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Abstract

Communication is essential for coordination among humans and animals. There-

fore, with the introduction of intelligent agents into the world, agent-to-agent

and agent-to-human communication become necessary. Ideally, these agents

should be trained in an incremental and decentralized manner. In this thesis,

we first study learning in matrix-based signaling games to empirically show

that, with certain payoff matrices, decentralized reinforcement learning meth-

ods can converge to a suboptimal policy. We then propose a modification

to the messaging policy, in which the sender deterministically chooses the

best message that helps the receiver to infer the sender’s observation. Using

this modification, we see, empirically, that the agents converge to the optimal

policy in nearly all the runs. We then extend this method to function approx-

imation settings, first applying it to larger matrix-based signaling games and

then to a partially observable gridworld environment that requires cooperation

between two agents. We show that, with appropriate approximation methods,

the proposed sender modification can enhance existing decentralized training

methods for more complex domains as well.
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Chapter 1

Introduction

Humans rely extensively on communication to both learn quickly and to act

efficiently in environments in which agents benefit from cooperation. As ar-

tificial intelligence (AI) applications become commonplace in the real world,

intelligent agents therefore can benefit greatly from being able to communicate

with humans and each other. For example, a group of self-driving cars can

improve their driving performance by communicating with other cars about

what they see and what they intend to do (Yang et al., 2004). As advances

in other fields of AI have shown, a learned solution is often better than a

manually designed one (He et al., 2015; Silver et al., 2018). Hence, training

the agents to learn to communicate has the potential to lead to more efficient

protocols than pre-defined ones.

One assumption that is commonly held when studying communication be-

tween agents is that messages do not directly affect the payoffs or the re-

wards that the agents obtain, which is also known as the “cheap-talk” as-

sumption (Crawford and Sobel, 1982). While it does not accurately reflect all

real-world scenarios, it is a reasonable assumption in many cases. For exam-

ple, turn indicators and traffic lights do not affect driving directly because the

driving outcome only depends on the drivers’ actions, but not on the state of

the lights.

The aim of this thesis is to study the performance of learning algorithms

for synthetic cooperation tasks, such as one-step, two-agent cooperative sig-

naling games (Gibbons, 1992), like the climbing game (Claus and Boutilier,
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Figure 1.1: Signaling game with the normalized payoff matrix of the climbing
game.

1998) depicted in Fig. 1.1 which is often used in the multi-agent reinforce-

ment learning literature to study learning algorithms for simultaneous action

games. In every round of such games, the sender receives a state s from the

environment and then sends message m to the receiver which, based only on

m, takes action a. In the problems studied here, both agents receive the same

payoff R(s, a), independent of m.

We also consider a more complex gridworld cooperation task, in which one

agent receives private observations that are required by the other agent to

take optimal actions. Since both agents receive the same rewards in both do-

mains, the first agent is always motivated to correctly communicate its private

observation.

We restrict our studies to decentralized training methods that learn from

experience. In real-world settings, it is often necessary for agents to learn from

experience since the exact model of the problem is unknown beforehand. In

multi-agent cooperative problems, training can be centralized by controlling

all agents through a single central controller. Centralized training makes it

easier to assign credit among agents but comes at a cost of exponentially

larger state and action spaces. On the other hand, decentralized training

is more scalable and allows the agents to keep their training methods private

while still allowing cooperation, but has the disadvantage of being harder than

centralized training. Hence, we focus on finding good decentralized algorithms

for cooperation and communication. In the algorithms we consider, each agent
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maintains its own parameters and updates them only dependent on its private

observations and rewards.

In what follows, we first discuss the relevant background and related work.

We then show that learning to communicate through incremental decentral-

ized training is a hard task even in simple signaling games. As a solution, we

propose a method of communication based on the sender choosing the best

message that would lead to the correct inference of its private observation.

In the tabular case of signaling games, the sender exactly simulates the re-

ceiver’s inference process, whereas, in the multi-step gridworld environment,

an approximation is necessary. We then perform a more extensive set of exper-

iments on signaling games and show that finding optimal policies incremen-

tally through playing experience can be difficult for existing algorithms, but

our method manages to reach an optimal policy in nearly all the runs. We also

discuss how the payoff matrix affects the algorithms’ ability to find the optimal

policy. Finally, we present and discuss the results of our approximation-based

method applied to a more complex gridworld environment.
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Chapter 2

Background and Related Work

The problem considered in this thesis can be formulated as a multi-agent

reinforcement learning problem and a variant of signaling games. This chapter

provides a brief description of these formalisms and relevant work.

2.1 Signaling Games

A signaling game (Gibbons, 1992) is an incomplete information game played

by two agents: a sender and a receiver. In each game round, the sender is

assigned type s by the environment, where s is chosen from S = {s1, s2, . . .}

according to some known probability distribution p(s). The sender then sends

a message m to the receiver, which is chosen from M = {m1,m2, . . .}. The

receiver only observes m and takes an action a ∈ A = {a1, a2, . . .}. The sender

and the receiver receive payoffs R1(s,m, a) and R2(s,m, a) respectively. The

problem chosen in this paper is a specific case of signaling game, in which,

R1(s,m, a) = R2(s,m, a) = R(s, a), i.e., both sender and receiver get the same

payoff which does not depend on the message sent by the sender. The solution

concept commonly used in signaling games is called perfect Bayesian equilib-

rium (Fudenberg and Tirole, 1991), which, with π1(s) and π2(m) being the

sender’s and receiver’s respective strategies, satisfies the following conditions:

• Given message m, the receiver has a belief about the type of the sender:

p(s|m). The strategy of the receiver maximizes the expected payoff given
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this belief. Mathematically,

π∗
2(m) = argmax

a∈A

∑︂
s′∈S

p(s′|m)R2(s,m, a)

• The sender’s policy is a best response to π∗
2, i.e.,

π∗
1(s) = argmax

m∈M
R1(s,m, π∗

2(m))

• The belief held by the receiver is consistent with Bayes’ rule and the

sender’s strategy, i.e., for all messages m that are sent by the receiver

for some type s,

p(s|m) =
1{m=π∗

1(s)}p(s)∑︁
s′∈S 1{m=π∗

1(s
′)}p(s′)

In practice, the payoffs and the prior type distribution may not be known

beforehand and only samples are observed, making it an incomplete informa-

tion game and similar to the reinforcement learning setting. Hence, in this

thesis, we focus on algorithms that learn policies incrementally rather than

computing optimal policies directly.

2.2 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 2018) is a learning paradigm

that is well suited for learning incrementally through experience, and has been

successfully applied to single-agent (Mnih et al., 2015) and adversarial two-

player games (Silver et al., 2018; Vinyals et al., 2019).

An RL problem consists of an environment and an agent. The environment

provides the agent with observations and rewards. The goal of the agent is to

take actions such that the obtained rewards are maximized. Mathematically,

it can be formalized as a Markov Decision Process (MDP): At each time step

t, the agent receives state s(t) ∈ S and takes action a(t) ∈ A. Based on

the current state and the taken action, the agent receives reward r(t+1) and

the next state s(t+1) based on distribution p(r(t+1), s(t+1)|s(t), a(t)). In a more

general setting, the agents do not have access to the complete state and only
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observe a partial view of the state o(t) = f(s(t)), creating a partially observable

MDP (POMDP). The problems we consider in this thesis are episodic, which

means that the MDP has a terminal state and the agents are guaranteed to

reach it in a finite number of time steps (T ), irrespective of the actions taken.

In the control problem that we are interested in, the agents aim to maximize

the discounted return, which is defined recursively as G(t) = R(t+1) + γG(t+1),

where γ is the discount factor and G(T ) = 0. The agent maintains a policy,

π(a|s), which it uses for action selection at each time step. The policy is

improved incrementally in an online manner by balancing exploration to find

good actions and exploitation to receive high rewards.

There are two main categories of algorithms used to train the agents. The

first category of algorithms is value-based. The state-action values (called

Q-values) for a policy π is defined as Qπ(s, a) = Eπ[G
(t)|s(t) = s, a(t) = a].

Agents either maintain Q-values for each (state, action) pair (tabular setting)

or estimate them using parameters. The values or the parameters are updated

based on experience. Actions are selected using an exploration strategy such as

ϵ-greedy, in which the action is chosen uniformly at random with probability

ϵ and the action with the highest Q-value is chosen otherwise. The second

category of algorithms is policy-based, in which the agents maintain a policy

π(a|s) for action selection which is often updated using the policy gradient

theorem (Sutton et al., 1999).

2.3 Multi-Agent Reinforcement Learning

A multi-agent reinforcement learning (MARL) problem (Littman, 1994) con-

sists of an environment and N ≥ 2 agents, formalized using Markov games

(Shapley, 1953): At each time step t, agents receive state s(t) ∈ S. Each agent

i then takes action a
(t)
i ∈ Ai and receives reward r

(t+1)
i and the next state

s(t+1). The distributions of the reward and the next state obey the Markov

property: p(r(t+1), s(t+1)|s(≤t), a(≤t)) = p(r(t+1), s(t+1)|s(t), a(t)). With partial

observability or incomplete information, instead of the complete state, the

agents only receive private observation o
(t)
i . In a pure cooperative setting, the
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rewards r
(t)
i agents receive are equal at every time step, converting the problem

into a decentralized POMDP (Dec-POMDP).

Scenarios involving multiple learning agents can be very complex because

of non-stationarity, huge policy spaces, and the need for effective explo-

ration (Hernandez-Leal et al., 2019). One way to solve a MARL problem is to

independently train each agent using a single-agent RL algorithm, treating the

other agents as a part of the environment. However, due to non-stationarity,

the convergence guarantees of the algorithms no longer exist (Bowling and

Veloso, 2000). Additionally, when more than one equilibrium exists, selecting

a Pareto-optimal equilibrium becomes a problem, in addition to actually con-

verging to one (Claus and Boutilier, 1998; Fulda and Ventura, 2007). WoLF-

PHC (Bowling and Veloso, 2002) attempts to solve this problem in adversarial

games, while “hysteretic learners” (Matignon et al., 2007) and “lenient learn-

ers” (Panait et al., 2006) are examples of algorithms that work in cooperative

games. A comprehensive survey of learning algorithms for multi-agent co-

operative settings is given by Matignon et al. (2012), and more recently by

Hernandez-Leal et al. (2019).

2.4 Multi-Agent Communication

In the context of MARL problems, communication is added in the form of

messages that can be shared among agents. At each time step t, each agent

i sends a message m
(t)
i ∈ Mi in addition to taking an action. Depending on

the problem specification and the solution method, the sent message can be

broadcast to all other agents or only to certain agents specified by the sender.

Agents can use messages from other agents to take more informed actions.

Communication in multi-agent systems was initially studied using fixed

protocols to share observations and experiences (Balch and Arkin, 1994; Tan,

1993). It was found that communication can speed up learning and leads to

better performance in certain problems.

Recently, Foerster et al. (2016) proposed a method to learn to communicate

using deep RL. Their first algorithm, RIAL, treats messages as additional
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actions and trains using traditional deep RL algorithms, while the second

algorithm, DIAL, propagates gradients through the communication channels

during training. CommNet (Sukhbaatar et al., 2016) aggregates continuous

messages from all agents and backpropagation through the communication

channel is used for training the agents. However, backpropagating the gradient

through the communication channel requires centralized training, which may

not always be possible in real-world settings.

Jaques et al. (2018) and Eccles et al. (2019) focus on decentralized training.

Jaques et al. (2018) use the idea of social influence to incentivize the sender

to send messages that affect the actions of the receiver. Eccles et al. (2019)

add additional losses to the agents in addition to the policy gradient loss. The

sender optimizes an information maximization based loss while the receiver

maximizes the usage of the received message.

Communication is also studied in the context of emergence of language (Ev-

timova et al., 2018; Lazaridou et al., 2017; Lowe et al., 2019; Wagner et al.,

2003) in which agents are trained to communicate to solve a particular task

with the goal of analyzing the resulting communication protocols. One of the

commonly used problem setting is that of a referential game which is a special

case of a signaling game in which the reward R(s, a) is 1 if s and a match

and 0 otherwise. In this thesis, we show that the problem becomes consider-

ably harder when using an arbitrary payoff matrix and we propose methods

to overcome this issue.
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Chapter 3

Difficulties with Decentralized
Learning

The signaling game described in Section 2.1 (Page 4), called Lewis signaling

game (Lewis, 1969), is the simplest multi-agent communication problem. The

agents have a fixed role as a receiver or a sender, with the sender only needing

to send a message and the receiver only needing to take an action. There

is only one step in the game which means that the agents do not need to

use the history for action selection. Also, with small payoff matrices, the

algorithms can use tabular policies and they can be studied in the context

of communication without other confounding factors resulting from complex

problems. Hence, we started experimenting with a simple signaling game

which has 3 possible private states for the sender, 3 possible actions for the

receiver, and 3 allowed messages.

(a) (b)

Figure 3.1: Payoff matrices used in the experiments. (a) Identity payoff matrix.
(b) Climbing game.
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The problem setting used in recent work studying communication is that

of a referential game, in which the reward given to the agent is 1 if the receiver

guesses the sender’s private state and 0 otherwise, which corresponds to an

identity payoff matrix. We allow the payoff to be arbitrary since, in real-

world settings, some mistakes by the receiver can be costlier than others. An

arbitrary payoff matrix also increases the complexity of the problem, exposing

potential issues with algorithms that can are hidden when using an identity

payoff matrix.

An optimal messaging policy, in this case, is to simply send a unique mes-

sage for each state, which would then turn it into an easily solvable single

agent problem for the receiver. In the experiments reported below, we use in-

dependent Q-Learning to train the agents and show that even in such simple

settings, with certain payoff matrices, online decentralized learning is difficult.

3.1 Experimental Setup

We used two payoff matrices to illustrate the difficulties with decentralized

training. In the first experiment, we used the identity payoff matrix (Fig-

ure 3.1(a)) to mirror the scenario commonly used in previous work. For the

second experiment, we used the payoff matrix shown in Figure 3.1(b) (called

the climbing game).

The training process consisted of 3 stages. First, the sender receives one

of the three random private states from the environment and sends one of the

three messages to the receiver based on the state. Then, the receiver takes one

of the three actions based on the received message. Finally, the agents’ policies

are updated using the reward corresponding to the state and the action.

The sender maintains a Q-table with entries for each private state and each

message. The receiver’s Q-table contains entries for each message and each

action. At each step, these values are independently updated using the Q-

Learning update. We compared decentralized training with centralized train-

ing, in which a central agent has access to the observations of both agents and

takes a joint action. This reduces to a single agent problem of finding the best

10



Figure 3.2: Normalized reward obtained during training, as a function of
episodes, with identity payoff matrix. Both algorithms converged to the opti-
mal policy.

Figure 3.3: Normalized reward obtained during training, as a function of
episodes, in the climbing game. Only centralized training found the optimal
policy.

action for each state.

We trained the agents for 10,000 episodes with a step size of 0.1. We

used ϵ-greedy exploration with an initial ϵ of 0.3, which was decayed to 0 over

8,000 episodes. Grid search was used to select the step size and exploration

parameters.
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Figure 3.4: Percentage of runs that took the optimal actions, as a function of
episodes, with identity payoff matrix.

Figure 3.5: Percentage of runs that took the optimal actions, as a function of
episodes, in the climbing game.

3.2 Results and Discussion

Figures 3.2 and 3.3 show the graph of reward obtained during training for

centralized and decentralized training with the identity payoff matrix, and

the climbing game, respectively. With the identity payoff matrix, agents find

the optimal policy in both cases. But in the climbing game, only centralized

training reaches an optimal policy.

The difference between the cases is clearer when looking at the percentage

12



of optimal actions taken. Figures 3.4 and 3.5 show this percentage during

centralized and decentralized training with the identity payoff matrix and the

climbing game respectively. Only 63% of the actions taken are optimal when

using decentralized training on the climbing game.

Even with longer training (up to 1 million steps), decentralized Q-Learning

is unable to find the optimal policy. One potential reason for this is that there

are multiple sub-optimal Nash Equilibria for these games. For example, if the

sender sends a single message for each state, then the best response for the

receiver is to take the action that gives the highest average reward. When the

receiver always takes a single action, the sender has no incentive to modify its

messaging policy. We will investigate this further in Sections 5.3 (Page 23)

and 5.4 (Page 26).
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Chapter 4

Inference-Based Messaging
Policy

In a multi-agent communication problem, agents could potentially require ac-

cess to the private state of other agents to be able to find an optimal action.

However, in a decentralized setting, the only information available about the

private state of other agents is through received messages.

One way for the receiver to build beliefs about the private state of the

sender is through Bayesian inference of private states given the message. Math-

ematically, given message m, prior state probability p(s) for each state s, and

sender messaging policy model p(m|s), the posterior state probabilities are

given by

p(s|m) = p(m|s) · p(s) /
∑︂
s′

p(m|s′) · p(s′) (4.1)

The receiver then uses the posterior belief for its action selection. For example,

it can assume that the current state of the sender, s(t), equals argmaxs p(s|m(t))

and act accordingly, or maximize the expected reward w.r.t. the posterior.

There are two issues with this: During decentralized training, the receiver

does not have access to the sender’s messaging policy, and even if the receiver

accurately models the sender’s messaging policy, the posterior state probabil-

ities would not be useful if the sender’s messaging policy is not good.

In our method, we use the inference process to improve the sender’s mes-

sage. The sender calculates the posterior probabilities of its current state for

each possible message that it can send. It then chooses the message that leads
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to the highest posterior probability. Intuitively, the sender is assuming that

the receiver is performing inference and chooses the message that is most likely

to lead to correct inference. Mathematically, the chosen message m(t) is given

by

m(t) = argmax
m

p(s(t)|m) = argmax
m

(︂
p(m|s(t)) /

∑︂
s′

p(m|s′)p(s′)
)︂

(4.2)

The p(s(t)) term is not present in the numerator because it is constant. Hence-

forth, we will use the term unscaled messaging policy to refer to p(m|s)

and messaging policy to refer to the above inference-based policy.

The unscaled messaging policy p(m|s) can be learned using any RL al-

gorithm. For example, in our experiments, we use a value-based method,

Q-Learning (Watkins and Dayan, 1992), for the matrix signaling games and

an asynchronous off-policy policy gradient method, IMPALA (Espeholt et al.,

2018), in the gridworld experiments. While the sender simulates inference, it

does not require the receiver to infer the private state of the sender to work

well. In fact, in our experiments, the receiver is trained using standard RL

Algorithm 1: Inference-Based Messaging (Signaling Game, Tabular
Case)

Input: Step size α
Initialize Q(s,m) arbitrarily
∀s ∈ S : N(s)← 0
for t← 1, 2, . . . do

Receive state s from the environment
N(s)← N(s) + 1
for s′ ∈ S do

p(s′)← N(s′) /
∑︁

s′′ N(s′′)
π(s′)← argmaxm′ Q(s′,m′)

end

∀m ∈M : p(s|m)←

{︄
1

∑︁
s′ 1{m=π(s′)}p(s

′) = 0
1{m=π(s)}∑︁

s′ 1{m=π(s′)}p(s
′)

otherwise

m← argmaxm′ p(s|m′)
Send m to the receiver
Observe r after the receiver acts
Q(s,m)← Q(s,m) + α(r −Q(s,m))

end
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Algorithm 2: Q-Learning Receiver

Input: Step size α, exploration rate ϵ
Initialize Q(m, a) arbitrarily
for t← 1, 2, . . . do

Receive m from sender
a← epsilon-greedy(Q(m, ·), ϵ)
Take action a and observe r
Q(m, a)← Q(m, a) + α(r −Q(m, a))

end

algorithms: Q-Learning and REINFORCE (Williams, 1992) for matrix games,

and IMPALA for gridworld. Algorithms 1 and 2 list the pseudocode of the

described algorithms for the tabular cases.

4.1 Approximating Posterior Probabilities

In a small signaling game, the posterior state probability, and consequently,

the message to send, can be calculated exactly by using Eq. 4.2. But in

more complex environments, in which the state space is large or even infinite,

it is necessary to approximate the probabilities. We use a simple empirical

averaging method to approximate p(s|m) while the agents are acting in the

environment.

The numerator in Eq. 4.2 can be calculated using the unscaled messaging

policy. The denominator can be written as p(m) = Es[p(m|s)]. This expecta-

tion can be approximated using the empirical mean of the unscaled message

probabilities calculated during a rollout or by training a predictor to directly

predict p(m).

In practice, due to the small number of samples in a rollout batch, the

variance in the mean estimate is high, reducing the quality of the messaging

policy. We empirically found that it is better to use estimates from previous

rollout batches to reduce the variance despite them being biased due to policy

updates that have happened after those rollouts. Mathematically, we maintain

an estimate p̂(m) that we update as an exponentially weighted moving average
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of the empirical mean calculated during a rollout p̄(m) with weight µ:

∀m ∈M : p̂(m)← µp̂(m) + (1− µ)p̄(m) (4.3)

Another way to estimate p(m) is to train a predictor. As p(m) depends on

p(m|s) and p(s), using the policy parameters θ as the input to the predictor

and the true mean as the training signal should allow the predictor to estimate

p(m) even when the policy is updated. Preliminary tests in the gridworld

environment showed that this is a hard task, possibly due to the large number

of policy parameters, the complex neural network dynamics, and not having

access to the true mean. Empirically, the performance was lower when using

a predictor compared to using a moving average.

Algorithm 3 implements these ideas for the sender in domains requiring

approximation.

The parameters of the unscaled messaging probabilities can be updated

using any RL algorithm. The updates need to account for the fact that we are

updating the unscaled messaging policy (the target policy) while acting using

the scaled messaging policy (the behavior policy).

We use IMPALA (Espeholt et al., 2018) in our gridworld experiments. The

Algorithm 3: Inference-Based Messaging (Gridworld, Approxima-
tion Case)

Input: Step size α, weight 0 < µ < 1, unscaled messaging policy
p(m|s; θ)

Initialize θ arbitrarily
∀m ∈M : p̂(m)← 1 / |M|
for rollout k ← 1, 2, . . . do
∀m ∈M : p̄(m)← 0
for t← 1, 2, . . . T do

Receive state s from the environment

m← argmaxm′

(︁
p(m′|s; θ) / p̂(m′)

)︁
p̄(m)← p̄(m) + p(m|s) / T
Send m to the receiver

end
∀m ∈M : p̂(m)← µp̂(m) + (1− µ)p̄(m)
Update θ using any RL algorithm after off-policy correction

end
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policy gradient in the original IMPALA update is given by

ρ(t)∇θ log p(m
(t)|s(t); θ)(r(t) + γv(t+1) − Vω(s

(t))),

where ρ(t) is the importance sampling weight to account for off-policy asyn-

chronous actors, v(t+1) is the V-trace target computed similar to the original

paper, r(t) is the current reward, and Vω(s
(t)) is the value prediction given by

the critic.

Since the behavior policy has a probability of 1 for the taken action and

the target policy has a probability p(m(t)|s(t)), the importance weight is given

by ρ(t) = p(m(t)|s(t)) / 1. Hence, the policy gradient becomes

∇θp(m
(t)|s(t); θ)(r(t) + γv(t+1) − Vω(s

(t)))

To illustrate how this method of training the unscaled messaging policy

and acting according to the scaled messaging probability affects the agent,

we consider a problem with two messages m1 and m2 with the corresponding

unscaled messaging policies p(m1|s) and p(m2|s). During training, the RL

algorithm updates the unscaled messaging policy based on the received reward.

For simplicity, we assume that p(m1|s(t)) is increased, and as a result p(m2|s(t))

is decreased, due to the update. This leads to p(m1) increasing and p(m2)

decreasing. Consequently, the posterior probabilities p(s|m1) would decrease

and p(s|m2) would increase ∀s ̸= s(t). Thus, when an agent is more likely to

choose a message in a particular state, it is automatically less likely to choose it

in other states, leading to efficient use of the communication channel. Training

the unscaled messaging policy using rewards ensures that the algorithm can

override this implicit update if it improves the return.
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Chapter 5

Experiments with Signaling
Games

To show the effectiveness of our proposed methods we conducted three exper-

iments using signaling games: First, we used the climbing game (Figure 1.1,

Page 2) to explain the issue of convergence to sub-optimal policies. We then

performed experiments on two sets of 1,000 payoff matrices of sizes 3×3 and

32×32, respectively, with each payoff generated uniformly at random between

0 and 1 and normalized to 1 by dividing all rewards by the maximum reward,

to show that the observed convergence issues are not specific to the climbing

game.

5.1 Experimental Setup

Each run of our experiments lasted for 1,000 episodes in 3×3 matrix games and

25,000 episodes in 32×32 matrix games. Using a higher number of episodes

gave qualitatively similar results and hence, we restricted it to the given num-

bers. In each episode, first, a uniform random state was generated and passed

to the sender. The sender then computed its message and sent it to the re-

ceiver, which used the message to compute its action. Finally, the reward

corresponding to the state and the action was sent to both agents and used

to independently update their policies. The obtained rewards (normalized by

the maximum possible reward) and the converged policies of the agents were

recorded.
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5.2 Algorithm Details

We compare our new method with a wide variety of algorithms. Our selection

includes traditional single-agent RL algorithms and algorithms from the liter-

ature that are shown to be effective in cooperative games with simultaneous

actions.

For each algorithm, we selected the hyper-parameters using a combination

of grid search and manual tuning. We generated 100 random payoff matrices,

and for each set of hyper-parameters and each payoff matrix, we repeated

the experiment 1,000 times. The set of hyper-parameters with the highest

percentage of runs that converged to the optimal policy was used in all other

experiments. Hyper-parameter tuning was performed separately for 3×3 payoff

matrices and 32×32 payoff matrices.

The algorithms we consider include:

• Info-Q – The information maximizing sender algorithm proposed in this

thesis. The sender uses Algorithm 1 (Page 15) and the receiver uses Q-Learning

(Algorithm 2, Page 16). All Q-values of the sender were initialized pessimisti-

cally (to -2) to prevent unwanted exploration by the sender. All Q-values of

the receiver were initialized optimistically (to +2) to allow faster learning, but

the same effect can be obtained by a higher step size. We used step size 0.1

and greedy action selection for the receiver. We found that ϵ-greedy explo-

ration by the receiver was not required for the signaling games we chose in

this thesis. The initial hyper-parameter guesses led to 100% convergence to

optimal policy and hence, were not tuned further.

• Info-Policy – Similar to Info-Q, but the receiver uses a policy gradient

method instead of Q-Learning. Updates to the receiver are performed using

the REINFORCE update rule (Williams, 1992) with the value of the state as

baseline. Q-values of the sender were initialized pessimistically (to -2). The

step size for both the policy update and the value baseline update was set to

0.5, while the step size for Q-value updates for the sender was set to 0.05. The

receiver’s step size was tuned between {0.1, 0.5} and the sender’s step size was

tuned between {0.5, 0.05}.
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• Fixed messages or fixed actions – For each algorithm, we ran a

version in which the policy of either the sender or the receiver was fixed to an

optimal one and only the other agent is trained. With this, the problem was

reduced to a single-agent problem.

• Independent Q-Learning (IQL) – Both the sender and the receiver are

trained independently using Q-Learning. The sender maintains a Q-table with

entries for each state and each message, while the receiver maintains entries for

each message and each action. For 3×3 payoffs, ϵ-greedy, with initial ϵ of 0.3

and linear decay by 3.75×10−4 per episode, was used for action selection, and

step size (α) 0.1 was used for the updates. For 32×32 payoffs, ϵ = 0.1, α = 0.5

were used, with ϵ decaying at a rate of 5×10−6 per episode. α and initial ϵ

were tuned among {0.01, 0.05, 0.1, 0.5} and {1, 0.5, 0.3, 0.1} respectively.

• Iterative Learning (IQ) – The learning is iterative, with the sender

updating its policy for a certain number of episodes (denoted by ‘period’)

while the receiver is fixed, followed by the receiver updating its policy while

the sender is fixed, and so on. During each period, the updates for either

the sender or the receiver are exactly the same as in independent Q-Learning.

An agent doesn’t explore when its policy is fixed. When its policy is being

trained, the action selection is ϵ-greedy, with ϵ set to 1 at the beginning of the

period and linearly decayed by 0.125 after every episode. Step size 0.5 was

used for the updates and periods spanned 10 episodes. For 32×32 payoffs,

periods spanned 100 episodes, and ϵ decay rate was 0.0125. Step size, initial

ϵ, and period were tuned among {0.01, 0.05, 0.1, 0.5}, {1, 0.5, 0.3, 0.1}, and

{1, 10, 100} respectively.

• Model the sender (ModelS) – The receiver maintains a Q-table for

each state and each action. It also maintains a Q-table for each state and each

message to model the sender. Based on the message sent by the sender and

the model of the sender, the receiver calculates the posterior probabilities of

each state (p(s|m)). The receiver assumes the true state to be the one with

the highest probability, i.e., argmaxs p(s|m), and the Q-table for states and

actions is used to compute the best action as argmaxaQ(s, a). ϵ-greedy, with

initial ϵ of 1 and linear decay by 1.25×10−3 per episode was used for action
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selection, and step size 0.05 was used for all the updates. The ϵ decay rate

was lowered to 5×10−5, while the step size was increased to 0.1 in the case of

32×32 payoffs. Step size and initial ϵ were tuned among {0.01, 0.05, 0.1, 0.5}

and {1, 0.5, 0.3, 0.1} respectively.

• Model the receiver (ModelR) – The sender maintains a Q-table for

each state and each action. It also maintains a Q-table for each message and

each action to model the receiver. The sender calculates the payoffs that would

be obtained if the receiver follows the modeled policy and selects the message

that maximizes this payoff (with ϵ-greedy for exploration). This algorithm is

similar to the one used by Sen et al. (2003), with the difference being that

ModelR uses ϵ-greedy w.r.t. max of Q-values instead of Boltzmann action

selection w.r.t. expected Q-values since we empirically found that ϵ-greedy

performed better. An initial ϵ of 0.1 with linear decay of 1.25×10−4 per episode

was used for action selection, and step size 0.5 was used for all updates. For

32×32 payoffs, ϵ = 1, with a decay of 5×10−5 per episode was used. Step

size and initial ϵ were tuned among {0.01, 0.05, 0.1, 0.5} and {1, 0.5, 0.3, 0.1}

respectively.

• Hysteretic-Q – An adaptation of the algorithm given by Matignon et

al. (2007) to our problems. The idea is to use a higher step size for positive

updates and a lower step size for negative updates. ϵ-greedy was used for

exploration instead of Boltzmann exploration since we empirically found that

ϵ-greedy performed better for this problem. ϵ was initially set to 0.1 and

linearly decayed by 1.25×10−4 per episode. α = 0.5, β = 0.05 were used as

the step sizes for positive and negative updates respectively. Problems with

32×32 payoffs used ϵ = 1, which decayed by 5×10−5 per episode. α and initial ϵ

were tuned among {0.01, 0.05, 0.1, 0.5} and {1, 0.5, 0.3, 0.1} respectively, while

β was tuned among {0.1, 1, 10} times α.

• Lenience – An adaptation of the algorithm presented in Panait et al.

(2006) (specifically the reinforcement learning version given by Wei and Luke

(2016)). In the initial time steps, Q-values are updated only if the update

is positive, ignoring low rewards. As the number of episodes increases, Q-

values are always updated. Step size 0.1 was used for updates. Boltzmann
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action selection, with a maximum temperature of 5, a minimum temperature

of 1.6×10−3, and exponential temperature decay (δ) by 0.99 per episode was

used. The action selection moderation factor (ω) and lenience moderation

factor (θ) were set to 0.1 and 1, respectively. The minimum temperature was

lowered to 0 and θ was increased to 10 in case of 32×32 payoffs. Step size,

δ, maximum temperature, ω and θ were tuned among {0.01, 0.05, 0.1, 0.5},

{0.999, 0.995, 0.99}, {5, 50, 500, 5000}, {0.1, 1, 10}, {0.1, 1, 10}.

• Comm-Bias – Both the sender and the receiver are independently

trained using REINFORCE. The sender additionally uses the positive sig-

naling loss given by Eccles et al. (2019) during training. The auxiliary loss

maximizes the mutual information between the sent message and the current

state. We found that the receiver using the positive listening bias given by

Eccles et al. (2019) didn’t improve the performance in these games. Since our

experiments are in a tabular setting, we calculated the loss exactly at each

timestep instead of averaging over a batch. A step size of 0.5 was used for

policy updates. Positive signaling loss was given a weight of 0.01. The weight

for average message entropy term (λ) was set to 0.1 in the 3×3 case and

0.3 in the 32×32 case, while the entropy target was set to 0.5 in the 3×3

case and 0 in the 32×32 case. Step size, positive signaling loss coefficient, λ,

entropy target were tuned among {0.1, 0.5}, {0.001, 0.01, 0.1}, {0.1, 0.3, 1.0},

{0.0, 0.5, 1.0, 1.5}.

5.3 Results for the Climbing Game

Experiments with the climbing game were performed using the payoff matrix

given in Figure 1.1 (Page 2) to highlight the issues with the existing algorithms.

Figure 5.1 (a), (b) shows the plot of the mean normalized reward, as a

function of episodes. While some of the algorithms obtain rewards close to

that obtained by Info-Q, the difference is magnified in Figure 5.2 (a), (b) which

shows the percentage of runs that took the optimal actions, as a function of

episodes. One standard error of the mean is shaded in all the plots, but is less

than the line width in most cases.
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(a) (b)

Figure 5.1: (a) Normalized reward obtained during training, as a function
of episodes. The standard error across the runs is less than the line width.
(b) Comparison of some algorithms with the fixed messages/actions baselines.
The plots for baselines overlap since their peformance was only constrained by
exploration.

For obtaining more insight into the potential issues of the baseline algo-

rithms, we counted (state, action) pairs for each run. We iterated through

the states, and for each state, we calculated the corresponding message sent

by the sender and the action taken by the receiver. Figure 5.3 shows the

matrix with the counts for each (state, action)-pair in case of Independent

Q-Learning (IQL, on the left) and Info-Q (on the right). It can be observed

that in state s2 (middle row), the receiver takes inferior action a3 (last column)

with Q-Learning, whereas Info-Q takes optimal action a2.

We also plotted Venn diagrams to visualize messaging policies. Figure 5.4

shows the Venn diagrams for independent Q-Learning and Info-Q. The region

labeled si outside of any intersection corresponds to runs in which si was

assigned a unique message. The intersection of regions si and sj denote the

runs in which si and sj were assigned the same message. The intersection

of all regions corresponds to runs in which all states were assigned the same

message. Info-Q assigns a distinct message to each state, whereas there are

some Q-Learning runs that assign the same message to multiple states.

The combination of (state, action) pair counts and the Venn diagrams

suggests that Q-Learning is converging to a sub-optimal policy of choosing a3
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(a) (b)

Figure 5.2: (a) Percentage of runs that took the optimal actions, as a function
of episodes. The difference between the algorithms is magnified in this plot
since the sub-optimal reward may be close in value to the optimal payoff.
(b) Comparison of some algorithms with the fixed messages/actions baselines.
The plots for baselines overlap.

Figure 5.3: Counts of (state, action) pairs for IQL and Info-Q. With IQL, the
receiver took a3 in s2, even though a2 is the optimal action to take. With
Info-Q, all runs converged to an optimal policy.

in s2. We hypothesize that this is due to the closeness of the two payoffs and

the fact that a3 is a “safer” action to take since the penalty is not high if the

message was incorrect. The messages corresponding to s2 and s3 are the same

in many runs. A possible reason for this is that, since the receiver is more

likely to take a3, there is insufficient incentive to send distinct messages for

s2 and s3. We believe that this vicious cycle leads to the agents converging

to a sub-optimal policy. Info-Q overcomes this cycle by forcing the sender to

fully utilize the communication channel irrespective of the incentive it receives
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Figure 5.4: Venn diagram of messaging policy for IQL and Info-Q. Intersections
in case of IQL imply that in some runs, multiple states were assigned the same
message. In case of Info-Q, all states were assigned a distinct message.

through the rewards.

5.4 Random Payoff Signaling Game Results

To ensure that the issues were not specific to a single game, we conducted

experiments on randomly generated payoff matrices of size 3×3 and 32×32.

Figures 5.5 and 5.6 show the plots of the mean normalized reward, as a function

of episodes, on 3×3 and 32×32 payoff matrices respectively. The mean, here,

refers to all random payoff matrices and multiple runs for each matrix. One

standard error of the mean is shaded, but less than the line width in most cases.

Figures 5.7 and 5.8 show the boxplots of the percentage of runs that converge

to an optimal policy for each payoff matrix of size 3×3 and 32×32 respectively.

The boxplots clearly demonstrate the advantage of Info-Q compared to the

other algorithms in terms of convergence to an optimal policy.

The version of our algorithm with the receiver being trained using policy

gradient (Info-Policy) does not perform as well as Info-Q. This is due to the

policy gradient method itself being slower to learn in this problem. Comm-

Bias is also affected by it and performs worse than Info-Policy. IQ works

fairly well in many problems since it is approximately equivalent to iterative

best response. It fails in cases in which iterative best response converges to

a sub-optimal policy. Since the agents explore more at the beginning of a
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Figure 5.5: Mean normalized reward obtained during training, as a function
of episodes, on random 3×3 payoff matrices.

Figure 5.6: Mean normalized reward obtained during training, as a function
of episodes, on random 32×32 payoff matrices.

period, the obtained reward is much lower. Hence, the reward curve for IQ

does not truly reflect its test-time performance. Modeling the sender only

works well if the receiver has access to the sender’s state during training (but

still not as well as Info-Q). Otherwise, the performance is poor as shown in the

plots. Modeling the receiver suffered from the issue of sub-optimal policy of

the receiver. The best response by the sender to a sub-optimal receiver policy
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Figure 5.7: Boxplot of the percentage of runs that converged to an optimal
policy for each 3×3 payoff matrix.
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Figure 5.8: Boxplot of the percentage of runs that converged to an optimal
policy for each 32×32 payoff matrix.

could be sub-optimal for the problem. The best response to this sender’s

policy in turn could be sub-optimal for the problem, leading to the agents not

improving. Hysteretic-Q converged to an optimal policy in the case of the

climbing game when the number of episodes was increased from 1e3 to 1e6. It

could potentially converge to an optimal policy for random payoff matrices too

if given enough episodes. But with a lower number of episodes, the percentage
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of runs with optimal convergence is reduced to 89% for 3×3 payoff matrices

and 56% for 32×32 payoff matrices.

5.5 Effect of the Payoff Matrix on Rewards

and Optimality

Figure 5.9 shows examples of some of the randomly generated 3×3 payoff

matrices that were hard for the algorithms in terms of convergence to an

optimal policy. The three matrices shown in the figure have the lowest mean

percentage of convergence to an optimal policy across all the algorithms. Info-

Q converges to an optimal policy in all the runs with these payoff matrices.

Earlier, we hypothesized that the low percentage of convergence to optimal

policy is due to the closeness in the payoffs of optimal and sub-optimal actions

in a state, combined with a sub-optimal action having higher payoffs in other

states. This hypothesis is strengthened by these payoff matrices since they too

have the same issues. Multiple pairs of actions in the top game, a1 and a3 in s3

in the middle game, and a1 and a3 in s2 in the bottom game have close payoffs.

In each case, the sub-optimal action has a higher expected payoff across all

the states.

Since the sub-optimal payoffs are close to the optimal payoffs in these

matrices, the algorithms still receive a high reward even when they are choosing

a sub-optimal action. In contrast, the payoff matrices shown in Figure 5.10

lead to the algorithms receiving the lowest mean reward. While the percentage

of runs that converge to the optimal policy is higher for these matrices, sub-

optimal actions give much lower reward compared to the optimal ones. The

mean final reward over all algorithms and all runs was around 0.9 for these

matrices.

While these examples are extremes, these problems are present even for

other payoff matrices. We perform a simple experiment to test the effect of

payoff matrix. We start with an 3×3 identity payoff matrix (with which all

algorithms almost always reach the optimal policy) and modify certain payoffs

by varying a variable x from 0 to 1:
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Figure 5.9: Three payoff matrices among the randomly generated ones that
resulted in the lowest convergence-to-optimal percentage in terms of the mean
over all algorithms.

Figure 5.10: Three payoff matrices among the randomly generated ones that
resulted in the lowest final mean reward over all algorithms.

• Set R(s2, a3) = x.

• Set R(s2, a3) = x and R(s3, a2) = x

• Set R(s2, a3) = x and R(s2, a2) = 1 + x

Figure 5.11 shows the percentage of runs converging to the optimal policy

across all the algorithms as x is varied. In the first case, as x approaches 1,

the difference between R(s2, a2) and R(s2, a3) reduces and the average payoff

of a3 increases, which leads to the percentage of optimal runs dropping. In

the second case, the average payoff is the same for all the actions, but the

percentage of optimal runs still drops, showing that the difference between
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Figure 5.11: Effect of payoffs on the percentage of runs converging to the
optimal policy across all the algorithms.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.95

0.96

0.97

0.98

Fi
na

l n
or

m
al

ize
d 

m
ea

n 
re

wa
rd

R(s2, a3) = x
R(s2, a3) = x, R(s3, a2) = x
R(s2, a3) = x, R(s2, a2) = 1 + x

Figure 5.12: Effect of payoffs on the final mean normalized reward across all
the algorithms.

rewards might be the bigger reason for poor performance. When the absolute

difference between rewards is kept constant in the last case, the drop is smaller,

which further reinforces the hypothesis of close rewards making it hard for the

algorithms to converge to the optimal policy.

We repeated the experiments using the final reward as the comparison met-

ric instead of the percentage of runs reaching the optimal policy. Figure 5.12

shows the effect of payoff matrix variation on the mean final reward obtained

over all algorithms. The third case has a small drop in reward, while in the
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first two cases, the reward drops initially before rising. The result is unsur-

prising since the percentage of optimal runs reduces as x increases but the

sub-optimal reward also increases at the same time. Hence, the obtained re-

ward decreases initially until the sub-optimal reward becomes large enough to

make the received reward higher.

Thus, sub-optimal payoffs being close to the optimal payoff leads to most

of the algorithms not finding the optimal policy. The difficulty increases as

the sub-optimal payoff becomes closer, but the penalty for choosing the sub-

optimal action also reduces. When the optimal and sub-optimal rewards are

well separated (like in identity payoff matrix), the rewards obtained during

exploration provide enough incentive to choose a unique message for each

state. Our method, Info-Q, finds the optimal policy even in these difficult

problems since it gives higher priority to less-used messages in addition to

using the rewards obtained during training.
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Chapter 6

Experiments with a Partially
Observable Gridworld

In the previous chapter, we showed experiments on signaling games with a

finite and relatively small number of states and actions. Real-world settings are

often more complex in three ways. First, the problem generally has multiple

time-steps in each episode, which requires the agents to reason about the

sequence of messages. Second, the state and the action spaces can be infinite

which means that function approximation needs to be used for maintaining the

unscaled messaging policy as well to approximate the posterior probabilities.

Finally, with increased problem complexity, the time required for an agent to

learn to best respond to a message is much higher. As a consequence, credit

assignment becomes harder for the sender since it cannot distinguish easily

between a bad message and a bad response. To study the effects of these

complexities on our algorithm, we focus on a gridworld environment in which

two agents take actions as well as send messages to the other agent while

cooperating towards a common goal.

6.1 Experimental Setup

We use the gridworld environment called “Treasure Hunt” introduced by Ec-

cles et al. (2019) to test our algorithm in domains in which exact inference

is infeasible. The previously discussed complexities are all present in this

environment. There are multiple time-steps in the episodes and the agents

33



Figure 6.1: The Treasure Hunt environment.

communicate at each time-step. The problem is partially observable, which,

combined with the large size of the gridworld, makes it necessary for the poli-

cies to be approximate. The learning time is also high, which means that the

agents will not be able to quickly best respond to other agents’ messaging

policies.

6.1.1 Environment Details

There are two agents in the environment with the common goal of reaching

the treasure at the bottom of one of the tunnels. Both agents have a limited

field of view, and their positions make it so that one agent can easily see the

goal location but cannot reach it, while the other agent can reach the goal, but

potentially needs to explore all tunnels before reaching the goal. By allowing

communication, one agent can easily locate the goal and signal the location to

the other agent. Specifically, both agents receive the message that the other

agent sent at the previous time step. Hence, both agents take the role of a

sender and a receiver, in contrast to the signaling game, in which there is only

one sender and one receiver.

Figure 6.1 shows a screenshot of the environment. For each training episode,

an 18 high and 24 wide grid is created as follows:

• Create two tunnels between the second column and the second to last
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column at the second and the second to last rows.

• Randomly choose four columns with a spacing of at least two columns

between each of them. Create a tunnel of length 14 starting from the

top tunnel in each of these columns.

• Place the first agent in a random cell in the top horizontal tunnel. Place

the second agent in a random cell in the bottom horizontal tunnel.

• Place the goal at the bottommost cell of a random vertical tunnel.

The goal location is moved to the bottommost cell of a random vertical

tunnel every time an agent reaches it. The episode is terminated after 500

time-steps and the grid is regenerated using the above rules.

At each time step, both agents observe a 5×5 area centered around their

current location. The agents can move in any cardinal direction or take no

action. The agents can also send one of the 5 messages that is shared with the

other agent in the next time step. If an agent moves into a wall, it stays in its

previous location. If it moves into the goal location, both agents get a reward

of 1.

6.1.2 Training Method

The network architecture and the training method we used for our experi-

ments is similar to that given by Eccles et al. (2019) to keep the comparisons

fair, with only the number of training steps and hyper-parameters modified

as described below. Agents were trained in an online manner using a mod-

ification of the Importance Weighted Actor-Learner Architecture (IMPALA)

algorithm (Espeholt et al., 2018). During each time-step of an episode, both

agents select an action and a message using its hidden state, the current ob-

servation and the message sent by the other agent in the previous time-step.

Specifically, each agent uses its own network with the following architecture:

• Pass the 5×5 observations through a convolutional neural network (CNN)

with 6 channels, kernel size 1, and stride 1.
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• Flatten the CNN output and concatenate the received message. Pass it

through two fully connected layers (MLP) with 64 units each.

• Concatenate the previous reward and action to the MLP output and

pass it to an LSTM with 128 hidden units.

• Pass the LSTM outputs through a separate linear layer for action logits,

message logits, and the value estimate.

The action policy and the unscaled message policies of agents are updated

using the IMPALA algorithm.

Contrastive Predictive Coding (CPC) (Oord et al., 2018) is used to improve

LSTM performance. The CPC loss is calculated as follows:

• Transform the LSTM inputs by passing it through a linear layer with 64

outputs to get the input projection.

• Get the output projection corresponding to predictions of inputs at 20

future time steps by passing the LSTM outputs through 20 different

linear layers with 64 outputs each.

• Compute the dot product of the output projection at time t and input

projection at time t+ k across all batches for k = 1, 2, . . . , 20.

• Calculate the CPC loss as the cross-entropy loss using the dot prod-

ucts as logits and the prediction being true when the input and output

projections are from the same batch.

In our method, the message selection uses inference simulation as shown

in Algorithm 3 (Page 17) to compute m(t) = argmaxm p(s(t)|m). As a baseline

(called No-Bias), we used agents that picked messages based on the learned

unscaled messaging policy and were trained independently using IMPALA. We

also compared our method with the biases given by Eccles et al. (2019). With

positive signaling bias, the sender was incentivized to send a message with

higher information, using losses based on mutual information between private

states and messages. With positive listening bias, the receiver was incentivized
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to use the received message for its action selection by maximizing the distance

between the receiver’s policy distribution and the distribution induced by not

using the messages. It was achieved by maximizing the divergence between

action probabilities resulting when messages are used and those when the

messages are zeroed out.

The algorithms were implemented using the RLLib (Liang et al., 2018)

library. The hyper-parameters were selected using those used by Eccles et

al. (2019) as the starting point and performing grid search over the hyper-

parameters listed below. The other hyper-parameters were unchanged or man-

ually chosen such that the mean episode reward after 100 million time steps

was maximized. Each experiment was repeated 12 times and each run lasted

for 300 million time steps. RMSProp optimizer (Hinton et al., 2012) was

used for updating the weights, with an initial learning rate of 10−3, exponen-

tially decayed by 0.99 after every million steps. ϵ for the optimizer was set to

10−6. The optimizer was tuned between Adam (Kingma and Ba, 2015) with

a learning rate of 10−4 and no decay, Adam with a learning rate of 10−4 and

exponential decay by 0.99 after every million steps, RMSProp with a learn-

ing rate of 10−4 and no decay, RMSProp with a learning rate of 10−3 and

exponential decay by 0.99 after every million steps. RMSProp ϵ was further

tuned between {10−6, 10−3}. All gradients were scaled such that the gradi-

ent norm was at most 10. The maximum gradient norm was tuned between

{10, 40}. Each rollout consisted of 100 time-steps and a batch size of 16 was

used. 32 asynchronous parallel actors were used to collect data from the en-

vironment. The batch size was tuned between {16, 32}, but rollout length

was not tuned. Policy, value and entropy losses were balanced by using a

coefficient of 0.5 for the value loss and 0.006 for the entropy loss. The value

loss coefficient was tuned between {0.5, 1}, while the entropy loss coefficient

was tuned among {0.01, 0.006, 0.001}. The discount factor was set to 0.99.

The hyper-parameters for the positive signaling and positive listening biases

were the same as those given by Eccles et al. (2019). For our method, the

hyperparameter µ in Algorithm 3 (Page 17) was set to 0.5 after tuning among

{0, 0.25, 0.5, 0.9}.
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Table 6.1: Comparison of our work with the biases given by Eccles et al. (2019)

Method Final reward Fraction of
good runs

No-Bias (our implementation) 11.55± 1.03 0.42 (5 / 12)
No-Bias (Eccles et al., 2019) 12.45± 0.48 0.28

Positive signaling (our implementation) 16.45± 0.20 1 (12 / 12)
Positive signaling (Eccles et al., 2019) 14.22± 0.36 0.84

Positive signaling + listening (our implementa-
tion)

16.25± 0.20 1 (12 / 12)

Positive signaling + listening (Eccles et al.,
2019)

15.14± 0.33 0.94

Inference-Based Messaging 14.29± 1.26 0.92 (11 / 12)

Inference-Based Messaging + positive listening 15.48± 0.76 0.92 (11 / 12)

6.2 Results and Discussion

Table 6.1 shows the results we obtained for methods presented in Eccles et

al. (2019) and our inference-based method. Similar to their paper, we divide

the runs into two categories: good runs, in which the final reward is greater

than 13, and all runs. Good runs require efficient communication since the

maximum reward achieved without communication is 13, as shown by Eccles

et al. (2019). Due to discrepancies in the results of our implementation of

the communication biases and the values reported by Eccles et al. (2019),

we provide both the values in the table. We believe that the difference in

the number of repetitions for each experiment and the number of training

steps to be the reason for these discrepancies. Due to practical computational

constraints, we could not perform longer runs or more repetitions.

Inference-based messaging performed significantly (more than one standard

error of the mean difference) better than No-Bias. Adding positive listening

bias further improved the performance of inference-based messaging. The per-

formance of our method is similar to the reported value of positive signaling

bias, but worse compared to our implementation of it. Our method combined

with positive listening performs similarly to the reported value with both sig-

naling and listening biases and is slightly worse (but not significant) when
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compared to our implementation of the biases. Agents receive more than 13

reward per episode after training in 11 of the 12 runs with inference-based

messaging, which, as described earlier, shows that the agents are learning to

communicate in most of the runs.

The results indicate that inference-based messaging can also improve com-

munication in complex multi-agent environments, and be complementary to

methods that improve the receiver. The improvement not being as significant

as in the signaling games could be a result of the inaccurate estimate of the

posterior probabilities. As described in Section 4.1 (Page 16), the estimates

given by the moving average of the empirical mean is biased since it uses data

from older rollouts which were generated using previous policies. Finding a

better estimation method is an open problem.
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Chapter 7

Conclusions and Future Work

The contributions of this thesis are threefold. First, we demonstrated that

state-of-the-art MARL algorithms often converge to sub-optimal policies in a

signaling game. By analyzing random payoff matrices we found that a sub-

optimal payoff being close to the optimal payoff, in combination with the

sub-optimal action having higher average payoffs in other states can lead to

such behavior.

We then proposed a method in which the sender simulates the receiver’s

Bayesian inference of its private state given a message to guide its message

selection. Training agents with this new algorithm led to convergence to the

optimal policy in nearly all runs, for a varied set of payoff matrices. The

motivation to use the full communication channel irrespective of the reward

appears to help the learning agents to converge to the optimal policy.

Finally, we applied our method to a more complex gridworld problem which

requires probability approximations for the inference simulation process. In

this domain, too, we could show performance gains.

However, with approximation, our method doesn’t always reach an optimal

policy. We believe that our algorithms can be further improved with more

sophisticated inference approximation techniques.

Our algorithm can also be improved in cases where the message bandwidth

is limited. One of the main assumptions in this thesis is that good messages

contain information about the private state. When there is limited bandwidth,

it is not possible to share full information about the state. In such cases,
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messages with the highest amount of information about the private state may

not always be optimal. For example, if multiple states have the same optimal

action, then it is not necessary to be able to distinguish between them. A

future extension to our work could take this into account while choosing the

message.

Moreover, as shown in this thesis, learning to communicate using decentral-

ized training is a hard problem. Currently, communication is used for sharing

observations while acting to allow agents to make more informed decisions.

One possible way to simplify decentralized training is to allow agents to send

a second message during training that is used for sharing information useful

for agents’ policy updates. For example, in Simplified Action Decoder (Hu and

Foerster, 2020), agents send the greedy action to other agents in a separate

channel, which is used during the training process to differentiate between

exploratory and non-exploratory actions. More generally, the agents could

learn what message to send, allowing agents to simulate a centralized training

setting while still being decentralized.
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