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CHAPTER ONE \' SRR e

3 OVERVIEW A

e ' B ¢ - ‘ _ ! S
" S ‘ b S
§1. Introduction : ' ‘ i”f> .

~ . ‘ . i PR
investigated. . _ ,.-,;\‘ .‘ f Q nj L i*
The present chapter is inrended to give an OVerview of

the remainder of the study. In this seetion, we ahall give the 7

definition of a hypergraph end introduce eome of the beeic coneeota
and terminology. In the four remaining sections we éQell
introduce the specific problems in hypergraph theory which ate
dealt with in the thesis. All of our main results will ‘be stated
Vin Chapter One the proofs being deferred to the latex chaptere.

: : St
. We attempt to minimize\ ny confusion this may cause by restating

."'1

:each result when its proof 18 presented and numbering 1t the same

way as. in Chapter One. ;'vf

/

R

L
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" maximal connoctod nubgraph of an n—graph will be called a eo!gonent. r

ok

be dxsso m‘t

M if F consists of ‘all n-oubuth of V. Ve uhnll donou ‘this "-.

Y4

graph by v or tm1",

If F' is a non-onpty subset ot an n—grnph F chon F' iu-”w

) 0 Vl

satd" to: be a lubgrogh of F. 1f F' 1- a proper ndb-et ot F then F -

‘10 said to bengm_r__wm_ot F. ’ ' = },?

v

; Two- n-guph- F and F' are uih to bo 1somo nhic 1! thoto
ox:lnq‘s a One-ons !nno:ion 0 !m UF ofh;o MF' “moh nhnt l(?):ﬁ*' AfE.

I'cf bthorw:t.u F apd F' dre gon—i-ﬂ-_gh:lc. ' : .

An n~grnph is oaid to gonnoctod 1! 1t is inpoohiblq to

"'partition the vottex qet into*Fwo disjoint non—ompcy sets A and 3 |

- such that if !‘ is'an edge of the graph, then either FcA or PeB. A

Le? Fl‘{rl'-o ..F } be an. nl"graph and Fz.{r1,oo- ,'t} b‘
an nz—graph. Tho (n1+n2)-graph F'(FI""’Ft} where F -F uF v, Isiss,

is said to be«obtained by nbutting F1 to Fa. Thﬁ'“”° 1"1Fh$ "“*‘t ’

Thete ia one apecial notational convention which we_shall

E follow throughout. The letter o vill always denote .4 positive const-

~ ant. The numerical value of e will not neceasarily be the sano at

I

\fench occurences Occastonally e will depend on one or nore paranetera

j%j{which are: fixed throqghout the immedinte diacusaion. Hhen there 1s RN




"o .
-u‘r.pix‘ :h«d 1e they
n t?i:nph‘io mald : ! ‘% ber bare “o‘ ot !
pou:lt:lvc integer !ur 'vhich cm ‘sone vay pt qnlotshx thn ! "
vertices of the Qt‘l'h 11\ 4 coluu 0 ghnt no edgé 301&0 '?‘tucu “ KA :
of th. same eolor. mu muon mnorﬂino o:ln‘i mturnl Qay to )
| hyper'raph-. no "'_'(, . * §~ ¢ o_y" . ¢ =0 ‘ -
‘ ‘ Bot-’].ly. an u—suph F 1s n&!.d‘ ‘fof‘ h. r-co;g;ablg 1f © 1
r.hcr‘ q'utn a function 0 UF-»{I....,r} luch th.tt locr)lazo !or .n o, Q
PeF We calll ¢ mg__ggg_ngof F.,F 1a r-ch:mm: FTR TR SR
‘ r-colorabla but not (r-I)"WV‘ S¥al 1 und we then call £ the chro-ntic
Mof F. F :ll - 1f it u ;ghwti&c‘n;tf all 1:0 i ’
‘ g o . A
»va-r.mnmm are: (n-%)wwh. F s 5:_3._:_5___ 11f 16 1e SIS
mdttul for m o Lo al Toe o o= “ '
o o
Y-
.
¢t -
) E
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f

: . - :
Q,However no such characterization has been found and, in fsct,

-
o r

recent reSults(see, for example, Simonovits([SZ]) and Toft([TZ]))

Kal

indicate that/phe 4—critica1 Z—graph v be quite cOmplicated and -
that perhaps’ nd simple characterization is possible.

o

, - By an. (m,n,r);gragh-we shall mean an r—critical n-graph

L

on m vertices. We shall investigate various, problems concerning

(myn,r)-graphs.

§2 1. The Existen!e Problem

There are two Questions which arise. Q o L

KA) Eor given integers n and r, for which integers m do (m,n,r)
. . e . 14,‘qq‘

—graphs exist?

| ]

(B) For given integers n and r, for which integers m do 1inear\

.

(myn,r)- graphs exist?

e
-3

PO

For Z-graphs, and ‘here the two problems coincide, (m,2 3)
—graphs exist only when m>3 is odd. This is just a restatement of
the fact that the only 3—critical 2fgraphs are thegodd circuits.
For rz4, Dirsc([DZJ)'prOyéd that (m,2,r)-graphs exist onlynghen
m=r or m>r+2 ’ - |

For nz3, let ~?l; “ —-

M(n,r)'(n-l)(r-1)+1 R e

‘It 1s easy to verify that [M(n,r)] is r—critical Recently, it
has been shown that (m,n,r)—graohs %xist for all sz(n,r) This
was done by Abbott and Hanson([AB]) for the case r=3 and by -
Toft([T3]) for r>4 Since (m,n,r)~graphs do not exist for

o o -

s m<M(n,r9, problem (A) has been solved completely.

.qm‘



'—graphs exist for any value of m. ' -

w

The constructions of Toft, Abbott and thson do not

'7‘yie1d linear n—graphs, 8o’ that their work sheds no - light on’

. problem (B).-A priori it is‘not obvious whether linear (m;n,r) /

/
jo

The question seems to have been first raised by Gallai.
-~

dErdSs and Hajnal([E6]) mention the problem and point out’ that the

"Example 1 in Appendix 1. - A

Steiner triple system on 7 points is an example of a hne&r (Z3 3)

s o

—graph, but give no other examples. This graph is given as -

<
N

{f,
Proofs of the e§istence of . linear ﬁw,n,r)—graphs for‘

each pair of integers n and r, nas r23, and some ﬁﬂteger m, were

o

.given.by several authors at about the same . time.‘A simple proof .

based on Ramsey 8 Theorem(to be introduced in 53) was given\by
Ahbott([AZ]) for/the case n=3 and his proof easily generalizes

to r24; ther proofs were given by Erdos and HajnalQ[E7]),

’Lovész([Lé]) and Hales and. Jewett([HZ]) In all of these papers,,

the n—graphs constructed are not necessarily critical but since
any r-chromatic n—graph contains an r—critical subgraph, there is
I . o / : . !

no problem. e N

.//

'f? " The papers of Lovész, Erdés and Hajnal referred to above

» also establish the existence of . arbitrarily large integers m for

‘ which 1inear (m,n,r)—graphs exist.»A simple proof of this is given

/
by Abbott([A7]). 1n the case r=3 4' - f' o 1 R .“uf!!

©

5w§§;f‘main.resulteis the'following'pr - i /

7

NS It -'4-}';- : ) \

o

- g



O E .- R
o - - . .

Theor'em 2[1 For n>3 and r>3, there exists a least integer M*(n,r)
=

such t:hat for m.M*(n,r) a 1inear (m,n,r)—graph exists. I
5.

o .v . i -

(

The determination of ‘the numbers M*(n,r) seems to be very,

‘difficult, and we have succeeded :Ln determining only one value. We

 state th:ls as L

Theorem 2.2. M*(3,3)=9.

» o °
. ) <
“

\ Evem the next non—trivial values, M (3, 4) and M*(4, 3)
seem to be out of reach. The main difficulty lies in finding aetual '
examples of linear (m,n,r)- graphs. We have been able to obtain@_
followifig bounds: o S o N

M*(3;4)<8928 ST
and _ | ‘ "- |
- M (4, 3)<62835

but have no geason to believe that these are sharp.

R

§2.2. The Enumeration Problem

5

Once the ex:lstence of at least one’ (m,n,r)—graph has been R
‘ .established it is natural to ask how many such graléhs are there(to
. within isomorphism) We define S(m,n,r) to be the number ‘of non-

isomorphic It m~, n, r)-rgraphs and S* ( m, n, r) sim:llarly for linear ,‘_’ '
AY

(m, n_, ») j-grephs . Cleer.ly iy

A s . )

2 . . : T "—.-'



. . \ E - Ry
’ 'S(Zm,2,3) = 0 o o GJ P
and S ~ e f'* 1 .f'i S SRR .
e . ' . N 7'\ . ) . . - a " ‘ R .
S(2m+1,z =1 - e R
Also, it is not difficult to Verify that the qnly linear

(?,3;3)—graph is the graph of anmple J in Appendix 1, 80" that

5%(7,3,3) = 1. oo LT

. AP _ o 4. R Qv ©

We are concerned with the cdhe where n=3 and r23 are’
| b
i

fixed and m is large.‘We obtain the following lowe bound for

Snp,n,r),

-

‘ Theorem 2 3. For n23 and r23, thete exists a constant c>1 : \ /v
, N DTN . S

depending on n and r,.such that

S(m,n;r) >'o_'
for sufficiently iarge.m. : : i T o

o
ot

For linear graphs, -the- situation is not quite as satisfactory

as we can only prove that the 1ower bound holds for the cases

3

n=3 and 4. - = o
‘a,.v .“3. .
Theorem 2.4.. For'n=3 or 4 and»r23,;theie'exists a,oonstant c>1;
{ o S T L »
depending on n and r, such that o ' ’
S*(m,n,r) > cm Ty
.Ahﬂfor sufficiently large ms 7_“ .‘ ‘f: '}‘i;e~. L :‘f
,/’



' ! ot B R, ] :‘j‘, » “"‘ﬂ, . t' T ,'l R :“«TH.Q‘ ., ""...
However, we believe that the 1ower bound halds for,the
caees n25 The main difficulty in supplyinp a proof liea again

in finding’actual-examples of_linear (m,l r)—graphsp 'j’ : v‘;;:,ﬁf_f_iif[’l¥ g

B R ‘ o LT TR

2 ' <o c ! N T
. . ot ! . . L . "
3 : . . - . » KT . - T
; . . ' - C . \
Wv . . ‘ e . B . '

§2.3. An Extremal Problem -+ o en oo T

~

. . . .

e e S

B

There are numerOus extremal problems that can be raised
W >\

in connection with ﬁw,n,r)-graphs and many of‘these%have been V»_;' ‘f?]}f;rf
'investigated in recent years. We restrict our attention to the ‘-}t b
problem of estimating the least number of edggs wn Ow,n,r)-graph T;Yf'ﬂi; 5

= F T T . Sy NG
may contain. T T e : SRS B A B

s E(in‘f;n,‘r)\‘f nin’{lFl:Fi,s en‘(%\n,\ri).'—‘gre%.}‘ S
and . o SN
- e Ebur) , &i o \\\gg\;ifi

Let E*ﬁn,n,r) and E*(n,r) be similarly defined for 1inear (m,ﬁ}ﬁl LA

i

- —~graphs. S - R . A U

Our firetkreSult'is.somewhat spedial. It is eaey’tcVeee

that . o T S

Erzn-1,n,3) [2:'“],‘1,’f ol e e
’énd the result {1 .i;, v”?“-f_‘ ' o
1 E(2n 7,8) = E(2n-1 n,3)

' is implicitly contained in a paper of Abbott and Hanson([AS]) Erdos

R
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'Onehof‘the most impbrtant cheorems in cOmbina:orial , e
8 ! . o

ol
' mathematics is. the theorem of Ramaey([Rl]) which can be fornnlated

' \

8 follows. ‘ f T b% gt

NS Q&" _’“’\g

Ramsey_s Theotem Let r>2 and kl""’k enZﬂ. Thete exists a least

‘integer R(klu..., 1”,.n) such that if F 13 a complete n—graph with :

a IUffeR(k;,.;L,k n), then F is not (k1,...,k ) colorable.~«_ P

¢

" The ptoof of/ehis theoreﬁ 13 readily available in the

-\
literature(see for example [RA]) and is omitted.

‘v'
‘s a

By a (k ‘k 'n)- ra"hvis meant a complete'

Ry

(kz,.,.vk ) - colorable n~graph. A.(k ,..,, ,n)—graph F. 13 maximal ]

}if lUFI-R(kJ,..., ,n) The numbers R(k n) are called the e,ébwi:

j,ooo’r’
Ramsey numbers. T C e e if\' S

PP

A eentral problém has long been the evaluation or -

-2

estimation of the Ramsey numbers. In particular, ‘the case n—2 has :
~been stddied extensively by various authors(see [Kl] and

7
S Lo

referencés given there) While several non-trivial Ramsey gumbers

for 2~graphs are known, and good bounds are available for several-; Q

others, it is remarkable that not even one non—trivial Ramsey _\L 'g5ij

. number is known for n—graphs‘whete nzs. .{ S '”{,' o u 'a“f';’

3
a

L §3.1. Lower'bounds'fof'R(EQZ;3), -.,;5;;.3 SRR »3_ﬂffm»'

In this subsection, we conSidet the problem of detetmining o

A

. lower bounds for the Ramsey numbers R(k,l 3). Since we are dealing T 39_;




4

. The upper bounﬂ‘ts due to Giraud([Gk]) and the lower bou

) . ‘ i o © 14
I - ' S

! . I ot
g Lo N Wi

exculsively with 3~-graphs, we shall suppress the par&uetér 3 in
[
this subsection. . » R ‘ _.g f

';ﬁg-lt ie clear that .‘;T{ . . o
R(k, 1)=R(1,k)

CRCK, 3);k-i;"' : : -

- 5 B .«

No non-trivial values of R(k,1) have been determdned " Even the

i

value of R(4, 4) seems elusive. Bere, it 1s knawn that
‘(3.1) : »7_125R(;;4)s14.’f* | |

'to"

Isbell([lZ]) Msny other authors(see [K2] and references given

there) have devoted considerable effort to the problem.

* The best known 1ower bound for R(k k) is the following :

due to ErdUs([EZ])
G2 L " R(k, k)>ck2(k 3k)/6 - ',_‘ ) ‘5 IR e

v ‘ o VA T
The proof of (3. 2) uses non—constructive probabilistic methods.
Consequently, 1t is of some 1ntere3t to obtain 1ower bounds for.

R{k Z) by means/of explicit constructions, even though these bounds

are weaker than the ‘one given by (3. 2).

Ihe following results have been obtained by constructive

- methodﬂ“'xalbfletsch proved in_[K3] that




\
‘0

(3 3) R(k ZJZR(k Z-q)+R(k—1 1,

from which 4t can bé deduced ;hat

« "
. " y

/

Rk, k) 5od /. .

(3.4)
!\\

Abbott and Williams([AlZ]) proved\that .

(3.5 R(k;ZJZSR(k-z,z;J)‘Ak

.-, and

Lemma 3.1. For k,1 Su, V23, e o ‘

(3.6) - . R(k+u—2,Z+v-2)ZR(k,ZJR(u,v). o R
3 o o . \* Lo A

A
-y

!

Lemma 3.1 was pbtained 1ndependgnt1y by Irving([Il]). oy o

[ :

! ‘ - ' - .
. . P Lel

We shall prove two additional recurrence ingqgﬁlities

sV s . AN
B RIS

for R(k,1). : — - T P

“~ Oheorem 3.2. For‘k Z;u;v23;‘ksv,
L o k-3
3.7) . R(ktu-2,14+v-2) 2 } R(k-z,lf¢)R(u+¢,v-t)
z=0

- )

 Theorem 3. 3. For k%4 and 225

(3.8) ‘ R(k Z)ZR(k Z—2)£R(ké»,l-1). ‘

A

\ *\;_ . These results supercede (3.6) ;ndf(3.5):QT£?ingbl=kf1:h\
(3. 8), we. get } : i,,}, R _'f" i “fx_3¢ el ‘A‘ e
A



RO, k+1)2R (K, k=104 3R (k= 1, K )mdR(K=1,K),

which leads to

‘R( k',?t.) .>04'If,\.‘ N '

bounds for R(kz,..., k.:8) )
' P k a...ak =k

) &




,"’

The best known lower bound for R(k:r;3) 11 “the following

one, due 1ndeﬁ5ﬁd¢n:1y to Ahbott([ASl) and Irving(llll)
3.9 R(k:r;s) uzp(da:p(arloglog k));

The best 'known ﬁppei- So‘und. on the other hand, is the fnlidﬂn. onp

due to Erdus and Rado([E91);

(3.10) | R(E:r;s)keap(azp(orkzoéﬁr)).

With :agard to !:ho gap between . 9) and (3. 10), we »

‘ remrk that it may not ba easy ‘to tighten in any significunt R

manner the way in which che boundl depcnd upon r. The reas n for
\

‘this is that- thi uppcr bound giv-n by (3.10) was obtainéd y

Erdua and Rado by mns of their no-called "rmificatfon uh:

\

One of the featurea of this mzthod is that any upper .bound.! for
f
R(k:r;n-1) autmticany yielda an upper bound for R(k r,n) The

bound given by (3 10) is obtained by their method from the

’
Al

following result of- Skolem([s3]) PR ?

(3'.1’1)‘ . :R(k:r;z»'@‘(crkl'og r), ‘

g0 that the term rlog r in (3 10) 1s inherited from (3.1D). Now

any 1uprovement in (3. 11) will tffect a similar 1mprovement 1n
L &

(3. 10) 30Wevet, thete has been no significant inptovement in (3 11)

during the past forty years.‘ f* o Lo ‘\' . R

P

/
z How r, the manner in which R(k r,s) dspends up?n k nay

L
o

' be sharpened considgp##ly.‘qu main result is T

’,. - _‘ ’{, .
) SN N : 3 . . 3

e



S

e o \ !

Theorem 3.4. For raf and for ‘-ut_uéuﬁuy lavge k, ‘; e
RCk:r;3)>explazplork)). ~"=o '

0, \ - 1o ' e .
) ) 0 S 0

Thoem 3.6 will in fact be proved by puttin. togcmr.
s in the right vay, a Mt\ﬂ' robuﬁm m m alr% 40 the

literature. S N L .

-
L]

-

0 a
N

54, overing Humbers - o .

- ™

“

)
A subset A ot th- vertox n: v of a 3-graph G is called ‘

o

a cmr'l.ns ut: of G 1f 3 p V-A is ldjucent to u-c

T ‘l‘hin notion gonznn A ‘

F be an n-graph aud let v-UF. ﬁu ﬁ-y ‘that a vorcex veV covers an

gt} )

(n-I)-lublet s of :’,V"if {vNSeF'. I.ct; ‘A, ncv. We iayomac A covers B

that A 13 %“vedng aeg of F. 'nu gverinlnuuber B(F) of F is v ©
.the ninimal n:lze of tta cavtring sets. ‘

g -
te-ltk thl.t t:hc ;trﬁmlogy in the"lir.er&turu 18 not 4

f(m]) usu ubaorption nui)er and Liu o

erg wh:l.le Barary([ﬂk]) definu sevetal

~
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particular on the degrees of its vertices‘and'(n—i)—subsets of its

. vertex set. Our first.main result is the folloving:O

o . @
o

Theorem 4.1. Let e. denote the maximal degree of the vertices of an

.—graph Fonm verticQsQand 1et g ]denote the minimai degree of the

(n—l)—8ubsets of UF Let: g>0. Then

(4.1)

< B(F) < :
' . (.‘7 °g+4-1 T . 7 o

a-

Because of the many parametérs involved it may not be -
easy to see how the bounds for B(F) given byq(A 1) compare. It may

- therefore be.worthwhile if ‘we specialize,(4.1) to the case n=2 and,

take, for definiteness, e~g~m3/4.:Thus we .are co?sidering‘a class

" of Z—graphs which are nearly regular ‘and in which the degree o@
each vertex is 'mgderately 1arge" but not "too large . Theorem 1

‘then Bhows that the covering numben:of any such graph F satisfies’
T b

.2 - (1+o(1))m1(4

<SfF)<cm1/4Zog m;

e ' o ’ S o

'so that the bounds differ by a factor of log m.

@

Simple examples show Ehat the 1ower bound for B.(FY given

by (4.1) cannot in general be improved This is best seen by
1/4

considering (4 2).. Ifiwe take ? to be tﬁe union of [m ] vertex “

disjoint copies of Cm3/4]2, we,get B(F) (1+o(1))m /4.

It Ls natural to ask, therefore, whether the upper bound N

‘\

‘given by (4 1) can be improved Our second main result states that,

in effect, ‘no essential improvement is possible in the cases n—2 3

9

,,,(_znog(s(n% mo.

19.
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in the sense thaw there exist graphs F whose covering number B(F)

differs from the upper bound in (4 1) only by a constant factor.

_In particular, for the cldss of 2-graphs: described in the paragraph

|
. following Theorem 4 1, it will follow from our results that for a

~large number of ‘these graphs one has B(F))cm 1/4 “log m.

-
N

For n>4 we are unable to show that thgiupper bound given

by (4 1) is best possible. However, we shall give some 1imitstions

as- to what improvements may be achieved. SR ¥

A | . . . R : o
o

We shall prove, by probsbilistic methods, the existence

Is

of a class of regular n—graphs on m vertices having the properties

:to satisfy will be specified in Chapter Four. In the following F._ -

.

L]

listed in the 5heorems below. We call these graphs [m,n,p]—grsphs.

We do not specify p at present but merely mention that it will be

'interpreted as a probability. The precise conditions which p has

o

theorems, "almost all" means uhat the probability of the event in =

.’will ) mean that the probability of the event in question remsins

‘bounded away from 0 as m tends«to infinity.

o

Theorem 4 2. For each n22 and evgry 6>0 the'degree d of almostjall
[m,n,p]—graphs satisfies el S » ' | )
L, (128) [’"’ ]p<ds(1+a)[ ] o

‘o

Theorem 4.3. For each n22, the covering number of almost all [m,n,p]

L.
o

-graphs F satisfies

20

.question tends to 1 as m tends to infinity. 'With pOBitive Probability““



8(F) > (clog m)/p. '//,

o / 1 ’ )
Theorem 4:4.LThe'covériné number of almost all [nﬂg,p]—graphs
- satisfies " T ‘ | N L ;

(4.3) (elldg'm)/p < Q(F) < (eylog m)/p. ’

v -
-

We remark that the 1ower Bound given by (4. /toéether

with the as yet unspecified conditions on Ps co cides, in order\of
magnitude, with the upper-bound afforded by
‘the upper, bound given by (4 1) cannot be mproved in the case of !
“p-graphs. | ; S P
’ For n=3;tthe situation isﬁqot quite aSusatisfaetory‘in’

o .

the sensegthet»we must repl fe."almost all" by "with positive

probability".
o e :

B

’ Theorem 4 5. With positive probability the degree d of. e&ph

2—subset of the ‘vertex set 6% an [m, ,p]-graph satisfies, for
every.6>o, . _
d>'(1-8)mp. - - ¥
IR

»Theorem 4, 6 With positive probability, the covering number of an

[m, ,p]—graph F satisfieS':

S

(cllog m)/p < B(F) < (ozlog m)/p...

5. :

K

/(.1) This shows that v‘

A remark similsr togthe;qne'mede*efter'the‘statement'ofv, |

3 §

\a
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4

T

Theorem 4.4 may be made here, 80 | that for n—3, the upper ‘bound

for B(F) afforded by . 1) cannot be improved.xq'

’ ey

0

For n24 our methods break down The difficulty seems to

\

_lie in obtaining a suitable extension of Theo:em 4 53 that is, ‘

obtaining information concerning the degree of the (n-l)—subsets-

ﬂafter the pmoof of Theorem 4.5 has been ﬂiven. In any

limitation as’ to how 1arge an improvement one'may hope

‘of the vertex set. Ve shall make a few more remarks about this

/

‘case, a-

to attain

,0»

s’ provided by Theorem 4. 3.‘(In terms of p, the lower bound for

=

B(F) provided by (4‘1) is of the order of. magnitude c/p )

! N 4 N

we remark also that the definition of covering nuuber

we have.used is not the only posstble one. One may for

‘say that a vertex covers another if both belong to the

example

same edge,’

and a subset of . the vertices is a covering set if every other‘

'-vertex is cpvered by some vertex in the set. This—coin

x result fails to hold in this case.‘

cides with R

our definition in ﬁhe case n—Z For this problem we can prove-an

e
the upper bound for the covering number thus obtained

S

s

vanalogue of Theorem 4 1, and show by probabilistic methods that

cannot be

improved in the casq where n is even. Curiously, we. cannot do this e

if n is odd although there is ho reason to. believe that the

22



§5. Property B(»,8)

The final aspect of hypergrsph theory which we shall 1

consider in this theais i& a modificetion bf the notion ;

"ch‘omstic

- number. Eo motivate tﬁg ides, consider the following claSSicel jr7ﬂ‘; R

/__,_,_/—

‘ theorem of van der Wherden([W1J, see also [L1]§ in combinatorial

. T e

number theory: - . - S R e

Van der Waerden s Theorem Given integers r and l there correspOndsi:p”- B

R

any manner into » sets, st 1east one of the sets cont ins an 'i,f:f‘”ﬂ
L .“(; . :“ e 'rﬁ o

arithmetic progression of’length Z ‘;_ L

A moment s feflection shows that van der Wserden 8 i,‘imtw'

Ca { " LA

theorem is equivalent to the following, There exists a least

integer W such that iva is the hypergraph with"ertex(set

{1,...,W} ani edge set(consisting of the Z-subsets whose elementsj;

N form an arithmetic progression;ﬂthen,thevchromstic :umber of G

18 at least r+1 In fact, many slaasical‘;

heoremsiin combinatorial e

mathematics can be described in ‘erms/of chromat c number‘:of'"
hypergraphs(see Fcl] and [HZ] Eor a discussion' f this) _iu‘iji ::%figjf
.i Erdps([FlOT) has as7ed whether sbme ew light may beished

on van: der Waerden 8 theorem ?



of which belong to the same set What can be eaid nbout W(A;r,l)?~

([FlOﬂ appeared ing1973, the question waaﬁ“aised By ErdUs 1n 1963,‘ 7'\;¥_‘Fy




number X>1 (This in. the case of the van der,Wae‘den problem 13 the }

o

B(n,r,s) 1n :he case where n"an ,s;tendlto nfinity

®




.- but was not ablh ‘rd‘évaluate.
et

not ableto dothis




-. CHAPTER TWO .
' CHROMATIG NUMBERS

N
-0

B 3 ¥ The Existencé Problem .

SRR stated 1n §2 1 of Chapter ’ve. A'l'he proof of Theorem 2, l id long and

Lemma 2 9. For n’23 and P>,3 , a 1:I.near (m,n,r)—graph exiats for
S A

some integer m. - %L

Pt()of' \ Lec F be a completé (n-1)-graph wit:h IUF|>R(n -1; n-1)

Let G be at:he n-graph uith UG-F that 18, the vertic

SN edges of F and G-{G .Kc\}F |K[=n} where ¢ -{FeF FeK'

a




o '1s easily verified that F is 1:Lnear and._ het

-
-

The second lemmaeaiso gepegeliges'a result of Abbott(EA?])e

Lemma 2. 10. Let. n21 and rzl. Let Z be an inteper such that a

}mlinear { l,n,r)-graph G exists. For 1<is<l, let m. be ‘an 1nteger suth

"thet a linea'r (m.,n,z‘-f-l)-graph F exist:s. Then thete exists a

o

. linear (m,n,z‘f-l)—graph whete m=1~hm1+. . .-an.

‘n.‘ , 5 ’ o
- . ' e

c‘Prodf:“"-:‘ Let UG—{aI,.. .,az} Let V.-UF and let the V's,z be paiz:wise
disjoint. Let F be a fixed edge of F and vy fixed vertex of F..
‘ Let: v zbe a vertex such‘that v, 1s not: :ln any of the V's. Let

-~{v .})u{v}

'\Is'le with F. replacedb_y K-, ge

.- replaced by v., so that F conteins a t;phic to G It:

 |UF =

e . : 0'~"

We do this in thtee steps. c

that F s (ﬂ-.‘l)-»critical.

We need show R '

28



. w:UF+{1,...,r} by:

\\.‘ ' .
N . e N

&

Step 2. F 1s not pr—cblorable

‘Supopose F has an r—-c0101"‘1ng y,‘. Then ¢y is also an ﬁ-coler'— '
1ng of F.-{F .} for each , Jsisl. Clearly we nust have' 'p(v)#w(vi')“.-'
Thus ¢ is an (r—.‘l)-coloting of t:he n-graph obt:ained fron G by

replacing a, by V.. Thia 13 a conu-adiction a:lnce 6 1' r-rchro’ltim

. Step 3. All auraphs of F are r—-colorable
" We need only conside&;he ogb"graphs of! tshe fom F-{
for FeF. We consider two cases. ‘ o \’7 B

'-(i) F*-{v ,...,v Lwhere G-{a. J....aa _}___
“1 “1 _ 1

* Since G is. r—ct:l.tical G-{G} has an (z'-I)-
Let y, be an r—-coloring of F--{F } such that: Jb (v_.':"_
"’(*)= R v

It 1s easily verified that ¥' is an r—coloring of F-{F}

| (ii) F-K or FeF -{F } for some gjyls,zsl
) 5’;&‘ . 0 .

o

. . PR g e g
Since G is r—critical, G has -an r—colpring 6 such t:hat

¢G(a )9‘¢G(x) for any xe G xs‘e-.Let * be an r-color:l.n of F —{F }

R







' of F {F }. Since F 1a 3—crit1ca1, l&(? )|=1 Define ¥ ':UG+{1,2} by.‘

? K )
zrero eleminta of tha(iwo. The mappings : induce « nnpping ¢ from
F;u.. uF 7 on;o the non—anro elﬁnon:n of 0. Let ‘ v

J-{ch u...qu c(x) is in the Jth column of Q}.
Clearly each Kﬁ is an n-set.
Let F be the n-gtaph conlilting of all the ngnc of F
with F. replaced by K.. It.ia oalily vorifiﬂ"zhht F is linear and _

:h.c |UF| .- We need lhow that F is 3-critical. We do this 1n three

<
<

N

‘tep‘ . ’ . ' c -\ i ' ) W, * ":;;4..,':: - \ )

_
A

Since Fi is"S—critical, Fi—{Fi} has a 2-coloring Vg

Step 1. F is 3-colorable

Defines . :UF,+{1,3,3} by: \ .
: _ . , R
wi(:r’ 1f x¢H.

kA
¢1: (x)' , y G

3"‘,Q 1if xeH,. .

Clearly the mappings ¢ induce a 3—coloring of . F
@# . .

|

Step i F is not Z-colorable

Suppose F has a Z—coloring t@ ‘Then R 13 also a 2—color1ns

MY )-wt FY ,
for 1sjsl. Since G is 3-chromatic, there exiete G, eG such that o )

lw (e )|=1. It followsrthat |¢(x |=1. This 1s a contradiction.;-n,

«Step.3.fﬂlif;ub" /¥“~ ig.m,wﬁjJ =

[We neéd



2

FeF. Ve consider two cases:
(1) P=K, for some t. 1stsl : o ‘ o
' sm&. (¢} u 3-cr1t1u1. G—(G ) has a 3~coloring ¢'. Let
¥y bg a 8—color1ng of Fi'"i ' -uch that %(v‘.)-w ('i) CIurly
© the mpﬁnu v mdnu a mmm uf F-(!}. ¢ "

We have a 8-cplor1na .t of F -(r). \Vt treat .qmrnuly
the cases keg and k=3, o BT I - Y
(a 2 In this cape, L. -{b} f;r some h-ﬂ:hﬁw: 8««:510:'1:!& ' of 0

G—{G } auch that t (Gt)-wt(b). and a Mlnm '1‘. of Fi-{ri}’ M'

- auch that *1‘. (Fi)-"(.i) muirly t:h. mp‘lnn ".,; 1ndncc a

‘ o \
ﬂ-—coloring of F-{!‘L , ‘\' S e P ; \
gbz k- In this cue, t-{b.c} for lo-e b and c. If *ta’)-’t(c’” \ , °
' ;"the argunent 10 enctly the. -m u s in case (a). If ’t&)"’t(c)’ \ -
‘_\m luy au& thn: wtmmtm fo: 0onn ¥, -xt Lar. t(c) belong =
the hfp co}.unn o£ o. '!‘hen the arguhsnc of me (a) applies vith : '“ \ .
| Gt replacad by Gh.ﬂ L i} |
- 2}
]
hteqex kzz aIF. ..-hakes ;



Proof ‘\

Let i be an integer and
¢t satisfying (tk—1+1)a5t5(tk—t+19

argument, it can be shown that S

.iet S ‘denote the set of integers
(a+1) Using a simple induction

cS for all zzo and that S. nSL+1¥¢

for iza. The result follews. immediately 0 . “ﬂ'° -

nF

. o ! . [

' B B
| a

o

ye,ngw]prove our main result.. L N T

. [

Theorem 2. 1 For nz3 ana r23 there existsla least integer M?kﬁ;r)-

guch that for mZM*(n,r), a linear

o
a

Proof: We use induction on r.

of M*(n,3) for fixed 7. Let:S be

We first establish the existence

(m,n,r)—graph exists.

o

. .

s}

Q

the set of integers m for ‘which -

linearf(%bn,s)—graphs exist. We need show tbat S contains all

¢ >

,sufficiently large integers. We consider two cases. L

(i) n is odd By Lemma 2. 9 there

circuit of 1ength n is a regular
By Lemma 2.11, a1+..&+a eS ff al,

consider a single n-set as a 1ine

.9
exists an integer meS. Now anvodd .
1inear (n,2,3)—graph of degree 2.

...,a eS Thus mmeS. Also ve’ may

ar (n,n,z)—g;aph. It follows from

-
the arpument of Lemma 2 10 that we’ have mn+1€S By Lemma 2. 12 s

é

contains all sufficiently 1arge integers.>‘/v -; A s

(i) n is even By Lemha 2. 9, there exists ‘an integer mes. It is“not*hf a3

difficult to verify that Example 4 in Appendix 11is a regulat

hlinear (22 3 3)—graphnof degree 3. By Lemma 2. 11,. 1+...+a22€5 if

a
1>1. It fbllows that mfn+21)+les.

21+n is a regular 1inear (21+n,2

’

o

1,-'--,a2265 Thus 22meS In Denma 2 10, _take m —22m and m1'==m for

Now an odd eircuit of 1ength L

‘ 33

3)—graph of degree 2 By Lemma*z 11,

)



‘m(n+21)eS. By Lemma 2.12, S contains all'sufficiently-large . —_

integers. - : : ‘ N ' o C A

@

"

Suppose rzs and that M*(n,r)exists By Lemma 2. 9, there

.0

18 an integer mq for which there exi,ts a linear (mo,n,r+1)—gra

By Lemma 2.10, there exists a linear. (moM*(n,r)+1 n,r+1)—graph Let

(l},. ] ‘:m 2 mo(m0+1)y*(n§r) o ) o ° wi
Snﬁ write | e |

2 . ' qm°+b Jsbsm .
‘From (1) and (2), it follows easily that o )
@ . g Emitnn). o

, Let S _ |

@ t=q-(b-DMAn2) |

5o that by (3) and. @, . o R
¢y t= M. | '

AN

: o
By the induction hypothesis, (S) and tﬁe fact that bz1, there exists

‘ a lﬂ.ear (t+b 1 n,r) graph. In Lemma 2. 10, take/

. el e T

: ¢ . .mt;1=,.. t+b 1=m M’(n,r)+1 -
~ ey ST
1+m1+...+mt+b_ m : “ e ‘ ' :
80 - that, by Lemma 2 10, a linear (m,n,r+1)—graph exists. This

completes the proof D

,_"\' T

Je . A R

iy ST
We have;thevfolldwing_ SR

34



Corollagx Let W(n,r) deno

(nbn,r)—graph exists. Then B

(3]

,, MA(n,r+1) < Win,r+1)(W(r r+l)+ 1Hm (n N.
Proof: Take m0=W(n,r) in the above.argument.D ‘ \
IR [ . . o a s

€

Theorem 2.2. M*(3y8)=9. ‘ e .

@ . - . ’ hd

R °

»ffBof' n it is not'difficu1t~to.vefify,thqffiinear (8,3, 3)-grhph€

o : do not exist. It is easy to see’ that Examples 1, 2 and -3 in |
Appendix 1 are respectively a linear (7 3,3)-graph, a line&r : _
(9 3, 3)—graph and a 1inear (11 3, 3)—graph The result will follow

if we can show that a linear ﬁn+3 3, 3)—graphuexists whenevgr a

™y
E

linear (m,3, 3)-graph exists., . ‘ s

\

o Let G beoa 1inear (m,3 3)-graph and let {VI,VZ,V3} be a

fixed edge of G. Let F be the 3—graph obtained from G by replacing

{v19v29v3} by {V1,V2,83}, {v1982’V3}: {al,vz,vg} and {81,agq83},

]UF|=h+3.\We need’ show that F is 3—criti¢a1. we do this in three

: , °. " E R ' e .
.stepe.ﬁ I PN et

“

e Step 1 F ia 3-colorab1e in
1 xffLet ¢G beaa 3—coloring of“G. Define ¢=UF4{1:2¥5} by: o
. o - - : ) ’

e e
S » ¢(X)= s ;

the least integer m for which‘a linear

 where al,az,ggt G. It is easy to- verify that F is 1inear and that :

35
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Step 2. F is not 2—colorable'

Suppose F has”a 2—coloring ¢ Then w is also a2-coloring
| of G—{vl,vz,va} irce G 1s - 3-critical we must have say
A¢(V1)‘¢(V2)‘w(vs)=1- In order chat the edge {hl,az.aa}be not

monochromatic, we have say w(al)=1 Then the edge {al,vz,v3} is

.monodhromatic. This is a cohtradiction.‘°

'
'
!

°

Stgg 3. All suhgﬁgphs of F are 2—colorab1e“rf” ST

We need only consider the subgraphs of . the form F-{F} for

4
°

FeF. We consider three cases~.

BN R . o N

(1) F={81,89,83J

N

: . Since G is 3-critica1, G—{{vl,vz,v3}} has a 5—coloring

" such that ¢ (Vl)‘w (vz)-w (v3)—1, say Define ¥ UF*{J 2} by, : iea_fi
‘ ‘ ) ! S :o:» . ) i _K_; .
e (x) o 1f xelG - | e

42 RN i£ x-a1,482 or a3..; ‘f ‘ e

’ It fs easily verified that ¢ is a 2—coloring of F—{F}

L

gi@ftféifléjjln




Q

(111) FeG-{{vy,v> ,Va}}

¢

Let w' be a 2—color1ng of G-{F} Define b UF+{1 2} by.‘ o :
o FUANCY f: 1f gepc E f»i._;‘ |

| w(x)—‘ e e e
T w(v) Af xmay, 1sigs P

o

- It 18 easily verified that ¢ is a 2—color:lng 8f F-{F}. D

i

j-'!’

o It 1is Veasy to show that (m,3, 3)—graphs do not’ exiqt for g
m<6. The existence problem in the tase n=r=3 is thue solved" _ ¢
completely. There exists a linear (m,S 3) graph only when am=? or‘ e ‘
m29-; A ‘ o
We now indicate h'ewt:’he-boun'.dé/ o |
MA(3,4) < 8828 - - | s
‘and ' " . IR
o wi(a,3) s 6285 I -
. are obtained'.; e ‘v ' | W S l R
: D o SRR A

It has beem shown by Rosa([R3}) that bthe S-grap‘n of

Example 7 1n Appendix 1 «18 4-chromat:|.c. 'l‘hus W(S 4)531, where SANERE

: W(n,r) 18 defined in the coroll

( 28,4 3)-graph. A brief 1ndication as ‘_to :how ith:l.s ‘was done is given

in Appendix 2. :




L

El

Let S be. the set of 1ntegers m for ‘which 1inear ﬁm,4 3)
=—graphs exist. ‘We have 25 2858. By Lemmaa 2.10 and 2. 11, we have
‘25+25+25+25+25+25+28 178:8

and' ST :
S

(25+25+35+25+1)+25+26+35+1 = 177€S. .
'By Lemma 2. 11, we have a1+a3+a363 whenever al,ag,ages. By Lemma
2.12, we have * B o - A

M*(4 3) < (3(177)= 177+1)177 ﬁ2335.

~ : - ©
>

§2. The Enumeration Problem '° L e

-

In this seccioﬁ5 ée‘presentxfhedproofs<of the”:eehlts
;stated in §2 2 of ghapter One via seve:al lemmas .

The first lemma is due to Dirac([Dl]) for the case n=2,

and to Toft([T3]) for the case n23 (Actually, Toft s procf 13'

o

@

'“gygen for hypergraphs in general ) We éhall omit the proof of

dth s lemma. o

(el

2 edges of G. Then G—E is connected.

PR

We need ‘some further terminology.‘An n-graph F is. said

K-}

. "to have Erogertz T if there exist FeF and veF euch that if for any

F' eF, F—{F F } is decomposed into two components F1 and Fz with

38

say veUFl. then l(UF1)nFlz2 We shall then call FaT edge and vvh;e_l




a T vertex. .

s The second lemma establ shes a connectivity property of

I8

the"raph constructed in Lemma 2. 1, in tbe case k=2. We first of

r {(1,2),\;., (i,‘i+1),. (zq,zq+1) (2q+1 fz)}

Moreover, Hi is a singleton set’ and may therefore be identified
with its only vertex, say v-. Furthermore, it is readily seen: that
K is obtained from F by replacing v; by vt 1 for t—2,...,2q+1

. and KZ is obtgined from F1 by replacing v1 by v2q+1

We remark that since for n23 every S—critical n—graph

-

has at least one vertex of degree at 1east 3, ve may assume that
F..and vt are chosen 80 that v. has degree et ﬂeast 3. ﬂe shall

also suppose that at least one of the F \has prOperty T, choosing

=5

a; T edge as F and a T vertex as vi. We remark that a T vertex -

-~

also has degree at least 3 Finally, we suppose that the vertex

sets of the graphs F are ‘a8, nearly equal -as possible, that is, for

some M,,[ F |=M or ”*1-<-k,f7" -f» }lh f- i;,?lpﬁ:k:::;;!; gﬂ 'L"‘*

H,“»T T ) AP

' EEEEE_E;lﬁifLEf'F'bé.ﬁhéfﬁréraphrconstrnctedvvia.ﬂen@a;grii;Andt;Tg'vf9"

L

‘Let E be.a set of 2q+1 edges of Fvand suppose hath-Eﬂconsi ts oflf-f"

- : Then_,Eg{Klvr".‘,‘?qu.,.l *



'kedges in F; by

2. 13, ( Fl)nF

' !
v .

Proof'f“ Let Fz-(Fgw{F })U{K } for 15L$2q+1 Suppose IEnFtlso for

_ some 3. F* ig- connected by Lemma 2. 13 snd we have v eFt. Now, sll

‘aining vi 1 mJSt Be temoved or we shlll have a

2 . L

component of F-E ofnsize st least M+2,

ontradiction. By our

assumption, vi J'is'o_'“ e at . 1east;8:in{F waevelﬂ if

lEnF% 1|22 it follows fro a siﬁple afgument that |E|>2q+1 which

As impossible. Hence we may nclude thag K. 1¢E Now F% EH

disregarding the isolated vertex vj 1; must be connected, as other—

wise F—E will hsve a’ component with lesa than M vertices, a

contradiction. H&%evet, to avoid having a component with more than

M+2 vertices, we must have nF 22 as before, vhich in turn
-2

7p40f1~"

implies that |E|>2q 1._It follods ‘that IEnF*I#O for all i, and thus"

|EnF*|=1 for a11 z.
Let t be such that F has property T. Snppose
EnF* = {F} # {K }.

1 . Vil ©

\\Qonsider F {Ft’F} If it is decomposed 1nto two components F1 and FZ’

nay v eUFI; then !(UFl)nF |22. On the other hand by Lemma

Q

+ @ . Since K tE F* E is connected and F—E will have a :

'bcomponent of size at leastAM+2. The same conclusidn can be drawn if

‘:5as:te.uired U

t—{F ,F} is_ connected Hence we must havqu eE.

SUppose there exists J such that K 33 and Kd+1£E. Then

: F* {K }-F {F } is’ connected by Lemma 2 13. Since §i+1¢E FE has a

*v:component of size at least M42m The oniy possibility leftsis

E - {Kz’.l.’K2q+1




from our main results. = - ° : S

o

Next we need a_p:l,.mple?nunber theoretic reau'"lt'.. :
\ /' . o !‘,,

Lemma 2.15. ‘ M be a positive integer. 'I‘lren every aufficiently

large integer m can be written in the form o 0‘» . :‘
o m= M(q-a)+(bﬁ-1)'(q+a+1) T R
. for seme positive integer q and some a, OSaSZM-I-.'l. s
Prooufz -VLetvmz.?MfZ. Then there is a‘ﬁnique posit'y:l.vef intﬂeger’v q .
sueh that. | 1 ‘ | . | . SO
. Mt (41) (q+1)'\s‘m < M(q+1)+(M+°1)(q+2) A L
) o . .,
- Thus o - ‘ e e ‘ ’ .
e Mq+(M+1)(q+1)+a = M(q-a)+(M+1) (q+a+1) 0
Lwhere OSaSM(q+1)+(M+1) (q+2)-Mq- (M+1)(q+1) 2M+1 o °' .
* {

. .1 o . . . . ) - B .
The final lemma in this sequence is only one step away

o

ta ’ . o o

‘o ¥ ) o 9.
. .

.Lemma 2. 16 Let n23 and r28 Suppose there exi?sts an integer M s_tfcha

that there exist an (M n,3)-graph and an (M+1 n_, 3)—graph one. of

which has property T. Then§there exists a }honstant c>1 depending on

1:'3-

'n_ and r, such that . S o N o

s~ | /

L S S(m,n,r) > c

o,

for suffieiently large m. Qn analogous reslf‘!.t: holds for linear

n—graphs. R . o - e B f &0
. Proof: We use induction on r. Consider first the case 1=3 e

41
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o

Consider first the case r=3. In Lemma 2 15, ta%e M be as given in q

the Theéorem. Suppose that m, as givan by (7), is s0 large that -

q>aM¥1 and hel!e that q-a is positive. Let A be a (q-a)—subeet of

{1,...,2q+1} In Lemma 2. 11, take k=2 Z-2q+1, ' .

o, o G = {(1 2)yeees (i, t+1),...,(2q,2q,+1) (2q+1 1)},

m, .=M for ieA anl m -M+Zefor LéA. Note that m1+...+mz=m Let: F(A) be

the (m,n,sl-graph conatructed via Lemma 2.11. Let A' be another

|
(q-a)nsubset of {1,---,3‘F1} and let F( D be constructed

F(A) F(A )

similarly. We suppoae further that and aatisfy the

o

added conditions given in the paragraph preceding Lemma 2.14.

FA) g FAD

‘ , Suppose. and _are isomorphic, and let ] denote

. an isomorphiam between them. Again using the sam% notation as in

&

Lemma 2,11, let Kb and Kﬁ 15352q+1,.denote the special edges of
F(A) and F(A )

¢
get a graph with 2q+1 components q-a of which have M vertices

3

and q+a+d of which have M1 vertices. Thus, removing the edges

. If«we remove aliuof the edges KS from»F(A) we

e(K ) from F( R has the .same effect. However, ‘by Lemma 2.14, the

only way this can be’ achieved is by deleting the ‘edges Kj' Thus

. e muet map the edges«xb/gnto the edges Kg in some order. We- may

4 S~

assume that for some t, O(K’)-K . By removing K and K from

Oy

t t-1
» we obtain two components ‘one’ of which 1is of size M or M+1

and containing=exact1y one. vertex in Kt' Now, removing K; and
e(x 7)) has the same effect. Thus we must have e(zt_z) Kt 1°
Repeating this argument, we conel@de that there 18 a cyclic

permutation of (1,...,2q+1) which maps A onto A'. It follows that

o . . : 'y

42
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,\ \

graph, Mherehy |UH' |=M'+1. Henceforth M' is f_i,xed.

. | Vi

1 [2q+% 2q+1
S(m,n,3) 2 ———2q+1( q-a] -3 2q+1[q-2M- ]

In hvie;q of (7) and the fact that k{‘l is fixed, we get

S(m,n,S) >-" - : =

I
o

for some c>1 This completes the argument for the cage zw3 .

Let M be an integer such that an (M_, n, r-f-l)-graph end an
(M+1, ri,r*l-l)-—graph exist. Let d denote ‘the maximum degree of the
vertices of either graph. Let Z max{zd M(n,r)}. Let H be an
(M, n,r*l)-—'graph(M'=ZM+1) constructed according to Lemma 2. 10‘ from
1 copies of the (M, n,ﬂ-l)—graph.u Let H' be similarly constructed
with one _copy of the (M, n,r-f-l)—graph replaced by the (M+1 ny,r+l)-

) .
Let t>M' be such that for some c>1 and all m2t,

38y - ) S(myn;r) > c".

El

L

Henceforth t is fixed Let mZM'(t+1) and write

9 m-1 = 1'M'+b 1sBM".

Note that 1'>t. Let F be an (m,n,r-#l)—-graph constructed according ’

to. Lemma 2.10 from 1'-b copies of H and b copies of H'. Let G be
the (Z',n,r) graph used as the “model” in the. construction. ‘Let F'
be similarly constructed using another (L' ,n,r)-graph G .

Suppose F and F' are isomorphic, and let 0° denote an.

visomorphd,gm between thenm. Let v denote the "new" vertex used to

”}a

construct th v ,...,v ' denote the "new vert;kcél'used to

construct the graphe which are put together to .iorg F Let v, vl,

o
. "’VZ' have: analogous meaning when applied to F . Now v is the only

43




1nta¢oeétion 1s (v} Similarly v' 13 the on].y vertex of F! w:lth , .

che same property. llencq we mht hava e(v)-v By similar - '

LE

/ - -

‘ non—& omorphic (m,n,r+1)-gr¢pha. By (8) and‘£9), we have : E

-
A g .
' o \ ¢

. AS(m,n,rl-J)‘ > S(t",n,zé)'vg‘ &' > ol

a

keeping in mind thdt M' is. fixed. An analogous argument can bé

given.for the 1inear graphs.[ ', \ ‘ . S /

o N We are now in a position to ‘prove Theorem 2.3 and
Theorem 2.4. °

. S . e S o

Theorem 2.3. For s23 and r23, there exists a conmstant e>1, - : -
, i : oy e : :
depending on.n and\zlxjuch that ‘ o _ e

Q

S(m,n,r) > cm

for sufficlently 1§fge m.
. 4 - . .
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{

. Theorem 2.4. For n=3 or 4 and rz3, there exista a constant ¢>1,

&

dependiné on n and r, such that

for sufficiently large m.

Proof:
property

holds fo

»

. m
S*(m,n,r) > &

I
i
‘,

* The (9, 3,3)—graph of Example 2 in Appendix 1 has
T, and (10, 3,3)—graphs exist. By Lemma 2. 16, the Theorem

r n=3. The 4-graph of Example 5 in Appendix 1l 1is actually

3—critical and has property T. From this graph, a (177,4,3)-graph -

with property T can be constructed. Since (178,4, 3)—graphs exist,

Leﬁﬁa 2.

16 yields the result for n=4.0
L / . . -
e |

§3. An Extremal Problem ) ‘ o

© .

. In this section, ‘we present the proofs'of the results

'stated in §2.3 of Chapter One. We recall that E(m,n,r) is the

’ minimal

€

aize af (m,n,r)—gzaphs..

Before we prove Theorem 2. 5, ve need a definition and

an auxitiaryelemma

‘By F is meant thé 2-graph on (2Z+1] vertices constructedf

as follows.; F is. the collection of"ﬁ>sgygefs of {1,...,2n+1} and

={{v,v }iv v'-¢} Recall thatB(F ) is the ;\\\ring number of F

defined

Iu §4 of Chapter" One. 3 e il
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3.;7. ‘For n22, - B ",b
&(W:.n,s) 2 BCF, Yo . .

"

"‘~en; o .

Proof: = Let F be nny (8n+1,n,3)-zraph vtt;h UF-{I,...,WJ}.

[

_ " $uppou ]FI«(?’ ). ly thw‘

g o‘ o ‘
which is not an odgo of [% and noc di,gjoint from any cdga of F. o

" Define yiUF+{1,8} by | S
L ] 0 . . 0. ¢ )
. e 1 if xePF 8
- . . J o e
‘ , S b(x)=- - '
1. ) a [»} -
' 2 Af WP o :
Clearly np is a 8—coloring e& This }a a contradiction n
| i - » ' )
S C e ’ ‘ S
h Theorem 2.5. 23 < E’(_Q,é,s) < 28. o ' I

) : S “ . .
' Proof: It is not difficult, by consi ting F 4 t° show that

‘Example 8 ‘in Appen#x 1 is\a (9,/ —gragh Hence £(9,4,3 )526.‘ °7

'this is false. » o

>4 »);B(F‘) 'Thus wzged ° o
) 0

47
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B mugz > |7

N

0

- Y

Let Vl, Vos Vi, V,+ and Vg denote the sets of vertices of
types AAAA, BBBB, AAAB ABBB and. AABB respectively. For 151,55, let

ki=|vi|‘ It is easily verified that k1=1, ko=5, k3-20, ky=40 and

k5=60. ;; f |

, “ ‘Now the vertex <1, 2, 3,4> &g\@etg fll 5 vertices in V2- Eaeﬁ

3

S

. vertex in V2 covers the vertex <I,2,3, 4> .‘;:d 4 ve&icea in V3. Each -

vertex in V3 covers I vertexb in V2 and 4 in mﬁb Each vertex in Vr., ’
covers 2 vertices An V3 and 3 in Vs. Each vertex in Vg covers 2
vertices in V) and 3 others in ,Vs.e A |
For 151,<5 let h —|FnV |- By our assumptioﬂ h1—1 and
ho=0. ‘Let. hy be chosen. In order to account for all vertices in V3,
w.e must'- have |
_ hy = 20-2h,.

.

In order to account-for all vertices in Vg, we.must have

e

,34h5 E< 60—3hu. v ' T
Now, .

-

h1+h2+h3+hu+h5

<

Y

1+(20 2hl,)+h.,+(60—3h1,)/4

from which it fo].loWS that h;,28. - o Do

oY . : ol 6’

For hy=8, we have h324 and hs29. Since §22 F| , We must e

48

have h3-—4 and h5-—9 However routine verification shows that such a.

o'q ® o 6'

covering set F does ‘not exist. For Iﬁ,—Q, we have h322 and h5>9 with

22>|F| It is easily verified that: not all vertices in V;, can -be
A R4 )

accounted for. The argument for h1,>9 1s similar D -
~ . - . . . . . . , R

- L -




Yy

‘ | | ///
! ’ / . |
: Y . . /
Q“ : - . 7
> 5 » . ’,7‘ .
Theorem 2. 6 For m25, : .// .
/
. E’(m+3 3, 3) < E(n) 3, 3)+3,/ h
_and for'm27 m#g .
. ! Tt )
S BA(m3,3,3) < E*(mg3,3)+3.
es 0 e ‘
Egggg; In the proof of Theorem 2.2, given a linear (m,3 3)

v’-graph we conatructed a linear ﬁn+3 3 3)—graph by deleting one

4
edge and introducing four others. Three "new" vertices were
% ) T e
introduced ‘Hence the reault follows D e

‘Theorem 2.7. ?or 723 and rzs: d(n,r)ipnd:u*(n,r);exiSt.

Thelrem 2. 8 For n23 and r>§/

Proof: .~ From thé_oroof_of.Leﬁma'Z;io)owe‘have; - .
o ‘ n , ' ) ’ ~’ :'.:‘ L N " i o
(10) _‘(_E*(m,n,p)g%g ZlE*ﬁni,h,r)+E*(Z,n,r—1) o
S T - 4=1 & S o .

where m=m5+.;;+m141.and'Ef(th,2) is understood}to %e egugtvgp 1}“;,:-_

w

LT &

By mc«suﬁ: g} szét&([?i]) a*(n,r) exists for nzS ‘and

r>3u Also, an. examination of the proof of Lemma 2.10 shows that

(lO) also holds for the function E, an¥ hence a(n,r) exists also D :

o '_\'o:~ - ’ ERy : .
Finally, we prove

= B

©

*(n;r) q{n,r) zfmin{l (r-ZZ?h}
/ T . Q

,.49”
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Proof : Firstnwe prOVe the following e:n;ension of Sgymbur 8 resu],t;.. ‘[,_/‘O:Q

| The argume‘i\t :I.b a‘lso aciapted fmm Sgymour 8 paper. o . '"'A o ° s

- Jan, L o Eﬂ(m,n,r) 3 el ey

N Let. Fvbe m{"(m,n,r)—gmaph. Aasum% t,hat |?‘|<|UF| To e@ch o

veUF aasociao'te a. variable z, . For &ach FeF aet up tive equat:lon ;" . “Qf_‘ :

s ELm =0, w&here the summation s taken over afl Vert:ls:caes Ve;F. Sinc: ° | o

) |F| [UF}, this system ofv equations h’as at least ene non-tri :l.al 0‘0" :
wt usolut:l.oi\ {uo-v"e F}. Let F-AuBuC whene E . /( ! : o a =
- u : A-{veUF u, °<0°} e ) s % Q 0 e
e B velbiu —o} B e
e ;0‘ PP SR C-{VEUF.‘M >0} e h % ER ’ ‘Q . . . R
e R ; 0% o e o o -
_ j? .? : ! o oCLe:t G be the subgraph of F which :lss cpmprised of alL ¢ oa"o v ‘
» edges all vértic“es of whi&\ gte" “in B <%\Ye may 'assume tﬁat B°1‘ﬁ o qu
g ~\ o tmt;—empty. Since the solutién {u:%.veuFo} 4s® gog—-triviyi, JG is a@ A 2’5 >~.°.f ° ; '“
proper aubgraph of F, S:lnce F :I.s zhc,ritical, G ha; a:n (r;-l):-é;loring :‘




< 51
N o e " B

R TR . .-
. L v .
. ,\ " KLY . . . i : :

Let F be an (m,n,r)-gr,a&h We claim that t:he degree pf" -

©

each vertex is at leaet: r-J mfromghich (12) will follow. . e

[y

Supppse there qxista a vertex v df degree tsr-é For o
R 5 W

y definitenesa aay ver,...,F o Nov F {F } has an (r—l)-co].orin“

such t:hat w(v)==r—1 . S:ane t-1<r—2 there exists an :I.nteget Z

»

| ZsZ<r-2, such tha‘t w(F —{v })gllfor Jszst—l Define ¢ UF+{1, ....,r-nl}”"' :

P :' N ST

a o’ 5
TR a c%radiqtioﬂ. 2 '

T o ol bal .
N _‘5 “c o Lo q-
“ie-8 .o --The {esult, ‘now - £¢
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‘j{_f# if FcA

Qdistinct, K cannot/hav

/




~-v"“v"if Fe<a:cuxya>, a>y LTy
or, ?;<«:prfz>, o, p,-r A\stmct
or Pe<az oyya>, o<y; oy

v if FE <nxawyg> :

- 'Or, Fs‘ﬂ‘axayvz>, >y

D
¥




‘ .‘}.‘;,:;_’sj_ncew&(E):s] for F¢<u¥mz>. “‘Yl'

Sincet (F) 1V£or Fe<amuyyz>, a>y, aﬂy, L must have, for

.

\

Qﬁf 1$q$t-1, non—empty nceraection with exnctly one A ‘. ISASJ. -

5 % ‘q
we. nmst: have, for 2$qst,

'“'ILnA. x"l for each Ai x' JsAsa. .‘Therefore |an |s1 for Zqut -1..

q *q q
Clearly, [an | sl-t-i -1.. Sincé F, ds a
L Ea : bt B
-(k-tt’z+1t’u+”t’v‘£ )—graph, L can have non—empty intersection

t t-»z ;
lLl { an._v an,t 1+ 1 an‘x, + ané. )
o 4= q S q=2 q Tt

"é,kzifi-j)+(t-2)+(54;i-1}-{,,

,Jﬁ“ (Zfﬁr2)-(itfi1—tf2)~< -2,

saximal : (k, 1-2)

with v-zt-l of the A Ry ISASJ-K Heuce anV ISv—t —1. Therefore, :
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L

‘ ~graph w:l.th (k, Z-2)-—coloring 4’,;)‘ Let Ai-UA B-&\\B. C-‘UC'_ ﬁ'd”' D-UD
- and let: A, B, c and D be pairwise d:!.sjoint. Let V-AuBuCUD and 1ot: T
F be the complete 3-graph defined on V. We need show that F is a
(k, Z)—graph. . (/r . C '
An edge {vl,vz,va} of F isl said to be of type T1T2'1’3

gWe, for 141,53 '1‘ e{A B,C,D} if v.«e'r.. Let <’r1'1‘2'1‘3> denote the C

o
__set of all edges of F of t:ype TszTa.‘Def“.t}ne ¢ F+£\ 1,2y bY' 'J.;_w '

2 '1ﬁ~Fe<AABég <ABD>, '<ACC>, <ACD>, =

<ADD>, <pﬁn> :<BCD>, <BDD> R

(

e

TS or <CPD>. ; -
$(P)=t SR
S|t Af Fe<AAC>, <AAD>,. <ABB>. <ABC> ‘

<BBD>, <BCC> or <qcn> o

L‘*T(F) if FeTe{ABCIJ}.- R
» Let K be any complete subgraph of F such that ¢(F)=T
a11 FEK Let K-UK We may assume . that K has at least twa verh@

in common w:lth at” least one " of A B C and D. LT ¢

Suppose that [KnAlzB. S:ane ¢(F)-2 for Fe<AAB>u<ACC>u<ADD>, |
- we must have KnB~¢, [Knc|51 and ]KnDIsI. Furthermore, since ¢(F)==3

. for Fe<ACD> K cannot have non-e.mpty intersection with both C and D.‘ :

- IKI ]KnAl+|Kncl+|KnD] s (k-2)+1 = k—1. e

->:}A Bimilar argumeq[t showa thlt 1€ lxnnlzz or Ixnc|22 ‘ve w111 also D
‘have |K|sk-1.A s : ; ; ‘




‘all Pel. Let L-UL We\hay'Assume that L has at least two vertices

have |L|s

= Thqrefore. F cannoc have a complet:e lubgraph K on k vertices such

that ¢(F)-1 for all FeK. 5
.,

Let L be a complete‘aubgriph‘ of F such that ¢(F)=3 for

L8

| .
i.n common with at leaat one of A B C and D. '

Suppose that lelzz. Since ¢(r)=1 for Fc<AAC>u<AAD>U<ABB>, _

we must have an-LnD-¢ and |LnB}<l. Thus -
L] = ILnA|+1 < (1-2)+41 = 1-1.
' #
A similar argumeﬂ: show that if. |LnB|22 or. |an|22,\ we will a190 '

J

uppose that |LnD|22. S:ane ¢(r)-1 for Fe<ABC> L mist

‘jbe disjoint from at 1east: one of A, B and c. We' may assume that

nA-¢. S:lnce ¢(F)=1 for Fe<BBD>u<CCD> we have ILnBISI and

[y

|1.| |LnD|+2 < (1-3)+2=.- 1.
\ .

'Tberefore F cannot have a complete aubgraph Lon? vertices such

‘ :that ¢(F)==1 fot aJ.'l.l FeL. This,&ompletea the proof o

. 37




;he proofs. One is. that it wi_ll iiluatrm:e th. 1ntefpiay o’;!\ 'coun!;tﬁct—

ive methods on the one'hhnd ahd probabi‘lisdc uon—connt“rucuvo |

methods on the other. Secondly. ylhile L%a 3.5 can be found n the

long paper of Erdls, Hajnal and Rado([E8]), its proof :I.. not/ e
\ B

entirely easy to extricate. | . ' - S

Lemma 3.5. For r22 and k22, : . o - S
R(k+1:2r;3) 2 2&(1(:\1::2‘).‘ o o R /

Proof: Let J=R(k:r;2) and let G be a* maxima '

;2)-graph with

(k:r;2)-coloring ¢'. Let UG—(I,..,-»,.‘I} Let V be the set of all

e . o
J- tuples of o's and 1's and let F be the c&lete 3-graph dcﬁned e
~on Vl We need show that F 18 a (k+1: W)-,graph. ‘

o

Let the vettices of F be arranged in lexicographical

w® 7

_ order, that is, [a:z,'..‘.,:r: J>[y1,.;.,yj] if there exis;:s an“t, :

IS'LSJ, such that x =1, y ;=0 and a:t—y for all t<1,.. Surh an iﬁf_is_‘-v‘ :
said to be the fitst place where [zz,...,x ] differs from o
[yz"”’y‘]’._ e § : - A . S \\ D
' For an edge Fw{v, ,vz,V3} of F, v1<v2<\r3, let: d1 (P) denOte

the first place where vj differs from v2, and dz(P') the first place

- where v differs fron v3.. S:l.nce v1<v2<va, we hav‘e dl (F)Mz ) 'rhua

1f dy(P) <dp(F).

#' Ly @, dp (Y D#r






S » ' b
F of type a:y Define ¢: F»{I,...,w-r'} by:
. ¢ () ‘ if FeAi
¢(F)=) | |
o / m.‘a'({bm.by}‘)w, 1f Pe<my>, zy.
Let K be any monochromatic subgraph of+F with K={K.

Supposu X haq non-&pty intersection w:b;h at 1eapt: t:wo of the

A'a, say A and A az‘y Then for IS‘ij, |KnA le as ¢(F)-¢ I!’)sri

for FeA while ¢(F)-¢ ({b ,b })>r for F¢<xy», :oply Sinca B is

Wk :rts 2)-—!5'olorabla. ‘R cannot: have non-empty 1nt¢raocti.on with k

of - the A's. It follows that |K| 5k-1 On - t:he nther hand,

»

rﬁ

e

f»internction ﬂ.th exact:ly one - of the A's, than

60
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" tha

subg

Oy A
AT
g

- 7 a subgraph

| b
h on k veytices

— i
complete subgrap

R( ker;3) >

oxp(a



’\\\ ) . §
\ ' R(k:r;2) > expn(arlgoé"k)
\ P ’ . “H-\r{ - ‘ 1
which leads to . ° ' o -
// . - . B - ‘ : / ‘ T
e ‘ R(k:r;3) » exp(exp(eriog k)). ] _ o

s

_*,,.,,While this 1s weaker than Theorem 3.4, it is sti}lli an _1mpx;qv'ehent' °

over the old result . o : o " . T
R(k:r;3) > explexp(erloglog k)).
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. A

COVERING NUMBERS
htoofa of thecreaults |
_ asla e

. .G“’_ _, .‘.,‘ " s .
“'“, In this chapter, we present t
stated in- 54 of Chapter One. We shall deduce Theorem’ 4

¢

f

e

special case of a more general result.

Lemma 4.7. (General Covetggg_Lemma)
Let A and B be non—empty finite sets. Let R be a relation from A
each aeA, there exists beB such that aRb, and
a@ aRb For aeA, let :’:».;H»

Rb}. Let u-min{ ]Abl :beB}

to B. sflch that for
s :
for each/beB there exists aeA such th.
-{beB aRb} and for beB, 1et Ab-{aeA.‘
and v-max{lB I'aeA}. Let A' be a smal est subset of A auﬁt that for
‘all beB, beB for some aeA' Then o - 5fiff "vf = PR
|B|/v s |A'| < K L(.Y-l-»"ig v)/u.v ' o

@ :
“Proof: Firat we observeﬂthat
lA‘lvz):lBle[BI
where the summation 13 taken over all aeA'. Hence

IA'[ > lBl/v,



a9 )

. 8o that IDkI is maximal wh

s

. t:erminates at say at, sa that B=- U B, .. Clearly IA'ISt. We%ned o

Lo
RJ

ere Dk a »

”,,..e . . v t : o

'.,ﬁhOW tfmt IR “

). ‘", : t.s |AL(1+Zag v)/u.xﬂl'”

S . For 151,<v 1et f(1,) be the largest int:eger such that:o

IDf( )I—L Let g(v)—f(v) and for zszsv—lk : e o

- Cr
de ' ¢

B a. B . T L - L Q
~ ‘.—- “ . . , . 9 e o ‘D - -

‘ ‘or equivalently, : R EE

o\

. f(tii) e
' let B"-n- U s, ‘.Define h(z)ain l

e g(z) —ff(z)-f(1+1) ' e e e "? g

JEPERE S J'—I & : . -
ST P L
- L T e Fle e o

‘for Jsz‘sv and let h(0)-0. 'For Js‘sv,

o

- (1) = h(t)-tg(ﬁﬂ, B

< Sy

(4)'“*3' g(z) (h{z)-h(t-1))/$' |




i

s h(v) *X (1) Lo o .
B B LOFI] o BRI

.

- = | ‘~ . . VJ,—‘-‘-LH:_Z 1 ]

1 i= L+1

Lo . o . Cal N Lo -
. - . ,‘g S e . el

A

wl

TN

S - IA|(1+109 v)/u. R SRR A

j*ﬁhicpris;ga). This completes the proef. LR AU D RIS L T S
. ; Ll \_n‘ : S “,, o 'Q"x

e o L . N S g .
. o . : \ N * ‘J

Theorem 4 1. Let e denote the maximal degree of the verticea of an N

R e e
o

 rf = n—graph F on m vertiggs and let g denote the minimal degree of thq

o X . R
v.\‘}-: : o : .‘ Lo

o(n—l)-subsetQ of F. Let g>0, Then

7

;?jv v_e+TZ g] The theorem_;oll :8
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1followinq condition.‘
N

A

©

,Proof:




‘[m,n,pJ—grapha F aatiafies "\~ . o o S

é B(F) > (clagfm)/pﬂ

Proof: Let F be an' [m,n,p]—grap

3¢ ,...,X >. Let

| o S t= T(atog m/p1







3!"

v
. 1 R ] .,
(12) - TS mt(J—(I-p)t)q‘\ S

~

#,1/(1-p)¥)q(2-p)® . -

(1-(1-p)

l‘w’

<m exp(—q(l-p) )

L= exp{tlog m-q(l-p) ).

\ By pick"ingf" ) aufficiently smll, ‘We,hav

(13)+ e > -aZog\ .‘l-‘a)/u.
By 7, (,9) and (11), we have

(14) q(.'I—p) z (1 p)t - 1/2”n:"




*

"

‘g 'rhe lawer bound 1a g:l.von by ‘rhcorm 4.3. The upper bound

follows via some rout:iuo galcuhcions trom (7) énd Thoorm 4.1

) s ‘Y
\“ !n 'I‘hootems 4 S and l; 6 the mdit:lbn oh p mt de (
rép].aeed by o £ '. G SRR | : - @ ;
(16) Uy s p Sq R " S e
fcn: sone ¥ and a. 0w<a<1 Not.e howevqr t:hat. if p utiofies (16),
'“c1¢ar1y natisfiea (7) 80 t.hqt 'l:heoremn 4 2 4, 3 pnd 4 4 still ;

nxeorem 4 5. With poaitive probabil\ity, the degree d of gach N

2-suhset of the v%rt:ex set of an [m, ,’p]—graph satisf:les, for | o




This shows that with positive probability |

ST A g - Lo . S ”72‘
B

PPl | Yg-u|ssuT 2 1-02/62u2

. \\ .‘
Thus, o
| Pr[IY ~-~ulséu for all k, 1skstn/211
2 (1'-0.2/6‘2;:2){’"/ 81
' By some tedious but routine calcuhtidn‘we haVe - ‘ .
(1-02/62112)[’"/2] > eacp(-(z-*p)/ﬂczpz) . o
. RS exp(—(!-ld)/aﬁzyz‘)_.li

.

Y, > (1-8)mp. ]
Since clearly: dzY,, _thilé ‘completes the proof .0

Y

Theorem ii 6. With posit&ve probability, the covering nmnber of an -

/' .

[m, ,p]—graph F satisfies .o R S .
(QIZog m)/p < S(F) < (czlog m)/p. : :

o
‘/

Proof: . The 1ower bound follows from Th*rem lo 3. The upper bmmd

lmay be deduced in a straight forward manner from (16) 'l'heorems 4 1, ‘f Z

and 4.5.0 i ;‘;” L “y_ - ,k' e ';¢~- ﬁ;b;'“; ;.'s

o~

I suita,blev ;e:vgten,su ‘ '-5:3 If oﬁe \triea to model a proof






%

\

st:ated li ] is of’ Chapter One. We recall that B(n,r,s) is the mins.mal

. o
o size of n-graphu without propert:y B(r,s)

Theorem S. 1 For ﬂ1281 and nzzsz,‘

B S B(nlnz,r,alsz) '3 B(nl,r,sl)B(nz,r,sz) ™, o
Proof : Let G- be an nl-graph without pioperty B(z-,a 1) Let -
UG-,{VJ,...,v } For Jszsrn, let F be an nz-graph without prOperty

and suppose the V's are pairwise diSJoinq. I'.et

B(r,sz) Let V -UF

all nlnz-sets cnnstru ted in this mann.ér. clearly

Lb\

f|f|'é*B(ﬂ1§#$81)31ﬂ25rs82)n13 ;




\ o, ’
L { o
Sty
we must ’havé
@ S
\
once: chosen thcy 3 de.;:Mfine err—»{z,...,:-} by 9("1:‘)"7 _ ’i’ ‘
% R N ) . . ‘o o ‘ ¥
. Suppose 'rnG-¢ £pr some “GeG. Then it follows easily that
SnF-¢ for some FeF contrary t:o (1) Hence Tntﬁ for all GeG. S:lnce ‘
G does not: hﬁvg proparty B(r,al) for emle a {1,..;,1'} and some
Gﬁ_G’— Weﬂh&ve » :" e ' ' ‘ . '\ *- ﬁ
(3)' | o le” 1(.7)nc| 231. T |
By (2) and (3), keeping in mind. t:he def.initons of the things =~

75




1fhhsfi does notwheve,property B(r,s182) .0

involved we See that.there must, exist an edge F of F such that . o

g |¢ I(J—)nF| $ 8182.

- D .

Before proving Theorem S 2, we give some lemmas, although

3

. only special cases of these are needed in the proof of Theorem 5 2,

a ’ 3 : . WL %
— T AN "
AR

Lemma 5.4, Let m and e -be positive integers for which there exists an -

Y

n—graph ~H on m vertices and having e edges and which is not ¢
r—colorab;e. Then = 0 ,"hci e IR
) ‘B(n,r,8) < mB(n-1,1,8-1)+e."

a’ R - LI . . - . ° ‘

v.s . - a ‘a o

¢ o ¥ .

Proof' Let J—B(n—l,r,ail) and 1et G={G ,...,Q } be a minimal ]
(n-l)e—graph without property B(r s 1) ’Let UH={a1,...,a } gg.et P

Et G U{a } and 1et F {FI,...,F } Let F be the n—graph whose edge -

c set consists of a11 of the edges of eaeh F together ‘with the edges

"fofu mearly e, ek L 8
‘“&‘; S |F| mB(n-l r,8—1)+e . o 3 L
4 . ‘ é'_} Coe e ‘””ﬂf e .3~5Z, !Ei-
We shall shew that F does not have property B(r,g) Ly By
- iy Suppose there exists a. aubset S of UF and a funct n A
VﬁTTJ,...,r} sueh'that \iﬂ '\;'D ;* s
g H’ 1m)nF| 8-1 for
Y:;w'and‘.;o"’ " o L

RS



Suppose for definiteness Sz-{al,...,a } where qa!;. Then

¢ is an r-coloring of F 1° Thus there exists te{l,...,r} /such that
1)

-7 o 1(t)nF|zs-1]{ SR B ,

for som_é Fqu . Now 1f ¢(az)=t for some Z, lsZSq. we have - V
Ty 1(t)n(ru{az})| 2 a. .

Hence we may suppose that ¢éa )#t for 121,440, Now. define a

function ©: H+{1,...,r} by: R AR, .

\ L (9(a;)  for }'Jsisc; - . EETEEEE .

e(a%’:_)é__ i SO

Sy e
AL . qpe\for: q+151,9n. '

fen since H has no,; - .'polo; g&’ﬁ 1(t):>ﬂ for some Hﬁ\
# * 7 Ry L.

Y 1( t) nH-d, contradicting“( 7 D S * -
//,,‘ ) . L A v \ ) . . - -~

_4&3".‘_ ‘ [T P

Corollary  B(n;1,8) % (n#1)B(n-1,1,8-1).

L

' Probf: | 'l:ake ‘H to: be a aingle n—set :l.n Lema 5 4._This gives the

reault as B(n-1,1 a-1)>1 D

.. . X " ) . . / '

and Ja N e o

B(n,r js_,)f_ﬁ-'-'ﬁ ‘B(_,n.;_f-'lj- r-’_',_g%:l).-;’: T



T .78
) vw’l‘f E
We now WLve suffiéient 1nfoumation at our diﬁposal to s
prove Theorem 5. 2/ o : . S : “f ‘ : ¢
| .f n 1‘ .‘ J/b s f“t'di;
Theorem 5 2. Let]A>1 ‘and. 1et n=(k+9(1))8 - Then iQB(n,I g) TE - - R
: } . ) " SRR
exists. - ' . g T o o S TR
. V s L e KRR BN

Proof:~ We remind the reader that Theorem 5 2 is to be interprftedn'&

.88’ 1n ‘the No;e on page 25. Becauee of the many paraaeters involved,
the details of the proé% of Theorem 5 2 are rather fntricate, 80

‘we present the proof only for the case\nnfxe] Most of the easentialh'(
features of the complete proof are contained in the" proof of thie , |

/*apecial case. we nhall also write B(n,z,e) as B(n,a). T

S Let e>0 be given and let’ a=—JQB([18],a)1/?. We lh!ll ShnW'77:

that |

_‘; - o f B(DtsLa)J/8 < (1+e)2(a+e) R L",u: ;J_“f | ;;:;;:“';'
- for. all sufficiently 1arge s. The reeult willrthe follow. IR -»fiihr o
| Choose t euch qhat B([At],t}l/% 1/%<1+e, , -%fffiih

<a+e‘hnd (4[1t]+8)

; For 8 sufficiently 1arge, Write eﬂqb+b"“hj05bst-1. Consider first ,
“che special case where bﬁo. Let un[qlf j[xt]sq.‘We have .T¢" - f Y

B([AsJ,e)







(n,J,B)—set of F. s‘*ppose .-:.-+y-|Fj Now 'we have x,yel' for lm‘ gF. coE s B

‘Suppose they appear together in ¥ only. Then there exiat:d‘ .!"cF

"such that x,ylF' Let zeF'-r. 'l'hen {x.y.z} is an (n,1 Ps

'.l'h:l.s is a contradiction and t:hua t:he second assertion is alto crue a

Theorem 5. 3 For nf.O(mod 3 or 4) and m‘S 11

8 < B(n) S 9- .
Furthermore, ' A

- and-

. (6) .

2

. ghows‘{;atu. g

o

& .,“

By abutting

| which shws

, .:g’s‘ul“ting‘e



- Bmse w&

for n#5,11 an required. - |

# Now we establish the 1ower hounds, buc deferting the proof L

of B( 5)29 .which 13 quite 1nvolved to Appendix 5. Thtoughoui; the




'::“»XTL)* “.:A\, . . . i CELY . . ‘
et every other vercex of & four t;:lma, every ‘v"e':t._;gx'of

i ‘.i;"\h ’ =
B’ _htee ' and every vertex of C twice. 'rhup :

5(n— ) z 4(a-—1)+3b+§p.g_

. 1s. impobsible. Q

assume that: |F,1.{




a
1mpoaaib1e.

]

2

have- age:F]an where agec. Nh’w " lul'z muat com:nin qvery bel"v; euctly

‘once. Similarly, _ 1UF3 tnuat contain_ every beF-, exactiy once. ) .

“ R . |
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, ? . ' o ‘ .
(8,11,12) (8,13,14} {9.10,33) (9,11,13) (8, s,zu\} {10,11,14}

16, 13. 30} {16, 19, 21)

.1 s

{10,12,13} {15,18,19} {15,30,81} {18,17,38} \(
£

{17 13,21} (17,19, 30}

5,4,0,52) (5,6,18,10) @8, 18:8” {3.9.10 14} {3,12,1@,251 e
8,17,23,34) 14,5 9,23} {4,6,10, 15} 14,7, ze,:m {4.1:,13 51) .

{4,18,24,25} {6,6,7,11} (5, 8,17,20} {5,13,14 i) (s, 19,31 35} P A
{6,8,16,24} (6,5,19, 22} (6, 13,13,17}\4;4{14,31,23} (7,£,17 25}

(7,10, 20, 23} {2, 13,14,18} {7,15 22,24} {3,1%15,21} {8, 11,23,25}

18,14, 15, 19'6 zo} {9,12,21,24} {10, 11,12, 16} {10,"_ f'z,zz 25)
{11,17,18, 32} ,19,33} (13,19, 20, 24} {14,16 20, 25} {15,16,17 21}

»-.M»

% . o
This 4-graph is a block deeign vith p&r&meiers (25, 50 8,4,1).

va . £ »»-.,
P . . . £ %

~"3‘ o ¢ Qe e gy gie - '\»

. . . AR DN . BT B SR
le6 . ' U L TS SR E S i Ce T




ol wott
. ”‘"

{8,?,80,86} {6‘,8,14,18} (8.9,11,13} {q,.zo aw&r} {7,8,38,38}
(7,9, 15,19} {7,10,11 13} {8,9,88 25} 18, 10,21324} {9£10,80,88}

Examp le 7 o . , 4
11,2,19) (14,0} 11,4,301 1,6, t1,7,98 fl..e:s-'ﬂ [ M‘»‘” /S
qd10, 17} {1,12,2‘} {1 13,248, {1,14 15} {1,56 25}*1 ;1. |




(8,21,83) {8,10,27) (9,11, 14} (9,23,19; {9,16,31} {9,17,39} ,
19,18, 25) (9,30, 28} 19,82, 23} (10,11, 28} {10,13,15} {10,7q,ﬁox/”
(10,81, 39} (10 33,34’ (11,14, aﬂ} czz,

<2{10,, 18, 30) (10.19 26

{11 15,31},{11 19 az}u
{13,14 17} {18,10,23}

: {13,15,18}k£1§;17;33}
- {14,33,30} (14,27,28}

{21, 23,26} (21, 25,31}
"{26,28,31}'

' o . . ’ ’: - s
- : . . G e
e 0 “ ) . . . .
: ) b . Sy o . o R A A
“ A [ S S :

{15,17,20} {1
{16,18,21} {16,30,36). '
(18, 20,23} (16,22,36)

(11,80,27) {11.33.§g} {11,#4 xs} trahf"

{13,22,29} {‘”””

Th:fs S—graph 15 a Steinar triple syut:em with parameters ¢ 31 155 15 3,1)‘

Fxample 8 '

roas

(L2549 L3 6,7} (1,2,6,9) {1,5,5,7) (1,3,6,9) (1,4,7,8)

11,4, 8,9} {1,5 6,8} {1,5 739} {1, 8,7,9} {1,7,8.9} fz,s,r,a}

{2, 3 &9y {2, 4 5,7} {2,4,5,9} {2 5 s,a} {2 5,7,9} fﬁ,7,8 9}.L

\

 13,4,857) (3,4, 8,9} {3,5 6,8} {3 6,7, 9} {3,7,8,9} 1, 5,5 é}

ﬁ{4 5;,7,9} {4,6* 7_.9}

wﬁ‘w




\ , . i .89 .
» ad o . , v  . v :g‘j‘{,»
t . . o - (/“ ‘i‘. C ‘ . . o ' “: .
of q:ho grnph in Exmlm 1, md then nddl.na tom: ‘new odm. ’l‘hd o
edgel are cholnn by "cmrimntntidq | o , »
o & > - . 3
: ;_] B v Y \
le 10 Vo w‘ , L ‘ . - Q "
ﬁ}z,a,s,a,zak,m €, 4,5,9,11,13,15} {1.3,7,3,13,14,15) Tt
{2.4,%, 9,11,14,15} {z 5,7, 9,13,14,16} (3.4,7, 10,11,14,15} T e
s S .

(s, s,e,ib,az,zs,zs} u,z 3,4.5,6,7} ta.o.zo,n.za.zs.m




'\ _— '. APPEND?fX’ o \

EVALUATIQN OF THE CHROHATIC NUMBER OF SOHE 4—GRAPHS

. S L \ r‘ : o
37,”5 We ptesent here an argument to. show that the 4—graph oﬁ R

Example 5‘¢n Appendix 1 contains a lineat (25 4, 3)—graph as a ‘.;»-ff

~ subgraph. ;& ci *i i', 3 o " g 7: o
i o Let the 4—graph.1n question be denoted by F.. we first
point out that F 1s a block design. Hencé the behavior of its RN ?”
« i

vefﬁicea is symmetrical. Each vertex ie of degree 8 and every ‘r o @

&

petr of vertioes meet smcely oni. 0T
AU It 4s not hard ‘to Varify tkaﬁ”F is 3—co%orab1e. We shall VT{ |
. present¥y indicate‘a method't; Vérify that F is not 2-colorable-, o _> F -
i : Hence F contains a 2~critical $ubgraph G By dEIeting_all edgea wf'rlf;‘

eontaining any chosen vertex, we obtain a subgraph of F which is "
easily shown to be 2—colorab1e. ft follows that |UG| IUFI and thus

G 18 & nneav (28, 4 3‘)-graphx o R

5 - - g N . . . -

4 f\ . - . /

There are ?25 functions ¢ F+{1 2}‘ Suppose one of themu"a
\\eis a. 2-coloring of F, Let V-{xe F ¢(39=1} and Vh F=v. We ‘may: assume

that Fvl<12.‘ For 15153 let -F; -{FeF Ian|=1,} and k.-IF | We have .'j i

the following aystem of equationa' , R S ~;'u. U ﬁ"f
N PN . :7. . L o a ( _ \ \: v / T
s ! ol " ,a . :—'_, .} N
o A . - e :
Voo o 0
. 90 @
- e : . } in‘:'
~ SRR _ Ce i}
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mny of r,l‘m abm mwln ‘are untioned 1tx u -u\rvcy
" 8« nIao the papqr of stein(l:ssfl). It 18

the futurg. ' A " L ' S B
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