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Abstract

An overview of hypothesis testing is given with emphasis on the identification of optimal
decision making procedures. These results are then extended to the multiple hypothesis
testing problem. Next, Wald's Sequential Probability Ratio Test is presented along with
discussion about the development of optimal sequential procedures for the multiple
hypothesis case. Finally, numerical simulation is used to evaluate the optimality of one

such procedure.
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1. Introduction

Within many scientific fields of study, hypothesis testing has long been one of the
cornerstones of statistical inference. Scientists use such tests to indicate whether or not
research data provides evidence in favour of, or in opposition to, proposed theories.
Hence, it is of extreme importance that the statistical methodology that these tests employ
be both accurate and efficient. One neither wants the conclusions reached to be
inaccurate, nor does one want to neediessly waste time, energy, and money collecting
unnecessary data. With these desires in mind, statisticians have strived to develop
optimal tests; ones that make maximal use of the data that they are provided.

Originally, and in its simplest form, statistical hypothesis testing provides a means to
accurately classify, after observing the characteristics of a sample, the characteristics of
the population from which this sample was drawn. Two classical examples are the
inspection of the quality of products in a batch, and the comparison with a new procedure
or treatment with the standard one. In the first example, a number of products are
inspected and their quality characteristics are measured in order to decide if we should
accept or reject the batch from whence they came. In the second example, some items or
subjects are treated with the new drug or procedure and others with the existing one, with
the differences being measured to provide statistical evidence indicating whether the new

procedure is effective or not.

In either of these situations, there are two major decisions which must be made after the
hypothesis to be tested has been defined. First, one must decide on a sampling plan. It
must be decided both how many items are to sampled, and how such sampling is going to
take place. For example, instead of the usual practice of taking all samples before
analysis of the data, they could be taken sequentially, one by one, with the decision to
continue sampling contingent upon the observed items at hand. Second, it must be
decided how these sampled items are to be used. The adopted testing procedure should
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indicate when the proposed null hypothesis is to be accepted as possibly true, and when it

is to be rejected as most likely false.

After these two decisions have been made, and the hypothesis test carried out, the
obvious question is, how good were these decisions? In addition, if the choices made
were not optimal, what could be done to improve upon them? It is for the answers to

these questions that statisticians have searched and, in some cases, found.

The purpose of this thesis is to present a multiple hypothesis testing procedure, after
reviewing the statistical inference materials that led to its development. The thesis will
first outline the manner in which questions of optimality have been approached, and
provide the answers to these questions when they are available. Then, after introducing
some basic concepts, most importantly the fundamental Neyman-Pearson Lemma and
Wald’s Likelihood Identity, their application within the Monotone Likelihood Ratio and
exponential families will be focussed upon. What follows will be the extension of some
these results to the multiple hypothesis situation. In the next section, some of the
difficulties which are commonly encounter when trying to employ the theoretical resuits
are outlined, along with some of the simple solutions which have been proposed to deal
with them. In the final section, we discuss the application of sequential procedures with
initial focus falling upon Wald's likelihood ratio test. Finally, the generalization of the
optimal Sequential Probability Ratio Test (SPRT) within the framework of multiple
hypothesis tests is explored. In particular, a simple sequential multiple hypothesis testing

procedure is discussed and its properties investigated.



2. The Core of Statistical Inference

The material presented in this section is standard and can be found in Lehmann (1986) or
Berger (1980). However, the proofs and presentations are different and, in many cases,

much simpler.
2.1 Initial Framework

We begin by restricting ourselves to those situations where there is only one
choice to be made - either we accept or reject the proposed hypothesis based upon
the data provided to us. In other words, we consider only one alternative
hypothesis. Additionally, for the moment we restrict ourselves to procedures in
which the sample size is fixed beforehand; essentially, the data from which the
decision is made has already been collected and the option to go out and collect
more is not a viable one. For this type of situation, much is known about the
answers to the basic question of “what is an optimal procedure?” It is these

situations which are explored first.

We introduce the following standard notations which will be used throughout the
thesis. Let x =(x;, Xy, ..., X,) be a sample of size n from the population with
probability distribution family {Pge( - ), 6 € Q} where Q is the parameter space. It
will be assumed, for technical reasons, that all the probability distributions under
consideration are mutually absolutely continuous with respect to one another in
the standard probability sense. With this notation, the testing problem can be
formalized as one of -

H,:0eQ, vs. H :0€Q, where Q,uQ,=Q and Q,nQ,=2 .

The task is to select a “decision rule” indicating whether H, or H, is true. A
decision rule, 6, is a function of x € S, the sample space, such that 6(x) = d, if and
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only if H, is to be accepted, and 6(x) = d, if and only if H, is to be accepted.

One particularly naive decision rule which immediately comes to mind with this
setup arises if one separates S as S =S, u S, with S, N S, = 2 and lets &(x) =d,
(dy) if, and only if, x € §, (S,). In such cases, there is really only one optimality
decision to be made - “What is the best possible choice of S,? "

Figure 1.1 The simplest decision function

Se
6(K) do

Sy
d,

Before answering this question, and others, we first need some notion of what the
word “best” implies. By evaluating the probability of type I (the probability of
rejecting the null hypothesis, making decision d,, when it is indeed true, 6 € Q,)
and type II (probability of accepting the null hypothesis, d,, when it is not true, 6
€ Q) errors of the chosen testing procedure, two measures of the quality of these
choices are available; both of which we would like to try to minimize.
Alternatively, one can also think of the minimization of these error probabilities
as an effort to maximize the power of the test. That is, we wish to maximize the
probability that our test can successfully declare the true state of nature. If the
cost associated with making the two types of errors are fixed at ¢, and ¢,
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respectively, then one can further express these ideas with the following loss

function of our simplistic test d -

L[8,8()] = ¢y"Ligeq sqey-a * €17 Ti0eq serag -

There is a loss of ¢, if the decision of d, is incorrect, of ¢, if the decision of d, is
incorrect, and there is no loss if the choice of either d, or d, is correct. When the
true population parameter is 6, we can also define the risk function to be the
expected value of the loss function -

R(6,6) = Eq[L[6,5(x)]] .
Then, one reasonable measure of “best” would be that choice of S,, and thus of &
in our current simplistic setup, for which this risk function is minimized.
Unfortunately, as indicated by its notation, this risk function is dependent on the
true parameter, 6. For different values of this parameter, it is expected that there
will be a different decision rule which minimizes the risk. Thus, it may be
impossible to identify a globally optimal decision rule which is “best” for all
possible values of the true parameter which is, after all, unknown.

2.2 Optimal Test Characteristics

To help restrict our search for the optimal rule, we consider two criteria that seem
natural. First, for any rule under serious consideration, there should not exist
another decision rule which is superior for all possible values of the true
parameter. Such a rule is referred to as being admissible (Wald, 1939) and
mathematically, we have -

S st. 2 &' with R(6,6") < R(6,8) V 6eQ with inequality for some 0's.

Second, if Eg[L(6',6)] is considered a function of 6' for 8 given, then this
function achieves its minimum for 0'=6. In other words, if the value of the true

parameter is 6 (arbitrary), we wish the expected losses of our test to be at a
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minimum at that value. Rules satisfying this criteria are referred to as risk

unbiased and mathematically, we have -
EofL(6',8)] > Eg[L(6,5)] all 6'#6, any 6.

Proposition 2.2a:
0 is unbiased if, and only if,
PylB(X)=d,] s —1—, for all 6 € Q,, and
cote,
Pold()=d] = —1, forall € Q, .
cotey
Proof of 2.2a:
- @

EG[L(B,8)] = ¢y Pold(X)=d|]"Lgq; + ¢,"Pgl8(X)=d)]"Ligcq |

B EJLEOO) = ¢y PoldO=d\] [geq + ¢, PelOCO=d,] [greq,

¢, 6
-c
cte, cote

+ cl - (c0+cl).Pe[6(X)=dl] 'I[eeon’eleql:

and, when 0 € Q,, P[6(X)=d,] < ¢, / (¢, +¢,) so the third term is < c;,.
Therefore the whole equation must be non-negative and our test unbiased

as was set out to show.

- Similarly, if 8 is unbiased then, by @ - @, it is true that
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-Co'p +¢;°(1-p) 2 O when 0 € Q,
and (where p = Po[6(X)=d,])
co'p +¢;°(1-p) 2 0 when 0 € Q,
which together give the required result.ll

Proposition 2.2a indicates that for a decision to be unbiased, the Type I error must
be consistently less than a constant & = ¢,/ [¢, + c,]), and that 1 - (Type II error)
must always be larger than this same «.

One problem with the approach adopted is that the cost structure may be very hard
to estimate for many testing problems. Thus, the previously determined cost
structure of an unbiased test is often useless. Instead, we refer to a test as being of

significance level ¢ when -

supgealPelOC=11} sz

and we replace the idea of type II error by that of a power function -

B(B) = Pg[3(X)=1] .
Then an unbiased test is one for which the power is always larger than the
significance level - f(6) > & .

This definition of unbiasedness is much simpler and easier to deal with.

So far, the decision rules under consideration have been non random; the decision
made was entirely dependent upon the value of x. However, in a more general
setup, we allow our decision rule to be random. A random decision rule or test,
¢, is a function of the observations such that ¢(x) gives the probability that we
should reject Hy, and 1-¢(x) gives the probability that we should accept H,,.
Thus, the experimenter performs an additional independent Bernoulli trial with
probability of success ¢(x) and either rejects (makes decision d,), or accepts
(makes decision d,), H, based upon the success, or failure of this trial.
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Now, the space of all possible randomized tests will be denoted D; obviously the
set of non-random tests (where ¢(x)e{0,1}) is a subset of D. By our earlier
definition of the power function, we have than f(0) = Eq[¢(x)]. Often, rather than
just minimizing the risk function introduced earlier, it is more common to
minimize type Il error, while restraining the type I error below an acceptable
level. Mathematically, we would like an a-level test, ¢(x), so that for any other
a-level test, ¢'(x)eD, -

Es[$(x)] = Eg[¢'(x)] for all 0€Q,.
In other words, when the parameter does not satisfy the null hypothesis, we would
like our test to have the highest probability of rejecting that hypothesis. Such a
test is referred to as being Uniformly Most Powerful (UMP) in D.

Proposition 2.2b:
If $*(x) is UMP in D, then it must be unbiased.

Proof 2.2b:
The test $(x) = a is in D, has B(0) = «, and is obviously unbiased. If
¢*(x) is UMP, then p*(8) > B(0) = « for all 6€Q,, and thus ¢* is unbiased

as claimed.®

As simple as it is, proposition 2.2b is none the less very important. It says that if
a UMP test exists in D, it is necessarily unbiased. Thus, when looking for a UMP
test, we need only consider those which are unbiased; for this reason, we will
denote the set of all unbiased tests as Dy < D. Unfortunately, finding a Uniformly
Most Powerful Unbiased (UMPU) test does not guarantee that the test is also
UMP in D; there may not exist a UMP test. However, in many situations, it is
possible to identify a UMPU test in D which, in many respects, is the best
possible test available.



2.3 Some Optimal Tests

Consider the simple test case where Q, = {0,} and Q, = {0,}. Before finding a
UMP test of this hypothesis, we first adopt the notation of denoting the density
function of Py as fg(*), and the likelihood function for 0 as -

I(8) = fo(x) = fo(Xy,--.X0) -
As well, we use Fisher’s definition (Fisher, 1925) and say that T(x) is a sufficient
statistic for O if -

1(8) = go(T(x))"h(x)
for some functions gg(-) and h(-). Finally, we will need the simple, yet powerful,
fact that -

8,

%
Eq [20¥)] = Ee{gm?"lm]

This is the Likelihood Ratio Identity (LRI).

Proposition 2.3a:
The UMP, e-level test of Hy: 6 =0, vs. H;: 0 =0, is given by

¢°(x) = I[f‘(x) ]
oo(x) >e

where c is chosen such that Ey[¢"(X)]=c:.

Proof 2.3a:
Consider any other «-level test ¢(x) (i.e., E[¢p(X)] < ¢). Then, by the
LRI, we have that -



E,[6°00-0001 = Ejb"00-000) 2o
‘ £,

£6. 0

9,

2 Ed[(cb‘(X)-d)(X))-( -C)l 20

and thus our test, ¢°, is more powerful.ll

In this case, the decision function is very simple, in fact completely non-random.
In addition, the proof of its optimality can also be easily extended to the problem
of a slightly more complex null hypothesis.

Proposition 2.3b:
The UMP, a.-level test of Hy: 0 € {0,,...,0} vs. H;: 0 =6 is given by -

¢ = I[ ) >c]

where ¢ and k; 20 are chosen so that }; k; = 1 and Ej[¢"(X)] = .

Proof 2.3b:
Similarly to the proof for 2.3a, we use the LRI to see that

Eg[d°(X) - d(X)) = Ee{(d) "X) - b)) .fﬂ'(x)l

760

. £
E - . -c'k
2 a{«b @0 - $OO)( 7 )]
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the last inequality being true since the final term being subtracted off isa
known positive quantity (¢ and k; both positive, and again Ef¢p"(X)] =« >
E[$(X)]). Additionally, notice that if -

Kﬁr(x) .. e )
Zkl °f9,(x) k’ fe‘(x)
i=1

as the inequality on the right can only have a smaller denominator. This is
all that is needed to proceed as in proposition 2.3a.1

Thus, there is a best test when Q, contains any finite number of points. Naturally,
we would like a best test for when Q, is similarly complex and, even more
generally, when either Q, or Q, contains any number of points, perhaps even
infinite.

First, we consider the case where H,: {0<0,} and H,: {6>6,}.

Definition 2.3a:
The family of densities {fz(x), 6€Q} has the monotone likelihood ratio
(MLR) property if, for any 0,>0,,
is a monotone increasing function of t=T(x), a one
fo,(%) - g5 o [T®)] dimensional statistic. Obviously, for MLR
Jo, ™) " families, T(x) is a sufficient statistic for 0; this can
be seen by fixing 0,.
Proposition 2.3c:
For an MLR family (Karlin and Rubin, 1956), a UMP «a-level test of the
hypothesis -

H,: {0 < 6,} vs. H;: {6 >6,}

-11-



is given by ¢°(x) = Iy, , Where c is chosen so that Eq[$°(X)] = a.

Proof2.3c:
Consider first the simple hypothesis test of H,: {6=0,} vs. H,: {6=08,} for
some 0,>6,. We already know that the UMP a-level test for this problem
is given by ¢°. Now, as the choice of ¢ is independent of 0,, this test must
also be UMP for Hy: {6=0,} vs. H,: {6>0,}. Additionally, since any
UMP test is unbiased, we must also have that p(8,) > B(6,) for any 6,>6,.
Thus, B(6) is monotonically increasing in 0 and reaches its maximum
under the null hypothesis of our original problem at 6,. Therefore, ¢ is
indeed UMP for H,: {0<6,} vs. H,: {6>0,} as was set out to show.l

This result is of tremendous importance as there exists a fairly wide class of
densities possessing the MLR property. In fact, the entire class of densities
referred to as the exponential family all possess the MLR property. We now
discuss some characteristics of this important family.

Definition 2.3b:
{fs(x), 0Q} is a one parameter exponential family member if -

fo(x) = exp{0-T(x) - c(0)} - fo(x)
and Q = {6 | c(8) <=} contains at least one point other than 0.

Here, fy(x) is commonly referred to as the generating density.

Proposition 2.3d:
{fe(x)} is MLR with T(x) as a sufficient statistic.

Proof 2.3d:
This follows easily from the definitions of the MLR property and of the

exponential family parameterization introduced above.l
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Therefore, we have the hypothesis testing results for MLR possessing densities
shown earlier. There is one additional important result.

Proposition 2.3e:
For the hypothesis testing problem Hy: {6<0, or 620,} vs. H;: {0,<6<6,},
an a-level UMP test is given by ¢"(x) = Iy« j<q, Where b and d are such

that E,[¢*(X)] = E;[¢°X)] = .

Proof 2.3e:
First, consider the testing problem of H,: 6{6,,0,} vs. H,: 6=6' for
0,<0'<0,. By proposition 2.3b, we know that the UMP test is as follows -

¢ = -’[ fy/®) ]

Plo,®)+ (L-p)fo (%) e for appropriately chosen values of p

and c dependent upon 6,, 6,, and 6'.

Now, for the exponential family, the left hand side of the bracketed
quantity greatly simplifies to the inverse of -
pexp{-(6' - 6,)T(x)} + (1-p)-exp{(6, - 6" T(x)}
Since this is a strictly convex function of T(x), there exist b and d so that -
¢'®) =Ipaueqg ~ and E[$*(0] =E[p')] = .
Now, the values of b and d are independent of @' so our test is actually
UMP for the testing problem of H,: 0€{0,,0,} vs. H;: 6’ € (6,,6,).

Consider now the testing problem of H,: 0€{0,,6,} vs. H,: 6=6', but this
time for 6'<0, or 8>0,. It is once again easy to show that ¢ is the
optimal test minimizing B(6) under H,. Therefore, p(6) < & and our
testing function is UMP for the more general case of our H,: 6¢(0,,0,).
Combining these two results proves the proposition.l

-13-



2.4 Unbiasedness and Optimality in Multiple Hypothesis Testing

As was pointed out before, the main purpose of hypothesis testing is often one of
classification; one wishes to distinguish between two competing hypotheses.
More generally, this idea can be extended to a greater number of possible
classifications and the multiple hypothesis testing problem naturally arises. How

are our ideas of a “good” test carried over in this situation?

Suppose that H; : 6 =0, fori = 1,....k are the competing hypotheses and that -

. . k
PE) = (P,(%),-.9,(x)) is a test with Yo =1
i=1

where @(x) = P[H, is the decision]. Then, denoting by c; the cost of accepting H;
when H; is true, we have the following generalization for the unbiasedness of

o).
Definition 2.4a:
@(x) is, as proposed by Lehmann, L-unbiased if -
jz‘;c;,'l’ [H,|H] 2 IZ;"',;'P (H|H)] for all k and i.
Proposition 2.4a:
When c;=1, L-unbiasedness implies that P{H;|H;] > max,.; P[H,|H;].
This seems the natural extension of our original definition of
unbiasedness.
Proof 2.4a:

Y-« PIE;|H 2 ¥y PO [H;] = 1-P[H,[H] > 1 - P[H,|H]
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= P[H;|H] > P[H,|H;], which is true for every k=i, and thus
= P[H;|H]] > max,.; P[H,|H;] as required.l

How about optimality? As in the simple testing situation, we would naturally like

a test which minimizes risk. Letting r,(j) denote the loss when H; is true, then -

o) = Lo PUAJH]

and it seems natural that ¢" should be considered optimal if, for any other test ¢ -
k k
r..(j)y < )y r (J
szll (/) jgl o)
Proposition 2.4b:
Considering again the most simple case (when k=2 and ¢;=1) -

P, = I oo

is, in this new sense, optimal.
Proof 2.4b:

Consider any other test . We have that -

roeTe = PolH,|H\1-P [H,|H\] + P,.[H |H,]-P[H |H,)

= Eq [0;00) - 9,0)] + Eg [(1 - 9500)) - (1 - 9,(x))]

(x)

. e,
- Eel[(tpz(x)-wz(x))'(l- - )] s 0

e'(x)

and thus, ¢" has smaller risk.l
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Unfortunately, these multiple hypothesis extensions of unbiasedness and
optimality are not without problems.

Example 2.4a:

Taking -
F1(x) = 03I ;y(x) + 0.7-I; (%) and
f[2(%) = 0.2-Ipp 15(x) + 0.8°I; (x)

the optimal test is given by -
o, (x)= o) and
@, (x) =T 5(X)

But then -
P[H,[H,] =0.3 <0.7 =P[H,|H,]

and @" is not, even in this simple case, L-unbiased.

Fortunately, Van der Waerden was able to develop a more useful definition of
unbiasedness for the multiple hypothesis testing problem.

Definition 2.4b:
@(x) is, in the sense of Van der Waerden, W-unbiased if -

PH|H)<PIH|H]

forall i # j, where -

Proposition 2.4c:
The criteria for W-unbiasedness is equivalent to -

max;, P[H;|H]] < P[H;|H]] forj=1,...k.
-16-



Proof 2.4c:
Suppose, for some i and j, that this is not true. Then -

P[H;|H] > P[H;[H], so -
P[H|H)> P(H|H)
which is a contradiction. A similar argument proves the reverse.ll

With this definition, it is easily shown that our optimal multiple hypothesis test

introduced above, ¢, must be W-unbiased when c;=1.

Proposition 2.4d:
The optimal, W-unbiased test when c; = 1 will have the following form -

P, (x)=1%1w2max,.,;a,cz)1

Proof 2.4d:
Consider any other test ¢"-

oo = PelE|H]1-PH ) + P 1T - 2 I ]

= Eg[(1-@;(x)) - (1 - 9e)] + LEo [0, (x) - ¢,(x)]
i=y

L /o (%)
- 1)] <0

= "(x) - S
Ee,[(w, ® tp,(x»( =

since @°j(x) < ¢;(x) implies that -
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i=f

2o () fo® .
>2Z—-1=0

foxX)<max, fo(x) = -
K o fo@® fo®
and @’,(x) > @;(x) implies that -
L) (k-1)7, ()
fo(x)2max,, fo(x) = -l —2 .1 =k-250
! ! fo®) fo )

for k > 2. Therefore, our test has the least risk.l
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3. The Many Difficulties

Example 2.4a hints at the difficulties of the multiple hypothesis testing situation.
However, there are also numerous difficulties in the single alternative situation as well.
Lehmann (1955) and Wald (1943) both provide good overviews of the material in this

section.
3.1 The First Roadblock

Recall that in section 2.3 an optimal test of Hy: {0<6, or 626,} vs. H;: {6,<0<0,}
within the exponential family framework was identified. Unfortunately, there are
problems when the hypothesis test is reversed, namely for -

H,: 6,<06<0, vs. H,;: 0<6, or 6>6,,
or the limiting case of -

H,: 6=0, vs. H;: 0#6,.

Proposition 3.1a:
For these above two sided testing problems in the exponential family, no
UMP test exists.

Proof 3.1a:
We consider the limiting case only. Suppose that ¢° is a UMP test of size
a. This test is necessarily unbiased by proposition 2.2b. Thus, by
differentiating, we know that -
d .
Eo [6°00] = & and 30 [0°0] = 0

On the other hand, we consider the UMP test for the following hypothesis
testing problem - Hy: 6 < 6, vs. H;: 8 > 6,. Since the exponential family
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possess MLR properties, we know that E¢[¢(X)] is strictly increasing and
thus that -

d
=5 Eel$C01 > 0

However, since ¢° is UMP, we know that -

E[$ (X)) 2 E[$(X))

forall® > 6,. So-

d . d
-6-656[4> )] 2 %Ee[d)(X)]

for some O > 6,. This is a contradiction, and our proof is complete.l

In this case, no best test even exists. How do we proceed? Although it seems a
little like cheating, we just redefine our notion of best. As one might have
guessed from our earlier discussion about unbiasedness, we will attempt to find a

UMP test not over D, but instead over Dy; - the set of all unbiased tests.

Proposition 3.1b:
¢ (%) = Irgape or >y Where b and d are again chosen such that -
E,[¢*(X)] = E,[¢"(X)] = & is UMP in Dy, or UMPU.

Proof 3.1b:
Consider D* = {¢ € D | E,[¢(X)] = E;[¢(X)] = a}. Since p(8), the power
function of ¢, is continuous, Dy; « D*< D, it would be more than sufficient
to show that ¢°(x) is UMP in D®. However, the proof of this is identical to
the proof of proposition 2.3e with Q, replaced with Q,.18
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It should be noted that when selecting b and d in the limiting case of -
Hy: 6=6, vs. H,;: 06,
we need to ensure that Ej[¢"(X)]=« and E[T(X)-$°(X)] = n-Eo[T(X)] (for

unbiasedness).

Example 3.1a:
Consider X,....X which are iid N(0,0%). For the testing problem of
H,: 0=0, vs. H,: 6#0,, proposition 3.1b indicates that the following test is

UMPU -

¢ = Liray<s® or>am) = I[T_(‘:).q or >d]

%

Here, T(x)=Z; x? is the sufficient statistic and T(x)/0,* has a x? distribution
with n degrees of freedom and therefore b and d are such that

d

fﬂdpl-a
”
b

and, for unbiasedness,

d

f——xT(")dx =n(l-@)
02

o
b

Equivalently, the second statement implies that -
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These two equations can be solved iteratively to yield appropriate values
of b and d as required. For example, for n=20, «=0.05, the solution of
b=9.96 and d=35.23 was obtained.

3.2 Other Difficulties

With the results presented so far, it would appear that today’s statisticians are in
an excellent position to provide optimal (UMP or UMPU) tests, especially when it
is an exponential family population from which the sample is drawn.
Unfortunately, this optimality often hinges upon some of the exponential families
“nice” properties. In practice, this will often not be the case. In fact, the common
hypothesis testing problem involving mixture density families provides an absurd
example of the difficulties that can arise.

Proposition 3.2a:
Suppose the fg(x) = 0-f(x) + (1-8)-g(x), for some 0 € [0,1], and that we
wish to test the hypothesis that - Hy: 0 < 6,0r6 > 0, vs. H;: 6,<6 <86, .
Then, the trivial test $°(x) = o is a UMP test.

Proof 3.2a:
Consider any other a-level test ¢(x). Necessarily, E[¢(X)]< « and
E\[¢(X)]< «. But then, for 6 € (6,, 0)) -
Eo[¢(X)] = 0 - Eo[d(X)] + (1 - 6) - E,[¢(X)]
s0-x+(1-0)-a=a

so our trivial test, ¢", is at least as powerful.ll

This proposition seems to indicate that there is no benefit to be gained from
sampling at all; the statistician would be best to base a choice of null or alternative

hypothesis on chance alone. However, our search for a best test in this, and other,
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situations is not completely hopeless. Once again, all we really need to do is
redefine the notion of what “best” really means.

3.3 Locally Optimum Tests

Since all earlier notions of best rely on a comparison of the power functions of
competing tests, is seems only reasonable that the notions of best for these new
situations follow suit. However, focus now falls on the local behaviour of these

power functions, not on the global behaviour as before (Fraser, 1968).

Consider the one sided test of Hy: 0 =0, vs. H,: 0 > 0, . In this case, we
consider all et-level test functions and try to maximize the derivative of the power

function at 6,, namely °(8,).
Proposition 3.3a:
The locally most powerful (LMP) «-level test is given by

¢ = Il:alnﬁ,oct)>c] = Lyey>a

30,

where c is chosen so that B°(6,)=« and U.(0,) is the score statistic -

2 dlog fo(x)

- ab
U.( eo) = =1 0
Proof 3.3a:
Consider any other level « test, $(x). As before, we use the LRI to see
that -
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fa(X)]

B*6,)- B8, = ze_[@ 00 - 420y =

dlnf, (X)
2 Eg (00 - 900 | —p—-¢] | 2 0

0

and thus ¢°(x) is LMP as we set out to show.l

Unfortunately, this proposition cannot be extended to the two-sided testing
situation. The test can only guarantee maximal power on one side. It would make
sense to use -

bGx) = Ho@pi>er

with c chosen so that 3(8,) < «. However, such a modification will not even
guarantee that the test is unbijased at 0,. Instead, we hope to find a test for which
the derivative of the power function vanishes at 6,, yet has maximum curvature at

that point.

Proposition 3.3b:
If fo(x) is sufficiently smooth within a neighbourhood of 6,, the LMPU
test of Hy: =0, vs. H;: 6+0, for which B(6,) = &, B’(6,) =0, and B""(6,)

is maximized is given by -

¢ (=1, [5% @ af, @)
aez

dfa(x]

where ¢ and d are chosen appropriately to satisfy the listed constraints.
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Proof 3.3b:
Consider any other unbiased, -level test ¢(x) € D,;.. By definition,
B(B0)<ce and B (6,)=0. So,

B'(@-B"8, = Ee #00-4001] = 2 @ - bensers
0

—fdr YL £ 00-ba0y azf°°(x)]

= (@ (x)-P(x 56" (@ X)-0X) fe(X) 502

1 FR 0 1 &) ]]
- : -d||=0

E h - . . -
2 e,[(cboo $() (fa,(X> e T 9,

for any c,d > 0. Why? Well, we have subtracted off -

d
c"aTEeo[(b'(X) -] = c'[B(0)-PB] = 0
0

and

d-Eq [6°C0 - $X0] > d-(@-a) = 0

thus a necessarily non-negative quantity. Therefore, ¢°(x) does indeed
maximize B°'(6,) and will be the locally most powerful unbiased test as

was set out to show.lB
3.4 The Problem of Nuisance Parameters

There are other problems which are frequently encountered when trying to apply
the theoretical results already presented. For instance, when we were successful
in identifying best tests, the a-level of the test was governed by the boundary
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points of Q; this property being the result of the convexity of the power function
within the exponential family. However, if the boundary points of a Q, do not
dominate the type I error for all 6€Q,, then the problem of finding a best unbiased
test is, as demonstrated by example 3.1a, difficult indeed. As a second example,
sometimes both Q, and Q, are of the same dimension as Q and thus there are
many boundaries to consider. In other problematic cases, the underlying
population densities under the competing hypotheses are from different families
altogether.

One commonly encountered problem that can be dealt with involves the presence
of nuisance parameters. In these cases, the parameter space can be separated as

follows -

Q=QxQ, and Q,=Q,xQ

where A, possibly multi-dimensional, is the nuisance parameter and Y is the

parameter of interest upon which our inferences are based.

Obviously, it would simplify the problem greatly if we could identify tests whose
Type I error rate is independent of the nuisance parameters. When testing

Hoy: =1y, vs. H;: { =y, such a test is referred to as a-level similar and
mathematically -

E g1y [$0] = & forall A € Q,.

In trying to find such a test, it is natural to first find a sufficient statistic, S;, for A
which is independent of Y. Then, the conditional density function f, ;,(x | S;=s)
will be independent of A and our optimal test statistic can be based on it rather
than the usual density function. As an example, the testing of the mean of a
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normal distribution when the variance is unknown involves the use of the
conditional student t statistic, rather than the unconditional z-score statistic when

the variance is known.

Another method which often simplifies the search for an optimal test in the
presence of nuisance parameters involves the principle of invariance (Fraser, 1968

or Zacks, 1971).

Definition 3.4a:
Consider G = {g: S = S}, a group of transformations on the sample space

S. The induced group, under the requirement that -

Ple(X)€4] = P,. o [X € 4]

for any A < S, of transformations on the parameter space Q is

G" = {g" Q= Q}. The testing problem Hy: 0eQ, vs. H;: 8€Q, is
invariant under G if the two parameter spaces, Q, and Q,, are invariant
under G°. Similarly, a test, §(x), is invariant under G if ¢(g(x)) = ¢(x) for
all xeS and geG, and a statistic, T(x), is invariant under G if T(x)=T(g(x)).
Finally, T(x) is maximal invariant under G if T(x) = T(x") = x” = g(x) for

some geG.

Intuitively, the ideas of invariance correspond to certain ideas of symmetry which
are often inherent to the problem. For example when modelling, if we shift our
observations in a direction parallel to the projection plane, we expect the length of
any model based residuals to remain constant and any statistics or tests for these
models should reflect this.

It is easy to show that if M(x) is a maximal invariant statistic, then any invariant
test must be a function, h{M(x)] of it. Thus, finding such a statistic often

227-



simplifies the problem of finding an optimal, invariant test. In fact, after this
statistic has been identified the testing problem is often simplified to the simple
hypothesis case. In some situations, there are a number of invariant
transformation groups and we can perform this reduction by invariance for each of
them consecutively. In addition, these two methods, reduction by sufficiency and
reduction by invariance, are often both applicable to the testing problem.

With the final addition of these results, the choice of a “best” testing procedure, in
many situations, is an obvious one. The sole remainihg challenge for the
statistician lies in the fact that the critical regions of our test procedures have, up
until this point, remained somewhat undefined. In order to achieve a desired level
of significance, the statistician is faced with the problem of calculating tail
probabilities of the test statistic under the null hypothesis. This problem can be a
difficult one and much work has focused on the approximation of these tail

probabilities.
3.5 Generalize Likelihood Ratio Test and Tail Probabilities

There is one important observation associated with the problem of approximating
tail probabilities. This observation is that each of the test statistics for our UMP
tests are in fact simple functions of the generalized likelihood ratio statistic for the
hypothesis in question. Knowing that, under certain regularity conditions, twice
the log likelihood ratio statistic converges, as n —>, to a %2 distribution, the
problem of finding tail probabilities is really quite easy. Unfortunately, this

approximation, especially for small sample sizes, is quite crude.

Example 3.5a:
In the case of Hy: u=0 vs. H;: p=0 for observations from N(u,0?), the

generalized log likelihood ratio statistic (max, ,L(1,0) - max,L(0,0)) is -
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=)

W= n‘log(l +
n-1

where T is the students t, statistic usually used for testing (Lawley, 1956).
Thus, for t=4 and n=6, a standard t-table will yield an upper tail
probability, P[W > t], of about 0.102. However, the % approximation
yields a value of about 0.06; this is a very poor estimate.

To improve the chi-squared approximation, replace (Bartlett, 1953) W by
W= W /E[W]. This has the effect of improving the approximation from order
1/n to order 1/vn. In our example, we use Taylor expansion to get -

2
7ol ) ol

Thus, EfW] =1 +3/2-n + o(1/n) and, for example 3.5a, P[W’ > 4] = 0.093. This

correction provides significant improvement.

For the one sided hypothesis testing problem, twice the signed log-likelihood ratio
statistic is used (Jensen, 1992) -

R =sign(0 - 8,) - {2-[L(6") - L(68y)]}*
The asymptotic approximation of the distribution of this statistic is, under the null
hypothesis, normal and tail probabilities can be calculated accordingly. Again,
improvements to this normal approximation have been investigated with
Edgeworth Expansion (Barndorff-Nielsen, 1986) and Saddlepoint Methods (Reid,
1980) having been the most successful.
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4. Sequential Hypothesis Testing

Wald's "Sequential Analysis" (Wald, 1947) provides an excellent theoretical introduction
of this topic, while Wetherill and Glazebrook (1986) focuses more on the application of

these techniques.
4.1 The Sequential Probability Ratio Test (SPRT)

Underlying all of the work presented to this point is the assumbtipn that the
sampling plan is fixed before the process of sampling begins. However, as
alluded to in the introduction, there are other alternatives, most importantly that of
sequential sampling. Although this sampling plan can be exploited to provide
operational efficiencies in almost all hypothesis testing situations, it should be
noted that this framework is often dictated by the problem at hand. As one
example, when one is trying to detect changes in quality control, the relevant data
is not observed all at once, but instead reveals itself one observation at a time and
this fact should not be ignored. After all, it would obviously be unwise for the
statistician to collect a weeks worth of production line data before running a
hypothesis test on Friday afternoon, the results of which dictate that he tell the

plant manager that all products made since noon on Monday are defective!

Under the most general decision framework, the sample is taken sequentially, and
after each observation, the informed observer has the opportunity to either
terminate sampling and make a decision based upon the information already
available, or delay this decision and choose instead to view yet another
observation. By considering such methods, one can hope to identify tests which
would be more efficient when compared to our already identified optimal fixed
sample size methods. They would hopefully achieve the same level of power with

smaller sample sizes.
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As before, we begin with the simplest hypothesis testing problem. Suppose that
the set of possible distribution functions numbers only two, namely F, and F,, and
that the problem is one of determining which of these two distributions the
sampled values are coming from (i.e., a hypothesis test with H,: F, and H;: F, ).
In proposition 2.3a, the optimal fixed sampling plan test procedure for this
problem was identified. This procedure, based on the likelihood ratio, minimized
the probability of a Type II error (thus maximizing the power of the test) while
holding the probability of Type I error below a suitably chosen value.

To search for an optimal sequential procedure, we need to return to the more
general ideas of risk that were introduced earlier. However, for a sequential
procedure the costs of sampling are not fixed and therefore the expected sample
costs are also included as part of this risk. Namely,
Risk = (Cost of Type I Error x Probability of Type I Error) +
(Cost of Type II Error x Probability of Type II Error) +
(Cost per Observation x Expected Number of Observations)

For our problem, the chosen test procedure must provide a means of choosing
between the three possible decisions: d, - in which we take an additional
observation, and d, or d, - in which we terminate experimentation and declare that
either F, or F, is the true distribution. Assuming that the losses of any terminal
decision are given by W(F;,d;) = W;; which are greater than 0 when i # j and equal
to 0 when i = j, and that the costs of sampling are, by a suitable change of scale if
necessary, equal to the number of observations, then Wald has shown that there
exists a decision rule which minimizes risk. In fact, he provided the following
risk minimizing decision rule - the sequential probability ratio test.
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Let-
Rail2)

? i=1 fe,(x:)

Choose constants B < A so that the Type I and Type II errors are restricted
appropriately. Terminate experimentation, d,, the first time, N, that ¢, € (BA).
Make decision d, if &y < B, or decision d, if ¢ > A.

Proposition 4.1a:
Choosing B = /(1-) and A = (1-B)/ec within the SPRT will yield

appropriate error probabilities.

Proof 4.1a:

- gl =1 ~1-B
= Prfl,>4]= 15’0[1[,”z a= El[a—'lll,,z al = 1 EI[I[,Nz al= y
N

and similarly, p = B:(1 - «). Together, these yield B = B / (1-¢) and
A=(-B)/ .l

Wald and Wolfowitz (1948) were able to show that the choices of A and B
provided above are optimal. They provide, among all other tests with similarly
restricted error probabilities, the test of minimal sample size. Thus, for this
simplest hypothesis setup, the statisticians’ choice of best is clear.

The efficiency of this test procedure is demonstrated with the following example.

Example 4.1a:
If testing Hy: 0 =-0.5 vs. H;: 6 =+0.5, when X ~ N(6,1), and with
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o = =0.05, then a fixed sample test would require a sample size of
approximately 9.6. Alternatively, the expected sample size of the SPRT
under either hypothesis is, as shown below, approximately 5.3 - an
efficiency of more than 40%.

Proposition 4.1b:
The expected sample size for the hypotheses of example 4.1a is

approximately 5.3.

Proof 4.1b:
Let Z, = In(f;(xy) - In(fy(xY) so that Sy =} .Z; =In(¢y) . Then,
E[Sy] =E[N]E[Z;] and thus -

E [S,] . (-0)h@+alnd) _
E[Z,] -0.5 '

3

E,IN] =
Similarly, E,[N] = 5.3 as well.®

4.2 Generalizing the Optimal Bayes Solution

Following the notation of section 2.4, consider again the multiple hypothesis
situation with H;: 0 =6, for i=1,... k. As in the single alternative case, a sequential
testing procedure will need to select a stopping time, N, at which some decision,

say Oy, is made. There are several ways in which this might be done.

One way is to use likelihood ratio statistics, as the SPRT does.
Let-

max, . f(x,....x,) N
j;(xl,...,xm)

N} inj;zo[

B
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be the time at which we reject H;, and furthermore let N;,<...<N, be the time
ordered rejection times. Then, our decision rules has -

N = N(K'l) and 6N = dk.
where k” = arg max; {N;}. Itis easily shown that P,[N <] < 1/B for all k and
that -

Proposition 4.2a

lch
minj,kD (fe j;)

E[N] =

asB—’°°

where -

D(f.f) = ffyln;—:‘dx :

7

This is the Kullback-Leibler distance.

Proof 4.2a:
Similar to 4.2b shown below.lB

A second alternative borrows from Bayesian techniques. Assuming linear cost
structures for the sample size and decision errors, the SPRT was presented as the
optimal sequential procedure in the single alternative situation. It should be noted
that by modifying ¢, to reflect any a priori knowledge (i.e., P[H; is true] = p;,
Y.:p; = 1), this test will also provide the Bayes solution to the problem (Wald and
Wolfowitz, 1950). When this approach is taken, the optimal test procedure is
realized by stopping the sampling process as soon as -



Py If{fo(x,-)
i=

Py = n n
I 2 "qﬁn(x:) Py r{fl(x.-)
= i=

falls outside of (p, p), and accepting either H, (if p,> p) or H, (if p, <p)

accordingly. This test and the SPRT are equivalent as can be seen by setting -
A=(1-p/p-p/(1-p) and B=(1-p)p-p/(1-p;), or
pP=pi"(1-@)/[p,- (1-a-f) +B] and p=p,-a/[1-B-p, - (1-a-B)].

Generalizing for the multiple hypothesis situation, let {m;} and
{P’ = P[Hjlx,,....X,]} be the a prior and a posteriori distributions for {H;}

respectively with -

For constants {A;: j = 1,... k}, define -

P[H |x,,....x ]
N, = inf"'zl{pnb.l_} = inf,‘.zl{—‘_‘_—"_<4 } )
: 1+4, P[H,|x,.x] 7

Here, {A;} are chosen so that - &; = Pfreject H] = Y., , Tra; < A,

Then, our decision rule is given by -

N=min[N,,..N,] and & =d,.

where k" =argmin{N 41""’N 4.}
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Proposition 4.2b:
We can show that (Baum and Veeravalls, 1994) -

-log4
E[ i

N] = —_—
4 min,, D(f,f)
as max A; — 0.

Proof 4.2b:
Consider that -

_ 56D L og Ty > 284
N, = mfm{-— Iog(igjexp[-n[— Ef"g 7% ;Iog;ln) > —

and that under H; -

n (x.) 14
71,-‘ Y Iogf;-—‘+ l'Iog—’- =~ D(.1)

fix) n T,
by the Law of Large Numbers.
Thus, -
-— log(zexp[-n[— Zlogf;( l)“' 108—]] ~ min_D(.f)
oy fx) n "m, Py

as only the term of i corresponding to min;.,;D(£, ;) dominates the

convergence. Thus -

N - -logA
4 min jD(f S

Next, consider that -

1
P [| ad | > €

5 -IogA mml. jD(f 1)
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N _
sPil—t-—L1 __|>¢+pA)
I -logd, min, D(f.f) i

N

4 1
< P . >e]+ w4, —~ O
5 I-IogAj min,,jD(t;,j;)l 7
asmax A; -~ 0.

As has already been stated, when k=2, Wald and Wolfowitz were able to prove
the optimality of the SPRT; it minimizes, among all procedures with identical
error probabilities, the expected sample size under both the null and alternative
hypotheses. Now, neither of the two multiple hypotheses procedures introduced
above can guarantee that the error probabilities satisfy the exact requirements.
This is not a major drawback however as, like the SPRT, they do allow us to
construct conservative tests. Unfortunately, the optimality enjoyed by the SPRT
process is not guaranteed by either of the two procedures which have been
introduced. In fact, an optimal procedure would require dynamic programming to
solve for the optimal stopping boundaries. This is a significant drawback.
Instead, we hope to adopt a simple procedure which is asymptotically optimal
(Wald, 1941) as the desired error probabilities approach zero.

Consider the same general framework as our SPRT problem, but with three
possible distribution functions, F,, F,, and F;. The set of all possible a priori
distributions for these three hypothesis can be represented by the points (§;, §,, £;)
of a triangular plane, T, in R. After m observations have been made, the a

posteriori distribution of our three hypotheses is given by the following -
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Eo S f[(x,)f(x,)

& =
3
]f_:lfﬁf}(x,)f;(xz) ~f(%)

Together, these three probabilities (i=1,2,3) are also represented by a point, &, of
our triangle. Obviously, if this point is one of the vertices of triangle T, say V,,
then the true distribution function of the random variables is F;. In fact, it makes
sense that if the a posteriori point is close to a vertex of T, then the true

distribution function is likely that represented by this vertex.

Thus, a reasonable decision rule might involve a sequential procedure whereby
one would construct a subset around each vertex, compute after each observation
the point &, continue to take observations until this point lies within one of the
constructed subsets, and conclude that the true distribution is F; if at the subset S;

is the first one entered.

Figure 4.1 The three hypothesis situation
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Wald and Wolfowitz were able to show not only that there exists three closed and
convex subsets which make the proposed procedure optimal, but also that these
subsets are independent of the a priori distribution. Thus, as was the case with
choosing the constants A and B in the situation involving two probability
distributions, constructing the three subsets, S,, S,, and S;, in the situation
involving three probability distributions depends only on the values of -

W;;, the losses of concluding that F; is the true distribution when F; is,
and

¢, the cost of obtaining an additional observation.

In fact, Wald and Wolfowitz were able to use Bellman's optimality rule (Bellman,
1957) to determine the boundary values of these three subsets as they lie along the
edges of triangle T, and the tangents of the boundaries at these edge points.
Bellman's optimality rule states that if -

A E ) | &
A6 = f,( A LL. )-):&'f(x)dx
2 LEf@®  LEfm)

where J (£) is the minimum cost using the stopping rule with prior probability &,
then -
J©) =min {(1 - &"),..., (1-€9), c + A;(E)} - with ¢ the sampling cost

Unfortunately, an explicit formulation of the boundaries of these three sets would
require dynamic programming . This is unfortunate as the decision rule described
above is readily extendable to any countable number, k, of probability
distributions through the construction of k similar subsets in R¥, and the sequential
checking of whether or not the calculated £, were in one of these subsets. We let
N; = inf,{&}, € S;} where §; is a convex set containing corner point ¢; and our
decision rule has N* = min{N,,...,N,} and 8" = arg min {N,,....N,}.
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4.3 Calculation of Boundary Points

Since one knows some aspects of the boundary of the subsets, it seems reasonable
to try to approximate these boun;iaries. The most general approximation would
provide a function which coincided not only with the known edge points, but also
with the known tangents of the boundary set at these edge points. In the three
hypothesis problem for example, if the boundary of S; is given by f(x) for
x€[x;0,X;;] and £ (x;p) and f'(x;,) are given, then the polynomial, p;(x), constructed
as follows will coincide exactly with fi(x) and its derivatives at the points where it

meets the boundary of T.

Pi(X) =a+ b(x - Xy) + (X - X;0)* + d(x - X;p)*(x - X;1)
where a =f(x;,)
b = £/(x;0)
¢ = [fi(xu) - a - b(x;; - x;0)] / (X1 - Xi0)?
d = [£'(xip) - b - 2c(x;; - x0)] / (X1 - Xi0)?

A less complex approximation can be achieved by just joining the two known
edge values of each vertex with a straight line; a first degree, rather than third

degree, polynomial approximation.

The logical question is: How good are these approximations of the boundaries?

Before answering this question, we must first calculate the appropriate values. To
reiterate, Wald and Wolfowitz’s paper describes a testing procedure in which a
posterior probabilities are plotted sequentially in R* and the decision is based
upon that points inclusion in or exclusion from three sets around the vertices of
triangle T, the set of all possible a posterior probabilities. They describe how,

given loss functions W;; and assuming a linear, unit (which we can always be
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achieved by scaling appropriately) cost of sampling, one can calculate the
boundary points of these sets.

Unfortunately, the SPRT described in section 4.1, and the one which is likely to
be used in practice, has critical regions based on error probabilities, not the costs
of these errors and the sampling costs. It would be preferable if the critical

regions of the test were based on error probabilities, not costs.

Although Wald and Wolfowitz’s discussion of critical regions is based upon the
knowledge of these costs, it should be apparent that the specification of the loss
functions is equivalent to specifying of the probability of the various possible
errors for the chosen test procedure. In the case of two dimensions for example,
specifying the ratio of Type I and Type II errors is identical to specifying the
relative loss functions for the two possible errors. As a Type I error becomes
more expensive relative to a Type II error, the probability of making this more
expensive Type I error should decrease in our chosen sequential test. As well, the
selection of the combined probabilities of the various error types is equivalent to
specifying the relative cost of sampling. As the combined probability of making
an incorrect decision is allowed to increase, the expected number of items that

will need to be sampled before reaching such a decision will be reduced.

Consider the determination of the boundary point B, lying on the boundary of S,
(see Figure 2). Wald and Wolfowitz argue that as the probability that Hj; is true is
zero along this side of the triangle, an optimal sequential test will ignore this
hypothesis altogether. Thus, when testing H, vs. H,, B,, and B,, provide the-
critical values for this two sided test. Given «,, and «,,, this corresponds to
selecting lower bound, p, and upper bound, p, as described in section 4.2.
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Example 4.3a:
For &), =0.05, o;; =0.10, and no a priori information (p, = p,=0.5), we
calculate p = 0.0526 and p = 0.905 and thus B,, = (0.947, 0.0526, 0) and
B,, = (0.095, 0.905, 0). In similar fashion, we can determine the location
of B;;, B;;, Bx», and B,,.

4.4 Simulation Study Results

The decision making procedure that has been chosen is asymptotically optimal.
As error probabilities tend to zero, the average number of observations required
by this procedure will be smaller than any other. However, the linear boundary
approximations that have been made will have an effect on this optimality. To
assess the effect, a number of simulation studies of different situations were
conducted (see Appendix A). For each trial, one of the three competing
hypotheses was randomly selected. Then, the sequential testing procedure, with
appropriate error probabilities, was conducted with random observations
generated from the distribution associated with the selected hypothesis. Based
upon the results of these sequential tests, empirical error probabilities and sample
size distributions (based upon 10,000 trials) were calculated.

The first question which needs to be answered is - "Has our test exhibited the
desired levels of error?" In making a linear approximation to the convex shaped
critical regions, we have constructed a conservative test. The first half of each
table below provides an assessment of the degree of this conservation by
comparing the theoretical and empirical error probabilities. Within the table, «;
refers to the theoretical error probability of the sequential test, and e; refers to the
experimental error probability that was observed. We present e;/ a; which
provides the proportion (%) of the actual error rate that was observed during
simulation. Thus, a figure of 80% would indicate that experimental error
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probability was about 20% smaller that the theoretical one.

As was pointed out in section 4.1, the sequential probability ratio test, in the
simple hypothesis situation, can provide a considerable sampling costs savings.
The second question which needs to be answered is "Does the sequential nature of

our tests provided much benefit?"

For any sequential procedure with error probabilities c;;, we have the following
(Simons, 1968).

Proposition 4.4a:

k o
Ya 'lni]
ir o
r=1 jr

D(f.f)

J

E[N] 2 m

I"

Proof 4.4a:
Using Wald’s identity and conditional probabilities, we know that -

I ) f(X) /L8 )
[.-l f(X EINTE [ %o ‘[»--n f(X)

where E/[ - ] denotes the expectation under H; when we accept H,,
forir=1,..k.. By Jensen’s inequality -

4 f( ) * (X))
L] = e L]
and by change or measure -
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Thus, E;N]E[In(EX)V/£X)] 2 ¥, e In(e;/ez;), and the proof is
complete.B

Proposition 4.4a would allow us to measure the effects of boundary
approximation on optimal sample size. However, our real desire is to compare the
sample sizes for our empirical procedure against those of equivalent non-

sequential procedures.

Consider our first simulation where we were faced with the problem of testing,
with X; ~ Normal(u,1), H: p=-0.5 vs. Hy: u=0 vs. H;: u =+0.5. If one were
only testing H, vs. H, with a;,=0,,=0.05, then we would select -

_[®7'(1-0))-07 (@, )1 (1.645--1.645)>
. [6,-6,]2 (-0.5-0)*

n =43.3

To achieve the desired levels of Type I and Type II error. Similarly, we would
have n,;=43.3 and n,;=10.8 to respectively test H, vs. H; and H, vs. H,. Taking
the maximum of these three sample sizes, a non-sequential procedure with
equivalent error probabilities would require at least 44 observations to
differentiate between these three hypotheses. The second half of each table below
presents the average sample sizes that were obtained during simulation. Beside
this is the percentage of savings that this represents over an equivalent non-
sequential procedure. Thus, a figure of 30% would indicate that the sequential
procedure required, on average, only 70% of the observations that an optimal non
sequential procedure would have. The final column presents the percentage of
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decision procedures which had sample sizes below that of an equivalent non
sequential procedure. A figure of 90% would indicate that only one in ten
sequential procedures required a sample size larger than that of a non sequential

procedure with equivalently restricted error probabilities.

Consider the following hypothesis testing situation.
X; ~ Normal(u,1) Hi:pu=-05 vs. H: p=0 vs. H;: p=+0.5

Table 4.1 Least likely errors

Sample % %-
= 0ay=0.05 | a,=a.=0.05 changing . .
Size Savings | tle

o3 =05, =0.01 843 81.7 37.8 413 <0.1 1.5 30.1 305 81

o3 =05, =0.05 773 75.7 363 385 0.1 0.1 30.2 303 81

o =05, =0.10 76.0 71.9 329 364 <0.1 <0.1 304 29.8 81

3= 0,, =020 749 77.8 36.9 399 <0.1 <0.1 30.2 30.3 81

o= 0, =0.30 70.7 81.6 372 44.6 <0.1 0.1 30.1 30.5 81

With these simulations, we attempt to see what effect a change in the least likely
errors will have. In all cases, the observed error rates for «,; and a;, were almost
nil. As a result of this, increases in the theoretical error probabilities had no
consistent effect on either the other error rates, or the average sample sizes.
Because the first row of this table presents what, in practice, might be a fairly
typical situation, it is interesting to note that the observed error rates were all at
least 15% below the theoretical probabilities. However, though conservative, the

procedure still provides a significant sample size savings of about 30%.

-45-



Table 4.2 Increasing probabilities of error when middle hypothesis true

% %~
€y =2y =0.05 changing .

Savings | tile

.= 0;,=0.01 78.8 68.6 393 446 427 88
;= 03, =0.05 844 81.7 37.8 413 30.5 81
o= 03, =0.10 763 775 38.0 40.7 21.0 75
«,=0a;,;=020 932 76.9 41.0 41.1 57 65
.= ;=030 91.5 97.8 39.6 62.6 5.6 65

Within these simulations, we attempt to see the effects of an increase in the
probability of making an incorrect decision when the middle of the three ordered
hypotheses is true. The increase in a,, and a5, has no consistent effect on the
relative error rates that were observed; most were about 40% the size of the
desired probability. However, these increases resulted in a fairly consistent
increase in each of the two complementary error rates. As would be expected, as
these probabilities increase sample sizes are noticeably smaller, however the

relative savings of the sequential procedure over a non sequential one decrease.

Table 4.3 Curving the boundaries when middle hypothesis true

% %~
.= a,;=0.05 changing

Savings | tile

@,.=0.01 ¢;;=0.30 | 66.8 | 990 | 569 | 222 526 | 93
€;=0.03 ;=025 | 789 | 945 | 433 | 274 445 | 90
,,=0.05 2,;=0.20 | 689 | 899 | 372 | 333 372 | 86
«,.=0.08 &;,=0.15 | 89.7 | 726 | 410 | 334 28.5 81
@,=0.10 @,=0.10 | 763 | 775 | 380 | 407 210 | 75

With these simulations, we again vary the probabilities of making an incorrect

decision when the middle hypothesis is true. However, by increasing one of these
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probabilities while decreasing the other, we create varying degrees of curvature in
the S, and S;boundaries. The table shows that as «;, decreases, the relative rate
observed for it increases, while that of its complimentary error decreases.
However, the increase in @,, does not result in consistent decrease in its observed
relative error rate, or an increase in its compliments. It appears as though the
linear approximation only becomes a factor affecting relative error rates at higher
probability levels (>5%). The effect on sample sizes is interesting. As we
proceed down the rows of table 4.3, the total probability of error decreases and
sample sizes should increase. However, the effect on sample size is minimal and,
if anything, decreases. In addition, the relative efficiency of the sequential
procedure over a non sequential decreases quite rapidly. This is in opposition to

the effect of increasing total error rates seen in table 4.2.

Table 4.4 Increasing probabilities or error when middle hypothesis selected

. Sample % Yo-
changing @, =0;,=0.05 | ¢;=a;=0.01
Size Savings | tile

0y =0t5=0.01 723 | 663 | 339 | 344 | <0.1 | <0.1 [ 397 37.1 88

0 =002;=0.05 844 81.7 378 41.3 <0.1 15 30.1 30.5 81

0 =05=0.10 71.6 73.6 342 39.1 <0.1 3.0 255 25.7 75

0oy =0,=0.20 65.1 | 595 | 425 | 444 | 61 | 120 § 215 13.0 61

0 =05;=0.30 533 58.1 356 414 20.9 23.7 18.8 13.0 64

Here, we look at the effects of increasing the probability of incorrectly selecting
the second hypothesis when either the first or third is true. As they increase, their
relative error rates generally decrease. The complimentary error rates remain
consistently around 40%. Interesting change occurs in the «,;and o5, relative
error rates which rise, for the first time, above 10%. As was seen in Table 4.2, the
increasing error probabilities result in decreasing sample sizes, but reductions in

the savings over non sequential procedures.
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Table 4.5 Curving the boundary when middle hypothesis selected

X Sample % Y%~
changing @,=05,=005 | a;=0a;,=0.01 N .
Size Savings | tile

,=0.01 ¢;=0.30 | 53.8 52.8 44.1 40.0 179 <0.1 294 534 81

;=003 a=025 | 854 | 593 | 367 | 423 | 150 | <01 § 267 463 85

2,=0.05 €5=0.20 { 70.6 67.6 529 429 11.6 <0.1 26.0 40.0 86

,,=0.08 ¢,=0.15 | 74.8 68.0 420 316 9.1 <0.1 25.1 325 87

0,=0.10 ¢»=0.10 | 71.6 73.6 34.2 39.1 <0.1 30 255 25.7 87

In this set of simulations, we again change the probability of incorrectly selecting
the second hypothesis when either the first or third is true. Like in table 4.3, we
increase one probability while decreasing the other. However in this situation, the
results only affect the curvature of a single critical region, S,. As in table 4.3, the
changes at lower probability levels do not result in consistent changes in related
relative error rates. But again, decreases at higher levels (>5%) are reflected in
higher relative error rates. As in Table 4.2, decreases in total error probabilities
again result in puzzling decreases in sample size. These decreases again result in
decreases in the relative efficiency of our sequential procedure over non

sequential ones.

Finally, we consider the following hypothesis testing situation -

X; ~ Normal(u,0)

Hi:pu=0,0=1 vs. Hi:p=05,0=1 vs. H:p=0,0=1.5
This hypothesis testing problem differs from the first under consideration in that
the three hypothesis cannot be directly ordered.
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Table 4.6 Non ordered hypotheses, increasing probabilities of error

Sample % %-

e/t | ex/an | enfa; | enfas: | en/ay; | e/ay, . .
Size Savings | tile

o;=0.01 558 211 45.8 3.1 69.3 47.0 40.8 79.6 100
o; =0.05 513 24.1 353 11.6 335 374 276 70.6 99
o;=0.10 515 29.9 41.9 11.6 39.7 374 214 60.4 97
«; =020 543 35.8 422 18.8 41.6 359 143 285 78

The increase in error probabilities has little consistent effect on most of the
observed relative error rates, but does result in a considerable reduction in sample
size. The relative efficiency of our sequential procedure over a non sequential
ones reduces greatly as the error probabilities decrease, but even at high levels, the

savings are substantial.

4.5 Conclusions

The results of the simulation study indicate that our sequential procedure is an
impressive decision maker. It succeeded in providing sample size reductions,
ranging from slight (about 5%) to extremely impressive (almost 80%), while
continuing to restrict error probabilities below the required levels. The linear
boundary region approximations employed resulted in an extremely conservative
test with more than half the relative error rates being less than 50%. The third
degree polynomial approximation which can be developed would hopefully
improve upon this and provide even greater sample size reductions. However, as
discussed in section 4.2, this requires the use of costs of loss to determine the

critical regions of our test, instead of error probabilities that were used.

Considering the simplicity of our sequential procedure, its use should be

considered whenever the multiple hypothesis testing problem presents itself.
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4.5 Future Work

As pointed out in section 4.4, our sequential procedure is, at times, quite
conservative. It would be interesting to investigate the characteristics of a
sequential procedure with boundary regions based upon third degree polynomial
approximations rather than the linear ones that our procedure employed. It is
conjectured that such a procedure would provide a considerable reduction in the

level of conservatism, and further impressive savings in sample size.

Although Wald was able to show that our sequential hypothesis test will, with
probability one, terminate, our simulations show that the number of sampled
observations is at times far greater than that which would be required by an
equivalent non sequential procedure. It is for this reason that when sequential
methods are employed in practice, the sampling process will often be truncated at
some premature limit if a decision has not yet been reached. This practice will
have an effect on the error probabilities of the procedure and these effects will of
course be dependent upon the truncation point. Wald was able to provide crude
upper bounds for these error probabilities (Wald, 1947) and his methods are
directly transferable to our situation. It would be interesting to simulate a
truncated multiple-hypothesis test and assess the accuracy of these bounds. Itis
suspected that, in most situations, the level of “safety” obtained by employing
linear critical region boundary approximations within our sequential procedures
would far exceed the level of “danger” incurred by truncating the procedure at
most reasonable sample sizes. However, this conjecture remains to be

investigated.
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5. Bibliographical Notes

The idea of sufficiency was introduced by Fisher (1925) who is often considered the
founder of modern statistics. Tests based on decision making were established by
Neyman and Pearson (1933), with the more general approach of decision theory
forwarded by Wald (1950). The initial materials in section 2 are standard and can be
found in Lehmann (1986). The proofs and presentations given here are different and
much simpler. Propositions about the monotone likelihood ratio and exponential families
can be found in Karlin and Rubin (1956) and Barndorff-Nielsen (1978) respectively. The
materials of section 2.4 are recent and extend the ideas of unbiasedness to the multiple

hypothesis testing problem.

Section 3 outlines a number of advanced topics and related references include Lehmann

(1986), Cox and Hinkley (1974), Zacks (1971), Reid (1988), and Fraser (1968).

Section 4 discusses the basic theory of sequential testing procedures where Wald (1947)
is the most notable monograph. Important references include Wald and Wolfowitz (1948,
1950), Arrow, Blackwell, and Girshick (1949), and Siegmund (1985). Section 4.2
extends the results to multiple hypotheses cases and builds upon Simons (1968) and
Baum and Veeravalls (1994).
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Appendix A - Simulation Program Code

SAS program to simulate sequential multiple hypothesis tests and produce summary of
results.

LIBNAME THESIS "C\THESISY;

%LET ALPHA12=0.01;

%LET ALPHA13=0.01;

%LET ALPHA21=0.01;

%LET ALPHA23=0.01;

%LET ALPHA31=0.01;

%LET ALPHA32=0.01;

%LET MU1=0;  %LET SIGMA1=1;
%LET MU2=0.5; %LET SIGMA2=1;
%LET MU3=0; %LET SIGMA3=1.5;
%LET CNT1=200;

%LET CNT2=50;

DATA BOUNDARY;
B12X=(1-&ALPHA12.)/(1-&ALPHA12 +&ALPHA21)); B12Y=1-B12X; B12Z=0;
B21X=&ALPHA12./(1+&ALPHA12.-&8ALPHA21.); B21Y=1-B21X; B212=0;
B13X=(1-&ALPHA13.)/(1-&ALPHA13.+8ALPHA31.); B13Y=0; B13Z=1-B13X;
B31X=&ALPHA13./(1+&ALPHA13.-&ALPHA31.); B31Y=0; B31Z=1-B31X;
B23X=0; B23Y=(1-&ALPHA23.)/(1-&4ALPHA23 +&ALPHA32); B23Z=1-B23Y;
B32X=0; B32Y=8ALPHA23./(1+&ALPHA23.-8ALPHA32); B32Z=1-B32Y;
OUTPUT;

RUN;

%MACRO TRIALS(COUNTER1,COUNTER2);
%DO I=1 %TO &COUNTERH1.;

DATA THESIS.SIM1(KEEP=H CHOICE N);
SET BOUNDARY;
FORMAT H CHOICE 1. N3.;
SEED=-1; PI=ARCSIN(1)*2;
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%D0 J=1 %TO &COUNTER2.;
CALL RANTBL(SEED, 1/3,1/3,1/3,H);
SELECT(H);
WHEN(1) DO;
MU=&MU1.; SIGMA=&SIGMA1.;
END; /* WHEN H=1*
WHEN(2) DO;
MU=&MU2.; SIGMA=&SIGMA2.;
END; /" WHEN H=2
WHEN(3) DO;
MU=&MU3.; SIGMA=&SIGMA3.;
END; /* WHEN H=3 */
END; /* SELECTH ¥
FLAG=0; P1=1/3;P2=1/3;P3=1/3; N=0;
DO WHILE(NOT(FLAG));
OBS=SIGMA*NORMAL(SEED)+MU; N=N+1;
TEMP1=P1*1/(SQRT(2*PI)*&SIGMA1.)*EXP(-(((OBS-&MU1.)/&SIGMA1.)™2)/2);
TEMP2=P2*1/(SQRT(2"P!)*&SIGMA2.)*EXP(-(((OBS-&MU2.)/&SIGMA2.)**2)/2);
TEMP3=P3*1/(SQRT(2*PI)*&SIGMA3.)*EXP(-(((OBS-&MU3.)/&SIGMA3.)"*2)/2);
P1=TEMP1/(TEMP1+TEMP2+TEMP3); '
P2=TEMP2/(TEMP1+TEMP2+TEMP3);
P3=TEMP3/(TEMP1+TEMP2+TEMP3);
S1=(P1-B12X-(B13X-B12X)*(P3-0)/(B13Z-0))/(P1-1-(B13X-B12X)*(P3-0)/(B13Z-0));
X1=P1+(1-P1)*S1; Y1=P3+(0-P3)*S1;
DIST1=SQRT((P1-1)*2+(P3-0)*2); TEST1=SQRT((X1-1)"2+(Y1-0)*"2);
IF DIST1<TEST1 THEN DO;
FLAG=1; CHOICE=1;
END; /*IF INSIDE CRITICAL REGION 1 */
§2=(P2-823Y-(B21Y-B23Y)*(P1-0)/(B21X-0))/(P2-1-(B21Y-B23Y)*(P1-0)/(B21X-0));
X2=P2+(1-P2)*S2; Y2=P1+(0-P1)*S2;
DIST2=SQRT((P2-1)*"2+(P1-0)**2); TEST2=SQRT((X2-1)"*2+(Y2-0)**2);
IF DIST2<TEST2 THEN DO;
FLAG=1; CHOICE=2;
END; / IF INSIDE CRITICAL REGION 2 */
S3=(P3-B312-(B32Z-B312)*(P2-0)/(B32Y-0))/(P3-1-(B322-B312)*(P2-0)/(B32Y-0));
X3=P3+(1-P3)*S3; Y3=P2+(0-P2)*S3;
DIST3=SQRT((P3-1)"2+(P2-0)"*2); TEST3=SQRT((X3-1)*2+(Y3-0)**2);
IF DIST3<TEST3 THEN DO;



FLAG=1; CHOICE=3;
END; /* IF INSIDE CRITICAL REGION 3 */
END; / DO WHILE DECISION HAS NOT BEEN MADE */
OUTPUT;
%END; /DO LOOP */
RUN;

%IF &1.=1 %THEN %DO;
DATA THESIS.SUMM3;
SET THESIS.SIMT1;
%END:; /* CREATE DATA SET IF FIRST SET OF ITERATIONS */
%ELSE %DO;
DATA THESIS.SUMMS3;
SET THESIS.SUMM3 THESIS.SIM1;
%END; "ELSE APPEND TO PREVIOUS SET OF ITERATIONS */
%END; /* DO LOOP OF ITERATIONS */

%MEND; /* END OF MACRO PROCEDURE TRIALS */

%TRIALS(&CNT1,&CNT2);
RUN;

PROC FREQ DATA=THESIS.SUMMS3;
TABLES H*CHOICE / NOCOL NOPERCENT:;
RUN; /* FREQUENCY COUNT OF TRUE HYPOTHESIS, AND DECISION REACHED ¥/

PROC SORT DATA=THESIS.SUMM3;
B8Y H CHOICE;

PROC MEANS DATA=THESIS.SUMM3;
BY H CHOICE;
VAR N;

RUN; /"SAMPLE SIZE COUNTS */

PROC UNIVARIATE DATA=THESIS.SUMM3;

VAR N;

OUTPUT OUT=0UT1 PCTLPTS=50 TO 100 PCTLPRE=PERC;
RUN; / DISTRIBUTION OF SAMPLE SIZES */

-56-



PROC PRINT DATA=0UT1;
RUN;
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