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Abstract 

This thesis covers aspects of modeling, control, and design of magnetically-levitated rotat

ing shafts. This topic is subdivided into two discrete but related problems. 

In the first problem we consider trajectory tracking of a shaft that is levitated by ac

tive magnetic bearings (AMBs) and rotated by a conventional motor. Trajectory tracking 

involves control of the AMBs such that the rotating shaft follows a prescribed path with 

minimal vibration. Trajectory tracking and vibration minimization are addressed in a com

mon control framework incorporating the ideas of differential flatness and nonlinear ob

servers. Furthermore, the nonlinear and overactuated nature of AMBs are studied through 

a comparison of control approaches. 

In the second problem we consider a shaft that is simultaneously levitated and rotated 

by a self-bearing motor (SBM). Whereas AMBs achieve levitation on the well-known basis 

of reluctance force, the type of SBM considered in this thesis, namely the toothless self-

bearing servomotor (TSBS), creates levitation using the less common Lorentz force. The 

operating principle of the TSBS is studied and nonlinear expressions for levitation force 

and torque are derived from first principles. Insight from force and torque characterization 

leads to a more general dynamic model that introduces previously unused control variables. 

Based on our dynamic model a control system is designed which extends the physical op

erating range of the TSBS relative to the established control approach and resolves the 

conflict between the levitation and rotation subsystems in the presence of input saturation. 

Performance improvements are confirmed on an experimental TSBS. Finally, exploiting all 

control variables of the TSBS motivates redesign of the TSBS itself. A new operating prin

ciple, dynamic model, and control system are proposed and experimentally validated which 

reduces the device's power electronic requirements. 

Keywords: magnetic levitation, active magnetic bearings, self-bearing motors, nonlinear 

control, nonlinear observers. 
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Chapter 1 

Introduction 

This thesis encompasses aspects of modeling, control, and design of electromagnetic ac

tuators used to levitate rotating shafts. The electromagnetic actuators that we consider are 

active magnetic bearings (AMBs) and self-bearing motors (SBMs). Whereas the AMB 

provides levitation only, the SBM has an integrated drive so that it can levitate and rotate 

a shaft simultaneously. Since the functionality and physics of AMBs are a subset of that 

of the SBM, our initial study of AMBs in this thesis is an appropriate "warm up" to our 

latter study of the SBM. Both of these devices are discussed in greater detail in the next two 

sections. 

Feedback control design is the chief focus in our study of AMBs and SBMs. The 

reason is that feedback controls have a significant impact on the performance and range 

of applications of these devices. The control designs in this thesis are model-based, and 

therefore we develop a detailed, physics-based model of each device. In the case of the SBM 

our modeling and control efforts lead us to develop a new operating principle. Therefore, 

in addition to feedback control we focus on modeling and design in this thesis. 

1.1 Active magnetic bearings 

A magnetic levitation system, to paraphrase the empirical definition stated in [10], pro

vides a stable hovering state to a floating object, without any mechanical contact. An active 

magnetic bearing is a magnetic levitation system that derives its name from the fact that 

its function to provide contactless suspension to an object is similar to that of a bearing. 

In this sense all magnetic levitation systems can be regarded as AMBs. AMBs have at

tracted significant interest in academia and industry for almost 30 years because of their 

unique characteristics relative to conventional bearings and because they are a challenging 

application which spans the disciplines of electrical and mechanical engineering. AMBs 
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have been the subject of ten international symposia [1], two dedicated issues of academic 

journals [3],[4], and a textbook [111]. 

Vr _~ 

Figure 1.1: Traditional concept of a one degree-of-freedom active magnetic bearing system. 
F is the force generated on the ferromagnetic rotor by opposing electromagnets. The elec
tromagnets are controlled by their coil currents i\ and %i- The coil currents are computed 
by a control law based on the desired rotor position yr and feedback of the rotor position y. 

The basic principle of the majority of AMB systems is explained by a simple one 

degree-of-freedom (1DOF) example as depicted in Figure 1.1. In this case a ferromagnetic 

object (typically, a rotor) is suspended between opposing horseshoe-shaped electromagnets. 

Each electromagnet can only generate an attractive force, denoted as F\,F2 in Figure 1.1. 

The electromagnets are controlled by their coil currents i\ and i<i, which are generated by 

transconductance (or servo-) amplifiers. The coil currents are computed by a control law 

responding to feedback of the sensed position of the object, y, so as to bring it back to its 

reference yr. The open-loop dynamics from i\,i2 to y are not stable in the bounded-input, 

bounded-output sense, and therefore feedback control is necessary. 

The attractiveness of a ferromagnetic object to an electromagnet is explained by the 

Maxwell, or reluctance, force principle. The Maxwell force occurs when magnetic flux 

crosses the boundary between two media with differing magnetic permeability. Further

more, the force is directed towards the medium having the lower permeability. Using the 

principle of virtual work we obtain an explicit calculation of the force F in terms of the 

rotor position y and the currents i\,i2- The force is computed from [111] 

_ $2 _ $2 
F = F! 

W>Ag 
(1.1) 

where /Uo is the permeability of free space, Ag is the cross-sectional area of each pole 

piece, and <&i, $2 are the magnetic fluxes flowing across the air gap of the upper and lower 
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magnetic loops, respectively. The magnetic loops are depicted in Figure 1.2. A good ap

proximation to $ i , $ 2 are obtained from magnetic circuit analysis in which we assume a 

uniform flux distribution across the surface of each pole piece. The fluxes are calculated as 

* i = ^ , d.2a) 

<&2 = ^ , (L2b) 
-"•9,2 

where N is the number of winding turns for each pole piece and i?ffji, RQi2 are the magnetic 

reluctances associated with the upper and lower air gaps, respectively. It is commonly 

assumed that the total reluctance of each circuit is dominated by the reluctance of the air 

gap since the magnetic permeability of air is three orders of magnitude less than that of 

iron. The reluctances Rg,i,Rg,2 are approximated as 

D , x gp-ycosa 
Rg,i(V) = ~A , (l-3a) 

D / s go + ycosa 

where go is the nominal air gap and a is the half-angle between the poles of the electromag

nets as shown in Figure 1.2. Evaluating (1.1) from expressions (1.2)-(1.3) gives 

F=-@ M _ (14) 
{n-y)2 (K + y)2' 

where ft = ^oN2Ap/ cos a and K = go/ cos a. The force expression's quadratic depen

dence on coil currents and inverse quadratic dependence of rotor position are nonlinearities 

which explain the attractive-only nature of AMBs. Another interesting aspect of a 1DOF 

AMB system is that it is overactuated, i.e. there are more independently controlled forces 

than positional degrees of freedom, thus providing variability in how feedback control may 

be accomplished. These aspects of nonlinearity and overactuation are discussed in greater 

detail and generality in Chapters 2 and 3 for a 5DOF system. 

The principle of a 1DOF AMB which was just described is the basis of operation for 

most AMB systems used in practice. Figure 1.3 shows typical configurations of radial and 

axial AMBs for the support of rotating machinery. Radial AMBs have 2DOF and consist 

of a stator and a journal which is mounted onto a rotating shaft. An axial AMB has 1DOF 

and consists of the stator and a disk mounted onto a shaft. Both of these types of AMBs are 

considered in this thesis. 

From a technological perspective, the advantages of AMBs relative to conventional 

bearing systems are numerous. The greatest advantage is the elimination of mechanical 
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I .pole piece, 
Jf N turns 

Figure 1.2: Idealization of a one degree-of-freedom active magnetic bearing for the purpose 
of magnetic circuit modeling. The dashed lines indicate the assumed flux paths. 

friction; with this comes the elimination of material wear, particulate matter, and com

plex lubrication systems, the potential for higher precision positioning and higher rotational 

speeds, and the ability to tolerate harsher environment conditions. Active control is the next 

major advantage that AMBs have over their mechanical counterparts. This enables them 

to have variable stiffness and damping characteristics, permits vibration isolation of the 

rotor, and enhances system monitoring and diagnosis. AMBs also have some limitations. 

The specific force capacity, i.e. the ratio of the load carrying capability of a bearing to its 

volume, of an AMB is much lower than that of traditional bearings. Therefore AMBs are 

physically larger than other types of bearings for the same force capacity. Saturation of the 

iron of an AMB can lead to failure when its bearing capacity is exceeded, thus requiring a 

touchdown bearing system of the contact nature. And despite the benefits of active control, 

the need for sensors and electronics makes AMB installations costly. 

Many situations where the advantages of AMBs significantly outweigh their disadvan

tages are well established and have proven their industrial feasibility [2]. Turbomolecular 

pumps [39], flywheel energy storage systems [5], turbo expanders, air-conditioning com

pressors, machining spindles [10], automated wafer-handling systems [86], and neutron 
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(a) without shaft and journals (b) with shaft and journals 

Figure 1.3: Standard design of radial and axial active magnetic bearings. (S2M Magnetic 
Bearings, reproduced with permission.) 

choppers [122] have all seen performance and/or productivity enhancements through the 

application of AMBs. The growing industry behind AMBs continues to motivate new di

rections of research. A great deal of this research has to do with feedback control. Although 

many applications of AMBs require only basic setpoint stabilization from the control sys

tem, the applicability of AMBs has increased as algorithms have become more advanced. 

For example, AMB-based flywheel energy storage systems require an optimal control pol

icy which minimizes their energy consumption [5]. The application of AMBs to high-speed 

machining requires a model of the cutting process as a basis to suppress the onset of chatter 

[63]. Reactive power consumption by AMBs can be minimized through vibration control 

[8]. 

In this thesis, we consider a control problem motivated by the potential to perform non-

circular boring with a magnetically-levitated spindle [83, 60, 131, 27]. The control problem 

is to track the path of the tool tip attached to the end of a rotating shaft. For instance, Fig

ure 1.4 shows an automotive engine piston with a side port which was bored to be slightly 

elliptical so as to improve its structural properties. The control problem associated with this 

application is challenging in many respects. Maintaining a precise trajectory for a rotating 

shaft implies positioning it off the center point of the AMB and synchronizing the tool path 

to the speed of rotation. As a result, AMB nonlinearity becomes a potential concern in 

the control design. Control of vibration is also necessary to maintain the desired precision. 

These challenges give this particular problem an intrinsic interest from a control system 

viewpoint, and we address them in the next two chapters. 
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Figure 1.4: Aluminum automotive engine piston with a slightly elliptical port bored by a 
spindle supported by active magnetic bearings. (Reproduced with permission, S. Eckhardt, 
Technical University of Dresden, Germany.) 

1.2 AIl-Lorentz self-bearing motors 

Self-bearing motors (SBMs) are electric motors with the integrated function of an AMB. 

For this reason, SBMs are also termed bearingless motors. The term self-bearing mo

tor is preferred for the reason that such motors are not technically bearingless, although 

they are in the traditional sense, but rather have a magnetically integrated bearing func

tion. Widespread research on SBMs did not occur until the 1990s when, it is conjectured 

in [16], the high costs and performance limitations of digital control hardware and inverter 

electronics were overcome. Since the 1990s, SBMs have been extensively studied, with a 

survey by the end of that decade [107] reviewing over 90 articles on the subject. SBMs 

remain an active topic of research in the current decade, buoyed by an increase in potential 

industrial applications [97, 110, 93, 85]. Much of the research by 2005 was consolidated 

into a textbook [16]. 

Traditionally, magnetically-levitated rotating shafts have a separate motor which is 

borne by AMBs. SBMs serve to integrate both of these devices. This contrast in approaches 

is depicted in Figure 1.5. The primary appeal of SBMs is the possibility of developing more 

compact machines and thus reducing the shaft length. In principle, a decreased shaft length 

increases the resonant frequencies of the shaft, thus allowing for stable operation at higher 

speeds. In practice, this benefit has not yet been fully realized. Presently, SBMs can have an 

economic advantage as many configurations are driven by standard three-phase inverters. 

From an application perspective, the argument for SBMs has been particularly compelling 

in the domain of smaller motors where a cost advantage can be realized over a conventional 

motor combined with AMBs [109, 85]. 
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Figure 1.5: Different approaches to magnetically levitate a rotating shaft. On the left is 
the traditional approach using radial active magnetic bearings (AMBs) with a conventional 
electric motor. The approach shown on the right replaces an AMB and a conventional 
motor with a self-bearing motor (SBM). The desired consequences of using a SBM are 
better performance or lower cost. 

Unlike AMBs, whose operating principle and mechanical design have reached a general 

consensus, the operating principles of SBMs are multiple and the resulting designs are di

verse. With regards to the operating principle, induction motor, permanent magnet motors, 

synchronous reluctance motors and switched reluctance motors can all be redesigned to 

integrate self-bearing functionality. Each type has a different blend of characteristics with 

regards to the quality of its levitation and torque production, its cost, and complexity. De

termining which SBM type is "best" depends on the application, see [6] for some examples. 

A comprehensive overview of each type of SBM and a comparison of their characteristics 

is found in [16]. 

In terms of their mechanical design, SBMs can be realized in a variety of structures. 

Most SBMs have a traditional cylindrical structure with an inner rotor that governs 3DOF, 

shown in Figure 1.6(a). Unconventional designs can lead to unique and advantageous char

acteristics. For example, an outer-rotor-type SBM is designed for a high speed miniature 

spindle in [57]. An axial-flux SBM consisting of dual rotor disks sandwiched around a rotor 

is proposed in [95] to eliminate negative stiffness (negative stiffness is described in Chapter 

5). A self-bearing slice motor is shown to additionally stabilize the tilting and axial motions 

of the rotor by reluctance forces [6, 89]. The slice motor is shown in Figure 1.6(b). 

Although SBMs are the general topic of research in the latter half of this thesis, specif

ically Chapters 5-7, our investigation is focused on a sub-class of SBMs, namely the all-

Lorentz type. The all-Lorentz type of SBM is a permanent magnet machine unique among 

7 



(a) typical SBM, cross section 

(b) slice SBM, side view 

Figure 1.6: Possible mechanical structures of a SBM. Traditionally, SBMs have a cylindri
cal structure with an inner rotor and can govern three positional degrees-of-freedom. This 
is shown in Figure 1.6(a), where the arrows indicate that radial force and torque can be 
applied to the rotor. Other structures can provide advantages. For example, a self-bearing 
slice motor, shown in Figure 1.6(b), can additionally stabilize the tilting and axial motion in 
a passive manner. The arrows indicate the Maxwell forces where the axial component stabi
lizes axial displacement and tilting. Also shown is the radial component which is overcome 
by active control. 

all types of SBMs because it achieves levitation from the Lorentz-force. By contrast, the 

majority of SBMs, as shown in a survey in [107], rely on the reluctance force principle as 

the basis for levitation, similar to the AMB. 

The term all-Lorentz comes from the fact that the Lorentz force is the basis for both 

levitation and rotation through a common principle. In fact, the Lorentz force is the basis of 

torque generation for most motors with the exception of reluctance motors. With regards to 

the Lorentz-force principle, we are specifically referring to the force on a current-carrying 

conductor in the presence of an external magnetic field, as given by the well-known cross-

product 

F = iLxB. (1.5) 

Here, i is the current flowing through the conductor, L is a vector whose magnitude is 

the length of wire and whose direction is along the wire and aligned with the direction of 
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Figure 1.7: Comparison of magnetic levitation principles for a rotor. On the left, the re
luctance principle permits generation of unidirectional, attractive forces and is the basis for 
AMBs. On the right, the Lorentz principle permits generation of bi-directional tangential 
and normal forces. 

conventional current flow, B is the magnetic flux vector, and F is the resulting force vector. 

To date, all-Lorentz SBMs have been realized through the interaction of permanent magnet 

flux with winding currents. 

The linearity between the magnetic force and the coil current in (1.5) stands in contrast 

to the reluctance force (1.4) which has a quadratic dependence on the current. Whereas 

the reluctance force is only attractive as a result of its quadratic dependence, the Lorentz 

force is bidirectional due to linearity. A contrast of these approaches to magnetically lev

itating a rotor is shown in Figure 1.7. Due to bidirectionality, the Lorentz force can be 

attractive or repulsive, and this property has been usefully exploited in the creation of the 

"inverted planar maglev", a hovering positioning platform [96]. Another interesting prop

erty of Lorentz-force-based levitation is that it does not require ferromagnetic material in 

its construction. "Coreless" stators, as they are called, eliminate parasitic reluctance forces, 

slotting effects, iron losses, and reduce coil inductance. Whereas reluctance force capacity 

is fundamentally limited by saturation of the ferromagnetic material, Lorentz-force capacity 

is limited by coil current and the associated heating. 

The principle of the all-Lorentz SBM has been known for some time [9]. Many of 

the existing approaches use an unequal number of permanent magnet poles and individu

ally controlled coils. For example, work in [90, 123] uses an eight-pole rotor with a four 

pole stator controlled by six concentrated windings. Reference [61] presents a outer-rotor 

slice motor consisting of four PM poles on the rotor and six concentrated windings. Im

provements to the slice motor concept using Halbach magnets is shown in [89]. In these 

aforementioned works, one set of three-phase currents provide levitation where die direc

tion of the levitation force is determined by the phase angle. Another set of three-phase 
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currents provide rotation. Reference [95] presents the design of a disk-type all-Lorentz 

SBM with a generalized analysis of its operating principle. It is shown that a condition for 

stable levitation coincides with the well-known P ± 2 principle [88], which states that the 

stator pole number must be two greater or two less than the rotor pole number. 

A new principle for an all-Lorentz SBM was proposed in [23]. Whereas previous ap

proaches used separate sets of three-phase currents to generate levitation and torque and 

involved an unequal number of rotor and stator poles, the approach in [23] has neither of 

these characteristics. Instead, the motor circumference is segmented in four quadrants, with 

each quadrant representing a conventional three-phase PM motor. As demonstrated in [103] 

and the references therein, an individually controlled Lorentz force from each quadrant con

tributes to both levitation and torque production. 

The "segmented" approach to the all-Lorentz SBM is an interesting alternative basis 

since each quadrant resembles a linear permanent magnet synchronous motor (LPMSM). 

Multiphase LPMSMs are known to generate both tangential and normal forces on the trans

lating body, so as to simultaneously enable magnetic suspension and propulsion [124, 7]. 

Adapting the operating principle of LPMSMs to the segmented all-Lorentz SBM concept 

provides a great deal of design and control freedom. Figure 1.7 shows the concept of nor

mal and tangential force generation with a segmented all-Lorentz SBM in contrast to force 

generation from a conventional AMB. 

It is the purpose of Chapters 5-7 to study the modeling, control, and design of me seg

mented all-Lorentz SBM. Henceforth, it shall be referred to as the toothless self-bearing 

servomotor (TSBS). In addition to its novel operating principle, the TSBS has two salient 

features as implied by its name. First, the design intent of the TSBS is precision servo-

motoring, i.e. low-speed angular positioning of the rotor. Second, it has a toothless (or 

slotless) stator whose purpose is to produce smooth torque. The motivating application 

behind the TSBS is to replace traditional mechanical gimbals in optical tracking systems. 

Figure 1.8 describes an example application in detail. TSBS technology is also a potential 

alternative in other uses of rotary positioning platforms (RPPs). In particular, RPPs have a 

firm presence in semiconductor "fabs" by automating wafer handling throughout a variety 

of processes [86]. In these applications, yield is directly proportional to cleanliness, and 

traditional contact bearings are a source of particle contamination. Other applications of 

the TSBS are foreseeable where precise positioning of a shaft in 6DOF is required. 

In summary, the study of AMBs and Lorentz-type SBMs in this thesis are comple

mentary to one another within the broader study of modeling and control of magnetically-
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Figure 1.8: Scale setup of an inter-satellite communications cross-link using a toothless 
self-bearing servomotor (TSBS) in lieu of a traditional mechanical gimbal. The TSBS is 
part of the "6DOF magnetic actuator" in the figure. A mirror, mounted on the rotor of 
the TSBS, redirects the laser beam from a stationary source to a moving position sensing 
device (PSD). Inter-satellite communication cross-links have stringent requirements on an
gular positioning accuracy. This is because small angular deviations from the reference 
correspond to significant beam positioning errors when amplified by the large distances be
tween transmitting and receiving stations. The TSBS potentially offers better positioning 
accuracy and longer life than traditional gimbals due to the absence of mechanical friction. 
(Reproduced with permission from [100].) 

levitated rotors. In fact, studying magnetic levitation through these two devices is compre

hensive from an engineering standpoint in the sense that the Lorentz-force and reluctance-

force are, to date, the only bases for practical applications of magnetic levitation [10]. 

1.3 Research contributions 

The scope of this thesis is, primarily, modeling and control of magnetically-levitated rotat

ing shafts by means of AMBs and TSBSs. We provide innovation in the modeling, control, 

and design throughout the next six chapters with the goal of bettering our physical under

standing of these devices and improving our control authority over them. Specifically, the 

research contributions are 

• an experimental study of nonlinear tracking controllers for non-rotating shafts sup-
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ported by AMBs [44,46], 

• synthesis and experimental validation of nonlinear tracking controllers for rotating 

shafts supported by AMBs [45, 48], 

• a numerical study of a state estimation scheme known as algebraic differentiation, 

and its application to a 1DOF AMB [47], 

• a physics-based model of the force and torque characteristics of a TSBS [41, 42], 

• a dynamic model and control design of an experimental TSBS [43], and 

• a simplified operating principle for a TSBS with associated control system design 

and experimental validation. 

1.4 Thesis overview 

Each of these research contributions described in the previous section constitute an individ

ual chapter in this thesis. 

Chapter 2 presents an experimental 5DOF AMB system and a detailed dynamic model. 

Approaches to the nonlinear tracking control problem are described with a presentation of 

the relevant control theory. Experiments compare the performance of the nonlinear con

trollers to a conventional design. 

Chapter 3 considers the nonlinear tracking control problem when the levitated shaft is 

rotating. Rotation induces vibration, and the dynamic model is redeveloped to account for 

this effect. An observer scheme is designed which estimates the disturbances associated 

with induced vibration, and the nonlinear feedback of Chapter 2 is extended to include 

vibration suppression. 

Chapter 4 considers an alternative state estimation scheme to that proposed in Chapter 

3. This new approach is based on algebraic methods to yield successive time derivatives of 

a signal. The theory behind this estimation technique is described and a numerical study 

provides insight into the accuracy of the method and its range of application. The chapter 

concludes with a simulation case study on a single axis AMB. 

Chapter 5 initiates an investigation into the operating principles of the TSBS. Nonlin

ear expressions for bearing force and torque are derived from first principle analysis. The 

model structure is validated by finite element analysis. The nonlinear model is compared to 

previous linear modeling efforts in the literature. 

12 



Chapter 6 describes an experimental realization of a TSBS. Performance drawbacks are 

described with respect to conventional control schemes. A dynamic model is derived as a 

basis for controller modifications. The new control system is based on a time varying coor

dinate transformation which makes an additional control variable available. We manipulate 

the additional control variable to achieve input current equalization through a creative use 

of state observers. Additionally, a dynamic input saturation scheme is established to resolve 

conflict between the force and torque subsystems in the presence of input saturation. 

Chapter 7 explores a new design for the TSBS through manipulation of all of its avail

able control variables. A design is proposed which reduces the number of individually 

controlled segments from four to two. We present a new dynamic model and control policy 

along with experimental validation. Our simplified design approximately reduces the power 

electronic requirements of the original system by a factor of two. 

Chapter 8 gives a detailed summary of the research findings and provides potential 

future research directions. 
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Chapter 2 

Trajectory Tracking of a 
Non-Rotating Shaft with Active 
Magnetic Bearings 

Our initial study considers the motion control of a non-rotating shaft that is levitated by 

active magnetic bearings (AMBs). This simplified problem serves the purpose of assessing 

the feasibility of applying nonlinear control theory to a practical, full scale AMB system. 

In this chapter, we experimentally compare trajectory tracking strategies, investigating the 

particular aspects of nonlinearity and overactuation. 

2.1 Introduction 

Feedback control of AMBs most commonly employ the methods of linear systems control 

theory. Linear control is most effective when the AMB coils are premagnetized through 

the use of bias currents. Locally, bias currents yield good linearity in the force-current 

relationship about the bearing center and, equally important, provide a uniform force slew 

rate [79]. This latter point can be shown mathematically by considering the force model 

(1.4) for a one degree-of-freedom (1DOF) AMB. Near the bearing center, where it is safe 

to assume that the nominal air gap K is much greater than the displacement y, i.e. K » y, 

the magnetic force becomes 

where (3 is a positive constant and the coil currents are denoted i\ and i^. A common biasing 

technique is known as Constant Current Sum (CCS), where i\ — ib + Ai, ia = ib — Ai 

with bias current % and differential current Ai. Therefore we have 

F=4-^Ai, 
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which confirms linearity between the magnetic force and the control current. Furthermore, 

assuming negligible coil resistance, the approximate slew rate of the coil currents is gov

erned by the saturation voltage V̂  and nominal coil inductance LQ of the electrical circuit 

such that 
dik VH 

Then, the approximate upper bound on force slew rate is 

< » i ^ k < 2. (2.1) 

d F 
< ^ . (2.2) 

At 

The bound (2.2) is linearly dependent on bias current and saturation voltage, and is the 

primary constraint on an AMB's dynamic load capacity [79, 12]. In practice, the saturation 

voltage is determined by the power of the amplifiers which drive the coils, and the bias 

current is limited by saturation of the iron. 

Bias currents have the drawbacks of heating up the rotor and increasing power losses 

due to coil resistance, eddy currents, and hysteresis. Although AMBs operated in this man

ner have lower losses than conventional bearings such as the fluid film type, there remains 

potential for further reduction. Furthermore, expanding the application of AMBs, e.g. to 

energy storage flywheels and heart pumps, requires minimal power losses and minimal ro

tor heating [84, 108]. However, low losses and a high slew-rate limit (the slew-rate limit 

determines the closed-loop system bandwidth) are competing objectives. A great deal of 

work has been done to achieve an optimal compromise. Work in [82] investigates the trade

off between losses and slew-rate limit using constrained quadratic optimization. Work in 

[53] also considers an optimization problem for current allocation which minimizes losses 

subject to a voltage saturation constraint. An adaptive variable bias approach is studied in 

[106] that minimizes energy consumption for a pre-specified bearing stiffness and orbital 

size. 

An AMB loses its linear characteristic when operated with low, or zero, bias and like

wise when the shaft is displaced sufficiently far off the bearing center. Under either or all 

of these conditions, nonlinear control techniques become suitable [54]. For AMBs, feed

back linearization can render consistent performance independent of the system's operating 

point. The earliest known example of this is in [73], where a static state feedback lineariz

ing control is combined with a complementary actuation scheme to eliminate bias currents. 

A similar approach is taken in [67] through the Current Almost Complimentary (CAC) con

dition in conjunction with a flatness-based nonlinear feedback. The CAC condition uses a 

small time-varying bias to prevent large voltages that can arise from purely complementary 
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actuation schemes. Extensions to the work on feedback linearization address robustness to 

model error and disturbance [118, 13, 56, 71]. Experimental validation of these methods 

has been shown for 1DOF systems [125, 68,71], 4DOF [67], and 5DOF [131] systems. Al

ternate feedback linearization-based designs are studied in [68, 69, 130]. The aim of these 

alternative designs is to improve the dynamic response in light of voltage saturation. For 

example, a Constant Flux Sum (CFS) condition is derived in [68] to obtain a constant bound 

on force slew rate. For a 1DOF system, the CFS controller leads to improved tracking per

formance relative to a control based on a CCS linear feedback and control based feedback 

linearization with zero bias. In [130], a flatness-based nonlinear control incorporating the 

CCS condition is derived. This approach was experimentally applied to a boring process 

using a 5DOF system. Alternative nonlinear control approaches to AMBs based on integra

tor backstepping [24, 116], passivity [126], and zero-bias H^ [117] have been considered 

as well. 

Nonlinear control offers the potential benefits of improved operating efficiency and a 

larger range of control authority, however, there is a noticeable lack of experimental vali

dation of such techniques beyond 1DOF. Extension to 5DOF system is a greater challenge 

because of the impact of multivariable coupling through sensor-actuator non-collocation 

and shaft flexibility. In this chapter we conduct an experimental study of nonlinear con

trollers on a commercially available 5DOF test stand. The performance of CAC- and CCS-

based nonlinear tracking controllers are compared with an industry standard decentralized 

proportional-integral-derivative (PID) approach. The comparison is based on each con

troller's unbalance response and ability to guide a non-rotating shaft along a time-varying 

trajectory. 

2.2 System description and modeling 

The AMB system under consideration was manufactured by SKF/Revolve Magnetic Bear

ings Inc. (Calgary, AB) and is a pedagogical test stand. The system offers several horizontal 

shaft configurations, and for the following work a 305 mm (12") long, 5DOF shaft assem

bly is chosen. Figure 2.1 shows the experimental 5DOF system describing each component. 

The assembly consists of a 9.5 mm (3/8") diameter shaft upon which are mounted two ra

dial bearing rotors (also known as journals) and a disk. The journals form part of the radial 

magnetic bearings, and the disk is part of the axial magnetic bearing. The journals have 

an outer diameter of 34.3 mm, a length of 48.0 mm, and span 178.0 mm from center to 
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center. The disk has an outer diameter of 66.0 mm. The journal and disk are each enclosed 

by a housing which consist of the stator, two-sided variable reluctance-type displacement 

sensors, and touchdown bearings. The touchdown bearings rest the de-levitated shaft and 

prevent contact between the rotors and the stators. The entire shaft assembly is coupled 

to a DC motor by a flexible coupling. The system has a specified shaft speed range of 

2,000 - 10,000 r/min and the motor has a maximum speed of 15,000 r/min. Some bearing 

specifications are provided in Table 2.1. 

Figure 2.1: Research test stand from SKF/Revolve Magnetic Bearings. Radial and axial 
active magnetic bearings levitate the shaft in five degrees of freedom, and a motor coupled 
to the shaft provides rotation up to 15,000 r/min. The touchdown bearings prevent contact 
between the rotors and stators, and rest the delevitated shaft. 

Specification 
static load capacity 
saturation current 

nominal gap 
stator inner diameter 
stator outer diameter 

stator length 
rotor outer diameter 

radial bearing 
76 N 
3.0 A 

525 /j,m 

35.1 mm 
82.8 mm 
12.7 mm 
34.3 mm 

axial bearin: 
205 N 
2.8 A 

783 nm 
38.6 mm 
71.4 mm 
13.5 mm 
66.0 mm 

Table 2.1: Magnetic bearing technical specifications for the research test stand shown in 
Figure 2.1 

Modeling of AMBs is well-established [111] and we consider here a standard dynamic 

model for the shaft supported by AMBs in 5DOF. Figure 2.2 labels our chosen coordinate 

system and forces acting on the shaft assembly. Figure 2.3 shows a schematic of a cross-

section of the system detailing its geometry. Assuming that the shaft is a perfectly rigid 
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motor coupling 

radial bearing stators 

Figure 2.2: Shaft assembly, motor coupling and radial bearing stators for a five degree-of-
freedom magnetic bearing system. The shaft assembly is treated as a rigid body for the 
purpose of modeling. 

body, the dynamic equations are [81] 

rax = Fx, (2.3a) 

my = F0ty + Fity + FC}y + mgy, (2.3b) 

mz = F0jZ + FifZ + FCtZ + mgz, (2.3c) 

Jzii> = {k,a + x)Fi,z - (l0>a - x)F0)Z - JXOJO + lcFCtZ, (2.3d) 

JyO = (l0ia - X)F0}y - (li<a + x)Fi.y + JXUJ^ - lCFCty, (2.3e) 

where x, y, z denote the coordinates of the center of mass Cm relative to the origin O 

of the inertial frame. The angles if;, 0 denote the small angle rotation of the shaft with 

respect to the translated y and z axes. When the shaft is centered in all three bearings 

(x, y, z, tjj, 6) = 0. The angular velocity of the shaft about the x-axis is denoted u> = <fr 

and assumed to be constant. The y- and ,z-axis components of gravity are denoted gy and 

gz respectively, and the coordinate system is oriented such that gy — gz. The shaft has a 

mass m and principle moments of inertia Jx,Jy, Jz which, by the shaft's symmetry, we 

have Jy = Jz = J. Although the particular shaft assembly being considered is not very 

gyroscopic, we retain the terms JXCJ0, JX<JJI\) in the interest of generality. The distances 

from the inboard (subscript i) and outboard (subscript o) stators to O are denoted li,a and 

Z0)0 respectively. The motor coupling forces are denoted1 Fcyjz and are modeled as linear 

'The shorthand expression Fc^y/Z streamlines notation by referring to both Fc,y and Fc,z 
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springs 
Fc,v = -K(y - lc9), 

FCtZ = -K(z + lciP). 

The distance from cm to the point at which Fc<y/Z act is lc, and the spring constant is K. 

The axial bearing force is denoted Fx and the outboard and inboard radial bearing forces 

are denoted F0jiyjz. Each of these forces is the summation of positive (subscript p) and 

negative (subscript n) components generated by opposing coils. Based on the magnetic 

circuit assumption described in Chapter 1, the forces generated by the AMBs are expressed 

as 

r x — x,p " x,i 

( ,;2 

(Kx X) {Kx + %) 

^i/o,y/z ^i/o,y/z,p ~ ^i/o,y/z,n 

Pi/o,y/z 
i/o,y/z,p i/o,y/z,n 

(2.4a) 

(2.4b) 
y (K ~~ £i/o,y/z) (K + <,i/o,y/z) J 

where K (respectively KX) is the nominal air gap between the radial (axial) bearing rotor 

backup bearing backup bearing 

position sensor axial stator position sensor 

Figure 2.3: Cross section of Figure 2.2 in the x — y plane. Motor coupling not shown. 
"Backup bearing" is synonymous with "touchdown bearing." 
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and stator. The bearing force constants are (3X, /3j/0)3//z, and £i/0ty/z denote the radial dis

placements of the shaft in the planes x = Z0)a and x = —/*,<,• The displacements £i/0,y/z 

are geometrically related to the center of mass coordinates by 

?0,y = y T [lo,!! %)" T Co,)/) 

£o,z = 2 - (k , a - z)V> + lo,z, 

£,i,y ~ 2/ — (,'i,a 1 XJC7 + si,j/, 

&,z = Z+(k,a + x)lp + €i,z, 

where £i/0,y/z denote magnetic offsets. Magnetic offsets represent the distances between the 

center of the shaft and the center of the radial AMB stators when (x, y, z, ip, 6) = 0. Ideally, 

magnetic offsets do not exist because sensing and actuating components are supposed to be 

concentrically aligned. As a result they are typically excluded from AMB models. In 

practice, magnetic offsets do exist and lead to bias forces. Bias forces ultimately lead to 

static offset in closed-loop that must be compensated by integral control or disturbance 

estimation and cancelation. 

The axial and radial bearing coils are driven by currents iXiP/nJi/o,y/z,p/n which are 

inputs for control design purposes. In fact, iXiP/n, ii/o,y/z,p/n a r e actually reference currents 

to servoamphfiers. These reference currents are tracked by inner-loop current controllers 

so that sufficient time scale separation between the electrical and mechanical subsystem 

dynamics is achieved. 

2.3 Parameter identification 

We describe here a procedure to obtain a best-fit of the force constants Pi/0,y/z
 a nd magnetic 

offsets £i/o,y/z t 0 experimental data. The magnetic offsets are unknown because they are 

effectively calibration errors. The force constants can be analytically determined from a 

detailed magnetic circuit analysis, but they would be poorer approximations than data fits 

because they cannot account for flux leakage in the air gap. 

The identification procedure is simplified by decoupling the shaft from the motor and 

then stabilizing the axial and tilting motion of the shaft in closed-loop, with pre-existing, 

"working" controllers, so that (ar, ip, 9) = 0 and the shaft is in equilibrium. Under these 
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conditions, the model (2.3) becomes 

0 = Fx, (2.5a) 

0 = F0tV + Fity + mgy, (2.5b) 

0 = F0,z + FiiZ + mgy, (2.5c) 

" == ',o,a^o,y H,a-fi,y (2.je) 

Solving for the equilibrium forces in (2.5) gives 

F0zV = F0tZ = -mgy I -—1-£— 1 = -m0gy, (2.6a) 

*l,y = Fi,z = -™0j, I J 5 V " ) = ~m*0V (2.6b) 

where effective masses mj/0 are defined for each radial bearing. For simplicity, the remain

der of the procedure is presented only in the case of the inboard y-axis. We consider the 

force model (2.4a), and impose on it the CCS condition 

^i,y,p = ^b i t±1i,yi 

ti,y,n — lb L\1i,yi 

where % is the bias current and AiiiV is a differential current. Since x = ip = 6 = 0, then 

£o,y = y and the force expression becomes 

_ A.yfa + Aii:yf _ Pi,y{ib - Aii,y)
2 

(K - li,v - y)2 {K + £ity + y)2 

Equating (2.7) to (2.6b) we have 

= Pi,y{ib ~ A ^ ) 2 _ f3i:y(ib + Aii:y)
2 

mi9y (v + ky + y)2 (K-ky-y)2' 

Data is collected over a range of y and corresponding Aij^. Next, we define the cost 

function 

e [ * 1 ( A , W ' ^ " (« + 6,y + »[*])a " ( « - 6 , y - » [ * ] ) a " ^ ( } 

where (Aij^fc], y[k\), I ^ k ^ N denotes the data set. The nonlinear least squares prob

lem 

JV 

min Y^ e2 [k] 
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is solved for U = {(Pi,y, Ci,y) e K2 : 0 < f3^y, - r e < £j)2/ < re}. For comparison purposes, 

a fit is performed with a linearized force model 

e(Ki,K^)[k} = KiAiiJk] + Kiy[k] - migy. (2.9) 

The results are based on N = 120,000 data samples over arange of (y, z) e [—100,100] / imx 

[—100,100] /xm, and Table 2.2 presents the average values /3, £ for the inboard AMB. We 

notice that the nonlinear force model results in a superior fit to data. This better fit is due to 

both the nonlinear dependence of the force model and die introduction of magnetic offset. 

Nonlinear Linear 
~ 0 6.95 • 1 0 " 7 N - m 2 / A 2 h 68.5 N / A 

£ - 1 . 1 5 • 10~4 m kx 1.62 • 105 N / m 
Hell2, 119.2 N 2 Hell2, 6668.9 N 2 

Table 2.2: Average parameter values and error norm for linear and nonlinear AMB force 
models. The nonlinear force model (2.8) improves me fit-to-data relative to me linearized 
force model (2.9). 

Table 2.3 provides the remaining model parameter values. Mass and geometry proper

ties are obtained from the specifications of the experimental AMB system and the inertias 

are obtained from software analysis. 

Parameter 

H,s 

H,a 

lc 
Jx 
m 
re 

Value 
0.078 m 
0.097 m 
0.155 m 

1.71 • 1 0 " 4 kg-m2 

0.98 kg 
5.25 • 10" 4 m 

Parameter 

'o,s 

I'Ofi 

K 
Jy 

Px 
Kx 

Value 
0.100 m 
0.081 m 

1200 N / m 
5.84 • 10" 3 kg-m2 

5.0 • 1 0 " 6 N - m 2 / A 2 

7.83 • 10" 4 m 

Table 2.3: Model parameters of the experimental 5 degree-of-freedom AMB system. The 
system is described in detail in Chapter 2, Section 5. 

2.4 Control 

In this section, nonlinear state feedback is formulated to track the motion of a non-rotating 

shaft. The synthesis of a nonlinear controller for an AMB system can be viewed as a two 

step procedure. In the first step, we consider the design of a tracking control law assum

ing that the forces FXtP/n, i^ /o^/z^/n are inputs to (2.3). In me second step, we invert the 

force expressions (2.4) to obtain the control currents as function of the control forces. This 

inversion is non-unique because magnetic force is quadratic in coil current and because the 
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number of independently controlled coils (ten) exceeds the number of force components 

generated (five). Two approaches are considered here to obtain a unique force-to-current 

map. Finally, we design a conventional decentralized PID controller for comparison pur

poses. 

2.4.1 Flatness-based trajectory tracking 

Since its introduction in the middle of the 1990s [32, 33], differential flatness has been 

applied to industrially relevant problems such as heating processes [59], vehicle drive-by-

wire [129], power systems [38], magnetic bearings [67] and automotive solenoid valves 

[19]. In this section we give a practical definition of flatness and then show how it can be 

applied to the 5DOF AMB system. 

Consider a state-space system of the form 

x = f(x,u) (2.10) 

for input u e Km and state i £ l " . Such a system is called differentially flat if there exists 

an "output" y eM.m such that 

y = h(x,u,u,...,u(-q')), 

where u^ = dqu/dtq denotes the qlh derivative with respect to time, satisfying two prop

erties: 

1. All components of the state x and input u can be expressed in terms of y and a finite 

number of its time derivatives. Mathematically, this requires the existence of locally 

denned functions A, B such that 

x = A(yi ,yi,..., Vi, ...,ym,ym,---, 2/mm)). (2.1 la) 

u = B(yuy1,...,y
{;i+1),...,ym,ym,...,ytl+1)), (2.1 lb) 

for positive integers ri, 1 < i < m. 

2. The components of y are functionally independent, i.e. they are not related by any 

differential equation of the form 

P(y,y,...,y^)=0-

The function y, called aflat output, freely parameterizes the system variables x and u. It is a 

special type of parameterization in that Property 1 implies all state and input trajectories can 
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be uniquely determined from y without integrating the system equations (2.10). Presently, 

there does not exist a general characterization of flat systems, and as a consequence, one 

may have to resort to finding a flat output by a combination of inspection and physical 

reasoning. 

The motion planning problem for a flat system is simplified if the trajectories are de

signed in the flat output coordinates. Given a feasible trajectory y(t) for the flat output, the 

corresponding trajectories for the state and open-loop control can be readily computed from 

the static relations (2.11a)-(2.11b). Alternatively, to transfer the state of a flat system from 

x\ at time t = t\ to X2 at time t = £2, the flat output trajectory must satisfy 

xk=A(y(tk),y(tk),...,y^(tk)), 1 < fc < 2. (2.12) 

Conditions (2.12) impose constraints on the derivatives of y(t) up to order r at the end-

points t = t\ and t = ti. Once we design a trajectory for the flat output satisfying (2.12), 

we use (2.11b) to obtain the nominal open-loop control steering the system from x\ to X2-

To maintain the system's state on its reference trajectory in the face of modeling errors 

and disturbances, we can design a closed-loop control for a flat system in a manner that is 

closely related to feedback linearization. A flat system can be transformed, using (2.11b) 

into a linear, controllable system of the form 

yti+l) =vu 1 < i < m. (2.13) 

This transformation, via endogenous feedback, is more general than equivalence via dif-

feomorphism and static state feedback [76] since the dimension r = YlT(ri + 1) of the 

transformed system (2.13) satisfies r > n [67]. For example, the kinematic car is a flat 

system that is not static state feedback linearizable since r > n [127]. For such systems, 

endogenous feedback may be interpreted as a special type of dynamic feedback lineariza

tion [14]. 

The auxiliary inputs Vi can be designed to yield exponential convergence of the flat 

outputs yi onto their reference trajectories j/j>r by the feedback 

«*=«fr1)+E^y(»? )-»!?). l<i<m. 
3=0 

The gains Kij can be designed to place the poles of tracking error dynamics in the open 

left-half complex plane for each of the m independent subsystems. By appropriate design of 

the reference trajectories, possible singularities in A and B can be avoided [78]. In addition, 
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constraints on state or input variables can be obeyed by trajectory optimization using, for 

example, nonlinear programming techniques [19]. 

We demonstrate the idea of flatness-based trajectory tracking through endogenous force 

feedback on the system (2.3). We choose the flat output as the center of mass coordinates 

x,y,z,i(j,8 and treat the forces Fx,Fq0<yjz as virtual inputs. Note that if the currents 

ix,P/n>ii/o,y/z,p/n a r e taken as the system inputs for the flatness-based design, then we 

would require a flat output of higher dimension. A flatness-based design assuming current 

control is considered in [67], but the end result is the same as having assumed a flatness-

based force control followed by force-to-current inversion. The latter route, described here, 

simplifies the presentation. 

Taking the state of the system as x, y, z, ip, 6, x, y, z, ip, 8 it is readily seen there exists 

A which satisfies (2.11a). The existence of B satisfying (2.11b) follows from 

Fx{x) = mx, (2.14a) 

Fi,y(x,y,0,ip,y,0) = 

m(l0ta - x)(y - gy) + Jxujip - J8 - (lOA -x + lc)(-K(y - lc8)) 

^0,0 T H,a 

Fo,y(x,y,e,ip,y,9) = 

m(liA + x)(y - gy) - Jxwip + JO - (kA + x- lc)(-K(y - lc6)) 

FiiZ(x,z,il),d,z,i>) = 

m(l0ta - x)(z - gy) + JXLO9 + J^ - (l0ta -x + lc)(-K(z + lcip)) 

(2.14b) 

(2.14c) 

Fo,z(x,z,i/;,0,z,ii>) = 

m(liia + x)(z - gy) - Jxu8 - jip - {li<a + x - lc)(-K(z + lctp)) 

(2.14d) 

(2.14e) 
to,a i H,a 

which are globally defined maps. The endogenous force feedback is simply (2.14) where 

x = vx, (2.15a) 

y = vy, (2.15b) 

z = vz, (2.15c) 

<4> = v ^ , (2.15d) 

9 = ve, (2.15e) 

and vx,vy,vz,v^, vg represent auxiliary inputs. Individual chains of integrators result from 

the feedback (2.14)-(2.15). Standard linear feedback control methodology can be applied 
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to design the auxiliary inputs. For instance, in the axial direction we choose 

vx = xr — k2(x — xr) — ki(x — xr) — ko I (X(T) — xr(r))dr, (2.16) 
Jo 

where xr denotes a reference trajectory that is at least a twice differentiable with respect to 

time. This resulting tracking error dynamics are 

Jo 
ex + k2ex + faex + ko / ea;(r)dr = 0. 

Jo 

The controller gains ko, k\, k2 are chosen to ensure the tracking error ex = x — xr con

verges to zero exponentially. The integral in (2.16) compensates static offset resulting from 

magnetic offset and static loading [36]. Similar expressions to (2.16) for vy,vz, v^,vg are 

used to stabilize the tracking errors in y, z, ip, 6. 

The tracking control law assumes knowledge of x, y, z, if), 0, their derivatives, and their 

integrals. The axial displacement x is directly measured and y, z, ip, 9 are obtained indi

rectly from the radial shaft displacements in the sensor planes at x = 10<S and x = — Z,jS, 

see Figure 2.3. The inboard measurements are denoted V13, W\^ and the outboard mea

surements are denoted V24, W24. The coordinates x,y, z, i/>,9 are geometrically related to 

V13, Wis, V24, W24 by the expressions 

W2i = y + (lo,s - x)6, (2.17a) 

Vu = z - (l0>a - x)1>, (2.17b) 

W13 = y-(lita+x)0, (2.17c) 

V13 = z + (kta + x)4>. (2.17d) 

Solving (2.17) for y, z, ip, 6 yields 

a (W24 - W13) 

V- = 

' 0 ,5 > H,s 

(V13 - V2i) 

I +1-

y = W13 + (i<,a + x)0, 

Z = V24 + (lo,s ~ x)lp. 

2.4.2 Force-to-current inversion 

Having synthesized force feedback that renders asymptotic trajectory tracking, we consider 

now how to map the forces Fx, F,u0 yiz to the coil currents ix,p/ni H/o y/z,p/n- We recall the 

general force model 
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remark that the force F is overspecifled in terms of the control currents ip,in. Therefore 

force-to-current inversion is non-unique. Inversion based on performance and power effi

ciency criteria have been extensively studied [82]. The most common approach, as stated in 

the introduction to this Chapter, is the use of bias currents and CCS such that, for example 

iP = ib + Ai and in = % — Ai. Application of CCS is usually accompanied by linearization 

of the force model about an operating point (Ai, £) so as to render the local approximation 

F * Kt(Ai - At) + K& - g). (2.19) 

The coefficients Ki, K^ are a function of the operating point and the approximation (2.19) 

loses accuracy as the deviations Ai — Ai and £ — £ grow. 

. . .N 

' \/ 

_,J'' 

/ / 

N 

---> /..... 

Y^ (CAC) 

— — (Y2-F)1'2 (CAC) 

Q (zero-bias) 

(Q2-F)1/2 (zero bias) 

,̂ i 

Force (N) 

Figure 2.4: Comparison of the complementary and almost complementary functions [67]. 
In this example, rj = 1 N. 

An alternative force-to-current inversion scheme is that which avoids bias currents. 

Zero-bias operation is a nonlinear control scheme because it employs a hard switching 

condition among opposing coils. Specifically, only one coil is energized at a time to supply 

the desired force. Zero-bias inversion can be expressed as 

•Qn(F), 

Q2
V(F) 

where Qv is the complementary function [67] 

Qv(F) 
' VF F>O, 

0 F < 0 . 

(2.20a) 

(2.20b) 

(2.21) 
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Although (2.20) is implementable from a practical viewpoint, the expressions for ip and in 

are, theoretically, not continuously differentiable in F. For instance, when F > 0, we have 

ip = (K — £) v § a n ( ^ t n e rate-of-change of force for a fixed shaft position is given by 

dF _ 2^J¥JpAip 

~d7 ~ K - £ ~d7' 

which is a function of the force applied. The implication is that crossing the zero-force 

point in (2.20) requires an infinite rate-of-change of current which cannot be realized in 

practice by servoamplifiers. 

We can avoid the control singularity associated with zero-bias inversion by employing 

soft switching, introduced in [67] as the current almost complementary (CAC) inversion. 

The CAC inversion is expressed as 

•YV(F), (2.22a) 

y/Y%(F) - F, (2.22b) 

where Yq is the almost complementary function 

'VF F>r), 
YV(F) = I PV(F) -r)<F<r,, (2.23) 

0 F < -r). 

A polynomial function of force P^ replaces the zero-bias condition on the interval —r\ < 

F ^r] where r] is a small force that we choose. To ensure a bounded rate-of-change of both 

voltage and current, we require P^ to be at least twice differentiable. Therefore, Pv must 

satisfy the contact conditions 

dP d2P 
Pn(-V) = ^(-V) = uti-v) = 0, 

PV(V) = Vv, 
dp I 

d 2 P. 1 
M = -d P 2 W / Ay/tf 

which is true for the function 

The CAC inversion (2.22) implies that for larger forces, i.e. \F\ ^ r/, only the coil cor

responding to the direction of the desired force is energized while the other is shut off. 
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For smaller forces, i.e. |F | < t], both coils are energized and there is a small bias cur

rent. A comparison of the complementary and almost complementary functions is shown 

in Figure 2.4 for 77 = 1 N. Although the CAC inversion circumvents the singularity asso

ciated with the zero force point F = 0, it will still have an inferior dynamic response to 

that obtained using the traditional approach of CCS because the force slew-rate using CAC 

remains non-uniform. 

Finally, we now consider inversion of the force relation under the CCS assumption. 

This is simply the traditional approach of biasing the coils with the exception that we do 

not linearize the resulting force relation. The advantage in this approach is in accounting for 

the inverse quadratic dependence of the force relation with respect to position, thus making 

this nonlinear inversion suitable for a wider range of shaft positioning. Its advantage over 

zero- and low-bias schemes is that it achieves a more uniform force slew rate, and ultimately 

an improved dynamic response. The force expression subject to CCS is 

„ (3(ib + Ai)2 (3{ib - Ai)2 

Inverting (2.24) gives the control law 

(2.24) 

r -d{e+^)ib-0{e-^WF^ii}+ii * , r, 
Ai = i 2£/?K « Tu' (2.25) 

[FK2/(4(3ib) e = 0. 

The case for £ = 0 is determined by applying l'Hopital's rule. To ensure a non-negative 

discriminant in (2.25), it is sufficient to impose the limits 

\ F \ < ^ -
' ' - ( K - £ ) 2 

which are obtained by 

|Ai| < ib. 

In practice each coil is limited to a maximum current of Is. Setting % = Is/2 enables the 

full operating range of ip/n and provides the maximum force slew rate, as as approximately 

determined by (2.2). 

2.4.3 Decentralized PID 

Decentralized PID control, which is the most commonly applied control scheme for AMBs, 

is included here as a basis for comparison to the nonlinear tracking controllers. The PID 

design considered is based on the commercial controller MB350 included with the exper

imental test stand from SKF/Revolve Magnetic Bearings (Calgary, AB). It utilizes CCS 
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(a) overall testbench (b) AMB drive circuitry 

Figure 2.5: The University of Alberta magnetic bearing test bench. It consists of an AMB 
test stand from SKF Magnetic Bearings, real-time control via a dSpace digital signal pro
cessor, and custom-built PWM drive circuitry. The drive circuitry was built in collaboration 
with Bazooka Electronics (Edmonton, AB). 

biasing and is termed decentralized because the four radial axes as well as the thrust axis 

are individually controlled by five single-input, single-output loops. The control laws are 

Aix — kpex + ki / e x ( r )dr + kd-r^-, 

Aii/o,y = kp eVi/o +kt ey. / o(r)dr + kd 

Aii/o,z = kp eWi/o +kt ew {T)AT + kd 
Jo 

d* ' 
dew. i/o 

dt 

for error signals {ex,ev./o,eWi/o) = (xr - x, V13/24r ~ ^13/24,^13/24,. - ^13/24) and 

setpoints (xr, Vi3/24r, Wi3/24r). By construction, decentralized PID is a setpoint stabilizing 

controller. This is in contrast to the flatness-based designs which permit asymptotic tracking 

of time-varying reference trajectories. 

2.5 Experimental implementation 

The MBRotor test stand is integrated into a laboratory setup consisting of custom-built drive 

circuitry and real-time digital control hardware. The control laws as well as inner-loop 

current tracking are managed by dSpace digital control hardware. The dSpace system is 

modular with a PowerPC board performing real-time computations at 10 kHz. Three high

speed ADC boards sample ten coil currents and five rotor displacements. An encoder board 

measures shaft speed via a Hall-Effect sensor. A digital waveform output board generates 

pulse width modulation (PWM) voltage waveforms for the drive circuitry. 
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Figure 2.6: Block diagram of the closed-loop axial subsystem employing the constant-
current-sum-based nonlinear tracking controller. 

Each AMB coil is driven by an H-bridge delivering a maximum of 3 A output current 

at 48 V. The switching frequency of the PWM amplifiers is 10 kHz. The electronics in

tegrate LEM Hall-Effect sensors for current feedback and tunable analog filters to provide 

signal anti-aliasing [20]. The electronics are pictured in Figure 2.5(b). Current control is 

implemented by means of proportional-integral (PI) feedback to obtain a current tracking 

bandwidth of approximately 400 Hz. This value is over two times lower than the band

width of typical servoamplifiers which drive the AMBs and is due to the relatively low 

PWM switching frequency. 

The software development platform utilizes the Matlab/Simulink environment and has 

the ability to generate real-time code for the dSpace target. The control laws are discretized 

using an Euler approximation and coded into an S-function using the C programming lan

guage. Differentiation (to obtain velocities) and integration were performed numerically, 

with differentiation being lowpass filtered. 

Figure 2.6 is a block diagram of the AMB under closed-loop control using the CCS-

based nonlinear design. Note that in Figure 2.6 the reference currents ixp, ir
xn are intro

duced as inputs to the inner PI loop. 

2.6 Experimental results 

2.6.1 Unbalance response 

Although this Chapter's primary focus is on control of a non-rotating shaft, we momentar

ily diverge to consider rotational aspects in this section. The reason is that, in addition to 

motion tracking, the nonlinear control laws need to be robust to disturbances. Evaluating 
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the unbalance response, i.e. the rotational stabilization performance over a range of shaft 

speeds, is a practical assessment of each control system's robustness to the periodic distur

bance induced by rotation of the shaft. The decentralized PID control law is a natural basis 

for comparison in this regard. 

50 
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CO 

sf-10 
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Figure 2.7: Unbalance response of three control laws (decentralized PID, flatness with CCS, 
flatness with CAC) with the shaft rotating at 14,000 r/min. 

Figure 2.7 plots the orbits of the shaft as seen from the inboard and outboard measure

ment planes. The speed of rotation is u/(2ir) = 233 Hz (approximately 14,000 r/min). 

For all three control laws, the feedback gains are tuned to achieve comparable performance. 

From experimentation, the existence of two shaft resonances was apparent. The resonance 

frequencies were approximately 650 Hz and 1240 Hz and required the addition of notch 

filters to the control law. 

When evaluating the unbalance response of each control over a wide range of shaft 

speeds, gain selection has a strong bearing on performance. In all cases, the gains are 

synthesized using the pole-placement method. Since three poles are required to be placed 

for each control law, it is assumed that one pole lies on the negative real axis, and is small in 

magnitude (< 1) to avoid excessive integral gains (kj, and fcj). Placement of the remaining 

two poles is based on achieving a sufficiently high stiffness (via k\ and kp) and damping 

(via k^ and kd) without introducing excessive noise into the feedback loop. Tuning plays a 

significant role here since the feasible pole locations are much more limited in practice than 

in theory. The reason for this is that excessive damping gains excite resonances to the point 

that they cannot be damped by the notch filters. At the same time, we wish to maximize the 

damping gains because they are most influential with respect to reducing the magnitude of 

the shaft's lateral vibrations. 
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(a) 

0.005 0.01 
time (s) 

flatness with CAC, currents 

0.02 

(c) 

0.005 0.01 0.015 
time (s) 

flatness with CCS, currents 

0.02 

(e) 

0.005 0.01 0.015 
time (s) 

decentralized PID, currents 

0.02 

0.005 0.01 
time (s) 

0.015 0.02 

(b) flatness with CAC, voltages 

0.005 0.01 
time (s) 

0.015 0.02 

(d) flatness with CCS, voltages 

0.005 0.01 
time (s) 

0.015 0.02 

(f) decentralized PID, voltages 

Figure 2.8: Outboard z-axis currents i0,z,p (dashed line) , i0,z,n (solid line) and voltages 
uo,z,p (dashed line), u0,z,n (solid line) associated witii the unbalance response shown in 
Figure 2.7. 
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All three controllers can be tuned so that they can stabilize the rotation of the shaft 

beyond the system's specified range of rotational speed. This is not surprising for the de

centralized PID control approach since it has been widely implemented [11]. However, 

the results in Figure 2.7 are encouraging because they show that the design of tracking 

controllers, and in particular the low-bias design, can also satisfy the basic stabilization re

quirement. The gains are presented in Table 2.4 for reference along with the values for % 

and rj. 

nonlinear, CAC 

nonlinear, CCS 

linear, PID 

k2 [s"1] 
250 

to Is"1] 
300 

kp [A/m] 
8-103 

h Is"'2] 
1.5 • 105 

h [s-2] 
1.5 • 105 

hi [A-s/m] 
104 

k0 [s"a] 
105 

ko Is"3] 
105 

kd [A/(m-s)] 
13 

r?[N] 
0.1 

h[A] 
1.0 

*fc[A] 
1.0 

Table 2.4: feedback gains and bias parameters for each of the three controllers under com
parison. CAC is "current almost complementary", CCS is "constant current sum", and PID 
is "proportional-plus-integral-plus-derivative." 

Figure 2.8 shows representative current and voltage data of each controller at 14,000 

r/min. We remark that when performance variation from repeated experimentation is taken 

into account, none of the three control designs performs significantly better than the others 

in terms of the maximum obtainable shaft speed. Obtaining higher shaft speeds depends 

largely on improved balancing of the rotor assembly. For the experiments, no off-line tech

niques are applied to precision balance the shaft assembly. Doing so would result in smaller 

shaft orbitals and reduced control effort. 

The CAC control currents shown in Figure 2.8(a) validate the feasibility of low-bias 

operation which leads to reduced ohmic losses and rotor heating. This is in contrast to the 

control currents associated with the other control laws, shown in Figure 2.8(c) and Fig

ure 2.8(e), which operate about a 1 A bias. The soft switching condition associated with the 

CAC inversion does, however, place higher demands on the servoamplifiers. For example, 

it is evident that increasing shaft speeds lead to noticeable degradation in the inner-loop 

current tracking. As observed from Figure 2.8(a), i0,z,n does not decay to 0 A during its 

off cycle. The requirements for higher bandwidth current tracking from the inner-loops 

translates into an increase in the peak voltage requirements, as is shown by comparing 

Figure 2.8(b) to Figure 2.8(d). In fact, the voltage saturation level is potentially the lim

iting factor in the achievable performance of the CAC design. We demonstrate this in an 
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experimental scenario where the voltage saturation level is set to 12 V instead of 48 V. Fig

ure 2.9 shows the unbalance response of the CAC controller as the shaft speed approaches 

5,000 r/rain. Although Figures 2.9(d)-2.9(e) make it clear that some voltage saturation can 

be tolerated, Figure 2.8(f) ultimately shows that instability arises due to current, and hence 

force, slew-rate limiting. 

2.6.2 Motion tracking of a non-rotating shaft 

Figures 2.10 and 2.11 show the tracking performance of the nonlinear and PID controllers 

for a time-varying reference trajectory. A 10 Hz elliptical reference trajectory is chosen for 

the shaft, that is 

yr(i) = 50sin(20?rt) [xm, (2.26a) 

zr(t) = 80cos(207rf)yitm, (2.26b) 

xr(t) = Br(t) = ipr(t) = 0 nm. (2.26c) 

The constraints on motion planning for the shaft involve avoiding the singularity in the 

force relation (2.4) at f = ±K and ensuring the reference currents are within the saturation 

bounds of 0 A (lower) and 2 A (upper). It can be easily verified that (2.26) satisfy these 

constraints. 

Figure 2.10 shows the tracking performance of the CCS-based nonlinear control law. 

This result is almost identical to that of the CAC-based control law and so only a repre

sentative set of results is shown. The tracking error in x, y, z is ± 3 /xm and the angles ip, 9 

are stabilized to within ±45 /xrads. Design of the gains associated with the error dynamics 

does impact the tracking performance, both in the convergence rate of the tracking error as 

well as robustness to modeling error. As discussed in the previous section, gain selection is 

primarily limited by noise considerations which is an unmodeled effect, so a model-based 

gain synthesis procedure, e.g. based on tracking performance as measured by some cost 

function, does not appear to be particularly helpful here. 

We remark that tracking performance of the flatness-based controllers is independent 

of the choice of actuator condition, i.e. CCS or CAC, provided sufficient voltage head 

room exists. Figure 2.12 shows the different control currents associated with each nonlinear 

control law. Interestingly, in the absence of disturbances the CAC controller only requires 

the upper radial bearing coils to be energized. 

The tracking performance of the PID controller is presented in Figure 2.11. Decentral

ized reference trajectories are generated using transformation (2.17). The results confirm 
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in practice that a setpoint-stabilizing control law leads to inferior tracking of sufficiently 

fast-varying trajectories. The shaft overshoots its y- and ^-coordinate reference trajecto

ries resulting in tracking errors in excess of 20 /xm. Physical contact with the touchdown 

bearings is also a result. This contact accounts for the distortion of ip and 9. A significant 

performance improvement cannot be obtained from tuning the PID gains. 

2.7 Conclusion 

This chapter has presented an experimental study of nonlinear tracking control with and 

without bias currents. Both nonlinear designs are shown to be sufficient to stabilize a rotat

ing shaft over its specified range of speed as well as accurately track time-varying reference 

trajectories. Avoiding coil premagnetization, through either a hard or soft switching condi

tion, is shown to place higher demands on the servoamplifers. 

The next chapter combines our previous study of stabilizing a rotating shaft and track

ing the trajectory of a non-rotating shaft. That is, we consider trajectory tracking of a 

rotating shaft which introduces an addition modeling and control challenge associated with 

the induced harmonic disturbances associated with mass unbalance. 
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Figure 2.9: Destabilization of the AMB system (as indicated by divergence of y in (a)) as 
the shaft speed is increased to 5,000 r/min using the CAC controller with saturating voltage 
of 12 V. 
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Figure 2.10: Trajectory tracking performance for the CCS-based nonlinear controller. 
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Figure 2.11: Trajectory tracking performance for the decentralized PID controller. 
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Figure 2.12: Inboard y-axis currents ii,y# (grey line) and iitVtn (black line) for each non
linear controller associated with the trajectory tracking shown in Figure 2.10. Whereas the 
CCS-based controller has opposing electromagnets energized, the CAC-based controller 
only requires the upper electromagnets to be energized. 
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Chapter 3 

Trajectory Tracking of a Rotating 
Shaft with Active Magnetic Bearings 

We extend the work in the previous chapter to consider trajectory tracking of a rotating shaft. 

The key challenge raised by a rotating shaft is that of synchronous vibration suppression. 

We explore state estimation techniques as the basis for a solution. 

3.1 Introduction 

Many applications of active magnetic bearings (AMBs) require only setpoint stabilization 

through the use of linear, decentralized control techniques. Advanced control strategies, 

however, can extend the precision, efficiency and range of operation of AMBs thereby in

creasing their industrial acceptance and range of application. Perhaps the most impacting 

control technology for AMBs has been that which suppresses synchronous vibration asso

ciated with the rotating shaft. Vibration control has the ability to reduce reactive power 

consumption, thus improving efficiency, and isolates rotor vibration from the support struc

ture [8]. Another interesting avenue that has been explored with AMBs is the possibility 

of the rotating shaft tracking a prescribed orbit over the air gap. This idea is motivated 

by the potential of a machining spindle to perform non-circular boring [131, 27, 28], refer 

back to Figure 1.4 for an example. Moreover, the problem of trajectory tracking is a fun

damentally interesting one because system nonlinearity becomes a matter of concern and 

synchronous vibration control is needed to obtain sufficient accuracy. Building on the re

sults from Chapter 2, we develop a control strategy in this chapter for trajectory tracking of 

a rotating shaft. 

Synchronous vibration results from rotation of an unbalanced shaft. That is, centrifugal 

forces synchronous with the speed of rotation act on the shaft due to misalignment of iner-
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tial and geometric axes. A mechanically well-balanced shaft can minimize, but not elim

inate, synchronous vibration from the outset. As a result, active vibration control (AVC) 

through AMBs has been an established area of research and two outcomes are possible. 

One outcome of AVC leads to the shaft rotating about its inertial axis. Synchronous current 

reduction, as it is called, isolates the shaft's vibration from the support structure (i.e. the 

AMB stators). The other possible outcome of AVC is forced rotation about the geometric 

axis, known as synchronous position reduction. This outcome minimizes the rotor vibra

tion by superimposing synchronous bearing forces to cancel the unbalance forces. Existing 

approaches to AVC using AMBs include notch filtering [51], disturbance observer-based 

compensation [52, 105], adaptive feedback [74], and adaptive feedforward [112, 8]. A 

survey of AVC is in [134]. 

Trajectory tracking requires synchronous position reduction because we are concerned 

with the accuracy with which we can position the shaft's geometric axis. In an application 

context, the tool geometry is designed with respect to the geometric axis of the machining 

spindle and so it is unacceptable to allow rotation about its inertial axis. As such, it is the 

goal of this chapter to integrate synchronous position reduction into the flatness-based con

trol developed in Chapter 2. Within our framework of nonlinear state feedback, the natural 

AVC approach is disturbance estimation and cancelation. We treat synchronous vibration 

as a harmonic disturbance and design a state observer to estimate it. The resulting distur

bance observer is model-based, and therefore it can easily incorporate system nonlinearity 

and does not rely on any sort of "learning" process such as methods based on influence 

coefficients [64]. An additional advantage of a disturbance observer is that multiple types 

of disturbances can be simultaneously estimated. Of particular importance is constant dis

turbance estimation, which we show to be an effective alternative to integral control to 

counteract steady state positioning error. 

Disturbance observers have been considered previously and incorporated into a number 

of AMB controllers. For instance, work in [52] incorporates harmonic disturbance esti

mation and cancelation through linear, estimated state feedback and applied it to a 4DOF 

system. A sliding mode observer in [104] estimates harmonic disturbances based on a 

linearized vertical shaft system. Work in [135] considered harmonic disturbance estima

tion in the time-varying rotor speed case, leading to a linear time-varying observer design. 

Constant and harmonic disturbances are estimated in a nonlinear observer in [131]. The 

nonlinear observer is part of a trajectory tracking controller and is shown to be effective on 

a five degree-of-freedom (5DOF) system. 
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Disturbance observers tend to be limiting in two respects. First, the order of AMB 

state observers that incorporate disturbance estimation can become very high, for example 

ranging from fifth- to tenth-order in [131]. In such cases, selection of the observer gains 

may become non-obvious, and scheduling of the gains may be necessary to account for 

rotor-speed dependence. The second limitation is the assumption of constant rotor speed in 

the disturbance observer model. Practical AMB systems operate in stages where constant 

speed is not the case, e.g. between start-up levitation and the operating speed, and harmonic 

disturbance cancelation is sensitive in that it can only be applied once disturbance estimates 

have been converged at the desired operating speed. This fact suggest a modular approach 

to disturbance estimation and compensation. As such, the innovation in our design lies in 

a hierarchical scheme involving a reduced-order disturbance observer which assumes posi

tion and velocity are available. Then we design an inner-loop velocity observer with error 

dynamics that converge at a sufficiently faster rate than those of the disturbance observer. 

The justification behind mis approach is based on a high-gain argument [58, 37]. Lower-

dimension state observers result, where gain selection can be related to pole locations in a 

straightforward manner. Completely modular AVC is the other result, making our approach 

practical. 

We emphasize experimental validation of the proposed control design. Although dis

turbance estimation-based synchronous position reduction has been studied for quite some 

time, efforts to assess the feasibility of this method on practical systems and at realistic shaft 

speeds are limited. Previous results are either limited to simulation [80, 104, 135] or are 

demonstrated experimentally at (relatively) low shaft speeds [52]. Integration of the method 

into a trajectory tracking control design has only been previously considered in [131]. 

Our approach to disturbance-observer-based synchronous position reduction is shown 

to be effective over the full range of shaft speed of our 5DOF test stand. Furthermore, con

stant disturbance estimation and cancelation is shown to be an effective alternative to inte

gral control. By canceling these disturbances, we show that trajectory tracking is possible 

over a wider range of the available gap. The latter result is demonstrated at the maximum 

specified shaft speed of the test stand supporting a shaft with significant unbalance. 
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3.2 Mathematical model 

Maintaining a rigid body assumption on the shaft assembly, we now consider the dynamic 

model 

mx = Fx, (3.1a) 

my = F0iV + FiiV + FCtV + mgy + Dc<y + Dh<y, (3.1b) 

m'z = F0tZ + Fi>z + FCjZ + mgz + DCjZ + DhfZ, (3.1c) 

J'ijj = -(lo,a ~ x)Fo,z + (k,a + x)FiiZ - JxUj6 + lcFCtZ + Tctf + Thrf, ( 3 . Id ) 

JO = (lo,a - x)Fo,y ~ (k,a + %)Fi,y + Jx^lp - lcFCiy + Tcfi + Thfii (3.1e) 

and recall the spring forces given by 

FCiV = -K(y - lc9), 

FCtZ = -K{z + lci>), 

and AMB forces given by 

Px'lx,p Px% •2 

x,n 

\l^x ~ X) \Kx ~l~ X ) 

"i/o:y/z " i/o,y/ z,p "i/o,y/z,n 

j3i2, , 8i2, , 
^ i/o,y/z,p ^ i/o,y/z,n 

(3.2a) 

(3.2b) 
{K S.i/o,y/z) [K + S,i/o,y/z) 

Model (3.1) results from augmenting the model (2.3) from Chapter 2 to account for mass 

unbalance which results from shaft rotation. For a rigid rotor, the principle of mass un

balance and unbalance force generation can be understood with the help of Figure 3.1. 

Figure 3.1 shows a planar rotor in a stationary x — y frame. The rotor has a static mass 

unbalance represented by a point mass mp at a radius of v. The point mass is rotating at the 

angular speed of the shaft u. The radial unbalance forces along the x and y axes are given 

by 

Fx = mpvuj2 cos(o;t), (3.3a) 

Fy = mpi/Lj2 sm(u)t). (3.3b) 

The unbalance forces (3.3) are synchronized to the shaft rotation and lead to synchronous 

vibration. In the three-dimensional rigid rotor case, dynamic unbalance results which means 

that the rotor's principle axis (going through its center of mass) is misaligned with the 
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rotor's geometric axis. Reference [74] provides a graphical description of a dynamically 

unbalanced rotor. 

Because mass unbalance generates sinusoidal forces, we can model these forces as an 

exogenous, harmonic disturbance in each degree of freedom. The harmonic disturbances 

are denoted as forces Dhy/Z in the y and z coordinates, and as torques r^^/g in the ip and 6 

coordinates. Mass unbalance is assumed to have a negligible impact along the :r-axis. The 

disturbances are modeled by 

Dh,y/z — ~U Ai,y/z> 

2 
Th,ip/e — -u Th,ii>/e, 

which have imaginary eigenvalues at the synchronous speed. In addition, constant distur

bance forces Dcy/Z and torques TC^/Q are added to the model with the trivial dynamics 

Dc,y/z = °> 

to account for potential constant disturbances and model bias. 

y 

T rripVu2 

Figure 3.1: Mass unbalance of a planar rotor. A point mass mp at a radius v from the center 
of the rotor has a spin rate of w. The arrow is the unbalance force vector. 
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3.3 Flatness-based trajectory tracking 

With the addition of disturbance forces and torques, the model (3.1) remains differentially 

flat so that an asymptotic trajectory tracking control can be designed. For the flat output 

x, y, z, tp, 9 and input forces Fx, Fi/0>y/z, the feedback 

Fx = mr}x, (3.4a) 

„ rn{l0/itaTx){ny-gy)±Jxu$TJw-%/i,a^x±lc)Fc,y -a 
til°,V = 7 Tl + i/O'V ( ' 

„ m(lo/itaTx){riz-9z)±Jxu6±JriTp-(lo/i)aTx±lc)Fc,z dist 

*ilo,z = -, T l + *i/o,z' VAc> 

where FfP , Ff)^z are the disturbance compensating forces 

pdist _ -(lo/i,a T x)(Dc,y + Dh,y) ± {TC,0 + Thfi) 
i/°,V ~ l-4-l ' 

pdist _ ~(^A,a T ^)(^ )c,a + £>/,,z) =F (TC^ + T/,,^) 
i/0.2 ~~ 1-4-1 ' 

once again give five linear controllable systems x = r]x,y = r]y,z — r]z,ip = r}^,9 = 

r]e, with T]x,r]y,r]z,r]^,T]0 representing auxiliary control variables. Auxiliary control laws 

similar to (2.16) (without the error integration term) are used to exponentially stabilize the 

tracking error dynamics. 

The control currents are obtained from the force feedback (3.4) from inversion of the 

force model (3.2). Inversion is accomplished via CCS through (2.25), as explained in Chap

ter 2, Section 4.2. This approach provides acceptable dynamic performance while capturing 

the nonlinear position dependence in the force relation, increasing the control law's suitabil

ity over a wide range of shaft positioning. 

3.4 Observer design 

In Chapter 2, the flatness-based control laws are implemented such that velocity is estimated 

by lowpass-filtered differentiation and error integration is employed to eliminate steady 

state positioning error. In this section, we instead consider the use of state observers to 

estimate velocity as well as disturbances. 

Local observability of the model (3.1) can be easily confirmed. When (3.1) is unforced 

and gravity is merged with the constant disturbance, then the dynamic equations become 

linear time-invariant. A straightforward application of the observability test of the 20th 

order system (excluding the a;-axis subsystem) shows that all state variables are observable 
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y 
y 

F>c,y 

Dh,y 
DKV. 

"0 1 0 
0 0 J-

m 
0 0 0 0 0 0 
0 0 0 

0 

m 
0 
0 

-u2 

0" 
0 
0 
1 
0_ 

y 
y 

Dh,y 

-Dh,y 

from measurement of the center of mass y,z,tp,6. To demonstrate observability via a 

slightly simplified analysis, consider the model (3.1) without spring force coupling. When 

the system is unforced, the y coordinate subsystem becomes uncoupled (this is effectively 

the 1DOF system equivalent) and is expressed by 

(3.5) 

Assuming that the output is y, the observability matrix associated with (3.5) is 

" 1 0 0 0 0" 
0 1 0 0 0 
0 0 J- J- 0 

m m 

0 0 0 0 £ 
Lo o o - ^ o . 

which has full rank for m, w ^ 0. This simplified analysis, easily generalized to the 5DOF 

model, ensures that a full-order observer can be designed to estimate all state variables 

[131]. Nonlinear observers, specifically those with exact error linearization [66], for the 

model (3.1) would be fifth-order for each of the y and z coordinate subsystems, and tenth-

order for the (ip,6) subsystem [130]. Alternatively, we propose reduced-order disturbance 

observers based on the availability of an additional state (velocity). Velocity is estimated 

by an inner-loop observer having a faster convergence rate. This hierarchical approach 

estimates the states of the fifth-order translational subsystems (y and z) with second and 

third-order observers. Likewise, the states of the tenth-order rotational subsystem (tp, 6) are 

estimated with one fourth-order observer and two third-order observers. 

3.4.1 Velocity observer 

For the translational coordinates, we present the observer design only for the y-axis since 

the design for the x- and z-axes is completely analogous. 

The simplified dynamics my = F0tV + Fi:V + FCiV + mgy are the model basis for 

estimating the time derivative of y. We purposely ignore the existence of constant and har

monic disturbances and consider the implications after the fact. We define the acceleration 

Oy(Aii/0ty,x,y,9) = (F0tV + FitV + FCty)/m + gy, which includes the nonlinearity of 

the bearing force relation and is completely a function of known quantities, i.e. input and 

output. The estimated displacement y and velocity vy are obtained with the observer 

y 
Vy 

la^ci 

0 1 
0 0 

e 

y 
Vy 

+ 0 
1 

ay + (y-y) (3.6) 
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for output injection gains £i,£z > 0. Following high-gain arguments [58, 37] we show that 

a sufficiently accurate estimate in the presence of bounded disturbances can be obtained. 

We define the estimation error vector as £ = (y — y,y — vy)
T and the associated error 

dynamics are 

c = 
h 1 
h o 

C + D„ (3.7) 

A B 

where Dv = Dc<y + Dhy is the total disturbance, assumed to not exceed the force capacity 

of the AMBs. From the solution of (3.7) we have 

C(*) = e A C(0)+ feA^BDy{r)dT 
Jo 

= V-1(X)eMV{\)C(0)+ [ V-1(X)e^t-^V(\)BDy(r)dT (3. 
Jo 

In (3.8), A has been diagonalized by the Vandermonde matrix 

8) 

V(X) 
Ai 1 
A2 1 

and A = diag[Ai, A2] where A2 < Ai < 0 are the freely assigned eigenvalues of A. Taking 

the norm and computing an upper bound gives 

HCtoll ^ | |^-1(A)eA^(A)C(0)| | + f \\V-\X)eK^V(\)BDy{T)\\dT 
Jo 

^ \\v-\\)\\ e ^ | | n A ) C ( 0 ) | | + ^ p ( l - e ^ ) 
m|Ai| 

We take the limit to obtain the bound on the asymptotic error 

lim HCWII * ̂ f IIV-^AJH. (3.9) 

The error bound (3.9) can made arbitrarily small through through the choice of Ai, A2. For 

example, Ai = —w, A2 = — w2, w > 0 results in 

^ir-H-.-^l.o. 
w—>oo — w\ 

Turning our attention now to the angular coordinates, we consider the simplified dynamic 

model without disturbance, 

Jip = (h,a + x)Fi,z - (lo,a ~ x)F0tZ - Jxud + lcFc,z, 

JO = (lo,a - x)Fo,y ~ (k,a + x)Fi<y + JxU>1p - lcF^y. 
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We define the angular accelerations 

cty(Aii/o,z> x> *> VO = [{k,a + x)FiiZ - (Z0,a - x)F0>z + lcFCtZ]/J, 

®e{&ii/o,y,x,y,Q) = [(lo,a - x)F0,y - {li<a + x)FitV - lcFCty]/J, 

and estimate of the angles ip, 9 and angular velocities v^,, vg from the observer 

e 
ye. 

'0 1 0 
0 0 0 
0 0 0 
0 u>Jx/J 0 

0 
LOjx/J 

1 
0 

> " 
V,f, 

9 

ye. (3.10) 

+ 

0 

+ 
"*11 h2 

*21 *22 

hx ^32 

_^41 ^42_ 

1p — l[) 

e-e 
a^(Aii/0tZ,x,z,%lj) 

0 
_ae(Ai i /0j2/,x,j/,6')_ 

The gains t^, 1 ^ i < 4,1 ^ j < 2 can be chosen to place the eigenvalues of the error 

system in the open left-half complex plane. It can be shown, in a similar manner to that 

previously described, that the asymptotic estimation error can be made arbitrarily small in 

the presence of bounded disturbances. To demonstrate the effectiveness of the observer 

(3.6), Figure 3.2 compares the observed velocity vy to a numerical differentiation of y at 

a shaft speed of 8,000 r/min. Sufficient disturbance suppression is obtained from a very 

high observer gain by placing the poles of the error dynamics far into the left-half plane. In 

this example, the poles are -3500 and —4500. Nevertheless, it can be seen in Figure 3.2 

that the observer readily filters out high frequency noise. These clean velocity estimates are 

important as excessive noise can excite resonant modes of the shaft assembly. 

3.4.2 Disturbance observer 

A reduced-order observer is constructed to obtain constant and harmonic disturbance es

timates based on position and the estimate of velocity. For the y subsystem the observer 

is 

c,y 
D< 

Dh,y 

"0 
0 
0 

0 
0 

-0J2 

0" 
1 
0 

~c'y 

Dh,y 

- v,y. 

+ 
V 
h2 

h3 

(miiy - may{Aii/0ty, x, y, 9) - DCtV - Dh,y) 

(3.11) 

where DVtV = t>h^ and hi, 1 ^ i ^ 3 are observer gains. From the coordinate transforma

tion 
~z{\ ["A:,y] \h{ 

y (3.12) 
~Z\ 

Z2 

,Z3_ 

= 
Dc,y 

Dh,y 

- VtV-

-
V 
h2 

h3 
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time (sec) 

0.05 

Figure 3.2: Comparison of observer-based and numerically differentiated estimates of ve
locity in the y-coordinate. Despite the observer's use of a high gain to suppress unmodeled 
disturbances, it still readily niters high frequency noise. 

we obtained the reduced-order observer 

Dh,y. 

-hi -hi 0 
-h2 -h2 1 
-h3 -(h3+u2) 0 

/if + hih2 hi 
hi h2 + h2- h3 h,2 

hih3 + h2(h3 +w 2 ) h3 

hi 

ay(Aii/o,y,x,y,6) 
(3.13) 

h2 

Defining the estimation error vector as {Dc,y, DhtV, Dv,y) = (Dc,y-DCyy, DhtV-Dhzy, A,,, 

>,y) DVM)T, the error dynamics are 

*fc,y 

Dh,y = ° ° „ 1 Dh,y ~ h2 (mvy-may(Aii/0ty,x,y,6) - Dc,y-Dh,y). 

(3.14) 

Recognizing that vy — vy — vy and mvy — may + DCiV + Dh,y, (3.14) becomes 

Dc,y 

Dh,y 

• v>y-

hi 

h2 

h3 

-hi 

-h2 

~(h3+uj2) 

0" 
1 
0 

Dc,y 

Dh,y 

_Uy,y_ 
+ 

'hi 

h2 

h3 

(3.15) 
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From (3.15) it is apparent that the velocity estimation error vy enters the disturbance error 

system as a force mvy. To see the effect this has on disturbance estimates, we know from 

(3.7) that vy, upon convergence, is a signal with a constant and harmonic component. We 

state it as vy(t) = Vdc + vacsin(u>t), where vac is the DC component of the error and 

vac is the amplitude of the AC component of the error. Hence vy(t) = cjvac cos(cjt). 

Next, consider the transfer matrix G with input mvy and output (Dc,y> D^y). Calculating 

the magnitude of G(s) at the synchronous frequency s = JOJ gives |G( jo ; ) | = [0 1]T , 

implying that l i m ^ o o \DC<y(t)\ — 0 and l i m ^ o o \Dh,y(t)\ ^ \mLOVac\. In other words, the 

estimation error of the constant disturbance converges to zero error whereas the estimation 

error of the harmonic disturbance has a bounded error. The error bound \D^y(t)\, being a 

function of vac, can be made arbitrarily small by the choice of eigenvalues for the velocity 

observer. However, this error degrades for higher values of UJ and is a limiting factor in our 

design. 

The disturbance observer structure is the same for all coordinates. For example, in the 9 

coordinate we replace Dc,y, Dh,y, mvy, may with TC^, f/,^, Ju# , Jae+Jxiov^ respectively 

in (3.13). Hence, disturbance estimates are decoupled for each coordinate. When the shaft 

speed changes, the observer gains can be efficiently re-computed. For a given w and a 

desired characteristic polynomial s 3 + A2S2 + Xis + Ao = 0 for the error dynamics (3.15), 

the gains are given by 

hi = - 3 , h2 = A2 o> /i3 = A i - w 2 , u ^ 0. 
or u>z 

The hierarchical design of the velocity and disturbance observers is shown in the block dia

gram of the closed-loop system, Figure 3.3. The intended consequence is the modularity of 

disturbance estimation and compensation. That is, it is necessary that the velocity observer 

functions continuously to ensure stable levitation while the disturbance observer is intended 

only for constant-speed operation. This modularity avoids potentially complex calculations 

for observer gains as a function of rotor speed or the possible need to schedule the observer 

gain. 

3.5 Experimental results 

Experiments were performed to evaluate the performance of the proposed control scheme 

on a rotating shaft. We note that shaft unbalance is significant for these experiments since 

the shaft is manually assembled and no mechanical balancing has been performed. 
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Figure 3.3: Schematic of the closed-loop system for the y coordinate. 

Eigenvalues of the tracking error dynamics are placed at —200 ± 400i. The eigenvalues 

of the disturbance observer are —55 and —250 ± 850i. The placement of eigenvalues is 

done on an empirical basis, so as to avoid excessive actuator saturation and excessive noise. 

The initial experimental results test the controller's ability to reject disturbances, and 

therefore reference trajectories are set to the system origin. Figure 3.4 shows coil currents 

and rotor displacements in the measurement planes during engagement of disturbance com

pensation for LJ/(2IT) = 167 Hz (10,000 r/min). In less than 0.15 s of closing the loop, 

orbits of the radial bearing rotors show a major reduction in offset and vibration. In steady 

state the rotor measurements V13, V24, W13, W24 are each constrained to an envelope of 

±1 /zm about the origin. From Figures 3.4(e)-3.4(f) we observer spikes in the differential 

coil currents Aij/0)S//2, indicating the high initial forces necessary to compensate the har

monic disturbances. Following the transient, more efficient operation is apparent due to the 

reduction in the amplitude of the synchronous component of the coil currents. 

Interestingly, the amount of harmonic disturbance attenuation does not necessarily worsen 

with increasing shaft speed. At the shaft speeds being considered in our experimentation, 

the shaft is undergoing bending (not considered in our model) and this leads to some un

predictability in the attenuation level. This is demonstrated in Figure 3.5(a) which provides 

outboard rotor vibration amplitudes over the system's range of shaft speed. A comparison 

of the synchronous vibration amplitude (i.e. peak displacement) is made with and without 

disturbance compensation. We see from these results that in the worst case there is greater 

than 90% reduction in synchronous vibration and at best greater than 95% reduction. Our 
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Figure 3.4: Constant and harmonic disturbance compensation at 10,000 r/min. Asymptotic 
rejection of static offset occurs, as does significant attenuation of synchronous vibration. 
Attenuation of synchronous vibration is accompanied by a reduction in the synchronous 
component of the control currents. 
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Figure 3.5: Disturbance rejection performance in the outboard radial bearing. 

observer-based synchronous position reduction scheme significantly improves our accuracy 

in positioning the shaft, and increases the bearing clearances within which to track trajec

tories. 

We verify asymptotic constant disturbance rejection by comparison to the more com

mon approach of integral control. Integral control can be implemented by utilizing the aux

iliary control (2.15), i.e. r\y = yr - k2(y - yr) - h(y - yr) - k0 /0*(y(r) - yr(T))dr. The 

comparison is based on step response data given in Figure 3.5(b). For this experiment, the 

shaft is rotating at 10,000 r/min with harmonic disturbance suppression and is commanded 

to track a 20 /xm step along the 2-axis. The integrator gain fco is obtained by placing the third 

pole of the tracking error dynamics at -0.015. The comparison in Figure 3.5(b) shows that 

percent overshoot, rise time, and peak time are similar for both tracking error integration 

and constant disturbance suppression. In fact, the settling time obtained by constant dis

turbance suppression (approximately 90 ms) is less than that obtained by error integration 

(greater than 1 s), although to say definitively whether one approach is better than another 

would require further investigation. 

Trajectory tracking is demonstrated by transferring the center of mass cm from the 

origin onto a 2 Hz elliptical orbit in 1 s. The corresponding trajectory is 

yr(t) = 90(r(t) - r(t - 1)) sin(47rf) /mi, 

zr(t) = 40(r(t) - r(t - 1)) cos(47rf) lira, 

xr(t) = 9r(t) = ipr(t) = 0 /xm, 

(3.16a) 

(3.16b) 

(3.16c) 

where r(t) is the unit ramp function. The tracking performance is shown in Figure 3.6 in 

the outboard measurement plane at 10,000 r/min. The orbital in Figure 3.6(a) as well as the 
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time series plot of V24 and W24 in Figure 3.6(b) show sufficiently good disturbance rejection 

to move the rotor over a large fraction of the available air gap (almost up to the system's 

positioning limits of 100 fim). The tracking error shown in Figure 3.6(c) is within ±2.5 /.tin. 

The tracking error is mainly affect by how well the shaft angular displacements ip, 9 can be 

stabilized. The motor coupling is problematic in this regard, despite our attempt to cancel 

out its effect. The coupling's tendency is to tilt the shaft because it physically constrains 

the inboard end of the shaft. The result is that the shaft has a tendency to trace a cone 

instead of a cylinder, with a cylinder being commanded by the reference trajectories (3.16). 

Therefore, trajectory tracking at the synchronous speed, as is required by the particular 

application motivating this work, was not achieved with the same accuracy as shown in 

Figure 3.6. An AMB system with an inline motor, which is the configuration of industrial-

grade 5DOF systems and shown in Figure 1.5, eliminates the need for a motor coupling and 

improved tracking accuracy would be expected. 
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Figure 3.6: Trajectory tracking at 10,000 r/min. The shaft's center of mass is tracking a 
2 Hz ellipse. 

A further difficulty with respect to the proposed motion tracking scheme is the assump-
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tion of a rigid rotor. For sufficiently stiff shafts rotating at low enough speeds, a rigid body 

can be a good enough modeling assumption to achieve the control objectives, see [131] 

for tracking results for a shaft rotating at 4800 r/min. Bending of the shaft does occur at 

higher rotational speeds and this degrades our model accuracy. Extending trajectory track

ing methodology to a model incorporating shaft flexibility poses new challenges and is a 

worthwhile future direction of research. A flexible shaft is a distributed parameter, i.e. in

finitely dimensional, system that is typically approximated by a linear, lumped-parameter 

model of sufficiently high order. Obtaining such a model is a challenging task [111] and 

is beyond the scope of our modeling efforts in this thesis. From a force input, however, an 

AMB-supported flexible shaft is a linear controllable system and as such remains amenable 

to trajectory tracking. A particularly interesting example is in [71] which feedback lin

earizes a 1DOF AMB based on a rigid body model. Beam dynamics are incorporated as a 

transfer function in series with the resulting triple-integrator, i.e. feedback linearized, plant. 

Then, linear techniques are suitable to address the control objectives. 

3.6 Conclusions 

A nonlinear estimated state feedback control law is proposed in this chapter. The control 

strategy allows AMBs to guide a rotating shaft along a desired time-varying trajectory. 

The key ingredient in the design is a state observer scheme that estimates constant and 

harmonic disturbances. The observer scheme, due to its hierarchical construction, simplifies 

its implementation and remains effective at suppressing vibration and steady state error over 

a wide range of shaft speeds. 

In the next chapter we consider an alternative state estimation scheme, specifically one 

that estimates velocity with a model-free algebraic approach instead of with an observer. 
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Chapter 4 

Numerical Analysis of the Algebraic 
Derivative Method with Application 
to Active Magnetic Bearings 

In this chapter we study an alternative to state estimation based on a signal differentiation 

method. We demonstrate its application to an active magnetic bearing (AMB), highlighting 

potential advantages over observer-based state estimation. 

4.1 Introduction 

Time derivative estimation of a measured signal has considerable importance in the area of 

control theory and practice. As an obvious example from the last two chapters, estimat

ing velocity from position measurement is often necessary to implement state feedback. In 

Chapter 2 velocity was estimated by low-pass filtered differentiation whereas in Chapter 

3 velocity was estimated by a simple nonlinear observer. Generally speaking, signal dif

ferentiation has the benefit of not requiring a model whereas an observer usually does. It 

is well-known, however, that signal differentiation techniques amplify noise which can be 

problematic in closed-loop, e.g. reduced precision and resonance excitation. In the general 

context of state estimation for nonlinear systems, much work has been done to merge the 

two approaches. For example, Diop et al. [26] introduce a new notion of observability 

for systems whose state x can be expressed as a function of input u, output y and a finite 

number of their time derivatives. Thus, nonlinear observer design amounts to determining 

the derivatives of y and u from available measurements in order to obtain a state estimate. 

References [26, 25] examine various numerical differentiation algorithms to realize such 

nonlinear observers from sampled data measurements. An interesting recent application to 

a sensorless motor drive can be found in [70]. In this work, speed is estimated through an 
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algebraic expression of stator voltages and currents and their successive derivatives with the 

derivatives obtained by numerical differentiation techniques. Recently in [128], a model-

free, high-gain observer is proposed as a differentiator and the tradeoff between accuracy 

and noise amplification is examined. A least-squares polynomial approximation is another 

viable approach to derivative estimation which continues to receive attention [75]. 

For differentially flat nonlinear systems, previously discussed in Chapter 2, the state 

variables can be expressed algebraically in terms of a flat output and a finite number of its 

time derivatives. Therefore, estimation of successive time derivatives of the flat output leads 

to reconstruction of the state by algebraic formulae, thus giving these types of systems a 

special observability property [49]. The problem of computing successive time derivatives 

is addressed through the algebraic derivative (AD) method [35, 34]. The AD method is 

an analytic formulation yielding fast and non-asymptotic derivative estimates and avoids 

the requirements of knowing a system model or the statistical properties of the signal to 

be differentiated. Since its introduction, numerous applications and extensions of the AD 

method have been proposed. Work in [34] and [115] utilize AD to formulate nonlinear 

output feedback for tracking control of a DC motor pendulum and a synchronous gener

ator, respectively. The effectiveness of the AD method with respect to noisy data, signal 

compression and detecting abrupt changes are treated in [30, 31]. The method's robustness 

to noise is formalized in [29]. A significant extension of the AD method is in unknown 

parameter identification and fault detection and isolation, see [55] and references therein. 

The difficulty in applying the AD method is that it cannot provide continuously accurate 

estimates. The reason is that the method is based on a truncated Taylor series approximation 

of the signal to be differentiated. Hence, the approximation loses validity over time and a 

periodic resetting of the calculations is necessary. Various calculation resetting policies 

are studied in detail in [99] and an overlapping estimator algorithm is proposed in [98] to 

better preserve accuracy. In this chapter, we present a numerical analysis of the overlapping 

estimator implementation of the AD method. For our analysis, we restrict our attention to 

estimating a single time derivative. 

As a case study, we integrate the AD method into the nonlinear control scheme of 

Chapter 3 and apply it to a 1DOF AMB. This is an interesting case study for two reasons. 

First, we can replace the high-gain velocity observer in our hierarchical scheme, explained 

in Chapter 3, Section 4, with derivative estimation via the AD method. Potentially, better 

performance can be realized by reducing our reliance on a simplified model. Second, the 

closed-loop bandwidth of AMB systems, as defined in a linear time invariant systems con-
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text, is considerably higher than that of previous systems to which the AD method has been 

applied. Previous studied applications of the AD method include the unicycle, pendulum 

[34], synchronous generator [115], three-tank process [55] and chaotic systems [99, 98]. 

4.2 Algebraic differentiation 

Our derivation of the AD method here follows that of [115] and [21]. We assume that an an

alytic signal y(t) can be sufficiently approximated by its truncated Taylor series expansion 

about an initial time instant to, that is 

K 1 

where l(t) is the unit step and positive integer K denotes the order of the truncation that 

determines the accuracy of the signal approximation. In the Laplace domain, (4.1) becomes 

sKY(s) - f^ sK->yV-V(to) 1 e~st° = 0, (4.2) 

where Y(s) — £{y(t)} is the Laplace transform of y(t). More formally, an Operational 

Calculus framework can be used [99]. Independent of unknown initial conditions, it is 

implied from (4.2) that 

— (SKY(S))=0. (4.3) 

Applying Leibniz's rule for derivatives, i.e. the generalization of the product rule, 

K 

(f9)(K)=E(K)f(K-j)9U)> 
-•—n V J / 3=0 

where / and g are if-times differentiable functions, we can re-express (4.3) as 

dsK(s Y{s))-2^{mK_.ys ds.Y{s). 

Next, we consider the expression s~^K~1^ j - ^ ( s K y ( s ) ) , which yields 

\U (f-)2(K-j)lS dsirW)+«K-1)1)* da*-irW
 ( 4 4 ) 

dK ~ 

By applying the inverse Laplace transformation 

r(fc) ^m^)}-n-^ 
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where we define the iterative integral 

/

(fc) rt r-ai t<Jk-\ 

(-t)jy= / ••• / aJ
ky(ak)dak ... dai, 

Jo Jo Jo 

equation (4.4) can be transformed back into the time domain. The result is 

fc2 (K\)2 f(K-i-i) . \ 

Thus, an estimate for the first time derivative ye can be obtained by rearranging (4.5) to get 

l / ^ 2 (#1)2 r(K-j-i) 

— ' g w S M ""M)% 
y 

(((7^W(-t»K",-^-"'f",)• (-t)« 

In general, the equations 0 = s^^ jp^(sKy(s)), for a ^ A'— 1 are the basis for computing 

derivatives of successive order. As such, (4.5) can be generalized to 

° = (£ ^hh?. I {-tyy)+ xm^{-t)ay 

Rearranging terms for the derivatives in (4.7) gives 

Rewriting (4.8) in the form 

£ a« / (-^y + M-*r</ + £ a„H)Vn_a) 
i « _ n «* / « i 1 

(4.7) 

(4.8) 

where 

58 



we obtain expressions for successive time derivatives. For a = K — 1, we have from (4.9) 

the expression for the first derivative, 

<K-2 ,(A--n-l) \ 

(-tfye 
n=0 J 

{-t)ny +a*_ i ( - t ) KT-1„ (4.11) 

For a = If — 2 we get the expression for the second order time derivative 

(K-Z r(K-n-l) 

-t)Kye = - ( E an j " ("*)"») + ^ - 2 ( - i ) ; f - 2 y + « K - i ( - i ) K - 1 y , (4.12) 

which depends on the evaluation of the first order time derivative. Derivatives of third order 

and higher are similarly obtained by further decrementing a. 

The resulting expressions admit a linear, time-varying filter with state equations 

0 
0 

0 
0 

1 
0 

0 
0 

0 . 
1 . 

0 . 
0 . 

. 0" 

. 0 

. 1 

• °. 

v + 

'ai,K-2(-t)K-2' 
ai,K-s(-t)K-3 

aiti(-t) 

«i,o 

y(t) (4.13) 

where 77 £ are the state variables. The output equations are given by 

(-t)K-2a3,K-2 {-t)K~l 

0 

~t)K 

G3,K"-1 

0 
0 

(~t)K 

L(-*) K-r+l ar,K-r+i (—t) 

ai,K-i(-t) 
d2,K-2{-t) 

K-r+2 0-r,K-r+2 

0 
0 
0 

.'. (-i)*_ 

" Ve ' 
tie 

(r) 
Me . 

K-l-1 

K-2 

K-r 

y(t) + 

V 

T)r_ 

(4.14) 

\_ar,K-r{-t) 

where arjP corresponds to ap with a = K — r for r^K — 1. Therefore, we re-express 

(4.10) as 

a Jpfe' 2 0SPZK-r-l 
'P ~ I V K (K\)2(n-K+r)\ K-r^p^K. 

(4.15) 

Due to the Taylor series approximation, the derivative estimate is only accurate over a 

finite time interval and loses validity as t becomes sufficiently larger than to. Therefore, at 

some later point in time tr a resetting of the calculations is necessary whereby the filter cal

culations (4.13)-(4.14) become a function of the relative time t — tr. An additional difficulty 
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with the AD method is that a calculation indetermination immediately follows a reset. As 

a result, there is a period [tr, tr + e) of convergence during which the derivative estimate is 

inaccurate and temporary values must be adopted. Hence, we may assume a valid derivative 

estimate in the interval t £ [tr + e, tr + t*) where t* denotes the interval length between 

resets. In summary, to preserve the estimation accuracy on a continual basis requires a reset 

policy as well as an extrapolation policy to temporarily estimate the derivative during the 

interim periods of convergence. We address each of these issues separately in the following 

sections. 

4.2.1 Reset policy 

It is perhaps most intuitive to reset the calculations at equidistant time intervals. This ap

proach is taken in [34, 115]. Generally speaking, for a fixed truncation order K a reduction 

in the interval length t* is necessary to accurately estimate signals of increasing bandwidth. 

However, no constructive method exists for choosing t*, so one may have to resort to offline 

trial-and-error. Alternatively, a dynamic reset policy could be employed where the next reset 

time occurs when a cost function exceeds a prescribed threshold. Typically the cost func

tion is based on the error between the actual and estimated signal, e.g. e(t) = y(t) — y(t) 

where 

y(t) = y{t~) + J ye(r)dT. 
Jtr 

Different cost functions, such as the absolute and integrated error, are studied and imple

mented in [99]. For a fixed threshold value, however, an absolute error criterion is non-

robust to high-frequency perturbation and the integrated error criterion provides inconsis

tent performance for signals with significant bandwidth and amplitude variation. For in

stance, if we consider two identical signals with the exception of their scaling, their deriva

tives will be estimated with equal accuracy due to the linearity of the AD filter. However, 

the respective integrated errors would be different. 

4.2.2 Extrapolation policy 

The calculation indetermination immediately following a reset requires an extrapolation 

mechanism to estimate the derivative during the initial period of convergence. Assuming 

that the value of e is small relative to t*, a simple approach is to just hold the previously 

computed value ye(t~) for tr ^ t < tr + e [34, 115]. Alternatively, one may opt for a 

polynomial extrapolation. For example, a straight line extrapolation is given by 

ye(t)=ye(t-) + (t-tr)ye(tr), t £ [tr,tr + e). (4.16) 
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Depending on when the reset occurs, a straight line approximation can produce worse re

sults than constant approximation. In any case, the existence of the e-delay is a clear limita

tion of the AD method. This is because, for signals of increasing bandwidth, the necessary 

reduction of t* (assuming a fixed K) implies that e becomes larger in proportion to t*. 

By a certain bandwidth an intolerable proportion of of the derivative estimate is based on 

extrapolation. This limitation motivates the notion of overlapping estimation. 

4.2.3 Overlapping estimation 

A natural solution to eliminate the need for an extrapolating mechanism is to employ dual, 

time-shifted estimators. That is, when one estimator is approaching reset, the output could 

be switched to the other estimator which has begun to produce accurate estimates, and 

vice-versa. The additional advantage of this approach is the reduction in design parameters 

since we can conveniently set t* = 2e while guaranteeing that one filter is always producing 

accurate estimates, provided the estimators are offset in time by e. Figure 4.1 illustrates this 

idea. Time-shifted estimation can be implemented by the following formula 

m = fi-f)> *»<*! (4.17) 
where j/ei(£i),2/e2(*2) are the estimates of two filters with staggered, periodic resets such 

that t\ = mod(i, t*) and £2 = mod(i+e, t*). The combined result is a piecewise continuous 

estimate of a signal's time derivative for which e can be chosen sufficiently small to obtain 

the desired accuracy. A new kind of limitation exists with the overlapping-estimator ap

proach, however, and that is noise induced by filter switching. In particular, overly-frequent 

filter switching degrades the derivative estimate of low frequency signals. As such, practical 

limits exist as to how high and how low e can be chosen for a particular choice of truncation 

order. A simulation study was conducted to quantify these limits. In this study, we deter

mine the frequency range over which derivative estimates of a prescribed accuracy can be 

obtained. The study is repeated over various combinations of the two design parameters, 

K and e. For each combination we apply a sine sweep and measure the error between the 

actual and estimated derivatives at each discrete frequency. Error is measured in root-mean-

square (RMS) and plotted as a percentage of the RMS value of the true derivative. This is 

expressed as 

^^k=o(ye(kT)-y(kTW 
%error = - . x 100 

^E^ttKfcT))2 
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0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 
time (s) 

Figure 4.1: The idea of overlapping estimation is that two time shifted estimators produce a 
piecewise continuous estimate. The period between resets of an individual estimator ("fil
ter") is denoted t*, and the time needed after reset before an estimator obtains convergent 
estimates is denoted e. 

for N samples over one period of the sinusoid at the chosen frequency, with the sampling 

period T = 0.1 ms. Figure 4.2 plots the derivative error versus frequency over a grid oiK 

and e. As a measure of accuracy, a "±3 dB boundary" is superimposed on the plots, indicat

ing when the estimation error measures ±(1 — \/\/2). For each value ofK, it is evident that 

decreasing e improves the derivative estimation accuracy for higher frequency sinusoids but 

degrades the derivative estimation accuracy for lower frequency sinusoids. Increasing the 

truncation order correlates to a widening of the frequency band under the ±3 dB boundary. 

It appears, however, that there is a hard limit on the overall algorithm. Over the grid of pa

rameter values considered in this study, only consistent accuracy from DC to about 90 Hz is 

achievable for our implementation. Accuracy beyond 90 Hz is accompanied by intolerable 

degradation to the derivative estimation of sinusoids near DC. 

4.3 Case study: nonlinear control of an AMB 

As a practical example, we revisit AMBs and consider the 1DOF case for simplicity. A 

dynamic model representative of the 5DOF dynamics studied in Chapter 3 is given by 

my = Fy+Fc + Fh, 

Fc = 0, 

Fh = -w2Fh, 

(4.18a) 

(4.18b) 

(4.18c) 
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Figure 4.2: Derivative estimation error of a harmonic signal as a function of frequency. 
Each curve corresponds to an increment of 3 ms for e. 

where y is the rotor displacement from the center of the AMB and m denotes the rotor 

mass. Fy is the net magnetic force due the bearing given by the standard model 

F„ = &l ml (4.19) 
"y

 (K- y)2
 (K + y)2 

for input coil currents ip,in, nominal air gap K and force constant j3. Fc is the constant 

disturbance force and F^ is the harmonic disturbance force with a frequency of w. 

We consider the 1DOF equivalent of the nonlinear control law described in Chapter 3, 

Section 3. The force feedback 

-Fc - Fh + m(yr - kv(y - yr) - kp(y - yr)) (4.20) 

yields the stable tracking error dynamics e + kve + kpe = 0 for gains kp,kv > 0, tracking 

error e = y — yr, and a twice differentiable reference trajectory yr. The control currents 

ip, in are calculated from inversion of the force relation (4.19) via CCS as given by (2.25). 

We compare state estimation approaches. First, we consider a fifth-order nonlinear observer 
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having linear error dynamics [131]. This observer is given by 

y = vv 

% = (Fy{Ai,y)+Fc + Fh)/m 

Fc = 

K = FV 

Fv = -u?Fh 

where vy = y, Fv = F^ and £i are the observer gains. Second, we reconsider the equiv

alent reduced-order nonlinear observer from Chapter 3, Section 3, where velocity is made 

available by the AD method. The reduced-order observer is 

+ti(v-

+h{y -

h(y-

+d(y -

+h(v -

-y), 

-y), 

-y), 

-y), 

-v), 

(4.21a) 

(4.21b) 

(4.21c) 

(4.2 Id) 

(4.21e) 

= 

~-h 
-h 
-h 

-

Fc 

Fh 
= 

*2 

1 

2 

3 -(h 

-hi 0" 
-h2 1 
3 + W 2 ) 0 

Zl 

z2 

Z3 

h\ + hih2 hi 
hih2+h2-h3 h2 

Jnh3 + h2(h3 + UJ2) h3 

+ hi 

h2 
mye, 

mye 

lFy{Ai,y) 
(4.22a) 

(4.22b) 

where hi are the reduced-order observer gains. For a given truncation order K, the com

bined order of the overlapping velocity estimator and reduced-order disturbance observer is 

2(K-l) + 3. 

Ideally, computing an additional derivative would allow us to estimate the disturbance 

forces simply by rearranging (4.18a). The simulation study shows, however, that the ac

curacy of die second order derivative via overlapping estimation is more limited in terms 

of bandwidth and noise susceptibility. An accurate second derivative estimate could not be 

obtained for a sufficiently wide enough range of frequencies to be applicable to the problem 

of AMB disturbance estimation. 

4.4 Simulations 

The following simulations present transient performance of the AMB subject to a 40 Hz 

(2400 r/min) harmonic disturbance force to simulate mass unbalance.In the first simulation 

the rotor is levitated from its initial position at y(0) = 100 /im without disturbance com

pensation. At t = 0.5 s, disturbance compensation is engaged to bring the rotor to the 

origin. 
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Since the AD method is formulated in continuous time, discretization is carried out by 

the Euler method with a step size of 0.1 ms. All other simulation parameters are provided 

in Table 4.1. The overlapping estimator in this example is 7th order (K = 7). Since a 

single derivative is being estimated, we only need the following coefficients, as determined 

by (4.15): alfi = 5040, a M = 35280, a1)2 = 52920, a1)3 = 29400, a M = 7350, ah5 = 

882,01,6 = 42. Figures 4.3 and 4.4 compare two implementations of the AD method for 

velocity estimation. Figure 4.3 utilizes a single estimator with constant extrapolation, given 

by the formula 

. ... filefc), te[tr,tr + e) 

*® = {-^-g^)*-1™, te[tr+e,tr+n (4-23) 

The chosen parameters were e = 4 ms and t* = 40 ms based on a numerical search for 

the best closed-loop performance. Although a single estimator produces acceptable perfor

mance, error in the estimated velocity due to extrapolation induces error in the disturbance 

estimates as well as less responsiveness in the controller. 

Figure 4.4 presents the closed-loop response using overlapping estimators. Overlapping 

estimation is implemented by the formula (4.17) with t* = 2e = 24 ms. These parame

ters were determined from the data in Figure 4.2 so as to achieve good accuracy from DC 

to approximately 80 Hz. Figure 4.4(a) indicates that closed-loop performance has been 

significantly improved relative to Figure 4.3(a). Figure 4.4(d) shows that ye continually 

approximates y with good accuracy and demonstrates only minor degradation when distur

bance compensation is engaged. The performance improvement obtained with overlapping 

estimation comes at the cost increased computational requirements, but it is not excessive 

with respect to present digital signal processor capabilities. 

Parameter Value Parameter Value 
Fc 2.0 N Fh L0N 
ib 1.0 A u> 80n rad/s 
13 5.0 • 10"6 N-m2/A2 K 8.0 • 10"4 m 
m 0.4 kg 

ROO poles {-5 , -400, -400} controller poles {-50±300i} 
FOO poles {-2500, -2500, - 5 , -400, -400} 

Table 4.1: Simulation parameters. FOO denotes "full-order observer" given by (4.21), and 
ROO denotes "reduced-order observer" given by (4.22). 

A second simulation considers whether velocity estimated by the AD method offers 

control performance enhancements relative to velocity estimation by an observer. We com

pare the overlapping estimator plus reduced-order disturbance observer to the full-order 
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time [s] time [s] 

(c) estimation errors Fc, FH (d) rotor velocities y, ye 

Figure 4.3: Nonlinear controj of a 1DOF magnetic bearing integrating the AD method 
for velocity estimation. The AD approach is this example uses constant extrapolation to 
estimate the derivative during reset, as given by (4.23). 

observer given in (4.21a)-(4.21e). A different, although realistic, scenario is considered. 

At t = 3 s, a step load change is applied, that is, Fc(t) — 2(l(t) + l(i - 3)). To as

sess each method's robustness to high frequency perturbation, a normally-distributed white 

noise variable w(t) is introduced in the output y(t). The maximum amplitude of w(t) is set 

to 0.4 //m to simulate measurement noise commonly encountered from an inductive AMB 

position sensor. We compare the natural filtering effect of each approach, hence there is no 

additional filtering applied. 

Figure 4.5 shows the results of this comparison. Bearing in mind that both observers 

estimate disturbances with a similar rate of decay, Figure 4.5(a) shows that estimated state 

feedback using AD is more robust to the load change than the feedback based on a full-

order observer. This performance discrepancy can be explained by observing each ap

proach's velocity estimate in Figures 4.5(c)-4.5(d). The constant disturbance must be re-

estimated by the full-order observer before its velocity can asymptotically converge whereas 
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Figure 4.4: Nonlinear control of a 1DOF magnetic bearing integrating the AD method 
for velocity estimation. The AD approach is this example uses the overlapping-estimator 
approach given by (4.17). 

the model-free approximation of the AD method maintains consistent accuracy. Observing 

Figure 4.5(d) more closely after t = 3 s, it is shown that the load change yields an un

derestimate of the true velocity. This leads to a reduction in damping, thus degrading the 

closed-loop performance. Performance can be recovered somewhat by increasing the ob

server gains, but not without significantly amplifying the noise. Figure 4.5 presents the 

spectra of velocities estimated by the two approaches in the frequency range up to 1 kHz. 

Beyond the synchronous frequency, the AD method demonstrates better noise rejection. 

For either method, the spectrum at higher frequencies than those shown in Figure 4.5(b) 

can be shaped by additional lowpass filtering. 

4.5 Conclusion 

This chapter has presented a numerical study of the overlapping estimator implementa

tion of the AD method. Application to a 1DOF AMB demonstrates the feasibility of the 
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Figure 4.5: Closed-loop response comparison of a 1DOF AMB based on two different state 
estimation approaches. The first approach is a full-order nonlinear observer (FOO). The sec
ond approach is a reduced-order nonlinear observer (ROO) combined with the overlapping 
AD method. Since the AD method is model-free and non-asymptotic, velocity estimation 
is more robust to disturbances than estimation by a model-based, state observer. 

method for systems of higher closed-loop bandwidth than previously studied. Improved 

disturbance rejection is demonstrated by integrating the AD method into estimated state 

feedback. Chapter 7 demonstrate real-time application of the method. 
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Chapter 5 

Force and Torque Modeling of a 
Toothless Self-Bearing Servomotor 

We depart from the study of active magnetic bearings (AMBs) and consider in this chapter 

another electromagnetic actuator, namely the self-bearing motor (SBM). In particular, we 

focus on a type of SBM known as the toothless self-bearing servomotor (TSBS). Our study 

of the TSBS begins with an analysis of its operating principle. 

5.1 Introduction 

SBMs, to briefly review the discussion in Chapter 1, Section 2, are electric motors with 

the built-in functionality of an AMB. The resulting device provides levitation and rotation 

simultaneously. The main advantages are an increased power density and a reduced shaft 

length which softens the performance limitations imposed by rotordynamics. 

The theory and application of SBMs have been reported since the early 1990s. Chiba et 

al. [17, 18, 15, 92] made early contributions to the analysis, design, control and implemen

tation of self-bearing permanent magnet (PM), induction, and reluctance-type motors. Their 

SBM designs are noted for their four-pole motor windings with additional two-pole radial 

force windings, and their induction motor in [17] reaches a speed of 12,000 r/min. Refer

ence [92] identifies an inherent force-torque trade-off in PM-type SBMs that base levitation 

on the Maxwell force principle. Alternatively, pioneering work by Bischel [9] proposed a 

Lorentz-force magnetic bearing integrated into a PM synchronous motor. The principle of 

this novel "all-Lorentz" SBM is confirmed by application to a 1 kW, 2,000 r/min machine. 

Okada et al. [88, 91] provided a general theory for self-bearing operation and radial posi

tion control in PM synchronous and induction-type motors based on the so-called P ± 2 

principle, i.e. designs where the stator pole number is P ± 2, P being the rotor pole number. 
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Reference [91] reports on a novel internal PM SBM which demonstrates an improved radial 

force capacity relative to surface-mounted PM SBMs. 

In the current decade an increasing number of industrial applications of SBMs had been 

reported. Reference [97] presents extensive testing of a 30 kW canned motor pump based 

on a self-bearing induction motor; [93] evaluates a l l , 000 r/min, 4 kW PM SBM suitable 

as a general-use liquid pump. Schob et al. [110] report on the application of a slice motor to 

a cardiac assist device. The slice motor, shown in Figure 1.6(b), has the unique advantages 

of passive stabilization of the axial and tilting motions and is the basis for a host of industrial 

applications [109]. The cardiac assist device remains an active area of research by others 

[87, 133] as is the design optimization and nonlinear control of the slice motor [114,40]. 

For precision pointing and slewing applications, the TSBS was introduced [23]. The 

TSBS is a PM synchronous machine with a toothless, or slotless, stator to minimize cogging 

torque. As in [9], the TSBS is an all-Lorentz machine. The advantage of all-Lorentz SBMs 

such as the TSBS is that force and torque can be increased simultaneously by increasing 

the PM size. Hence, all-Lorentz SBMs overcomes the previously examined force-torque 

trade-off [92]. In this chapter, we model the TSBS from first principles.The reason for 

doing this is because the TSBS is a nonlinear system and no explicit nonlinear model has 

been established. We approach modeling in a control-oriented manner such that we capture 

the key nonlinear characteristics of the actuator with a relatively compact model structure. 

The resulting model is potentially useful for the design of nonlinear compensation [92,40], 

control over a wider operating regime, and providing more physical insight. 

Central to TSBS modeling is bearing force and torque characterization, specifically, 

determining the static force-torque-current-displacement relationship within the actuator. 

Force and torque characterization is the specific focus of this chapter. Significant TSBS 

modeling efforts have already been put forth based on one-dimensional (ID) [120,119,121] 

and two-dimensional (2D) [103, 102] flux models. Previous ID modeling provides suffi

cient physical insight while the 2D work yields improved accuracy. All previous TSBS 

modeling efforts lead to linear force and torque expressions. For work based on a 2D 

flux model, linearization appears to be necessary due to the complexity of the partial-

differential-equation (PDE)-based solution. This chapter's approach is to revisit ID mod

eling and derive nonlinear analytical expressions. Essential to obtaining a reasonably ac

curate, yet simple, nonlinear model is parameter identification from system data. As such, 

our analytical model is linearly parameterized so that linear least squares can be utilized to 

optimize the model fit-to-data. Ultimately, parameter identification leads to simpler non-
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Figure 5.1: Cross-section of a 16-pole, toothless self-bearing servomotor (TSBS). The 
TSBS is a segmented permanent magnet synchronous machine. Each of the four segments 
shown is an individually controlled three-phase motor. The x and y axes denote rotor coor
dinates relative to the stator center, $ is the stator angle and 8 is the rotor angle. The four 
control forces F^y, F2)X, Fz,v and FitX produce levitation and rotation simultaneously. 

linear expressions than those given by the original analytic model because we can identify 

and discard portions of the model which insignificantly contribute to the model fit-to-data. 

Finite element analysis (FEA) data, representative of a laboratory TSBS, is employed for 

parameter identification and for validation of the analytical force and torque model struc

ture. 

5.1.1 Operating principle 

Figure 5.1 presents the cross-section of an idealized sixteen-pole TSBS. The TSBS is es

sentially a segmented three-phase permanent magnet synchronous machine (PMSM). That 

is, it consists of multiple, individually controlled three-phase windings. Therefore, each 

segment can be thought of as a three-phase motor on its own, with the phases for segment 

k denoted k, a and k, b and k, c. A traditional three-phase PMSM creates torque by inter

action of the flux from the surface-mounted PMs with the flux from the winding currents. 

Multiple segments permit radial force generation on the rotor in addition to torque. This 
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allows levitation of the rotor in addition to rotation. Therefore the TSBS provides three 

positional degrees of freedom. 

In its idealized conception [119], the four segments generate the four tangential forces 

Fi,y, F2,x, F3,y,Fi<x. Without segmentation, all of these forces are equal and only torque 

is generated, resulting in conventional PMSM operation. With four segments, unbalanced 

forces can be generated along each axis, specifically when F\tV / F^y and F%tX ^ F^x. In 

this case, net radial forces are applied to the motor in addition to torque. Each of the forces 

FitV, F2,x, Faty, F4tX is proportional to the current amplitude of its respective three-phase 

winding. 

In the absence of mechanical bearings, eccentric rotor positioning is possible. When 

the rotor is off-center, significant unbalance forces are induced from attraction between 

the rotor and die stator. As a result, the TSBS is an open-loop unstable system requiring 

radial position sensing and feedback control to maintain levitation. As with all synchronous 

machines, commutation of the three-phase currents for each segment requires knowledge 

of the rotor angle. This information is obtained from a rotary angle encoder. 

A salient feature of the TSBS is that it has a toomless stator. The purpose of the tooth

less stator is to produce smoother torque by minimizing cogging torque and detent. The 

combination of being toothless and contactless makes the TSBS ideal for precision motion 

control applications. An example of this is described in Chapter 1, Figure 1.8. 

5.2 Bearing force and torque modeling 

We develop static, analytical functions for radial force and torque for the TSBS. We define 

the stationary coordinate system shown in Figure 5.1, where x and y denote radial displace

ment of the rotor from the center of the stator. The angle 8 denotes the angle of the rotor 

relative to its "home" position, also depicted in Figure 5.1. The angular position along the 

stator is denoted by <& and has an origin defined by the x-axis. Under the primary assump

tion of a ID flux distribution, this section derives the motor's force and torque as a function 

of rotor position (a;, y, 0) and excitation currents. 

5.2.1 Current distribution 

Figure 5.2 shows the winding configuration schematically and for an actual TSBS. Each 

segment spans ir/2 mechanical radians (radM) and its circumferential location is defined 
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(a) schematic for single segment (b) actual toothless stator with windings 

Figure 5.2: Winding configuration. 

according to the stator angle $ by 

Each segment represents a three-phase concentrated winding consisting of 3M/2 winding 

stations where M is the number of PM pole pairs. The winding stations are depicted in 

Figure 5.2(a). Each winding station spans ir/(3M) radM and is composed of Nw wires, 

assumed to be uniformly distributed. The winding distribution for the a, b and c phases, 

iVa($), A^;,($), Nc(<&) respectively, are physically displaced relative to one another by 7r/3 

electrical radians (radE). For a high number of poles, which is the case in the practical re

alization of a TSBS to obtain sufficient bearing force and torque capacity, the concentrated 

windings are well approximated as sinusoidally distributed. Under a sinusoidal approxima

tion, we express the phase winding distributions as 

J V o ( $ ) = J V 0 s i n ( M $ - | ) , (5.2a) 

AT6($) = N0 sin ( M * ) , (5.2b) 

iV c ($ )=Ar 0 s in (M$ + ! ) , (5.2c) 

where JV0 is the amplitude of the sinusoidally approximated distribution. The windings for 

a prototype TSBS are shown in Figure 5.2(b). 

To obtain a sinusoidal current distribution, the three-phase currents «fe)aj *fc,6>*fc,c 
for 

segment k are correspondingly displaced by 7r/3 radE in phase angle. They are expressed 
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by 

«fc,o(ifc,Ik,9) = ikcos \M{6 + 7*) - - J , (5.3a) 

ik,b{ik, 1k,0) = ik cos (M(0 + 7fc)), (5.3b) 

«fc,c(4,7fc,#) = hcos ( M ( 0 + 7fe) + - J , (5.3c) 

and are controlled by their magnitude ik and optionally their phase angle 7/.. For now it is 

assumed that 7^ — 0, but in Chapters 6 and 7 we will consider how it can be advantageous. 

The current distribution for the k0* segment is thus given by 

4 ( < M ) = Na(*)ik>a{6) + Nb(*)iktb{e) + Nc(*)ikiC(0) 

= JVj fos in [M(*-0) ] . 

where NQ = 3NQ/2. The overall current distribution I is given by 

h, -7r/4 < $ < 7r/4 

J I2, TT/4 < <& < 3TT/4 

J J3, 3TT/4 < $ < 577/4 

h, 5TT/4 < $ < 7?r/4 

which is a sinusoid with a piecewise constant amplitude. Further analysis of the winding 

configuration is found in [103]. 

5.2.2 Magnetic flux distribution 

Magnetic circuit analysis [22] is adopted to estimate the flux distribution within the TSBS. 

In applying magnetic circuit analysis, we are assuming that a uniform flux flows across 

along discrete paths between the rotor and the stator. This is the so-called ID magnetic 

modeling approach because all of the magnetic flux contributing to force and torque is 

assumed to be radially directed across the air gap, and that tangentially-directed flux in the 

air gap can be neglected. For a toothless machine the ID approach is clearly an idealization 

since the iron does not provide discrete paths of flux flow. A partial-differential-equation-

based, i.e. 2D, approach is more general and can capture the force and torque contributions 

from tangential flux flow [101]. The benefit of the ID approach is that the force and torque 

expressions are considerably more simple. 

A ID characterization of the magnetic flux distribution involves superposition of two 

separate sources of air-gap flux density, namely the PMs and the stator windings. Super

position of is valid under the assumption that no saturation of the iron occurs. Figure 5.3 

shows the unwrapped geometry of the TSBS, and superimposed is a possible reluctance 
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Figure 5.3: Unwrapped geometry of the toothless self-bearing servomotor with decoupled 
magnetic circuits superimposed. 

network approach to model PM flux across the air gap. The TSBS is spatially discretized to 

approximate the PM reluctance Rm, winding region reluctance Rw, and air gap reluctances 

Rgi which vary from circuit to circuit. A de-rating factor iQ scales the PM reluctance as 

a way to approximate the effect of leakage flux in the air gap and iron is assumed to be 

infinitely permeable. Whereas a fully coupled reluctance network would lead to complex 

solutions for the air gap flux, we instead opt for decoupled magnetic circuits which is a 

reasonable approximation [50]. 

The PMs are modeled as constant flux sources with remanence flux <j>T = BrAm where 

Br is the remanence flux density and Am is the PM outer cross-sectional area. From Fig

ure 5.3, analysis of the ith magnetic circuit leads to expressions for the air gap flux given 

by 

<t>g,i(
x'y) 

KfR., e-Km 0 < i < 2M - 1. 9'*v " " Rm{x,y) + Rw + KtRm 

Correspondingly, the magnitude of the air gap flux density is approximated as 

<t>g,i(xiy) 

(5.4) 

Bg,mi(x,y) = 
A„ 

C^Bj-K^Rr, 
(5.5) 

R9i(xiV) + Rw + KlRr> 

where Ag is the cross-sectional area of the winding region opposite a PM, and C^ = 

Am/Ag is the flux concentration factor. Now, since the TSBS is toothless, then the air 

gap is annular, and the radial distance between the rotor and stator, g, can be approximated 
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by 

g(x, y, $) = go - x cos $ - y sin $, 

where go is the nominal air gap. Therefore, for the i* magnetic circuit, we approximate 

the air gap by the gi(x, y) := g(x, y, $») where <&; = 7rz/8 and it is assumed that 9 = 0. 

Therefor the air gap reluctances are given by 

R^y) = l ^ - (5'6) 

Our magnetic circuit models a flux density mat is a square-wave function of the stator 

angle, where the magnitude of the square wave varies from circuit to circuit, as determined 

by (5.5). The flux density is more realistic as a continuous function, which we obtain by 

assuming mat the air gap reluctance varies continuously as a function of <fr, i.e. 

„ , ^ 9o — x cos $ — y sin $ 

whereby the magnitude of the air gap flux density function becomes 

f=, , -c\ CsBfK^Rjn 
B ' ^ * $ ) = Rg{x^) + Rw + KeRm

 (5"7) 

Finally, we approximate the square wave flux density function by sinusoid of equivalent 

root-mean-square value [120], 

Bg,m(x, y, $, 9) = V2Bg,m{x, y, $) sin[M (* - 9)} 

^/2C(j)BrKlRm sin[M($ - 9)] 

Rg(x,y,<$>) + Rw + KeRm (5-8) 

TO! sin[M(0 - $)] 

rri2 — a: cos <& — y sin $ 

where constants TOI = y/^C^BrHoAgK^Rm and mi = fioAg^^Rm + Rw) + go are used 

to simplify notation in (5.8). 

The current distribution I is also a source of air gap flux. A decoupled reluctance 

network once again forms the basis for the following expressions, and the derivation is 

analogous to what was just described. As a rough approximation, we assume no tangential 

leakage flux and therefore the winding flux links all me turns in each coil. The resulting 

air-gap flux density distribution for the ith circuit is 

B (xv i>) ~ ^ ! * 
a'wA ^ k)~ AgiR^ + Rm + R^x^Y 

where the current magnitude ik is determined according to which segment the ith magnetic 

circuit is located based on (5.1). The continuous flux density magnitude for me /cth segment 
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is given by 

Bg,w(x,y,®,ik) 

(5.9) 

Ag{Rw + Rm + Rg{x,y^)Y 

and making a sinusoidal approximation to the square wave function, we have 

Bg<w,k(x, y, $ , 6, ik) = V2Bg,w(x, y, $, ik) cos[M($ - 9)} 

\/2N'Qik cos[M($ - 6)] 

~ Ag{Rw + Rm + Rg(x,y,$)) 

_ w\ik cos[M($ - 6)} 

u>2 — x cos $ — y sin <£> 

The above cosine approximation of the flux density indicates that the air gap flux due to the 

windings is displaced n/2 radE with respect to the current distribution. Furthermore, we 

have defined constants wi = \/2fi0NQ and w2 = /j,oAg(Rw + Rm) + g0. Note, however, 

that (5.9) applies to the kth segment, and that the overall flux density function Bg,w is only 

piecewise continuous. As a result, we are ignoring flux coupling between segments for the 

sake of maintaining simple expressions, however, inter-segment flux coupling is addressed 

in [102]. 

Figure 5.4 depicts the waveforms for the radial air gap flux density components and 

current distribution for a single segment. 

5.2.3 Force and torque calculation 

The total force and torque acting on the TSBS rotor is determined by integrating the Maxwell 

stress tensor [132, 114] over the surface of the stator. Generally speaking, the Maxwell 

stress tensor TM is given by 

TM = M 
\Hl-\& 

HyHX 

HZHX 

HzHy 

My - 2 # 

HzHy 

HXHZ 

HyHz 
TT2 1 TT2 

(5.10) 

where \x is the magnetic permeability, H is the magnitude of the magnetic field intensity 

vector and Hx,Hy, Hz denote the associated components in the cartesian coordinate system 

(x, y, z). The mechanical stress T acting on a surface element is calculated with 

T = TMen, (5.11) 

where en is vector perpendicular to the surface element. Now, consider the cylindrical sur

face S defined by the inner surface of the stator. When expressed in cylindrical coordinates 

(R, $, z), the surface element of the stator surface has a normal component in the R direc

tion only. Furthermore, having assumed that the tangential, i.e. ^-directed, component of 
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Figure 5.4: Unwrapped geometry of the toothless self-bearing servomotor showing the cur
rent distribution and air-gap flux density waveforms in Segment 1 as a function of the stator 
angle <1>. Here it is assumed that the rotor position (x, y, 6) = 0 for simplicity. The perma
nent magnets (PMs) are assumed to generate a uniform flux density across the air gap (as 
depicted by the flux lines in the bottom of the picture), of which the magnitude B3>m,i is 
approximated by magnetic circuit analysis. The square wave function is approximated as 
sinusoidal so that a continuous flux density distribution Bg^m results. The PM flux interacts 
with the current distribution I\ based on the assumption of sinusoidally distributed wind
ings. The sinusoidal distribution approximates a step-wise current distribution that results 
from the fact that the windings of the TSBS are actually concentrated. Finally, the wind
ings themselves are a source of air gap flux density, whose magnitude Bg,w,i is likewise 
determined from circuit analysis, and whose continuous approximation -Bg,w,i is displaced 
7r/2 radE with respect to h. The phase angle 7 denotes an offset between the current dis
tribution and the PM flux distribution. This phase offset 7 is studied in Chapter 6. 
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flux density in the air gap can be ignored, then the mechanical stress (5.11) expressed in 

cylindrical coordinates is 

T = 
TR,R 

^* , f i 

0 
= ~B9r 

0 

(5.12) 

where TR:R is the normal stress, T$tR is the shear stress, and mechanical stress perpendic

ular to the cross section of the rotor does not occur since no axial component of magnetic 

flux is assumed. The radially directed component of flux density Bg is simply the sum of 

air-gap flux densities contributed by the PMs and the stator windings, i.e. 

9 — <7>m "•" 9,W' 

The radius to the inner stator surface is r, and / is the current distribution on the inner stator 

surface approximated as a thin current sheet. 

The radial forces and torque acting on the rotor are determined by a integrating the nor

mal and shear stresses over the cylindrical stator surface S. The total normal and tangential 

force components are given by 

/•27T 

FR = / / TR<RdS = r / TR,Rd<5>dz = rL 

s 
•L /•27T ft* 

TR,Rd<S>, 

** = / / T*tlidS = r I \ T$)f ld$d2 = rL / T$ijRd$, 
J J Jz=OJ$=0 JO 

s 

where L is the axial length of the TSBS. The x and y axis components of force as well as 

torque are obtained from 

Fx = FR COS $ - F$ sin $ 
r2it P2TT 

= rL TRIRcos$d* -rL TQ^Rsin$d<I>, 
Jo ' Jo 

Fy = FR sin $ + F$ cos $ 
/>27r />27r 

= rL I TRtR sin $ d $ + rL T<f,:R c o s <&d<&, 
Jo Jo 

r = r2L 
/ • 2 T T 

T$ r d $ . 

(5.13a) 

(5.13b) 

(5.13c) 
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Substituting the normal and shear stress expressions from (5.12) into (5.13) gives 

rL f27r /"2ir 

Fx = — B2J§) cos $ d $ + L I B 9($)J(S) sin $ d $ 
2Mo Jo Jo 

= Fx,M + Fx,Li 

Fv = — £ 2 ( $ ) sin $ d $ - L / B f l($)/($)) cos $ d $ 
l^o Jo H 7o 

= FVIM + i^.L 

r 
/o 

/•27T 

rL / J5g(<E»)7($)d$. 

The tangential force components Fx^,Fy<L are Lorentz forces expressed in integral 

form. It is the Lorentz force that is the basis for levitation and torque. More precisely, we 

calculate the Lorentz forces and torque by 

4 
_2_ r^k 

FXtL(x,y,6,ik) = Lj^ S9 ,m(*)/fc($)sin$d$, (5.14a) 
fc=i Jlk 

4 fUk 
Fy,L{x, y, 6, ik) = -LJ2 B 9 , m (# )4 ($ ) cos cfrdS, (5.14b) 

r r ; Ju 

T(X, y, 9, ik) = ~rLj2 B9>ro($)/ f c(*)d$, (5.14c) 
fc=l Jlk 

with the limits of integration denned by lk = kw/2 — Sir/4 and uk — kn/2 — n/4. 

The normal force components FXIM,FVIM are Maxwell, or reluctance, forces which 

are destabilizing because they tend to draw the rotor towards the stator. More precisely, 

Fx,Mi FVtM are computed from the integrals 

rL -J-*, fUk 

Fx,M{x^^^k) = i^z2Z j (Bs,m($) + £ s , w , f c ($) ) 2 cos$d$, (5.15a) 
" " fc=i Jlk 2^0 

ruk 
FyiM(x,y,e,ik) =—-Y] / (B 5 i m (* )+S 9 , W i f e ($ ) ) 2 s in$d$ . (5.15b) 

2Mo £zf Jlk 

In order to evaluate the expressions for the integrals in (5.14)-(5.15) we make the harmonic 

approximation 

mi mi / xcos$ u s i n $ \ 
' 1 + + , (5.16) 77i2 — % cos <fr — y sin <fr mi \ mi mi 

which is good under the assumption that x2 + y2 -C m2,. This is a reasonable assumption 

in practice since m-i approximately represents the magnetic air gap, i.e. the PMs, winding 

region and mechanical air gap. The magnetic air gap is large in a toothless machine, and 

the rotor's displacement is limited to only a very small fraction of that by the touchdown 

bearings. 
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5.2.4 Reduction of control currents 

Evaluating (5.14)-(5.14) at the home rotor position (x, y, 6) — 0 gives 

_V2LN^m1 u-i2 
Fx'L- (P*-l)m2 " - a - - ^17a) 

V2LN^mi h-i3 
Fy'L = ( i * - l )m2 ' ~ 2 - ' ( 5" 1 7 b ) 

r = y , (5.17c) 
ffl2 4 

where P = 2M denotes the number of PM poles. Equation (5.17) is only valid for positive 

integer multiples of 4 for M because it results in an even number of poles in each segment. 

Equation (5.17) also confirm our earlier assertion that, in this ideal scenario, only Segments 

2 and 4 determine the x-axis force and only Segments 1 and 3 determine the y-axis force. 

It is evident that Fx^, FVtL and r can be obtained in a non-unique way from the control 

currents ik, 1 ̂  k < 4 since the control degrees of freedom exceed the mechanical degrees 

of freedom. A transformation is sought that yields individual control of force and torque 

with new inputs ix, iy and ig. Such a transformation can be obtained by setting 

U — 12 

H 

2 ~ x ' 
n - 1 3 

2 " * » ' 
+ i2 + h + U 

4 

To obtain a unique solution, we impose a constraint on the balance of torque generated by 

the x-axis currents, i2,U, and by the y-axis currents, i\, 13. This constraint can be expressed 

as 

= \i0, 0 < A < 1 

where A is defined as the fraction of total torque generated by the y-axis currents. Thus, the 

input transformation is 

i\ — 2Xig + iy, (5.18a) 

i2 = 2(1 - A)»fl - i ^ (5.18b) 

is = 2Xig — iy, (5.18c) 

iA = 2(1 - \)i6 + ix. (5.18d) 

Setting A = 1/2 means equal torque generation from each quadrant and was the intuitive 

choice originally proposed in [120]. Nonetheless, A is a potentially useful degree of free

dom for control which will get exploited in Chapter 6. By substituting (5.18) into (5.17), 
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*x, «!/,*« 

Figure 5.5: Plant schematic. Twelve physical inputs (the current for each of the twelve 
phases), are effectively controlled by the three virtual inputs ix,iy,ig. The 3-to-4 transfor
mation is given by (5.18), and the l-to-3 transformations are given by (5.3). 

independent of the choice of A, we get 

_V2LN^rrn. 
*x,L - ( p 2 _ 1 ) m 2 **, 

(P2 - l)m2
 y' 

irrLNQini 

m,2 -ie 

which decouple force and torque. Decoupling simplifies the control and the dynamic model 

becomes square, i.e. where input and output dimensions are equal, such that it is amenable 

to decentralized control design. Figure 5.5 illustrates the plant schematically under the input 

transformation. 

5.2.5 General expressions 

We now give the complete force and torque expressions in the general case where the rotor 

is not in the home position, i.e. (x, y, 0) ^ 0. Evaluation1 of the Lorentz integrals (5.14) 

'in the general case where (x,y,9) ^ 0, the integrals are evaluated with the aid of a symbolic mathematical 
package. These calculations can be obtained from the author by request. 
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yields 

yfiLN&mi (P 2 - 1 + cos(P6Q) , V^PLN^mj sin(P6>), 
X'L ~ (P2 - l )m2 *x (P2 _ i ) m 2

 %v 

V^LN^rm (P2 - 1 + cos(P6>)) , ^PLN^rm sin(Pfl). 
y- L ~~ f D2 1 \ ™ ^ + 

2m2, 

(P2 - l )m2 "v ' (P2 - l)m2 "x 

ie, (5.1%) 
itLN'Qmix. 

TrrLN^ru! . y/2rLN()m1[Psm(Pe)x - (P 2 - 1 + cos (Pg))y] 
^ Z 0 + (P 2 - l)m2 

V2rLN(im1[Ps\n(Pe)y + (P 2 - 1 + cos(P6»))a: 

(^2 - 1) 
+ v ° 1L ,%*/ U V _ . V " V (5.19c) 

The Lorentz forces (5.19) are nonlinear, fully coupled, and characterized by their linear 

dependence on the control currents ix,iy and ig. Rotor-angle-dependent cross-coupling is 

apparent; there is also an orthogonal position dependence when torque is being generated, 

i.e. Fx^L,FytL are functions of y,x respectively when ig =£ 0. This can be physically 

explained by the fact that an eccentric rotor strengthens the Lorentz force in one segment 

(e.g. Segment 3) and correspondingly weakens that of the opposite segment (i.e. Segment 

1) if equal currents are applied to each. Since ig is applied equally to opposing segments, 

then a radial force will accompany rotor eccentricity. 

Evaluating the Maxwell integrals (5.15) results in lengthy force expressions. The Max

well forces are physically representative of the magnetic attraction between the rotor and 

stator. These force are not being usefully exploited, and are in fact destabilizing because 

their tendency is to pull the rotor away from the center of the stator. The most significant 

components of Maxwell forces are the negative stiffness terms 

FX,PM = -z £x, (5.20a) 

_ irrLm2 

Fy,PM = -z jy- (5.20b) 

The term negative stiffness comes from the fact that the linear force-displacement relation

ships in (5.20) are opposite to the restoring force-displacement relationship of a traditional 

spring. This negative stiffness is due to the PMs being attracted to the stator back iron. 

Maxwell force terms also result from the winding flux attracting the rotor back iron. For 
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the centered rotor these additional forces are 

VlrLwl [(P2 - 1 - cos(P9))iyie - Psin(P9)ixie] 
kx,W! = 7^0 Tr~2 ' (5.21a) 

sj2rLw\ (cos(P0) - P2 + l)ixig - P sm(Pd)iyie] 
Fy,Wl = j-^2—7T~~2 • (5.21b) 

The forces (5.21) are termed center-rotor side pull [120]. As expected, these forces are 

quadratic in current, similar to the force principle behind AMBs. In addition, center-rotor 

side pull only occurs when torque is generated. This is sensible because for opposing 

segments, e.g. Segments 1 and 3, ig is analogous to a bias current and iy is analogous to a 

differential current since i\ = 2Xig + iy,i^ = 2\ig — iy. If ig = 0 then opposite currents 

are applied to opposing segments, e.g. i\ = —is, the corresponding Maxwell forces cancel. 

If ig j^ 0, then a net Maxwell force will result along the x axis. 

For an off-center rotor, the remaining Maxwell force terms due to winding flux attrac

tion are2 

_ wrLwjx .2 rLw2 ((ir + 2)x xcos(P9) + Mysin(P9)\ .2 
X'W2 ~ ~2~i^4l6 + 2^4 { 2 W=i ) l y 

rLw2 f(7r-2)x xcoS(P6) + Mysm(P6)\ .2 + 2~i^4 \ ^ ~ + m=i )lx' (5'22a) 

nrLw\y ., rLw2 ((•K + 2)y y cos(P6) - Mxs'm(P9)\ ,2 
y'W2 ~ 2^w\ e 2/iowf ^ 2 M2 - 1 J 

rLw\ f(w-2)y ycos(P9) - Mxsin(P9)\ .2 

2,Qwl \—2- + M--X ) * ( 5 - 2 2 b ) 

The Maxwell forces (5.22) have components that are individually quadratic in each of the 

control currents. Finally, the Maxwell force integrals produce cross terms from multiplica

tion of Bgtm and Bg<Wik. The cross terms are 

y/2rLm1wi(Pcos(P0)ix-sm(P9)iy) 
^x,x = j-^2 -n - (5.23a) 

Mo(" - 1)^2^2 
V2rLmlWl {P cos(P9)iy + sin(P9)ix) 

rv,x = 7^2—7\ • (5.23b) 

The cross terms are interesting in that they are linearly dependent and constructively inter

fere with the rotor-angle-dependent cross-coupling terms in the Lorentz-force expressions. 

The total forces Fx, Fy are the sum of terms (5.19)-(5.23), 

Fx = FX,L + FX,PM + Fx,Wi + FXiw2 + FXtx, (5.24a) 

Fv = FViL + FVIPM + Fy,Wl + Fy>w, + FViX, (5.24b) 

and the only contribution to torque is from (5.17c). 
2Maxwell force terms with a quadratic position dependence are significantly outweighed by terms having a 

linear position dependence and are thus ignored. 
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5.2.6 General model structure 

We may obtain a more compact formulation of (5.24) by additional modeling approxima

tions and grouping of like terms. Specifically we assume that P 2 - 1 » cos(P9) and 

(•K ± 2)/2 » coa(P9)/(M2 — 1). Applying these approximations to (5.24) gives 

Fx = [e*i - a2cos(P6)]ix - a3s'm(P9)iy - a4yie + a5x + a6iyie - a7sm(P9)ixi0 

+ a8x[2Tcij + (TT + 2)i2
y + (n - 2)i2

x] + a9y sin(P0)(i£ - j2), (5.25a) 

Fy = [ai — a2 cos(P9)]iy + Q3 sm(P9)ix + a^xie + a$y — a%ixie — a7 sm(P9)iyig 

+ a8y[2Tri2
e + (TT + 2)i\ + (TT - 2)i\\ + aQXsm(P9)(fx - i2

y), (5.25b) 

T = fiiig + (32{xiy - yix) + /33(xix + yiy) sin(P0), (5.25c) 

for constant parameters a;, 1 < i < 9, and (3j, 1 < j < 3. In the sequel, we identify these 

parameters and obtain a simplified version of (5.25) by discriminating between significant 

and insignificant terms in the model. 

In the following discussion, we will refer to specific terms of the force and torque 

expressions based on the subscript of the parameter associated with the term. For example, 

force Term 2 refers to both a2 cos(P6)ix and a2 cos(Pd)iy. 

5.3 Parameter identification 

The coefficients a*, (3j from (5.25) are constants which are dependent upon previously de

fined parameters. We cannot, however, determine the values of a*, (3j with sufficient accu

racy on a purely analytical basis. The main reason for this is the motor's geometry. Specifi

cally, well-defined paths for uniform flux flow do not exist in a toothless motor. In addition, 

force and torque contributions may exist from tangential flux. Therefore, we may only 

coarsely approximate Rm, i?™, i?fl, A9, C ,̂ and Kg. In practice, uncertainty in the value of 

these parameters inevitably arises. For example, it is difficult to model actual PMs due to 

their multi-valued material property, and the motor construction process creates irregular

ities in the geometry and the windings. Instead, we estimate the parameters by empirical 

means and employ identification techniques, i.e. curve fitting. Due to the linear parameter

ization of (5.25), we use linear, i.e. ordinary, least squares to obtain a global solution to the 

curve fit. FEA data can be conveniently employed for this task. 

From FEA we obtain a force and torque data set 

(Fx[l],Fy[l},r[l},...,Fx[KlFy[K},T[K}) 
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from a sufficiently informative set of operating points (£[1],. . . , £[K]) where 

£[k] = (x[k},y[k},e[k},ix[k},iy[k},ie[k}) 

and 1 ^ k ^ K, K being the size of the data set. An informative data set ensures that 

we may discriminate between all significant terms in our force and torque expressions and 

that a numerically well-conditioned solution exists [72]. Linear least squares estimates 

parameters via pseudo matrix inversion so as to minimize the sum of squares of differ

ences between the predicted and actual data points (in this case, the difference between 

the simulated and analytical force and torque). The underlying assumptions of this tech

nique are that the model is correct and that the errors between the model predictions and the 

data points are, statistically speaking, uncorrelated, have zero mean, and a constant vari

ance. To demonstrate, consider that we are calibrating the torque model. The parameters 

O = (/3i, /%, Psf are estimated by 6 = ($ T $) _ 1 $ T C/ where © is the parameter estimate, 

U = (T[1], . . . , T[K])T and $ = [$i $ 2 $3] such that 

$ i = (ifl[l],...,*fl[JKl)T, 

$2 = {{xiy - yix)[i\, •••, {xiy - yix)[K])T, 

$3 = ((xix + yiy) sin(P0)[l] , . . . (xix + yiv) sin(P0)[.ft:])T. 

Since the general model has twelve parameters to be identified, it is desirable to reduce 

this number by retaining only the terms associated with parameters which noticeably im

prove the model fit-to-data. Pragmatically, we consider a set of candidate model structures, 

specifically models with a reduced number of terms, and evaluate each model by its average 

squared prediction error ere/K where e = U — <I>0 defines the prediction error. 

5.4 Finite element analysis 

FEA data is utilized for parameter identification and to test the quality of the resultant 

model. The reason for this is that FEA simulates more complex phenomena that is not ex

plicitly modeled, such as tangential flux flow and saturation of the iron. Furthermore, FEA 

provides a convenient basis to compare the quality of our model to other TSBS modeling 

efforts based on a 2D flux model [103]. These results are shown at the end of this chapter. 

The FEA solutions are based on the TSBS geometry depicted in Figure 5.6 and is rep

resentative of an experimental TSBS at the University of Alberta that was built by Airex 

Corporation (Somersworth, NH). The depicted TSBS has sixteen PM poles and the wind

ing stations are modeled as solid conductors. A quantitative description of material and 

geometric properties is given in Table 5.1. 
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Figure 5.6: finite element analysis (FEA) geometry for a sixteen-pole TSBS. A solid model 
was developed in Pro/Engineer from which geometry was exported to the FEA software 
ANSYS (courtesy of C. Forbrich). 

Parameter 
windings/station 
length (L) 
rotor ID 
PM remanence (Br) 
PM thickness 
steel material 

Value 
40 
74.2 mm 
126.4 mm 
1.3 T 
8.6 mm 
Carbon 1026 

Parameter 
winding thickness 
nominal air gap (50) 
rotor iron thickness 
stator iron thickness 
PM width 
PM material 

Value 
6.2 mm 
0.9 mm 
7.1mm 
6.1 mm 
27.0 mm 
Nd-Fe-B N44H 

Table 5.1: Geometrical and material parameters of a simulated toothless, self-bearing ser
vomotor (TSBS). The TSBS is simulated using finite element analysis, and its geometry is 
shown in Figure 5.6. 

i-L 

Figure 5.7: Average bearing capacity: £ = (0,0,7r/32 rads, ix, 0,0). 
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Figure 5.8: Average torque capacity: £ = (0,0,7r/48 rads, 0,0, ig). 

Each FEA solution corresponds to the force and torque generated at the operating point 

£ = (a;, y, z, ix,iy, ig). By proper choice of operating points we are able to isolate most of 

the individual force and torque terms and thus identify the corresponding coefficient. This 

brings to light the key force and torque characteristics of the TSBS, namely the static capac

ity, ripple, and displacement sensitivity. Figures 5.7-5.13 present some identification data. 

Figures 5.7-5.8 plot the average static bearing force and torque capacities for the operating 

points £ = (0,0,7r/32 rads, ix, 0,0) and £ = (0,0,7r/48 rads, 0,0, ig) respectively. From 

this we identify the direct force constant a\ and torque constant fi\. Linearity is confirmed 

over the operating regime, however note that due to the common coil winding scheme, the 

demands for bearing force and torque must be shared. Since a\, j3\ are averaged over an 

electrical period of the motor, in Figures 5.9-5.10 we investigate how significant the force 

and torque variation is with respect to rotor angle 6. Figure 5.9 shows the direct and cou

pled force ripple for the case of £ = (0,0,0,1 A, 0,0), whereby we identify the direct force 

ripple amplitude «2 and orthogonal force ripple amplitude as. Both a<i and 0:3 are less 

than 10% of the average, but could be potentially significant If unbalanced radial loading 

conditions exist, e.g. \iix > iy. Encouragingly, Figure 5.9 confirms that the sinusoidal 

approximation in our modeling is fairly accurate in characterizing the ripple waveform. 

Figure 5.10 depicts the torque ripple for £ = (0,0,0,0,0,1 A). While the nominal 

torque model (5.25c) theoretically predicts no cogging for a centered rotor, a ripple ap

pears that is periodic with the winding station pitch. As discussed in prior work [102], the 

waveform is mainly characterized by a third harmonic resulting from the existence of con

centrated windings, as opposed to the initial assumption of sinusoidally distributed ones. 

To confirm that this is in fact the case, we augment the torque model with a fourth term, i.e. 

T = Pxig + (32{xiy - yix) + /33(xix + yiy) sm(P9) + /34 cos(3P0)ie. 

Figure 5.10 shows a modeled torque waveform accounting for the effect of concentrated 
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Figure 5.9: Centered-rotor force ripple: £ = (0,0,9,1 A, 0,0). Amplitude of Fx waveform 
is «2 and the amplitude of Fy waveform is a^. Radial force coupling with rotor angle 
dependence is apparent. 
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Figure 5.10: Torque ripple: £ = (0,0,6,0,0,1 A). Amplitude of waveform is f3±. 
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Figure 5.11: Negative stiffness: £ = (x, 0,0,0,0,1 A). 
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Figure 5.12: Torque displacement sensitivity: £ = (x, 0, TT/32 rads, 1 A, 1 A, 1 A). 

windings. Modeling this effect does visibly improve the fit, but it is not practically nec

essary in this particular example as the ripple is extremely small (< 1%). Moreover, the 

modeled cogging torque associated with rotor eccentricity, torque Term 2, does not appear 

to be significant as well. 

Figure 5.11 displays the motor's displacement sensitivity for £ = (a:, 0,0,0,0,1 A). 

The direct displacement sensitivity is significant and dominated by force Term 5, the PM 

attraction to the stator back iron. Superimposed, and less significant is force Term 8, which 

is representative of rotor attraction to the windings. Figure 5.13 shows the force pro

duced by center-rotor side pull (force Term 6) in isolation. The large magnetic air gap 

of the TSBS appears to render Maxwell force contributions from to winding flux rela

tively insignificant. Orthogonal displacement sensitivity due to the Lorentz force is too 

small to register over the actual motor's allowable range of motion and operating currents, 

and therefore it is not shown. Figure 5.12 shows the torque displacement sensitivity for 

£ — (x, 0,7r/32 rads, 1 A, 1 A, 1 A). This dependence only becomes a significant effect in 

extreme operating conditions, e.g. ix,iy ~> ig and the rotor is far off center. 

A total of if — 175 operating points comprise the identifying data set. To reduce the 

complexity of the model (5.25), we consider approximate force and torque expressions with 

a reduced number of terms. These approximations are evaluated based on their prediction 

error and some examples are listed in Table 5.2 alongside their corresponding average pre

diction error. The comparison of force models ultimately indicated that the majority of data 

is characterized by force Terms 1, 2, 3, 5, and 6. All of the remaining force terms yielded 

less than 0.1% reduction in the prediction error. 

A comparison of torque models shows that each of the four terms yields a perceptible 

improvement in modeling the data, which is shown in Figure 5.15. Torque Term 3, however, 

yields only a marginal improvement in the torque prediction error. Hence, the modeled 
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force and torque curves presented in Figures 5.7-5.14 are based on force Terms 1,2,3,5 

and 6 and torque Terms 1,2 and 4. The values of these identified parameters are given in 

Table 5.3. 

Although the identified model is shown to align well with the chosen estimation data 

set, a good test of die model is to compare its prediction of force and torque to to that from 

FEA for operating points not used to identify ati,/3j. Tables 5.4-5.6 present a validation 

data set. These Tables are adapted from [102], in which PDE modeling of a 24-pole TSBS 

is considered. For each operating point, we give the FEA solutions to force and torque 

alongside what is predicted by the identified model. The third and fourth columns under 

each of Fx,Fy and r compare the prediction error for a 2D flux-based model of [102] 

to the prediction error of our identified model. The comparison shows that our identified 

model provides similar accuracy to that of a more complex PDE model. While the result 

of [102] is based on a 24-pole TSBS, it would be reasonable to expect similar accuracy 

on a 16-pole TSBS such as ours since the design and material properties are similar. As 

further validation, Figures 5.14-5.15 presents force and torque ripple waveforms for the 

more complex operating point £ = (—0.2 mm, 0,6,5 A, 2 A, 1 A). The model predictions 

align reasonably well. 

In summary, our results suggests that a force and torque model based on a ID flux dis

tribution with identified parameters can achieve a comparable level of accuracy to a model 

based on a 2D distribution. Having taken a semi-analytic approach, i.e. combining ana

lytical and identification techniques, to obtain a model we avoid the complexity associated 

with developing a model on a purely analytical basis [103, 102]. We remark that although 

the FEA geometry being studied is representative of an experimental TSBS, we were not 

testing the absolute accuracy of die model in identifying parameters. FEA provided a con

venient basis for comparison, and tested the quality of the model structure. With that being 

said, the parameters identified from FEA provide reasonable estimates of actual values and 

is therefore a starting point for controller development. 

In principle, our modeling efforts provide new avenues to explore in the way of control 

system design. For example, our nonlinear model retains rotor angle dependence, unlike the 

linearized models previously put forth. In practice, whether nonlinear compensation of the 

TSBS is necessary depends on the actual system. In the case study just considered, rotor-

angle-dependent cross-coupling as well as winding-flux-induced Maxwell forces do not 

appear to be significant. As such, we develop a dynamic model in the next chapter based on 

further simplification of the force and torque expressions, and employ experimental means 
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Figure 5.13: Centered-rotor side pull: £ — (0,0,0,0,1 A, ig). 
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Figure 5.14: Validation force data: £ = (-0.2 mm, 0,9,5 A, 2 A, 1 A). 

to identify parameters. From our modeling efforts, however, we see potential in exploiting 

the additional control variables, in particular the phase offset 7 and the torque distribution 

parameter A. 

5.5 Conclusions 

A bearing force and torque model is presented for a toothless self-bearing servomotor based 

on analytic and identification techniques. The analytic modeling is based on a ID magnetic 

flux distribution, and a complete characterization yields coupled, nonlinear expressions. We 

abstract the general model structure and identify the parameters via linear least squares. In 

addition to identifying parameters, we acquire a more compact model by identifying and 
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Figure 5.15: Validation torque data: £ = (—0.2 mm, 0,#,5 A, 2 A, 1 A). 

Force Torque 
included terms (eTe)/K included terms (eTe)/K 

1,2,3,5 
1,2,3,5,6 
1 - 9 

0.0945 N2 1,2 
0.0791 N2 1,2,4 
0.0791 N2 1-4 

0.0015 (N-my 
1.31e-4(N-m)2 

1.30e-4(N-m)2 

Table 5.2: Comparison of identified force and torque models. It is evident that numer
ous terms from the general force and torque model (5.25) do not significantly reduce the 
prediction error. These terms which do not significantly reduce the prediction error are 
disregarded. 

Parameter 
Oil 

a.i 

a 3 

a 5 

ae 

Force 

Value 
19.36 

1.50 
1.29 

334.23 
0.04 

Units 
N/A 
N/A 
N/A 
N/mm 
N/A2 

Parameter 

0i 
P2 
Pi 

Torque 
Value 

3.85 
185.19 

0.02 

Units 
N-m/A 
N/A 
N-m/A 

Table 5.3: Identified force and torque parameters. The parameters retained were those 
associated with terms that improve the fit-to-data, based on the results of Table 5.2. 
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Operating Point FX(N) 

ix 

[A] 
0 
3 

0.5 
0 
0 
2 
2 
0 
2 
0 
2 

V 
[A] 
0 
0 

1.5 
1 

0.2 
1.5 
1.5 
0 

1.5 
0 

1.5 

•e> 
[A] 
2 
0 
0 
2 

0.5 
0.5 
0.5 
0 

0.5 
0 

0.5 

X 

[mil] 
0 
0 
0 
0 
0 
0 
0 

-20 
-20 
10 
10 

y 
[mil] 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 

0 
[deg.] 

0 
0 
0 
0 
0 
0 

11.25 
0 
0 
0 
0 

FEA 
0.00 

53.51 
8.92 
0.08 
0.00 
35.70 
41.25 

-170.61 
-134.92 
85.19 
120.90 

model 
0.00 

53.55 
8.93 
0.08 
0.00 
35.73 
41.75 

-170.30 
-134.57 
85.15 
120.88 

%error 
-

0.08 
0.09 
0.00 
0.00 
0.07 
1.21 
0.18 
-0.26 
0.04 
-0.02 

%error[102] 
-

0.58 
0.58 
2.27 
0.58 
0.58 
0.37 
1.14 
1.57 
1.05 
1.25 

Table 5.4: x-axis force validation data from [102]. The first six columns on the left define 
the operating point. The identified model's force prediction is compared to that of finite 
element analysis (FEA) and the percentage error is given. An analytic force model based 
on a 2D flux distribution is developed in [102] and its accuracy is tested on a similar system 
using FEA. The percentage error for the same set of operating points is given in the right-
hand column. A comparison of the two percentage errors show that a comparable level of 
accuracy is achieved. Note that 1 mil = 25.4 /Ltm. 

discarding insignificant portions of the model. Based on FEA results, our force and torque 

expressions compare well to a purely analytic force and torque model based on a 2D flux 

distribution. The resulting model is relatively simple and provides new avenues to explore 

in the way of control design. 
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ix 
[A] 
0 
3 

0.5 
0 
0 
2 
2 
0 
2 
0 
2 

>y 
[A] 
0 
0 

1.5 
1 

0.2 
1.5 
1.5 
0 

1.5 
0 

1.5 

Operating Point 

ifl 
[A] 
2 
0 
0 
2 

0.5 
0.5 
0.5 
0 

0.5 
0 

0.5 

X 

[mil] 
0 
0 
0 
0 
0 
0 
0 

-20 
-20 
10 
10 

y 
[mil] 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 

e 
[deg.] 

0 
0 
0 
0 
0 
0 

11.25 
0 
0 
0 
0 

FEA 
0.00 
0.00 
26.76 
17.84 
3.57 

26.72 
30.88 
0.00 
26.71 
85.27 
112.00 

model 
0.00 
0.00 
26.78 
17.85 
3.57 

26.74 
31.25 
0.00 
26.74 
85.25 
111.89 

Fy(N) 

%error 
-
-

0.07 
0.15 
0.00 
0.07 
1.21 

-
0.10 
-0.14 
-0.10 

%error[102] 
-
-

0.58 
0.07 
0.58 
0.58 
0.37 

-
2.88 
1.05 
0.44 

Table 5.5: y-axis force validation data from [102]. The first six columns on the left define 
the operating point. The identified model's force prediction is compared to that of finite 
element analysis (FEA) and the percentage error is given. An analytic force model based 
on a 2D flux distribution is developed in [102] and its accuracy is tested on a similar system 
using FEA. The percentage error for the same set of operating points is given in the right-
hand column. A comparison of the two percentage errors show that a comparable level of 
accuracy is achieved. Note that 1 mil = 25.4 /j,m. 

ix 

[A] 
0 
3 

0.5 
0 
0 
2 
2 
0 
2 
0 
2 

h 
[A] 
0 
0 

1.5 
1 

0.2 
1.5 
1.5 
0 

1.5 
0 

1.5 

Operating Point 

»e 
[A] 
2 
0 
0 
2 

0.5 
0.5 
0.5 
0 

0.5 
0 

0.5 

X 

[mil] 
0 
0 
0 
0 
0 
0 
0 

-20 
-20 
10 
10 

y 
[mil] 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
10 

e 
[deg.] 

0 
0 
0 
0 
0 
0 

11.25 
0 
0 
0 
0 

FEA 
7.72 
0.00 
0.00 
7.71 
1.93 
1.93 
1.90 
0.00 
1.80 
0.00 
1.90 

model 
7.71 
0.00 
0.00 
7.72 
1.93 
1.93 
1.91 
0.00 
1.79 
0.00 
1.91 

r (N-m) 

%error 
0.04 

-
-

0.04 
0.00 
0.00 
0.14 

-
-0.66 

-
0.22 

%error[102] 
2.32 

-
-

2.32 
2.32 
2.32 
0.96 

-
2.28 

-
2.29 

Table 5.6: Torque force validation data from [102]. The first six columns on the left define 
the operating point. The identified model's torque prediction is compared to that of finite 
element analysis (FEA) and the percentage error is given. An analytic force model based 
on a 2D flux distribution is developed in [102] and its accuracy is tested on a similar system 
using FEA. The percentage error for the same set of operating points is given in the right-
hand column. A comparison of the two percentage errors show that a comparable level of 
accuracy is achieved. Note that 1 mil = 25.4 ^m. 
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Chapter 6 

Dynamic Modeling and Control of a 
Toothless Self-Bearing Servomotor 

In this chapter, we migrate from a static analysis of force and torque characterization to 

dynamic modeling and feedback control of the toothless self-bearing servomotor (TSBS). 

It is here that we realize the benefits of our modeling efforts so that improved performance 

is ultimately realized. 

6.1 Introduction 

The Lorentz force is an attractive alternative to the Maxwell force as a basis for magnetic 

levitation. The principle advantage of Lorentz levitation is linearity between the applied 

current and the resulting magnetic force, thus enabling bi-directional force generation. 

Therefore, the magnetic force can be repulsive as well as attractive, unlike the reluctance 

force which can only be attractive. The Lorentz force can provide both magnetic levitation 

and propulsion because it exploits a motor principle. The integration of magnetic levitation 

and motoring through a common Lorentz principle has led to the contactless linear drive 

used in precision positioning platforms [62, 94], and in the rotary version, all-Lorentz self-

bearing motors (SBMs) [101, 123]. As a precision servo-drive, the TSBS can be viewed as 

both an all-Lorentz SBM as well as a precision positioning platform. The TSBS produces 

minimal cogging torque and detent because of its toothless construction and contactless 

nature, and was conceived as a potential alternative to mechanical gimbals in precision 

pointing and slewing applications. 

Although the TSBS was designed to produce smooth torque, it also possesses some 

undesirable levitation characteristics. From the FEA study in Chapter 5, it is clear that the 

TSBS has a low bearing capacity relative to conventional active magnetic bearings (AMBs). 
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Low bearing capacity leads to a restricted region of operation and can pose startup difficul

ties. A second problem is that, in the presence of input saturation, bearing forces are in 

conflict with torque since both are generated from a common winding set. The purpose of 

this chapter is to show that both of these problems can be alleviated, to varying degrees, by 

advanced control. 

Central to the ideas in this chapter is exploitation of previously unutilized control vari

ables. As it was originally conceived, the TSBS generates four tangential control forces to 

produce motion in 3DOF. This is shown in Figure 6.1. Each control force is generated from 

an individual three-phase winding driven by its current magnitude. The established con

trol design consists of a static four-to-three input transformation leading to a decentralized 

control [101]. In this chapter we present a more general operating principle of the TSBS 

through the additional manipulation of the phase angle 7 in the commutation scheme. This 

generalization is simply based on established work on the commutation and control of all-

Lorentz SBMs and linear permanent magnet synchronous motors (LPMSMs). Specifically, 

all-Lorentz SBMs, with the exception of the TSBS, are levitated by three-phase currents 

where the phase angle determines the direction of the net radial force [90, 61]. Likewise, 

LPMSMs utilize vector control of three-phase windings to generate suspension (normal) 

and propulsion (tangential) on the translating member [124]. By analogy, phase-angle ma

nipulation of the TSBS generates normal forces on the rotor in addition to tangential forces. 

The benefit is radial load balancing, in effect current equalization among segments, in

dependent of rotor position and the direction of loading. Manipulating a common phase 

angle among all four segments of the TSBS, we devise an active load balancing scheme 

that achieves performance benefits relative the established commutation and control of the 

TSBS. Specifically, phase-angle manipulation permits an expanded range of rotor posi

tioning including alleviation of startup difficulties. We also show that a four-to-four input 

transformation recovers a free control parameter. We use this parameter to maximize torque 

production in a priority scheme mat resolves the force-torque conflict. As a basis for this 

control redesign, we begin this chapter with a derivation of a dynamic model for the TSBS 

that incorporates phase-angle manipulation as well as modeling results from Chapter 5. 

6.2 Generalized force and torque generation 

We briefly revisit force and torque modeling from Chapter 5 to include the phase-angle 

manipulation in the commutation scheme, and to establish the expressions which will form 
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a basis for the dynamic model. 

To derive the control forces in terms of the excitation currents, we recall from Figure 6.1 

the 3DOF coordinate system (x,y,6) and the stator angle $ over which we integrate to 

calculate force and torque. The air-gap flux density due to the permanent magnets (PMs) 

is given by (5.8), and the winding distribution is given by (5.2). Three-phase currents for 

Figure 6.1: A sixteen-pole, toothless self-bearing servomotor (TSBS). The x and y axes 
denote rotor coordinates relative to the stator center, $ is the stator angle and 9 is the rotor 
angle. The four control forces are denoted Fi>y, i^.x, FsjV and F^x. 

segment k, when controlled by their magnitude ik and phase angle -yk, are expressed as 

ik,a{ik,Ik,9) = ik cos [M{9 + jk) - - J , 

h,b(ik,lk,S) = ik cos (M(6 + 7fc)), 

ik,c(ik,7k,0) = ik cos (M{0 + jk) + - J . 

For simplicity, it is henceforth assumed that all segments share a common phase angle such 

that 7^ — 7,1 < k < 4. The resulting current distribution for the kth quadrant is thus given 

by 

Ik(ik, 7, $, 6) = Na($)ikia(ik, 7,9) + Nb($)ikj,(ik, 7,0) + Nc(<P)ik:C(ik, 7,9) 

= JVj5t f c s in[M($-0-7) ] , 
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The x- and y-axis Lorentz forces FXti, FVtL and torque r are now computed from the inte

grals 

4 
v ^ fUk 

Fx,L(x,y,9,ik, l) = L\ / fl9,m($)Jfc(*)sin*d*, (6.1a) 
fc=i ^ 

FV,L{X, y, 0,i fc,7) = -LJ2 B s , m ( $ ) 4 ( $ ) c o s $ d $ , (6.1b) 
fc=i •"* 

TL(x,y,d,ik,1) = -rL^ 5 9 > m (*) /*(*)d$. (6.1c) 

fc=i ""* 

Evaluation of (6.1) is obtained through the harmonic approximation (5.16). Form the insight 

obtained in Chapter 5, we assume that force and torque has a negligible dependence on rotor 
angle. Therefore, we use approximate expressions obtained by evaluating (6.1) at the home 

rotor, (x, y, 6) = 0: 

FxAh,D = f p ^ Z l ( V c 0 S ( M 7 ) ! i ^ - s i n ( M 7 ) ^ p ) , (6.2a) 

F * * ^ = W ^ t ( ^ o s ( M 7 ) ^ + s i n ( M 7 ) ^ p ) , (6.2b) 

= nrLN>mlCoS(M7) / f l + j 2 + j 3 + j 4 \ _ 

m2 \ 4 / 

where P = 2M and (6.2) is valid for M being a positive integer multiple of 4. The a;- and 

y-axis Maxwell forces FXIM, FVIM are obtained by 

rL v-^ /'"fe 

Fx,M(x, y, 6, ik, 7 ) = — - V / (B9, ro(*) + SSitl),fe($))2 cos $ d$, (6.3a) 

rL v ^ fUh 

FyM{x, y, 6, ik,j) = —22 {Bg>m($) + BgtWM($)f sin $ d*, (6.3b) 
^° fc=i •'''= 

where BgtW<k is the air-gap flux due to the fcth segment's stator windings and given by (5.9). 

integrals (6.3) are approximated the dominant negative stiffness as well as the cross terms 

described in Chapter 5: 

_ nrLm2 V2LrmiWiP2 sm(Mj) (i\ — i$\ 
X'M 2/j,0ml (P2 - l)/j,0m2W2 V 2 / ' 

•nrLm2 \[2Lrm\W\P2sin(M7) (i\— %2\ 
F*>M = 2^4V + (P2 - l)Mom2W2 [ - 2 - ) • ( 6 - 4 b ) 

The combination of the Lorentz forces (6.2) and the Maxwell forces (6.4) approximates 

the total force Fx>m, Fy^m and torque r . Lumping parameters, the total force and torque is 
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given by 

Fx,m(x,ik,l) = ®dcos(M7) ( 4 J - acsin(M7) I 1 j + axx, (6.5a) 

Fy,m{y, ik,7) = adcos(Mj) I 1 J + acsin(M7) ( 4 2 J + a^y, (6.5b) 

r(ik, 7) = a-r cos(M7) — <1—— —, (6.5c) 

where ay, ac denote the direct and cross current gains, ax is the negative stiffness gain, 

and aT is the torque constant. For 7 = 0, (6.5a)-(6.5b) bare the familiar structure of a 

bias-current-linearized AMB (2.19). 

6.3 Experimental realization 

A laboratory TSBS was constructed by Airex Corporation (Somersworth, NH) and is housed 

in the Applied Nonlinear Control Laboratory at the University of Alberta. It is integrated 

with AMBs to create a 6DOF contactless actuator. Figure 6.2(a) is a solid model of the sys

tem generated with the software package Pro/Engineer. It is a horizontal shaft configuration 

consisting of a sixteen-pole TSBS, two radial AMBs and an axial AMB. A redundant radial 

AMB is located adjacent to the TSBS and is useful for the commissioning, identification, 

and loading of the TSBS. The radial AMBs have a standard eight pole configuration. 

The shaft, shown in Figure 6.2(b), is a hollow cylinder composed of a high permeability, 

low-carbon steel so that it functions as journal material for the radial bearings and as back 

iron for the PMs. The shaft wall has a varying thickness in the range of 0.3-0.375" (7.6-

9.5 mm). The TSBS portion of the shaft has a larger diameter to create more surface area 

for the PMs, which in turn yields greater bearing forces. Hence, the shaft has a diameter 

of approximately 4.5" (114.3 mm) for the first 3" (76.2 mm) of shaft length, and then steps 

down to a diameter of 3" for the remaining 7" (177.8 mm) of shaft length. The shaft has 

PMs (N44H type with a remanence flux density of 1.3 T) bonded to it at the outboard end 

and a thrust disk at the inboard end. 

Software-based modal analysis of the shaft indicates that the first bending mode is at 

about 4.2 kHz and the second at about 8.5 kHz. Since these frequencies far exceed the 

bandwidth of the servoamplifiers, and since the TSBS is intended for low-speed application, 

a rigid body is assumed for modeling and control design. With respect to the TSBS, its 

nominal air gap is about 0.9 mm, and the thicknesses of the PMs, windings and stator are 

approximately 8.6 mm, 6.2 mm, and 7.1 mm, respectively. 
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(a) computer generated view of shaft and actuators (courtesy of R. Chladny) 

(b) actual shaft 

Figure 6.2: Experimental realization of a toothless self-bearing servomotor within a 6 
degree-of-freedom system. Additional levitation is provided by radial and axial active mag
netic bearings. 

Eddy current proximity sensors measure radial displacement of the shaft in two planes 

and axial displacement in one plane. An angular encoder based on a pair of differential hall 

sensors in quadrature sense the angle of rotation. The TSBS and AMBs are driven by a 

combined 22 single-phase servoamplifiers (twelve for the TSBS, four per radial AMB, and 

two for the axial AMB). Single-phase amplifiers provide hardware flexibility but are not 

necessary for the TSBS since each of its segments can alternatively be driven by a three-
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Figure 6.3: Experimental setup. The cabinet contains a dSpace digital signal processor 
for real-time computation, 22 servoamplifiers (12 for the toothless self-bearing servomotor, 
and 10 for the active magnetic bearings), sensor conditioning and thermal management 
circuitry, and power controls to engage banks of servoamplifiers in succession. 

phase inverter. The amplifiers are digital PWM with a switching frequency of 25 kHz, a 

continuous current rating of 12 A and a voltage rating of 148 VDC. Due to the very low in

ductance of the TSBS coils (40 turns each), each of which is approximately 0.2-0.5 raH, we 

assume that the servoamplifiers have infinite bandwidth for the purpose of control design. 

Based on the high power of the overall system, thermal sensing and overheating protection 

circuitry are integrated with the rig. 

Feedback control and commutation are implemented in Matlab/Simulink and executed 

in real-time with dSpace modular hardware at a sampling frequency of 10 kHz. The dSpace 

modular system is flexible and was also the hardware platform used with the AMB test 

bench described in Chapter 2. A graphical interface was designed with software accompa

nying the dSpace. The interface allows for real-time logging of data and tuning of parame-

102 



ters. 

Figure 6.3 shows the overall experimental setup. In addition to the control hardware, 

servoamplifiers, sensor circuitry and input power module, power controls are necessary to 

engage banks of servoamplifiers in succession for soft-starting. 

6.4 Dynamic model 

We briefly provide a dynamic model for the experimental 6DOF system and proceed to 

narrow our investigation on the TSBS portion of the system. We assume a rigid rotor 

without mass unbalance and gyroscopic behavior. The system is depicted in Figure 6.4 and 

its dynamic equations are given by 

mx = FXtm + Fx,0 + FXJ, (6.6a) 

my - Fytm + Fy,0 + FVti - mg, (6.6b) 

mz = Fz, (6.6c) 

J(p = ^itafy,i ^o,a^y,o *m-̂ J/,m) (O.OQ) 

"Y = ~^i,a^'x,i T ^-o,a^xfi T "m-Fx,mi (u.oe) 

Jx9 = T-B0, (6.6f) 

where x, y and z define the translation of the center of mass (COM) from the origin of the 

inertial frame. The angles (j> and ip denote the small angle rotation of the shaft with respect 

to the translated x and y axes, and 6 is rotation about the z-axis. The model parameters are 

described in Table 6.1. As depicted in Figure 6.4, x- and y-axis forces are generated in three 

actuator planes (m - "motor", o,a- "outboard actuator", i,a- "inboard actuator") and radial 

displacement is sensed in two planes (i, s -"inboard sensor", o,s- "outboard sensor"). From 

(6.6c) it is evident that the axial dynamics are trivial, and we shall henceforth ignore them. 

Furthermore, we shall ignore the outboard AMB forces FXi0, Fyfi since they do not factor 

into the control design. Rather, their use is made clear during the discussion on parameter 

identification. 

Displacement in the actuator planes must be calculated from the measured displace

ments based on the system geometry. Accordingly, there are five system outputs: me rotor 

angle 9, and displacement along the x and y axes in the measurement planes, denoted 
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Figure 6.4: A schematic view of the y — z plane of the 6 degree-of-freedom experimental 
system. Detailed here are the distances of the sensor and actuator planes from the shaft's 
center of mass, O, as well as the actuator forces, Fy^m, FVt0, FVti, Fz, and gravity, rag. 
The notation o, s denotes "outboard sensor," o, a denotes "outboard actuator," i, s denotes 
"inboard sensor," i, a denotes "inboard actuator," and m denotes "motor". 
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%o,s,yo,s, %i,s, Vi,s- The radial displacement measurements are further expressed as 

Xo,s XQ,s 

Vo,s Vo,s 

Xi^s %i,s 

.Vi,s Vi,s. 

to account for magnetic offsets, denoted XiiS, y~i,a, x0,s, Vo,s- Magnetic offsets are described 

in Chapter 2, and lead to bias forces. The COM coordinates x, y, <j>, ip are expressed in 

terms of the system outputs by 

, _ (yi,a + Vi,a) - (Vo,a + Vo,a) 
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(6.7c) 

(6.7d) 
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parameter description value 
m mass of shaft 10.2 kg 
g acceleration due to gravity 9.81 m/ s 2 

J transverse inertia 0.116 kg-m 2 

Jz polar inertia 0.033 kg-m 2 

lOA from C O M to outboard A M B actuating plane 0.010 m 
lm from C O M to motor actuating plane 0.122 m 
li<a from C O M to inboard A M B actuating plane 0.115 m 
l0 s from C O M to outboard sensing plane 0.052 m 
ktS from C O M to inboard sensing plane 0.161 m 

Table 6 .1 : Mass and geometry parameters of the 6 degree-of-freedom experimental system, 
as depicted in Figure 6.4. C O M denotes the "center of mass" of the shaft and is determined, 
along with the inertias, from software analysis of the solid model depicted in Figure 6.2(a). 

Manipulation of (6.6) and (6.7) gives the system model in output coordinates 

mx0tS = I H 1 Fx,m + 1 1 1 FXii, 

my0,s = I 1 H j j Fy%m + 1 1 y-^- I Fy<i + mg, 

— Fx,m+n + —T mxi.s = I 1 FXiTn + I H z I FXii, 

myi,s = 1 T — FVtm + 1 + =—=- FVti + ~^-mg, 
J I \ <J J <-i,a ~r~ I'm 

JZ6 = T- Be. 

Based on the parameter values in Table 6 .1 , the influence of Fx,m, Fy^m on the outboard 

measurement plane is over three times as great as the influence of FXti, Fy^. This is justifi

cation for decoupling of the T S B S and the inboard A M B . Hence the approximate dynamic 

model for the TSBS portion of the experimental system is 

mx0. = 1 H b a "x.mi 

my0,s = 1 + '-— Fytm + —^mg, 
<J / li,a \ ''n 

Jzd = T-Bd. 

We incorporate the TSBS force and torque expressions (6.5) and assume that the inboard 

A M B independently stabilizes the inboard end of the shaft so that ( X J I S , yj jS) = 0. The 
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resulting model is 

m'x0,a = ad cos(Mj) ( 4 J - a csin(M7) ( 1 J + a4z0jS + FCiS, (6.8a) 

m'y0iS = arf cos(M7) f n t 3 J + a c sin(M7) ( M j + a^.y0)S + FC)2/, (6.8b) 

Jz9 = aT c o s ( M 7 ) ( ' 1 + ' 2 ^ i 3 + i 4 ) - B0 + Tc, (6.8c) 

where we define the effective mass w! = mJ/(J + m£0tS£m), the negative stiffness co

efficient a'x = (£i>s + £m)/(£ita + £0,s)c*-x accounting for sensor-actuator non-colocation, 

bias forces FCtX = axxm and FCiV = axym + k,am'g/{kA + lm) accounting for gravity 

and magnetic offsets, and a bias torque Tc capturing possible detent. The resultant system 

is sixth order with five inputs, i\, i%, is, i\, 7, and three outputs, x0,s,Vo,s, 6-

6.5 Nominal control design 

Our empirical investigation begins with the implementation of a control strategy which is 

based on previous TSBS research efforts [120, 119]. The purpose is to establish a perfor

mance benchmark and gain insight into its performance limitations. The established design 

is decentralized proportional-plus-integral-plus-derivative (PID) under the assumption of 

7 = 0 and the four-to-three input transformation 

h — ie + iy, (6.9a) 

i2 = ie~ix, (6.9b) 

h = ie- iy, (6-9c) 

U = ie + ix, (6-9d) 

that, when substituted into (6.8), gives the decoupled equations of motion 

m'x0iS = adix + axx0,s + Fc,x, (6.10a) 

m'y0iS = adiy + olxy0,s + Fc>y, (6.10b) 

Jz9 = aTie -B6 + Tc. (6.10c) 

Finite element analysis from Chapter 5 gave preliminary estimates for the parameters in 

(6.10) as a basis for control design. Within the set of theoretically feasible pole locations, 

finding ones that resulted in closed-loop stability, experimentally speaking, is not challeng

ing. This owes mainly to the very low flexibility of the shaft, resulting in a high immunity 
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to noise. In fact, additional filtering in the closed loop, which is often necessary to stabilize 

rotor-AMB systems, is unnecessary here. Proportional, integral, and derivative gains of 

(Kp, Kh Kd) = (100 A/mm, 0.2 A-s/mm, 100 A/(mm-s)) 

and 

(KPte, Kifi, Kdfi) = (50 A/rad, 0.5 A-s/rad, 50 A/(rad-s)) 

were chosen for the levitation and rotational subsystems respectively. 

The simplicity of decentralized PID and the ease of gain selection are indeed favorable 

characteristics. However, two drawbacks are apparent from operating the TSBS with the 

established control system. First, due to the large air gap and high negative stiffness of 

the PMs, the TSBS has insufficient bearing capacity to lift off. Stability only results from 

maintaining the shaft in a region near or above the stator center where the negative stiff

ness of the PMs is either small or offsets gravity. The second problem is that aggressive 

operation of the rotational subsystem, through large and fast reference signals or high gain, 

immediately lead to instability of the levitation subsystem. Whether aggressive operation 

of the rotational subsystem is necessary or not depends on the application. Nevertheless, it 

is an obvious drawback of the machine which we choose to address with our control design 

efforts. 

6.6 Model validation and identification 

We describe some simple model-based experiments and least squares fits to validate the 

force expressions (6.5a)-(6.5b) and estimate the parameters of the dynamic model (6.8). 

6.6.1 AMB calibration 

To experimentally identify TSBS parameter, we calibrate the radial AMBs so that they can 

function as force sensors. Both the inboard and outboard AMBs, when levitating the shaft 

and stabilizing it to origin, have a linear force-current relationship defined by 

y,i — ^-i^i i "y,i 

Fy,o — J^-o^o ' "y:o 

where FV:i, Fy>0 are the y-axis inboard and outboard forces respectively (our attention in 

this section is restricted to the y — z plane), Ki, K0 are the current-to-force constants for 

each radial AMB, ii: i0 are the control currents operating in constant-current-sum mode (see 
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the Chapter 2 introduction for an explanation), and FVii, Fyfi are bias forces. If we hang a 

known mass mA off the outboard end of the shaft at a known distance £A from the center 

of mass of the shaft, the steady state equations of motion simplify to 

0 = FVii + Fyi0 + FCty - (m + mA)g, (6.1 la) 

0 = ti,aFy,i - io,aFy,o - imFc,y + £AmAg, (6.1 lb) 

where Fc<y is bias force due to magnetic offset of the TSBS. We hang a series of known 

masses m ^ [k], 1 < k < N to the shaft, measure the resulting control currents in steady 

state ii[fc],i0[A;], and de-trend successive pairs of equations to eliminate unknown bias 

forces. Equation (6.11) becomes 

0 = KiAii[k] + K0Ai0[k] - AmA[k]g, 

0 = eitaKiAii[k] - e0,aK0Ai0[k} + l&AmA[k}g. 

where A is the backward difference operator, e.g. Aii[k] = k[k] — ii[k — 1]. We solve for 

Ki: K0 by pseudo-inversion of the following system of equations 

Aii[k + l] Ai0[k + 1] 
£itaAii[k + l] -£0taAi0[k + 1] 

Aii[k + N] Ai0[k + N] 
JitaAii[k + N] -£0,aAi0[k + N] 

based on known parameters from Table 6.1. A series of AT = 4 masses are used to obtain a 

fit, and the experiment is repeated over a range of rotor angles to get an average. The results 

are shown in Figure 6.5(a) and the averages values obtained, for a bias current of 3 A in 

each AMB, are 

Ki = 73.2 ± 4.4% N/A, (6.12a) 

K0 = 74.4 ± 4.3% N/A. (6.12b) 

6.6.2 TSBS direct force constant 

With the AMBs calibrated as force sensors, the previous procedure is effectively reversed. 

That is, unknown forces are applied to the levitated shaft by injecting open-loop currents 

into the TSBS. The unknown forces are measured by the load absorbed by the AMBs. For 

a fixed and centered shaft, the force from the TSBS is 

-^y,m == dd^y ~r ±'c,yi 

rriA[k + l]g 

m&[k + N]g 
£AmA{k + N]g 
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where ix = 7 = 0 is assumed. The resulting balance of forces and moments in steady state 

are 

0 = Fyti + FytO + Fy,m-mg, (6.13a) 

U = ^i,a^y,i ^o,a-^y,o ^m^y,m- (0.1 JD) 

Applying successive open-loop iy[k] and de-trending, equation (6.13) becomes 

0 = KiAii[k] + K0Ai0[k] - adAiy[k], (6.14a) 

0 = eiiaKiAii[k] - £0iaK0Ai0[k] - £madAiy[k]. (6.14b) 

The direct force constant ad is the only unknown quantity in (6.14) and can be estimated 

by means of linear least squares similar to that used in the last section to identify Ki, K0. 

Another experiment identifies the negative stiffness coefficient ax. The details are omit

ted since the approach is analogous to that just described, with the exception being that the 

unknown force is applied via eccentric positioning of the shaft, i.e. 

"y,m — ̂ xVo,s i "c,y-

6.6.3 Radial force coupling 

We now assess the accuracy of the phase-angle dependent force model. This is a key re

lationship which we exploit for control redesign. Furthermore, it remains to identify the 

coupled force-to-current constant ac. As one approach, we operate the TSBS in closed-

loop, stabilize the rotor at the home position, i.e. (x0^,y0iS, 6) = 0, and vary 7 in small 

increments. The steady state equations of motion for the TSBS levitation subsystem are 

0 = adcos(M^)ix - acs,m.{M"f)iy + Fc>x, 

0 = ad cos(M^y)iy + ac sm(M^y)ix + FCjV. 

For a series of phase angles 7[fc], 1 ^ k ^ R, we measure the resulting steady state set 

far [&])*{/[&])• De-trending the resulting equations gives 

' A{cos{M1[k + l])ix[k+l])' 
A(cos(M7[fc + l])iy[k + lj) 

A(cos(M7[fc + R])ix[k + R}) 
A(cos(Mj[k + R])iy[k + R]) 

ad/ac 

A(sm(M^[k + l])iy[k + 1}) 
-A(sin(M7[fc + l])*3.[fc + l]) 

A(sin(M7[A; + R])iv[k + R}) 
-A(sm(Mj[k + R])ix[k + R}) 

(6.15) 

A unique solution of ad/ac = 0.85 results which allows us to calculate ac. This data fit 

is based on the range of phase angles —2.5 < 7 < 3.5 in 0.5 deg increments such that 
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rotor angle (deg.) rotor angle (deg.) 

(a) radial AMB calibration (b) TSBS direct force constant vs. rotor angle 

Figure 6.5: Parameter identification. Initially, the radial AMBs are calibrated by a proce
dure of hanging known masses off the levitated shaft and measuring the deflection in AMB 
control current. Then the current-to-force ratio of the TSBS is determined by applying 
open-loop test currents and measuring the load absorbed by the AMBs. 

TV = 13. The model nt-to-data error is ±2% confirming the accuracy of our analytical 

force model. 

The fact that ac ^ ad is an interesting result. Strictly speaking, this fact aligns with our 

lD-flux-based force modeling. However, analytical force modeling of LPMSMs in [124, 

62] based on a 2D flux distribution predicts that lateral and vertical forces constants are 

equal. At any rate, a clear explanation as to why this discrepancy exists in practice requires 

further investigation but we conjecture that operating all four segments with a common 

phase angle does not lead each segment to operate with uniform characteristics (due to 

errors in the phase-spacing of the TSBS coils, for example). Therefore, some interference 

in the force generation is to be expected, e.g. one segment generating a residual normal 

force when 7 = 0. 

6.6.4 Rotation subsystem 

Figure 6.6(a) plots the torque-to-current ratio for various phase angles. In this setup, the 

TSBS is operated only as a servomotor whereas the outboard AMB provides levitation in 

addition to the inboard AMB. The TSBS is controlled in closed-loop to maintain the shaft at 

6 = 0 while known torques are applied. This setup is depicted in Figure 6.6(c). Specifically, 

three masses m& = {0.75 kg, 1.83 kg, 2.20 kg} are hung at a radius of £T = 0.23 m. The 

deflection in the servo control current i$ is measured for each mass, and this procedure is 

repeated for the range of phase angles shown in Figure 6.6(a). Least squares is used to 
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Figure 6.6: Experimental measurements used to determine the torque constant and coeffi
cient of friction. 

estimate aT on the assumption that 

m&£T = aT cos(M'j)i0 

. The peak of the graph in Figure 6.6(a) is the torque constant aT. 

Spindown tests of the shaft are used to identify the coefficient of magnetic friction B, 

assumed to have a similar characteristic to viscous friction. Magnetic friction is unusually 

high in this system due to the prominence of eddy-currents which result from the magnetic 

bearings suspending an unlaminated rotor. Figure 6.6(b) shows the superimposed result of 

a spindown test and the modeled deceleration based on the equation 

U){t) = Ld(to)e -B(t-t0)/J t>t0 (6.16) 
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parameter description value 
cx.fi direct force-to-current constant 12.1 N/A 
ac coupled force-to-current constant 14.3 N/A 
a'x negative stiffness constant 322.3 N/mm 
aT torque constant 2.87 N-m/A 
B coefficient of magnetic friction 0.081 N-m-s/rad 

Table 6.2: Experimentally identified model parameters of the TSBS. The prototype TSBS 
produces smooth torque but suffers from low bearing capacity relative to conventional 
AMBs of a similar size. Applications of positioning tend to be the most suitable given 
this characteristic. 

where LU = 9 and (6.16) is the solution to 

Jzd> = —BtU 

The parameters co(to) and B/J from (6.16) are fit by a nonlinear least squares curve fitting 

tool, and B is recovered from knowledge of Jz. 

Table 6.2 gives the values for all model parameters with the exception of Fc^x, Fc,y 

and Tc, which must be estimated online. Comparing the force constant ay to the AMB 

force constants (6.12), it is confirmed that the prototype TSBS has a relatively low bearing 

capacity. The relatively large mechanical air gap the TSBS (« 0.9 mm) is a major cause 

because it weakens the air gap flux from the PMs. Indeed, from magnetic circuit analysis 

in Chapter 5 we show that the force and torque constants are inversely proportional to m<i 

where mi is approximately equal to the magnetic air gap, i.e. the radial distance between 

the rotor and stator back irons. 

6.7 Control 

In this section, the control system is redesigned to alleviate instability from aggressive 

rotation of the shaft as well as increase the physical range of control authority. The problem 

of instability arises because there is conflict between force and torque when their combined 

control effort exceeds what is available. The problem of control authority arises because 

the bearing capacity is not sufficient to overcome the negative stiffness over the entire air 

gap. Both of these problems are the effects of input saturation. 

6.7.1 Current allocation for force and torque 

We consider how to balance the current demands for radial force and torque generation in 

the presence of input saturation. This problem is inherent among self-bearing motors with 
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a common-coil or split winding, meaning that the same coils generate force and torque. It 

has been recognized in [6], however, that split windings offer flexibility in terms of variable 

force and torque capacity to meet changing load conditions and make the most efficient use 

of copper. Be that as it may, few explicit solutions to the force-torque tradeoff have been 

put forth in the literature for any particular SBM configuration. 

We recall the basic operating principles. Assuming 7 = 0, the control force and torque 

at the home rotor position is given by 

FX,L = , n 9 ..x —7,— . (6.17a) 
( P 2 - l ) m 2 V 2 

F*>L - (i« - l)m2 \-J~) ' ( 6 , 1 7 b ) 

nrLN^mi (h+i2+i3 + u\ ,* ,n ^ 
T = . (6.17c) 

m 2 V 4 / 
In Chapter 5, we considered how FX^,FV:L and r can be obtained in from the control 

currents ik, 1 ̂  k ̂  4. To obtain a unique solution, we imposed the conditions 

2 

2 
h + h + h + u 

4 

= ix, (6.18a) 

= iy, (6.18b) 

= ie, (6.18c) 

= Xig, 0 < A < 1, (6.18d) 
4 

where A defines the fraction of total torque generated by the y-axis currents. Thus, ik are 

obtained by inverting (6.18): 

i\ = 2Xie + iy, (6.19a) 

i2 = 2(1 - X)ie - ix, (6.19b) 

i3-2Xig-iy, (6.19c) 

it = 2(1 -X)ig + ix. (6.19d) 

Since ik are physical inputs representative of the three-phase current magnitudes, they are 

subject to saturation1. We define the current saturation, Is > 0, such that \ik\ ^ Is- With 

only saturation of the i^, conflict between ix, iy and i@ arises. For instance, consider the y-

axis where force is generated by Segments 1 and 3. Before saturation we have i\ = 1XV0-\-i
r 

'This is a somewhat conservative approach since individual phase currents could take on higher amplitudes 
depending on the phase angle and still remain with saturation limits. But by bounding the amplitudes and not 
individual phases currents, we can ensure that none of the phases exceed the maximum current level. We can 
also ensure that our modeling assumptions remain valid so long as the current amplitudes are not saturated. 
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and i?j = 2Xig — iy where the superscript r denotes the reference. Suppose that only i\ 

exceeds saturation such that i\ = Is + AIS, AIS > 0. Therefore, i\ = Is = i\ — AIS, 

is = i3\ and 

iy = ! i y ^ = il - A / , /2 . (6.20) 

Therefore (6.20) shows that the desired radial force control current is reduced by an amount 

Aig/2. In the worse situation where both i\ and ig exceed saturation, for example when 

id ^ Is + \iy\i w e e n d UP with iy = 0, or a complete loss of control of levitation. Such 

situations are easy to demonstrate in practice. For example, an angular step response can 

saturate the controller and lead to insufficient bearing force capacity. Insufficient bearing 

force capacity can easily lead to instability. Thus, aggressive control of the angular subsys

tem is problematic with respect to maintaining the system's overall stability. We alleviate 

this problem in the following way. We restate the saturation constraints as 

—Is — iy ^ 2Xig ^ Is — iy, (6.21a) 

-Ia + ix^ 2(1 - X)ie ^Is + ix, (6.21b) 

-Is + iy^ 2Xig ^Is+ iy, (6.21c) 

-I3 - ix ^ 2(1 - X)ie ^ Is - ix- (6.21d) 

Taking the more conservative bounds, (6.21) becomes 

—Is + \iy\ ^ 2Aie ^ Is — \iy\, 

-Ia + \ix\ ^2(l-X)ie^Is-\ix\, 

otherwise stated as 

2X\ie\ ^ Is - \iy\, (6.22a) 

2 ( l - A ) | i « , | < J 8 - | t x | . (6.22b) 

Next we apply saturation bounds to ix,iy and ig and give radial force precedence over 

torque. The reason for this is that the unforced, open-loop rotational subsystem is stable 

(asymptotically stable if rotor angle velocity is the output), and the levitation subsystem 

is open-loop unstable. Although insufficient torque generation may impact the control ob

jectives of precision pointing and slewing, it does not impact the stability of the TSBS in 

closed-loop. On the other hand, insufficient bearing capacity, even momentarily, can lead to 

instability which is clearly a less desirable result. Therefore we proceed with the assump

tion mat |ix | , \iy\ ^ Is, that is we meet the radial force current references up to saturation. 
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We then determine how much control effort remains available for torque generation. Based 

on (6.22), we compute the maximum torque current ig obtained from the optimal choice of 

A, denoted Aop, from 

2Aop|ifl| = .Z8- | tw | , (6.23a) 

2(l-Aop)M = / s - | ^ l - (6.23b) 

Solving for A, ig in (6.23) gives 

n | _ *s ~ \ly\ 

2Aop 

= IsJiA_\iA. (6.24b) 

What \ig\ represents is a dynamic saturation constraint on ig. Equation (6.24b) calculates 

the available control effort for torque generation without impinging on the control effort 

necessary to maintain stable levitation. Figure 6.7 shows an example where dynamically 

constraining ig is beneficial. An experimental comparison of two input transformations 

(ITs) is presented based on a two degree angular step response of the rotor. The first IT is 

the established approach [120] which encompasses the static four-to-three transformation 

(6.9) and saturation of the physical inputs, equal to 10 A for our rig. The second IT en

compasses the four-to-four transformation (6.19) and the dynamic input saturation (6.24b) 

giving priority to levitation. 

Figures 6.7(a) and 6.7(b) indicate that although both approaches yield a very similar 

step response, the dynamic IT provides a significant reduction in the peak deviation of the 

rotor off center (as indicated by the orbital plot). For the controller parameters used in this 

experiment, larger steps cannot be tolerated by the control system with the static IT because 

the rotor deviations increase and lead to instability. On the other hand, a step response 

of arbitrary size is tolerable using the proposed dynamic IT. The reason for the degraded 

performance in the case of the static IT is apparent from Figure 6.7(c). Figure 6.7(c) shows 

the reference values and actual values for the input currents, and thus the conflict between 

force and torque. The reference step commands a high reference value for ig which, due 

to input saturation, causes ix and iy to fall of their reference values. In the absence of 

sufficient levitation control current, the rotor quickly diverges due to the negative stiffness 

of the rotor. For control using the dynamic IT, it is shown in Figure 6.7(d) that ix and iy 
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Figure 6.7: An experimental comparison of two input transformations based on an angular 
step response. The first is based on [119] which uses a static transformation given by 
(6.9). The second is a priority scheme given by equations (6.19) and (6.24b). The static 
transformation creates conflict between the current demands for bearing force and torque 
when their sum is greater than the available control effort. The priority scheme alleviates 
this by dynamically constraining ie. The priority scheme leads to a significant reduction in 
the peak deviation of the rotor off center, as indicated by the orbital plot. 

track their reference values whereas ig is constrained by time-varying saturation levels ±ig. 

One might expect some degradation in the step response using the dynamic IT be

cause radial force generation is given priority over torque generation. However, this is 

compensated in good measure by the dynamic IT's ability to maximize torque through the 

previously unexploited control parameter A. We show this in Figure 6.8 by comparing the 

maximum rotational speed, obtained by setting ig = ig, for A = Aop and A = 0.5. Fig

ure 6.8(a) compares the instantaneous rotor speed over time, which varies due to changing 

demands from the levitation subsystem as well as voltage saturation of the servoampliflers. 

On average, a dynamically calculated A yields an average speed of 601 r/min, while a static 
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Figure 6.8: Maximum rotational speed for A = 0.5 and for A = Aop(ia;,ij/) as given by 
(6.24a). The static calculation A = 0.5 assumes equal torque generation from all segments 
whereas a dynamically calculated A yields allocates torque generation among Segments 
(1,3) and Segments (2,4). A 49% increase in the average rotor speed results from the latter 
approach. 

setting of A = 0.5 yielded an average of 403 r/min; hence a 49% increase. These values of 

A are shown in Figure 6.8(b). Figure 6.8(c) shows the corresponding orbitals in both cases, 

confirming stable levitation. 

6.7.2 Decoupled control in a transformed coordinate frame 

We now consider the problem of how to eliminate radial force cross-coupling when 7 ^ 0 . 

The motivation for this is the possibility of continuously manipulating the phase angle 7 

while maintaining a simple and familiar model structure for control design. In the next 

section we show how manipulating 7 can be useful; for now we just treat it as a time-varying 
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parameter bounded such that 7 € (—ir/(2M), w/(2M)). Dropping sub- and superscript to 

simplify notation, the levitation subsystem dynamics are re-expressed as 

x = — cos(M^f)tx sm(M^)iv H x -\ — 
m m m m 

y = — cos(Mj)iy + ^ Sm(Mj)ix + —y + - ^ , 
m m m m 

(6.25a) 

(6.25b) 

using the IT from the previous section. The solution to decoupling lies in an appropriate 

coordinate transformation. One such possibility is 

F' 
C,X 

F' 
LM c,y. 

where 

COS(/P 

— sin ip 

— sin ipip 

— cos <pip 

0 
0 

simp 

COS if 

COS Iff 

— sin ip(p 

0 
0 

<P = 

0 
0 

cosy 
— sin 

0 
0 

tan""1 

f 

<ac 

0 
0 

simp 
COS if 

0 c 
0 

tan(M7) 

0 
0 
0 
0 

OS If 

sm ip 

0 1 
0 
0 
0 

simp 

cosy_ 

X 

y 
X 

y 
± c,x 

-^c,y_ 

(6.26) 

(6.27) 
\ad / 

The transformation (6.26) has the form £' = T(ip, (p)£. To obtain the dynamics (6.25) in 

the new coordinate frame we compute 

£' («&*W»| 
I?=T-1(¥>,V)€' 

from which we extract dynamic equations without radial force cross-coupling, 

../ / , , x 1, a ^ t a n 2 ( M 7 ) . , „ . . 9 , . . . „ . .. 
mx' = ad cos(M-y) {jl + - £ — - ^ — ' - ^ i x + axx' + F'cx + <p2x' + ipy' + 2ipy\ 

Q j 

(6.28a) 

my' = ad c o s ( M 7 ) J1 + - £ ^ % + axy' + F^y + <p2y' - <px' - 2<px'. 
V ad 

(6.28b) 

For 7 = 0, (6.28) reduces to decoupled equations of motion. The motivation behind the 

coordinate transformation (6.26)-(6.27) comes from studying the geometry shown in Fig

ure 6.9. This idea is this: as 7 is varied, the vector sum of the resulting normal and tangential 

forces for a given segment is such that it can be viewed as only a tangential force in a trans

formed frame. By maintaining a coordinate frame such that only tangential forces exist, 

decoupling in the radial force generation is maintained. 

Decoupling through a coordinate transformation has some appeal relative to decoupling 

by another multi-input, multi-output feedback scheme, such the force feedback followed by 
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-ad cos(Mj)ix/2 \ 

adcos(M-y)iy/2 

• x 

Figure 6.9: Definition of coordinate frames and angles. The angle of the transformed frame 
relative to the fixed frame, <p, is chosen so that the vector sum of normal and tangential 
forces in the fixed frame appears only as tangential forces in the transformed frame. Fc is 
the vector sum of the estimated quantities F'cx and F'cy. 

force-to-current inversion studied in Chapter 2, Section 4. The appeal of our approach 

is that the equations of motion retain the same structure as (6.10) for 7 = 0. Therefore 

feedback can be designed in terms of familiar quantities instead of auxiliary variables, and a 

decentralized control design remains valid once transformed, with the exception of possible 

scaling. For a time-varying phase some complication arises which may require additional 

terms in the control law. If the phase is slowly varying, one would expect the additional 

phase-dependent terms in (6.28) to be negligible. In general, the nonlinear state feedback 

2<py' — Kpm(x' — x'r) — Kdmx' F' 
C.X 

ip2x' <py 

adcos(Mj). 1 + j tan2(M7) 

-axy FL, - Cp2y' + (px1 + 2<px' - Kpm{y' - y'r) - Kdmy' 
' c,y 

a r f c o s ( M 7 ) y i + a ^ ( M 7 ) 

<p = tan — tan(M"7) 
ad 

(6.29a) 

(6.29b) 

(6.29c) 

yields the closed-loop error dynamics ex + Kdex + Kpex = 0 and ey + Kdey + Kpey = 0 

which ensures exponential convergence of the setpoint tracking errors ex = x' — x'r, ey = 
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y' — y'r for Kp,Ka > 0. The input parameters (x'r,y'r) denote the radial setpoint in the 

transformed coordinates. The control law (6.29) is position and velocity feedback with 

constant disturbance cancelation in lieu of error integration in addition to the cancelation 

of time-varying phase-dependent terms. The corresponding control law for the rotational 

subsystem is 
. B9-Tc- JzKPt$(6 - 9r) - JzKdfi9 

aT cos(M^) 

for KPtg, Kdfi > 0 which ensures asymptotic setpoint tracking of the reference angle 6r. 

Implementation of (6.29) assumes the availability of position, velocity, constant distur

bances and input derivatives, specifically <p and (p. We employ the sixth-order, nonlinear, 

position-velocity-constant-disturbance (PVCD) observer 

x' = v'x + £i(x' - x'), 

i ; (ax + <f2) , KtX 

m 

-Yti{x -£'), 

^c,x = ^3{x ~ x )i 

y' = v'y+U(y'-y'), 

fc^ + ̂ V + fsE v m m 

k,y = W - y'), 

mm m y m 

<P , 2<P., Qd cos(M7) 
3- Vx ] ' 

m m m 

(6.30a) 

/ q g t a n 2 ( M 7 ) : 

(6.30b) 

(6.30c) 

(6.30d) 

/ o | t an2 (M7) . 
1 + „2 lV 

(6.30e) 

(6.30f) 

to estimate velocities v'x, v'y and constant disturbances F'cx, F'cy in the transformed coordi

nates under the assumption that phase angle derivatives are available. The observer (6.30) 

has the linear error dynamics 

(6.31) 

The zero solution of (6.31) can be made exponentially stable even with the existence of 

two time-varying entries in the matrix. A simple Lyapunov function argument can show 

this. The error dynamics (6.31) take the form x = A(t)x. A(t) is bounded because if 

x' — x' 

V'x ~ V'x 

F — F' 

y'-y' 
v'y-v'y 

rc,y — ^c,y_ 

r-*i 
-h 
-h 
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is effectively an input, statically mapped to 7 through (6.27), and has a bounded rate-of-

change. Taking 

V(x) = x x = \\x\\ 

and computing 

V(x) = xT(A(t) + AT(t))x = xTAx 

we see that A is time invariant. Since A is almost in observer canonical form, choice of the 

observer gains £i, 1 ^ i ^ 6 is straightforward so that A can be made negative definite and 

x = 0 is exponentially stable. 

The key assumption in the observer design is the availability of <p and (p since they 

allow for term cancelation and thus linear error dynamics. In principle, differentiation can 

provide "fast" enough estimates so that it could be assumed that they are directly measured. 

Conventional numerical differentiation techniques, however, are problematic in practice 

because noise is amplified twice to obtain acceleration. Instead, we employ the algebraic 

derivative (AD) method investigated in Chapter 4 (which is known to have good immunity 

to noise) to obtain successive time derivatives of a signal. Our derivative estimator is based 

on a Taylor series truncation order of 6. Applying the design equations (4.13)-(4.15) we get 

the state equations 

m = m + 45(wV, 

m = m- 2400t3<p, 

V3 = V4 + 5400t2<p, 

7)5 = 720<p, 

as well as the output equations 

771 - 30t5(p 
Ve = T6 , 

772 + 300fV - 24£5</?e 

<Pe = j j 

where <pe, (pe denote the estimates of the first and second derivatives of ip. To achieve 

sufficient accuracy on a continual basis, overlapping estimators are employed in the manner 

described in Chapter 4, Section 2.3. The combination of time-shifted AD estimation with 

the PVCD observer yields an overall sixteenth order estimator for the levitation subsystem. 

(6.32a) 

(6.32b) 

(6.32c) 

(6.32d) 

(6.32e) 

(6.33a) 

(6.33b) 

121 



6.7.3 Phase-based control 

Having established stabilizing feedback that permits a time-varying phase angle, we turn 

our attention to a feedback law for 7 to achieve additional performance benefits. Setting 

7 ^ 0 creates normal forces on the rotor in addition to tangential forces and as such, phase 

angle manipulation allows us to freely orient the force that each segment applies to the 

rotor. The useful implication of this fact is that the axes of maximum bearing capacity can 

be freely oriented as well. This can be seen from the Lorentz force model where the angle 

of the axis of maximum bearing capacity (in the first and third quadrants) relative to the 

x-axis is given by 

'F, 
tan" 1 ' -^ 

-1 /arfCos(M7) + a c s i n ( M 7 ) \ 
=iy \a,jCOs(Mj) — acsm(Mf) J ' 

and is only a function of 7. By contrast, AMBs have fixed axes of maximum bearing 

capacity. For instance, the radial axes of an AMB supporting a horizontal shaft are typically 

aligned at 45 degrees to the horizon so that they absorb gravity in equal measure. Such 

AMBs can absorb a greater load along the horizontal and vertical axes than along the axes 

of force generation. 

An advantage of being able to orient the axes of maximum bearing capacity is that we 

can maintain balanced loads among segments in spite of the direction of loading or the 

position of the rotor. Since the PVCD observers generate radial loading estimates, phase-

based control offers the possibility of active load balancing by orientation of the axes of 

maximum bearing capacity. Our approach is to convert the estimates F'cx,F'cy to polar 

coordinates to determine the angle 5 of the axis of disturbance force relative to the :r-axis. 

This is given by 

\ Fc,x J \ FC}X J 

and is shown graphically in Figure 6.9. Then, we align the axes of maximum bearing 

capacity with the axis of disturbance force by solving 

5 = tan" 1 [%L 
.-T.T 

tan x aa cos(M^) + ac sin(M7) \ 
ad cos(Mj) — ac sin(M7) / 

for 0 < 5 < 7r/2 (quadrants 1 and 3) and 

'F, 
S = tan - 1 / *y tan 1 -ad cos(M^) + ac sin(M7) \ 

ad cos(M7) + ac sin(M7) J 

for —7r/2 < 5 < 0 (quadrants 2 and 4). The solution is 

^ a n - 1 ^ ? ^ } , -7r/2<*<0 
h^-U^m^), 0<6<*/2. 

(6.35) 
M V ac tan(<5)+l 
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Equation (6.35) is discontinuous at 5 = 0 and at the boundary between S = 7r/2 and 

6 — —TT/2 because 6 is restricted to two quadrants in its computation. Because of the bi-

directionality of Lorentz-force generation, disturbance forces in all four quadrants are com

pensated. Restricting 5 to two quadrants is in fact desirable because it minimizes the bound 

on 7 which is also the torque angle. From (6.35) the bound is |—y| < t a n - 1 ( ^ ) /M, cor

responding to \y\ < 5.03 deg based on parameter values from Table 6.2. This corresponds 

to a 23% reduction in the torque-to-current ratio in the worst case based on Figure 6.6(a). 

Nonetheless, this tradeoff buys the levitation subsystem the ability to extend its region of 

operation and an example below shows this. A good approximation to (6.35) is 

7 = htan_1 (Stan (sign(<5) (|<51 ~ 3 ) ) ' (6'36) 
The approximation is good in the sense that, if one plots 7 versus 5 based on Table 6.2 

parameters, the discrepancy is less than 1%. Geometrically speaking, (6.36) positions the 

axis of disturbance exactly between the x' and y' axes. In doing so, it sets F'cx = F'cy which 

in turn guarantees ix = iy in steady state. This fact simply follows from (6.28a)-(6.28b), 

which reduces to equal and independent equations of motion for a centered rotor. For a 

non-centered rotor, current equalization results form computing 8 due to both the negative 

stiffness and constant disturbances: 

x , -1 (axy' + F'v\ , , „ , _ 
6 = tan T^1- + 4>. (6.37) 

\axx' + F^x) 

Altogether, the phase-based control law is (6.36) followed by (6.37). Implementating 

(6.36)-(6.37) requires additional provisions. Because (6.36) is discontinuous, we subject 

7 to a slew rate limit to make the function continuous and ensure <p has a sufficiently low 

rate-of-change. As a result, we avoid excessive control effort to suppress the phase veloc

ity and phase acceleration dependent terms in (6.28). In addition, (6.36)-(6.37) contain an 

algebraic loop which we break by insertion of a delay element. The existence of feedback 

within the phase control law does not pose any concerns it terms of its stability. This is 

because although it appears that the computation of 5 is a function of 7, it is in fact not. 

Equation (6.34) makes this point clear by showing that 5 depends only on operating con

ditions in the fixed frame. The computation of 5 has the form 6 = ^(7) + ^(7) and the 

computation of 7 in one step re-apportions 5 between K and <p such that n = ir/4. A block 

diagram of the closed-loop system is given in Figure 6.10. 

An example where phase-based control is useful is upon startup. When the TSBS por

tion of the rotor is de-levitated, there is insufficient bearing capacity to lift it when 7 = 0 
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AD algebra ic de r iva t ive e s t ima to r 
ALB active load balancing 
CL control law 
C T coo rd ina t e t r ans fo rma t ion 
IT i n p u t t r a n s f o r m a t i o n 
P V C D pos i t ion , velocity, d is t . observ 
SAT s a t u r a t i o n ca lcu la to r 
SRL slew ra te l imifer 
3tAC th r ee phase c o m m u t a t i o n 

Figure 6.10: A block diagram of the toothless self-bearing servomotor under closed-loop 
control. A legend on the right describes each block. The control system consists of state 
observers, state feedback control laws, dynamic constraining of the control inputs, fast 
derivative estimation, a current equalization loop, and commutation of twelve phases. The 
three-phase commutation (3(/>C) blocks to segments 1 and 4 are omitted for clarity of pre
sentation. 

due to gravity as well as the negative stiffness which exists when the shaft is delevitated. 

This problem is shown in Figure 6.11 which focuses in on the y-axis. Before lift-off, we ob

serve in Figure 6.11 (a) that the shaft remains at rest while in Figure 6.11 (b) the input current 

is saturated. A manual increase in 7 from Odeg to 1.5 deg, also shown in Figure 6.11(b), 

provides the additional lift necessary for startup. 

Figure 6.12 demonstrates active load balancing. For this experiment the rotor tracks the 

reference 

'Ttf 

0, 

Vr 

100 cos 

100 sin 

Aim, 

Mm, 

which is shown in Figure 6.12(a). At about 5.4 s, active load balancing is engaged. At 

this point, as it is shown in Figure 6.12(c), 7 goes from a nominal value of Odeg to being 

a function of the changing radial loads. Figure 6.12(d) shows the loads axx' + F' and 

axy' + F'cy being equalized. More important, Figure 6.12(b) shows the control currents 

becoming equalized resulting in a 26% drop in the peak value of iy. The extra signal 

headroom made available by balancing expands the stable operating range of the device 
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Figure 6.11: Startup levitation of the toothless self-bearing servomotor. Due to insufficient 
bearing capacity at 7 — 0, the control current iy is saturated and the rotor remains at rest 
on the y-axis. A manual increase in 7 provides the additional lift necessary for startup. 

and reduces its susceptibility to transient disturbances. 

Figures 6.12(e) and 6.12(f) show the outputs of the AD estimator, ipe and <pe, obtained 

from e = 0.2 s. Due to the slew-rate limiting of 7 to ±25 deg/s the resulting magnitude of 

phase velocity and phase acceleration dependent terms in the control law are kept small. For 

instance, based on the magnitude of values in Figures 6.12(a) and 6.12(f), the control effort 

associated with the terms ipex and ipey in (6.29) have an order of magnitude of 10 - 3 A. The 

slew rate limiter also leads to 7 overshooting its theoretical maximum of 5.03 deg, leading 

to a slight and temporary unbalance in the loads and currents. However, 7 still stays well 

within acceptable bounds and slew-rate limiting is shown to ease the transient when active 

load balancing is engaged. 

6.8 Conclusion 

A generalized dynamic model and an improved control design for a TSBS is derived and 

validated. A priority scheme is established with respect to the actuator's two functions -

levitation and torque generation - and torque production is maximized by optimizing a pre

viously unutilized control variable. We design an estimated state feedback in a transformed 

coordinate to permit phase-based control. Phase-based control is shown to enable input 

current equalization, independent of rotor position and the direction of loading, by posi

tioning the axes of maximum bearing capacity. In the next chapter we reduce the hardware 

requirements of the TSBS by realizing its functionality with two segments instead of four. 
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Figure 6.12: Active load balancing. The rotor center follows a circular trajectory of ra
dius 100 /xm and a frequency of 0.25 Hz. At about 5.4 s active load balancing is engaged, 
equalizing the currents and recovering input signal headroom. 
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Chapter 7 

Redesign of a Toothless Self-Bearing 
Servomotor 

We are motivated by phase-based control developed in Chapter 6 to redesign the toothless 

self-bearing servomotor (TSBS). The TSBS configuration considered in Chapters 5 and 6 

consists of four segments and therefore twelve phases. Manipulating the phase angle so that 

normal forces are applied to the rotor in addition to tangential forces, we present the concept 

and prove the feasibility of a six-phase TSBS in this chapter. We adapt the dynamic model 

and control techniques of the twelve-phase system to the six-phase system. The design 

is validated on the experimental twelve-phase test rig by driving pairs of segments with 

common inputs. 

The resulting six-phase design reduces the necessary drive circuitry by a factor of two 

(roughly), and brings the hardware requirements of the TSBS more in line with that of 

typical self-bearing motors (SBMs). The majority of hybrid-type SBMs, those which utilize 

the Maxwell force for levitation and the Lorentz force for rotation, are realized with either 

five or six phases [16]. Hybrid-type SBMs with single-phase motoring characteristics have 

been realized with as few as four phases [113]. All other previously-proposed all-Lorentz 

SBMs are, to the author's knowledge, six-phase machines. The TSBS is therefore at a clear 

disadvantage relative to its counterparts in terms of its electrical complexity and, ultimately, 

cost. 

7.1 Description 

Figure 7.1 shows the cross-section of a sixteen-pole, six-phase TSBS. In comparison to its 

original twelve-phase conception, the six-phase TSBS can be viewed as the connection of 

the windings of Segments 1 and 2 in series, and the connection of the windings of Segments 
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Figure 7.1: Cross-section of a six-phase, toothless self-bearing servomotor (TSBS). The 
six-phase TSBS has two segments, each of which can generate a normal and a tangential 
force on the rotor. These are the forces Fi j t, Fi?n, F2i t and F2jH. 

3 and 4 in series. The two segments generate tangential forces Fi ] t, F2,t and normal forces 

-F\,n,-p2,n on the rotor. The tangential forces control motion along the y-axis as well as 

rotation, whereas the normal forces only control motion along the x-axis. Tangential and 

normal forces from each segment are generated by manipulation of the amplitude and phase 

of its associated three-phase winding. 

7.2 Force and torque characteristics 

Deriving expressions for radial force and torque follows from the approach previously de

scribed in Chapters 5 and 6. We introduce the stationary x — y coordinate system as shown 

in Figure 7.1. The stator angle $ is defined relative to the x-axis in the counterclockwise 

direction. 

Expressions for radial gap flux density due to the PMs (5.8) and winding distribution 

(5.2) remain the same. We redefine the segmentation according to the stator angle <& by 

7T f fc - 5 ) < $fc < 7T (A! - M , 1 < k < 2, 
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and drive the windings with the following three-phase currents 

ifc,a(«fc,7i.0) = ik cos (M(0 + 7fc) - g J , (7.1a) 

ik,b(ik,li,d) = ik cos (M(6 + -yk)), (7.1b) 

4,c(«fc,7i,#) = 4 cos ^M(6» + 7fc) + ^ ) , (7.1c) 

for k = 1,2. Thus, the four control variables are the current magnitudes ii,i2 and phase 

angle offsets 71,72 for Segments 1 and 2, respectively. The resulting current distribution 

for the kth segment is 

/ f e($, 9, ik, 7fc) = N'Qik sin [M{<$>-9- 7 f c)] , 

and the associated air-gap flux distribution due to the windings is 

u 7 i 4 c o s [ M ( $ - 0 - 7 f c ) ] 
Bg,w,k(x,y,$,9:ik,>yk) = 

W2 — x cos $ — 2/ sin $ 

Expressions for force and torque arise from the Lorentz-force integrals 

2 
v-> fUh 

Fx,L(x,y,e,ik,~/k) = L22 / £<, ,m($)4($)sin$d$, (7.2a) 
fc=i Jlk 

Fy,L(x, y, 6, ik, 7k) = -Lj2 B s , m ( $ ) 4 ( $ ) cos $d$ , (7.2b) 
fe=i 7'fc 

TL(Z, y, 0, »fc, 7fe) = ~rL22 £ffiTO($)/fc($)d$, (7.2c) 
fc=i^ 

and Maxwell-force integrals 

Fx<M{^y^^lk) = ^ Y J '(Bg,m($) + BgiW<k($))2 cos$ d$, (7.3a) 

Fy,M{x, y, 9, ik, 7fc) = — V / (B9, ro(*) + Bfl]tl,ifc($))2 sin $ d$, (7.3b) 
2 M o ^ ^ 

with the limits of integration now defined by lk — (k — 3/2)n and uk = (k — l/2)7r. 

Using the approach in Chapter 6, we evaluate the integrals (7.2)-(7.3) and retain the dom

inant negative stiffness term as well as all terms associated with the home rotor position 

(x, j / , 9) = 0. The approximate expressions for force and torque are 

zr / • A /sin(M72)i2 - s i n ( M 7 i ) i A 
Fx{x,ik,ik) = an — — — +axx, (7.4a) 

ir r • A / cos (M7i ) i i - cos (Af7 2 ) i 2 \ 
i^(y, a*;,7*:) = Q* ( — — 2 — J + axV' (7-4b;) 

/cos(M7i)ii +cos(M7 2 )2 2 \ ,_ . . 
T{ik,lk) = " r ^ , (7.4c) 
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where at,an denote the tangential and normal current-to-force gains, ax is the negative 

stiffness gain, and aT is the torque constant. 

7.3 Dynamic model and parameter identification 

We employ the same experimental test bench as described in Chapter 6, Section 3, to assess 

the feasibility of the proposed six-phase design. We use the existing twelve-phase TSBS to 

emulate a six-phase TSBS by driving Segments 1 and 2 with the same three-phase currents, 

and by driving Segments 3 and 4 with the same three-phase currents. As a result, the x — y 

frame of the six-phase TSBS is positioned 45 degrees counterclockwise relative to the x — y 

frame of the twelve-phase TSBS. 

Adapting the force and torque expressions (7.4) to the dynamic model derived in Chap

ter 6, Section 4 gives 

/ s i n ( M 7 2 ) z 2 - s i n ( M 7 l ) n \ + ^ + ^ ( ? ^ 

m'y = at (""^Tlft - ^(Ml2)i2 j + ^ + ^ ^ 

jj = ^ / c o s ( M 7 l ) H + c o S ( M 7 2 ) ^ _ B . + ^ ( ? 5 c ) 

with effective mass m', negative stiffness coefficient a'x, bias forces FCtX,FCiV, and bias 

torque Tc. The dynamic model remains sixth order but now has four inputs ii, 12,71,72. 

and three outputs x, y, 0. Note that x, y are the radial displacements of the rotor in the 

new x — y coordinate system of the measurement plane and are related to the physical 

measurements x0tS, y0tS by the relations 

x = cos (-) x0iS + sin (-) y0<3, (7.6a) 

y = cos ( - J x0}S - sin ( - J y0>3. (7.6b) 

Having re-oriented the x- and y-axes 45 degrees counterclockwise, it results that 

at — V2ad, 

an = V2ac, 

where ad, ac are the direct and cross-coupled current-to-force constants identified in Chap

ter 6. All other parameters remain the same as previously identified in Table 6.2. 
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7.4 Control 

7.4.1 Decoupling via d — q control 

By control of the current magnitudes ik and phase angles %, we apply d-q decomposition 

theory [65] and a further input transformation to decouple the equations of motion (7.5). 

The d — q decomposition is introduced in conventional motors to remove time-varying in

ductances from the electrical dynamic equations and to isolate the stator current component 

responsible for torque generation. We define 

H i =s in(M7i) i i , 

id,2 = sin(M72)i2, 

iq,l =cos (M7i )n , 

iq,2 = cos(M-f2)i2, 

(7.7a) 

(7.7b) 

(7.7c) 

(7.7d) 

where id,i,id,2 control the normal forces generated by Segments 1 and 2 respectively, and 

iq,i,iq,2 control the tangential forces responsible for torque. As such, the six-phase currents 

(7.1) are related to (7.7) by a variation1 of the standard d — q transformation. Specifically, 

it holds that 
^q,k ta,k 

(7.8) 
qfe 

U,k 
}Q,k_ 

= K 
^a,k 

%,k 

J'C-M-

for k = 1,2. The homopolar current iotk = 0 and 

cos (MB - f ) cos {Md) 
- sin (M6>-§) - s i n ( M 0 ) K = 

l 
v/2 

1 
'v/2 

cos (MB + f ) ' 
- sin (M9 + f) 

72 

(7.9) 

The six-phase currents are computed from the d — q currents via 

~ia,k 

ib,k 

Mk_ 

= K~l 
1q,k 

id,k 

}0,k. 

(7.10) 

where 

l i 

± 
%/2 
1 

V2 . 

"i (cos (MB) + v^s in (MB)) ± (y/3 cos (MB) - sin (MB)) 

K~l = cos (MB) - sin {MB) 

| (cos (MB) - \/3sin (MB)) | (-y/3 cos (MB) - sin (MB)) 

In fact, an analysis similar to that given above also holds for the twelve-phase TSBS. In 

Chapters 5 and 6, the current magnitudes i^, 1 < k < 4 are the g-axis components of stator 

current and no d-axis components are assumed to exist since 7 = 0. 
1 The variation in our d — q transformation is due to the w/3 phase spacing of our winding arrangement 

instead of the more common 27r/3 phase spacing. 
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Substitution of the d — q currents (7.7) into the dynamic model (7.5) gives 

/.. fid,2 —id,l\ . / . rr. <H 11 \ 
mx = an\ — - 1 + axx + FCtX, (7.11a) 

m'y = at ( > q , 1 ~* 9 , 2 ) + olxy + Fc,y, (7.1 lb) 

jJ = aT(^hl^-Be + Tc. (7.11c) 

Individual control offeree and torque in (7.11) requires a further input transformation that 

gives 

' *d,2 - U,l 

*,,1 " S,2 

2 . ix, (7- 12a) 

iv, (7.12b) 
2 

• • i e . (7.12c) 
«9,1 + *9,2 

Equations (7.12b)-(7.12c) uniquely specify iy and i# in terms of iq,i,iq>2 whereas (7.12a) is 

overspecified by id,i,id,2- As one approach, we set id,2 — —id,\ whereby id,i,id,2, iq,\,iq,2 

are recovered from ix,iy, ie by 

H i = ~ix, (7.13a) 

id,2 = ix, (7.13b) 

*q,i = ie - iy, (7.13c) 

iq,2 = ig + iy (7.13d) 

With this further input transformation, the dynamic model (7.11) becomes 

m'x = anix + a'xx + Fc<x, 

m'y = atiy + a'xy + FCtV, 

jj = aTie -B6 + Tc. 

For simplicity, we complete the control design by decoupled proportional-plus-integral-

plus-derivative (PID) control laws 

ix = -Kp(xr -x)-Ki I (XT(T) - x(r))dr - Kd—(xr - x), (7.14a) 

iy = -Kp(yr -y)-Kij (yr(r) - y(r))dr - Kd^(yr - y), (7.14b) 

ie = -Kp,e(9r -d)- Kifi J {er{r) - 0(r))dr - K^fr - 9). (7.14c) 
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7.4.2 Priority scheme 

As discussed in Chapter 6, the TSBS generates radial force and torque from a common 

set of windings. Since the coil currents are subject to a saturation level, conflict can arise 

between the force needed to maintain stable levitation and the torque need to rotate the shaft. 

In chapter 6, a dynamic saturation scheme was established in which the reference currents 

to the levitation subsystem are given priority over the reference current to the rotational 

subsystem. This idea is founded on the fact that insufficient bearing capacity destabilizes 

the entire system whereas insufficient torque capacity does not. 

We consider now the design of a priority scheme for the six-phase TSBS. We impose 

actuator saturation as a constraint on the amplitudes of each segment's three-phase currents 

such that ii,i2 ^ ŝ> where Is > 0 is the saturation current level. Bounding of the current 

amplitudes ik can be otherwise stated as 

and, following substitution of (7.13), as 

{-ixf + {ie ~ iyf ^ It 

i2
x + (ig + iy)

2^I2. 

Assuming that i^+i2, < I2, which implies that the levitation subsystem is not saturated in 

the absence of torque generation, we have 

i2
e + 2ivig + i2

x + i2
y- I2 ^ 0, (7.15a) 

ij - 2iyie + i2
x + i2

y- I2 ^ 0. (7.15b) 

We equate the constraints (7.15a)-(7.15b) to calculate the bounds on ig. Doing so gives 

i2
e + 2iyi9 + il + il-I2 = 0, (7.16a) 

i2
e - 2iyie + i2

x + i2
y- I2 = 0, (7.16b) 

where ig denotes a saturation value of ig. The solutions to the quadratic equations (7.16a)-

(7.16b) are 

ig = -iy ± y/lj - ix, (7.17a) 

lg = iy± V42 - »i- (7.17b) 
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Figure 7.2: Block diagram of the six-phase TSBS under closed-loop control. We define 
the following acronyms: CT is the coordinate transformation given by (7.6); IT is the input 
transformation given by (7.13); dq —• abc is the transformation (7.10); PID is the feedback 
control law given by (7.14); SAT is the dynamic saturation given by (7.18). 

The intersection of (7.17a)-(7.17b) gives the range of feasible values for ig as a function of 

ix and iy. Therefore, ig is bounded above and below by ig,—ig respectively where 

k = I \iy\ - \Jll ~ il (7.18) 

Figure 7.2 is a block diagram of the closed-loop system showing the interconnection of the 

feedback control law, priority scheme, input transformation, and commutation. 

7.5 Experimental validation 

We confirm the theory of a six-phase TSBS on the existing twelve-phase TSBS test rig 

which is described in detail in Chapter 6, Section 3. The current setup is not identical to 

an actual six-phase system because it is still driven by twelve servoamplifiers. Therefore 

the inductances and resistances of the coils would be twice as large in an actual six-phase 

prototype as it is in the present setup. Since the coils are current driven, only an increase 

in inductance is potentially problematic because it degrades the bandwidth of the current 

controllers (see Chapter 2, Section 1 for an explanation). We do not expect this degradation 

to be significant for the TSBS because a doubling of the nominal coil inductance of our 

toothless machine would still make it comparable to that of AMBs. 

Experimentation confirms that all the basic functionality of the twelve-phase TSBS can 

be realized with only six phases, i.e. lift off, precision pointing and slewing, and con

ventional motoring. Figure 7.3(a) shows the rotor's response to a 15 degree angular step 
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Figure 7.3: 15 degree angular step response of a six-phase TSBS. 

reference. Figures 7.3(c) and 7.3(d) show the effectiveness of the priority scheme since ig 

is bounded by a time-varying constraint which is dependent upon ix,iy. From the orbital 

plot in Figure 7.3(b) it is further evident that the levitation subsystem is unaffected by the 

current demands of the rotational subsystem. 

7.6 Conclusion 

The TSBS is redesigned so that its functionality can be realized with six phases instead 

of twelve. This is shown to be possible in principle through normal force generation on 

the rotor in addition to tangential force generation. A control scheme is synthesized which 

manipulates both the magnitude and phase angle of each segment's windings. In addition, 

we reformulate the priority scheme from Chapter 6 which gives precedence to levitation 

over torque generation. Experiments confirm the feasibility of the six-phase approach, and 

its advantages are in simplifying the physical design and hardware requirements of the 

TSBS. 
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Chapter 8 

Conclusions 

8.1 Summary of contributions 

This thesis has described contributions to the modeling, control, and design of contactless 

electromagnetic actuators, namely active magnetic bearings (AMBs) and toothless self-

bearing servomotors (TSBS). The contributions are listed below. 

1. An experimental comparison of trajectory tracking control laws for a non-rotating 

shaft levitated by AMBs confirms the feasibility of applying nonlinear control theory 

subject to various actuating constraints. This experimental study demonstrates the 

dependence of dynamic performance on the AMBs' bias current level in a nonlinear 

context. 

2. A nonlinear trajectory tracking control law is synthesized for a rotating shaft levi

tated by AMBs. The innovation lies in the hierarchical state observer design which 

estimates synchronous vibration. Experiments show that the proposed control design 

achieves synchronous vibration suppression as well as wide-air-gap motion tracking 

at high rotational speeds. 

3. An alternative basis to state estimation using algebraic differentiation (AD) is numer

ically analyzed to assess its accuracy. The AD method is shown to be effective in a 

simulated application to an AMB as well as in a real-time application to the TSBS. 

4. The nonlinear bearing force and torque characteristics of a TSBS are obtained from 

first principle analysis. Parameters are identified and the resulting model is validated 

by means of finite element analysis. Our model achieves comparable accuracy to 

more complex modeling approaches, and is more general than previous modeling 

approaches which always resulted in linearized expressions. 
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5. A dynamic model for the TSBS is derived which generalizes its actuating principle 

and incorporates the phase angle 7 as a potential control variable. 

6. A feedback controller for the TSBS is designed to mitigate the force-torque conflict 

inherent in its common-coil winding scheme and to extend its physical range of con

trol authority. A priority scheme is devised which resolves the force-torque conflict, 

and phase-based control is shown to maximize the TSBS's force-generating capabil

ity for general operating conditions. 

7. A six-phase design for a TSBS is presented. This design requires half of the phases, 

and hence half of the drive electronics, of the TSBS considered in this thesis. The 

principle of the six-phase TSBS is derived through vector control of each segment. 

An equivalent priority scheme is devised in the six-phase case, and the overall concept 

is experimentally confirmed. 

8.2 Future work 

The work in this thesis has opened up some potential avenues of future research. They are 

described in this section. 

8.2.1 Adaptive vibration control for AMBs 

The problem of vibration control of AMBs is a relatively mature topic of research but it 

remains an interesting and relevant case study for the application of adaptive control theory. 

Vibration in AMBs can arise either from mass unbalance, sensor runout, or resonance. 

Control systems which compensate these effects usually require knowledge of the discrete 

frequency or frequencies associated with these various forms of vibration. Typically this 

knowledge is obtained from measurement or by assumption. 

Recent work in the field of adaptive control theory [77] has led to an observer which can 

globally estimate an arbitrary number of discrete sinusoids from a measured signal. This 

algorithm can be applied to determine the synchronous speed for an adaptive disturbance 

observer design, and to estimate resonances in real time as a basis for notch filter tuning. 

8.2.2 Pointing and slewing characterization of the TSBS 

The angular tracking performance of the TSBS deserves further consideration since it is a 

key performance specification. In particular, we are concerned with the actuator's ability 
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to track low frequency angular references as well as its pointing precision and accuracy. 

Reference [100] provides a number of benchmark tests for the TSBS. 

Although toothless machines are theoretically devoid of detent, it is apparent from ex

perimentation that the rotor "catches" at certain angular positions. This is demonstrated in 

Figure 8.1(a) where the rotor angle tracks a low frequency sinusoid reference. Figure 8.1(b) 

shows a close up where the tracking error significantly deviates at a discrete angle. Fig

ure 8.1(c) shows how the tracking error gets worse with an increase of the frequency of the 

reference. Detent is a potentially severe detriment to meeting the stringent angular posi

tioning requirements required for its intended applications. It would be worthwhile to study 

the root cause of this effect and devise compensation either through advanced feedback or 

commutation. 

8.2.3 Conventional motor operation of the TSBS 

The TSBS is fundamentally a servo-drive, but operating it as a conventional motor is poten

tially useful to further characterize it in terms of its power and efficiency. Constant speed 

operation is a challenge with a common coil winding scheme since the availability of torque 

is subject to the demands on the levitation subsystem. Fluctuations in speed also result from 

voltage saturation of the servoamplifiers, so the electrical dynamics of the TSBS must be 

considered as well. 

8.2.4 All-Lorentz slice SBMs 

In the field of SBMs, arguably the most industrially relevant route to pursue further study 

would have to do with the slice motor concept [109]. The self-bearing slice motor, as 

discussed in Chapter 1, Section 3, actively stabilizes three degrees of freedom like most 

other SBMs, but also passively stabilizes the remaining three degrees of freedom. Most 

self-bearing slice motors are of the hybrid type. Efforts to develop a slice SBM using the 

all-Lorentz approach are nascent [89] and warrant further investigation because of their 

potential advantages which are discussed in the introduction of Chapter 5. 
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Figure 8.1: Slewing performance of the toothless self-bearing servomotor. As the rotor 
angle tracks a sinusoidal reference, the rotor "catches" at discrete angles, degrading the 
tracking error. 
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