, P. J. Org. Chem. 2007, 72, 6273-6275. (e) Reim, S.; Adeel, M.; Hussain, I.; Yawer, M. A.; Ahmed, Z.; Villinger, A.; Langer, P. Tetrahedron Lett. 2008, 49, 4901-4904. (f) Sher, M.; Ali, A.; Reinke, H.; Langer, P. Tetrahedron Lett. 2008, 49, 5400-5402.
(a) Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315-6319. (b) Park, D. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6641-6645.

Dai, M.; Sarlah, D.; Yu, M.; Danishefsky, S. J.; Jones, G. O.; Houk, K. N. J.

Am. Chem. Soc. 2007, 129, 645-657.

6 Clive, D. L. J.; Pham, M. P. J. Org. Chem. 2009, 74, 1685-1690.

11 [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium.

13 Collins, D. J.; Hibberd, A. I.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1998, 51, 681-694.

14 6-Diisopropylphenylimidoneophylidene molybdenum(VI)bis(hexafluoro-tert-butoxide).

15 See, for example: (a) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1986, 108, 7060-7067. (b) Berkowitz, D. B.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1992, 114, 4518-4529. (c) Helliwell, M.; Phillips, I. M.; Pritchard, R. G.; Stoodley, R. J. Tetrahedron Lett. 1999, 40, 8651-
8655. and references therein. (d) Hauser, F. M.; Ganguly, D. J. Org. Chem. 2000, 65, 1842-1849. (e) Cheng, G.; Fan, R.; Hernández-Torres, J. M.; Boulineau, F. P.; Wei, A. Org. Lett. 2007, 9, 4849-4852.
(a) Harrison, B. A.; Kimball, S. D.; Mabon, R.; Rawlins, D. B. WO 2008/042688A2, 2008. (b) Goodwin, N.; Harrison, B. A.; Kimball, S. D.; Mabon, R.; Rawlins, D. B. WO 2008/109591A1, 2008. (c) Mincher, D. J.; Shaw, G. J. Chem. Soc., Perkin Trans. 1 1984, 1279-1282. (d) Inch, T. D.; Ley, R. V.; Rich, P. J. Chem. Soc. C 1968, 1683-1692. (e) Bruns, R.; Wernicke, A.; Köll, P. Tetrahedron 1999, 55, 9793-9800. (f) Popsavin, V.; Benedeković, G.; Srećo, B.; Popsavin, M.; Francuz, J.; Kojić, V.; Bogdanović, G. Org. Lett. 2007, 9, 4235-4238. (g) Prakash, K. R. C.; Rao, S. P. Synlett 1993, 123-124. (h) For a route via a dialdehydofuranose and a derived epoxide, see: Kilaas, L.; Anthonsen, T. Acta Chem. Scand. 1992, 46, 994-999.

17 For a route via sugar-derived acetylenes, see: Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121-1124.

Goodwin, N. C.; Mabon, R.; Harrison, B. A.; Shadoan, M. K.; Almstead, Z. Y.; Xie, Y.; Healy, J.; Buhring, L. M.; DaCosta, C. M.; Bardenhagen, J.; Mseeh, F.; Liu, Q.; Amr Nouraldeen, A.; Wilson, A. G. E.; Kimball, S. D.; Powell, D. R.; Rawlins, D. B. J. Med. Chem. 2009, 52, 6201-6204.

Jabbour, S. A.; Goldstein, B. J. Int. J. Clin. Pract. 2008, 62, 1279-1284.

Chapter 2

Formation of Optically Pure Cyclic Amines by

Intramolecular Conjugate Displacement

1. Introduction

1.1 General

In this chapter of my thesis, I will describe a new method for making optically pure cyclic amines with a stereogenic center α to nitrogen, and in the review section I will cover other prior ways of making such amines and will give the background to the methodology that I developed.

1.2 Existing methods of making cyclic amines with stereogenic centers α to nitrogen

Davies and coworkers synthesized cyclic amines via sequential diastereoselective conjugate addition and ring closing metathesis. ${ }^{1}$ Conjugate addition of lithium (S)- N-allyl- N - α-methylbenzylamide $\mathbf{1 . 2}$ to α, β-unsaturated ester 1.1 gave the homochiral diene $\mathbf{1 . 3}$ in $>95 \%$ de, which was converted to the desired cyclic amine 1.4 as a single diastereomer via ring closing metathesis (Scheme 1). This result showed that no epimerization had occurred during the ring closing metathesis step. Having prepared the homochiral diene $\mathbf{1 . 3}$ via conjugate addition of $\mathbf{1 . 2}$ to an α, β-unsaturated ester, the α, β-unsaturated Weinreb amide 1.5 was used as the acceptor in this methodology. The desired $\mathbf{1 . 6}$ was obtained in $>95 \%$ de. Reduction, Wittig reaction, and ring closing metathesis gave the cyclic amine 1.8 without compromising the diastereomeric excess.

$$
1.4
$$

Scheme 1

Charette and coworker reported the stereoselective synthesis of α-chiral cyclic amines via the asymmetric Cu -catalyzed addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to functionalized alkyl and aryl imines, followed by cyclization. ${ }^{2}$ The brominated compound 2.1 was converted to 2.2 by catalytic asymmetric reaction with $\mathrm{Et}_{2} \mathrm{Zn}$. Without purification, crude 2.2 was treated with t-BuOK to give the functionalized cyclic amine 2.4 with excellent enantioselectivity. This enantioselective addition methodology was then applied to the aryl imine 2.5, and the N-protected α-chiral amine $\mathbf{2 . 6}$ was produced with good enantioselectivity.

Reaction of 2.6 with allyl bromide, followed by Heck coupling, gave the cyclic amine $\mathbf{2 . 8}$.

2.5
2.6
$\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{KOH}, \mathrm{Bu}_{4} \mathrm{~N} \cdot \mathrm{HSO}_{4}$ allyl bromide, PhMe $60^{\circ} \mathrm{C}, 85 \%$

Scheme 2

Charette and coworker also reported the stereoselective synthesis of cyclic amines via an intramolecular pyridine activation-asymmetric dearomatization reaction. ${ }^{3}$ Amides 3.1 were treated with $\mathrm{Tf}_{2} \mathrm{O}$ in the presence of 2-chloropyridine to produce the pyridinium salt \mathbf{A} as a transient intermediate. With the chiral auxiliary on nitrogen, the addition of Grignard reagents to the pyridinium salt
induced the formation of bicyclic amines 3.2 as single regio- and diastereomers. The involvement of intermediate \mathbf{B} accounts for the observed stereochemical outcome.

3.1

A

B

Scheme 3

By using the chiral boron compound (S)-4.1, Chong and coworker prepared a variety of α chiral cyclic amines via the asymmetric allylboration of cyclic imines. ${ }^{4}$ Several examples are presented in Scheme 4. Some of the allylation products were used as intermediates for the synthesis of natural products. For instance, hydroboration of 4.5 with $9-\mathrm{BBN}$ followed by an intramolecular Mitsunobu reaction produced the antitumor alkaloid (+)-crispine

(S)-4.1
(S)-4.1, PhMe, $-78^{\circ} \mathrm{C}$ to rt

Scheme 4
A. Treatment of the cyclic amine 4.7 with (\pm)-2-bromobutyric acid and DCC, followed by oxidation and Wittig reaction, gave α, β-unsaturated ester 4.8. The addition of BuLi produced all-cis trisubstituted lactam 4.9. Finally, reduction with LiAlH_{4} completed the synthesis of the enantiomer of the alkaloid corynantheidol.

Several other methodologies, such as asymmetric hydrogenation of cyclic imines ${ }^{5}$ and Diels-Alder cycloaddition of imines bearing a chiral auxiliary on nitrogen, ${ }^{6}$ have also been applied to prepare the α chiral cyclic amines.

1.3 Intermolecular and intramolecular conjugate displacements

During the course of synthetic work conducted in this laboratory on the total synthesis of halichlorine, ${ }^{7}$ the process summarized in Scheme 5 was carried out. This reaction is a combination of conjugate addition and $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement and it was given the name "intramolecular conjugate displacement" (ICD for short). The accepting unit is a double bond carrying an electron-withdrawing group with an allylic leaving group. Such substructures had been known ${ }^{8}$ to be much more reactive towards nucleophiles in intermolecular processes than related Michael acceptors lacking the allylic leaving group. However, the usefulness of an intramolecular version of this process was not widely appreciated and only a few examples for protein crosslinking ${ }^{9}$ and for making macrocycles ${ }^{10}$ had been reported. The example of Scheme 5 was found in this laboratory to present a generally useful process and many suitably protected amines, such as those listed in Scheme 6 were prepared. ${ }^{7}$ Numerous examples of this process were studied in
this laboratory and the reaction was extended to all-carbon systems, ${ }^{11}$ in which the nucleophile is a carbon atom. More recently, the use of sulfur as the nucleophile was also reported. ${ }^{12}$ In this review, I will describe what is known about corresponding intermolecular reactions, and I will also give examples of ICD reactions - the intramolecular version.

Scheme 5

Scheme 6

1.3.1 Intermolecular conjugate displacement with carbon nucleophiles and

 heteroatom nucleophilesThe generic intermolecular conjugate displacement, summarized in Scheme 7, involves a classical Michael addition and $\mathrm{S}_{\mathrm{N}} 2$ displacement. Early examples of this type of reaction were reported by Seebach and coworkers. ${ }^{8}$ They found that treatment of the nitroallyl pivaloate $\mathbf{8 . 1}$ with organolithiums or Grignard reagents produced the products 8.2. From these results, they believed that the presence of the pivaloyloxy group enhanced the acceptor properties of the double bond. The product, which is a Michael acceptor, is clearly less reactive than the starting material. Seebach and coworkers also briefly discussed the mechanism of this process and excluded a one-electron transfer radical mechanism, since the cis geometry of the double bond is retained when cis-1heptenyllithium was used as the reagent.

7.1

EWG: electron-withdrawing group
LG: leaving group
Nu: nucleophile

Scheme 7

Scheme 8

This type of $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process has been studied by many groups. Both carbanions and heteroatoms such as nitrogen and phosphorus have been successfully used as nucleophiles. The starting materials were usually prepared by acetylation of Morita-Baylis-Hillman (MBH) alcohols. The most common nucleophilic carbanions used in this type of intermolecular reaction usually carry two electron-withdrawing groups, of which 1,3-dicarbonyl compounds are the most classic examples. ${ }^{13}$ For instance, Basavaiah and coworker reported the synthesis of fused tri-/tetracyclic frameworks containing an azocine moiety using this intermolecular conjugate displacement as a key step (Scheme 9). ${ }^{13 a}$

9.1

9.4

9.2

2. $\mathrm{Fe}, \mathrm{AcOH}$, reflux 1.5 h, 68\% over 2 steps

9.5

9.3

9.6

9.1

9.7

Scheme 9

The 1,3-dicarbonyl compound 9.1 was used as the nucleophile in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and gave the intermolecular conjugate displacement product 9.5 with the MBH acetate 9.2. Reduction of the nitro group with Fe and AcOH produced compound $\mathbf{9 . 6}$, which was then converted to 9.3 under acidic conditions. The tetracyclic structure 9.8 was prepared in a similar way.

More recently, Basavaiah and coworkers applied this methodology to the synthesis of angularly fused [6-7-5], [6-7-6] and [6-7-7] tricyclic structures. ${ }^{13 \mathrm{~b}}$ The intermolecular conjugate displacement occurred under mild basic conditions, and then formation of a vinyl chloride and intramolecular Friedel-Crafts (or Michael) reaction, gave the tricyclic compounds $\mathbf{1 0 . 3}$.

Scheme 10

Takagi and coworkers used this $\mathrm{S}_{\mathrm{N}} 2$ reaction to produce compound 11.3 from the enolate of $\mathbf{1 1 . 1}$ and allyl acetate 11.2. ${ }^{14}$ A subsequent intramolecular Michael addition gave the bicyclic compound $\alpha-11.4$ as the major compound and $\gamma-11.4$ as the byproduct. This methodology was applied to assemble the core structure of plukenetione A.

Scheme 11

Many research groups have been attracted by another type of intermolecular conjugate displacement that retains the regiochemistry of the double bond. This is achieve by two successive $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ processes that are initiated by a promoter, commonly a phosphine ${ }^{15}$ or a tertiary amine. ${ }^{13 c, 13 d}$

Lu and coworkers reported successive $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions (i.e. intermolecular conjugate displacements), using DABCO as the promoter. ${ }^{13 \mathrm{c}}$ They showed that it is important to choose a suitable nucleophile, leaving group and catalyst for a successful outcome. To avoid a direct nucleophilic displacement, a pronucleophile should be used at the beginning of the reaction. After the first $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process, the pronucleophile should be deprotonated to generate a strong nucleophile, which can expel the promoter in the second $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process. The OBoc group was chosen as the leaving group, as this can generate a tert-butoxide anion having the ability to produce a strong nucleophile from the pronucleophile. As shown in Scheme 12, a quaternary ammonium ion was formed first, followed by elimination of the tert-butyl carbonate anion. The pronucleophile (12.2) was
deprotonated by the tert-butoxide anion produced in situ to give a carbanion, which attacked the double bond of $\mathbf{1 2 . 6}$ to afford $\mathbf{1 2 . 3}$.

Scheme 12

By using a chiral phase-transfer catalyst, Ramachandran and coworkers reported an enantioselective intramolecular conjugate displacement. ${ }^{16}$ In the presence of ammonium salt $\mathbf{1 3 . 3}$ and CsOH , the MBH acetates $\mathbf{1 3 . 2}$ reacted with the benzophenone imine of glycine tert-butyl ester (13.1) to afford 4 -substituted glutamic acid derivatives 13.4 in 63-92\% yield and 80-97\% ee.

Scheme 13

Using the same glycine ester 13.1, Hou and coworkers also carried out an asymmetric synthesis of glutamic acid derivatives. ${ }^{17}$ They used a copper salt and a chiral ferrocenyl ligand as the chiral environment (Scheme 14). When an α substituted glycine ester was used, both the yield and ee were lowered, probably due to the steric hindrance at the α position of the glycine ester, but how the steric factors influence the outcome is not clear.

Scheme 14

Krische and coworker used 2-trimethylsilyloxy furan $\mathbf{1 5 . 2}$ as the nucleophile and examined the reaction between $\mathbf{1 5 . 2}$ and MBH acetates 15.1, using PPh_{3} as the promoter to produce the products 15.3. ${ }^{15 \mathrm{a}}$ They proposed that
the electrophile-nucleophile ion pair intermediates 15.5 were generated. Most of the reactions afforded good yields (80\%) with high regioselectivity and diastereoselectivity (syn/anti>20:1, syn/anti refer to the hydrogens indicated in 15.3). The high diastereoselectivity was believed to be the result of formation of the Diels-Alder cycloadducts $\mathbf{1 5 . 6}$ as the intermediates, although reaction via an open transition state 15.7 was also possible. However, Krische and coworker emphasized that the intermediate phosphine adducts $\mathbf{1 5 . 4}$ as single enone geometrical isomers were essential for high diastereoselectivity, regardless of the reaction mechanism.

15.1

15.4

15.6

.

2-FurOSiMe ${ }_{3}$
15.2

15.7

Scheme 15

Shi and coworkers also reported an $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process, using the chiral phosphine $\mathbf{1 6 . 3}$ as the promoter. ${ }^{15 \mathrm{c}}$ Most of the products were obtained in good to excellent yields and with high diastereoselectivity (Scheme 16). The stereochemistry of the products was rationalized using Krische's endo [4+2] cycloaddition mechanism.

16.3

Scheme 16

Examples of other carbon nucleophiles, such as enamines, ${ }^{18}$ indoles ${ }^{19}$ and phenols ${ }^{20}$ have also been studied.

Besides carbon nucleophiles, heteroatom nucleophiles (nitrogen ${ }^{21}$ and oxygen. ${ }^{22}$) have been applied in this type of conjugate displacement reaction.

In contrast to alkylation at the indole C 3 position using an MBH acetate and $\mathrm{AgOTf},{ }^{23}$ Chen and coworkers developed the asymmetric N-alkylation of indoles using MBH carbonates (Scheme 17). ${ }^{21 \mathrm{f}}$ As mentioned in connection with Scheme 12, the carbonate leaving group is crucial in this methodology. The indole nitrogen is not a good nucleophile, and so it needs to be deprotonated for the $(\mathrm{DHQD})_{2} \mathrm{PHAL}-$ promoted $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction with the MBH adduct. However,
deprotonation of the indole nitrogen with an external base at the beginning of the reaction is unsatisfactory, since the nitrogen anion will compete with $(\mathrm{DHQD})_{2} \mathrm{PHAL}$ in the first conjugate addition process. However, with OBoc as the leaving group, the t-butoxide anion will be expelled by the (DHQD) $)_{2} \mathrm{PHAL}$ and can then deprotonate the indole nitrogen.

Scheme 17

Kim and coworkers reported that the use of acetate as the leaving group also works in this type of reaction, although the process is slower and the products were obtained in lower yields (Scheme 18)..$^{21 \mathrm{j}}$

Scheme 18

Orena and coworkers found an interesting phenomenon in the regioselectivity of the conjugate displacement process: the basicity of the amine
catalyst can affect the reaction pathway. ${ }^{21 i}$ Treatment of compound 19.2 with DBU, formed an anion on the nitrogen and then a [3,3]-sigmatropic rearrangement took place to give compound 19.1. When DABCO was used instead of DBU, the $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process occurred to generate 19.3. These results were attributed to the different basicities of DBU and DABCO. The stronger base DBU deprotonated the NHTs group of the substrate first, and the weaker base DABCO acted as a nucleophile first. Another factor in this outcome is that DABCO is more nucleophilic than DBU. ${ }^{24}$

Scheme 19

1.3.2 Intramolecular conjugate displacement with carbon nucleophiles and

 heteroatom nucleophilesOne example of intramolecular conjugate displacement (ICD) using a carbon nucleophile was reported by the Tokoroyama group. ${ }^{25}$ Treatment of compounds 20.1 with a Lewis acid $\left(\mathrm{TiCl}_{4}\right.$ or $\left.\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ resulted in several bicyclic products (Scheme 20). The diastereomeric outcome was complicated, and no simple correlation with the substrate configuration (syn or anti) was apparent. The results showed that diastereomer $\mathbf{2 0 . 2}$ is usually the major product in most cases.

Scheme 20

Other members of this laboratory have developed the ICD process to construct many functionalized carbocycles. ${ }^{11}$ In the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ or DBU , five-, six- and seven-membered rings were prepared, and some examples are shown in Scheme 21. This method was then used to construct the core structure (21.4) of the natural products CP-225,917 and CP-263,114.

21.1

21.3

Scheme 21

Use of a nitrogen nucleophile for an ICD reaction was reported by the Foucaud group as one of the few prior examples reported before the work done in this laboratory. ${ }^{10}$ The Foucaud group synthesized the macrocycle 22.2, using ammonia as the nucleophile.

Scheme 22

Kaye and coworker prepared indolizines using the nitrogen of pyridine as the nucleophile. ${ }^{26}$ They proposed that the compounds $\mathbf{2 3 . 1}$ were converted to the 2-substituted indolizines $\mathbf{2 3 . 2}$ via a nucleophilic addition-elimination sequence. However, this mechanism is disfavored by Baldwin's rules (5-endo-trig cyclizations are disfavored). The reaction probably involves a migration of the leaving group first, followed by a simple $\mathrm{S}_{\mathrm{N}} 2$ process and migration of the double bond to give the cyclization product. Lee's group proved that migration occurred before the cyclization. ${ }^{27}$ They found that when compounds 24.1 were stirred in refluxing $\mathrm{Ph}_{2} \mathrm{O}$ (boiling point $258{ }^{\circ} \mathrm{C}$) for a short time, the 6 -substituted pyrrolo[2,1-b]thiazoles $\mathbf{2 4 . 2}$ were generated. When the methyl ketone $\mathbf{2 4 . 3}$ was heated in refluxing xylene (boiling pointing $137-140{ }^{\circ} \mathrm{C}$) for 5 h , only acetate migration was observed instead of a cyclization product. Substrate 24.5, lacking
the nucleophilic nitrogen, also gave only the migration product 24.6, after being heated in refluxing $\mathrm{Ph}_{2} \mathrm{O}$ for 1 h .

Scheme 23

Scheme 24

Lee and coworkers also developed ICD reactions using iminophosphoranes as nucleophiles. ${ }^{28}$ The azides $\mathbf{2 5 . 1}$ were first converted to the iminophosphoranes $\mathbf{2 5 . 2}$ via the Staudinger reaction, and then refluxing of the mixtures in PhMe generated the desired 1,2-dihydroquinoline derivatives $\mathbf{2 5 . 3}$ by sequential ICD reaction and Michaelis-Arbuzov rearrangement.

Scheme 25

Many examples of ICD reactions using nitrogen as the nucleophile were reported from this laboratory. Besides the previously mentioned process (Scheme 5) conducted on an intermediate in the synthesis of the marine alkaloid halichlorine and the cases shown in Scheme 6, more examples of monocyclic and bicyclic nitrogen-containing compounds were prepared in good yield (Scheme 26). ${ }^{29}$ However, substrates having a substituent at the β position of α, β unsaturated esters normally gave somewhat lower yields, probably due to steric hindrance.

Scheme 26

Encouraged by the apparent facility of the first few ring closures, a formally disfavored 5-endo-trig cyclization, using compound 27.1, was also tried. ${ }^{29}$ The expected ICD reaction did not take place, and instead closure onto the methyl ester carbonyl occurred to produce the lactam 27.3. This outcome indicated that amines of the type derived from 27.1 by removal of the Boc group do not undergo the $I C D$ reaction. Consequently, if a neutral nucleophile $X=Y$ could trap the free amine after removal of the Boc group, then a new anion ${ }^{-} \mathrm{X}-\mathrm{Y}-$ N would be formed and the anion would attack the double bond in an ICD process without violating Baldwin's rules. ${ }^{12}$ Several neutral nucleophiles [PhNCO, PhNCS, $\mathrm{SO}_{2}, \mathrm{BnN}=\mathrm{CH}_{2},\left(\mathrm{Cl}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{NBn}, \mathrm{CO}_{2}, \mathrm{CS}_{2}$ and $\mathrm{H}_{2} \mathrm{NCN}$] were examined, and CS_{2} was found to be a satisfactory choice. Some MBH acetates were treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, and then with CS_{2} and base, and the desired bicyclic ICD products were obtained in $56-71 \%$ yield (Scheme 28). When acyclic substrates were subjected to the same conditions, a five-membered side product was also formed (see 28.5).

Scheme 27

Scheme 28

For oxygen nucleophiles, one example was reported by Nakada and coworkers. ${ }^{22 b}$ In the total synthesis of (-)-erinacine B, they found that treating the advanced intermediate 29.1 with $\mathrm{Et}_{3} \mathrm{~N}$ and LiBr produced the desired (-)-erinacine B as a single diastereomer in 74% yield. This process can be classified as an ICD reaction.

Scheme 29

2. Results and Discussion

2.1 Research objectives

After the ICD reaction had been successfully applied in the synthesis of halichlorine (Scheme 5), a series of bicyclic amines (Schemes 6 and 26) were prepared in this group. However, the stereochemistry of this ICD reaction was not studied, and my project was to develop an asymmetric version of the reaction shown in Scheme 5. The plan was to do this by placing a detachable chiral auxiliary R* on the acceptor double bond, as summarized in Scheme 30. For this purpose, the MBH acetates $\mathbf{3 0 . 4}$ would be prepared from lactone $\mathbf{3 0 . 1}$ and an N protected β-amino- or γ-aminoaldehyde 30.2, followed by acetylation. The ICD reaction would then generate a stereogenic center α to nitrogen (see 30.6). Finally, removal of the chiral auxiliary by DIBAL-H reduction should afford the optically pure functionalized amine 30.7.

Scheme 30

2.2 Preparation of lactones corresponding to 30.1

The reaction of (-)-menthol with racemic lactone 31.2, which can be prepared easily by photooxygenation of furfural (31.1) in MeOH , afforded epimeric derivatives $\mathbf{3 1 . 3}$ and 31.4, which were readily separated. ${ }^{30}$ Diastereomer 31.3 was used for coupling with a number of aldehydes. Alternatively, the selenide 31.6, which was obtained via hydrogenation of $\mathbf{3 1 . 3}{ }^{31}$ (100%), followed by deprotonation and selenation with PhSeCl (66\%), was used in the coupling reaction instead of lactone 31.3.

The selenation reaction generated the $2 S$ isomer $\mathbf{3 1 . 6}$ as the major product and the other $\mathrm{C}(2)$ epimer in 9% yield. The configuration of $\mathbf{3 1 . 6}$ was determined by X-ray analysis of the $2 R$ isomer (Figure 1), which was prepared by deprotonation of $\mathbf{3 1 . 6}$ with LDA and reprotonation with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$.

Scheme 31

Figure 1. ORTEP diagram of $2 R$ isomer of 31.5

2.3 Preparation of amino aldehydes corresponding to $\mathbf{3 0 . 2}$

Two aliphatic amino aldehydes and five aromatic amino aldehydes were prepared for coupling with the lactone. The preparation of aldehyde $\mathbf{3 2}$ started with the known N-benzyl amine 32a. ${ }^{32}$ Treatment with $\mathrm{Boc}_{2} \mathrm{O}$ and DMAP produced the N-Boc derivative $\mathbf{3 2 b},{ }^{32}$ which reacted with $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ in the presence of 2,6-lutidine to generate O-silyl carbamate 32c. ${ }^{33}$ Finally, several different methods were tried to make the desired aldehyde 32: ozonolysis gave the aldehyde in 32% yield, while the yield with the Lemieux-Johnson oxidation was 79%. The best method was found to be the use of OsO_{4} and NMO in aqueous THF, followed by reaction with $\mathrm{NaIO}_{4} /$ silica gel; ${ }^{34}$ this procedure gave the aldehyde in 81% yield.

Scheme 32

Aldehyde 33 was prepared in a very similar way ${ }^{35}$ (Scheme 33). The cleavage of the double bond was first done by ozonolysis, and aldehyde 33 was obtained in 70% yield. However, the use of OsO_{4} and NMO in aqueous THF, followed by treatment with $\mathrm{NaIO}_{4} /$ silica gel, improved the yield to 89%.

Scheme 33

Aromatic aldehyde 34 was prepared by the route summarized in Scheme 34: the starting O-vinylbenzaldehyde 34a was treated with $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$ and AcONa, and then with Zn in $\mathrm{AcOH},{ }^{36}$ followed by N -protection with $\mathrm{Boc}_{2} \mathrm{O}^{37}$ and N -methylation with NaH and MeI, to give compound 34d. Treatment of $\mathbf{3 4 d}$ with $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ and 2,6-lutidine, followed by double bond cleavage using the Lemieux-Johnson method, produced the desired aldehyde 34.

$\mathrm{NaH}, \mathrm{Mel}$
THF, 87\% \downarrow

Scheme 34

The preparation of $\mathbf{3 5}$ began with reduction (DIBAL-H) of iodo ester 35a, which is prepared from 2-methylbenzoic acid, ${ }^{38}$ and Stille coupling with tributyl(vinyl)tin. Then, replacement of the hydroxyl by bromine, displacement with BnNH_{2}, N-protection with $\mathrm{Boc}_{2} \mathrm{O}$ and DMAP, treatment with i $\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ and 2,6-lutidine, and double bond cleavage (Lemieux-Johnson), gave the methyl-substituted benzaldehyde $\mathbf{3 5}$.

Scheme 35

The substituted aldehyde $\mathbf{3 6}$ was synthesized by the following route: Reduction of bromonitrile 36a with $\mathrm{NaBH}_{4} / \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{39}$ followed by N -protection with $\mathrm{Boc}_{2} \mathrm{O}$ and Stille coupling, generated 36d, which was treated with BnBr^{40} to give 36e. Conversion to the triisopropylsilyl carbamate $\mathbf{3 6 f}$ and double bond cleavage with OsO_{4} and NaIO_{4} then produced 36. I had first applied the Stille reaction after N-benzylation, but the route shown in Scheme 36 is better, since some of the intermediates are easier to purify.

36a

Scheme 36

The naphthalene aldehyde 37 was prepared from 1-bromonaphthalene-2carbaldehyde (37a), which is readily available ${ }^{41}$ from commercial 1-bromo-2methylnaphthalene. Wittig reaction served to convert 37a into the bromo olefin 37b, ${ }^{42}$ and then halogen/metal exchange, followed by quenching with DMF, ${ }^{42}$ produced aldehyde 37c. Reduction with NaBH_{4}, followed by Appel reaction and treatment with BnNH_{2}, gave the secondary amine $\mathbf{3 7 f}$. The remaining steps (from $\mathbf{3 7 f}$ to $\mathbf{3 7}$) followed the route used for the previous examples.

Scheme 37

The substituted pyridine aldehyde $\mathbf{3 8}$ was prepared by the route summarized in Scheme 38. Conversion of 2-bromopyridine to aldehyde 38b, ${ }^{43}$ followed by reductive amination, ${ }^{44}$ gave secondary amine 38c. From this point similar operations to those used earlier, provided aldehyde 38.

Scheme 38

2.4 Coupling of the aldehydes with the chiral lactones

Aldehyde 32 was the first substrate examined for coupling with the optically pure lactone $\mathbf{3 1 . 3}$, using PhSeLi as the nucleophilic catalyst. This version of the Morita-Baylis-Hillman reaction had been reported ${ }^{45}$ to work well (high yield and high diastereoselectivity) with lactone $\mathbf{3 1 . 3}$ and a number of aldehydes such as $\mathrm{PhCHO}, i-\mathrm{PrCHO}, t-\mathrm{BuCHO}$ and cinamaldehyde. However, the reaction failed and both starting materials were recovered. I then tried to condense aldehyde $\mathbf{3 2}$ with lactone 31.6: Deprotonation of $\mathbf{3 1 . 6}$ with LDA and addition of aldehyde $\mathbf{3 2}$ produced the desired hydroxy selenide as a mixture of
diastereomers in 60% yield. Later, I found that using $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NK}$ instead of LDA improved the yield to 75%. Oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ gave the expected unsaturated alcohol 39.1a, which is consistent with the normal regioselectivity observed for oxidation of β-hydroxy selenides. ${ }^{46}$ The acetate 39.1b was then obtained using $\mathrm{AcCl}, \mathrm{DMAP}$ and pyridine. As expected, the $2 R$ isomer of $\mathbf{3 1 . 6}$ behaved in the same way, as did mixtures of the two diastereomers.

Scheme 39
4
5

6

7

Scheme 39 (continued)

When aldehyde 33 was examined using the PhSeLi-catalyzed BaylisHillman reaction, the desired alcohol 39.2a was produced in good yield (81\%); the same method also worked well for aromatic aldehydes 34-38. All these Baylis-Hillman reactions were conducted at $-42^{\circ} \mathrm{C}$, and under these conditions
the required double bond was formed in situ without the need for an additional step (addition of BnBr^{45}) to eliminate the PhSe group. For all the alcohols prepared by the Baylis-Hillman reaction, the stereochemistry at the hydroxybearing carbon was assumed to follow the uniform pattern observed for this type of Baylis-Hillman process. ${ }^{45}$ I tried to crystallize four of the alcohols (39.1a, 39.2a, 39.6a, 39.7a), but was successful only with 39.1a, and single crystal X-ray analysis (Figure 2) established the indicated stereochemistry, which is consistent with the result observed before in a simpler case, ${ }^{45}$ even though the condensation method for making 39.1a was different from the Baylis-Hillman condensation method (PhSeLi) used for other examples.

Figure 2. ORTEP diagram of 39.1a

The PhSeLi-mediated Baylis-Hillman condensation gave all the alcohols ${ }^{45,47}$ (Scheme 39, entries 2-7) essentially ($>99 \%$ de) as a single isomer, but the ${ }^{1} \mathrm{H}$ NMR spectra of alcohols and their acetates are complicated, so I had to prove if rotamers or diastereomers are present. For alcohols 39.1a, 39.3a, 39.4a, 39.5a and 39.6a, the ${ }^{13} \mathrm{C}$ NMR showed that only a single isomer was obtained. In
the case of acetate 39.2b and alcohol 39.7a, it was difficult to decide if rotamers or isomers were present from both ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. When the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 9 . 2 b}$ was run at a higher temperature $\left(60{ }^{\circ} \mathrm{C}\right.$), signal coalescence was observed, which indicated that $\mathbf{3 9 . 2 b}$ is a mixture of rotamers. Likewise, the ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{3 9 . 7 a}$ coalesced at $60{ }^{\circ} \mathrm{C}$, establishing the presence of rotamers.

2.5 Intramolecular conjugate displacement

Treatment of acetate 39.1b with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF gave the bicyclic compound 40.1 as a single isomer (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) in 81% yield. The structure of $\mathbf{4 0 . 1}$ was established by IR, NMR and mass spectral data, and the stereochemistry was initially assumed to be as shown in Scheme 30 (see 30.6, $\mathrm{R} * \mathrm{O}$ and adjacent $\mathrm{H} \operatorname{syn})$. However, crystals of $\mathbf{4 0 . 1}$ were obtained at a later date, and surprisingly, single crystal X-ray analysis (Figure 3) showed that the $\mathrm{R} * \mathrm{O}$ group and nitrogen were syn. The coupling constant ${ }^{3} J_{7,7 \mathrm{a}}$ (see 40.1) was 5.5 Hz . Before flash chromatography, the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product showed that a minor isomer (10:1) was also produced. This minor isomer $\left({ }^{3} J_{7,7 \mathrm{a}}=6.0 \mathrm{~Hz}\right)$ was isolated and assumed to be different from $\mathbf{4 0 . 1}$ only at $\mathrm{C}(7 \mathrm{a})$, but I was unable to obtain crystals to prove this assumption by X-ray analysis.

For making compound 40.2, acetate $\mathbf{3 9 . 2 b}$ was treated with $\mathrm{Bu}_{4} \mathrm{NF}$, and two diastereomers were always produced. The optimum conditions were to run the reaction at room temperature for 1 h . The two products were obtained in 78% combined yield and their ratio was $1: 31$ in favor of $\mathbf{4 0 . 2}\left({ }^{3} J_{8,8 \mathrm{a}}=2.5 \mathrm{~Hz}\right)$.

Preparative TLC was used to isolate the minor product, which was proved to be the $\mathrm{C}(8 \mathrm{a})$ isomer, using COSY, ${ }^{1} \mathrm{H} \operatorname{NMR}\left({ }^{3} J_{8,8 \mathrm{a}}=5.1 \mathrm{~Hz}\right)$ and ${ }^{13} \mathrm{C}$ NMR data.

1

39.1b
40.1

2

3

39.3b
40.3

4

40.5

Scheme 40
6

39.6b

40.7
$\mathrm{R}^{*} \mathrm{O}=l$-menthyloxy

Scheme 40 (continued)

Figure 3. ORTEP diagram of 40.1

Acetate 39.3b reacted smoothly with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF at $0{ }^{\circ} \mathrm{C}$ to give the tricyclic compound 40.3 as a single diastereomer ($\left.{ }^{3} J_{6,7}=3.2 \mathrm{~Hz}\right)$ in 92% yield.

The choice of $0{ }^{\circ} \mathrm{C}$ was arbitrarily made to illustrate the mildness of the conditions required for the ICD process.

The cyclization reaction of $\mathbf{3 9 . 4 b}$ showed a more complicated behavior than that of 39.3b. When the reaction was conducted at $-78{ }^{\circ} \mathrm{C}$, the ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated ICD product $40.4\left({ }^{3} J_{6,7}=3.0 \mathrm{~Hz}\right)$ showed small signals which were assumed to represent the $C(7)$ epimer of 40.4 , and the ratio of the products was $23: 1$ (combined yield 96%); when the reaction temperature was changed to $0{ }^{\circ} \mathrm{C}$, the ratio was 9.6:1. Preparative TLC (silica, 1:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was then applied to separate the $23: 1$ mixture, and the desired 40.4 was isolated. However, the minor component could not be purified by preparative TLC.

Acetate $\mathbf{3 9 . 5 b}$, in which the benzene ring carries a trifluoromethyl group, was treated with $\mathrm{Bu}_{4} \mathrm{NF}$ in THF at $0^{\circ} \mathrm{C}$ to generate the expected heterocycle $\mathbf{4 0 . 5}$ $\left({ }^{3} J_{6,7}=3.5 \mathrm{~Hz}\right)$ as a yellow solid in 91% yield. The structure and stereochemistry of the product were confirmed by single crystal X-ray analysis (Figure 4).

Figure 4. ORTEP diagram of 40.5

By using $\mathrm{Bu}_{4} \mathrm{NF}$, the naphthyl acetate 39.6b gave the desired ICD product $40.6\left({ }^{3} J_{15,16}=2.0 \mathrm{~Hz}\right)$ as a single diastereomer in very high yield (99\%). The structure of $\mathbf{4 0 . 6}$ was also confirmed by single crystal X-ray diffraction (Figure 5).

Figure 5. ORTEP diagram of 40.6

When acetate 39.7b was subjected to the ICD process, the expected tricyclic compound $40.7\left({ }^{3} J_{6,7}=3.5 \mathrm{~Hz}\right)$ was obtained as a single isomer in high yield (96\%).

The stereochemistry of ICD products $40.2,40.3,40.4$ and 40.7 was assigned by analogy with the stereochemistry of $\mathbf{4 0 . 5}$ and $\mathbf{4 0 . 6}$, whose structures were established by X-ray analysis. All products except $\mathbf{4 0 . 1}$ have similar ${ }^{3} J$ values for the $\mathrm{R} * \mathrm{OCH}-\mathrm{CHN}$ spin system.

In all cases except entry 1 in Scheme 40, the attack of nitrogen is anti to the menthyloxy group and syn to the acetate leaving group. The formation of compound $\mathbf{4 0 . 1}$ was from attack of nitrogen syn to the menthyloxy group and anti to the acetate leaving group. However, I have not established the reason for this stereochemical outcome.

In addition to the examples shown in Scheme 40, I also tried to make the tricyclic amine 41.5 using the ICD process. 2-Nitrobenzaldehyde (41.1) was used as the starting material and treated with $\mathbf{3 1 . 3}$ in the presence of PhSeLi to generate the desired Morita-Baylis-Hillman alcohol 41.2 in 78% yield. Alcohol 41.2 was then acetylated to give 41.3 (99% yield) which was reduced $\left(\mathrm{Zn}, \mathrm{NH}_{4} \mathrm{Cl}\right)^{48}$ to phenylamine 41.4. An attempt to obtain the ICD product failed, using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$,

Scheme 41
and the starting material was recovered. When $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used $O \rightarrow N$ acetyl transfer occurred.

2.6 Reduction of the ICD products

The chiral auxiliary was removed using DIBAL-H, and most of the resulting optically pure cyclic amines were obtained in good yield (Scheme 42).

1

2

Scheme 42

5

6

7

$\mathrm{R}^{*} \mathrm{O}=l$-menthyloxy
Scheme 42 (continued)

3. Conclusion

The PhSeLi-mediated Morita-Baylis-Hillman (MBH) condensation was successfully applied to prepare MBH alcohols carrying a chiral auxiliary. The derived acetates were made from the MBH alcohols and converted into six- or seven-membered heterocycles having a stereogenic center α to nitrogen via intramolecular conjugate displacement (ICD). Removal of the chiral auxiliary from the ICD products generated optically pure cyclic amines that are functionalized in a way that should permit further elaboration. It appears that the stereochemical outcome of the ICD process is controlled by stereoelectronic rather than steric factors.

4. Experimental

(3S,5R)-5-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy\}-3-(phenylselanyl)oxolan-2-one (31.6).

BuLi (2.5 M in hexane, $1.45 \mathrm{~mL}, 3.63 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(0.52 \mathrm{~mL}, 3.72 \mathrm{mmol})$ in THF (30 $\mathrm{mL})$. After 30 min at $-78{ }^{\circ} \mathrm{C}$, $\mathbf{3 1 . 5}$ ($860.0 \mathrm{mg}, 3.58 \mathrm{mmol}$) in THF (4 mL) was added dropwise and stirring was continued for 70 min at $-78^{\circ} \mathrm{C}$. $\mathrm{PhSeCl}(329.2$ $\mathrm{mg}, 1.72 \mathrm{mmol}$) in THF (1 mL) was then added quickly to the reaction mixture by syringe. After 16 min , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:20 $\mathrm{Et}_{2} \mathrm{O}$-hexanes, gave 31.6 ($451.0 \mathrm{mg}, 66 \%$) as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}-93.54\left(c 1.04, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3057, 2954, 2924, 2869, 1774, 1578, 1477, 1455, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.75-1.05(\mathrm{~m}, 12 \mathrm{H}), 1.14-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 2$ H), 1.95-2.07(m, 2H), 2.34-2.40(m, 1 H), 2.46-2.52(m, 1H), 3.43-3.50(m, 1 H), 4.09 (dd, $J=8.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=2.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}$,
$3 \mathrm{H}), 7.60-7.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.6(\mathrm{q}), 20.9(\mathrm{q}), 22.2$ (q), $23.0(\mathrm{t}), 25.4(\mathrm{~d}), 31.3$ (d), 34.2 (t), 35.9 (d), 37.5 (t), $39.8(\mathrm{t}), 47.7$ (d), 77.1 (d), 99.2 (d), 126.4 (s), 129.0 (d), 129.4 (d), 136.0 (d), 175.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Se}(\mathrm{M}+\mathrm{Na})$ 419.1096, found 419.1093.

In some runs, a small amount (ca 9\%) of the $C(2)$ epimer was also isolated: $\mathrm{mp} 105-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-97.75$ (c $\left.1.04, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3073, 2991, 2947, 2917, 2866, 1779, 1745, 1577, 1478, 1452, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.80-1.07(\mathrm{~m}, 12 \mathrm{H}), 1.24-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.44$ (m, 1 H), 1.66-1.73 (m, 2H), 2.09-2.14 (m, 1H), 2.26-2.35 (m, $2 H$ H), 2.89 (ddd, $J=5.5,9.5,14.5 \mathrm{~Hz} 1 \mathrm{H}), 3.58(\mathrm{dt}, J=4.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=4.0,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=2.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.75(\mathrm{~m}, 2 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.5$ (q), 21.1 (q), 22.3 (q), 22.8 (t), 25.1 (d), 31.4 (d), 34.3 (t$), 35.2$ (d), 37.2 (t$), 39.6$ (t$), 47.7$ (d), 99.0 (d), 128.5 (d), 129.1 (s$)$, 129.3 (d), 134.8 (d), $176.0(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Se}(\mathrm{M}+\mathrm{Na})$ 419.1097, found 419.1096.

Tris(propan-2-yl)silyl N-benzyl- N-(but-3-en-1-yl)carbamate (32c).

2,6-Lutidine ($0.12 \mathrm{~mL}, 1.03 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.24 \mathrm{~mL}, 0.89$ mmol) were added successively to a stirred solution of $\mathbf{3 2 b}^{32}(130.2 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(10 \mathrm{~mL})$. After 15 min , the mixture was lowered into a preheated oil bath set at $96^{\circ} \mathrm{C}$, and stirring was continued for 18 h . The mixture was cooled, evaporated and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 18 \mathrm{~cm}$), using 1:20 t-BuOMehexanes, gave 32c (177.1 mg, 98\%) as a colorless oil: FTIR (CHCl_{3}, cast) 3066, 3031, 2945, 2893, 2868, 1681, 1642, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.06-1.14$ (m, 18 H$), 1.24-1.42$ (m, 3 H), 2.252 .33 (m, 2 H$), 3.26$ (t, $J=7.5 \mathrm{~Hz}, 1$ H), 3.33 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.99-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.81(\mathrm{~m}, 1$ H), 7.22-7.34 (m, 5 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.13(\mathrm{~d}), 12.15(\mathrm{~d})$, $17.87(\mathrm{q}), 17.92(\mathrm{q}), 19.95(\mathrm{q}), 32.3(\mathrm{t}), 32.9(\mathrm{t}), 46.4(\mathrm{t}), 46.6(\mathrm{t}), 50.4(\mathrm{t}), 51.3(\mathrm{t})$, 116.6 (s), 116.8 (s), 127.0 (d), 127.18 (d), 127.24 (d), 127.7 (d), 128.5 (d), 135.1 (d), 135.4 (d), 138.17 (s), 138.19 (s), 155.0 (s), 155.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 384.2329, found 384.2332.

Tris(propan-2-yl)silyl N-benzyl- N-(3-oxopropyl)carbamate (32).

N-Methylmorpholine- N-oxide $(1.39 \mathrm{~g}, 11.87 \mathrm{mmol})$, followed by OsO_{4} (tiny crystal, catalytic), was added to a stirred solution of $\mathbf{3 2 c}(1.07 \mathrm{~g}, 2.97 \mathrm{mmol})$ in THF (15 mL) and water $(15 \mathrm{~mL})$. The flask was stoppered and covered with Al foil and the mixture was stirred for 3 h . The mixture was diluted with EtOAc, and washed with water and brine. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}$ $(18 \% \mathrm{w} / \mathrm{w}, 12.71 \mathrm{~g}, 10.69 \mathrm{mmol})$ was then added with stirring. After 30 min , no starting material was left (TLC control, silica gel, 3:20 EtOAc-hexanes). The mixture was filtered through Celite and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 18 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave $32(0.85 \mathrm{~g}$, 79%) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3065 , 2946, 2893, 2868, 2726, $1725,1679,1606,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.06-1.11(\mathrm{~m}, 18 \mathrm{H})$, $1.26-1.40(\mathrm{~m}, 3 \mathrm{H}), 2.65(\mathrm{dt}, J=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=1.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51-3.57(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 5 \mathrm{H}), 9.72-9.75(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.1(\mathrm{~d}), 17.8(\mathrm{q}), 17.9(\mathrm{q}), 40.7(\mathrm{t}), 41.1(\mathrm{t})$, $42.8(\mathrm{t}), 43.4(\mathrm{t}), 50.9(\mathrm{t}), 51.9(\mathrm{t}), 127.1(\mathrm{~d}), 127.4(\mathrm{~d}), 127.5(\mathrm{~d}), 127.9(\mathrm{~d}), 128.7$ (d), 137.8 (s), 137.9 (s), 155.0 (s), 155.2 (s), 200.2 (d), 200.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 364.2303$, found 364.2307.

Tris(propan-2-yl)silyl N-benzyl- N-(pent-4-en-1-yl)carbamate (33c).

2,6-Lutidine ($0.26 \mathrm{~mL}, 2.24 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.60 \mathrm{~mL}, 2.23$ $\mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 3 b}(0.60 \mathrm{~g}, 2.18 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(30 \mathrm{~mL})$. After 15 min , the mixture was lowered into a preheated oil bath set at $96^{\circ} \mathrm{C}$, and stirring was continued for 12 h . The mixture was cooled, evaporated and diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 18 \mathrm{~cm}$), using 1:20 t-BuOMehexanes, gave 33c ($0.756 \mathrm{~g}, 92 \%$) as a colorless oil: FTIR (CHCl_{3}, cast) 3066, 3031, 2945, 2867, 1680, 1642, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.06-$ $1.14(\mathrm{~m}, 18 \mathrm{H}), 1.22-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.02$ (quintet, $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.23$ (dt, $J=19.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.93-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.69-5.86$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.15(\mathrm{~d}), 12.17(\mathrm{~d})$, $17.9(\mathrm{q}), 18.0(\mathrm{q}), 26.9(\mathrm{t}), 27.5(\mathrm{t}), 31.0(\mathrm{t}), 31.1(\mathrm{t}), 46.6(\mathrm{t}), 46.7(\mathrm{t}), 50.4(\mathrm{t})$, 51.1 (t), 114.9 (s), 115.0 (s), 127.0 (d), 127.16 (d), 127.21 (d), 127.7 (d), 128.49 (d), 128.50 (d), 137.7 (d), 138.0 (d), 138.2 (s), 138.3 (s), 155.0 (s), 155.5 (s); exact
mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 398.2486, found 398.2488.

Tris(propan-2-yl)silyl N-benzyl- N-(4-oxobutyl)carbamate (33).

N-Methylmorpholine- N -oxide ($590 \mathrm{mg}, 5.04 \mathrm{mmol}$), followed by OsO_{4} (1.0 M in $\mathrm{PhMe}, 0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$), was added to a stirred solution of $\mathbf{3 3 c}(612.3$ $\mathrm{mg}, 1.63 \mathrm{mmol}$) in THF (6 mL) and water (6 mL). The mixture was stirred for 45 min, during which time the solution turned dark brown. The mixture was diluted with EtOAc, and washed with water and brine. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$, and $\mathrm{NaIO}_{4}-\mathrm{SiO}_{2}(20.4 \% \mathrm{w} / \mathrm{w}, 6.16 \mathrm{~g}, 5.87 \mathrm{mmol})$ was then added with stirring. Stirring was continued for 20 min by which time all of the diol had reacted (TLC control, silica gel, 1:10 EtOAc-hexanes). The mixture was filtered through Celite, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse, and the filtrate was evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 15 \mathrm{~cm}$), using 1:10 EtOAc-hexanes, gave 33 (550 $\mathrm{mg}, 89 \%)$ as an oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3065,2945,2893,2868,2720,1727$, $1678,1606,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.06-1.12(\mathrm{~m}, 18 \mathrm{H})$,
$1.26-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dt}, J=1.2,7.2 \mathrm{~Hz})$ and $2.44(\mathrm{dt}, J$ $=1.2,7.2 \mathrm{~Hz}$, both signals together 2 H$), 3.24(\mathrm{t}, J=7.6 \mathrm{~Hz})$ and $3.28(\mathrm{t}, J=7.6$ Hz , both signals together 2 H), $4.51(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}), 9.71-9.74(\mathrm{~m}, 1$ $\mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.1(\mathrm{~d}), 17.85(\mathrm{q}), 17.91(\mathrm{q}), 20.1(\mathrm{t}), 20.7(\mathrm{t})$, $40.9(\mathrm{t}), 41.1(\mathrm{t}), 46.0(\mathrm{t}), 46.1(\mathrm{t}), 50.2(\mathrm{t}), 51.0(\mathrm{t}), 127.0(\mathrm{~d}), 127.3(\mathrm{~d}), 127.4(\mathrm{~d})$, 127.8 (d), 128.6 (d), 137.9 ($s), 138.0$ ($s), 155.2$ ($s), 155.4$ (s), 201.0 (d), 201.6 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 400.2278, found 400.2281.

tert-Butyl N-[(2-ethenylphenyl)methyl]-N-methylcarbamate (34d).

$\mathrm{NaH}(60 \%$ in oil, $60.0 \mathrm{mg}, 1.50 \mathrm{mmol})$ was added to a stirred solution of 34c $(153.3 \mathrm{mg}, 0.66 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$. After 15 min , the mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{MeI}(0.16 \mathrm{~mL}, 2.57 \mathrm{mmol})$ was added. The ice bath was left in place but not recharged and stirring was continued for 18 h . Water (4 mL) was added to destroy the excess of NaH and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$),
using 1:20 EtOAc-hexanes, gave $\mathbf{3 4 d}(140.6 \mathrm{mg}, 87 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3064,2976,2931,1696,1628,1603,1572,1481,1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.71$ and 2.78 (two br s, 3 H), 4.54 ($\mathrm{s}, 2$ H), $5.30(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.16$ (m, 1 H), 7.23-7.29 (m, 2 H), 7.49-7.51 (m, 1 H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 28.4 (q), 33.4 (q), 49.6 (t), 50.1 (t$), 79.6$ (s$), 116.0(\mathrm{~s}), 126.1$ (d), 127.5 (d), 127.8 (d), 128.6 (d), 134.2 (d), 134.8 (s), 137.2 (s), 155.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 270.1465, found 270.1465.

Tris(propan-2-yl)silyl

N-[(2-ethenylphenyl)methyl]- N-methylcarbamate (34e).

2,6-Lutidine ($0.10 \mathrm{~mL}, 0.86 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.20 \mathrm{~mL}, 0.72$ mmol) were added successively to a stirred solution of $\mathbf{3 4 d}$ ($123.6 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirring was continued for 9.5 h . The mixture was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.8 x 14 cm), using 1:20 $\mathrm{Et}_{2} \mathrm{O}$-hexanes, gave $\mathbf{3 4 e}(167.8 \mathrm{mg}, 96 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $)$ 3064, 2945, 2892, 2868, 1682, 1559, 1465, $1421 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$
$\mathrm{MHz}) \delta 1.04-1.13(\mathrm{~m}, 18 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 3 \mathrm{H}), 2.79$ and $2.85($ two s, 3 H$), 4.61$ (s, 2 H), $5.30(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=10.8$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}$) and $7.01(\mathrm{dd}, J=10.8,17.2 \mathrm{~Hz}$, both signals together 1 H), 7.16-7.20(m, 1 H), 7.23-7.28(m, 2 H$), 7.49-7.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 12.1$ (d), $17.86(\mathrm{q}), 17.90(\mathrm{q}), 33.7(\mathrm{q}), 34.0(\mathrm{q}), 50.0(\mathrm{t}), 50.9(\mathrm{t})$, 116.1 (s), 116.5 (s), 126.0 (d), 126.2 (d), 127.3 (d), 127.5 (d), 127.68 (d), 127.72 (d), 127.9 (d), 128.8 (d), 133.7 (d), 134.1 (d), 134.4 (s), 134.5 ($s), 136.7$ ($s), 137.3$ (s), $155.0(\mathrm{~s}), 155.1$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NNaO}_{2} \mathrm{Si}$ $(\mathrm{M}+\mathrm{Na}) 370.2173$, found 370.2172 .

Tris(propan-2-yl)silyl

N-[(2-formylphenyl)methyl]- N-methyl-

 carbamate (34).
OsO_{4} (0.1 M in $\mathrm{PhMe}, 0.05 \mathrm{~mL}, 0.005 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 4 e}(157.5 \mathrm{mg}, 0.45 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$. The mixture was stirred for 7 min , during which time the solution turned dark brown. $\mathrm{NaIO}_{4}(301.1 \mathrm{mg}, 1.41 \mathrm{mmol})$ was then added slowly and stirring was continued for 1.5 h . The mixture was filtered through Celite, using EtOAc as a rinse. The
filtrate was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 1:10 EtOAchexanes, gave 34 ($129.3 \mathrm{mg}, 82 \%$) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3071, 2945, 2892, 2867, 2729, 1683, 1601, 1576, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 0.95-1.11(\mathrm{~m}, 18 \mathrm{H}), 1.19-1.35(\mathrm{~m}, 3 \mathrm{H}), 2.94$ and $2.99($ two s, 3 H), $4.96(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{q}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 10.14$ and 10.20 (two s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 12.1$ (d), 17.7 (q), 17.9 (q), 35.0 (q), 35.3 (q), 49.8 (t), 51.4 (t), 126.4 (d), 127.3 (d), 127.5 (d), 127.8 (d), 133.3 (s), 133.5 (d), 133.9 (d), 134.0 (d), 135.1 (d), 140.1 (s), 140.5 ($s), 155.29$ (s), 155.33 (s), 193.0 (d), 193.4 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 372.1965, found 372.1962 .

(2-Iodo-6-methylphenyl)methanol (35b).

DIBAL-H (1.0 M in PhMe, $4.0 \mathrm{~mL}, 4.00 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 5 a}(440.9 \mathrm{mg}, 1.60 \mathrm{mmol})$ in $\mathrm{PhMe}(5$ mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2.25 h , the cooling bath was removed, and stirring was continued for 15 min . The mixture was quenched with saturated
aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 35b as a white solid (96\%): FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3280,3053,3009,2967,2934,2732,2618,1588,1555,1480,1445 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.77-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 4.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.5$ (q), 67.1 (t), 101.7 (s), 129.9 (d), 131.0 (d), 137.6 (d), 139.2 (s), 140.5 (s); HRMS (EI) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO} 247.9698$, found 247.9700 .

(2-Ethenyl-6-methylphenyl)methanol (35c).

$\mathrm{Ph}_{3} \mathrm{P}(135.0 \mathrm{mg}, 0.51 \mathrm{mmol})$ was added to a stirred solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(27.6 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{PhMe}(2.5 \mathrm{~mL})$. The color of the mixture turned yellow after several minutes. Alcohol 35b ($297.6 \mathrm{mg}, 1.20 \mathrm{mmol}$) and then a solution of tributyl(vinyl)tin ($456.6 \mathrm{mg}, 1.44 \mathrm{mmol}$) in $\mathrm{PhMe}(1.0 \mathrm{~mL})$ were added. The solution was purged with a stream of Ar for 10 min and then heated to $110-120^{\circ} \mathrm{C}$ for 15 h , during which time the solution turned black. The mixture was cooled and filtered through Celite, using MeOH as a rinse. Evaporation of the filtrate and flash chromatography of the resulting red residue over silica gel (2.8×14
$\mathrm{cm})$, using 1:5 Et Et_{2}-hexanes, gave 35c $(165.9 \mathrm{mg}, 93 \%)$: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3256, 3085, 3070, 3027, 2958, 2933, 2720, 2591, 1626, 1591, 1581, 1497, 1470 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.49(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 4.80$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=1.5,17.0 \mathrm{~Hz}, 1$ H), $7.15-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 19.5 (q), 58.9 (t), 117.1 (t), 124.4 (d), 128.3 (d), 130.1 (d), 134.8 (d), 135.4 ($s)$, 137.4 (s), 138.2 (s); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ 148.0888, found 148.0886.

2-(Bromomethyl)-1-ethenyl-3-methylbenzene (35d).

$\mathrm{Ph}_{3} \mathrm{P}(394.6 \mathrm{mg}, 1.49)$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathbf{3 5 c}(183.7 \mathrm{mg}, 1.24 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(479.6 \mathrm{mg}, 1.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 50 min , at which point no starting material remained (TLC, silica, 1:20 EtOAc-hexanes). Evaporation of the mixture and flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using hexanes, gave 35d ($236.0 \mathrm{mg}, 90 \%$) as a white solid: FTIR (CHCl_{3}, cast) 3085, 3067, 3028, 3008, 2978, 2950, 2912, 2868, 1628, 1581, 1472, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.75(\mathrm{dd}, J=1.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.2(\mathrm{q}), 28.8(\mathrm{t}), 117.6$ (t), 124.7 (d), 128.8 (d), 130.2 (d), 132.8 (s), 134.2 (d), 137.5 (s), 138.2 (s); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Br} 212.0024$, found 212.0021.

Benzyl[(2-ethenyl-6-methylphenyl)methyl]amine (35e).

$\mathrm{BnNH}_{2}(0.2 \mathrm{~mL}, 1.79 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 5 d}$ (127.9 $\mathrm{mg}, 0.61 \mathrm{mmol}$) in THF (3 mL), and stirring was continued for 12 h . The mixture was then diluted with EtOAc, washed twice with aqueous $\mathrm{NaOH}(1 \mathrm{~N})$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 14 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave 35e ($130.0 \mathrm{mg}, 90 \%$) as a yellow oil: FTIR (CHCl_{3}, cast) 3323, 3084, 3063, 3027, 2976, 2950, 2915, 2859, $1626,1604,1582,1495,1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.35(\mathrm{~s}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dd, $J=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=11.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.5(\mathrm{q}), 46.7(\mathrm{t}), 54.1(\mathrm{t}), 116.2(\mathrm{t}), 124.0(\mathrm{~d}), 127.0(\mathrm{~d})$, 127.3 (d), 128.2 (d), 128.3 (d), 130.0 (d), 135.2 (d), 135.7 (s), 137.2 (s), 137.9 (s),
$140.5(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})$ 238.1590, found 238.1591 .

tert-Butyl $\quad N$-benzyl- N-[(2-ethenyl-6-methylphenyl)methyl]carbamate

(35f).

DMAP ($126.7 \mathrm{mg}, 1.03 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(226.3 \mathrm{mg}, 1.03 \mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 5}$ e ($137.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) in MeCN (6 mL), and stirring was continued for 37 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 1:20 $\mathrm{Et}_{2} \mathrm{O}-$ hexanes, gave $\mathbf{3 5 f}(158.9 \mathrm{mg}, 92 \%)$ as a colorless oil: FTIR (CHCl_{3}, cast) 3087, $3065,3030,3006,2976,2930,1693,1626,1605,1581,1540,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H})$, $5.20(\mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.06-7.09 (m, 3 H), 7.19-7.36(m, 5 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.8(\mathrm{q})$, 28.5 (q), $42.8(\mathrm{t}), 47.4(\mathrm{t}), 80.0(\mathrm{~s}), 116.0(\mathrm{t}), 124.6$ (d), 126.8 (d), 127.0 (d), 127.8 (d), 128.4 (d), 130.1 (d), 132.3 (s), 135.5 (d), 138.2 (s), 139.2 (s), 155.8 (s$)$; exact
mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na}) 360.1934$, found 360.1937.
[Tris(propan-2-yl)silyl
methyl]carbamate (35g).

2,6-Lutidine ($0.10 \mathrm{~mL}, 0.86 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.21 \mathrm{~mL}, 0.76$ $\mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 5 f}(147.1 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was lowered into a preheated oil bath set at $96{ }^{\circ} \mathrm{C}$, and stirring was continued for 4 h . The mixture was then cooled, evaporated and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 18 \mathrm{~cm}$), using 1:25 $\mathrm{Et}_{2} \mathrm{O}-$ hexanes, gave $\mathbf{3 5 g}$ ($186.6 \mathrm{mg}, 98 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3087, 3065, 3030, 2945, 2893, 2867, 1677, 1606, 1581, 1550, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.07-1.20(\mathrm{~m}, 18 \mathrm{H}), 1.31-1.48(\mathrm{~m}, 3 \mathrm{H}), 2.05$ and 2.08 (two s, 3 H), 4.19 (s, 2 H), 4.74 and 4.78 (two s, 2 H), 5.15 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.50-5.57(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=11.0,17.0 \mathrm{~Hz})$ and $6.85(\mathrm{dd}, J=11.0,17.5 \mathrm{~Hz}$,
both signals together 1 H), 7.01-7.06(m, 3 H$), 7.17-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.17$ (d), 12.23 (d), 17.9 (q), 18.0 (q), 19.7 (q), 19.8 (q), $43.2(\mathrm{t}), 44.1(\mathrm{t}), 47.1(\mathrm{t}), 47.9(\mathrm{t}), 116.1(\mathrm{t}), 116.4(\mathrm{t}), 124.3(\mathrm{~d}), 124.7(\mathrm{~d}), 126.5$ (d), 126.9 (d), 127.4 (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.4 (d), 130.1 (d), 130.2 (d), 131.4 (s), 132.0 (s), 135.0 (d), 135.2 (d), 137.9 (s), 138.0 (s), 138.1 (s), 138.4 (s), 139.1 (s), $139.2(\mathrm{~s}), 155.1(\mathrm{~s}), 155.3(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 438.2823$, found 438.2820.

Tris(propan-2-yl)silyl
 N-benzyl- N-[(2-formyl-6-methylphenyl)-

methyl]carbamate (35).

$\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 0.05 \mathrm{~mL}, 0.005 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 5 g}(184.4 \mathrm{mg}, 0.42 \mathrm{mmol})$ in THF (3 mL) and water $(1 \mathrm{~mL})$. The mixture was stirred for 8 min , during which time the solution turned dark brown. $\mathrm{NaIO}_{4}(280.0 \mathrm{mg}, 1.31 \mathrm{mmol})$ was then added slowly and stirring was continued for 50 min . The mixture was filtered through Celite, using EtOAc as a rinse. The filtrate was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 1:20 EtOAc-
hexanes, gave 35 ($155.3 \mathrm{mg}, 84 \%$) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3066, 3031, 2946, 2892, 2867, 2728, 1676, 1591, 1552, 1496, $1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.09-1.20(\mathrm{~m}, 18 \mathrm{H}), 1.30-1.50(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3$ H), $4.26(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.94$ and 10.07 (two s, 1 H) ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.1$ (d), 17.9 (q), 18.0 (q), 19.3 (q), 41.4 (t), 42.2 (t), 47.8 (t), 48.5 (t), 126.6 (d), 127.2 (d), 127.4 (d), 127.9 (d), 128.1 (d), 128.6 (d), 135.98 (d), 136.02 (s), 136.8 (s), 137.5 (s), 139.7 (s), 155.1 (s), 155.3 (s), 191.5 (s), 192.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 440.2615 , found 440.2615 .

tert-Butyl N-\{[2-bromo-5-(trifluoromethyl)phenyl]methyl\}carbamate

(36c).

36b 36c
$\mathrm{Boc}_{2} \mathrm{O}(157.7 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a stirred solution of $\mathbf{3 6 b}(181.9 \mathrm{mg}, 0.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Stirring was continued for 14 h and the solvent was then evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:20 EtOAc-hexanes, gave 36c (242.1 $\mathrm{mg}, 95 \%)$ as a white solid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3296,3062,2986,2936,2817$,
$1678,1646,1603,1582,1518,1475 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.48(\mathrm{~s}$, $9 \mathrm{H}), 4.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1$ H), $7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.3(\mathrm{q}), 44.6(\mathrm{t})$, 80.1 (s), 120.5 (s), 122.7 (s), 124.8 (s), 125.40 (d), 125.43 (d), 125.46 (d), 125.49 (d), 125.7 (d), 127.0 (s), 129.7 (s), 130.0 (s), 130.2 (s), 130.5 (s), 133.3 (d), 139.2 (s), $155.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrF}_{3} \mathrm{NNaO}_{2}(\mathrm{M}+$ Na) 376.0130, found 376.0127.

tert-Butyl N-\{[2-ethenyl-5-(trifluoromethyl)phenyl]methyl\}carbamate

 (36d).
$\mathrm{Ph}_{3} \mathrm{P}(110.0 \mathrm{mg}, 0.42 \mathrm{mmol})$ was added to a stirred solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($22.0 \mathrm{mg}, 0.096 \mathrm{mmol}$) in $\mathrm{PhMe}(5 \mathrm{~mL})$. The color of the mixture turned yellow after several minutes. Bromide 36c ($340.8 \mathrm{mg}, 0.96 \mathrm{mmol}$) and tributyl(vinyl)tin ($351.0 \mathrm{mg}, 1.11 \mathrm{mmol}$) were then added sequentially. The solution was purged with a stream of Ar for 5 min and then heated (Ar atmosphere) to $110-120^{\circ} \mathrm{C}$ for 19 h , during which time the mixture turned black. The mixture was cooled and filtered through Celite, using MeOH as a rinse. Evaporation of the filtrate and
flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:20 EtOAc-hexanes, gave $\mathbf{3 6 d}(275.8 \mathrm{mg}, 95 \%)$ as a light yellow solid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3342,2980,2934,1696,1619,1514,1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 4.44(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=11.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.3(\mathrm{q}), 42.2(\mathrm{t})$, 79.9 (s), 118.8 (t), 120.8 (s), 123.0 (s), 124.49 (d), 124.52 (d), 125.1 (d), 125.16 (d), 125.19 ($s), 126.6$ (d), 127.3 ($s), 129.4$ ($s), 129.7$ (s), 129.9 (s), 130.2 ($s), 132.8$ (d), $136.4(\mathrm{~s}), 140.2(\mathrm{~s}), 155.6(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 324.1182, found 324.1183.

tert-Butyl N-benzyl- N-\{[2-ethenyl-5-(trifluoromethyl)phenyl]methyl\}-

 carbamate (36e).

A solution of $\mathbf{3 6 d}(275.8 \mathrm{mg}, 0.92 \mathrm{mmol})$ in DMF (2 mL) was added dropwise to a stirred suspension of $\mathrm{NaH}(60 \%$ in oil, $47.0 \mathrm{mg}, 1.18 \mathrm{mmol})$ in DMF (7 mL). Stirring was continued for 30 min , and then $\mathrm{BnBr}(0.24 \mathrm{~mL}, 1.38$ mmol) was added. Stirring was continued for 19.5 h , and the mixture was
quenched with hydrochloric acid $(1 \mathrm{~N})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2.8 x 14 cm), using 1:50 EtOAc-hexanes, gave 36e (268.7 mg, 75\%) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3089,3066,3032,2978,2931,1696,1620$, $1573,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 4.31-4.55(\mathrm{~m}, 4 \mathrm{H})$, $5.39(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, 7.17 (br s, 2 H), $7.25-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.3(\mathrm{q}), 46.8(\mathrm{t}), 49.4(\mathrm{t}), 80.5(\mathrm{~s}), 118.4(\mathrm{t})$, 120.9 (s), 123.1 (s), 124.3 (d), 125.2 (s), 126.6 (d), 127.4 (d), 128.6 (d), 129.3 (s), 129.6 (s), 129.8 (s), 130.1 (s), 133.1 (d), 135.5 (s), 137.6 (s), 140.7 (s), 155.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 414.1651, found 414.1654 .

Tris(propan-2-yl)silyl $\quad N$-benzyl- N-\{[2-ethenyl-5-(trifluoromethyl)-

 phenyl]methyl\}-carbamate (36f).

2,6-Lutidine ($0.14 \mathrm{~mL}, 1.20 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.30 \mathrm{~mL}, 1.11$ $\mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 6 e}(236.9 \mathrm{mg}, 0.61$ $\mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(6 \mathrm{~mL})$. The mixture was lowered into a preheated oil bath set at $96^{\circ} \mathrm{C}$, and stirring was continued for 4 h . The mixture was cooled, evaporated and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 18 \mathrm{~cm}$), using 1:50 EtOAchexanes, gave $\mathbf{3 6 f}(282.0 \mathrm{mg}, 95 \%)$ as a colorless oil: FTIR (CHCl_{3}, cast) 3089 , 3065, 3032, 2947, 2893, 2868, 1681, 1620, 1574, 1549, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.09-1.16(\mathrm{~m}, 18 \mathrm{H}), 1.34-1.44(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.64(\mathrm{~m}, 4$ H), $5.42(\mathrm{~d}, ~ J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.76(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=11.0,17.5 \mathrm{~Hz})$ and $6.97(\mathrm{dd}, J=11.0,17.0 \mathrm{~Hz}$, both signals together 1 H$), 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1$ H), $7.27-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.63 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (because of the presence of rotamers, signal splitting by fluorine is ignored) $\delta 12.08$ (d), 12.15 (d), 17.8 (q), 17.9 (q), $47.0(\mathrm{t}), 47.7(\mathrm{t}), 50.0(\mathrm{t}), 118.6(\mathrm{t}), 118.9(\mathrm{t}), 120.9(\mathrm{~s}), 123.0(\mathrm{~s}), 123.89$ (d), 123.92 (d), 124.2 (d), 124.3 (d), 124.4 (d), 124.5 (d), 125.21 (d), 125.24 (d), 126.6 (d), 126.7 (d), 127.3 (d), 127.5 (d), 127.55 (d), 127.64 (d), 127.8 (d), 128.0 (d), 128.4 (d), 128.7 (d), 129.3 (s), 129.5 (s), 129.6 (s), 129.8 (s), 129.9 (s), 130.07 (s), 130.12 (s$), 130.3$ (s$), 132.6$ (d), 133.0 (d), 135.2 (s), 135.4 (s), 137.2 (s$), 137.4$ $(\mathrm{s}), 140.1(\mathrm{~s}), 140.7(\mathrm{~s}), 155.2(\mathrm{~s}), 155.4(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{NNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 514.2360, found 514.2359.

Tris(propan-2-yl)silyl

 phenyl]methyl\}carbamate (36).
$\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 0.05 \mathrm{~mL}, 0.005 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 6 f}(273.1 \mathrm{mg}, 0.56 \mathrm{mmol})$ in THF (4.5 mL) and water $(1.5 \mathrm{~mL})$. The mixture was stirred for 8 min , during which time the solution turned dark brown. $\mathrm{NaIO}_{4}(369.0 \mathrm{mg}, 1.72 \mathrm{mmol})$ was then added slowly and stirring was continued for 1 h . The mixture was filtered through Celite, using EtOAc as a rinse. The filtrate was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:20 EtOAchexanes, gave 36 ($257.1 \mathrm{mg}, 94 \%$) as a light yellow oil: FTIR (CHCl_{3}, cast) $3089,3066,3032,2947,2893,2869,2740,1703,1681,1583,1553,1496 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.99-1.14(\mathrm{~m}, 18 \mathrm{H}), 1.25-1.42(\mathrm{~m}, 3 \mathrm{H}), 4.57$ and 4.62 (two s, 2 H), 4.97 and 5.01 (two s, 2 H), 7.22-7.35 (m, 5 H), $7.63(\mathrm{~s}, 1 \mathrm{H})$, $7.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.17$ and 10.22 (two s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (because of the presence of rotamers, signal splitting by fluorine is ignored) $\delta 12.0$ (d), 12.1 (d), 17.7 (q), 17.8 (q), 47.47 (t), $47.54(\mathrm{t}), 51.4(\mathrm{t}), 51.6(\mathrm{t}), 120.0(\mathrm{~s}), 120.1$ (s$), 122.2$ (s), 122.3 (s), 123.97 (d),
123.99 (d), 124.18 (d), 124.21 (d), 124.3 (d), 124.4 (d), 124.5 (s), 124.79 (d), 124.81 (d), 126.6 (s), 126.7 (s), 127.3 (d), 127.6 (d), 127.7 (d), 128.0 (d), 128.4 (d), 128.7 (d), 128.8 (d), 133.4 (d), 134.6 (d), 134.8 (s), 134.9 ($s), 135.0$ ($s), 135.2$ (s), 135.3 (s), 135.4 (s), 135.5 (s), 136.1 (s), 137.0 (s), 137.2 (s), 141.2 (s), 141.9 $(\mathrm{s}), 155.3(\mathrm{~s}), 155.4(\mathrm{~s}), 191.8(\mathrm{~d}), 192.0(\mathrm{~d})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 516.2152, found 516.2151.

(2-Ethenylnaphthalen-1-yl)methanol (37d).

$\mathrm{NaBH}_{4}(138.5 \mathrm{mg}, 3.65 \mathrm{mmol})$ was added to a solution of $\mathbf{3 7} \mathbf{c}^{42}(132.7$ $\mathrm{mg}, 0.73 \mathrm{mmol})$ in THF (2 mL) and EtOH (2 mL) at room temperature. The mixture was stirred for 30 min and then quenched with cold water. The pH was adjusted to 5-6 and the solution was stirred for 15 min . The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 14 \mathrm{~cm}$), using 3:10 EtOAc-hexanes, gave 37d ($127.7 \mathrm{mg}, 95 \%$) as a white solid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3396, 3082, 3057, 2993, 2948, 2911, 1620, 1596, 1513, $1497 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.71(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{dd}, J=1.0,11.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.81(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=11.0,17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 58.1$ (t), 118.1 (t), 124.4 (d), 124.5 (d), 126.1 (d), 127.2 (d), 128.8 (d), 129.2 (d), 132.5 (s), 132.6 (s), 133.7 (s), 134.7 (d), 135.1 (s); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}$ 184.0888, found 184.0885.

1-(Bromomethyl)-2-ethenylnaphthalene (37e).

$\mathrm{Ph}_{3} \mathrm{P}(156.2 \mathrm{mg}, 0.59 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(195.7 \mathrm{mg}, 0.59 \mathrm{mmol})$ were added successively to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 7 d}(90.4 \mathrm{mg}, 0.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. After 1 h at $0{ }^{\circ} \mathrm{C}$, the solvent was evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 14 \mathrm{~cm}$), using 1:50 EtOAchexanes, gave $\mathbf{3 7 e}(104.5 \mathrm{mg}, 86 \%)$ as a white solid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3085 , 3057, 3020, 1618, 1595, 1564, 1512, $1470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $5.07(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{dd}, J=11.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.81$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 27.3(\mathrm{t}), 118.4(\mathrm{t}), 123.6(\mathrm{~d}), 124.2(\mathrm{~d}), 126.0(\mathrm{~d}), 127.0(\mathrm{~d})$,
128.6 (d), 129.4 (s), 129.5 (d), 131.4 (s), 133.4 (s), 134.0 (d), 135.0 (s); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br} 246.0044$, found 246.0046.

Benzyl[(2-ethenylnaphthalen-1-yl)methyl]amine (37f).

A solution of $\mathbf{3 7 e}(147.3 \mathrm{mg}, 0.60 \mathrm{mmol})$ and $\mathrm{BnNH}_{2}(0.2 \mathrm{~mL}, 1.79 \mathrm{mmol})$ in THF (1.5 mL) was stirred at room temperature for 22 h and then diluted with EtOAc. The mixture was washed twice with aqueous $\mathrm{NaOH}(1 \mathrm{M})$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 1:5 EtOAc-hexanes, gave $\mathbf{3 7 f}$ ($149.1 \mathrm{mg}, 92 \%$) as a yellow oil: FTIR (CHCl_{3}, cast) 3324, 3084, 3061, 3026, 2917, 2850, 1665, 1622, $1597,1564,1511,1495 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.57(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~s}$, $2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{dd}, J=1.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=1.0,17.5 \mathrm{~Hz}, 1$ H), $7.22(\mathrm{dd}, J=11.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.52(\mathrm{~m}, 6 \mathrm{H})$, $7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 45.3(\mathrm{t}), 54.2(\mathrm{t}), 116.9(\mathrm{t})$, 123.9 (d), 124.3 (d), 125.6 (d), 126.6 (d), 127.1 (d), 128.0 (d), 128.35 (d), 128.43
(d), 128.5 (d), 132.6 (s), 132.7 ($s), 133.5$ ($s), 134.4$ ($s), 134.8$ (d), 140.4 ($s)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})$ 274.1590, found 274.1591.

tert-Butyl $\quad N$-benzyl- N-[(2-ethenylnaphthalen-1-yl)methyl]carbamate

 (37g).

DMAP ($155.0 \mathrm{mg}, 1.26 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(222.0 \mathrm{mg}, 1.01 \mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 7 f}(137.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{MeCN}(5$ mL). Stirring was continued for 24 h , and the solvent was evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 1:20 $\mathrm{Et}_{2} \mathrm{O}-$ hexanes, gave $\mathbf{3 7 g}$ ($155.6 \mathrm{mg}, 83 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3087, 3062, 3031, 3007, 2975, 2931, 1689, 1622, 1605, 1511, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.40-1.80(\mathrm{~m}, 9 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82-7.86(\mathrm{~m}, 1 \mathrm{H}), 8.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.5(\mathrm{q}), 41.5$ (t), $47.6(\mathrm{t}), 80.2(\mathrm{~s}), 117.3(\mathrm{t}), 124.0(\mathrm{~d}), 124.8(\mathrm{~d}), 125.8(\mathrm{~d}), 126.7$ (d), $126.8(\mathrm{~d})$, 126.9 (d), 127.0 (d), 128.3 (d), 128.5 (d), 128.7 (d), 132.9 (s), 133.4 (s), 134.8 (d),
136.2 (s), 138.5 (s), 155.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NNaO}_{2}(\mathrm{M}+\mathrm{Na})$ 396.1934, found 396.1937.

Tris(propan-2-yl)silyl

N-benzyl- N-[(2-ethenylnaphthalen-1-yl)methyl]carbamate (37h).

2,6-Lutidine ($0.036 \mathrm{~mL}, 0.31 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.075 \mathrm{~mL}, 0.27$ $\mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{3 7 g}(57.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2 \mathrm{~mL})$ and stirring was continued for 24 h . The mixture was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.2 x 14 cm), using 1:25 $\mathrm{Et}_{2} \mathrm{O}$-hexanes, gave $\mathbf{3 7 h}(71.0 \mathrm{mg}, 98 \%)$ as a colorless oil: $\mathrm{FTIR}\left(\mathrm{CHCl}_{3}\right.$, cast) $3087,3063,3033,2945,2892,2867,1674,1623,1606,1560,1511,1496 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.11-1.30(\mathrm{~m}, 18 \mathrm{H}), 1.36-1.56(\mathrm{~m}, 3 \mathrm{H}), 4.22(\mathrm{~s}$, $2 \mathrm{H}), 5.23-5.29(\mathrm{~m}, 3 \mathrm{H}), 5.66-5.72(\mathrm{~m}, 1 \mathrm{H}), 6.86-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.23$ (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.2(\mathrm{~d}), 12.3(\mathrm{~d}), 17.9(\mathrm{q}), 18.1(\mathrm{q}), 42.0$ (t), $43.0(\mathrm{t}), 47.4(\mathrm{t}), 48.2(\mathrm{t}), 117.4(\mathrm{t}), 123.9(\mathrm{~d}), 124.1(\mathrm{~d}), 124.3(\mathrm{~d}), 125.0(\mathrm{~d})$,
125.8 (d), 125.9 (d), 126.5 (d), 126.6 (d), 126.8 (d), 127.3 (d), 128.2 (d), 128.3 (d), 128.4 (d), 128.5 (d), 128.7 (d), 128.8 (d), 129.3 (s), 132.8 (s), 132.9 (s), 133.3 (s$), 134.5$ (d), 134.6 (d), 136.2 (s), 137.9 (s), 138.0 (s), 155.2 (s$), 155.4$ (s$) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 474.2823, found 474.2821 .

Tris(propan-2-yl)silyl N-benzyl- N-[(2-formylnaphthalen-1-yl)methyl]-

 carbamate (37).
$\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 0.05 \mathrm{~mL}, 0.005 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 7} \mathbf{g}(224.5 \mathrm{mg}, 0.48 \mathrm{mmol})$ in THF (4 mL) and water $(1.3 \mathrm{~mL})$. The mixture was stirred for 7 min , during which time the solution turned dark brown. $\mathrm{NaIO}_{4}(315.0 \mathrm{mg}, 1.47 \mathrm{mmol})$ was then added slowly, and stirring was continued for 1.5 h . The mixture was filtered through Celite, using EtOAc as a rinse, and the filtrate was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.8 x 14 cm), using 1:20 EtOAc-hexanes, gave 37 ($193.7 \mathrm{mg}, 86 \%$) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3287,3064,2945,2892,2867,1675,1623,1599,1549,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.10-1.29(\mathrm{~m}, 18 \mathrm{H}), 1.37-1.57(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.24(\mathrm{~m}, 2$ H), $5.55(\mathrm{~s}, 2 \mathrm{H}), 6.94-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), 7.65-7.67 (m, 1 H$), 7.90-7.95(\mathrm{~m}, 3 \mathrm{H}), 8.34-8.43(\mathrm{~m}, 1 \mathrm{H}), 9.98$ and 10.11 (two s, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.2$ (d), 12.3 (d), 17.7 (q), 17.9 (q), 18.1 (q), 39.7 (t$), 40.7$ (t$), 47.7$ (t$), 48.6$ (t$), 123.4$ (d), 123.57 (d), 123.64 (d), 125.3 (d), 126.0 (d), 126.6 (d), 127.2 (d), 127.4 (d), 127.5 (d), 128.7 (d), 128.8 (d), 128.9 (d), 129.3 (d), 129.39 (d), 129.42 (d), 132.4 (s), 133.3 (s), 133.5 (s), 136.1 (s), 136.6 (s), 137.0 (s), 137.1 ($s), 137.2$ ($s), 155.1$ (s), 155.3 (s), 190.4 (d), 190.9 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 476.2615, found 476.2612.
tert-Butyl N-benzyl-N-[(2-bromopyridin-3-yl)methyl]carbamate (38d).

DMAP ($54.6 \mathrm{mg}, 0.44 \mathrm{mmol}$) and then $\mathrm{Boc}_{2} \mathrm{O}(97.6 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ were added successively to a stirred solution of 38c $(61.4 \mathrm{mg}$, $0.22 \mathrm{mmol})$ in $\mathrm{MeCN}(2.5 \mathrm{~mL})$, and stirring was continued for 30 h . Evaporation of the solvent and flash chromatography of the residue over silica gel (1.2 $\times 14$ cm), using 1:5 EtOAc-hexanes, gave $\mathbf{3 8 d}$ ($70.4 \mathrm{mg}, 84 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3031,2976,2930,1697,1605,1578,1561,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.43$ and 1.51 (two br s, 9 H), 4.41-4.53(m, 4 H$), 7.22-7.35$ (m, 6 H), 7.43 and 7.54 (two s, 1 H), $8.26(\mathrm{dd}, J=1.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.4(\mathrm{q}), 49.1(\mathrm{t}), 49.4(\mathrm{t}), 50.5(\mathrm{t}), 50.9(\mathrm{t}), 80.7(\mathrm{~s}), 123.0$ (d), 127.6 (d), 128.1 (d), 128.7 (d), 134.6 (s), 134.7 (s), 135.9 (d), 136.9 (d), 137.4 $(\mathrm{s}), 137.5(\mathrm{~s}), 142.4(\mathrm{~s}), 142.8(\mathrm{~s}), 148.5(\mathrm{~d}), 155.8(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 377.0859, found 377.0860.

tert-Butyl N-benzyl- N-[(2-ethenylpyridin-3-yl)methyl]carbamate (38e).

$\mathrm{Ph}_{3} \mathrm{P}(79.0 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added to a stirred solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($15.7 \mathrm{mg}, 0.071 \mathrm{mmol}$) in $\mathrm{PhMe}(4 \mathrm{~mL})$. The color of the mixture turned yellow after several minutes. Bromide 38d ($258.9 \mathrm{mg}, 0.69 \mathrm{mmol}$) and tributyl(vinyl)tin ($261.3 \mathrm{mg}, 0.82 \mathrm{mmol}$) were then added sequentially. The solution was purged with a stream of Ar for 10 min and then heated (Ar atmosphere) to $110-120^{\circ} \mathrm{C}$ for 18 h , during which time the solution turned black. The mixture was cooled and filtered through Celite, using MeOH as a rinse. Evaporation of the filtrate and flash chromatography of the red residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:5 EtOAc-hexanes, gave 38e (203.9 mg, 91\%) as a light yellow oil: FTIR
$\left(\mathrm{CHCl}_{3}\right.$, cast) $3088,3063,3027,2976,2928,2873,1695,1605,1584,1561,1496$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 4.29-4.53(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{dd}, J$ $=2.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=2.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12-7.22$ (m, 3 H), $7.24-7.33$ (m, 3 H), 7.42 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=1.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.4(\mathrm{q}), 45.8(\mathrm{t}), 49.3(\mathrm{t}), 80.5(\mathrm{~s}), 120.2(\mathrm{t})$, 122.4 (d), 127.4 (d), 128.6 (d), 130.0 (s), 132.3 (d), 137.5 (s), 148.4 (d), 155.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 325.1911$, found 325.1911 .

Tris(propan-2-yl)silyl $\quad N$-benzyl- N-[(2-ethenylpyridin-3-yl)methyl]-

 carbamate (38f).

2,6-Lutidine ($0.15 \mathrm{~mL}, 1.29 \mathrm{mmol}$) and $i-\mathrm{Pr}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.31 \mathrm{~mL}, 1.13$ mmol) were added successively to a stirred solution of $\mathbf{3 8 e}(193.9 \mathrm{mg}, 0.60$ $\mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(6.5 \mathrm{~mL})$. After 15 min , the mixture was lowered into a preheated oil bath set at $96^{\circ} \mathrm{C}$, and stirring was continued for 4 h . The mixture was cooled, evaporated and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash
chromatography of the residue over silica gel ($2.8 \times 18 \mathrm{~cm}$), using 1:5 t-BuOMehexanes, gave $\mathbf{3 8 f}(232.8 \mathrm{mg}, 92 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3063 , 3028, 2945, 2892, 2867, 2726, 1680, 1606, 1584, 1561, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.05(\mathrm{~d}, J=7.5 \mathrm{~Hz})$ and $1.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, both signals together 18 H$), 1.29-1.39(\mathrm{~m}, 3 \mathrm{H}), 4.36-4.59(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{dd}, J=2.0,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=10.5,17.0 \mathrm{~Hz})$ and $6.99(\mathrm{dd}, J=11.0$, 17.0 Hz , both signals together 1 H$), 7.11-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.41-7.45 (m, 1 H$), 8.49-8.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.05$ (d), 12.11 (d), $17.8(\mathrm{q}), 17.9(\mathrm{q}), 46.1(\mathrm{t}), 46.7(\mathrm{t}), 49.6(\mathrm{t}), 49.7(\mathrm{t}), 120.4(\mathrm{t})$, 120.5 (t), 122.4 (d), 122.5 (d), 127.1 (d), 127.4 (d), 127.5 (d), 128.0 (d), 128.7 (d), 129.6 (s), 129.7 (s), 131.8 (d), 132.4 (d), 135.0 (d), 136.9 (d), 137.1 (s), 137.3 (s), 148.2 (d), 148.5 (d), 153.0 (s), 153.8 (s), 155.2 (s), 155.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 425.2619$, found 425.2621 .

Tris(propan-2-yl)silyl $\quad N$-benzyl- N-[(2-formylpyridin-3-yl)methyl]carbamate (38).

$\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 0.1 \mathrm{~mL}, 0.01 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 8 f}(216.0 \mathrm{mg}, 0.51 \mathrm{mmol})$ in THF $(4.5 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$. The mixture was stirred for 7 min , during which time the solution turned dark brown. NaIO_{4} ($338.0 \mathrm{mg}, 1.58 \mathrm{mmol}$) was then added slowly, and stirring was continued for 2 h . The mixture was filtered through Celite, using EtOAc as a rinse. The filtrate was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 3:20 EtOAchexanes, gave 38 ($156.3 \mathrm{mg}, 79 \%$) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3063, 3028, 2945, 2892, 2867, 2726, 1680, 1606, 1584, 1561, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.98(\mathrm{~d}, J=7.5 \mathrm{~Hz})$ and $1.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, both signals together 18 H), 1.21-1.40 (m, 3 H), 4.52 and 4.59 (two s, 2 H), 4.95 and 5.02 (two s, 2 H), $7.20-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz})$ and $7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, both signals together 1 H$), 8.70(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.11$ and 10.14 (two s, 1 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.0$ (d), 12.1 (d), 17.7 (q), 17.9 (q), 46.6 (t), $47.5(\mathrm{t}), 51.5(\mathrm{t}), 52.0(\mathrm{t}), 126.91$ (d), 126.95 (d), 127.3 (d), 127.5 (d), 127.7 (d), 128.0 (d), 128.6 (d), 128.7 (d), 134.7 (d), 135.6 (d), 136.2 (s), 136.7 (s), 137.19 (s), 137.23 (s), 148.2 (d), 148.3 (d), 149.1 (s), 149.4 (s), 155.5 (s), 155.6 (s), 195.5 (d), 195.6 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 427.2411$, found 427.2410 .

Selenide 31.6 ($91.7 \mathrm{mg}, 0.23 \mathrm{mmol}$) in THF (0.5 mL) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NK}(0.5 \mathrm{M}$ in $\mathrm{PhMe}, 0.48$ $\mathrm{mL}, 0.24 \mathrm{mmol}$) in THF (4 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 70 min , and then $32(88.9 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise. Stirring at $78^{\circ} \mathrm{C}$ was continued for 70 min . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 3:25 EtOAc-hexanes, gave pre-39.1a (136.0 mg , $77 \%)$ as an oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $) 3386,3061,3031,2950,2927,2868,1772$, $1677,1650,1607,1579,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.72-1.14(\mathrm{~m}$, $30 \mathrm{H}), 1.19-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.27-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.82-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.87$ (m, 3 H$), 4.36-4.62(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.73(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.55-7.77$ (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 12.1$ (d), 12.2 (d), 15.5 (q),
17.80 (q), 17.82 (q), 18.0 (q), 21.1 (q), 22.2 (q), 22.3 (q), $22.8(\mathrm{t}), 24.9(\mathrm{~d}), 29.6$ $(\mathrm{t}), 31.4(\mathrm{~d}), 34.3(\mathrm{t}), 34.4(\mathrm{t}), 35.5(\mathrm{t}), 39.6(\mathrm{t}), 42.3(\mathrm{t}), 47.7(\mathrm{~d}), 47.8(\mathrm{~d}), 50.3(\mathrm{t})$, 50.4 (t), 68.0 (d), 77.1 (d), 97.7 (d), 126.5 (s), 127.0 (d), 127.5 (d), 128.6 (d), 128.7 (d), 128.98 (d), 129.03 (d), 129.20 (d), 129.24 (d), 134.8 (d), 137.27 (d), $137.30(\mathrm{~s}), 137.9(\mathrm{~d}), 156.7(\mathrm{~s}), 176.7(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{NO}_{6} \mathrm{SeSi}(\mathrm{M}+\mathrm{H}) 760.3506$, found 760.3509 .

Tris(propan-2-yl)silyl
N-benzyl- N-\{(3S)-3-hydroxy-3-[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] 0 x y\}-2-0 x 0-2,5-d i h y d r o-$ furan-3-yl]propyl\}carbamate (39.1a).

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.08 \mathrm{~mL}, 0.71 \mathrm{mmol})$ and $\mathrm{AcOH}(2$ drops $)$ were added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of pre-39.1a $(82.4 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF (2 mL). After 30 min , the ice bath was removed, and stirring was continued for 15 min. The mixture was neutralized with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave 39.1a $(60.0 \mathrm{mg}, 90 \%)$ as a colorless oil that
became a solid after being covered with pentane and slow evaporation of the solvent: mp $103-105{ }^{\circ} \mathrm{C}$; FTIR (CHCl_{3}, cast) 3416, 3089, 3065, 3031, 2950, 2927, 2868, 1769, 1677, 1652, 1587, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.79-1.13$ (m, 30 H), 1.20-1.53 (m, 6 H), 1.64-1.68 (m, 2 H), 2.07-2.14 (m, 2 H), 2.19-2.23 (m, 1 H), 3.01-3.05 (m, 1 H), $3.63(\mathrm{dt}, J=4.0,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.36(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 15.8$ (q), 17.8 (q), 20.8 (q), 22.2 (q), 23.2 (t$), 25.3$ (d), 31.5 (d), 33.8 (t), 34.2 (t$), 40.5$ (t$), 42.2$ (t$), 47.7$ (d), 50.7 (t), 63.5 (d), 79.1 (d), 99.3 (d), 127.1 (d), 127.5 (d), 128.7 (d), 137.1 ($s), 140.2$ ($)$, 143.5 (d), 157.0 (s), 170.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 602.3871$, found 602.3874. A sample was crystallized from petroleum ether $\left(35-60^{\circ} \mathrm{C}\right)$ for X-ray analysis.
(1S)-3-[Benzyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]-1-((5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] 0 x y\}-2-o x 0-2,5-d i h y d r o-$ furan-3-yl]propyl acetate (39.1b).

DMAP ($4.7 \mathrm{mg}, 0.039 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 1} \mathbf{a}$ ($72.6 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.026 \mathrm{~mL}, 0.37 \mathrm{mmol})$ and pyridine $(0.07 \mathrm{~mL}, 0.87 \mathrm{mmol})$ were added sequentially. The dry ice bath was replaced by an ice bath which was left in place but not recharged, and stirring was continued for 7.5 h . The mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and water (4 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.2 x 14 cm), using 3:20 EtOAc-hexanes, gave 39.1b (66.9 mg , $86 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3089,3066,3031,2949,2868,1771$, $1679,1606,1587,1559,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.79-1.12(\mathrm{~m}$, $29 \mathrm{H}), 1.22-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.28(\mathrm{~m}, 7 \mathrm{H}), 3.20-3.46$ (m, 2 H), 3.59-3.64 (m, 1 H), 4.41-4.57 (m, 2 H), $5.50-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1$ H), 6.79-6.86 (m, 1 H), 7.20-7.33 (m, 5 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.1$ (d), $15.8(\mathrm{q}), 17.8(\mathrm{q}), 17.9(\mathrm{q}), 20.7(\mathrm{q}), 20.75(\mathrm{q}), 20.83(\mathrm{q}), 22.2(\mathrm{q}), 23.1(\mathrm{t})$,
 47.7 (d), 50.4 (t), 50.8 (t), 66.4 (d), 66.9 (d), 79.3 (d), 79.5 (d), 98.88 (d), 98.91 (d), 127.1 (d), 127.3 (d), 127.4 (d), 127.9 (d), 128.6 (d), 136.6 (s), 137.7 (s), 137.8 (s), 143.83 (d), 143.85 (d), 144.37 (d), 144.39 (d), 154.9 (s), 155.2 (s), 168.5 (s), 168.8 (s), 169.5 (s), $169.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{NO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 644.3977$, found 644.3977 .

Tris(propan-2-yl)silyl
N-benzyl- N-\{(4S)-4-hydroxy-4-[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] o x y\}-2-o x 0-2,5-d i h y d r o-$ furan-3-yl]butyl\}carbamate (39.2a).

$\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $0.115 \mathrm{~mL}, 0.29 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(88.9 \mathrm{mg}, 0.28 \mathrm{mmol})$ in THF (1 mL). After 10 min , the mixture was cooled to $-42{ }^{\circ} \mathrm{C}($ dry ice $/ \mathrm{MeCN})$, and a mixture of $\mathbf{3 1 . 3}$ ($62.0 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathbf{3 3}(146.7 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF (1.5 mL) was added dropwise. Stirring at $-42^{\circ} \mathrm{C}$ was continued for 9 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.6 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexanes, gave 39.2a ($130.6 \mathrm{mg}, 81 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3440, 3089, 3065, 2948, 2868, 1767, 1673, 1559, $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.79-1.12(\mathrm{~m}, 29 \mathrm{H}), 1.21-1.85(\mathrm{~m}, 11 \mathrm{H}), 2.07-2.14$ (m, 2 H), 3.23-3.29 (m, 2 H), 3.42-3.49 (m, 1H), 3.59-3.65 (m, 1 H$), 3.96(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.41-4.57(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.83$ and 6.93 (two s, 1 H), 7.21-7.34 (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.1$ (d), 15.7 (q), 15.8 (q), 17.7 (q), 17.8
(q), 17.9 (q), $20.9(q), 22.2(q), 23.1(t), 23.2(t), 23.7(t), 24.1(t), 25.3(d), 31.4$ $(\mathrm{t}), 31.5(\mathrm{~d}), 32.5(\mathrm{t}), 34.2(\mathrm{t}), 40.4(\mathrm{t}), 46.1(\mathrm{t}), 46.6(\mathrm{t}), 47.7(\mathrm{~d}), 50.1(\mathrm{t}), 50.9(\mathrm{t})$, 66.4 (d), 67.0 (d), 79.1 (d), 79.3 (d), 99.2 (d), 127.0 (d), 127.26 (d), 127.31 (d), 127.8 (d), 128.5 (d), 128.6 (d), 137.8 (s), 138.1 (s), 139.8 (s), 140.5 (s), 142.9 (d), 143.2 (d), 155.5 (s), 155.8 (s), 170.39 (s), 170.42 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{NNaO} \mathrm{N}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 638.3847, found 638.3847.
(1S)-4-[Benzyl(\{[tris(propan-2-yl)silyl]oxy\} carbonyl)amino]-1-[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] 0 x y\}-2-0 x 0-2,5-d i h y d r o-$ furan-3-yl]butyl acetate (39.2b).

DMAP ($3.4 \mathrm{mg}, 0.028 \mathrm{mmol}$) was added to a stirred solution of 39.2a ($87.4 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The mixture was then cooled to -78 ${ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.03 \mathrm{~mL}, 0.42 \mathrm{mmol})$ and pyridine $(0.07 \mathrm{~mL}, 0.85 \mathrm{mmol})$ were added sequentially. The mixture was cooled in an ice bath which was left in place but not recharged, and stirring was continued for 7.5 h . The mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 1 \mathrm{~mL}$) and water (5 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed
with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 1:1 EtOAc-hexanes, gave 39.2b (84.4 mg , 90%) as a colorless oil: FTIR (CHCl_{3}, cast) 3064, 3030, 2948, 2868, 1772, 1749, $1678,1606,1559,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.78-1.12(\mathrm{~m}, 30 \mathrm{H})$, 1.23-1.44(m, 5 H), 1.53-1.88 (m, 6 H), 2.06 and 2.07 (two s, 3 H), 2.09-2.12 $(\mathrm{m}, 2 \mathrm{H}), 3.21(\mathrm{t}, J=7.5 \mathrm{~Hz})$ and $3.27(\mathrm{t}, J=7.5 \mathrm{~Hz}$, both signals together 2 H$)$, $3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.52(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.81$ and 6.84 (two s, 1 H), $7.21-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.1$ (d), 15.8 (q), 15.9 (q), 17.87 (q), 17.94 (q), 20.7 (q), 20.82 (q), 20.84 (q), 20.9 (q), $22.2(\mathrm{q}), 23.16(\mathrm{t}), 23.18(\mathrm{t}), 23.4(\mathrm{t}), 24.0(\mathrm{t}), 25.4(\mathrm{~d}), 30.2(\mathrm{t}), 30.4(\mathrm{t}), 31.5(\mathrm{~d})$, $34.2(\mathrm{t}), 40.5(\mathrm{t}), 46.1(\mathrm{t}), 46.5(\mathrm{t}), 47.7(\mathrm{~d}), 50.2(\mathrm{t}), 51.0(\mathrm{t}), 68.19(\mathrm{~d}), 68.24(\mathrm{~d})$, 79.3 (d), 79.5 (d), 98.85 (d), 98.90 (d), 127.0 (d), 127.2 (d), 127.3 (d), 127.8 (d), 128.53 (d), 128.54 (d), 137.0 (s), 138.0 (s), 138.1 (s), 143.9 (d), 144.1 (d), 155.0 (s), 155.4 (s), 168.76 (s), 168.82 (s), 169.6 (s), 169.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{NNaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 680.3953, found 680.3955 .

Tris(propan-2-yl)silyl

 methyl]phenyl\}methyl)- N -methylcarbamate (39.3a).

BuLi (2.5 M in hexane, $0.22 \mathrm{~mL}, 0.55 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(174.0 \mathrm{mg}, 0.55 \mathrm{mmol})$ in THF $(1.58 \mathrm{~mL})$. After 10 min , a portion of the freshly prepared PhSeLi solution (0.6 $\mathrm{mL})$ was added dropwise by syringe to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $31.3(42.6 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $34(87.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF (2 mL). Stirring at $-42{ }^{\circ} \mathrm{C}$ (dry ice $/ \mathrm{MeCN}$) was continued for 9 h , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 15 \mathrm{~cm}$), using 1:5 EtOAchexanes, gave 39.3a ($91.2 \mathrm{mg}, 87 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3410 , 3068, 2949, 2869, 2726, 1771, 1660, 1606, $1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 0.76-1.75(\mathrm{~m}, 38 \mathrm{H}), 2.09(\mathrm{~s}, 2 \mathrm{H}), 2.87-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{dt}, J=4.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.81(\mathrm{~m}, 2 \mathrm{H}), 5.78-6.01(\mathrm{~m}, 2 \mathrm{H}), 6.65-6.97(\mathrm{~m}, 1 \mathrm{H})$, 7.25-7.42 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 15.9$ (q), 17.8 (q),
20.8 (q), 22.2 (q), 23.3 (t$), 25.4$ (d), 31.5 (d), 35.6 (q), 40.3 (t), 47.7 (d), 49.5 (t), 65.8 (d), 79.2 (d), 99.3 (d), 127.7 (d), 127.8 (d), 128.4 (d), 128.6 (d), 135.4 (s), $137.9(\mathrm{~s}), 139.4(\mathrm{~s}), 144.6(\mathrm{~d}), 155.6(\mathrm{~s}), 170.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{NNaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 610.3534, found 610.3527.

(S)-(2-\{[Methyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]methyl\}-

 phenyl)-[(5R)-5-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy\}-2-oxo-2,5-dihydrofuran-3-yl]methyl acetate (39.3b).

DMAP ($3.4 \mathrm{mg}, 0.028 \mathrm{mmol}$) was added to a stirred solution of 39.3a ($199.5 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.09 \mathrm{~mL}, 1.24 \mathrm{mmol})$ and pyridine $(0.19 \mathrm{~mL}, 2.35 \mathrm{mmol})$ were added sequentially. The ice bath was left in place but not recharged, and stirring was continued for 5.5 h . The mixture was then quenched with hydrochloric acid (1 M, 3 mL) and water (6 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 14 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave 39.3b (199.3 mg, 93\%) as a colorless oil: FTIR
$\left(\mathrm{CHCl}_{3}\right.$, cast) $3069,2949,2928,2895,2868,2725,1775,1749,1680,1606,1583$, $1553,1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.74-1.43(\mathrm{~m}, 35 \mathrm{H}), 1.63-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.90$ and 2.92 (two s, 3 H), 3.59-3.65(m, 1 H), 4.71 and 4.79 (two s, 2 H), $6.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ and 6.78 (two s, 1 H), $6.89(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 12.1$ (d), 15.8 (q), 17.8 (q), 17.9 (q), 20.8 (q), 22.2 (q), 23.18 (t), 23.20 (t$), 25.30(\mathrm{~d})$, 25.34 (d), 31.4 (d), 34.2 (t$), 34.57$ (q), 34.61 (q), 40.4 (t), 47.7 (d), 48.7 (t$), 49.9$ (t), 65.9 (d), 66.7 (d), 79.3 (d), 79.4 (d), 98.8 (d), 98.9 (d), 126.1 (d), 127.4 (d), 127.5 (d), 127.6 (d), 127.9 (d), 128.1 (d), 129.2 (d), 133.7 (s), 134.2 (s), 135.8 (s), 135.9 (s), 136.6 (s), 136.9 ($s), 144.9$ (d), 145.5 (d), 155.4 (s), 155.6 (s), 168.30 (s), 168.35 (s), 169.1 (s), 169.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{5} \mathrm{NNaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 652.3640, found 652.3632.

Tris(propan-2-yl)silyl
N-benzyl- N-(\{2-[(S)-hydroxy $[(5 R)-5-$ $\{[(1 S, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] 0 x y\}-2-0 x 0-2,5-d i h y d r o-$ furan-3-yl)methyl]-6-methylphenyl\} methyl)-carbamate (39.4a).

BuLi (2.5 M in hexane, $0.28 \mathrm{~mL}, 0.70 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(220.6 \mathrm{mg}, 0.70 \mathrm{mmol})$ in THF $(1.72 \mathrm{~mL})$. After 10 min , a portion of the freshly prepared PhSeLi solution (1.0 mL) was added dropwise by syringe to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $31.1(75.0 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $35(190.1 \mathrm{mg}, 0.43 \mathrm{mmol})$ in THF (4 mL). Stirring was continued for 10 h at $-42^{\circ} \mathrm{C}$ (dry ice/MeCN). The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 15 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave 39.4a ($167.4 \mathrm{mg}, 78 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3431,3066,3032,2951,2927,2868,1773,1674,1607,1552,1496$, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.79-1.46(\mathrm{~m}, 35 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 2$ H), 2.06-2.14 (m, 2 H), 2.25-2.27 (m, 3 H), 3.43-3.63 (m, 2 H), 4.37-4.90 (m, 4 H), $5.43-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.90(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.51(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.1$ (d), $15.8(\mathrm{q}), 15.9(\mathrm{q}), 17.9(\mathrm{q}), 20.1$ (q), 20.2 (q), 20.8 (q), 20.9 (q), 22.2 (q), 23.1 (t), 23.3 (t), 25.2 (d), 25.4 (d), 31.5 (d), 34.2 (t), $40.3(\mathrm{t}), 40.5(\mathrm{t}), 43.7(\mathrm{t}), 44.0(\mathrm{t}), 47.7(\mathrm{~d}), 47.8(\mathrm{~d}), 65.4(\mathrm{~d}), 65.6(\mathrm{~d}), 78.9$ (d), 79.3 (d), 99.1 (d), 99.2 (d), 125.1 (d), 125.2 (d), 126.5 (d), 126.6 (d), 127.2 (d), 128.2 (d), 128.7 (d), 130.9 (d), 131.0 (d), 137.9 (s), 138.6 (s), 138.7 (s), 139.6 (s), 139.8 (s), 140.0 (s), 144.3 (d), 155.5 (s), 169.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})$ 678.4184, found 678.4185.

(S)-(2-\{[Benzyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]methyl\}-

3-methylphenyl)[(5R)-5-\{[(1S,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]-

 oxy\}-2-oxo-2,5-dihydrofuran-3-yl]-methyl acetate (39.4b).

DMAP ($2.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 4 a}$ ($62.2 \mathrm{mg}, 0.092 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.03 \mathrm{~mL}, 0.41 \mathrm{mmol})$ and pyridine $(0.05 \mathrm{~mL}, 0.62 \mathrm{mmol})$ were added sequentially. The ice bath was left in place but not recharged, and stirring was continued for 40 min . The mixture was then quenched with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and water (3 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.2 x 14 cm), using 1:10 EtOAc-hexanes, gave 39.4b ($64.0 \mathrm{mg}, 96 \%$) as a colorless oil: FTIR (CHCl_{3}, cast) 3066, 3032, 2950, 2868, 1778, 1753, 1676, 1606, 1555, 1496, $1459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.80-1.46(\mathrm{~m}, 35 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 2$ H), $2.02-2.18(\mathrm{~m}, 8 \mathrm{H}), 3.54-3.72(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.94(\mathrm{~m}, 2$ H), 5.77 and 5.94 (two s, 1 H), 6.70-6.85 (m, 2 H), 7.03-7.29 (m, 8 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.1$ (d), 15.9 (q), $17.8(\mathrm{q}), 18.0(\mathrm{q}), 20.0(\mathrm{q}), 20.7(\mathrm{q}), 20.80$
(q), 20.85 (q), 22.2 (q), 23.3 (t$), 25.5(\mathrm{~d}), 31.5(\mathrm{~d}), 34.2(\mathrm{t}), 40.5(\mathrm{t}), 43.5(\mathrm{t}), 47.7$ (d), 48.2 (t), 67.5 (d), 79.3 (d), 98.6 (d), 125.7 (d), 125.9 (d), 126.1 (d), 126.7 (d), 127.1 (d), 128.1 (d), 128.4 (d), 131.4 (d), 131.6 (d), 132.8 (s), 133.1 ($s), 136.0$ ($s)$, 136.3 (s), 136.7 (s), 136.9 (s), 137.1 (s), 137.9 (s), 138.2 (s), 139.5 (s), 139.6 (s), $145.8(\mathrm{~d}), 155.4(\mathrm{~s}), 168.0(\mathrm{~s}), 169.0(\mathrm{~s}), 169.1(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{61} \mathrm{NNaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 742.4110$, found 742.4106.

Tris(propan-2-yl)silyl
N-benzyl- N-(\{2-[(S)-hydroxy[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] o x y\}-2-o x o-2,5-d i h y d r o-$ furan-3-yl)methyl]-5-(trifluoromethyl)phenyl\}methyl)carbamate (39.5a).

31.3

36
39.5a

BuLi (2.5 M in hexane, $0.24 \mathrm{~mL}, 0.60 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(189.1 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $(0.96 \mathrm{~mL})$. After 10 min , a portion of the freshly prepared PhSeLi solution (0.8 mL) was added dropwise by syringe to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 1 . 3}$ ($92.0 \mathrm{mg}, 0.39 \mathrm{mmol})$ and $\mathbf{3 6}(257.1 \mathrm{mg}, 0.52 \mathrm{mmol})$ in THF (4.5 mL). Stirring was continued for 8 h at $-42{ }^{\circ} \mathrm{C}$ (dry ice $/ \mathrm{MeCN}$), and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The
combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexanes, gave $\mathbf{3 9 . 5 a}(240.4 \mathrm{mg}, 85 \%)$ as a colorless oil: FTIR (CHCl_{3}, cast) $3421,3089,3066,3033,2951,2929,2869,1770,1680,1655,1587$, $1556,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.79-1.09(\mathrm{~m}, 29 \mathrm{H}), 1.22-1.47$ (m, 5 H), 1.65-1.73 (m, 2 H), 2.11 (br s, 2 H), 3.32 (br s, 1 H), 3.60-3.68 (m, 1 H), 4.32-4.78 (m, 5 H), 5.67-6.02 (m, 2 H), 6.54 and 6.98 (two s, 1 H), 7.27-7.53 (m, 8 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (because of the presence of rotamers, signal splitting by fluorine is ignored) $\delta 12.0$ (d), 16.0 (q), 17.8 (q), 20.8 (q), 22.2 (q), 23.3 (t), 25.5 (d), 31.5 (d), 34.2 (t$), 40.4$ (t), 47.0 (t), 47.7 (d), 52.2 (t), 65.4 (d), 79.5 (d), 99.5 (d), 120.6 (s), 122.8 (s), 124.5 (d), 124.90 (d), 124.94 (s), 125.0 (d), 127.1 (s), 127.5 (d), 127.8 (d), 128.1 (d), 128.9 (d), 130.6 (s), 130.8 (s), 131.1 (s$), 136.6$ (s$), 137.1$ (s$), 138.6$ (s), 141.6 (s), 144.5 (d), 145.0 (d), 155.6 (s), 169.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{~F}_{3} \mathrm{NNaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 754.3721, found 754.3717.

(S)-(2-\{[Benzyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]methyl\}-

 4-(trifluoromethyl)phenyl)[(5R)-5-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)-cyclohexyl]oxy\}-2-oxo-2,5-dihydro-furan-3-yl]methyl acetate (39.5b).

DMAP ($3.5 \mathrm{mg}, 0.031 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 5 a}$ (240.0 mg, 0.33 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was then cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.11 \mathrm{~mL}, 1.52 \mathrm{mmol})$ and pyridine $(0.19 \mathrm{~mL}, 2.35 \mathrm{mmol})$ were added sequentially. The ice bath was left in place but not recharged, and stirring was continued for 50 min . The mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 3$ $\mathrm{mL})$ and water (3 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 14 \mathrm{~cm}$), using 1:10 EtOAc-hexanes, gave 39.5b ($243.7 \mathrm{mg}, 96 \%$) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3033, 2951, 2869, 1775, 1680, 1623, 1496, $1466 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.74-1.13(\mathrm{~m}, 30 \mathrm{H}), 1.20-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 2$ H), $2.00-2.09(\mathrm{~m}, 5 \mathrm{H}), 3.57-3.64(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.84(\mathrm{~m}, 2$ H), $5.97(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ and 6.69 (two s, 1 H), 6.85 and 6.91 (two s, 1 H), 7.22-7.35 (m, 5 H$), 7.44-7.53(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$
(because of the presence of rotamers, signal splitting by fluorine is ignored) $\delta 12.0$ (d), 12.1 (d), 15.8 (q), 17.7 (q), 17.8 (q), 20.57 (q), 20.62 (q), 20.8 (q), 22.2 (q), $23.2(\mathrm{t}), 24.7(\mathrm{t}), 25.4(\mathrm{~d}), 31.5(\mathrm{~d}), 34.2(\mathrm{t}), 36.6(\mathrm{t}), 40.4(\mathrm{t}), 46.6(\mathrm{t}), 47.5(\mathrm{t})$, 47.7 (d), 50.8 (t), 51.0 (t), 65.2 (d), 66.1 (d), 79.5 (d), 79.6 (d), 98.9 (d), 99.0 (d), 122.65 (s), 122.70 (s), 123.1 (d), 124.2 (d), 124.3 (d), 124.8 (s), 124.9 (s), 127.0 (s), 127.48 (d), 127.54 (d), 128.2 (d), 128.4 (d), 128.6 (d), 128.7 (d), 130.82 (s), 130.85 (s), 131.08 (s), 131.11 (s), 131.3 (s), 131.4 (s), 131.60 (s), 131.63 (s), 135.7 (s), 136.1 (s), 137.0 (s), 137.2 (s), 137.3 (s), 137.38 (s), 137.43 (s), 137.6 (s), 138.1 (s), 145.2 (d), 145.9 (d), 155.5 (s), 155.6 ($s), 168.0(\mathrm{~s}), 168.8$ ($s), 169.0$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~F}_{3} \mathrm{NNaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 796.3827, found 796.3825.

Tris(propan-2-yl)silyl

N-benzyl- N-(\{2-[(S)-hydroxy[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] 0 x y\}-2-0 x 0-2,5-d i h y d r o-$ furan-3-yl]methyl]naphthalen-1-yl\}methyl)-carbamate (39.6a).

BuLi (2.5 M in hexane, $0.37 \mathrm{~mL}, 0.87 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(274.0 \mathrm{mg}, 0.87 \mathrm{mmol})$ in THF
(2.03 mL). After 10 min , a portion of the freshly prepared PhSeLi solution (0.8 mL) was added dropwise by syringe to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of 31.3 ($64.8 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $\mathbf{3 7}(168.1 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF (3 mL). Stirring was continued for 9 h at $-42{ }^{\circ} \mathrm{C}$ (dry ice/ MeCN), and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 15 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave $\mathbf{3 9 . 6 a}$ ($145.0 \mathrm{mg}, 75 \%$) as a colorless oil: FTIR (CHCl_{3}, cast) $3434,3061,3033,2950,2928,2868,2726,1770,1671,1605,1553$, 1513, 1496, $1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.77-1.68(\mathrm{~m}, 37 \mathrm{H})$, 2.02-2.16 (m, 2 H), 3.21 (s, 1H), 3.58-3.67 (m, 1 H$), 4.09(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.61-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.90-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.94$ (s, 1 H$), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 3$ H), $7.84-7.86(\mathrm{~m}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 12.2 (d), 15.8 (q), 17.9 (q), $20.8(\mathrm{q}), 22.2$ (q), 23.3 (t), 25.3 (d), $31.5(\mathrm{~d}), 34.2(\mathrm{t})$, 40.4 (t), 42.1 (t), 47.6 (d), 48.9 (t), 65.6 (d), 79.4 (d), 99.3 (d), 124.1 (d), 125.1 (d), 126.3 (d), 126.4 (d), 126.9 (d), 127.3 (d), 128.5 (d), 128.7 (d), 129.4 (d), 129.8 (s), 132.5 (s$), 133.5$ (s$), 137.3$ (s$), 137.7$ (s$), 139.5$ (s), 144.4 (d), 155.5 (s), 169.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{59} \mathrm{NNaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 736.4004, found 736.4002.
(S)-(1-\{[Benzyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]methyl\}-naphthalen-2-yl)[(5R)-5-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy \}-2-oxo-2,5-dihydrofuran-3-yl]methyl acetate (39.6b).

39.6a

39.6b

DMAP ($2.8 \mathrm{mg}, 0.023 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 6 a}$ ($129.8 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.06 \mathrm{~mL}, 0.83 \mathrm{mmol})$ and pyridine $(0.11 \mathrm{~mL}, 1.36 \mathrm{mmol})$ were added sequentially. The ice bath was left in place but not recharged, and stirring was continued for 1 h . The mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 3$ mL) and water (4 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 14 \mathrm{~cm}$), using 3:25 EtOAc-hexanes, gave $\mathbf{3 9 . 6 b}$ (133.0 mg , 97\%) as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3063,3033,2949,2868,2726,1775,1751,1672,1605,1558,1513$, $1496,1459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.76-1.56(\mathrm{~m}, 35 \mathrm{H}), 1.66-1.70$ (m, 2 H), 2.03-2.13 (m, 5H), 3.64 (dt, $J=4.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.41(\mathrm{~m}, 2 \mathrm{H})$, 5.31-5.49 (m, 2 H$), 5.96(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.21$ and 8.30
(two d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.2$ (d), 12.3 (d), 15.9 (q), 17.8 (q), 18.1 (q), 20.7 (q), 20.9 (q), 22.2 (q), 23.3 (t), 25.4 (d), 31.5 (d), 34.2 $(\mathrm{t}), 40.5(\mathrm{t}), 42.8(\mathrm{t}), 47.7(\mathrm{~d}), 48.4(\mathrm{t}), 67.4(\mathrm{~d}), 79.4(\mathrm{~d}), 98.7(\mathrm{~d}), 124.2(\mathrm{~d}), 125.6$ (d), 125.9 (d), 126.6 (d), 126.7 (d), 127.0 (d), 128.3 (d), 128.4 (d), 129.3 (d), 131.6 (s), 132.8 (s), 133.6 (s$), 133.7$ (s$), 136.8$ (s$), 137.8$ (s$), 145.9$ (d), 155.6 (s), 168.0 (s), 169.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{NNaO}_{7} \mathrm{Si}(\mathrm{M}+$ Na) 778.4110, found 778.4103.

Tris(propan-2-yl)silyl
N-benzyl- N-(\{2-[(R)-hydroxy[(5R)-5$\{[(1 R, 2 S, 5 R)-5-m e t h y l-2-(p r o p a n-2-y l) c y c l o h e x y l] o x y\}-2-o x o-2,5-d i h y d r o-$ furan-3-yl]methyl]pyridin-3-yl\}methyl)carbamate (39.7a).

BuLi (2.5 M in hexane, $0.21 \mathrm{~mL}, 0.525 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(167.2 \mathrm{mg}, 0.525 \mathrm{mmol})$ in THF $(0.99 \mathrm{~mL})$. After 10 min , a portion of the freshly prepared PhSeLi solution (0.4 mL) was added dropwise by syringe to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of 31.3 ($40.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $38(108.8 \mathrm{mg}, 0.255 \mathrm{mmol})$ in THF $(1.7 \mathrm{~mL})$. Stirring was continued for 9 h at $-42{ }^{\circ} \mathrm{C}$ (dry ice/ MeCN). The mixture was
quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 15 \mathrm{~cm}$), using 3:10 EtOAc-hexanes, gave $\mathbf{3 9 . 7 a}(70.0 \mathrm{mg}, 62 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3412,3089,3064,3031,2949,2928,2868,1770,1680,1606,1579$, $1496,1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.75-1.44(\mathrm{~m}, 34 \mathrm{H}), 1.67(\mathrm{t}, J=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{dt}, J=4.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.65(\mathrm{~m}$, $4 \mathrm{H}), 4.72-4.92(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.80$ and 6.89 (two s, $1 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.0(\mathrm{~d}), 12.1$ (d), 15.78 (q), $15.83(\mathrm{q}), 17.9$ (q), $20.9(\mathrm{q})$, 22.2 (q), 23.1 (t$), 23.2$ (t), 25.3 (d), 31.5 (d), 34.2 (t$), 40.6(\mathrm{t}), 45.6(\mathrm{t}), 46.2(\mathrm{t})$, 47.7 (d), 50.7 (t), 51.1 (t), 64.3 (d), 64.9 (d), 79.0 (d), 79.4 (d), 99.19 (d), 99.24 (d), 123.4 (d), 127.2 (d), 127.3 (d), 127.7 (d), 128.1 (d), 128.2 (d), 128.75 (d), 128.78 (d), 130.8 (s), 130.9 (s), 135.1 (d), 136.5 (d), 137.0 (s), 137.2 (s), 139.0 (s), 139.2 (s), 145.1 (d), 145.3 (d), 147.2 (d), 147.4 (d), 154.7 (s), 155.3 (s), 155.5 (s), $155.6(\mathrm{~s}), 169.5(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+$ H) 665.3980 , found 665.3977 .
(R)-(3-\{[Benzyl(\{[tris(propan-2-yl)silyl]oxy\}carbonyl)amino]methyl\}-pyridin-2-yl) $[(5 R)-5-\{[(1 R, 2 S, 5 R)$-5-methyl-2-(propan-2-yl)cyclohexyl $] 0 x y\}-2-$ oxo-2,5-dihydrofuran-3-yl]methyl acetate (39.7b).

DMAP ($4.0 \mathrm{mg}, 0.032 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 7} \mathbf{a}$ $(65.8 \mathrm{mg}, 0.099 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.032 \mathrm{~mL}, 0.44 \mathrm{mmol})$ and pyridine $(0.06 \mathrm{~mL}, 0.74 \mathrm{mmol})$ were added sequentially. The ice bath was left in place but not recharged, and stirring was continued for 40 min . The mixture was quenched with hydrochloric acid (1 $\mathrm{M}, 1 \mathrm{~mL}$) and water (3 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 3:10 EtOAc-hexanes, gave $\mathbf{3 9 . 7 b}(57.0 \mathrm{mg}, 81 \%)$ as a colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3064,3032,2949,2868,1771,1749,1681,1576,1496,1466 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.73-1.40(\mathrm{~m}, 33 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 2 \mathrm{H})$, $2.04-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.16-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{dt}, J=4.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.86(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ and 6.65 (two s, 1 H), $7.00(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz})$
and $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, both signals together 1 H$), 8.49(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.0$ (d), 12.1 (d), 15.9 (q), 17.8 (q), 17.9 (q), 20.6 (q), 20.7 (q), 20.9 (q), 22.2 (q), 23.2 (t), 25.26 (d), 25.29 (d), 31.5 (d), 34.2 (t), 40.60 $(\mathrm{t}), 40.64(\mathrm{t}), 45.8(\mathrm{t}), 46.6(\mathrm{t}), 47.7(\mathrm{~d}), 50.7(\mathrm{t}), 50.8(\mathrm{t}), 66.0(\mathrm{~d}), 66.8(\mathrm{~d}), 78.9$ (d), 79.1 (d), 99.45 (d), 99.51 (d), 123.7 (d), 123.8 (d), 127.46 (d), 127.54 (d), 127.6 (d), 128.4 (d), 128.66 (d), 128.70 (d), 132.4 (s), 134.3 (d), 135.3 (s), 135.5 (s), 135.8 (d), 137.3 (s), 137.4 (s), 146.2 (d), 146.3 (d), 148.2 (d), 148.3 (d), 152.1 (s), 152.7 (s), 155.57 ($s), 155.63$ (s), 168.87 (s), 168.88 (s), 169.46 (s), 169.53 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 729.3905, found 729.3897.

(7R,7aS)-1-Benzyl-7-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohex-

 yl]oxy\}-1H,2H,3H,5H,7H,7aH-furo[3,4-b]pyridin-5-one (40.1).
$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.09 \mathrm{~mL}, 0.09 \mathrm{mmol}$) was added to a stirred solution of 39.1b ($39.0 \mathrm{mg}, 0.059 \mathrm{mmol}$) in THF (4 mL). After 21 min , the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with EtOAc (4 mL). The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and
evaporated. Flash chromatography of the residue over silica gel ($1.0 \times 14 \mathrm{~cm}$), using 3:20 EtOAc-hexanes, gave 40.1 (28.7 mg , 81%) as white crystals: mp $123-124{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-154.10\left(c 1.07, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3062, 3029, 2954, 2922, 2869, 2804, 2759, 1774, 1694, 1636, 1603, 1495, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.81-0.90(\mathrm{~m}, 10 \mathrm{H}), 0.91-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.44$ (m, 2 H), 1.62-1.67 (m, 2 H), 2.00-2.07 (m, 2 H), 2.20-2.25 (m, 2 H), 2.44-2.52 (m, 1 H), 2.99 (dd, $J=6.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.42$ (m, 1 H), $3.61(\mathrm{dt}, J=4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 15.5(\mathrm{q}), 20.8(\mathrm{q}), 22.2(\mathrm{q}), 23.1(\mathrm{t}), 25.1(\mathrm{~d}), 26.4(\mathrm{t}), 31.5(\mathrm{~d}), 34.3$ (t), 39.8 (t), 47.4 (d), 47.7 (t), 59.1 (t), 62.2 (d), 77.1 (d), $99.0(\mathrm{~d}), 127.2$ (s$), 127.6$ (d), 128.4 (d), 129.7 (d), 135.8 (d), 136.5 (s), 167.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H}) 384.2533$, found 384.2534 .

In some experiments a small amount of the $C(7 a)$ epimer was isolated (10:1 ratio of major to minor products): $[\alpha]_{\mathrm{D}}{ }^{20}-116.93$ (c $1.24, \mathrm{CHCl}_{3}$); FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2954, 2922, 2869, 2810, 1773, 1692, 1495, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.81-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.29-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.44(\mathrm{~m}, 1$ H), 1.64-1.71 (m, 2 H), 2.12-2.19 (m, 2 H), 2.23-2.32 (m, 2 H), 2.35-2.42 (m, 1 H), $2.93(\mathrm{dd}, J=6.5,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.42(\mathrm{~m}, 1$ H), 3.69 (dt, $J=4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=6 \mathrm{~Hz}, 1$ H), $6.86(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $16.0(\mathrm{q}), 20.9(\mathrm{q}), 22.2(\mathrm{q}), 23.2(\mathrm{t}), 25.5(\mathrm{~d}), 26.5(\mathrm{t}), 31.4(\mathrm{~d}), 34.3(\mathrm{t}), 39.7(\mathrm{t})$, 47.8 (t), 47.9 (d), 59.2 (t), 65.4 (d), 78.5 (d), 104.0 (d), 127.3 (d), 128.4 (d), 129.2
(d), 129.4 (s), 135.1 (d), 137.5 (s), 166.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H}) 384.2533$, found 384.2528 .

(8R,8aR)-1-Benzyl-8-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohex-

 yl]oxy $\}-1 H, 2 H, 3 H, 4 H, 6 H, 8 H, 8 a H$-furo[3,4-b]azepin-6-one (40.2).
$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.059 \mathrm{~mL}, 0.059 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 2 b}(39.0 \mathrm{mg}, 0.059 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$. After 2 min , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and diluted with EtOAc $(4 \mathrm{~mL})$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.0 x 14 cm), using 3:25 EtOAc-hexanes, gave $\mathbf{4 0 . 2}$ ($18.3 \mathrm{mg}, 78 \%$) as a light yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3086,3061,3028,2952,2926,2869,1764,1678,1603,1495$, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ isomer mixture $\delta 0.78-1.05(\mathrm{~m}, 12 \mathrm{H})$, $1.21-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.58(\mathrm{~m}, 1 \mathrm{H})$, 2.81-2.86 (m, 1 H), 3.08-3.12 (m, 1 H), 3.41-3.47 (m, 1 H$), 3.55-3.67(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.93(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.69(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.39(\mathrm{~m}$,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.3(\mathrm{q}), 15.7(\mathrm{q}), 15.8(\mathrm{q}), 17.7(\mathrm{q}), 20.8(\mathrm{t})$,
 $29.1(\mathrm{t}), 31.4(\mathrm{~d}), 34.3(\mathrm{t}), 36.7(\mathrm{t}), 39.1(\mathrm{t}), 39.6(\mathrm{t}), 47.7(\mathrm{~d}), 47.8(\mathrm{~d}), 52.6(\mathrm{t})$, 53.9 (t), 54.5 ($t), 57.8$ (t), 66.9 (d), 68.4 (d), 76.3 (d), 77.2 (d), 97.3 (d), 101.6 (d), 127.19 (d), 127.23 (d), 128.2 (d), 128.5 (d), 128.7 (s), 129.1 (d), 130.7 (s), 138.8 (s), 142.1 (d), 144.1 (d), 168.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 398.2690, found 398.2687.

Data for the major isomer: $[\alpha]_{\mathrm{D}}{ }^{20}-94.57\left(c\right.$ 1.22, $\left.\mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3086,3063,3028,2952,2927,2869,1764,1678,1603,1495,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.77-1.07(\mathrm{~m}, 12 \mathrm{H}), 1.25-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.42$ (m, 1 H$), 1.51-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.20$ (m, 2H), 2.44-2.51(m, 1H), 2.55-2.61(m, 1H), 2.83-2.89(m, 1 H$), 3.13$ (ddd, $J=2.5,5.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=4.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{AB} \mathrm{q}, J=14.3$ $\left.\mathrm{Hz}, \Delta v_{\mathrm{AB}}=143.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.12(\mathrm{q}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.30(m, 2 H$), 7.34-7.38(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.7(\mathrm{q})$,
 47.8 (d), 52.6 (t), 54.5 (t), 68.4 (d), 77.2 (d), 101.6 (d), 127.2 (d), 128.47 (d), 128.48 (d), 130.7 (s), 138.8 (s), 144.1 (d), 168.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H}) 398.2690$, found 398.2691.

Data for the minor isomer: $[\alpha]_{\mathrm{D}}{ }^{20}-157.58\left(c 0.99, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3061,3026,2952,2923,2868,2801,2732,1770,1684,1603,1494,1452$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.77-1.09(\mathrm{~m}, 12 \mathrm{H}), 1.33-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.81(\mathrm{~m}, 4 \mathrm{H}), 2.08-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=2.5$,
$8.8,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=2.5,7.6,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{dt}, J=4.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70\left(\mathrm{AB} \mathrm{q}, J=13.3 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=246.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 3.90-3.93 (m, 1 H), $5.72(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $15.8(\mathrm{q}), 20.8(\mathrm{q}), 23.4(\mathrm{t}), 25.5(\mathrm{~d}), 26.8(\mathrm{t}), 28.5(\mathrm{t}), 31.4(\mathrm{~d}), 34.3(\mathrm{t}), 39.1(\mathrm{t})$, 47.7 (d), 53.9 (t), 57.8 (t), 66.9 (d), 76.7 (d), 97.3 (d), 127.2 (d), 128.2 (d), 128.7 (s), 129.1 (d), 138.8 (s), 142.1 (d), 169.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H}) 398.2690$, found 398.2692.
(6R,7R)-8-Methyl-6-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohex-yl]oxy\}-5-oxa-8-azatricyclo $\left[8.4 .0 .0^{3,7}\right]$ tetradeca-1(14),2,10,12-tetraen-4-one
(40.3).

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.317 \mathrm{~mL}, 0.317 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 3} \mathbf{b}$ ($199.3 \mathrm{mg}, 0.317 \mathrm{mmol}$) in THF (4 mL). After 15 min, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and diluted with EtOAc (4 mL). The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.4 x 14
$\mathrm{cm})$, using 1:5 EtOAc-hexanes, gave 40.3 (108.1 mg, 92\%) as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20} 119.87\left(c 1.12, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3064,3017,2953,2924,2870$, 2852, 2794, 1763, 1657, 1600, 1568, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 0.77-1.06 (m, 12 H$), 1.17-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.44$ (m, 1 H$), 1.61-1.69$ (m, 2 H), 2.06-2.18(m, 2 H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=4.0$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{AB} \mathrm{q}, J=15.2 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=116.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.57(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.73(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 15.7$ (q), 20.9 (q), 22.3 (q), 23.1 (t), 25.3 (d), 31.4 (d), 34.3 (t), 39.7 (t), 40.8 (q), 47.7 (d), 59.1 (t), 68.6 (d), 77.7 (d), 103.5 (d), 127.8 (d), 129.4 (d), 129.6 (s), 130.7 (d), 131.3 (d), 135.6 (s), 139.2 (s), 139.4 (d), 168.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 370.2377, found 370.2379.

(6R,7R)-8-Benzyl-11-methyl-6-\{[(1S,2S,5R)-5-methyl-2-(propan-2-

 yl)cyclohexyl]oxy $\}$-5-oxa-8-azatricyclo $\left[8.4 .0 .0^{3,7}\right]$ tetradeca-1(14),2,10,12-tetraen-4-one (40.4).
$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.0385 \mathrm{~mL}, 0.0385 \mathrm{mmol}$) was added to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 4 b}(27.7 \mathrm{mg}, 0.0385 \mathrm{mmol})$ in THF $(0.8 \mathrm{~mL})$.

After 15 min , the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and diluted with EtOAc (4 mL). The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.0 x 14 cm), using 1:20 EtOAc-hexanes, gave 40.4 (17.0 mg, 96\%) as a light pink foam: $[\alpha]_{D}{ }^{20} 97.44\left(c 1.07, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3063 , 3028, 2954, 2924, 2869, 1763, 1661, 1586, 1495, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $0.76-1.06$ (m, 12 H$), 1.14-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.67$ (m, 2 H), 2.02-2.12 (m, 2 H), $2.21(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=4.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76\left(\mathrm{AB} \mathrm{q}, J=15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=104.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.82(\mathrm{AB} \mathrm{q}, J=$ $\left.15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=41.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.48(\mathrm{~m}, 8 \mathrm{H}), 7.82$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.7$ (q), 20.1 (q), 20.9 (q), $22.2(\mathrm{q}), 23.1(\mathrm{t}), 25.3(\mathrm{~d}), 31.3(\mathrm{~d}), 34.3(\mathrm{t}), 39.6(\mathrm{t}), 47.7(\mathrm{~d}), 49.1(\mathrm{t}), 56.6(\mathrm{t})$, 67.6 (d), 77.3 (d), 103.9 (d), 127.3 (d), 127.4 (d), 128.2 (d), 128.5 (d), 128.9 (d), 129.3 (s), 131.5 (d), 137.0 (s), 138.1 (s), 138.2 (s), 139.0 (s), 140.4 (d), 168.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 460.2846, found 460.2846 .

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.076 \mathrm{~mL}, 0.076 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 5 b}(58.9 \mathrm{mg}, 0.076 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. After 10 min, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and diluted with EtOAc $(4 \mathrm{~mL})$. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.0 x 14 $\mathrm{cm})$, using 1:20 EtOAc-hexanes, gave $40.5(35.6 \mathrm{mg}, 91 \%)$ as a white solid: $136-140{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 159.11$ (c 1.47, CHCl_{3}); FTIR (CHCl_{3}, cast) 3087, 3064, 3029, 2955, 2925, 2870, 1764, 1666, 1617, 1496, $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 0.79-1.06(\mathrm{~m}, 12 \mathrm{H}), 1.16-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dt}, J=$ $4.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72\left(\mathrm{AB} \mathrm{q}, J=15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=67.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.74(\mathrm{AB} \mathrm{q}, J$ $\left.=13.8 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=27.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 6 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.8$ (q), 20.9 (q), 22.2 (q), 23.1 (t), 25.3 (d), 31.4
(d), $34.3(\mathrm{t}), 39.9(\mathrm{t}), 47.7(\mathrm{~d}), 53.3(\mathrm{t}), 57.1(\mathrm{t}), 68.2(\mathrm{~d}), 78.1(\mathrm{~d}), 104.1(\mathrm{~d}), 120.4$ (s), 122.6 (s), 124.7 (d), 124.77 (d), 124.79 (d), 124.82 (d), 126.9 (s), 127.35 (d), 127.38 (d), 127.41 (d), 127.67 (d), 127.73 (d), 128.5 (d), 128.6 (d), 128.7 (d), 128.8 (d), 130.3 (s), 130.5 (s), 130.8 (s), 131.0 (s), 131.4 (d), 132.8 (s), 137.3 (d), $138.1(\mathrm{~s}), 139.4(\mathrm{~s}), 140.2(\mathrm{~s}), 167.9(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 514.2564, found 514.2567.
(15R,16R)-17-Benzyl-15-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy $\}$-14-oxa-17-azatetracyclo $\left[8.8 .0 .0^{2,7} .0^{12,16}\right]$ octadeca-1,3,5,7,9,11-hexa-en-13-one (40.6).

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $0.16 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 6 b}(120.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. After 10 min, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and diluted with EtOAc $(4 \mathrm{~mL})$. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.2 x 14 cm), using 3:50 EtOAc-hexanes, gave 40.6 ($78.3 \mathrm{mg}, 99 \%$) as a light yellow solid: $\mathrm{mp} 183-184{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20} 54.89\left(c 0.98, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3057,
$3026,2954,2924,2869,1763,1658,1618,1596,1559,1511,1495,1454 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.74-1.17(\mathrm{~m}, 13 \mathrm{H}), 1.32-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.67(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dt}, J=$ $4.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84\left(\mathrm{AB} \mathrm{q}, J=15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=19.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.08(\mathrm{AB} \mathrm{q}, J$ $\left.=15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=276.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1$ H), $7.48-7.59(\mathrm{~m}, 7 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.7$ (q), 20.9 (q), 22.2 (q), 23.1 (t), 25.3 (d), 31.4 (d), 34.3 (t), 39.6 (t), 46.9 ($t), 47.7$ (d), 57.7 (t), 67.3 (d), 77.2 (d), 124.4 (d), 126.5 (d), 126.9 (d), 127.0 (d), 127.6 (d), 128.2 (d), 128.5 (d), 128.66 (d), 128.71 (d), 130.9 (s), 133.4 (s), 133.5 (s), 135.3 (s), 137.8 (s), 138.9 (s), 140.8 (d), 168.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{3}(\mathrm{M}+$ H) 496.2846, found 496.2843
(6R,7R)-8-Benzyl-6-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy \}-5-oxa-8,14-diazatricyclo[8.4.0.0 ${ }^{3,7}$]tetradeca-1(14),2,10,12-tetraen-4-one (40.7).

39.7b
40.7
$\mathrm{Bu}_{4} \mathrm{NF}(1.0 \mathrm{M}$ in THF, $0.058 \mathrm{~mL}, 0.058 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 7 b}(41.2 \mathrm{mg}, 0.058 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. After 10 min, the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with EtOAc (4 mL). The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.2 x 14 $\mathrm{cm})$, using 2:5 EtOAc-hexanes, gave $40.7(25.1 \mathrm{mg}, 96 \%)$ as a light yellow solid: $[\alpha]_{\mathrm{D}}{ }^{20} 125.75\left(c 1.22, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3029,2954,2925,2869,1764$, $1670,1604,1566,1496,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.78-1.05(\mathrm{~m}$, $12 \mathrm{H}), 1.13-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.13$ (m, 2 H), $3.53(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.77(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (dd, $J=1.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.7$ (q), 20.9 (q), 22.2 (q), $23.1(\mathrm{t}), 25.3(\mathrm{~d}), 31.3(\mathrm{~d}), 34.3(\mathrm{t}), 39.8(\mathrm{t}), 47.7(\mathrm{~d}), 52.3(\mathrm{t}), 56.9(\mathrm{t}), 68.2$ (d), 77.9 (d), 103.7 (d), 122.8 (d), 127.7 (d), 128.7 (d), 128.8 (d), 133.3 (s), 135.7 (s), 138.1 (d), 138.2 (s), 139.2 (d), 149.2 (d), 155.0 (s), 167.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) 447.2642$, found 447.2641 .
(5R)-3-[(S)-Hydroxy(2-nitrophenyl)methyl]-5-\{[(1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl]oxy\}-5H-furan-2-one (41.2).

BuLi (2.5 M in hexane, $0.71 \mathrm{~mL}, 1.78 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{PhSeSePh}(559.4 \mathrm{mg}, 1.78 \mathrm{mmol})$ in THF (12 mL). After 10 min , the mixture was cooled to $-42^{\circ} \mathrm{C}($ dry ice $/ \mathrm{MeCN})$, and a mixture of $\mathbf{3 1 . 3}$ ($409.4 \mathrm{mg}, 1.72 \mathrm{mmol}$) and 41.1 ($389.6 \mathrm{mg}, 2.58 \mathrm{mmol}$) in THF (5 mL) was added dropwise. Stirring at $-42{ }^{\circ} \mathrm{C}$ was continued for 9 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 2:5 to $3: 5 \mathrm{Et}_{2} \mathrm{O}$-hexanes, gave 41.2 ($526.8 \mathrm{mg}, 78 \%$) as a light yellow solid: $\mathrm{FTIR}\left(\mathrm{CDCl}_{3}\right.$, cast) 3449, 3107, 3021, 2955, 2926, 2870, 1767, 1663, 1611, 1579, 1528, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.70-1.10(\mathrm{~m}, 12 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.80(\mathrm{~m}, 2$ H), $2.00-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dt}, J=4.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.02(\mathrm{t}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.84(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.72$ $(\mathrm{m}, 1 \mathrm{H}), 7.77-7.84(\mathrm{~m}, 1 \mathrm{H}), 8.00-8.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$
15.9 (q), $20.8(\mathrm{q}), 22.2(\mathrm{q}), 23.3(\mathrm{t}), 25.4(\mathrm{~d}), 31.4(\mathrm{~d}), 34.2(\mathrm{t}), 40.4(\mathrm{t}), 47.7(\mathrm{~d})$, 64.7 (d), 79.3 (d), 99.4 (d), 125.0 (d), 129.0 (d), 129.2 (d), 134.0 (d), 135.1 (s), 137.7 (s), 145.1 (d), 147.8 (s), 170.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})$ 412.1731, found 412.1726.

(S)-[(5R)-5-\{[(1R,2R,5S)-5-Methyl-2-(propan-2-yl)cyclohexyl]oxy\}-2-

oxo-2,5-dihydrofuran-3-yl](2-nitrophenyl)methyl acetate (41.3).

DMAP ($19.3 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added to a stirred solution of 41.2 ($301.7 \mathrm{mg}, 0.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The mixture was then cooled to -78 ${ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(0.17 \mathrm{~mL}, 2.35 \mathrm{mmol})$ and pyridine $(0.38 \mathrm{~mL}, 4.70 \mathrm{mmol})$ were added sequentially. The reaction flask was transferred to an ice bath $\left(0^{\circ} \mathrm{C}\right)$ and stirring was continued for 8.5 h , the ice bath being left in place but not recharged. The mixture was then quenched with hydrochloric acid (1 M, 6 mL) and water (6 mL), and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 20 \mathrm{~cm}$), using 3:10 EtOAchexanes, gave 41.3 ($331.6 \mathrm{mg}, 99 \%$) as a light pink solid: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast)

3090, 2956, 2926, 2871, 1775, 1670, 1653, 1612, 1581, 1530, $1457 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.74-1.06(\mathrm{~m}, 12 \mathrm{H}), 1.17-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.18(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{dt}, J$ $=4.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.94(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.49-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.05(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.8(\mathrm{q}), 20.7(\mathrm{q})$, 20.8 (q), 22.2 (q), 23.2 (t), 25.3 (d), 31.4 (d), 34.1 ($t), 40.5$ ($t), 47.7$ (d), 65.4 (d), 79.3 (d), 98.7 (d), 125.1 (d), 128.9 (d), 129.6 (d), 132.0 (s), 133.7 (d), 135.0 (s), 147.3 (d), 147.8 (s), $168.0(\mathrm{~s}), 169.1$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}_{7}(\mathrm{M}+\mathrm{Na})$ 454.1836, found 454.1832.

(S)-(2-Aminophenyl)[(5R)-5-\{[(1R,2R,5S)-5-methyl-2-(propan-2-yl)-

 cyclohexyl]oxy\}-2-oxo-2,5-dihydrofuran-3-yl]methyl acetate (41.4).

Zinc dust ($460.0 \mathrm{mg}, 7.08 \mathrm{mmol}$) was added to a stirred mixture of 41.3 ($34.0 \mathrm{mg}, 0.079 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(70.2 \mathrm{mg}, 1.31 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(0.53 \mathrm{~mL})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$. After 3 min , the reaction mixture was filtered through a pad of silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse. The organic phase was separated, washed
twice with aqueous $\mathrm{NaOH}(1 \mathrm{M})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(1.2 \times 15 \mathrm{~cm})$, using 3:10 to $2: 5$ EtOAc-hexanes, gave 41.4 ($17.4 \mathrm{mg}, 55 \%$) as a yellow oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3377,3032,2956,2926,2870,2253,1767,1634,1606,1586,1498,1458 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.72-1.04(\mathrm{~m}, 12 \mathrm{H}), 1.19-1.26(\mathrm{~m}, 1 \mathrm{H})$, $1.33-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.16(\mathrm{~m}, 5 \mathrm{H}), 3.61(\mathrm{dt}, J=4.5$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 6.01-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.79$ $(\mathrm{m}, 1 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.8(\mathrm{q}), 20.8(\mathrm{q}), 20.9(\mathrm{q}), 22.2(\mathrm{q}), 23.2(\mathrm{t}), 25.3$ (d), 31.5 (d), 34.2 (t), 40.5 (t), 47.7 (d), 66.8 (d), 79.4 (d), 99.2 (d), 117.4 (d), 118.9 (d), 121.0 (s), 128.6 (d), 129.9 (d), 136.4 (s), 144.6 (d), 144.9 (s), 169.1 (s), 169.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})$ 402.2275, found 402.2279.

[(2R)-1-Benzyl-2-(hydroxymethyl)-1,2,5,6-tetrahydropyridin-3-yl]

 methanol (42.1).

DIBAL-H (1.0 M in PhMe, $1.60 \mathrm{~mL}, 1.60 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1}(123.2 \mathrm{mg}, 0.32 \mathrm{mmol})$ in THF (3 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , the cold bath being left in place but not recharged, and stirring was continued for 10 h . $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 5 mL) were then added sequentially. Stirring was continued for 2 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 1:20 MeOH-EtOAc, gave $42.1(60.2 \mathrm{mg}, 80 \%)$ as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{20}$ -26.86 (c 1.13, CHCl_{3}); FTIR (CHCl_{3}, cast) 3360, 3085, 3062, 3028, 2923, 2873, $1592,1495 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.88(\mathrm{dd}, J=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.26-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (ddd, $J=2.5,5.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.97(\mathrm{~m}, 3 \mathrm{H})$, $3.21-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=8.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 3 \mathrm{H}), 4.00$ $\left(\mathrm{AB} \mathrm{q}, J=12.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=32.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.95(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.7$ (t$), 42.0$ (t$), 57.5$ (t$), 60.3(\mathrm{~d}), 61.3(\mathrm{t}), 65.3(\mathrm{t})$, 124.6 (d), 127.3 (d), 128.5 (d), 129.0 (d), 135.7 (s), 138.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})$ 234.1489, found 234.1490.

[(2R)-1-Benzyl-3-(hydroxymethyl)-2,5,6,7-tetrahydro-1H-azepin-2-

 yl]methanol (42.2).

DIBAL-H (1.0 M in PhMe, $0.66 \mathrm{~mL}, 0.66 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 2}(52.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (1.5 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2 h , the cold bath being left in place but not recharged, and stirring was continued for 12 h . $\mathrm{MeOH}(0.3 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 5 mL) were then added sequentially. Stirring was continued for 3 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 3:100 MeOH-EtOAc, gave $42.2(29.6 \mathrm{mg}, 90 \%)$ as an oil: $[\alpha]_{\mathrm{D}}{ }^{20}-2.10(c$ $\left.1.00, \mathrm{CHCl}_{3}\right)$; FTIR (CHCl_{3}, cast) 3363, 3086, 3061, 3028, 2926, 2848, 1559, 1522, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.40-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.86$ (m, 2 H), 2.18-2.38(m, 3H), 2.97-3.03(m, 1 H$), 3.12-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.57$ (m, 2 H), 3.73-3.87 (m, 3 H$), 3.93(\mathrm{~s}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.35$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.4(\mathrm{t}), 28.1(\mathrm{t}), 49.9(\mathrm{t}), 55.9(\mathrm{t}), 59.2$ (t), 64.3 (d), 68.1 (t), 127.4 (d), 128.7 (d), 129.0 (d), 130.6 (d), 139.5 ($s), 140.9$
(s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 248.1645$, found 248.1648.

[(3R)-3-(Hydroxymethyl)-2-methyl-2,3-dihydro-1H-2-benzazepin-4-

yl]methanol (42.3).

DIBAL-H (1.0 M in PhMe, $1.46 \mathrm{~mL}, 1.46 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 3}(108.1 \mathrm{mg}, 0.29 \mathrm{mmol})$ in THF (3 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , the cold bath being left in place but not recharged, and stirring was continued for 6.5 h . $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 6 mL) were then added sequentially. Stirring was continued for 12 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 1:20 MeOH-EtOAc, gave $42.3(58.0 \mathrm{mg}, 90 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{20}$ 59.87 (c 1.18, CHCl_{3}); FTIR (CHCl_{3}, cast) 3349, 3059, 3018, 2928, 2878, 1665, $1600,1577,1559,1541,1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H})$, $3.16(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=5.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J$
$=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89\left(\mathrm{AB} \mathrm{q}, J=15.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=229.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.19(\mathrm{AB} \mathrm{q}$, $\left.J=13.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=28.7 \mathrm{~Hz}, 2 \mathrm{H}\right),, 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.4(\mathrm{t}), 41.5(\mathrm{q}), 54.1(\mathrm{t}), 62.2(\mathrm{t}), 67.3(\mathrm{~d}), 67.4(\mathrm{t}), 127.27$ (d), 127.30 (d), 128.8 (d), 129.2 (d), 131.0 (d), 135.3 (s), 137.9 (s), 140.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})$ 220.1332, found 220.1332.

[(3-R)-2-Benzyl-3-(hydroxymethyl)-9-methyl-2,3-dihydro-1H-2-benz-

azepin-4-yl]-methanol (42.4).

DIBAL-H (1.0 M in PhMe, $0.38 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $40.4(35.2 \mathrm{mg}, 0.077 \mathrm{mmol})$ in THF (1 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2 h , the cold bath being left in place but not recharged, and stirring was continued for 5 h . $\mathrm{MeOH}(0.3 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 3 mL) were then added sequentially. Stirring was continued for 1.2 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$),
using 1:1 EtOAc-hexanes, gave $42.4(17.7 \mathrm{mg}, 75 \%)$ as a light yellow solid: $[\alpha]_{\mathrm{D}}{ }^{20} 21.97\left(c 0.83, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast $) 3384,3062,3028,2922,2858$, 1733, 1671, 1585, 1495, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.93(\mathrm{~s}, 3 \mathrm{H})$, $3.43(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=5.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J$ $=5.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 4.25\left(\mathrm{AB} \mathrm{q}, J=13.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=30.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=1.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.7(\mathrm{q}), 46.2(\mathrm{t}), 58.1(\mathrm{t}), 62.6(\mathrm{t}), 66.1(\mathrm{~d})$, 67.6 (t), 126.8 (d), 127.4 (d), 128.5 (d), 129.0 (d), 129.3 (d), 129.67 (d), 129.70 (d), $135.9(\mathrm{~s}), 136.0(\mathrm{~s}), 136.8(\mathrm{~s}), 138.5(\mathrm{~s}), 140.6(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}(M+H) 310.1802$, found 310.1803.
[(3R)-2-Benzyl-3-(hydroxymethyl)-8-(trifluoromethyl)-2,3-dihydro-1H-2-benz-azepin-4-yl]methanol (42.5).

DIBAL-H (1.0 M in PhMe, $0.11 \mathrm{~mL}, 0.11 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 5}(11.3 \mathrm{mg}, 0.022 \mathrm{mmol})$ in THF $(0.6$ mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , the cold bath being left in place but not recharged, and stirring was continued for 7 h . $\mathrm{MeOH}(0.1 \mathrm{~mL})$ and
saturated aqueous Rochelle's salt were then added sequentially. Stirring was continued overnight, and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.6 \times 8 \mathrm{~cm}$), using 2:1 EtOAchexanes, gave $42.5(6.0 \mathrm{mg}, 75 \%)$ as a light yellow solid: $[\alpha]_{\mathrm{D}}{ }^{20} 65.42$ (c 1.35, CHCl_{3}); FTIR (CHCl_{3}, cast) 3375, 3087, 3064, 3030, 2922, 2855, 1650, 1616, $1495,1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.50-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.77$ (m, 2 H), 3.87 (dd, $J=5.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{AB} \mathrm{q}$, $\left.J=13.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=20.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.76(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 56.1(\mathrm{t}), 57.2(\mathrm{t}), 62.4(\mathrm{t}), 65.9(\mathrm{~d}), 67.0(\mathrm{t}), 120.8(\mathrm{~s}), 122.9(\mathrm{~s})$, 124.11 (d), 124.14 (d), 124.17 (d), 124.19 (d), 125.1 (s), 126.39 (d), 126.42 (d), 126.45 (d), 126.48 (d), 127.4 (d), 127.7 (d), 128.5 (d), 128.6 (d), 128.7 ($s), 129.0$ (s), 129.1 (d), 131.6 (d), 137.8 (s), 138.6 (s), 138.7 (s), 144.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 364.1519$, found 364.1514.
[(3R)-2-Benzyl-3-(hydroxymethyl)-1H,2H,3H-naphtho[1,2-c]azepin-4yl]methanol (42.6).

DIBAL-H (1.0 M in PhMe, $0.79 \mathrm{~mL}, 0.79 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 6}(78.3 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , the cold bath being left in place but not recharged and stirring was continued overnight. $\mathrm{MeOH}(0.3 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 5 mL) were then added sequentially. Stirring was continued for 2.5 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 14 \mathrm{~cm}$), using 1:20 MeOH$\mathrm{Et}_{2} \mathrm{O}$, gave $42.6(45.0 \mathrm{mg}, 82 \%)$ as a white solid: $[\alpha]_{\mathrm{D}}{ }^{20}-26.39\left(c 0.91, \mathrm{CHCl}_{3}\right)$; FTIR (CHCl_{3}, cast) 3367, 3079, 3063, 3024, 2983, 2964, 2946, 2918, 2894, 2874, 2843, 1598, 1511, 1493, $1453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.05(\mathrm{br} \mathrm{s}, 2$ H), $3.56(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.75(\mathrm{~m}, 4 \mathrm{H}), 4.26-4.39(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 1$ H), 7.20-7.22 (m, 2 H), 7.29-7.31 (m, 3 H), 7.37-7.39 (m, 2 H), 7.44-7.47(m, 1 H), $7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=1.3,8.5 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 46.3(\mathrm{t}), 59.1(\mathrm{t}), 62.9(\mathrm{t}), 65.8(\mathrm{~d}), 67.6(\mathrm{t})$, 123.4 (d), 125.7 (d), 126.4 (d), 127.4 (d), 127.5 (d), 128.3 (d), 128.49 (d), 128.53 (d), 129.1 (d), 129.7 (d), 132.1 (s), 132.7 (s), 133.5 (s), 133.7 (s), 138.7 (s), 142.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 346.1802$, found 346.1801 .

[(7R)-6-Benzyl-7-(hydroxymethyl)-5H,6H,7H-pyrido[3,2-c]azepin-8-

 yl]methanol (42.7).

DIBAL-H (1.0 M in PhMe, $0.14 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $40.7(12.1 \mathrm{mg}, 0.027 \mathrm{mmol})$ in THF $(0.6$ mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 3 h , the cold bath being left in place but not recharged, and stirring was continued for 4 h . $\mathrm{MeOH}(0.1 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca. 3 mL) were then added sequentially. Stirring was continued for 1 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(0.6 \times 8 \mathrm{~cm})$, using 1:25 MeOH-EtOAc, gave $42.7(2.7 \mathrm{mg}, 34 \%)$ as a yellow solid: $[\alpha]_{\mathrm{D}}{ }^{20}$ 69.92 (c 1.15, CHCl_{3}); FTIR (CHCl_{3}, cast) 3346, 3062 3028, 2922, 2855, 1650, 1582, 1494, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.18(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H})$, $3.46-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=5.0,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24\left(\mathrm{AB} \mathrm{q}, J=13.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=\right.$ $19.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2$ H), 7.28-7.35(m, 4 H$), 8.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$
49.6 (t), 57.1 (t), 62.5 (t), 66.0 (d), 67.3 ($t), 121.6$ (d), 127.6 (d), 128.5 (d), 129.0
(d), 130.5 (d), 133.8 (s), 137.3 (d), 137.9 (s), 145.2 (s), 148.3 (d), 154.1 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 297.1598, found 297.1597.

5. References

1 Chippindale, A. M.; Davies, S. G.; Iwamoto, K.; Parkin, R. M.; Smethurst, C. A. P.; Smith, A. D.; Rodriguez-Solla, H. Tetrahedron 2003, 59, 3253-3265.

Bonnaventure, I.; Charette, A. B. Tetrahedron 2009, 65, 4968-4976.
Barbe, G.; Pelletier, G.; Charette, A. B. Org. Lett. 2009, 11, 3398-3401.
Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2006, 128, 9646-9647.
Chen, F.; Ding, Z.; Qin, J.; Wang, T.; He, Y.; Fan, Q.-H. Org. Lett. 2011, 13, 4348-4351.

Kunz, H.; Pfrengle, W. Angew. Chem. Int. Ed. 1989, 28, 1067-1068.
Clive, D. L. J.; Yu, M.; Li, Z. Chem. Commun. 2005, 906-908.
(a) Knochel, P.; Seebach, D. Nouv. J. Chim. 1981, 5, 75-77. (b) Knochel, P.; Seebach, D. Tetrahedron Lett. 1981, 22, 3223-3226. (c) Seebach, D.; Knochel, P. Helv. Chim. Acta 1984, 67, 261-283. (d) Seebach, D.; Calderari, G.; Knochel, P. Tetrahedron 1985, 41, 4861-4872.

Mitra, S.; Lawton, R. G. J. Am. Chem. Soc. 1979, 101, 3097-3110.
(a) Bauchat, P.; Le Bras, N.; Rigal, L.; Foucaud, A. Tetrahedron 1994, 50, 7815-7826. (b) Bauchat, P.; Foucaud, A. Tetrahedron Lett. 1989, 30, 6337-6338.
(a) Prabhudas, B.; Clive, D. L. J. Angew. Chem. Int. Ed. 2007, 46, 92959297. (b) Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003-6012.

2 Chen, Z.; Clive, D. L. J. J. Org. Chem. 2010, 75, 7014-7017. Basavaiah, D.; Aravindu, K.; Kumar, K. S.; Reddy, K. R. Eur. J. Org. Chem. 2010, 1843-1848. (c) Du, Y.; Han, X.; Lu, X. Tetrahedron Lett. 2004, 45, 4967-4971. (d) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365-1371. (e) Chamakh, A.; M'hirisi, M.; Villiéras, J.; Lebreton, J.; Amri, H. Synthesis 2000, 295-299. (f) Chen, C.-Y.; Chang, M.-Y.; Hsu, R.-T.; Chen, S.-T.; Chang, N.-C. Tetrahedron Lett. 2003, 44, 8627-8630. (g) Roy, A. K.; Batra, S. Synthesis 2003, 13471356. (h) Singh, V.; Batra, S. Eur. J. Org. Chem. 2007, 2970-2976. (i) Nayak, M.; Batra, S. Eur. J. Org. Chem. 2009, 3505-3507. (j) Ravinder, M.; Sadhu, P. S.; Rao, V. J. Tetrahedron Lett. 2009, 50, 4229-4232. (k) Reddy, C. R.; Kiranmai, N.; Johny, K.; Pendke, M.; Naresh, P. Synthesis 2009, 399-402. (1) Huang, C.-C.; Chang, N.-C. Org. Lett. 2008, 10, 673676.
(a) Basavaiah, D.; Aravindu, K. Org. Lett. 2007, 9, 2453-2456. (b)

4 Takagi, R.; Inoue, Y.; Ohkata, K. J. Org. Chem. 2008, 73, 9320-9325.
(a) Cho, C.-W.; Krische, M. J. Angew. Chem. Int. Ed. 2004, 43, 6689-6691. (b) Zhang, T.-Z.; Dai, L.-X.; Hou, X.-L. Tetrahedron: Asymmetry 2007, 18, 1990-1994. (c) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202-7203.

Ramachandran, P. V.; Madhi, S.; Bland-Berry, L.; Reddy, M. V. R.; O'Donnell, M. J. J. Am. Chem. Soc. 2005, 127, 13450-13451.

Chen, C.-G.; Hou, X.-L.; Pu, L. Org. Lett. 2009, 11, 2073-2075.

Gómez-Bengoa, E.; Landa, A.; Lizarraga, A.; Mielgo, A.; Oiarbide, M.; Palomo, C. Chem. Sci. 2011, 2, 353-357.

Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y.-J. Org. Lett. 2007, 9, 2525-2528.

Qi, J.; Porco, J. A. J. Am. Chem. Soc. 2007, 129, 12682-12683.
(a) Eagen, M. C.; Cromwell, N. H. J. Org. Chem. 1974, 39, 911-914. (b) Eagen, M. C.; Cromwell, N. H. J. Org. Chem. 1974, 39, 3863-3866. (c) Zhong, W.; Zhao, Y.; Guo, B.; Wu, P.; Su, W. Synth. Commun. 2008, 38, 3291-3302. (d) Li, J.; Wang, X.; Zhang, Y. Tetrahedron Lett. 2005, 46, 5233-5237. (e) Kwon, S. H.; Cho, C. W. Bull. Korean Chem. Soc. 2008, 29, 1835-1838. (f) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737-5740. (g) Patra, A.; Roy, A. K.; Batra, S.; Bhaduri, A. P. Synlett 2002, 2002, 1819-1822. (h) Kotti, S. R. S. S.; Xu, X.; Li, G.; Headley, A. D. Tetrahedron Lett. 2004, 45, 14271431. (i) Ciclosi, M.; Fava, C.; Galeazzi, R.; Orena, M.; SepulvedaArques, J. Tetrahedron Lett. 2002, 43, 2199-2202. (j) Kim, J. N.; Lee, H. J.; Gong, J. H. Tetrahedron Lett. 2002, 43, 9141-9146. (1) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337-1339. (m) Park, H.; Cho, C.-W.; Krische, M. J. J. Org. Chem. 2006, 71, 7892-7894.
(a) Kenmoku, H.; Sassa, T.; Kato, N. Tetrahedron Lett. 2000, 41, 43894393. (b) Watanabe, H.; Takano, M.; Umino, A.; Ito, T.; Ishikawa, H.; Nakada, M. Org. Lett. 2007, 9, 359-362.

Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y.-J. Org. Lett. 2007, 9, 2525-2528.

Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109-2121.

Tokoroyama, T.; Kato, M.; Aoto, T.; Hattori, T.; Iio, H.; Odegaki, Y. Tetrahedron Lett. 1994, 35, 8247-8250.
(a) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990, 26122613. (b) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. l 1993, 1809-1813.

Song, Y. S.; Lee, K.-J. Synthesis 2007, 3037-3043.
Yi, H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 1953-1960.
Clive, D. L. J.; Li, Z.; Yu, M. J. Org. Chem. 2007, 72, 5608-5617.
(a) de Jong, J. C.; van Bolhuis, F.; Feringa, B. L. Tetrahedron: Asymmetry 1991, 2, 1247-1262. (b) Moradei, O. M.; Paquette, L. A. Org. Synth. 2003, 80, 66-74.

Feringa, B. L.; de Lange, B.; de Jong, J. C. J. Org. Chem. 1989, 54, 24712475.

Díaz, D. D.; Ramírez, M. A.; Martín, V. S. Chem. Eur. J. 2006, 12, 25932606.
(a) Clive, D. L. J.; Huang, X. J. Org. Chem. 2004, 69, 1872-1879. (b) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870-876. (c) Grieco, P. A.; Perez-Medrano, A. Tetrahedron Lett. 1988, 29, 4225-4228. (d) Busqué, F.; de March, P.; Figueredo, M.; Font, J.; Gallagher, T.; Milán, S.

Tetrahedron: Asymmetry 2002, 13, 437-445. (e) Cf. Brosius, A. D.;
Overman, L. E.; Schwink, L. J. Am. Chem. Soc. 1999, 121, 700-709.

Cf. Daumas, M.; Vo-Quang, Y.; Vo-Quang, L.; Le Goffic, F. Synthesis 1989, 64-65.

Preparation of 33b: (a) Henke, B. R.; Kouklis, A. J.; Heathcock, C. H. J. Org. Chem. 1992, 57, 7056-7066. (b) Serino, C.; Stehle, N.; Park, Y. S.; Florio, S.; Beak, P. J. Org. Chem. 1999, 64, 1160-1165.

Bennasar, M. L.; Roca, T.; Monerris, M.; García-Díaz, D. J. Org. Chem. 2006, 71, 7028-7034.

Fustero, S.; Moscardó, J.; Jiménez, D.; Pérez-Carrión, M. D.; SánchezRoselló, M.; del Pozo, C. Chem. Eur. J. 2008, 14, 9868-9872.
(a) Masurier, N.; Estour, F.; Froment, M.-T.; Lefèvre, B.; Debouzy, J.-C.; Brasme, B.; Masson, P.; Lafont, O. Eur. J. Med. Chem. 2005, 40, 615-623. (b) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 5215-5219.

Chang, G.; Garigipati, R. S.; Lefker, B.; Perry, D. A. US 2007/0213314 A1.

Cf. Takigawa, Y.; Ito, H.; Omodera, K.; Ito, M.; Taguchi, T. Tetrahedron 2004, 60, 1385-1392.

Demir, A. S.; Reis, Ö. Tetrahedron 2004, 60, 3803-3811.
Tanaka, K.; Hojo, D.; Shoji, T.; Hagiwara, Y.; Hirano, M. Org. Lett. 2007, 9, 2059-2062.
(a) Melnyk, P.; Gasche, J; Thal, C. Synth. Commun. 1993, 23, 2727-2730.
(b) Alan C. Spivey, A. C.; Shukla, L.; Hayler, J. F. Org. Lett. 2007, 9, 891894.

Ferraccioli, R.; Carenzi, D. Synthesis 2003, 1383-1386.
Jauch, J. J. Org. Chem. 2011, 66, 609-611.
Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697-2699.
(a) Jauch, J. Angew. Chem. Int. Ed. 2000, 39, 2764-2765. (b) Jauch, J. Eur. J. Org. Chem. 2001, 473-476. (c) Jauch, J. Synlett 1999, 1325-1327.

Dickmeiss, G.; Jensen, K. L.; Worgull, D.; Franke, P. T.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2011, 50, 1580-1583.

Chapter 3

Total Synthesis of Racemic Marinopyrrole B

1. Introduction

1.1 General

Historically, the majority of drugs have been discovered and developed from natural products, as well as their derivatives, metabolites and mimics. ${ }^{1}$ In the past 20 years, over 50% of the small molecule new chemical entities (NCEs) introduced to the market were natural products or synthetic or semisynthetic natural product derivatives. ${ }^{2}$

For over half a century, bacteria have been a source of structurally diverse and biologically active secondary metabolites. ${ }^{3}$ Traditionally, the majority of bacteria that have been studied were obtained from soil habitats due to the limitation of the technologies, such as scuba diving, for collecting samples from marine habitats. Today, using deep water sampling tools instead of scuba diving, marine sediments have been collected and examined for new antibiotics. ${ }^{4}$ With the improvement of the methods for collecting samples from the ocean and the development of analytical technologies, more and more chemists have been attracted to this field.

In 2008, Fenical and coworkers reported ${ }^{5}$ that chemical studies of actinomycetes, which inhabit ocean sediments and include new species, have produced a growing number of unique, bioactive natural products. ${ }^{6}$ By extracting actinomycete strain CNQ-418, which was obtained from a marine sediment sample, two compounds, (-)-marinopyrroles A (1.1) and B (1.2) were isolated. Both marinopyrrole A and B show significant activity against methicillin-resistant Staphylococcus aureus (MRSA) with MIC_{90} values of less than $1 \mu \mathrm{~g} / \mathrm{mL}$. In
addition, both of also show interesting anticancer properties against a human colon cancer cell line (HCT-166) with IC_{50} values around $5 \mu \mathrm{~g} / \mathrm{mL} .{ }^{5,7}$ Later on, four additional members of this family were also found (Scheme 1). ${ }^{7}$

(-)-marinopyrrole $\mathrm{A}(1.1), \mathrm{R}=\mathrm{H}$
(-)-marinopyrrole B (1.2), $R=B r$

(-)-marinopyrrole C (1.3), $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{H}$ (-)-marinopyrrole $\mathrm{D}(1.4), \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Cl}$ (-)-marinopyrrole $\mathrm{E}(1.5), \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Br}$

(\pm)-marinopyrrole F (1.6)

Scheme 1

1.2 Isolation and structural elucidation of the marinopyrroles

Cultivation of the marine Streptomyces strain CNQ-418 in a seawaterbased medium for 7 days with vigorous shaking, followed by solid phase extraction of the broth using Amberlite resin (XAD-16), filtration through cheesecloth, elution of the resin with acetone, and solvent removal under vacuum, afforded a gummy extract which was then subjected to fractionation on silica gel. ${ }^{5}$

Using C8 reverse phase HPLC, two prominent metabolites, marinopyrrole A and B , were isolated from a fraction. With the optimization of culturing conditions, another four members of this family were also isolated. ${ }^{7}$

In order to determine the structures of these metabolites, 1D and 2D NMR spectra of marinopyrrole A (1.1) were first collected. With COSY, HSQC and HMBC spectra, two independent benzoyl groups were identified. However, the central core of marinopyrrole A (1.1) was difficult to determine due to the lack of correlations in 2D NMR spectra. A number of derivatives of marinopyrrole A (1.1) were prepared in an attempt to produce suitable crystals for X-ray analysis. Both phenolic hydroxyl groups of $\mathbf{1 . 1}$ were esterified to give the corresponding O, O^{\prime}-diacetate, O, O^{\prime}-di-p-bromobezoate and O, O^{\prime}-di-p-nitrobenzoates. N Methylation of $\mathbf{1 . 1}$ with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ produced the corresponding N -methyl derivative. Unfortunately, none of these solid derivatives yielded crystals suitable for X-ray analysis. Fortunately, crystals of marinopyrrole B (1.2) were obtained by slow evaporation from PhMe, and X-ray analysis established the structure of $\mathbf{1 . 2}$ and its M-configuration. By comparing the NMR spectral data of $\mathbf{1 . 1}$ with those of $\mathbf{1 . 2}$, the planar structure of $\mathbf{1 . 1}$ was assigned. The two marinopyrroles have similar optical rotations, suggesting marinopyrrole A also has the M-configuration. The structures of marinopyrroles $\mathbf{1 . 3}, \mathbf{1 . 4}$ and $\mathbf{1 . 5}$ were also determined by their mass spectral data and comparison of their NMR and circular dichroism (CD) spectra with those of $\mathbf{1 . 2}$. The structure of marinopyrrole F (1.6) was determined by Xray analysis.

With the exception of marinopyrrole F (1.6), the marinopyrroles were isolated as single atropo-enantiomers, suggesting that the pyrrole-pyrrole coupling is an enzyme-catalyzed process. ${ }^{5,7}$ Along with the marinopyrroles, a structural subunit of marinopyrrole A, monodeoxypyoluteorin (2.1) was also isolated from cultivation of actinomycete strain CNQ-418. The presence of monodeoxypyoluteorin (2.1) suggests a route for the biosynthesis of marinopyrrole A . Pyoluteorin (2.2) and the related pyrrolomycins are known to have antibacterial activity. ${ }^{8}$

monodeoxypyoluteorin (2.1)

pyoluteorin (2.2)

pyrrolomycin C (2.3)

Scheme 2

Although marinopyrroles A-E (1.1-1.5) were obtained from actinomycete strain CNQ-418 as single atropo-enantiomers, racemization of the compounds occurs at elevated temperatures. ${ }^{9}$ Both $\mathbf{1 . 1}$ and $\mathbf{1 . 2}$ can be racemized by heating them in PhMe at $120^{\circ} \mathrm{C}$ for 20 h . Racemization of $\mathbf{1 . 3}$ needs a longer time and higher temperature $\left(150{ }^{\circ} \mathrm{C}\right.$ in $\left.\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$, and racemization of $\mathbf{1 . 4}$ and $\mathbf{1 . 5}$ could not be accomplished even at $180^{\circ} \mathrm{C}$, due to the increase of the energy barrier to rotation along the $\mathrm{C}-\mathrm{N}$ axis caused by halogens at $\mathrm{C}-11$ and $\mathrm{C}-11^{\prime}$. Marinopyrrole F (1.6) was isolated as a racemate, presumably due to the significant decrease of the barrier for atropisomerism by the fused ether ring. To
confirm this explanation, a sample of enantioenriched 1.6, collected using chiral HPLC, was stored in MeOH at room temperature; complete racemization was observed after 18 h .

1.3 Reactivity of the marinopyrroles

The marinopyrroles are the first reported natural products with a $1,3^{\prime}-$ bipyrrole structure. This special subunit was assumed to probably have different reactivity from that of simpler pyrrole congeners, ${ }^{6,7}$ and such turned out to be the case. In order to identify the reactivity patterns of the marinopyrroles, Fenical and

Scheme 3
coworkers carried out a number of simple reactions with marinoyrrole A, as summarized in Schemes 3-5. ${ }^{7}$

The phenolic hydroxyl groups of $\mathbf{1 . 1}$ were acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ to afford the diacetate 3.1. With $\mathrm{Me}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$, both phenolic hydroxyl groups and the pyrrole nitrogen were methylated (3.2). In the N-methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$, only the pyrrole nitrogen reacted to give 3.3; however, when MeOH was used as the solvent, the yield was lowered, possibly because intramolecular hydrogen bonding is disrupted by MeOH , making the phenolic hydroxyls more reactive. ${ }^{7}$

Because of the presence of the electron-withdrawing halogens, it was expected that the marinopyrroles would be electrophilic. Consequently, marinopyrrole A (1.1) was treated with several heteroatom-containing nucleophiles and the reaction results are shown in Scheme 4. ${ }^{7}$ In all cases, the chlorine at $\mathrm{C}-5$ ' was displaced by the nucleophile via an aromatic substitution reaction. ${ }^{10}$

When 1.1 was heated at $145{ }^{\circ} \mathrm{C}$ in N, N-dimethylacetamide (DMA), $\mathbf{1 . 1}$ was converted into $\mathbf{1 . 6}$, and treatment of $\mathbf{1 . 6}$ with $\mathrm{Me}_{2} \mathrm{NH}$ gave compound $\mathbf{4 . 3}$ in quantitative yield. In contrast, monodeoxypyoluteorin and its derivatives do not undergo any nucleophilic aromatic substitution under similar conditions. Although these reactions occurred at temperatures below $100^{\circ} \mathrm{C}$, loss of optical purity was observed. Both 4.1 and 4.3 were obtained as racemates, and 4.2 was produced in 76\% ee.

Scheme 4

Finally, 1.1 was treated with a primary amine 5.1 (a lysine derivative) at $80^{\circ} \mathrm{C}$ in pyridine to generate the corresponding imine 5.2 as a mixture of two imine geometries. This result suggests that the mechanism by which marinopyrrole $\mathrm{A}(\mathbf{1 . 1})$ targets actin and results in its cytotoxicity in eukaryotic
cells may involve imine formation. ${ }^{11}$ During prolonged storage of imine 5.2, marinopyrrole A (1.1) was obtained with degraded ee (74\%).

Scheme 5

1.4 Early synthetic studies on the marinopyrroles by the Fenical group

A total synthesis of marinopyrrole A via Ullmann coupling was planned by Fenical and coworkers (Scheme 6). ${ }^{7}$ Although Ullmann coupling has been used to prepare N-phenylazoles, the direct formation of N, C-linked bipyrroles via this coupling has not been reported. ${ }^{12,13}$ The starting materials needed for the Ullmann coupling were prepared by the route shown in Scheme 7.

2.1

(\pm)-1.1

Scheme 6

First, monodeoxypyoluteorin (2.1) ${ }^{8 g}$ was prepared, starting from pyrrole (7.1), which was converted to compound 7.3 by acylation with 2-methoxybenzoyl chloride (7.2). Demethylation of 7.3 with AlCl_{3}, followed by acetylation and selective chlorination of the pyrrole, afforded O-acetyl monodeoxypyoluteorin (7.6). Finally, hydrolysis of acetate 7.6 under acidic conditions produced monodeoxypyoluteorin (2.1). Treatment of O-acetyl monodeoxypyoluteorin (7.6) with 1 equivalent of N-bromosuccinimide (NBS) gave 7.8 in 57% yield. However, when 2 equivalents of NBS were used, only the N-brominated compound 7.7 was obtained. Under acidic conditions, 7.8 was converted into the desired compound 6.1. By using of N-iodosuccinimide (NIS) instead of NBS, compound 6.2 was generated in a similar way.

7.1

7.5

7.4

7.7

7.8

6.1

7.9

6.2

Scheme 7

Unfortunately, all attempts to couple 3-halopyrroles (6.1, 6.2, 7.8 and 7.9)
with $\mathbf{2 . 1}$ or $\mathbf{7 . 6}$ via Ullmann reaction were unsuccessful. This might be due to
steric interactions between the four substituents ortho to the intended coupling site. Such steric effects had been reported in the literature and it is known that the difficulty of preparing substituted biaryl structures dramatically increases when two ortho substituents are present. ${ }^{12 \mathrm{a}}$ Instead of intermolecular Ullmann coupling, the 3-halopyrroles could undergo an intramolecular coupling to form a 1 H -chromeno[3,2-b]pyrrol-9-one (Scheme 8). Even 7.8 and 7.9 could form the chromene 8.1 after the acetyl group was removed under the coupling conditions.

Scheme 8

Although attempts to synthesize marinopyrrole A failed, Fenical and coworkers prepared the 1,3'-bipyrrole core of marinopyrroles via Paal-Knorr reaction (Scheme 9). Addition of Grignard reagent 9.1 to oxalate 9.2 at low temperature, followed by ozonolysis, gave the 1,4-dicarbonyl compound 9.3. The Paal-Knorr reaction between $\mathbf{9 . 3}$ and $9 . \mathbf{4}^{14}$ formed the bipyrrole $\mathbf{9 . 5}$. Tetrabromination of $\mathbf{9 . 5}$ with NBS produced the brominated bipyrrole 9.6 , while tetrachlorination of 9.5 with NCS was unsuccessful. The structure of 9.6 was confirmed by X-ray analysis.

Scheme 9

1.5 First total synthesis of (\pm)-Marinopyrrole A and its analogs

In early $2010, \mathrm{Li}$ and coworkers reported the first total synthesis of racemic marinopyrrole A (1.1). ${ }^{1} \quad$ The 1,3 '-bipyrrole 9.4 was first prepared via Paal-Knorr reaction between $\mathbf{1 0 . 1}$ and $\mathbf{1 0 . 2}$. The nitrogen of the upper pyrrole unit in 9.4 was then protected by reaction with TsCl to afford $\mathbf{1 0 . 3}$, which was reduced by DIBAL-H. Oxidation with IBX in DMSO, gave the dialdehyde $\mathbf{1 0 . 5}$ in good yield. Addition of Grignard reagent $\mathbf{1 0 . 6}$ to the dialdehyde provided the diol 10.7, which could not be purified by flash chromatography due to its sensitivity to acid. When the diol $\mathbf{1 0 . 7}$ was exposed to the action of AcOH or silica gel, it was converted efficiently into the cyclic ether 11.1 (Scheme 11), whose structure was established by X-ray analysis. Therefore, the crude diol was directly oxidized by CrO_{3} in pyridine to produce the diketone $\mathbf{1 0 . 8}$ in 69% yield over two steps . A small amount (10\%) of cyclic ether $\mathbf{1 1 . 1}$ was formed as the

10.1

10.4

TsOH (cat),
PhMe, reflux 82\%

10.3

10.7
CrO_{3}
pyr, 69\%

NCS, MeCN
$40^{\circ} \mathrm{C}, 30 \mathrm{~h}$

10.10

(\pm)-1.1

Scheme 10
byproduct. Removal of the tosyl group under basic conditions gave 10.9, which reacted with NCS to afford the tetrachlorinated bipyrrole 10.10. Finally, demethylation of $\mathbf{1 0 . 1 0}$ with BBr_{3} produced racemic marinopyrrole A (1.1) in excellent yield. Attempts to make marinopyrrole B from marinopyrrole A by reaction with NBS were unsuccessful, probably due to the electron-deficient properties of the lower pyrrole ring carrying three electron-withdrawing groups. This total synthesis of racemic marinopyrrole A was accomplished in 9 steps with an overall yield of 30%.

Scheme 11

The dialdehyde $\mathbf{1 0 . 5}$ was a key intermediate in the synthesis of analogs (Scheme 12) of marinopyrrole A. ${ }^{1}$ Addition of appropriate Grignard reagents or organolithium reagents gave the corresponding alcohols, which were oxidized $\left(\mathrm{CrO}_{3}\right.$, pyridine), and then the tosyl group was removed. Chlorination with NCS afforded the analogs as racemates. Demethylation of $\mathbf{1 0 . 9}$ gave the nonhalogenated analog (12.1) of marinopyrrole A . The additional chlorines on the benzene rings of $\mathbf{1 2 . 1 0}$ and $\mathbf{1 2 . 1 1}$ are the result of unintentional halogenation
during halogenation of the pyrrole rings. Phenol $\mathbf{1 2 . 1 1}$ was made by selective demethylation of $\mathbf{1 2 . 1 0}$ with BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

12.1

12.6

Scheme 12

Scheme 12 (continued)

1.6 Second total synthesis of (\pm)-Marinopyrrole A

In late 2010, Sarli and coworker reported the second total synthesis of racemic marinopyrrole A. ${ }^{15}$ Inspired by the assumption that the biosynthesis of the marinopyrroles probably involves an enzyme-mediated pyrrole-pyrrole coupling, ${ }^{5}$ they planned to make the $1,3^{\prime}$-bipyrrole core via an Ullmann coupling reaction. In order to establish if a 1,3 '-bipyrrole could be made by Ullman reaction, coupling of pyrrole (7.1) with N-protected 3-bromopyrrole $13.1(\mathrm{X}=\mathrm{Ts})$ was first examined. The desired coupling was observed to be accompanied by loss of the tosyl group under the optimized conditions (Scheme 13). Two other N protecting groups ($\mathrm{X}=\mathrm{Boc}$ and $\mathrm{SiPr}-i_{3}$ in 13.1) were also tested, and similar results were obtained.

Scheme 13

When pyrrole esters 14.1 and 14.2 were subjected to the optimized coupling conditions, a higher temperature was required ($240{ }^{\circ} \mathrm{C}$), and ester hydrolysis, decarboxylation and loss of the nitrogen protecting group occurred at the same time (Scheme 14). When $\mathbf{1 3 . 1}(\mathrm{X}=\mathrm{Ts})$ instead of $\mathbf{1 4 . 2}$ was used in this reaction, the bipyrrole $\mathbf{1 3 . 2}$ was also produced.

Scheme 14

With the Ullmann conditions established, a substrate with an orthomethoxyaryl group (7.3) was then prepared (Scheme 15). Pyrrole ester 14.1 was converted into the corresponding Weinreb amide, and the NH group of the pyrrole was protected by tosylation to give sulfonamide 15.1. Treatment of $\mathbf{1 5 . 1}$ with

Grignard reagent 10.6, followed by removal of the tosyl group, generated dechloropyoluteorin (7.3). Alternatively, $\mathbf{7 . 3}$ could be prepared by acylation of pyrrole (7.1) with 2-methoxybenzoyl chloride (7.2).
MeNHOMe-HCl

14.1

7.1

Scheme 15

Attempts to make compound $\mathbf{1 6 . 2}$ via the Weinreb amide route, using 14.2 as the starting material, was unsuccessful (Scheme 16). Fortunately, acylation of the N-protected pyrrole $13.1(\mathrm{X}=\mathrm{Ts})$ with 2-methoxybenzoyl chloride (7.2) gave 16.2 in 82% yield.

13.1

16.2

Scheme 16

Compound 7.3 was then subjected to Ullmann reaction with $\mathbf{1 3 . 1}(\mathrm{X}=\mathrm{Ts})$ and the desired tosyl-bipyrrole $\mathbf{1 7 . 1}$ was obtained in 20% yield (60% based on recovered 7.3). When coupling of 7.3 and $\mathbf{1 6 . 2}$ was examined under the previously optimized conditions, the desired bipyrrole $\mathbf{1 0 . 9}$ was produced in 24% yield. To improve the yield, the coupling was tested using different solvents, bases, catalysts, reaction temperatures and times, and it was found that the desired 1,3'-bipyrrole $\mathbf{1 0 . 9}$ could be isolated in 43% yield by using $\mathrm{Cu}(\mathrm{OAc})_{2}$ and DBU in DMF. The resulting bipyrrole $\mathbf{1 0 . 9}$ was then chlorinated with NCS, and then demethylation with AlCl_{3}, afforded racemic marinopyrrole A . This total synthesis was accomplished in 6 steps and 22% overall yield.

Scheme 17

(\pm)-1.1

Scheme 18

1.7 Third total synthesis of (\pm)-Marinopyrrole A and analogs

In 2011, Nicolaou and coworkers reported the third total synthesis of racemic marinopyrrole $\mathrm{A} .{ }^{16}$ Aminopyrrole hydrochloride $\mathbf{1 0 . 1}$ was used as the starting material and subjected to a Clauson-Kaas condensation with 2,5dimethoxytetrahydrofuran $\mathbf{1 9 . 1}$ to afford the bipyrrole $\mathbf{1 9 . 2}$ in moderate yield. Monoaddition of o-methoxyphenyllithium (19.3) to $\mathbf{1 9 . 2}$ served to install the first

19.2

$(\pm)-10.10$
(\pm)-1.1

Scheme 19
methoxyphenyl group, and Friedel-Crafts arylation with acid chloride 7.2 introduced the second methoxyphenyl group and gave 1,3'-bipyrrole $\mathbf{1 0 . 9}$ in 64% yield. Chlorination with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and demethylation with BBr_{3} produced racemic marinopyrrole A, which was resolved by chiral HPLC. The racemic marinopyrrole A was prepared in 5 steps and 16% overall yield from $\mathbf{1 0 . 1}$.

Several analogs were also prepared by Nicolaou and coworkers. ${ }^{16}$ Demethylation of compound $\mathbf{1 0 . 9}$ generated the the non-halogenated analog $\mathbf{1 2 . 1}$ which was previously prepared by Li's group. Tetrabromination of $\mathbf{1 0 . 9}$ with NBS, followed by demethylation with BBr_{3}, gave tetrabromomarinopyrrole 20.2

10.9
12.1
$\left\lvert\, \begin{aligned} & \text { NBS, MeCN } \\ & 85 \%\end{aligned}\right.$

20.1

20.2

Scheme 20

Acetylation of the phenolic hydroxyl group of marinopyrrole A with acetic anhydride, $\mathrm{Et}_{3} \mathrm{~N}$ and catalytic DMAP furnished the diacetate $\mathbf{2 1 . 1}$ in good yield (Scheme 21).

Scheme 21

The bipyrrole 19.2 was subjected to Friedel-Crafts acylation (Scheme 22), followed by chlorination and demethylation, to give analog 22.1. Similarly, compound 22.2 was prepared from 19.4 in 14\% yield over 4 steps (Scheme 22).

19.2

$\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$

19.4

22.1

22.2

Scheme 22

1.8 Synthesis of asymmetrical marinopyrrole analogs by the Li group

In 2012, Li and coworkers synthesized some asymmetrical marinopyrrole analogs. ${ }^{17}$ Compound 19.4, first prepared by the Nicolaou group, was treated with acid chloride 23.1 and AlCl_{3} to give marinopyrrole precursor 23.2 in 70% yield. Tetrachlorination of $\mathbf{2 3 . 2}$ with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ formed $\mathbf{2 3 . 3}$ in 85% yield, which was then treated with BBr_{3} to afford the asymmetrical marinopyrrole analog 23.4 in 96% yield.

19.4

Scheme 23

Using suitable acid chlorides instead of 23.1, and following the above synthetic route, the asymmetrical marinopyrrole analogs 24.1 and 24.2 were synthesized in 48% and 46% yield over 3 steps, respectively.

24.1

Scheme 24

1.9 Biological activity and mode of action of the marinopyrroles

The antibiotic activity of the marinopyrroles (Table 1), especially against methicillin-resistant Staphylococcus aureus (MRSA), ${ }^{18}$ is an important property because the development of antibiotic resistance has generated a pressing need for new antibiotics. ${ }^{4,17,19}$ Against methicillin-resistant Staphylococcus aureus (MRSA), the natural marinopyrroles $\mathrm{A}-\mathrm{C}(\mathbf{1 . 1}, 1.2$ and 1.3) showed minimum inhibitory concentrations (MIC_{90}) of less than $1 \mu \mathrm{~g} / \mathrm{mL}$. ${ }^{5,7}$ Marinopyrrole F (1.6) and derivatives 4.2 and 4.3 were much less active against MRSA, showing that the $\mathrm{C}-5$ ' chlorine substituent may play an important role in the mechanism of antibiotic action. The data for derivatives 3.1, 3.2 and $\mathbf{3 . 3}$ (see Scheme 3) showed that replacement of the acidic hydrogens $\mathbf{O H}$ or NH resulted in reduced antimicrobial activity, suggesting the importance of hydrogen bonding in the mechanism of action. The fact that the methoxy compound 4.1 retains activity might indicate that the methoxy group can be displaced in vivo. Many of the MRSA-active marinopyrroles and derivatives also showed significant cytotoxicity against a human colon cancer cell line, HCT-116. ${ }^{5,7}$ The results in Table 1 also
showed that both the natural marinopyrrole $\mathrm{A}[(-) \mathbf{- 1 . 1}]$ and the enantiomeric unnatural marinopyrrole A have similar activity.

The therapeutic window for the marinopyrroles (the IC_{50} values are not sufficiently greater than the MIC_{90} values, see Table 1) may be too narrow for treatment of bacterial infections in humans, but their use in cancer chemotherapy remains to be explored. ${ }^{7}$

Table 1. Biological activity of marinopyrroles and analogs ${ }^{5,7}$

Compound	MRSA ${ }^{\text {a }}$ (MIC ${ }_{90}{ }^{\text {b }}$)	HCT-116 ${ }^{\text {c }}$ IC $_{50}{ }^{\text {b }}$)
(-)-1.1 (marinopyrrole A)	0.31	4.5
(+)-1.1 (marinopyrrole A)	0.16	4.8
(-)-1.2 (marinopyrrole B)	0.63	5.3
(-)-1.3 (marinopyrrole C)	0.16	0.21
(\pm)-1.6 (marinopyrrole F)	3.1	2.9
3.1	1.6	4.2
3.2	NSA	NSA
3.3	NSA	NSA
4.1 (racemic)	0.78	1.1
4.2 (76\% ee)	6.3	7.2
4.3 (racemic)	1.6	4.4

${ }^{\mathrm{a}}$ MRSA $=$ methicillin-resistant Staph. aureus. ${ }^{\mathrm{b}}$ Units: $\mu \mathrm{g} / \mathrm{mL}$. Positive control: vancomycin $\left(\right.$ MIC $\left._{90}=0.20-0.39 \mu \mathrm{~g} / \mathrm{mL}\right)$ and penicillin $G\left(\mathrm{MIC}_{90}=6.3-12\right.$ $\mu \mathrm{g} / \mathrm{mL})$. ${ }^{\mathrm{c}} \mathrm{HTC}-116$ is a human colon cancer cell line. Positive control: etoposide $\left(\mathrm{IC}_{50}=0.29-2.9 \mu \mathrm{~g} / \mathrm{mL}\right)$. NSA $=$ no significant activity $(>8 \mu \mathrm{~g} / \mathrm{mL})$.

Nicolaou and coworkers tested the antibacterial activities of marinopyrrole A and analogs against TCH-1516, a strain representative of the current epidemic
clone of community-acquired MRSA. ${ }^{19 b}$ The results are shown in Table 2. ${ }^{16}$

Table 2. Biological activity of marinopyrrole A and analogs ${ }^{16}$

Compound	Activity against MRSA TCH- $\mathbf{1 5 1 6}, \mathrm{MIC}_{50} \mu \mathrm{~g} / \mathrm{mL}$
$(\pm) \mathbf{- 1 . 1}$	$0.375-0.750$
$(+) \mathbf{- 1 . 1}$	0.189
$(-) \mathbf{- 1 . 1}$	0.189
$\mathbf{1 0 . 9}$ (racemic)	>96
$\mathbf{1 0 . 1 0}$ (racemic)	>96
$\mathbf{1 2 . 1}$ (racemic)	48
$\mathbf{2 0 . 1}$ (racemic)	>96
$\mathbf{2 0 . 2}$ (racemic)	0.75
$\mathbf{2 1 . 1}$ (racemic)	0.375
$\mathbf{2 2 . 1}$ (racemic)	3
$\mathbf{2 2 . 2}$ (racemic)	1.5

As indicated in Table 2, (+)-1.1 had the same activity as (-)-1.1 (the natural configuration) against MRSA TCH-1516, and the synthetic racemic marinopyrrole A also exhibited high antibacterial activity. The tetrabrominated analog 20.2 had comparable activity to racemic marinopyrrole A, while the dehalogenated analog $\mathbf{1 2 . 1}$ was much less active, indicating the importance of halogens for antibacterial activity. Dimethylated marinopyrrole analogs 10.9, 10.10 and 20.1 showed no activity, indicating that the free phenolic groups were necessary for activity. The less active analogs $\mathbf{2 2 . 1}$ and 22.2, which only have one phenolic group, also showed the importance of phenolic groups. The tetrachlorinated bis-acetate 21.1 exhibited similar activities to racemic
marinopyrrole A, probably due to in situ hydrolysis within the cell. When these compounds were tested in the presence of 20% normal pooled human serum, the antibacterial activity was lost, presumably due to protein adsorption.

A recent detailed report ${ }^{19 b}$ indicated that marinopyrrole A was active against a wide range of MRSA strains (12 were tested) as well as against other Gram-positive organisms. The MIC values $(0.188-1.5 \mu \mathrm{~g} / \mathrm{mL})$ were generally lower than for vancomycin $(1-8 \mu \mathrm{~g} / \mathrm{mL})$ and linezolid $(3 \mu \mathrm{~g} / \mathrm{mL})$. Marinopyrrole A was active against H. influenzae but inactive against the two other Gramnegative strains that were tested (P. aeruginosa and E. coli). ${ }^{19 b}$

In the presence of human serum activity was lost, suggesting that marinopyrroles may be effective in vivo only for topical application and prodruglike compounds may be needed for systemic applications. ${ }^{16,19 b}$ However, it may be possible to overcome the effect of serum by appropriate modification of the marinopyrrole structure and encouraging progress in this direction had already been made: ${ }^{17}$ Analogs 23.4, 24.1 and $\mathbf{2 4 . 2}$ were tested in this connection (Table 3).

Table 3. MIC $(\boldsymbol{\mu} \mathbf{M})$ of marinopyrrole derivatives against MRSA ${ }^{17}$

Compound	Todd-Hewitt broth	Todd-Hewitt broth + 20\% serum
marinopyrrole A	0.74	$94-188$
$\mathbf{2 3 . 3}$	>200	>200
$\mathbf{2 3 . 4}$	$0.19-0.39$	$12.5-25$
$\mathbf{2 4 . 1}$	1.56	>200
$\mathbf{2 4 . 2}$	3.13	>200

The data in Table 3 show that not only is $\mathbf{2 3 . 4}$ more potent than marinopyrrole A but it is also much less sensitive to inactivation by human serum. Possibly, this results from the effect on the $\mathrm{p} K_{\mathrm{a}}$ of the phenolic hydroxyl by the extra chlorine substituent.

A conclusion to be drawn from the preliminary publications ${ }^{5,7}$ is that the marinopyrroles may contain a previously unknown pharmacophore of possible use in the design of new antibiotics.

One of the biological targets of marinopyrrole A was identified as actin in HCT-116 cancer cells by the method of acyl dye transfer. ${ }^{11}$ In this approach a dye was attached to a natural product which then binds to the target protein and transfers the dye to the protein, releasing the natural product and leaving the protein labeled at the site of binding. This technique was applied ${ }^{11}$ to marinopyrroles A and B (only data for marinopyrrole A was reported) for several reasons: they are available in mg / L quantities; they have an unknown mode of action; they are active in tumor cell lines $\left(\mathrm{GI}_{50}=10 \mathrm{mM}\right.$ in HCT-116 cells, and 620 nM for marinopyrrole A; and 500 nM for marinopyrrole B in A549 breast cancer cells); they undergo acetylation without loss of activity $\left(\mathrm{GI}_{50}=0.8 \mathrm{mM}\right.$ for O, O^{\prime}-bis-acetyl marinopyrrole A in HCT-116 cells - an approximately 12-fold increase over that observed with marinopyrrole A or B). Application of the acyl dye transfer method allowed lysine-115 in actin to be identified as the likely target of marinopyrrole A. ${ }^{11}$

2. Results and Discussion

2.1 Research objective

Marinopyrroles A and B are two marine antibiotic natural products which are highly halogenated bispyrroles and show high activity against MRSA. Given the significance of the marinopyrroles as potential drug candidates, marinopyrrole A has been synthesized by several groups. However, all attempts to make marinopyrrole B were unsuccessful. Consequently, the main goal of this project was the synthesis of marinopyrrole B.

2.2 Synthetic studies on marinopyrrole B

Attempts by others to prepare marinopyrrole B by bromination of marinopyrrole A were unsuccessful. ${ }^{1}$ This observation and prior experiments in this laboratory suggested that introducing bromine at the C-3' position at an early stage would be a promising approach. A retrosynthetic proposal was then developed along the following lines (Scheme 25): Compound $\mathbf{2 5 . 1}$ was chosen as a key intermediate which already has the bromine at $\mathrm{C}-3^{\prime}$ and should be easily converted into marinopyrrole B via chlorination and demethylation reactions. Unlike other approaches, I decided to construct the second pyrrole ring onto the brominated first pyrrole via a Paal-Knorr reaction, which would require the keto aldehyde 25.2. This keto aldehyde 25.2 should be available using an intermolecular conjugate displacement between 25.3 and 25.4 , followed by several standard functionality transformations.

Scheme 25

Compound 25.3 was prepared (Scheme 26) from o-anisaldehyde (26.1), which was converted into $\mathbf{2 6 . 3}{ }^{20}$ by Baylis-Hillman reaction with methyl acrylate (26.2). Protection of the hydroxyl group of 26.3 by reaction with $t-\mathrm{BuMe}_{2} \mathrm{SiCl}^{2}$, followed by reduction, gave alcohol 26.5. Acetylation of 26.5 generated compound 26.6, which was then treated with $\mathrm{Bu}_{4} \mathrm{NF}$ to produce compounds 26.7 and $\mathbf{2 6 . 8}$ in 15% and 72% yield, respectively. By exposure to DBU, 26.7 could be converted into the desired compound 26.8 in 62% yield. When 26.8 was subjected to Swern oxidation, the desired allylic acetate $\mathbf{2 5 . 3}$ was obtained in good yield.

$\downarrow^{\mathrm{AcCl}, \mathrm{pyr}} \mathrm{O}, 99 \%$

26.7, 15\% DBU, THF rt, 62\%
26.6

26.8, 72%

25.3

Scheme 26

The lower pyrrole subunit was synthesized by the route developed by the Fenical group (Scheme 27): ${ }^{7}$ Friedel-Crafts acylation of pyrrole (7.1) with 2methoxybenzoyl chloride (7.2) produced 7.3 in good yield. ${ }^{15}$ An attempt to chlorinate 7.3 with NCS was unsuccessful, and only starting material was recovered. Consequently, the route was modified slightly. Demethylation of 7.3 furnished phenol 7.4, which was acetylated to give pyrrole 7.5 in excellent yield.

Now, selective chlorination with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and bromination with NBS afforded the desired halogenated pyrrole 7.8 , which was hydrolyzed under acidic conditions to give compound 6.1. However, an attempt to make compound 25.4 was unsuccessful.

 $\xrightarrow[73 \%]{\mathrm{Et}_{2} \mathrm{O} \text {; then }}$

7.4
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\mathrm{rt}, 90 \%$

7.6

6.1

Scheme 27

28.1
7.8
aq $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}$

28.3, 75\%
$\left\lvert\, \begin{aligned} & \mathrm{Mel}, \mathrm{K}_{2} \mathrm{CO}_{3} \\ & \text { acetone, } 90 \%\end{aligned}\right.$

28.4

28.2, <20\%

Scheme 28

Fortunately, it was found that the reaction between allylic acetate $\mathbf{2 5 . 3}$ and acetate 7.8 in the presence of NaH provided the desired intermolecular conjugate displacement adduct $\mathbf{2 8 . 1}$ in 83% yield. This process takes advantage of the fact that Michael acceptors carrying an allylic leaving group (these acceptors are usually derivatives of Baylis-Hillman alcohols), such as 25.3, show enhanced
reactivity compared to related acceptors that lack the leaving group, ${ }^{21,22}$ and so reaction stops after a single addition.

Hydrolysis of $\mathbf{2 8 . 1}$ under acidic conditions gave the desired phenol $\mathbf{2 8 . 3}$ as the major product and a byproduct $\mathbf{2 8 . 2}$ as the minor component. ${ }^{7}$ Treatment of 28.3 with MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ generated the phenolic methyl ether $\mathbf{2 8 . 4}$ in 90% yield. Finally, cleavage of the double bond with RuCl_{3} and NaIO_{4} produced the expected ketone 28.5 in 56% yield. ${ }^{23}$

Alkylation of ketone $\mathbf{2 8 . 5}$ with allyl bromide did not give the expected C allyl product, instead, the O-allyl enol ether 29.1 was formed in 78% yield. Fortunately, refluxing 29.1 in PhMe for 30 h gave the desired ketone 29.2 via Claisen rearrangement. Lemieux-Johnson oxidation and ozonolysis were then examined in order to cleave the double bond of 29.2. However, none of desired aldehyde was obtained under these two conditions. Finally, it was found that using OsO_{4} and N -methylmorpholine- N -oxide (NMO), followed by $\mathrm{Pb}(\mathrm{OAc})_{4}$, afforded the desired aldehyde $\mathbf{2 5 . 2}$ in 57% yield. Treatment of $\mathbf{2 5 . 2}$ with $\mathrm{NH}_{4} \mathrm{OAc}$ and AcOH^{24} did not furnish the expected 1,3'-bipyrrole 25.1, but gave the pyridine 29.3 instead. This behavior indicated that the carbonyl group adjacent to the o-methoxyphenyl unit was more reactive than the adjacent ketone. In order to circumvent this problem, use of an ester group instead of the o methoxyphenyl carbonyl group was indicated.

PhMe, reflux
$30 \mathrm{~h}, 85 \%$

Scheme 29

The new synthetic plan (Scheme 30) was to prepare 1,3'-bipyrrole $\mathbf{3 0 . 1}$ as a key intermediate, and the o-methoxyphenyl group would be installed after formation of the second pyrrole ring. 1,3'-Bipyrrole $\mathbf{3 0 . 1}$ should be accessible from 30.2 via a Paal-Knorr reaction. An intermolecular conjugate displacement between $\mathbf{3 0 . 3}$ and $\mathbf{3 0 . 4}$ should serve to alkylate the nitrogen atom of pyrrole $\mathbf{3 0 . 4}$.

Subsequent oxidative cleavage of the double bond, alkylation and ozonolysis should then afford the desired aldehyde $\mathbf{3 0 . 2}$.

(\pm)-1.2

30.4

30.1

Scheme 30

The bottom pyrrole unit $\mathbf{3 0 . 4}$ was prepared by the route developed by Dr. Fernandopulle, a former member of this group (Scheme 31): Pyrrole (7.1) was converted to trichloromethyl ketone $\mathbf{3 1 . 1}$ by using $\mathrm{Cl}_{3} \mathrm{CCOCl}$ and a base. ${ }^{25}$ Regioselective chlorination with $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ yielded the dichlorinated pyrrole $\mathbf{3 1 . 2}$ in good yield. ${ }^{26}$ The trichloromethyl ketone was then converted into the corresponding ester 31.3 by treatment with NaOMe in MeOH . Direct bromination at C-3, using NBS, afforded $\mathbf{3 0 . 4}$ in excellent yield.

Scheme 31

The intermolecular conjugate displacement reaction of $\mathbf{3 0 . 4}$ with the allylic acetate $\mathbf{3 0 . 3}{ }^{27}$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ produced compound $\mathbf{3 2 . 1}$ in 95% yield (Scheme 32). Cleavage of the terminal double bond in 32.1 with RuCl_{3} and NaIO_{4} gave the keto ester $\mathbf{3 2 . 2}$ in 35% yield. When $\mathbf{3 2 . 1}$ was treated with ozone and then $\mathrm{Me}_{2} \mathrm{~S}$, the yield of $\mathbf{3 2 . 2}$ was improved to 91%. Alkylation with allyl bromide afforded the expected O-allyl enol ether 32.3, whose stereochemistry was established by single crystal X-ray analysis (Figure 1).

When 32.3 was heated in refluxing PhMe , the required α-alkyl ketone 32.4 was formed smoothly. The new terminal double bond in $\mathbf{3 2 . 4}$ was also cleaved by ozonolysis to provide aldehyde 30.2, which could not be purified by flash chromatography due to its lability on silica gel. The crude aldehyde was directly treated with $\mathrm{NH}_{4} \mathrm{OAc}$ and AcOH to afford the desired 1,3'-bipyrrole 30.1, ${ }^{24}$ whose structure was also confirmed by X-ray analysis (Figure 2). It was not necessary to purify $\mathbf{3 2 . 4}$, and it was more convenient to use the crude
compound for the next step; in this way, pure $\mathbf{3 0 . 1}$ was obtained in 61% yield over 3 steps from 32.3.

30.4

 reflux, 95%

$$
\begin{aligned}
& \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} ; \\
& \mathrm{Me}_{2} \mathrm{~S},-78{ }^{\circ} \mathrm{C} \text { to rt, } 91 \%
\end{aligned}
$$

$\left\lvert\, \begin{aligned} & \mathrm{PhMe} \\ & \text { reflux }\end{aligned}\right.$

32.4

32.1
32.2
30.2

Scheme 32

Figure 1. ORTEP diagram of $\mathbf{3 2 . 3}$

Figure 2. ORTEP diagram of $\mathbf{3 0 . 1}$

When 30.1 was treated with o-methoxyphenylmagnesium iodide or o methoxyphenyllithium, prepared from 2-iodoanisole (33.1) and $\mathrm{BuLi},{ }^{16}$ however, the expected compound $\mathbf{2 5 . 1}$ was not formed, and the dichlorinated 1,3'-bipyrrole
33.2 was formed (Scheme 33). This result was probably attributed to the low reactivity of the ester.

Scheme 33

Scheme 34

The reaction of o-methoxyphenylmagnesium iodide (34.2) with the bisacid chloride derived from diacid $\mathbf{3 4 . 1}$ was also tested (Scheme 34); ${ }^{28}$ unfortunately, none of the desired compound $\mathbf{2 5 . 1}$ was obtained.

35.3
35.2

Scheme 35

It seemed likely that the unprotected pyrrole in $\mathbf{3 0 . 1}$ might also retard the addition of Grignard reagent or organolithium reagent, and so the pyrrole nitrogen was protected by reaction with TsCl to give $\mathbf{3 5 . 1}$ in 98% yield (Scheme 35). ${ }^{1}$ Reduction of the two ester groups of $\mathbf{3 5 . 1}$ with DIBAL-H gave the diol $\mathbf{3 5 . 2}$ in quantitative yield. For the oxidation step, Swern oxidation and MnO_{2} were tried, but different monoaldehydes were obtained. When the diol was treated with TPAP, the desired dialdehyde 35.3 with a small amount of impurities was generated in 60% yield. Use of IBX ${ }^{1}$ instead of TPAP gave the pure dialdehyde 35.3 in 87% yield.

With the dialdehyde $\mathbf{3 5 . 3}$ in hand, the Grignard reagent $\mathbf{1 0 . 6}$ was added at $0^{\circ} \mathrm{C}$. Fortunately, the installation of the two phenyl groups was successful in this case and the corresponding diol 35.4 was obtained as a mixture of diastereomers. The diols were then oxidized without purification, as I was concerned that they would be sensitive to silica gel. ${ }^{29}$ Later I found that the diols could be chromatographed, but I did not go back to characterize them. However, crystals of the more polar diol were obtained, and X-ray analysis (Figure 3) showed that the two hydroxyl-bearing carbons have an R, R relative configuration. Different oxidation conditions were tried to oxidize the diols, and it was found that the two hydroxyl groups could not be oxidized at the same time. IBX (or Dess-Martin reagent and pyridine) oxidized one hydroxyl group, and then Jones reagent oxidized the other hydroxyl group. Direct use of Jones reagent did not give any of the desired product, and the diols were inert to BaMnO_{4}. The crude diketone
from the second oxidation was directly treated with KOH to afford the desired compound $\mathbf{2 5 . 1}$ in 27\% yield over 4 steps.

Figure 3. ORTEP diagram of the more polar 35.4

Dichlorination ${ }^{1}$ of $\mathbf{2 5 . 1}$ with NCS (Scheme 36) gave the desired compound 36.1 in 76% yield, and demethylation ${ }^{1}$ with BBr_{3} completed the synthesis of racemic marinopyrrole B in 88% yield. Finally, crystallization of the compound from PhMe gave yellow crystals, and X-ray analysis confirmed the structure (Figure 4).

Scheme 36

Figure 4. ORTEP diagram of (\pm) - 1.2

3. Conclusion

The first total synthesis of marinopyrrole B was achieved by introducing bromine at a very early stage. The alkylation of $\mathbf{3 0 . 4}$ with the allylic acetate $\mathbf{3 0 . 3}$ was an important step to construct an appropriate carbon chain on the nitrogen so that the second pyrrole ring could be prepared via a Paal-Knorr reaction from the functionalized carbon chain. In future work it may be possible to modify the present rout so as to give access to analogs having differently substituted benzene rings. For example, the bromodichloro ester $\mathbf{3 0 . 4}$ would be a suitable substrate for DIBAL-H reduction to an aldehyde, which should react with a variety of Grignard reagents. The resulting pyrroles could then be subjected to the intermolecular conjugate displacement, leading, eventually to a 1,3'-bipyrrole carrying an ester group on the 2 '-position. Such a compound should provide opportunities for installing a second benzene ring on the upper pyrrole.

4. Experimental

Methyl 2-\{[(tert-butyldimethylsilyl)oxy](2-methoxyphenyl)methyl\}-prop-2-enoate (26.4).

26.3

26.4

Imidazole ($1.55 \mathrm{~g}, 22.54 \mathrm{mmol})$ and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(2.08 \mathrm{~g}, 13.52 \mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{2 6 . 3} \mathbf{3}^{20}(2.00 \mathrm{~g}, 9.01 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Stirring was continued for 5 h , and the mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 20 \mathrm{~cm}$), using 3:50 EtOAc-hexanes, gave $26.4(2.92 \mathrm{~g}, 96 \%)$ as a colorless oil: FTIR (CDCl_{3}, cast) $2998,2954,2930,2895,2857,1727,1632,1601,1590$, 1491, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.07(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.90$ (s, 9 H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 5.85(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$, $6.25-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.27 (m, 1 H), 7.39 (dd, $J=2.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta-5.1(q),-5.0(q), 18.2(\mathrm{~s}), 25.8(\mathrm{q}), 51.6(\mathrm{q}), 55.4(\mathrm{q}), 66.1$ (d), 110.4 (d), 120.4 (d), 124.5 (t), 127.9 (d), 128.4 (d), $131.0(\mathrm{~s}), 143.9(\mathrm{~s}), 156.2(\mathrm{~s}), 166.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 359.1649$, found 359.1650.

2-\{[(tert-Butyldimethylsilyl)oxy](2-methoxyphenyl)methyl\}prop-2-en-

1-ol (26.5).

26.4

26.5

DIBAL-H (1.0 M in PhMe, $22.0 \mathrm{~mL}, 22.0 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $26.4(2.92 \mathrm{~g}, 8.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ $\mathrm{mL})$. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2.5 h , and $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added. After the cooling bath was removed, a saturated aqueous solution of Rochelle's salt (ca. 100 mL) was added. Stirring was continued for 4 h , and the mixture was then extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 20 \mathrm{~cm}$), using 1:10 to 3:25 EtOAc-hexanes, gave $26.5(2.46 \mathrm{~g}$, 92\%) as a colorless oil: FTIR (CDCl_{3}, cast) $3374,3078,3035,2999,2956,2930$, 2886, 2857, 2710, 1654, 1601, 1589, 1490, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 3.98-4.02 (m, 1 H$), 4.13(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.22(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.2(\mathrm{q})$, $-5.0(\mathrm{q}), 18.2(\mathrm{~s}), 25.8(\mathrm{q}), 55.4(\mathrm{q}), 63.8(\mathrm{t}), 70.2(\mathrm{~d}), 110.3(\mathrm{~d}), 111.6(\mathrm{t}), 120.8$
(d), 127.5 (d), 128.3 (d), 131.1 (s), 149.6 (s), 155.7 ($s)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 331.1700$, found 331.1696.

2-\{[(tert-Butyldimethylsilyl)oxy](2-methoxyphenyl)methyl\}prop-2-en-

1-yl acetate (26.6).

26.5
26.6

Pyridine ($1.30 \mathrm{~mL}, 16.09 \mathrm{mmol}$) and $\mathrm{AcCl}(0.93 \mathrm{~mL}, 12.83 \mathrm{mmol})$ were added successively to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $26.5(2.00 \mathrm{~g}, 9.01$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After 40 min , the mixture was quenched with saturated aqueous NaHCO_{3} and washed with saturated aqueous CuSO_{4}, water and brine. The organic solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 20 \mathrm{~cm}$), using 3:50 EtOAchexanes, gave $26.6(2.76 \mathrm{~g}, 99 \%)$ as a colorless oil: FTIR (CDCl_{3}, cast) 3078, $3034,3000,2956,2930,2887,2857,1745,1656,1601,1589,1490,1464 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.10(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.49\left(\mathrm{AB} \mathrm{q}, J=13.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=9.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.11-5.12(\mathrm{~m}, 1$ H), $5.31-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=$ $1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=2.0,7.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=2.0,7.5 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.2(\mathrm{q}),-5.1(\mathrm{q}), 18.2(\mathrm{~s}), 20.8(\mathrm{q}), 25.8(\mathrm{q})$,
55.3 (q), 63.9 (t), 68.6 (d), 110.2 (d), 112.3 (t), 120.6 (d), 127.6 (d), 128.2 (d), $131.0(\mathrm{~s}), 145.9(\mathrm{~s}), 155.9(\mathrm{~s}), 170.6(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 373.1806$, found 373.1806.

3-Hydroxy-1-(2-methoxyphenyl)-2-methylidenepropyl acetate (26.7) and 3-Hydroxy-3-(2-methoxyphenyl)-2-methylidenepropyl acetate (26.8).

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $3.79 \mathrm{~mL}, 3.79 \mathrm{mmol}$) was added dropwise to a stirred solution of 26.6 ($1.33 \mathrm{~g}, 3.79 \mathrm{mmol}$) in THF (40 mL). Stirring was continued for 3.5 h and the mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 3:20 to 3:10 EtOAc-hexanes, gave 26.8 ($646.2 \mathrm{mg}, 72 \%$) as a colorless oil. Further development of the column, using 2:5 to 3:5 EtOAchexanes, gave 26.7 ($135.0 \mathrm{mg}, 15 \%$) as a colorless oil. Compound 26.8: FTIR (CDCl_{3}, cast) $3464,3078,3003,2956,2940,2839,1739,1657,1601,1588,1491$, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3$ H), $4.57\left(\mathrm{AB} \mathrm{q}, J=13.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=37.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.25-5.26(\mathrm{~m}, 1 \mathrm{H})$, $5.29-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=1.0$,
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=2.0,7.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.9$ (q), 55.4 (q), 64.7 (t), 70.5 (d), 110.8 (d), 113.5 (t), 120.9 (d), 127.8 (d), 129.0 (d), 129.5 (s), 145.1 (s), 156.9 (s), 170.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 259.0941, found 259.0937.

Compound 26.7: FTIR (CDCl_{3}, cast) 3444, 3005, 2938, 2840, 1739, 1657, $1602,1589,1493,1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.20$ (br s, 1 H$), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J=1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1$ H), $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 21.2 (q), 55.7 (q), 63.6 (t), 69.6 (d), 110.8 (d), 112.3 (t), 120.7 (d), 126.7 ($s), 127.4$ (d), 129.4 (d), $147.1(\mathrm{~s}), 156.6(\mathrm{~s}), 170.0(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 259.0941, found 259.0937.

3-Hydroxy-3-(2-methoxyphenyl)-2-methylidenepropyl acetate (26.8).

DBU ($0.1 \mathrm{~mL}, 0.66 \mathrm{mmol}$) was added to a stirred solution of 26.7 (74.1 $\mathrm{mg}, 0.31 \mathrm{mmol}$) in THF (4 mL). After 3 days, water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$
and evaporated. Flash chromatography of the residue over silica gel (1.4 x 20 cm), using 1:10 to 1:5 EtOAc-hexanes, gave 26.8 ($46.0 \mathrm{mg}, 62 \%$) as a colorless oil.

3-(2-Methoxyphenyl)-2-methylidene-3-oxopropyl acetate (25.3).

DMSO ($0.77 \mathrm{~mL}, 10.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{COCl})_{2}(0.47 \mathrm{~mL}, 5.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). After 15 min , a solution of $\mathbf{2 6 . 8}(629.0 \mathrm{mg}, 2.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) was added dropwise over ca. 10 min and stirring at $-78^{\circ} \mathrm{C}$ was continued for 45 min . Then $\mathrm{Et}_{3} \mathrm{~N}(1.20 \mathrm{~mL})$ was added dropwise, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 5 min . The cooling bath was removed, stirring was continued for 50 min, and water (10 mL) was added. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 2:25 to 1:5 EtOAc-hexanes, gave 25.3 ($473.8 \mathrm{mg}, 76 \%$) as a colorless oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3075,3005,2946,2940,2840,1745,1664$, $1599,1582,1489,1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 4.99(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=0.5,1.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=1.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=1.5,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 20.9 (q), 55.7 (q), 62.3 (t), 111.5 (d), 120.4 (d), 128.3 (s), 128.8 (t), 129.3 (d), 131.9 (d), 143.9 (s), 157.2 (s), 170.5 (s), 196.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 257.0784, found 257.0782.

2-[(1H-Pyrrol-2-yl)carbonyl]phenyl acetate (7.5).

7.4

7.5

DMAP ($45.0 \mathrm{mg}, 0.37 \mathrm{mmol}$), pyridine $(1.80 \mathrm{~mL}, 22.28 \mathrm{mmol})$ and AcCl $(1.60 \mathrm{~mL}, 22.05 \mathrm{mmol})$ were successively added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $7.4(3.13 \mathrm{~g}, 16.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. After 1 h , the reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 20 \mathrm{~cm}$), using 3:10 to 2:5 EtOAc-hexanes, gave $7.5(3.79 \mathrm{~g}, 99 \%)$ as a colorless oil: FTIR (CDCl_{3}, cast) 3293, 3137, 3077, 2934, $1767,1625,1606,1575,1543,1483 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.19(\mathrm{~s}$, $3 \mathrm{H}), 6.32$ (dt, $J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.78(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.23$ (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=2.0,7.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$,
$125 \mathrm{MHz}) \delta 20.8$ (q), 111.1 (d), 120.6 (d), 123.6 (d), 125.6 (d), 126.7 (d), 130.2 (d), 131.62 (s), 131.64 (s), 131.7 (d), 148.6 (s), 169.5 (s), 182.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})$ 252.0631, found 252.0630.

2-[(4,5-Dichloro-1H-pyrrol-2-yl)carbonyl]phenyl acetate (7.6).

7.5

7.6
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(1.45 \mathrm{~mL}, 17.51 \mathrm{mmol})$ was added dropwise to a stirred solution of $7.5(1.87 \mathrm{~g}, 8.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at room temperature. After 7 h , the solvent was evaporated. Flash chromatography of the residue over silica gel (3.8 x 20 cm), using 2:25 to 3:20 EtOAc-hexanes, gave $7.6(2.20 \mathrm{~g}, 90 \%)$ as a white solid: mp $164-167{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3221,3081,2985,2935,2885,2803$, 2694, 2255, 1768, 1746, 1626, 1607, 1574, 1548, $1484 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1$ H), 7.33 (dt, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=1.5,7.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J$ $=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.9(\mathrm{q})$, 112.3 (s), 119.0 (d), 122.0 (s$), 123.6$ (d), 125.7 (d), 128.5 (s), 129.9 (d), 130.1 (s), 132.4 (d), $148.6(\mathrm{~s}), 169.3(\mathrm{~s}), 181.4(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9}{ }^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na})$ 319.9852, found 319.9850.

2-(\{3-Bromo-4,5-dichloro-1-[3-(2-methoxyphenyl)-2-methylidene-3-

 oxopropyl]-1H-pyrrol-2-yl\}carbonyl)phenyl acetate (28.1).
25.3

7.8

28.1
$\mathrm{NaH}(60 \%$ in oil, $30.5 \mathrm{mg}, 0.76 \mathrm{mmol})$ was added to a stirred solution of $25.3(221.5 \mathrm{mg}, 0.59 \mathrm{mmol})$ in DMF (5 mL). After 20 min , a solution of 7.8 $(164.8 \mathrm{mg}, 0.70 \mathrm{mmol})$ in DMF (6 mL) was added, and stirring was continued for 84 h . The mixture was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 2:25 to 3:20 EtOAc-hexanes, gave 28.1 ($267.1 \mathrm{mg}, 83 \%$) as a white foam: FTIR (CDCl_{3}, cast) $3074,3007,2942,2838,2254,1768,1645,1600,1580,1486$, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.19(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.40-5.42$ (m, 2 H), $5.45(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), 6.99 (dt, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2$ H), 7.43 (ddd, $J=1.5,7.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 20.8$ (q), 47.0 (t), 55.5 (q), 106.2 (s), 111.4 (d), 113.4 (s), 120.3 (d),
123.5 (d), 123.6 ($s), 125.9$ (d), 127.4 (t), 128.0 ($s), 128.1$ ($s), 129.4$ (d), 130.9 (d), 131.2 (s), 132.1 (d), 132.8 (d), 144.4 (s), 149.0 (s), 157.3 (s), 169.1 (s), 182.9 (s), 196.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+$ Na) 571.9638 , found 571.9631 .

2-(\{3-Bromo-4,5-dichloro-2-[(2-hydroxyphenyl)carbonyl]-1H-pyrrol-

1-yl\}methyl)-1-(2-methoxyphenyl)prop-2-en-1-one (28.3).

Concentrated hydrochloric acid ($36.5-38 \%, 0.6 \mathrm{~mL}$) was added dropwise to a stirred solution of $\mathbf{2 8 . 1}(552.8 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{MeOH}(11 \mathrm{~mL})$. Stirring was continued for 6.5 h and the solvent was then evaporated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, and the solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 1:50 to 1:20 EtOAc-hexanes, gave 28.3 ($385.6 \mathrm{mg}, 75 \%$) as a yellow oil: FTIR (CDCl_{3}, cast) 3007, 2963, 2838, 2254, 1661, 1622, 1598, $1484 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.51(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90-6.98(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
7.42 (ddd, $J=2.0,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 1 \mathrm{H}), 11.5$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 46.6$ (t), 55.4 (q), 102.9 (s), 111.4 (d), 112.8 (s), 118.2 (d), 119.2 (d), 119.3 (s), 120.4 (d), 121.5 (s), 127.71 (s), 127.73 (s), 128.3 (t), 129.3 (d), 132.2 (d), 134.3 (d), 137.1 (d), 144.0 (s), 157.2 ($s), 162.8$ (s), 189.8 (s), 195.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{16}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})$ 529.9532, found 529.9536.

2-(\{3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrol-

 1-yl\}methyl)-1-(2-methoxyphenyl)prop-2-en-1-one (28.4).
$\mathrm{K}_{2} \mathrm{CO}_{3}(131.8 \mathrm{mg}, 0.94 \mathrm{mmol})$, followed by MeI $(0.06 \mathrm{~mL}, 0.95 \mathrm{mmol})$, were added to a stirred solution of $\mathbf{2 8 . 3}(97.1 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry acetone (3 mL). Stirring was continued for 22 h , and the mixture was then filtered through a pad of Celite, using $\mathrm{Et}_{2} \mathrm{O}$ as a rinse. The filtrate was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.4 x 20 cm), using 3:50 to 3:20 EtOAc-hexanes, gave 28.4 ($90.1 \mathrm{mg}, 90 \%$) as a white solid: mp $142-145{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3074,3006,2943,2838,1661$,

1635, 1599, 1582, 1488, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 5.46(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1$ H), $6.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1$ H), $7.06(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dt}, J=2.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=2.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, J=1.5,7.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=1.5,7.5,8.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 46.7(\mathrm{t}), 55.6(\mathrm{q}), 55.7(\mathrm{q}), 105.7(\mathrm{~s}), 111.3$ (d), 111.4 (d), 113.1 (s), 120.3 (d), 120.9 (d), 123.0 (s), 127.3 (t), 128.1 ($s), 129.0$ (s), 129.5 (d), 130.1 (d), 132.0 (d), 132.9 (d), 144.4 (s), 157.3 ($s), 157.9$ ($s), 184.4$ (s), 196.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+$ Na) 543.9688 , found 543.9686 .

3-\{3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]cyclopenta-

2,4-dien-1-yl\}-1-(2-methoxyphenyl)propane-1,2-dione (28.5).

$\mathrm{NaIO}_{4}(156.0 \mathrm{mg}, 0.73 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{mg}, 0.027 \mathrm{mmol})$ were added successively to a stirred solution of $\mathbf{2 8 . 4}(126.8 \mathrm{mg}, 0.24 \mathrm{mmol})$ in a mixture of $\mathrm{MeCN}(0.9 \mathrm{~mL}), \mathrm{CCl}_{4}(0.9 \mathrm{~mL})$ and water $(1.4 \mathrm{~mL})$. After 1.5 h , the
mixture changed to dark green-brown. At that time an additional quantity of $\mathrm{NaIO}_{4}(60.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added, and stirring was continued for 1 h and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 6 mL) and water (ca. 5 mL) were then added. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the combined organic extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.4 \times 20 \mathrm{~cm}$), using 3:50 to 3:25 EtOAc-hexanes, gave $28.5(71.5 \mathrm{mg}, 56 \%)$ as a light yellow solid: mp 110-113 ${ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3076,2945,2840,2253,1734,1662$, 1634, 1599, 1582, 1487, $1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=2.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=2.0,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=2.0,7.5,8.5 \mathrm{~Hz}, 1$ H), $7.80(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 51.9(\mathrm{t}), 55.8$ (q), 55.9 (q), 107.0 (s), 111.4 (d), 111.9 (d), 113.7 (s), 120.8 (d), 121.3 (d), 123.0 (s), 123.6 (s), 128.8 ($s), 129.1$ (s), 129.9 (d), 130.8 (d), 132.8 (d), 136.2 (d), 157.9 (s), $160.2(\mathrm{~s}), 185.1(\mathrm{~s}), 192.8(\mathrm{~s}), 193.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{16}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})$ 545.9481, found 545.9479.
(29.1).

$\mathrm{NaH}(11.8 \mathrm{mg}, 60 \%$ in oil, 0.30 mmol$)$ was added to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 8 . 5}(106.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ in DMF $(4 \mathrm{~mL})$. After 20 min , allyl bromide ($0.025 \mathrm{~mL}, 0.29 \mathrm{mmol}$) was added, and stirring was continued for 1.5 h , during which time the temperature was allowed to rise slowly up to room temperature. Stirring was continued for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(1.4 \times 20 \mathrm{~cm})$, using 3:50 to $1: 10$ EtOAc-hexanes, gave 29.1 ($90.1 \mathrm{mg}, 78 \%$) as a light yellow oil: FTIR (CDCl_{3}, cast) 3078, 3007, 2943, 2838, 1670, 1640, 1599, 1581, 1488, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{dt}, J=6.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-5.15(\mathrm{~m}$, 2 H), 5.79 (ddt, $J=10.0,17.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (s, 1 H$), 6.92$ (d, $J=8.0 \mathrm{~Hz}, 1$ H), $6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=1.5,7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.49(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 55.6(\mathrm{q}), 55.8(\mathrm{q})$, 72.0 (t), 105.9 (s), 111.3 (d), 111.4 (d), 114.1 (s), 118.4 (t), 120.1 (d), 120.4 (d), 120.8 (d), 122.0 (s), 127.2 (s), 128.1 (s), 129.8 (s), 130.20 (d), 130.25 (d), 130.3 (d), 133.0 (d), 133.1 (d), 151.0 (s), 158.02 (s), 158.03 (s), 183.3 (s), 191.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})$ 585.9794, found 585.9791.

3-\{3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrol-1-

 yl\}-1-(2-methoxyphenyl)hex-5-ene-1,2-dione (29.2).

A solution of 29.1 ($90.4 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{PhMe}(3 \mathrm{~mL})$ was stirred and refluxed for 30 h and then cooled to room temperature and evaporated. Flash chromatography of the yellow residue over silica gel ($1.4 \times 20 \mathrm{~cm}$), using 3:50 to 1:10 EtOAc-hexanes, gave 29.2 ($76.4 \mathrm{mg}, 85 \%$) as a light yellow oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) 3077, 3007, 2944, 2839, 1722, 1662, 1628, 1599, 1582, 1487, 1465 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3$ H), $3.73-3.86(\mathrm{~m}, 4 \mathrm{H}), 5.04-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$
H), $6.94-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 1$ H), $7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; I was unable to obtain a satisfactory ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) spectrum (some carbon signals do not appear in the spectrum); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+$ Na) 585.9794, found 585.9783.

3-\{3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrol-1-

 yl\}-5-(2-methoxyphenyl)-4,5-dioxopentanal (25.2).
29.2

25.2

NMO ($41.2 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 0.1 \mathrm{~mL}, 0.01$ mmol) were added successively to a stirred solution of 29.2 ($53.6 \mathrm{mg}, 0.095$ $\mathrm{mmol})$ in a mixture of THF $(1 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. After 2 h , the reaction mixture was diluted with EtOAc, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a yellow residue. A solution of $\mathrm{Pb}(\mathrm{OAc})_{4}(54.8 \mathrm{mg}, 0.12$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a stirred solution of the yellow residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$, and and stirring was continued for 15 min . The mixture was then filtered through a pad of silica gel, using EtOAc as a rinse. Evaporation of
the filtrate and flash chromatography of the residue over silica gel $(1.2 \times 15 \mathrm{~cm})$, using 1:5 to 2:5 EtOAc-hexanes, gave $\mathbf{2 5 . 2}$ ($30.7 \mathrm{mg}, \mathbf{5 7 \%}$) as a yellow oil: FTIR (CDCl_{3}, cast) $3077,2944,2840,2733,2254,1725,1660,1632,1599,1582,1486$, $1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.11(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-4.00$ (m, 7 H), $6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{br} \mathrm{s}, 1$ H), $9.88(\mathrm{~s}, 1 \mathrm{H})$; I was unable to obtain a satisfactory ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) spectrum (some carbon signals do not appear in the spectrum); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{6}(\mathrm{M}+\mathrm{Na})$ 587.9587, found 587.9587.

4-\{3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrol-1-yl\}-2-(2-methoxyphenyl)pyridin-3-ol (29.3).

$\mathrm{NH}_{4} \mathrm{OAc}(118.7 \mathrm{mg}, 1.54 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{2 5 . 2}$ ($54.9 \mathrm{mg}, 0.097 \mathrm{mmol}$) in AcOH (1 mL). After 1 h , water (ca. 3 mL) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were
washed with saturated aqueous NaHCO_{3} and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.2 \times 15 \mathrm{~cm}$), using 2:5 to 1:2 EtOAc-hexanes, gave $\mathbf{2 9 . 3}$ ($33.0 \mathrm{mg}, 62 \%$) as a yellow oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3246,3076,2942,2838,2251,1726,1646,1600,1489,1463 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), 6.93 (dt, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 2$ H), 7.37-7.48 (m, 3 H), 7.57 (br s, 1 H), 7.75 (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.38 (d, J $=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 55.9(\mathrm{q}), 57.0(\mathrm{q}), 105.4$ (s), 111.3 (d), 112.4 (d), 114.1 (s), 120.5 (d), 121.7 (s), 122.6 (d), 123.0 (d), 126.8 (s), 127.88 (s), 127.89 (s), 130.5 (d), 130.7 (d), 130.8 (s), 133.0 (d), 133.3 (d), 133.7 (s), 142.2 (d), 146.7 (s), 147.0 (s), 155.0 (s), 158.1 (s), 183.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{17}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}$) 568.9641, found 568.9637.

Methyl 3-bromo-4,5-dichloro-1-(3-methoxy-2-methylidene-3-oxo-

 propyl)-1H-pyrrole-2-carboxylate (32.1).

A solution of $\mathbf{3 0 . 3}(321.3 \mathrm{mg}, 1.98 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ was added to a stirred suspension of $\mathbf{3 0 . 4}$ ($337.3 \mathrm{mg}, 1.24 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(690.0 \mathrm{mg}, 4.94$ $\mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$. The mixture was refluxed for 42 h , then cooled, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 1:50 to 3:50 EtOAc-hexanes, gave 32.1 (436.0 mg , 95%) as a white solid: $\mathrm{mp} 108-112{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3003,2954,2846$, $1716,1644,1519,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ (mixture of rotamers) $\delta 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.840$ and 3.844 (two s, 3 H), 4.92-4.93(m, 1 H), 5.29-5.31 (m, 2 H), $6.24(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (mixture of rotamers) δ 47.2 (t), 47.5 (t), 51.76 (q), 51.82 (q), 52.2 (q), 105.3 (s), 111.3 (s), 113.5 (s), $118.0(\mathrm{~s}), 119.2(\mathrm{~s}), 119.8(\mathrm{~s}), 121.6(\mathrm{~s}), 121.8(\mathrm{~s}), 124.58(\mathrm{t}), 124.63(\mathrm{t}), 135.75$ (s), 135.78 (s), $159.4(\mathrm{~s}), 165.3(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})$ 391.9058, found 391.9062.

Methyl 3-bromo-4,5-dichloro-1-(3-methoxy-2,3-dioxopropyl)-1H-pyrrole-2-carboxylate (32.2).

A stream of ozonized oxygen was bubbled through a stirred and cooled ($\left.78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 2 . 1}(1.17 \mathrm{~g}, 3.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. After 18 min , the solution became blue. Then O_{2} was allowed to bubble through the solution for 20 min to remove the excess of $\mathrm{O}_{3} . \mathrm{Me}_{2} \mathrm{~S}(2.34 \mathrm{~mL}, 31.50 \mathrm{mmol})$ was then added, the cold bath was removed, and stirring was continued for 6.5 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($3.8 \times 20 \mathrm{~cm}$), using 1:10 to 1:5 EtOAc-hexanes, gave $32.2(1.07 \mathrm{~g}, 91 \%)$ as a white solid: mp $112-116{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3006,2956,2847,1761,1737,1698,1517,1455$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.82-3.86(\mathrm{~m}, 3 \mathrm{H}), 3.96-4.00(\mathrm{~m}, 3 \mathrm{H}), 5.67$ (s, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.0(\mathrm{q}), 53.5(\mathrm{q}), 53.6(\mathrm{t}), 105.9(\mathrm{~s})$, 113.9 (s), 119.5 (s), 122.0 (s), 159.7 (s), 160.1 (s), 185.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{8}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na}) 393.8858$, found 393.8855.

Methyl 3-bromo-4,5-dichloro-1-[(1E)-3-methoxy-3-oxo-2-(prop-2-en-

1-yloxy)prop-1-en-1-yl]-1H-pyrrole-2-carboxylate (32.3).

32.2
32.3
$\mathrm{NaH}(115.3 \mathrm{mg}, 60 \%$ in oil, 2.88 mmol$)$ was added to a stirred and cooled $\left(-42{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 2 . 2}(808.1 \mathrm{mg}, 2.17 \mathrm{mmol})$ in DMF (20 mL). After 20 min , allyl bromide ($0.23 \mathrm{~mL}, 2.63 \mathrm{mmol}$) was added, and stirring was continued for 1.5 h , during which time the temperature was allowed to slowly reach room temperature. Stirring was continued for a further 6 h , water was then added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 20 \mathrm{~cm}$), using 1:25 to 1:10 EtOAc-hexanes, gave 32.3 ($618.3 \mathrm{mg}, 69 \%$) as a white solid: mp $72-74{ }^{\circ} \mathrm{C}$; $\mathrm{FTIR}\left(\mathrm{CDCl}_{3}\right.$, cast) 3104 , 3000, 2954, 1733, 1714, 1654, 1525, $1457 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.37$ (ddd, $J=1.0,1.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.20(\mathrm{~m}, 2$ H), 5.72 (ddd, $J=6.0,10.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 51.9(\mathrm{q}), 52.7(\mathrm{q}), 73.1(\mathrm{t}), 105.8(\mathrm{~s}), 114.5(\mathrm{~s}), 119.1(\mathrm{t}), 119.5(\mathrm{~d}), 121.2$ $(\mathrm{s}), 121.3(\mathrm{~s}), 132.4(\mathrm{~d}), 143.3(\mathrm{~s}), 159.2(\mathrm{~s}), 162.9(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})$ 433.9164, found 433.9168. A sample was crystallized from $i-\mathrm{Pr}_{2} \mathrm{O}$ for X-ray analysis.

Methyl 3-bromo-4,5-dichloro-1-(1-methoxy-1,2-dioxohex-5-en-3-yl)-

1H-pyrrole-2-carboxylate (32.4).

32.3

32.4

A solution of $\mathbf{3 2 . 3}$ ($862.7 \mathrm{mg}, 2.09 \mathrm{mmol}$) in $\mathrm{PhMe}(10.5 \mathrm{~mL})$ was stirred and refluxed for 16 h and then cooled to room temperature. Evaporation of the solution gave $\mathbf{3 2 . 4}$ as a light yellow solid, which was used directly in the next step. In an earlier experiment, the solid was purified by flash chromatography over silica gel, using 1:25 to 1:10 EtOAc-hexanes to give pure 32.4: mp 104-106 ${ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3464,3082,3005,2955,2850 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 2.63(\mathrm{dt}, J=15.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 4.99-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $125 \mathrm{MHz}) \delta 34.7$ (t), 52.1 (q), 53.2 (q), 64.0 (d), 106.8 (s), 114.3 (s), 119.1 (s), 119.9 (s), 131.5 (d), 160.2 (s), 161.2 (s), 186.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{NNaO}_{5}(\mathrm{M}+\mathrm{Na})$ 433.9168, found 433.9161.

Methyl 3-bromo-4,5-dichloro-1-(1-methoxy-1,2,5-trioxopentan-3-yl)-

 1H-pyrrole-2-carboxylate (30.2).

The above crude ketoester $\mathbf{3 2 . 4}$ was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. A stream of ozonized oxygen was bubbled through the stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution. After 12 min , the solution became blue and O_{2} was then bubbled through the mixture for 15 min to remove the excess of ozone. $\mathrm{Ph}_{3} \mathrm{P}$ $(1.11 \mathrm{~g}, 4.19 \mathrm{mmol})$ was added, the cooling bath was left in place but not recharged, and stirring was continued for 14 h . Evaporation of the solution gave aldehyde $\mathbf{3 0 . 2}\left[{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)\right.$ signal at $\left.\delta 9.8\right]$ as a yellow residue, which was used directly in the next step.

Methyl 3-bromo-4,5-dichloro-1-[2-(methoxycarbonyl)-1H-pyrrol-3-

 yl]-1H-pyrrole-2-carboxylate (30.1).
$\mathrm{NH}_{4} \mathrm{OAc}(2.57 \mathrm{~g}, 33.3 \mathrm{mmol})$ was added to a stirred solution of the above crude ketoaldehyde $\mathbf{3 0 . 2}$ in $\mathrm{AcOH}(14 \mathrm{~mL})$ and stirring was continued for 30 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.8 \times 25 \mathrm{~cm}$), using 1:10 to 3:10 EtOAc-hexanes, gave 30.1 ($504.5 \mathrm{mg}, 61 \%$ over three steps) as a light yellow solid: $\mathrm{mp} 188-190{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3309,3141,3004,2953,2847,2256,1707,1581,1523,1504$, $1445 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.29(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 51.6$ (q), 51.9 (q), 105.3 (s), 110.9 (d), 113.5 (s), 118.2 (s), 121.2 (d), $121.8(\mathrm{~s}), 122.8(\mathrm{~s}), 125.6(\mathrm{~s}), 159.2(\mathrm{~s}), 159.8(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 416.9015$, found 416.9008. A sample was crystallized from CHCl_{3} for X-ray analysis.

3-Bromo-1-(2-carboxy-1H-pyrrol-3-yl)-4,5-dichloro-1H-pyrrole-2-

 carboxylic acid (34.1).
30.1

34.1

A mixture of $\mathbf{3 0 . 1}(103.0 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $20 \% \mathrm{NaOH}(6 \mathrm{~mL})$ was stirred under reflux for 2.5 h . The mixture was cooled to $0^{\circ} \mathrm{C}$, acidified with hydrochloric acid (6 M), and extracted with EtOAc. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 34.1 ($94.8 \mathrm{mg}, 99 \%$) as a light brown solid: FTIR (neat) $3256,3132,1673,1580,1524,1513,1459 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right) \delta 6.23(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1$ H), $12.06(\mathrm{~s}, 1 \mathrm{H}), 12.65(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta 108.3(\mathrm{~s})$, 115.2 (d), 116.4 (s), 123.5 (s), 126.3 (s), 126.6 (d), 128.1 (s), 130.1 (s), 164.1 (s), 165.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{4}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{H})$ 364.8737, found 364.8738 .

Methyl 3-bromo-4,5-dichloro-1-[2-(methoxycarbonyl)-1-[(4-methyl-

 benzene)sulfonyl]-1H-pyrrol-3-yl]-1H-pyrrole-2-carboxylate (35.1).
30.1

35.1

DMAP ($286.5 \mathrm{mg}, 2.32 \mathrm{mmol}$) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.41 \mathrm{~mL}, 2.35 \mathrm{mmol})$ were added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 0 . 1}(463.8 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. After $10 \mathrm{~min}, \mathrm{TsCl}(886.5 \mathrm{mg}, 4.65 \mathrm{mmol})$ was added. The ice bath was left in place but not recharged and stirring was continued for 24 h . The mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(2.8 \times 20 \mathrm{~cm})$, using $1: 10$ to 1:5 EtOAc-hexanes, gave 35.1 ($631.6 \mathrm{mg}, 98 \%$) as a white solid: mp 165-167 ${ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) 3157, 3130, 3036, 3002, 2954, 2921, 2850, 2257, 1926, $1724,1595,1569,1530,1448,1422 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.44(\mathrm{~s}$, $3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.8$ (q), 51.6 (q), 52.2 (q), 105.8 (s), 111.4 (d), 113.9 (s), 121.2 (s), 121.7 (s), 122.4 (s), 126.3 (d), 128.0 (d), 129.6 (d), 130.9 (s), 135.6 (s), 145.5 (s), 157.8 (s), 158.5
(s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{15}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 570.9103, found 570.9096.

\{3-Bromo-4,5-dichloro-1-[2-(hydroxymethyl)-1-[(4-methylbenzene)-sulfonyl]-1H-pyrrol-3-yl]-1H-pyrrol-2-yl\}methanol (35.2).

DIBAL-H (1.0 M in PhMe, $1.80 \mathrm{~mL}, 1.80 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 5 . 1}(184.2 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4$ mL). The cooling bath was removed and stirring was continued for 10.5 h . $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and saturated aqueous Rochelle's salt (ca 10 mL) were then added sequentially. Stirring was continued for 1 h , and the mixture was extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 20 \mathrm{~cm}$), using 3:10 to 2:5 EtOAc-hexanes, gave 35.2 ($169.7 \mathrm{mg}, 100 \%$) as a white solid: $\mathrm{mp} 95-98{ }^{\circ} \mathrm{C}$; FTIR (neat) 3233, 3145, 3124, 2940, 2884, 2733, 1920, 1653, 1589, 1485, $1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.44(\mathrm{~s}, 3 \mathrm{H})$, 3.21 (br s, 1 H), 3.49 (br s, 1 H), 4.08-4.14 (m, 2 H), 4.47 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$),
$4.69(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.37(\mathrm{~m}, 3 \mathrm{H})$, $7.81-7.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.7(\mathrm{q}), 52.2(\mathrm{t}), 54.5(\mathrm{t})$, 98.8 (s), 111.3 ($s), 111.4$ (d), 116.1 (s), 122.3 (d), 123.4 (s), 127.2 (d), 130.3 (d), 131.8 (s), 131.9 (s), 135.3 (s), 146.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 514.9205, found 514.9202.

3-Bromo-4,5-dichloro-1-\{2-formyl-1-[(4-methylbenzene)sulfonyl]-1H-

 pyrrol-3-yl\}-1H-pyrrole-2-carbaldehyde (35.3).
35.2

35.3

IBX ($898.8 \mathrm{mg}, 3.21 \mathrm{mmol}$) was added to a stirred solution 35.2 (239.7 $\mathrm{mg}, 0.49 \mathrm{mmol})$ in DMSO $(10 \mathrm{~mL})$. The mixture was heated to $70^{\circ} \mathrm{C}$ for 15 h and then cooled to room temperature. The resulting suspension was filtered and water was added to the filtrate. The solution was then extracted with EtOAc and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(2.8 \times 20 \mathrm{~cm})$, using $1: 10$ to $1: 5$ EtOAc-hexanes, gave $\mathbf{3 5 . 3}$ ($332.5 \mathrm{mg}, 87 \%$) as a white solid: $\mathrm{mp} 140-143{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3331,3147,3056,2924,2850,2801,2255,1674,1595,1559$,
$1515,1493,1481,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 6.40$ (dd, $J=0.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.79$ (m, 2 H), $9.43(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 21.8 (q), 111.5 (s), 112.7 (d), 114.8 (s), 125.7 (s), 126.8 (d), 127.01 (s), 127.05 (s), 127.2 (d), 130.3 (s), 130.5 (d), 134.9 (s), 146.7 (s), 176.7 (d), 178.1 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{11}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 510.8992$, found 510.8890 .

(3-\{3-Bromo-4,5-dichloro-2-[hydroxy(2-methoxyphenyl)methyl]-1H-

 pyrrol-1-yl\}-1-[(4-methylbenzene)sulfonyl]-1H-pyrrol-2-yl)(2-methoxyphenyl)methanol (35.4).
35.3

35.4

2-Methoxyphenylmagnesium bromide $(1.0 \mathrm{M}$ in THF, $3.13 \mathrm{~mL}, 3.13$ $\mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 5 . 3}(153.6 \mathrm{mg}, 0.31$ mmol) in THF (3 mL), and stirring at $0^{\circ} \mathrm{C}$ was continued for 4 h . The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and extracted with EtOAc. The
combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give $\mathbf{3 5 . 4}$ as a yellow residue, which was used directly in the next step.

In a subsequent attempt to oxidize the diols 35.4, one isomer was recovered and had: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 5.35(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.32(\mathrm{~m}$, $3 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 2 \mathrm{H})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{27}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 727.0042, found 727.0027. A sample was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ for X-ray analysis.

3-Bromo-4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1-\{2-[(2-

 methoxyphenyl)carbonyl]-1H-pyrrol-3-yl\}-1H-pyrrole (25.1).
35.4
25.1

DMSO (6 mL) was added to dissolve the above crude diols $\mathbf{3 5 . 4}$, and IBX $(263.3 \mathrm{mg}, 0.94 \mathrm{mmol})$ was added to the solution. The mixture was stirred at 70 ${ }^{\circ} \mathrm{C}$ for 29 h and then cooled, quenched with water and extracted with EtOAc. The
combined organic extracts were washed with saturated aqueous NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(1.8 \times 20 \mathrm{~cm})$, using $1: 10$ to $1: 5$ EtOAc-hexanes, gave the intermediate ketoalcohol(s) as a yellow oil. I was unable to obtain satisfactory NMR data: exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{25}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})$ 724.9886, found 724.9882.

Jones reagent (7.0 M in acetone, $0.25 \mathrm{~mL}, 1.75 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the ketoalcohol(s) in acetone (2 mL) and stirring at $0^{\circ} \mathrm{C}$ was continued for 4 h . The mixture was quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ and stirring was continued for 30 min , by which time the mixture had become dark green. The mixture was diluted with EtOAc and washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the diketone as a yellow residue: exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{23}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+$ Na) 722.9729, found 722.9731.
$\mathrm{MeOH}(1.5 \mathrm{~mL})$ and THF (1.5 mL) were then added to the diketone, followed by KOH ($74.0 \mathrm{mg}, 1.32 \mathrm{mmol}$). The mixture was stirred for 1 h at room temperature and then adjusted to pH 7.0 with hydrochloric acid $(0.5 \mathrm{M})$. The neutralized mixture was extracted with EtOAc, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.8 x 20 cm), using 1:10 to 1:2 EtOAc-hexanes, gave $25.1(46.0 \mathrm{mg}$, 27% over four steps) as a yellow oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3283,3077,3004,2942$, $2838,2249,1714,1634,1599,1581,1556,1489,1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.01(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=1.0$,
$7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}$, $J=2.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=2.0,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{ddd}, J=1.5,7.5$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 55.5(\mathrm{q}), 55.7(\mathrm{q})$, 105.0 (s), 110.6 (d), 110.8 (d), 111.0 (d), 113.6 (s), 119.5 (d), 120.5 (d), 122.5 (s), 122.8 (d), 125.7 (s), 126.6 (s), 127.9 (s), 128.2 (d), 129.0 (s), 129.5 (d), 130.8 (s), 131.5 (d), 132.2 (d), 156.5 (s), 157.3 (s), 183.2 (s), 183.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{17}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 568.9641, found 568.9636.

3-Bromo-4,5-dichloro-1-\{4,5-dichloro-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrol-3-yl\}-2-[(2-methoxyphenyl)carbonyl]-1H-pyrrole (36.1).

NCS ($22.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added to a stirred solution of 25.1 (45.4 $\mathrm{mg}, 0.083 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$. The mixture was heated to $35^{\circ} \mathrm{C}$ for 15.5 h , cooled to room temperature, quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash
chromatography of the residue over silica gel ($1.8 \times 20 \mathrm{~cm}$), using 1:10 to 2:5 EtOAc-hexanes, gave 36.1 ($38.8 \mathrm{mg}, 76 \%$) as a yellow oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) $3200,3004,2943,2838,2250,1726,1634,1599,1581,1558,1489,1463 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{dt}, J=1.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dt}, J=1.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=2.0,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=1.5,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.88(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 55.59(\mathrm{q}), 55.60(\mathrm{q}), 106.4$ (s), 110.6 (d), 110.8 (s), 111.0 (d), 114.5 (s$), 119.6$ (d), 119.9 (s$), 120.5$ (d), 122.8 (s), 123.3 (s), 125.9 (s), 126.4 (s), 128.3 (s), 128.4 (d), 129.3 (d), 130.4 (s), 132.1 (d), 132.2 (d), $156.6(\mathrm{~s}), 157.2(\mathrm{~s}), 182.3(\mathrm{~s}), 183.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{15}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 636.8862$, found 636.8861 .

2-[(3-\{3-Bromo-4,5-dichloro-2-[(2-hydroxyphenyl)carbonyl]-1H-

 pyrrol-1-yl\}-4,5-dichloro-1H-pyrrol-2-yl)carbonyl]phenol, [(土)-marinopyrrole B].

36.1
(\pm)-marinopyrrole B
$\mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.04 \mathrm{~mL}, 1.04 \mathrm{mmol}\right)$ was added to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 6 . 1}(64.1 \mathrm{mg}, 0.104 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. After 50 min at $-78^{\circ} \mathrm{C}$, the mixture was quenched with MeOH , diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.8 x 20 cm), using 1:20 to 3:20 EtOAc-hexanes, gave (\pm)-marinopyrrole B (54.0 mg , 88%) as a yellow solid: mp 199-201 ${ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3}, cast) $3232,1622,1592$, 1483, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.58(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.40-7.44 (m, 2 H), 7.48-7.54 (m, 2 H), 9.96 (br s, 1 H), 10.36 (s, 1 H), 11.10 (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 104.7$ (s), 114.7 (s), 117.9 (d), 118.1 (d), 118.5 (s), 118.7 (d), 118.9 (s), 119.2 (d), 120.2 (s), 121.7 (s), 122.0 (s), 124.3 (s), 128.4 (s), 130.0 (d), 134.2 (d), 136.4 (d), 137.3 (d), 161.3 (s), 162.5 (s), 185.4 (s), 188.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{10}{ }^{79} \mathrm{Br}^{35} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{H})$ 584.8584, found 584.8583. A sample was crystallized from PhMe for X-ray analysis.

5. References

1 Cheng, C.; Pan, L.; Chen, Y.; Song, H.; Qin, Y.; Li, R. J. Comb. Chem. 2010, 12, 541-547.
(a) Abou-Gharbia, M. J. Med. Chem. 2009, 52, 2-9. (b) Ojima, I. J. Med. Chem. 2008, 51, 2587-2588.
von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Haebich, D. Angew. Chem. Int. Ed. 2006, 45, 5072-5129.
(a) Takeda, R. J. J. Am. Chem. Soc. 1958, 80, 4749-4750. (b) Takeda, R. J. Bull. Agr. Chem. Soc. Jpn. 1959, 23, 126-130. (c) Birch, A. J.; Hodge, P.; Rickards, R. W.; Takeda, R.; Watson, T. R. J. Chem. Soc. 1964, 26412644. (d) Kaneda, M.; Nakamura, S.; Ezaki, N.; Iitaka, Y. J. Antibiot. 1981, 34, 1366-1368. (e) Ezaki, N.; Koyama, M.; Shamura, T.; Tsuruoka, T.; Inouye, S. J. Antibiot. 1983, 36, 1263-1267. (f) Ezaki, N.; Koyama, M.; Kodama, Y.; Shomura, T.; Tashiro, K.; Tsuruoka, T.; Inouye, S. J.

Antibiot. 1983, 36, 1431-1438. (g) Petruso, S.; Bonanno, S.; Caronna, S.; Ciofalo, M.; Maggio, B.; Schillaci, D. J. Heterocycl. Chem. 1994, 31, 941-945.

Hall, D. M.; Harris, M. M.; J. Chem. Soc. 1960, 490-494.
Review on aromatic substitution: Vlasov, V. M. Russ. Chem. Rev. 2003, 72, 681-703.

Hughes, C. C.; Yang, Y.-L.; Liu, W.-T.; Dorrestein, P. C.; La Clair, J. J.; Fenical, W. J. Am. Chem. Soc. 2009, 131, 12094-12096.

For Ullman coupling reactions for the synthesis of aryl azoles, see: (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428-2439. (b) Antilla, J, C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578-5587. (c) Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Chem. Eur. J. 2004, 10, 5607-5622. (d) Cai, Q.; Zhu, W.; Zhang, H.; Zhang, Y.; Ma, D. Synthesis 2005, 496-499. (e) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem. Int. Ed. 2007, 46, 934-936. (f) Correa, A.; Bolm, C. Angew. Chem. Int. Ed. 2007, 46, 8862-8865. (g) Mino, T.; Harada, Y.; Shindo, H.; Sakamoto, M.; Fujita, T. Synlett 2008, 614-620.

For a review of the synthesis of axially chiral biaryl compounds, see: Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384-5427.

Furneaux, R. H.; Tyler, P. C.; J. Org. Chem. 1999, 64, 8411-8412.
Kanakis, A. A.; Sarli, V. Org. Lett. 2010, 12, 4872-4875.

Nicolaou, K. C.; Simmons, N. L.; Chen, J. S.; Haste, N. M.; Nizet, V. Tetrahedron Lett. 2011, 52, 2041-2043.

7 Liu, Y.; Haste, N. M.; Thienphrapa, W.; Nizet, V.; Hensler, M.; Li, R. Mar. Drugs 2012, 10, 953-962.

Smith, T. L.; Pearson, M. L.; Wilcox, K. R.; Cruz, C.; Lancaster, M. V.; Robinson-Dunn, B.; Tenover, F. C.; Zervos, M. J.; Band, J. D.; White, E.; Jarvis, W. R. N. Engl. J. Med. 1999, 340, 493-510.
(a) Fischbach, M. A.; Walsh, C. T. Science 2009, 325, 1089-1093. (b) Haste, N. M.; Hughes, C. C.; Tran, D. N.; Fenical, W.; Jensen, P. R.; Nizet, V.; Hensler, M. E. Antimicrob. Agents Chemother. 2011, 55, 33053312.

Basavaiah, D.; Rao, P. D.; Suguna Hyma, R. Tetrahedron 1996, 52, 8001.
(a) Knochel, P.; Seebach, D. Nouv. J. Chim. 1981, 5, 75-77. (b) Knochel, P.; Seebach, D. Tetrahedron Lett. 1981, 22, 3223-3226. (c) Seebach, D.; Knochel, P. Helv. Chim. Acta 1984, 67, 261-283. (d) Seebach, D.; Calderari, G.; Knochel, P. Tetrahedron 1985, 41, 4861-4872. (e) Mitra, S.; Lawton, R. G. J. Am. Chem. Soc. 1979, 101, 3097-3110.

Reviews that deal inter alia with conjugate displacement reactions of derivatives of Baylis-Hillman alcohols: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Basavaiah, D.; Reddy B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (c) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev. 2012, 41, 68-78. Krohn, K.; Frese, P.; Flörke, U. Chem. Eur. J. 2000, 6, 3887.

24 Laatsch, H.; Pudleiner, H. Liebigs Ann. Chem. 1989, 863-881.

29 A related diol forms a cyclic ether in the presence of silica gel or AcOH : see reference 1 .

