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"In the temple of science are many mansions . . . and various
indeed are they that dwell therein and the motives that have led
them there.

Many take science out of joyful sense of superior intellectual
power; science is their own special sport to which they look for
vivid experience and the satisfaction of ambition; many others are
to be found in the temple who have offered the products of their
brain on this altar for purely utilitarian purposes. Were an angel of
the Lord to come and drive all the people belonging to these two
categories out of the temple, it would be noticeably emptier but
there would still be some men of both present and past times left
inside . . . If the types we have just expelled were the only types
there were, the temple would never have existed any more than one
can have a wood consisting of nothing but creepers . . . those who
have found favour with the angel . . . are somewhat odd,
uncommunicaiive, solitary fellows, really less like each other than
the host of the rejected.

What has brought them to the temple . . . no single answer will
cover . . . escape from everyday life, with its painful crudity and
hopeless dreariness, from the fetters of one's own shifting desires.
A finely tempered nature longs to escape from his noisy cramped
surroundings inio the silence of the high mountains where the eye

ranges freely through the still pure air and fondly traces cut the
restful contours apparently built for eternity”.

Albert Einstein
Berlin, May 1918.
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_ Abstract

After aluminum (Al) toxicity, manganese (Mn) toxicity is probably the world's
second most important growth limiting factor in acid soils. Breeding wheat (Triticum
aestivum L.) for tolerance to Mn might be in some cases more feasible and economical
than use of soil amendments. This study was conducted (1) to determine the level of Mn
tolerance in Canadian wheat cultivars and its probable origin, by relative root weight
(RRW) estimates in solution culture, and by analysis of cultivar pedigrees and drawing
of phylogenetic maps to discemn filial relationships, (2) to develop a rapid, seedling
based, screening bioassay for Mn toferance by testing several physiological parameters,
and (3) to determine the inheritance and estimate genetic effects on Mn tolerance using
the progeny generation mean analysis method of progeny generations from five cultivars
(Norquay, Laura, Oslo, Columbus, and Katepwa) crossed in all combinations, excluding
reciprocals.

A range of tolerance to Mn among Canszdian cultivars was observed. Manganese
tolerance appears to have originated from the Brazilian land races Polyssu (= Ponta
Grossa 142) and/or Alfredc Chavez 6.21. The dilfferential response in chlorophyil
concentration of Mn-stressed seedlings and leaf elongation rate (LER) of seedling
regrowth of cultivars differing in Mn iolerance, as well as the significant correlation of
these parameters with Mn toierance assayed by the reiative root weight methodology
(RRW) indicates the suitabiiity of chlorophyil content or LER for screening seedlings
tolerant to Mn toxicity. The continuous ‘requency distribution of segregating generations
which indicated differential tolerance to Mn toxicity, the similarity of the F1 and F2
means, and high levels of additive gene action indicated quantitative inheritance of Mn
tolerance. Furthermore, heritability and gene effects estimates indicated that the genetic
control of Mn tolerance in cv Norquay and cv Laura may be different. A preponderance of
additive effects coupled with high heritability and small dominance (potence ratio)
estimates indicate that selection for Mn tolerance should be effective in early
generations, particularly where cv Norquay is used as the Mn tolerant parent. This
information will help breeders to develop plant breeding systems, and may also help in
the study of the mechanisms for Mn tolerance in wheat.

vi
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Chapter |

1.1. Introduction

Of the worlds non-irrigated arable lands, nearly half are acid (Clark, 1982),
and manganese (Mn) toxicity is probably the second most important growth-limiting
factor after aluminum toxicity in acid soils (Foy, 1984a). In some Canadian soils, soil
acidity is becoming a major factor limiting crop growth. Of the cultivated land of Alberta
and the Peace River region of British Columbia there are an estimated 328,000 ha of
strongly acid soils (pH < 5.5) and about 1,600,000 ha of moderate acid soils (pH range
of 5.6 to 6.0) (Penny et al., 1977). Furthermore, the use of fertilizers, particularly
ammonia-based nitrogen which has a strong acidifying action, is rapidly increasing and
is the major cause of acidification in Western Canada (Hoyt et al., 1981). It has been
projected that 25% of the soils in Alberta coulid be acid by 1985 (Hoyt et al., 1981).
While technology is readily available to detect and correct nutrient toxicity problems
where they exist, economics become a significant factor with the rising cost of
amendments (Miller, 1983). In the past, an approach to soil fertility problems has
emphasized "changing the soil to fit the plant", but a more ecoriomical approach to soil
stress problems emphasizes "tailoring the plant to fit the soil" (Foy, 1983a).

Although incorporation of Mn tolerance into Canadian wheat cultivars has not yet
been consciously implemented, seiection of Mn tolerant Canadian cultivars has been
recently reported (Macfie et al., 1989). The possibility of exploiting genotypic
differences within cultivated wheat in a breeding program may improve the advantage to
producers wishing to maximize efficiency of resource utilization. The objectives of this
study were (1) to determine the extent and origin of Mn toferance in selected Canadian
spring wheat cultivars, (2) to develop a rapid seedling based screening bioassay for Mn
tolerance which is suitable for use in segregating populations of wheat, and (3) to
determine the mode of inheritance of tolerance to Mn toxicity in wheat. The lack of
knowledge in these three areas has hampered development of a suitable breeding program
for selection of wheat cultivars tolerant to Mn toxicity. This has been further hampered
by the complex and diverse role and effects of Mn in plants.

No attempt is made in this chapter to review all the available literature of Mn
toxicity on plants, nor of wheat in particular; rather the complexity of Mn toxicity in
plants is demonstrated. Brief reviews of the literature concerning the origin and range
of Mn tolerance in wheat, the screening methodologies used for selecting Mn tolerance of
field crops, and the inheritance of Mn tolerance of plants are presented in Chapter i,



Chapter I, and Chapter IV, respectively. For more detailed and recent information on
the role and effects of Mn in plants see Foy et al. (1978), Foy (1984a; 19833, b),
Kamprath and Foy (1985), and Graham et al. (1988).

I.2. Literature review
L2 M il icit

The first report of Mn toxicity in crop plants was published in 1908 by Kelly,
who described Mn toxicity symptoms for pineapple in manganiferous soils of the drier
regions of the Hawaiian islands (cited in Mulder and Gerretsen, 1952). Since then,
several reports of Mn toxicity have been reported- from the tropics, sub-tropics and
temperate regions of the world (Schilchting and Sparrow, 1988). In global terms, Dudal
(1976) related Mn toxicity mainly to Acri- and Ferralsols (especially on ultrabasic
rocks), and acid Nito- and thionic Fluvisols (FAO-Unesco, 1974). Wambeke (1976),
on the other hand, emphasized Oxi(=Ferral-) more than Ultisols (=Acri- and Nitosols),
and also mentioned Alfisols (=Luvisois).

In North America Mn toxicity problems have been reported for sevei crop
species in several different soils. Bortner (1935) reported Mn toxicity for tobacco in
poorly drained soils and soils on limestone. Adams and Pearson (1967), and Adams
(1984), reported Mn toxicity in tobacco and cotton in soils on limestone in Ultisols of
the older land surfaces. Foy and Campbell (1984b) described Mn toxicity for several
species in Fragiudalfs. Snider (1943) reported problems for several species in lllinois
in soils characterized by low pH and exchangeable bases and high exchangeable Mn in the
profiles. Hati et al. (1979) reported Mn toxicity problems for several species,
especially cotton, in Missouri, and Mclean and Brown (1984) in an acid Hapludoll of
Kansas. Moraghan (1979) described a case where flax suffered from Mn toxicity in
Calcia quolls of North Dakota low in available Fe. Evidence in field 2xperiments was
given by Lee and McDonald (1 977) for potatoes in a loamy Ultisol (Acri- or Nitosol) by
Gupta et al. (1873), and by Prausse et al. (1972) for potatoes and barley in loamy
Brown-earths and Stagnogleys soils. In Canada, Mn toxicity problems have been reported
for barley on a sandy-loam Podzol in MNew Brunswick, for apple orchards in the
Okanagan Valley of British Columbia (Fisher et al., 1977), and for crops being rotated
with potatces, in which the potatoe fields associated with strongly acidic pH received low

lime application as a measure of disease control (France, 1986, cited by Stokes, et al.,
1988).



Although reports of Mn toxicity have come from diverse areas of the world
(Schlichting and Sparrow, 1988), the information indicates that these problem soils
have unique physical and chemical characteristics of specific ecology and are not wide
spread in term of land area. On the other hand, the availability ai; ~ the potential toxicity
of Mn to a given crop depends on many soils properties, including total Mn content, pH,
organic matter level, aeration, and microbial activity (Foy, 1973; Stahlberg et al.,
1976). Manganese toxicity generally occurs in soils with pH vaiues of 5.5 or below if
the soil contains sufficient totai Mn. It can also occur at higher soii pH values in poorly
drained or compacted scils where reducing conditions favor the production of divalent Mn
(Foy, 1984). Manganese toxicity is frequently induced or intensified by ammonia-based
nitrogen fertilization, which lowers the pH, or by fumigation with steam or methyl
bromide, air -drying, or flooding (Nelson, 1977; Kiuthcouski and Nelson, 1979). The
addition of organic matter can reduce Mn toxicity, probably by chelating excess divalent
Mn that the plant could otherwise absorb (Masui and Ishida, 1975). The availability of
Mn in soils is closely related to the activities of microorganisms that can oxidize the
soluble and toxic divalent Mn to the tetravalent, nontoxic form (Kamura and Nishitaani,
1977; Bromfield, 1979). Sidorenko et al. (1979) reported that Metallogenium Perf.
oxidized Fe and Mn on rice roots. These reports indicate that Mn toxicity not only depends
on the Mn soil content but also on the different factors which would affect its availability
to plants. Thus, theoretically, all soils can be changed into Mn toxic ones by increasing
Mn reserves and/or their availability (Schiichting and Sparrow, 1988).

Manganese is readily taken up and transported from the roots to the shoots (Nable
and Loneragan, 1984). There is general agreement that divalent Mn (ll) is the
prevailing source of Mn at the root surface and is the one species taken up by the plant
(Clarkson, 1988). The mobility of Mn in plants is not yet understood (Loneragan,
1988). Mobility of Mn in the phloem appears to be species-dependent, while in the
xylem of all species, primarily as a divales: ion, Mn is readily mobile (El-Baz et al.,
1990).

Maranese has a role in many biochemical processes in plants, but unlike other
essential trace elements, Mn usually acts as an activator of enzymes and is often able to
be replaced by other metal ions. Manganese resembles Mg in its biochemical function and
is involved in activating enzyme catalyzed reactions including phosphorylation,
decarboxylation, reduction and hydrolysis reactions and therefore affects processes such



as respiration, amino acid synthesis, lignin biosynthesis and the level of hormones in
plants (Burnell, 1988).

The average concentration of Mn in the cytoplasm is about 100 1M (Burneli,
1988). A significant proportion of total cell Mn is involved in dissociable metal-
activated systems requiring relative high (0.1-1.0 mM) concentrations of ionic metal
(Burnell, 1988). A pool of tightly bound Mn occurs in the chloroplast where amounts of
6 atoms per 400 molecules of chlorophyll is found (Chanie, 1970). Assuming a
chlorophyll concentration of 1.8 mM, the bound Mn is equivalent to about 30 pM
(Burneli, 1988). The Mn-containing superoxide dismutase may contribute about 1% of
the bound Mn (Sevilla et al., 1980).

Although a relatively large number of enzymes are activated by Mn ions, to date
only three Mn-containing enzymes have been reported. These include the photosynthetic
Mn-containing complex, the Mn-containing superoxide dismutase and the Mn-containing
acid phosphatases (Burnell, 1988). There has been a report of a metailoprotein
dependent 6n Mn in peanuts, named manganin (MW 56,000-58,000). This protein has
been isolated and contains one atom of Mn, but its function is unknown (Diekert and
Rozacky, 1969).

Physiological functions of Mn in plants are affected adversely by either deficient
or toxic levels of Mn. It is use of these extremes of Mn nutrition that have been largely
responsible for elucidating its physiology (Campbell and Nable, 1988). The physiology
of Mn in plants is governed by the chemistry of Mn, particularly the configuration of the
electrons in the 'd’ shell (Hughes and Wiliiams, 1988). When Mn is in the Mn(ll)
oxidation state there is one unpaired electron in each of the five 'd’ orbitals i.e. the
stable, energetically favoured 'd5* configuration is attained (Bartlett, 1588). Two
consequences of this configuration are (i) Mn is a relatively weak ligand and (ii) Mn has
the potential to form compounds in several oxidation states (Campbell and Nable, 1988).
These factors have contributed to the difficulties in unraveling the physiology of Mn.
Thus, many functions have been derived by inference (Campbell and Nable, 1988).

According to Campbell and Nable (1988), Mn has a profound influence on three
particular physiological (metabolic) functions: (i) photosynthesis, particularly
electron transport in photosystem I, photodestruction of chlorophyll and chloroplast
structure, (ii) N metabolism, especially the sequential reduction of nitrate, and (iii)

aromatic ring compounds as precursors for aromatic amino acids, hormones (auxins),
phenols and lignins.



1.2.c. Manganese toxicity symptoms and effects

Because Mn is readily taken up and transported from the roots to the shoots
(Nable and Loneragan, 1984), Mn is generally less rhizotoxic than other metals.
Symptoms of Mn toxicity occur first on the shoot (Brown and Devine, 1980), however,
when high concentrations of manganese are applied to roots in order to accelerate plant
response, root growth may be affected directly (Wong and Bradshaw, 1982; Macfie et
al., 1989) and alterations in shoot metabolism may then be a secondary effect (Horst,
1988). Inhibition of root growth is accompanied by brown discoloration indicative of
accumulation of oxidized Mn (MnO2) on the root surface and oxidized phenolics in root
cortical cells (Keil et al., 1986; Macfie and Taylor, 1989).

The extent of injury from Mn toxicity is generally proportionately to the
concentration of excess Mn accumulated (Fales and Ohki, 1982). Although there are no
typical Mn toxicity symptoms in shoots, three major groups of symptoms may be
distinguished (Horst, 1988). The first group includes symptoms of physiologically old,
non-growing plant tissues (stem, petioles, leaves). These symptoms appea” as small
distinct dark-brown speckles (Elamin and Wilcox, 1986a; Riedell and Schmid, 1986;
Bussler, 1958; Horst and Marschener, 1978), necrotic lesions (‘'stem streak necrosis
of potato' (Berger and Gerloff, 1947), 'internal bark necrosis of apple' (Eggert and
Hayden, 1970)), chiorotic spots (Elamin and Wiicox, 1986b), leaf-margin and leaf-
tip chlorosis (Blatt and van Diest, j¢81). Leaf shedding is also known from other plant
species (e.g. abnormal defoliation of Satsuma mandarin (Aoba, 1986) and potato
(Andrees, 1971)). The second group ot symptoms are growth inhibition and distortion
of young expanding leaves. These symptoms 2re commonly known as ‘crinkle leaf’. They
have been described for cotton (Neal, 1937; Adams and Wear, 1957), soybean (Parker
et al., 1969; Heena and Carter, 1975) and bush bean (Horst and Marschener, 1978b).
The third group of symptoms is chlorosis of young expanding leaves. This symptom has
been interpreted as Mn-induced Fe deficiency (Amberger et al., 1982; Clark et al.,
1981). All symptoms may occur on the same plant simultaneously (Kohno et al., 1984).

The relative importance of these symptoms is dependent on the genotype, both
inter- and intra-specific (Moris and Pierre, 1949; Foy, 1984a), and growing
conditions affecting Mn tolerance of the plant tissue. While a wide range of Mn toxicity
symptoms have been reported, which depend on plant genotypes, soil/soil factors
interactions and other ecological factors, Mn toxicity does not necessarily inhibit
production of biomass (Schlichting and Sparrow, 1988).
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Climatic factors such as photon flux intensity and temperature modulate the
severity of expression of injury from Mn toxicity. Plant tolerance to high levels of
applied Mn increased with increasing temperature, despite significantly greater tissue
concentrations of Mn during plant growth (Rufty et al.,, 1979; Nelson, 1982). It has
been proposed that the increased tolerance is associated with more rapid rates of leaf
expansion accompanied by increased vacuolar capacity for disposal of accumulated Mn
(Rufty et al., 1979). The temperature effect on Mn toxicity, however, is further
complicated by the interaction with photon flux intensity. McCool (1935) reported that
as light intensity decreased, visible injury to plants grown in Mn-treated soil decreased.
He ascribed the effect of light on the plants to stimulation of Mn absorption because the
percentage of Mn in the leaves decreased with the decrease in light intensity. Horiguchi
(1988b) working with bush bean and corn, also reported that an increase in light
intensity increased the Mn uptake by the plant at high levels of Mn in nutrient solution,
and resulted in a decrease in the chiorophyll content of the leaves. Even at similar levels
of Mn within the leaves, high light intensity increased the severity of Mn-induced
chlorosis. Horiguchi (1988b) suggested that high light intensity stimulates not only Mn
uptake by the plant but also the destruction of chlorophyll when Mn is in excess.

The effects of temperature and photon flux intensity on Mn toxicity indicate that
the ‘critical concentration' for expression of toxicity symptoms is not constant and
exhibits large variability when the temperature and photon flux intensity environment
is altered. It follows that the use of ‘critical concentration’ in prediction modeis of Mn
toxicity must be limited to plants with a similar genetic background, grown in similar
temperature and photon flux intensity environmants. More practically, critical
concentrations should be characterized at specific temperature and photon flux
intensities.

Along with the effect of temperature and light intensity on Mn toxicity in plants,
a third major interaction which has been reported is the amelioration of Mn toxicity by
silicon (Lewin and Reimann, 1969; Okuda and i akkahashi, 1962a.b: Williams and
Viamis, 1957; Viamis and Williams, 1967). Silicon supply alleviates thg ‘™Mn jodicity of
rice plants not only by decreasing the Mn uptake by plant but also by increasing the
internal tolerance to an excessive amount of Mn in the tissues (Horiguchi, 1988a).
Whether this is a wide spread phenomenon in nature has not been reported since studies
have been conducted under laboratory conditions.



Lo.e. Hypott . toxici hani

Two general hypotheses have been proposed to explain the physiological disorders
caused by Mn toxicity. First, numerous workers have postulated that the symptoms of
Mn toxicity reflect a Mn/Fe interaction thereby leading to physiological disorders as a
consequence of limitation of uptake/utilization of Fe (Foy et al., 1978; Foy, 1984a).
Second, several workers have postulated that excess Mn accumulation results in
increased peroxidative destruction of |AA, increased synthesis of ethylene (Fowler and
Morgan, 1972; Morgan et al., 1966; Morgan et al., 1976; Sirkar and Amin, 1974) and
subsequent acceleration of senescence processes. Recently, Houtz et al., (1988)
presented evidence that the inhibiting effects of Mn excess on photosynthesis result from
a Mn-induced modification of the kinetic properties of Rubisco activity.

Three mechanisms for the tolerance of plants to Mn toxicity have been proposed.
(1) Evidence exists for the exciusion of Mn uptake operating as a Mn tolerance
mechanism in certain species and some cultivars (Haiyar, 1978). (2) Evidence also
exists for the restriction of Mn transport from roots to shoots (Oulette and Dessureaux,
1958: Andrew and Hegarty, 1969; Robson and Loneragan, 1970; Edwards and Asher,
1982). (3) Tolerance of shoots to high internal Mn concentrations (Foy, 1984a) is the
most widely discussed mechanism in the literature and has been suggested as a
mechanism for tclerance in wheat (Foy et al., ) as well as for several other crop species
(Brown and Devine, 1980; Heenan and Campbell, 1981; Foy et al, 1973; Foy et al.,
1981: Horst, 1983). Internal tissue tolerance to Mn may be due to: (a) the formation of
metabolically inactive, organic manganese complexes (Foy, 1984a); (b) binding to
cellwalls and/or deposition in vacuoles (Helyar, 1978; Pfeffer et al., 1986); and (c)

tolerance by some vital enzyme systems of high concentrations of ionic manganese (Scott
el al., 1987).
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Chapter 1l

Pedigree analysis of the origin of manganese tolerance in Canadian
spring wheat (Triticum aestivum L.) cultivars.1

1.1. Introduction

Nearly half of the world's non-irrigated arable soils are acidic (Clark, 1982).
After aluminium toxicity, manganese {Mn) toxicity is probably the second most
important growth limiting factor in acid soils (Foy, 1984). Fortunately, interspecific
and intraspecific differences in tolerance to Mn have been identified among crop plants,
providing potential to develop cultivars adapted to acid soils (Foy et al, 1988).
Breeding for tolerance to Mn might be in some cases more feasible and economical than
the use of soil amendments. For exampz'e, Mn toxicity can be a problem in subsoils
(Bromfield et al., 1983), thus making soil amendment difficult and expensive. In
addition, extreme climatic conditions (eg. water logging; dry, hot conditions) can lead to
Mn toxicity on limed soils (Siman et al., 1974) and near-neutral soils (Grasmanis and
Leeper, 1966).

Demonstration of genotypic variability and suitable screening techniques are
needed prior to formulation of a breeding program (Devine, 1982). In wheat (Triticum
aestivum L.), relatively few reports have documented a range of iolerance to Mn
(Neenan, 1960; Foy et al., 1973; Brauner and Sarruge, 1980; Camargo and Oliveira,
1983; Scott et al., 1987; Macfie et al., 1989). Most of these reports speculate that Mn
tolerance has originated from germplasm developed in Latin America or Brazil, but no
specific data have been presented to support this suggestion. More detailed knowledge
concerning the origin of Mn tolerance in wheat will help the plant breeder develop plant
breeding systems. This knowledge may also help in the study of the mechanisms for Mn
tolerance in wheat, especially for different sources of tolerance.

Macfie et al., (1989) described the presence of Mn tolerance in some Canadian
wheat cultivars. This study was undertaken to determine the extent of Mn tolerance and
the origin of Mn folerance in selected Canadian spring wheat cultivars. Screening of
Canadian and foreign cultivars, analysis of cultivar pedigrees, and phylogenetic maps

were used to discern the filial relationships of the cultivars tested and the origins of any
Mn tolerances.

1. A version of this chapter has been accepted for publication.
J. S. Moroni, K. G. Briggs and G. J. Taylor. 1991. Euphytica.
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11.2. Materials and methods
L2 < s

The experimental procedure used 1o screen for Mn tolerance in wheat (Triticum
sestivum L.) was similar to that used by Macfie ef al., (1 989) and by Briggs et al.,
(1989). A total of 91 spring wheat cultivars, 76 of which were Canadian from several
wheat classes (Canada Western Red Spring (CWRS), Canada Prairie Spring (CPS),
Canada Utility (CU) and, Canada Western Soft White Spring (CWSWS)), were screened
in this study. Seeds were surface sterilized in 1.2% sodium hypochlorite for 20 minutes
and germinated overnight at room temperature in an aerated solution of the systemic
fungicide Vitavax (Carbathiin + Thiram : 0.005 gL-1). Germinated seeds were laid on a
plastic mesh, crease down, suspended over 10 L of a nutrient solution composed of (1M):
Ca, 10600; Mg, 300; NO3, 2800; and NHg, 300; and were grown for three days at room
temperature. For the first two days of germination the containers were covered with
black plastic.

Three days after germination, fifty seedlings of similar size were selected and
grown for an additional five days in a compiete nutrient solution containing (uM): Ca,
1000; Mg, 300; K, 800; NO3, 3300; NHa, 300; POg4, 100; SO4, 101; Cl 34; Na, 20;
Fe, 10; B,6; Mn, 2; Zn, 0.5; Cu, 0.15; and Mo; 0.1. lron was supplied as Fe-EDTA
prepared from equimolar amounts of FeCla and NagEDTA. All nutrient solutions were
adjusted to pH 4.8 with KOH and HCI, and solutions were constanily aerated. Seedlings
were grown under environmental condii’ ns similar to those described below.

L2.b. Growtt tions duri

Sixteen uniform, nine-day-old seedlings of each cultivar were mounied with
strips of polyurethane foam on black Plexiglas frames which covered each of 60
polyethylene containers of 10 L capacity. Each frame supported eight plants in four
groups of two. Nutrient solutions were shielded from light to inhibit algal growth. Plants
ware grown in a temperature controiled growth room at a day/night temperature of
22/17 + 1 °C and a relative humidity of 93/58 + § %, with a 16 h photoperiod.
Solution temperatures were maintained at 18.0 0.5 °C by immersing all containers in
a common water bath. The growth room was illuminated by 12 HID mercury (400W)
and 4 HID high pressure sodium (400W) lamps located 1.3 m above the plant bases. The
photosynthetic photon flux density (PPFD) was 319 + 32 pmol m-2 s-1.
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The complele nutrient solution described above was used for all treatments,
except that the concentrations of NHa4 and NOg were increased to 600 uM and 3600 uM,
respectively. The control treatment consisted of unaltered nutrient solution. For the Mn
treatment, 500 pM Mn (supplied as MnCl2-4H20) was superimposed over the basal
nutrient solution. Control and Mn treatments for each cultivar within each replicate
were biocked together to minimize variation. All nutrient solutions were adjusted to pH
4.8 with KOH and HCI, and solutions were constantly aerated. Nutrient solutions were
adjusted periodically to 10 L with distilled water to compensate for water loss by
evaporation and transpiration. After a 14-day treatment, the plants were harvested,
divided into roots and shoots, oven-dried at 75 °C for three days, and weighed.

1L.2.c. Analysis

To evaluate the Mn tolerance of selected Canadian and foreign cultivars a total of
four experiments were performed {Tabies 1.2 to 11.5). In the first 3 experiments, 28
cultivars and 2 standards were screened. The standards used in this study were the
Mn-tolerant Norquay and the Mn-sensitive Columbus (Macfie et al., 1989). The
experimental design consisted of a randomized block factorial design with 30 cultivars,
two Mn treatments and three replicates (totalling 180 containers). Due to space
constraints threefold replication was achieved in time. The last experiment (Tables /1.5)
consisted of 6 cultivars and the 2 standards (ie. Norquay and Columbus). For this
experiment replication was achieved in space rather than in time. Because root weight
and shoot weight of the various cultivars differed under normal and toxic Mn levels,
cultivar tolerance of Mn was determined by the relative root weight (RRW), and
relative shoot weight (RSW) method (RRW or RSW= root or shoot weight in the
presence of 500 pM Mn divided by control root or shoot weight, respectively; Mactie et
al.,1989). Both tolerance indices (RRW and RSW) were tabulated to evaluate cultivar
differences in response to Mn toxicity (Tables Il.2 to 11.5). Data were analyzed by
analysis of variance {ANOVA) and Duncan's multiple range test using the arcsine
transformation for RRW and RSW. To facilitate analysis of the transformed variables the
RRW values for some of the replications of Frontana (1.05), Carazinho (1.02) and
Lerma Rojo {1.01) were transformed to 1.00. Significance was defined at the 95%
confidence level. Tolerance to Mn was determined by using RRW and was arbitrarily
defined as follows: Mn-sensitive cultivar RRW < 0.40; cultivar intermediate

tolerance to Mn 0.40 < RRW < 0.70; Mn-tolerant cultivar REW > 0.70.

in
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1l.2.d. Data tabulation

Results of the four experiments are presented in Tables /1.2 1o /1.5. In addition,
Table II.1 indicates the RRW and RSW of 30 wheat cultivars screened by Macfie et al.
(1989} using the same experimental conditions. All cultivars screened by Macfie et al.
(1989) were of spring habit except for Atlas €6, Monon, and Scout 66, which were of
winter habit. In addition, each table indicates the pedigree of each cultivar, the country
where the cultivar was developed, and the year in which the cultivar was released in the
country where the cultivar was developed. The cultivar pedigrees were mainly drawn
from references containing large wheat pedigree compendiums and, when possible, were
expressed using the nomenclature system recently adopted by CIMMYT (Villareal and

Rajaram, 1988). If information was compiled from more that one reference each source
is cited.

The RRW of the 91 cultivars screened in this study (Tables /1.2 to /1.5), and the
RRW of 28 of the 30 cultivars screened by Macfie et al. (1989) (Table 1.1}, were used
to develop two filial pedigree maps (Fig. 1I.1 and Fig. li.2) outlining the sources of Mn
tolerance observed in the Canadian germplasm. For discussion purposes, the screened
cultivars (119) were divided into two groups. The first group (93 cultivars) are
referred to in the pedigree map analysis as *Canadian” material and consist of cultivars
selected and/or developed in Canada (74) plus cultivars which have been developed
and/or released in other countries prior to release in Canada (19). The second group
(26) is composed of foreign cultivars which have not been released in Canada and are
from Argentina (1), Australia (1), Brazil (11), Kenya (4), Mexico (6), and the USA
(3).

The first pedigree map (Fig. /l.1) was developed using the *Canadian” material to
determine the source of Mn tolerance. For cultivars with a RRW 2 0.60 a special effort
was made in tracing their pedigrees to determine if they have common ancestral parents.
Most "Canadian” wheat cuitivars were easily incorporated into the phylogenetic map
(Fig. 11.1), with the exception of the Mn-sensitive cultivars Max (0.24), Cassavant
(0.173. Mondor (0.15) and the cultivar Belvedere (0.52) of intermediate Mn
tolerance. Based on the genealogical analysis and interpretation of Fig. /l.1, a pedigree
map for two Mn-tolerant Canadian cuitivars (ie. Norquay and Laura) was developed to
trace the probable origin of the Mn tolerance trait (Fig. 11.2). Seed for key cultivars in
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the phylogenetic map (Fig. /.2) was obtained where possible, and was screened for Mn
tolerance. The order of the crosses in each pedigree was not considered, and maternal
effects were not taken into consideration in drawing either map. Country of origin, year
released and/or developed, and RRW (where screened) are indicated on the maps. For
further clarification, cultivars screened were surrounded by a thick-line margin. Some

cultivars are repeated in Fig. /I.1 for purposes of simplification are indicated with an
asterisk (*).

11.3. Results and discussion

1.3.a. Plant symploms

A diverse range of Mn toxicity symptoms were observed among the cultivars,
including leaf chlorosis, stunting, stiffness in leaf tissue, necrotic leaf spots, white
flecking, leaf tip burn and, occasionally, leaf purpling. These symptoms were similar to
those previously described by Keisling et al. (1984) and Ohki (1984). Symptoms were
most apparent on the sensitive cultivars but, necrotic leaf spots were observed in some
of the Mn-tolerant cultivars from Brazil. Obvious Mn toxicity symptoms were not
observed in the roots except that some cultivars (eg. Hard Red Caicutta) showed brown
discoloration. This root discoloration may reflect precipitation of Mn on the root
surface, which varies with the plant-induced pH of the nutrient solution, and may not
therefore be a direct symptom of Mn toxicity (Macfie and Taylor, 1989).

L3.b. Differential f Mn tol

The RRW and RSW of the Mn-tolerant and the Mn-sensitive standards (Norquay
and Columbus, respectively) were not significantly different (p < 0.01) between
experiments. This similarity across experiments indicated the consistency of the
environmental conditions during the assay and the reliability of the standards
themselves. It also allowed direct comparison of RRW and RSW values between
experimeniz. Oneway ANOVAs for RRW and RSW indicated significant main effects due to
cultivar. Because the RRW and RSW are expressed as growth with toxic level of Mn as a
fraction oi growth with a normal level of Mn, analysis ef treatment effects were not
appropriate.

A broad range of differential response to Mn stress was detected among cultivars.
The range for RRW observed was 0.08 to 1.05 while for RSW it ranged from 0.27 to
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0.98 (Tables 1.2 1o 11.5). The majority of the Canadian cultivars were sensitive or
intermediate in tolerance to Mn. For RRV/ the range was 0.08 to 0.88, and for RSW it
ranged from 0.27 to 0.89 (Tables i1.2 10 11.5). Only 3 of the 76 Canadian cultivars
screened in this study were Mn-tolerant (RRW > 0.70), namely Biggar (0.88), Laura
(0.92), and Norquay (0.83). Among ime remaining, 19 cultivars were intermediate in
Mn tolerance (0.40 < RRW < 0.70), while 54 cultivars were Mn-sensitive (RRW <
0.40). The predominance of Mn sensitivity among Canadian cultivars is in agreement
with the results reported by Macfie et al. (1289).

Of the 16 foreign cultivars screened in this study (Tables /1.2 to 11.5), 8 were
Mn-tolerant (RRW > 0.70), 3 were intermediate in Mn tolerance (0.40 < RRW <
0.70), and 5 were Mn-sensitive (RRW < 0.40). Foreign entries determined to be
Mn-tolerant were the Brazilian cultivars Frontana (1.05), Carazinho (1.02),
Veranopolis (0.85), Polyssu (= Ponta Grossa 142) (0.83), Frondoso (0.77), and
Cotipora (0.71), and the Mexican cultivars Lerma Rojo (1.01) and Yaktana 54 (0.93).
The ranking of Mn-tolerant cuitivars was comparable to results reported by several
others. For example, among the Mn-tolerant cultivars screened in this, study Scott et al.
(1987) reported Cotipora and Carazinho (Brazil) as among the "most Mn-tolerant
cultivars®, and Foy et al. (1988) reported Lerma Rojo (Mexico) as being Mn-tolerant.
On the other hand, Brauner and Sarruge (1980) repdrted Frontana (Brazil) to be one of
two Mn-sensitive cultivars among 30 cultivars screened, in contrast to the tolerance
found in the present study. The resuits of Brauner and Sarruge (1980) are rather
surprising considering that Frontana was widely grown in the southern states of Brazil
(a region dominated by acid soils) for several years after its introduction in 1943
(Hettel, 1989).

The range of Mn-tolerance found in the Canadian cultivars was similar to that
found in the Brazilian cultivars screened in this study. Three of the Canadian cultivars
showed growth under conditions of Mn stress which was greater than 70% of control, a
level similar to that reached by several of the Mn-tolerant Brazilian cultivars. It is
likely that the mechanism (s) of Mn tolerance have been conserved in the Canadian
cultivars. Although Mn tolerance in wheat has been reported to be controlled by a few
major genes (Scott and Fisher, 1989), the wide range of response to Mn toxicity among
the wheat cultivars screened in this study and those‘screened by Brauner and Sarruge
(1980) and Macfie et al. (1989) indicate the possibility that many genes could play a

role in determing tolerance to Mn and that Mn tolerance may be a quantitative trait (see
Chapter 1V).
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The predominance of Mn sensitivity found in Canadian cultivars is not
surprising. Although acid soils exist in Canada (Milter, 1983), Mn toxicity in cereals
has not been reported, nor has a deliberate effort been made to select for Mn-tolerant
cultivars. What is surprising, however, is that some of the Canadian cultivars were
found to be Mn-tolerant even in the absence of an obvious and deliberate selection
pressure for Mn tolerance. Of course, agronomic practices might have been conducive to
a Mn toxic environment (ie. poorly drained, periodically flooded soils; compacted soils;
nitrogen fertilization (see Foy, 1984)). However, it has not been established which of
those factors could have provided a substantive selection pressure.

Scott and Fisher (1989) suggested that plants tolerant of acid soils (ie.
aluminum- (Al) tolerant and/or Mn-tolerant) may be poorly adapted to non-acid soils.
This hypothesis arose from the comparison of old acid-tolerant cultivars {which were
low yielding) and more recent high yielding cu'tivars which have not been bred for acid
tolerance. As demonstrated by the CIMMYT/Brazil wheat breeding program for acid
soils, this is not the caée in cultivated wheat (Hettel, 1982; Kohli and Rajaram, 1988).
High yielding, Al-tolerant wheat cultivars have been aiready developed and released.
Furthermore, should manganese tolerance be a disadvantage on a non-acidic soil, it
would be expected that selection pressure would be towards Mn-sensitive cultivars in
non-acid areas. The development and release of high yielding, Mn-tolerant, Canadian
cultivars and the release of Sunstar, a Mn-tolerant cultivar from Australia, which has
been selected in northern New South Wales in the absence of Mn toxicity (Scott and
Fisher, 1989), suggests that this has not occurred. Similarly, a few high yielding,
Al-tolerant, wheat cultivars from Canada (Briggs et al.. 1989) and Australia (Scott and
Fisher, 1989) have been developed in the absence of direct selection for Al tolerance.

iL3.c. Source of Mn tolerance

Pedigree analysis of the "Canadian” cultivars (Fig. !1.1) indicated that cultivars
released and/or developed prior to the 1960's (45 cultivars) did not have Latin
American germplasm in their background. Most of the parental germplasm of these
cultivars is of European, Australian and or North American origin. Of these cultivars,
40 were found to be Mn-sensitive and 5 were found to be intermediate in Mn tolerance.
None were found to be Mn-tolerant. On the oiher hand, most cultivars developed and/or
released after the 1960's (ie. 47 cultivars) have some parental germplasm from Latin
America. This parental germplasm is mainly of Mexican and/or Brazilian origin. Many
of the Mexican cultivars are direct descendants of Brazilian germplasm, or have some
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Brazilian germplasm in their lineage. Of these cultivars, 30 were found to be Mn-
sensitive, 14 were found to be intermediate in Mn tolerance, and 3 were found to be Mn-
tolerant.

The era of introduction and appearance of Mn tolerance in "Canadian” germplasm
is distinct. It was not until the 1960's that cultivars intermediate in Mn tolerance
appeared in the "Canadian” germplasm in relatively high frequency. Manganese-tolerant
cultivars appeared in the 1970s and 1980s. This can be clearly seen in Fig. Il.1, where
most pre-1960s cultivars (found towards the bottom of Fig. 1l.1) are related to each
other through European, Australian and/or North American germplasm. The post-1960s
cultivars (found towards the upper part of Fig. Il.1) are mainly related through the
Latin American cultivars. The timing of the appearance of intermediate and high Mn
tolerance coincides directly with the release of cultivars with parental germplasm of
Brazilian and/or Mexican origin with known tolerance to acid soils. Amongst these are
the Brazilian cultivars widely used by CIMMYT during the "green revolution’' (eg.
Frontana, Surpresa). These cultivars are from the wheat growing regions of southern
Brazil which are dominated by acid soils.

1130 Origin of Mn 1ol

Although Mn tolerance appear to be a quantitative trait (see Chapter 1V), the
inheritance of Mn tolerance has been repoited to be relatively simple (Foy et al. 1988).
Thus the origin of Mn tolerance can be demonstrated by pedigree analysis of the Mn-
tolerant Canadian cuitivars Norquay and Laura (Fig. 11.2). Seed for most of the key
cultivars in the pedigrees of these two cultivars was obtained and screened (with the
exception of Supremo 211, Surpresa, and Alfredo Chavez 6.21). Norquay (0.83) most
likely inherited tolerance from Lerma Rojo (1.01) through Supremo 211 and Surpresa
(reported to be Mn-tolerant by Foy et al. (1988)). The parents of Surpresa are Folyssu
(=Ponta Grossa 142) (0.83) and Alfredo Chavez 6.21. On one side of its lineage, Laura
may have inherited tolerance from the experimental line BW 15, through Tobari 66
(0.64), Tezanos Pinto Precoz (0.60), and Frontana (1 .05). From the other side of its
lineage, Laura may have inherited tolerance from the experimental line BW 517,
through Carazinho (1.02), Frontana (1.05), and Fronteira (0.60), whose parents are
Polyssu (=Ponta Grossa 142) (0.83) and Alfredo Cha;/ez 6.21. Thus, Frontana proves to
be Laura's common ancestral linkage to Mn tolerance by either line of descent.

These results suggest that Polyssu (=Ponta Grossa 142) and/or Alfredo Chavez
6.21 are the progenitors of Mn tolerance in the Mn-tolerant Canadian cultivars Norquay
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and Laura (Fig. 11.2). Although developed and released almost 12 years apart, the
common source for Mn tolerance appears to have been passed along without loss of
expression. In addition, Biggar (0.88), the third Mn-tolerant Canadian cultivar
identified in this study has Frontana as one of its ancestral parents. Similarly, the Mn-
tolerant cultivars Siete Cerros (Mexico) (Camargo and Oliveira, 1983), Collafen, and
Mexifen (Chile) (Scott et al, 1987) also have Frontana as one of their parents.
Frontana is also involved in the pedigree of most of the cultivars screened in this study
with intermediate Mn tolerance. Despite these relationships, cultivars with Frontana or
other Latin American germplasm in their ancestry do not necessarily retain tolerance of
Mn, as exemplified by Columbus (0.16), Neepawa (0.15) and Napayo (0.31) (Fig.
11.1), all of which have Frontana as one of their parents.

These results indicate that the progenitors of Mn tolerance may be the land races
Polyssu and/or Alfredo Chavez 6.21, which passed tolerance on through Frontana and
Surpresa. All of these cultivars are from Rio Grande do Sul, the southernmost state in
Brazil, where one of the major constraints to production is soil acidity. According to
Hettel (1989), wheat was first introduced to Brazil by European immigrants in the
16th cantury, and in Rio Grande do Sul, and native Indians grew wheat as early as 1627.
The "Alfredo Chavez lines” were developed between 1920 and 1924 by making crosses
with the best land race varieties used by the early ltalian immigrants of Rio Grande do
Sul. Thus, nearly 300 hundred years of undirected selection occurred before a major
wheat breeding program began in Rio Grande do Sul in 1919. Frontana, one of the best of
the improved varieties developed since 1925, is also found in the pedigree of most
modern Brazilian varieties. Furthermore, Frontana and related varieties such as
Surpresa were used widely by breeders during the 1940's and 1950's as a source of leaf
rust resistance in USA, Canada, and Mexican programs (Hettel, 1989).

Whether Mn tolerance of wheat was brought to Brazil by early European
immigrants or is the result of selection on the acid soils of the region is not known. Since
the trait appears to be of a quantitative nature (see Chapter V), point mutation could be
safely discounted as a possible explanation for the appearance of Mn tolerance in Brazil.
To my knowledge Mn tolerance of old and/or recent European cultivars has not been
reported. In this study | found 2 old cultivars of European ancestry to be intermediate in
Mn tolerance (Ruby (0.52) ~1917; White Fife (0.54) ~1908). Thus, it appears that

300 years of wheat cultivation on acid soils may have provided a selection pressure for
germplasm with elevated tolerance to Mn toxicity.
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11.4. Conclusion

This work confirms the availability of a range of Mn tolerance in wheat
germplasm, and demonstrates that the probable origin of Mn tolerance in diverse
cultivars is likely of common origin. This tolerance may have derived from land races
from Rio Grande do Sul, the southernmost state of Brazil. This knowledge should assist
the plant breeder in designing breeding programs for developing Mn-tolerant
germplasm. Based on these results, | undertook a quantitative study investigating the
inheritance of Mn tolerance in Canadian wheat germplasm (see Chapter 1V) using a
rapid, seedling based, screening bioassay for Mn tolerance (see Chapter lil).
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Chapter Il

Chlorophyll concentration and leaf elongation rate in wheat seedlings
as a measure of manganese tolerance.?

iln.1. introduction

Nearly half of the world's non-irrigated arable lands are acid soils (Clark,
1982). After aluminium toxicity, manganese (Mn) toxicity is probably the second most
important growth limiting factor in acid soils (Foy, 1984). Interspecific and
intraspecific differences in folerance to Mn have been identified among crop plants,
providing breeding potential to develop cultivars adapted to acid soils (Foy et al., 1988).
To facilitate breeding programs a rapid, non-destructive, inexpensive, and repeatable
seedling-based bioassay is required for selection of tolerant genotypes from early
segregating generations (Devine, 1982). Physiological and biochemical responses to
toxic levels of Mn have generally been used as screening techniques in determining Mn
tolerance in a variety of crop plants. However, no test is available for the rapid
evaluation of manganese tolerance in cereals (Scott and Fisher, 1989). In screening
wheat (Triticum aestivum L.) cultivars for Mn tolerance, root and shoot weight
(Brauner and Sarruge, 1980), relative root weight (Macfie et al., 1989), and root
length (Camargo and Ferreira Filho, 1990) have been used. Others have suggested use of
seed Mn content (Guerrier, 1988), concentration of aconitic acid in seedlings (Burke,
et al., 1990) and whole leaf fluorescence (Homer et al, 1980) as possible rapid
screening procedures. All of these methodologies fail to fuilfii at least one of the
requirements for screening segregating populations described by Devine (1982).

In this report, two plant parameters which may provide a rapid seedling based
bioassay for Mn tolerance in wheat are described, chlorophyll concentration and the leaf
elongation rate for regrowth of Mn-stressed seedlings. These physiological parameters
may provide suitable techniques for selecting tolerant seedlings in breeding programs.

2. A version of this chapter has bsen published.
J. S. Moroni, K. G. Briggs and G. J. Taylor. 1991. Plant and Soil 136:1-9.
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1.2. Materials and methods
1.2 G s e

Five Canadian cultivars of spring wheat (Triticum aestivum L.) were used in this
study. Columbus and Katepwa have been described as Mn-sensitive (tall genotypes), Oslo
as Mn-intermediate (a semidwarf genotype) and Norquay as Mn-tolerant (semidwarf
genotype) by Macfie et al. (1989). Laura, a Mn-tolerant cultivar (tall genotype), was
also included in this study. These levels of tolerance were determined by the relative
root weight method (RRW = root weight in the presence of 500 uM Mn, divided by
contro!l root weight; Macfie et al. 1989). Seeds were surfaced sterilized in 1.2% sodium
hypochlorite for 20 minutes and germinated overnight at room temperature in an
aerated solution of the systemic fungicide Vitavax (Carbathiin + Thiram ; 0.005 gL-1).
Germinated seeds were laid on a plastic mesh, crease down, suspended over 10 Lofa
nutrient solution composed of (uM): Ca, 1000; Mg, 300; NOs3, 2900; and NHg4, 300;
and were grown for three days at room temperature. For the first two days the

containers were covered with black plastic. On the fourth day, seedlings of similar size
were selected and used for the assay.

111.2.b. Growth conditions during the assay

In each of two experiments, seedlings were grown for six days in a dilute
.. itrient solution containing (uM): Ca, 1000; Mg, 300; K, 800; NO3, 3600; NHa, 600;
POg4, 100; SO4, 101: Cl 34; Na, 20; Fe, 10; B, 6; Mn, 2; Zn, 0.5; Cu, 0.15; and Mo,
0.1. lron was supplied as Fe-EDTA prepared from equimolar amounts of FeClz and
NasEDTA. All nutrient solutions were adjusted to pH 4.8 with KOH and HCI, and solutions
were constantly aerated. Treatments consisted of additions of Mn to the control solutions.
Seedlings were grown in a temperature controlled growth chamber at a day/night
temperature of 21 .0/17.0 £ 0.5 °C and a relativé humidity of 80/90 = 5 %. The

photosynthetic photon flux density (PPFD) was 307 £ 30 pmol m2 s-1.

.2 c. Experiment Nei: The effect of Mn on chlorophyll

The Mn-tolerant Norquay and Mn-sensitive Columbus were used to determine the
effect of Mn on chlorophyll concentration and composition. Five seediings of each of the
two cultivars were placed on a plastic mesh suspended over each of 48 780-ml plastic
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containers filled with the basal nutrient solution and one of twelve different Mn levels
(ie. 2, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000 uM). On the
sixth day, seedlings were harvested and chlorophyll concentration was determined. The

experimental design was a randomized block consisting of 2 wheat cultivars, 12 levels of
Mn and 4 replicates.

.2.d. Experiment N22: Differential response of five wheat cultivars to Mn

Based on the results of Experiment N1, a Mn concentration of 1000 uM was
selected to determine the differential response of five wheat cultivars (Columbus,
Katepwa, Oslo, Norquay and Laura) to Mn. Sensitivity and tolerance to manganese was
evaluated by chlorophyll concentration and composition, and the leaf elongation rate
(LER) of seedlings pre-treated with Mn (regrowth). Twelve seedlings of each cultivar
were placed on a plastic frame suspended over each of six containers filled with 10 L of
nutrient solution. Seedlings were held by polyurethane foam plugs commonly used as test
tube stoppers. It was observed that some of the polyurethane foams were toxic to the
seedlings causing- poor seedling growth and/or death. Sterilization of the plugs for an
hour in an autoclave eliminated this problem. Seedlings were grown on a 1000 uM Mn
or 2 uM Mn (controi) solution for 6 days under conditions described above. The

experimental design was a randomized block design with 5 cultivars, 2 treatments and 3
replicates.

11L.2.e. Determination of leaf area, fresh weight. and chlorophyll

On an experimental unit basis individual seedlings were cut at the collar of the
primary leaf and fresh weight (FWT) and leaf area (LA) determined. Leaf area was
measured on a LI-COR LI-3100 Area Meter, (LI-COR Inc., Lincoln, Nebraska, USA), and
the mean value of three measurements was used. Leaf blades were then cut in small
pieces (~1-2 cm), placed in 5 mi acetone and homogenized with a Polytron homogenizer
(Brinkmann Instruments, Rexdale, ONT., Canada) at full speed for 10 to 15 sec. The
homogenate was diluted with 5 mi of distilled water, filtered on a N2 2 Whattman filter
paper and washed three times with pure acetone (3-4 ml each wash). The filtrate was
brought to volume (25 ml) with acetone making a fir=! solution of 80% acetone.
Extraction of chlorophyll was performed at room temperature, but tissues, solutions,
homogenates, and extractants were kept on ice (2-4 °C) under black plastic to minimize
light and temperature induced chiorophyli degradation. Absorbancas were read on a
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SPECTRONIC 21 Spectrophotometer, (Bausch & Lomb), at 665 and 649 nm and
chlorophyll ‘a‘, chlorophyll ‘b’ and total chlorophyll (chlorophyil ‘a+b’) were
estimated using the extinction coefficient equations described by Vernon (1960).
Dilutions were not necessary, as absorbance readings were below 0.7. Chlorophyll ‘a’,
chlorophyll ‘b’, and chlorophyll ‘a+b’ concentration were expressed on a FWT and LA
basis.

Determination of chlorophyll in Experiment N°2 was as described above, with
the following changes. Seedlings were harvested, bulked and cut in small pieces (~1-2

cm). Two random samples (~0.2 g) were selected and used for chlorophyll
determinations.

111.2.f. Determination of leaf elongation rate (LER)

After chlorophyll determination, seedlings from Experiment N°2 were
thoroughly washed with distilled water and transfered to a control solution (10 L) and
regrown for five days under similar environmental conditions. Leaf length was measured
over five consecutive days. Measurements were taken from the top of the polyurethane
foam holder to the tip of the longest leaf. Leaf elongation rate (LER) was estimated by the
linear regression coefficient (b) of leaf length over time.

All data were subjected to analysis of variance (ANOVA), and treatment means
were compared using the least significant difference test (LSD) at p < 0.05 and p < 0.01
(SAS, 1985). Relative measurements, defined as percent of treatment compared to
control, were calculated for chlorophyll and LER parameters. Arcsine transformations
on percentage data of chlorophyll ‘a’, chlorophyll ‘b’, and chlorophyil ‘a+b’
concentration, and LER {Experiment N22) were performed according to the rules
outlined by Gomez and Gomez (1984). For arcsine transformation data points for some
replications of Oslo over 100% were taken as 100% (Table 111.2). Correlations were
estimated for relationships between various parameters and significance tested at p <
0.01 (Gomez and Gomez, 1984).

111.3. Results
{1.3.a. Experiment N1

Manganese toxicity symptoms observed were similar to those previously
described by Keisling et al. (1984) ard Obhki (1984), including leaf chilorosis,
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stunting, stiffness in leaf tissue, necrotic leaf spots, white flecking, leaf tip burn and,
occasionally, leaf purpling. Symptoms were most apparent on the sensitive cultivar as
the level of Mn stress increased. Over the full range of Mn stress chlorophy! ‘a+b’
concentration expressed on a FWT basis decreased in Norquay by only 9%, while in
Columbus it was reduced by as much as 43% (Fig. /!l.1). Chilorophyll ‘a’ (Fig. /ll.2) and
chlorophyll ‘b’ (Fig. 111.3) concentration expressed on a FWT basis showed a similar
reduction. Thus, the chlorophyll ‘a/b’ ratio did not differ among Mn concentrations for
either cultivar. Chlorophyll ‘a+b’ concentration expressed on a FWT basis showed less
variation than if expressed on a LA basis (Fig. /ll.4).

Analysis of variance (ANOVA) of chlorophyll ‘a’, chlorophbyll ‘b’ and chlorophyll
‘a+b’' concentration indicated significant main effects attributable to cultivar and Mn
concentration, as well as a significant cultivar x Mn conceniration interaction at p <
0.001 when expressed in FWT basis, and at p < 0.008 when expressed on a LA basis.
Separation of cultivar means (LSD at p < 0.05) for chlorophyll ‘a’, chlorophyll 'b’ and

chlorophyll ‘a+b’ concentration became possible at Mn concentrations of 100 uM and
above.

11.3.b. Experiment N22

Manganese toxicity symptoms similar to those reported in Experiment N21 were
observed on the sensitive and intermediate cultivars but not on the tolerant ones.
Analysis of variance of the chlorophyll ‘a’, chiorophyll ‘b’ and chlorophyll ‘a+b’
concentration data from five Mn-stressed and control cultivars indicated significant
main effects attributable to cultivar, Mn treatment, as well as cultivar x treatment
interactions (p < 0.001; Table Ill.1). Significant differences were not observed for
chlorophyll ‘'a/b’ ratio grown under either treatment.

Under control conditions a distinct pattern of chlorophyll concentration and/or
composition was not observed between the five cultivars, thus the observed variability
was not directly correiated to height genotype (semi-dwarf or tall) or level of Mn
tolerance (tolerant, intermediate or sensitive). The LSD mean separation ranking
between cultivars depended on the probability used (p < 0.05 or p < 0.01; Table 111.1).

Tolerant cultivars grown with excess Mn contained higher contents of
chlorophyli than the intermediate and sensitive cultivars. At p < 0.05, treatment with
Mn separated the cultivars according to the level of tolerance determined by the RRW
methodology, however at p < 0.01 the intermediate cultivar was ranked as sensitive.
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This was observed for chlorophyll ‘a’, chlorophyil ‘b’ and chicrophyll ‘a+b’
concentration (Table 1ll.1).

Cultivar ranking was the same for chlorophyli ’a’, chlorophyll ‘b’ and
chiorophyll ‘a+b’ concentration (expressed as a percentage of control) at both
probabilities (p < 0.05 and p < 0.01). Once again, the intermediate cultivar was ranked
as sensitive (Table lil.1).

Seedling regrowth was observed for all cultivars and differentiai response of LER
to pre-treatment was observed (Table Ill.2). Each linear regression coefficient (b)
value of leaf length over time for every wheat seedling sampled had a correlation (R} of
greater than 0.95. Analysis of variance of LER indicated significant main effects
attributable to cultivars and treatments at p < 0.001, but the cultivars x treatments
effect was not significant. Cultivar differences for LER under control conditions were
observed between cultivar height genotypes (tali and semidwarf), but there were not
significzaint differences within each height genctype. Leaf elongation rate of tall genotypes
were about 50% greater than the semidwari genotypes. Differences of LER between
cultivars did not reflect a relationship with their Mn tolerance as determined by RRW.

Under conditions of Mn stress, cultivar differences for LER did not generally
express their Mn tolerance as determined by RRW. The Mn-sensitive Katepwa, the Mn-
tolerant Norquay, and the Mn-intermediate Osio were not significantly different to each
other, and thus were classified as intermediate (Table /il.2). However, the Mn-sensitive
Columbus and Mn-tolerant Laura were significantly different for LER from each other,
and from all of the other cultivars (Table //l.2). In contrast, the mean separation for
LER expressed as a percent of control correctly identified the sensitive and tolerant
cultivars. Contrary to the chlorophyll assay, however, in the LER assay the intermediate
cultivar was grouped with the tolerant ones.

Unlike chlorophyli concentration, the LSD mean separation ranking for LER
between cultivars did not depend on the probability used (p < 0.05 or p < 0.01). This
was observed for LER of seedling regrowth regardless of seedling pre-treatment (Mn-
stress and control), and for the relative LER (expressed as percentage of control) of
seedling regrowth.

Manganese tolerance as assayed by RRW was significantly correlated (p < 0.01)
with Mn tolerance as assayed by the relative chlorophyll ‘a+b’ concentration (expressed
as percentage of control) (R = 0.96; Fig. lil.5a), but it was not correlated (p < 0.01)
with the relative LER (expressed as percentage of control) of seedling regrowth (R =
0.70; Fig. ll1.5b). A significant correlation (p < 0.01) was obtained between the
product of the relative chlorophyll '‘a+b' concentration (expressed as percentage of
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control) and the relative LER (expressed as percentage of control) with RRW (R = 0.98;
Fig. 111.6).

111.4. Discussion

These results clearly indicated a differential effect of Mn on chiorophyil
concentration for wheat seedlings of cultivars differing in tolerance to Mn toxicity.
Reductions in chlorophyll concentration over a range of Mn concentrations have been
reported for wheat (Guerrier, 1988; Ohki, 1985; Wilkinson and Ohki, 1988), but the
cultivars used by these researchers were apparently sensitive or intermediate in their
tolerance to Mn foxicity. Although chlorosis scores have been used to select for Mn-
efficiency (Longnecker et al., 1988), to my knowledge this is the first report in which
chlorophyll concentration is shown to be a useful selection criteria for Mn tolerance.

The effect of Mn on chlorophyll concentration could be due to a specific effect on a
common precursor for chlorophyll ‘s’ and chlorophwlil 'b’ biosynthesis. This is indicated
by the lack of change in chlorophyll ‘a/b” ratio over the range of Mn concentrations used
in both Experiment N21 and Experiment N22. It has been repcrted that high Mn
concentrations inhibit an Fe-requiring step in chiorophyll synthesis in tobacco callus
(Clairmont et al., 1986) and in the cyanobacteriutn Anacystis nidulans (Csatorday et
al., 1984), although Nable et al, (1988) failed to find a similar effect in leaves of
young tobacco plants. Wilkinson and OhKki (1988) observed that chlorophyll ‘a/b’,
chlorophyll ‘a’/carotenoid and chlorophyll ‘b'/carotenoid ratios were unaffected by Mn
stress, but suggested the possibility of photo-oxidation of chlorophyll when carotene
concentration was deficient (Krinsky, 1966).

Differences in the chlorophyll concentration of wheat cultivars grown under
control conditions (Table Il1.1) need not be a problem in selecting cultivars or lines for
tolerance to Mn, since a relative chlorophyli concentration can be used (expressed 2s
percentage of control). It would, however, be a problern im selecting Mn tolerant
seedlings from a segregating population where tolerance must be evaluated on a single
plant in a non-destructive fashion. It is worth pointing out, however, that the lower
chlorophyll concentration of Mn tolerant cultivars observed under control conditions in
this study (Table I1l.1) might not be the result of genotypic differences in chlorophyll
concentration. If the critical conceriration for Mn deficiency in Mn-tolerant cuitivars is
higher than that in Mn-sensitive cultivars, then the tolerant cultivars may be
experiencing Mn deficiency when grown in control solutions. Stimulation of growth of
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Mn tolerant cultivars at concentrations which are toxic to Mn-sensitive cultivars has
been reported (Burke et al., 1990; Macfie et al., 1989).

The leaf elongation rate of monocots over a period of days has been shown to be
nearly linear (Edwards, 1967; Wilhelm and Nelson, 1978; Reeder et al., 1984), and
very sensitive 1o a variety of environmental influences (Terry et al., 1983). it has been
proven to be a good indicator for detecting differences in the response of genotypes to
water stress (Cutler et al, 1380 and to herbicide stress (Bowran and Blacklow,
1987). To my knowledge, this is the first report which has used LER of wheat seedlings
during a period of recovery from Mn stress as a parameier for selecting Mn tolerant
seedlings. It should be pointed out that a significant correlation (R = 0.96) exists
between LER and BRW for the Mn-sensitive and Mn-tolerant cultivars. It is the
grouping of thé Mn-intermediate cultivar which skewed the correlation (Fig. 111.5b).
Since the rate of leaf elongation is constant, it would be possible to take only one
measurement at day four or five of regrowth to determine the LER, however, problems
of scale would arise if different height genotypes were used in a segregating population.

Evaluation of cullivars tolerant or sensitive to Mn stress as determined by
chlorophyll ‘a+b’ concentration and LER correlated well with the RRW technique at p =
0.01 (Fig. 111.5). However, the ranking of the intermediate cultivar changed depending
on the screening technique used. As pointed out by Horst (1982) for Mn tolerance of
cowpea and by Taylor and Foy (1985 a,b) for Al tolerance of wheat, ranking of cultivars
by a variety of different screening techniques might be affected by factors such as the
level of stress, length of treatment, composition of nutrient solution, growth conditions,
or genotypes. Perhaps taking both chlorophyll concentration and LER into account may
provide a better selection for seedling tolerance to Mn (Fig. 111.6). This possibility
requires further study.

Regardless of the imprecision inherent in screening techniques, selection of
extremes is generally not a problem. Manganese tolerance in wheat has been reported to
be controlled by a few major genes (Scott and Fisher, 1989) and thus the phenotypic
classes arising from a segregating population of a cross between varieties with extreme
tolerance and sensitivity would be either tolerant or sensitive, not intermediate.
However, since there is a wide range of response to Mn toxicity in wheat (Brauner and
Sarruge, 1980; Macfie et al, 1989), many genes could exist to account for this
variability and it is possible that Mn tolerance might be of a quantitative nature (see

Chapter V). In this case, intermediate genotypes would arise which may have desirable
characteristics.
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111.5. Conclusion

To my knowledge this is the first report of a rapid technique for selection of Mn
tolerant seedlings of wheat. A technique using application of Mn to the petioles and rating
of Mn toxicity symptoms in the leaf has allowed a simple non-destructive screening of
cowpea genotypes (Horst, 1982). This technique, however, may not be suitable for
cereals. Other screening techniques which have been described are either time
consuming (relative root weight, root length), expensive (aconitic acid, fluorescence)
or destructive (Mn seed content), and are more suitable for seiecting cultivars or lines
rather than for selection in segregating populations. The chlorophyll concentration of
Mn-stressed seedlings and the LER of seedling regrowth appear to be suitable techniques
for screening unreplicated selections of segregating populations for tolerance to Mn.

While we have not explored the possibility, these techniques should have potential for
use with other cereals.
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Fig. M.1. The effect of increasing Mn concentrations on chlorophyll ‘a+b’ concentration
expressed on a fresh weight (FWT) basis for the Mn-tolerant cv Norquay and the Mn-
sensitive cv Columbus. Vertical bars represent LSD (p < 0.05).
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Fig. Il1.2. The effect of increasing Mn concentrations on chlorophyll ‘a’ concentration
expressed on a fresh weight (FWT) basis for the Mn-tolerant cv Norquay and the Mn-
sensitive cv. Columbus. Vertical bars represent LSD (p < 0.05).
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Fig. 111.3. The effect of increasing Mn concentrations on chlorophyll ‘b’ concentration
expressed on a fresh weight (FWT) basis for the Mn-tolerant cv Norquay and the Mn-
sensitive cv Columbus. Vertical bars represent LSD (p < 0.05).



49

0.06

0.054

0.044

0.03

Chlorophyll 'a+b' (mg cm ~2LA)

0.02 L ° d I v Y T v Y v T v
0.0 0.5 1.0 1.5 2.0
Manganrse in solution (mi)

7 T

Fig. l11.4. The effect of increasing Mn concentrations on chlorophyl!l ‘a+b’ concentration
expressed on a leaf area (LA) basis for the Mn-tolerant cv Norquay and the Mn-
sensitive cv Columbus. Vertical bars represent LSD (p < 0.05).
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Fig. 11.5. Relationship between relative root weight (RRW) and relative chlorophyll ‘a+b’

(percent of control) (a) and relative leaf elongation rate (percent of control) (b). (RRW =
root weight in the presence of 500 uM Mn, divided by control root weight; data from Macfie

et al. (1989)).
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(percent of control) and relative leaf elongation rate (percent of control) with relative
root weight (RRW). (RRW = root weight in the presence of 500 UM Mn, divided by

control root weight; data from Macfie et al. (1989)).



Table lI.1. Mean chiorophyll concentration and composition of wheat seedlings grown in
control and 1000 uM Mn nutrient solutions.

Cultivar _____ Chlorophyll concentration
‘a’ ‘b’ ‘a+b’ ‘a/b’
mg g1 FWT
Control
Columbus 1.35 0.46 1.81 2.94
Katepwa 1.43 0.49 1.93 2.93
Oslo 1.51 0.50 2.01 3.00
Norquay 1.28 0.42 1.70 3.07
Laura 1.29 0.44 1.73 2.90
LSD (0.05) 0.14 0.06 0.20 0.15
(0.01) 0.20 0.09 0.28 0.21
mg g-! FWT
1000 uM Mn
Columbus 0.70 0.22 0.92 3.12
Katepwa 0.70 0.23 0.92 3.03
Oslo 0.80 0.27 1.07 3.00
Norquay 1.15 0.37 1.51 3.10
Laura 1.18 0.40 1.58 2.94
ISD (0.05) 0.09 0.04 0.13 0.18
(0.01) 0.13 0.05 0.18 0.26
%
Percent of control
Columbus 52 49 51 106
Katepwa 48 47 48 104
Oslo 53 53 53 100
Norquay 89 89 89 101
Laura 92 90 91 101
LSD (0.05) 10 11 10 10
(0.01) 14 16 14 156




Table /l.2. Mean leaf elongation rate (LER) for regrowth of pre-treated,

Mn-stressed (1000 pM) and non-stressed (control) seedlings of five
wheat cultivars.

Leaf elongation rate
pre-treatment

Cultivar Control Mn 1000 uM Percent of control
mm/day %o
Columbus 38.7 14.4 36.9
Katepwa 40.5 23.9 59.5
Oslo 21.7 24.3 113.3
Norquay 22.4 21.9 97.6
Laura 38.9 35.4 91.5
LSD (0.05) 4.4 3.2 16.0
(C.C1) 6.2 4.6 22.7
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Chapter IV

Heritability and generation mean analysis of manganese tolerance
in crosses of spring wheat (Triticum aestivum L.) cultivars.

IV.1. Introduction

Nearly half of the world's non-irrigated arable lands are acid soils (Clark,
1982). In addition to aluminum (Al) toxicity, manganese (Mn) toxicity is one of the
most important growth limiting factors for crop production in acid soils (Foy, 1984).
Interspecific and intraspecific differences in tolerance to Mn have been identified among
agriculturally important species, providing breeding potential to develop cullivars
adapted to acid soils (Foy et al., 1988). In some cases breeding for tolerance to Mn might
be more feasible and economical than the use of soil amendments. This is particularly
true in developing countries where more than half of the acid soils are found (Clark,
1982). A primary requirement for such a breeding effort is an understanding of the
genetic factors d_elerming Mn tolerance in ciops.

To my knowledge, studies on the genetics of Mn tolerance have been reported for
only four plant species; lettuce (Eenink and Garretsen, 1977), alfalfa (Dessureaux and
Ouellette, 1958; Dessureaux, 1959), soybeans (Brown and Devine, 1980; Heenan et
al., 1981) and spring wheat (Camargo, 1983). Camargo (1983) described a cross
between a Mn-tolerant x Mn-sensitive wheat cultivar from which a high broad-sense
heritability of Mn-tolerance was estimated. Scott and Fisher (1989), Foy et al.
(1988), and Scott et al. (1987) all commented on the genetics of Mn tolerance in wheat,
but failed to provide hard data by refering to "unpublished results” and/or “personal
communication”.

In this report, | describe the results from a genetic study on the inheritarice of
Mn tolerance in crosses of spring wheat cultivars using a generation mean analysis
approach, as well as estimates of dominance and heritability using chiorophyll
concentration as a rapid, seedling based, screening bioassay for evaluating the tolerance
of wheat seedlings to Mn toxicity (Moroni et al., 1991a).



IV.2. Materials and Methods

1V 2 2. Plant material and Mn tolerance assay

The Canadian spring wheat (Triticum aestivum L.) cultivars Columbus and
Katepwa were described as Mn-sensitive (tall genotypes), Oslo as intermediate in
tolerance *: ‘<= {a semidwarf genotype), arid Norguay as Mn-tolerant (a semidwarf
genotyp#+ iy ‘vacfie ef al. (1989). The fifth cuitivar, Laura, was described as a Mn-
tolerant cu.avar (tall genotype) by Moroni et al. (1991b). These levels of tolerance
were determined by the relative root weight method (RRW = root weight in the presence
of 500 uM Mn, divided by control root weight; Macfie et al. ,1989). In this study the
five cultivars were crossed in a half-diallel design with no reciprocals to develop six
generations per Cross, the parents (P1, P2), Fq, F2 and two backcrosses of the F1 to the
parents (BC1, BC2). The crosses were as follows: four Mn-tolerant x Mn-sensitive
crosses (Norquay x Columbus, Norquay x Katepwa, Laura x Columbus, and Laura x
Katepwa); two Mn-tolerant x Mn-intermediate crosses (Norquay x Oslo, and Laura x
Oslo); two Mn-intermediate x Mn-sensitive crosses (Oslo x Columbus, and Oslo x
Katepwa); one Mn-tolerant x Mn-tolerant cross (Norquay x Laura); and one Mn-
sensitive x Mn-sensitive cross (Katepwa x Columbus).

Sensitivity and tolerance tc Mn toxicity were evaluated by chlorophyli
concentration of seedlings grown in nutrient solutions as described in Chapter lli
(Moroni et al., 1991a). Based on earlier results (Moroni et al, 1991a), a Mn
concentration of 1000 uM was used as the stress level to determine the differential
response to Mn among seedlings. For the assay, each replicate per population consisted
of 20 seedlings each of Py, P2, F1, BCq and BC»> and 50 seedlings of Fa. Seeds were
surfaced sterilized in 1.2% sodium hypochiorite for 20 minutes and germinated
overnight at room temperature in an aerated solution of the systemic fungicide Vitavax
(Carbathiin + Thiram ; 0.005 glL-1). Germinated seeds were laid on a plastic mesh,
crsase down, suspended over 10 L of a nutrient solution composed of (uM): Ca, 1000;
Mg, 300; NOgz, 2900; and NHg4, 300; and were grown for three days at room
temperature. The nutrient solutions were adjusted 1o pH 4.8 with KOH and HCI and were
constantly aerated. For the first two days the containers were covered with black piastic.
On the fourth day seedlings were transfered for measuring of Mn tolerance.

Seedlings were mournted in polyurethane foam plugs (which had been pre-
sterilized for an hour in an autoclave to prevent seedling toxicity; Moroni et al., 1991a)
on a plastic frame suspended over a container filled with 20 L of an aerated nuirient
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solution. The nutrient solution contained (uM): Ca, 1000; Mg, 300; K, 800; NOa3,
3600; NHg4, 600; PO4, 100; SO4, 101; Cl 34; Na, 20: Fe, 10; B,6; Mn, 2; Zn, 0.5; Cu,
0.15; and Mo, 0.1. lron was supplied as Fe-EDTA prepared from equimolar amounts of
FeCls and NaEDTA. 1000 pM Mn was superimposed over the nutrient solution, and
adjusied to pH 4.8 with KOH and HCI. Seedlings were grown in a temperature controlled
growth chamber for six days at a day/night temperature of 21.0/17.0 £ 0.5 °C and a
relative hustiidity of 80/90 + 5 %. The photosynthetic photon flux density was 307 %
30 pmol m-2 s-1. The experimental design was a randomized block design with 6
generations, and 2 replicates per population tested.

Chlorophyll was determined according to the method of Hiscox and lsraelstam
(1979). Individual seedlings were cut at the collar of the primary leaf and fresh weight
(FWT) was determined. Leaf blades were then cut in small pieces (~1-2 cm), placed in
test tubes containing 10 mi of dimethyl sulphoxide (DMSO), and chlorophylli was
extracted without maceration by incubating for 3 hrs in a water bath at 65 °C. Tissues,
solutions, and extractants were kept under black plastic to minimize light induced
chlorophyll degradation. Absorbances were read on a SPECTRONIC 21
Spectrophotometer, (Bausch & Lomb), at 645 and 663 nm, and total chlorophyll
(chlorophyll ‘a+b?) was estimated using the extinction coefficient equations described by
Arnon (1949). Chlorophyll was expressed on a FWT basis.

1v.2.b, Analysis Procedures

The chiorophyll concentration from all generations for each population were
subjected to analysis of variance (ANOVA), and generation means were compared using
Tukey's test at p < 0.01 (SAS, 1985). The potence ratio (h), estimated according to

Petr and Frey (1966), was used as a net measure of phenotypic dominance (Mather and
Jinks, 1982) as:

h = (XFq - XMP) / (XHP - XMP)

where XF1, XMP, and XHP are the means of the F4, the 2 parents, and the high parent,

respectively. Broad-sense heritability (H) was estimated according to Mahmud and
Kramer (1951) as:

H = [(VF22 - VVP{2 x VP22) / VF22 ] x 100
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where VFao, VWP1, and VP2 are the phenotypic variances of the F2, P1, and Pz generations,

respectively. Narrow-sense heritability (h2) was estimated according te Warner
(1952) as:

h2 = [2VF2 - (VBC1 + VBC2)1/ VF2

where VFo, VBC1, and VBC2 are the phenotypic variances of the F2, BC1, and BC2
generations, respectively. Phenotypic variances were estimated by the corresponding
variances within the experimental units. Narrow-sense heritability was estimated on
arithmetic and logarithmic transformed daia to udjust for unequal variances.

Generation means were subjected to the analysis suggested by Mather and Jinks
(1982) to asses inheritance of Mn tolerance. Such an analysis required fulfillment of
certain assumptions: 1) homozygosity of the parents, 2) no reciprocal effects, 3) no
linkage, and 4) no differential intra-plot competition among generations. Parental
cultivars have been subjected to several generations of selfing and the breeder's seed
used was assumed to be homozygous and homogeneous. Although reciprocal differences for
quantitative characters have been reportedd for wheat in some studies, in this study they
were assumed to be negligible. Three- and six-parameter model procedures were used as
outlined by Mather and Jinks (1982). According to Mather (1849), and described by
Mather and Jinks (1982), each of the six mean phehotypes per cross (P1, P2, F1, F2,
BC1, and BC2) can be described in terms of the midparent (m) which depends on the

general conditions of the observations, the additive compoenent [d] and the dominance
component [h] where:

[d] = the sum over loci of ai d's which measure departure of each
homozygote from the midparent m and

[h] = the sum over loci of all h's which measure the departure of the
heterozygote from midparent m.

The scaling test for additive gene action developed by Mather (1949) and
described by Mather and Jinks (1982) was conducted using the following formulae:

A =2BC1-Py-Fq
B =2BC2-Pp-Fqy
C=4F2-2F1 -P1-P2
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where P, Pp, Fq, F2, BC1, and BC2 are the generation means of P1, Po, Fy, F2, BCq,
and BCo, respectively. If the gene effects are additive on the average, the values should
not be significantly different from zero. Inadequacy of the scaie is indicated if one or
more of the values deviates significantly from zero. The standard errors of the scaling
tests were calculated from the within generation variances, deriving sampling variances
according to the formulae described by Mather and Jinks (1982) as follows:

VA = 4VBCq + W1 + Wy
VB =4VBCo + VP2 + V4
VC =16Wo + 4VF1 + VWP1 + VP2

where VP{, VP2, VF1, VF2, VBC1, and VBC2 equal the within generation variances of P1,
Po, Fy, F2, BCq, and BCp, respectively. The significance (p < 0.05 and p < 0.01) of the
scaling tests were obtained from a table of normal deviates (ie.'c’ test) (Mather,
1972).

The Joint scaling test proposed by Cavalli (1952) and described by Mather and
Jinks (1982) was used to test the fit of the additive-dominance mode! and to compare
with the results of the individual scaling tests. The Joint scaling test is more powerful
than the individual tests proposed by Mather (1949) in detecting epistatic effects, since
it uses data from all six generations to provide estimates for the mean, additive, and
dominance effects. Estimates of the model parameters (/mn, [d], {h]) were obtained from
the six equations describing the mean phenotypes by a weighted least squares solution.
The six means were weighted by the reciprocal of their corresponding variance. CGocdness
of fit of the three-parameter model was tested by chi-square with three degrees of
freedom. Failure of the model (m, [d], [h]) indicates the possibility of epistasis. For
crosses where epistasis is implicated, Jinks and Jones (1958) proposed a Six-
parameter model, as described by Mather and Jinks (1982), to determine the adequacy
of a digenic epistatic model. The six estimates of the model are defined as follows:

m = midpoint (between AA and aa)

[d] = difference of AA and aa from midparent value
[h] = difference of Aa from midparent value

[i] = homozygote x homozygote interaction

[j1] = homozygote x heterozygote interaction

[l] = heterozygote x heterozygote interaction
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and are estimated pased on the formulae:

m = V/oP1 + 1/0P2 + 4F2 - 2BCq - 2BC2

[d] = '/2P1-1/2P2

(h] = 6BC1+ 6BC2- 8Fo - F1 - 11/2P1 - 11/2P2
(i1 = 2BCq + 2BC2 - 4F2

{j1l = 2BC1- P4 - 2BC2 + P2
n P14+ P2+ 2F1 + 4Fo - 4BC1 - 4BC2

W

where P1, P2, F1, F2, BC1, and BC2 are the generation means of P¢, P2, F1, F2, BC1,
and BCo, respectively. The sampling variances of these estimates were obtained by
squaring the corresponding standard errors of the within generation variances.
Significance of gene effects (p < 0.05 and p = 0.01) were deterntined by t-test.
Calculations for the Joint scaling test and for the estimates of the three- and six-
parameter models were performed with a Lotus 1-2-3 (Lotus Dev. Corp., 1987)

generation mean analysis microcomputer program kindly provided by Dr T.J. Ng (Ng,
1990).

iV.3. Results and Discussion

Popylations r n

Manganese toxicity symptoms were observed primarily in seedlings of Mn-
sensitive cultivars, and in seedlings of segregating generations. Symptoms observed
included leaf chlorosis, stitfness of leaf tissue, white flecking, leaf tip burn and,
occasionally, leaf purpling. These symptoms were similar to those previously described
by Keisling et al. (1984) and Ohki (1984).

Generation means for chlorophyll concentration of the ten wheat crosses are
shown in Table IV.1. Analysis of variance indicated that significant differences existed
among generation means for chlorophyil concentration for the ten crosses of five wheat
cultivars differing in Mn tolerance (Table [V.1). In the four Mn-tolerant x Mn-
sensitive crosses (Norquay x Columbus, Norquay x Katepwa, Laura x Columbus, and
Laura x Katepwa) and in tiie two Mn-tolerant x Mn-intermediate Crosses (Norquay x
Oslo, and Laura x Oslo), the chlorophyll concentration of the Mn-tolerant parent was
always significantly higher (p < 0.01) than the Mn-sensitive and Mn-intermediate
parent (Table IV.1). Furthermore, in the two Mn-intermediate x mMn-sensitive crosses
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(Oslo x Columbus, and Oslo x Katepwa) the chlorophyll concentration of the Mn-
intermediate parent was always significantly higher (p < 0.01) than the Mn-sensitive
parent (Table [V.1). In the Mn-tolerant x Mn-tolerant cross (Norquay x Laura) and
Mn-sensitive x Mn-sensitive cross (Katepwa x Columbus) the chlorophyll
concentration of the parents were not significantly different (p < 0.01) (Table IV.1). In
this case, non significance may be ascribed to the narrow ranges between parental values
for chlorophyll concentration. These results indicate the validity of using chlorophyll
conceniration as a measure of Mn tolerance in wheat (Moroni et al., 1991a), since this
method is able to differentiate between the cuitivars differing in Mn tolerance as
determined by the relative root weight method (Macfie et al., 1989; Chapter |l).
Progeny distribution for the six generations of the Mn-tolerant x Mn-sensitive,
Mn-tolerant x Mn-intermediate and Mn-intermediate x Mn-sensitive crosses indicated
a continuous distribution of Mn tolerance as assayed by chlorophylil concentration. This
is exemplified by the frequency distribution of the six generations of the crosses
Norquay x Columbus (Table IV.2) and Laura x Columbus (7able /V.3), (Mn-tolerant x
Mn-sensitive crosses). In these two crosses where the cultivars have extreme Mn
tolerance and Mn sensitivity, distinct reaction classes were not observed. This is in
contrast to other reports which indicated that variation in Mn tolerance is controlled by
a few genes (Foy et al., 1988; Scott and Fisher, 1989). For example, a cross of
Carazinho x Teal (Mn-tolerant x Mn-sensitive; Foy et al.,, 1988) indicated that the
Brazilian cultivar Carazinho had two major genes for Mn tolerance when compared to the
cultivar Teal, with the appearance of distinct reaction classes in the frequency
distribution. Unfortunately no indication as to the screening technique used, no details of
the frequency distributions were given by the authors. It should be pointed out that one
of the ancestral parents of Laura is Carazinho, and that the progenitors of Mn tolerance

of Laura, Norquay, and Carazinho may be the Brazilian land races Polysuu and/or
Alfredo Chavez 6.21 (Chapter Il).

IV.3.b. Domi imat

Estimutes of dominance for the ten crosses are presented in Table iV.4. Negative
or positive dominance values (potence ratio) indicate the direction of dominance towards
the respective parent. Dominance values for three of the four Mn-tolerant x Mn-
sensitive crosses (Norquay x Columbus, Norquay x Katepwa, and Laura x Katepwa) were
low and positive, while for the other Mn-tolerant x Mn-sensitive cross (Laura x
Columbus) the dominance value was also low, but negative (Table /V.4). The two Mn-
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tolerant x Mn-intermediate crosses showed ditfering dominance values; the Norquay x
Oslo cross showed positive overdominance, the Laura x Oslo cross showed negative
negligible dominance (Table IV.4). For the two Mn-intermediate x Mn-sensitive
crosses, the Oslo x Columbus cross showed partial dominance while the Oslo x Katepwa
cross showed low dominance, both values being positive (Table 1V.4). The dominance for
the Norquay x Laura cross (Mn-tolerant x Mn-tolerant) showed overdominance and
vositive, while for the Katepwa x Columbus cross (Mn-sensitive x Mn-sensitive) it
showed high and positive dominance (Table IV.4).

The indication of overdominance as indicated by the potence ratio method for the
Norquay x Oslo and Norquay x Laura crosses may not be realistic, since differences in
magnitude between the Fq generations and parentals are small (Table I1V.1), suggesting
overdominance, but not as high as the potence ratic method showed. As described in
Materials and Methods, the potence ratio method is the ratio of the two differences (XF1
- XMP) to (XHP - XMP). In crosses where the parental and Fy generation means were
nearly equal, a relatively small error in estimation could magnify the potence ratic
value (Petr and Frey, 1966). This appeared to be the case for the two crosses were
overdominance was observed. It should be pointed out that dominance values for
quantitative attributes give only an average effect of the genes involved in expression. In
general, Fq generations were not higher than the parent with more tolerance to Mn
(Table 1V.1), indicating that heterosis did not occur. An exception to this observation is
the Mn-tolerant x Mn-tolerant cross (Norquay x Laura) where the Fq generation is
higher then either parent (Table IV.1). The magnitude of the differences, however, is
insignificant from the stand point of breeding. Furthermore, the low dominance
estimates for the crosses where the parental had extreme tolerance and sensitivity
indicate that dominance is not a major effect in the inheritance of tolerance in this
genetic material, and might not be an obstacle in a breeding program for Mn tolerance.

\V.3.c. Broad: heritabili :

Heritability percentages in the broad-sense are also shown in Table IV.4. The
broad-sense heritability percentages were high for the four Mn-tolerant x Mn-
sensitive crosses (Norquay x Columbus, Norquay x Katepwa, Laura x Columbus, and
Laura x Katepwa), and the two Mn-tolerant x Mn-intermediate crosses (Norquay x Oslo,
and Laura x Oslo) ranging from 49% to 78% (Table IV.4). For one of the Mn-
intermediate x Mn-sensitive crosses (Oslo x Columbus) the broad-sense heritability
was low and positive, but for the other Mn-intermediate x Mn-sensitive cross (Oslo x
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Katepwa) the broad-sense heritability was negligible (Table /V.4). In the case where the
parents of the cross did not differ in Mn tolerance (p < 0.01),

broad-sense
heritabilities were opposite in value and sign; for the Norquay x Laura cross it was

negligible and positive (6%), for the Katepwa x Columbus cross it was large and
negative (-57%; Table IV.4).

As expected, were the parentals differed widely in Mn tolerance, broad-sense
heritabilities were high. Where parentals showed similar tolerance characteristics,
broad-sense heritability estimates were low and even negative. These resuits suggest
that the variability found in these populations were in great part due to genetic origin.
Camargo (1983) reported alsn high broad-sense heritability of a cross of BH-1146 x
Siete Cerros (Mn-sensitive x Mn-tolerant) using the length of the central primary root
of plants to evaluate the levels of tolerance to Mn. The Mn-tolerance of Siete Cerros can
be traced back to the same progenitors of the Mn tolerance observed in Laura, Norquay,

and Carazinho, namely the Brazilian land races Polysuu and/or Alfredo Chavez 6.21
(Chapter II).

l:! 3 I [! - ! -I I -lnl I- !

Narrow-sense heritability estimates calculated on the basis of original scale and
logarithmic transformation are shown in Table iV.4. Several trends are noteworthy. In
the Mn-tolerant x Mn-sensitive crosses weré Norquay is the Mn-tolerant parent,
(Norquay x Columbus, and Norquay x Katepwa), and in both Mn-tolerant x Mn-
intermediate crosses (Norquay x Oslo, and Laura x Oslo), the narrow-sense heritability
estimates were very high (for some even greater than the theoretical, je. 1.00) and did
not differ much, regardless of the scale used (Table IV.4). Thus, additive gene action is a
major component of the variability found for this gerplasm, indicating that it should be
suifable for selection in a breeding program. This is in contrast to the Mn-tolerant x
Mn-sensitive crosses were Laura was the Mn-tolerant parent (Laura x Columbus, and
Laura x Katepwa). In this case, the narrow-sense heritability estimates were low
-e drdless the scales used. Moreover, in the logarithmic scale, the estimates were about
100% more than in the arithmetic scale (Table 1V.4). These results indicate that non-
additive gene action might be of great importance in the variability found in these
populations, making it difficult to select for Mn tolerance in a breeding program. For the
remainder crosses (Mn-tolerant x Mn-tolerant, Mn-intermediate x Mn-sensitive, and

M.n-sensitive x Mn-sensitive) the narrow-sense heritability estimates were low and
mostly negative (Table 1V.4).
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As observed by Ketata et al. (1976) heritability estimates greater than the
theoretical limit, je. greater than 1.00, as observed in some of the crosses, eg. Norquay
x Katepwa, Norquay x Oslo, may be ascribed to several causes. Sampling errors,
differential responses of the F2 vs. the backcrosses to the environment, and non-allelic
interactions can result in an upward bias of the narrow-sense heritability estimates as
measured by Warner's method (Warner, 1952). Furthermore, heritability estimates
tend to be high for characters which display wide differences between parental means
(Ketata et al., 1976; Merrit, 1988), as was the case in some of the crosses of this
study. Furthermore, genotype-environment interactions, which could not be evaluated
in this study, may have biased the estimates of heritability. To my knowledge there are
no reports of narrow-sense heritability estimates for Mn tolerance of wheat or any
other crop species.

Va6 G : \ysis estimal

Generation mean analysis is normally used to analyze crosses between two
parents which differ widely in the characters under analysis. Those crosses where the
tolerance of the parents did not differ significantly (p < 0.01) were not subjected to the
scaling tests or to generation mean analysis (Mn-tolerant x Mn-tolerant cross (Norgquay
x Laura) and Mn-sensitive x Mn-sensitive cross (Katepwé x Columbus); Table IV.1).
For the remaining eight crosses, the resuits of the A, B, and C individua! tests, and joint
scaling test, are shown in Table IV.5, and the estimates of gene effects using a three- and
six-parameter model are shown in Table V.6 and Table V.7, respectively.

Significance of any of the individual scaling tests (A, B, or C) indicates epistasis
on the scale of measurement used. However, since each test has its own expectations in
terms of type and magnitude of epistasis effects, agreement should not necessarily be
expected among tests. The joint scaling test is more powerful than the other tests in
detecting epistasis, since it uses information from all six generations. In this study, the
joint scaling test detected epistasis whenever it was declared significant by any of the
individual scaling tests (Table IV.5).

The joint scaling test, and one or more of the individual scaling tests were
statistically significant for all but the Norquay x Columbus cross, where neither test
was statistically significant (Table IV.5). Thus, based on the individual and joint scaling
tests (Table 1V.5), a three-parameter model proved to be satisfactory in explaining the
genetic differences for Mn-tolerance of the Norquay x Columbus cross (Table /V.6). This
indicates that epistasis is not involved in the inheritance of Mn-tolerance of this cross.
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In this study, additive, [d], gene effects for the Norquay x Columbus cross seemed to be
the most important factor (significant at p < 0.01) contributing to the genetic control of
Mn tolerance, while dominance, [h], gene effects were smaller and positive (p < 0.01)
(Table 1V.6).

Because of the presence of epistasis as detected by the significance of the scaling
tests, the three-parameter model was not sufficient to explain the genetic variation for
the other crosses. Therefore, the six-parameter model was invoked to determine the
type and magnitude of the gene action involved in the inheritance of Mn tolerance in those
crosses (Table 1V.7). In the Norquay x Katepwa cross (Mn-tolerant x Mn-sensitive)
only additive, [d], and additive x dominance, [j], gene effects were statistically
significant (p < 0.01), while, in the Norquay x Oslo cross (Mn-tolerant x Mn-
intermediate) additive, [d], dominance, [h], and additive x additive, [/, gene effects
were significant (p < 0.01). Furthermore, in this cross (Norquay x Oslo) there was
also significant dominance x dominance, [[], gene effects with negative sign (Table IV.7).
For the Norquay x Oslo cross dominance, [h], towards the Mn-tolerant parent and
significant negative dominance x dominance, [, gene effects indicated a duplicate type of
epistasis for Mn tolerance, suggesting that difficuity would be encountered in selecting
for Mn tolerance from this cross.

In the three crosses were Laura was the Mn-tolerant parent, (Laura x Columbus,
Laura x Katepwa, and Laura x Oslo), significant gene eftects were detected for all but the
additive x dominance, [], parameter; all parameters were positive except for
dominance x dominance, [[], gene effects which was negative. In general, dominance, [H],
gene effects were larger in magnitude than additive, [d], gene effects for all three
crosses (Table IV.7). For these crosses dominance, [h], towards the Mn-tolerant parent
and significant negative dominance x dominance, [/, gene effects indicated a duplicate
type of epistasis for Mn tolerance, again suggesting that difficulty would be encountered
in selecting for Mn tolerance from these crosses.

in the Mn-intermediate x Mn-sensitive crosses ( Oslo x Columbus, and Oslo x
Katepwa) significant additive, {d], dominance, [h], and addiiive x dominance, [j], gene
effects were detected for both crosses, and all were positive. Only for the Oslo x Katepwa
cross was there significant additive x additive, [i], and dominance x dominance, [/, gene
effects. In this cross, the dominance x dominance, [{, gene effect was, as for previous
crosses, negative (Table /V.7). This, combined with the dominance, [h], towards the
more Mn-tolerant parent, indicates that a duplicate type of epistasis exists in this

material. Again, difficulty may be encountered in selecting for Mn tolerance from this
cross.
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The prevalence of non-allelic interactions where Laura (Mn-tolerant) and Oslc
(Mn-intermediate) served as a tolerant or intermediate parent, and the minimal
detection of non-allelic interactions where Norquay (Mn-tolerant) served as the
tolerant parent, may suggest a different genetic control for Mn tolerance between these
cultivars. Although the progenitors for Mn tolerance of Laura and Norquay can be traced
back to a common source, this character have been inherited through different lineage
(Chapter ll).

in general the more important epistatic effect detected by the six-parameter
model was of the dominance x dominance, [/, type. The general nonsignificance in this
study of the additive x dominance, L1, sffects, may be due to the canceling of positive and
negative effects from different loci. The estimates of epistasis as well as dominance and
additive gene action may have been influenced by genotype-environment interactions in
both the three- and six-parameter models. The possible importance of genotype-
environment interactions could be determined by conducting tests in several
environments. Foy et al. (1988) previously suggested that the level of dominance of Mn
tolerance in wheat should be used cautiously because of possible variation in
performance of the Fq at different levels of Mn stress.

The few reports in the literature on the inheritance of Mn tolerance in plants
indicate that this character is quantitative in nature with additive gene effects playing a
major role. Manganese tolerance in lettuce seems controlled by one to four genes,
depending the species used (Eenink and Garretsen, 1977). In lucerne, Mn tolerance has
been attributed to additive gene effects with little or no dominace (Dessureaux, 1959),
and in soybean Brown and Devine (1 980) concluded that Mn tolerance was multigenic
rather than controlied by one single locus. Heenan et al. (1881) also concluded that
minor genes were important in the inheritance of Mn tolerance in soybeans, but they
suggested that a single gene may influence Mn tolerance in the Bragg x Amredo cross
(Mn-sensitive x Mn-tolerant). Furthermore, reciprocal differences in progeny
suggested that cytoplasmic inheritance may also infiuence Mn tolerance in soybeans
(Brown and Devine, 1980).

in wheat a wide range of tolerance to Mn toxicity (Macfie et al., 1989; Chapter
i) and symptoms of Mn toxicity (Keisling et al., 1984; Ohki, 1984) indicate that many
genes with small effecis couix 2xist to account for this variability. Nontheless, Foy et al.
(1988), and Scott and Fisher (1989), citing unpublished data, have reported that
several major genes can account for a substaniial proportion of the variation in Mn
tolerance. Results from this study appear contradictory to this view, and indicate that
Mn tolerance in spring wheat is quantitatively inherited.
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1IV.4. Conclusicn

The results cof this study indicate that Mn tolerance in wheat is a heritable
character which could be selected successfully in a backcrossing program, provid g
that the appropiate parent for Mn tolerance is used. Furthermore, Mn tolerance would
appear to be quantitatively inherited in the crusses reported here. This is supported by
(1) the continuous frequency distribution of seediings in tolerance to Mn toxicity as
determined by the seedling chlorophyll concentration technique of segregating
generations and exemplified by the Norquay x Columbus cross (Table /V.2) and Laura x
Columbus cross (Table /V.3), (2) the similarity of the F1 and F2 means, and (3) the
high and significant additive, [d], gene action.

A preponderance of additive effects coupled with high heritability and small
dominance (potence ratio) estimates obiained in thiz study indicate that selection for

this character should be highly effective in early generations, particularly where
Norquay was the Mn tolerant parent.
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Chapter V

Summary

V.1. General discussion

Devine (1982) has described four prerequisites to undertake a breeding
program for specific edaphic adaptation. These four prerequisites are as follows: (a)
that techniques are available to assay plant response to the particular edaphic stress,
(b) that there is useful genetic variation for the plant characteristics needed either in
agronomically suited cultivars or in noncultivatecd forms of the crop species or in
related species, (c) that the character is heritable, and fially (d) that the estimated
degree of improvement in adaptation (determined from the range of variation, and
heritability) is sufficient to be of applied use (Devine, 1982). The results obtained in
this study indicated that these four prerequisites have been fulfilled for the development
of a breeding program of wheat cultivars tolerant to Mn toxicity.

The chlorophyil concentration and leaf elongation rate (LER) of seedling
regrowth techniques were shown to be suitable plant parameters in determing Mn
tolerance of wheat seedlings (Chapter 1l). Both techniques are relatively rapid, easy,
inexpensive, and most importantly, they are seedling based. in segregating populations
used in breeding programs each seedling is of a different genotype. Furthermore, the
chiorophyll technique was significantly correlated with Mn tolerance as assayed by the
relative root weight methodology (RRW). Nevertheless, a more convenient way would be
necessary to handle thousand of seedlings in a breeding program. For example, visual
score of chlorasis, and other Mn toxicity symptoms, might be used to develop a chart to
determine seadling classes with tolerance to Mn toxicity. Likewise, the LER technique
could be adapted to make one measure of regrowth. it should be pointed out that LER
might not be proper in segregating populations where the parentals are of different
height (eg. semidwarf x tall); differential LER response to Mn stress might be
confounded by differential LER due to the height genotype of the parentals. A combination
of both techniques would probably be more accurate; it has already been shown to
correlate with RRW (Chapter II). A similar procedure has already been developed for
Mn efficiency of barley (Longnecker et al, 1990).

The screening of Canadiar: and foreign cultivars by RRW methodclogy indicated a
large variation for Mn tolerance is available for selection in a breeding program
(Chapter HI). In general, the Canadian cultivars which were screened were mostly Mn-



sensitive, yet some of the cultivars were shown to have Mn-intermediate tolerance. Only
three cultivars were shown to be Mn-tolerant (Norquay, Laura, and Biggar). Manganese
tolerance appears to have originated from the Brazilian land races Polyssu (= Ponta
Grossa 142) and/or Alfredo Chavez 6.21. The demonstration that Mn tolerance came
from a narrow range source may facilitate the testing and selection in the field of this
germplasm for use in a breeding program.

The results from the inheritance study (Chapter V) indicated quantitative
inheritance of Mn tolerance. This is supported by: (1) the continuous frequency
distribution of segregating generations indicating differential tolerance to Mn toxicity,
(2) the similarity of the F1 and F2 means, and (3) the high levels of additive gene
action. That Mn tolerance of wheat might be quantitatively inherited was not surprising,
what was surprising was that heritability estimates and gene effects estimates indicated
that the genetic control of Mn tolerance in Norquay and Laura may be different. Whether
this is true cannot be said for certain. As pointed out in the literature review (Chapter
{), the level of Mn stress on plants is dependent on environmental conditions,
particularly light intensity and temperature. Furthermore, Foy et al. (1988) suggested
that the leve! of dominance of Mn tolerance in wheat should be used with caution because
of possible variation in performance of the Fq at different levels of Mn stress. In this
study, genotype X environment interactions were not tested. Until such tests are
conducted, the conclusion that cv Norquay and cv Laura may have different genetic
control for Mn tolerance should be considered as speculation. Nevertheless, a
preponderance of additive effects coupled with high heritability and small dominance
(potence ratio) estimates and the wide range of variation available indicate that selection
for Mn tolerance should be effective in early ganerations.

The results obtained in this study would certainly facilitate the development of a
breeding program for Mn tolerance in countries such as Brazil and Australia where acid
soil problems (eg. Mn and Al toxicity) is a constraint for wheat production. A review cf
the literature indicates that Mn toxicCity in soils of the wheat growing regions of Western
Canada is not a problem. Thus, at this time, to recommend the development of a breeding
program for Mn tolerance in Canadian germplasm would be inappropriate. Nevertheless,
this and other research (Macfie et al., 1989) on Mn tolerance of wheat, as well as
research on aluminum (Al) tolerance of wheat (Zale, 1987; Briggs et al., 1989), has
focussed attention on a variety of questions concerning Mn tolerance as it relates to
Canadian agriculture. Two of these may serve as focus: for future research in this area.
First, there is a need to determine whether selection of these traits (Al and Mn
tolerance) observed in Canadian wheat cultivars are directly related to changes in the
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soil environment due to modern agricultural practices (ie. soil acidification) or whether
these traits confer the cultivars certain physiological advantages under field conditions;
that is, efficiency of some physiological mechanisms and/or enzymes.

Secondly, there is a need to study the effects of Mn toxicity on the root system.
Failing to observe Mn toxicity symptoms in the root system does not necessarily mean
they do not occur. It has become a common feature in the literature to dismiss Mn
toxicity effects on the root system by pointing out that (a) most Mn toxicity symptoms
are observed in the shoots and not in the roots (Bould et al, 1983), and (b} that
tolerance to Mn in wheat operates by tolerance of shoots to high internal Mn
concéntrations (Foy et al., 1973). Differential root-tip diameter of cv Columbus (Mn-
sensitive) and cv Norquay (Mn-tolerant) to toxic levels of Mn, and observations of
differential production of exudate (ie. guttation) upon cutting the shoots (Moroni et al.,
unpublished), together with the observed range of RRW among wheat cultivars (Chapter
11y would indicate a major effect of Mn toxicity on the root systems. To my knowiedge,
there is no evidence which would indicate that the control mechanism of Mn tolerance in
wheat could not be located in the root system.

V.2. Conclusions

it can be concluded from this study that: (1) the source of Mn tolerance observed
in Mn-tolerant Canadian cuitivars is of Brazilian origin, (2) manganese tolarance
appears to have originated from the Brazilian land races Polyssu (= Ponta Grossa 142)
and/or Alfredo Chavez 6.21, (3) chlorophyll concentration of Mn-stressed seedlings,
and leaf elongaticn rate (LER) of seedling regrowth are suitable parameters for
screening se&w . arant to Mn toxicity, (4) there may be differant genetic controls
of Mn tolerance, (o) manganese tolerance is quantitatively inherited, and (6) selection
for Mn tolerance should be effective in early generations.
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